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Abstract. The Clock Constraint Specification Language (CCSL) is a
clock-based specification language for capturing causal and chronometric
constraints between events in Real-Time Embedded Systems (RTESs).
Due to the limitations of the existing verification approaches, CCSL lacks
a full verification support for ‘unsafe CCSL specifications’ and a unified
proof framework. In this paper, we propose a novel verification app-
roach based on theorem proving and SMT-checking. We firstly build a
logic called CCSL Dynamic Logic (CDL), which extends the traditional
dynamic logic with ‘signals’ and ‘clock relations’ as primitives, and with
synchronous execution mechanism for modelling RTESs. Then we pro-
pose a sound and relatively complete proof system for CDL to provide
the verification support. We show how CDL can be used to capture RTES
and verify CCSL specifications by analyzing a simple case study.

1 Introduction

UML/MARTE [1] is an extension of UML dedicated to the modelling and analy-
sis of Real-Time Embedded Systems (RTESs). Its time model relies on so-called
clocks to identify control and observation points in the UML model. These clocks
can be used to specify how the system behaves. The Clock Constraint Specifica-
tion Language (CCSL) [2,3] is a formal declarative language defined in an annex
of MARTE to specify the expected behaviour of the model. Given a system
model (or a concrete implementation) and a CCSL specification, the question
to answer is whether the system can only perform behaviors that are accepted
by the CCSL specification [4]. When a CCSL specification can be encoded as a
finite transition system, it is called ‘safe’ [5], then the verification task mainly
consists in making reachability analysis on the product of the system and the
CCSL specification. Most recently SMT encoding of CCSL [6] proved to be a
promising way to verify unsafe CCSL specification, however, there is no proof
environment available so far for reasoning on general specifications.
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In this paper, we propose a novel approach for the verification of CCSL,
which is based on the combination of theorem proving and SMT-checking. To
capture both the system model and the CCSL specification, we choose dynamic
logic [7], since it contains both dynamic program and static logic as its prim-
itives. We propose a variation of dynamic logic, called ‘CCSL Dynamic Logic’
(CDL), which extends the traditional First-Order Dynamic Logic (FODL) [8]
with ‘signal’ and ‘CCSL clock relations’ as primitives in its syntax. CDL also
supports synchronous events in order to capture synchronous system models [9].
We propose a sound and relatively complete proof system for CDL in order to
verify CDL formulas in a modular way.

sys model CCSL def

[p]ξ

CCSL rel

proof sys QF-AFOL SMT-check yes/no?

encoded

express

Tool Support

product

Fig. 1. Verification framework of CDL

Our approach for verification of CCSL specifications can be illustrated in a
verification framework given in Fig. 1. The verification task can be captured as
a CDL formula of the form [p]ξ, where part of the CCSL specification, called
‘clock relations’ (will be introduced in Sect. 2), are expressed by a formula ξ,
and the product of the system model and ‘clock definitions’ (the other part of
the CCSL specification) can be captured by a program of CDL p. In CDL, a
formula [p]ξ can be transformed into Quantifier-Free, Arithmetical First-Order
Logic (QF-AFOL) formulas through a deduction procedure in the proof system
of CDL. Then the validity of these formulas can be handled by an SMT-checking
procedure in an efficient way [10], and according to which the verification result
is obtained. With CDL, CCSL specifications can be verified in a unified proof
framework, provided with strong tool support, e.g. Isabelle [11] and Coq [12].

The rest of this paper is organized as follows: Sect. 2 gives a general intro-
duction to CCSL and FODL. Section 3 introduces the syntax and semantics of
CDL. In Sect. 4, we propose the proof system for CDL. In Sect. 5, we give a
simple case study to show how CDL can express and verify CCSL verification
problems. Section 6 introduces the related works, and Sect. 7 concludes this paper
and discusses about future work.

2 Preliminaries of CCSL and FODL

We present the syntax and semantics of CCSL based on [4,13]. In CCSL, a logical
clock actually models a sequence of occurrences of a signal in synchronous mod-
els [14]. A logical clock c is defined as an infinite sequence of instants (ci)i∈N+ ,
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where each ci can be ‘tick’ or ‘idle’, representing that the signal associated to c
occurs or not at a discrete time i. N

+ is the set of natural numbers. Clock rela-
tions describe binary relationships between clocks. The syntax of clock relations
is defined by:

Rel ::= c1 ⊆ c2 | c1#c2 | c1 ≺ c2 | c1 � c2,

where c1, c2 are arbitrary clocks. We use C to denote a finite set of clocks. A
schedule σ : N → P(C) is a finite or infinite sequence of clock ticks, N = N

+∪{0}.
It gives a global view of how each clock ticks at each instant. For any i ∈ N

+,
σ(i) = {c | c ∈ C ∧ ci = tick}. σ(0) = ∅ indicates the beginning of the sequence
where no clock ticks. Xσ : C × N

+ → N keeps track of the number of ticks for
each clock. Xσ(c, i) = |{j | j ∈ N

+, j ≤ i, c ∈ σ(j)}| is called a configuration
of clock c at time i. The semantics of clock relations is defined as items 1–4 in
Table 1. ‘Subclock’ says that c1 can only tick if c2 ticks; ‘Exclusion’ means that
c1, c2 can not tick at the same instant; ‘Precedence’ means that c1 always ticks
faster than c2; ‘Causality’ expresses that c1 ticks not slower than c2.

For example, the leftmost figure of Fig. 2 shows a possible schedule σ for
clock relation c1 ≺ c2, where clock

b = tick tick tick tick tick tick tick tick tick tick tick tick . . . ,

c1 = tick idle tick tick idle idle tick idle idle tick idle idle . . . ,

c2 = idle tick idle tick idle idle tick tick idle idle tick idle . . . .

b is a based clock representing the minimal granularity of time. Schedule

σ = ∅{c1}{c2}{c1}{c1, c2}∅∅{c1, c2}{c2}∅{c1}{c2}∅ . . . .

Xσ(c1, 1) = 1, Xσ(c1, 2) = 1, Xσ(c1, 3) = 2. Xσ(c2, 1) = 0, Xσ(c2, 2) = 1.

b

c1

c2

c1 ≺ c2

b

c′

c

c � c′ ∝ n (n = 2)

b

c′

c

c � c′$n (n = 2)

Fig. 2. A possible schedule for selected clock constraints

Clock definition enhances the expressiveness of CCSL by allowing new clocks
to be defined using different clock expressions. A clock definition is of the form:
Cdf ::= c � E where E is a clock expression defined by the following grammar:

E ::= c1 + c2 | c1 ∗ c2 | c1 � c2 | c1 � c2 | c1 � c2 | c ∝ n | c$n | c1 ∨ c2 | c1 ∧ c2.
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c1, c2 are arbitary clocks. n ≥ 1. The semantics of clock definitions are defined as
items 5–13 in Table 1. ‘Union’ defines the clock that ticks iff either c1 or c2 ticks;
‘Intersection’ defines the clock that ticks whenever both c1 and c2 tick; ‘(Strict)
Sample’ defines the clock that (strictly) samples c1 based on c2; ‘Interruption’
defines the clock that ticks as c1 until c2 ticks; ‘Periodicity’ defines the clock
that ticks every n ticks of clock c′; ‘Delay’ defines the clock that ticks when c′

ticks but is delayed for n ticks of c′. ‘Infimum’ (‘Supremum’) defines the slowest
(fastest) clock that is faster (slower) than both c1 and c2.

e.g., Fig. 2 shows a possible schedule of clock definitions c � c′ ∝ n and
c � c′$n (when n = 2), which are used in the case study we give in Sect. 5.

Table 1. Semantics of CCSL

1. σ �ccsl c1 ⊆ c2 iff ∀i ∈ N
+.c1 ∈ σ(n) → c2 ∈ σ(n) (Subclock)

2. σ �ccsl c1#c2 iff ∀i ∈ N
+.c1 /∈ σ(i) ∨ c2 /∈ σ(i) (Exclusion)

3. σ �ccsl c1 ≺ c2 iff ∀i ∈ N
+.(Xσ(c1, i) = 0 ∧ Xσ(c2, i) = 0) ∨ Xσ(c1, i) > Xσ(c2, i) (Precedence)

4. σ �ccsl c1 	 c2 iff ∀i ∈ N
+.Xσ(c1, i) ≥ Xσ(c2, i) (Causality)

5. σ �ccsl c � c1 + c2 iff ∀i ∈ N
+.c ∈ σ(i) ↔ (c1 ∈ σ(i) ∨ c2 ∈ σ(i)) (Union)

6. σ �ccsl c � c1 ∗ c2 iff ∀i ∈ N
+.c ∈ σ(i) ↔ (c1 ∈ σ(i) ∧ c2 ∈ σ(i)) (Intersection)

7. σ �ccsl c � c1 � c2 iff
∀i ∈ N

+.c ∈ σ(i) ↔ (c2 ∈ σ(i)∧
(∃0 < j < i)(∀j ≤ k < i).c1 ∈ σ(j) ∧ c2 /∈ σ(k))

(Strict Sample)

8. σ �ccsl c � c1 � c2 iff
∀i ∈ N

+.c ∈ σ(i) ↔ (c2 ∈ σ(i)∧
(∃0 < j ≤ i)(∀j ≤ k < i).c1 ∈ σ(j) ∧ c2 /∈ σ(k))

(Sample)

9. σ �ccsl c � c1 � c2 iff ∀i ∈ N
+.c ∈ σ(i) ↔ (c1 ∈ σ(i) ∧ (∀0 < j ≤ i).c2 /∈ σ(j)) (Interruption)

10. σ �ccsl c � c′ ∝ n iff ∀i ∈ N
+.c ∈ σ(i) ↔ (c′ ∈ σ(i) ∧ ∃m ∈ N

+.Xσ(c′, i) = m · (n + 1)) (Periodicity)
11. σ �ccsl c � c′$n iff ∀i ∈ N

+.Xσ(c, i) = max(Xσ(c′, i) − n, 0) (Delay)
12. σ �ccsl c � c1 ∧ c2 iff ∀i ∈ N

+.Xσ(c, i) = max(Xσ(c1, i), Xσ(c2, i)) (Infimum)
13. σ �ccsl c � c1 c2 iff i N

+. σ(c, i) = min( σ(c1, i), σ(c2, i)) (Supremum)

A CCSL specification is a conjunction of clock relations and clock definitions,
denoted as a triple SP ::= 〈C, ˜Cdf, ˜Rel〉, where C is the set of clocks. ˜Cdf is a
set of clock definitions and ˜Rel is a set of clock relations. σ �ccsl 〈C, ˜Cdf, ˜Rel〉 is
defined s.t. σ �ccsl Rel and σ �ccsl Cdf hold for all Rel ∈ ˜Rel and Cdf ∈ ˜Cdf .

FODL is an extension of propositional dynamic logic with assignment x := e
and testing P? in its program model. The FODL we present here is based on
[7]. The program of FODL is a regular program, defined as follows:

p ::= x := e | P? | p; p | p ∪ p | p∗,

where e is an arithmetical expression. P? means at current state, P is true. p; q
means the program first executes p, and after p terminates, it executes q. p ∪ q
means the program either executes p, or executes q, it is a non-deterministic
choice. p∗ means the program executes p for a finite number of times. An FODL
formula is defined as follows:

φ ::= tt | e ≤ e | [p]φ | ¬φ | φ ∧ φ | ∀x.φ,
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where tt is the boolean true, ≤ represents the ‘less than’ relation in number
theory. [p]φ is the dynamic formula, meaning after all executions of program p,
formula φ holds.

The semantics of FODL is based on Kripke structure [7]. A Kripke structure
is a pair (S, val) where S is a set of states, val is a function that interprets a
logic to data structures on S.

In FODL, val interprets a regular program as a set of state pairs (s, s′) and
interprets a formula as a set of states. Intuitively, each pair (s, s′) ∈ val(p) means
that starting from state s, after execution of p, the program may terminate at
state s′. Each state s ∈ val([p]φ) means that for all pairs (s, s′) ∈ val(p), s′

satisfies φ. For a formal definition of the semantics of FODL, refer to [7].
The deductive system for FODL is sound and relatively complete. Except for

the rule for atomic program ‘x := e’, all rules can be found in Tables 3 and 4
below, as a part of CDL proof system. Refer to [7] for more details.

3 Syntax and Semantics of CDL

CDL enriches the traditional FODL with a synchronous program model that
contains ‘signal’ as a primitive, and ‘clock relation’ as an ingredient of logic
formulas. We first give the syntax of the CDL program model and the CDL
formula, and then define their semantics.

3.1 The Syntax of CDL

Syntax of Synchronous Event Programs. CCSL essentially describes the
logical and chronometrical constraints between signals in synchronous models,
where the time model is discrete and at each time, several signals can be trig-
gered simultaneously. To capture CCSL constraints in dynamic logic, we need
to introduce the synchronous execution mechanism in the regular program of
FODL. Synchronous systems often involve infinite executions, thus to support
it we also import ‘infinite loop’. The program after enriched turns out to be
an ‘omega program’, with the support of synchronous mechanism. We call it
‘Synchronous Event Program’ (SEP).

Definition 1 (Syntax of SEP). The syntax of SEP is based on the regular
program of FODL, defined as follows:

p ::= ε | α | P?α | p; p | p ∪ p | p∗ | pω,

where α is a combinational event, defined as:

α ::= ε | Cmb,

Cmb ::= c | x := e | (Cmb|Cmb).

Arithmetical expression e, testing condition P are defined as follows:

e ::= x | n | e + e | e − e | n · e | e/n,

P ::= tt | e ≤ e | ¬P | P ∧ P.
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ε represent an ‘empty program’, it does nothing nor consumes time. A combina-
tional event α consumes a unit of time, it consists of an ‘idle event’ ε, or several
signals or assignments that occur simultaneously. An idle event ε does nothing
but waits for a unit of time. Several signals and assignments can be composed by
operator ‘|’. A signal1 c in an SEP represents that its corresponding clock (with
the same name c) ticks at current time. Since CCSL constraints only captures
the logical relationships between signals which are not related to the value of
signals, we only consider ‘pure signals’ (signals without values) in SEP. e is a
Presburger arithmetic expression. In e, n ∈ Z is an integer number, +,−, ·, / are
the addition, subtraction, multiplication and division signs respectively.

P?α is a testing event, it means that if condition P is true, event α proceeds,
otherwise the program causes a deadlock. In SEP, testing P? must combines
with an event α, because P? does not consume time. P can be expressed with
a QF-AFOL formula, where tt represents the boolean true, ≤ represents the
‘less than’ relation between two integers. Operator ; ,∪, ∗ are defined just as in
FODL [7]. ω represents the infinite loop. pω means that program p executes for
infinite number of times and never terminates.

e.g., program f = 1?α2; p∗ where p ::= n = 0 ∧ f = 0?α3 ∪ n > 0 ∧ f = 0?α4

firstly executes α2 if f = 1 holds, then it executes program p for finite number
of times. In p, it either executes α3 (if n = 0 ∧ f = 0 holds), or executes α4 (if
n > 0 ∧ f = 0 holds).

The precedence of operators are listed as follows from the highest to the
lowest: ω, ∗, ;, ∪. We stipulate that ; is right-associative, ∪ is left-associative.
e.g., program α1∪p1; p2; p•

3∪P1?α•
2∪P2?α3 means (((α1∪p1; (p2; p•

3))∪P1?α•
2)∪

P2?α3).
As in synchronous models (e.g., Esterel [14]), we do not allow two signals with

the same name triggered at the same time. e.g. event (c|c). For simplification,
we also do not allow two assignments with the same target variable executing
simultaneously, e.g. event (x := 5|x := y + 1).

Syntax of CDL. In CDL formula, we need to introduce a special kind of
variable which is related to clock. These variables help record the ‘information’ of
each clock at current time, just as the roles the schedule σ and the configuration
Xσ play in CCSL.

Definition 2 (Clock Related Variables). For each clock c ∈ C, we define
two variables related to it: cn, cs. Variable cn is of type N, it records the number
of times the clock has ticked at current time. Variable cs is of type {0, 1}, and it
records the status of the clock (1 for present and 0 for absent) at current time.

Given a clock set C, we denote the set of variables related to C as V ar(C).

1 In SEP, for convenience, we use the same name ‘c’ to represent the signal corre-
sponding to clock c, which should not cause any ambiguities. Sometimes we also say
a signal c in p ‘a clock c in p’.
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Definition 3 (Syntax of CDL Formula). The CDL formula φ is defined as:

φ ::= tt | E ≤ E | [p]ξ | [p]φ | ¬φ | φ ∧ φ | ∀x.φ

where

ξ ::= Rel | � (Rel1, . . . , Reln),
E ::= x | cn | cs | n | E + E | E · E.

E ≤ E is an atomic AFOL formula. E is an integer arithmetic expression.
Different from e, it also includes clock-related variable cn, cs, and multiplica-
tion between variables. x ∈ V ar. [p]ξ is a dynamic formula, where p is an
SEP. [p]ξ is the dynamic formula special in CDL, it means that all execution
paths of program p satisfies ξ. �(Rel1, . . . , Reln) represents the conjunction of
clock relations Rel1, . . . , Reln, we define σ �ccsl �(Rel1, . . . , Reln) iff σ �ccsl

Rel1,. . . ,σ �ccsl Reln. In order to express the negation of [p]ξ in CDL, we also
import the negation ∼ and the disjunction � of clock relations: (i) σ �ccsl∼ cr
iff σ ��ccsl cr, (ii) σ �ccsl �(cr1, . . . , crn) iff σ �ccsl∼ �(∼ cr1, . . . ,∼ crn), where
cr, cri ∈ {Reli,∼ Reli}(1 ≤ i ≤ n). [p]φ is the dynamic formula in FODL,
meaning that after all executions of p, formula φ is satisfied.

We often call ξ or ∼ ξ “path formulas”, denoted by π. Other arithmetic
expressions, relations, and logic expressions, e.g., E − E, E/E, E = E, E < E,
ff , 〈p〉 ∼ ξ, 〈p〉φ, φ ∨ φ, φ → φ, ∃x.φ, etc., can be expressed using the formulas
given above. e.g., 〈p〉 ∼ ξ can be expressed as ¬[p]ξ, E1 − E2, E1/E2 can be
expressed as ∃x.(E2 + x = E1), ∃x.(x · E2 = E1) respectively.

In FODL, given a formula φ, a variable whose value changes with the exe-
cution of a program is called a ‘dynamic variable’ [7] of the formula φ. Here
in CDL, for convenience sake, any clock-related variable cs, cn is defined as a
dynamic variable. As we will see in Definition 5(ii), they can be seen ‘changed’
after the execution of any event at current time. Any general variable that
appears on the left side of an assignment is defined as a dynamic variable as
well. Variables which are not dynamic variables are called ‘static variables’. e.g.,
the set of dynamic variables of formula z = 5 → [(c1|x := y + 1); c2]c1 � c3 is
{x, cn

1 , cs
1, c

n
2 , cs

2, c
n
3 , cs

3}, where cn
3 , cs

3 can be seen as ‘changed’ after the the set of
static variables is {y, z}.

Like in FODL, we say a variable x is ‘bound’ in φ iff: 1. x is in the scope of
the effect of some quantifier ∀x, or 2. x is in the scope of the effect of some event
α which has x on the left side of an assignment of the form x := e. A variable
is not bound in φ is called ‘free’. e.g., in formula φ ::= (x = 1 ∧ z = 2 ∧ ∃z.x =
z) → [(x := z + 1|c|y := 1);x := y + 1]x > z, the first and second variable x is
free, while the third one (in expression ‘x > z’) is bounded by the assignment
‘x := y + 1’.

Given a formula φ, a substitution φ[E/x] in CDL replaces all the free occur-
rences of variable x with expression E (of the same type). Given a formula multi-
set Γ , Γ [E/x] means to carry out the substitution φ[E/x] for each formula φ
in Γ . Given two vectors (E1, . . . , En), (x1, . . . , xn), φ[E1, . . . , En/x1, . . . , xn] is
the shorthand of φ[E1/x1][E2/x2]. . .[En/xn]. A substitution is admissible with



108 Y. Zhang et al.

respect to a formula φ if there are no variables x, y such that y is in E, and after
the replacement φ[E/x], y is bound in φ. e.g., in the formula φ given above,
φ[z + 1/z] = (x = 1 ∧ z + 1 = 2 ∧ ∃z.x = z) → [(x := (z + 1) + 1|c|y := 1);x :=
y+1]x > z +1 is admissible, while φ[x+1/z] = (x = 1∧x+1 = 2∧∃z.x = z) →
[(x := (x + 1) + 1|c|y := 1);x := y + 1]x > x + 1 is not admissible. Intuitively,
in φ[x + 1/z], it is about to prove x > x + 1 which is generally not true. In
the rest of paper, unless we specially point out, all substitutions we discuss are
admissible.

3.2 The Semantics of CDL

The semantics of CDL is based on Kripke structure (introduced in Sect. 2). In
the Kripke structure (S, val) of CDL, val interprets a program as a set of traces
on S and a logic formula as a set of states. A trace tr is a finite or infinite
sequence of states. Given a finite trace tr1 = s1s2 . . . sn and a (possibly infinite)
trace tr2 = u1u2 . . . un . . ., we define: tr1 · tr2 ::= s1s2 . . . snu2u3 . . . if sn = u1.

Given any tr1, tr2, we define tr1 ◦ tr2 ::=
{

tr1 · tr2, if tr1 is finite
tr1, otherwise . Given two

sets of traces S1, S2, S1 ◦S2 is defined as {tr1 ◦ tr2 | tr1 ∈ S1, tr2 ∈ S2}. Let tr(i)
denotes the ith element of trace tr, i ≥ 0; trb denotes the first element of trace
tr, trb = tr(0). Let tre denotes the last element of trace tr, provided that tr is
a finite trace.

In CDL, we assume an interpretation which interprets arithmetical operators
‘+,−, ·, /’ and relation ‘≤’ as their usual meanings in the traditional number
theory, and interprets relations ‘⊆,≺,�,#’ as their corresponding clock relations
in CCSL. Next we first define the concept of ‘state’ and ‘evaluation’ in CDL.

Definition 4 (State and Evaluation in CDL). A state s in CDL is a total
function defined as follows:

(i) s maps each variable cn in V ar(C) to a value in domain N.
(ii) s maps each variable cs in V ar(C) to a value in domain {0, 1}.
(iii) s maps each variable x in V ar to a value in domain Z.

Given an expression E and a state s, an evaluation Evals(E) is defined as:

(i) If E = a, where a ∈ {x, cn, cs}, then Evals(a) ::= s(a).
(ii) If E = n, then Evals(n) ::= n.
(iii) If E = f(E1, E2), where f ∈ {+, ·}, then Evals(E) ::= f(Evals(E1),

Evals(E2)).

e.g., given a state s ::= {x �→ 9, cn �→ 2, (c′)s �→ 0, . . .}, there is Evals(2) = 2,
Evals(x) = 9, Evals(x + cn) = Evals(x) + Evals(cn) = 11.

Semantics of SEP. Different from traditional FODL, the semantics of SEP is
based on traces, since our CDL contains a path formula π which is satisfied by
a program trace.



Embedding CCSL into Dynamic Logic 109

Definition 5 (Semantics of SEP). Given a Kripke structure (S, val), for any
SEP p, let C be a finite set of clocks, the semantics of SEP is given as follows:

(i) val(ε) := S, S is the set of all traces of length 1.

(ii)
val(α) := {ss′ | s, s′ ∈ S; for each clock c ∈ α, s′(cs) = 1 ∧ s′(cn) = s(cn) + 1;

for other clock d ∈ C, s′(dn) = s(dn) ∧ s′(ds) = 0; for each x := e in α,

s′(x) = Evals(e); for other x ∈ V ar, s′(x) = s(x)}.

(iii) val(P?α) ::= {ss′ | s ∈ val(P ), ss′ ∈ val(α)}.
(iv) val(p; q) ::= val(p) ◦ val(q).
(v) val(p ∪ q) ::= val(p) ∪ val(q).
(vi) val(p∗) ::=

⋃
n≥0 valn(p), where valn(p) = val(p) ◦ . . . ◦ val(p)

︸ ︷︷ ︸
n

, val0(p) = S.

(vii) val(pω) ::= val(p) ◦ val(p) ◦ . . .
︸ ︷︷ ︸

∞

.

Note that ε defines a set of traces of length 1, so val(p; ε) = val(ε; p) = val(p),
which means that ε can be taken as a unit element of operator ;. Event α defines
a transition from a state s to a state s′. In s′, for each clock c in α, the variable
cn that records the number of ticks is added by 1 and the variable cs is set to
1, indicating at current time, clock c is emitted. For each clock d not in α, its
variable dn in s′ is kept the same while ds is set to 0. For any assignment x := e
in α, the value of x in s′ is set to the value of expression e in state s, while other
variables in both s and s′ are kept the same. Traces satisfying P?α are exactly
those traces satisfying p adding that their beginning states must satisfy P .

e.g., let α = (c|x := x+1), P = x > 1, C = {c, c′}, V ar = {x, y}, if s = {x �→
0, y �→ 0, cn �→ 0, cs �→ 0, c′n �→ 0, c′s �→ 0}, s′ = {x �→ 1, y �→ 0, cn �→ 1, cs �→
1, c′n �→ 0, c′s �→ 0}, then trace ss′ ∈ val(α). If u = {x �→ 2, y �→ 0, cn �→ 1, cs �→
1, c′n �→ 0, c′s �→ 1}, u′ = {x �→ 3, y �→ 0, cn �→ 2, cs �→ 1, c′n �→ 0, c′s �→ 0}, then
trace uu′ ∈ val(P?α).

The semantics of p; q, p ∪ q, p∗ are directly inherited from the traditional
FODL [7]. The traces of program pω consists of all infinite traces of the
form tr1 ◦ tr2 . . . where each tri ∈ val(p) is finite (i ∈ N

+), or of the form
tr1 ◦ tr2 ◦ . . . ◦ trn, where n ≥ 1, tr1, . . . , trn−1 ∈ val(p) is finite, but trn ∈
val(p) is infinite. e.g., suppose val(p) = {s1s2}, val(q) = {u1u2, t1t2} where
s2 = u1, s2 �= t1, then val(p; q) = {s1s2u2}, val(p ∪ q) = {s1s2, u1u2, t1t2},
val(p∗) = {ε, s1s2, s1s2s1s2, . . . , s1s2s1s2 . . . s1s2

︸ ︷︷ ︸

2n

, . . .} (n ≥ 1), val(pω) =

val(p∗) ∪ {s1s2s1s2 . . . s1s2 . . .
︸ ︷︷ ︸

∞
}.

Semantics of CDL. For each trace tr, we can actually build a corresponding
schedule σtr s.t. for all clock c ∈ C and i ∈ N

+, there is: 1. tr(i)(cn) = Xσ(c, i).
2. tr(i)(cs) = 1 iff c ∈ σtr(i). In this way, we can actually define tr �ccsl X given
a clock relation or definition X: tr �ccsl X iff σtr �ccsl X. Note that we do not
require any relationships between tr(0) and σ(0).
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e.g., consider the trace ss′ discussed above, we have a schedule σss′
defined as:

σss′
::= ∅{c}. So Xσss′ (c, 0) = Xσss′ (c′, 0) = 0, Xσss′ (c, 1) = 1, Xσss′ (c′, 1) = 0.

Definition 6 (Semantics of CDL Formula). Given a Kripke structure
(S, val), the semantics of CDL formula is given as follows:

(i) val(tt) ::= S.
(ii) val(E ≤ E′) ::= {s | Evals(E) ≤ Evals(E′)}.
(iii) val([p]ξ) ::= {s | for all tr s.t. s = trb and tr ∈ val(p), tr �ccsl ξ}.
(iv) val([p]φ) ::= {s | for all finite tr ∈ val(p) s.t. trb = s, tre ∈ val(φ)}.
(v) val(¬φ) ::= {s | s /∈ val(φ)}.
(vi) val(φ ∧ ϕ) ::= val(φ) ∩ val(ϕ).
(vii) val(∀x.φ) ::= {s | for any v0 ∈ Z, s ∈ val(φ[v0/x])}.
The semantics of CDL formula is based on states. In (iii), a trace satisfying a
clock relation is from the second state of the trace due to the definition of �ccsl

in Sect. 2. So state s itself is unrelated to ξ. (iv)-(vii) are similar to the definition
in FODL [7], except that the semantics of SEP is based on traces. (iv) requires
the trace must be finite, indicating that it only matters whether φ holds on those
states on which program p terminates.

The first two figures in Fig. 3 give an illustration of [p]φ and [p]ξ, where the
‘snake arrow’ indicates an execution path (could be infinite) of program. Some
states are tagged with a formula aside that they satisfy. States and paths are
colored red to stress that they satisfy the corresponding formulas (φ, ξ).

At last we define the satisfaction relation of the CDL logic. Given a state
s and any CDL formula φ, the satisfaction relation s |=cdl φ is defined as:
s |=cdl φ iff s ∈ val(φ). If for all state s, s |=cdl φ holds, then we say φ is
valid, denoted as |=cdl φ.

4 Proof System of CDL

In this section we propose a proof system, which forms the foundation of the
verification of CDL. The proof system provides a modular way of transforming
a CDL formula into a QF-AFOL formula. Our proof system is based on that of
FODL, which is only for regular program model [7].

A sequent [15] is defined as follows: Γ ⇒ Δ ::=
∧

φ∈Γ φ → ∨

ϕ∈Δ ϕ, where
Γ,Δ are two finite multi-sets of logic formulas. It means that every formula in Γ
holds can conclude that at least one of formulas in Δ holds. The conditions when
either (both) Σ or (and) Δ is (are) empty set(s) is (are) expressed as follows: 1.
· ⇒ Δ ::= tt → ∨

ϕ∈Δ ϕ, 2. Γ ⇒ · ::= ∧

φ∈Γ φ → ff , 3. · ⇒ · ::= tt → ff , where
we use · to indicate Γ or Δ is empty. A rule in sequent calculus is of the form:
Γ1⇒Δ1...Γn⇒Δn

Γ⇒Δ , which means that if Γ1 ⇒ Δ1,. . . , Γn ⇒ Δn are all valid, then
Γ ⇒ Δ is valid. Each Γi ⇒ Δi in the upper part is called a ‘premise’, while
Γ ⇒ Δ in the lower part is called ‘conclusion’. We use Γ⇒ϕ⇒Δ

Γ⇒φ⇒Δ to represent a
pair of sequent rules: Γ,ϕ⇒Δ

Γ,φ⇒Δ and Γ⇒ϕ,Δ
Γ⇒φ,Δ , i.e., φ, ϕ can be on both side of the

sequent. Sometimes we write ϕ
φ to represent Γ⇒ϕ⇒Δ

Γ⇒φ⇒Δ if Γ,Δ can be neglected.
We call Γ,Δ the context of formula φ in sequent Γ ⇒ φ,Δ or Γ, φ ⇒ Δ.
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4.1 Proof Rules for CDL

The proof rules of CDL we present are divided into three categories: rules for
path formulas π (in Table 2), rules for non-path formulas (in Table 3) and rules
of First-Order Logic (FOL) (in Table 4).

In Table 2, rule (π) is for a single event, where we set α = (c|x := e) as an
example of combinational events.

Table 2. Rules for path formulas

Γ [V ′/V ], cn = (cn)′ + 1, cs = 1, x = e[V ′/V ],

(dn
1 , ..., dn

n) = ((dn
1 )′, ..., (dn

n)′), (ds
1, ..., d

s
n) = (0, ..., 0)

n

⇒

�(ξ) ⇒ Δ[V ′/V ]

Γ ⇒ [α]ξ ⇒ Δ
(π)

where α = (c|x := e), {d1, ..., dn} = C − C(α), V = V(α),

V ′ is the set of new variables (w.r.t. Γ, [α]ξ, Δ, ) corresponding to V.

P → [α]A
[P?α]A

(P?)

where A ∈ {ξ, φ}

tt
[ε]ξ

(πε)
[p∗]ξ
[pω]ξ

(π[ω])
[p]ξ ∧ [p][q]ξ

[p; q]ξ
(π[;])

[p]ξ ∧ [q]ξ
[p q]ξ

(π[∪])
[p; p∗]ξ
[p∗]ξ

(π[∗]u)
[p∗][p]ξ
[p∗]ξ

(π[∗]i)

The rule says that for any state s, the conclusion holds at state s, iff there
exists a state s′ with ss′ ∈ val((c|x := e)), s.t. the premise holds at s′. The
vector equation (x1, . . . , xn) = (e1, . . . , en) is the shorthand of x1 = e1, . . . , xn =
en. d1, . . . , dn are all clocks not appeared in α. Given a CDL formula φ (or
an SEP p), let C(φ) (C(p)) returns all clocks appeared in φ (p), V(φ) (V(p))
returns all dynamic variables appeared in φ (p). V ′ is the set of new variables
corresponding to V , for each variable x ∈ V , there is a new variable x′ with
respect to Γ, [α]ξ,Δ corresponding to it. Function �(ξ) maps each relations to
an AFOL formula which should hold at state s′. It is defined as follows: for any
c1, c2, (i) �(c1 ⊆ c2) ::= cs

1 = 1 → cs
2 = 1. (ii) �(c1#c2) ::= cs

1 = 0 ∨ cs
2 = 0. (iii)

�(c1 ≺ c2) ::= (cn
1 = 0 ∧ cn

2 = 0) ∨ (cn
1 > cn

2 ). (iv) �(c1 � c2) ::= cn
1 ≥ cn

2 . (v)
�(�(Rel1, . . . , Reln) ::=

∧

1≤i≤n �(Reli).
(P?) is a rule for both path-formulas and non-path formulas. Rule (P?) says

that the conclusion at a state is true, iff if P is true, then [α]A is true. In rule
(πε), tr �ccsl ξ always holds for trace tr of length 1. Rule (πω) is based on two
facts about clock relation ξ and SEP traces: (i) For any infinite trace tr ∈ val(pω)
and any state s in tr, there exists a finite trace tr′ ∈ val(p∗) that contains s. (ii)
For any relation ξ and trace tr, tr �ccsl ξ iff tr(i) |=cdl �(ξ) for any i ∈ N

+. These
two facts can be easily obtained according to Definition 5 and the definition of
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�ccsl in Table 1. With them not hard to see the premise and conclusion of rule
(πω) are logical equivalent. With rule (πω) we can reduce the proof case of [pω]ξ
to the proof case of [p∗]ξ.

(π[; ]), (π[∪]), (π[∗]u), (π[∗]i) are structure rules for path formulas. (π[; ])
means every trace of p; q satisfies ξ iff every trace of p satisfies ξ, and after p
every trace of q satisfies ξ. (π[∪]) says every trace of p ∪ q satisfies ξ iff every
trace of p and q satisfies ξ. Rule (π[∗]u) unwinds the star operator ∗. It is due to
the fact that every trace (whose length ≥ 2) of p∗ are the trace of p; p∗. (π[∗]i)
states that ξ holds along all paths of any times of repetitions of p, iff after any
times of repetitions p , ξ holds along all paths of p. Figure 3 gives a graphical
illustration of rule (π), (π[; ]), (π[∪]), (π[∗]u), (π[∗]i).

[p]φ

φ

φ

...

p

p

[p]ξ
...p

ξ

p
s

[α]ξ

s′

�(ξ)

α
[p; q]ξ

[q]ξ

p

ξ

q
p; q

[p]φ [p]ξ (π) (π[; ])

p

q

ξ

p ∪ q

[p∗]ξ [p; p∗]ξ

p

p∗

ξ

p∗

[p∗]ξ

[p]ξ

p∗

ξ

p
p∗

[p; q]φ

[q]φ φ

p q
p; q

(π[∪]) (π[∗]u) (π[∗]i) ([; ])

φ

φ

p

q p ∪ q

φ

[p∗]φ [p; p∗]φ

φ
p p∗

p∗

φ φ φ

φ → [p]φ

φp∗ p∗p

p∗

φ(n) φ(n − 1)∃x ≥ 0.φ ∃x ≤ 0.φ(x)

p∗ p∗

p

p∗

([∪]) ([∗]u) ([∗]ind) (〈∗〉con)

Fig. 3. Graphical illustrations of [p]φ, [p]ξ and some proof rules (Color figure online)

All non-path formula rules in Table 3 except for (φ), (ε), (ω) are based on
the corresponding structure rules of FODL in [7]. (φ) is similar to (π), except
that φ is kept unchanged in the premise. (ε) is obvious because the traces of ε
all have length 1. Rule ([; ]) describes that φ holds after p; q iff [q]φ holds after
p. Rule ([∪]) says φ holds after p ∪ q iff φ holds after p, and also holds after
q. ([∗]u) means that φ holds after any times of repetitions of p, iff φ holds at
current state, and φ holds after p; p∗.

([]gen), (〈〉gen) strengthen the conclusions by extending the proposition
φ → ϕ into dynamic situations. ([]gen) ((〈〉gen)) expresses that if φ → ϕ holds
under all context of Γ,Δ, after any (some) executions of p, φ implies ϕ. ([∗]ind)
is the mathematical induction by the number of repetitions of program p: to
prove φ holds after any repetitions (including 0), we need to prove that under
any context of Γ,Δ, if φ holds, then it also holds after p. (〈∗〉con) is from the
Harel’s convergence rule in [7] where integer x indicates the existing number
of repetitions of p. ([∗]i) and (〈∗〉i) are rules for eliminating the star operator
∗ in practical verification. They can be derived by ([∗]ind), (〈∗〉con) with gen-
eralisation ([]gen), (〈〉gen) (see [7,16]). ϕ is the loop invariant of p. ([∗]i) says
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that to prove φ holds after any repetitions of p, we need to prove that there
exists an invariant ϕ such that: (i) ϕ holds at the beginning. (ii) Under any
context of Γ,Δ if ϕ holds, then ϕ holds after p as well. (iii) Under any context
of Γ,Δ, ϕ implies φ. Figure 3 gives a graphical illustration of rule ([∪]), ([; ]),
([∗]u), ([∗]ind), (〈∗〉con).

Table 3. Rules for non-path formulas

Γ [V ′/V ], cn = (cn)′ + 1, cs = 1, x = e[V ′/V ],

(dn
1 , ..., dn

n) = ((dn
1 )′, ..., (dn

n)′), (ds
1, ..., d

s
n) = (0, ..., 0)

n

⇒

φ ⇒ Δ[V ′/V ]

Γ ⇒ [α]φ ⇒ Δ
(φ)

where α = (c|x := e), {d1, ..., dn} = C − C(α), V = V(α),

V ′ is the set of new variables (w.r.t. Γ, [α]φ, Δ, ) corresponding to V.

φ

[ε]φ
(ε) tt

[pω]φ
(ω)

[p][q]φ
[p; q]φ

([;])
[p]φ ∧ [q]φ
[p ∪ q]φ

([∪])
φ ∧ [p; p∗]φ

[p∗]φ
([∗]u)

· ⇒ φ → ϕ

Γ ⇒ [p]φ → [p]ϕ, Δ
([]gen)

· ⇒ φ → ϕ

Γ ⇒ 〈p〉φ → 〈p〉ϕ, Δ
(〈〉gen)

· ⇒ φ → [p]φ
Γ ⇒ φ → [p∗]φ, Δ

([∗]ind)

· ⇒ ∀x > 0.(φ(x) → 〈p〉φ(x − 1))
Γ ⇒ ∃x ≥ 0.φ(x) → ∃x ≤ 0.〈p∗〉φ(x), Δ

(〈∗〉con)

Γ ⇒ ϕ, Δ · ⇒ ϕ → [p]ϕ · ⇒ ϕ → φ

Γ ⇒ [p∗]φ, Δ
([∗]i)

Γ ⇒ ∃x ≥ 0.ϕ(x), Δ · ⇒ ∀x > 0.(ϕ(x) → 〈p〉ϕ(x − 1))

· ⇒ ∃x ≤ 0.ϕ(x) → φ

Γ p∗ φ, Δ
(〈∗〉i)

Other FOL rules are listed in Table 4. As indicated in Sect. 1, after a QF-
AFOL formula is obtained we can adopt SMT-checking procedure to check the
validation of it. Since the SMT-checking procedure is independent from the CDL
proof system, we propose an ‘oracle’ rule (o) in our proof system to indicate the
termination of the proof. We assume that the validity of this QF-AFOL formula
can be SMT-checked in a ‘black box’, through this oracle rule. Other rules comes
from the traditional FOL and we omit the details of them.

Now we define the deduction relation of CDL. For any CDL formula φ and
a formula multi-sets Φ, Φ �cdl φ iff the sequent Φ ⇒ φ can be derived according
to rules in Tables 2, 3 and 4. If Φ is empty, we also write �cdl φ. As a variation
of dynamic logic, the soundness and relative completeness of proof system �cdl

can be analyzed in a similar way as those of FODL in [7,8]. For the soundness,
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above we have explained the intuitive meaning of each rule and their relations
to the corresponding rules in FODL. For the relative completeness, intuitively,
to prove it we show that each formula of form [p]ξ can be transformed into an
AFOL formula by applying the rules of the CDL proof system, which is similar
for the formula [p]φ in FODL. Due to space limit, we omit the complete proof.

Table 4. Rules of first order logic

|=cdl φ∈Γ
φ →

ϕ∈Δ
ϕ

Γ ⇒ Δ
(o)

Γ, φ ⇒ φ, Δ
(ax)

Γ ⇒ φ, Δ Γ, φ ⇒ Δ

Γ ⇒ Δ
(cut)

Γ, ¬φ ⇒ Δ

Γ ⇒ φ, Δ
(¬r)

Γ ⇒ ¬φ, Δ

Γ, φ ⇒ Δ
(¬l)

Γ ⇒ φ, Δ Γ ⇒ ϕ, Δ

Γ ⇒ φ ∧ ϕ, Δ
(∧r)

Γ, φ, ϕ ⇒ Δ

Γ, φ ∧ ϕ ⇒ Δ
(∧l)

Γ ⇒ φ[x′/x], Δ
Γ ⇒ ∀x.φ, Δ

(∀r)
Γ, ∀x.φ, φ[tn/x] ⇒ Δ

Γ, ∀x.φ ⇒ Δ
(∀l)

Γ ⇒ φ, ϕ, Δ

Γ ⇒ φ ∨ ϕ, Δ
(∨r)

Γ, φ ⇒ Δ Γ, ϕ ⇒ Δ

Γ, φ ∨ ϕ ⇒ Δ
(∨l)

Γ, φ ⇒ ϕ, Δ

Γ ⇒ φ → ϕ, Δ
(→r)

Γ ⇒ φ, Δ Γ, ϕ ⇒ Δ

Γ, φ → ϕ ⇒ Δ
(→l)

Γ ⇒ φ[tn/x], Δ
Γ ⇒ ∃x.φ, Δ

(∃r)
Γ, ∃x.φ, φ[x′/x] ⇒ Δ

Γ, ∃x.φ ⇒ Δ
(∃l)

where Γ, Δ are multi-sets of QF-AFOL formulas.
x′ is a new variable w.r.t. Γ, φ, Δ, φ[tn/x] is admissible.

5 A Case Study

In this section, we illustrate how our proposed CDL can be used to capture
RTES models and verify CCSL specifications, by analyzing a simple RTES—the
Digital Filter (DF) system. The DF system we analyze here is based on [17].

As Fig. 4 shows, the DF is used in a video system, it reads image pixels
from a memory, filters them and sends the result out to a video device. The
explicit structure of DF is shown in the right figure of Fig. 4. The DF consists
of two modules: a Feeder and a Filter. They interact with each other and with
their environment through ports p, r and o. Ports are the only way for different
modules to communicate in synchronous models. They can be modelled as signal
cp, cr and co in SEP. The behaviour of the DF, as a whole system of two modules,
is as follows: the Filter sends a ‘Ready’ message to the Feeder through port r,
to tell it ‘I am ready for the pixels’. The Feeder receives this message and the
next time it begins feeding pixels towards the Filter, one pixel per unit of time.
After the Filter gathers 4 pixels, it runs the computation (instantly) and outputs
the result through port o. Then the next time it sends ‘Ready’ message to the
Feeder again....
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Fig. 4. The Digital Filter system
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Fig. 5. The schedule of the Digital Filter (Color figure online)

The behaviour of the DF can be described by an SEP as follows:

DF ::= α1; (f = 1?α2; (n = 0 ∧ f = 0?α3 ∪ n > 0 ∧ f = 0?α4)∗)ω,

where α1 = (cr|n := 4|f := 1), α2 = (cr|f := 0), α3 = (co|f := 1|n := 4),
α4 = (cp|n := n − 1). n is for counting the number of pixels the Filter has
received. f is a flag, indicating the end of the loop ‘(. . .)∗’. Figure 5 shows the
schedule of the DF, where clock b is a basic clock. For this DF model we may
be interested in two CCSL specifications as follows:

SP 1 ::= 〈{cr, co}, ∅, {cr ≺ co}〉,
SP 2 ::= 〈{cp, co, cp′ , cp′′}, {cp′ � cp$1, cp′′ � cp′ ∝ 3}, {co ≺ cp′′}〉.

SP1 expresses the property that ‘the result can be obtained only after the
“Ready” message is sent’, i.e., clock cr ticks strictly before co. SP2 says that
‘only after the last result is computed, the new pixels can be received’. SP2

contains two clock definitions. cp′ , cp′′ are generated clocks not appeared in pro-
gram DF . Two specifications are indicated by red and blue arrows in Fig. 5
respectively. The ticks of clock cp′ , cp′′ are indicated by green and yellow circles
respectively.

For SP1, the verification problem can be captured by a CDL formula:

I → [DF ]cr ≺ co,

where I =
∧

c∈{cr,cp,co}(c
n = 0 ∧ cs = 0) represents the initial environment of

the program. The deduction procedure of this formula is illustrated in Fig. 6.
Starting from the root node (node 1©), the procedure answers ‘yes’ iff every
leave node of the proof tree returns a valid QF-AFOL formula, which can be
checked through an SMT-checking procedure. Inference rules with a ‘double
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line’ indicate that there are more than one deductions between the premises and
the conclusion, and rules they are based on are listed on the right side. e.g.,
from node 2©, by applying rule (π[; ]), (∧r) in sequence, we obtain two premises:
node 3© and 4©. The meanings of other symbols and contexts are explained in
the table of Fig. 6. Note that variables of the form like ‘(cn

r )1’ is a new general
variable (corresponding to cn

r ), not a clock-related variable.

|=cdl ϕ∈Γ3
ϕ → ϕ2

Γ3 ⇒ ϕ2

(o)

9©
ϕ∈Γ4

ϕ → ϕ2

Γ4 ⇒ ϕ2

(o)

ϕ2 ⇒ [P1?α3]ϕ2

(P?,→r,φ)

ϕ∈Γ5
ϕ → ϕ2

Γ5 ⇒ ϕ2

(o)

ϕ2 ⇒ [P2?α4]ϕ2

(P?,→r,φ)

ϕ2 ⇒ [P1?α3 ∪ P2?α4]ϕ2

([∪],∧r)

· ⇒ ϕ2 → [p2]ϕ2

(→r) |=cdl ϕ2 → ϕ1

· ⇒ ϕ2 → ϕ1
(o)

8© Γ3 ⇒ [p∗
2]ϕ1

([∗]i)

ϕ1 ⇒ [f = 1?α2][p∗
2]ϕ1

(P?,→r,φ)

6© ϕ1 ⇒ [f = 1?α2; p∗
2]ϕ1

([;])

|=cdl ϕ∈Γ2
ϕ → �(cr ≺ co)

Γ2 ⇒ �(cr ≺ co)
(o)

3© Γ1 ⇒ [α1]cr ≺ co

(π)

|=cdl ϕ∈Γ1
ϕ → ϕ1

Γ1 ⇒ ϕ1

(o)
6©

· ⇒ ϕ1 → [p1]ϕ1

(→r)
7© ...

· ⇒ ϕ1 → [p1]cr ≺ co

(→r)

5© Γ2 ⇒ [p∗
1][p1]cr ≺ co

([∗]i)

Γ2 ⇒ [pω
1 ]cr ≺ co

(π[ω],π[∗]i)

4© Γ1 ⇒ [α1][pω
1 ]cr ≺ co

(φ)

2© Γ1 ⇒ [DF ]cr ≺ co

(π[;],∧r)

1© · ⇒ I → [DF ]cr ≺ co

(→r,∧l)

α1 = (cr|n := 4|f := 1), α2 = (cr|f := 0), α3 = (co|f := 1|n := 4), α4 = (cp|n := n − 1).
p1 = f = 1?α2; p∗

2, p2 = P1?α3 ∪ P2?α4, P1 = n = 0 ∧ f = 0, P2 = n > 0 ∧ f = 0.
ϕ1 = (C1 ∨ C2) ∧ cn

r > cn
o , ϕ2 = (C1 ∧ cn

r − cn
o > 1) ∨ (C2 ∧ cn

r > cn
o ),

C1 = 0 ≤ n < 4 ∧ f = 0, C2 = n = 4 ∧ f = 1.
v = (cn

r , cs
r, c

n
p , cs

p, cn
o , cs

o), vx = ((cn
r )x, (cs

r)x, (cn
p )x, (cs

p)x, (cn
o )x, (cs

o)x), where x = 1, 2, 3, 4.
vx, x1, x2, y1, z1, z2, u1 are new variables corresponding to their counterparts in substitutions.
Γ1 : cn

r = 0, cs
r = 0, cn

p = 0, cs
p = 0, cn

o = 0, cs
o = 0

Γ2 : Γ1[v1, x1, x2/v, n, 1], cn
r = (cn

r )1 + 1, cs
r = 1, cn

p = (cn
p )1, cs

p = 0, cn
o = (cn

o )1, cs
o = 0, n = 4

Γ3 : {ϕ1, f = 1}[v2, y1/v, f ], cn
r = (cn

r )2 + 1, cs
r = 1, cn

p = (cn
p )2, cs

p = 0, cn
o = (cn

o )2, cs
o = 0, f = 0

Γ4 : {ϕ2, P1}[v3, z1, z2/v, n, 1], cn
r = (cn

r )3, cs
r = 0, cn

p = (cn
p )3, cs

p = 0, cn
o = (cn

o )3 + 1, cs
o = 1, n = 4

Γ5 : {ϕ2, P2}[v4, u1/v, n], cn
r = (cn

r )4, cs
r = 0, cn

p = (cn
p )4 + 1, cs

p = 1, cn
o = (cn

o )4, cs
o = 0, n = u1 − 1

Fig. 6. The deduction procedure of I → [DF ]cr ≺ co

Due to the limit of space, we omit the details of the branch from node 7©.
At node 5©, 8©, we apply rule ([∗]i) to eliminate the loop operator ∗. Here we
need to manually decide the loop invariants ϕ1, ϕ2. The selecting of a suitable
invariants is according to the loop body (here p1, p2) and the formulas we want
to verify after the loop program (here [p1]c1 ≺ c2, ϕ1). e.g., in ϕ1, we have to
guarantee ‘cn

r > cn
o ’ always holds during each execution of p1, because if not so,

[p1]c1 ≺ c2 would not hold for some state during the execution of p∗
1. ‘C1 ∨ C2’

is to make sure that n, f can only be ‘reasonable values’ during the execution of
p1. At last, easy to see that each leave node is a valid QF-AFOL formula. e.g.,
at node 9©, clearly from Γ4, we have C2 holds. In Γ4, since z1 = 0 ∧ z2 = 0(in
P1[z1, z2/n, y]), there is (cn

r )3 − (cn
o )3 > 1(from ϕ1[v3, z1, z2/v, n, f ]). Because

cn
r = (cn

r )3, cn
o = (cn

o )3 + 1, so cn
r > cn

o holds.
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For SP2, just like in previous approaches [4,18,19], we firstly make the prod-
uct of the system model DF and the clock definitions cp′ � cp$1, cp′′ � cp′ ∝ 3.
As indicated in Fig. 1, this product can then be captured by an SEP program.
A similar verification procedure as above can be carried out.

6 Related Work

Previous approaches [18,19] for the verification of CCSL specifications are mainly
based on model checking, where the reachability analysis is made for the product
of the system model and the CCSL specification. When the CCSL specification
is unsafe, a bound needs to be set to avoid the enumeration of infinite number of
states. Our approach is based on theorem proving and SMT-checking, which pro-
vides a unified framework under which both safe and unsafe CCSL specifications
can be analyzed.

Another subject of analysis for CCSL is to find a schedule of a given CCSL
specification [3,13,20], where no system models were involved. The earliest
approach [3] combined BDD-based boolean solving and the rewriting on clock
expressions, while the method in [20] was based on the rewriting logic in Maude.
In [13], the schedule was found by solving an UFLIA formula that encodes the
CCSL specification through an SMT-checking procedure. Comparing with [13],
we propose a proof system to transform the CDL formula into QF-AFOL for-
mulas, which are more efficient for an SMT-checking procedure to solve.

CDL is largely based on the traditional FODL [8] and its rules (π[; ]),
(π[∪]), (π[∗]u), (π[∗]i) are inspired from the Differential Dynamic Temporal Logic
(DDTL), a dynamic logic for verification of hybrid systems [16,21]. In DDTL, the
program supports a continuous time model with differential equations embedded
into it. Our SEP supports a discrete time model with synchronous mechanism
which we think would be more friendly for modelling RTESs.

7 Conclusion and Future Work

In this paper, we propose a logical approach for verification of CCSL specifica-
tions. We build a variation of dynamic logic called CDL to capture the verifica-
tion problem, and a proof system to provide the verification support. We give a
case study to illustrate how CDL can be used for verifying CCSL specifications.

Unlike traditional synchronous programming languages, SEP only supports
sequential models. We shall present a concurrent extension in a future work
by adding a ‘‖’ operator. We also consider mechanizing CDL with the popular
theorem prover Coq in order to see more practical potentials for this method.
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