
Refinement of Statecharts with
Run-to-Completion Semantics

Karla Morris1(B), Colin Snook2, Thai Son Hoang2, Robert Armstrong1,
and Michael Butler2

1 Sandia National Laboratories, Livermore, CA, USA
{knmorri,rob}@sandia.gov

2 University of Southampton, Southampton, UK
{cfs,t.s.hoang,mjb}@soton.ac.uk

Abstract. Statechart modelling notations, with so-called ‘run to com-
pletion’ semantics and simulation tools for validation, are popular with
engineers for designing systems. However, they do not support formal
refinement and they lack formal static verification methods and tools.
For example, properties concerning the synchronisation between differ-
ent parts of a system may be difficult to verify for all scenarios, and
impossible to verify at an abstract level before the full details of sub-
states have been added. Event-B, on the other hand, is based on refine-
ment from an initial abstraction and is designed to make formal veri-
fication by automatic theorem provers feasible, restricting instantiation
and testing to a validation role. In this paper, we introduce a notion of
refinement, similar to that of Event-B, into a ‘run to completion’ State-
chart modelling notation, and leverage Event-B’s tool support for proof.
We describe the pitfalls in translating ‘run to completion’ models into
Event-B refinements and suggest a solution. We illustrate the approach
using our prototype translation tools and show by example, how a syn-
chronisation property between parallel Statecharts can be automatically
proven at an intermediate refinement level.

Keywords: SCXML · Statecharts · Event-B · iUML-B · Refinement

1 Introduction

Formal verification of high-consequence systems requires the analysis of formal
models that capture the properties and functionality of the system of interest.
Although high-consequence controls and systems are designed to limit complex-
ity, the requirements and consequent proof obligations tend to increase the com-
plexity of the formal verification. Proof obligations for such requirements can be
made more tractable using abstraction/refinement, providing a natural divide
and conquer strategy for controlling complexity.

Statecharts [7] are often used for safety-critical and other high-consequence
systems to provide an unambiguous, executable way of specifying functional as
c© Springer Nature Switzerland AG 2019
C. Artho and P. C. Ölveczky (Eds.): FTSCS 2018, CCIS 1008, pp. 121–138, 2019.
https://doi.org/10.1007/978-3-030-12988-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12988-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-12988-0_8


122 K. Morris et al.

well as safety, security, and reliability properties. While functional properties
(usually) can be tested, the need for instantiation and state space explosion can
make testing of safety, security and reliability properties intractable. Therefore,
such properties must be proved formally.

Here we give a binding from Statecharts to Event-B [1] so that this type of
reasoning can be carried out. The binding is facilitated by translating to iUML-
B [18–20], a diagrammatic modelling notation for Event-B. Hierarchical encap-
sulation maps well onto Statecharts in a similar way to nested state-machines in
iUML-B. Binding UML Statecharts [17] to iUML-B is natural and the addition
of run-to-completion semantics, expected by Statechart designers, is much of
the contribution of this work. Another contribution is the augmentation of the
textual and parse-able format for Statecharts, State Chart eXtensible Markup
Language (SCXML) [22] to accommodate elements necessary to support formal
analysis.

There are many formal semantics that can be bound to the Statechart graph-
ical language [5]. While Statecharts and various semantic interpretations of Stat-
echarts admit refinement reified as both hierarchical or parallel composition (e.g.
see Argos [12]), here, as previously [18], we focus on hierarchical refinement, the
form that Event-B natively admits. Here we define hierarchical composition to
mean nesting new transition systems inside previously pure states, and parallel
composition to be the combination in one machine of formerly separate transition
systems. A hierarchical development of a system model uses refinement concepts
to link the different levels of abstraction. Each subsequent level increases model
complexity by adding details in the form of functionality and implementation
method. As the model complexity increases in each refinement level, tractability
of the detailed model can be improved by the use of a graphical representation,
with rich semantics that can support an infrastructure for formal verification.

The semantics adopted here adheres closely to UML Statecharts [3] and
is implemented in iUML-B. Models described in Statecharts are expressed
in SCXML and translated into Event-B logic which uses the Rodin platform
(Rodin) [2] for machine proofs. With suitable restrictions, Statecharts already
provide a sound, intuitive, visual metaphor for refinement. Outfitted with a for-
mal semantics, this work borrows from well-used Statechart practices in digital
design. We previously reported [16] our early attempts to relate Statecharts
to Event-B. At that stage (and similarly in [20]) we suggested the necessary
extensions and basic mechanism of translation but avoided the more challeng-
ing problem of refinement with run to completion semantics. The goal of the
present work is to provide usable, well-founded tools that are familiar to design-
ers of safety-critical systems with the formal guarantees needed to ensure safety
and reliability. The motivation of the work is entirely driven by the industrial
partner, who feels that the current semantics for Statecharts is insufficient for
formal verification.

The Event-B modelling method provides the logic and refinement theory
required to formally analyse a system model. The open-source Rodin provides
support for Event-B including automatic theorem provers and model checking



Refinement of Statecharts 123

capabilities. iUML-B augments the Event-B language with a graphical interface
including state-machines.

The rest of the paper is structured as follows. Section 2 provides background
information on SCXML, Event-B, and iUML-B. Section 3 presents our running
example. Section 4 discusses the various challenges for introducing a refinement
notion into SCXML and demonstrates our approach. In Sect. 5, we illustrate our
translation of SCXML models into Event-B using the example introduced in
Sect. 3. Section 6 shows how properties of the SCXML models can be specified
as invariants and verified in Event-B. We summarise related work in Sect. 7,
conclude in Sect. 8 and describe our plans for future work in Sect. 9.

2 Background

2.1 SCXML

SCXML is a modelling language based on Harel Statecharts with facilities for
adding data elements that are manipulated by transition actions and used in
conditions for their firing. SCXML follows the usual ‘run to completion’ seman-
tics of such Statechart languages, where trigger events1 may be needed to enable
transitions. Trigger events are queued when they are raised, and then one is de-
queued and consumed by firing all the transitions that it enables, followed by
any (un-triggered) transitions that then become enabled due to the change of
state caused by the initial transition firing. This is repeated until no transitions
are enabled, and then the next trigger is de-queued and consumed. There are
two kinds of triggers: internal triggers are raised by transitions and external
triggers are raised by the environment (spontaneously as far as our model is
concerned). An external trigger may only be consumed when the internal trig-
ger queue has been emptied. Listing 1 shows a pseudocode representation of the
run to completion semantics as defined within the latest W3C recommendation
document [22]. Here IQ and EQ are the triggers present in the internal and
external queues respectively.

1 while running:
2 while completion = false
3 if untriggered_enabled
4 execute(untriggered())
5 elseif IQ /= {}
6 execute(internal(IQ.dequeue))
7 else
8 completion = true
9 endif

10 endwhile
11 if EQ /= {}
12 execute(EQ.dequeue)
13 completion = false
14 endif
15 endwhile

Listing 1. Pseudocode for ‘run to completion’

1 In SCXML the triggers are called ‘events’, however, we refer to them as ‘triggers’ to
avoid confusion with Event-B.



124 K. Morris et al.

We adopt the commonly used terminology where a single transition is called a
micro-step and a complete run (between de-queueing external triggers) is referred
to as a macro-step.

2.2 Event-B

Event-B [1] is a formal method for system development. Main features of Event-B
include the use of refinement to introduce system details gradually into the for-
mal model. An Event-B model contains two parts: contexts and machines. Con-
texts contain carrier sets, constants, and axioms constraining the carrier sets
and constants. Machines contain variables v, invariants I(v) constraining the
variables, and events. An event comprises a guard denoting its enabled-condition
and an action describing how the variables are modified when the event is exe-
cuted. In general, an event e has the form: any twhere G(t, v) then S(t, v) end
where t are the event parameters, G(t, v) is the guard of the event, and S(t, v) is
the action of the event.

Machines can be refined by adding more details. Refinement can be done by
extending the machine to include additional variables (superposition refinement)
representing new features of the system, or to replace some (abstract) variables
by new (concrete) variables (data refinement). More information about Event-B
can be found in [8]. Event-B is supported by Rodin [2], an extensible toolkit
which includes facilities for modelling, verifying the consistency of models using
theorem proving and model checking techniques, and validating models with
simulation-based approaches.

2.3 iUML-B State-Machines

iUML-B provides a diagrammatic modelling notation for Event-B in the form
of state-machines and class diagrams. The diagrammatic models relate to an
Event-B machine and generate or contribute to parts of it. For example a state-
machine will automatically generate the Event-B data elements (sets, constants,
axioms, variables, and invariants) to implement the states. Transitions con-
tribute further guards and actions representing their state change, to the events
that they elaborate. State-machines are typically refined by adding nested state-
machines to states. Figure 1 shows an example of a simple state-machine with
two states.

Fig. 1. An example iUML-B state-machine

Each state is encoded as a boolean variable and the current state is indicated
by one of the boolean variables being set to TRUE. An invariant ensures that



Refinement of Statecharts 125

only one state is set to TRUE at a time. Events change the values of state
variables to move the TRUE value according to the transitions in the state-
machine. The Event-B translation2 of the state-machine in Fig. 1 can be seen
in Listing 2. iUML-B also provides the option of an alternative translation with
a single state variable ranging over an enumerated type of states, however, the
boolean representation of each state is more natural for a user to reference in
SCXML guards and actions.

While the iUML-B translation deals with the basic data formalisation of
state-machines it differs significantly from the aims of the work presented here.
iUML-B adopts Event-B’s simple guarded action semantics and does not have a
concept of triggers and run-to-completion. Here we make use of iUML-B’s state-
machine translation but provide a completely different semantic by generating
a behaviour into the underlying Event-B events that are linked to the generated
iUML-B transitions.

1 variables S1 S2
2 invariants
3 TRUE ∈ {S1, S2} ⇒ partition({TRUE}, {S1}∩{TRUE}, {S2}∩{TRUE})
4 events
5 INITIALISATION: begin S1, S2 := TRUE, FALSE end
6 e: when S1= TRUE then S1, S2 := FALSE, TRUE end
7 f: when S2= TRUE then S2 := FALSE end
8 end

Listing 2. Translation of the state-machine in Fig. 1

3 Intrusion Detection System

An Intrusion Detection System (IDS) is used to illustrate the use of refinement
in Statecharts and how it is supported by Event-B verification tools. The IDS
is designed using an Application-Specific Integrated Circuit (ASIC) which con-
nects to a buzzer and a sensor over a Serial Peripheral Interface (SPI) bus. The
system is controlled via the ASIC on the SPI bus. At power-up, the ASIC sends
commands over the SPI bus to initialise the sensor and the buzzer. After waiting
for 50 ms the ASIC enters its main routine, which makes the buzzer respond to
the sensor. In the early design phase the Statechart model of this system may be
limited to the ASIC that captures the initialisation of the peripherals and the
50 ms wait. In the interest of simplicity, we elide all details of the main routine.

A Statechart model of this system is shown in Fig. 2a. The ASIC starts by
initialising the buzzer; this involves sending a message over the SPI bus. These
messages constitute an implementation detail that we elide at this abstraction
level. Once the message is sent (which will be indicated by some event saying that
the SPI system is done), the ASIC moves on to initialise the sensor. After that
the ASIC moves into a waiting state for 50 ms, and finally moves into the state
which represents normal operation. At this abstraction the spi done trigger,
2 Here, partition(S,T1,T2, . . .) means the set S is partitioned into disjoint (sub-)sets
T1, T2, . . .. that cover S.



126 K. Morris et al.

which indicates that the SPI system has finished, is an internal trigger that can
be fired at any time.

In a subsequent level of refinement, shown in Fig. 2b, the designer uses super-
position refinement to add a parallel state representing the SPI subsystem. The
SPI subsystem is usually in an Idle state until the send message trigger is
raised, at which point the SPI subsystem enters a state Sending Message,
which represents sending the message, byte by byte. When the last byte of the
message is sent, it raises the spi done trigger, allowing the other parallel state
to continue, while the SPI subsystem returns to idle. In the current refined model
we have incorporated the implementation details for raising spi done and intro-
duced a new internal trigger send message, which is non-deterministic at this
point.

(a) ASIC component high level
abstraction

(b) First refinement introducing the abstract
model of the SPI subsystem

Fig. 2. Statechart diagram for IDS including the abstract representation of the ASIC
and SPI components.

The model can be further refined by incorporating more details on how the
initialisation states, the wait state, and the SPI subsystem operate, including how
they interact with each other. The Statechart diagram for this refinement level
is in Fig. 3. The Initialise Buzzer state constructs the SPI message to send,
then raises the send message trigger, and then waits. After send message is
raised, the SPI subsystem reacts. It spins for a while in the Send Byte state,
looping as many times as it takes to get to the last byte in the message. When
the last byte in the message is sent, it goes back to Idle and raises an event which
allows the state machine on the left to proceed. The sensor is then initialised in
a very similar manner to the buzzer. After both peripherals are initialised, the



Refinement of Statecharts 127

state machine goes into the Wait 50ms state, where it increments a counter
until it reaches some maximum, then exits.

Fig. 3. Statechart diagram for IDS including implementation details for the messages
sent between the system components.

The system described must send messages to complete the initialisation of
the buzzer and sensor, but once the main routine is reached (Go state) no more
messages should be sent through the SPI bus. As a result, a desirable safety
property is that when the ASIC is in the Go state the SPI subsystem must be
in the Idle state. This safety property should hold from the first refinement and
be preserved in all future refinements.

4 Design Rationale

We consider the kinds of things we would like to do in SCXML refinements and
what properties should be preserved. In practice, we wish to leverage existing
Event-B verification tools and hence adopt a notion of refinement that can be
automatically translated into an equivalent Event-B model consisting of a chain



128 K. Morris et al.

of refinements. We use particular refinement idioms at the Statechart level that
correspond to Event-B’s superposition refinement and thus have simple proof
obligations. These refinement idioms are very natural from an engineering per-
spective (as illustrated by the running example). Hence we start from the follow-
ing requirements which allow superposition refinements and guard strengthening
in SCXML models:

– The firing conditions of a transition can be strengthened by adding further
textual constraints about the state of other variables and state machines in
the system.

– The firing conditions of a transition can be strengthened by being more spe-
cific about the (nested) source state,

– Nested Statecharts can be added in refinements.
– Actions that modify ancillary data can be added to transitions.
– Raise actions can be added to transitions to define how internal triggers are

raised. These internal triggers may have already been introduced and used to
trigger transitions, in which case they are non-deterministically raised at the
abstract levels.

– External triggers represent inputs to the model. If no restrictions are imposed
on the inputs then the events that raise external trigger are always unguarded
and cannot be refined.

– Invariants can be added to states to specify properties that hold while in that
state.

While it would be possible to utilise Event-B’s data refinement to perform more
substantial Statechart refinements (for example replacing an abstract Statechart
with a different one in the refined model), this would lead to complex proof
obligations and is impractical when the SCXML model is a single Statechart
(rather than a chain of refined models).

Adherence to Event-B refinement means that refined transitions (hence
micro- and macro-steps) should preserve the abstract state and new ones should
not alter the abstract state. With this approach, there is an inherent difficulty
in refining ‘run to completion’ semantics where every enabled micro-step must
be completed before the next macro-step is started. The problem is that, in a
refinement, we want to strengthen the conditions for a micro-step. However, by
making the micro-steps more constrained we may disable them and hence make
the completion of enabled ones more easily achieved. This makes the guard for
taking the next macro-step weaker breaking the notion of refinement.

While it is always possible to abstract away sufficiently to reach a common
semantics (see [20] for example), in this work we wish to explore verification
that considers ‘run to completion’ behaviour as closely as possible. To simulate
the ‘run to completion’ semantics in Event-B, we initially adopted a scheduler
approach where ‘engine’ events decide which user transitions should be fired
based on their guards. Boolean flags were then used to enable these transitions
which may fire before the next step of the engine. The engine implemented the
operational semantics of Listing 1 by deciding when to use internal or external
triggers. To allow for transition guards to be strengthened in later refinements



Refinement of Statecharts 129

(hence achieving completion earlier) the scheduling engine was allowed to con-
tinue without actually firing the transitions. However, this non-deterministic
completion introduced many additional behaviours making simulation difficult.

Due to these difficulties with non-deterministic completion we developed an
alternative approach where a separate event is generated for each combination of
transitions that could possibly be fired together in the same step. For example,
if T1 and T2 are transitions that could both become enabled at the same sched-
uler step, four events are needed to cater for the possible combinations: neither,
T1, T2 and both (where the combined event is constructed from the conjunc-
tion of guards and parallel firing of actions). To allow for strengthening of the
guards in refinement we omit the negation of guards leaving the choice of lesser
combinations, including the empty one, non-deterministically available in case
of future refinement. For example, T1 could fire alone even if T2 is enabled since
we cannot add the negation of T2’s guard to T1 unless we know that it will
never be strengthened. This non-determinism in the model accurately reflects
the abstract run to completion where we do not yet know whether T2 will be
enabled or not in future refinements. The non-determinism is useful to allow
abstractions which facilitate verification proofs but must be removed in refine-
ments to reach a design suitable for implementation. In future work we intend
to add an attribute finalised to indicate that no further guard strengthening
refinements will be made to a transition, removing non-determinism throughout
the refinement chain.

Since there is only ever a single event to be fired in a particular micro-step,
the scheduler can be integrated with the events that represent the transition
combinations, greatly simplifying the Event-B model. Instead of explicit events
to progress and implement the scheduling engine, an abstract machine is pro-
vided with events that can be refined by the translation of the user’s SCXML
model into events that represent combinations of transitions that can fire in
the same micro-step. Each refinement produces a new set of events representing
the (possibly extended) transition combinations that may occur at that level of
refinement. This has benefits both for simulation (i.e. execution of the Statechart
for validation) which is easier to follow having less translation artefacts and for
proof where the obligations are directly associated with particular transition
combinations. Another benefit is that any parallel assignments to the same vari-
able are rejected by the Event-B static checker. The disadvantage, of course, is
that there could be a combinatorial explosion in the number of events generated.
In practice though, this is unlikely since, to be fired in parallel, transitions must
have the same trigger and be located in parallel Statecharts. A high number of
events is also not necessarily a bad thing since they are automatically generated
and the main purpose of the Event-B model is for proof which could be simplified
by replacing some of the unnecessary sequential steps of the model by a choice.
If the number of combinations is excessive it may indicate poor modelling style
which can be reduced by introducing more internal triggers. So far our examples
have required few or no parallel transitions.



130 K. Morris et al.

1 context

2 basis c // (generated for SCXML)
3 sets

4 SCXML TRIGGER // all possible triggers
5 constants

6 SCXML FutureInternalTrigger // all possible internal triggers
7 SCXML FutureExternalTrigger // all possible external triggers
8 axioms
9 partition(SCXML TRIGGER, SCXML FutureInternalTrigger, SCXML FutureExternalTrigger)

10 end

Listing 3. Abstract basis context

The following syntax extensions are added to SCXML models to support
refinement and invariant verification.

– refinement - an integer attribute representing the refinement level at which
the parent element should be introduced,

– invariant - an invariant property (such as synchronisation of state with ancil-
lary data and other state machines) that holds while in the parent state,

– guard - a guard condition of the parent transition (allowing transition con-
ditions to be added at particular refinement levels).

5 SCXML Translation

The translation from SCXML to Event-B is based on an abstract ‘basis’ that
models the ‘run to completion’ semantics. This basis consists of an Event-B
context and machine that are the same for all input models and are refined
by the specific output of the translation. The basis context, Listing 3, intro-
duces a given set of all possible triggers that is partitioned into internal and
external ones, some of which will be introduced in future refinements. Refine-
ments partition these trigger sets further to introduce concrete triggers, leaving
a new abstract set to represent the remaining triggers yet to be introduced. For
example, the IDS model introduces a specific internal trigger, spi done, by par-
titioning SCXML FutureInternalTrigger into the singleton {spi done} and a new
set, SCXML FutureInternalTrigger0, representing the remainder.

The basis machine, part of which is shown in Listing 4, declares variables
that correspond to the triggers present in the queue at any given time, and a
flag, SCXML uc, that signals when a run to completion macro-step has been
completed (no un-triggered transitions are enabled). After initialisation, both
trigger queues are empty and SCXML uc is set to FALSE so that un-triggered
transitions are dealt with. The basis machine provides events that describe the
generic behaviour of models that follow the run to completion semantics in terms
of altering the trigger queues and completion flag. Since new events introduced
in a refinement cannot modify existing variables, all future events generated
by translation of the specific SCXML model, will refine these abstract events.
The abstract event, SCXML futureExternalTrigger represents the raising of an



Refinement of Statecharts 131

external trigger. The abstract event, SCXML futureInternalTransitionSet repre-
sents a combination of transitions that are triggered by an internal trigger.
The guards of this event ensure prior completion of the previous macro-step. A
similar event, SCXML futureExternalTransitionSet (not shown) represents a com-
bination of transitions that are triggered by an external trigger and has the
additional guard that the internal trigger queue is empty. These two triggered
transition events reset the completion flag to ensure that any un-triggered tran-
sitions that may have become enabled have a chance to fire next. The abstract
event SCXML futureUntriggeredTransitionSet represents a combination of transi-
tions that are un-triggered and may only be fired when the completion flag is
unset (FALSE). It leaves the completion flag unset in case further combinations
of un-triggered transitions are enabled. All three of these transition events also
allow for raising a non-deterministic set of internal triggers. A final abstract
event, SCXML completion, sets the completion flag (TRUE) if it is not already
set. At this abstract basis level, this is non-deterministically fired since we do
not yet have any detail of what needs to be completed.

The translation of a specific SCXML model comprises two stages as follows.
Firstly, all possible combinations of transitions that can fire together are calcu-
lated and corresponding events are generated, at appropriate refinement levels,
that refine the abstract basis events. If these transitions raise internal triggers,
a guard, (e.g. {i1, i2, ...} ⊆ SCXML raisedTrigger, where i1, i2, ... have been added
to the internal triggers set), is introduced that defines the raised triggers param-
eter. The subset constraint leaves it open for more raised triggers to be added by
later refinements. For triggered transition combinations, the trigger is specified
in a guard (see line 8 of Listing 5) that provides a value for the trigger parameter.

Secondly, the SCXML state-chart is translated into a corresponding iUML-
B state-machine whose transitions elaborate (i.e. add state change details to)
the possible transition combination events that the transition may be involved
in. A transition may fire in parallel with transitions of parallel nested state-
machines that have the same (possibly null) trigger. Figure 4 shows the generated
iUML-B first refinement level corresponding to the IDS described in Fig. 2b. The
main rules for the translation of SCXML features to iUML-B/Event-B can be
summarized as follow:

Top level SCXML model: Generates a refinement chain of Event-B machines
each containing an initialisation event and a iUML-B state-machine. The
depth of the refinement chain is found by searching the SCXML for the
maximum refinement annotation.

State: Generates a state in the iUML-B state-machine that has been produced
from the container of the SCXML state. A refined state is also added in all of
the refinements of the parent iUML-B state-machine. E.g. Fig. 2b, Initialise
Buzzer → Fig. 4, InitialiseBuzzer.

State invariant: Generates an invariant in the iUML-B state corresponding to
the SCXML state that contains the invariant. Added only at the refinement
level defined in the invariant (defaults to first level at which containing iUML-



132 K. Morris et al.

1 machine basis m sees basis c // (generated for SCXML)
2 variables

3 SCXML iq // internal trigger queue
4 SCXML eq // external trigger queue
5 SCXML uc // run to completion flag
6 invariants

7 SCXML iq ⊆ SCXML FutureInternalTrigger // internal trigger queue
8 SCXML eq ⊆ SCXML FutureExternalTrigger // external trigger queue
9 SCXML iq ∩ SCXML eq= ∅ // queues are disjoint

10 SCXML uc ∈ BOOL // completion flag
11 events
12

13 INITIALISATION:
14 begin

15 SCXML iq := ∅ //internal Q is initially empty
16 SCXML eq := ∅ //external Q is initially empty
17 SCXML uc := FALSE //completion is initially FALSE
18 end
19

20 SCXML futureExternalTrigger:
21 any SCXML raisedTriggers where
22 SCXML raisedTriggers ⊆ SCXML FutureExternalTrigger
23 then
24 SCXML eq := SCXML eq ∪ SCXML raisedTriggers
25 end
26

27 SCXML futureInternalTransitionSet:
28 any SCXML it SCXML raisedTriggers where
29 SCXML it ∈ SCXML iq
30 SCXML uc= TRUE
31 SCXML raisedTriggers ⊆ SCXML FutureInternalTrigger
32 then
33 SCXML uc := FALSE
34 SCXML iq := (SCXML iq ∪ SCXML raisedTriggers) \ {SCXML it}
35 end
36

37 SCXML futureUntriggeredTransitionSet:
38 any SCXML raisedTriggers where
39 SCXML uc= FALSE
40 SCXML raisedTriggers ⊆ SCXML FutureInternalTrigger
41 then
42 SCXML uc := FALSE
43 SCXML iq := SCXML iq ∪ SCXML raisedTriggers
44 end
45

46 end

Listing 4. Abstract basis machine (part of)

B state is introduced). E.g. Fig. 4, Idle=TRUE is generated from an invariant
attached (not shown) to the state Go of Fig. 2b.

Parallel Region: Generates an iUML-B state-machine in the state correspond-
ing to the owner of the parallel region. The nested iUML-B state-machine
is added starting from the refinement level that is annotated on the paral-
lel region and continuing throughout subsequent refinements. E.g. Fig. 2b,
right-hand region → Fig. 4, lower nested state-machine.

Initial: Generates an iUML-B initial state, and a transition from it to the
iUML-B state indicated in the SCXML initial attribute. The iUML-B initial
state and iUML-B transition are added at all refinement levels. The iUML-B



Refinement of Statecharts 133

1 spi done InitialiseSensor Wait50ms:
2 refines SCXML futureInternalTransitionSet
3 any SCXML it SCXML raisedTriggers where
4 SCXML it ∈ SCXML iq
5 SCXML uc= TRUE
6 SCXML raisedTriggers ⊆ SCXML FutureInternalTrigger
7 InitialiseSensor= TRUE

8 SCXML it= spi done //trigger for this transition
9 then

10 SCXML uc := FALSE
11 SCXML iq := (SCXML iq ∪ SCXML raisedTriggers) \ {SCXML it}
12 InitialiseSensor := FALSE
13 Wait50ms := TRUE
14 end

Listing 5. Event-B event corresponding to internal triggered transition to Wait 50ms
state in refinement level 1 shown in Fig. 2a

transitions are set to elaborate the Event-B INITIALISATION event for that
refinement level. E.g. Fig. 2b, initial state and transition in right-hand region
→ Fig. 4, initial state and transition in lower nested state-machine.

Final: Generates an iUML-B state with a transition to a final state in the state-
machine that has been generated from the containing SCXML state. The
transition elaborates the same events that are linked to the transitions that
exit the parent iUML-B state. The iUML-B state, final state and transition
are also added as refined elements to all of the refinements of the parent
iUML-B state-machine. (Not used in our example).

Transition: Generates an iUML-B transition in the state-machine that has
been generated from the containing SCXML state. The iUML-B transition’s
source and target are those that have been generated from the SCXML tran-
sition’s source and target states. The transition elaborates generated Event-B
events according to the rules given in Sect. 5. The iUML-B transition and
elaborated Event-B events are also added as corresponding refined elements
in all of the refinements of the parent iUML-B state-machine. E.g. Fig. 2b,
send message → Fig. 4, send message Idle SendingMessage.

A tool to automatically translate SCXML models into iUML-B has been pro-
duced. The tool is based on the Eclipse Modelling Framework (EMF) and uses an
SCXML meta-model provided by Sirius [4] which has good support for extensi-
bility. The iUML-B state-machine is subsequently translated into Event-B using
the standard iUML-B translation [18] which provides variables to model the cur-
rent state and guards and actions to model the state changes that transitions
perform.

6 Verification of Intrusion Detection System

One of our main goals is to express properties in SCXML intermediate refine-
ments and prove them via translation to Event-B. In this section we illustrate
how this can be done in the IDS example.



134 K. Morris et al.

Properties about the synchronisation of parallel state-machines (such as
Go=TRUE⇒ Idle=TRUE) can be difficult to verify for all scenarios via sim-
ulation in SCXML. Proof of such properties is a major benefit of translating
into Event-B. Furthermore, in order to benefit from the abstraction provided by
Event-B, we would like to prove such things at abstract levels before the compli-
cation of further details are introduced. Typically these further details concern
the raising of internal triggers that contribute to the synchronisation we wish to
verify. Therefore additional constraints, that are an abstraction of the missing
details, are needed about triggers in order to perform the proof.

Fig. 4. State invariants to be verified at refinement level 1.

Figure 4 is the generated iUML-B showing state invariants (textual properties
with a star icon inside states) to be verified. Note that the invariants are added
to the SCXML model but are easier to visualise in the iUML-B with the current
tooling. The main aim is to show the property Idle=TRUE holds in state Go. This
is true because after sending the message while in InitialiseSensor, no other mes-
sages are triggered by the ASIC, so the SPI subsystem stays in the Idle state indefi-
nitely. To enable the provers to discharge the proof obligation we work back along
the ASIC’s sequence of states. That is, Idle=TRUE is maintained in state Go if
it holds in state Wait50ms and no send message triggers are raised by the entry
transition Wait50ms Go nor once the ASIC subsystem is in state Go. To ensure
this we add a guard send message /∈ SCXML raisedTriggers to Wait50ms Go to
prevent any future refinement from raising the trigger send message. (Currently,
this is added verbatim but we envision a ‘doesn’t raise’ notation to avoid the



Refinement of Statecharts 135

user having to reference the translation artefact, SCXML raisedTriggers). We also
need to prevent any future transitions from raising this trigger in the state Go. To
automate this for all abstract ‘future’ events, they could be automatically gen-
erated and added to satisfy all user invariants concerning the raising of internal
triggers regardless of whether they are violated in future levels. For example, the
guard Go=TRUE⇒ send message /∈ SCXML raisedTriggers needs to be automat-
ically added to the three ‘basis’ events, SCXML futureUntriggeredTransitionSet,
SCXML futureInternalTransitionSet and SCXML futureExternalTransitionSet to
prove they do not break the property being verified. If it is not obeyed by future
transitions, guard strengthening proof obligations will fail, making it obvious
where the problems lie. As indicated above, we now need to prove by similar
means that Idle=TRUE holds in state Wait50ms. In this case, however, we can
only say that Idle=TRUE in state InitialiseSensor after the SPI-system finishes
sending the message and raises the trigger, spi done. Hence the state invariant
for InitialiseSensor becomes spi done∈SCXML iq⇒ Idle=TRUE. In order to prove
this we again need a corresponding state invariant about send message and need
to make sure that the SPI system will never raise send message. We also ensure
it does not raise spi done until it is finished. With these invariants and additional
guards the Rodin automatic provers are able to prove all proof obligations and
hence verify that the SPI system remains in Idle after servicing the ‘Initialise
Sensor’ message.

In order to prove properties at an abstract level we constrain the behaviour to
be added in later refinements. For example, we needed to add a guard to specify
that a transition does not raise a particular trigger in any future refinement.
The abstract constraints should not appear in later refinements when the details
have been finalised. To do this we could introduce ranges into our refinement
attributes.

7 Related Work

Refinement of UML Statecharts has been studied previously in [6,11,14,15,21].
In [14], the authors consider a coalgebraic description of UML Statecharts, and
define an equivalence relationship and a behavioural refinement notion between
Statecharts. In [21], the authors define a structured operational semantics of
Statecharts based on label transition systems. Behaviour refinements are then
constructed based on this semantics. The authors prove that a “safe-extension”
of UML Statecharts is a correct behavioural refinement. In [11,15], formal refine-
ment rules are developed for SysML, including Statecharts, based on the cor-
responding process refinement rules of the Compass Modelling Language. The
issue of run to completion with respect to refinement is not considered explic-
itly nor shown in any examples. In [6], the authors propose a “purely additive”
refinement process where no elements (e.g. events, guards, etc.) of the original
model can be removed and the “external” behaviour of the model is therefore
preserved. This refinement process is similar to Event-B “superposition” refine-
ment which we use in our translation.



136 K. Morris et al.

In our paper, we focus on the run-to-completion semantics of Statecharts,
whereas none of the above work deals with it explicitly. Furthermore, the refine-
ment process supported in [6,11,14,15] is based on refinement patterns (called
refinement rules/laws), whereas we rely on the more general theory of refinement,
given by the proof obligations of Event-B, for proving the refinement relationship
between Statecharts.

8 Conclusion

We have shown how a slightly extended and annotated Statechart, with a typ-
ical ’run to completion’ semantic, can be translated into the Event-B notation
for verification of synchronisation properties using the Event-B theorem prov-
ing tools. Furthermore, borrowing from the refinement concepts of Event-B, we
introduce a notion of refinement to Statecharts and demonstrate how the proof
of a property at an abstract level, helps formulate constraints that must apply
(and will be verified to do so) in further refinements.

9 Future Work

In future work we will continue to experiment with different examples to explore
the alternative translation strategies in more detail. In particular, further work
on refinement of the micro/macro-step and whether correspondence of macro-
steps can be relaxed; whether more complex refinement techniques could be
supported (for example, using ranges in refinement annotations) would be use-
ful; supporting/comparing alternative variations of semantics (by generating a
different basis/scheduler for the translation). For our interpretation of State-
charts in iUML-B, we used the ‘run-to-completion’ semantics of Statecharts. In
particular, we have carefully designed our translated model such that the seman-
tics is captured as a generic abstract model, which is subsequently refined by
the translation of the SCXML model. An advantage of this approach is that we
can easily adapt the basis model with other alternative semantics [5] without
changing the translation of the SCXML model.

We will also demonstrate the scalability of the translation on more realistic
industrial examples. The Haemodialysis Machine case study [13] from the ABZ
2016 conference would make a good test case since its highly sequential pro-
cesses are natural for a state-chart representation and results can be compared
with existing iUML-B solutions [10]. The ERTMS Hybrid Level 3 case study [9]
from the ABZ 2018 conference is also an industrial example which would test
the method. This case study would require lifting of the output models to a
generalised set of instances using a model composition technique that we have
been developing for this purpose.

All data supporting this study are openly available from the University of
Southampton repository at https://doi.org/10.5258/SOTON/D0693.

Acknowledgment. The authors would like to thank Jason Michnovicz for developing
the IDS example used throughout the manuscript.

https://doi.org/10.5258/SOTON/D0693


Refinement of Statecharts 137

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in Event-B. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

3. David, A., Möller, M.O., Yi, W.: Formal verification of UML statecharts with real-
time extensions. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 218–232. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45923-
5 15

4. Eclipse Foundation: Sirius Project Website. https://eclipse.org/sirius/overview.
html. Accessed Mar 2016

5. Eshuis, R.: Reconciling statechart semantics. Sci. Comput. Program. 74(3), 65–99
(2009)

6. Hansen, C., Syriani, E., Lucio, L.: Towards controlling refinements of statecharts.
CoRR, abs/1503.07266 (2015)

7. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

8. Hoang, T.S.: An introduction to the Event-B modelling method. In: Romanovsky,
A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp.
211–236. Springer, Heidelberg (2013)

9. Hoang, T.S., Butler, M., Reichl, K.: The hybrid ERTMS/ETCS level 3 case study.
In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol.
10817, pp. 251–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91271-4 17

10. Hoang, T.S., Snook, C., Ladenberger, L., Butler, M.: Validating the requirements
and design of a hemodialysis machine using iUML-B, BMotion studio, and co-
simulation. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 360–375. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33600-8 31

11. Lima, L., et al.: An integrated semantics for reasoning about SysML design models
using refinement. Softw. Syst. Model. 16(3), 875–902 (2017)

12. Maraninchi, F.: The Argos language: graphical representation of automata and
description of reactive systems. In: IEEE Workshop on Visual Languages (1991)

13. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 29

14. Meng, S., Naixiao, Z., Barbosa, L.S.: On semantics and refinement of UML state-
charts: a coalgebraic view. In: Proceedings of the Second International Conference
on Software Engineering and Formal Methods, SEFM 2004, pp. 164–173, Septem-
ber 2004

15. Miyazawa, A., Cavalcanti, A.: Formal refinement in SysML. In: Albert, E., Sek-
erinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 155–170. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10181-1 10

16. Morris, K., Snook, C.: Reconciling SCXML statechart representations and Event-B
lower level semantics. In: HCCV - Workshop on High-Consequence Control Verifi-
cation (2016)

17. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, 2nd edn. Pearson Higher Education, Upper Saddle River (2004)

https://doi.org/10.1007/3-540-45923-5_15
https://doi.org/10.1007/3-540-45923-5_15
https://eclipse.org/sirius/overview.html
https://eclipse.org/sirius/overview.html
https://doi.org/10.1007/978-3-319-91271-4_17
https://doi.org/10.1007/978-3-319-91271-4_17
https://doi.org/10.1007/978-3-319-33600-8_31
https://doi.org/10.1007/978-3-319-33600-8_31
https://doi.org/10.1007/978-3-319-33600-8_29
https://doi.org/10.1007/978-3-319-10181-1_10


138 K. Morris et al.

18. Snook, C.: iUML-B statemachines. In: Proceedings of the Rodin Workshop 2014,
Toulouse, France (2014). http://eprints.soton.ac.uk/365301/

19. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

20. Snook, C., Savicks, V., Butler, M.: Verification of UML models by translation to
UML-B. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010.
LNCS, vol. 6957, pp. 251–266. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25271-6 13

21. Szasz, N., Vilanova, P.: Behavioral refinements of UML-Statecharts. Technical
report RT 10–13, Universidad de la República, Montevideo, Uruguay (2010)

22. W3C: State chart XML SCXML: State machine notation for control abstraction.
http://www.w3.org/TR/scxml/. Accessed Sept 2015

http://eprints.soton.ac.uk/365301/
https://doi.org/10.1007/978-3-642-25271-6_13
https://doi.org/10.1007/978-3-642-25271-6_13
http://www.w3.org/TR/scxml/

	Refinement of Statecharts with Run-to-Completion Semantics
	1 Introduction
	2 Background
	2.1 SCXML
	2.2 Event-B
	2.3 iUML-B State-Machines

	3 Intrusion Detection System
	4 Design Rationale
	5 SCXML Translation
	6 Verification of Intrusion Detection System
	7 Related Work
	8 Conclusion
	9 Future Work
	References




