
Chapter 13
Output-Only Modal Parameter Estimation Using a Continuously
Scanning Laser Doppler Vibrometer System with Application to
Structural Damage Detection

Y. F. Xu, Da-Ming Chen, and W. D. Zhu

Abstract Spatially dense vibration measurement can be obtained by use of a continuously scanning laser Doppler
vibrometer (CSLDV) system that sweeps its laser spot along a scan path. For a linear, time-invariant, viscously damped
structure undergoing free vibration, a new type of vibration shapes called free response shapes was defined and obtained by
the authors using a CSLDV system with the demodulation method. To date, application of free response shapes is limited
to structural damage identification, and they cannot be directly used for model validation while mode shapes can be. This
paper extends the concept of free response shapes by proposing a new output-only modal parameter estimation (OMPE)
method using a CSLDV system to estimate modal parameters of the structure undergoing free vibration, including natural
frequencies, modal damping ratios, and mode shapes. Advantages of the proposed method are: (1) modal damping ratios
and mode shapes can be accurately estimated from obtained free response shapes, (2) the scanning frequency of the CSLDV
system can be relatively low, and (3) estimated mode shapes can be used for structural damage identification as if they
were measured by stepped scanning of a scanning laser Doppler vibrometer. A baseline-free method is applied to identify
structural damage using mode shapes estimated by the proposed OMPE method. The analytical expression of free response
shapes of the structure is derived, based on which the OMPE method is proposed and presented as a step-by-step procedure.
In the proposed OMPE method, natural frequencies of the structure are identified from free response of certain fixed points on
the structure; its modal damping ratios and mode shapes are simultaneously estimated using free response shapes measured
by a CSLDV system. A numerical investigation is conducted to study the OMPE method and its application to baseline-free
damage identification with mode shapes estimated by the OMPE method.

Keywords Continuously scanning laser Doppler vibrometer system · Modal parameter estimation · Output-only method ·
Baseline-free structural damage identification · Demodulation method

13.1 Introduction

Vibration-based damage identification has been a major research topic of structural dynamics in the past few decades [1, 2].
More than often, occurrence of damage in a structure undermines its capability of supporting design loads and can result
in its excessive deformation, which is attributed to changes in its structural properties, such as its stiffness. One assumption
of a vibration-based damage identification method is that occurrence of damage changes modal parameters of a structure,
including natural frequencies, modal damping ratios, and mode shapes, which can be accurately estimated by modal analysis
[3]. Accurately estimated modal parameters can also assist model validation and updating. A continuously scanning laser
Doppler vibrometer (CSLDV) system is an ideal instrument for modal parameter estimation as it is capable of accurate, non-
contact and temporally dense vibration measurement and also capable of spatially dense mode shape measurement [4]. A
CSLDV system consists of three key components: a laser Doppler vibrometer, a scanner and a controller [5]. The vibrometer
measures the velocity of a point on a test structure where its laser spot is located. The laser beam of the vibrometer is
directly shined onto first-surface mirrors of the scanner and the spot is continuously swept along a prescribed scan path
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on the structure by rotating the mirrors that are controlled by the controller. While the spot is continuously swept, velocity
at each discrete measurement point on the scan path is measured, and the number of the measurement points can be tens
and even hundreds of thousands, depending on the sampling and scan frequencies of the vibrometer. A CSLDV system has
been successfully used for modal analysis and measurements of vibration shapes, such as mode shapes [6–8] and operating
deflection shapes [9–11], which can be achieved with high accuracy and in a relatively short time, e.g., in a few seconds.
Specifically, two operational modal analysis methods [12, 13] have been developed based on harmonic power spectra [14],
where only one CSLDV system is used to measure response of a structure under environmental excitation without any
additional sensors, and modal parameters of a wind turbine blade were measured [12, 13].

A CSLDV system has been used to measure high-fidelity vibration shapes of structures undergoing steady-state vibrations
for damage identification [5, 15], and the vibration shapes measured by a CSLDV system can be used to identify structural
damage as small as notch-size ones [16]. A new type of vibration shapes called free response shapes was defined and
measured by a CSLDV system when a linear underdamped beam underwent free vibration [17]. Free response shapes were
used to identify structural damage, where damage indices associated with multiple elastic modes of a beam could be obtained.
The free response shapes can be considered to be obtained in an output-only manner, since initial conditions of and excitation
given to the beam do not need to be measured. A free response shape is different from a mode shape, since the former
is time-varying with decaying amplitudes and the latter is not. So far, application of free response shapes is limited to
structural damage identification and they cannot be directly used for model validation and updating due to two reasons.
One is that a free response shape has an amplitude that is determined by excitation. Unless one can accurately measure the
excitation, a free response shape cannot be used for model validation and updating. Another reason is that damping ratios
cannot be estimated from free response shapes that are obtained in the method in Ref. [17]. An experimental modal analysis
method was proposed [8], where excitation to a test structure and its free response measured by a CSLDV system yielded
pseudo-frequency response functions of the structure, which were used to estimate modal parameters of the structure. In this
method, the measured response is lifted to each measurement point as if the response were measured in a pointwise manner.
A limitation of the method is that measured mode shapes of modes with relatively high natural frequencies can have low
qualities due to speckle noise caused by a relatively high scanning frequency, which is needed since the scanning frequency
of the CSLDV system is equal to the sampling frequency of the lifted response at each measurement point. While operational
modal analysis methods using a CSLDV system have been proposed and their capabilities of modal parameter estimation
have been experimentally validated, their resulting mode shapes and associated curvature mode shapes cannot be used for
structural damage identification. The reason is that the resulting mode shapes are represented by smooth sinusoidal functions
[12, 13] and local anomalies caused by existing local structural damage cannot be reflected in the mode shapes and associated
curvature mode shapes.

In this work, derivation of free response shapes of a linear, time-invariant, viscously damped structure undergoing free
vibration is shown. A new output-only modal parameter estimation (OMPE) method using free response measured by a
CSLDV system is proposed to accurately estimate modal parameters of the structure with a step-by-step procedure. The
proposed OMPE method extends the concept of free response shapes of the structure as they are directly related to its modal
damping ratios and mode shapes, which can be simultaneously obtained in the proposed method. A baseline-free non-model-
based damage identification method is applied to identify structural damage in a structure. In the identification method, a
curvature damage index (CDI) is obtained by comparing a curvature mode shape corresponding to a mode shape estimated
by the OMPE method with that from a polynomial that fits the estimated mode shape with a properly determined order.
Structural damage can be identified in neighborhoods with consistently large CDIs corresponding to multiple modes. A
numerical investigation is conducted to study the OMPE method and application of the damage identification method.

The remaining part of this paper is outlined as follows. Derivation of free response shapes is presented in Sects. 13.2.1
and 13.2.2, the new OMPE method using a CSLDV system is proposed in Sect. 13.2.3, and the structural damage
identification method is presented in Sect. 13.2.4. A numerical investigation of the OMPE method and baseline-free method
are presented in Sect. 13.3. Finally, conclusions of this study is presented in Sect. 13.4.

13.2 Methodology

13.2.1 Free Response of a Damped Structure

Free response in the form of the displacement of a linear, time-invariant, viscously damped structure can be obtained by
solving its governing partial differential equation:



13 Output-Only Modal Parameter Estimation Using a Continuously Scanning. . . 115

B

[
∂2z (x, t)

∂2t

]
+ C

[
∂z (x, t)

∂t

]
+ L [z (x, t)] = 0, x ∈ D, t ≥ 0 (13.1)

where B (· ), C (· ) and L (· ) are a mass operator, a damping operator and a stiffness operator, respectively, z is the
displacement of the structure at the spatial position x at time t , and D is its spatial domain. Boundary and initial conditions
of the structure are known. Note that the initial conditions can be induced by an external force that the structure is subject to
when t < 0. A solution to Eq. (13.1) can be obtained using the expansion theorem [18]:

z (x, t) =
∞∑
i=1

φi (x) ui (t) (13.2)

where φi is the i-th mass-normalized eigenfunction of the associated undamped structure, which is assumed to be self-
adjoint, and ui is the corresponding unknown time function. Orthonormality between φi and φj (j = 1, 2, . . . , ∞) with
respect to B is expressed by

∫
D

φj (p) B
[
φi (p)

]
dp = δij (13.3)

where δij denotes Kronecker delta function, which satisfies δij = 1 if i = j and δij = 0 if i �= j . Assuming that damping of
the structure can be modeled by Kelvin-Voigt viscoelastic model, which leads to a classically damped system [18, 19], one
can obtain ui in Eq. (13.2) by solving an ordinary differential equation:

üi (t) + 2ζiωiu̇i (t) + ω2
i ui (t) = 0 (13.4)

where ωi is the corresponding i-th undamped natural frequency of the structure, ζi is the i-th modal damping ratio, which is
smaller than 1 for an underdamped structure, and an overdot denotes differentiation with respect to t . The initial conditions
ui (0) and u̇i (0) can be determined from the initial conditions of Eq. (13.1). The solution to Eq. (13.4) can be expressed
by [20]

ui (t) = e−ωiζi t
[
ui (0) cos

(
ωi,d t

) + u̇i (0)+ωiζiui (0)
ωi,d

sin
(
ωi,d t

)]
= Aie−ωiζi t cos

(
ωi,d t − γi

) (13.5)

where

ωi,d = ωi

√
1 − ζ 2

i (13.6)

is the i-th damped natural frequency of the structure,

Ai =
√

[ui (0)]2 +
[
u̇i (0) + ωiζiui (0)

ωi,d

]2

(13.7)

is an amplitude constant, and

γi = arctan2

(
u̇i (0) + ωiζiui (0)

ωi,d

, ui (0)

)
(13.8)

is a phase angle; ωiζi in Eq. (13.5) is referred to as the decaying rate of ui . Based on Eqs. (13.2) and (13.5), Eq. (13.2)
becomes

z (x, t) =
∞∑
i=1

Aiφi (x) e−ωiζi t cos
(
ωi,d t − γi

)
(13.9)
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13.2.2 Free Response Shapes

A free response shape associated with the i-th mode of the structure can be defined by

yi (x, t) = Aiφi (x) e−ωiζi t (13.10)

and Eq. (13.9) becomes

z (x, t) =
∞∑
i=1

yi (x, t) cos
(
ωi,d t − γi

)
(13.11)

The i-th eigenfunction φi that is the i-th undamped mode shape of the structure exists in the definition of yi in Eq. (13.10).
A similarity between φi and yi is that they both correspond to the i-th mode of the structure; however, the former is time-
invariant while the latter is time-varying due to the term e−ωiζi t in Eq. (13.10).

A CSLDV system continuously sweeps its laser spot over a surface of a structure with a specific scan path. The system
measures response of a measurement point on the structure with a certain sampling frequency, where its laser spot is located
during a scan, and a finite number of modes of the structure are included in free response measured by the system. Let x̃ (t)

be the position of a laser spot on the surface of the structure at time t , which describes the scan path on the structure as a
function of t . Free response of the structure measured by the CSLDV system along x̃ (t) can be expressed by

z̃ (t) =
N∑

i=1

ỹi

[
x̃ (t) , t

]
ũi (t) (13.12)

where N is the number of modes included in z̃, and ỹi and ũi are the free response shape and time function associated with
the i-th mode measured by the system, respectively. The free response shape ỹi in Eq. (13.12) can be written as

ỹi

[
x̃ (t) , t

] = Aiφi

[
x̃ (t) , t

]
e−ωiζi t (13.13)

The time function ũi can be expressed by

ũi (t) = cos
(
ωi,d t − αi − θi

)
(13.14)

where αi is the difference between the phase determined by the initial conditions and force associated with the i-th mode and
that by a mirror feedback signal, and θi is a phase variable that controls amplitudes of in-phase and quadrature components
of ỹi , which can be expressed by

ỹI,i = ỹi

[
x̃ (t) , t

]
cos (αi + θi) (13.15)

and

ỹQ,i = ỹi

[
x̃ (t) , t

]
sin (αi + θi) (13.16)

respectively [5]. The demodulation method has been used to obtain ỹi corresponding to each half-scan period by the system
[17]. A half-scan period starts when the laser spot of the system arrives at one end of a scan path and ends when the laser
spot arrives at the other end of the scan path. Multiple ỹi can be obtained from free response of the structure measured by the
system in one scan. To identify the start and end of a half-scan period, one can refer to mirror feedback signals of the system
and determine instants when its laser spot arrives at ends of a scan path.
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13.2.3 OMPE Method

The amplitude of ỹi in Eq. (13.13) is time-varying and exponentially decays to zero with t at the decaying rate ωiζi . In
order to obtain a non-zero amplitude of ỹi from the demodulation method, one needs to determine natural frequencies of the
structure and instants when the amplitude of ỹi decays to zero. The natural frequencies can be determined from the auto-
power spectrum of z at a point that is measured by the system, and the instants can be determined using the short-time Fourier
transform of z̃ [21], which is denoted by Ṽw. Some details of the short-time Fourier transform can be found in “Appendix:
Short-Time Fourier Transform”. Multiple non-zero ỹi can be obtained by using z̃ of the first Ni,0 half-scan periods, where
Ni,0 is an integer that is defined by

arg max
Ni,0

Ni,0T

2
≤ ti,0 − t1 (13.17)

in which T is the length of a scan period, ti,0 is the instant when Ṽw at the i-th natural frequency of the structure becomes
almost zero, and t1 is the instant when the first half-scan period starts.

Let

Qi = Aie
−ωiζi t1 (13.18)

which is a complex constant, and Qiφi can also represent the i-th mode shape of the structure. One has Qi = Ai when
t1 = 0, and Eq. (13.13) with t ≥ t1 can be expressed by

ỹi

[
x̃ (t) , t

] = Qiφi

[
x̃ (t) , t

]
e−ωiζi (t−t1) (13.19)

One can estimate Qiφi in Eq. (13.19) if ζi is known. Let tk be the instant when the k-th half-scan period starts and ỹi,k be the
free response shape associated with the i-th mode in the k-th half-scan period. The term Qiφi in Eq. (13.19) associated with
ỹi,k is independent of t and can be estimated by eliminating e−ωiζi (t−t1) in ỹi,k; it can be expressed by

Qi,kφi,k

[
x̃ (t) , t

] = ỹi,k

[
x̃ (t) , t

]
eωiζi (t−t1) (13.20)

where 0 ≤ t − tk ≤ T . The mean of Qi,kφi,k with k ∈ [1, Ni], where Ni ≤ Ni,0, can be defined by

μi

(
x̃
) =

Ni∑
k=1

Qi,kφi,k

(
x̃
)

Ni

(13.21)

Though ωiζi in Eqs. (13.19) and (13.20) is unknown, it can be estimated by solving an optimization problem:

ωiζi = arg min
ωiζi

Ni∑
k=1

∣∣μ (
x̃
) − Qi,kφi,k

(
x̃
)∣∣ (13.22)

where |·| denotes the L2-norm of a function in a half-scan period. Note that Ni must be greater than two; otherwise ωiζi

cannot be estimated since the problem in Eq. (13.22) becomes trivial. With estimated ωi,d and ωiζi , ζi can be estimated by

ζi = ωiζi√
ω2

i,d + (
ωiζi

)2
(13.23)

This completes theoretical derivation of the OMPE method using free response of the structure measured by the CSLDV
system. The procedure of the method is summarized below:

Step 1. Measure z (t) of the structure using the system with its laser spot staying at least one fixed point of the structure.
Step 2. Estimate ωi,d of the structure using the auto-power spectrum of z measured in Step 1.
Step 3. Measure z̃ (t) using the system along a scan path with certain scan and sampling frequencies.
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Step 4. Estimate ỹi

(
x̃
)

associated with measured modes in Ni half-scan periods using the demodulation method.
Step 5. Estimate ζi based on Eq. (13.23) using ωiζi obtained by solving the optimization problem in Eq. (13.22).
Step 6. Express Qiφi

(
x̃
)

as ỹi,1
(
x̃
)

eωiζi (t−t1) with 0 ≤ t − t1 ≤ T and ωiζi obtained in Step 5.

13.2.4 Baseline-Free Structural Damage Identification

Local damage of a structure can cause prominent anomalies in its curvature mode shapes in neighborhoods of the damage, and
the damage can be identified by comparing the curvature mode shapes with those of the associated undamaged structure [22].
However, the curvature mode shapes of the undamaged structure that can be considered as baselines are usually unavailable
in practice. When the undamaged structure is geometrically smooth and made of materials without mass and/or stiffness
discontinuities, the curvatures of the undamaged structure can be well approximated by those from polynomials that fit mode
shapes of the damaged structure with properly determined orders. In previous works [15, 16, 23], a curvature damage index
(CDI) was proposed, which consists of the difference between a curvature mode shape of a damaged structure and that from
a polynomial fit:

δi (x) =
[
φ′′

i (x) − φ
p′′
i (x)

]2
(13.24)

where a prime denotes spatial differentiation with respect to the arc length s of a scan path at x, and φ
p
i is the corresponding

mode shape from the polynomial that fits φi . Since mode shapes corresponding to multiple modes can be measured in
one scan, CDIs corresponding to multiple modes can be obtained in the scan, and damage regions can be identified in
neighborhoods with consistently large CDI values associated with the measured modes. Note that use of δi corresponding
to rigid-body modes of a structure should be excluded in damage identification as their curvature mode shapes are zero,
and one should use δi corresponding to elastic modes of the structure in damage identification. An auxiliary CDI associated
with δi corresponding to various measured modes can be defined to assist identification of the neighborhoods; it can be
expressed by

δ̃ (x) =
∑

δ̂i (x̃) (13.25)

where δ̂i is a normalized CDI associated with the i-th mode of the structure with the maximum unit amplitude and
∑

denotes
summation of δ̂i over all measured modes. Since boundary distortions would occur in curvature free response shapes of a
structure associated with its free response shapes obtained from the demodulation method [17], similar distortions would
occur in curvature mode shapes here. Hence, boundary regions are excluded in normalization of δi in δ̃ and presenting them.
Neighborhoods with consistently large values of δi associated with measured modes can be identified in those with large
values of δ̃.

By nondimensionalizing s so that it ranges between −1 and 1, a polynomial that fits φi with an order r can be
expressed by

φ
p
i (s̃) =

r∑
q=0

aq s̃q (13.26)

where s̃ denotes the nondimensionalized s, aq are coefficients of the polynomial. As pointed out in Ref. [17], an increase of
r in the polynomial in Eq. (13.26) can improve the level of approximation of φ

p
i to φi . To determine a proper order of the

polynomial fit, the modal assurance criterion (MAC) value between a mode shape of the damaged structure and that from a
polynomial that fits the mode shape, which is defined by

MAC
(
φi, φ

p
i

) =
(
φH

i φ
p
i

)2

(
φH

i φi

) (
φ

pH
i φ

p
i

) × 100% (13.27)

where the superscript H denotes matrix Hermitization, is used. A proper order for the polynomial fit is two plus the minimum
order with which MAC

(
φi, φ

p
i

)
is greater than 90% [23]. Two is added here in order to preserve smoothness of a curvature

mode shape from the polynomial fit, since calculation of a curvature incurs second-order differentiation that reduces the
order of a polynomial by two.
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13.3 Numerical Investigation

A finite element model of a damaged aluminum cantilever beam with a length L = 0.8 m, Young’s modulus of 68.9 GPa, a
mass density of 2700 kg/m3 and a damping coefficient of Kelvin-Voigt damping model of 8 × 10−7 s is constructed using
ABAQUS. The beam has a uniform square cross-section with a side length of 0.01 m. The damage is in the form of thickness
reduction, which is located between x = 6

16L and x = 7
16L, where x is the position of a point on the beam. The damaged

portion of the beam has a height of 0.008 m and a length of 0.05 m. The beam has fixed and free ends at x = 0 and x = L,
respectively. The first five natural frequencies and modal damping ratios of the beam are listed in Table 13.1a, b, respectively.
The first five mass-normalized mode shapes of the beam from its finite element model are shown in Fig. 13.1.

In this section, a single impulse is applied to the damaged cantilever beam. Assume that the beam has zero initial
conditions; responses of the beam are calculated using the expansion theorem, where the number of included modes is
five. A simulated CSLDV system is used to measure responses of the beam caused by the forces with a scan period T = 2 s
and a sampling frequency of 16384 Hz. The simulated CSLDV system is capable of measuring response in the form of
displacement. Positions of the laser spot of the system on the beam in the first eight seconds of a scan is shown in Fig. 13.2.

A single impulse with an intensity of 0.01 Ns is applied to the free end of the damaged beam x = L at t = 0 s. Response
of the beam at x = 0.7 m is measured in the form of displacement for eight seconds, as shown in Fig. 13.3a, and its auto-
power spectrum is shown in Fig. 13.3b. Natural frequencies of the beam can be identified in the spectrum as frequencies
where prominent peaks are found, and identified natural frequencies are listed in Table 13.1a. The largest error between the
identified natural frequencies and those from the finite element model is 0.16%. Response of the beam is then measured using
the simulated CSLDV system, and the measured response in the first eight seconds are shown in Fig. 13.4a; the associated

Table 13.1 First five (a) natural
frequencies in Hz and (b) modal
damping ratios in percentage of
the damaged beam from its finite
element model and the OMPE
method using its response caused
by a single impulse

(a)

Mode Finite element OMPE method

1 12.64 12.62

2 79.04 79.00

3 222.0 222.0

4 434.8 434.7

5 711.2 711.2

(b)

Mode Finite element OMPE method

1 0.0032 0.0032

2 0.0199 0.0199

3 0.0558 0.0558

4 0.1093 –

5 0.1787 –
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Fig. 13.1 Mass-normalized mode shapes of the damaged cantilever beam associated with its first five modes from its finite element model
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Fig. 13.2 Position of the laser
spot of the simulated CSLDV
system on the damaged beam
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Fig. 13.3 (a) Response of the damaged cantilever beam at x = 0.7 due to the single impact at its free end and (b) the auto-power spectrum of the
response in (a)
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Fig. 13.4 (a) Response measured by the simulated CSLDV system in the first eight seconds and (b) a spectrogram of the response in (a)

spectrogram is shown in Fig. 13.4b. It can be observed that amplitudes of frequency components associated with the third
through fifth modes decay faster than those with the first and second modes. Specifically, the frequency component associated
with the fourth mode decays to almost zero before the second half-scan period ends and that associated with the fifth mode
fast decays within the first half-scan period. Since the duration of a half-scan period is T

2 = 1 s, non-zero-amplitude free
response shapes of at least one half-scan period associated with the first through fourth modes can be obtained from the free
response measured by the CSLDV system and that associated with the fifth mode cannot. Free response shapes obtained
from the free response are shown in Fig. 13.5a–e, which correspond to the first through fifth modes, respectively. It can be
seen that amplitudes of the free response shapes associated with the fourth and fifth modes of the structure decay to almost
zero faster than those associated with the first three modes, which verifies the observations on the spectrogram in Fig. 13.4b.

Since there is only one non-zero-amplitude free response shape associated with the fourth mode and the free response
shape associated with the fifth mode has decayed almost to zero before the end of the first half-scan period of the CSLDV
system, modal damping ratios and mode shapes associated with the two modes cannot be estimated here. However, they can
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Fig. 13.5 Free response shapes of the damaged cantilever beam associated with its (a) first, (b) second, (c) third, (d) fourth and (e) fifth modes
obtained from the response measured by the CSLDV system

be estimated if a higher scan frequency is applied so that at least two non-zero-amplitude free response shapes associated
with each of the two modes can be obtained from the response measured by the CSLDV system. By applying the OMPE
method in Sect. 13.2.3, modal damping ratios and mode shapes associated with the first three modes can be estimated with the
obtained free response shapes here. Estimated damping ratios associated with the first three modes are listed in Table 13.1b,
which compare well with those from the finite element model. Estimated mode shapes are shown in Fig. 13.6, and modal
assurance criterion (MAC) values between mode shapes from the OMPE method and finite element model are above 99.99%,
which indicates that the mode shapes compare well with each other. Note that the mode shapes are normalized so that they
have a maximum unit amplitude.

The estimated mode shapes are then used for structural damage identification. The three mode shapes of the damaged
cantilever beam are fitted by polynomials with properly determined orders. The orders of the polynomial fits are 7, 8
and 11 for the first through third mode shapes, respectively. Curvature mode shapes corresponding to the first three mode
shapes and those from the polynomial fits are shown in Fig. 13.7. It can be seen that local anomaly due to the damage
can be well observed by comparing the curvature mode shapes of the beam with those from the polynomial fits. CDIs
corresponding to the three mode shapes are shown in Fig. 13.8a–c, and the auxiliary CDI corresponding to the three
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Fig. 13.6 Comparison between mode shapes of the damaged cantilever beam from the OMPE method using the free response shapes and its finite
element model associated with its (a) first, (b) second and (c) third modes
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Fig. 13.7 Comparison between curvature mode shapes of the damaged cantilever beam from the OMPE method and polynomial fits associated
with its (a) first, (b) second and (c) third modes



13 Output-Only Modal Parameter Estimation Using a Continuously Scanning. . . 123

0 0.2 0.4 0.6
0

0.002

0.004

0.006

0.008

0.01

0.012

(a)

0 0.2 0.4 0.6
0

2

4

6 10-3

(b)

0 0.2 0.4 0.6
0

1

2

3

4 10-7

(c)

0 0.2 0.4 0.6
0

1

2

3

(d)

Fig. 13.8 CDIs of the damaged cantilever beam associated with its (a) first, (b) second and (c) third modes; (d) the auxiliary CDI associated with
the curvature damage indices in (a) through (c). Ends of the damage are indicated by two dotted lines

damage indices is shown in Fig. 13.8d. The structural damage can be clearly and accurately identified in neighborhoods with
consistently large values of the CDIs in Fig. 13.8a–c and the auxiliary CDI in Fig. 13.8d can well assist identification of the
neighborhood.

13.4 Conclusions

Derivation of free response shapes of a linear, time-invariant, viscously damped structure is shown. The only current
application of free response shapes is structural damage identification and they cannot be used for model validation and
updating. A new OMPE method using free response measured by a CSLDV system is proposed to estimate modal parameters,
including natural frequencies, modal damping ratios, and mode shapes based on the concept of free response shapes. Natural
frequencies can be estimated by measuring free response of fixed points on the structure. A free response shape associated
with an elastic mode corresponds to the mode shape associated with the same mode. The amplitude of the free response
shape exponentially decays with a decaying rate that is directly related to the modal damping ratio and natural frequency of
the mode. When the decay is compensated with an accurately estimated decaying rate, the mode shape of the mode can be
automatically obtained as a result. In the proposed OMPE method, the modal damping ratio and mode shape associated with
an elastic mode can be simultaneously estimated by solving an optimization problem. Free response shapes of one elastic
mode in at least two half-scan periods are needed to estimate its modal damping ratio and mode shape. Using relatively
low scanning frequencies can yield mode shapes of high qualities. A baseline-free method is applied to identify structural
damage using mode shapes estimated by the OMPE method. In the numerical investigation, the proposed OMPE method is
applied to estimate modal parameters of a viscously damped damaged beam using its free response measured by a simulated
CSLDV system. Estimated modal parameters compare well with their theoretical ones and the damage can be accurately
identified using the auxiliary CDI.
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Appendix: Short-Time Fourier Transform

The short-time Fourier transform of z̃, denoted by Ṽw (t, f ), can be expressed by

Ṽw (t, ω) =
∫ ∞

−∞
z̃ (τ ) g∗

s (τ − t) e−jωτ dτ (13.28)

where gs is a window function with a scale s, the superscript ∗ denotes complex conjugation, and j = √−1. The scale s

determines the width of gs in the time domain, which should be smaller than that of a half-scan period. When Ṽw at the
i-th natural frequency of the structure becomes almost zero at an instant ti,0, the amplitude of ỹi is considered to be zero.
Note that in Eq. (13.28), Ṽw (t, ω) is visualized by use of a spectrogram whose intensity denotes the power spectral density
associated with Ṽw (t, ω); gs is a Hamming function that can be expressed by

gs (t) =
{

0.54 − 0.46 cos
(

2πt
s

)
, 0 ≤ t ≤ s

0 , otherwise
(13.29)
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