
A Unified Security Perspective on Legally
Fair Contract Signing Protocols

Diana Maimuţ1(B) and George Teşeleanu1,2

1 Advanced Technologies Institute, 10 Dinu Vintilă, Bucharest, Romania
{diana.maimut,tgeorge}@dcti.ro

2 Department of Computer Science, “Al.I.Cuza” University of Iaşi,
700506 Iaşi, Romania

george.teseleanu@info.uaic.ro

Abstract. Inspired by Maurer’s universal zero knowledge (UZK)
abstract perspective and building on legally fair contract signing pro-
tocols without keystones, we propose and analyze the security of the
first UZK class of co-signing protocols. We construct our main idea con-
sidering the stringent issue of scheme compatibility which characterizes
communication systems. Typical examples are the cases of certificates in
a public key infrastructure and the general issue of upgrading the version
of a system. Thus, working in a general framework may reduce implemen-
tation errors and save application development and maintenance time.

Keywords: Security proofs · Zero knowledge · Co-signature protocol ·
Digital signature · Legal fairness · Public key

1 Introduction

The main issue addressed by zero knowledge proofs (ZKP) is represented by iden-
tification schemes (entity authentication). Thus, building on the most important
goal that a ZKP can achieve one may find elegant solutions to various problems
that arise in different areas: digital cash, auctioning, Internet of Things (IoT),
password authentication and so on [1].

A typical zero knowledge protocol involves a prover Peggy which possesses
a piece of secret information x associated with her identity and a verifier V ictor
whose job is to check that Peggy really owns x. Two classical examples of
such protocols (proposed for smartcards) are the Schnorr protocol [17] and the
Guillou-Quisquater protocol [11]. Working in an abstract framework, Maurer
shows in [12] that the previously mentioned protocols are actually instantiations
of the same one.

Inspired by Maurer’s generic perspective, we considered of great interest
extending the unification paradigm to contract signing protocols. Therefore, we
construct our main idea considering the stringent issue of scheme compatibility
which characterizes communication systems. Typical examples are the cases of
certificates in a public key infrastructure and the general issue of upgrading the
c© Springer Nature Switzerland AG 2019
J.-L. Lanet and C. Toma (Eds.): SecITC 2018, LNCS 11359, pp. 477–491, 2019.
https://doi.org/10.1007/978-3-030-12942-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12942-2_35&domain=pdf
http://orcid.org/0000-0002-9541-5705
http://orcid.org/0000-0003-3953-2744
https://doi.org/10.1007/978-3-030-12942-2_35

478 D. Maimuţ and G. Teşeleanu

version of a system. Thus, working in a general framework may reduce imple-
mentation errors and save application development (and maintenance) time.

Various contract signing schemes which fall into three different design cate-
gories were proposed during the last decades: gradual release [8–10,14], optimistic
[2,3,13] and concurrent [4] or legally fair [6] models. A typical co-signing proto-
col involves two (mutually distrustful) signing partners, Alice and Bob wishing
to compute a common function on their private inputs.

Compared to older paradigms like gradual release or optimistic models, con-
current signatures or legally fair protocols do not rely on trusted third parties
and do not require too much interaction between co-signers. As such features
seem much more attractive for users, we further consider legally fair co-signing
protocols (rather than older solutions) in our paper.

To the best of our knowledge, in this work we present the first unified class of
legally fair co-signing protocols without keystones and prove its security. Thus,
we provide the reader with a common theoretical framework. To be more precise,
we propose a class of UZK based co-signing protocols that maintains the valuable
properties1 of the scheme presented in [6].

As digital signature schemes represent the core of modern contract signing
protocols, we preserve this perspective and prove the security of our main result
building on the unified digital signature scheme we propose in Sect. 3.

Outline. We introduce notations, definitions, schemes and protocols used
throughout the paper in Sect. 2. We present a signature scheme inspired by Mau-
rer’s UZK paradigm in Sect. 3 and prove its security in AppendixA. In Sect. 4
we present our main result, namely a UZK based co-signing protocol built on
the legally fair contract signing protocol of [6]. We conclude and discuss related
open problems in Sect. 5.

2 Preliminaries

Notations. Throughout the paper, the notation |S| denotes the cardinal of a
set S. The action of selecting a random element x from a sample space X is
denoted by x

$←− X, while x ← y represents the assignment of value y to variable
x. The probability of the event E to happen is denoted by Pr[E]. The subset
{0, . . . , s} ∈ N is denoted by [0, s]. Let h : {0, 1}∗ → C be a hash function, where
C ⊂ N.

2.1 Groups

Let (G, �) and (H,⊗) be two groups. We assume that the group operations �
and ⊗ are efficiently computable. We further consider a more restrictive set of
initial conditions compared to [12], in the sense that we also assume that G is
commutative2.
1 Legal fairness without keystones, guaranteed output delivery.
2 The group G is considered as being generic in [12].

A Unified Security Perspective on Legally Fair Contract Signing Protocols 479

Definition 1 (Homomorphism). Let f : G → H be a function (not necessar-
ily one-to-one). We say that f is a homomorphism if f(x � y) = f(x) ⊗ f(y).

Throughout the rest of the paper we consider f to be a homomorphism as
well as a one-way function3. To be consistent with [12], we denote the value f(x)
by [x]. Note that given [x] and [y] we can efficiently compute [x � y] = [x] ⊗ [y],
due to the fact that f is a homomorphism. We further denote the set of public
parameters by pp = (G, H, f, h).

2.2 Zero-Knowledge Protocols

Let Q : {0, 1}∗ ×{0, 1}∗ → {true, false} be a predicate. Given a value y, Peggy
will try to convince Victor that she knows a value x such that Q(y, x) = true.
We further recall a definition from [5]. This definition captures the notion that
being successful in a protocol (P, V) implies having the knowledge of a value x
such that Q(y, x) = true.

Definition 2 (Proof of Knowledge Protocol). An interactive protocol
(P, V) is a proof of knowledge protocol for predicate Q if the following properties
hold

– Completeness: V accepts the proof when P has as input an x with Q(y, x) =
true;

– Soundness: there is an efficient program K (called knowledge extractor) such
that for any P̂ (possibly dishonest) with non-negligible probability of making
V accept the proof, K can interact with P̂ and output (with overwhelming
probability) an x such that Q(y, x) = true.

Definition 3 (2-Extractable). Let Q be a predicate for a proof of knowledge.
A 3-move protocol4 with challenge space C is 2-extractable if from any two triplets
(r, c, s) and (r, c′, s′), with distinct c, c′ ∈ C accepted by V ictor, one can efficiently
compute an x such that Q(y, x) = true.

According to [12], UZK (Fig. 1) is a zero-knowledge protocol if the conditions
from Theorem 1 are satisfied. If the challenge space C is small, then one needs
several 3-move rounds to make the soundness error negligible. We further assume
that UZK satisfies the conditions stated in Theorem1.

Theorem 1. If values � ∈ Z and u ∈ G are known such that gcd(c0 − c1, �) = 1
for all c0, c1 ∈ C with c0 �= c1 and [u] = y�, then the protocol described in Fig. 1 is
2-extractable. Moreover, a protocol consisting of α rounds is a proof of knowledge
if 1/|C|α is negligible, and it is a zero-knowledge protocol if |C| is polynomially
bounded.

3 Meaning that it is infeasible to compute x from f(x).
4 In which Peggy sends r, V ictor sends c, Peggy sends s.

480 D. Maimuţ and G. Teşeleanu

Fig. 1. Maurer’s Unified Zero-Knowledge (UZK) Protocol.

2.3 Signatures

Definition 4 (Signature Scheme). A Signature Scheme consists of three
PPT algorithms: KeyGen, Sign and Verify. The first one takes as input a security
parameter and outputs the system’s parameters, the public key and the matching
secret key. The secret key together with the Sign algorithm are used to generate
a signature σ for a message m. Using the public key, the third algorithm verifies
that a signature σ for a message m is generated using the matching secret key.

Throughout the paper we only consider signature schemes which, on input
m, produce triplets of the form (σ1, h(m‖σ1), σ2), independent of previous signa-
tures. In these triplets we consider σ2 as being dependent on m, σ1 and h(m‖σ1).
In some cases h(m‖σ1) is easily computable from the available data and, thus,
can be omitted.

Lemma 1 (Forking Lemma). Let A be a PPT algorithm, given only the
public data as input. If A can find a valid signature (m,σ1, h(m‖σ1), σ2) with
non-negligible probability, then, also with non-negligible probability, a replay of
this machine with a different hashing oracle h′ outputs two valid signatures
(m,σ1, h(m‖σ1), σ2) and (m,σ1, h

′(m‖σ1), σ′
2) such that h(m‖σ1) �= h′(m‖σ1).

Security Model. We further present the security model of [16] for signature
schemes.

Definition 5 (Signature Unforgeability - ef-cma). The notion of unforge-
ability for signatures is defined in terms of the following security game between
the adversary A and a challenger:

1. The KeyGen algorithm is run and all the public parameters are provided to A.
2. A can perform any number of signature queries to the challenger.
3. Finally, A outputs a tuple (m,σ1, h(m‖σ1), σ2).

A Unified Security Perspective on Legally Fair Contract Signing Protocols 481

A wins the game if Verify(m,σ1, h(m‖σ1), σ2) = True and A did not query the
challenger on m. We say that a signature scheme is unforgeable when the success
probability of A in this game is negligible.

2.4 Legally Fair Signatures Without Keystones

In [6] the authors present a new contract signing paradigm that does not require
keystones to achieve legal fairness. Their provably secure co-signature construc-
tion recalled in Fig. 2 is based on Schnorr digital signatures [17].

In Fig. 2, L represents a local non-volatile memory used by Bob and C =
[0, q − 1]. During the protocol, Alice makes use of a publicly known auxiliary
signature scheme σxA

using her secret key xA.

Fig. 2. The legally fair signature (without keystones) of message m.

Security Model. According to the analysis presented in [6], a legally fair signature
scheme is secure when it achieves existential unforgeability against an active
adversary A with access to an unlimited amount of conversations and valid co-
signatures, i.e. A can perform the following queries:

482 D. Maimuţ and G. Teşeleanu

– Hash queries: A can request the value of h(x) for an x of his choosing.
– Sign queries: A can request a valid signature t for a message m and a public

key yC of his choosing.
– CoSign queries: A can request a valid co-signature (r, s) for a message m and

a common public key yC,D of his choosing.
– Transcript queries: A can request a valid transcript (m, ρ, rC , t, rD, sC , sD) of

the co-signing protocol for a message m of his choosing, between users C and
D of his choosing.

– SKExtract queries: A can request the private key corresponding to a public
key.

– Directory queries: A can request the public key of any user.

The following definition captures the notion of unforgeability in the co-signing
context:

Definition 6 (Co-Signature Unforgeability). The notion of unforgeability
for co-signatures is defined in terms of the following security game between the
adversary A and a challenger:

1. The KeyGen algorithm is run and all the public parameters are provided to A.
2. A can perform any number of queries to the challenger, as described above.
3. Finally, A outputs a tuple (m, r, s, yC,D).

A wins the game if Verify(m, r, s) = True and there exist public keys yC , yD ∈ D
such that yC,D = yCyD and either of the following holds:

– A did not query SKExtract on yC nor on yD, and did not query CoSign on
(m, yC,D), and did not query Transcript on (m, yC , yD) nor (m, yD, yC).

– A did not query Transcript on (m, yC , yi) for any yi �= yC and did not query
SKExtract on yC , and did not query CoSign on (m, yC , yi) for any yi �= yC .

We say that a co-signature scheme is unforgeable when the success probability of
A in this game is negligible.

3 A UZK Based Digital Signature Scheme

We describe our proposed UZK based digital signature scheme (further referred
to as UDS) in Table 1. We further provide the security margins of our scheme in
Sect. 3.2.

3.1 Description

By applying the Fiat-Shamir transform [7] to the UZK protocol in Fig. 1 we
obtain the signature scheme presented in Table 1.

A Unified Security Perspective on Legally Fair Contract Signing Protocols 483

Table 1. A unified digital signature (UDS) scheme.

KeyGen(pp) On input the public parameters pp, this
algorithm chooses uniformly at random

x
$←− G and computes y ← [x]. The output is

the couple (sk, pk), where sk = x is kept
private and pk = y is made public

Sign(pp, sk, m) On input public parameters pp, a secret key
sk, and a message m this algorithm selects a

random k
$←− G, computes

r ← [k] e ← h(m‖r) s ← k � xe

and outputs (r, s) as the signature of m

Verify(pp, pk, m, (r, s)) On input public parameters pp, a public key
pk, a message m and a signature (r, s), this
algorithm computes e ← h(m‖r) and
returns True iff [s] = r ⊗ ye; otherwise it
returns False

3.2 Security Analysis

The proofs presented in [15,16] do not cover the generic case. Thus, we adapt
the initial results to the UDS case and provide the reader with the proof of
Theorem 2 in AppendixA.

Theorem 2. If an ef-cma attack on the UDS has non-negligible probability of
success in the ROM, then the homomorphism [·] can be inverted in polynomial
time.

4 Main Protocol

We describe our main result (a UZK class of legally fair contract signing proto-
cols) in Fig. 3 and discuss its correctness. We further prove the security of our
proposed idea in Sect. 4.2 based on the security of the UDS scheme presented in
Sect. 3.

Compared to the initial work on legally fair contract signing protocols with-
out keystones [6], we give a more complete proof by taking into account the
signature scheme σ too.

4.1 Description

To illustrate our unified paradigm, we now discuss a legally fair co-signing pro-
tocol built from the UDS (Fig. 3), which produces signatures compatible with
standard UDS (Table 1). This contract signing protocol is provably secure in the
ROM assuming the one-way property of [·].

484 D. Maimuţ and G. Teşeleanu

Fig. 3. A class of legally fair co-signature schemes.

Correctness. To prove the correctness of the co-signing schemes class described
in Fig. 3 we use the commutative property of G which is preserved by f(x):

[s] = [sA � sB]
= [sA] ⊗ [sB]
= [kA] ⊗ [xA]e ⊗ [kB] ⊗ [xB]e

= [kA] ⊗ [kB] ⊗ ([xA] ⊗ [xB])e

= r ⊗ ye.

4.2 Security Analysis

To prove that the unified co-signature protocol is secure in the ROM we use the
following strategy: assuming A is an efficient forger for the co-signature scheme,
we turn A into an efficient forger for UDS, then invoke Lemma1 to prove the
existence of an efficient inverter for the homomorphism [·]. We further address
two scenarios: when the attacker plays Alice’s role, and when the attacker plays
Bob’s.

A Unified Security Perspective on Legally Fair Contract Signing Protocols 485

4.2.1 Adversary Attacks Bob
Theorem 3. If AAlice plays the role of Alice and is able to forge a co-signature
with non-negligible probability, then we can construct an ef-cma attack on the
UDS that has non-negligible probability of success.

Fig. 4. The simulator SBob (left) or SAlice (right) answers the attacker’s queries to the
public directory D.

Proof. The proof consists in constructing a simulator SBob that interacts with
the adversary and forces it to actually produce a UDS forgery. Here is how this
simulator behaves at each step of the protocol.

Key Establishment Phase. SBob is given a target public key y. As a simulator,
SBob emulates not only Bob, but also all oracles and the directory D (see Fig. 4).

To inject a target y ← [x] into A, the simulator SBob reads yA from D and
poses as an entity whose public-key is ySBob ← y⊗(yA)−1. It follows that yA,SBob ,
the common public-key of A and SBob will be precisely yA,SBob ← ySBob ⊗ yA
which, by construction, is exactly y.

Then SBob activates AAlice, who queries the directory and gets yB. At this
point in time, AAlice is tricked into believing that she has successfully established
a co-signature public-key set (pp, y) with the “co-signer” SBob.

Algorithm 1. Hashing oracle Oh simulation for h.
Input: A hashing query qi from A

1 if ∃hi, {qi, hi} ∈ T then
2 e ← hi

3 else

4 e
$←− C

5 Append {qi, e} to T

6 end if
7 return e

486 D. Maimuţ and G. Teşeleanu

Query Phase. AAlice will start to present queries to S. Thus, S must respond to
three types of queries: hash queries, co-signature queries and transcript queries.
S will maintain a table T containing all the hash queries performed throughout
the attack. At start T ← ∅. We further describe the simulations of the hash func-
tion in Algorithm 1 and the co-signature protocol in Algorithm2. When AAlice

requests a conversation transcript, SBob replies by sending (m, ρ, rA, t, rB , sB , sA)
from a previously successful interaction.

Output Phase. After performing queries, AAlice eventually outputs a co-signature
(r, s) valid for yA,SBob where r = rA ⊗ rB and s = sA � sB. By design, these
parameters are those of a UDS and therefore AAlice has produced a UDS forgery.

Algorithm 2. Co-signing oracle simulation for SBob.
Input: A co-signature query m from AAlice

1 sB
$←− G

2 e
$←− C

3 rB ← [sB] ⊗ y−e

4 Send h(0‖rB) to AAlice

5 Receive rA, t from AAlice

6 Send rB to AAlice

7 r ← rA ⊗ rB

8 u ← 1‖m‖r‖Alice‖Bob
9 if ∃e′ �= e, {u, e′} ∈ T then

10 abort
11 else
12 Append {u, e} to T
13 end if
14 return sB

To understand SBob’s co-signature reply (Algorithm2), assume that AAlice

is an honest Alice who plays by the protocol’s rules. For such an Alice, (r, s) is
a valid signature with respect to the co-signature public-key set {pp, y}.

There is a case in which SBob aborts the protocol before completion: this
happens when it turns out that 1‖m‖r‖Alice‖Bob‖t has been previously queried
by AAlice. In that case, it is no longer possible for SBob to reprogram the oracle,
which is why SBob must abort. Since AAlice does not know the random value rB ,
such a bad event would only occur with a negligible probability exactly equal to
qh/q, where qh is the number of queries to Oh.

Therefore, A is turned into a forger for the SFS with probability 1−qh/q. As
A has a success probability εsucc, the success probability of A in the simulated
environment is εsim = (1 − qh/q)εsucc. 	

Corollary 1. If AAlice plays the role of Alice and is able to forge a co-signature
with non-negligible probability, then the homomorphism [·] can be inverted in
polynomial time.

A Unified Security Perspective on Legally Fair Contract Signing Protocols 487

4.2.2 Adversary Attacks Alice
Theorem 4. If ABob plays the role of Bob and is able to forge a co-signature
with non-negligible probability, then we can construct an ef-cma attack on the
UDS that has non-negligible probability of success if signature σxA

can be simu-
lated without knowing the secret key xA.

Proof. Here also the proof consists in constructing a simulator, SAlice, that inter-
acts with the adversary and forces it to actually produce a UDS forgery. The
simulator’s behavior at different stages of the security game is as follows.

The Key Establishment Phase. SAlice is given a target public key y. Again, SAlice

impersonates not only Alice, but also all the oracles and D.
SAlice injects the target y into the game as described in Theorem 3. Now SAlice

activates ABob, who queries D (actually controlled by SAlice) to get yA. ABob

is thus tricked into believing that it has successfully established a co-signature
public-key set (pp, y) with the “co-signer” SAlice.

Query Phase. A will start to present queries to S. Thus, S must respond to
four types of queries: hash queries, signature queries, co-signature queries and
transcript queries. We consider oracles Oh as in Theorem 3. We denote by Oσ

the simulation of σxA
. We further describe the simulation of the co-signature

algorithm in Algorithm3. When AAlice requests a conversation transcript,
SBob replies by sending (m, ρ, rA, t, rB , sB , sA) from a previously successful
interaction.

Algorithm 3. Co-signing oracle simulation for SAlice.
Input: A co-signature query m from ABob

1 Receive ρ from ABob

2 Query T to retrieve rB such that h(0‖rB) = ρ

3 sA
$←− G

4 e
$←− C

5 r ← rB ⊗ [sA] ⊗ y−e

6 u1 ← 1‖m‖r
7 if ∃e′ �= e, {u1, e

′} ∈ T then
8 abort
9 else

10 Append {u1, e} to T
11 end if

12 rA ← r ⊗ r−1
B

13 u2 ← rA‖Alice‖Bob
14 t ← Oσ(u2)
15 Send rA, t to ABob

16 Receive rB from ABob

17 Receive sB from ABob

18 return sA

488 D. Maimuţ and G. Teşeleanu

Output Phase. After performing queries, ABob eventually outputs a co-signature
(r, s) valid for ySAlice,ABob where r = rA ⊗ rB and s = sA � sB. By design, these
parameters are those of a UDS and therefore ABob has produced a UDS forgery.

As in Theorem 3, Algorithm 3 may fail with probability qh/q. Thus, the suc-
cess probability of A in the simulated environment is εsim = (1 − qh/q)εsucc.

	

Corollary 2. If ABob plays the role of Bob and is able to forge a co-signature
with non-negligible probability, then the homomorphism [·] can be inverted in
polynomial time if signature σxA

can be simulated without knowing the secret
key xA.

5 Conclusion

In this paper we presented a signature scheme inspired by Maurer’s UZK
paradigm from [12] and proved its security. We further described our main result,
i.e. a UZK class of co-signing protocols based on both Maurer’s abstract per-
spective and the legally fair framework from [6] and then proved its security.

Open Problems. A couple of interesting related studies could be the analysis of
our co-signature protocols’ resistance to SETUP (Secretly Embedded Trapdoor
with Universal Protection) attacks and the proposal of suitable countermeasures.

A Proof of Theorem2

If an attacker A can forge a UDS, then we are able to construct a simulator S
that interacts with A and forces it to produce a forgery. By using Lemma1 we
transform A into a homomorphism inverter (i.e. that computes an x′ such that
y = [x′]). We further show how S can simulate the three phases necessary to
mount the ef-cma attack.

Key Establishment Phase. In this phase S sets up the public key as y = [x] and
then activates A with input y.

Query Phase. A will start to present queries to the S. Thus, S must respond
to two types of queries: hash and signature queries. We consider oracle Oh as
in Theorem 3. We further describe the simulations of the signature scheme in
Algorithm 4.

Output Phase. After the query phase, A will eventually produce a forgery (r, s).
When simulating the signing oracle OS there is a case when S aborts before

completion: this happens when m‖r has already been queried by A. In this
case, S can not reprogram Oh, which is why it must abort. Since A does not
know the random value r, the previously described event occurs with a negligible
probability qh/q, where qh is the number of queries to Oh.

A Unified Security Perspective on Legally Fair Contract Signing Protocols 489

Therefore, A is turned into a forger for the UDS with probability 1−qh/q. As
A has a success probability εsucc, the success probability of A in the simulated
environment is εsim = (1 − qh/q)εsucc.

Let β be the position of m‖r in T from Oh. After A produces a forgery (r, s),
S runs A with the same inputs and a different h oracle (Algorithm 5). As before,
S will maintain a table T̃ containing all the h queries performed throughout
this phase of the attack. At start T̃ ← ∅. Then, by Lemma 1, A will produce a
different forgery (r, s′). Thus, we obtain c = Oh(m‖r) �= O′

h(m‖r) = c′. Using
the 2-extractable property of UZK, we obtain an x′ such that y = [x′].

Algorithm 4. Signing oracle OS simulation.
Input: A signature query m

1 s
$←− G

2 e
$←− C

3 r ← [s] ⊗ y−e

4 u ← m‖r
5 if ∃e′ �= e, {u, e′} ∈ T then
6 abort
7 else
8 Append {u, e} to T
9 end if

10 return (r, s)

Algorithm 5. Hashing oracle O′
h simulation for h.

Input: A hashing query qi from A, an index γ and a table T
1 if i < γ then
2 e ← hi, where (qi, hi) ∈ T

3 Append {qi, e} to T̃

4 else if i = γ then

5 e
$←− C \ {hγ}, where (qγ , hγ) ∈ T

6 Append {qi, e} to T̃

7 else

8 if ∃hi, {qi, hi} ∈ T̃ then
9 e ← hi

10 else

11 e
$←− C

12 Append {qi, e} to T̃

13 end if

14 end if
15 return e

490 D. Maimuţ and G. Teşeleanu

References

1. Zero-Knowledge Proof: More secure than passwords? https://blog.ingenico.com/
posts/2017/07/zero-knowledge-proof-more-secure-than-passwords.html

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange.
In: Proceedings of the 4th ACM Conference on Computer and Communications
Security - CCS 1997, pp. 7–17. ACM (1997)

3. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 6

4. Chen, L., Kudla, C., Paterson, K.G.: Concurrent signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 18

5. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptology
1(2), 77–94 (1988)

6. Ferradi, H., Géraud, R., Maimuţ, D., Naccache, D., Pointcheval, D.: Legally fair
contract signing without keystones. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 175–190. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 10

7. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

8. Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and com-
posability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006). https://doi.org/10.
1007/11681878 21

9. Goldwasser, S., Levin, L.: Fair computation of general functions in presence of
immoral majority. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
38424-3 6

10. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. J. ACM 58(6), 1–37 (2011)

11. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D., et
al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-45961-8 11

12. Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02384-2 17

13. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: Pro-
ceedings of the 22nd Annual Symposium on Principles of Distributed Computing
- PODC 2003, pp. 12–19. ACM (2003)

14. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-39200-9 6

15. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

https://blog.ingenico.com/posts/2017/07/zero-knowledge-proof-more-secure-than-passwords.html
https://blog.ingenico.com/posts/2017/07/zero-knowledge-proof-more-secure-than-passwords.html
https://doi.org/10.1007/3-540-44598-6_6
https://doi.org/10.1007/3-540-44598-6_6
https://doi.org/10.1007/978-3-540-24676-3_18
https://doi.org/10.1007/978-3-319-39555-5_10
https://doi.org/10.1007/978-3-319-39555-5_10
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11681878_21
https://doi.org/10.1007/11681878_21
https://doi.org/10.1007/3-540-38424-3_6
https://doi.org/10.1007/3-540-38424-3_6
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-642-02384-2_17
https://doi.org/10.1007/3-540-39200-9_6
https://doi.org/10.1007/3-540-39200-9_6
https://doi.org/10.1007/3-540-68339-9_33

A Unified Security Perspective on Legally Fair Contract Signing Protocols 491

16. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

17. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

https://doi.org/10.1007/0-387-34805-0_22

	A Unified Security Perspective on Legally Fair Contract Signing Protocols
	1 Introduction
	2 Preliminaries
	2.1 Groups
	2.2 Zero-Knowledge Protocols
	2.3 Signatures
	2.4 Legally Fair Signatures Without Keystones

	3 A UZK Based Digital Signature Scheme
	3.1 Description
	3.2 Security Analysis

	4 Main Protocol
	4.1 Description
	4.2 Security Analysis

	5 Conclusion
	A Proof of Theorem2
	References

