
123

Cyrille Artho
Peter Csaba Ölveczky (Eds.)

6th International Workshop, FTSCS 2018
Gold Coast, Australia, November 16, 2018
Revised Selected Papers

Formal Techniques for
Safety-Critical Systems

Communications in Computer and Information Science 1008

Communications
in Computer and Information Science 1008

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, USA

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Cyrille Artho • Peter Csaba Ölveczky (Eds.)

Formal Techniques for
Safety-Critical Systems
6th International Workshop, FTSCS 2018
Gold Coast, Australia, November 16, 2018
Revised Selected Papers

123

Editors
Cyrille Artho
KTH Royal Institute of Technology
Stockholm, Sweden

Peter Csaba Ölveczky
University of Oslo
Oslo, Norway

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-12987-3 ISBN 978-3-030-12988-0 (eBook)
https://doi.org/10.1007/978-3-030-12988-0

Library of Congress Control Number: 2019930853

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-0708-3721
https://doi.org/10.1007/978-3-030-12988-0

Preface

This volume contains the proceedings of the 6th International Workshop on Formal
Techniques for Safety-Critical Systems (FTSCS 2018), held in Gold Coast on
November 16, 2018, as a satellite event of the ICFEM conference.

The aim of this workshop is to bring together researchers and engineers who are
interested in the application of formal and semi-formal methods to improve the quality
of safety-critical computer systems. FTSCS strives to promote research and develop-
ment of formal methods and tools for industrial applications, and is particularly
interested in industrial applications of formal methods. Specific topics include, but are
not limited to:

– case studies and experience reports on the use of formal methods for analyzing
safety-critical systems, including avionics, automotive, railway, medical, and other
kinds of safety-critical and QoS-critical systems;

– methods, techniques, and tools to support automated analysis, certification,
debugging, etc., of complex safety/QoS-critical systems;

– analysis methods that address the limitations of formal methods in industry
(usability, scalability, etc.);

– formal analysis support for modeling languages used in industry, such as AADL,
Ptolemy, SysML, SCADE, Modelica, etc.; and

– code generation from validated models.

The workshop received 22 regular paper submissions. Each submission was
reviewed by at least three referees. Based on the reviews and extensive discussions, the
program committee selected ten papers for presentation at the workshop and inclusion
in this volume. Another highlight of the workshop was an invited talk by César Muñoz
on the use of formal methods at NASA during the development of highly assured
software for unmanned aircraft systems.

Many colleagues and friends contributed to FTSCS 2018. We thank César Muñoz
for accepting our invitation to give an invited talk and the authors who submitted their
work to FTSCS 2018 and who, through their contributions, made this workshop an
interesting event. We are particularly grateful to the members of the program com-
mittee, who provided timely, insightful, and detailed reviews. We also thank the editors
of Communications in Computer and Information Science for agreeing to publish the
proceedings of FTSCS 2018 as a volume in their series, and Jin Song Dong for his help
with the local arrangements.

January 2019 Cyrille Artho
Peter Csaba Ölveczky

Organization

Program Chairs

Cyrille Artho KTH Royal Institute of Technology, Sweden
Peter Csaba Ölveczky University of Oslo, Norway

Program Committee

Étienne André Université Paris 13, France
Toshiaki Aoki JAIST, Japan
Cyrille Artho KTH Royal Institute of Technology, Sweden
Kyungmin Bae Pohang University of Science and Technology, Korea
Daniel Fava University of Oslo, Norway
Sabine Glesner TU Berlin, Germany
Osman Hasan National University of Sciences and Technology,

Pakistan
Klaus Havelund Jet Propulsion Laboratory, USA
Jérôme Hugues ISAE, France
Marieke Huisman University of Twente, The Netherlands
Ralf Huuck UNSW/SYNOPSYS, Australia
Fuyuki Ishikawa National Institute of Informatics, Japan
Takashi Kitamura National Institute of Advanced Industrial Science

and Technology (AIST), Japan
Thierry Lecomte ClearSy, France
Yang Liu Nanyang Technological University, Singapore
Robi Malik University of Waikato, New Zealand
Frédéric Mallet Université Nice Sophia-Antipolis, France
Roberto Nardone Mediterranean University of Reggio Calabria, Italy
Thomas Noll RWTH Aachen University, Germany
Peter Csaba Ölveczky University of Oslo, Norway
David Pearce Victoria University of Wellington, New Zealand
Markus Roggenbach Swansea University, UK
Ralf Sasse ETH Zürich, Switzerland
Martina Seidl Johannes Kepler University Linz, Austria
Graeme Smith The University of Queensland, Australia
Sofiene Tahar Concordia University, Canada
Carolyn Talcott SRI International, USA
Tatsuhiro Tsuchiya Osaka University, Japan

Mark Utting University of the Sunshine Coast, Australia
András Vörös Budapest University of Technology and Economics,

Hungary
Michael Whalen University of Minnesota, USA
Huibiao Zhu East China Normal University, China

Additional Reviewers

Elderhalli, Yassmeen
Siddique, Umair

VIII Organization

Formal Methods in the Development
of Highly Assured Software for
Unmanned Aircraft Systems

(Invited Paper)

César Muñoz

NASA Langley Research Center, Hampton, USA

Abstract. Operational requirements of safety-critical systems are often written
in restricted specification logics. These restricted logics are amenable to auto-
mated analysis techniques such as model-checking, but are not rich enough to
express complex requirements of unmanned systems that involve, for example,
the physical environment. This talk advocates the use of expressive logics, such
as higher-order logic, to specify the complex operational requirements and
safety properties of unmanned systems. These rich logics are less amenable to
automation and, hence, require the use of interactive theorem proving tech-
niques. However, they enable the formal verification of complex numerically
intensive algorithms and the rigorous validation of their implementations. The
proposed approach is illustrated with two cases studies from NASA’s research
on Unmanned Aircraft Systems (UAS): Detect and Avoid Alerting Logic for
Unmanned Systems (DAIDALUS) and Independent Configurable Architecture
for Reliable Operations of Unmanned Systems (ICAROUS). DAIDALUS is the
reference implementation of detect and avoid for UAS in FAA DO-365.
ICAROUS is a software architecture built on top of DAIDALUS that enables
the development of autonomous UAS applications.

Contents

Analysis and Verification of Safety-Critical Systems

Formal Stability Analysis of Control Systems . 3
Asad Ahmed, Osman Hasan, and Falah Awwad

Modular Verification of Vehicle Platooning with Respect to Decisions,
Space and Time . 18

Maryam Kamali, Sven Linker, and Michael Fisher

Synthesizing and Optimizing FDIR Recovery Strategies from Fault Trees . . . 37
Liana Mikaelyan, Sascha Müller, Andreas Gerndt, and Thomas Noll

Formal Verification of Random Forests in Safety-Critical Applications 55
John Törnblom and Simin Nadjm-Tehrani

Analysis of Timed Systems

A Benchmark Library for Parametric Timed Model Checking. 75
Étienne André

Formal Timing Analysis of Digital Circuits . 84
Qurat Ul Ain and Osman Hasan

Embedding CCSL into Dynamic Logic: A Logical Approach
for the Verification of CCSL Specifications . 101

Yuanrui Zhang, Hengyang Wu, Yixiang Chen, and Frédéric Mallet

Semantics and Analysis Methods

Refinement of Statecharts with Run-to-Completion Semantics. 121
Karla Morris, Colin Snook, Thai Son Hoang, Robert Armstrong,
and Michael Butler

Abstraction Refinement with Path Constraints for 3-Valued
Bounded Model Checking . 139

Nils Timm and Stefan Gruner

Model Transformation

Model Transformation with Triple Graph Grammars
and Non-terminal Symbols . 161

William da Silva, Max Bureck, Ina Schieferdecker,
and Christian Hein

Author Index . 179

XII Contents

Analysis and Verification of Safety-
Critical Systems

Formal Stability Analysis of Control
Systems

Asad Ahmed1(B), Osman Hasan1, and Falah Awwad2

1 School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST),

Islamabad, Pakistan
{asad.ahmed,osman.hasan}@seecs.nust.edu.pk

2 Electrical Engineering Department, College of Engineering,
United Arab Emirates University, Al-Ain, UAE

f awwad@uaeu.ac.ae

Abstract. Stability of a control system ensures that its output is under
control and thus is the most important characteristic of control systems.
Stability is characterized by the roots of the characteristic equation of
the given control system in the complex-domain. Traditionally, paper-
and-pencil proof methods and computer-based tools are used to analyze
the stability of control systems. However, paper-and-pencil proof meth-
ods are error prone due to the human involvement. Whereas, computer
based tools cannot model the continuous behavior in its true form due
to the involvement of computer arithmetic and the associated truncation
errors. Therefore, these techniques do not provide an accurate and com-
plete analysis, which is unfortunate given the safety-critical nature of
control system applications. In this paper, we propose to overcome these
limitations by using higher-order-logic theorem proving for the stability
analysis of control systems. For this purpose, we present a higher-order-
logic based formalization of stability and the roots of the quadratic, cubic
and quartic complex polynomials. The proposed formalization is based
on the complex number theory of the HOL-Light theorem prover. A dis-
tinguishing feature of this work is the automatic nature of the formal
stability analysis, which makes it quite useful for the control engineers
working in the industry who have very little expertise about formal meth-
ods. For illustration purposes, we present the stability analysis of power
converter controllers used in smart grids.

Keywords: Stability · Control systems · Polynomials · HOL-light

1 Introduction

Stability [15] is the most important design requirement of a linear time-invariant
control system. An unstable control system deployed in a safety-critical domain,
e.g., in nuclear power plants or aircrafts, can lead to disastrous consequences,

c© Springer Nature Switzerland AG 2019
C. Artho and P. C. Ölveczky (Eds.): FTSCS 2018, CCIS 1008, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-12988-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12988-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-12988-0_1

4 A. Ahmed et al.

including the loss of human lives, and therefore stability is considered as a safety-
critical system specification.

Generally, the design and analysis of linear time-invariant control systems [15]
is done in the frequency domain. The main idea is to convert a differential equa-
tion representation of the system into its frequency domain representation using
a transform method, like Laplace or Fourier [4]. This transformation simplifies
the modeling of interconnected subsystems and also generates a mathematical
model of the system that algebraically relates the input to the output based on
a transfer function,

TF (s) =
O(s)
I(s)

=
amsm + am−1s

m−1 + ... + a0

bnsn + bn−1sn−1 + ... + b0
(1)

where, ai and bi are the coefficients representing system parameters, s is a
complex-variable and m and n are natural numbers. Whereas, max{m,n} rep-
resents the order of the transfer function. The order of the transfer function
depends on the order of the corresponding linear differential equation in the time
domain representing a physical system. As most of the variables of the physi-
cal system can be represented using differentials upto the fourth order, such
as capacitor current, inductor voltage, acceleration, velocity and momentum,
therefore, control systems upto fourth order cover a wide spectrum of appli-
cations, including safety and mission-critical applications. Moreover, there are
model reduction techniques [20] to reduce the higher-order transfer functions
into their equivalent lower-order representations to facilitate the control system
design. The denominator and the numerator of a transfer function, in Eq. (1),
are complex polynomials which are used to characterize the zeros and the poles
of the system. These zeros and poles are roots of complex polynomials in the
denominator and the numerator of the transfer function, respectively. In partic-
ular, the stability of the system solely depends on the location of the poles of
the system, obtained from:

bnsn + bn−1s
n−1 + ... + b0 = 0 (2)

Equation (2) is also referred to as a characteristic equation of the system. The
system is categorized as stable, unstable and marginally stable based on the
location of the roots of Eq. (2) in the complex-plane. For a stable system, the
roots of the characteristic equation lie in the left-half of the complex-plane, for
an unstable system, the roots of the characteristic equation lie in the right-
half of the complex-plane, and for a marginally stable system, the roots of the
characteristic equation lie on the imaginary axis of the complex-plane.

Traditionally, paper-and-pencil proof methods and computer based tools are
used to perform the stability analysis of control systems. The stability analysis
using paper-and-pencil proof methods is based on the quadratic formula for
the second order polynomial (quadratic), Cardano’s method, Vieta’s method
and Lagrange’s method for the third order polynomial (cubic), and Ferrari’s
solution, Descartes’ solution and Euler’s solution for the fourth order polynomial
(quartic). Whereas, to the best of our knowledge, there does not exist any closed

Formal Stability Analysis of LTI Control Systems 5

form solution to find the root for higher than fourth order polynomials. Routh-
Hurwitz criterion [15] is another paper-and-pencil proof method, which is used
for the stability analysis of control systems. It consists of building a table using
the coefficients of the given polynomial following certain rules. This table can
be used to find if the given system is stable or unstable on the basis of patterns
exhibited by the rows and columns of the table [15]. The manual analytical
analysis involved in these methods make them prone to human error. Moreover,
these risks significantly increase with an increase in the system complexity.

Many computer-aided design tools based on the principles of numerical meth-
ods and simulation have also been introduced for the modeling and analysis of
linear time-invariant control systems. For example, MathWorks Simulink [13]
and MathWorks Control System Toolbox [12] facilitate finding the poles and
zeros of the system and are thus frequently used in the design and analysis of
control systems. They provide a scalable option to handle large and complex
systems as well. However, these computer based techniques cannot capture the
continuous aspects of the system in their true form and are based on the discrete
frequency models. The completeness of the model is thus lost while dealing with
the continuous time behavior. Moreover, the numerical values of roots computed
using computer based arithmetic, like floating or fixed point numbers, are sub-
ject to truncation errors, and hence may not be accurate. Another alternative for
analyzing the stability of control systems is computer algebra systems, such as
Mathematica [26], Maple [10] and Maxima [21]. These methods are very efficient
for computing the roots of a system, symbolically, but they are not reliable as
well [8] due to the presence of unverified huge symbolic manipulation algorithms
in their core, which are quite likely to contain bugs. Thus, given the above-
mentioned inaccuracies, these traditional techniques should not be relied upon
for the stability analysis of control systems used in safety-critical applications,
such as nuclear plants, electric vehicles or auto-pilot systems, where an inaccu-
rate or erroneous analysis could result in unfortunate catastrophic events that
may even lead to the loss of human lives.

The main motivation of this paper is to develop a formalization for the stabil-
ity analysis of linear time-invariant control systems, represented by characteristic
equations of order upto four, with minimal dependence on conventional analy-
sis techniques. We consider complex polynomials with real coefficients, for the
purpose of formal analysis in higher-order logic, which allow us to express the
cubic and quartic complex polynomials in terms of the quadratic polynomials.
However, this choice does not limit the scope of the applicability of our for-
malization as these coefficients are usually real numbers as they represent the
different parameters of the system, e.g., resistance in electrical and electronics
systems. The formally verified roots, which are poles of the system, are then for-
mally analyzed to check for the stability condition, i.e., if they lie in the left-half
of the complex-plane, in the sound core of the higher-order-logic theorem prover
HOL-Light [7]. The main motivation of this choice is the extensive reasoning
support available in HOL-Light about multivariate complex, real and transcen-
dental theories, which are required for the formalization of stability analysis of
control systems.

6 A. Ahmed et al.

The rest of the paper is organized as follows: In Sect. 2, we present a review of
the related work. This is followed by the description of the proposed methodology
about stability analysis in Sect. 3. The formalization of the quadratic, cubic
and quartic characteristic polynomials is described in Sect. 4. We utilize this
formalization to formally verify voltage and current controllers designed for the
power converters for reliable and efficient smart grid operation in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Related Work

The formalization of Laplace transform [24] has been proposed to formally rea-
son and verify the transformation properties, e.g., existence, linearity, frequency
shifting and differentiation and integration in time domain. This formalization
framework allows to verify the correspondence of the time domain representation
of the system, i.e., linear differential equation, to the frequency domain repre-
sentation of the system, i.e., transfer functions. This existing work can be used
along with the formalization proposed in this paper to analyze the stability anal-
ysis of control systems, expressed in terms of their dynamical behaviors using
differential equations.

Block diagrams formalization has been proposed [1,9] to conduct steady-
state error analysis, i.e., when s → 0, for feedback and unity feedback control
systems, in frequency domain. However, this formalization does not explicitly
deal with the stability analysis of control systems. Formal stability analysis has
also been proposed for some particular safety and mission-critical applications.
The formal stability analysis of optical waveguides [19] has been performed by
defining the stability condition in terms of the boundedness and orientation
of a ray in a wave guide using multivariate theory in HOL-Light. A logical
framework for the formal verification of various strategies for the platoon vehi-
cle controllers [17] is proposed and is then used for developing a runtime monitor
which can be used for automatic monitoring of the vehicles for stability violation.
Similarly, another comprehensive logical framework for the analysis of control
systems [16] considers the system differential equations and obtains their cor-
responding transfer functions using Laplace transformation and it also provides
a support for the block diagram analysis of the system in frequency domain.
On the basis of this framework, formal analysis of active realizations of various
controllers, Proportional Integral-Derivative (PID), Proportional-Integral (PI),
Proportional-Derivative (PD), Proportional (P), Integral (I) and Derivative (D)
and various active and passive compensators, such as lag, lead and lag-lead
is conducted. However, the aforementioned formalizations for the stability are
application specific and do not provide a generic treatment of the stability of the
control systems. The formally verified quadratic roots [18] have been used for
the formal analysis of cyber-physical systems using the real number theory in
the HOL4 theorem prover. However, this formalization of the quadratic formula
in real number theory cannot be used to analyze the complex-domain of the
control systems. Whereas, our formalization directly incorporates the transfer

Formal Stability Analysis of LTI Control Systems 7

function of a control system, as a complex polynomial, for the stability analysis
of a control system and thus provides the flexibility to be applied on any control
system. A distinguishing aspect of our formal analysis is the explicit availability
of an exhaustive list of side assumptions besides every theorem which is not pos-
sible in the informal analysis methods, which can be quite useful for the analysis
of safety-critical application designers.

3 Proposed Methodology

We propose to use higher-order-logic theorem proving, as shown in Fig. 1, to for-
mally verify the stability of linear time-invariant control systems. The analysis is
primarily based on the characteristic equation of the system, of the fourth order
at most, in the complex-domain. The first step in the proposed methodology is to
formally verify the roots of the complex quadratic, cubic and quartic polynomi-
als, which represent poles of a given control system. Therefore, these polynomials
are described as higher-order-logic functions and the formal verification of their
roots are performed using the multivariate complex, real and transcendental
theories available in the library of HOL-Light theorem prover, interactively, as
shown in Fig. 1. In the next step, the stability condition is formally modeled in
higher-order logic to formally verify the stability of these roots, as higher-order-
logic theorems, using the formally verified results from the first step, as shown
in Fig. 1. Finally, the above-mentioned formalization can be utilized to formally
analyze the stability of any control system almost automatically.

Stability

Control
Systems

Quadratic Cubic Quartic

Verification

HOL-Light

Formal Model

Stability Proof Goals

Stability Theorems

Root Proof Goals

Root Theorems

Theorems

Higher-order Logic

Library

Complexes

Real Analysis

Transcendentals

Multivariate
Analysis

Fig. 1. Proposed methodology for stability analysis in HOL-Light

8 A. Ahmed et al.

4 Stability Formalization

This section provides a formal definition of stability of a root of a polynomial,
formally verified results for the close form solutions or roots of polynomilas upto
fourth order and formally verified results on the stability of these polynomials
in the HOL-Light theorem prover. The stability of a root is defined, as a higher-
order logic function, as:

Definition 1: Stability

� ∀ f. stable f = ∼({ x | f x = Cx (0) ∧ Re (x) < 0 } = EMPTY)

In Definition 1, f:R2 → R2 represents a complex function, which is a poly-
nomial in our case, x:R2 is a complex variable, which in our case is the root of
the given polynomial, and Cx and Re are HOL-light functions, which are used to
convert a real number into a complex number and to retrieve the real part of a
given complex number, respectively.

The predicate stable:(R2 → R2) → bool accepts a polynomial and returns a
boolean output, which is true for a stable root of the polynomial of the considered
system and false otherwise. Definition 1 formally models two conditions for the
stability of a root of the given complex polynomial, i.e., f x = Cx (0) and
Re (x) < 0. These conditions ensure that a complex-variable, x, is a root of
the given polynomial and its real part lies in the left-half of the complex-plane.
Furthermore, these roots are formally defined as the member of a set which
should not be empty if the polynomial has any stable root. To ensure that all
roots of a given polynomial are the members of this set, however, requires us
to find all the roots of the given polynomial. Therefore, in the next section, we
formally verify the roots of a polynomial.

4.1 Quadratic Polynomial

To formally analyze the stability of the quadratic polynomial, we formally verify
the famous quadratic formula in HOL-Light theorem prover as:

Theorem 1: Quadratic Roots

� ∀ a b c x .
A1: a �= 0

⇒ Cx a ∗ x pow 2 + Cx b ∗ x + Cx c = Cx 0

x = − Cx b +
√
Cx b pow 2 − Cx 4 ∗ Cx a ∗ Cx c

Cx 2 ∗ Cx a
∨

x = −Cx b − √
Cx b pow 2 − Cx 4 ∗ Cx a ∗ Cx c

Cx 2 ∗ Cx a

In the above theorem, a, b and c are real numbers, whereas, x is a complex
variable. Assumption A1 ensures that the polynomial is quadratic. The theorem
is a formally verified result that a quadratic polynomial has two roots, using the
sound core of the HOL-Light theorem prover.

Theorem 1 allows us to formally verify the stability conditions for the case of
two roots, using Definition 1, as:

Formal Stability Analysis of LTI Control Systems 9

Lemma 1: Complex Root Case

� ∀ a b c x .
A1: a �= 0 ∧
A2: b pow 2 - 4 ∗ a ∗ c < 0 ∧
A3: 0 < b

a⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c)

Lemma 2: Real Root Case 1

� ∀ a b c x .
A1: a �= 0 ∧
A2: b pow 2 - 4 ∗ a ∗ c = 0 ∧
A3: 0 < b

a⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c)

Lemma 3: Real Root Case 2

� ∀ a b c x .
A1: a < 0 ∧
A2: 0 < b pow 2 - 4 ∗ a ∗ c
A3: b <

√
b pow 2 − 4 ∗ a ∗ c

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c)

Lemma 4: Real Root Case 3

� ∀ a b c x .
A1: a < 0 ∧
A2: b pow 2 - 4 ∗ a ∗ c < 0 ∧
A3:

√
b pow 2 − 4 ∗ a ∗ c < - b

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c)

Lemma 5: Real Root Case 4

� ∀ a b c x .
A1: 0 < a ∧
A2: 0 < b pow 2 - 4 ∗ a ∗ c ∧
A3:

√
b pow 2 − 4 ∗ a ∗ c < b

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c)

Lemma 6: Real Root Case 5

� ∀ a b c x .
A1: 0 < a ∧
A2: 0 < b pow 2 - 4 ∗ a ∗ c ∧
A3: - b <

√
b pow 2 − 4 ∗ a ∗ c

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c)

10 A. Ahmed et al.

Lemmas 1–6 are formally verified using the multivariate complex, real analy-
sis and transcendental theories available in the library of the HOL-Light theorem
prover. The above formally verified results cover all possible conditions on coeffi-
cients, of the second order polynomial, and on the discriminant of the quadratic
formula for the stability of roots, as shown in Fig. 2.

Theorem 1

Lemma 5 Lemma 6 Lemma 1 Lemma 2 Lemma 4 Lemma 3

Fig. 2. Stability of quadratic polynomial

Now, Lemmas 1–6 are used to formally assert the stability of a quadratic
polynomial as:

Theorem 2: Quadratic Stability

� ∀ a b c x .
A1: a �= 0 ∧
A2: 0 < b

a
∧ (b pow 2 - 4 ∗ a ∗ c < 0 ∨ b pow 2 - 4 ∗ a ∗ c = 0)

∨
0 < b pow 2 - 4 ∗ a ∗ c ∧

(a < 0 ∧ (b <
√
b pow 2 − 4 ∗ a ∗ c ∨√

b pow 2 − 4 ∗ a ∗ c < - b) ∨
(0 < a ∧ (

√
b pow 2 − 4 ∗ a ∗ c < b ∨

- b <
√
b pow 2 − 4 ∗ a ∗ c)

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c)

Theorem 2 provides a formally verified comprehensive result for the stability of
the quadratic polynomial under all possible cases that may arise due to the
nature of discriminant, nature of real coefficients of the polynomial using HOL-
Light. The formalization of the quadratic polynomial plays a key role in the

Formal Stability Analysis of LTI Control Systems 11

formal stability analysis of cubic and quartic polynomials as will be observed in
the next two subsections.

4.2 Cubic Polynomial

In this section, we provide the formally verified results for the roots of a cubic
polynomial, and their stability, using Definition 1 and Lemmas 1–6. To formally
analyze the stability of the cubic polynomial, we formally verify the factor decom-
position of a cubic into its linear and quadratic factors in HOL-Light as follows:

Theorem 3: Cubic Factors

� ∀ a b1 c1 d1 r x .
A1: Cx b = Cx b1 + Cx a ∗ Cx r ∧
A2: Cx c = Cx c1 + Cx b1 ∗ Cx r
A3: Cx d = Cx c1 ∗ Cx r ∧

⇒ Cx a ∗ x pow 3 + Cx b ∗ xpow 2 + Cx c ∗ x + Cx d =
(x + Cx r) ∗ (Cx a ∗ x pow 2 + Cx b1 ∗ x + Cx c1)

In the above theorem, a, b1, c1, d1 and r are real-valued random variables,
which represent coefficients of the cubic factors. Whereas, x is a complex variable.
Assumptions A1–A3 formally represent the factor decompositions of the cubic
polynomial.

Next, we present formally verified roots of the cubic polynomial using Defi-
nition 1, Lemmas 1–6 and Theorem 3 in HOL-Light as:

Theorem 4: Cubic Roots

� ∀ a b1 c1 d1 r x .
A1: a �= 0 ∧
A2: Cx b = Cx b1 + Cx a ∗ Cx r ∧
A3: Cx c = Cx c1 + Cx b1 ∗ Cx r ∧
A4: Cx d = Cx c1 ∗ Cx r
⇒ (Cx a ∗ x pow 3 + Cx b ∗ xpow 2 + Cx c ∗ x + Cx d = Cx 0)

= (x = Cx r ∨ x = − Cx b1 +
√
Cx b1 pow 2 − Cx 4 ∗ Cx a ∗ Cx c1

Cx 2 ∗ Cx a
∨

x = − Cx b1 − √
Cx b1 pow 2 − Cx 4 ∗ Cx a ∗ Cx c1

Cx 2 ∗ Cx a
)

In the above theorem, Assumption A1 ensures that the leading coefficient of
the polynomial is not zero, i.e., the given polynomial is cubic. Assumptions A2–
A4 provide the factor decomposition of the given polynomial. Based on these
assumptions, Theorem 4 formally verifies that the cubic polynomial has three
roots.

Finally, the above formalization is used to formally verify the stability of a
cubic polynomial as:

12 A. Ahmed et al.

Theorem 5: Cubic Stability

� ∀ a b1 c1 d1 r x .
A1: a �= 0 ∧ A2: Cx b = Cx b1 + Cx a ∗ Cx r ∧
A3: Cx c = Cx c1 + Cx b1 ∗ Cx r ∧ A4: Cx d = Cx c1 ∗ Cx r
A4: 0 < r ∨

((0 < b1
a

∧ (b1 pow 2 - 4 ∗ a∗ c1 < 0 ∨
b1 pow 2 - 4 ∗ a∗ c1 = 0)) ∨

(0 < b1 pow 2 - 4 ∗ a ∗ c1 ∧
(a < 0 ∧ (b1

√
b1 pow 2 − 4 ∗ a ∗ c1 ∨√

b1 pow 2 − 4 ∗ a ∗ c1 < - b1) ∨
(0 < a ∧ (

√
b1 pow 2 − 4 ∗ a ∗ c1 < b1 ∨

- b <
√
b1 pow 2 − 4 ∗ a ∗ c1)))

⇒ stable (λ x. Cx a ∗ x pow 3 + Cx b ∗ xpow 2 + Cx c ∗ x + Cx d)

Theorem 5 provides a formally verified result for the stability of the cubic poly-
nomial under all possible values of real coefficients of the cubic polynomial, and
explicitly states the relationship among them for satisfying stability conditions.

4.3 Quartic Polynomial

In this section, we provide formally verified results for the roots, of a quartic
polynomial, and their stability, using Definition 1 and Lemmas 1–6. To formally
analyze the stability of the quartic polynomial, we formally verify the factor
decomposition of a quartic into its two quadratic factors in HOL-Light as:

Theorem 6: Quartic Factors

� ∀ a1 b1 c1 a2 b2 c2 x .
A1: Cx a = Cx a1 ∗ Cx a2 ∧
A2: Cx b = Cx a1 ∗ Cx b2 + Cx a2 ∗ Cx b1 ∧
A3: Cx c = Cx a1 ∗ Cx c2 + Cx b1 ∗ Cx b2 + Cx a2 ∗ Cx c1 ∧
A4: Cx d = Cx b1 ∗ Cx c2 + Cx b2 ∗ Cx c1 ∧
A5: Cx e = Cx c1 ∗ Cx c2
⇒ (Cx a ∗ x pow 4 + Cx b ∗ x pow 3 + Cx c ∗ x pow 2 + Cx d ∗ x

+ Cx e = Cx 0) =
((Cx a1 ∗ x pow 2 + Cx b1 ∗ x + Cx c1) ∗

(Cx a2 ∗ x pow 2 + Cx b2 ∗ x + Cx c2))

In the above theorem, a1, b1, c1, a2, b2 and c2 are real-valued variables, which
represent coefficients of the quadratic factors of a given quartic polynomial.
Whereas, x is a complex variable. Theorem 6 formally verifies the factor decom-
position of the quartic polynomial given the Assumptions A1–A5.

Next, we present formally verified roots of the quartic polynomial using Def-
inition 1, Lemmas 1–6 and Theorem 6 in HOL-Light as:

Formal Stability Analysis of LTI Control Systems 13

Theorem 7: Quartic Roots

� ∀ a1 b1 c1 a2 b2 c2 x .
A1: a �= 0 ∧ A2: Cx a = Cx a1 ∗ Cx a2 ∧
A3: Cx b = Cx a1 ∗ Cx b2 + Cx a2 ∗ Cx b1 ∧
A4: Cx c = Cx a1 ∗ Cx c2 + Cx b1 ∗ Cx b2 + Cx a2 ∗ Cx c1 ∧
A5: Cx d = Cx b1 ∗ Cx c2 + Cx b2 ∗ Cx c1 ∧
A6: Cx e = Cx c1 ∗ Cx c2
⇒ (Cx a ∗ x pow 4 + Cx b ∗ x pow 3 + Cx c ∗ x pow 2 + Cx d ∗ x

+ Cx e = Cx 0) =
(x = − Cx b1 +

√
Cx b1 pow 2 − Cx 4 ∗ Cx a1 ∗ Cx c1

Cx 2 ∗ Cx a1
∨

x = − Cx b1 − √
Cx b1 pow 2 − Cx 4 ∗ Cx a1 ∗ Cx c1

Cx 2 ∗ Cx a1
∨

x = − Cx b2 +
√
Cx b2 pow 2 − Cx 4 ∗ Cx a2 ∗ Cx c2

Cx 2 ∗ Cx a2
∨

x = − Cx b2 − √
Cx b2 pow 2 − Cx 4 ∗ Cx a2 ∗ Cx c2

Cx 2 ∗ Cx a2
)

In the above theorem, Assumption A1 ensures that the leading coefficient of
the polynomial is not zero and thus confirming that the given polynomial is
quartic. Assumptions A2–A6 provide the factor decomposition of the given
quartic polynomial. Based on these assumptions, Theorem7 formally verifies
that the quartic polynomial has four roots.

Finally, the above formalization is used to formally verify the stability of a
quartic polynomial as:

Theorem 8: Quartic Stability

� ∀ a1 b1 c1 a2 b2 c2 x .
A1: a �= 0 ∧ A2: Cx a = Cx a1 ∗ Cx a2 ∧
A3: Cx b = Cx a1 ∗ Cx b2 + Cx a2 ∗ Cx b1 ∧
A4: Cx c = Cx a1 ∗ Cx c2 + Cx b1 ∗ Cx b2 + Cx a2 ∗ Cx c1 ∧
A5: Cx d = Cx b1 ∗ Cx c2 + Cx b2 ∗ Cx c1 ∧
A6: Cx e = Cx c1 ∗ Cx c2 ∧
A7: (0 < b1

a1
∧ (b1 pow 2 - 4 ∗ a1∗ c1 < 0 ∨

b1 pow 2 - 4 ∗ a1∗ c1 = 0)) ∨
(b1 pow 2 - 4 ∗ a1∗ c1 < 0 ∧

(a1 < 0 ∧ (b1 <
√
b1 pow 2 − 4 ∗ a1 ∗ c1 ∨√

b1 pow 2 − 4 ∗ a1 ∗ c1 < - b1) ∨
(0 < a1 ∧ (

√
b1 pow 2 − 4 ∗ a1 ∗ c1 < b1 ∨

- b1 <
√
b1 pow 2 − 4 ∗ a1 ∗ c1)) ∨

(0 < b2
a2

∧ (0 < b2 pow 2 - 4 ∗ a2∗ c2 ∨
b2 pow 2 - 4 ∗ a2∗ c2 = 0)) ∨

(b2 pow 2 - 4 ∗ a2∗ c2 < 0 ∧
(a2 < 0 ∧ (b2 <

√
b2 pow 2 − 4 ∗ a2 ∗ c2 ∨√

b2 pow 2 − 4 ∗ a2 ∗ c2 < - b1) ∨
(0 < a2 ∧ (

√
b2 pow 2 − 4 ∗ a2 ∗ c2 < b2 ∨

- b2 <
√
b2 pow 2 − 4 ∗ a2 ∗ c2))

⇒ stable (λ x. (Cx a ∗ x pow 4 + Cx b ∗ x pow 3 + Cx c ∗ x pow 2
+ Cx d ∗ x + Cx e)

14 A. Ahmed et al.

Theorem 8 provides an exhaustive set of conditions for the stability of the quartic
polynomial using the HOL-light theorem prover.

Theorem proving is a highly expressive and sound formal method technique
and therefore resulted in an exhaustive set of assumptions for the formal ver-
ification of poles of the system and their stability, which is not possible using
conventional analysis techniques. Moreover, these assumptions reveal the rela-
tionship among the coefficients of polynomials, representing system parameters,
which provide useful insights from the perspective of a control system design.
The formalization is generic, i.e., all the involved variables are universally quan-
tified, and thus the verified theorems can be specialized to conduct the stability
analysis of a control system in an almost automatic manner. The corresponding
proof script, which is available for download at [2], has 5000 lines of HOL-Light
code and required about 380 man hours of development time.

5 Application: Power Converter Controllers Used
in Smart Grids

Smart grids are networks with intelligent nodes to produce, consume and share
the energy efficiently by leveraging upon the advances in the fields of communi-
cation, electronics and computation [14]. There has been an enormous increase in
the usage of smart grid technology over the world in the last decade or so [6]. Thus,
an insecure and unreliable smart grid can even lead to disastrous consequences [3].

Current Controllers

Voltage controllers

AC
DC

Grid

Distribution

Wind Turbine

Fig. 3. Efficient energy harvesting using power converter controllers in smart grids

Energy harvesting and its processing, from unconventional sources, such as
wind turbines and solar panels, is one of the key challenges in smart grids due
to the intermittent nature of the produced energy [27]. To achieve a steady flow
from these sources, power converters are designed to alleviate the problem. This
objective is usually achieved by designing efficient current and voltage controllers
for these power converters so that a smooth supply of power can be ensured, as
shown in Fig. 3.

Formal Stability Analysis of LTI Control Systems 15

In this paper, we formally verify the stability of an H∞ current, H∞ volt-
age and H∞ repetitive current controllers designed for the power converters to
enhance the efficiency of smart grids [27]. H∞ [23] and repetitive control [11]
are control methods, which are used for designing suboptimal controllers and
controllers, which enable the power converters to inject a clean power into the
grid system and thus resulting in more reliable and secure grid operations.

The transfer function of an H∞ current controller is given [27] as:

[TF]i =
1.7998 ∗ 109(s + 300)

s2 + 4.33403 ∗ 108s + 1.10517 ∗ 1012
(3)

The characteristic equation of above transfer function is of second order therefore
we utilize Theorem 2 to formally verify the stability in higher-order logic as:

Theorem 9: H∞ Current Controller

� ∀ a b c s .
stable (λ x. Cx 1 ∗ s pow 2 + Cx 4.3340 ∗ 108 ∗ x + Cx 1.10517 ∗ 1012)

The transfer function of an H∞ voltage controller is given [27] as:

[TF]v =
748.649(s2 + 6954s + 3.026 ∗ 108)

s3 + 10519s2 + 3.246 ∗ 108s + 7.7596 ∗ 107
(4)

The characteristic equation of this transfer function is of third order therefore
we utilize Theorem 5 to formally verify the stability in higher-order logic as:

Theorem 10: H∞ Voltage Controller

� ∀ a b1 c1 d1 r s .
A1: a = 1 ∧ A2: b1 = 79669 ∧ A3: c1 = 3.043 ∗ 108 ∧ A4: r = 2550

⇒ stable (λ x. Cx 1 ∗ s pow 3 + Cx 10519 ∗ s pow 2 + Cx 3.246 ∗ 108 ∗ s

+ Cx 7.7596 ∗ 107)

The transfer function of an H∞ repetitive current controller is given [27] as:

[TF]vr =
8.63 ∗ 108(s + 104)(s + 1000)(s + 80)

s4 + 1.55 ∗ 108s3 + 1.83 ∗ 1013s2 + 1.43 ∗ 1017s + 1.08 ∗ 1019
(5)

The characteristic equation of above transfer function is of fourth order therefore
we utilize Theorem 8 to formally verify the overall stability in higher-order logic
as:

Theorem 11: H∞ Repetitive Current Controller

� ∀ a1 b1 c1 a2 b2 c2 s .
A1: a1 = 1 ∧ A2: b1 = 1.557 ∗ 107 ∧ A3: c1 = 1.70538 ∗ 103 ∧
A4: a2 = 1 ∧ A5: b2 = 8.403 ∗ 103 ∧ A6: c2 = 6.375 ∗ 105

⇒ stable (λ x. Cx 1 ∗ s pow 4 + Cx 1.55 ∗ 108 ∗ s pow 3 +
Cx 1.83 ∗ 1013 ∗ s pow 2 + 1.43 ∗ 1017 ∗ s + Cx 1.08 ∗ 1019)

16 A. Ahmed et al.

Theorems 9–11 formally verify the correctness of the power converter con-
trollers for a smart grid and the reasoning process was very straightforward, i.e.,
only a few lines of code and almost automatic based on simple real arithmetic.
The main distinguishing feature of these theorems, compared to the correspond-
ing results obtained through the traditional methods, is the explicit availability
of all the assumptions required for the results to hold. As can be noted from
Theorems 9–11 many of these assumptions specify very important design con-
straints. If these constraints are not met then we may get an unstable controller,
which can be very dangerous, given the safety-critical nature of smart grids.

6 Conclusion

This paper presents a formalization for the stability analysis of control systems,
which are used in many safety-critical applications. We provided a formal def-
inition of stability in higher-order logic and also formally verified the roots of
characteristic equations, upto the fourth order, that are used for representing
the control systems in the complex-domain. Our formalization is based on the
multivariate complex, real and transcendental theories available in HOL-Light
theorem prover and allows us to conduct the stability analysis of wide range
of control systems almost automatically. For illustration, we also presented the
analysis of voltage and current controllers of the power converters which are
used to ensure the efficient and reliable smart grid operations. The formaliza-
tion framework can be easily extended to incorporate the formal verification of
marginally stable and unstable roots of the presented polynomials, which are
also important for the design of many interesting control systems’ applications.
Based on the formalization presented in this paper, we are in the process of con-
ducting the formal stability analysis of many other safety-critical applications of
control systems, including smart grids [5], robotics [22] and smart cars [25].

Acknowledgments. This work is supported by ICT Fund UAE, fund number 21N206
at UAE University, Al Ain, United Arab Emirates.

References

1. Ahmad, M., Hasan, O.: Formal verification of steady-state errors in unity-feedback
control systems. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718,
pp. 1–15. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10702-8 1

2. Ahmed, A.: System Analysis and Verification (SAVe) Lab. http://save.seecs.nust.
edu.pk/projects/fsacs/. Accessed 12 Sept 2018

3. Amin, S.M., Wollenberg, B.F.: Toward a smart grid: power delivery for the 21st
century. IEEE Power Energ. Mag. 3(5), 34–41 (2005)

4. Dyke, P.: An Introduction to Laplace Transforms and Fourier Series. SUMS.
Springer, London (2014). https://doi.org/10.1007/978-1-4471-6395-4

5. Ekanayake, J., Jenkins, N.: Comparison of the response of doubly fed and fixed-
speed induction generator wind turbines to changes in network frequency. IEEE
Trans. Energy Convers. 19(4), 800–802 (2004)

6. Giordano, V., et al.: Smart grid projects in Europe. JRC Ref Rep Sy 8. Publications
Office of the European Union, Luxembourg (2011). https://doi.org/10.2790/32946

https://doi.org/10.1007/978-3-319-10702-8_1
http://save.seecs.nust.edu.pk/projects/fsacs/
http://save.seecs.nust.edu.pk/projects/fsacs/
https://doi.org/10.1007/978-1-4471-6395-4
https://doi.org/10.2790/32946

Formal Stability Analysis of LTI Control Systems 17

7. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03359-9 4

8. Harrison, J.: Theorem Proving with the Real Numbers. Springer, London (2012)
9. Hasan, O., Ahmad, M.: Formal analysis of steady state errors in feedback control

systems using HOL-Light. In: Proceedings of the Conference on Design, Automa-
tion and Test in Europe, pp. 1423–1426. EDA Consortium, San Jose (2013)

10. Heck, A., Heck, A.: Introduction to MAPLE. Springer, New York (1993). https://
doi.org/10.1007/978-1-4684-0519-4

11. Hornik, T., Zhong, Q.C.: A current-control strategy for voltage-source inverters
in microgrids based on H∞ and repetitive control. IEEE Trans. Power Electron.
26(3), 943–952 (2011)

12. MathWorks: Control System Toolbox. https://ch.mathworks.com/products/
control.html. Accessed 12 Sept 2018

13. MathWorks: Simulink. https://www.mathworks.com/products/simulink.html.
Accessed 12 Sept 2018

14. Momoh, J.A.: Smart Grid: Fundamentals of Design and Analysis, vol. 63. Wiley,
Hoboken (2012)

15. Nise, N.S.: Control Systems Engineering. Wiley, Hoboken (2007)
16. Rashid, A., Hasan, O.: Formal analysis of linear control systems using theorem

proving. In: Duan, Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp. 345–361.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68690-5 21

17. Rashid, A., Siddique, U., Hasan, O.: Formal verification of platoon control strate-
gies. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018. LNCS, vol. 10886, pp.
223–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92970-5 14

18. Sanwal, M.U., Hasan, O.: Formally analyzing continuous aspects of cyber-physical
systems modeled by homogeneous linear differential equations. In: Berger, C.,
Mousavi, M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp. 132–146. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25141-7 10

19. Siddique, U., Aravantinos, V., Tahar, S.: Formal stability analysis of optical res-
onators. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp.
368–382. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-
4 25

20. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and
Design, vol. 2. Wiley, New York (2007)

21. Sourceforge: Maxima. http://maxima.sourceforge.net/. Accessed 12 Sept 2018
22. Spong, M.W., Hutchinson, S., Vidyasagar, M., et al.: Robot Modeling and Control,

vol. 3. Wiley, New York (2006)
23. Stoorvogel, A.A.: The H∞ Control Problem: A State Space Approach. Citeseer

(1992)
24. Taqdees, S.H., Hasan, O.: Formalization of Laplace transform using the multivari-

able calculus theory of HOL-light. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 744–758. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5 50

25. Varaiya, P.: Smart cars on smart roads: problems of control. IEEE Trans. Autom.
Control 38(2), 195–207 (1993)

26. Wellin, P.R., Gaylord, R.J., Kamin, S.N.: An Introduction to Programming with
Mathematica R©. Cambridge University Press, Cambridge (2005)

27. Zhong, Q.C., Hornik, T.: Control of Power Inverters in Renewable Energy and
Smart Grid Integration, vol. 97. Wiley, Hoboken (2012)

https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-1-4684-0519-4
https://doi.org/10.1007/978-1-4684-0519-4
https://ch.mathworks.com/products/control.html
https://ch.mathworks.com/products/control.html
https://www.mathworks.com/products/simulink.html
https://doi.org/10.1007/978-3-319-68690-5_21
https://doi.org/10.1007/978-3-319-92970-5_14
https://doi.org/10.1007/978-3-319-25141-7_10
https://doi.org/10.1007/978-3-642-38088-4_25
https://doi.org/10.1007/978-3-642-38088-4_25
http://maxima.sourceforge.net/
https://doi.org/10.1007/978-3-642-45221-5_50

Modular Verification of Vehicle
Platooning with Respect to Decisions,

Space and Time

Maryam Kamali1, Sven Linker2(B), and Michael Fisher2

1 Nominet, London, UK
maryam.kamali@nominet.uk

2 University of Liverpool, Liverpool, UK
{s.linker,mfisher}@liverpool.ac.uk

Abstract. The spread of autonomous systems into safety-critical areas
has increased the demand for their formal verification, not only due to
stronger certification requirements but also to public uncertainty over
these new technologies. However, the complex nature of such systems,
for example, the intricate combination of discrete and continuous aspects,
ensures that whole system verification is often infeasible. This motivates
the need for novel analysis approaches that modularise the problem,
allowing us to restrict our analysis to one particular aspect of the sys-
tem while abstracting away from others. For instance, while verifying the
real-time properties of an autonomous system we might hide the details
of the internal decision-making components. In this paper we describe
verification of a range of properties across distinct dimensions on a prac-
tical hybrid agent architecture. This allows us to verify the autonomous
decision-making, real-time aspects, and spatial aspects of an autonomous
vehicle platooning system. This modular approach also illustrates how
both algorithmic and deductive verification techniques can be applied
for the analysis of different system subcomponents.

Keywords: Modular verification · Hybrid agent architecture ·
Spatial reasoning

1 Introduction

Autonomous systems are increasingly being introduced into safety-critical areas,
for example nuclear waste management [1], or transportation, in the form of
unmanned aircraft, advanced driver assistance systems, and even driverless cars.
Although autonomous cars are generally aimed at increasing the overall safety
of traffic, vehicle platooning [16,27], shown in Fig. 1 in particular provides even
more advantages over single vehicles: it potentially decreases both congestion on

Work supported EPSRC grants EP/N007565 (Science of Sensor Systems Software),
EP/R026092 (FAIR-SPACE RAI Hub) and EP/L024845/1 (Verifiable Autonomy).

c© Springer Nature Switzerland AG 2019
C. Artho and P. C. Ölveczky (Eds.): FTSCS 2018, CCIS 1008, pp. 18–36, 2019.
https://doi.org/10.1007/978-3-030-12988-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12988-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-12988-0_2

Modular Verification of Vehicle Platooning 19

A

F4 F3 F2 F1 L

Fig. 1. Vehicle platooning—vehicle A joining interior of platoon

motorways, and fuel consumption, since the relative braking distance between
vehicles should be smaller, and hence the vehicles can make use of slipstreams
with reduced wind resistance. Here, vehicles are held in sequence on a highway,
with distances and speeds controlled by the platoon rather than the individual
vehicle. Platooning has recently gained more attention as it is considered as an
eco-driving strategy especially for Heavy-Duty Vehicles (HDV) [2], for instance,
the european truck platooning challenge1 in 2016. Six automotive/truck com-
mercial carriers drove semi-automated trucks in platoons aiming to prompt the
real implementation of platooning in the roads. Besides, platooning is encouraged
politically, for instance, by the Department of Transport of the UK.2

Autonomous vehicles within a platoon need to be verified to ensure the overall
safety of the platoon. Specifically both autonomous decision-making concerning
leaving/joining the platoon, and low-level interaction with its environment have
to be analysed, in the best case by providing guarantees for reliable behaviour.
Typically, simulations are used to support such guarantees [2,19]. However, these
simulations are not performed in a way to gain any insight into the reasons
why an agent performed a certain action. To certify high-level decisions of an
individual autonomous system, the rational agent concept [29] is widely used, as
it allows for an analysis of the reasons why a system chooses a certain action.

The physical interaction of a vehicle with the rest of the platoon of vehicles
in its environment consists of several different dimensions. Two of the most
important are time and space. Timing constraints are of major importance to the
overall behaviour of a system. For example, if an unsafe situation is encountered,
the vehicles have to react within a certain time frame to ensure safety during
emergencies. But even for normal vehicle behaviour, such as joining or leaving a
platoon, time constraints are eminently important [6]. Spatial aspects are vital
for similar reasons. Ensuring that vehicles do not get too close, or can fit in the
space they are trying to move in to, is clearly important.

So now we reach the key problem. A complex, autonomous system such as
an automotive vehicle platoon, will incorporate a diverse range of properties and
behaviours. If we wish to formally verify all of these dimensions then we will
certainly hit complexity issues—multi-dimensional formalisation easily become
very complex [5,12]. Two approaches are to use modular verification [18] or to
use abstraction techniques [7] to separate out dimensions of concern.

1 https://eutruckplatooning.com/.
2 https://trl.co.uk/news/news/government-gives-green-light-first-operational-vehicle-

platooning-trial.

https://eutruckplatooning.com/
https://trl.co.uk/news/news/government-gives-green-light-first-operational-vehicle-platooning-trial
https://trl.co.uk/news/news/government-gives-green-light-first-operational-vehicle-platooning-trial

20 M. Kamali et al.

Our Approach. We have identified three key dimensions within autonomous
vehicle platoons that we wish to assess: autonomous decision-making, real-time
properties, and spatial properties. We also aim to minimise the change to existing
components of the system when new components are introduced. Consequently,
we use abstraction techniques for the three dimensions, but ensure that verifi-
cation results for parts of the system that are unchanged remain valid, and so
the verification task is reduced to checking any new system components. We
show the applicability of this approach by taking an existing autonomous vehi-
cle platoon system whose decision-making and real-time properties have already
been verified, in [17], and incorporating spatial aspects. A spatial controller is
introduced to model the physical lane-changing behaviour of the vehicles using
the logic introduced in [14] that guarantees the correctness of our spatial model.
This was something that the original platoon verification did not consider [17].
We also show that not only does the high-level decision making (agent) code
remain unchanged, but the new verification task is reduced to the analysis of
the real-time requirements as the spatial aspects were shown to be correct [14].

Consequently, we show how this modular verification approach supports the
flexibility of the underlying hybrid agent architecture, with any new components
of the extended architecture still being relevant. The verification of such archi-
tectures remains feasible as long as we can apply appropriate abstractions to the
system components. We do not consider malicious or faulty vehicles on the road.
That is, the protocol we verify is a minimal requirement for vehicle platoons.

The paper is structured as follows. In Sect. 2, we present the hybrid agent
architecture. Subsequently, we show how we instantiate this architecture for
spatial and temporal aspects of vehicle platooning in Sect. 3, and present the
verification results in Sect. 4. Following a discussion of related work in Sect. 5,
Sect. 6 concludes the paper.

2 Hybrid Agent Architecture

Cyber-physical systems, such as autonomous vehicles, require a sophisticated
architecture together with corresponding formalism. Practical systems combine
continuous environmental interactions, through feedback control, together with
discrete changes between these control regimes. In traditional hybrid systems,
separating the high-level decision making from continuous control concerns is
difficult. The other drawback of standard hybrid modelling approaches is that
the representation of decision-making can become very complex and hard to dis-
tinguish. We instead utilise a hybrid agent architecture [20] where the decision-
making aspect is separated into a distinguished ‘agent’ while the system still
provides traditional feedback control systems. This approach provides a clear
separation between these two concerns, and also the behaviour of each compo-
nent is described in much more detail that can contribute to reasoning about
their behaviours separately. Thus, the separation of high-level decision making
and low-level controllers provides an infrastructure for modular verification.

Modular Verification of Vehicle Platooning 21

In this paper, we use the hybrid agent architecture, proposed for autonomous
vehicle platooning in [17], as shown in Fig. 2. A Decision-Making Agent instructs
a Physical and Continuous Engine by passing instructions through an Abstrac-
tion Agent. The Abstraction Agent receives streams of continuous data from the
Physical and Continuous Engines, extracts discrete information from this, and
sends it to the decision-making agent. The Physical and Continuous engine man-
ages the real-time continuous control of the vehicle through feedback controllers,
implemented in MATLAB. We assumed that the dynamics of the vehicles are
continuous, i.e., they may not arbitrarily change positions and velocities. An
automotive simulator, TORCS3, was used to implement the automotive envi-
ronment and this environment is observed through the sensory input by the
Physical and Continuous engine.

Fig. 2. Hybrid agent architecture [17]

The Decision-Making Agent is a rational agent [29] that not only makes deci-
sions, but will have explicit reasons for making these decisions. This allows us to
describe what the autonomous system chooses to do, and to reason about why
it makes its choices. Our Decision-Making Agent is based on the BDI (Belief-
Desire-Intention) paradigm. Here, beliefs represent the agent’s views about the
world, desires provide the long-term objectives to be accomplished, and inten-
tions capture the set of goals currently being undertaken by the agent in order
to achieve its desires.

The separation between the Decision-Making Agent and the Physical and
Continuous Engine provides a way to verify the agent behaviour in isolation
from the detail of feedback control. In this work we utilise program model-
checking over the Decision-Making Agent. This allows us to formally verify the
3 The Open Racing Car Simulator https://sourceforge.net/projects/torcs.

https://sourceforge.net/projects/torcs

22 M. Kamali et al.

real agent code rather than a model of the agent behaviour. This formal ver-
ification of agent behaviour is carried out using the AJPF model checker [10]
and the agent itself is implemented in the verifiable language Gwendolen [9].
The model-checking approach using AJPF is used to demonstrate that the BDI
agent always behaves according to the platoon requirements and never inten-
tionally chooses unsafe options. Unfortunately, model checking through AJPF
is not only resource-heavy, but also lacks support for the formal verification of
timed behaviours. As indicated above, timing will be a key principle of relevance
to safety-critical behaviour and so, to tackle this problem, Kamali et al. [17] pro-
posed a modular approach to the verification of automotive platoons constructed
in this way.

We here consider two of the main platooning procedures involved in joining
and leaving a platoon. Both the joining and leaving procedures are comprised
of a series of communications between an individual vehicle and the platoon
leader aimed to obtain permission to join/leave or update the leader when the
joining/leaving procedure is accomplished. Apart from the required communi-
cations, the vehicle switches between different controllers, such as moving from
‘manual’ to ‘automatic’ for speed and steering. One of the challenging manoeu-
vres is changing lanes and the high-level behaviour of the platoon is verified
under the assumption that the lane changing manoeuvre is carried out safely. In
order to accomplish the fully autonomous platooning while preserving safety, we
extend the previous work of [17] by adding spatial reasoning to the platooning
architecture. Representing space allows us to model the spatial controller of the
system and consequently to verify the safety of the spatial controller behaviours.

Both the idea, and the concrete definition, of this spatial controller, is taken
from previous work [14]. The level of this spatial abstraction is still very high: we
do not refer to specific/metric distances, but instead associate regions of space
with different, abstract, properties. That is, we distinguish two different aspects
of space needed by a vehicle: its reservation and its claim. The intuition here
is that the reservation of a vehicle denotes the part of space that is necessary
for the vehicle to operate safely. It comprises both the physical extent of the
vehicle and the distance it needs to come to a standstill in case of an emergency.
The claim, however, is not as restrictive. It is an additional way for the vehicles
to communicate, similar to the turning signals common to road vehicles. That
is, a vehicle sets a claim somewhere on the motorway to indicate its desire to
occupy this part of the motorway in the (near) future. If the vehicle decides that
changing to the new lane is safe, it mutates its existing claim into a reservation.
Consequently, within our abstraction the vehicle is considered to be on both
lanes at once, thus modelling the act of changing lanes. For example, in Fig. 1,
the car A currently set a claim on the right lane, to join the platoon.

3 Methodology

In this section, we show how the hybrid agent architecture of Sect. 2 can be
instantiated to verify vehicle platooning with respect to the agent’s decisions,

Modular Verification of Vehicle Platooning 23

the continuous behaviour, and the spatial changes necessary to change lanes,
e.g., while joining a platoon. To that end, we refine the instantiation of previous
work [17] with a new controller responsible for the spatial aspects of traffic, which
in turn is inspired by previous work of one of the authors [14]. Generally, our
system consists of several controllers, which constrain the possible behaviour of
the vehicles on the road. This implies that the behaviour of the parallel product
of two components is a subset of the behaviour of each component. To show
the correctness of our refinement, we prove a set of proof obligations including
deadlock freedom and invariant preservation. We also show that the properties
of autonomous vehicle platooning presented in [17] hold after the refinement
step. Figure 3 shows both the original and refined architecture modelling an
individual vehicle within a platoon. The centre of the architecture consists of the
agent program, which makes autonomous decisions for the vehicle and may both
communicate with other agents via some communication channel, and with both
a continuous controller and an environment (cf. Fig. 3a). A main feature of our
approach is a translation of the different components into simpler abstractions
for verification purposes. That is, to verify the agent program, we can abstract
from the timing aspects of the continuous controller. Thus we gain a simple
(finite-state) untimed automaton as the abstraction of the continuous behaviour.
Similarly, we can reduce the agent program to the few parts necessary for the
communication with the continuous controller for the verification of the latter. In
both cases, the state space is reduced significantly, making verification feasible,
in the case of the agent program by using AJPF [10] and in the case of the
continuous controller by using UPPAAL [4].

Agent
Program

Vehicle Control
and Environment

Comm.Comm.

(a)

Agent
Program

Environment

Continuous
Controller

Spatial
Controller

Comm.Comm.

(b)

Fig. 3. Original and refined architecture

3.1 Agent

The BDI agent program in our architecture is written in Gwendolen [9], a
prolog-style programming language that incorporates explicit representation of
goals, beliefs, and plans. AJPF is a model checker that accepts Gwendolen code

24 M. Kamali et al.

as an input model. It allows for the specification and verification of agent prop-
erties with respect to beliefs and intentions. Since the general interface between
the underlying vehicle implementation and the agent is similar to [17], we could
re-use that agent program with only minor changes. We distinguish between two
agent programs: the leader, which manages all joining and leaving requests of
vehicles within, or outside, the platoon, and the follower, which defines the func-
tionality of vehicles within the platoon. We did not need to change the structure
of the leader protocol, which is why we subsequently concentrate on the follower.
The follower implements interactions for four main features:

1. joining a platoon;
2. leaving a platoon;
3. switching the steering control between manual and automatic; and
4. setting a new distance to the front vehicle.

A vehicle intending to join to a platoon initially sends a joining request to
the leader and waits for confirmation from the leader. When it receives the
confirmation, it instructs the vehicle to change lane and waits for the vehicle
to send back a successful confirmation of changing lane. After receiving the
confirmation the follower switches its speed controller to automatic. When the
joining vehicle is close enough to the preceding follower within the platoon the
agent instructs the vehicle to switch the steering controller to automatic. Finally,
the joining vehicle confirms the procedure to the leader. When the joining vehicle
receives a reply back from the leader, it deduces that the joining goal has been
achieved. Leaving a platoon follows a similar protocol, except that the steering
and speed control are switched to manual after the vehicle left the platoon.

3.2 Continuous Controller

In the original architecture, we combined the continuous controller and its envi-
ronment into one entity. For example, we did not distinguish between interactions
of the agent with the actuators of the autonomous system and interactions with
the human driver. In both cases, the main feature of the interaction we were
concerned with was the time taken for the controller or environment to react.

As shown in Fig. 3b, we now refine the continuous controller and the envi-
ronment into three sub-components. We introduce two controllers, one referring
to the timing aspects and the continuous behaviour of the vehicle, and the other
specifically to control actuations with respect to space.

A part of the continuous controller automaton that has changed in our refine-
ment step is shown in Fig. 4. In particular, the refinement extends the previous
environment with a model of potential collision, which will be defined in the sub-
sequent section. It removes the nondeterministic failure of changing lane from the
continuous controller that implicitly modelled the existence of such a potential
collision. In the figure, this failure was defined by the transition with the equal-
ity timer == CH L T + CH L B , defining that the controller silently assumes
a failure, if the lane-changing manoeuvre takes more longer than the worst-
case expectance. The synchronisation channels are changed from changing lane

Modular Verification of Vehicle Platooning 25

to phy changing lane since the refined continuous controller is synchronised with
the spatial controller, while previously, it was synchronised with the agent.

Fig. 4. Abstract and refined continuous controller automata

3.3 Introducing Space

In this section, we present an instantiation of the spatial controller, as well as
the translation into timed and untimed automata for verification purposes. To
that end, we formalise the ideas presented in Sect. 2 on the spatial model for
platooning. We will not go into the details, but refer to previous work [14,21].

Recall that we distinguish between two types of space a car may need to
reason about: its reservation, which should never overlap with the reservation
of any other car, and its claim, which is similar to setting the turn signals. The
intuitive idea of the controller is as follows. Whenever a change to a lane m
is requested, the controller first claims the space on m it would occupy, if it
was already driving there. Then it checks, whether this space overlaps with the
reservation of any other car. If so, it removes its claim and aborts the manoeuvre.
Otherwise, it changes the claim to a reservation and notifies the continuous
controller to initiate the lateral lane change. After it receives an acknowledgment
that the lane has been changed, it shrinks its reservation to only reside on m.

Formally, we fix a set of lanes L = {1, . . . , n} and for simplicity assume the
motorway to be infinitely long. The dimension in the direction of the motorway,
called the extension, is thus modelled by the real numbers R. At any point in
time, each vehicle c is then spatially characterised by its position pos(c) ∈ R, its
physical size ps(c) ∈ R, its braking distance, i.e., the distance it needs to come
to a standstill bd(c) ∈ R, as well as the lanes it reserves res(c) ⊆ L and claims
clm(c) ⊆ L. These sets of lanes are subject to certain conditions (e.g., the set of
claims has to be a singleton, etc.), which we will not expand upon. Each vehicle
c can also perform certain actions, in particular

c(c, n): create a claim on lane n
r(c): change an existing claim into a reservation
wdc(c): remove/withdraw an existing claim
wdr(c, n): shrink its reservation to only be on lane n

26 M. Kamali et al.

We restrict the possible transitions such that after each transition a minimal
amount of time greater than zero has to pass. This constraint enforces the per-
manency of spatial changes on the road, and thus prohibits zeno-behaviour in
the form of infinite sequences of spatial changes during a finite amount of time.
Subsequently, we will refer to this model of space as R.

x ≤ tdl

C

x ≤ tlc

change lane join?
/c(ego, n ± 1)

l := n ± 1;x := 0
change lane leave?

/c(ego, n ± 1)
l := n ± 1;x := 0

x > 0
abort!/wdc(ego)

0 < x < tdl;¬∃c : pc(c, ego)
phys changing lane!/r(ego)

phys changed lane?
x > 0

changed lane!

/wdr(ego, l)
n := l

Fig. 5. Spatial controller for joining and leaving a platoon (tdl < tlc)

Using these abstract definitions as the semantics, we defined a dedicated
specification logic [14]. However, in this work we will not require the full logic,
and hence we only explain the necessary details. We employ two spatial atoms
re(c) and cl(c), which denote that a part of a lane is fully occupied by the
reservation (claim, respectively) of c. Furthermore, we use a single modality
somewhere 〈ϕ〉, which denotes that the formula ϕ holds somewhere on the space
under consideration. With these specific definitions, and standard first-order
operators, we can express the following two formulas.

cc ≡ ¬∃c : c �= ego ∧ 〈re(ego) ∧ re(c)〉
pc(c, ego) ≡ c �= ego ∧ 〈cl(ego) ∧ (re(c) ∨ cl(c))〉

Formula cc denotes the existence of a vehicle c whose reservation overlaps with
the reservation of ego, which would amount to an unsafe situation. We term such
situations as collisions. Formula pc(c, ego) denotes that the claim of ego overlaps
with the claim of c or its reservation. This may result in an unsafe situation, if
ego changed its claim into a reservation. Hence, pc(c, ego) allows us to identify
potentially unsafe situations.

To model the spatial behaviour of a vehicle joining or leaving the platoon,
we will use a type-amended timed automata called automotive-controlling timed
automata (ACTA) [15]. These augment timed automata with the possibility
to use spatial formulas as guards and invariants, as well as to use the spatial
actions described above at the transitions. Figure 5 shows the controller in terms
of an ACTA, where ego refers to the vehicle the controller is implemented in.

Modular Verification of Vehicle Platooning 27

The actions change lane join, change lane leave, changed lane, and abort are used
to communicate with the decision making agent. The first two actions initiate
the corresponding manoeuvre, while the spatial controller uses changed lane and
abort to indicate a successful and unsuccessful lane-change manoeuvre, respec-
tively. The channel phys changed lane is a communication link with the contin-
uous controller, indicating that steering onto the new lane was successful.

For the verification of the other components, we need to provide abstractions
from this ACTA into both an untimed, and a standard timed automaton. To
abstract from both the timing and spatial definitions, we only keep the discrete
actions, maintaining the order of actions. In this way, we create a simple finite
automaton which serves as the abstraction of the spatial controller that can be
used during the verification of the agent programs. The translation into timed
automata is slightly more involved. We employ a global set of identifiers for each
vehicle. In fact, this set was already used to identify the different vehicles by
parameterising the continuous controllers [17]. Hence, we replace each occurrence
of ego with the parameter id. Furthermore, we introduce a global array c of
Boolean values, where the identifiers serve as the indices, and each entry denotes
whether the corresponding vehicle currently possesses a claim. Whether a vehicle
is currently engaged in a lane-change manoeuvre and reserves two lanes at once,
is indicated by a variable r, which is local to each controller.

c[2] ∨ · · · ∨ c[max]

pc = 1; y = 0
y > 1

pc = 0

Fig. 6. Abstraction of spatial behaviour on the road

However, since claims and reservations are strongly tied together, we also
need to define an abstraction of the road’s behaviour. To that end, we use a very
simple abstraction: a potential collision can only happen, if at least one vehicle
currently holds a claim. Furthermore, a potential collision has to last a minimal
amount of time before it can be resolved. This is a result of the assumption on
the vehicles dynamics to be continuous and the necessary delays after the spatial
transitions. Note that a potential collision can happen due to two reasons: either
a spatial transition or the different velocities of two cars. In both cases, our
model and its assumptions ensure that the situation persists for a minimal, non-
zero, amount of time. We can formalise this with the following abstraction of the
road’s behaviour, as shown in Fig. 6. In this figure, y is a clock used to enforce
the timing behaviour and the minimal delay is arbitrarily chosen to be 1. The
timed abstraction of the spatial controller is as shown in Fig. 7.

Finally, we define how the agent program and the continuous controller can
be abstracted for the verification of the spatial properties. The specification
logic for the spatial properties does not contain modalities concerning timings

28 M. Kamali et al.

x ≤ tdl

wait

C

x ≤ tlc

change

change lane join?/c[id] = 1
x := 0

change lane leave?/c[id] = 1
x := 0

x > 0
abort!/c[id] = 0

0 < x < tdl;¬pc
phys changing lane!
c[id] = 0; r = 1

phys changed lane?
x > 0

changed lane!

/r = 0

Fig. 7. Timed abstraction of spatial controller of Fig. 5 (tdl < tlc)

or decisions of the agent. That is, spatial properties may not refer to either time
constraints or the internals of the agent. Hence, for spatial verification, we use
the untimed abstractions of both the continuous controller and of the agent.

Lemma 1. Let Ai, Vi and Si be the agent program, continuous controller and
spatial controller, respectively, of vehicle i, with i ∈ {1, 2}, and let Comm12 be
the component modelling the communication of vehicle 1 and 2. Let S′

i and A′
i be

corresponding abstractions (Fig. 7), R′ the abstraction of the road (Fig. 6), and
ϕt describe a time property. If A′

1‖V1‖S′
1‖Comms12‖A′

2‖V2‖S′
2‖R′ |= ϕt then

(A1‖V1‖S1‖Comms12‖A2‖V2‖S2‖R |= ϕt.

Proof (Sketch). The timing behaviour of Ai and A′
i is the same (cf. [17]). Fur-

thermore, the timing constraints on Si and S′
i are also the same. Now, after each

spatial transition, in the original Si, some time has to pass. In both Si and its
abstraction S′

i, every time a clock is reset the guards on the outgoing transitions
of the target state s require the automaton to stay in s for some time. Finally, if
the abstraction R flags a potential collision, then the original system possesses
a trace containing at least one claim for a vehicle. Let us assume this claim is
of vehicle 2. Then, all possible traces starting from this configuration are also
possible in the abstraction R. Hence, whenever we can prove that the abstraction
satisfies a timed formula ϕt, the original system also satisfies ϕt. �

Lemma 2. Let Ai, Vi and Si be the agent program, continuous controller and
spatial controller, respectively, of vehicle i, with i ∈ {1, 2}, and let Comm12
model the vehicles’ communication. Let A′

i and V ′
i be the abstractions without

references to spatial properties. Then, if A′
1‖V ′

1‖S1‖Comms12‖A′
2‖V ′

2‖S2‖R′ |=
ϕs then A1‖V1‖S1‖Comms12‖A2‖V2‖S2‖R |= ϕs.

Proof (Sketch). This holds since the abstractions A′
i and V ′

i allow for more
behaviour than the original automata. Furthermore, spatial properties may nei-
ther refer to internals of the agent program, nor to time aspects of the system.

�

Modular Verification of Vehicle Platooning 29

4 Verification of Vehicle Platooning

In this section, we explain the verification approach built on the methodology
presented in Sect. 3.4 On one hand, we did not have to re-run most of our verifica-
tion methods from our previous work, particularly running AJPF, since we only
refined non-agent parts of the system. In particular, we used the same topology,
a chain of communicating entities, and similar numbers of vehicles. On the other
hand, we needed to show that the refinement step was valid by proving proof
obligations. In the following, we first identify a set of proof obligations that we
proved to verify our refinement step. We then denote the spatial properties that
we checked for our concrete vehicle platooning. We point out those parts of the
system that remained unchanged and not re-verified. Finally, we prove that the
spatial controller is a safe fragment of the space model in [14].

4.1 Proof Obligations

The refinement step allows us to introduce more details about the spatial prop-
erties of vehicle platooning. However, we need to ensure that the new details do
not violate the system invariants, and do not introduce deadlocks. This needs to
be checked for both verification of agent and timing behaviours. The untimed
abstraction of the spatial controller only allows the same set of sequences of
interactions with the agent. This means that we did not change the structure
of the agent programs themselves; neither the leader nor the follower, i.e., the
refinement step is correct wrt. agent behaviour. For the correctness of our refine-
ment step wrt. temporal behaviour, we check four main proof obligations, shown
in Table 1. The first three obligations are verified using UPPAAL, followed by a
discussion of the correctness of the fourth obligation. We instantiated the agent
timed automata, spatial, and continuous controllers for a platoon of four vehi-
cles and one leader. We choose an arbitrary vehicle, for example vehicle 2, to
denote our proof obligations and properties of interest, and described these with
respect to this vehicle.5 Note that a2 and s2 denote the follower agent program
and lane-change controller implemented in vehicle 2, respectively.

We first ensured that our refinement step was not too restrictive by verifying
deadlock freedom. The second proof obligation ensures that adding the spatial
controller does not decrease the functionality of the platooning, and we checked
whether joining and leaving procedures can occur. In the previous Uppaal model,
we assumed that change lane could happen in 20 ± CH L B where CH L B
was reflecting the uncertainty of the changing lane. In our refinement, the lower
bound remains the same, however, the upper bound splits to two waiting times
for free space tdl (cf. Fig. 5) and the uncertainty of the changing lane (CH L B−
tdl). Therefore, we could show that the time bound of joining and leaving are
preserved (The third proof obligation in Table 1).
4 The model and the verified properties can be found at https://github.com/

VerifiableAutonomy/AgentPlatooning.
5 Since all following vehicles are defined similarly, this choice does not affect the veri-

fication.

https://github.com/VerifiableAutonomy/AgentPlatooning
https://github.com/VerifiableAutonomy/AgentPlatooning

30 M. Kamali et al.

Table 1. Proof obligations, with formalisation in timed temporal logic7

Deadlock freedom A� not deadlock

Possible to join and leave E♦ a2.join completed

E♦ a2.leave completed

Time bound for joining and leaving A� a2.join completed imply

(a2.process time >= 50 ∧ a2.process time < 90)

A� a2.leave completed imply

(a2.process time >= 30 ∧ a2.process time < 50)

No new communication transaction Changes were restricted to continuous and
spatial controllers

We defined two new channels between the spatial and continuous controller,
phy changing lane and phy changed lane. As these channels are not used in other
parts of the system, we can guarantee that no new communication transition is
added. In addition, we showed that our model does not inhibit zeno-behaviour.
While most of the automata are not strongly non-zeno [28], their parallel product
can be shown to be free of zeno-runs by checking it with ZenoTool [26].

4.2 Spatial Properties of Vehicle Platooning

We can verify that if a vehicle requested a lane-change, i.e., the spatial controller
reaches the wait state (cf. Fig. 7), and still perceives a potential collision after
the waiting time tdl, then the manoeuvre in the agent program will fail.

(s2.wait ∧ pc ∧ s2.x == tld) −→ (a2.failed to join ∨ a2.failed to leave)

In this formula −→ denotes the “leads-to” operator of UPPAAL. Observe that we
cannot identify whether the join manoeuvre or the leave manoeuvre failed, since
the spatial controller acts similarly for both manoeuvres. However, identification
of the manoeuvre can be easily implemented by adding a flag to the spatial
controller. We can also show that, whenever the spatial controller chooses that
a lane-change can be safely initiated, it does not perceive a potential collision
on the road, and as long as it stays in this state, no potential collision can arise.

A�¬(s2.change ∧ pc)

This property shows that the space on the road as formalised in Fig. 6 is “well-
behaved”, since a potential collision can only happen, if a vehicle possesses a
claim. However, if the controller of vehicle 2 is in state change, it already changed
its claim to a new reservation. The time needed to verify these properties was
similar to the time needed for the proof obligations. Details about time and space
requirements to check deadlock freedom of the system are presented in Table 2.
Since proving deadlock freedom requires a full exploration of the state space, the
figure shows the worst-case requirements of our approach. In fact, the time and
space necessary for the verification of the other properties was lower. We used

Modular Verification of Vehicle Platooning 31

a computer equipped with a 3.4 GHz Intel Core i5 CPU and 8 GB of memory,
running UPPAAL on Mac OS. We conducted experiments for a platoon of four,
five and six vehicles and compared to our previous analysis, lacking the spatial
controller. The experiments with even six vehicles are feasible with a standard
desktop machine, but require much more time and memory.

Table 2. Experimental statistics

Number of vehicles 4 5 6

Computation time (s) Original model 0.58 4.6 43.9

Extended model 3.7 57.4 885.7

Memory usage (MB) Original model 11.5 46.3 349

Extended model 34.8 402 4378

4.3 Spatial Safety Property

The main property that the spatial controller must ensure is that the space used
by two different vehicles is disjoint. That is, it has to ensure that the formula
cc as shown in Sect. 3.3 is an invariant of the system. To that end, we re-use a
verification result [21] of a more general controller specification. Safety in this
work means that ∀e : safe(e) is a global invariant, where safe(e) is defined by

safe(e) ≡ �¬∃c : c �= e ∧ 〈re(e) ∧ re(c)〉 .

The modality � quantifies over arbitrary transition sequences, but does not allow
us to specify timing constraints. Then, the formula states that car e drives safely
at all times: there is never a car c different from e, such that the reservations of e
and c overlap. To prove this property to be invariant, we need two assumptions:

1. All vehicles keep their distance to the vehicles in their front and back.
2. All vehicles adhere to a certain protocol for changing lanes with respect to

the platoon under consideration.

We do not elaborate on the first assumption. However, the second is that, the
vehicle must not mutate its claim into a reservation, in case of a potential col-
lision during the phase where a claim is held. Formally, we have the following
constraint, where �r(d) quantifies over the transition where the vehicle d changes
its claim into a reservation and c ranges only over the vehicles within the platoon.

LC ≡ ∀d : ∃c : pc(c, d) → �r(d)⊥
For simplicity, assume that the platoon under consideration consists of two vehi-
cles as in Sect. 3. That is, the platoon P consists of the following components.

P ≡ A1‖V1‖S1‖Comms12‖A2‖V2‖S2‖R

32 M. Kamali et al.

Now, let �S1� and �S2� be the possible behaviours allowed by the controllers S1

and S2 as presented in Sect. 3.3. Since the only transition to change a claim into
a reservation is guarded by the potential collision check, we have for i ∈ {1, 2},

�Si� ∩ {tr | tr |= ∃c : pc(c, i) ∧ ♦r(i)�} = ∅
Since the behaviour of the parallel product of S1 and S2 is a subset of both �S1�
and �S2�, we get

�S1‖S2� ∩ {tr | tr |= ∃c : pc(c, i) ∧ ♦r(i)�} = ∅.

The other controllers only further restrict the possible behaviour. Hence

�P � ∩ {tr | tr |= ∃c : pc(c, i) ∧ ♦r(i)�} = ∅.

Due to our assumption on the behaviour of all other vehicles, we can infer that
�P � does not contain any traces where other vehicles create a reservation during
a potential collision. Hence, we can strengthen this property even further.

�P � ∩ {tr | tr |= ∃c, d : pc(c, d) ∧ ♦r(d)�} = ∅,

which in particular implies �P � ⊆ S. This yields �P � |= LC, which has been
shown to ensure that P |= ∀e : �safe(e). Hence, our controller is a refinement of
the general case, which was shown to be safe.

5 Related Work

Lam and Katupitiya analysed platoons performing manoeuvres [19], where each
vehicle is an agent with an associated dynamical model. Manoeuvres like over-
taking a platoon are split into events, for example to change the lane, pass the
platoon and change back into the original lane. That is, their notion of an event
is a superset of the manoeuvres we considered. They simulated two platoons of
three vehicles each, performing such manoeuvres, and identified deadlock situa-
tions. However, it is not obvious whether more potential deadlocks exist.

Our approach of a hierarchical structure of a vehicle is similar to the work
of Hallé and Chaib-draa [13]. They split the model of a vehicle into three layers:
Traffic control, management and guidance. While the traffic control consists
of models or road-side infrastructure and further external components that we
do not model, the different parts of our hierarchy can be mapped onto parts
of the management and guidance layer. The management layer is split into a
coordination and a planning component. The latter directly corresponds to the
agent program of our approach. Within the guidance layer, they distinguish
between the sensing component and the vehicle control. While the continuous
controller is similar to the vehicle control, the spatial controller can be seen as a
part of the sensing component, since it interprets raw sensor data and compiles it
into more structured spatial properties. Hallé and Chaib-draa used their model to
analyse the communication necessary for successful split and merge manoeuvres

Modular Verification of Vehicle Platooning 33

of platoons, which are similar to the leaving and joining manoeuvres of our
work. However, their emphasis lies on the analysis of inter-vehicle distances with
respect to different coordination strategies, while we focus on safety.

Müller et al. presented a technique to verify safety of hybrid systems [23]
based on the identification of components. In their approach, they need to define
and verify contracts for the behaviour of each component, which may simply
assumed to be true during the verification of other components. In this manner,
they can reduce the verification task for each component. Their systems need
to be defined within a single formalism, differential dynamic logic [24], and are
verified with the distinguished tool KeymaeraX [11]. In contrast, we can rather
easily incorporate new formalisms into our approach, as evidenced by the intro-
duction of the lane-change controller and the necessary spatial formalism. This
is due to the minimised interaction between our controllers. In this way, we may
use the verification techniques suitable for the corresponding subsystems, as long
as we have a sensible abstraction and refinement results for each system.

Rashid et al. have presented an approach to formally verify controller strate-
gies for platoons [25]. Their work differs from ours in several ways. While we
abstract in our verification from the differential equations that make up the
continuous behaviour, they explicitly model the connections between, for exam-
ple, distance and velocity. Furthermore, they distinguish between autonomous
controllers that only use inputs from the sensors of the vehicle they are imple-
mented in, and non-autonomous controllers, which may use information from
other vehicles via inter-vehicle communication. They verify the controllers with
a theorem prover, while we use a combination of model-checking and theorem
proving.

Within the context of unmanned aircraft systems, the ICAROUS architec-
ture [3] provides a distinction of formally verified algorithms into separate mod-
ules: monitors, resolvers, mission applications and a decision making layer. The
first three component types are responsible for receiving information, solving a
potentially dangerous situation, and application specific algorithms, while the
latter chooses the algorithms to run. This distinction has some similarities with
our approach, namely the dedicated decision making component, but is not an
exact match. For one, the decision making component of ICAROUS is imple-
mented as finite automata, while we use a rational agent to allow for justified
decisions. Furthermore, our low-level components incorporate functionality of
monitors, resolvers and mission applications.

6 Concluding Remarks

We presented a verification technique for autonomous systems based on a hybrid
agent architecture. The decomposition inherent in this architecture allows us
to define different system aspects within different formalisms, tied together by
the communication structure of the system and its timing constraints. For each
formalisms we defined an abstraction compatible with the other formalisms. In
this way, we can concentrate on each aspect in turn during verification, reducing
the state space, and allowing us to use different techniques for each aspect.

34 M. Kamali et al.

Decomposition techniques often isolate the single components and replace the
interaction with other components by assumptions, which are then shown to be
guaranteed [22]. In contrast, in each step of the verification, we keep the general
structure of the overall system. That is, we do not really decompose the system,
but abstract from different parts. This eliminates the need to infer the behaviour
of the single components, e.g., in the form of guarantees. Of course, this also
means that large parts of the state space are retained during verification, in
comparison to techniques which replace other components with their guarantees.
However, we have shown that our approach is both feasible for autonomous
systems, as well as that it scales well if new aspects are to be verified.

As future work, we have some clear extensions. For one, we intend formalise
the additional manoeuvres necessary for a full working platoon [16]. This would
of course increase the state space further, increasing the need for more abstrac-
tion techniques. It would be interesting to investigate, whether the models for
different manoeuvres can be verified on their own, such that the safety of the
combined system still follows. This would be orthogonal to the technique pre-
sented in this paper, and as such, would avoid further increases in the state space.
Furthermore, since we only verified safety properties, we accept system imple-
mentations allowing for the starvation of vehicles intending to join a platoon.
Hence, an analysis of liveness properties is a natural extension.

We assume that all vehicles adhere to the given protocol, that is, no malicious
participants inhibit the execution of a manoeuvre. As a safety-critical system, a
vehicle platoon has to be resilient against such threats as well. For example, it is
necessary that the vehicle sending the joining request is actually the vehicle for
which the platoon checks that necessary space is available. That is, we need to
authenticate the identity of vehicles during a manoeuvre. This shows the need
for verification techniques of security protocols in our approach [8].

References

1. Aitken, J., et al.: Autonomous nuclear waste management. Intell. Syst. (2018).
https://doi.org/10.1109/MIS.2018.111144814

2. Amoozadeh, M., Deng, H., Chuah, C.N., Zhang, H.M., Ghosal, D.: Platoon man-
agement with cooperative adaptive cruise control enabled by vanet. Veh. Commun.
2(2), 110–123 (2015)

3. Balachandran, S., Muñoz, C., Consiglio, M., Feliú, M., Patel, A.: Independent con-
figurable architecture for reliable operation of unmanned systems with distributed
on-board services. In: Proceedings of the 37th Digital Avionics Systems Conference
(DASC 2018) (2018)

4. Behrmann, G., et al.: UPPAAL 4.0. In: Proceedings of International Conference
on Quantitative Evaluation of Systems, pp. 125–126 (2006)

5. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic.
Elsevier, New York (2006)

6. Burns, A.: How to verify a safe real-time system: the application of model checking
and timed automata to the production cell case study. Real-Time Syst. 24(2), 135–
151 (2003)

https://doi.org/10.1109/MIS.2018.111144814

Modular Verification of Vehicle Platooning 35

7. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

8. Cortier, V.: Verification of security protocols. In: Jones, N.D., Müller-Olm, M.
(eds.) VMCAI 2009. LNCS, vol. 5403, pp. 5–13. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-93900-9 5

9. Dennis, L.A., Farwer, B.: Gwendolen: a BDI language for verifiable agents. In:
Proceedings of AISB 2008 Symposium Logic and the Simulation of Interaction
and Reasoning, pp. 16–23 (2008)

10. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)

11. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

12. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal
Logics: Theory and Applications. Elsevier, New York (2003)

13. Hallé, S., Chaib-draa, B.: Collaborative driving system using teamwork for platoon
formations. In: Applications of Agent Technology in Traffic and Transportation,
pp. 133–151. Birkhäuser, Basel (2005)

14. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24559-6 28

15. Hilscher, M., Schwammberger, M.: An abstract model for proving safety of
autonomous urban traffic. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS,
vol. 9965, pp. 274–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46750-4 16

16. Hsu, A., Eskafi, F., Sachs, S., Varaija, P.: Protocol design for an automated highway
system. Discret. Event Dyn. Syst. 2(1), 183–206 (1994)

17. Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal verification
of autonomous vehicle platooning. Sci. Comput. Program. 148, 88–106 (2017)

18. Konur, S., Fisher, M., Schewe, S.: Combined model checking for temporal, proba-
bilistic, and real-time logics. Theor. Comput. Sci. 503, 61–88 (2013)

19. Lam, S., Katupitiya, J.: Cooperative autonomous platoon maneuvers on highways.
In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics, pp. 1152–1157 (2013)

20. Lincoln, N., Veres, S.M., Dennis, L.A., Fisher, M., Lisitsa, A.: An agent based
framework for adaptive control and decision making of autonomous vehicles. In:
Proceedings of IFAC Workshop on Adaptation and Learning in Control and Signal
Processing (ALCOSP) (2010)

21. Linker, S.: Spatial reasoning about motorway traffic safety with Isabelle/HOL.
In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 34–49.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1 3

22. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Softw. Eng.
SE–7(4), 417–426 (1981)

23. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: A
component-based approach to hybrid systems safety verification. In: Ábrahám,
E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 441–456. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33693-0 28

https://doi.org/10.1007/978-3-540-93900-9_5
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-319-46750-4_16
https://doi.org/10.1007/978-3-319-46750-4_16
https://doi.org/10.1007/978-3-319-66845-1_3
https://doi.org/10.1007/978-3-319-33693-0_28

36 M. Kamali et al.

24. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14509-
4

25. Rashid, A., Siddique, U., Hasan, O.: Formal verification of platoon control strate-
gies. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018. LNCS, vol. 10886, pp.
223–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92970-5 14

26. Rinast, J., Schupp, S.: Static detection of zeno runs in UPPAAL networks based
on synchronization matrices and two data-variable heuristics. In: Jurdziński, M.,
Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 220–235. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33365-1 16

27. Solyom, S., Coelingh, E.: Performance Limitations in vehicle platoon control. IEEE
Intell. Transp. Syst. Mag. 5(4), 112–120 (2013)

28. Tripakis, S.: Verifying progress in timed systems. In: Katoen, J.-P. (ed.) ARTS
1999. LNCS, vol. 1601, pp. 299–314. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48778-6 18

29. Wooldridge, M.J.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)

https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-319-92970-5_14
https://doi.org/10.1007/978-3-642-33365-1_16
https://doi.org/10.1007/3-540-48778-6_18
https://doi.org/10.1007/3-540-48778-6_18

Synthesizing and Optimizing FDIR
Recovery Strategies from Fault Trees

Liana Mikaelyan1 , Sascha Müller1(B) , Andreas Gerndt1 ,
and Thomas Noll2

1 Software for Space Systems and Interactive Visualization,
DLR (German Aerospace Center), 38108 Braunschweig, Germany

{Liana.Mikaelyan,Sa.Mueller,Andreas.Gerndt}@dlr.de
2 Software Modeling and Verification Group, RWTH Aachen University,

52056 Aachen, Germany
Noll@cs.rwth-aachen.de

Abstract. Redundancy concepts are an integral part of the design
of space systems. Deciding when to activate which redundancy and
which component should be replaced can be a difficult task. In this
paper, we refine a methodology where recovery strategies are synthesized
from a model of non-deterministic dynamic fault trees. The synthesis is
performed by transforming non-deterministic dynamic fault trees into
Markov Automata. From the optimized scheduler, an optimal recovery
strategy can then be derived and represented by a model we call Recov-
ery Automaton. We discuss techniques on how this Recovery Automaton
can be further optimized to contain fewer states and transitions and show
the effectiveness of our approach on two case studies.

Keywords: FDIR · Fault Tree Analysis · Synthesis · Formal methods

1 Introduction

Reliability engineering is an important discipline in the design of any safety
critical system, in particular in the domain of aerospace systems and spacecraft.
No matter how well designed a system is, it still has to deal with the presence
of faults to some extent. Faults in this context can be events such as equipment
failure, wrong sensor readings, external interferences and many more. To raise
trust in handling system failures, reliability engineering tries to embed Failure
Detection, Isolation and Recovery (FDIR) concepts. These concepts are derived
using various tools and methodologies such as Fault Tree Analysis (FTA) [9].

FTA is a methodology commonly used in the industry for performing state-
of-the-art failure analysis [13]. The resulting Fault Trees (FT) describe how faults
propagate through components and subsystems of a system and eventually lead
to a top-level system failure. Graphical representations of these trees are intuitive
and easy to understand. On the one hand, FTs can be used to analyze the sys-
tem qualitatively in terms of fault combinations that lead to system failure. On
c© Springer Nature Switzerland AG 2019
C. Artho and P. C. Ölveczky (Eds.): FTSCS 2018, CCIS 1008, pp. 37–54, 2019.
https://doi.org/10.1007/978-3-030-12988-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12988-0_3&domain=pdf
http://orcid.org/0000-0002-2788-3777
http://orcid.org/0000-0002-1913-1719
http://orcid.org/0000-0002-0409-8573
http://orcid.org/0000-0002-1865-1798
https://doi.org/10.1007/978-3-030-12988-0_3

38 L. Mikaelyan et al.

the other hand, they also enable quantitative analysis of important computable
measures such as reliability. Dynamic Fault Trees (DFT) are an extension intro-
ducing temporal dependencies and new features to analyze redundancy concepts
known as spare management. However, there are challenges arising from non-
deterministic behavior of DFTs such as spare races. An example for such race
behavior can be seen in a system of two operative memories together with a pool
of two spare memories. If both operative memories fail at the same time it is
unclear which backup memory takes over the role of which operational one.

To overcome this shortcoming, a new methodology was presented in [11]. It
introduces a model of Non-deterministic Dynamic Fault Trees (NdDFT) as an
extension to DFTs. In contrast to the latter, the new NdDFT does not impose
a fixed, rigid order on the spares to be used. As next step, the methodology
foresees transforming this NdDFT model into a Markov Automaton (MA) which
is suitable for the computation of the aforementioned non-deterministic decisions
on spare activations. By optimizing the scheduling of the MA model in terms of
reliability of the system, a recovery strategy for the NdDFT can be synthesized.
This recovery strategy defines which spare has to be used in which failure state
of the system and can therefore guarantee an optimal reliability at all times.

The goal of the present paper is to refine the methodology presented in [11]
by further developing an automata model that formalizes the decision process
underlying a recovery strategy, a so-called Recovery Automaton (RA). We give
its formal definition and show how it can be minimized in order to obtain an
efficient implementation of recovery strategies for FDIR.

This paper is structured as follows. Section 2 of this paper summarizes
the related work relevant to the topic of FTs, MA and synthesis of recov-
ery strategies. Further background on the theory of FTs including their (non-
deterministic) dynamic variants is given in Sect. 3. Section 4 describes the process
of synthesizing recovery strategies from a given NdDFT as well as a model to
represent such strategies, which is further optimized in Sect. 5. Section 6 then
evaluates the technique on a use case example. Finally, the paper concludes in
Sect. 7 and provides some outlook to future work.

2 Related Work

The goal of FDIR lies in keeping a system in a stable and operational state, even
in the presence of faults. While some of the following steps may be omitted in
some cases, performing FDIR generally means applying the following procedural
approach [15]:

– Monitor the system to detect the occurrence of faults.
– Identify the fault and localize it within the system.
– Isolate the fault and prevent further propagation into other parts of the sys-

tem.
– Perform recovery actions to reconfigure the system and return it into a stable

state.

Synthesizing and Optimizing FDIR Recovery Strategies from Fault Trees 39

In order to derive how faults relate to each other and eventually lead to a
system wide failure, failure analysis techniques such as FTA can be employed.
One of the very basic types of FTs are Static Fault Trees (SFT). They employ
Boolean algebra to combine various different failure events by AND and OR
operations, often graphically represented as gates, until they sum up to the
overall system failure. The failure events are usually related to faulty components
of the system. Applying this methodology, statements such as “The system fails
if component A and component B fail” can be modeled and refined to arbitrary
levels of precision. The probability of the top-level failure after time t (reliability)
can be computed from a given DFT for example by transforming a DFT into a
Continuous-Time Markov Chain (CTMC) [5].

Markov Automata [6] are an extension to CTMCs. They are state-based tran-
sition systems with two types of transitions: They can contain continuous-time
transitions (also called Markovian transitions) that are labeled with rates, that
is, non-negative real values as well as immediate, non-deterministic transitions
labeled by actions. In the latter case, transitions have to be chosen by a so-called
scheduler. The computation of optimal schedulers for Markov Automata with
respect to various quantitative objectives, such as state reachability, is discussed
in [7].

Computing strategies for recovery purposes from a given fault model has been
researched in other contexts. In [1], a similar approach is taken for repairable
fault trees. The authors consider non-deterministic repair policies where the
repair order is not fixed. Optimal repair policies are then computed by converting
the repairable fault tree to a Markov decision process, a time-discrete version of
Markov Automata. However, the authors do not consider DFT models. In [4],
Dynamic Decision Networks (DDN) are employed and their inference capabilities
are exploited to create autonomous on-board FDIR systems for spacecraft that
can select reactive and preventive recovery actions during run-time. In [12], the
authors propose creating the DDN from an extension of the DFT model. Timed
Failure Propagation Graphs are used in [2] to synthesize FDIR components,
namely monitors for the purpose of fault detection and recovery plans for every
specified combination of fault and mode. Here, the recovery components are
created using a planning based approach on predefined actions.

3 Fault Trees

FTs are graphs consisting of two types of nodes respectively representing events
and gates. The root node, or top level event (TLE), usually represents the event
of a system failure whereas the leaves of the tree model the event of individual
components failing. The leaves are also called basic events (BE). They correspond
to a Boolean variable where false represents the initial state of no failure. The
variable is considered true in case of a failure event. We consider here only
the case of permanent failure, i.e. once a BE has failed, it remains in a failed
state for all future points in time. The branches of the trees are represented by
the gates performing operations on the events. FTs are directed acyclic graphs

40 L. Mikaelyan et al.

starting from the BEs pointing over the gates towards the system failure event.
In the following, basic events will be denoted by b1, b2, . . ., sets of basic events
by B1, B2, . . . and failure rates by λ1, λ2,

3.1 Static Fault Trees

Figure 1 shows the gates and events used in the SFT notation. SFTs use Boolean
operations represented by AND and OR gates. There also exist other gates such
as the k-VOTE gate, which propagates if at least k inputs have failed. Observe
that a 1-VOTE gate corresponds to an OR gate and a k-VOTE gate with k inputs
to an AND gate. Implementation wise, all gates can therefore be considered as
k-VOTE gates for some appropriate k. Some other extensions also introduce a
NOT gate. However, this allows the construction of fault trees where the TLE
can change from having failed to working again as new failures occur. These fault
trees are known as non-coherent fault trees and have been dismissed as being a
sign for modeling errors [14].

(a) BE

Non-Basic
Fault

(b) Non-basic event (c) OR (d) AND

k

(e) k-VOTE

Fig. 1. Gates and events in a Static Fault Tree

3.2 Dynamic Fault Trees

Many extensions have been proposed to the formalism of FTs [13] to increase
its expressiveness and enhance its features. A particular extension is the notion
of Dynamic Fault Trees (DFT). It introduces temporal understanding and new
features to analyze redundancy concepts known as spare management. In DFTs,
a node can be either failed, active (operational) or dormant (operational). A
node that is an unactivated spare is dormant. All other nodes are activated.
Together with this state, failure rates for failing actively and failing dormantly
can be defined for every BE.

(a) POR (b) PAND (c) SPARE (d) FDEP

Fig. 2. Standard dynamic gates

Figure 2 depicts the notation to extend SFTs to DFTs introducing new gates
POR, PAND, SPARE and FDEP. The PAND (priority AND) gate propagates

Synthesizing and Optimizing FDIR Recovery Strategies from Fault Trees 41

in case all inputs fail exactly in sequence from left to right. The POR (priority
OR) gate propagates in case the leftmost input occurs before all other inputs.

The SPARE gate is connected to a primary event and a set of spare events. It
propagates a failure if the primary input failed and all spares are either claimed
or failed themselves. The spare events can be shared with another SPARE gate,
therefore a spare can be claimed by either the one or the other SPARE gate.
But there may be no shared elements between the primary input and any spare.
The order in which such a spare is chosen is deterministic and defined at design
time by the reliability engineer.

The FDEP (functional dependency) has a trigger event on the left hand side
and any number of dependent events functionally dependent on the triggering
event. When the trigger event occurs, the dependent events are set to fail as
well. The output of an FDEP gate only indicates to which tree it belongs and
has no further semantical meaning.

In the following, we give an example to illustrate the DFT notation. Figure 3
shows a system consisting of two memory components which are covered by two
spare memories for failures. The two spares are shared among the two SPARE
gates. According to DFT semantics, Memory3 will be used before Memory4 in
case of a failure of Memory1 or Memory2. In addition, the system has two hot
redundant, always active power sources, Power1 and Power2. Both primaries
Memory1 and Memory2 are powered by Power1 and the redundancies Memory3
and Memory4 are powered by the second power source Power2. Using FDEPs,
the failure of a power source is propagated to the respective memory components.

System

SPARE2

Memory2

SPARE1

Memory1

b1 b2

Memory3

b3

Memory4

b4

Power1

b5

FDEP1

Power2

b6

FDEP2

Fig. 3. Example DFT

42 L. Mikaelyan et al.

In the figure, FDEP dependent events are marked by an arrow and dashed lines
indicate the parent of an FDEP.

3.3 Non-deterministic Dynamic Fault Trees

As described before, DFTs require spares to be activated in a fixed and rigid
order. This order cannot be adapted depending on faults that have previously
occurred. Additionally, in cases of spare races it is not semantically clear which
SPARE gate claims the actual redundancy. To relax on this semantical restric-
tion of the DFT model, [11] introduces an inherently non-deterministic DFT
model (NdDFT, following the naming in [1]). The syntax and notation of the
NdDFT is completely adopted from the DFT. Semantically, the NdDFT drops
the requirement that spares are always activated from left to right. Moreover,
the new non-deterministic semantics allows for a SPARE gate to leave the spares
available for more important SPARE gates by not claiming. Whenever BEs occur
in an NdDFT, the new semantics allow to perform valid recovery actions of the
following form:

Definition 1 (Recovery Action). A recovery action r in an NdDFT T is an
action of the form

– [] (empty action) or
– CLAIM (G,S) (spare gate G claims spare S, where S is a spare of G).

We denote the set of all recovery actions possible in an NdDFT T by R(T)
and the set of recovery action sequences by RS (T) := (R(T) \ {[]})∗. Similarly
we denote the set of all non-empty subsets of basic events by BES (T).

4 Synthesizing Recovery Strategies

Here we describe the essential steps; details can be found in [11]. First, the
NdDFT model is transformed into a Markov Automaton (MA) that represents
all possible (non-deterministic) decisions on spare activations. By optimizing
the scheduling of the MA model in terms of reliability of the system, a recovery
strategy for the NdDFT can be synthesized. This strategy is represented by a
Recovery Automaton (RA) that defines which spare has to be used in which
failure state of the system and can therefore guarantee an optimal reliability at
all times. The latter can be computed by a quantitative analysis of the Markov
Chain that is obtained from the RA, enriched by the failure rates of basic events
as determined by the original NdDFT. Figure 4 visualizes the procedure.

Synthesizing and Optimizing FDIR Recovery Strategies from Fault Trees 43

NdDFT Markov Automaton Recovery Automaton

Markov Chain Reliability Measures

Fig. 4. Transformation road map

4.1 Recovery Strategies and Automata

In the NdDFT, the actual recovery action r that is applied is defined by a
given recovery strategy. In the following, transitions of Recovery Automata are
labeled by recovery action sequences. Given the observed basic events, a recovery
strategy is then a mapping that returns the recovery action sequence that should
be taken accordingly. The NdDFT considers recovery strategies that only have
recovery actions as given in Definition 1. They are defined as follows:

Definition 2 (Recovery Strategy). A recovery strategy for an NdDFT T is
a mapping Recovery : BES (T)∗ → RS (T)∗ such that

– Recovery(ε) = ε and
– Recovery(B1, . . . , Bn) = Recovery(B1, . . . , Bn−1), rsn with rsn ∈ RS (T).

As each basic event can occur at most once, the recovery strategy only needs
to be defined for pairwise disjoint sets of basic events, i.e., Bi ∩Bj = ∅ for i �= j.
A finite automaton that represents a recovery strategy will be called Recovery
Automaton.

Definition 3 (Recovery Automaton). A Recovery Automaton (RA) RT =
(Q, δ, q0) of an NdDFT T is an automaton where

– Q is a finite set of states,
– q0 ∈ Q is an initial state, and
– δ : Q×BES (T) → Q×RS (T) is a deterministic transition function that maps

the current state and an observed set of faults to the successor state and a
recovery action sequence.

The recovery strategy induced by a Recovery Automaton R is denoted by
RecoveryR. An example of a Recovery Automaton for a simple Fault Tree con-
sisting of a SPARE gate with a cold redundant spare is given in Fig. 5.

4.2 Non-deterministic Dynamic Fault Trees to Markov Automata

Transforming an NdDFT to a Markov Automaton can be done by adapting
traditional algorithms for transforming DFTs to CTMCs. As base algorithm, we
use the one given in [5]. The adapted algorithm operates by memorizing two
sets of data in every of its states: First, the history of occurred basic event sets

44 L. Mikaelyan et al.

SPARE

RedundancyPrimary

b1 b2

(a) NdDFT

q0start q1
{b1} : CLAIM (SPARE,Redundancy)

(b) Recovery Automaton

Fig. 5. Example of (a) NdDFT and (b) RA

(B1, B2, . . . , Bn). Second, a mapping from spare gates to the currently claimed
spare. The initial, empty history of the algorithm is denoted by (). Starting with
this initial state, all active basic events, i.e. those that are not associated to an
unactivated spare, are used to compute Markovian successors for each of them
while extending the history accordingly.

The respective basic event set is obtained by taking the active basic event
and computing all basic events that transitively fail due to FDEPs. The transi-
tions are labeled with the respective failure rate of the basic event causing the
transition. All transitions that would lead to a state that implies that the top-
level event (system failure) has occurred, are connected to a special FAIL state
instead. For each target state of a Markovian transition, the algorithm generates
successors using non-deterministic transitions. Each non-deterministic transition
is labeled by a valid recovery action.

4.3 Synthesizing Recovery Automata from Markov Automata

Using existing techniques for optimizing the scheduling of a Markov Automaton,
the optimal non-deterministic transitions for maximizing the system reliability
can be computed. The Recovery Automaton model is then used to represent the
underlying decision process of the scheduler.

Extracting a Recovery Automaton from a scheduler for a Markov Automa-
ton is achieved by replacing sequences of transitions for states s0, s1, . . . , sn
of the form (s0, B : λ, s1), (s1, r1, s2), . . . , (sn−1, rn, sn), where B is a basic
event set, λ a failure rate and r1, . . . , rn recovery actions, by the transition
δ(s0, B) = (sn, r1 . . . rn) where empty recovery actions are ignored. This applies
to all transitions where s1, . . . , sn are the successors computed by the optimized
schedule of the Markov Automaton. All other non-deterministic transitions are
then discarded. Finally, the algorithm discards all unreachable states.

5 Further Optimization of Recovery Automata

Complex systems usually exhibit a large number of faults that may occur. This
means that NdDFTs describing such systems may be very large and correspond-
ingly synthesized Recovery Automata may contain redundant states. In this

Synthesizing and Optimizing FDIR Recovery Strategies from Fault Trees 45

section, we refine the given synthesis procedure by discussing some techniques
for reducing the state space and the transition count of a synthesized Recov-
ery Automaton. This leads to the task of finding an automaton with the same
“behavior” that contains a smaller number of states. To capture this notion
of having the same behavior, we introduce the concept of recovery equivalence
between Recovery Automata as follows:

Definition 4 (RA Recovery Equivalence). Let R1 = (Q1, δ1, q01) and R2 =
(Q2, δ2, q02) be two RAs. We define a binary relation ≈R such that it holds true
for any two RA that R1 ≈R R2 iff for any sequence of sets of basic events
B1, . . . , Bn with Bi ∩ Bj = ∅ for any i �= j it holds that:

RecoveryR1
(B1, . . . , Bn) = RecoveryR2

(B1, . . . , Bn)

Given a Recovery Automaton as an input, the task of minimization involves
obtaining an equivalent recovery automaton with as few states as possible. The
standard problem of automata minimization is well-known and has been studied
extensively. In this work, we apply the usual definition of trace equivalence and
lift it to states of Recovery Automata:

Definition 5 (Trace Equivalence). Let RT = (Q, δ, q0) be an RA. A trace
equivalence ≈ ⊆ Q × Q is a maximal, binary relation such that it holds for any
states q1, q2 ∈ Q that q1 ≈ q2 iff for any B ∈ BES (T) it holds that:

δ(q1, B) = (q′
1, rs1) and δ(q2, B) = (q′

2, rs2) with q′
1 ≈ q′

2 and rs1 = rs2

Equivalent states in automata can be computed using the Partition Refine-
ment algorithm [8] and then a minimized automaton can be obtained by merging
all equivalent states. In the setting of Recovery Automata, we can go even further
and merge pairs of states that are not trace equivalent as long as the behavior
of the automaton does not change. A simple example for a case where merging
non-equivalent states yields a Recovery Automaton that induces an equivalent
recovery strategy, can be seen in Fig. 6.

q0start q1
B : r

B : ε

q0start

B : r

Fig. 6. (a) Initial RA; (b) minimized RA

In the following we present the main contribution of this work: Rules that
allow to merge states that are not trace-equivalent, yet yield implementations
of equivalent recovery strategies. We identified two cases where merging non-
equivalent states does not change the induced recovery strategy.

46 L. Mikaelyan et al.

– Case 1: Merging Orthogonal States.
– Case 2: Merging the FAIL state to Predecessors.

In both cases, the key to minimization that we exploit, is the fact that the
inputs of the automaton are produced by an FT. Hence, basic events can only
occur at most once. This leads to the effect that certain traces in the RA are
not valid inputs for the correspondingly induced recovery strategy. Therefore it
gives us additional freedom for merging states that do would not be allowed to
be merged in a standard automaton model.

5.1 Merging Orthogonal States

In the first rule, the idea is to identify states that may have transitions with dis-
agreeing outputs, but where we can guarantee for certain that those transitions
can never be taken, as their necessary inputs can no longer be produced. As men-
tioned before, the key to this idea lies in the exploitation of the property that
basic events can only occur at most once in an FT. This gives us the following
observation: If a basic event occurs on every path leading to a state in an RA,
then it is guaranteed that in the future no transition listing this basic event in its
guards can be taken. Note that Recovery Automata are deterministic automata,
meaning that unlike non-deterministic automata they always have a transition
defined for every possible input. Figure 7 abstractly illustrates the application of
this merging rule.

q1

q2

B2 : x2

B1 : x1

B1 : y1

B2 : y2

B2 : y2

B1 : y1

q12

B2 : x2

B1 : x1

B2 : y2

B1 : y1

Fig. 7. (a) Initial RA; (b) RA after merging states q1 and q2

For the purpose of formalizing the intuitively given notion, we now introduce
the concept of orthogonal states. To capture the basic event sets that can no
longer be produced by an FT upon having reached a state in the RA, we define
the set of guaranteed inputs of a state q as a function GI : Q → Q with:

GI (q) := {B ∈ BES (T) |for all paths q0B0 : rs0 . . . qn−1Bn−1 : rsn−1q

∃i : Bi ∩ B �= ∅}

Synthesizing and Optimizing FDIR Recovery Strategies from Fault Trees 47

In order to compute the set of guaranteed inputs, we apply the work list algo-
rithm [10] using the following transfer functions:

GI (q0) := ∅
GI (q) :=

⋂

(p,B)∈pred(q)

GI (p) ∪ {B}

With pred(q) := {(p,B) | δ(p,B) = (q, rs) for some rs, p �= q} denoting the set
of predecessor transitions of a state q. Having setup these preliminary definitions,
the concept of orthogonality between states can now be formalized with the
following definition:

Definition 6 (Orthogonal States). Let RT = (Q, δ, q0) be an RA. Let further
p, q ∈ Q be two non-initial distinct states and B ∈ BES (T). Then p, q are
orthogonal with respect to B iff

B ∈ GI (p) ∪ GI (q)

q0start

q1

q2

q3

B2 : r2

B1 : r1

B2 : ε

B1 : r1

B1 : ε

B2 : r2

q0start q1 q3

B2 : r2

B1 : r1

B2 : r2

B1 : r1

Fig. 8. (a) Initial RA R1; (b) RA R2 after merging states q1 and q2

To illustrate the definition of orthogonality, we consider as an example the
Recovery Automaton depicted in Fig. 8. The RA we consider there reacts to two
distinct basic event sets B1 and B2 and performs a corresponding recovery action
r1 or r2 accordingly. An NdDFT that would produce such an RA would be for
example a system consisting of two parallel spare gates running independently
from each other, e.g. spare gates with no shared spare. For the guaranteed inputs
we have:

– GI (q0) = ∅,
– GI (q1) = GI (q0) ∪ {B2} = {B2},
– GI (q2) = GI (q0) ∪ {B1} = {B1} and
– GI (q3) = (GI (q1) ∪ {B1}) ∩ (GI (q2) ∪ {B2}) = {B1, B2}.

48 L. Mikaelyan et al.

Thus, by Definition 6 it holds that q1 and q2 are orthogonal with respect to
basic event sets B1 and B2. Observe that q1 has an outgoing loop transition
labeled with B2 : ε that cannot occur. Similarly, q2 has an outgoing loop transi-
tion labeled by B1 : ε that cannot occur. In the merged RA, these transitions are
eliminated and all the other incoming and outgoing transitions are redirected to
start and end at the merged state respectively.

We are now ready to incorporate the orthogonality concept into an equiva-
lence definition. We extend the basic trace equivalence definition as follows:

Definition 7 (RA State Recovery Equivalence). Let RT = (Q, δ, q0) be an
RA. A state-based recovery equivalence ≈R ⊆ Q × Q is a maximal relation such
that it holds for any states q1, q2 ∈ Q that q1 ≈R q2 iff for any B ∈ BES (T) it
holds that either:

– δ(q1, B) = (q′
1, rs1) and δ(q2, B) = (q′

2, rs2) with q′
1 ≈ q′

2 and rs1 = rs2 or
– q1, q2 are orthogonal with respect to B.

We now prove the correctness of our approach. The following theorem states
that merging two recovery equivalent states yields a recovery equivalent RA.

Theorem 1. Let R1 = (Q1, δ1, q01) be an RA with a pair of states q1 and q2
such that q1 ≈R q2. Let further R2 = (Q2, δ2, q02) be an RA that contains equal
states and transitions as R1, apart from merging q1 and q2 into a single state q12,
redirecting the incoming transitions of q1 and q2 to q12 and copying the outgoing
transitions from q1 with guard B /∈ GI (q1) and q2 with guard B /∈ GI (q2). Then
R1 ≈R R2.

Proof. Let β := B1, . . . , Bn ∈ BES (T)∗ be a sequence of basic event sets pro-
duced by an NdDFT. Then Bi ∩ Bj = ∅ for any i �= j. We distinguish two
cases:

– Assume R1 never vists q1 or q2. By definition of R2 we then have that also
R2 does not visit q12. And by definition of R2 again we thus immediately
have that RecoveryR1

(β) = RecoveryR2
(β).

– Assume R1 visits q1 (the case of visiting q2 is analog) upon reading Bi for
some i < n. Now consider Bi+1. Let q′

1, q
′
12 and rs1, rs12 be such that:

δ1(q1, Bi+1) = (q′
1, rs1) and

δ2(q12, Bi+1) = (q′
12, rs12).

By Definition 7 this means that we have either:
• rs1 = rs12 and q′

1 ≈ q′
12. By correctness of merging trace equivalent states

we hence obtain RecoveryR1
(β) = RecoveryR2

(β).
• q1, q2 are orthogonal with respect to Bi+1. Then by Definition 6 it holds

that:
Bi+1 ∈ GI (q1) ∪ GI(q2)

Synthesizing and Optimizing FDIR Recovery Strategies from Fault Trees 49

If Bi+1 ∈ GI (q1) then there exists by construction of GI an index j <
i + 1 such that Bi+1 ∩ Bj �= ∅. Contradiction to the definition of β.
Therefore we obtain conclude Bi+1 ∈ GI (q2). By construction of R2 this
implies that the transition of q2 is not copied and the transition of q1 is
chosen instead. Thus, rs1 = rs12 and q′

1 = q′
12. Hence we can conclude

RecoveryR1
(β) = RecoveryR2

(β).
In all cases we have RecoveryR1

(β) = RecoveryR2
(β) and thus R1 ≈R R2 by

Definition 4.

��

5.2 Merging the FAIL State to Predecessors

The idea of the second case is to identify FAIL states that do not contribute to
new recovery actions sequences when a set of faults occurs. If a state only leads
to a FAIL state, the transition can be turned into a self-loop. And should the
FAIL state no longer be reachable, it can be eliminated. This rule is abstractly
illustrated in Fig. 9. We further introduce the concept of a FAIL state.

q1 q2
B : r

B : ε

q1

B : r

Fig. 9. (a) Initial RA; (b) RA after merging FAIL states to predecessors

Definition 8 (FAIL State). Let RT = (Q, δ, q0) be an RA and q ∈ Q a state.
Then q is a FAIL state iff for any B ∈ BES (T), all transitions from q are of
the form δ(q,B) = (q, ε).

The formalized merging rule can then be captured by the following theorem:

Theorem 2. Let R1 = (Q1, δ1, q01) be an RA with a pair of states q1 and q2
such that q2 is a FAIL state and all transitions of q1 are ε-loops except for one
transition being of the form δ1(q1, B) = (q2, rs), such that rs �= ε. Let further
R2 = (Q2, δ2, q02) be an RA with equal states and transitions as R1, except for
turning outgoing transitions of q1 into loop transitions. Then R1 ≈R R2.

Proof. Let β := B1, . . . , Bn ∈ BES(T)∗ be a sequence of basic event sets with
Bi ∩ Bj = ∅. We distinguish two cases:

– Assume R1 never visits q1. Then by definition of R2, it also never visits q1.
As both automata are defined to be equal otherwise, we then immediately
have that RecoveryR1

(β) = RecoveryR2
(β).

50 L. Mikaelyan et al.

– Assume R1 visits q1 upon reading Bi for some i < n. Then by definition,
R2 also visits q1 upon reading Bi. Now consider Bi+1. By the construction
of R2 it holds that δ1(q1, Bi+1) = (q2, rs) and δ2(q1, Bi+1) = (q1, rs). for
some recovery action sequence rs. Since q2 is a FAIL state we obtain from
Definition 8 that δ1(q2, Bj) = (q2, ε) for any j > i + 1. Moreover, since also
Bj ∩ Bi+1 = ∅ for any j > i + 1 we also have by definition of q1 and R2 that
δ2(q1, Bj) = (q1, ε). In total, we can therefore conclude that:

RecoveryR1(β) = RecoveryR1
(B1, . . . , Bi, Bi+1)

= RecoveryR2
(B1, . . . , Bi, Bi+1)

= RecoveryR2
(β)

In all cases RecoveryR1
(β) = RecoveryR2

(β). Hence, R1 ≈R R2 by Defini-
tion 4.

��

6 Case Studies

In order to evaluate the presented techniques, we apply the synthesis methodol-
ogy including the newly described merging rules to further optimize the created
RA models to two use cases.

6.1 Multiprocessor Computing System

Target System. We consider the literature example of a Multiprocessor Com-
puting System (MCS) based on the model given in [3]. The MCS consists of two
main components: The Bus and the Computing Module (CM). The CM is hot
redundant and consists of two further CMs CM1 and CM2. Each of these CMs
requires a disk, a processor and a memory unit. Each CM has a warm redundant
backup disk. Furthermore, a shared redundant memory unit MS is available to
the entire CM in case that their own memory unit fails. Finally, both processors
are powered by a common power source PS. The common power source itself is
again hot redundant and consists of the two power units PS1 and PS2. Figure 10
shows a NdDFT that describes the MCS.

Experimental Results. The described synthesis algorithm was performed to
obtain a Recovery Automaton from the described NdDFT. The RA was then
optimized by merging trace-equivalent and recovery equivalent states and by
eliminating redundant transitions.

Table 1 shows the results after minimizing the synthesized RA. Observe that
initially the RA contained a large number of states and transitions. After per-
forming the Partition Refinement algorithm based on the trace-equivalence def-
inition, the number of states and transitions was significantly reduced. After
performing the Partition Refinement and merging non-trace equivalent states

Synthesizing and Optimizing FDIR Recovery Strategies from Fault Trees 51

System

CM

CM2

MEMORY2

M2

PROC2

P2

DISK2

D22D21

CM1

MEMORY1

M1

PROC1

P1

DISK1

D12D11

BUS

PS MS

PS1 PS2

Fig. 10. NdDFT of the Multiprocessor Computing System

according to the described merging rules, it was observed that the number of
states was further reduced by 95.86% and the number of transitions was fur-
ther reduced by 95.05%. Thus, merging non-trace equivalent states additionally
reduced the number of states obtained by merging trace-equivalent states by
38.81% and the number of transitions was reduced by 32.38%. This indicates
the effectiveness of the proposed approach to consider cases when non-trace
equivalent states can be merged to obtain an equivalent Recovery Automaton
having the same behavior.

Table 1. Synthesizing and minimizing results.

Equivalence relation #States #Transitions States removed Transitions removed

– 991 7635 – –

Trace equivalence 67 559 93.24% 92.68%

Recovery equivalence 41 378 95.86% 95.05%

52 L. Mikaelyan et al.

6.2 Memory System with N Redundancies

Target System. To assess the state space reduction for Recovery Automata in
terms of increasing DFT complexity, we consider a family of DFTs based on the
previous memory system use case given in Fig. 3. The model family is depicted
in Fig. 11a. As before, the system consists of two main memory units Memory1
and Memory2. However, instead of a fixed size of redundant memory systems,
they now share a variable pool of cold redundancies of size N .

System

SPARE2

Memory2

SPARE1

Memory1

b1 b2

Redundancy1

bR,1

RedundancyN

bR,N

. . .

(a) Memory system with N redundancies

0 2 4 6 8 10
100

101

102

103

104

#Redundancies

#
St
at
es

#States of minimized RA
#States of NdDFT

(b) State space growth

Fig. 11. State space growth of RA for memory system with N redundancies

Experimental Results. Figure 11b shows how the state space sizes increase
with varying number of redundancies N for both the raw Markov Automaton
of the NdDFT and the finally resulting minimized RA. Note that the y-axis is
scaled logarithmically. It can be seen that the RA state space grows significantly
slower, but still at an exponential pace. However, it can also be seen that the
state space reduction remains consistent over the course of the increasing number
of redundancies.

7 Conclusions and Future Work

In this paper, we investigated the problem of optimizing Recovery Automata
that represent recovery strategies synthesized from NdDFTs. New algorithms
to minimize an RA by additionally eliminating non trace-equivalent states and
redundant transitions were provided. In particular, we extended the notion of

Synthesizing and Optimizing FDIR Recovery Strategies from Fault Trees 53

recovery equivalence between states by introducing the notion of orthogonal
states and a rule for merging them. In addition, we introduced the concept of
fail states and a rule for merging them with predecessor states. A formal proof
showing that an equivalent RA is produced for each case was given. A case study
using the described approach was provided and the evaluated results showed
that it allows to obtain a more efficient implementation of recovery strategies
for FDIR than solely eliminating trace equivalent states.

In the future, we would like to extend the Recovery Automata model to deal
with input of Fault Trees with transient and repairable faults and consider how
the merging rules can be transferred.

References

1. Beccuti, M., Franceschinis, G., Codetta-Raiteri, D., Haddad, S.: Computing opti-
mal repair strategies by means of NdRFT modeling and analysis. Comput. J.
57(12), 1870–1892 (2014). https://doi.org/10.1093/comjnl/bxt134

2. Bittner, B., et al.: An integrated process for FDIR design in aerospace. In:
Ortmeier, F., Rauzy, A. (eds.) IMBSA 2014. LNCS, vol. 8822, pp. 82–95. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12214-4 7

3. Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E.: Improving the analysis
of dependable systems by mapping fault trees into Bayesian networks. Reliab. Eng.
Syst. Saf. 71(3), 249–260 (2001). https://doi.org/10.1016/S0951-8320(00)00077-6

4. Codetta-Raiteri, D., Portinale, L.: Dynamic Bayesian networks for fault detection,
identification, and recovery in autonomous spacecraft. IEEE Trans. Syst. Man
Cybern.: Syst. 45(1), 13–24 (2015). https://doi.org/10.1109/TSMC.2014.2323212

5. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992). https://
doi.org/10.1109/24.159800

6. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: IEEE Symposium on Logic in Computer Science, pp. 342–351. IEEE
(2010). https://doi.org/10.1109/LICS.2010.41

7. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduc-
tion and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40196-1 5

8. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In:
Theory of Machines and Computations, pp. 189–196. Elsevier (1971). https://doi.
org/10.1016/B978-0-12-417750-5.50022-1

9. International Electrotechnical Commission, Geneva, Switzerland: Fault Tree Anal-
ysis (FTA) (2006)

10. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, pp. 194–206. ACM (1973). https://doi.org/10.1145/512927.
512945

11. Müller, S., Gerndt, A., Noll, T.: Synthesizing FDIR recovery strategies from non-
deterministic dynamic fault trees. In: 2017 AIAA SPACE Forum, AIAA 2017-5163.
American Institute of Aeronautics and Astronautics (2017). https://doi.org/10.
2514/6.2017-5163

https://doi.org/10.1093/comjnl/bxt134
https://doi.org/10.1007/978-3-319-12214-4_7
https://doi.org/10.1016/S0951-8320(00)00077-6
https://doi.org/10.1109/TSMC.2014.2323212
https://doi.org/10.1109/24.159800
https://doi.org/10.1109/24.159800
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1007/978-3-642-40196-1_5
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/512927.512945
https://doi.org/10.2514/6.2017-5163
https://doi.org/10.2514/6.2017-5163

54 L. Mikaelyan et al.

12. Raiteri, D.C., Portinale, L.: Arpha: an FDIR architecture for autonomous space-
crafts based on dynamic probabilistic graphical models. Technical report TR-INF-
2010-12-04-UNIPMN, Computer Science Institute, Università del Piemonte Orien-
tale, Vercelli, Italy, December 2010. http://www.di.unipmn.it/TechnicalReports/
TR-INF-2010-12-04-UNIPMN.pdf

13. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015). https://doi.
org/10.1016/j.cosrev.2015.03.001

14. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree hand-
book. Technical report, Nuclear Regulatory Commission, Washington, DC (1981).
https://www.osti.gov/biblio/5762464-fault-tree-handbook

15. Wander, A., Förstner, R.: Innovative fault detection, isolation and recovery strate-
gies on-board spacecraft: state of the art and research challenges. In: Deutscher
Luft- und Raumfahrtkongress 2012. German Society for Aeronautics and Astro-
nautics - Lilienthal-Oberth e.V., Bonn, Germany, January 2013. https://www.dglr.
de/publikationen/2013/281268.pdf

http://www.di.unipmn.it/TechnicalReports/TR-INF-2010-12-04-UNIPMN.pdf
http://www.di.unipmn.it/TechnicalReports/TR-INF-2010-12-04-UNIPMN.pdf
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://www.osti.gov/biblio/5762464-fault-tree-handbook
https://www.dglr.de/publikationen/2013/281268.pdf
https://www.dglr.de/publikationen/2013/281268.pdf

Formal Verification of Random Forests
in Safety-Critical Applications

John Törnblom(B) and Simin Nadjm-Tehrani

Department of Computer and Information Science, Linköping University,
Linköping, Sweden

{john.tornblom,simin.nadjm-tehrani}@liu.se

Abstract. Recent advances in machine learning and artificial intelli-
gence are now being applied in safety-critical autonomous systems where
software defects may cause severe harm to humans and the environment.
Design organizations in these domains are currently unable to provide
convincing arguments that systems using complex software implemented
using machine learning algorithms are safe and correct.

In this paper, we present an efficient method to extract equivalence
classes from decision trees and random forests, and to formally verify
that their input/output mappings comply with requirements. We imple-
ment the method in our tool VoRF (Verifier of Random Forests), and
evaluate its scalability on two case studies found in the literature. We
demonstrate that our method is practical for random forests trained
on low-dimensional data with up to 25 decision trees, each with a tree
depth of 20. Our work also demonstrates the limitations of the method
with high-dimensional data and touches upon the trade-off between large
number of trees and time taken for verification.

Keywords: Machine learning · Formal verification · Random forest ·
Decision tree

1 Introduction

In recent years, artificial intelligence utilizing machine learning algorithms has
begun to outperform humans at several tasks, e.g. playing board games [21]
and diagnosing skin cancer [8]. These advances are now being applied in safety-
critical autonomous systems where software defects may cause severe harm to
humans and the environment, e.g airborne collision avoidance systems [11].

Several researchers have raised concerns [4,13,18] regarding the lack of verifi-
cation methods for these kinds of systems in which machine learning algorithms
are used to train software deployed in the system. Machine learning models with
large sets of parameters are hard to interpret. Humans are currently unable to
provide convincing arguments that data used to test and train these models is
sufficient, and exhaustive testing is generally intractable.

Instead, various formal methods have been suggested and evaluated. Most
research is so far focused on the verification of neural networks, but there are
c© Springer Nature Switzerland AG 2019
C. Artho and P. C. Ölveczky (Eds.): FTSCS 2018, CCIS 1008, pp. 55–71, 2019.
https://doi.org/10.1007/978-3-030-12988-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12988-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-12988-0_4

56 J. Törnblom and S. Nadjm-Tehrani

other models that may be more appropriate when verifiability is important, e.g.
decision trees [2] and random forests [3]. Their structural simplicity makes them
easy to analyze systematically, but large (yet simple) models may still prove
hard to verify due to combinatorial explosion.

In this paper, we present a method to efficiently search for violations against
interesting properties in random forests. There may be many such properties,
some impacting system safety. We implement the method in our tool VoRF
(Verifier of Random Forests), and evaluate the tool on two case studies found in
the literature. The contributions of this paper are as follows.

– An efficient method to partition the input domain of decision trees into dis-
joint sets, and explore all path combinations in a random forest in such a way
that counteracts combinatorial path explosions.

– A tool named VoRF to support the method.
– Application of the method to two case studies from earlier works.

The rest of this paper is structured as follows. Section 2 presents prelimi-
naries on decision trees, random forests, and a couple of interesting properties.
Section 3 discusses related works on formal methods and machine learning, and
Sect. 4 presents our method with our supporting tool VoRF to verify proper-
ties of decision trees and random forests. Section 5 presents applications of our
method on two case studies; a collision detection problem, and a digit recogni-
tion problem. Finally, Sect. 6 concludes the paper and summarizes the lessons
we learned.

2 Preliminaries

Government agencies from several countries have agreed upon guidelines [5,10]
to help design organizations from different industries with assuring quality in
software with safety-critical applications. Several methods described in these
guidelines rely on human experts to analyze the software. However, manually
analyzing large and complex software authored by machine learning algorithms
is hard.

Recently, the avionics community published guidelines [6] describing how
design organizations may apply formal methods to the verification of safety-
critical software. Applying formal methods to complex and safety-critical soft-
ware is a non-trivial task due to practical limitations in computing power, and
challenges in qualifying complex verification tools. These challenges are often
caused by a high expressiveness provided by the language in which the software
is defined in. In this paper, we address these challenges by selecting machine
learning models based on their simplicity rather than their expressiveness. Specif-
ically, we develop a method with supporting tool to analyze decision trees and
random forests.

Formal Verification of Random Forests in Safety-Critical Applications 57

2.1 Decision Trees and Random Forests

A decision tree implements a function t : Xn → IRm using a tree structure
where each internal node is associated with a decision function, and the leaves
define output values. The n-dimensional input domain Xn includes elements x as
tuples where each element xi captures some feature of the application as an input
variable. In general, decision functions are defined by non-linear combinations
of several input variables at each internal node. In this paper, we only consider
binary trees with linear decision functions with one input variable, which Irsoy
et al. call univariate hard decision trees [9].

The tree structure is evaluated in a top-down manner, where decision func-
tions determine which path to take towards the leaves. When a leaf is hit, the
output y ∈ IRm associated with the leaf is emitted. Assuming a perfectly bal-
anced binary tree, the number of leaves in a tree is 2d, where d is the tree depth.
Figure 1 depicts a univariate hard decision tree with one decision function (x ≤ 0)
and two outputs (1 and 2).

x ≤ 0

1

true

2

false

Fig. 1. A decision tree with two possible outputs, depending on the value of single
variable x.

Decision trees are known to suffer from a phenomenon called overfitting.
Models suffering from this phenomenon can be fitted so tightly to their training
data that their performance on unseen data is reduced the more you train them.
To counteract these effects in decision trees, Breiman [3] propose random forests.

Definition 1 (Random Forest). A random forest f : Xn → IRm is a col-
lection of B decision trees that are combined by averaging the values emitted by
each individual tree, i.e.

f(x) =
1
B

B∑

b=1

tb(x)

where tb is the b-th tree in the forest.

To reduce correlation between trees, each tree is trained on a random subset of
the training data, using a random subset of the input variables.

Decision trees and random forests may also be used as classifiers. A classifier
is a function that categorizes samples from an input domain into one or more
classes. In this paper, we only consider one-class classifiers, i.e. functions that
map each point from an input domain to exactly one class.

58 J. Törnblom and S. Nadjm-Tehrani

Definition 2 (Classifier). Let f(x) = (y1, . . . , ym) be a model trained to pre-
dict the probability yi of encountering a class i within disjoint regions in the
input domain, where m is the number of classes. Then we would expect that

∀i ∈ {1, . . . , m}, 0 ≤ yi ≤ 1, and
m∑
i=1

yi = 1. A classifier fc(x) may then be

defined as
fc(x) = argmax

i
yi.

2.2 Safety Properties

In this paper, we consider two properties commonly used in related works; global
safety [17], and robustness against noise. Note that compliance with these two
properties alone is generally not sufficient to ensure safety. Moreover, the notions
used here as an illustration are from AI papers. System safety engineers typically
define requirements on software functions that are richer than these properties
alone. Hence, global safety may be a misnomer in that context, but we simply
repeat it here to be consistent with the literature that we refer to.

Property 1 (Global safety). Let f : Xn → IRm be the function subject to veri-
fication. The function is globally safe if and only if

∀x ∈ Xn,∀i ∈ {1, . . . , m}, f(x) = (y1, . . . , ym), αi ≤ yi ≤ βi.

for some αi, βi ∈ IR.

In classification problems, the output tuple (y1, . . . , ym) contains probabilities,
and thus αi = 0 and βi = 1.

Property 2 (Robustness against noise). Let f : Xn → IRm be the function
subject to verification, ε ∈ IR≥0 a robustness margin, and Δ = {δ ∈ IR : −ε <
δ < ε} noise. We denote by δ an n-tuple of elements drawn from Δ. The function
is robust against noise iff

∀x ∈ Xn, ∀δ ∈ Δn, f(x) = f(x + δ).

Pulina and Tacchella [17] define a stability property that is similar to our notion
of robustness here but use scalar noise.

3 Related Works

Due to the extreme progress made in the application of machine learning in
artificial intelligence, awareness regarding its (lack of) security and safety have
increased. Researchers from several fields are now addressing these problems in
their own way, often in collaboration between fields [20].

There have been extensive research on formal verification of neural networks.
Pulina and Tacchella [17] combine SMT solvers with an abstraction-refinement
technique to analyze neural networks with non-linear activation functions. They

Formal Verification of Random Forests in Safety-Critical Applications 59

conclude that formal verification of realistically sized networks is still an open
challenge. Scheibler et al. [19] use bounded model checking to verify a non-
linear neural network controlling an inverted pendulum. They encode the neural
network and differential equations of the system as an SMT formula, and try to
verify properties without success. These works [17,19] suggest that SMT solvers
are currently unable to verify realistic non-linear neural networks.

Recent research focuses on piece-wise linear neural networks. Katz et al. [12]
combine the simplex method with a SAT solver to verify properties of deep neu-
ral networks with piecewise linear activation functions. They successfully verify
domain-specific safety properties of a prototype airborne collision avoidance sys-
tem trained using reinforcement learning. The verified neural network contains a
total of 300 nodes organized into 6 layers. Ehlers [7] combines an ILP solver with
a modified SAT solver to verify neural networks. His method includes a tech-
nique to approximate the overall behavior of the network to reduce the search
space for the SAT solver. The method is evaluated on two case studies; a col-
lision detection problem, and a digit recognition problem. We reuse these two
case studies in our work, and also provide a global approximation of the overall
model (in our cases, random forests).

Mirman et al. [15] use abstract interpretation to verify robustness of neu-
ral networks with convolution and fully connected layers. They evaluate their
method on four image classification problems (one of which we use in our work),
and demonstrate promising performance. In our work, we address similar verifi-
cation problems, but for random forests. Since decision trees and random forests
are generally easier to analyze systematically than neural networks, we expect
that formal verification methods scale better when applied to decision trees and
random forest compared to neural networks. More importantly, the simplicity of
our method allows implementations such as VoRF to be certified for online use
in safety-critical applications.

The fact that decision trees may be easier to verify than neural networks is
demonstrated by Bastani et al. [1]. They train a neural network to play the game
Pong, then extract a decision tree policy from the trained neural network. The
extracted tree is significantly easier to verify than the neural network, which they
demonstrate by formally verifying properties within seconds using an of-the-shelf
SMT solver. Our method provides even greater performance when verifying deci-
sion trees. However, our outlook is that decision trees per se may not be sufficient
for problems in non-trivial settings and hence we address random forests which
provides a counter-measure to overfitting.

4 Analyzing Random Forests

In this section, we define a process for verifying learning-based systems, and
define a formal method capable of verifying properties of decision trees and
random forests. We also describe VoRF (Verifier of Random Forests), our imple-
mentation of our method, and provide an example on how to define and verify
the global safety property of random forest classifiers using VoRF.

60 J. Törnblom and S. Nadjm-Tehrani

4.1 Problem Definition

We formulate the software verification process for learning-based systems using
the following problem definitions.

Problem 1 (Constraint Satisfaction). Let f : Xn → IRm be a function that
is known to implement some desirable behavior in a system, and a property
IP specifying additional constraints on the relationship between x ∈ Xn and
y ∈ IRm. Verify that ∀x ∈ Xn, the property IP holds.

Since a random forest is a pure function and thus there is no state space to
explore, this problem may be addressed by considering all combinations of paths
through trees in the forest. Furthermore, by partitioning the input domain into
equivalence classes, i.e. sets of points in the input domain that yield the same
output, constraint satisfaction may be verified for regions in the input domain,
rather than for individual points explicitly.

Problem 2 (Equivalence Class Partitioning). For each path combination p in a
random forest f : Xn → IRm, determine the complete set of inputs Xp ⊆ Xn

that lead to traversing p, and the corresponding output yp ∈ IRm. Then verify
that ∀x ∈ Xp, the property IP holds.

Our method efficiently generates equivalence classes as pairs of (Xp,yp), and
automatically verifies the satisfaction of a property IP. Assuming that the trees
in a random forest are of equal size, the number of path combinations in the
random forest is 2d·B . In practice, decisions made by the individual trees are
influenced by a subset of features shared amongst several trees within the same
forest, and thus several path combinations are infeasible and may be discarded
from analysis.

Example 1 (Discarded Path Combination). Consider a random forest with the
trees depicted in Fig. 2. There are four path combinations. However, x cannot
be less than or equal to zero at the same time as being greater than five. Conse-
quently, Tree 1 cannot emit 1 at the same time as Tree 2 emits 3, and thus one
path combination may be discarded from analysis.

Tree 1 Tree 2

x ≤ 0

0

true

1

false

x ≤ 5

2

true

3

false

Fig. 2. Two decision trees that when combined into a random forest, contains three
feasible path combinations and one discarded path combination.

Formal Verification of Random Forests in Safety-Critical Applications 61

We postulate that since several path combinations may be discarded from
analysis, all equivalence classes in a random forest may be computed and enumer-
ated within a reasonable amount of time for practical applications. To explore
this idea, we developed the tool VoRF1 which automates the computation, enu-
meration, and verification of equivalence classes.

4.2 Tool Overview

VoRF consists of two distinct components, VoRF Core and VoRF Property
Checker. VoRF Core takes as input a random forest f : Xn → IRm, a hyper-
rectangle defining the input domain Xn (which may include ±∞), and emits all
equivalence classes in f . These equivalence classes are then processed by VoRF
Property Checker that checks if all input/output mappings captured by each
equivalence class are valid according to a property IP, as illustrated by Fig. 3.

Fig. 3. Overview of VoRF.

4.3 Computing Equivalence Classes

There are three distinct tasks being carried out by VoRF Core while computing
equivalence classes of a random forest:

– partitioning the input domain of decision trees into disjoint sets.
– exploring all feasible path combinations in the random forest.
– deriving output tuples from leaves.

1 https://github.com/john-tornblom/vorf.

https://github.com/john-tornblom/vorf

62 J. Törnblom and S. Nadjm-Tehrani

Path exploration is performed by simply walking the trees depth-first. When a
leaf is hit, the output yp for the traversed path combination p is incremented
with the value associated with the leaf, and path exploration continues with the
next tree. The set of inputs Xp is captured by a set of constraints derived from
decision functions associated with internal nodes encountered while traversing
p. When the final leaf in a path combination is hit, yp is divided by the number
of trees B (recall the definition of a random forest in Definition 1 which includes
the same division). Finally, the VoRF Property Checker checks if the mappings
from Xp to yp comply with the property IP. If the property holds, the next
available path combination is traversed, otherwise verification terminates with
a “FAIL” and the most recent (Xp, yp) mapping as a counterexample.

4.4 Approximating Output Bounds

The output of a random forest may be bounded by analyzing each leaf in the
collection of trees exactly once. Assuming that all trees are of equal size, the
number of leaves in a random forest is B · 2d, where B is the number of trees
and d the tree depth, thus making the analysis scale linearly with respect to the
number of trees.

Let f : Xn → IRm be a random forest, Yt the union of all output tuples from
all trees in the forest, and L = |Yt|. A conservative approximation for an upper
bound ymax ≥ f(x) may then be defined as

ymax = (max{y1,1, . . . , y1,L}, . . . ,max{ym,1, . . . , ym,L}),

where yi,j denotes the i-th element in the j-th tuple in Yt. Analogously, a con-
servative approximation of a lower bound ymin ≤ f(x) may be defined. These
bounds may then be used by a property checker to approximate f in e.g. the
global safety property from Sect. 2.2. Note that these output bounds are con-
servative and approximate. If property checking does not return “PASS” with
the approximation (see details below), the property IP may still hold, and fur-
ther analysis of the forest is required, e.g. by computing all possible equivalence
classes (which are precise).

4.5 Implementation

This section presents implementation details of VoRF Core and VoRF Property
Checker, and aspects that impact accuracy in floating point computations.

VoRF Core. For efficiency, core features in VoRF are implemented as a library
in C, and utilize a pipeline architecture as illustrated by Fig. 4 to compute and
enumerate equivalence classes. The first processing element in the pipeline con-
structs an intermediate mapping from the entire input domain to an output tuple
of zeros. The final processing element divides output tuples with the number of
trees in the forest. In between, there is one refinery element for each tree that
splits intermediate mappings into disjoint regions according to decision functions
in the tree, and increments the output with values carried by the leaves.

Formal Verification of Random Forests in Safety-Critical Applications 63

Fig. 4. Control flow of equivalence class partitioning in VoRF Core.

To decouple VoRF from any particular random forest training library, a ran-
dom forest is loaded into memory by reading a JSON-formatted file from disk.
VoRF includes a tool2 to convert random forests trained by the library scikit-
learn [16] to this file format.

VoRF Property Checker. VoRF includes two pre-defined property checkers
which are parameterized and executed from a command line interface; the global
safety property checker, and the robustness property checker.

The global safety property checker first uses the output bounds approxima-
tion to check for property violations, and resorts to equivalence class analysis
only when a violation is detected when using the approximation.

The robustness property checker checks that all points Xr within a hypercube
with sides ε, centered around a test point xt, map to the same output. Note that
selecting which test points to include in the verification may be problematic.
In principle, all points in the input domain should be checked for robustness,
but with random forest classifiers, there is always a hyperplane separating two
classes from each other, and always points which violate the robustness property
(adjacent to each side of the hyperplane). Hence, the property is only applicable
to points at distances greater than ε from the classification boundary.

VoRF also includes Python bindings for easy prototyping of domain-specific
property checkers. Example 2 depicts an implementation of the global safety
property that uses these Python bindings to do sanity checking for a classifier’s
output.
2 https://github.com/john-tornblom/vorf/blob/v0.1.0/support/train-sklearn.py.

https://github.com/john-tornblom/vorf/blob/v0.1.0/support/train-sklearn.py

64 J. Törnblom and S. Nadjm-Tehrani

Example 2 (Global Safety of a Classifier). Ensure that the probability of all
classes in every prediction is within [0, 1].

import sys
import vor f

def g l o b a l s a f e t y (mapping , alpha=0, beta =1):
minval = min ([mapping . outputs [dim] . lower

for dim in range (mapping . nb outputs)])

maxval = max ([mapping . outputs [dim] . upper
for dim in range (mapping . nb outputs)])

return (minval >= alpha) and (maxval <= beta)

f = vor f . Forest (sys . argv [1]) # load model from d i s k
assert f . f o r a l l (g l o b a l s a f e t y)

Computational Accuracy. Implementations of random forests normally
approximate real values as floating point numbers, and thus may suffer from
inaccurate computations. In general, VoRF and the software subject to verifica-
tion must use the same precision on floating point numbers and averaging func-
tion as in Definition 1 to get a compatible property satisfaction. In this version
of VoRF, we use the same representation so that the calculation errors are the
same as in the machine learning library scikit-learn [16]. Specifically, we approx-
imate real values as 32-bit floating point numbers, and implement the averaging
function literally as presented in Definition 1, i.e. by first computing the sum
of all individual trees, then dividing by the number of trees. Other machine
learning libraries may use 64-bit floating point numbers, and may implement
the averaging function differently, e.g.

f(x) =
B∑

b=1

tb(x)
B

.

This would be easily changeable in VoRF.

5 Case Studies

In this section, we present an evaluation of VoRF on two case studies found in
the literature where neural networks have been analyzed for compliance with
interesting properties. Each case study defines a training set and a test set, and
we used scikit-learn [16] to train random forests of different sizes. All training
parameters except the number of trees and maximum tree depth were kept con-
stant and at their default values. We evaluated accuracy on each trained model
against its test set, i.e. the percentage of samples from the test set where there

Formal Verification of Random Forests in Safety-Critical Applications 65

are no misclassifications. We then implemented verification cases for the global
safety and robustness against noise properties (from Sect. 2.2) using VoRF. The
time spent on verification was recorded for each trained model as presented
below. All experiments were conducted on an Intel Core i5 2500 K with 16 GB
RAM, running Ubuntu 18.04.

5.1 Vehicle Collision Detection

In this case study, we verified properties of random forests trained to detect
collisions between two moving vehicles traveling along curved trajectories at
different speeds. Each verified random forest accepts six input variables, emits
two output variables, and contains 10–25 trees with depths 10–20.

Dataset. We used a simulation tool from Ehlers [7] to generate 30,000 training
samples and 3,000 test samples. Unlike neural networks which Ehlers used in his
case study, the size of a random forest is limited by the amount of data available
during training, hence we generated ten times more training data than Ehlers to
ensure that sufficient data is available for the size and number of trees assessed
in our case study. Each sample contains the relative distance between the two
vehicles, the speed and starting direction of the second vehicle, and the rotation
speed of both vehicles.

Robustness. We verified the robustness against noise for all trained models by
defining input regions surrounding each sample in the test set with the robustness
margin ε = 0.05. Table 1 lists random forests included in the experiment with
their maximum tree depth d, number of trees B, accuracy of the classifications
(Accuracy), elapsed time T during verification, and the percentage of samples
from the test set where there were no misclassifications within the robustness
region (Robustness).

Table 1. Accuracy and robustness of random forests in the vehicle collision detection
case study.

d B Accuracy (%) T (s) Robustness (%)

10 10 90.5 1 41.0

10 15 90.3 11 45.0

10 20 90.4 84 48.9

10 25 90.0 449 50.3

20 10 94.0 3 28.0

20 15 94.1 77 27.5

20 20 94.2 930 29.5

20 25 94.5 5499 29.6

66 J. Törnblom and S. Nadjm-Tehrani

Increasing the maximum depth of trees increased accuracy on the test set, but
reduced the robustness against noise. This suggests that the models were over-
fitted with noiseless examples during training, and thus adding noisy examples
to the training set may improve robustness. Verifying the largest random forest
with B = 25 trees and depth d = 20 took approximately 1.5 h. The significant
drop in elapsed time between {d = 10, B = 25} and {d = 20, B = 10} may seem
counter-intuitive at first. However, recall that the theoretical upper limit of the
number of path combinations in a random forest is 2d·B , and that 220·10 	 210·25.

Scalability. Next, we assessed the scalability of VoRF Core when the number
of trees grows by verifying the trivial property IP = true which accepts all
input/output mappings. We implemented this trivial property in a verification
case that also counts the number of equivalence classes emitted by VoRF Core.
We then executed the verification case for all models with a tree depth of d = 10.
The recoded number of equivalence classes C for different number of trees B is
depicted in Fig. 5 on a logarithmic scale. The number of equivalence classes
increased exponentially as more trees were added, but the magnitude of the
growth decreased for each added tree. The number of equivalence classes for
large number of trees are significantly smaller than the upper limit of 2d·B (which
occurs when there are no shared features amongst trees, and thus each path
combination yields a distinct equivalence class).

0 5 10 15 20 25 30

10

20

30

B

lo
g 2
(C

)

Fig. 5. Number of equivalent classes C on a logarithmic scale from the vehicle collision
detection case study for different number of trees B with a depth d = 10.

Global Safety. Finally, we verified the global safety property (here ensuring
that all predicted probabilities are in the range [0, 1]). All trained models passed
the verification case within fractions of a second. This is expected since the out-
put bound approximation algorithm implemented in the global safety property

Formal Verification of Random Forests in Safety-Critical Applications 67

checker scales linearly with respect to the number of leaves in a forest, and thus
there is no combinatorial explosion when the number of trees grows.

5.2 Digit Recognition

In this case study, we verified properties of random forests trained to recognize
images of hand-written digits.

Dataset. The MNIST dataset [14] is a collection of hand-written digits com-
monly used to evaluate machine learning algorithms. The dataset contains 70,000
gray scale images with a resolution of 28 × 28 pixels at 8bpp. Each image was
encoded as a tuple of 784 pixels, and the dataset was randomized and split into
two subsets; a 85% training set, and a 15% test set (a similar split was used
in [14]).

Robustness. We verified the robustness against noise for all trained models by
defining input regions surrounding each sample in the test set with the robust-
ness margin ε = 1, which amounts to a 0.5% lightning change per pixel in a
8bpp gray-scaled image. Each input region contains 2784 noisy images, which
would be too many for VoRF to handle within a reasonable amount of time.
Consequently, we reduced the complexity of the problem significantly by only
considering robustness against noise within a sliding window of 5× 5 pixels. For
a given sample from the test set, noise was added within the 5 × 5 window, yield-
ing 25·5 noisy images. This operation was then repeated on the original image,
but with the window placed at an offset of 1px relative to its previous position.
Applying this operation on an entire image yields 25·5 · (28 − 5)2 ≈ 234 distinct
noisy images per sample from the test set, and about 1014 noisy images when
applied to the entire test set.

Table 2 lists random forests included in the experiment with their maximum
tree depth d, number of trees B, accuracy on the test set (Accuracy), elapsed
time T during verification, and the percentage of samples from the test set where
there were no misclassifications within the robustness region (Robustness).

Table 2. Accuracy and robustness of random forests in the digit recognition case study.

d B Accuracy (%) T (s) Robustness (%)

10 10 93.0 245 65.8

10 15 93.6 824 68.8

10 20 93.8 2010 75.2

10 25 94.2 10787 74.8

20 10 94.9 482 70.4

20 15 95.8 1626 77.6

20 20 96.0 4101 82.3

20 25 96.4 17411 83.7

68 J. Törnblom and S. Nadjm-Tehrani

Increasing the complexity of a random forest slightly increased its accuracy,
and significantly increased its robustness against noise. Verifying the largest
random forest with B = 25 trees and depth d = 20 took approximately 5h.

Figure 6 depicts one of many examples from the MNIST dataset that were
misclassified by the random forest with B = 25 and d = 10. Since the added
noise is invisible to the naked eye, the noise (a single pixel) is highlighted in red.

Fig. 6. A missclassified noisy sample from the MNIST dataset. (Color figure online)

Scalability. Next, we assessed the scalability of VoRF Core when the number
of trees grows by verifying the trivial property IP = true. This was done in
a similar way as described in the vehicle collision detection use case presented
in Sect. 5.1. We then executed the verification case for all models with a tree
depth of d = 10. Enumerating all possible equivalence classes was intractable for
random forests with more than B = 4 trees. We aborted the experiment after
running the verification case with a random forest of B = 5 for 72 h. Figure 7
depicts the four data points we managed to acquire.

1 2 3 4

10

20

30

40

B

lo
g 2
(C

)

Fig. 7. Number of equivalent classes C on a logarithmic scale from the digit recognition
case study for different number of trees B with a depth d = 10.

Formal Verification of Random Forests in Safety-Critical Applications 69

The number of equivalence classes increased exponentially as more trees were
added, without demonstrating any signs of stagnation. The ability to discard
infeasible path combinations in a random forest is an essential ingredient to our
method. When random forests are trained on high-dimensional data, the number
of features shared between trees is relatively low, so it is not surprising that our
method experiences combinatorial path explosion. This shows that in non-trivial
applications, transforming domain knowledge into reasonable constraints in the
form of a property IP is a useful means of addressing combinatorial problems in
verification.

Global Safety. Finally, we verified the global safety property (again ensuring
that that all predicted probabilities are in the range [0, 1]). All trained mod-
els passed the verification case within seconds. This is expected since the out-
put bound approximation algorithm implemented in the global safety property
checker scales linearly with respect to the number of leaves in a forest, and thus
there is no combinatorial explosion when the number of trees grows.

6 Conclusions and Future Work

In this paper, we proposed a method to formally verify properties of random
forests. Our method exploits the fact that several trees make decisions based on
a shared subset of the input variables, and thus several path combinations in a
random forest are infeasible. We implemented the method in a tool called VoRF,
and demonstrated its scalability on two case studies.

In the first case study, a collision detection problem with six input variables,
we demonstrated that problems with a low-dimensional input space can be ver-
ified using our method within a reasonable amount of time. In the second case
study, a digit recognition problem with 784 input variables, we demonstrated
that our method copes with high-dimensional input space when verifying robust-
ness against noise. But it does so only if the systematically introduced noise does
not attempt to exhaustively cover all possibilities. Since the number of shared
input variables between trees is low, we observed a combinatorial explosion of
paths in the forest. However, we successfully verified the global safety property
in both case studies within seconds by using a fast approximation algorithm that
scales linearly with respect to the number of trees in a random forest.

For future work, we plan to extend our method to include concepts from
abstract interpretation to address the combinatorial path explosion observed
when verifying the robustness property on high-dimensional data. Other direc-
tions of work include studying different search strategies, applying to use cases
where control is involved (and not only sensing), and creating new properties
that are meaningful in the context of the problem at hand, e.g. decisive classifi-
cations.

Acknowledgements. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

70 J. Törnblom and S. Nadjm-Tehrani

References

1. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy
extraction. In: Advances in Neural Information Processing Systems (NIPS) (2018)

2. Breiman, L.: Classification and Regression Trees. Wadsworth International Group
(1984)

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

4. Burton, S., Gauerhof, L., Heinzemann, C.: Making the case for safety of machine
learning in highly automated driving. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 5–16. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66284-8 1

5. DO-178C: Software Considerations in Airborne Systems and Equipment Certifica-
tion. RTCA, Inc. (2012)

6. DO-333: Formal Methods Supplement to DO-178C and DO-278A. RTCA, Inc.
(2012)

7. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

8. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural
networks. Nature 542(7639), 115 (2017). https://doi.org/10.1038/nature21056

9. Irsoy, O., Yildiz, O.T., Alpaydin, E.: Soft decision trees. In: International Confer-
ence on Pattern Recognition (ICPR) (2012)

10. ISO 26262: Road Vehicles - Functional Safety. International Organization for Stan-
dardization (2011)

11. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-
pression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), pp. 1–10. IEEE (2016). https://doi.org/10.
1109/DASC.2016.7778091

12. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

13. Kurd, Z., Kelly, T., Austin, J.: Developing artificial neural networks for safety
critical systems. Neural Comput. Appl. 16(1), 11–19 (2007). https://doi.org/10.
1007/s00521-006-0039-9

14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.
1109/5.726791

15. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: International Conference on Machine Learning
(ICML) (2018)

16. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12(Oct), 2825–2830 (2011)

17. Pulina, L., Tacchella, A.: Challenging SMT solvers to verify neural networks. AI
Commun. 25(2), 117–135 (2012). https://doi.org/10.3233/AIC-2012-0525

18. Russell, S., Dewey, D., Tegmark, M.: Research priorities for robust and benefi-
cial artificial intelligence. AI Mag. 36(4), 105–114 (2015). https://doi.org/10.1609/
aimag.v36i4.2577

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-319-66284-8_1
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1038/nature21056
https://doi.org/10.1109/DASC.2016.7778091
https://doi.org/10.1109/DASC.2016.7778091
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/s00521-006-0039-9
https://doi.org/10.1007/s00521-006-0039-9
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.3233/AIC-2012-0525
https://doi.org/10.1609/aimag.v36i4.2577
https://doi.org/10.1609/aimag.v36i4.2577

Formal Verification of Random Forests in Safety-Critical Applications 71

19. Scheibler, K., Winterer, L., Wimmer, R., Becker, B.: Towards verification of artifi-
cial neural networks. In: Automatic Verification and Analysis of Complex Systems
(MBMV), pp. 30–40 (2015)

20. Seshia, S.A., Zhu, X.J., Krause, A., Jha, S.: Machine learning and formal meth-
ods (Dagstuhl Seminar 17351). In: Dagstuhl Reports. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2018). https://doi.org/10.4230/DagRep.7.8.55

21. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961

https://doi.org/10.4230/DagRep.7.8.55
https://doi.org/10.1038/nature16961

Analysis of Timed Systems

A Benchmark Library for Parametric
Timed Model Checking

Étienne André1,2,3(B)

1 Université Paris 13, LIPN, CNRS, UMR 7030, 93430 Villetaneuse, France
2 JFLI, CNRS, Tokyo, Japan

3 National Institute of Informatics, Tokyo, Japan
eandre93430@lipn13.fr

Abstract. Verification of real-time systems involving hard timing con-
straints and concurrency is of utmost importance. Parametric timed
model checking allows for formal verification in the presence of unknown
timing constants or uncertainty (e. g., imprecision for periods). With the
recent development of several techniques and tools to improve the effi-
ciency of parametric timed model checking, there is a growing need for
proper benchmarks to test and compare fairly these tools. We present
here a benchmark library for parametric timed model checking made of
benchmarks accumulated over the years. Our benchmarks include aca-
demic benchmarks, industrial case studies and examples unsolvable using
existing techniques.

Keywords: Case studies · Model checking · Parameter synthesis ·
Parametric timed automata

1 Introduction

Verification of real-time systems involving hard timing constraints and concur-
rency is of utmost importance, and is now recognized in standards such as
the DO-178C, that allows formal methods without addressing specific process
requirements. Model checking is a popular model-based technique that formally
verifies whether a model satisfies a property. Parametric timed model checking
significantly enhances model checking by allowing its application earlier in the
design phase, when timing constants may not be known yet. In addition, it is
possible to verify systems in the presence of uncertainty, e. g., when some peri-
ods are known with some limited precision. This is the case of Thales’ FMTV1

challenge 2014 where the system was characterized with uncertain but constant
periods, that rules out the use of non-parametric timed model checking.
1 “Formal Methods for Timing Verification Challenge”, in the WATERS workshop:

http://waters2015.inria.fr/.

This work is partially supported by the ANR national research program PACS (ANR-
14-CE28-0002) and by ERATO HASUO Metamathematics for Systems Design Project
(No. JPMJER1603), JST.

c© Springer Nature Switzerland AG 2019
C. Artho and P. C. Ölveczky (Eds.): FTSCS 2018, CCIS 1008, pp. 75–83, 2019.
https://doi.org/10.1007/978-3-030-12988-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12988-0_5&domain=pdf
http://orcid.org/0000-0001-8473-9555
http://waters2015.inria.fr/
https://doi.org/10.1007/978-3-030-12988-0_5

76 É. André

Popular formalism for parametric timed model checking include parametric
timed automata (PTAs) [3] and parametric time Petri nets [41].

Several tools support parameters, such as HyTech [26] (parametric hybrid
automata), Romeo [34] (parametric time Petri nets), IMITATOR [9] (paramet-
ric timed automata), PSyHCoS [14] (parametric stateful timed CSP), or Symrob
(robustness for timed automata) [38]. In addition, several tools support the larger
class of hybrid automata, such as PHAVer [24] or SpaceEx [25] and, while not
explicitly supporting parameters, can encode them.1 Recently, a growing number
of analyses and techniques were proposed to analyze parametric timed models
(mainly PTAs) such as SMT-based techniques [31], integer hull abstractions [30],
corner-point abstractions [15], distributed verification [8], NDFS-based synthe-
sis [36], machine learning [13,33], etc. However, despite some case studies infor-
mally shared between these works, there is a lack of a common basis to compare
new tools and techniques in a fair manner. Without a stable list of benchmarks
publicly available, it is difficult to assess the efficiency of a new algorithm.

Contribution. We present here a library of benchmarks containing academic and
industrial case studies collected in the past few years from academic papers and
industrial collaborations. In addition, a focus is made on (possibly toy) examples
known to be unsolvable using current state-of-the-art techniques, with the hope
to encourage the development of new techniques to solve them. Benchmarks are
available online in the IMITATOR input format, and distributed using the GNU
General Public License.

Related Libraries. The library most related to ours is that by Chen et al., that
proposes a suite of benchmarks for hybrid systems [18]. However, it aims at
analyzing hybrid systems, which are strictly more expressive than PTAs in the-
ory, and incomparable in practice, as most hybrid systems do not feature timing
parameters. In addition, that benchmark suite focuses only on reachability prop-
erties. Finally and most importantly, it does not focus on parameters, and the
benchmarks are non-parametric. In contrast, our library focuses on parametric
timed benchmarks, with various types of properties.

Another interesting library is that by Hoxha, Abbas, and Fainekos [27], that
offers Matlab/Simulink models of automotive systems. However, it does not aim
specifically at parametric timed model checking; two of our benchmarks origi-
nally partially come from the aforementioned library [27].

2 IMITATOR Parametric Timed Automata

Parametric timed automata extend finite-state automata with clocks, i. e., real-
valued variables evolving at the same rate. Clocks can be reset along transitions,
and can be compared to constants or parameters (integer- or rational-valued)

1 In a hybrid automaton, a parameter is a variable that can evolve for an arbitrary
amount of time at rate 1, and is then “frozen” (rate 0).

A Benchmark Library for Parametric Timed Model Checking 77

along transitions (“guards”) or in locations (“invariants”). IMITATOR paramet-
ric timed automata extend PTAs [3] with some useful features such as synchro-
nization between components, stopwatches (i. e., the ability to stop the elapsing
of some clocks [17]), presence of parametric linear terms in guards, invariants
and resets, shared global rational-valued variables, etc.

l0 l1
x ≤ p

y = 1 ∧ x = 0
x = p
x := 0

(a) Reaching l1 if p ∈ { 1
n

| n ∈ N>0}.

l0 l1
x ≤ 1

y = p ∧ x = 0
x = 1
x := 0

(b) Reaching l1 if p ∈ N.

Fig. 1. Examples of PTAs.

Example 1. Consider the PTA in Fig. 1a, containing two locations l0 and l1, two
clocks x and y, and one parameter p. The self-loop on l0 can be taken whenever
x = p holds, and resets x, i. e., can be taken every p time units. In addition,
initially, as x = y = 0 and clocks evolve at the same rate, the transition guarded
by y = 1 ∧ x = 0 cannot be taken. Observe that, if p = 1, then the transition
to l1 can be taken after exactly one loop on l0. If p = 1

2 , then the transition to l1
can be taken after exactly two loops. In fact, the set of valuations for which l1
is reachable is exactly {i | i = 1

n , n > 0 ∧ n ∈ N}.

L/U-PTAs. Lower-bound/upper-bound parametric timed automata (L/U-
PTAs) [28] restrict the use of parameters: parameters must be partitioned
between lower-bound parameters (always compared with clocks as lower bounds,
i. e., p ≤ x or p < x) and upper-bound parameters. L/U-PTAs enjoy monotonic-
ity properties and, while the full class of PTAs is highly undecidable [5], L/U-
PTAs enjoy some decidability results [12,16,28]. U-PTAs [11,16] are L/U-PTAs
with only upper-bound parameters.

3 The Benchmark Library

3.1 Categories

Our benchmarks are classified into three main categories:

1. academic benchmarks, studied in a range of papers: a typical example is the
Fischer mutual exclusion protocol;

2. industrial case studies, which correspond to a concrete problem solved (or
not) in an industrial environment;

78 É. André

3. examples famous for being unsolvable using state-of-the-art techniques; for
some of them, a solution may be computed by hand, but existing automated
techniques are not capable of computing it. This is the case of the PTA
in Fig. 1a, as a human can very easily solve it, while (to the best of our
knowledge) no tool is able to compute this result automatically.

Remark 1. Our library contains a fourth category: education benchmarks, that
consist of generally simple case studies that can be used for teaching. This cate-
gory contains toy examples such as coffee machines. We omit this category from
this paper as these benchmarks generally have a limited interest performance
wise.

The domain of the benchmarks are hardware asynchronous circuits, commu-
nication or mutual exclusion protocols, real-time systems (“RTS”) and schedu-
lability problems, parametric timed pattern matching (“PTPM”), train-gate-
controllers models (“TGC”), etc.

In addition, we use the following classification criteria:

– number of variables: clocks, parameters, locations, automata;
– whether the benchmark (in the provided version) is easily scalable, i. e.,

whether one can generate a large number of instances; for example, proto-
cols often depend on the number of participants, and can therefore be scaled
accordingly;

– presence of shared rational-valued variables;
– presence of stopwatches;
– presence of location invariants, as some works (e. g., [3,11]) exclude them;
– whether the benchmark meets the L/U assumption.

3.2 Properties

We consider the three following main properties:

reachability/safety: synthesize parameter valuations for which a given state
of the system (generally a location, but possibly a constraint on variables)
must be reachable/avoided (see e. g., [30]).

optimal reachability: same as reachability, but with an optimization crite-
rion: some parameters (or the time) should be minimized or maximized.

unavoidability: synthesize parameter valuations for which all runs must always
eventually reach a given state (see e. g., [30]).

robustness: synthesize parameter valuations preserving the discrete behavior
(untimed language) w.r.t. to a given valuation (see e. g., [7,38]).

In addition, we include some recent case studies of parametric timed pattern
matching (“PTPM” hereafter), i. e., being able to decide for which part of a
log and for which values of parameters does a parametric property holds on
that log [10]. Finally, a few more case studies have ad-hoc properties (liveness,
properties expressed using observers [2,4], etc.), denoted “Misc.” later on.

A Benchmark Library for Parametric Timed Model Checking 79

3.3 Presentation

The benchmark library comes in the form of a Web page that classifies models
and is available at https://www.imitator.fr/library.html.

The library is made of a list of a set of benchmarks. Each benchmark may
have different models: for example, Flip-flop comes with three models, one
with 2 parameters, one with 5, and one with 12 parameters. Similarly, some
Fischer benchmarks come with several models, each of them corresponding to
a different number of processes. Finally, each model comes with one or more
properties. For example, for Fischer, one can either run safety synthesis, or
evaluate the robustness of a given reference parameter valuation.

The first version of the library contains 34 benchmarks with 80 different
models and 122 properties.

3.4 Performance

We present a selection of the library in Table 1. Not all benchmarks are given;
in addition, most benchmarks come with several models and several proper-
ties, omitted here for space concern. We give from left to right the number of
automata, of clocks, of parameters, of discrete variables, whether the model is
an L/U-PTA, a U-PTA or a regular PTA, whether it features invariants and
stopwatches, the kind of property, and a computation time on an Intel i7-7500U
CPU @ 2.70 GHz with 8 GiB running Linux Mint 18.

“T.O.” denotes time-out (after 300 s). “?” denotes unsolvable, because no
such algorithm is implemented in existing tools. “HS” denotes time-out but
human-solvable: e. g., for Fischer, one knows the correctness constraint indepen-
dently of the number of processes, but tools may fail to compute it. This is also
the case of the toy PTAs in Figs. 1a and 1b.

Despite time-out, some case studies come with a partial result: either because
IMITATOR is running reachability-synthesis (“EFsynth” [30]) which can output a
partial result when interrupted before completion, or because some other meth-
ods can output some valuations. For example, for ProdCons, IMITATOR is unable
to synthesize a constraint; however, in the original work [31], some punctual val-
uations (non-symbolic) are given.

Robustness case studies are not part of Table 1, but are included in the online
library.

4 Perspectives

Syntax. So far, all benchmarks use the IMITATOR input format; in addition,
only if the benchmark comes from another model checker (e. g., a HyTech or
Uppaal model), it also comes with its native syntax. In a near future, we plan
to propose a translation to Uppaal timed automata; however, some information
will be lost as Uppaal does not allow parameters, and supports stopwatches in a
limited manner. A future work will be to propose other syntaxes, or a normalized
syntax for parametric timed model checking benchmarks.

https://www.imitator.fr/library.html

80 É. André

Table 1. A selection from the benchmark library

Benchmark Ref Domain Scal. |A| |X| |P| |V| L/U Inv SW Prop. Time

Academic

And-Or [20] Circuit × 4 4 12 0 –
√ × Misc. 3.01

CSMA/CD [32] Protocol
√

3 3 3 0 –
√ × Unavoid. ?

Fischer-AHV93 [3] Protocol
√

3 2 4 0 L/U × × Safety 0.04

Fischer-HRSV02:3 [28] Protocol
√

3 3 4 1 L/U
√ × Safety HS

Flip-flop:2 [21] Circuit × 5 5 2 0 U
√ × Misc. 0.04

Flip-flop:12 [21] Circuit × 5 5 12 0 U
√ × Misc. 23.07

idle-time-sched:3 [35] RTS
√

8 13 2 3 U
√ √

Safety 1.49

idle-time-sched:5 [35] RTS
√

12 21 2 0 U
√ √

Safety 14.61

Jobshop:3-4 [1] Sched
√

2 3 12 4 –
√ × Opt. reach. 5.58

Jobshop:4-4 [1] Sched
√

4 4 16 4 –
√ × Opt. reach. T.O.

NP-FPS-3tasks:50-0 [29] RTS × 4 6 2 0 –
√ × Safety 1.03

NP-FPS-3tasks:100-2 [29] RTS × 4 6 2 0 –
√ × Safety 65.23

SSLAF14-1 [37,40] RTS × 7 16 2 2 –
√ √

Safety 0.33

SSLAF14-2 [40,42] RTS × 6 14 2 4 –
√ √

Safety T.O.

ProdCons:2-3 [31] Prod.-cons
√

5 5 6 0 L/U
√ × Reach. T.O.

train-AHV93 [3] TGC × 3 3 6 0 L/U × × Safety 0.01

WFAS [15] Protocol × 3 4 2 0 –
√ × Safety T.O.

Industrial

accel:1 [10,27] PTPM
√

2 2 3 0 –
√ × PTPM 1.25

accel:10 [10,27] PTPM
√

2 2 3 0 –
√ × PTPM 12.67

BRP [23] Protocol × 6 7 2 12 –
√ × Safety 248.35

FMTV:1A1 [39] RTS × 3 3 3 5 –
√ × Opt. reach. 6.97

FMTV:1A3 [39] RTS × 3 3 3 7 –
√ × Opt. reach. 87.39

FMTV:2 [39] RTS × 6 9 2 0 –
√ √

Opt. reach. 1.61

gear:1 [10,27] PTPM
√

2 2 3 0 –
√ × PTPM 0.77

gear:10 [10,27] PTPM
√

2 2 3 0 –
√ × PTPM 7.42

RCP [22] Protocol × 5 6 5 6 L/U
√ × Reach. 1.07

SIMOP:3 [6] Automation × 5 8 3 0 –
√ × Reach. T.O.

SPSMALL:2 [19] Circuit × 11 11 2 0 –
√ × Reach. 0.96

SPSMALL:26 [19] Circuit × 11 11 26 0 –
√ × Reach. T.O.

Toy

toy:n Fig. 1b Toy × 1 2 1 0 –
√ × Reach. HS

toy:1/n Fig. 1a Toy × 1 2 1 0 U
√ × Reach. HS

Contributions and Versioning. The library is aimed at being enriched with future
benchmarks. Furthermore, it is collaborative, and is open to any willing contrib-
utor. A versioning system will be set up with the addition (or modification) of
benchmarks in the future.

References

1. Abdeddäım, Y., Maler, O.: Job-shop scheduling using timed automata. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 478–492. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 46

https://doi.org/10.1007/3-540-44585-4_46

A Benchmark Library for Parametric Timed Model Checking 81

2. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability test-
ing for timed automata. In: Arvind, V., Ramanujam, S. (eds.) FSTTCS 1998.
LNCS, vol. 1530, pp. 245–256. Springer, Heidelberg (1998). https://doi.org/10.
1007/978-3-540-49382-2 22

3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) Proceedings of the Twenty-
fifth Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 592–601.
ACM, New York (1993)

4. André, É.: Observer patterns for real-time systems. In: Liu, Y., Martin, A. (eds.)
18th IEEE International Conference on Engineering of Complex Computer Sys-
tems, ICECCS 2013, pp. 125–134. IEEE Computer Society, July 2013. https://
doi.org/10.1109/ICECCS.2013.26

5. André, É.: What’s decidable about parametric timed automata? Int. J. Softw. Tools
Technol. Transf. (2018, to appear). https://doi.org/10.1007/s10009-017-0467-0

6. André, É., Chatain, Th., De Smet, O., Fribourg, L., Ruel, S.: Synthèse de con-
traintes temporisées pour une architecture d’automatisation en réseau. In: Lime,
D., Roux, O.H. (eds.) Actes du 7ème colloque sur la modélisation des systèmes
réactifs, MSR 2009. Journal Européen des Systèmes Automatisés, vol. 43, pp. 1049–
1064. Hermès, November 2009

7. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for paramet-
ric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009). https://
doi.org/10.1142/S0129054109006905

8. André, É., Coti, C., Nguyen, H.G.: Enhanced distributed behavioral cartography
of parametric timed automata. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 319–335. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 21

9. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9 6

10. André, É., Hasuo, I., Waga, M.: Offline timed pattern matching under uncertainty.
In: Lin, A.W., Sun, J. (eds.) Proceedings of the 23rd International Conference
on Engineering of Complex Computer Systems, ICECCS 2018. IEEE (2018, to
appear)

11. André, É., Lime, D., Ramparison, M.: TCTL model checking lower/upper-bound
parametric timed automata without invariants. In: Jansen, D., Prabhakar, P. (eds.)
FORMATS 2018. LNCS, vol. 11022. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00151-3 3

12. André, É., Lime, D., Ramparison, M.: Timed automata with parametric updates.
In: Juhás, G., Chatain, T., Grosu, R. (eds.) Proceedings of the 18th International
Conference on Application of Concurrency to System Design, ACSD 2018, pp.
21–29. IEEE (2018, to appear). https://doi.org/10.1109/ACSD.2018.000-2

13. André, É., Lin, S.-W.: Learning-based compositional parameter synthesis for event-
recording automata. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS,
vol. 10321, pp. 17–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60225-7 2

14. André, É., Liu, Y., Sun, J., Dong, J.S., Lin, S.-W.: PSyHCoS: parameter synthesis
for hierarchical concurrent real-time systems. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 984–989. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8 70

https://doi.org/10.1007/978-3-540-49382-2_22
https://doi.org/10.1007/978-3-540-49382-2_22
https://doi.org/10.1109/ICECCS.2013.26
https://doi.org/10.1109/ICECCS.2013.26
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1007/978-3-319-25423-4_21
https://doi.org/10.1007/978-3-319-25423-4_21
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-030-00151-3_3
https://doi.org/10.1007/978-3-030-00151-3_3
https://doi.org/10.1109/ACSD.2018.000-2
https://doi.org/10.1007/978-3-319-60225-7_2
https://doi.org/10.1007/978-3-319-60225-7_2
https://doi.org/10.1007/978-3-642-39799-8_70
https://doi.org/10.1007/978-3-642-39799-8_70

82 É. André

15. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6 6

16. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods Syst. Des. 35(2), 121–151 (2009). https://doi.
org/10.1007/s10703-009-0074-0

17. Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4 12

18. Chen, X., Schupp, S., Makhlouf, I.B., Ábrahám, E., Frehse, G., Kowalewski, S.:
A benchmark suite for hybrid systems reachability analysis. In: Havelund, K.,
Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 408–414. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 29

19. Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Timed verification of
the generic architecture of a memory circuit using parametric timed automata.
Formal Methods Syst. Des. 34(1), 59–81 (2009). https://doi.org/10.1007/s10703-
008-0061-x

20. Clarisó, R., Cortadella, J.: Verification of concurrent systems with parametric
delays using octahedra. In: Proceedings of the Fifth International Conference on
Application of Concurrency to System Design, ACSD 2005, pp. 122–131. IEEE
Computer Society (2005). https://doi.org/10.1109/ACSD.2005.34

21. Clarisó, R., Cortadella, J.: The octahedron abstract domain. Sci. Comput. Pro-
gram. 64(1), 115–139 (2007). https://doi.org/10.1016/j.scico.2006.03.009

22. Collomb-Annichini, A., Sighireanu, M.: Parameterized reachability analysis of the
IEEE 1394 root contention protocol using TReX. In: Proceedings of the Real-Time
Tools Workshop, RT-TOOLS 2001 (2001)

23. D’Argenio, P.R., Katoen, J.-P., Ruys, T.C., Tretmans, J.: The bounded retrans-
mission protocol must be on time!. In: Brinksma, E. (ed.) TACAS 1997. LNCS,
vol. 1217, pp. 416–431. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0035403

24. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int.
J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008). https://doi.org/10.1007/
s10009-007-0062-x

25. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

26. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: A user guide to HyTech. In: Brinksma,
E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 41–71. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60630-0 3

27. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic require-
ments for automotive systems. In: Frehse, G., Althoff, M. (eds.) Proceedings of
the 1st and 2nd International Workshops on Applied veRification for Continu-
ous and Hybrid Systems, ARCH@CPSWeek 2014/ARCH@CPSWeek 2015. EPiC
Series in Computing, vol. 34, pp. 25–30. EasyChair (2014). http://www.easychair.
org/publications/paper/250954

28. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002).
https://doi.org/10.1016/S1567-8326(02)00037-1

https://doi.org/10.1007/978-3-662-47666-6_6
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1007/978-3-319-17524-9_29
https://doi.org/10.1007/s10703-008-0061-x
https://doi.org/10.1007/s10703-008-0061-x
https://doi.org/10.1109/ACSD.2005.34
https://doi.org/10.1016/j.scico.2006.03.009
https://doi.org/10.1007/BFb0035403
https://doi.org/10.1007/BFb0035403
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/3-540-60630-0_3
https://doi.org/10.1007/3-540-60630-0_3
http://www.easychair.org/publications/paper/250954
http://www.easychair.org/publications/paper/250954
https://doi.org/10.1016/S1567-8326(02)00037-1

A Benchmark Library for Parametric Timed Model Checking 83

29. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
401–415. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 28

30. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)

31. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata.
In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Transactions on Petri Nets and Other
Models of Concurrency V. LNCS, vol. 6900, pp. 141–159. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29072-5 6

32. Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)

33. Li, J., Sun, J., Gao, B., André, É.: Classification-based parameter synthesis for
parametric timed automata. In: Duan, Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol.
10610, pp. 243–261. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68690-5 15

34. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00768-2 6

35. Lipari, G., Sun, Y., André, É., Fribourg, L.: Toward parametric timed interfaces for
real-time components. In: Andre, E., Frehse, G. (eds.) 1st International Workshop
on Synthesis of Continuous Parameters, SynCoP 2014. Electronic Proceedings in
Theoretical Computer Science, vol. 145, pp. 49–64, April 2014. https://doi.org/10.
4204/EPTCS.145.6

36. Nguyen, H.G., Petrucci, L., van de Pol, J.: Layered and collecting NDFS with sub-
sumption for parametric timed automata. In: Lin, A.W., Sun, J. (eds.) Proceedings
of the 23rd International Conference on Engineering of Complex Computer Sys-
tems, ICECCS 2018. IEEE, December 2018 (to appear)

37. Palencia Gutiérrez, J.C., González Harbour, M.: Schedulability analysis for tasks
with static and dynamic offsets. In: Proceedings of the 19th IEEE Real-Time Sys-
tems Symposium, RTSS 1998, pp. 26–37. IEEE Computer Society (1998). https://
doi.org/10.1109/REAL.1998.739728

38. Sankur, O.: Symbolic quantitative robustness analysis of timed automata. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 484–498. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 48

39. Sun, Y., André, É., Lipari, G.: Verification of two real-time systems using para-
metric timed automata. In: Quinton, S., Vardanega, T. (eds.) Proceedings of the
6th International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems, WATERS 2015, July 2015

40. Sun, Y., Soulat, R., Lipari, G., André, É., Fribourg, L.: Parametric schedulability
analysis of fixed priority real-time distributed systems. In: Artho, C., Ölveczky,
P.C. (eds.) FTSCS 2013. CCIS, vol. 419, pp. 212–228. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05416-2 14

41. Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch
Petri nets. J. Univers. Comput. Sci. 15(17), 3273–3304 (2009)

42. Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation
using modular performance analysis: a case study. Int. J. Softw. Tools Technol.
Transf. 8(6), 649–667 (2006). https://doi.org/10.1007/s10009-006-0019-5

https://doi.org/10.1007/978-3-642-36742-7_28
https://doi.org/10.1007/978-3-642-36742-7_28
https://doi.org/10.1007/978-3-642-29072-5_6
https://doi.org/10.1007/978-3-319-68690-5_15
https://doi.org/10.1007/978-3-319-68690-5_15
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.4204/EPTCS.145.6
https://doi.org/10.4204/EPTCS.145.6
https://doi.org/10.1109/REAL.1998.739728
https://doi.org/10.1109/REAL.1998.739728
https://doi.org/10.1007/978-3-662-46681-0_48
https://doi.org/10.1007/978-3-319-05416-2_14
https://doi.org/10.1007/s10009-006-0019-5

Formal Timing Analysis of Digital
Circuits

Qurat Ul Ain(B) and Osman Hasan

School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST),

Islamabad, Pakistan
{qain.msee15seecs,osman.hasan}@seecs.nust.edu.pk

Abstract. Formal verification provides complete and sound analysis
results and has widely been advocated for the functional verification
of digital circuits. Besides the functional verification, a very important
aspect of digital circuit design process is their timing analysis. How-
ever, despite its importance and critical nature, timing analysis is usu-
ally performed using traditional techniques, like gate-level simulation or
static timing analysis, which provide approximate results due to their in-
exhaustive nature and thus may lead to an undesired functional behavior
as well. To overcome these issues, we propose a generic framework to
conduct the formal timing analysis using the Uppaal model checker in
this paper. The first step in the proposed framework is to represent the
timing characteristics of the given digital circuit using a state transition
diagram in Uppaal. In this model, delays are integrated using the corre-
sponding technology parameters and the information about timing paths
is added using Quratus Prime Pro, which is used as a path extracting
tool. The Uppaal timing model is then verified through TCTL properties
to obtain timing related information, like maximum delay. For illustra-
tion purposes, we present the analysis of a number of real-world digital
circuits, like Full Adder, 4-Bit Ripple Carry Adder, Shift Registers as
well as C17, S27, S208, and S386 benchmark circuits.

Keywords: Timed automata · Uppaal · Formal verification ·
Timing analysis · Model checking

1 Introduction

Due to the gradual reduction in transistor sizing governed by the Moore’s law and
the continuous increase in integrated circuit complexity, modeling and analyzing
timing characteristics of digital circuits has become a very challenging task.
Timing analysis usually involves determining the timing delays associated with
each component of the circuit based on the technology used and its fan-out
while considering the circuit variations. The delays of individual components are
then used to calculate the overall circuit delay using various analysis techniques,
like gate-level simulation [25] or static timing analysis [16]. However, neither of
c© Springer Nature Switzerland AG 2019
C. Artho and P. C. Ölveczky (Eds.): FTSCS 2018, CCIS 1008, pp. 84–100, 2019.
https://doi.org/10.1007/978-3-030-12988-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12988-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-12988-0_6

Formal Timing Analysis of Digital Circuits 85

these techniques can ensure an exhaustive analysis due to the complexity of the
present-age digital circuits. This kind of an in-exhaustive analysis results in an
incorrect timing analysis, which may in turn lead to a non-optimal design or a
functional bug. Digital circuits are increasingly being used in designing safety-
critical systems, like the ones used in health-care, transportation and defense
related domains. Thus, a non-optimal design or a functional issue may lead to
disastrous consequences, like financial losses or even the loss of human life in
worst case scenarios.

Formal verification [14] is known to overcome the above-mentioned limita-
tions of traditional analysis approaches, like simulation. It has been extensively
used for the functional verification of digital circuits [4,9,15,27]. The main idea
in formal verification based analysis is to construct a formal model of the given
circuit and formally verify the desired behavior of this model using formal specifi-
cations. Model checking [7] is one of the most commonly used formal verification
techniques for the functional verification of digital circuits due to its automatic
verification and the ability to provide a counterexample in the case of a failing
property. It mainly involves modeling the system as a state transition diagram
and the verification is done by exhaustively exploring the state space in a push
button manner.

Due to the dire need of accurate analysis in the domain of timing analysis,
formal verification of timing analysis of digital circuits using model checking got
some attention in recent years. The model checker Open-Kronos has been used for
the timing analysis of combinational circuits [24]. An abstract model of the given
circuit is developed by partitioning the circuit into smaller sub-circuits and reach-
ability graphs are used to model timed automata. A major limitation of this app-
roach is that it uses fixed delay values for all the gates, e.g., the delay of an inverter
is assumed to be 0, and thus the technology parameters and process variations are
completely ignored in the models. Similarly, Open-Kronos is also used for timing
analysis with bi-bounded delay values in [8]. Formal timing verification of digital
circuits, including their combinational and sequential components, is performed in
[5]. The given circuit is modeled at the macroscopic level where a state transition
graph (STG) is modeled as a configuration of inputs while excluding the multiple
input transitions. The delays of the components are extracted from SPICE simula-
tions. The timing behavior of the SPSMALL memory architecture is verified using
a parametric timed automata based model [12]. This technique derives a set of lin-
ear constraints that ensure the correctness of the response times of the memory.
Similarly, symbolic timing verification of concurrent systems is proposed in [13].
The complex polyhedra modeling approach is used as the abstraction to represent
sets of timed states as a timed transition system. Each event in this model has a
symbolic delay defined in an interval [di,Di] where di and Di symbolize minimum
and maximum delay values, respectively.

Formal timing analysis of digital circuits has also been done with various
other motivations. For example, digital circuits have been formally modeled
using propagational delays, which are assumed to take values in an interval
δ[τmin, τmax] in the context of testing of circuits in [28]. The model is developed

86 Q. Ul Ain and O. Hasan

in Uppaal, where delay faults are intentionally inserted into the circuit to gener-
ate counterexamples. These counterexamples are then used for testing of circuits.
Similarly, formal timing analysis of combinational circuits has been performed
to detect the Hardware Trojans using side channel parameters, like delay and
power, in [1]. The main idea in this work is to insert an intrusion in the circuit in
the form of logic gates. After intrusion, formal timing verification is performed
to generate a counterexample. In this technique, only combinational circuits are
formally verified and no sequential circuit is analyzed. Moreover, various circuit
paths are identified manually for delay calculations in a circuit in this work [1].
Based on the above-mentioned discussion, we identify the following limitations
in the existing literature:

– Incompleteness: The existing timing analysis approaches do not consider
all the gates and all their possible input transitions.

– Limited Scope: The delay models used in formal techniques are usually not
based on real delay values.

– Inviability: The exhaustive analysis techniques have enormous verification
times, which leads to their infeasibility for large circuits.

To overcome the deficiencies of the existing formal timing analysis approaches
for digital circuits and thus making the formal timing analysis more accurate, we
propose to use the Elmore delay model [30] to compute the delays of both com-
binational and sequential components of the given circuit. Moreover, instead
of using bi-bounded delays, we propose to calculate the value of the delay at
every possible input transition of every gate in the design. For example, in the
case of a 2 input gate, delays are calculated for all the four possible transi-
tions ΓDelay = [d00, d01, d10, d11]. Moreover, instead of manually searching of
timing paths within a circuit as is the case for all existing formal timing analysis
approaches, we propose to use the Quartus Prime Pro software [21] for auto-
matically extracting the paths of the given circuit. This choice allows us to not
only automate the timing analysis flow but also reduces the risks of ignoring
some timing paths in the design. While using the above-mentioned information,
we develop a formal model of the given circuit in the Uppaal model checker and
then verify its desired timing properties in Uppaal. To facilitate the modeling
and verification process, we provide a generic framework in which by knowing
delays of the basic circuit blocks, i.e., NAND, NOR, NOT and a Flip-Flop, we
can verify the timing behavior of any digital circuit, such as the clock period
of a circuit, the critical paths as well as setup and hold time constraints in a
circuit. It is important to note that by using a model checking tool for the timing
analysis, our results are based on a rigorous exploration of the state space of the
circuit model and thus all the paths and input values are implicitly considered
in the analysis.

The remainder of the paper is structured as follows: We present a brief intro-
duction about the Uppaal model checker in Sect. 2. The proposed methodology
is explained in detail in Sect. 3, followed by Sect. 4 where we describe case studies
and verification results. Finally, Sect. 5 concludes the paper.

Formal Timing Analysis of Digital Circuits 87

2 Uppaal Model Checker

Uppaal [6] is a free academic model checker for the formal verification of real-
time systems. It is based on the timed automata theory [3] and its modeling
language offers many additional features, such as bounded integer variables.

2.1 Timed Automata

A timed automaton (TA) is a tuple TA = (S , so ,T , σ,Y , β), where:

– S is a set of locations.
– so ∈ S is an initial location.
– T is a set of clocks.
– σ is a set of all defined actions.
– Y ⊆ S × σ × B(T) × 2T × S is a set of edges between locations.
– β : S → B(T) assigns invariants to locations.

B(T) is the set of conjunctions over simple conditions, i.e., x − y �� c or
x �� c, where c ∈ N, x , y ∈ T and �� ∈ {=,≥,≤, >,<}. A clock valuation is a
function u : T → R≥0 from the set of clocks to the non-negative real values.
Thus, writing u ∈ β(s) means that u satisfies β(s). Timed automata are finite
state automata having states and transitions, enriched with built-in clocks, which
evolve at a uniform rate and can be reset to their initial value.

A state is a pair (S , α where α is a valuation of clocks and variables in that
particular state. A state (S, α) has a discrete transition t, and system moves
to the next state (S ′, α′) if the constraints on t, called guards, are satisfied.
The interconnection between two timed automata can be obtained by using
synchronization channels. The signal is emitted by one automaton in transition
t and received by one or more automata.

2.2 Queries

Verification of a model using the required specifications is a crucial step in mode-
checking. Similar to a model, properties must be expressed in a formal language.
Uppaal uses a simplified version of TCTL (timed computational tree logic) prop-
erties. Various path formulae supported by Uppaal are:

– ∃♦ρ (Possibly): There exists a path along which query ρ eventually holds.
– ∃�ρ (Potentially always): There exists a path where query ρ always satisfies.
– ∀�ρ (Invariantly): For all paths, query ρ always satisfies.
– ∀♦ρ (Eventually): For all paths, query ρ eventually satisfies.
– ρ � ξ (Leads-to): Whenever ρ satisfies, query ξ holds always eventually.

3 Proposed Methodology

In this section, we explain the proposed methodology, depicted in Fig. 1, for the
formal timing analysis of a digital circuit. Our methodology is comprised of three
major steps: delay calculation, path extraction and modeling and verification in
the Uppaal model checker.

88 Q. Ul Ain and O. Hasan

Fig. 1. Proposed methodology

3.1 Delay Calculation

The individual gate delays are estimated in the proposed methodology based on
individual transitions at the gate inputs using the Elmore delay model [1], which
computes the delay by representing each circuit in the form of an RC tree. Many
timing analysis tools estimate the delay of the component based on the time dif-
ference between 50% of the input transition to the 50% of the output transition.
However, the Elmore delay model considers the Resistor Capacitor relationships
to compute the delay and hence provides a better estimate of the delay com-
pared to the above-mentioned traditional approach. The delay is estimated by
the model from a source node to one of the leaf nodes by accumulating the
capacitances Ci on each node of the path, multiplied by the effective resistance
Ris on the shared path from source node to the leaf node.

Te =
∑

i

Ci × Ris (1)

τdelay = Te × ln(2) (2)

Using the basic technology parameters, we calculate the capacitance and
resistance values for PMOS and NMOS transistors in an ON state. We propose
to develop timing models for the basic circuit components, i.e., NAND, NOR,
NOT and a Flip-Flop. These gates are then further used to model complex
circuits. Gate capacitances for PMOS and NMOS [22] are given below:

CgatenMOS = CgminN × fan − out × WRnMOS (3)

Formal Timing Analysis of Digital Circuits 89

CgatepMOS = CgminP × fan − out × WRpMOS (4)

Where Cgmin represents the minimum gate capacitance and WR represents the
width ratio. CL is the load capacitance calculated from the addition of gate
capacitances of all the gates connected at the output of the considered compo-
nent.

CL =
a∑

k=1

CgatenMOSk +
b∑

j=1

CgatepMOSj (5)

Diffusion capacitance CDiff can be calculated from the drain capacitance [30].
The addition of load and diffusion capacitance leads to the total capacitance of
a gate CT , which is used for the calculation of delay.

CT = CL + CDiff (6)

Resistance of a PMOS or NMOS [23] can be calculated as follows:

Ron =
1

WL × μ × Cox × (VGS − VTH)
(7)

Using the values of corresponding resistances and capacitances, we can find
out the Elmore delays for NAND, NOT, and NOR gates. Delay is calculated by
considering all the possible input transitions of a gate. For example, the Elmore
delay equations for the NAND gate are shown in Table 1.

Table 1. NAND gate delay equations

Input transition Output Delay equation

00 1 ln(2) × [(CT × Rp)/(2 ×WRpMOS)]

01 1 ln(2) × [(CT × Rp)/WRpMOS]

10 1 ln(2) × [((CT + CST) × Rp)/WRpMOS]

11 0 ln(2) × [(CT × 2 × Rn)/WRnMOS]

We have used the True Single-Phase Clocked (TSPC) Flip-Flop model [22]
to capture the timing behavior of the Flip-Flop as this provides less complexity
and less number of transistors to deal with [22]. Setup time, hold time, and clock
to Q delay are the three most important timing constraints in a Flip-Flop. In the
TSPC Flip-Flop model, the setup time is assigned a delay of one inverter, the
hold time is considered to be less than one inverter delay and the propagational
delay is considered to be equal to three inverter delays. Similarly, in our model,
we consider the hold time to be equal to one inverter delay in the worst case.
The delay equations used in our model for setup time, hold time and the clock
to Q in a Flip-Flop are given in Table 2.

90 Q. Ul Ain and O. Hasan

Table 2. Flip-Flop delay equations

Data input Output Delay equation

Setup time

0 0 ln(2) × [(CT × Rp)/WRpMOS)]

1 1 ln(2) × [(CT × Rn)/WRnMOS)]

Hold time

0 0 ln(2) × [(CT × Rp)/WRpMOS)]

1 1 ln(2) × [(CT × Rn)/WRnMOS)]

Clk2Q delay

0 0 ln(2) × [(3 × CT × Rp)/WRpMOS)]

1 1 ln(2) × [(3 × CT × Rn)/WRnMOS)]

3.2 Path Extraction

Calculation of a delay in a circuit, which is composed of several gates and Flip-
Flops, is done based on its various paths, i.e., from input to a Flip-Flop, between
Flip-Flops and from a Flip-Flop to an output. The delay of a path is calculated
by adding delays of logic elements present in that path. In the case of smaller
circuits, we can manually analyze all the paths in a circuit and can calculate the
delays of all the paths. But in case of large circuits, it is impossible to analyze
the paths manually, therefore we propose to use a software that can provide all
the valid paths in a circuit automatically from a given circuit netlist. We found
Altera Quartus Prime Pro [21] to be the most relevant tool for this purpose. It
not only provides all the possible paths from all input ports to all output ports
but can also provide paths from the input port to a Flip-Flop, Flip-Flop to a
Flip-Flop, or Flip-Flop to an output port.

In the path extraction phase of the proposed methodology, we have to pro-
vide the Verilog code of the circuit that needs to be analyzed. This Verilog file is
first analyzed and synthesized. After compilation, we run the TimeQuest Tim-
ing Analyzer tool to get the information about the paths in the given circuit.
Synopsys design constraint file and a timing netlist is thus created automatically
by the Timing Analyzer. After this, we can analyze the paths that are reported
by the TimeQuest Timing Analyzer.

3.3 Modeling and Verification in Uppaal Model Checker

Modeling and verification in Uppaal is the most important step in our approach
for the timing verification of circuits. Firstly, the given netlist is translated to its
corresponding state transition diagram. This state transition diagram along with
the delay values of logic elements and path information from TimeQuest Timing
Analyzer is used for this purpose in the Uppaal Model Checker. The TCTL
properties of path delays have to be given to the Uppaal model checker as well.
The state space model is then verified in Uppaal against the identified TCTL

Formal Timing Analysis of Digital Circuits 91

properties to judge the circuit performance. We mainly check that the delay in a
circuit is less than the required maximum delay. If the delay of the circuit exceeds
the maximum delay, then the Uppaal model checker returns a counterexample
which provides us the exact trace that caused the timing violation. Thereafter,
it can be investigated if the issues are due to a modeling error or its an actual
timing violation.

In order to facilitate the modeling of digital circuits, we developed the formal
models of the basic gates, i.e., NAND, NOR, NOT and a Flip-Flop, in Uppaal and
these models can be built upon to formalize models of larger complex circuits.

For example, The TA of the NOT gate is shown in Fig. 2 where xin not is the
input and xout not is the output. At the initial state, the selection expression
xin not: int[0, 1] allows to assign a boolean value 1 or 0 to the input xin not.
The fan-out fo not is updated depending upon how many gates are connected
at the output port of the gate. Based on the value of the input, internal resis-
tances, internal capacitances, fan-out, and various technology parameters, the
delay delay not is calculated using the Elmore delay equation. The output gets
its appropriate value, i.e., the negation of input out not:= !(xin not), after the
delay has elapsed. Similarly, the models of other basic gates have also been
developed and they can be used to formalize any combinational gate-level cir-
cuit. Sequential circuits also contain Flip-Flops besides the basic logic gates and
to formalize their behavior, we also formalized the Flip-Flop. The proposed Flip-
Flop model along with the clock is shown in Fig. 3. The input signal is updated
in the first state. Based on the value of the input, internal resistances, internal
capacitances, fan-out, and various technology parameters, the setup time, hold
time and clock to Q delay is calculated using the Elmore delay equations.

Fig. 2. Timed automaton of the NOT gate

Fig. 3. Timed automata of a flip-flop and a clock

92 Q. Ul Ain and O. Hasan

In the proposed methodology, we can develop the models of more complex
circuits by interconnecting the basic gates and Flip-Flop models. Some simple
circuits designed from the basic gates, i.e., NAND, NOT, and NOR, are shown
in Fig. 4.

Fig. 4. Designing some simple circuits using basic gates

We propose to verify the following properties.

– Firstly, we check the deadlock property, which ensures that the timed automa-
ton is not stuck at any particular state and thus moves ahead through all the
states.

∀ � not deadlock

– For verifying combinational circuits, we check that the delay, considering
all the paths delay in the given combinational model, does not exceed the
maximum delay value for the given circuit. If the delay exceeds the maximum
value and the property fails then we get a counterexample.

∀ � !((delaygate1 + delaygate2 + · · · · · · + delaygaten) > D maxcomb))

Where D maxcomb = max(delaygate1 , delaygate2 , · · · · · · , delaygaten) repre-
sents the maximum delay in the considered path.

– For verifying sequential circuits, we check the input port to Flip-Flop and
Flip-Flop to output port paths just like we check the timing properties of
combinational circuits. Moreover, we also need to conduct the Flip-Flop
to Flip-Flop path analysis while considering the setup and hold time con-
straints, which allows us to determine the clock period of the given circuit
and avoid metastability. For example, consider a typical sequential circuit
scenario, shown in Fig. 5, where we have an input port IN , two Flip-Flops

Formal Timing Analysis of Digital Circuits 93

FF1 and FF2 and an output port OUT . There are i gates between input
and FF1 , n gates between Flip-Flops, and j gates between FF2 and output.
We propose to verify the following properties in this case.

ith No.
 Gates

Flip-Flop 1
nth No.

of Gates

jth No.
of GatesFlip-Flop 2IN

CLK

OUT

FF1hold
FF1Clk2Q

FF1setup

FF2Clk2Q

FF2setup
FF2hold

∑delaygatei ∑delaygaten
∑delaygatej

Fig. 5. A typical sequential circuit

∀ � ((delaygate1+delaygate2+· · ·+delaygatei)≤D maxINtoFF)
∀ � (T ≥(FF1clk2Q+delaygate1+delaygate2+· · ·+delaygaten)+FF2setup)

∀ � ((FF1clk2Q+delaygate1+delaygate2+· · ·+delaygaten)≥FF2hold)
∀ � ((FF2clk2Q+delaygate1+delaygate2+· · ·+delaygatej)≤D maxFFtoOUT)

4 Case Studies

For illustration purpose, we present the analysis of C17, and S27 benchmark
circuits in this section. Due to the large size of transition diagrams, we only sum-
marize path information and verified properties of these circuits in this section.

Fig. 6. Benchmark circuits

4.1 C17 Benchmark

C17, shown in Fig. 6(a), is one of the benchmarks from ISCAS-85 that consists of
5 input ports and 2 output ports. The path report of the C17 circuit generated
from TimeQuest Timing Analyzer is modeled in Uppaal with the help of a single
function in order to reduce the complexity in a state transition diagram.

94 Q. Ul Ain and O. Hasan

c17 p1 = (delay1 nand c17+delay5 nand c17) ; //N1 −−> N22
c17 p2 = (delay3 nand c17+delay5 nand c17) ; //N2 −−> N22
c17 p3 = (delay3 nand c17+delay6 nand c17) ; //N2 −−>N23
c17 p4 = (delay2 nand c17+delay3 nand c17+delay6 nand c17) ; //N3 −−> N23
c17 p5 = (delay2 nand c17+delay3 nand c17+delay5 nand c17) ; //N3 −−> N22
c17 p6 = (delay2 nand c17+delay4 nand c17+delay6 nand c17) ; //N6 −−> N23
c17 p7 = (delay2 nand c17+delay3 nand c17+delay5 nand c17) ; //N6 −−> N22
c17 p8 = (delay4 nand c17+delay6 nand c17) ; //N7 −−> N23
c17 p9 = (delay1 nand c17+delay5 nand c17) ; //N3 −−> N22
c17 p10 = (delay2 nand c17+delay4 nand c17+delay6 nand c17) ; //N3 −−> N23
c17 p11 = (delay2 nand c17+delay3 nand c17+delay6 nand c17) ; //N6 −−> N23

Some of the properties that are verified against specified paths are shown below,
where Tmax represents the maximum value of delay for a particular path. These
properties are checked against all the paths and all the states in the model.

– ∀ � (!(c17 p1 > Tmax c17−p1)) − ∀ � (!(c17 p2 > Tmax c17−p2))

We also verified many other properties for this benchmark and the details
can be found in [2].

4.2 S27 Benchmark

S27, shown in Fig. 6(b), is one of the sequential circuit benchmarks from ISCAS-
89 that consists of 4 input ports and 1 output port. All the timing reports of S27,
including the paths from input to Flip-Flops, between Flip-Flops, and from Flip-
Flops to output, generated from TimeQuest Timing Analyzer, were modeled in
Uppaal with the help of three functions, one function for each type, in order to
reduce the complexity in the resulting state transition diagram.
de l ay p1 in = (de lay2 or+delay1 nand+de lay4 nor) ; // G3−−>FF3
de l ay p2 in = (de lay3 nor+de lay1 or+delay1 nand+de lay4 nor) ; // G1−−>FF3
de l ay p3 in = (de lay1 not+de lay2 or+delay1 and+delay1 nand+de lay4 nor) ; // G0−−>FF3
de l ay p4 in = (de lay1 not+de lay1 or+delay1 and+delay1 nand+de lay4 nor) ; // G0−−>FF3
de l ay p5 in = (de lay2 nor) ; // G2−−>FF2
de l ay p6 in = (de lay3 nor+de lay2 nor) ; // G1−−>FF2
de l ay p7 in = (de lay1 not+de lay1 nor) ; // G0−−>FF1
de l ay p8 in = (de lay1 not+de lay1 or+delay1 and+delay1 nand+de lay4 nor+

de lay1 nor) ; // G0−−>FF1
de l ay p9 in = (de lay1 not+de lay2 or+delay1 and+delay1 nand+de lay4 nor+

de lay1 nor) ; // G0−−>FF1

d e l a y p 1 f f = (delay1 c lk2Q+de lay4 nor+de lay3 se tup) ; // FF1−−>FF3
d e l a y p 2 f f = (delay2 c lk2Q+de lay3 nor+de lay1 or+delay1 nand+de lay4 nor+

de lay3 se tup) ; // FF2−−>FF3
d e l a y p 3 f f = (delay3 c lk2Q+delay1 and+de lay2 or+delay1 nand+de lay4 nor+

de lay3 se tup) ; // FF3−−>FF3
d e l a y p 4 f f = (delay3 c lk2Q+delay1 and+de lay1 or+delay1 nand+de lay4 nor+

de lay3 se tup) ; // FF3−−>FF3
d e l a y p 5 f f = (delay2 c lk2Q+de lay3 nor+de lay2 nor+de lay2 se tup) ; // FF2−−>FF2

de lay p1 h1 = (delay1 c lk2Q+de lay4 nor) ; // FF1−−>FF3
de lay p2 h2 = (delay2 c lk2Q+de lay3 nor+de lay1 or+delay1 nand+de lay4 nor) ; / / FF2−−>FF3
de lay p4 h3 = (delay3 c lk2Q+delay1 and+de lay2 or+delay1 nand+de lay4 nor) ; / / FF3−−>FF3
de lay p5 h4 = (delay3 c lk2Q+delay1 and+de lay1 or+delay1 nand+de lay4 nor) ; / / FF3−−>FF3
de lay p6 h5 = (delay2 c lk2Q+de lay3 nor+de lay2 nor) ; // FF2−−>FF2

de lay p1 out = (delay2 c lk2Q+de lay3 nor+de lay1 or+delay1 nand+de lay4 nor+
de lay2 not) ; // FF2−−>G17

de lay p2 out = (delay1 c lk2Q+de lay4 nor+de lay1 or+de lay2 not) ; // FF1−−>G17
de lay p3 out = (delay3 c lk2Q+delay1 and+de lay2 or+delay1 nand+de lay4 nor+

de lay2 not) ; // FF3−−>G17
de lay p4 out = (delay3 c lk2Q+delay1 and+de lay1 or+delay1 nand+de lay4 nor+

de lay2 not) ; // FF3−−>G17

Some of the properties which are verified against each specified path are
written below. We also verified many other properties for this benchmark and
the details can be found in [2]. In these properties, the variable, Tmax, represents
the maximum delay time and Tclk , represents the time period of a clock.

Formal Timing Analysis of Digital Circuits 95

– ∀ � (delayp1−in ≤ Tmaxp1−in) − ∀ � (delayp2−in ≤ Tmaxp2−in)
– ∀ � (Tclk ≥ (delayp1−ff)) − ∀ � (Tclk ≥ (delayp2−ff))
– ∀ � (delayp−h1 ≥ (delay3−hold)) − ∀ � (delayp−h2 ≥ (delay3−hold))
– ∀ � (delayp1−out ≤ (Tmaxp1−out)) − ∀ � (delayp2−out ≤ (Tmaxp2−out))

4.3 Verification Results

The considered combinational circuits and their verification statistics are sum-
marized in Table 3 using the information about the total number of gates in
the given circuit, its verification time and the memory utilization during the
verification phase of corresponding circuit. Modeling and verification details of
sequential circuits are summarized in Table 4 using the total number of gates
and Flip-Flops in the given circuit, its verification time, and the memory uti-
lization. We noticed that the number of explored states during the verification
significantly increases with an increase in the number of inputs of basic gates,

Table 3. Result of combinational circuits

Circuits Number of gates Verification

NAND NOR NOT Time (s) Memory (MB)

C17 [11] 6 - - 0.014 7.34

C17 [29] 7 - - 0.021 7.35

C17 [19] 9 1 2 0.033 11.78

Full Adder [20] 11 - - 0.032 8.82

Full Adder [17] 10 3 1 0.074 16.06

Full Adder [1] 14 3 1 0.91 18.06

4-bit RCA [17] 40 12 4 63.31 2684

Table 4. Result of sequential circuits

Circuits Number of gates Number of
Flip-Flops

Verification

NAND NOR NOT Time (s) Memory
(MB)

Flip-Flop [22] - - - 1 0.019 7.85

16-bit SIPO shift register [18] - - - 16 0.031 10.38

64-bit SISO shift register [18] - - - 64 0.047 16.80

64-bit Ring counter [26] - - - 64 0.090 21.19

64-bit Johnson counter [26] - - 1 64 0.100 27.29

S27 [10] 2 6 5 3 2.46 43.96

S208 [10] 39 37 90 8 316 8820

S386 [10] 151 36 228 6 3306 29745

96 Q. Ul Ain and O. Hasan

Fig. 7. Maximum delays of basic gates

such as NOT, NAND, NOR, AND and OR. For example, the total number of
explored states in the 4-bit RCA is 16316416 whereas 105735463 states were
explored while analyzing the S368 circuit.

We calculated the maximum delays of basic gates, such as NOT, NAND,
NOR, AND and OR as shown in Fig. 7. In case of NOT, AND and OR, the
maximum delay for 3 input and 4 input is same since the type and number of
logic elements are same in a path. The maximum delays in case of the considered
combinational circuits is shown in Fig. 8(a), whereas the maximum time periods
of the clock in case of sequential circuits is shown Fig. 8(b).

Fig. 8. Timing analysis results

In comparison with an existing technique, presented in [1], which uses the
nuXmv model checker for verifying combinational circuits, we find our results to
be acquired in a much faster manner as shown in Fig. 9(a). This result is based
on the maximum time utilized by the model checker for the property verification.
For example, the verification time in [1] and the proposed technique in case of
the C17 circuit is 1530 s and 0.014 s, respectively. In [1], real numbers are used
for modeling and delay calculations, which causes an enormous increase in the
state space. We propose to overcome these limitations by performing major real
number calculations manually and then use the final delay values in an integral

Formal Timing Analysis of Digital Circuits 97

form in the model checker in order to minimize the state explosion problem.
In comparison with the existing techniques, we also verify circuits with larger
number of gates and Flip-Flops, i.e., upto 415 gates and 64 Flip-Flops, as shown
in Fig. 9(b).

Fig. 9. Comparison with existing techniques

A summary of comparison of the proposed approach with some existing tech-
niques is shown in Table 5. The comparative analysis is mainly based on seven
parameters. The first two parameters show the type of a circuit, which is ana-
lyzed, i.e, combinational or sequential circuit. Automatic path extraction, depicts
whether the existing techniques perform path analysis automatically or not. Next
two parameters refer to delay modeling techniques and the model checker used
for the formal verification. Finally, the last two parameters show the maximum
gates and Flip-Flops verified by the corresponding technique. Our technique is
found to be better than existing techniques in the following ways:

– Unlike some existing techniques [1,24], we perform timing verification of the
combinational as well as sequential circuits.

– In order to perform more realistic modeling and verification, we proposed to
use the Elmore delay modeling technique [1] instead of assumed delay model
as used in [8,13,24,28].

– We proposed to extract the path information automatically using Quartus
Prime Pro [21].

– We verify circuits with comparatively larger number of gates and Flip-Flops
compared to all the existing formal timing analysis works.

98 Q. Ul Ain and O. Hasan

Table 5. Comparison with existing techniques

Related work Comb
cct

Seq
cct

Auto.
Path

Delay model Tool Max
gates

Max
FF

Bozga et al. [8] � � x Assumed delay Open-Kronos 24 4

Salah et al. [24] � x x Assumed delay Open-Kronos 88 x

Clariso et al. [13] � � x Symbolic delay Abstract Algorithm 12 4

Bara et al. [5] � � x Spice delay Kronos/Uppaal 100 15

Abbasi et al. [1] � x x Elmore delay nuXmv 68 x

Proposed work � � � Elmore delay Uppaal 415 64

5 Conclusions

This paper presented a model checking based approach for the formal timing
analysis of digital circuits. The main idea behind this approach is to use timed
automata as a state transitions diagram for formal modeling of the digital circuits
and TCTL queries for the formal verification of their timing properties using the
Uppaal model checker. We have developed a generic framework to facilitate the
formal timing analysis by developing the models of the basic components of a
digital circuit, i.e., logic gates and Flip-Flops, that can be built upon for the
formal modeling of more complex circuits. Moreover, the proposed approach
supports the automatic path extraction using Quartus Prime Pro along with
the modeling and verification in Uppaal. The proposed approach can be used to
formally verify various timing characteristics, such as finding the clock period of
a circuit, finding the critical path and the setup and hold time constraints in a
circuit. For illustration purposes, we used the proposed approach to conduct the
formal timing analysis of a number of real-world digital circuits, such as Adders,
Shift Registers, C17, S27, S208, and S386 circuits. In the future, we plan to
incorporate routing delays and clock skew in a circuit so that we have a more
accurate and realistic timing model.

References

1. Abbasi, I.H., Lodhi, F.K., Kamboh, A.M., Hasan, O.: Formal verification of gate-
level multiple side channel parameters to detect hardware Trojans. In: Artho, C.,
Ölveczky, P.C. (eds.) FTSCS 2016. CCIS, vol. 694, pp. 75–92. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-53946-1 5

2. Ul Ain, Q.: Formal Timing Analysis of Digital Circuits (2018). http://save.seecs.
nust.edu.pk/projects/ftadc/

3. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Logic
in Computer Science, pp. 414–425. IEEE (1990)

4. Andraus, Z.S., Sakallah, K.A.: Automatic abstraction and verification of verilog
models. In: Proceedings of 41st Design Automation Conference, pp. 218–223 (2004)

5. Bara, A., Bazargan-Sabet, P., Chevallier, R., Ledu, D., Encrenaz, E., Renault, P.:
Formal verification of timed VHDL programs. In: Forum on Specification Design
Languages, pp. 80–85. IET (2010)

https://doi.org/10.1007/978-3-319-53946-1_5
http://save.seecs.nust.edu.pk/projects/ftadc/
http://save.seecs.nust.edu.pk/projects/ftadc/

Formal Timing Analysis of Digital Circuits 99

6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal 4.0 (2006)
7. Bérard, B., et al.: Systems and Software Verification: Model-Checking Techniques

and Tools. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04558-
9

8. Bozga, M., Jianmin, H., Maler, O., Yovine, S.: Verification of asynchronous circuits
using timed automata. Electron. Notes Theor. Comput. Sci. 65(6), 47–59 (2002)

9. Braibant, T.: Coquet: a Coq library for verifying hardware. In: Jouannaud, J.-P.,
Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 330–345. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25379-9 24

10. Brglez, F., Bryan, D., Kozminski, K.: Notes on the ISCAS 1989 benchmark circuits.
North-Carolina State University (1989)

11. Bryan, D.: The ISCAS 1985 benchmark circuits and netlist format. North Carolina
State University, vol. 25 (1985)

12. Chevallier, R., Encrenaz-Tiphene, E., Fribourg, L., Xu, W.: Timed verification of
the generic architecture of a memory circuit using parametric timed automata.
Form. Methods Syst. Des. 34(1), 59–81 (2009)

13. Clarisó, R., Cortadella, J.: Verification of timed circuits with symbolic delays. In:
Asia and South Pacific Design Automation Conference, pp. 628–633. IEEE (2004)

14. Hasan, O., Tahar, S.: Formal verification methods. In: Encyclopedia of Information
Science and Technology, Third Edition, pp. 7162–7170. IGI Global (2015)

15. Irfan, A., Cimatti, A., Griggio, A., Roveri, M., Sebastiani, R.: Verilog2SMV: a
tool for word-level verification. In: Design Automation Test in Europe Conference
Exhibition, pp. 1156–1159 (2016)

16. Kilts, S.: Static Timing Analysis. Advanced FPGA Design: Architecture, Imple-
mentation, and Optimization, pp. 269–278 (2007)

17. Mano, M.M., Kime, C.R.: Logic and Computer Design Fundamentals, vol. 3. Pren-
tice Hall, Upper Saddle River (2008)

18. Maxfield, C.: Bebop to the Boolean Boogie: An Unconventional Guide to Electron-
ics. Newnes, Oxford (2008)

19. Mukhopadhyay, D., Chakraborty, R.S.: Hardware Security: Design, Threats, and
Safeguards. Chapman and Hall/CRC, Boca Raton (2014)

20. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design. zadnje
izdanje (1994)

21. Quartus prime standard edition handbook (2015)
22. Rabaey, J.M., Chandrakasan, A.P., Nikolic, B.: Digital Integrated Circuits, vol. 2.

Prentice hall Englewood Cliffs, New Jersey (2002)
23. Razavi, B.: Design of Analog CMOS Integrated Circuits. Tata McGraw-Hill Edu-

cation, New York City (2002)
24. Salah, R.B., Bozga, M., Maler, O.: On timing analysis of combinational circuits. In:

Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 204–218.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-40903-8 17

25. Saleh, R., Jou, S.J., Newton, A.R.: Gate-level simulation. In: Saleh, R., Jou,
S.J., Newton, A.R. (eds.) Mixed-Mode Simulation and Analog Multilevel Simu-
lation, pp. 123–152. Springer, Heidelberg (1994). https://doi.org/10.1007/978-1-
4757-5854-2 5

26. Shift Registers and Counters (2014). https://computing.ece.vt.edu/Li-aB/
Microelectronic%20Systems/Lectures/Digital%20Logic/pdf/Shift%20register-s.
pdf

27. Shiraz, S., Hasan, O.: A library for combinational circuit verification using the
hol theorem prover. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 37(2),
512–516 (2018)

https://doi.org/10.1007/978-3-662-04558-9
https://doi.org/10.1007/978-3-662-04558-9
https://doi.org/10.1007/978-3-642-25379-9_24
https://doi.org/10.1007/978-3-540-40903-8_17
https://doi.org/10.1007/978-1-4757-5854-2_5
https://doi.org/10.1007/978-1-4757-5854-2_5
https://computing.ece.vt.edu/Li-aB/Microelectronic%20Systems/Lectures/Digital%20Logic/pdf/Shift%20register-s.pdf
https://computing.ece.vt.edu/Li-aB/Microelectronic%20Systems/Lectures/Digital%20Logic/pdf/Shift%20register-s.pdf
https://computing.ece.vt.edu/Li-aB/Microelectronic%20Systems/Lectures/Digital%20Logic/pdf/Shift%20register-s.pdf

100 Q. Ul Ain and O. Hasan

28. Takan, S., Guler, B., Ayav, T.: Model checker-based delay fault testing of sequential
circuits. In: Architecture of Computing Systems, pp. 1–7. VDE (2015)

29. Wei, S., Meguerdichian, S., Potkonjak, M.: Malicious circuitry detection using ther-
mal conditioning. IEEE Trans. Inf. Forensics Secur. 6(3), 1136–1145 (2011)

30. Weste, N.H., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective.
Pearson Education, London (2015)

Embedding CCSL into Dynamic Logic:
A Logical Approach for the Verification

of CCSL Specifications

Yuanrui Zhang1, Hengyang Wu1, Yixiang Chen1, and Frédéric Mallet2(B)

1 MoE Engineering Research Center for Software/Hardware Co-design Technology
and Application, East China Normal University, Shanghai 200062, China

2 Université Cote d’Azur, I3S, CNRS, Inria, 06900 Sophia Antipolis, France
frederic.mallet@inria.fr

Abstract. The Clock Constraint Specification Language (CCSL) is a
clock-based specification language for capturing causal and chronometric
constraints between events in Real-Time Embedded Systems (RTESs).
Due to the limitations of the existing verification approaches, CCSL lacks
a full verification support for ‘unsafe CCSL specifications’ and a unified
proof framework. In this paper, we propose a novel verification app-
roach based on theorem proving and SMT-checking. We firstly build a
logic called CCSL Dynamic Logic (CDL), which extends the traditional
dynamic logic with ‘signals’ and ‘clock relations’ as primitives, and with
synchronous execution mechanism for modelling RTESs. Then we pro-
pose a sound and relatively complete proof system for CDL to provide
the verification support. We show how CDL can be used to capture RTES
and verify CCSL specifications by analyzing a simple case study.

1 Introduction

UML/MARTE [1] is an extension of UML dedicated to the modelling and analy-
sis of Real-Time Embedded Systems (RTESs). Its time model relies on so-called
clocks to identify control and observation points in the UML model. These clocks
can be used to specify how the system behaves. The Clock Constraint Specifica-
tion Language (CCSL) [2,3] is a formal declarative language defined in an annex
of MARTE to specify the expected behaviour of the model. Given a system
model (or a concrete implementation) and a CCSL specification, the question
to answer is whether the system can only perform behaviors that are accepted
by the CCSL specification [4]. When a CCSL specification can be encoded as a
finite transition system, it is called ‘safe’ [5], then the verification task mainly
consists in making reachability analysis on the product of the system and the
CCSL specification. Most recently SMT encoding of CCSL [6] proved to be a
promising way to verify unsafe CCSL specification, however, there is no proof
environment available so far for reasoning on general specifications.

F. Mallet—This work was partly funded by the French Government, through program
#ANR-11-LABX-0031-01.

c© Springer Nature Switzerland AG 2019
C. Artho and P. C. Ölveczky (Eds.): FTSCS 2018, CCIS 1008, pp. 101–118, 2019.
https://doi.org/10.1007/978-3-030-12988-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12988-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-12988-0_7

102 Y. Zhang et al.

In this paper, we propose a novel approach for the verification of CCSL,
which is based on the combination of theorem proving and SMT-checking. To
capture both the system model and the CCSL specification, we choose dynamic
logic [7], since it contains both dynamic program and static logic as its prim-
itives. We propose a variation of dynamic logic, called ‘CCSL Dynamic Logic’
(CDL), which extends the traditional First-Order Dynamic Logic (FODL) [8]
with ‘signal’ and ‘CCSL clock relations’ as primitives in its syntax. CDL also
supports synchronous events in order to capture synchronous system models [9].
We propose a sound and relatively complete proof system for CDL in order to
verify CDL formulas in a modular way.

sys model CCSL def

[p]ξ

CCSL rel

proof sys QF-AFOL SMT-check yes/no?

encoded

express

Tool Support

product

Fig. 1. Verification framework of CDL

Our approach for verification of CCSL specifications can be illustrated in a
verification framework given in Fig. 1. The verification task can be captured as
a CDL formula of the form [p]ξ, where part of the CCSL specification, called
‘clock relations’ (will be introduced in Sect. 2), are expressed by a formula ξ,
and the product of the system model and ‘clock definitions’ (the other part of
the CCSL specification) can be captured by a program of CDL p. In CDL, a
formula [p]ξ can be transformed into Quantifier-Free, Arithmetical First-Order
Logic (QF-AFOL) formulas through a deduction procedure in the proof system
of CDL. Then the validity of these formulas can be handled by an SMT-checking
procedure in an efficient way [10], and according to which the verification result
is obtained. With CDL, CCSL specifications can be verified in a unified proof
framework, provided with strong tool support, e.g. Isabelle [11] and Coq [12].

The rest of this paper is organized as follows: Sect. 2 gives a general intro-
duction to CCSL and FODL. Section 3 introduces the syntax and semantics of
CDL. In Sect. 4, we propose the proof system for CDL. In Sect. 5, we give a
simple case study to show how CDL can express and verify CCSL verification
problems. Section 6 introduces the related works, and Sect. 7 concludes this paper
and discusses about future work.

2 Preliminaries of CCSL and FODL

We present the syntax and semantics of CCSL based on [4,13]. In CCSL, a logical
clock actually models a sequence of occurrences of a signal in synchronous mod-
els [14]. A logical clock c is defined as an infinite sequence of instants (ci)i∈N+ ,

Embedding CCSL into Dynamic Logic 103

where each ci can be ‘tick’ or ‘idle’, representing that the signal associated to c
occurs or not at a discrete time i. N

+ is the set of natural numbers. Clock rela-
tions describe binary relationships between clocks. The syntax of clock relations
is defined by:

Rel ::= c1 ⊆ c2 | c1#c2 | c1 ≺ c2 | c1 � c2,

where c1, c2 are arbitrary clocks. We use C to denote a finite set of clocks. A
schedule σ : N → P(C) is a finite or infinite sequence of clock ticks, N = N

+∪{0}.
It gives a global view of how each clock ticks at each instant. For any i ∈ N

+,
σ(i) = {c | c ∈ C ∧ ci = tick}. σ(0) = ∅ indicates the beginning of the sequence
where no clock ticks. Xσ : C × N

+ → N keeps track of the number of ticks for
each clock. Xσ(c, i) = |{j | j ∈ N

+, j ≤ i, c ∈ σ(j)}| is called a configuration
of clock c at time i. The semantics of clock relations is defined as items 1–4 in
Table 1. ‘Subclock’ says that c1 can only tick if c2 ticks; ‘Exclusion’ means that
c1, c2 can not tick at the same instant; ‘Precedence’ means that c1 always ticks
faster than c2; ‘Causality’ expresses that c1 ticks not slower than c2.

For example, the leftmost figure of Fig. 2 shows a possible schedule σ for
clock relation c1 ≺ c2, where clock

b = tick tick tick tick tick tick tick tick tick tick tick tick . . . ,

c1 = tick idle tick tick idle idle tick idle idle tick idle idle . . . ,

c2 = idle tick idle tick idle idle tick tick idle idle tick idle

b is a based clock representing the minimal granularity of time. Schedule

σ = ∅{c1}{c2}{c1}{c1, c2}∅∅{c1, c2}{c2}∅{c1}{c2}∅

Xσ(c1, 1) = 1, Xσ(c1, 2) = 1, Xσ(c1, 3) = 2. Xσ(c2, 1) = 0, Xσ(c2, 2) = 1.

b

c1

c2

c1 ≺ c2

b

c′

c

c � c′ ∝ n (n = 2)

b

c′

c

c � c′$n (n = 2)

Fig. 2. A possible schedule for selected clock constraints

Clock definition enhances the expressiveness of CCSL by allowing new clocks
to be defined using different clock expressions. A clock definition is of the form:
Cdf ::= c � E where E is a clock expression defined by the following grammar:

E ::= c1 + c2 | c1 ∗ c2 | c1 � c2 | c1 � c2 | c1 � c2 | c ∝ n | c$n | c1 ∨ c2 | c1 ∧ c2.

104 Y. Zhang et al.

c1, c2 are arbitary clocks. n ≥ 1. The semantics of clock definitions are defined as
items 5–13 in Table 1. ‘Union’ defines the clock that ticks iff either c1 or c2 ticks;
‘Intersection’ defines the clock that ticks whenever both c1 and c2 tick; ‘(Strict)
Sample’ defines the clock that (strictly) samples c1 based on c2; ‘Interruption’
defines the clock that ticks as c1 until c2 ticks; ‘Periodicity’ defines the clock
that ticks every n ticks of clock c′; ‘Delay’ defines the clock that ticks when c′

ticks but is delayed for n ticks of c′. ‘Infimum’ (‘Supremum’) defines the slowest
(fastest) clock that is faster (slower) than both c1 and c2.

e.g., Fig. 2 shows a possible schedule of clock definitions c � c′ ∝ n and
c � c′$n (when n = 2), which are used in the case study we give in Sect. 5.

Table 1. Semantics of CCSL

1. σ �ccsl c1 ⊆ c2 iff ∀i ∈ N
+.c1 ∈ σ(n) → c2 ∈ σ(n) (Subclock)

2. σ �ccsl c1#c2 iff ∀i ∈ N
+.c1 /∈ σ(i) ∨ c2 /∈ σ(i) (Exclusion)

3. σ �ccsl c1 ≺ c2 iff ∀i ∈ N
+.(Xσ(c1, i) = 0 ∧ Xσ(c2, i) = 0) ∨ Xσ(c1, i) > Xσ(c2, i) (Precedence)

4. σ �ccsl c1 	 c2 iff ∀i ∈ N
+.Xσ(c1, i) ≥ Xσ(c2, i) (Causality)

5. σ �ccsl c � c1 + c2 iff ∀i ∈ N
+.c ∈ σ(i) ↔ (c1 ∈ σ(i) ∨ c2 ∈ σ(i)) (Union)

6. σ �ccsl c � c1 ∗ c2 iff ∀i ∈ N
+.c ∈ σ(i) ↔ (c1 ∈ σ(i) ∧ c2 ∈ σ(i)) (Intersection)

7. σ �ccsl c � c1 � c2 iff
∀i ∈ N

+.c ∈ σ(i) ↔ (c2 ∈ σ(i)∧
(∃0 < j < i)(∀j ≤ k < i).c1 ∈ σ(j) ∧ c2 /∈ σ(k))

(Strict Sample)

8. σ �ccsl c � c1 � c2 iff
∀i ∈ N

+.c ∈ σ(i) ↔ (c2 ∈ σ(i)∧
(∃0 < j ≤ i)(∀j ≤ k < i).c1 ∈ σ(j) ∧ c2 /∈ σ(k))

(Sample)

9. σ �ccsl c � c1 � c2 iff ∀i ∈ N
+.c ∈ σ(i) ↔ (c1 ∈ σ(i) ∧ (∀0 < j ≤ i).c2 /∈ σ(j)) (Interruption)

10. σ �ccsl c � c′ ∝ n iff ∀i ∈ N
+.c ∈ σ(i) ↔ (c′ ∈ σ(i) ∧ ∃m ∈ N

+.Xσ(c′, i) = m · (n + 1)) (Periodicity)
11. σ �ccsl c � c′$n iff ∀i ∈ N

+.Xσ(c, i) = max(Xσ(c′, i) − n, 0) (Delay)
12. σ �ccsl c � c1 ∧ c2 iff ∀i ∈ N

+.Xσ(c, i) = max(Xσ(c1, i), Xσ(c2, i)) (Infimum)
13. σ �ccsl c � c1 c2 iff i N

+. σ(c, i) = min(σ(c1, i), σ(c2, i)) (Supremum)

A CCSL specification is a conjunction of clock relations and clock definitions,
denoted as a triple SP ::= 〈C, ˜Cdf, ˜Rel〉, where C is the set of clocks. ˜Cdf is a
set of clock definitions and ˜Rel is a set of clock relations. σ �ccsl 〈C, ˜Cdf, ˜Rel〉 is
defined s.t. σ �ccsl Rel and σ �ccsl Cdf hold for all Rel ∈ ˜Rel and Cdf ∈ ˜Cdf .

FODL is an extension of propositional dynamic logic with assignment x := e
and testing P? in its program model. The FODL we present here is based on
[7]. The program of FODL is a regular program, defined as follows:

p ::= x := e | P? | p; p | p ∪ p | p∗,

where e is an arithmetical expression. P? means at current state, P is true. p; q
means the program first executes p, and after p terminates, it executes q. p ∪ q
means the program either executes p, or executes q, it is a non-deterministic
choice. p∗ means the program executes p for a finite number of times. An FODL
formula is defined as follows:

φ ::= tt | e ≤ e | [p]φ | ¬φ | φ ∧ φ | ∀x.φ,

Embedding CCSL into Dynamic Logic 105

where tt is the boolean true, ≤ represents the ‘less than’ relation in number
theory. [p]φ is the dynamic formula, meaning after all executions of program p,
formula φ holds.

The semantics of FODL is based on Kripke structure [7]. A Kripke structure
is a pair (S, val) where S is a set of states, val is a function that interprets a
logic to data structures on S.

In FODL, val interprets a regular program as a set of state pairs (s, s′) and
interprets a formula as a set of states. Intuitively, each pair (s, s′) ∈ val(p) means
that starting from state s, after execution of p, the program may terminate at
state s′. Each state s ∈ val([p]φ) means that for all pairs (s, s′) ∈ val(p), s′

satisfies φ. For a formal definition of the semantics of FODL, refer to [7].
The deductive system for FODL is sound and relatively complete. Except for

the rule for atomic program ‘x := e’, all rules can be found in Tables 3 and 4
below, as a part of CDL proof system. Refer to [7] for more details.

3 Syntax and Semantics of CDL

CDL enriches the traditional FODL with a synchronous program model that
contains ‘signal’ as a primitive, and ‘clock relation’ as an ingredient of logic
formulas. We first give the syntax of the CDL program model and the CDL
formula, and then define their semantics.

3.1 The Syntax of CDL

Syntax of Synchronous Event Programs. CCSL essentially describes the
logical and chronometrical constraints between signals in synchronous models,
where the time model is discrete and at each time, several signals can be trig-
gered simultaneously. To capture CCSL constraints in dynamic logic, we need
to introduce the synchronous execution mechanism in the regular program of
FODL. Synchronous systems often involve infinite executions, thus to support
it we also import ‘infinite loop’. The program after enriched turns out to be
an ‘omega program’, with the support of synchronous mechanism. We call it
‘Synchronous Event Program’ (SEP).

Definition 1 (Syntax of SEP). The syntax of SEP is based on the regular
program of FODL, defined as follows:

p ::= ε | α | P?α | p; p | p ∪ p | p∗ | pω,

where α is a combinational event, defined as:

α ::= ε | Cmb,

Cmb ::= c | x := e | (Cmb|Cmb).

Arithmetical expression e, testing condition P are defined as follows:

e ::= x | n | e + e | e − e | n · e | e/n,

P ::= tt | e ≤ e | ¬P | P ∧ P.

106 Y. Zhang et al.

ε represent an ‘empty program’, it does nothing nor consumes time. A combina-
tional event α consumes a unit of time, it consists of an ‘idle event’ ε, or several
signals or assignments that occur simultaneously. An idle event ε does nothing
but waits for a unit of time. Several signals and assignments can be composed by
operator ‘|’. A signal1 c in an SEP represents that its corresponding clock (with
the same name c) ticks at current time. Since CCSL constraints only captures
the logical relationships between signals which are not related to the value of
signals, we only consider ‘pure signals’ (signals without values) in SEP. e is a
Presburger arithmetic expression. In e, n ∈ Z is an integer number, +,−, ·, / are
the addition, subtraction, multiplication and division signs respectively.

P?α is a testing event, it means that if condition P is true, event α proceeds,
otherwise the program causes a deadlock. In SEP, testing P? must combines
with an event α, because P? does not consume time. P can be expressed with
a QF-AFOL formula, where tt represents the boolean true, ≤ represents the
‘less than’ relation between two integers. Operator ; ,∪, ∗ are defined just as in
FODL [7]. ω represents the infinite loop. pω means that program p executes for
infinite number of times and never terminates.

e.g., program f = 1?α2; p∗ where p ::= n = 0 ∧ f = 0?α3 ∪ n > 0 ∧ f = 0?α4

firstly executes α2 if f = 1 holds, then it executes program p for finite number
of times. In p, it either executes α3 (if n = 0 ∧ f = 0 holds), or executes α4 (if
n > 0 ∧ f = 0 holds).

The precedence of operators are listed as follows from the highest to the
lowest: ω, ∗, ;, ∪. We stipulate that ; is right-associative, ∪ is left-associative.
e.g., program α1∪p1; p2; p•

3∪P1?α•
2∪P2?α3 means (((α1∪p1; (p2; p•

3))∪P1?α•
2)∪

P2?α3).
As in synchronous models (e.g., Esterel [14]), we do not allow two signals with

the same name triggered at the same time. e.g. event (c|c). For simplification,
we also do not allow two assignments with the same target variable executing
simultaneously, e.g. event (x := 5|x := y + 1).

Syntax of CDL. In CDL formula, we need to introduce a special kind of
variable which is related to clock. These variables help record the ‘information’ of
each clock at current time, just as the roles the schedule σ and the configuration
Xσ play in CCSL.

Definition 2 (Clock Related Variables). For each clock c ∈ C, we define
two variables related to it: cn, cs. Variable cn is of type N, it records the number
of times the clock has ticked at current time. Variable cs is of type {0, 1}, and it
records the status of the clock (1 for present and 0 for absent) at current time.

Given a clock set C, we denote the set of variables related to C as V ar(C).

1 In SEP, for convenience, we use the same name ‘c’ to represent the signal corre-
sponding to clock c, which should not cause any ambiguities. Sometimes we also say
a signal c in p ‘a clock c in p’.

Embedding CCSL into Dynamic Logic 107

Definition 3 (Syntax of CDL Formula). The CDL formula φ is defined as:

φ ::= tt | E ≤ E | [p]ξ | [p]φ | ¬φ | φ ∧ φ | ∀x.φ

where

ξ ::= Rel | � (Rel1, . . . , Reln),
E ::= x | cn | cs | n | E + E | E · E.

E ≤ E is an atomic AFOL formula. E is an integer arithmetic expression.
Different from e, it also includes clock-related variable cn, cs, and multiplica-
tion between variables. x ∈ V ar. [p]ξ is a dynamic formula, where p is an
SEP. [p]ξ is the dynamic formula special in CDL, it means that all execution
paths of program p satisfies ξ. �(Rel1, . . . , Reln) represents the conjunction of
clock relations Rel1, . . . , Reln, we define σ �ccsl �(Rel1, . . . , Reln) iff σ �ccsl

Rel1,. . . ,σ �ccsl Reln. In order to express the negation of [p]ξ in CDL, we also
import the negation ∼ and the disjunction � of clock relations: (i) σ �ccsl∼ cr
iff σ ��ccsl cr, (ii) σ �ccsl �(cr1, . . . , crn) iff σ �ccsl∼ �(∼ cr1, . . . ,∼ crn), where
cr, cri ∈ {Reli,∼ Reli}(1 ≤ i ≤ n). [p]φ is the dynamic formula in FODL,
meaning that after all executions of p, formula φ is satisfied.

We often call ξ or ∼ ξ “path formulas”, denoted by π. Other arithmetic
expressions, relations, and logic expressions, e.g., E − E, E/E, E = E, E < E,
ff , 〈p〉 ∼ ξ, 〈p〉φ, φ ∨ φ, φ → φ, ∃x.φ, etc., can be expressed using the formulas
given above. e.g., 〈p〉 ∼ ξ can be expressed as ¬[p]ξ, E1 − E2, E1/E2 can be
expressed as ∃x.(E2 + x = E1), ∃x.(x · E2 = E1) respectively.

In FODL, given a formula φ, a variable whose value changes with the exe-
cution of a program is called a ‘dynamic variable’ [7] of the formula φ. Here
in CDL, for convenience sake, any clock-related variable cs, cn is defined as a
dynamic variable. As we will see in Definition 5(ii), they can be seen ‘changed’
after the execution of any event at current time. Any general variable that
appears on the left side of an assignment is defined as a dynamic variable as
well. Variables which are not dynamic variables are called ‘static variables’. e.g.,
the set of dynamic variables of formula z = 5 → [(c1|x := y + 1); c2]c1 � c3 is
{x, cn

1 , cs
1, c

n
2 , cs

2, c
n
3 , cs

3}, where cn
3 , cs

3 can be seen as ‘changed’ after the the set of
static variables is {y, z}.

Like in FODL, we say a variable x is ‘bound’ in φ iff: 1. x is in the scope of
the effect of some quantifier ∀x, or 2. x is in the scope of the effect of some event
α which has x on the left side of an assignment of the form x := e. A variable
is not bound in φ is called ‘free’. e.g., in formula φ ::= (x = 1 ∧ z = 2 ∧ ∃z.x =
z) → [(x := z + 1|c|y := 1);x := y + 1]x > z, the first and second variable x is
free, while the third one (in expression ‘x > z’) is bounded by the assignment
‘x := y + 1’.

Given a formula φ, a substitution φ[E/x] in CDL replaces all the free occur-
rences of variable x with expression E (of the same type). Given a formula multi-
set Γ , Γ [E/x] means to carry out the substitution φ[E/x] for each formula φ
in Γ . Given two vectors (E1, . . . , En), (x1, . . . , xn), φ[E1, . . . , En/x1, . . . , xn] is
the shorthand of φ[E1/x1][E2/x2]. . .[En/xn]. A substitution is admissible with

108 Y. Zhang et al.

respect to a formula φ if there are no variables x, y such that y is in E, and after
the replacement φ[E/x], y is bound in φ. e.g., in the formula φ given above,
φ[z + 1/z] = (x = 1 ∧ z + 1 = 2 ∧ ∃z.x = z) → [(x := (z + 1) + 1|c|y := 1);x :=
y+1]x > z +1 is admissible, while φ[x+1/z] = (x = 1∧x+1 = 2∧∃z.x = z) →
[(x := (x + 1) + 1|c|y := 1);x := y + 1]x > x + 1 is not admissible. Intuitively,
in φ[x + 1/z], it is about to prove x > x + 1 which is generally not true. In
the rest of paper, unless we specially point out, all substitutions we discuss are
admissible.

3.2 The Semantics of CDL

The semantics of CDL is based on Kripke structure (introduced in Sect. 2). In
the Kripke structure (S, val) of CDL, val interprets a program as a set of traces
on S and a logic formula as a set of states. A trace tr is a finite or infinite
sequence of states. Given a finite trace tr1 = s1s2 . . . sn and a (possibly infinite)
trace tr2 = u1u2 . . . un . . ., we define: tr1 · tr2 ::= s1s2 . . . snu2u3 . . . if sn = u1.

Given any tr1, tr2, we define tr1 ◦ tr2 ::=
{

tr1 · tr2, if tr1 is finite
tr1, otherwise . Given two

sets of traces S1, S2, S1 ◦S2 is defined as {tr1 ◦ tr2 | tr1 ∈ S1, tr2 ∈ S2}. Let tr(i)
denotes the ith element of trace tr, i ≥ 0; trb denotes the first element of trace
tr, trb = tr(0). Let tre denotes the last element of trace tr, provided that tr is
a finite trace.

In CDL, we assume an interpretation which interprets arithmetical operators
‘+,−, ·, /’ and relation ‘≤’ as their usual meanings in the traditional number
theory, and interprets relations ‘⊆,≺,�,#’ as their corresponding clock relations
in CCSL. Next we first define the concept of ‘state’ and ‘evaluation’ in CDL.

Definition 4 (State and Evaluation in CDL). A state s in CDL is a total
function defined as follows:

(i) s maps each variable cn in V ar(C) to a value in domain N.
(ii) s maps each variable cs in V ar(C) to a value in domain {0, 1}.
(iii) s maps each variable x in V ar to a value in domain Z.

Given an expression E and a state s, an evaluation Evals(E) is defined as:

(i) If E = a, where a ∈ {x, cn, cs}, then Evals(a) ::= s(a).
(ii) If E = n, then Evals(n) ::= n.
(iii) If E = f(E1, E2), where f ∈ {+, ·}, then Evals(E) ::= f(Evals(E1),

Evals(E2)).

e.g., given a state s ::= {x �→ 9, cn �→ 2, (c′)s �→ 0, . . .}, there is Evals(2) = 2,
Evals(x) = 9, Evals(x + cn) = Evals(x) + Evals(cn) = 11.

Semantics of SEP. Different from traditional FODL, the semantics of SEP is
based on traces, since our CDL contains a path formula π which is satisfied by
a program trace.

Embedding CCSL into Dynamic Logic 109

Definition 5 (Semantics of SEP). Given a Kripke structure (S, val), for any
SEP p, let C be a finite set of clocks, the semantics of SEP is given as follows:

(i) val(ε) := S, S is the set of all traces of length 1.

(ii)
val(α) := {ss′ | s, s′ ∈ S; for each clock c ∈ α, s′(cs) = 1 ∧ s′(cn) = s(cn) + 1;

for other clock d ∈ C, s′(dn) = s(dn) ∧ s′(ds) = 0; for each x := e in α,

s′(x) = Evals(e); for other x ∈ V ar, s′(x) = s(x)}.

(iii) val(P?α) ::= {ss′ | s ∈ val(P), ss′ ∈ val(α)}.
(iv) val(p; q) ::= val(p) ◦ val(q).
(v) val(p ∪ q) ::= val(p) ∪ val(q).
(vi) val(p∗) ::=

⋃
n≥0 valn(p), where valn(p) = val(p) ◦ . . . ◦ val(p)

︸ ︷︷ ︸
n

, val0(p) = S.

(vii) val(pω) ::= val(p) ◦ val(p) ◦ . . .
︸ ︷︷ ︸

∞

.

Note that ε defines a set of traces of length 1, so val(p; ε) = val(ε; p) = val(p),
which means that ε can be taken as a unit element of operator ;. Event α defines
a transition from a state s to a state s′. In s′, for each clock c in α, the variable
cn that records the number of ticks is added by 1 and the variable cs is set to
1, indicating at current time, clock c is emitted. For each clock d not in α, its
variable dn in s′ is kept the same while ds is set to 0. For any assignment x := e
in α, the value of x in s′ is set to the value of expression e in state s, while other
variables in both s and s′ are kept the same. Traces satisfying P?α are exactly
those traces satisfying p adding that their beginning states must satisfy P .

e.g., let α = (c|x := x+1), P = x > 1, C = {c, c′}, V ar = {x, y}, if s = {x �→
0, y �→ 0, cn �→ 0, cs �→ 0, c′n �→ 0, c′s �→ 0}, s′ = {x �→ 1, y �→ 0, cn �→ 1, cs �→
1, c′n �→ 0, c′s �→ 0}, then trace ss′ ∈ val(α). If u = {x �→ 2, y �→ 0, cn �→ 1, cs �→
1, c′n �→ 0, c′s �→ 1}, u′ = {x �→ 3, y �→ 0, cn �→ 2, cs �→ 1, c′n �→ 0, c′s �→ 0}, then
trace uu′ ∈ val(P?α).

The semantics of p; q, p ∪ q, p∗ are directly inherited from the traditional
FODL [7]. The traces of program pω consists of all infinite traces of the
form tr1 ◦ tr2 . . . where each tri ∈ val(p) is finite (i ∈ N

+), or of the form
tr1 ◦ tr2 ◦ . . . ◦ trn, where n ≥ 1, tr1, . . . , trn−1 ∈ val(p) is finite, but trn ∈
val(p) is infinite. e.g., suppose val(p) = {s1s2}, val(q) = {u1u2, t1t2} where
s2 = u1, s2 �= t1, then val(p; q) = {s1s2u2}, val(p ∪ q) = {s1s2, u1u2, t1t2},
val(p∗) = {ε, s1s2, s1s2s1s2, . . . , s1s2s1s2 . . . s1s2

︸ ︷︷ ︸

2n

, . . .} (n ≥ 1), val(pω) =

val(p∗) ∪ {s1s2s1s2 . . . s1s2 . . .
︸ ︷︷ ︸

∞
}.

Semantics of CDL. For each trace tr, we can actually build a corresponding
schedule σtr s.t. for all clock c ∈ C and i ∈ N

+, there is: 1. tr(i)(cn) = Xσ(c, i).
2. tr(i)(cs) = 1 iff c ∈ σtr(i). In this way, we can actually define tr �ccsl X given
a clock relation or definition X: tr �ccsl X iff σtr �ccsl X. Note that we do not
require any relationships between tr(0) and σ(0).

110 Y. Zhang et al.

e.g., consider the trace ss′ discussed above, we have a schedule σss′
defined as:

σss′
::= ∅{c}. So Xσss′ (c, 0) = Xσss′ (c′, 0) = 0, Xσss′ (c, 1) = 1, Xσss′ (c′, 1) = 0.

Definition 6 (Semantics of CDL Formula). Given a Kripke structure
(S, val), the semantics of CDL formula is given as follows:

(i) val(tt) ::= S.
(ii) val(E ≤ E′) ::= {s | Evals(E) ≤ Evals(E′)}.
(iii) val([p]ξ) ::= {s | for all tr s.t. s = trb and tr ∈ val(p), tr �ccsl ξ}.
(iv) val([p]φ) ::= {s | for all finite tr ∈ val(p) s.t. trb = s, tre ∈ val(φ)}.
(v) val(¬φ) ::= {s | s /∈ val(φ)}.
(vi) val(φ ∧ ϕ) ::= val(φ) ∩ val(ϕ).
(vii) val(∀x.φ) ::= {s | for any v0 ∈ Z, s ∈ val(φ[v0/x])}.
The semantics of CDL formula is based on states. In (iii), a trace satisfying a
clock relation is from the second state of the trace due to the definition of �ccsl

in Sect. 2. So state s itself is unrelated to ξ. (iv)-(vii) are similar to the definition
in FODL [7], except that the semantics of SEP is based on traces. (iv) requires
the trace must be finite, indicating that it only matters whether φ holds on those
states on which program p terminates.

The first two figures in Fig. 3 give an illustration of [p]φ and [p]ξ, where the
‘snake arrow’ indicates an execution path (could be infinite) of program. Some
states are tagged with a formula aside that they satisfy. States and paths are
colored red to stress that they satisfy the corresponding formulas (φ, ξ).

At last we define the satisfaction relation of the CDL logic. Given a state
s and any CDL formula φ, the satisfaction relation s |=cdl φ is defined as:
s |=cdl φ iff s ∈ val(φ). If for all state s, s |=cdl φ holds, then we say φ is
valid, denoted as |=cdl φ.

4 Proof System of CDL

In this section we propose a proof system, which forms the foundation of the
verification of CDL. The proof system provides a modular way of transforming
a CDL formula into a QF-AFOL formula. Our proof system is based on that of
FODL, which is only for regular program model [7].

A sequent [15] is defined as follows: Γ ⇒ Δ ::=
∧

φ∈Γ φ → ∨

ϕ∈Δ ϕ, where
Γ,Δ are two finite multi-sets of logic formulas. It means that every formula in Γ
holds can conclude that at least one of formulas in Δ holds. The conditions when
either (both) Σ or (and) Δ is (are) empty set(s) is (are) expressed as follows: 1.
· ⇒ Δ ::= tt → ∨

ϕ∈Δ ϕ, 2. Γ ⇒ · ::= ∧

φ∈Γ φ → ff , 3. · ⇒ · ::= tt → ff , where
we use · to indicate Γ or Δ is empty. A rule in sequent calculus is of the form:
Γ1⇒Δ1...Γn⇒Δn

Γ⇒Δ , which means that if Γ1 ⇒ Δ1,. . . , Γn ⇒ Δn are all valid, then
Γ ⇒ Δ is valid. Each Γi ⇒ Δi in the upper part is called a ‘premise’, while
Γ ⇒ Δ in the lower part is called ‘conclusion’. We use Γ⇒ϕ⇒Δ

Γ⇒φ⇒Δ to represent a
pair of sequent rules: Γ,ϕ⇒Δ

Γ,φ⇒Δ and Γ⇒ϕ,Δ
Γ⇒φ,Δ , i.e., φ, ϕ can be on both side of the

sequent. Sometimes we write ϕ
φ to represent Γ⇒ϕ⇒Δ

Γ⇒φ⇒Δ if Γ,Δ can be neglected.
We call Γ,Δ the context of formula φ in sequent Γ ⇒ φ,Δ or Γ, φ ⇒ Δ.

Embedding CCSL into Dynamic Logic 111

4.1 Proof Rules for CDL

The proof rules of CDL we present are divided into three categories: rules for
path formulas π (in Table 2), rules for non-path formulas (in Table 3) and rules
of First-Order Logic (FOL) (in Table 4).

In Table 2, rule (π) is for a single event, where we set α = (c|x := e) as an
example of combinational events.

Table 2. Rules for path formulas

Γ [V ′/V], cn = (cn)′ + 1, cs = 1, x = e[V ′/V],

(dn
1 , ..., dn

n) = ((dn
1)′, ..., (dn

n)′), (ds
1, ..., d

s
n) = (0, ..., 0)

n

⇒

�(ξ) ⇒ Δ[V ′/V]

Γ ⇒ [α]ξ ⇒ Δ
(π)

where α = (c|x := e), {d1, ..., dn} = C − C(α), V = V(α),

V ′ is the set of new variables (w.r.t. Γ, [α]ξ, Δ,) corresponding to V.

P → [α]A
[P?α]A

(P?)

where A ∈ {ξ, φ}

tt
[ε]ξ

(πε)
[p∗]ξ
[pω]ξ

(π[ω])
[p]ξ ∧ [p][q]ξ

[p; q]ξ
(π[;])

[p]ξ ∧ [q]ξ
[p q]ξ

(π[∪])
[p; p∗]ξ
[p∗]ξ

(π[∗]u)
[p∗][p]ξ
[p∗]ξ

(π[∗]i)

The rule says that for any state s, the conclusion holds at state s, iff there
exists a state s′ with ss′ ∈ val((c|x := e)), s.t. the premise holds at s′. The
vector equation (x1, . . . , xn) = (e1, . . . , en) is the shorthand of x1 = e1, . . . , xn =
en. d1, . . . , dn are all clocks not appeared in α. Given a CDL formula φ (or
an SEP p), let C(φ) (C(p)) returns all clocks appeared in φ (p), V(φ) (V(p))
returns all dynamic variables appeared in φ (p). V ′ is the set of new variables
corresponding to V , for each variable x ∈ V , there is a new variable x′ with
respect to Γ, [α]ξ,Δ corresponding to it. Function �(ξ) maps each relations to
an AFOL formula which should hold at state s′. It is defined as follows: for any
c1, c2, (i) �(c1 ⊆ c2) ::= cs

1 = 1 → cs
2 = 1. (ii) �(c1#c2) ::= cs

1 = 0 ∨ cs
2 = 0. (iii)

�(c1 ≺ c2) ::= (cn
1 = 0 ∧ cn

2 = 0) ∨ (cn
1 > cn

2). (iv) �(c1 � c2) ::= cn
1 ≥ cn

2 . (v)
�(�(Rel1, . . . , Reln) ::=

∧

1≤i≤n �(Reli).
(P?) is a rule for both path-formulas and non-path formulas. Rule (P?) says

that the conclusion at a state is true, iff if P is true, then [α]A is true. In rule
(πε), tr �ccsl ξ always holds for trace tr of length 1. Rule (πω) is based on two
facts about clock relation ξ and SEP traces: (i) For any infinite trace tr ∈ val(pω)
and any state s in tr, there exists a finite trace tr′ ∈ val(p∗) that contains s. (ii)
For any relation ξ and trace tr, tr �ccsl ξ iff tr(i) |=cdl �(ξ) for any i ∈ N

+. These
two facts can be easily obtained according to Definition 5 and the definition of

112 Y. Zhang et al.

�ccsl in Table 1. With them not hard to see the premise and conclusion of rule
(πω) are logical equivalent. With rule (πω) we can reduce the proof case of [pω]ξ
to the proof case of [p∗]ξ.

(π[;]), (π[∪]), (π[∗]u), (π[∗]i) are structure rules for path formulas. (π[;])
means every trace of p; q satisfies ξ iff every trace of p satisfies ξ, and after p
every trace of q satisfies ξ. (π[∪]) says every trace of p ∪ q satisfies ξ iff every
trace of p and q satisfies ξ. Rule (π[∗]u) unwinds the star operator ∗. It is due to
the fact that every trace (whose length ≥ 2) of p∗ are the trace of p; p∗. (π[∗]i)
states that ξ holds along all paths of any times of repetitions of p, iff after any
times of repetitions p , ξ holds along all paths of p. Figure 3 gives a graphical
illustration of rule (π), (π[;]), (π[∪]), (π[∗]u), (π[∗]i).

[p]φ

φ

φ

...

p

p

[p]ξ
...p

ξ

p
s

[α]ξ

s′

�(ξ)

α
[p; q]ξ

[q]ξ

p

ξ

q
p; q

[p]φ [p]ξ (π) (π[;])

p

q

ξ

p ∪ q

[p∗]ξ [p; p∗]ξ

p

p∗

ξ

p∗

[p∗]ξ

[p]ξ

p∗

ξ

p
p∗

[p; q]φ

[q]φ φ

p q
p; q

(π[∪]) (π[∗]u) (π[∗]i) ([;])

φ

φ

p

q p ∪ q

φ

[p∗]φ [p; p∗]φ

φ
p p∗

p∗

φ φ φ

φ → [p]φ

φp∗ p∗p

p∗

φ(n) φ(n − 1)∃x ≥ 0.φ ∃x ≤ 0.φ(x)

p∗ p∗

p

p∗

([∪]) ([∗]u) ([∗]ind) (〈∗〉con)

Fig. 3. Graphical illustrations of [p]φ, [p]ξ and some proof rules (Color figure online)

All non-path formula rules in Table 3 except for (φ), (ε), (ω) are based on
the corresponding structure rules of FODL in [7]. (φ) is similar to (π), except
that φ is kept unchanged in the premise. (ε) is obvious because the traces of ε
all have length 1. Rule ([;]) describes that φ holds after p; q iff [q]φ holds after
p. Rule ([∪]) says φ holds after p ∪ q iff φ holds after p, and also holds after
q. ([∗]u) means that φ holds after any times of repetitions of p, iff φ holds at
current state, and φ holds after p; p∗.

([]gen), (〈〉gen) strengthen the conclusions by extending the proposition
φ → ϕ into dynamic situations. ([]gen) ((〈〉gen)) expresses that if φ → ϕ holds
under all context of Γ,Δ, after any (some) executions of p, φ implies ϕ. ([∗]ind)
is the mathematical induction by the number of repetitions of program p: to
prove φ holds after any repetitions (including 0), we need to prove that under
any context of Γ,Δ, if φ holds, then it also holds after p. (〈∗〉con) is from the
Harel’s convergence rule in [7] where integer x indicates the existing number
of repetitions of p. ([∗]i) and (〈∗〉i) are rules for eliminating the star operator
∗ in practical verification. They can be derived by ([∗]ind), (〈∗〉con) with gen-
eralisation ([]gen), (〈〉gen) (see [7,16]). ϕ is the loop invariant of p. ([∗]i) says

Embedding CCSL into Dynamic Logic 113

that to prove φ holds after any repetitions of p, we need to prove that there
exists an invariant ϕ such that: (i) ϕ holds at the beginning. (ii) Under any
context of Γ,Δ if ϕ holds, then ϕ holds after p as well. (iii) Under any context
of Γ,Δ, ϕ implies φ. Figure 3 gives a graphical illustration of rule ([∪]), ([;]),
([∗]u), ([∗]ind), (〈∗〉con).

Table 3. Rules for non-path formulas

Γ [V ′/V], cn = (cn)′ + 1, cs = 1, x = e[V ′/V],

(dn
1 , ..., dn

n) = ((dn
1)′, ..., (dn

n)′), (ds
1, ..., d

s
n) = (0, ..., 0)

n

⇒

φ ⇒ Δ[V ′/V]

Γ ⇒ [α]φ ⇒ Δ
(φ)

where α = (c|x := e), {d1, ..., dn} = C − C(α), V = V(α),

V ′ is the set of new variables (w.r.t. Γ, [α]φ, Δ,) corresponding to V.

φ

[ε]φ
(ε) tt

[pω]φ
(ω)

[p][q]φ
[p; q]φ

([;])
[p]φ ∧ [q]φ
[p ∪ q]φ

([∪])
φ ∧ [p; p∗]φ

[p∗]φ
([∗]u)

· ⇒ φ → ϕ

Γ ⇒ [p]φ → [p]ϕ, Δ
([]gen)

· ⇒ φ → ϕ

Γ ⇒ 〈p〉φ → 〈p〉ϕ, Δ
(〈〉gen)

· ⇒ φ → [p]φ
Γ ⇒ φ → [p∗]φ, Δ

([∗]ind)

· ⇒ ∀x > 0.(φ(x) → 〈p〉φ(x − 1))
Γ ⇒ ∃x ≥ 0.φ(x) → ∃x ≤ 0.〈p∗〉φ(x), Δ

(〈∗〉con)

Γ ⇒ ϕ, Δ · ⇒ ϕ → [p]ϕ · ⇒ ϕ → φ

Γ ⇒ [p∗]φ, Δ
([∗]i)

Γ ⇒ ∃x ≥ 0.ϕ(x), Δ · ⇒ ∀x > 0.(ϕ(x) → 〈p〉ϕ(x − 1))

· ⇒ ∃x ≤ 0.ϕ(x) → φ

Γ p∗ φ, Δ
(〈∗〉i)

Other FOL rules are listed in Table 4. As indicated in Sect. 1, after a QF-
AFOL formula is obtained we can adopt SMT-checking procedure to check the
validation of it. Since the SMT-checking procedure is independent from the CDL
proof system, we propose an ‘oracle’ rule (o) in our proof system to indicate the
termination of the proof. We assume that the validity of this QF-AFOL formula
can be SMT-checked in a ‘black box’, through this oracle rule. Other rules comes
from the traditional FOL and we omit the details of them.

Now we define the deduction relation of CDL. For any CDL formula φ and
a formula multi-sets Φ, Φ �cdl φ iff the sequent Φ ⇒ φ can be derived according
to rules in Tables 2, 3 and 4. If Φ is empty, we also write �cdl φ. As a variation
of dynamic logic, the soundness and relative completeness of proof system �cdl

can be analyzed in a similar way as those of FODL in [7,8]. For the soundness,

114 Y. Zhang et al.

above we have explained the intuitive meaning of each rule and their relations
to the corresponding rules in FODL. For the relative completeness, intuitively,
to prove it we show that each formula of form [p]ξ can be transformed into an
AFOL formula by applying the rules of the CDL proof system, which is similar
for the formula [p]φ in FODL. Due to space limit, we omit the complete proof.

Table 4. Rules of first order logic

|=cdl φ∈Γ
φ →

ϕ∈Δ
ϕ

Γ ⇒ Δ
(o)

Γ, φ ⇒ φ, Δ
(ax)

Γ ⇒ φ, Δ Γ, φ ⇒ Δ

Γ ⇒ Δ
(cut)

Γ, ¬φ ⇒ Δ

Γ ⇒ φ, Δ
(¬r)

Γ ⇒ ¬φ, Δ

Γ, φ ⇒ Δ
(¬l)

Γ ⇒ φ, Δ Γ ⇒ ϕ, Δ

Γ ⇒ φ ∧ ϕ, Δ
(∧r)

Γ, φ, ϕ ⇒ Δ

Γ, φ ∧ ϕ ⇒ Δ
(∧l)

Γ ⇒ φ[x′/x], Δ
Γ ⇒ ∀x.φ, Δ

(∀r)
Γ, ∀x.φ, φ[tn/x] ⇒ Δ

Γ, ∀x.φ ⇒ Δ
(∀l)

Γ ⇒ φ, ϕ, Δ

Γ ⇒ φ ∨ ϕ, Δ
(∨r)

Γ, φ ⇒ Δ Γ, ϕ ⇒ Δ

Γ, φ ∨ ϕ ⇒ Δ
(∨l)

Γ, φ ⇒ ϕ, Δ

Γ ⇒ φ → ϕ, Δ
(→r)

Γ ⇒ φ, Δ Γ, ϕ ⇒ Δ

Γ, φ → ϕ ⇒ Δ
(→l)

Γ ⇒ φ[tn/x], Δ
Γ ⇒ ∃x.φ, Δ

(∃r)
Γ, ∃x.φ, φ[x′/x] ⇒ Δ

Γ, ∃x.φ ⇒ Δ
(∃l)

where Γ, Δ are multi-sets of QF-AFOL formulas.
x′ is a new variable w.r.t. Γ, φ, Δ, φ[tn/x] is admissible.

5 A Case Study

In this section, we illustrate how our proposed CDL can be used to capture
RTES models and verify CCSL specifications, by analyzing a simple RTES—the
Digital Filter (DF) system. The DF system we analyze here is based on [17].

As Fig. 4 shows, the DF is used in a video system, it reads image pixels
from a memory, filters them and sends the result out to a video device. The
explicit structure of DF is shown in the right figure of Fig. 4. The DF consists
of two modules: a Feeder and a Filter. They interact with each other and with
their environment through ports p, r and o. Ports are the only way for different
modules to communicate in synchronous models. They can be modelled as signal
cp, cr and co in SEP. The behaviour of the DF, as a whole system of two modules,
is as follows: the Filter sends a ‘Ready’ message to the Feeder through port r,
to tell it ‘I am ready for the pixels’. The Feeder receives this message and the
next time it begins feeding pixels towards the Filter, one pixel per unit of time.
After the Filter gathers 4 pixels, it runs the computation (instantly) and outputs
the result through port o. Then the next time it sends ‘Ready’ message to the
Feeder again....

Embedding CCSL into Dynamic Logic 115

Fi
lte

r

Fe
ed

er

control

pixels

Memory

Digital Filter

Video
Device

pixels pixels

control control

Filter oFeeder
p

r

p

r

Fig. 4. The Digital Filter system

b

cr

cp

co

Fig. 5. The schedule of the Digital Filter (Color figure online)

The behaviour of the DF can be described by an SEP as follows:

DF ::= α1; (f = 1?α2; (n = 0 ∧ f = 0?α3 ∪ n > 0 ∧ f = 0?α4)∗)ω,

where α1 = (cr|n := 4|f := 1), α2 = (cr|f := 0), α3 = (co|f := 1|n := 4),
α4 = (cp|n := n − 1). n is for counting the number of pixels the Filter has
received. f is a flag, indicating the end of the loop ‘(. . .)∗’. Figure 5 shows the
schedule of the DF, where clock b is a basic clock. For this DF model we may
be interested in two CCSL specifications as follows:

SP 1 ::= 〈{cr, co}, ∅, {cr ≺ co}〉,
SP 2 ::= 〈{cp, co, cp′ , cp′′}, {cp′ � cp$1, cp′′ � cp′ ∝ 3}, {co ≺ cp′′}〉.

SP1 expresses the property that ‘the result can be obtained only after the
“Ready” message is sent’, i.e., clock cr ticks strictly before co. SP2 says that
‘only after the last result is computed, the new pixels can be received’. SP2

contains two clock definitions. cp′ , cp′′ are generated clocks not appeared in pro-
gram DF . Two specifications are indicated by red and blue arrows in Fig. 5
respectively. The ticks of clock cp′ , cp′′ are indicated by green and yellow circles
respectively.

For SP1, the verification problem can be captured by a CDL formula:

I → [DF]cr ≺ co,

where I =
∧

c∈{cr,cp,co}(c
n = 0 ∧ cs = 0) represents the initial environment of

the program. The deduction procedure of this formula is illustrated in Fig. 6.
Starting from the root node (node 1©), the procedure answers ‘yes’ iff every
leave node of the proof tree returns a valid QF-AFOL formula, which can be
checked through an SMT-checking procedure. Inference rules with a ‘double

116 Y. Zhang et al.

line’ indicate that there are more than one deductions between the premises and
the conclusion, and rules they are based on are listed on the right side. e.g.,
from node 2©, by applying rule (π[;]), (∧r) in sequence, we obtain two premises:
node 3© and 4©. The meanings of other symbols and contexts are explained in
the table of Fig. 6. Note that variables of the form like ‘(cn

r)1’ is a new general
variable (corresponding to cn

r), not a clock-related variable.

|=cdl ϕ∈Γ3
ϕ → ϕ2

Γ3 ⇒ ϕ2

(o)

9©
ϕ∈Γ4

ϕ → ϕ2

Γ4 ⇒ ϕ2

(o)

ϕ2 ⇒ [P1?α3]ϕ2

(P?,→r,φ)

ϕ∈Γ5
ϕ → ϕ2

Γ5 ⇒ ϕ2

(o)

ϕ2 ⇒ [P2?α4]ϕ2

(P?,→r,φ)

ϕ2 ⇒ [P1?α3 ∪ P2?α4]ϕ2

([∪],∧r)

· ⇒ ϕ2 → [p2]ϕ2

(→r) |=cdl ϕ2 → ϕ1

· ⇒ ϕ2 → ϕ1
(o)

8© Γ3 ⇒ [p∗
2]ϕ1

([∗]i)

ϕ1 ⇒ [f = 1?α2][p∗
2]ϕ1

(P?,→r,φ)

6© ϕ1 ⇒ [f = 1?α2; p∗
2]ϕ1

([;])

|=cdl ϕ∈Γ2
ϕ → �(cr ≺ co)

Γ2 ⇒ �(cr ≺ co)
(o)

3© Γ1 ⇒ [α1]cr ≺ co

(π)

|=cdl ϕ∈Γ1
ϕ → ϕ1

Γ1 ⇒ ϕ1

(o)
6©

· ⇒ ϕ1 → [p1]ϕ1

(→r)
7© ...

· ⇒ ϕ1 → [p1]cr ≺ co

(→r)

5© Γ2 ⇒ [p∗
1][p1]cr ≺ co

([∗]i)

Γ2 ⇒ [pω
1]cr ≺ co

(π[ω],π[∗]i)

4© Γ1 ⇒ [α1][pω
1]cr ≺ co

(φ)

2© Γ1 ⇒ [DF]cr ≺ co

(π[;],∧r)

1© · ⇒ I → [DF]cr ≺ co

(→r,∧l)

α1 = (cr|n := 4|f := 1), α2 = (cr|f := 0), α3 = (co|f := 1|n := 4), α4 = (cp|n := n − 1).
p1 = f = 1?α2; p∗

2, p2 = P1?α3 ∪ P2?α4, P1 = n = 0 ∧ f = 0, P2 = n > 0 ∧ f = 0.
ϕ1 = (C1 ∨ C2) ∧ cn

r > cn
o , ϕ2 = (C1 ∧ cn

r − cn
o > 1) ∨ (C2 ∧ cn

r > cn
o),

C1 = 0 ≤ n < 4 ∧ f = 0, C2 = n = 4 ∧ f = 1.
v = (cn

r , cs
r, c

n
p , cs

p, cn
o , cs

o), vx = ((cn
r)x, (cs

r)x, (cn
p)x, (cs

p)x, (cn
o)x, (cs

o)x), where x = 1, 2, 3, 4.
vx, x1, x2, y1, z1, z2, u1 are new variables corresponding to their counterparts in substitutions.
Γ1 : cn

r = 0, cs
r = 0, cn

p = 0, cs
p = 0, cn

o = 0, cs
o = 0

Γ2 : Γ1[v1, x1, x2/v, n, 1], cn
r = (cn

r)1 + 1, cs
r = 1, cn

p = (cn
p)1, cs

p = 0, cn
o = (cn

o)1, cs
o = 0, n = 4

Γ3 : {ϕ1, f = 1}[v2, y1/v, f], cn
r = (cn

r)2 + 1, cs
r = 1, cn

p = (cn
p)2, cs

p = 0, cn
o = (cn

o)2, cs
o = 0, f = 0

Γ4 : {ϕ2, P1}[v3, z1, z2/v, n, 1], cn
r = (cn

r)3, cs
r = 0, cn

p = (cn
p)3, cs

p = 0, cn
o = (cn

o)3 + 1, cs
o = 1, n = 4

Γ5 : {ϕ2, P2}[v4, u1/v, n], cn
r = (cn

r)4, cs
r = 0, cn

p = (cn
p)4 + 1, cs

p = 1, cn
o = (cn

o)4, cs
o = 0, n = u1 − 1

Fig. 6. The deduction procedure of I → [DF]cr ≺ co

Due to the limit of space, we omit the details of the branch from node 7©.
At node 5©, 8©, we apply rule ([∗]i) to eliminate the loop operator ∗. Here we
need to manually decide the loop invariants ϕ1, ϕ2. The selecting of a suitable
invariants is according to the loop body (here p1, p2) and the formulas we want
to verify after the loop program (here [p1]c1 ≺ c2, ϕ1). e.g., in ϕ1, we have to
guarantee ‘cn

r > cn
o ’ always holds during each execution of p1, because if not so,

[p1]c1 ≺ c2 would not hold for some state during the execution of p∗
1. ‘C1 ∨ C2’

is to make sure that n, f can only be ‘reasonable values’ during the execution of
p1. At last, easy to see that each leave node is a valid QF-AFOL formula. e.g.,
at node 9©, clearly from Γ4, we have C2 holds. In Γ4, since z1 = 0 ∧ z2 = 0(in
P1[z1, z2/n, y]), there is (cn

r)3 − (cn
o)3 > 1(from ϕ1[v3, z1, z2/v, n, f]). Because

cn
r = (cn

r)3, cn
o = (cn

o)3 + 1, so cn
r > cn

o holds.

Embedding CCSL into Dynamic Logic 117

For SP2, just like in previous approaches [4,18,19], we firstly make the prod-
uct of the system model DF and the clock definitions cp′ � cp$1, cp′′ � cp′ ∝ 3.
As indicated in Fig. 1, this product can then be captured by an SEP program.
A similar verification procedure as above can be carried out.

6 Related Work

Previous approaches [18,19] for the verification of CCSL specifications are mainly
based on model checking, where the reachability analysis is made for the product
of the system model and the CCSL specification. When the CCSL specification
is unsafe, a bound needs to be set to avoid the enumeration of infinite number of
states. Our approach is based on theorem proving and SMT-checking, which pro-
vides a unified framework under which both safe and unsafe CCSL specifications
can be analyzed.

Another subject of analysis for CCSL is to find a schedule of a given CCSL
specification [3,13,20], where no system models were involved. The earliest
approach [3] combined BDD-based boolean solving and the rewriting on clock
expressions, while the method in [20] was based on the rewriting logic in Maude.
In [13], the schedule was found by solving an UFLIA formula that encodes the
CCSL specification through an SMT-checking procedure. Comparing with [13],
we propose a proof system to transform the CDL formula into QF-AFOL for-
mulas, which are more efficient for an SMT-checking procedure to solve.

CDL is largely based on the traditional FODL [8] and its rules (π[;]),
(π[∪]), (π[∗]u), (π[∗]i) are inspired from the Differential Dynamic Temporal Logic
(DDTL), a dynamic logic for verification of hybrid systems [16,21]. In DDTL, the
program supports a continuous time model with differential equations embedded
into it. Our SEP supports a discrete time model with synchronous mechanism
which we think would be more friendly for modelling RTESs.

7 Conclusion and Future Work

In this paper, we propose a logical approach for verification of CCSL specifica-
tions. We build a variation of dynamic logic called CDL to capture the verifica-
tion problem, and a proof system to provide the verification support. We give a
case study to illustrate how CDL can be used for verifying CCSL specifications.

Unlike traditional synchronous programming languages, SEP only supports
sequential models. We shall present a concurrent extension in a future work
by adding a ‘‖’ operator. We also consider mechanizing CDL with the popular
theorem prover Coq in order to see more practical potentials for this method.

References

1. OMG: UML profile for MARTE: Modeling and analysis of real-time embedded
systems. Technical report, OMG, June 2011. Formal 02 June 2011

118 Y. Zhang et al.

2. Mallet, F.: Clock constraint specification language: specifying clock constraints
with UML/MARTE. ISSE 4(3), 309–314 (2008)

3. André, C.: Syntax and semantics of the clock constraint specification language
(CCSL). Research Report RR-6925, INRIA (2009)

4. Mallet, F., de Simone, R.: Correctness issues on MARTE/CCSL constraints. Sci.
Comput. Program. 106, 78–92 (2015)

5. Mallet, F., Millo, J.V., de Simone, R.: Safe CCSL specifications and marked graphs.
In: 11th ACM/IEEE International Conference on Formal Methods and Models for
Codesign, pp. 157–166, IEEE (2013)

6. Zhang, M., Ying, Y.: Towards SMT-based LTL model checking of clock constraint
specification language for real-time and embedded systems. In: LCTES 2017, pp.
61–70. ACM (2017)

7. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. SIGACT News 32(1), 66–69 (2001)
8. Harel, D. (ed.): First-Order Dynamic Logic. LNCS, vol. 68. Springer, Heidelberg

(1979). https://doi.org/10.1007/3-540-09237-4
9. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic

Publisher, Dordrecht (1993)
10. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical

report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

11. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL—A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

12. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

13. Zhang, M., Mallet, F., Zhu, H.: An SMT-based approach to the formal analysis of
MARTE/CCSL. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS,
vol. 10009, pp. 433–449. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-47846-3 27

14. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

15. Gentzen, G.: Untersuchungen über das logische Schließen. Ph.D. thesis, NA,
Göttingen (1934)

16. Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14509-
4

17. André, C., Mallet, F.: Specification and verification of time requirements with
CCSL and Esterel. In: LCTES 2009, pp. 167–176. ACM (2009)

18. Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL
mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M.
(eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40561-7 1

19. Zhang, Y., Mallet, F., Chen, Y.: Timed automata semantics of spatio-temporal
consistency language STeC. In: TASE 2014, pp. 201–208, IEEE (2014)

20. Zhang, M., Dai, F., Mallet, F.: Periodic scheduling for MARTE/CCSL: theory and
practice. Sci. Comput. Program. 154, 42–60 (2018)

21. Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants.
In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 457–471.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72734-7 32

https://doi.org/10.1007/3-540-09237-4
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-47846-3_27
https://doi.org/10.1007/978-3-319-47846-3_27
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-40561-7_1
https://doi.org/10.1007/978-3-642-40561-7_1
https://doi.org/10.1007/978-3-540-72734-7_32

Semantics and Analysis Methods

Refinement of Statecharts with
Run-to-Completion Semantics

Karla Morris1(B), Colin Snook2, Thai Son Hoang2, Robert Armstrong1,
and Michael Butler2

1 Sandia National Laboratories, Livermore, CA, USA
{knmorri,rob}@sandia.gov

2 University of Southampton, Southampton, UK
{cfs,t.s.hoang,mjb}@soton.ac.uk

Abstract. Statechart modelling notations, with so-called ‘run to com-
pletion’ semantics and simulation tools for validation, are popular with
engineers for designing systems. However, they do not support formal
refinement and they lack formal static verification methods and tools.
For example, properties concerning the synchronisation between differ-
ent parts of a system may be difficult to verify for all scenarios, and
impossible to verify at an abstract level before the full details of sub-
states have been added. Event-B, on the other hand, is based on refine-
ment from an initial abstraction and is designed to make formal veri-
fication by automatic theorem provers feasible, restricting instantiation
and testing to a validation role. In this paper, we introduce a notion of
refinement, similar to that of Event-B, into a ‘run to completion’ State-
chart modelling notation, and leverage Event-B’s tool support for proof.
We describe the pitfalls in translating ‘run to completion’ models into
Event-B refinements and suggest a solution. We illustrate the approach
using our prototype translation tools and show by example, how a syn-
chronisation property between parallel Statecharts can be automatically
proven at an intermediate refinement level.

Keywords: SCXML · Statecharts · Event-B · iUML-B · Refinement

1 Introduction

Formal verification of high-consequence systems requires the analysis of formal
models that capture the properties and functionality of the system of interest.
Although high-consequence controls and systems are designed to limit complex-
ity, the requirements and consequent proof obligations tend to increase the com-
plexity of the formal verification. Proof obligations for such requirements can be
made more tractable using abstraction/refinement, providing a natural divide
and conquer strategy for controlling complexity.

Statecharts [7] are often used for safety-critical and other high-consequence
systems to provide an unambiguous, executable way of specifying functional as
c© Springer Nature Switzerland AG 2019
C. Artho and P. C. Ölveczky (Eds.): FTSCS 2018, CCIS 1008, pp. 121–138, 2019.
https://doi.org/10.1007/978-3-030-12988-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12988-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-12988-0_8

122 K. Morris et al.

well as safety, security, and reliability properties. While functional properties
(usually) can be tested, the need for instantiation and state space explosion can
make testing of safety, security and reliability properties intractable. Therefore,
such properties must be proved formally.

Here we give a binding from Statecharts to Event-B [1] so that this type of
reasoning can be carried out. The binding is facilitated by translating to iUML-
B [18–20], a diagrammatic modelling notation for Event-B. Hierarchical encap-
sulation maps well onto Statecharts in a similar way to nested state-machines in
iUML-B. Binding UML Statecharts [17] to iUML-B is natural and the addition
of run-to-completion semantics, expected by Statechart designers, is much of
the contribution of this work. Another contribution is the augmentation of the
textual and parse-able format for Statecharts, State Chart eXtensible Markup
Language (SCXML) [22] to accommodate elements necessary to support formal
analysis.

There are many formal semantics that can be bound to the Statechart graph-
ical language [5]. While Statecharts and various semantic interpretations of Stat-
echarts admit refinement reified as both hierarchical or parallel composition (e.g.
see Argos [12]), here, as previously [18], we focus on hierarchical refinement, the
form that Event-B natively admits. Here we define hierarchical composition to
mean nesting new transition systems inside previously pure states, and parallel
composition to be the combination in one machine of formerly separate transition
systems. A hierarchical development of a system model uses refinement concepts
to link the different levels of abstraction. Each subsequent level increases model
complexity by adding details in the form of functionality and implementation
method. As the model complexity increases in each refinement level, tractability
of the detailed model can be improved by the use of a graphical representation,
with rich semantics that can support an infrastructure for formal verification.

The semantics adopted here adheres closely to UML Statecharts [3] and
is implemented in iUML-B. Models described in Statecharts are expressed
in SCXML and translated into Event-B logic which uses the Rodin platform
(Rodin) [2] for machine proofs. With suitable restrictions, Statecharts already
provide a sound, intuitive, visual metaphor for refinement. Outfitted with a for-
mal semantics, this work borrows from well-used Statechart practices in digital
design. We previously reported [16] our early attempts to relate Statecharts
to Event-B. At that stage (and similarly in [20]) we suggested the necessary
extensions and basic mechanism of translation but avoided the more challeng-
ing problem of refinement with run to completion semantics. The goal of the
present work is to provide usable, well-founded tools that are familiar to design-
ers of safety-critical systems with the formal guarantees needed to ensure safety
and reliability. The motivation of the work is entirely driven by the industrial
partner, who feels that the current semantics for Statecharts is insufficient for
formal verification.

The Event-B modelling method provides the logic and refinement theory
required to formally analyse a system model. The open-source Rodin provides
support for Event-B including automatic theorem provers and model checking

Refinement of Statecharts 123

capabilities. iUML-B augments the Event-B language with a graphical interface
including state-machines.

The rest of the paper is structured as follows. Section 2 provides background
information on SCXML, Event-B, and iUML-B. Section 3 presents our running
example. Section 4 discusses the various challenges for introducing a refinement
notion into SCXML and demonstrates our approach. In Sect. 5, we illustrate our
translation of SCXML models into Event-B using the example introduced in
Sect. 3. Section 6 shows how properties of the SCXML models can be specified
as invariants and verified in Event-B. We summarise related work in Sect. 7,
conclude in Sect. 8 and describe our plans for future work in Sect. 9.

2 Background

2.1 SCXML

SCXML is a modelling language based on Harel Statecharts with facilities for
adding data elements that are manipulated by transition actions and used in
conditions for their firing. SCXML follows the usual ‘run to completion’ seman-
tics of such Statechart languages, where trigger events1 may be needed to enable
transitions. Trigger events are queued when they are raised, and then one is de-
queued and consumed by firing all the transitions that it enables, followed by
any (un-triggered) transitions that then become enabled due to the change of
state caused by the initial transition firing. This is repeated until no transitions
are enabled, and then the next trigger is de-queued and consumed. There are
two kinds of triggers: internal triggers are raised by transitions and external
triggers are raised by the environment (spontaneously as far as our model is
concerned). An external trigger may only be consumed when the internal trig-
ger queue has been emptied. Listing 1 shows a pseudocode representation of the
run to completion semantics as defined within the latest W3C recommendation
document [22]. Here IQ and EQ are the triggers present in the internal and
external queues respectively.

1 while running:
2 while completion = false
3 if untriggered_enabled
4 execute(untriggered())
5 elseif IQ /= {}
6 execute(internal(IQ.dequeue))
7 else
8 completion = true
9 endif

10 endwhile
11 if EQ /= {}
12 execute(EQ.dequeue)
13 completion = false
14 endif
15 endwhile

Listing 1. Pseudocode for ‘run to completion’

1 In SCXML the triggers are called ‘events’, however, we refer to them as ‘triggers’ to
avoid confusion with Event-B.

124 K. Morris et al.

We adopt the commonly used terminology where a single transition is called a
micro-step and a complete run (between de-queueing external triggers) is referred
to as a macro-step.

2.2 Event-B

Event-B [1] is a formal method for system development. Main features of Event-B
include the use of refinement to introduce system details gradually into the for-
mal model. An Event-B model contains two parts: contexts and machines. Con-
texts contain carrier sets, constants, and axioms constraining the carrier sets
and constants. Machines contain variables v, invariants I(v) constraining the
variables, and events. An event comprises a guard denoting its enabled-condition
and an action describing how the variables are modified when the event is exe-
cuted. In general, an event e has the form: any twhere G(t, v) then S(t, v) end
where t are the event parameters, G(t, v) is the guard of the event, and S(t, v) is
the action of the event.

Machines can be refined by adding more details. Refinement can be done by
extending the machine to include additional variables (superposition refinement)
representing new features of the system, or to replace some (abstract) variables
by new (concrete) variables (data refinement). More information about Event-B
can be found in [8]. Event-B is supported by Rodin [2], an extensible toolkit
which includes facilities for modelling, verifying the consistency of models using
theorem proving and model checking techniques, and validating models with
simulation-based approaches.

2.3 iUML-B State-Machines

iUML-B provides a diagrammatic modelling notation for Event-B in the form
of state-machines and class diagrams. The diagrammatic models relate to an
Event-B machine and generate or contribute to parts of it. For example a state-
machine will automatically generate the Event-B data elements (sets, constants,
axioms, variables, and invariants) to implement the states. Transitions con-
tribute further guards and actions representing their state change, to the events
that they elaborate. State-machines are typically refined by adding nested state-
machines to states. Figure 1 shows an example of a simple state-machine with
two states.

Fig. 1. An example iUML-B state-machine

Each state is encoded as a boolean variable and the current state is indicated
by one of the boolean variables being set to TRUE. An invariant ensures that

Refinement of Statecharts 125

only one state is set to TRUE at a time. Events change the values of state
variables to move the TRUE value according to the transitions in the state-
machine. The Event-B translation2 of the state-machine in Fig. 1 can be seen
in Listing 2. iUML-B also provides the option of an alternative translation with
a single state variable ranging over an enumerated type of states, however, the
boolean representation of each state is more natural for a user to reference in
SCXML guards and actions.

While the iUML-B translation deals with the basic data formalisation of
state-machines it differs significantly from the aims of the work presented here.
iUML-B adopts Event-B’s simple guarded action semantics and does not have a
concept of triggers and run-to-completion. Here we make use of iUML-B’s state-
machine translation but provide a completely different semantic by generating
a behaviour into the underlying Event-B events that are linked to the generated
iUML-B transitions.

1 variables S1 S2
2 invariants
3 TRUE ∈ {S1, S2} ⇒ partition({TRUE}, {S1}∩{TRUE}, {S2}∩{TRUE})
4 events
5 INITIALISATION: begin S1, S2 := TRUE, FALSE end
6 e: when S1= TRUE then S1, S2 := FALSE, TRUE end
7 f: when S2= TRUE then S2 := FALSE end
8 end

Listing 2. Translation of the state-machine in Fig. 1

3 Intrusion Detection System

An Intrusion Detection System (IDS) is used to illustrate the use of refinement
in Statecharts and how it is supported by Event-B verification tools. The IDS
is designed using an Application-Specific Integrated Circuit (ASIC) which con-
nects to a buzzer and a sensor over a Serial Peripheral Interface (SPI) bus. The
system is controlled via the ASIC on the SPI bus. At power-up, the ASIC sends
commands over the SPI bus to initialise the sensor and the buzzer. After waiting
for 50 ms the ASIC enters its main routine, which makes the buzzer respond to
the sensor. In the early design phase the Statechart model of this system may be
limited to the ASIC that captures the initialisation of the peripherals and the
50 ms wait. In the interest of simplicity, we elide all details of the main routine.

A Statechart model of this system is shown in Fig. 2a. The ASIC starts by
initialising the buzzer; this involves sending a message over the SPI bus. These
messages constitute an implementation detail that we elide at this abstraction
level. Once the message is sent (which will be indicated by some event saying that
the SPI system is done), the ASIC moves on to initialise the sensor. After that
the ASIC moves into a waiting state for 50 ms, and finally moves into the state
which represents normal operation. At this abstraction the spi done trigger,
2 Here, partition(S,T1,T2, . . .) means the set S is partitioned into disjoint (sub-)sets
T1, T2, that cover S.

126 K. Morris et al.

which indicates that the SPI system has finished, is an internal trigger that can
be fired at any time.

In a subsequent level of refinement, shown in Fig. 2b, the designer uses super-
position refinement to add a parallel state representing the SPI subsystem. The
SPI subsystem is usually in an Idle state until the send message trigger is
raised, at which point the SPI subsystem enters a state Sending Message,
which represents sending the message, byte by byte. When the last byte of the
message is sent, it raises the spi done trigger, allowing the other parallel state
to continue, while the SPI subsystem returns to idle. In the current refined model
we have incorporated the implementation details for raising spi done and intro-
duced a new internal trigger send message, which is non-deterministic at this
point.

(a) ASIC component high level
abstraction

(b) First refinement introducing the abstract
model of the SPI subsystem

Fig. 2. Statechart diagram for IDS including the abstract representation of the ASIC
and SPI components.

The model can be further refined by incorporating more details on how the
initialisation states, the wait state, and the SPI subsystem operate, including how
they interact with each other. The Statechart diagram for this refinement level
is in Fig. 3. The Initialise Buzzer state constructs the SPI message to send,
then raises the send message trigger, and then waits. After send message is
raised, the SPI subsystem reacts. It spins for a while in the Send Byte state,
looping as many times as it takes to get to the last byte in the message. When
the last byte in the message is sent, it goes back to Idle and raises an event which
allows the state machine on the left to proceed. The sensor is then initialised in
a very similar manner to the buzzer. After both peripherals are initialised, the

Refinement of Statecharts 127

state machine goes into the Wait 50ms state, where it increments a counter
until it reaches some maximum, then exits.

Fig. 3. Statechart diagram for IDS including implementation details for the messages
sent between the system components.

The system described must send messages to complete the initialisation of
the buzzer and sensor, but once the main routine is reached (Go state) no more
messages should be sent through the SPI bus. As a result, a desirable safety
property is that when the ASIC is in the Go state the SPI subsystem must be
in the Idle state. This safety property should hold from the first refinement and
be preserved in all future refinements.

4 Design Rationale

We consider the kinds of things we would like to do in SCXML refinements and
what properties should be preserved. In practice, we wish to leverage existing
Event-B verification tools and hence adopt a notion of refinement that can be
automatically translated into an equivalent Event-B model consisting of a chain

128 K. Morris et al.

of refinements. We use particular refinement idioms at the Statechart level that
correspond to Event-B’s superposition refinement and thus have simple proof
obligations. These refinement idioms are very natural from an engineering per-
spective (as illustrated by the running example). Hence we start from the follow-
ing requirements which allow superposition refinements and guard strengthening
in SCXML models:

– The firing conditions of a transition can be strengthened by adding further
textual constraints about the state of other variables and state machines in
the system.

– The firing conditions of a transition can be strengthened by being more spe-
cific about the (nested) source state,

– Nested Statecharts can be added in refinements.
– Actions that modify ancillary data can be added to transitions.
– Raise actions can be added to transitions to define how internal triggers are

raised. These internal triggers may have already been introduced and used to
trigger transitions, in which case they are non-deterministically raised at the
abstract levels.

– External triggers represent inputs to the model. If no restrictions are imposed
on the inputs then the events that raise external trigger are always unguarded
and cannot be refined.

– Invariants can be added to states to specify properties that hold while in that
state.

While it would be possible to utilise Event-B’s data refinement to perform more
substantial Statechart refinements (for example replacing an abstract Statechart
with a different one in the refined model), this would lead to complex proof
obligations and is impractical when the SCXML model is a single Statechart
(rather than a chain of refined models).

Adherence to Event-B refinement means that refined transitions (hence
micro- and macro-steps) should preserve the abstract state and new ones should
not alter the abstract state. With this approach, there is an inherent difficulty
in refining ‘run to completion’ semantics where every enabled micro-step must
be completed before the next macro-step is started. The problem is that, in a
refinement, we want to strengthen the conditions for a micro-step. However, by
making the micro-steps more constrained we may disable them and hence make
the completion of enabled ones more easily achieved. This makes the guard for
taking the next macro-step weaker breaking the notion of refinement.

While it is always possible to abstract away sufficiently to reach a common
semantics (see [20] for example), in this work we wish to explore verification
that considers ‘run to completion’ behaviour as closely as possible. To simulate
the ‘run to completion’ semantics in Event-B, we initially adopted a scheduler
approach where ‘engine’ events decide which user transitions should be fired
based on their guards. Boolean flags were then used to enable these transitions
which may fire before the next step of the engine. The engine implemented the
operational semantics of Listing 1 by deciding when to use internal or external
triggers. To allow for transition guards to be strengthened in later refinements

Refinement of Statecharts 129

(hence achieving completion earlier) the scheduling engine was allowed to con-
tinue without actually firing the transitions. However, this non-deterministic
completion introduced many additional behaviours making simulation difficult.

Due to these difficulties with non-deterministic completion we developed an
alternative approach where a separate event is generated for each combination of
transitions that could possibly be fired together in the same step. For example,
if T1 and T2 are transitions that could both become enabled at the same sched-
uler step, four events are needed to cater for the possible combinations: neither,
T1, T2 and both (where the combined event is constructed from the conjunc-
tion of guards and parallel firing of actions). To allow for strengthening of the
guards in refinement we omit the negation of guards leaving the choice of lesser
combinations, including the empty one, non-deterministically available in case
of future refinement. For example, T1 could fire alone even if T2 is enabled since
we cannot add the negation of T2’s guard to T1 unless we know that it will
never be strengthened. This non-determinism in the model accurately reflects
the abstract run to completion where we do not yet know whether T2 will be
enabled or not in future refinements. The non-determinism is useful to allow
abstractions which facilitate verification proofs but must be removed in refine-
ments to reach a design suitable for implementation. In future work we intend
to add an attribute finalised to indicate that no further guard strengthening
refinements will be made to a transition, removing non-determinism throughout
the refinement chain.

Since there is only ever a single event to be fired in a particular micro-step,
the scheduler can be integrated with the events that represent the transition
combinations, greatly simplifying the Event-B model. Instead of explicit events
to progress and implement the scheduling engine, an abstract machine is pro-
vided with events that can be refined by the translation of the user’s SCXML
model into events that represent combinations of transitions that can fire in
the same micro-step. Each refinement produces a new set of events representing
the (possibly extended) transition combinations that may occur at that level of
refinement. This has benefits both for simulation (i.e. execution of the Statechart
for validation) which is easier to follow having less translation artefacts and for
proof where the obligations are directly associated with particular transition
combinations. Another benefit is that any parallel assignments to the same vari-
able are rejected by the Event-B static checker. The disadvantage, of course, is
that there could be a combinatorial explosion in the number of events generated.
In practice though, this is unlikely since, to be fired in parallel, transitions must
have the same trigger and be located in parallel Statecharts. A high number of
events is also not necessarily a bad thing since they are automatically generated
and the main purpose of the Event-B model is for proof which could be simplified
by replacing some of the unnecessary sequential steps of the model by a choice.
If the number of combinations is excessive it may indicate poor modelling style
which can be reduced by introducing more internal triggers. So far our examples
have required few or no parallel transitions.

130 K. Morris et al.

1 context

2 basis c // (generated for SCXML)
3 sets

4 SCXML TRIGGER // all possible triggers
5 constants

6 SCXML FutureInternalTrigger // all possible internal triggers
7 SCXML FutureExternalTrigger // all possible external triggers
8 axioms
9 partition(SCXML TRIGGER, SCXML FutureInternalTrigger, SCXML FutureExternalTrigger)

10 end

Listing 3. Abstract basis context

The following syntax extensions are added to SCXML models to support
refinement and invariant verification.

– refinement - an integer attribute representing the refinement level at which
the parent element should be introduced,

– invariant - an invariant property (such as synchronisation of state with ancil-
lary data and other state machines) that holds while in the parent state,

– guard - a guard condition of the parent transition (allowing transition con-
ditions to be added at particular refinement levels).

5 SCXML Translation

The translation from SCXML to Event-B is based on an abstract ‘basis’ that
models the ‘run to completion’ semantics. This basis consists of an Event-B
context and machine that are the same for all input models and are refined
by the specific output of the translation. The basis context, Listing 3, intro-
duces a given set of all possible triggers that is partitioned into internal and
external ones, some of which will be introduced in future refinements. Refine-
ments partition these trigger sets further to introduce concrete triggers, leaving
a new abstract set to represent the remaining triggers yet to be introduced. For
example, the IDS model introduces a specific internal trigger, spi done, by par-
titioning SCXML FutureInternalTrigger into the singleton {spi done} and a new
set, SCXML FutureInternalTrigger0, representing the remainder.

The basis machine, part of which is shown in Listing 4, declares variables
that correspond to the triggers present in the queue at any given time, and a
flag, SCXML uc, that signals when a run to completion macro-step has been
completed (no un-triggered transitions are enabled). After initialisation, both
trigger queues are empty and SCXML uc is set to FALSE so that un-triggered
transitions are dealt with. The basis machine provides events that describe the
generic behaviour of models that follow the run to completion semantics in terms
of altering the trigger queues and completion flag. Since new events introduced
in a refinement cannot modify existing variables, all future events generated
by translation of the specific SCXML model, will refine these abstract events.
The abstract event, SCXML futureExternalTrigger represents the raising of an

Refinement of Statecharts 131

external trigger. The abstract event, SCXML futureInternalTransitionSet repre-
sents a combination of transitions that are triggered by an internal trigger.
The guards of this event ensure prior completion of the previous macro-step. A
similar event, SCXML futureExternalTransitionSet (not shown) represents a com-
bination of transitions that are triggered by an external trigger and has the
additional guard that the internal trigger queue is empty. These two triggered
transition events reset the completion flag to ensure that any un-triggered tran-
sitions that may have become enabled have a chance to fire next. The abstract
event SCXML futureUntriggeredTransitionSet represents a combination of transi-
tions that are un-triggered and may only be fired when the completion flag is
unset (FALSE). It leaves the completion flag unset in case further combinations
of un-triggered transitions are enabled. All three of these transition events also
allow for raising a non-deterministic set of internal triggers. A final abstract
event, SCXML completion, sets the completion flag (TRUE) if it is not already
set. At this abstract basis level, this is non-deterministically fired since we do
not yet have any detail of what needs to be completed.

The translation of a specific SCXML model comprises two stages as follows.
Firstly, all possible combinations of transitions that can fire together are calcu-
lated and corresponding events are generated, at appropriate refinement levels,
that refine the abstract basis events. If these transitions raise internal triggers,
a guard, (e.g. {i1, i2, ...} ⊆ SCXML raisedTrigger, where i1, i2, ... have been added
to the internal triggers set), is introduced that defines the raised triggers param-
eter. The subset constraint leaves it open for more raised triggers to be added by
later refinements. For triggered transition combinations, the trigger is specified
in a guard (see line 8 of Listing 5) that provides a value for the trigger parameter.

Secondly, the SCXML state-chart is translated into a corresponding iUML-
B state-machine whose transitions elaborate (i.e. add state change details to)
the possible transition combination events that the transition may be involved
in. A transition may fire in parallel with transitions of parallel nested state-
machines that have the same (possibly null) trigger. Figure 4 shows the generated
iUML-B first refinement level corresponding to the IDS described in Fig. 2b. The
main rules for the translation of SCXML features to iUML-B/Event-B can be
summarized as follow:

Top level SCXML model: Generates a refinement chain of Event-B machines
each containing an initialisation event and a iUML-B state-machine. The
depth of the refinement chain is found by searching the SCXML for the
maximum refinement annotation.

State: Generates a state in the iUML-B state-machine that has been produced
from the container of the SCXML state. A refined state is also added in all of
the refinements of the parent iUML-B state-machine. E.g. Fig. 2b, Initialise
Buzzer → Fig. 4, InitialiseBuzzer.

State invariant: Generates an invariant in the iUML-B state corresponding to
the SCXML state that contains the invariant. Added only at the refinement
level defined in the invariant (defaults to first level at which containing iUML-

132 K. Morris et al.

1 machine basis m sees basis c // (generated for SCXML)
2 variables

3 SCXML iq // internal trigger queue
4 SCXML eq // external trigger queue
5 SCXML uc // run to completion flag
6 invariants

7 SCXML iq ⊆ SCXML FutureInternalTrigger // internal trigger queue
8 SCXML eq ⊆ SCXML FutureExternalTrigger // external trigger queue
9 SCXML iq ∩ SCXML eq= ∅ // queues are disjoint

10 SCXML uc ∈ BOOL // completion flag
11 events
12

13 INITIALISATION:
14 begin

15 SCXML iq := ∅ //internal Q is initially empty
16 SCXML eq := ∅ //external Q is initially empty
17 SCXML uc := FALSE //completion is initially FALSE
18 end
19

20 SCXML futureExternalTrigger:
21 any SCXML raisedTriggers where
22 SCXML raisedTriggers ⊆ SCXML FutureExternalTrigger
23 then
24 SCXML eq := SCXML eq ∪ SCXML raisedTriggers
25 end
26

27 SCXML futureInternalTransitionSet:
28 any SCXML it SCXML raisedTriggers where
29 SCXML it ∈ SCXML iq
30 SCXML uc= TRUE
31 SCXML raisedTriggers ⊆ SCXML FutureInternalTrigger
32 then
33 SCXML uc := FALSE
34 SCXML iq := (SCXML iq ∪ SCXML raisedTriggers) \ {SCXML it}
35 end
36

37 SCXML futureUntriggeredTransitionSet:
38 any SCXML raisedTriggers where
39 SCXML uc= FALSE
40 SCXML raisedTriggers ⊆ SCXML FutureInternalTrigger
41 then
42 SCXML uc := FALSE
43 SCXML iq := SCXML iq ∪ SCXML raisedTriggers
44 end
45

46 end

Listing 4. Abstract basis machine (part of)

B state is introduced). E.g. Fig. 4, Idle=TRUE is generated from an invariant
attached (not shown) to the state Go of Fig. 2b.

Parallel Region: Generates an iUML-B state-machine in the state correspond-
ing to the owner of the parallel region. The nested iUML-B state-machine
is added starting from the refinement level that is annotated on the paral-
lel region and continuing throughout subsequent refinements. E.g. Fig. 2b,
right-hand region → Fig. 4, lower nested state-machine.

Initial: Generates an iUML-B initial state, and a transition from it to the
iUML-B state indicated in the SCXML initial attribute. The iUML-B initial
state and iUML-B transition are added at all refinement levels. The iUML-B

Refinement of Statecharts 133

1 spi done InitialiseSensor Wait50ms:
2 refines SCXML futureInternalTransitionSet
3 any SCXML it SCXML raisedTriggers where
4 SCXML it ∈ SCXML iq
5 SCXML uc= TRUE
6 SCXML raisedTriggers ⊆ SCXML FutureInternalTrigger
7 InitialiseSensor= TRUE

8 SCXML it= spi done //trigger for this transition
9 then

10 SCXML uc := FALSE
11 SCXML iq := (SCXML iq ∪ SCXML raisedTriggers) \ {SCXML it}
12 InitialiseSensor := FALSE
13 Wait50ms := TRUE
14 end

Listing 5. Event-B event corresponding to internal triggered transition to Wait 50ms
state in refinement level 1 shown in Fig. 2a

transitions are set to elaborate the Event-B INITIALISATION event for that
refinement level. E.g. Fig. 2b, initial state and transition in right-hand region
→ Fig. 4, initial state and transition in lower nested state-machine.

Final: Generates an iUML-B state with a transition to a final state in the state-
machine that has been generated from the containing SCXML state. The
transition elaborates the same events that are linked to the transitions that
exit the parent iUML-B state. The iUML-B state, final state and transition
are also added as refined elements to all of the refinements of the parent
iUML-B state-machine. (Not used in our example).

Transition: Generates an iUML-B transition in the state-machine that has
been generated from the containing SCXML state. The iUML-B transition’s
source and target are those that have been generated from the SCXML tran-
sition’s source and target states. The transition elaborates generated Event-B
events according to the rules given in Sect. 5. The iUML-B transition and
elaborated Event-B events are also added as corresponding refined elements
in all of the refinements of the parent iUML-B state-machine. E.g. Fig. 2b,
send message → Fig. 4, send message Idle SendingMessage.

A tool to automatically translate SCXML models into iUML-B has been pro-
duced. The tool is based on the Eclipse Modelling Framework (EMF) and uses an
SCXML meta-model provided by Sirius [4] which has good support for extensi-
bility. The iUML-B state-machine is subsequently translated into Event-B using
the standard iUML-B translation [18] which provides variables to model the cur-
rent state and guards and actions to model the state changes that transitions
perform.

6 Verification of Intrusion Detection System

One of our main goals is to express properties in SCXML intermediate refine-
ments and prove them via translation to Event-B. In this section we illustrate
how this can be done in the IDS example.

134 K. Morris et al.

Properties about the synchronisation of parallel state-machines (such as
Go=TRUE⇒ Idle=TRUE) can be difficult to verify for all scenarios via sim-
ulation in SCXML. Proof of such properties is a major benefit of translating
into Event-B. Furthermore, in order to benefit from the abstraction provided by
Event-B, we would like to prove such things at abstract levels before the compli-
cation of further details are introduced. Typically these further details concern
the raising of internal triggers that contribute to the synchronisation we wish to
verify. Therefore additional constraints, that are an abstraction of the missing
details, are needed about triggers in order to perform the proof.

Fig. 4. State invariants to be verified at refinement level 1.

Figure 4 is the generated iUML-B showing state invariants (textual properties
with a star icon inside states) to be verified. Note that the invariants are added
to the SCXML model but are easier to visualise in the iUML-B with the current
tooling. The main aim is to show the property Idle=TRUE holds in state Go. This
is true because after sending the message while in InitialiseSensor, no other mes-
sages are triggered by the ASIC, so the SPI subsystem stays in the Idle state indefi-
nitely. To enable the provers to discharge the proof obligation we work back along
the ASIC’s sequence of states. That is, Idle=TRUE is maintained in state Go if
it holds in state Wait50ms and no send message triggers are raised by the entry
transition Wait50ms Go nor once the ASIC subsystem is in state Go. To ensure
this we add a guard send message /∈ SCXML raisedTriggers to Wait50ms Go to
prevent any future refinement from raising the trigger send message. (Currently,
this is added verbatim but we envision a ‘doesn’t raise’ notation to avoid the

Refinement of Statecharts 135

user having to reference the translation artefact, SCXML raisedTriggers). We also
need to prevent any future transitions from raising this trigger in the state Go. To
automate this for all abstract ‘future’ events, they could be automatically gen-
erated and added to satisfy all user invariants concerning the raising of internal
triggers regardless of whether they are violated in future levels. For example, the
guard Go=TRUE⇒ send message /∈ SCXML raisedTriggers needs to be automat-
ically added to the three ‘basis’ events, SCXML futureUntriggeredTransitionSet,
SCXML futureInternalTransitionSet and SCXML futureExternalTransitionSet to
prove they do not break the property being verified. If it is not obeyed by future
transitions, guard strengthening proof obligations will fail, making it obvious
where the problems lie. As indicated above, we now need to prove by similar
means that Idle=TRUE holds in state Wait50ms. In this case, however, we can
only say that Idle=TRUE in state InitialiseSensor after the SPI-system finishes
sending the message and raises the trigger, spi done. Hence the state invariant
for InitialiseSensor becomes spi done∈SCXML iq⇒ Idle=TRUE. In order to prove
this we again need a corresponding state invariant about send message and need
to make sure that the SPI system will never raise send message. We also ensure
it does not raise spi done until it is finished. With these invariants and additional
guards the Rodin automatic provers are able to prove all proof obligations and
hence verify that the SPI system remains in Idle after servicing the ‘Initialise
Sensor’ message.

In order to prove properties at an abstract level we constrain the behaviour to
be added in later refinements. For example, we needed to add a guard to specify
that a transition does not raise a particular trigger in any future refinement.
The abstract constraints should not appear in later refinements when the details
have been finalised. To do this we could introduce ranges into our refinement
attributes.

7 Related Work

Refinement of UML Statecharts has been studied previously in [6,11,14,15,21].
In [14], the authors consider a coalgebraic description of UML Statecharts, and
define an equivalence relationship and a behavioural refinement notion between
Statecharts. In [21], the authors define a structured operational semantics of
Statecharts based on label transition systems. Behaviour refinements are then
constructed based on this semantics. The authors prove that a “safe-extension”
of UML Statecharts is a correct behavioural refinement. In [11,15], formal refine-
ment rules are developed for SysML, including Statecharts, based on the cor-
responding process refinement rules of the Compass Modelling Language. The
issue of run to completion with respect to refinement is not considered explic-
itly nor shown in any examples. In [6], the authors propose a “purely additive”
refinement process where no elements (e.g. events, guards, etc.) of the original
model can be removed and the “external” behaviour of the model is therefore
preserved. This refinement process is similar to Event-B “superposition” refine-
ment which we use in our translation.

136 K. Morris et al.

In our paper, we focus on the run-to-completion semantics of Statecharts,
whereas none of the above work deals with it explicitly. Furthermore, the refine-
ment process supported in [6,11,14,15] is based on refinement patterns (called
refinement rules/laws), whereas we rely on the more general theory of refinement,
given by the proof obligations of Event-B, for proving the refinement relationship
between Statecharts.

8 Conclusion

We have shown how a slightly extended and annotated Statechart, with a typ-
ical ’run to completion’ semantic, can be translated into the Event-B notation
for verification of synchronisation properties using the Event-B theorem prov-
ing tools. Furthermore, borrowing from the refinement concepts of Event-B, we
introduce a notion of refinement to Statecharts and demonstrate how the proof
of a property at an abstract level, helps formulate constraints that must apply
(and will be verified to do so) in further refinements.

9 Future Work

In future work we will continue to experiment with different examples to explore
the alternative translation strategies in more detail. In particular, further work
on refinement of the micro/macro-step and whether correspondence of macro-
steps can be relaxed; whether more complex refinement techniques could be
supported (for example, using ranges in refinement annotations) would be use-
ful; supporting/comparing alternative variations of semantics (by generating a
different basis/scheduler for the translation). For our interpretation of State-
charts in iUML-B, we used the ‘run-to-completion’ semantics of Statecharts. In
particular, we have carefully designed our translated model such that the seman-
tics is captured as a generic abstract model, which is subsequently refined by
the translation of the SCXML model. An advantage of this approach is that we
can easily adapt the basis model with other alternative semantics [5] without
changing the translation of the SCXML model.

We will also demonstrate the scalability of the translation on more realistic
industrial examples. The Haemodialysis Machine case study [13] from the ABZ
2016 conference would make a good test case since its highly sequential pro-
cesses are natural for a state-chart representation and results can be compared
with existing iUML-B solutions [10]. The ERTMS Hybrid Level 3 case study [9]
from the ABZ 2018 conference is also an industrial example which would test
the method. This case study would require lifting of the output models to a
generalised set of instances using a model composition technique that we have
been developing for this purpose.

All data supporting this study are openly available from the University of
Southampton repository at https://doi.org/10.5258/SOTON/D0693.

Acknowledgment. The authors would like to thank Jason Michnovicz for developing
the IDS example used throughout the manuscript.

https://doi.org/10.5258/SOTON/D0693

Refinement of Statecharts 137

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in Event-B. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

3. David, A., Möller, M.O., Yi, W.: Formal verification of UML statecharts with real-
time extensions. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 218–232. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45923-
5 15

4. Eclipse Foundation: Sirius Project Website. https://eclipse.org/sirius/overview.
html. Accessed Mar 2016

5. Eshuis, R.: Reconciling statechart semantics. Sci. Comput. Program. 74(3), 65–99
(2009)

6. Hansen, C., Syriani, E., Lucio, L.: Towards controlling refinements of statecharts.
CoRR, abs/1503.07266 (2015)

7. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

8. Hoang, T.S.: An introduction to the Event-B modelling method. In: Romanovsky,
A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp.
211–236. Springer, Heidelberg (2013)

9. Hoang, T.S., Butler, M., Reichl, K.: The hybrid ERTMS/ETCS level 3 case study.
In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol.
10817, pp. 251–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91271-4 17

10. Hoang, T.S., Snook, C., Ladenberger, L., Butler, M.: Validating the requirements
and design of a hemodialysis machine using iUML-B, BMotion studio, and co-
simulation. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 360–375. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33600-8 31

11. Lima, L., et al.: An integrated semantics for reasoning about SysML design models
using refinement. Softw. Syst. Model. 16(3), 875–902 (2017)

12. Maraninchi, F.: The Argos language: graphical representation of automata and
description of reactive systems. In: IEEE Workshop on Visual Languages (1991)

13. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 29

14. Meng, S., Naixiao, Z., Barbosa, L.S.: On semantics and refinement of UML state-
charts: a coalgebraic view. In: Proceedings of the Second International Conference
on Software Engineering and Formal Methods, SEFM 2004, pp. 164–173, Septem-
ber 2004

15. Miyazawa, A., Cavalcanti, A.: Formal refinement in SysML. In: Albert, E., Sek-
erinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 155–170. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10181-1 10

16. Morris, K., Snook, C.: Reconciling SCXML statechart representations and Event-B
lower level semantics. In: HCCV - Workshop on High-Consequence Control Verifi-
cation (2016)

17. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, 2nd edn. Pearson Higher Education, Upper Saddle River (2004)

https://doi.org/10.1007/3-540-45923-5_15
https://doi.org/10.1007/3-540-45923-5_15
https://eclipse.org/sirius/overview.html
https://eclipse.org/sirius/overview.html
https://doi.org/10.1007/978-3-319-91271-4_17
https://doi.org/10.1007/978-3-319-91271-4_17
https://doi.org/10.1007/978-3-319-33600-8_31
https://doi.org/10.1007/978-3-319-33600-8_31
https://doi.org/10.1007/978-3-319-33600-8_29
https://doi.org/10.1007/978-3-319-10181-1_10

138 K. Morris et al.

18. Snook, C.: iUML-B statemachines. In: Proceedings of the Rodin Workshop 2014,
Toulouse, France (2014). http://eprints.soton.ac.uk/365301/

19. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

20. Snook, C., Savicks, V., Butler, M.: Verification of UML models by translation to
UML-B. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010.
LNCS, vol. 6957, pp. 251–266. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25271-6 13

21. Szasz, N., Vilanova, P.: Behavioral refinements of UML-Statecharts. Technical
report RT 10–13, Universidad de la República, Montevideo, Uruguay (2010)

22. W3C: State chart XML SCXML: State machine notation for control abstraction.
http://www.w3.org/TR/scxml/. Accessed Sept 2015

http://eprints.soton.ac.uk/365301/
https://doi.org/10.1007/978-3-642-25271-6_13
https://doi.org/10.1007/978-3-642-25271-6_13
http://www.w3.org/TR/scxml/

Abstraction Refinement with Path
Constraints for 3-Valued Bounded

Model Checking

Nils Timm(B) and Stefan Gruner

Department of Computer Science, University of Pretoria, Pretoria, South Africa
{ntimm,sgruner}@cs.up.ac.za

Abstract. We present an abstraction refinement-based technique for
checking safety properties of software. The technique employs predicate
abstraction and SAT-based 3-valued bounded model checking. In con-
trast to classical refinement techniques where a single state space model
is iteratively explored and refined with predicates, our approach is as
follows: We use a coarsely-abstracted model of the full state space where
we check for abstract witness paths for the property of interest. For each
detected abstract witness we construct a partial model whose state space
is restricted to refinements of the witness only. On the partial models we
check whether the witness is real or spurious. We eliminate spurious wit-
nesses in the full model via constraints, which do not increase the state
space complexity. Our technique terminates when a real witness in a par-
tial model can be detected, or no more witnesses in the full model exist.
The approach enables verification with a reduced state space complexity.

1 Introduction

3-valued abstraction (3VA) [12] is a technique for reducing the complexity of soft-
ware verification. It proceeds by generating an abstract state space model of a
software system over predicates with the possible values true, false and unknown,
where the latter represents the loss of information due to abstraction. The eval-
uation of temporal logic properties on such models is known as 3-valued model
checking (3MC) [2]. Under 3VA both true and false model checking results
can be transferred to the modelled software system, whereas an unknown result
indicates that the current model is too coarse for a definite outcome. In the lat-
ter case a so-called unconfirmed witness is produced, which is an execution path
in the abstract state space with some unknown transitions or predicates that
characterises a potential violation of the property of interest. Witness-guided
abstraction refinement [14] then iteratively adds further predicates to the model
until a previously unconfirmed witness turns out to be definite, or no more wit-
nesses exist. The described approach follows the classical abstract–check–refine
paradigm where a single model that represents the entire system is iteratively
refined. Since each refinement iteration involves an exponential growth of the
state space to be explored, this approach can easily suffer from state explosion.
c© Springer Nature Switzerland AG 2019
C. Artho and P. C. Ölveczky (Eds.): FTSCS 2018, CCIS 1008, pp. 139–157, 2019.
https://doi.org/10.1007/978-3-030-12988-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12988-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-12988-0_9

140 N. Timm and S. Gruner

Here, we present a novel abstraction refinement technique that facilitates
verification with an improved state space complexity. We focus on the verifica-
tion of safety properties of concurrent software systems. Examples are mutual
exclusion and absence of deadlocks, which are vital properties in many safety-
critical applications. In our approach we make use of two kinds of state space
models: We use a full model that considers all parts of the underlying system,
and we use partial models that are restricted to certain execution paths. Both
full and partial models are subject to abstraction. But only the partial models
are refined by adding predicates, whereas the full model is iteratively pruned via
path constraints derived from partial models. For this, we define an extension
of 3-valued model checking with path constraints. Our new technique proceeds
as follows: In the same manner as in the classical approach, we start with a
coarsely-abstracted full model of the system and we check whether the prop-
erty of interest can be proven or refuted. If the check returns unknown along
with an unconfirmed witness, then we derive new predicates for refinement. Now
instead of refining the full model, we construct a new partial model that is nar-
rowed down to refinements of the witness only. Checking the partial model either
proves the previously unconfirmed witness to be definite or to be spurious. In
the first case we are done. In the latter case we generate a constraint for ruling
out the spurious witness. In the subsequent iteration we return to the full model
and prune its state space via the generated spurious witness constraint. The
procedure terminates when either no more witnesses in the full model exist or a
definite witness in a partial model can be detected.

Our approach reduces the state space complexity in two ways. Refinement is
only applied to partial models whose state space is already strongly limited by
being restricted to refinements of a certain unconfirmed witness. The state space
of the full model is pruned by spurious witness constraints derived from partial
models. But the refinement predicates that were used in the partial model to
derive these constraints do not have to be added to the full model. Hence, we
gain precision in the full model without enlarging its state space. The price that
we pay is an increased number of iterations until definite result can be obtained.
The actual number depends on the strength of generated constraints in terms
of ruling out spurious behaviour. Thus, we develop a constraint strengthening
concept: The spuriousness of a witness typically originates from a fragment of
the path that it represents. A constraint for excluding all paths that exhibit such
a spurious fragment is naturally stronger than a constraint that just excludes
the specific witness. Our constraint strengthening concept allows us to determine
spurious fragments of witnesses and to rule them out via spurious fragment
constraints. In general, a spurious fragment refers to a particular position along a
path that starts in an initial state of the modelled system. Hence, a corresponding
constraint would only rule out paths that exhibit the spurious fragment at exactly
this position. We develop a second strengthening technique that is based on
checking whether a spurious fragment is initial state independent. We show that
in case of initial state independence, a constraint can be shifted such that it rules
out all paths that exhibit the spurious fragment at some arbitrary position.

Abstraction Refinement with Path Constraints 141

We implemented our refinement technique on top of a 3-valued bounded
model checker. Our tool encodes the model checking problems to be solved in
propositional logic. Hence, model checking is reduced to SAT solving. The SAT
scenario allows us to efficiently conduct constraint generation and strengthen-
ing: The spuriousness of a witness translates to the unsatisfiability of a propo-
sitional logic formula. While the entire unsatisfiable formula characterises the
entire spurious witness, an unsatisfiable core of the formula characterises a spu-
rious fragment. Today’s SAT solvers can efficiently extract small or minimal
unsatisfiable cores [11], which we exploit in our approach for generating strong
spurious fragment constraints. Likewise, checking whether a spurious fragment
depends on the initial state translates into SAT-based checking whether the
unsatisfiable core contains the encoding of the initial state. In experiments we
show that our constraint-based verification approach allows for significant per-
formance improvements in comparison to classical abstraction refinement.

2 Abstracted Concurrent Software Systems

We start with a brief introduction to the systems that we want to verify and the
abstraction technique that we use in our work. A concurrent system Sys consists
of a number of possibly non-uniform processes P1 to Pn composed in parallel:
Sys =‖n

i=1 Pi. It is defined over a set of variables V ar = V arSys∪V arPC . V arSys

is a set of arbitrary system variables, whereas V arPC is a special set that holds
for each process Pi a dedicated program counter variable pci ranging over binary
control locations from a set Loci. Locations of a process are labelled with guarded
commands with regard to system variables and with a reference to the subsequent
location. The form of a guarded command is g : v1 := e1, . . . , vm := em where
v1, . . . , vm ∈ V arSys and g, e1, . . . em are expressions over V arSys. The state
space over V ar is the set SV ar of all type-correct valuations of the variables. An
example of a system implementing mutual exclusion is depicted below (Fig. 1).

y : semaphore where y = 1;

P1 ::

⎡
⎢⎢⎣

loop forever do⎡
⎣
0: acquire (y , 1);
1: CRITICAL

release (y , 1);

⎤
⎦

⎤
⎥⎥⎦ ‖ P2 ::

⎡
⎢⎢⎣

loop forever do⎡
⎣
0: acquire (y , 1);
1: CRITICAL

release (y , 1);

⎤
⎦

⎤
⎥⎥⎦

Fig. 1. Concurrent system implementing mutual exclusion

Here we have two processes operating on a shared counting semaphore variable y.
The semantics of the semaphore operations are as follows: acquire(y, 1) = (y >
0) : y := y − 1 and release(y, 1) = (true) : y := y + 1. We assume that for any
Sys a deterministic initialisation of all its variables is given in terms of a predicate

142 N. Timm and S. Gruner

expression Init, e.g., Init = (y = 1) ∧ (pc1 = 0) ∧ (pc2 = 0) for our example.
A computation corresponds to a possibly infinite sequence of commands where in
each step a process is non-deterministically selected and the guarded command at
its current location is attempted to be executed. If the execution is not blocked
by a guard, the variables are updated according to the assignment part and the
process advances to the next location. A computation can be likewise considered
as sequence of states s0s1s2 . . . where the transition from si to si+1 correctly char-
acterises the execution of the associated guarded command.

We use 3-valued abstraction [12] to reduce the state space complexity of
our systems, which gives us abstract systems defined over predicates with the
domain 3 = {true, false, unknown} which we typically abbreviate by {t, f, u}.
The value u represents the loss of details due to abstraction. 3-valued abstrac-
tion generates an approximation in the sense that all definite verification results
(t, f) obtained for an abstract system can be transferred to the concrete system,
whereas a u result tells us that the current level of abstraction is too coarse.
We now give a short overview of 3-valued abstraction which is based on the
Kleene logic K3 [6]. Details of the technique can be found in [12]. In abstract
systems guarded commands do not refer to concrete variables but to abstract
predicates ASys over V arSys. Abstract commands have the form choice(a, b) :
p1 := choice(a1, b1), . . . , pm := choice(am, bm) where p1, . . . , pm ∈ ASys and
a, b, a1, b1, . . . are expressions over ASys. choice(a, b)-expressions have the fol-
lowing semantics: s(choice(a, b)) = t if s(a) = t, s(choice(a, b)) = f if s(b) = t,
s(choice(a, b)) = u otherwise. Predicates in ASys may be set to u by an abstract
command. While this abstraction reduces the complexity induced by system vari-
ables, it preserves the original control flow. For this, the set of 2-valued predicates
APC = {(pci = j) | i ∈ [1, n], j ∈ Loci} is used that covers all locations of the
system. The overall set of predicates is thus A = ASys ∪ APC .

3 3-Valued Bounded Model Checking

Verification tasks with regard to the abstracted systems can be formalised as
model checking problems such that the model checking result correctly char-
acterises the computational behaviour of the system [12]. In this section, we
briefly review 3-valued bounded model checking (3BMC) [15] and we introduce
an extension of 3BMC, that makes use of path constraints. In 3BMC state spaces
of abstracted systems are modelled as 3-valued Kripke structures (KS):

Definition 1 (3-Valued Kripke Structure). A 3-valued Kripke structure
over a set of atomic predicates A is a tuple M = (S, I,R, L) where

– S is a finite set of states,
– I ⊆ S is a set of initial states,
– R : S × S → 3 is a transition function such that ∀s ∈ S : ∃s′ ∈ S with

R(s, s′) ∈ {t, u},
– L : S × A → 3 is a labelling function that associates a truth value with each

atomic predicate in each state.

Abstraction Refinement with Path Constraints 143

A Kripke structure representing the state space of our example system can be
defined over the predicate set A = {(pc1 = 0), (pc1 = 1), (pc2 = 0), (pc2 = 1)}.
Here we only have predicates over the control flow, but so far no predicates
over the variable y. We assume that all states have a unique labelling, i.e. a pair
s, s′ ∈ S with ∀p ∈ A : L(s, p) = L(s′, p) implies s = s′. A unique labelling is
guaranteed by the abstraction technique that we use. Given an s ∈ S and an
expression pe over A, then s(pe) denotes the valuation of pe in s. The set of
initial states of a structure modelling our example system abstracted over A can
be defined as I = {s ∈ S | s

(
(pc1 = 0) ∧ (pc2 = 0)

)
= t}. We also introduce the

function T : S → P(A) where T (s) = {p ∈ A | L(s, p) = t} and the function
F : S → P(A) where F (s) = {p ∈ A | L(s, p) = f}. Thus, T (s) returns the set of
predicates that evaluate to true in s, whereas F (s) returns the set of predicates
that evaluate to false in s. States are considered as parts of paths:

Definition 2 (Path). Let M = (S, I,R, L) be a 3-valued Kripke structure. A
path π of M is a sequence of states s0s1s2 . . . with s0 ∈ I and ∀i : R(si, si+1) ∈
{t, u}. πi denotes the i-th state of π and ΠM denotes the set of all paths in M .

While paths of a Kripke structure can be infinitely long, bounded model checking
looks at finite k-prefixes π0 . . . πk of paths π where k ∈ N is the so-called bound.
On such prefixes we can evaluate temporal logic properties. Here we use the
bounded temporal logic BTL which corresponds to the k-bounded fragment of
the linear temporal logic LTL.

Definition 3 (Syntax of BTL). Let A be a predicate set and k ∈ N be a
bound. The set of k-bounded temporal logic formulae BTL over A is defined as:

– if p ∈ A and i ∈ [0, k] then pi ∈ BTL and ¬pi ∈ BTL,
– if ψ ∈ BTL then ¬ψ ∈ BTL,
– if ψ ∈ BTL and ψ′ ∈ BTL then ψ ∨ ψ′ ∈ BTL and ψ ∧ ψ′ ∈ BTL.

Hence, a BTL formula refers to atomic predicates p ∈ A where each p occurs
indexed with values between 0 and the bound k. The 3-valued semantics of BTL
in terms of prefixes of paths π is defined as follows:

Definition 4 (3-Valued Evaluation of BTL). Let π be a path of a Kripke
structure M = (S, I,R, L) over A, let k ∈ N and i ∈ [0, k]. Then the evaluation
of a k-bounded BTL formula ψ on π, written [π |= ψ]k, is inductively defined as:

[π |= pi]k = L(πi, p) ∧ ∧i−1
j=0 R(πj , πj+1)

[π |= ¬pi]k = ¬L(πi, p) ∧ ∧i−1
j=0 R(πj , πj+1)

[π |= ψ ∨ ψ′]k = [π |= ψ]k ∨ [π |= ψ′]k
[π |= ψ ∧ ψ′]k = [π |= ψ]k ∧ [π |= ψ′]k
[π |= ¬(ψ ∨ ψ′)]k = [π |= ¬ψ]k ∧ [π |= ¬ψ′]k
[π |= ¬(ψ ∧ ψ′)]k = [π |= ¬ψ]k ∨ [π |= ¬ψ′]k

144 N. Timm and S. Gruner

The evaluation of a BTL formula on a prefix of a path of a 3-valued Kripke
structure can either yield t, f, or u. We primarily use BTL for specifying properties
of interest ψ whose validity is checked for a given Kripke structure. For our
example, the formula ψ =

∨k
i=0 ¬Safei with Safei = ¬(

(pc1 = 1)i ∧ (pc2 = 1)i

)

characterises the k-bounded violation of mutual exclusion. Since bounded model
checking is typically performed incrementally with regard to k, it can be assumed
that in previous bound iterations k′ < k no property violation could be detected.
Hence, it is sufficient to check whether the formula ψ = (

∧k−1
i=0 Safei) ∧ ¬Safek

holds in order to detect a k-bounded violation of mutual exclusion. Checking
such conjunctive formulae is generally more efficient than checking disjunctive
formulae.

Besides for specifying properties of interest, we also use BTL for defining path
constraints σ. Our novel path constraint concept allows to limit the number of
paths that need to be considered during model checking. In our later abstraction
refinement approach, we distinguish between promising path prefixes that we
want to focus on and spurious prefixes that we want to exclude. Both, focussing
on and excluding certain prefixes π0 . . . πk can be carried out via constraints:

Definition 5 (Path Constraints Corresponding to Prefixes). Let
π0 . . . πk be a path prefix of a Kripke structure. Then the corresponding focussing
constraint is

σ(π0 . . . πk) :=
k∧

i=0

((∧

p∈T (πi)

pi

) ∧ (∧

p∈F (πi)

¬pi

))

and the corresponding excluding constraint is σ(π0 . . . πk) := ¬σ(π0 . . . πk).

Given a 3-valued Kripke structure M and a set of path constraints Σ, then
ΠΣ

M = {π ∈ ΠM | ∀σ ∈ Σ : [π |= σ]k = t} is the set of paths of M that satisfy
Σ. 3BMC with path constraints is now defined as follows:

Definition 6 (3-Valued Bounded Model Checking with Constraints).
Let M = (S, I,R, L) be a 3-valued Kripke structure over A, k ∈ N, ψ a BTL
formula, and Σ a set of path constraints. The corresponding universal model
checking problem is

Σ
A [M |=∀ ψ]k =

∧

π∈ΠΣ
M

[π |= ψ]k

and the corresponding existential model checking problem is

Σ
A [M |=∃ ψ]k =

∨

π∈ΠΣ
M

[π |= ψ]k.

Universal model checking can always be transformed into existential model
checking based on the equation Σ

A [M |=∀ ψ]k = ¬ Σ
A [M |=∃ ¬ψ]k. From now on

we only consider the existential case, since it is the basis of SAT-based bounded
model checking. We assume that ψ characterises the violation of a desirable prop-
erty, and the form of ψ is (

∧k−1
i=0 Safei) ∧ ¬Safek where Safe is an arbitrary

Abstraction Refinement with Path Constraints 145

expression over A and Safei = Safe[p ← pi | p ∈ A]. We now show how 3BMC
can be combined with classical abstraction refinement that iteratively extends
the set A until a definite verification result for the input system abstracted over
A can be obtained.

4 Abstraction Refinement

Solving Σ
A [M |=∃ (

∧k−1
i=0 Safei) ∧ ¬Safek]k, where M models the state space of

the input system abstracted over A, has the possible outcomes true, unknown
and false. A true result indicates that there exists a path π ∈ ΠΣ

M such that its k-
prefix ω = π0 . . . πk is a definite witness for the formula (

∧k−1
i=0 Safei)∧¬Safek.

Definition 7 (Definite Witness). Let Σ
A [M |=∃ (

∧k−1
i=0 Safei) ∧ ¬Safek]k be

a 3BMC problem where Safe is over A and Safei = Safe[p ← pi | p ∈ A]. A
definite witness for the property is a prefix ω = π0 . . . πk of a path π ∈ ΠΣ

M with

πk(Safe) = false and ∀0 ≤ i < k : R(πi, πi+1) = true

Since we assume an incremental approach with regard to k, the safety of the
(k−1)-prefix π0 . . . πk−1 is guaranteed. Thus, for finding a witness we only have to
check the safety of the state πk. A definite witness implies that a safety violation
has been detected, and thus, no further model checking runs are required.

An unknown result in 3-valued bounded model checking indicates that there
exists a path π ∈ ΠΣ

M such that its k-prefix ω = π0 . . . πk is an unconfirmed
witness for the BTL formula (

∧k−1
i=0 Safei) ∧ ¬Safek.

Definition 8 (Unconfirmed Witness). Let Σ
A [M |=∃ (

∧k−1
i=0 Safei) ∧

¬Safek]k be as above. An unconfirmed witness is a prefix ω = π0 . . . πk with
either

πk(Safe) = unknown, or
πk(Safe) = false and ∃0 ≤ i < k with R(πi, πi+1) = unknown

For our running example with A = {(pc1 = 0), (pc1 = 1), (pc2 = 0), (pc2 = 1)},
bound k = 2 and Safe = ¬(

(pc1 = 1) ∧ (pc2 = 1)
)

we obtain such an unknown
result and the corresponding unconfirmed witness

ω = π0π1π2 = (0, 0)0
u−−→ (1, 0)1

u−−→ (1, 1)2.

In this representation (l1, l2)i denotes that in state πi process P1 is at location l1
and P2 is at location l2. Moreover, u−−→ denotes an unknown transition between
states. The witness ω is unconfirmed because it reaches the state π2 where safety
is definitely violated, but unknown transitions are taken to reach this state. An
unconfirmed witness implies that the current level of abstraction, characterised
by the predicate set A, is too coarse for a definite result. In this case, refinement
in the sense of extending the set A is required. We then have to build the Kripke
structure corresponding to the extended set A and search for a witness in its
state space.

146 N. Timm and S. Gruner

A false result in 3BMC indicates that there exists neither a definite nor an
unconfirmed witness ω = π0 . . . πk for ψ. However, a property violation might
still exist for a larger bound. In this case, k has to be incremented until either a
definite witness can be detected or a completeness threshold is reached [9].

We now focus on the case where an unconfirmed witness has been detected.
We present a basic abstraction refinement algorithm AR that adds predicates
to the set A until a definite result can be obtained. For convenience, we assume
a fixed bound k. In [14] we defined a procedure analyseWitness. It takes an
unconfirmed witness as an input and, based on the guarded commands of the
underlying system and the weakest precondition calculus, derives predicates for
refinement. For our example with the abstracted mutual exclusion system Sys
and the unconfirmed witness ω = π0π1π2 we get analyseWitness(π0π1π2) =
{(y > 0), (y > 0)}. This is the set containing the guard (y > 0), associated
with the acquire operation in Sys, as well as its complement (y > 0)1. The basic
abstraction refinement algorithm AR that utilises analyseWitness is defined as
follows:

Algorithm 1. AR(Sys = ||ni=1Pi, Init, ψ, k)

1 A := {(pci = j) | i ∈ [1, n], j ∈ Loci} ∪ atoms(ψ), Σ := ∅
2 loop forever do /*refinement loop*/

3 if Σ
A [M |=∃ ψ]k = false then

4 return false, ‘no witness for safety violation of length k exists’

5 if Σ
A [M |=∃ ψ]k = true and witness ω then

6 return true, ‘ω is a definite witness for safety violation’

7 if Σ
A [M |=∃ ψ]k = unknown and witness ω then

8 A := A ∪ analyseWitness(ω)

AR takes a system Sys, an initial state predicate Init, a BTL formula ψ =
(
∧k−1

i=0 Safei) ∧ ¬Safek and a bound k as an input. The predicate set A is ini-
tialised with control flow predicates and with the atomic predicates that occur
in ψ. The constraint set Σ remains empty throughout the run of the basic algo-
rithm. After initialisation, the Kripke structure M representing the input system
abstracted over A is built and the corresponding 3BMC problem is solved. In case
of t and f results the algorithm terminates. In case of a u result, an unconfirmed
witness ω is generated and new predicates are derived via analyseWitness. The
predicate set of the next iteration is defined by the predicates of the current iter-
ation joined with the newly derived predicates. Now the steps of model checking
the Kripke structure corresponding to the extended predicates set and deriving

1 In contrast to the Boolean predicates over the control flow, predicates over system
variables have a 3-valued domain as they may evaluate to u due to abstraction. In
order to enable the later reduction of 3BMC to SAT, there must be a complementary
predicate p with p ≡ ¬p for each predicate p over system variables [16].

Abstraction Refinement with Path Constraints 147

new refinement predicates are repeated until a definite result can be obtained.
AR can be easily extended by an outer loop that ranges over the bound k from
0 to a completeness threshold, where k gets incremented each time when the
model checking result is f. Such thresholds for safety properties are linear in
the number of abstract states [9]. For simplicity, we omit this extension here.
The termination of AR is guaranteed for finite-state systems. In [14] we showed
that the result of AR correctly characterises the computational behaviour of the
input system.

For our example with k = 2 AR terminates with an f result after one
refinement step that adds the predicates (y > 0) and (y > 0). Thus, there
does not exist a witness of length 2 that violates mutual exclusion. We also
obtain f when we set the bound to k = 12, which is a completeness threshold
for this model checking problem. Hence, based on an abstraction over the set
A = {(pc1 = 0), (pc1 = 1), (pc2 = 0), (pc2 = 1), (y > 0), (y > 0)} we can con-
clude that mutual exclusion is not violated for the system. The major challenge
in model checking is still the state explosion problem. Each additional predi-
cate involves an exponential growth of the state space to be explored. In the
next section, we introduce an enhanced abstraction refinement algorithm that
allows to reduce the number of predicates that are actually considered during
model checking. Our enhancement is based on our previously introduced path
constraint concept.

5 Witness Refinement and Constraint Generation

The algorithm AR that we presented in the previous section is based on the
classical abstract–check–refine loop [3]. A drawback of such an approach is that
the state space grows exponentially with each loop iteration. Here we introduce
an enhanced algorithm based on the loop

abstract—check—
(
refineWitness—checkWitness

)∗—generateConstraint

where the * denotes that the steps in brackets belong to an internal loop
with potentially multiple iterations. The idea of our approach is as follows. If
abstraction-based model checking on a model that covers the full state space
returns an unconfirmed witness ω, then we start an internal refinement loop
with a partial model that is restricted to refinements of the witness ω only. The
partial model can be straightforwardly obtained by using the focussing path
constraint σ(ω). The witness refinement loop either results in a definite witness,
which means we are done, or it tells us that ω spurious. In the latter case, we
generate a constraint σ(ω) that excludes the unconfirmed witness ω from fur-
ther consideration. In the next overall loop, we return to the full model and
we use the constraint σ(ω) in order to restrict the state space exploration. But
we do not need to add the refinement predicates that we used in the partial
model in order to generate the constraint. Hence, we have two forms of refine-
ment respectively concretisation here: predicate refinement along unconfirmed
witnesses in a partial model and the pruning of infeasible paths via constraints

148 N. Timm and S. Gruner

in the full model. The latter does not involve any increase of the state space.
We implemented both the restriction to refinements of detected witnesses and
the exclusion of spurious witnesses via our path constraint concept from Sect. 3.
Our new algorithm WRC is defined as follows:

Algorithm 2. WRC(Sys = ||ni=1Pi, Init, ψ, k)

1 A := {(pci = j) | i ∈ [1, n], j ∈ Loci} ∪ atoms(ψ), Σ := ∅
2 loop forever do /*global constraint loop*/

3 if Σ
A [M |=∃ ψ]k = false then

4 return false, ‘no witness for safety violation of length k exists’

5 if Σ
A [M |=∃ ψ]k = true and witness ω then

6 return true, ‘ω is a definite witness for safety violation’

7 if Σ
A [M |=∃ ψ]k = unknown and witness ω then

8 Aω := A ∪ analyseWitness(ω)

9 Σω := {σ(ω)}
10 loop forever do /*refinement loop local to ω*/

11 if Σω

Aω [M |=∃ ψ]k = false then

12 /* ω is spurious */

13 Σ := Σ ∪ {σ(ω)}
14 goto 3

15 if Σω

Aω [M |=∃ ψ]k = true and witness υ then

16 return true, ‘υ is a definite witness for safety violation’

17 if Σω

Aω [M |=∃ ψ]k = unknown and witness υ then

18 Aω := Aω ∪ analyseWitness(υ)

WRC consists of an outer constraint loop where we operate on a full state
space model defined over a global predicate set A and an initially empty global
constraint set Σ. While A remains constant throughout the execution of the
algorithm, Σ will be gradually extended with spurious witness constraints. The
cases where a definite result is obtained in the outer loop are identically handled
as in AR. If a u result together with an unconfirmed witness ω is obtained
in the outer loop, then the algorithm enters an inner refinement loop local to
ω. In the inner loop, we use a model defined over the predicate set Aω and the
constraint set Σω that are both local to the unconfirmed witness ω under current
consideration. Aω is initialised as the union of A and the refinement predicates
derived from ω. Σω is the set containing the constraint σ(ω) that restricts the
feasible paths to those whose prefix is a refinement of ω. Hence, the model
checking problem in the inner loop has a refined state space defined over Aω,
but the employed model is partial in the sense that the state space exploration
is narrowed down to refinements of ω. In case of a f result in the inner loop, we
have that ω is a spurious witness. We then extend the global constraint set Σ by
the constraint σ(ω), which excludes ω from further consideration, and we return

Abstraction Refinement with Path Constraints 149

to the outer loop where we operate again with the full model and the original
predicate set A. In case of a t result in the inner loop, we obtain a definite witness
υ that is a refinement of ω. Thus, WRC can terminate. In case of a u result in
the inner loop, we obtain an unconfirmed witness υ that is a refinement of ω.
We then derive new predicates from υ and continue with a further refinement
iteration local to ω. We get the following theorem with regard to the return
values of AR and WRC :

Theorem 1. Let input = (Sys, Init, ψ, k) be a tuple consisting of a system, an
initial state predicate, a safety formula and a bound. Then the following holds:

1. AR(input) = true iff WRC (input) = true

2. AR(input) = false iff WRC (input) = false

Proof. See http://www.github.com/ssfm-up/TVMC/raw/master/proofs.pdf.

Hence, both algorithms return the same result for the same input. Since the
correctness of AR has been shown in [14], we can conclude that also the result of
WRC correctly characterises the computational behaviour of the input system.

We now illustrate how WR processes verification tasks based on our mutual
exclusion example with bound k = 2. The initialisation of the predicate set
is as follows: A = {(pc1 = 0), (pc1 = 1), (pc2 = 0), (pc2 = 1)}. The set is de
facto reducible to just {(pc1 = 0), (pc2 = 0)} by assuming the equivalences
(pc1 = 1) ≡ ¬(pc1 = 0) and (pc2 = 1) ≡ ¬(pc2 = 0), but for illustrative
purposes we use the expanded set A here. In the first constraint iteration, WR
detects the unconfirmed witness ω = (0, 0)0

u−−→ (1, 0)1
u−−→ (1, 1)2 with the

corresponding path constraint σ(ω). Similar as in our illustration of the basic
algorithm, WRC now derives the refinement predicates (y > 0) and (y > 0). But
the predicates are added to the local predicate set Aω. Moreover, {σ(ω)} is used
as the local constraint set Σω, which gives us a partial state space model. Hence,
when we are solving the refined model checking problem in the inner loop, the
valuation of the control flow predicates in each state along a prefix is now fixed
by σ(ω). This means that the complexity of the state space to be explored is
solely induced by the predicates over y. Model checking yields that ω is spurious.
Consequently, σ(ω) is added to the global constraint set Σ, which excludes any
further consideration of ω and its possible refinements. The next iteration detects
another unconfirmed witness ω′ = (0, 0)0

u−−→ (0, 1)1
u−−→ (1, 1)2. WR now enters

a refinement loop local to ω′. It detects that ω′ is also spurious, and thus, can be
excluded by the global constraint σ(ω′). In the final constraint iteration WRC
terminates with the definite result that no witness for safety violation of length
k = 2 exists.

With WRC we are able to reduce the number of predicates that actually
contribute to the size of the state space to be explored. In our simple example,
WRC had to solve model checking problems on full and partial models with
a maximum number of two predicates, whereas AR had to solve a problems
with maximum four predicates. The price that we pay is an increased num-
ber of model checking runs. In our experiments we will show that the savings

http://www.github.com/ssfm-up/TVMC/raw/master/proofs.pdf

150 N. Timm and S. Gruner

due to the reduced number of predicates typically outweigh the extra costs due
to additional model checking runs. Similar to AR, the enhanced algorithm can
be straightforwardly combined with a bound iteration loop ranging over k. In
general, it is not admissible to transfer generated spurious witness constraints
between bound iterations: ω = π0 . . . πk might be a spurious witness in itera-
tion k, but it might be the prefix of a definite witness in some later iteration
k′ > k. Hence, we cannot simply reuse the constraint σ(ω) outside the bound
iteration where it was generated. In the next section, we introduce the reduction
of 3-valued bounded model checking with constraints to SAT, which allows us
to perform model checking via satisfiability solving. The reduction enables us
to define path constraints as propositional logic constraints. We also introduce
constraint strengthening techniques based on unsatisfiable cores and a concept
that enables constraint reusing between bound iterations.

6 Reduction to Propositional Logic Satisfiability

In [15] we showed how a 3BMC problem without path constraints, denoted by
A[M |=∃ ψ]k, can be encoded as a propositional formula A[[M,ψ, k]]. The encod-
ing corresponds to an implicit problem representation such that the construc-
tion of an explicit KS is avoided. The formula A[[M,ψ, k]] is defined over a set of
Boolean atoms Atoms, the constants t, f, and a special atom ⊥ that is used to rep-
resent the unknowns due to abstraction. The atom ⊥ occurs solely non-negated in
A[[M,ψ, k]]. Based on the encoding, 3BMC can be performed via two SAT checks.
The first check considers an under-approximating completion, marked with ‘−’,
where all ⊥’s are assumed to be false: A[[M,ψ, k]]− := A[[M,ψ, k]][⊥ �→ false]
and the second check considers an over-approximating completion, marked with
‘+’, where all ⊥’s are assumed to be true: A[[M,ψ, k]]+ := A[[M,ψ, k]][⊥ �→ true].
Here [⊥ �→ z], z ∈ {true, false} denotes the assumption that the special atom
⊥ is assigned to z. This gives us the notion of 3-valued satisfiability sat3:

Definition 9 (sat3). Let A[[M,ψ, k]] over Atoms be the propositional logic
encoding of A[M |=∃ ψ]k. Then sat3 is defined as:

sat3
(
A[[M,ψ, k]]

)
=

⎧
⎨

⎩

true if sat
(
A[[M,ψ, k]]−

)

false if unsat
(
A[[M,ψ, k]]+

)

unknown otherwise

In [15] the following lemma has been proven:

Lemma 1. Let A[[M,ψ, k]] and A[M |=∃ ψ]k be as above. Then:

A[M |=∃ ψ]k = sat3
(
A[[M,ψ, k]]

)

Hence, by solving sat3 we obtain the result of the encoded 3BMC problem. If the
results of the two SAT checks are unsat

(
A[[M,ψ, k]]−

)
and sat

(
A[[M,ψ, k]]+

)
,

then we can conclude that the result of the encoded problem is unknown. In
this case, a truth assignment A : Atoms → {t, f} that satisfies A[[M,ψ, k]]+

Abstraction Refinement with Path Constraints 151

characterises an unconfirmed witness. Thus, witness generation in the SAT-
based approach is straightforward. The details on how the formula A[[M,ψ, k]]
is built can be found in [15]. A[[M,ψ, k]] is in conjunctive normal form (CNF)
and we assume a representation of the CNF formula as a set of sets of literals{{l, . . . , l′}, . . . , {l′′, . . . , l′′′}}

. The construction of A[[M,ψ, k]] is divided into the
encoding of initial states I, the encoding of k unrollings of the transition relation
R and the encoding of the property ψ:

A[[M,ψ, k]] = [[I]] ∪ [[R, k]] ∪ [[ψ]]

In the expanded representation, we omit the reference to the associated predicate
set A, as this is clear from the context. We now show that also 3BMC problems
with path constraints Σ

A [M |=∃ ψ]k can be encoded into a formula

Σ
A [[M,ψ, k]] = [[I]] ∪ [[R, k]] ∪ [[ψ]] ∪ [[Σ]]

such that model checking gets reduced to sat3. Since path constraints σ ∈ Σ are
essentially BTL formulae, the encoding [[·]] of temporal logic properties ψ, as
defined in [15], can be straightforwardly used for constraints σ. We get [[Σ]] :=⋃

σ∈Σ [[σ]], and we get the following corollary from Lemma1 and Definition 6:

Corollary 1. Let Σ
A [[M,ψ, k]] and Σ

A [M |=∃ ψ]k be as above. Then:

Σ
A [M |=∃ ψ]k = sat3(Σ

A [[M,ψ, k]])

This result allows us to redefine the algorithm WRC as a SAT-based version
SAT-WRC. An excerpt of the redefined algorithm, focussing on the part where
a spurious witness ω is ruled out via a constraint σ(ω), is depicted below.

Algorithm 3. Excerpt of SAT-WRC(Sys = ||ni=1Pi, Init, ψ, k)

7 if sat3
(

Σ
A [[M, ψ, k]]

)
= unknown and unconfirmed witness ω then

8 Aω := A ∪ analyseWitness(ω)

9 [[Σω]] := [[σ(ω)]]

10 loop forever do /*refinement loop local to ω*/

11 if sat3
(

Σω

Aω [[M, ψ, k]]
)
= false then

12 /* ω is spurious */

13 [[Σ]] := [[Σ]] ∪ [[σ(ω)]]

Here we use [[σ(ω)]] as an abbreviation for CNF(¬[[σ(ω)]]), i.e., the transforma-
tion of ¬[[σ(ω)]] into CNF. We now discuss the constraint generation mechanism
of SAT-WRC and we present a concept for constraint strengthening. For con-
venience, we will refer to the encoding of a constraint by simply a constraint. In
line 11 of the algorithm, the false result of sat3

(
Σω

Aω [[M,ψ, k]]
)

indicates that the
unconfirmed witness characterised by the constraint [[σ(ω)]] is spurious. Hence,

152 N. Timm and S. Gruner

its negation [[σ(ω)]] is a feasible constraint of the encoded 3BMC problem, and
thus, it can be added to the encoded constraint set [[Σ]] (line 13). Since the
spurious witness constraint [[σ(ω)]] is a disjunctive expression, it is not a very
strong constraint in terms of ruling out infeasible parts of the state space. We
now define a concept for strengthening spurious witness constraints. Our concept
is based on determining unsatisfiable cores [11] of the encoding Σω

Aω [[M,ψ, k]].

Definition 10 (Unsatisfiable Core). Let F be a CNF formula with
sat3(F) = f . An unsatisfiable core is a subset Fuc ⊆ F of clauses of F with
sat3(Fuc) = f .

Now if we obtain a false result in line 11 of the algorithm, we extract an unsat-
isfiable core Σω

Aω [[M,ψ, k]]uc ⊆ Σω

Aω [[M,ψ, k]] via a SAT solver. Regarding such an
unsatisfiable core, we can define spurious fragments of a spurious witness ω:

Definition 11 (Spurious Fragment). Let ω be a spurious witness and let
Σω

Aω [[M,ψ, k]]uc = [[I]]uc ∪ [[R, k]]uc ∪ [[ψ]]uc ∪ [[σ(ω)]]uc be an unsatisfiable core
of the encoding Σω

Aω [[M,ψ, k]] = [[I]] ∪ [[R, k]] ∪ [[ψ]] ∪ [[σ(ω)]] with [[I]]uc ⊆ [[I]],
[[R, k]]uc ⊆ [[R, k]], [[ψ]]uc ⊆ [[ψ]], [[σ(ω)]]uc ⊆ [[σ(ω)]]. Then [[σ(ω)]]uc is the encod-
ing of a spurious fragment and [[σ(ω)]]uc is the corresponding spurious fragment
constraint.

Since we have that [[σ(ω)]]uc ⊆ [[σ(ω)]], the spurious fragment constraint [[σ(ω)]]uc

is generally stronger than the spurious witness constraint [[σ(ω)]] in terms of
reducing the SAT search space. We defined an improved algorithm SAT-WRC-
UC that modifies SAT-WRC by replacing line 13 by [[Σ]] := [[Σ]] ∪ [[σ(ω)]]uc.

We proved the following theorem:

Theorem 2. Let input = (Sys, Init, ψ, k) be a tuple consisting of a system, an
initial state predicate, a safety formula and a bound. Then the following holds:

1. AR(input) = true iff SAT-WRC-UC (input) = true

2. AR(input) = false iff SAT-WRC-UC (input) = false

Proof. See http://www.github.com/ssfm-up/TVMC/raw/master/proofs.pdf.

Hence, also our SAT-based algorithm with constraints derived from unsatisfiable
cores returns correct model checking results. The computation of unsatisfiable
cores also allows us to introduce a concept for reusing path constraints between
bound iterations and for shifting constraints along path positions. Both are per-
missible if a constraint is initial state independent :

Definition 12 (Initial State Independence). Let [[I]]uc ∪ [[R, k]]uc ∪ [[ψ]]uc ∪
[[σ(ω)]]uc and [[I]]∪[[R, k]]∪[[ψ]]∪[[σ(ω)]] be as above.Then the encoding of the spurious
fragment [[σ(ω)]]uc is initial state independent iff [[I]]uc = ∅ and [[ψ]]uc = ∅.

http://www.github.com/ssfm-up/TVMC/raw/master/proofs.pdf

Abstraction Refinement with Path Constraints 153

We proved the following theorem:

Theorem 3. Let [[σ(ω)]]uc be an initial state independent encoding of the spuri-
ous fragment of ω that was generated in bound iteration k. Then it is admissible
to reuse the constraint [[σ(ω)]]uc in iterations k′ ≥ k. Moreover, position shifts
of [[σ(ω)]]uc within the bound are also admissible constraints in k′ ≥ k.

Proof. See http://www.github.com/ssfm-up/TVMC/raw/master/proofs.pdf.

We will now illustrate the consequences of Theorems 2 and 3 based on a slightly
bigger example verification task. Due to space limitations, we refrain from a for-
mal definition of a position shift of a constraint, but the definition will straight-
forwardly follow from the example. The following system is a generalisation of
our previously considered mutual exclusion system (Fig. 2).

y1, y2, y3 : binary semaphore where y1 = 1; y2 = 1; y3 = 1;

P1 ::

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

loop forever do⎡
⎢⎢⎢⎢⎢⎢⎣

00: acquire (y1, 1);
01: HOLD ONE

acquire (y2, 1);
10: CRITICAL

release (y1, 1);
11: release (y2, 1);

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

‖ P2 ::

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

loop forever do⎡
⎢⎢⎢⎢⎢⎢⎣

00: acquire (y2, 1);
01: HOLD ONE

acquire (y3, 1);
10: CRITICAL

release (y2, 1);
11: release (y3, 1);

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

‖ P3 ::

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

loop forever do⎡
⎢⎢⎢⎢⎢⎢⎣

00: acquire (y3, 1);
01: HOLD ONE

acquire (y1, 1);
10: CRITICAL

release (y3, 1);
11: release (y1, 1);

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2. Concurrent system implementing dining philosophers

It implements a solution to the dining philosophers problem. We have three
philosopher processes and each process has to acquire two semaphore forks to
enter its critical section and eat. We check again for a safety violation where
Safe = ¬(

(pc1 = 10) ∧ (pc2 = 10)
) ∧ ¬(

(pc1 = 10) ∧ (pc3 = 10)
) ∧ ¬(

(pc2 =
10)∧(pc3 = 10)

)
. Bound iteration k = 4 yields the following unconfirmed witness

that turns out spurious:

ω = (00, 00, 00)0
u−−→ (01, 00, 00)1

u−−→ (01, 01, 00)2
u−−→ (10, 01, 00)3

u−−→ (10, 10, 00)4

The corresponding propositional logic constraint [[σ(ω)]] has an unsatisfiable core
[[σ(ω)]]uc that characterises the spurious fragment ωuc of ω:

ωuc = (01, 00, ∗)1
u−−→ (01, 01, ∗)2

u−−→ (10, 01, ∗)3

This spurious fragment reveals that it is not possible that the processes P2 and
P1 acquire the semaphore y2 immediately one after another. Here the ∗ indi-
cates that the behaviour of P3 is not part of the spurious fragment, and thus,
can be arbitrary. The corresponding spurious fragment constraint [[σ(ω)]]uc is
admissible (Theorem 2) and it rules out any possible refinement of ωuc, which is
significantly stronger than the spurious witness constraint [[σ(ω)]] that just rules
out refinements of ω. Moreover, we can show via a SAT solver that [[σ(ω)]]uc

http://www.github.com/ssfm-up/TVMC/raw/master/proofs.pdf

154 N. Timm and S. Gruner

is initial state independent, which allows us to reuse [[σ(ω)]]uc and its position
shifts in all bound iterations k ≥ 4 (Theorem 3). For our example there exist
two position shifts of [[σ(ω)]]uc within the bound k = 4. These shifts characterise
the likewise spurious fragments (01, 00, ∗)0

u−−→ (01, 01, ∗)1
u−−→ (10, 01, ∗)2 and

(01, 00, ∗)2
u−−→ (01, 01, ∗)3

u−−→ (10, 01, ∗)4. Hence, due to the initial state inde-
pendence of the constraint we can conclude that the behaviour characterised by
ωuc is not only spurious for the fixed positions 1, 2, 3 along a prefix, but also
spurious for all other consecutive positions i, i + 1, i + 2 within the bound. This
allows us to introduce further constraints for limiting the search space of SAT,
and thus, to reduce the number of iterations until SAT-WRC-UC terminates.

7 Experiments

We implemented our approach on top of the SAT-based 3-valued bounded model
checker Tvmc (available at http://www.github.com/ssfm-up/TVMC). In our
experiments, we verified different instantiations of the dining philosopher system
that we introduced in the previous section. We considered instantiations with
2 ≤ n ≤ 5 philosophers and forks, and we checked two different safety properties:
mutual exclusion in the sense that no pair of neighboured philosophers ever
eats at the same time, and absence of deadlocks in the sense that there is no
circular waiting for forks. While the first property holds, the second one fails
when all philosophers are at location 01 at the same time. We compared the
performance of the classical refinement algorithm (Sat-ar) and our constraint-
based algorithm with constraint strengthening (Sat-wrc-uc). Both algorithms
were integrated into a bound incrementation loop ranging from zero up to a
completeness threshold (Table 1).

Table 1. Experimental results

Case study n Sat-ar Sat-wrc-uc

Refinement
iterations

Maximum
predicates

Time Constraint
iterations

Maximum
predicates

Time

Mutual
Exclusion

2 2 8 6.22 s 6 4 5.82 s

3 3 12 25.7 s 18 6 16.2 s

4 4 16 42m 24 8 8.5m

5 5 20 137m 30 10 29m

Absence
of Dead-
locks

2 1 8 3.73 s 1 4 3.55 s

3 1 12 5.02 s 1 6 4.89 s

4 1 16 14.5 s 1 8 8.41 s

5 1 20 42.4 s 1 10 18.7 s

http://www.github.com/ssfm-up/TVMC

Abstraction Refinement with Path Constraints 155

In terms of the mutual exclusion case study, we see that Sat-wrc-uc needs a
substantially higher number of iterations than Sat-ar to prove the property. On
the other hand, the model checking problems to be solved by Sat-ar require
up to twice as much predicates as the problems to be solved by Sat-wrc-uc.
This implies a significant complexity reduction due to Sat-wrc-uc, as a linear
increase of the number of predicates involves an exponential increase of the size
of the state space. The reduced amount of predicates results from the fact that
Sat-wrc-uc makes use of a full model that is solely defined over a set of initial
predicates, and of partial models where the initial predicates are fixed by an
unconfirmed witness and only the refinement predicates contribute to the state
space complexity. When it comes to the trade-off between computational costs
induced by the number of iterations and by costs induced by the state space, we
see that our new approach clearly outperforms the classical approach with regard
to the overall verification time. This applies particularly to the larger verification
tasks. In terms of the deadlock case study, we see that both approaches are
capable of detecting the property violation within one iteration. But again, Sat-
wrc-uc needs less predicates and achieves a better time performance.

8 Related Work

Our verification technique is related to existing approaches for improving the
classical abstract–check–refine paradigm [3,13]. Lazy abstraction [4,7,8,10] is a
concept that builds and refines a single abstract model where different parts
of the model exhibit different degrees of precision. This is achieved by adding
refinement predicates only at parts where they are required for proving the spu-
riousness of witnesses. The major difference to our approach is that we work
with one full and multiple partial models. Only the partial models are refined
in order to prove whether a particular witness is spurious or not. In the full
model we take proven spuriousness as a fact in order to prune the state space.
The separation of proving and eliminating spuriousness enables us to conduct
verification on smaller models in comparison to lazy abstraction where only a
single model is used. Another related approach is local abstraction refinement [5]
which extends the lazy abstraction idea. The technique also adds predicates only
to relevant parts of the model. While a new predicate typically splits an abstract
state in two refined states, local abstraction refinement uses heuristics for deter-
mining whether a single refined state is sufficient for the underlying verification
task. This enables smaller state spaces. The approach is still based on a single
model, and thus, does not have the same state space reduction capabilities as our
multi-model approach. Our work also is related to conditional model checking
(CMC) [1], which reformulates model checking as follows: If model checking fails
(due to state explosion) to fully prove or disprove the property of interest, then
it at least returns a condition under which the property holds. This allows for
a sequential combination of model checking runs where a first run generates a
condition and a second run checks whether the condition holds. Our approach
can be regarded as an application and generalisation of the CMC idea in the

156 N. Timm and S. Gruner

context of abstraction refinement. We take unconfirmed witnesses as conditions
for our partial models and we use conditions for excluding spurious witnesses in
the full model.

9 Conclusion and Outlook

We introduced an iterative abstraction refinement technique for the verification
of safety properties of concurrent systems. The novelty of our approach is that
we use separate models for producing abstract witness paths and for checking
whether witnesses are definite or spurious. Our partial models are restricted to
refinements of particular witnesses only. The abstract state space of our full
model is pruned via constraints derived from partial models. We hereby gain
precision in the full model without increasing its state space. Our multi-model
approach allows for a significant reduction of the state space complexity in com-
parison to single-model approaches. It comes at the cost of an increased number
of iterations. Our new constraint strengthening concept enables us to diminish
this number, which gives us a space- and time-efficient verification technique.

As future work we intend to do a performance comparison of our approach
with related abstraction refinement techniques.

References

1. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: a technique to pass information between verifiers. In: Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE 2012, pp. 57:1–57:11. ACM, New York (2012)

2. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 25

3. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

4. Degiovanni, R., Ponzio, P., Aguirre, N., Frias, M.: Improving lazy abstraction for
SCR specifications through constraint relaxation. Softw. Test. Verif. Reliab. 28(2),
e1657 (2018)

5. Fecher, H., Shoham, S.: Local abstraction-refinement for the μ-calculus. In:
Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 4–23. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73370-6 3

6. Fitting, M.: Kleene’s three valued logics and their children. Fundamenta Informat-
icae 20(1–3), 113–131 (1994)

7. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2002, pp. 58–70. ACM, New York (2002)

8. Hsu, K., Majumdar, R., Mallik, K., Schmuck, A.: Lazy abstraction-based control
for reachability. CoRR abs/1804.02722 (2018)

https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-73370-6_3

Abstraction Refinement with Path Constraints 157

9. Kroening, D., Ouaknine, J., Strichman, O., Wahl, T., Worrell, J.: Linear com-
pleteness thresholds for bounded model checking. In: Gopalakrishnan, G., Qadeer,
S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 557–572. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1 44

10. Madhukar, K., Srivas, M., Wachter, B., Kroening, D., Metta, R.: Verifying syn-
chronous reactive systems using lazy abstraction. In: 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 1571–1574, March 2015

11. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Proceedings of the
2010 Conference on Formal Methods in Computer-Aided Design, FMCAD 2010,
pp. 221–229. FMCAD Inc., Austin (2010)

12. Schrieb, J., Wehrheim, H., Wonisch, D.: Three-valued spotlight abstractions. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 106–122.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3 8

13. Shoham, S., Grumberg, O.: 3-valued abstraction: more precision at less cost. Inf.
Comput. 206(11), 1313–1333 (2008)

14. Timm, N., Gruner, S.: Three-valued bounded model checking with cause-guided
abstraction refinement (manuscript submitted for publication). http://www.
github.com/ssfm-up/TVMC/raw/unbounded/SCICO2018.pdf

15. Timm, N., Gruner, S., Harvey, M.: A bounded model checker for three-valued
abstractions of concurrent software systems. In: Ribeiro, L., Lecomte, T. (eds.)
SBMF 2016. LNCS, vol. 10090, pp. 199–216. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49815-7 12

16. Wehrheim, H.: Boundedmodel checking for partial Kripke structures. In: Fitzgerald,
J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 380–
394. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85762-4 26

https://doi.org/10.1007/978-3-642-22110-1_44
https://doi.org/10.1007/978-3-642-05089-3_8
http://www.github.com/ssfm-up/TVMC/raw/unbounded/SCICO2018.pdf
http://www.github.com/ssfm-up/TVMC/raw/unbounded/SCICO2018.pdf
https://doi.org/10.1007/978-3-319-49815-7_12
https://doi.org/10.1007/978-3-319-49815-7_12
https://doi.org/10.1007/978-3-540-85762-4_26

Model Transformation

Model Transformation with Triple Graph
Grammars and Non-terminal Symbols

William da Silva1,2(B), Max Bureck1, Ina Schieferdecker1,2,
and Christian Hein1

1 Fraunhofer Fokus, Berlin, Germany
{william.bombardelli.da.silva,max.bureck,ina.schieferdecker,

christian.hein}@fokus.fraunhofer.de
2 Technische Universität Berlin, Berlin, Germany

Abstract. This work proposes a new graph grammar formalism, that
introduces non-terminal symbols to triple graph grammars (TGG) and
shows how to apply it to solving the model transformation problem.
Our proposed formalism seems to suit code generation from models well,
outperforms the standard TGG in the grammar size in one evaluated
case and is able to express one transformation that we could not express
with TGG. We claim, that such advantages make a formal specification
written in our formalism easier to validate and less error-prone, what
befits safety-critical systems specially well.

Keywords: NCE graph grammars · Triple graph grammars ·
Model transformation · Model-based development

1 Introduction

Quality of service is a very common requirement for software projects, especially
for safety-critical systems. A technique that aims to assure and enhance quality
of software is the model-based development approach, which consists of the use
of abstract models to specify aspects of the system under construction. The
use of such models often allows for cheaper tests and verification as well as
facilitates discussions about the system, for more abstract models tend to reduce
the complexity of the actual object of interest.

The construction of a system with model-based development commonly
requires the creation of various models at different levels of abstraction, in which
case we are interested in generating models automatically from other models.
One example of such a situation is the transformation of a UML diagram into
source-code or the compilation of source-code into machine-code. This problem
is known as model transformation. For safety-critical systems, automatic model
transformation is attractive, because transformers can be verified for correction
carefully once and used many times, whereas manually or ad-hoc transformations
have to be checked each time.

c© Springer Nature Switzerland AG 2019
C. Artho and P. C. Ölveczky (Eds.): FTSCS 2018, CCIS 1008, pp. 161–177, 2019.
https://doi.org/10.1007/978-3-030-12988-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12988-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-12988-0_10

162 W. da Silva et al.

Several approaches to solving the model transformation problem have been
proposed so far. Some of them consist of using the theory of graph grammars
to formalize models and describe relations between them. One of which is the
triple graph grammar (TGG) approach [20], which consists of building context-
sensitive grammars of, so-called, triple graphs.

Triple graphs are composed of three graphs, the source and the target graphs,
representing two models, and the correspondence graph that connects the source
and the target through morphisms. A triple graph can be used to express the
relationship between two graphs through the morphisms between their vertices.
In this sense, a TGG describes a language of pairs of graphs whose vertices have
a certain relationship. For the context of model transformation, in which one is
interested in defining a translator from a source model to a target model, a TGG
can be used to describe the set of all correctly translated source models and its
correspondent target models, in form of a language of triple graphs.

Despite the various positive aspects of TGG, like a well-founded theory and
a reasonable tool support [1], they may sometimes get too big or too difficult to
be constructed correctly. We judge, this downside stems from the absence of the
concept of non-terminal symbols in the TGG formalism. This concept allows,
in the theory of formal languages, for a very effective representation of abstract
entities in string grammars.

So, motivated by this benefit, we present in this paper a novel formalism
that redefines the standard triple graph grammars and introduces the notion of
non-terminal symbols to create a context-free triple graph grammar formalism,
that has in some cases a smaller size and with which we could describe one
transformation that we could not with standard TGG.

Our approach consists of (1) mixing an already existent context-free graph
grammar formalism, called NCE graph grammar [15], with the standard TGG
formalism [20], to create the NCE TGG and (2) constructing a model transformer
that interprets a NCE TGG to solve the model transformation problem.

The remainder of this paper is as follows, in Sect. 2, we present the research
publications related to this topic, in Sect. 3, we give the main definitions nec-
essary to build our approach, in Sect. 4, we propose our modified version of
TGG, the NCE TGG, in Sect. 5 we argue that our approach can be used for
model transformation, in Sect. 6 we evaluate our results and, finally, in Sect. 7
we summarize and close our discussion.

2 Related Works

In this section, we offer a short literary review on the graph grammar and triple
graph grammar approaches that are more relevant to our work. We focus, there-
fore, on the context-free node label replacement and the hyperedge replacement
approaches for graph grammars, although, there is a myriad of different alter-
natives to it, for example, the algebraic approach [8]. We refer to context-free
grammars, inspired by the use of such classification for string grammars, in a
relaxed way without any compromise to any definition.

Model Transformation with TGG and Non-terminal Symbols 163

In the node label replacement context-free formalisms stand out the node
label controlled graph grammar (NLC) and its successor graph grammar with
neighborhood-controlled embedding (NCE). NLC is based on the replacement
of one vertex by a graph, governed by embedding rules written in terms of the
vertex’s label [19]. For various classes of these grammars, there exist polynomial-
time top-down and bottom-up parsing algorithms [11,12,19,22]. The recognition
complexity and generation power of such grammars have also been analyzed
[10,17]. NCE occurs in several formulations, including a context-sensitive one,
but here we focus on the context-free formulation, where one vertex is replaced by
a graph, and the embedding rules are written in terms of the vertex’s neighbors
[15,21]. For some classes of these grammars, polynomial-time bottom-up pars-
ing algorithms and automaton formalisms were proposed and analyzed [4,16]. In
special, one of these classes is the boundary graph grammar with neighborhood-
controlled embedding (BNCE), that is used in our approach for model transfor-
mation.

Hyperedge replacement graph grammars (HRG) are context-free grammars
with semantics based on the replacement of hyperedges by hypergraphs gov-
erned by morphisms [7]. Prominent polynomial-time top-down and shift-reduce
parsing techniques for classes of such grammars can be found in [5,6]. In par-
ticular, Engelfiet and Rozenberg [9] shows that BNCE and HRG have the same
generative power.

Regarding TGG [20], a 20 years review of the realm is put forward by Anjorin
et al. [1]. In special, advances are made in the direction of expressiveness with the
introduction of application conditions [18] and of modularization [2]. Further-
more, in the algebraic approach for graph grammars, we have found proposals
that introduce inheritance [3,13] and variables [14] to the formalisms. Never-
theless, we do not know any approach that introduces non-terminal symbols to
TGG with the purpose of gaining expressiveness or usability. In this sense, our
proposal brings something new to the current state-of-the-art.

3 Graph Grammars and Triple Graph Grammars

In this section, we introduce important definitions that are used throughout this
paper. First, we present definitions regarding graphs [19], second, we introduce
the NCE graph grammar [15,16] and then, we express our understanding of
TGG [20].

Definition 1. A directed labeled graph G over the finite set of symbols Σ, G =
(V,E, φ) consists of a finite set of vertices V , a set of labeled directed edges
E ⊆ V × Σ × V and a total vertex labeling function φ : V → Σ.

We refer to directed labeled graphs often simply as graphs. For a fixed graph
G we refer to its components as VG, EG and φG. For two graphs G and H, we
write G ⊆ H if, and only if, VG ⊆ VH , EG ⊆ EH and φG ⊆ φH . Furthermore,
G and H are disjoint if, and only if, VG ∩ VH = ∅. If φG(v) = a we say v is
labeled by a. Two vertices v and w are neighbors if, and only if, (v, l, w) ∈ EG

164 W. da Silva et al.

or (w, l, v) ∈ EG. In this case, we say (v, l, w) and (w, l, v) are adjacent edges to
v and to w. In special, we do not allow loops (vertices of the form (v, l, v)), but
multi-edges with different labels are allowed and we denote the set of all graphs
over Σ by GΣ .

Definition 2. A morphism of graphs G and H is a total mapping m : VG → VH .

Definition 3. An isomorphism of directed labeled graphs G and H is a bijective
mapping m : VG → VH that maintains the connections between vertices and
their labels, that is, (v, l, w) ∈ EG if, and only if, (m(v), l,m(w)) ∈ EH and
φG(v) = φH(m(v)).

If there exists an isomorphism of G and H, then G and H are said to be
isomorphic and we denote the equivalence class of all graphs isomorphic to G by
[G]. Notice that, contrary to isomorphisms, morphisms do not require bijectivity
nor label or edge-preserving properties.

Definition 4. A graph grammar with neighborhood-controlled embedding (NCE
graph grammar) GG = (Σ,Δ ⊆ Σ,S ∈ Σ,P) consists of a finite set of symbols
Σ that is called alphabet, a subset of the alphabet Δ ⊆ Σ that holds the terminal
symbols (we define the complementary set of non-terminal symbols as Γ := Σ \
Δ), a special symbol of the alphabet S ∈ Σ, that is called start symbol, and a
finite set of production rules P of the form (A → R,ω) where A ∈ Γ is called
left-hand side, R ∈ GΣ is called right-hand side and ω : VR � 2Σ×Σ is the partial
embedding function from R’s vertices to pairs of edge and vertex labels.

A production rule (A → R,ω) can be applied on a graph G to generate
another graph H. In this case, we say G concretely derives in one step into H. A
concrete derivation can be informally understood as the replacement of a non-
terminal vertex v and all its adjacent edges in G by the graph R plus edges e
between former neighbors w of v and some vertices t of R, provided e’s label
and w’s label are in the embedding specification ω(t). That is, the embedding
function ω of a rule specifies which neighbors of v are to be connected with
which vertices of R, according to their labels and the adjacent edges’ labels. The
process that governs the creation of these edges is called embedding and can
occur in various forms in different graph grammar formalisms. We opted for a
rather simple approach, in which the edges’ directions and labels are maintained.

Formally, a concrete derivation is defined as follows.

Definition 5. Let GG = (Σ,Δ, S, P) be a NCE graph grammar and G and H be
two graphs over Σ that are disjoint to all right-hand sides from P , G concretely

derives in one step into H with rule r and vertex v, we write G
r,v

�GG H and
call it a concrete derivation step, if, and only if, the following holds:

r = (A → R,ω) ∈ P and A = φG(v) and
VH = (VG \ {v}) ∪ VR and
EH = (EG \ ({(v, l, w) | (v, l, w) ∈ EG} ∪ {(w, l, v) | (w, l, v) ∈ EG}))

Model Transformation with TGG and Non-terminal Symbols 165

∪ ER

∪ {(w, l, t) | (w, l, v) ∈ EG ∧ (l, φG(w)) ∈ ω(t)}
∪ {(t, l, w) | (v, l, w) ∈ EG ∧ (l, φG(w)) ∈ ω(t)} and

φH = (φG \ {(v, x) | x ∈ Σ}) ∪ φR

Without loss of generality, we set ω(t) = ∅ for all vertices t without an image
defined in ω. Furthermore, let H ′ be isomorphic to H, if G concretely derives in
one step into H, we say G derives in one step into H ′ and write G

r,v⇒GG H ′.
When GG , r or v are clear in the context or irrelevant we might omit them

and simply write G � H or G ⇒ H. Moreover, we denote the reflexive transitive
closure of ⇒ by ⇒∗ and, for G ⇒∗ H ′, we say G derives into H ′.

Definition 6. A derivation D in the grammar GG is a non-empty sequence of
derivation steps and is written as

D = (G0
r0,v0⇒ G1

r1,v1⇒ G2
r2,v2⇒ . . .

rn−1,vn−1⇒ Gn)

Finally, we define, for convenience, the start graph of GG as ZGG := ({vs}, ∅,
{vs
→ S}). Then, we can discourse about the language of a graph grammar.

Definition 7. The language L(GG) generated by the grammar GG is the set of
all graphs containing only terminal vertices derived from the start graph ZGG,
that is

L(GG) = {H is a graph over Δ and ZGG ⇒∗ H}

Notice that, in the original definition of NCE graph grammars [15], the left-
hand sides of the productions were allowed to contain any connected graph.
Moreover, only undirected graphs without edge labels were allowed. So, strictly
speaking, our definitions characterize actually a 1-edNCE graph grammar, that
contains only one element in the left-hand side and a directed edge-labeled graph
in the right-hand side. Nevertheless, for simplicity, we use the denomination NCE
graph grammar, or simply graph grammar, to refer to a 1-edNCE graph grammar
along this paper. Moreover, vertices from the right-hand sides of rules labeled by
non-terminal (terminal) symbols are said to be non-terminal (terminal) vertices.

In the following, we present our concrete syntax inspired by the well-known
Backus-Naur form to denote NCE graph grammar rules. Let GG = ({A,B, a, b,
c, l,m}, {a, b, c, l,m}, A, {p, q}) be a graph grammar with production rules p =
(A → G,ω) and q = (A → H, ζ) where G = ({v1, v2, v3}, {(v1, l, v2), (v2,m, v3)},
{v1
→ B, v2
→ b, v3
→ c}), and H = ({u1}, ∅, {u1
→ a}), we denote p and q
together as

p :

A ::= B

v1

b

v2

c

v3
l m

q :

a

166 W. da Silva et al.

Observe that, we use squares for non-terminal vertices, circles for terminal
vertices, position the respective label inside the shape and the (possibly omitted)
identifier over it. Near each edge is positioned its respective label. The embedding
function is not included in the notation, so it is expressed separately, if necessary.

Below, we give one example of a grammar whose language consists of all
chains of one or more vertices with interleaved vertices labeled with a and b.

Example 1. GG = ({S,A,B, a, b, c}, {a, b, c}, S, P), where P = {r0, r1, r2, r3, r4,
r5} is denoted by

r0 :

S ::= A

r1 :

B

r2 :

A ::= a

u21

B
c

r3 :

a

u31
r4 :

B ::= b

u41

A
c

r5 :

b

u51

with ω0 = ω1 = ∅, ω2(u21) = ω3(u31) = {(c, b)} and ω4(u41) = ω5(u51) =
{(c, a)} being the complete definition of the embedding functions of the rules,
r0, r1, r2, r3, r4, r5 respectively.

The graph G = a b a
c c

belongs to L(GG) because it contains
only terminal vertices and ZGG derives into it using the following derivation:

ZGG
r0,v0⇒ A

v1

r2,v1⇒ a

v2

B

v3
c r4,v3⇒ a

v2

b

v4

A

v5
c c r3,v5⇒ a

v2

b

v4

a

v6
c c

Building upon the concepts of graphs and graph grammars, we present, in
the following, our understanding over triple graphs and triple graph grammars,
supported by the TGG specification from Schürr [20].

Definition 8. A directed labeled triple graph TG = Gs
ms← Gc

mt→ Gt over Σ
consists of three disjoint directed labeled graphs over Σ (see Definition 1), respec-
tively, the source graph Gs, the correspondence graph Gc and the target graph
Gt, together with two injective morphisms (see Definition 2) ms : VGc

→ VGs

and mt : VGc
→ GGt

.

We refer to directed labeled triple graphs are often simply as triple graphs in
this paper and we might omit the morphisms’ names in the notation. Moreover,
we define the special empty triple graph as ε := E

ms← E
mt→ E with E = (∅, ∅, ∅)

and ms = mt = ∅ and we denote the set of all triple graphs over Σ by T GΣ . We
also point out that in the literature, triple graphs are often modeled as typed
graphs, but we judge that, for our circumstance, labeled graphs fit better.

Below, we introduce the standard definition of TGG.

Definition 9. A triple graph grammar TGG = (Σ,Δ ⊆ Σ,S ∈ Σ,P) consists
of, analogously to graph grammars (see Definition 4), an alphabet Σ, a set of
terminal symbols Δ, a start symbol S and a set of production rules P of the
form L → R with L = Ls

σl← Lc
τl→ Lt and R = Rs

σr← Rc
τr→ Rt and Ls ⊆

Rs, Lc ⊆ Rc, Lt ⊆ Rt, σl ⊆ σr and τl ⊆ τr.

Model Transformation with TGG and Non-terminal Symbols 167

As the reader should notice, this definition of TGG does not fit our needs
optimally, because it defines a context-sensitive graph grammar, whereas we wish
a context-free graph grammar to use together with the NCE graph grammar
formalism. Hence, we refine it, in the next section, to create a NCE TGG, that
fits our context better.

4 NCE TGG: A TGG with Non-terminal Symbols

In this section, we put forward our first contribution, that is the result of mixing
the NCE and the TGG grammars.

Definition 10. A triple graph grammar with neighborhood-controlled embedding
(NCE TGG) TGG = (Σ,Δ ⊆ Σ,S ∈ Σ,P) consists of an alphabet Σ, a set of
terminal symbols Δ (also define Γ := Σ \ Δ), a start symbol S and a set of
production rules P of the form (A → (Rs ← Rc → Rt), ωs, ωt) with A ∈ Γ
being the left-hand side, (Rs ← Rc → Rt) ∈ T GΣ the right-hand side and
ωs : VRs

� 2Σ×Σ and ωt : VRt
� 2Σ×Σ the partial embedding functions from

the right-hand side’s vertices to pairs of edge and vertex labels.

For convenience, define also the start triple graph of TGG as ZTGG := Zs
ms←

Zc
mt→ Zt where Zs = ({s0}, ∅, {s0
→ S}), Zc = ({c0}, ∅, {c0
→ S}), Zt =

({t0}, ∅, {t0
→ S}), ms = {c0
→ s0} and mt = {c0
→ t0}.
The most important difference between the traditional TGG and the NCE

TGG is that the former allows any triple graph to occur in the left-hand sides,
whereas the latter only one symbol. In addition to that, traditional TGG requires
that the whole left-hand side occur also in the right-hand side, that is to say, the
rules are monotonic. Therewith, embedding is not an issue, because an occur-
rence of the left-hand side is not effectively replaced by the right-hand side,
instead, only new vertices are added. On the other hand, NCE TGG has to deal
with embedding through the embedding function.

In the following, the semantics for NCE TGG is presented analogously to the
semantics for NCE graph grammars.

Definition 11. Let TGG = (Σ,Δ, S, P) be a NCE TGG and G = Gs
gs← Gc

gt→
Gt and H = Hs

hs← Hc
ht→ Ht be two triple graphs over Σ that are disjoint to

all right-hand sides from P , G concretely derives in one step into H with rule

r and distinct vertices vs, vc, vt, we write G
r,vs,vc,vt

� TGG H if, and only if, the
following holds:

r = (A → (Rs
rs← Rc

rt→ Rt), ωs, ωt) ∈ P and
A = φGs

(vs) = φGc
(vc) = φGt

(vt) and
VHs

= (VGs
\ {vs}) ∪ VRs

and
VHc

= (VGc
\ {vc}) ∪ VRc

and
VHt

= (VGt
\ {vt}) ∪ VRt

and

168 W. da Silva et al.

EHs
= (EGs

\ ({(vs, l, w) | (vs, l, w) ∈ EGs
} ∪ {(w, l, vs) | (w, l, vs) ∈ EGs

}))
∪ ERs

∪ {(w, l, t) | (w, l, vs) ∈ EGs
∧ (l, φGs

(w)) ∈ ωs(t)}
∪ {(t, l, w) | (vs, l, w) ∈ EGs

∧ (l, φGs
(w)) ∈ ωs(t)} and

EHc
= (EGc

\ ({(vc, l, w) | (vc, l, w) ∈ EGc
} ∪ {(w, l, vc) | (w, l, vc) ∈ EGc

}))
∪ ERc

and
EHt

= (EGt
\ ({(vt, l, w) | (vt, l, w) ∈ EGt

} ∪ {(w, l, vt) | (w, l, vt) ∈ EGt
}))

∪ ERt

∪ {(w, l, t) | (w, l, vt) ∈ EGt
∧ (l, φGt

(w)) ∈ ωt(t)}
∪ {(t, l, w) | (vt, l, w) ∈ EGt

∧ (l, φGt
(w)) ∈ ωt(t)} and

hs = (gs \ {(vc, x) | x ∈ VGs
}) ∪ rs

ht = (gt \ {(vc, x) | x ∈ VGt
}) ∪ rt

φHs
= (φGs

\ {(vs, x) | x ∈ Σ}) ∪ φRs
and

φHc
= (φGc

\ {(vc, x) | x ∈ Σ}) ∪ φRc
and

φHt
= (φGt

\ {(vt, x) | x ∈ Σ}) ∪ φRt

Without loss of generality, we set ω(t) = ∅ for all vertices t without an image

defined in ω. And, analogously to graph grammars, if G
r,vs,vc,vt

� TGG H and
H ′ ∈ [H], then G

r,vs,vc,vt⇒ TGG H ′, moreover the reflexive transitive closure of
⇒ is denoted by ⇒∗ and we call these relations by the same names as before,
namely, derivation in one step and derivation. We might also omit identifiers.

A concrete derivation of a triple graph G = Gs
gs← Gc

gt→ Gt can be infor-
mally understood as concrete derivations (see Definition 5) of Gs, Gc and Gt

according to the right-hand sides Rs, Rc and Rt. The only remark is the absence
of an embedding mechanism for the correspondence graph, whose edges are not
important for our approach. Nevertheless, the addition of such a mechanism for
the correspondence graph should not be a problem if it is desired.

Definition 12. A derivation D in the triple graph grammar TGG is a non-
empty sequence of derivation steps

D = (G0
r0,s0,c0,t0⇒ G1

r1,s1,c1,t1⇒ G2
r2,s2,c2,t2⇒ . . .

rn−1,sn−1,cn−1,tn−1⇒ Gn)

Definition 13. The language L(TGG) generated by the triple grammar TGG
is the set of all triple graphs containing only terminal vertices derived from the
start triple graph ZTGG, that is

L(TGG) = {H is a triple graph over Δ and ZTGG ⇒∗ H}

Our concrete syntax for NCE TGG is similar to the one for NCE graph gram-
mars and is presented below by means of the Example 2. The only difference is
at the right-hand sides, that include the morphisms between the correspondence
graphs and source and target graphs depicted with dashed lines.

Model Transformation with TGG and Non-terminal Symbols 169

Example 2. This example illustrates the definition of a NCE TGG that char-
acterizes the language of all Pseudocode graphs together with their respective
Controlflow graphs. A Pseudocode graph is an abstract representation of a pro-
gram written in a pseudo-code where vertices refer to actions, ifs or whiles and
edges connect these items together according to how they appear in the program.
A Controlflow graph is a more abstract representation of a program, where ver-
tices can only be either a command or a branch.

Consider, for instance, the program main, written in a pseudo-code, and the
triple graph TG in Fig. 1. The triple graph TG consists of the Pseudocode graph
of main connected to the Controlflow graph of the same program through the
correspondence graph in the middle of them. In such graph, the vertex labels of
the Pseudocode graph p, i, a, w correspond to the concepts of program, if, action
and while, respectively. The edge label f is given to the edge from the vertex p to
the program’s first statement, x stands for next and indicates that a statement
is followed by another statement, p and n stand for positive and negative and
indicate which assignments correspond to the positive of negative case of the if ’s
evaluation, finally l stands for last and indicates the last action of a loop.

In the Controlflow graph, the vertex labels g, b, c stand for the concepts of
graph, branch and command, respectively. The edge label r is given to the edge
from the vertex g to the first program’s statement, x, p and n mean, analogous
to the former graph, next, positive and negative.

In the correspondence graph, the labels pg , ib, ac,wb serve to indicate which
labels in the source and target graphs are being connected through the triple
graph’s morphism.

program main(n)
if n < 0 then

return Nothing
else

f ← 1
while n > 0 do

f ← f ∗ n
n ← n − 1

end while
return Just f

end if

p

i

aa

w

a

a

a

f

pn

x

f l

x x

pg

ib

ac

ac

wb

ac

ac

ac

g

b

c
c

b

c

c

c

r

pn

x

f
x

x x

Fig. 1. A program written in pseudo-code on the left and its correspondent triple graph
with the PseudoCode and the ControlFlow graphs on the right

The TGG that specifies the relation between these two types of graphs
is TGG = ({S,A, p, a, i, w, g, b, c, f, x, n, l, r, pg , ac, ib,wb}, {p, a, i, w, g, b, c, f, x,
n, l, r, pg , ac, ib,wb}, S, P), where P = {ri | 0 ≤ i ≤ 5} is denoted by

170 W. da Silva et al.

r0 :

S ::= p

A

f

pg

A

g

A

r

r1 :

A ::= a

s11

A

x

ac

A

c

t11

A

x

r6 :

ε

r2 :

A ::= i

s21

A A A

x p n

ib

A

A

A

b

t21

A A A

n p x

r3 :

w

s31

A

x

wb

A

b

t31

A

n

r4 :

A ::= w

s41

A A a

x f

x

l

wb

A

ac

A

b

t41

c A A

np

x

x

r5 :

w

s51

A a

x f l

wb

A

ac

b

t51

c A

np x

with σ0 = ∅, σ1(s11) = σ2(s21) = σ3(s31) = σ4(s41) = σ5(s51) = {(f, p), (x, a),
(x, i), (x,w), (p, i), (n, i), (l, w), (f, w)} and τ1(t11) = τ2(t21) = τ3(t31) = τ4(t41)
= τ5(t51) = {(r, g), (x, c), (x, b), (p, b), (n, b)} being the complete definition of the
source and target embedding functions of the rules r0 to r5, respectively.

The rule r0 relates programs to graphs, r1 actions to commands, r2 ifs to
branches, r3 empty whiles to simple branches, r4 filled whiles to filled loops with
branches, r5 whiles with one action to loops with branches with one command
and, finally, r6 produces an empty graph from a symbol A, what allows any
derivation in the grammar to finish.

The aforementioned triple graph TG is in L(TGG), because the derivation
ZTGG

r0⇒ G1
r2⇒ G2

r6⇒ G3
r1⇒ G4

r6⇒ G5
r1⇒ G6

r4⇒ G7
r1⇒ G8

r6⇒ G9
r1⇒ G10

r6⇒ TG
is a derivation in TGG with appropriate Gi for 1 ≤ i ≤ 10.

Ultimately, consider the definitions of Γ -boundary graphs and BNCE TGG,
that are necessary for the next section.

Definition 14. A Γ -boundary graph G is such that vertices labeled with any
symbol from Γ are not neighbors. That is, the graph G is Γ -boundary if, and
only if, there is no (v, l, w) ∈ EG with φG(v) ∈ Γ and φG(w) ∈ Γ .

Definition 15. A boundary triple graph grammar with neighborhood-controlled
embedding (BNCE TGG) is such that non-terminal vertices of the right-hand
sides of rules are not neighbors. That is, the NCE triple graph grammar TGG is
boundary if, and only if, for all its rules’ right-hand sides Rs ← Rc → Rt, Rs,
Rc, and Rt are Γ -boundary graphs.

Model Transformation with TGG and Non-terminal Symbols 171

5 Model Transformation with NCE TGG

As already introduced, TGG can be used to characterize languages of triple
graphs holding correctly transformed models. That is, one can interpret a TGG
as the description of the correctly-transformed relation between two sets of mod-
els S and T , where two models G ∈ S and T ∈ T are in the relation if, and
only if, G and T are respectively, source and target graphs of any triple graph
of the language L(TGG). That being said, we are interested in this section on
defining a model transformation algorithm that interprets a NCE TGG TGG
to transform a source model G into one of its correspondent target models T
according to the correctly-transformed relation defined by TGG .

For that end, let TGG = (Σ = Σs ∪ Σt,Δ, S, P) be a triple graph grammar
defining the correctly-transformed relation between two arbitrary sets of graphs
S over Σs and T over Σt. And let G ∈ S be a source graph. We want to find a tar-
get graph T ∈ T such that G ← C → T ∈ L(TGG). To put in words, we wish to
find a triple graph holding G and T that is in the language of all correctly trans-
formed models. Hence, the model transformation problem is reduced—according
to the definition of triple graph language (see Definition 13)—to the problem of
finding a derivation ZTGG ⇒∗

TGG G ← C → T .
Our strategy to solve this problem is, first, to get a derivation for G with the

source part of TGG and, then, construct the derivation ZTGG ⇒∗
TGG G ← C →

T . For this purpose, consider the definition of the s function, that extracts the
source part of a production rule.

Definition 16. Let r = (A → (Gs ← Gc → Gt), ωs, ωt) be a production rule
of a triple graph grammar, s(r) = (A → Gs, ωs) gives the source part of r.
Moreover, s−1((A → Gs, ωs)) = r gives the original rule of a source rule.

In order for s−1 to be well defined, we require that all source parts (A →
Gs, ωs) be unique. This does not affect the generality of the formalism, for right-
hand side graphs Gs are still allowed to be isomorphic.

Definition 17. Let TGG = (Σ,Δ, S, P) be a triple graph grammar, S(TGG) =
(Σ,Δ, S, s(P)) gives the source grammar of TGG.

Furthermore, consider the definition of the non-terminal consistent (NTC)
property for TGG, which assures, that non-terminal vertices of the correspondent
graphs are connected to vertices with the same label in the source and target
graphs.

Definition 18. A triple graph grammar TGG = (Σ,Δ, S, P) is non-terminal
consistent (NTC) if and only if, for all rules (A → (Gs

ms← Gc
mt→ Gt), ωs, ωt) ∈

P , the following holds:

1. ∀c ∈ VGc
. if φGc

(c) ∈ Γ then φGc
(c) = φGs

(ms(c)) = φGt
(mt(c)) and

2. For the sets Ns = {v | φGs
(v) ∈ Γ} and Nt = {v | φGt

(v) ∈ Γ}, the range-
restricted functions (ms � Ns) and (mt � Nt) are bijective.

172 W. da Silva et al.

Finally, the following result gives us an equivalence between a derivation
in TGG and a derivation in its source grammar S(TGG), which allows us to
construct our goal derivation of G ← C → T in TGG using the derivation of G
in S(TGG).

Theorem 1. Let TGG = (Σ,Δ, S, P) be a NTC TGG and k ≥ 1,

D = ZTGG
r0,s0,c0,t0⇒ G1 r1,s1,c1,t1⇒ . . .

rk−1,sk−1,ck−1,tk−1⇒ Gk is a derivation in

TGG if, and only if, D = ZS(TGG)
s(r0),s0⇒ G1

s

s(r1),s1⇒ . . .
s(rk−1),sk−1⇒ Gk

s is a
derivation in S(TGG).

Proof. We want to show that if D is a derivation in TGG = (Σ,Δ, S, P), then
D is a derivation in SG := S(TGG) = (Σ,Δ, S,SP), and vice-versa. We prove
it by induction in the following.

First, for the induction base, since, ZTGG
r0,s0,c0,t0⇒ TGG G1, then expanding

ZTGG and G1, we have

Zs ← Zc → Zt
r0,s0,c0,t0⇒ TGG G1

s ← G1
c → G1

t , then, by Definition 11,
r0 = (S → (Rs ← Rc → Rt), ωs, ωt) ∈ P and, by Definition 16,
s(r0) = (S → Rs, ωs) ∈ SP

Hence, using it plus the configuration of φZs
(s0), VG1

s
, EG1

s
and φG1

s
and the

equality Zs = ZSG, we have, by Definition 5, ZSG
s(r0),s0⇒ SG G1

s.
In the other direction, we choose c0, t0 from the definition of ZTGG, with

φZc
(c0) = S and φZt

(t0) = S. In this case, since,

ZSG
s(r0),s0⇒ SG G1

s, then by Definition 5,
s(r0) = (S → Rs, ωs) ∈ SP and, using the bijectivity of s,we get

r0 = s−1(s(r0)) = (S → (Rs ← Rc → Rt), ωs, ωt) ∈ P

Hence, using it plus the configuration of φZSG
(s0), VG1

s
, EG1

s
and φG1

s
, the

equality Zs = ZSG and constructing VG1
c
, VG1

t
, EG1

c
, EG1

t
, φG1

c
, φG1

t
from Zc and

Zt according to the Definition 11 ZTGG
r0,s0,c0,t0⇒ TGG G1

s ← G1
c → G1

t .
Now, for the induction step, we want to show that if ZTGG ⇒∗

TGG Gi

ri,si,ci,ti⇒ TGG Gi+1 is a derivation in TGG , then ZSG ⇒∗
SG Gi

s

s(ri),si⇒ SG Gi+1
s

is a derivation in SG and vice-versa, provided that the equivalence holds for the
first i steps, so we just have to show it for the step i + 1.

So, since, Gi ri,si,ci,ti⇒ TGG Gi+1, that is

Gi
s

msi← Gi
c

mti→ Gi
t

ri,si,ci,ti⇒ TGG Gi+1
s ← Gi+1

c → Gi+1
t , then, by Definition 11

ri = (S → (Rs ← Rc → Rt), ωs, ωt) ∈ P , and by Definition 16,
s(ri) = (S → Rs, ωs) ∈ SP

Hence, using it plus the configuration of φGi
s
(si), VGi+1

s
, EGi+1

s
and φGi+1

s
, we

have, by Definition 5, Gi
s

s(ri),si⇒ SG Gi+1
s .

Model Transformation with TGG and Non-terminal Symbols 173

In the other direction, we choose, using the bijectivity from the range
restricted function s, stemming from the NTC property, ci = ms−1

i (si), ti =
mti(ci). Moreover, since TGG is NTC, and because, by induction hypothesis,
ZTGG ⇒∗

TGG Gi is a derivation in TGG and φGi
s
(si) ∈ Γ , it is clear that

φGi
s
(si) = φGi

c
(ci) = φGi

t
(ti).

In this case, since

Gi
s

s(ri),si⇒ SG Gi+1
s , then, by Definition 5,

s(ri) = (A → Rs, ωs) ∈ SP and, using the bijectivity of s,we get

ri = s−1(s(ri)) = (A → (Rs ← Rc → Rt), ωs, ωt) ∈ P

Hence, using, additionally, the configuration of φGi
s
(si), φGi

c
(ci), φGi

t
(ti),

VGi+1
s

, EGi+1
s

and φGi+1
s

and constructing VGi+1
c

, VGi+1
t

, EGi+1
c

, EGi+1
t

, φGi+1
c

,
φGi+1

t
from Gi

c and Gi
t according to the Definition 11, we have

Gi
s ← Gi

c → Gi
t

ri,si,ci,ti⇒ TGG Gi+1
s ← Gi+1

c → Gi+1
t

This finishes the proof. ��

Therefore, the problem of finding a derivation D = ZTGG ⇒∗ G ← C → T
in TGG is reduced to finding a derivation D = ZS(TGG) ⇒∗ G in S(TGG),
what can be done with the procedure from Rozenberg and Welzl [19]. The final
construction of the triple graph G ← C → T becomes then just a matter of
creating D out of D.

The complete transformation procedure is presented in the Algorithm1.
Thereby, it is required that the TGG be a BNCE TGG (see Definition 15) and
be neighborhood preserving (NP) [19,21], what poses no problem to our proce-
dure, since any BNCE graph grammar can be transformed into the neighborhood
preserving normal form.

Algorithm 1. Transformation Algorithm for NP NTC BNCE TGG
Require: TGG is a valid NP NTC BNCE triple graph grammar
Require: G is a valid graph over Σ

function transform(TGG = (Σ, Δ, S, P),G = (VG, EG, φG)): Graph
SG ← S(TGG) � see Definition 16
D ← parse(SG, G) � use procedure in [19]
if D = ZSG ⇒∗

SG G then � if parsed successfully
From D, construct D = ZTGG ⇒∗

TGG G ← C → T � see Theorem 1
return Just T

else
return Nothing � no T satisfies (G ← C → T) ∈ L(TGG)

end if
end function

Ensure: return is either Nothing or Just T , such that (G ← C → T) ∈ L(TGG)

174 W. da Silva et al.

Table 1. Results of the usability evaluation of the BNCE TGG formalism in compar-
ison with the standard TGG for the model transformation problem

Transformation Standard TGG BNCE TGG

Rules Elements Rules Elements

Pseudocode2Controlflow 45 1061 7 185

BTree2XBTree 4 50 5 80

Star2Wheel — — 6 89

Class2Database 6 98 — —

6 Evaluation

In order to evaluate the usability of the proposed BNCE TGG formalism, we
compare the number of rules and elements (vertices, edges, and mappings) we
needed to describe some model transformations in BNCE TGG and in standard
TGG without application conditions. Table 1 presents these results. We cannot
claim that our evaluation has a strong statistical validity, for the studied trans-
formations are not very representative in general, but it should demonstrate the
potential of our approach.

In the case of Pseudocode2Controlflow, our proposed approach shows a clear
advantage against the standard TGG formalism. We judge that similarly to
what happens to programming languages, this advantage stems from the very
nested structure of Pseudocode and Controlflow graphs. That is, for instance,
in rule the r2 of this TGG (see Example 2), a node in a positive branch of
an if -labeled vertex is never connected with a node in the negative branch.
This disjunctive aspect allows every branch to be defined in the rule (as well as
effectively parsed) independently of the other branch. This characteristic makes
it possible for BNCE TGG rules to be defined in a very straightforward manner
and reduces the total number of elements necessary.

In addition to that, the use of non-terminal symbols gives BNCE TGG the
power to represent abstract concepts very easily. For example, whereas the rule
r1 encodes, using only few elements, that after each action comes any statement
A, which can be another action, an if, a while or nothing (an empty graph),
in the standard TGG without application condition or any special inheritance
treatment, we need to write a different rule for each of these cases. For the whole
grammar, we need to consider all combinations of actions, ifs and whiles in all
rules, what causes the great number of rules and elements.

The BTree2XBTree transformation consists of lifting binary trees to graphs
by adding edges between siblings. In this scenario, our approach performed
slightly worse than TGG. The Star2Wheel transformation consists of transform-
ing star graphs, which are complete bipartite graphs K1,k—where the partitions
are named center and border—to wheel graphs, that can be constructed from
star graphs by adding edges between border vertices to form a minimal cycle.
We could not describe this transformation in standard TGG, especially because

Model Transformation with TGG and Non-terminal Symbols 175

of the rules’ monotonicity (see Definition 9). That is, we missed the possibility
to erase edges in a rule, feature that we do have in the semantics of BNCE TGG
through the embedding mechanism.

The Class2Database transformation consists of transforming class diagrams,
similar to UML class diagrams, to database diagrams, similar to physical entity-
relationship diagrams. We could not describe this transformation in BNCE TGG
by the fact that the information about the production of a terminal vertex is
owned exclusively by one derivation step. That is, this information cannot be
used by other derivation steps (the BNCE grammar is context-free). Thus, in
the case of Class2Database, in which an association is connected to two classes,
each been produced by two different derivation steps, we could not connect one
association with two classes.

7 Conclusion

We present in this paper a new triple graph grammar formalism, called NCE
TGG, that is the result of mixing NCE graph grammars [15] with TGG [20]
and that introduces for the first time, as far as we know, non-terminal symbols
to TGG. Furthermore, we demonstrate how BNCE TGG can be used in the
practice to solve the model transformation problem.

An experimental evaluation in Sect. 6 assesses the usability of BNCE TGG
in comparison with standard TGG and reveals that our proposed approach has
potential. In special, we could express one transformation with BNCE TGG that
we could not with TGG. And, from the other three evaluated transformations,
BNCE TGG outperformed TGG in one use case with a much smaller grammar.
In our view, smaller and less complex rules tend to be easier to comprehend and
validate, what in turn makes formal specifications in BNCE TGG more suitable
for safety-critical systems.

We are aware that this disadvantage for TGG comes from the absence of (nega-
tive and positive) application conditions, but we also argue that such mechanisms
are often unhandy for tools and researchers that want to reason about it. In this
sense, the use of non-terminal symbols seems to be a neater alternative to it.

As a future work, we intend to carry out a broader usability and performance
evaluation of our approach and extend NCE graph grammars with an application
condition mechanism that should allow it to express more languages than it can
now. Finally, although the extension of our approach for the bidirectional trans-
formation problem is straightforward, the same does not seem to be true for the
model synchronization problem. Whereas the former consists of simply perform-
ing transformation from source to target and from target to source, the latter
consists of transforming already generated models in both directions without
creating them from scratch and using only the information of the modifications.
Therefore, we are also interested in studying how our approach can be used to
solve it.

176 W. da Silva et al.

References

1. Anjorin, A., Leblebici, E., Schürr, A.: 20 years of triple graph grammars: a roadmap
for future research. Electron. Commun. EASST 73 (2016). https://doi.org/10.
14279/tuj.eceasst.73.1031

2. Anjorin, A., Saller, K., Lochau, M., Schürr, A.: Modularizing triple graph gram-
mars using rule refinement. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS,
vol. 8411, pp. 340–354. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54804-8 24

3. Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating meta-modelling
aspects with graph transformation for efficient visual language definition and model
manipulation. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS,
vol. 2984, pp. 214–228. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24721-0 16

4. Brandenburg, F.J., Skodinis, K.: Finite graph automata for linear and boundary
graph languages. Theor. Comput. Sci. 332(1–3), 199–232 (2005). https://doi.org/
10.1016/j.tcs.2004.09.040

5. Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyperedge
replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015.
LNCS, vol. 9151, pp. 19–34. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21145-9 2

6. Drewes, F., Hoffmann, B., Minas, M.: Predictive shift-reduce parsing for hyperedge
replacement grammars. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol.
10373, pp. 106–122. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61470-0 7

7. Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars.
In: Handbook Of Graph Grammars and Computing by Graph Transformation:
Volume 1: Foundations, pp. 95–162. World Scientific (1997). https://doi.org/10.
1142/9789812384720 0002

8. Ehrig, H., Rozenberg, G., Kreowski, H.J., Montanari, U.: Handbook of Graph
Grammars and Computing by Graph Transformation, vol. 3. World Scientific, Sin-
gapore (1999). https://doi.org/10.1142/3303

9. Engelfiet, J., Rozenberg, G.: A comparison of boundary graph grammars and
context-free hypergraph grammars. Inf. Comput. 84(2), 163–206 (1990). https://
doi.org/10.1016/0890-5401(90)90038-J

10. Flasiński, M.: Power properties of NLC graph grammars with a polynomial mem-
bership problem. Theor. Comput. Sci. 201(1–2), 189–231 (1998). https://doi.org/
10.1016/S0304-3975(97)00212-0

11. Flasiński, M.: On the parsing of deterministic graph languages for syntactic pattern
recognition. Pattern Recognit. 26(1), 1–16 (1993). https://doi.org/10.1016/0031-
3203(93)90083-9

12. Flasiński, M., Flasińska, Z.: Characteristics of bottom-up parsable edNLC graph
languages for syntactic pattern recognition. In: Chmielewski, L.J., Kozera, R.,
Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 195–202.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11331-9 24

13. Hermann, F., Ehrig, H., Taentzer, G.: A typed attributed graph grammar with
inheritance for the abstract syntax of UML class and sequence diagrams. Electron.
Notes Theor. Comput. Sci. 211, 261–269 (2008). https://doi.org/10.1016/j.entcs.
2008.04.048

https://doi.org/10.14279/tuj.eceasst.73.1031
https://doi.org/10.14279/tuj.eceasst.73.1031
https://doi.org/10.1007/978-3-642-54804-8_24
https://doi.org/10.1007/978-3-642-54804-8_24
https://doi.org/10.1007/978-3-540-24721-0_16
https://doi.org/10.1007/978-3-540-24721-0_16
https://doi.org/10.1016/j.tcs.2004.09.040
https://doi.org/10.1016/j.tcs.2004.09.040
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1007/978-3-319-61470-0_7
https://doi.org/10.1007/978-3-319-61470-0_7
https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1142/3303
https://doi.org/10.1016/0890-5401(90)90038-J
https://doi.org/10.1016/0890-5401(90)90038-J
https://doi.org/10.1016/S0304-3975(97)00212-0
https://doi.org/10.1016/S0304-3975(97)00212-0
https://doi.org/10.1016/0031-3203(93)90083-9
https://doi.org/10.1016/0031-3203(93)90083-9
https://doi.org/10.1007/978-3-319-11331-9_24
https://doi.org/10.1016/j.entcs.2008.04.048
https://doi.org/10.1016/j.entcs.2008.04.048

Model Transformation with TGG and Non-terminal Symbols 177

14. Hoffmann, B.: Graph transformation with variables. In: Kreowski, H.-J., Monta-
nari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software
and Systems Modeling. LNCS, vol. 3393, pp. 101–115. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31847-7 6

15. Janssens, D., Rozenberg, G.: Graph grammars with neighbourhood-controlled
embedding. Theor. Comput. Sci. 21(1), 55–74 (1982). https://doi.org/10.1016/
0304-3975(82)90088-3

16. Kim, C.: Efficient recognition algorithms for boundary and linear eNCE graph lan-
guages. Acta Inform. 37(9), 619–632 (2001). https://doi.org/10.1007/PL00013320

17. Kim, C.: On the structure of linear apex NLC graph grammars. Theor. Comput.
Sci. 438, 28–33 (2012). https://doi.org/10.1016/j.tcs.2012.02.038

18. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended triple graph grammars with
efficient and compatible graph translators. In: Engels, G., Lewerentz, C., Schäfer,
W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-Driven
Engineering. LNCS, vol. 5765, pp. 141–174. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17322-6 8

19. Rozenberg, G., Welzl, E.: Boundary NLC graph grammars-basic definitions, normal
forms, and complexity. Inf. Control. 69(1–3), 136–167 (1986). https://doi.org/10.
1016/S0019-9958(86)80045-6

20. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4 45

21. Skodinis, K., Wanke, E.: Neighborhood-preserving node replacements. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 45–58. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46464-
8 4

22. Wanke, E.: Algorithms for graph problems on BNLC structured graphs. Inf. Com-
put. 94(1), 93–122 (1991). https://doi.org/10.1016/0890-5401(91)90035-Z

https://doi.org/10.1007/978-3-540-31847-7_6
https://doi.org/10.1016/0304-3975(82)90088-3
https://doi.org/10.1016/0304-3975(82)90088-3
https://doi.org/10.1007/PL00013320
https://doi.org/10.1016/j.tcs.2012.02.038
https://doi.org/10.1007/978-3-642-17322-6_8
https://doi.org/10.1007/978-3-642-17322-6_8
https://doi.org/10.1016/S0019-9958(86)80045-6
https://doi.org/10.1016/S0019-9958(86)80045-6
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/978-3-540-46464-8_4
https://doi.org/10.1007/978-3-540-46464-8_4
https://doi.org/10.1016/0890-5401(91)90035-Z

Author Index

Ahmed, Asad 3
André, Étienne 75
Armstrong, Robert 121
Awwad, Falah 3

Bureck, Max 161
Butler, Michael 121

Chen, Yixiang 101

Fisher, Michael 18

Gerndt, Andreas 37
Gruner, Stefan 139

Hasan, Osman 3, 84
Hein, Christian 161
Hoang, Thai Son 121

Kamali, Maryam 18

Linker, Sven 18

Mallet, Frédéric 101
Mikaelyan, Liana 37
Morris, Karla 121
Müller, Sascha 37

Nadjm-Tehrani, Simin 55
Noll, Thomas 37

Schieferdecker, Ina 161
Snook, Colin 121
da Silva, William 161

Timm, Nils 139
Törnblom, John 55

Ul Ain, Qurat 84

Wu, Hengyang 101

Zhang, Yuanrui 101

	Preface
	Organization
	Formal Methods in the Development of Highly Assured Software for Unmanned Aircraft Systems (Invited Paper)
	Contents
	Analysis and Verification of Safety-Critical Systems
	Formal Stability Analysis of Control Systems
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	4 Stability Formalization
	4.1 Quadratic Polynomial
	4.2 Cubic Polynomial
	4.3 Quartic Polynomial

	5 Application: Power Converter Controllers Used in Smart Grids
	6 Conclusion
	References

	Modular Verification of Vehicle Platooning with Respect to Decisions, Space and Time
	1 Introduction
	2 Hybrid Agent Architecture
	3 Methodology
	3.1 Agent
	3.2 Continuous Controller
	3.3 Introducing Space

	4 Verification of Vehicle Platooning
	4.1 Proof Obligations
	4.2 Spatial Properties of Vehicle Platooning
	4.3 Spatial Safety Property

	5 Related Work
	6 Concluding Remarks
	References

	Synthesizing and Optimizing FDIR Recovery Strategies from Fault Trees
	1 Introduction
	2 Related Work
	3 Fault Trees
	3.1 Static Fault Trees
	3.2 Dynamic Fault Trees
	3.3 Non-deterministic Dynamic Fault Trees

	4 Synthesizing Recovery Strategies
	4.1 Recovery Strategies and Automata
	4.2 Non-deterministic Dynamic Fault Trees to Markov Automata
	4.3 Synthesizing Recovery Automata from Markov Automata

	5 Further Optimization of Recovery Automata
	5.1 Merging Orthogonal States
	5.2 Merging the FAIL State to Predecessors

	6 Case Studies
	6.1 Multiprocessor Computing System
	6.2 Memory System with N Redundancies

	7 Conclusions and Future Work
	References

	Formal Verification of Random Forests in Safety-Critical Applications
	1 Introduction
	2 Preliminaries
	2.1 Decision Trees and Random Forests
	2.2 Safety Properties

	3 Related Works
	4 Analyzing Random Forests
	4.1 Problem Definition
	4.2 Tool Overview
	4.3 Computing Equivalence Classes
	4.4 Approximating Output Bounds
	4.5 Implementation

	5 Case Studies
	5.1 Vehicle Collision Detection
	5.2 Digit Recognition

	6 Conclusions and Future Work
	References

	Analysis of Timed Systems
	A Benchmark Library for Parametric Timed Model Checking
	1 Introduction
	2 IMITATOR Parametric Timed Automata
	3 The Benchmark Library
	3.1 Categories
	3.2 Properties
	3.3 Presentation
	3.4 Performance

	4 Perspectives
	References

	Formal Timing Analysis of Digital Circuits
	1 Introduction
	2 Uppaal Model Checker
	2.1 Timed Automata
	2.2 Queries

	3 Proposed Methodology
	3.1 Delay Calculation
	3.2 Path Extraction
	3.3 Modeling and Verification in Uppaal Model Checker

	4 Case Studies
	4.1 C17 Benchmark
	4.2 S27 Benchmark
	4.3 Verification Results

	5 Conclusions
	References

	Embedding CCSL into Dynamic Logic: A Logical Approach for the Verification of CCSL Specifications
	1 Introduction
	2 Preliminaries of CCSL and FODL
	3 Syntax and Semantics of CDL
	3.1 The Syntax of CDL
	3.2 The Semantics of CDL

	4 Proof System of CDL
	4.1 Proof Rules for CDL

	5 A Case Study
	6 Related Work
	7 Conclusion and Future Work
	References

	Semantics and Analysis Methods
	Refinement of Statecharts with Run-to-Completion Semantics
	1 Introduction
	2 Background
	2.1 SCXML
	2.2 Event-B
	2.3 iUML-B State-Machines

	3 Intrusion Detection System
	4 Design Rationale
	5 SCXML Translation
	6 Verification of Intrusion Detection System
	7 Related Work
	8 Conclusion
	9 Future Work
	References

	Abstraction Refinement with Path Constraints for 3-Valued Bounded Model Checking
	1 Introduction
	2 Abstracted Concurrent Software Systems
	3 3-Valued Bounded Model Checking
	4 Abstraction Refinement
	5 Witness Refinement and Constraint Generation
	6 Reduction to Propositional Logic Satisfiability
	7 Experiments
	8 Related Work
	9 Conclusion and Outlook
	References

	Model Transformation
	Model Transformation with Triple Graph Grammars and Non-terminal Symbols
	1 Introduction
	2 Related Works
	3 Graph Grammars and Triple Graph Grammars
	4 NCE TGG: A TGG with Non-terminal Symbols
	5 Model Transformation with NCE TGG
	6 Evaluation
	7 Conclusion
	References

	Author Index

