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Preface

Rotating Machinery, Optical Methods & Scanning LDV Methods represents one of the eight volumes of technical papers
presented at the 37th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for
Experimental Mechanics, and held in Orlando, Florida, January 28–31, 2019. The full proceedings also include volumes
on Nonlinear Structures and Systems; Dynamics of Civil Structures; Model Validation and Uncertainty Quantification;
Dynamics of Coupled Structures; Special Topics in Structural Dynamics & Experimental Techniques; Sensors and
Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing; and Topics in Modal Analysis
& Testing.

Each collection presents early findings from experimental and computational investigations on an important area within
structural dynamics.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Lowell, MA, USA Christopher Niezrecki
Flint, MI, USA Javad Baqersad
Bristol, UK Dario Di Maio
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Chapter 1
Detection of Sources of Nonlinearity in Multiple Bolted Joints
by Use of Laser Vibrometer

Arnaldo delli Carri, Sante Campanelli, and Dario Di Maio

Abstract The use of non-contact measurement methods for detecting and locating sources of nonlinearities can be
potentially a break-through in the nowadays experimental modal analysis. The primary goal is to define more effective
test strategies, whereby contact sensors will measure the nonlinear vibration responses at the best location possible. Jointed
structures are a typical example where a large number of the joint can pose the question of where what and how to measure
the nonlinear response. Upon the identification of one, or more, nonlinear response mode the objective is to determine
where is the source of such nonlinear vibration. Nonlinearity can be characterised when its source is well defined and can be
adequately tested. This paper will attempt to detect and locate the source of nonlinearity from a multi-beam jointed assembly.
The approach will be carried out by using both contact and non-contact measurement methods, the results of which will be
compared and evaluated. The operator to detect the source of nonlinearity will be the coherence function applied to random
response data.

Keywords SLDV · Bolted joints · Nonlinear vibration testing

1.1 Introduction

This paper attempts to exploit the potential of the scanning LDV system to measure vibration nonlinear response at a much
greater number of locations, than it can be done by using setup based on contact sensors. The objective is to use such denser
measurement grid to identify one, or more, sources of nonlinearity. It is not intended to replace the accelerometer for the
characterization and quantification of a source of nonlinearity. The localization of nonlinearities is fundamental when such
sources are discrete as for bolted structures. It is notorious that structures with a high number of interfaces will exhibit
nonlinear responses when subjected to high amplitude of excitation forces. From a model validation viewpoint, the accurate
localization, characterization and quantification of the nonlinearity can make the modelling work more effective and time
efficient. Resources can be dedicated to improving the model where it is needed by inclusion of the nonlinear physics.

The localization of nonlinearities was usefully carried out in [1]. It was demonstrated that by setting up a good number of
accelerometers on a structure the localization can be done with a good level of accuracy. However, it looked clear that such
a method of localization depends on the setup of the contact sensors, and when an engineering judgment is not based on the
identification of nonlinearity it might be possible that nonlinearities stay hidden to the sensors. Following the methodology
applied to locate the source of nonlinearity (explained in the following sections), it become interesting to use a different
technology which would enable much denser measurement grind than offered by contact sensors. Three research works
addressed the topic of localization by using the scanning laser vibrometer. One research was focussed on bolted flanges and
the use of continuous scanning methods to identify the source of nonlinearity. That approach showed that by mapping the
response phase of the deflection shape measured at constant frequency and several level of amplitudes one could determine
the level of nonlinearity exhibited by a vibration mode [2]. The scanning laser vibrometer was used in its step-scanning mode
in two attempts, where high resolution mode shapes were measured to determine which mode would exert more nonlinear
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response [3]. The outcome of that research showed that some mode shapes create high strain distribution at the flanges’ region
and thus enabling interface nonlinear conditions. A more recently publication was focussed on use the stepped scanning
method to measure the response phase of the deflection shapes of an aero-engine casing assembly onto which accessories
were mounted to generate sources of nonlinearities [4]. The research showed that response phase of the deflection shape was
a good indicator of the source of nonlinearity.

The present paper aims (i) at starting from those earlier success to detect the nonlinearities of a structure, and (ii) at
combining the method of localization based on accelerometers with the use of a scanning laser vibrometer. A novel structure
will be used to explore these new developments. The structure is made of ten blocks each of which bolted by two bolts to
form a single prismatic beam. The source of nonlinearity can be moved by opening one or more pairs of bolts. The next
section will explain in more details the tests structure and setup. The paper will proceed by attempting the same localization
method using a set of four reference accelerometers and the measurement made by a scanning laser vibrometer over a grid
of 30 points.

1.2 Test Structure, Setup and Experimental Method

The test structure was designed with the idea to repeat the same basic unit ten times. Figure 1.1 shows the basic unit which
can be bolted by two pairs of M8 bolts. Figure 1.2 shows both the solid mode and the real unit made of mild steel. The full
assembly of the ten units is presented in Fig. 1.3. The 18 bolts were tightened up to 20 Nm to assure full clamping conditions.

The beam was suspended by strings from a frame and a shaker was installed at the bottom of the assembly, as showed in
Fig. 1.4a. Thirty measurement points were marked on the beam where the laser beam would measure the vibrations. Four
reference accelerometers were also included in the measurement setup, one of which at the drive point location. Figure 1.4b
shows the measurement setup.

A custom-made control LabView panel was used to drive the laser beam onto the measurement points and to acquire the
vibration response. It was decided to avoid the use the Polytec control panel to give full accessibility to the generation of
the excitation signal. Four random noise signals, with 1M samples at 10 kHz sampling frequency, were generated at four
different amplitudes. These four signals were stored and used for measuring the 30 LDV measurement points and the four
accelerometers. This approach was decided to allow the excitation signal from the generator to be always the same, avoiding

Fig. 1.1 CAD drawing of the basic unit
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Fig. 1.2 Solid model in (a) and real unit in (b)

Fig. 1.3 Solid model in (a) and real assembly in (b)

variations if it were to be generated every time. The four amplitudes were identified as follows, 18 mV, 180 mV, 1080 mV
and 1800 mV, respectively. The gain of the amplifier was fixed at one level and never changed.

The test programme was designed as such. The first trial was focussed on assuring the complete linearity of the structure
for the 20 Nm torque applied to the 18 bolts. Hence, levels 18 mV, 180 mV and 1800 mV were attempted. The second trial,
labelled as configuration A, was carried out by reducing the torque from 20 Nm, to 13 Nm and 8 Nm of the pair of bolts, the
fifth from the top. The third trial, labelled configuration B, was carried out using the same torque levels reducing the pair of
bolts, the third from the top, and by resetting the fifth pair to 20 Nm. A total of three configuration were tried.

1.3 Theoretical Method

The analysis was performed using conditioned spectral techniques from [5–8] and already applied in an earlier form in [1,
9]. The general equation of motion for a n-DOFs nonlinear system is

M ẍ(t) + Cẋ(t) + Kx(t) +
M∑

i=1

[
qi · gi

(
wix(t), wi ẋ(t)

)]
= f (t)

Where M, K, C are the n × n mass, stiffness and damping matrices, x(t) and its derivatives are the nx1 displacements,
velocities and accelerations vectors, f (t) is the nx1 forcing vector.

In addition to the usual linear terms, there are M nonlinear (vectorial) terms that contribute to the system: under the
summation operator one can discriminate the scaling factor qi that quantifies the strength of the nonlinearity with respect
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(a) LDV point 1

LDV point 2

LDV point 30

Acc. 1 drive point
unit n.10

Acc. 2 drive point
unit n.7

Acc. 3 drive point
unit n.4

Acc. 4 drive point
unit n.1

(b)

Fig. 1.4 Test setup in (a) and measurement points in (b)

Fig. 1.5 Block diagram

to the other linear terms, the nonlinear function gi(·, ·) that characterises the shape of the nonlinearity and the boolean-like
vector wi used to describe the location of the nonlinear term.

Using the Fourier Transform F [· ] to pass from the time domain to the frequency domain:

[
K − ω2M + jωC

]
X (ω) = F (ω) −

M∑

i=1

F
[
qi· gi

(
wix(t), wiẋ(t)

)]

A (ω) X (ω) = F (ω) − G (ω)

X (ω) = H (ω) · (F (ω) − G (ω))

This can be viewed as a set of nonlinear feedback forces acting on an underlying linear system and can be represented as
a block diagram in Fig. 1.5.

For the case of a 4-DOFs system with a grounded nonlinearity at DOF#1 and a non-grounded nonlinearity between
DOF#3 and DOF#4 and excited at DOF#2
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Fig. 1.6 MISO system

⎡
⎢⎢⎣

X1

X2

X3

X4

⎤
⎥⎥⎦ =

⎡
⎢⎣

H11 · · · H14
...

. . .
...

H41 · · · H44

⎤
⎥⎦ ·

⎡
⎢⎢⎣

−F [q1· g1 (x1)]
F2

− F [q2· g2 (x3 − x4)]
F [q2· g2 (x3 − x4)]

⎤
⎥⎥⎦

⎧
⎪⎪⎨

⎪⎪⎩

X1 = −H11G1 + H12F2 − H13G2 + H14G2

X2 = −H21G1 + H22F2 − H23G2 + H24G2

X3 = −H31G1 + H32F2 − H33G2 + H34G2

X4 = −H41G1 + H42F2 − H43G2 + H44G2

Rewriting the equations in terms of the input force, one decomposes a single SIMO system with nonlinear feedback into
a set of reverse MISO systems like in Fig. 1.6.

⎧
⎪⎪⎨

⎪⎪⎩

F2 = H−1
12 X1 + H−1

12 H11G1 + H−1
12 (H13 − H14)G2

F2 = H−1
22 X2 + H−1

22 H21G1 + H−1
22 (H13 − H14)G2

F2 = H−1
32 X3 + H−1

32 H31G1 + H−1
32 (H13 − H14)G2

F2 = H−1
42 X4 + H−1

42 H41G1 + H−1
42 (H13 − H14)G2

By feeding in any combination of location vectors wi, nonlinear operators gi(·, ·) and scaling factors qi, it is possible to
assess the quality of the system by making use of standard spectral techniques. One of the best suitable metrics of causality
is the multiple coherence between the one output and all the inputs, defined as

γ 2 (ω) = SFX (ω) · S−1
XX (ω) · SH

FX (ω)

SFF (ω)

Where S are the frequency-dependent averaged auto and cross-spectral density matrices. Finally, this can be turned into a
coherence index by normalising its integral over the considered bandwidth:

κ = 1

ω2 − ω1
·
∫ ω2

ω1

γ 2 (ω) dω

1.4 Preliminary Analysis

As stated in the previous section, accelerometers and laser data have different structure: the former consists of 30 different
tests of 4 acceleration response channels acquired at the same time while the latter is a single collection of 30 velocity
response channels acquired at different times. It is thus necessary to perform some preliminary data analysis to check the
sanity of the data, in form of linearity and stationarity checks.

Linearity checks are performed by super-imposing FRFs and coherences of the systems at different force levels. The plots
in Figure 1.7 show severe curve degradations in the tests at 8 Nm torque.
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(A) chan#1

(L) chan#30
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Fig. 1.7 FRFs and Coherences of LDV point 1 and LDV point 30
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Fig. 1.8 Accelerometers stationarity plots

If gaussian input voltage is provided, a gaussian output force is expected from the shaker. This is not generally the case
due to shaker-structure interactions. A gaussian time history passing through a non-linear system always generates a non-
gaussian output [1]. Stationarity checks are performed to assess the quality of the data and determine if the system is changing
over time (the structure might be settling on supports or getting to the operating temperature). The stationarity plots for both
accelerometers and lasers are found in Figs. 1.8 and 1.9.

By inspecting the mean and standard deviation of the channels, it can be observed that the accelerometric channels are
quite stationary in mean, but the structure had to settle at around the 15th realisation for a stable standard deviation. The
laser means and standard deviations are more scattered around an average. Since the laser channels were not captured at the
same time it is complicated to discern if the ensemble data is ergodic or even stationary, as some channels might have been
captured before the structure had any time to settle.

Since the quality metric chosen is the multiple coherence, the data was sanitised by detrending. This operation has no
impact on coherence, that only measures the input-output causality, but will hinder any calculation and retrieval of frequency
response functions.
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Fig. 1.9 LDV stationarity plots
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Fig. 1.10 Hyperbolic tangent function

1.5 Characterisation of the Nonlinearity

The frequency response functions (Fig. 1.7) show a left-shift in natural frequencies over the force range, thus indicating a
softening stiffness nonlinearity in play. This is to be expected, as loose joints have some degree of play and the prestress of
the bolt is small enough that fails to provide stiffness after a given threshold.

After feeding in several softening nonlinear operators into the system the most responsive (i.e. the one that gives the
greatest improvement in multiple coherence) is a combination of alternating softening/hardening monomials and a tapering-
saturation effect. This unfortunately makes the numerical analysis extremely cumbersome. The best approximation of this
behaviour is the hyperbolic tangent function in Fig. 1.10.

Its Taylor expansion being

tanh(x) =
∞∑

n=0

22n
(
22n − 1

)
B2n

(2n)! x2n−1 = x − 1

3
x3 + 2

15
x5 − 17

345
x7 + . . .

By using this nonlinear operator, it was possible to cut the processing time without incurring in any sensible loss of
accuracy.

Given a suitable nonlinear operator, the location of the nonlinearity is performed by reverse MISO analysis of every
nonlinear term by rotating the location vectors. These can also be filtered to include or exclude locations based on any
prior information available to the engineer. In this case it is known that the nonlinearity locations will always be between
two consecutive channels, thus only three locations were tested for the accelerometric channels (i.e. between 1–2, 2–3,
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Table 1.1 Results

Location Coherence index
Test3 Test4 Test5

LASER ACCEL LASER ACCEL LASER ACCEL LASER ACCEL

1–2 3–4 0.5622 0.9452 0.5228 0.9522 0.7747 0.9818
2–3 0.5575 0.5110 0.7957
3–4 0.5555 0.5113 0.8243
4–5 0.5556 0.5093 0.7912
5–6 2–3 0.5555 0.9603 0.5082 0.9716 0.7875 0.9592
6–7 0.5585 0.5151 0.7945
7–8 0.5634 0.5076 0.7962
8–9 0.5950 0.5132 0.7919
9–10 1–2 0.5783 0.9851 0.5243 0.9746 0.7858 0.9436

1

0.5

0
0 500

pcoh ACC#1 LOC#1 (1-2)

1000 2000 3000 4000 50002500 3500 45001500

1

0.5

0
0 500

pcoh ACC#1 LOC#2 (2-3)

1000 2000 3000 4000 50002500

coh
tanh
mcoh

3500 45001500

1

0.5

0
0 500

pcoh ACC#1 LOC#3 (3-4)

1000 2000 3000 4000 50002500 3500 45001500

Fig. 1.11 Test3 - accelerometers

3–4) and nine for the laser channels (i.e. 1–2, 2–3, 3–4, 4–5, 5–6, 6–7, 7–8, 8–9, 9–10). The multiple coherence index was
then calculated for all these combinations. The highest multiple coherence index should indicate the correct location of the
nonlinearity. Results can be found in Table 1.1 and all the relevant plots in Figs. 1.11 and 1.12.

Accelerometric data features a much higher coherence index. This is expected, all channels being acquired at the same
time and thus having direct causality relationship with the excitation. Test3 and Test5 are correctly identified while Test4 is
not, with some degree of ambiguity. This might be due to the low spatial resolution of accelerometers, but it is more likely
an issue with the test, as it is observed that laser data share the same degree of uncertainty. Laser data is more spatially dense
and so more precise with respect to location. The main issue is the possible lack of causality due to the channels not being
acquired at the same time (non-ergodicity or non-stationarity). Although the voltage excitation is the same, the force output
from the shaker is different for every channel due to shaker-structure interactions and settling of the joints. This leads to
generally poorer coherence and lack of causality that renders the method incapable of giving correct results in a consistent
way, especially in non-lab conditions. As a result, laser results are much harder to interpret using the coherence index alone
and reading the coherence plots (Figs. 1.11, 1.12, 1.13, 1.14, 1.15, and 1.16) proves challenging as well, as some locations
perform better in certain frequency ranges than others, unlike what happens with accelerometric data.
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1.6 Conclusions

Random accelerometric data has successfully been used to locate the source of nonlinear effects. The main issue with
accelerometers are the highly complex setup procedures, coupled with some inevitable mass loading effects. One of the clear
advantages of LDV measurements is the possibility to easily acquire many more points than accelerometers can achieve,
without any mass loading drawbacks. Having a finer point-mesh makes the location procedure ideally more accurate, albeit
at the cost of much more expensive processing power. However, the biggest drawback of LDV measurements lies in the fact
that the points are not excited and acquired all at the same time - unlike with accelerometers – but over the span of several
minutes. This means that any settling of the structure, small relaxation in boundary conditions or any time-variant properties
of the environment like temperature or exogenous inputs causes the random process to become non-stationary and therefore
non-ergodic, resulting in a loss of causality between excitations and responses. All these drawbacks make the application of
random LDV measurements for location of nonlinearities yet unsuitable for unexperienced operators and industrial settings
but confined to extremely well-equipped laboratory environments with trained personnel.
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Chapter 2
Single High-Speed Camera Based 3D Deflection Reconstruction
in Frequency Domain

Janko Slavič, Domen Gorjup, and Miha Boltežar

Abstract High-speed camera systems are a well-established alternative to traditional vibration measurement techniques,
particularly in cases when the region of interest on the observed object is near-planar. With the introduction of 3D digital
image correlation some of the traditional limitations of 2D imaging systems are eliminated, but the limited field of view of
stereo camera pairs remain problematic in some applications.

In this paper the possibility of extending the use of high-speed camera systems to vibration measurement of arbitrarily
shaped structures by applying methods, commonly used in multi-view computer vision is explored. A single high speed
camera is used to record the vibrating structure from multiple points of view. By utilizing properties of linear, time-invariant
mechanical systems, multi-view triangulation is then performed in frequency domain on displacement data, extracted from
these image sequences using optical flow or digital image correlation. The acquired 3D spectra are finally used in full-field
deflection reconstruction.

Keywords High-speed camera · Vibration measurement · Frequency domain · Multiview geometry · Optical flow

2.1 Introduction

The use of high-speed cameras in vibration measurement is best suited to near-planar structures due to an inherent limitation
of 2D imaging systems. Depth information, lost in the imaging process, can be recovered by using the well-established 3D
DIC technique [1]. Its field of view is, however, usually limited to a single face of the object, observed by the stereo pair.

In recent years, various methods have been proposed that extend the use of digital cameras for displacement measurements
to objects of arbitrary shapes and dimensions. These methods employ the principles of multiview geometry and triangulation
[2] to extract spatial information from simultaneously acquired image sequences of the observed mechanical process [3–
5]. Multiple digital cameras used in the measurement process can be arranged in various configurations around [6]. Data
acquired by a moving stereo-pair of high-speed cameras can also be used to extend the field of view of 3D DIC in a process
called surface stitching [7, 8].

2.2 Measurement Setup

A concave steel object, composed of three 1 mm thick 200 × 200 mm sheet metal planes, bent and welded at one seam
(Fig. 2.1) was placed on a LDS V555 electrodynamic shaker and excited with a constant profile of 3 g in the 25 Hz–2000 Hz
frequency range. The object was mounted to the shaker in such a way that the excitation force vector formed an equal angle
with all of its three planes. Six separate video sequences were acquired using a single Photron Fastcam SA-Z monochrome
high-speed camera operating at 20,000 fps and a resolution of 640 × 640 pixels. Each video contained a sequence of 20,000
images for a sampling period of 1 s. The camera was stationary during the measurement process, but the object was rotated by
60 degrees around the vertical axis between each consecutive video acquisition session. The multiview system was calibrated
using the Perspective n-point algorithm [2] and a set of markers with known positions on the surface of the observed object.
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Fig. 2.1 Multiview measurement setup

2.3 Image Based 2D Displacement Measurement

Acquired images were processes by the Simplified gradient-based optical flow method [9] to identify the 2D displacements
for each video sequence. The points to be analyzed in each image were selected by projecting a rectangular grid of 30 × 30
points onto each of the three object planes, totaling 2700 points per image. A rectangular region of interest of 11 × 11 pixels
with the grid node in the middle was analyzed for each of the selected points.

2.4 Multiview Geometry and Triangulation

Each camera position in a multiview imaging setup (Fig. 2.1) can be defined by a transformation matrix that projects the
coordinates of a point X in space into the image plane:

x = PX (2.1)

where x denotes the coordinates of a point in an image and P = K[R| t] is a projective transform matrix, composed of a 3 × 3
matrix of intrinsic camera parameters K, 3 × 3 rotation matrix R and a 3 × 1 translation vector t [2].

By matching the position of a point in an image x to the position of the same real-world point in another image, x
′
, the 3D

position of the original point in a chosen global coordinate frame is triangulated by solving the following system of equations
for three unknown coordinates in X [10]:

x = P1X

x′ = P2X (2.2)

Each camera view adds another matrix equation to the already overdetermined system of algebraic equations, which was
solved in a least-squares sense using singular value decomposition in our case.
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Fig. 2.2 Examples of measured spatial deflection shapes

2.5 Results

The measured displacements were first transformed into frequency domain using Fast Fourier transform (Fig. 2.1). Deflection
magnitude peaks were identified in the resulting amplitude spectra (Fig. 2.2). Multiview triangulation was then performed for
the deflection shapes at selected frequencies in each of the 6 video sequences, assuming linearity of the observed response.
Examples of resulting 3D deflection shapes are visualized in Fig. 2.2. In this experiment, spatial deflection shapes of a
vibrating 3D object at frequencies up to 1500 Hz were successfully reconstructed using a single moving high-speed camera.
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Chapter 3
Operational Modal Analysis of a Thin-Walled Rocket Nozzle
Using Phase-Based Image Processing and Complexity Pursuit

Marc A. Eitner, Benjamin G. Miller, Jayant Sirohi, and Charles E. Tinney

Abstract In this work, the modal parameters of a reduced scale, thin-walled, metallic rocket nozzle are extracted through
Operational Modal Analysis (OMA). The specimen is excited using pressurized gas from a rocket nozzle test stand.
Deformation of the nozzle lip is measured using a non-contact optical technique consisting of two-dimensional marker
tracking in conjunction with phase-based motion amplification. OMA methods that use digital image data suffer from low
signal to noise ratios (SNR), especially in higher modes with small amplitude vibrations. The structural displacements
are often on a subpixel scale and therefore difficult to analyze without additional image processing. Phase-based motion
amplification (PMA) offers a possible solution to this problem by magnifying subpixel motion. This work focuses on the
implementation of the technique in a marker-tracking algorithm, which serves to extract the time-history of high-contrast
markers placed on a large area ratio nozzle with a 5.3 inch exit diameter. Grayscale images taken with a high-speed camera
are first processed with the phase-based algorithm to increase the marker motion in a certain broad frequency band. This
results in a set of modified images, which are then analyzed with a tracking algorithm that identifies centroid positions of
fluorescent markers. The time-history of these markers is then used as input for an OMA algorithm, namely the Complexity
Pursuit algorithm, which leads to estimates of eigenfrequencies, damping ratios and mode shapes. A quantitative comparison
between the modal parameters obtained with and without additional motion magnification is provided. Results of a numerical
simulation are provided that demonstrate the improvement of estimated modal parameters. The modal parameters of the first
six modes of the nozzle are found using this method. The motion was amplified in the range of 0–1400 Hz which includes
the six eigenfrequencies. Without application of the broad band PMA, the highest mode cannot clearly be identified and the
quality of the other modes decreases.

Keywords Operational modal analysis · Phase based motion estimation · Complexity pursuit · Blind source separation ·
Optical vibration measurement

3.1 Introduction

This study was motivated by the problem of unsteady side loads in large area-ratio rocket nozzles. Unsteady flow phenomena
consisting of oscillating compression shocks occurring in the supersonic part of a converging-divergingrocket nozzle can lead
to large pressure fluctuations [1, 2]. The resulting forces acting on the nozzle induce structural deformation and potentially
large bending moments acting in the support structure of the nozzle [3]. If the nozzle is sufficiently compliant, the unsteady
pressure fluctuations induce vibrations of the nozzle wall which are large enough to be measured using optical techniques [4].
In this study, a metallic large area-ratio nozzle with a thin wall (0.03 inches) was excited by these unsteady flow phenomena.
The vibration of the structure was captured using a digital camera in combination with 2-dimensional point tracking.

In theory, knowledge of the displacement history of discrete points of the nozzle in combination with an adequate reduced
order model of the nozzle, should allow reconstruction of the aerodynamic forces. The solution of such an inverse problem
depends on the order and quality of the model. For the construction of such a model, knowledge of the modal parameters
(eigenfrequencies, damping ratios, mode shapes) is crucial.

The quality of the modal parameters extracted from experimental data depends, among other things, on the algorithm
used and on the signal to noise ratio (SNR) in the data. In this study the Complexity Pursuit (CP) algorithm [5] was used to
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estimate modal parameters from output only (camera images) data. The goal of this process is to find as many vibrational
modes as possible. Finding accurate modal parameters becomes more and more difficult as the eigenfrequency increases. This
is generally due to the reduction in SNR, meaning that for higher modes, the low amplitude and high frequency oscillations
of the test specimen eventually fall below the level of noise present in any given measurement. Therefore it is necessary
to utilize signal processing techniques to increase the SNR of the higher modes. A potentially promising algorithm that
preprocesses the set of high-speed images is the Phase-based Motion Amplification algorithm (PMA).

PMA, or motion microscope was developed by Wadhwa et al. [6]. This image processing technique utilizes complex-
steerable pyramids to decompose, filter and reconstruct a set of images in order to amplify motion in a certain frequency
range. Since this algorithm is fairly new, few studies have been published on its application to structural dynamics and modal
parameter identification. Poozesh et al. [7] demonstrated experimentally that by amplifying the motion in the frequency range
of a noisy mode, the SNR of that mode can be significantly improved. Using OMA and comparing modal parameters before
and after motion amplification it was shown that a clear improvement could be observed in terms of the modal assurance
criterion (MAC). In this paper, motion is amplified in a broad frequency range that includes all known eigenfrequencies.
The earlier work of Yang et al. [8] used PMA in combination with Complexity Pursuit to extract and visualize full-field
mode shapes of a scaled multi-story building. PMA was used after the CP algorithm, like a post-processing step. This is
significantly different from the approach in this study, where PMA is used in a preprocessing step.

The current study uses PMA as a preprocessing step to increase the SNR of images from high-speed video from vibration
tests. The images contain several discrete markers that are painted on the surface of a structure. Using PMA, the motion of
the markers is amplified within a certain broad frequency band. The images are then analyzed by a two-dimensional point
tracking (2DPT) algorithm that extracts the marker positions in each image frame, which results in the displacement history
of each marker. These amplified displacements are used to estimate the modal parameters of the structure using the CP
algorithm. By also estimating the modal parameters of the unprocessed images directly, the effect of motion amplification
can be quantified.

This paper is structured in the following way. The first section covers a summary of the algorithms and methods used in
this study. The 2DPT, PMA, and CP algorithms are briefly described. The entire process is summarized and outlined. In the
second part of this paper, two experiments were performed. First, the vibration of an eight degree of freedom system (8DOF)
was simulated in a numerical study. Images showing oscillating markers were artificially created and processed using PMA,
2DPT, and CP to obtain estimates of the system’s modal parameters. Since the true modal parameters were known, a detailed
error analysis was performed. Then, in a laboratory experiment, vibration tests were performed on a large area-ratio nozzle
with a 5 inch exit diameter. Actual images from high-speed video taken of the vibrating nozzle were used to obtain the
nozzle’s modal parameters. As in the numerical experiment, the modal parameters are estimated from the original images as
well as from the motion amplified images. The last chapter contains the discussion and evaluation of the test results.

3.2 Methods

The broad-band PMA methodology for modal parameter estimation described in this paper is based on a two-dimensional
point tracking method, the Phase-based Motion Amplification algorithm, and the Complexity Pursuit algorithm. These three
methods are outlined in this section.

3.2.1 2-Dimensional Point Tracking (2DPT)

When performing vibration measurements, the goal is to obtain the displacement history of discrete points on the structure.
A common way of doing this is to use accelerometers. Attaching these to the surface of a structure allows the measurement
of acceleration at these points, which can then be numerically integrated to obtain the displacement history. Numerical errors
such as drift and errors resulting from the added mass of the sensor are disadvantages of this method. By using cameras to
detect the vibration of the structure, non-contact measurements can be performed. The 2DPT method consist of painting a
number of discrete markers on the surface of a structure and tracking their locations using a high-speed camera and an image
processing algorithm. The markers are painted on the structure using fluorescent paint. High contrast between the markers
and the surface of the structure is obtained. A marker tracking algorithm then detects the position of each marker in each
camera image. The algorithm used in this paper first converts each greyscale camera image into a binary image (pixels either
pure black or pure white) based on a user-defined pixel intensity threshold. The algorithm then looks for accumulations of
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Fig. 3.1 Outline of point tracking method. Grayscale image taken with high-speed camera (left); identified markers (center); displacement history
of centroid of single marker (right)

high intensity pixels to find all pixels that make up a marker. In a final step, the centroid of each marker is calculated. This
is done by weighing the location of each pixel that is part of the marker with the pixel intensity and then dividing by the
number of pixels in the marker. This process is performed independently for each image, leading to the displacement history
of all markers throughout the entire measurement. An example of this process is shown in Fig. 3.1, where the position of
markers on the lip of a nozzle are extracted from grayscale test images.

3.2.2 Phase-Based Motion Amplification (PMA)

The original PMA algorithm by Wadhwa et al. [6] reads an input video, amplifies motions in a certain frequency band, and
outputs a reconstructed video. Motions are processed by first breaking the video into a set of images, and then breaking each
image into constitutive layers through spatial filtering.

Spatial filtering is performed through the Complex Steerable Pyramid Decomposition (CSPD) process developed by
Simoncelli et al. [9, 10]. In CSPD, a 2D transfer function library is constructed using a set of Gabor filters. These are linear
filters that have a direction, position, and frequency. Convolving an image by this library decomposes the original image
into several layers or levels containing filtered images differing in spatial resolution. Summing these back together results
in the reconstructed image, whereby lower-ordered levels of the decomposition (containing low-resolution decompositions)
contribute more to the overall behavior – a structure similar to a Taylor expansion. The total number of levels is dictated by
the image size and number of filter orientations.

Localized phase changes in CSPD are proportionally related to displacements through Fourier transformation [6]. The
local motion in an image can therefore be computed by subtracting the phase angles of each frame from the phase angles
of the first frame. A band-pass filter is then applied to these motions and they are multiplied by an amplification factor
(α + 1). When the pyramid is ‘collapsed’, meaning the decomposition into different layers is reversed, a reconstructed video
is obtained that contains the amplified motion.

3.2.3 Modal Parameter Estimation Using Complexity Pursuit

The Blind Source Separation algorithm called Complexity Pursuit (CP) is used to extract modal parameters from the
displacement history of the markers, identified by the previously described 2DPT algorithm. CP was proposed by Stone
[5] and uses a temporal predictability function that acts as a measure of complexity of an observed signal. Stone’s theorem
states that source signals making up any measured signal have higher predictability than the measured signal itself. The
algorithm assumes that measured observations are made up of a linear mixture of source signals according to:

−→
x = [A] −→

s (3.1)
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Fig. 3.2 Outline of the modal parameter identification process

Here [A] is the N × N mixing matrix, −→
s is the N × 1 vector of source signals with maximum predictability and −→

x is the
N × 1 vector of measurements. The CP algorithm estimates the mixing matrix in such a way that the resulting source signals
exhibit maximum temporal predictability. When applied to structural dynamics the matrix [A] is the modal matrix containing
the mode shapes, −→

x is the vector of instantaneous displacement measurements at N locations and −→
s is the vector of modal

coordinates. If the structure was excited with an impulsive force, the extracted modal coordinates will be impulse response
functions of damped single degree of freedom oscillators. The modal coordinates are therefore fit to an impulse response
function of the form

si = Ce−ζ2πfi tsin

(
2πfi

√
1 − ζ 2

i t − φ

)
, (3.2)

where fi and ζ i are the eigenfrequency and damping ratio of the ith mode respectively and C and φ are constants. The curve
fit results in values for the eigenfrequency and damping ratio associated with that mode. If the system was excited with
random force the response of the modal coordinates will also be random. Computing their autocorrelation function recovers
the impulse response function [11] and the modal parameters can be estimated once again via curve fitting. Using a goodness
of fit value (e.g. R2) gives an indication of the quality of the separated modal coordinates.

A summary of the entire process is shown in Fig. 3.2.

3.3 Experiments

Two sets of experiments were performed to test and quantify the effect of PMA on modal parameter estimation. First the
structural vibration of an 8DOF system was numerically simulated. Images of markers placed on the simulated system were
artificially generated, as if they had been taken during a real vibration test. These images were used in conjunction with
PMA, 2DPT and CP to obtain estimates of the system’s modal parameters. Since the true modal parameters of the simulated
system were known, errors in modal parameters could be computed.

Next, two vibration tests of a small, thin-walled, large area-ratio nozzle were performed. The nozzle was attached to a
test rig and excited by pressurized air from a plenum. The induced vibration was captured using a high-speed camera. The
test was performed twice, once with the camera placed close to the nozzle and once with the camera placed further away to
decrease the SNR. The resulting images were then used to estimate the modal parameters of the nozzle, using the previously
discussed process of PMA, 2DPT and CP.

3.3.1 Numerical Simulation

A simulation was performed to compare the modal parameters estimated from motion amplified images to true values, thus
allowing detailed error analysis. The simulated structure consisted of four point masses arranged in a square connected to
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Table 3.1 Modal parameters of simulated system

Mode Eigenfrequency f [Hz] Damping ratio ζ Mode shape 	

1 5 0.005 (1 1 −1 1 −1 −1 1 −1)T

2 7 0.005 (1 1 1 −1 −1 −1 −1 1)T

3 10 0.005 (1 1 1 1 1 1 1 1)T

4 15 0.005 (−1 1 −1 1 −1 1 −1 1)T
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Fig. 3.3 Images with oscillating markers; (left) Gaussian distribution; (center) top view; (right) with added noise

linear springs. Since each mass was allowed to move in the x − y plane, the system had eight degrees of freedom. The modal
parameters of the system’s first four modes are listed in Table 3.1.

The structural response of the system to an initial excitation was generated by superimposing the first four modal
coordinates of the system according to the linear relation

−→
x = [	] −→

s (3.3)

Here [	] is the 8 × 4 modal matrix, −→x is the 8 × N displacement vector and −→
s is the 4 × N vector of modal coordinates

with

si = Aie
−ζ2πfi tsin

(
2πfi

√
1 − ζ 2

i t

)
; i = 1, . . . , 4 (3.4)

The amplitudes of the motion in each mode was adjusted so that the low frequency modes exhibited larger movement.
The amplitudes were set to A = (0.2, 0.15, 0.1, 0.05) pixels respectively. In real vibration tests, high contrast markers are
painted on the structure and their oscillation is captured with a high-speed camera. In order to simulate this, a set of images
was artificially created showing the planar motion of the structure. The painted markers of a real test are simulated using two-
dimensional Gaussian distributions centered at the position of the point masses. The Gaussian distribution for each marker
had a standard deviation of two pixels and a maximum pixel intensity of one. The images had a size of 100 × 100 pixels.
The simulated images are shown in Fig. 3.3. Random noise of varying intensity was added to the generated images to closer
resemble real images from experimental measurements.

A series of N = 5000 images was created with a sampling frequency of fs = 100 Hz. The previously described marker
tracking algorithm was then used to extract the position of each marker from the generated images. Limitations of the
algorithm resulted in low errors, even in the case of no noise. An average centroid position error lower than 0.001 pixels
and a maximum error of less than 0.08 pixels remained in the centroid motion extracted from noise-free images. The marker
positions were extracted for each image separately, resulting in the displacement history of all markers. These displacements
were then used as input for the CP algorithm to yield estimates of the modal parameters. The motion of the markers was
then amplified and the process was repeated, leading to a second set of modal parameters. Comparison of these two sets
with the true known values allowed quantification of the effect of PMA on the modal parameter estimation. The process was
performed for different amplification factors as well as for different amplified frequency bands. The results are discussed in
the last section of this paper.
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Fig. 3.4 Illustration of the setup at the Applied Research Laboratories at Austin used to measure aerodynamically induced nozzle vibration.
Diameter of the nozzle exit is 5.3 inches

3.3.2 Nozzle Experiment

An experiment was performed to test how well the PMA preprocessing method works when applied to real high-speed video
images taken of an oscillating structure. A reduced scale, metallic, large area-ratio nozzle was used as the test specimen. The
nozzle diameter was 2 inches at the throat and 5.3 inches at the exit. Its wall thickness was constant at 0.03 inches. The nozzle
was attached to a test rig, which was connected to a pressure controlled plenum containing unheated air. A description of this
facility is provided in References [2, 12]. By increasing the pressure in the plenum the flow conditions in the nozzle could
be modified. While the exact flow phenomena in the nozzle were unknown, the pressure in the plenum (before entering the
nozzle) was large enough to ensure that a supersonic flow had formed just downstream of the nozzle throat. Given the large
area-ratio of the nozzle, an unsteady separation shock formed in the diverging part of the nozzle. This unsteady flow resulted
in pressure oscillations on the inside of the nozzle and acted as a random force on the structure. The induced vibration of
the nozzle was measured using 2DPT. For this purpose, a number of markers were painted on the lip of the nozzle with
fluorescent paint. A high speed camera1 took greyscale images of the nozzle at a frame rate of 10 kHz. Each image consisted
of 1098 × 1512 pixels, with a spatial resolution of 0.2 mm/pixel. The camera was placed at a slight angle to the centerline
of the nozzle, to avoid potential damage to the camera from the nozzle jet. Fig. 3.4 shows the nozzle attached to the test rig.

The images taken with the high-speed camera exhibited sufficient contrast between the markers and the nozzle so that
each marker could be clearly identified. Using the same 2DPT technique as in the numerical study, the centroid motion of
each marker on the nozzle lip was identified; see Fig. 3.1. The camera was then placed further away from the nozzle and the
test was repeated, yielding a second set of measurements. This was done to lower the pixel resolution in the acquired images
(to 0.4 mm/pixel), leading to lower SNR of the marker displacements. The displacement history of all markers was used as
input for the Complexity Pursuit algorithm to determine the modal parameters of the nozzle.

3.4 Results and Discussion

3.4.1 Results of the Numerical Study

For the evaluation of the results a set of scalar errors is first defined in Eq. 3.5. Eigenfrequency error ef and damping error
eζ are averages of the relative errors in extracted eigenfrequency and damping ratio respectively. The motion error em is
simply the Euclidian norm of the absolute error in centroid motion. The mode shape error e	 computes the Frobenius norm

1i-SPEED 726 monochromatic camera manufactured by ix Cameras™.
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of the error in the modal assurance criterion (MAC). The reference values ζ i and fi for the damping and eigenfrequency
errors are listed in Table 3.1. The reference value MAC(ΦCP) is a 4 × 4 unit matrix and the reference motion −→

x i is defined
by Eq. 3.1.

eζ =
∑4

i=1

∣∣ζi − ζi,CP

∣∣
ζi

ef =
∑4

i=1

∣∣fi − fi,CP

∣∣
fi

(3.5)

em = ∣∣ ∣∣−→x PT (ti) − −→x (ti)
∣∣ ∣∣

e	 =| |MAC (	) − MAC (	CP )| |

The magnification factor α defines the amount of motion magnification in the reconstructed video. The factor cannot be
arbitrarily large because the cluster of high intensity pixels that make up the markers becomes distorted at higher values of α.
An optimal value is therefore sought. First the level of image noise was kept constant (random white noise with standard
deviation of 0.17) as well as the amplified frequency band, which was set at 3–20 Hz to include all eigenfrequencies. The
motion was amplified with amplification factors of α = 0, 1, 2, 3, 4, 5, 6, 7 and the 2DPT algorithm extracted the motion
of the centroids. The modal parameters estimated from the centroid motion were compared to the true values (listed in
Table 3.1) and errors were computed. All runs were repeated 20 times and the errors were averaged. The results are shown
in Table 3.2.

The main result is that the errors of the modal parameters (column 2, 3 and 4 in Table 3.2) are all lower than those
computed from the unprocessed images (highlighted row in Table 3.2). This is true for all investigated values of the
magnification factor. However, it does not seem to matter what the value of the magnification factor is. No clear relation
between α and the modal parameter errors could be observed. Interestingly, even when using PMA without any actual
amplification (α = 0), the modal parameter estimation improves. The pure application of the spatial decomposition and
reconstruction of the images already suffices to reduce the modal parameter errors significantly. This is also true for the error
in the extracted marker motion em. Further increase of α decreases the motion error even more, without affecting the modal
parameter estimates significantly.

Next, the effect of the choice of amplified frequency spectrum was investigated. Modal parameters were estimated from
images in which motion was amplified in different frequency bands. The noise level was kept constant and the frequency
spectrum to be amplified was chosen arbitrarily. The images were first processed using PMA with an amplification factor
of α = 1, then the centroid motion was extracted and finally the modal parameters were estimated. All runs were performed
20 times and the resulting errors were averaged; Table 3.3 shows the results. Amplifying the bandwidth 3–20 Hz lead to the

Table 3.2 Effect of magnification factor on modal parameters

Magnification factor α Mode shape error e	 Frequency error ef [*100] Damping error eξ [*100] Motion error em

Unprocessed 0.596 0.182 27.058 142.766
0 0.354 0.087 16.877 118.775
1 0.418 0.084 12.873 81.911
3 0.393 0.127 15.650 71.130
5 0.347 0.092 18.387 70.662
7 0.433 0.095 20.691 69.952

Table 3.3 Effect of amplified bandwidth on modal parameter estimation

Amplified frequency bandwidth [Hz] Mode shape error e	 Frequency error ef [*100] Damping error eξ [*100] Motion error em

1–49 0.443 0.084 17.485 87.683
1–30 0.4912 0.091 19.256 84.343
3–20 0.418 0.084 12.873 81.911
8–20 0.497 0.088 18.403 65.364
4–16 0.444 0.098 20.657 81.109
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Fig. 3.5 Frequency spectrum of single marker from numerical study. All four peaks corresponding to eigenfrequencies become clearly visible if
PMA is used

Fig. 3.6 Power spectrum of single marker; (left) first test with close-up camera position; (right) second test with distant camera position. In the
first test the frequency band 0–1400 Hz was amplified in the second the amplified frequency band was 250–1400 Hz

lowest errors for the modal parameters (note that the actual eigenfrequencies were in the range of 5–15 Hz). This includes
the eigenfrequencies of interest plus an additional buffer of 30% relative to the highest and lowest eigenfrequency.

A plot of the frequency spectrum for a single marker before and after motion amplification is shown in Fig. 3.5.
The four distinct peaks visible in the processed data correspond to the eigenfrequencies. The appearance of the four

peaks in the plot indicates an improvement of the SNR in the amplified frequency band, resulting in less erroneous modal
parameters

3.4.2 Results of the Nozzle Experiment

The high-speed video images from both experiments (close camera position in test #1 and distant camera position in test #2)
were analyzed. For each set of images the modal parameters were computed before and after applying motion amplification.
Fig. 3.6 shows the power spectra of a single marker before and after PMA for both tests. Differences in camera orientation,
pixel resolution as well as in the aerodynamic excitation are reasons for the notable differences in the original power spectra,
shown in blue. Low frequency motion of the markers (<20 Hz) is most likely associated with oscillations of the camera
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Table 3.4 Modal parameters extracted with Complexity Pursuit algorithm from nozzle test #1 with close-up camera placement

Frequency [Hz] Damping ratio [×100] Goodness of fit R2 [×100]
Mode Original Amplified Original Amplified Original Amplified

1 294.3 294.3 0.43 0.40 99.6 99.7
2 311.7 310.9 0.80 0.34 83.6 99.0
3 316.4 315.8 0.45 0.20 84.9 98.9
4 553.5 553.6 0.26 0.15 91.2 98.6
5 901.2 901.4 0.18 0.19 93.5 94.6
6 1314 1314 0.17 0.13 24.9 75.9

Modal parameters extracted before and after motion magnification (α = 3, band-pass filter 0–1400 Hz)

induced by the nozzle exhaust and therefore left out of the following analysis. The orange curves show the power spectra
extracted from the motion amplified images with α = 3. In both tests motion amplification seems to induce a significant
change in the frequency band around the fifth mode (around 900 Hz). The peak, indicating an eigenfrequency is much more
distinct in the processed (motion amplified) data. There seems to be little change in the peaks of the lower modes.

The modal parameters extracted from the original and motion amplified images taken during the first test, where the
camera was close to the nozzle, are shown in Table 3.4. The extracted eigenfrequencies vary less than 0.3% before and after
motion amplification. The differences in the extracted damping ratios is larger, with a maximum difference of 58%. In the
final step of the modal parameter identification process the separated source signals (corresponding to the modal coordinates)
were fit to an impulse response function. For ideal operating conditions (white noise excitation, very long measurement time)
this curve fit should be exact for correctly separated source signals. The goodness of fit value R2 is used as an indicator of
how well the extracted source signals (modal coordinates) fit the theoretical impulse response function. For a perfect fit the
value becomes R2 = 1. Comparison of the R2 values before and after motion amplification shows a clear improvement of the
curve fits when using the motion magnified images. The average value for the original data set is R2

average = 0.80 while the

average value for the motion magnified images isR2
average = 0.94. This clearly indicates that the source separation procedure

of the CP algorithm is improved when using the motion magnified image set. Test with different amplified frequency bands
revealed no additional modes beyond the sixth mode.

The estimated modal parameters from the second test, where the camera was placed further away from the nozzle exhibit
similar trends. As in the previous test, application of the motion amplification process leads to an overall improvement of
the R2 values. The average increases from R2

average = 0.85 for the original data to R2
average = 0.96 for the motion amplified

data. Relative changes in estimated eigenfrequencies were below 0.5% and the damping ratios changed by less than 55%.
A Finite Element (FE) model of the nozzle was constructed in ANSYS. It was used to calculate eigenfrequencies and

mode shapes which were used to evaluate the quality of the experimental results. Using the original and motion amplified
images from the experiments, mode shapes were estimated as part of the modal parameter estimation process (see Fig. 3.2).
The three sets of mode shapes (from original images, motion amplified images, FE model) were compared visually. It was
found that for the first three modes, all sets of mode shapes matched each other and no differences were noticeable. For the
fourth and fifth mode, considerable differences appeared. In Fig. 3.7 the mode shapes for those two modes are displayed, as
computed from the images (original and motion amplified) of the second nozzle test and the FE model. For the fourth mode,
the mode shapes of the amplified images matches the FE results better than the mode shape estimated from the original
images. This improvement coincides with improvement in the curve fitting process of the modal coordinates, where the
R2 value was increased from 90.3 to 97.8. For the fifth mode the improvement in the mode shape is less prominent, yet
noticeable. The quality of the mode shapes of the fifth mode seems lower than that of the fourth mode, which is due to a
decrease in SNR with increasing frequency.

3.5 Conclusion

Broad-band Phase-based Motion Amplification was used to increase the SNR of images capturing oscillating structures.
Two sets of experiments were performed including simulation and laboratory test. In a numerical study, noisy images were
simulated showing four oscillating markers. Using 2DPT, the displacement history of the markers could be extracted. Modal
parameters were estimated with the Complexity Pursuit algorithm using the displacement data only. Then the images were
processed using PMA and the displacement history was computed again. Analysis of the power spectra clearly showed
an improvement in SNR in the frequencies near the natural modes. This resulted in the peaks becoming more prominent
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Original Amplified (a = 3)

Mode #4
f = 552Hz

Mode #5
f = 900Hz

Finite Element Analysis

Fig. 3.7 Comparison of mode shapes estimated from original images (left), motion amplified images (center) and FE model (right). Mode shapes
are shown from the top (downstream) looking into the nozzle

in the power spectrum plot. The value of magnification used in the PMA algorithm seems to have little influence on the
extracted modal parameters. Comparison of bandwidths for motion amplification showed that optimal modal parameters
were estimated when the frequency band included only the eigenfrequencies under investigation and no additional lower or
upper ‘buffer’. In two sets of tests performed on a reduced scale large area-ratio rocket nozzle, the method was applied to
a real structure. Modal parameters were computed from high-speed video images with and without motion amplification.
A goodness of fit value from the modal parameter estimation process was used as an indication of the quality of the modal
parameters. A clear improvement was demonstrated when using the high-speed images processed with PMA. Small changes
in the eigenfrequencies were noticeable but were limited to below 0.5%. Relative changes in the estimated damping ratios
were larger, limited to 58%. As in the numerical simulation, the peaks in the frequency spectrum became more prominent
when using PMA, especially those corresponding to higher modes. A comparison of the mode shapes to those obtained from
an FE simulation showed that the motion amplification process increases the quality of the estimated mode shapes for higher
modes.

The method of using broad-band PMA as a preprocessing step for noisy images of vibrating structures has been validated
in this paper. By using a broad frequency band containing all eigenfrequencies of interest in the PMA algorithm, all modal
parameters can be extracted from the same motion amplified set of images.

Acknowledgements The authors would like to thank Mr. John Valdez of the Applied Research Laboratories of The University of Texas at Austin
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Chapter 4
Full-Field Strain Shape Estimation from 3D SLDV

Bryan Witt, Dan Rohe, and Tyler Schoenherr

Abstract The ability to measure full-field strains is desirable for analytical model validation or characterization of test
articles for which there is no model. Of further interest is the ability to determine if a given environmental test’s boundary
conditions are suitable to replicate the strain fields the test article undergoes in service. In this work, full-field strain shapes are
estimated using a 3D scanning laser Doppler vibrometer and several post-processing methods. The processing methods are
categorized in two groups: direct or transformation. Direct methods compute strain fields with only spatial filtering applied to
the measurements. Transformation methods utilize SEREP shape expansion/smoothing of the measurements in conjunction
with a finite element model. Both methods are used with mode shapes as well as operational deflection shapes. A comparison
of each method is presented. It was found that performing a SEREP expansion of the mode shapes and post-processing to
estimate strain fields was very effective, while directly measuring strains from ODS or modes was highly subject to noise
and filtering effects.

Keywords Laser · Vibrometer · Strain · Full-field · Expansion

4.1 Introduction

The capability to experimentally derive full-field strain response is of interest for several application areas such as model
validation, fatigue life estimation, test object characterization, and determining the effectiveness of a test fixture to reproduce
the damage potential seen in actual service. Full-field measurements are only now practically achievable thanks to advances
in optical methods such as digital image correlation (DIC) and 3D scanning laser Doppler vibrometry (SLDV). DIC is a well-
established method for full-field strain measurements but is not always the method of choice for a given test object. Cazzolato
et al. [1] demonstrated in 2008 that the state of 3D SLDV was such that strain measurements were feasible, but very sensitive
to noise and issues such as quantization errors and laser head/specimen alignment. Weisbecker et al. [2] further studied the
sensitivities of using 3D LDV for strain measurements, including issues of laser head alignment, measurement mesh size, and
the selection of spatial filter parameters (Savitzky-Golay differentiation filter). Reyes and Avitabile [3] among others have
since applied 3D SLDV strain measurements on more complicated objects such as wind turbine blades, also demonstrating
that results are highly subject to noise and related measurement issues.

Where previous works have focused on direct strain comparisons between 3D SLDV and finite element (FE) results or
strain gage measurements, this work looks to develop a mode-based model of full-field strain shapes. This approach was
taken for several reasons, the most poignant being the ability to determine which modes are the most damaging to an object
and at which physical location. With this information and an applied environment, the total strain response can be determined
as a superposition of the modal strains. Further, this allows for the direct comparison, on a mode-by-mode basis, of an object’s
strain field in actual service versus in a test fixture. This provides a means to determine if a test fixture provides the correct
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boundary conditions/structural dynamic characteristics for an appropriate environmental test; often a test fixture does not
provide the correct dynamics to generate the same damage potentials encountered in actual service.

Multiple methods for establishing full-field modal strains using 3D SLDV are evaluated for a moderately complicated test
structure. The methods fall into two categories: direct or transformation. The direct methods employ spatial filtering prior to
taking derivatives of measured shape displacements to arrive at strain shapes. The transformation methods use mode shapes or
operational deflection shapes (ODS) as basis functions to expand and/or smooth the measured data prior to taking derivatives
of measured shape data to arrive at strain shapes. The use of some type of basis functions to reduce noise in measured data
was proposed in [1]. Expansion and smoothing are both done using the System Equivalent Reduction/Expansion Process
(SEREP) [4]. Expansion of limited measured points to an augmented set of points requires the availability of a finite element
model (FEM), whereas smoothing alone can be achieved with only measured shapes.

4.2 Test Structure and Setup

The test article is a jointed aluminum assembly, taken from the “Box Assembly with Removable Component,” or BARC
test structure, that is currently used in many boundary condition assessment studies [5]. In this work, the “Removable
Component,” comprising two C-channel legs and a flat top member (see Fig. 4.1b), is taken as the object of interest. To
simulate a typical environmental test setup, the “bench” is bolted to a fixture plate which is in turn affixed to a 7′′ vibration
cube that would mount to a shaker table. The object was to identify full-field modal strain shapes of the bench when rigidly
affixed to its test fixturing.

Measurements were taken with a Polytec PSV-500 Xtra (Infrared laser heads) 3D SLDV system. As shown in Fig. 4.2, the
LDV heads are supported by a frame made from optical railing and the test object is supported on soft foam to approximate

Fig. 4.1 Test article (a) and test configuration (b)

Fig. 4.2 Physical setup for modal testing
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Fig. 4.3 Scan points (blue markers)

a free-free boundary condition for modal parameter estimations. Two electromagnetic shakers were placed at oblique angles
on perpendicular sides of the vibration cube to provide excitation in multiple directions. Two front surface mirrors were
placed at angles on either side of the test object to allow LDV measurements on three sides (front, left, right) without having
to move the test article or laser heads between scans. The scan points are shown as blue markers in Fig. 4.3, which is a view
from the LDV system’s camera. Retroreflective tape was applied at all scan point locations to increase signal return to the
LDV heads. A moderately dense 13 × 21 measurement grid was placed on the C-channel leg faces, while a single row of
points was measured along the top beam and C-channel edges. Placement of the shakers and mirrors to have a view of three
faces simultaneously drove the camera field of view to be wide relative to the areas of interest, meaning that the pixels per
inch in the camera view were not optimized in any sense.

Two types of excitation methods were used: random and sine-dwell. Random excitation tests were used to obtain the
displacement mode shapes and natural frequencies, (E, ω). The random signal had a bandwidth of 10–6400 Hz and Hann
windowing was used with 50 averages. Sine-dwell tests were used to obtain ODS at the ω frequencies identified from the
random data, (O, f). The sine-dwells used 100 averages and produced ODS that were overall less noisy than those obtained
from the random testing. For both tests, the vibrometer was set for a measurement bandwidth of 1–6400 Hz, a sample
frequency of 16,000 and a 1 Hz resolution. Signal Enhancement set to Standard and Speckle Tracking enabled.

4.3 Overview of Methods and Tools

An overview of the methods used in this work to derive full-field strain shapes is shown in Fig. 4.4. This flowchart will be
discussed at length in the following sections. Within these methods there are three general tools (blue boxes in Fig. 4.4) that
will be discussed in this section: Gaussian spatial filters, a strain post-processor, and SEREP.

4.3.1 Gaussian Filter

The raw measured displacements from LDV systems can be noisy relative to accelerometer data, which is exacerbated when
differentiating to obtain strain. Previous works, including [1–4], have emphasized the importance of applying spatial filtering
to address the noise in measured displacements. In this work, the displacements are shape functions, either ODS or modal
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Fig. 4.4 Overview of full-field strain derivation methods studied

Fig. 4.5 Gaussian spatial filtering: (a) weighting coefficients, (b) raw shape, (c) filtered shape

displacement shapes. In the direct methods used in this work, a 2D Gaussian spatial filter is applied as a low-pass smoothing
function prior to calculating strains. The ith filter weight for the jth point is given by:

wij = 1

σ
√

2π

(∥∥ri − rj

∥∥
σ

)2

(4.1)

where the σ parameter is the size (e.g. 2.5 mm) and r are the coordinates of the measured points. The filtered displacement
for the jth point can then be calculated as:

dj =
∑

i wij di∑
i wij

(4.2)

An example 3D representation of filter weights on one of the bench’s c-channel faces is shown in Fig. 4.5a, along with a
raw ODS (Fig. 4.5b) and the same ODS after the spatial filter was applied (Fig. 4.5c).
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Fig. 4.6 Element nodes and coordinate system

4.3.2 Strain Post-processor

In this work, the displacements are arbitrary shapes (mode shapes or ODS) rather than directly measured displacements. This
posed an issue for using the Polytec strain post-processor, which operates on Band Data within their proprietary scan file
format. Rather than creating a tool to write arbitrary shapes to a Band Data scan file, a standalone 2D strain post-processing
script was written in MATLAB (note, 3D implementations will work equally well). Measured data from the SLDV system
were exported in Universal File Format, which included the test geometry. The geometry node coordinates were in 3D
(x,y,z) but were reduced to 2D surface coordinates (x,y) for each surface of interest. Node coordinates (x,y) and connectivity
information were extracted from these files to create elements. Elemental deformations were either the experimental mode
shapes (E) estimated from the SLDV data using Synthesize Modes and Correlate (SMAC) [6] or ODS (Ô) that were extracted
directly from Polytec “Fastscan” data. With geometry and displacement data, strains were then calculated using a bilinear
quadrilateral element formulation as detailed in [7] and summarized below. Strains were computed at the center of the
element, (ξ , η) = (0, 0), and interpolated to a common set of points with the FEM so the measured results could be directly
compared to analytical results. The elemental coordinate system is shown in Fig. 4.6 and the element shape functions are
given in Eq. 4.3:

N1 = 1
4 (1 − ξ) (1 − η)

N2 = 1
4 (1 + ξ) (1 − η)

N3 = 1
4 (1 + ξ) (1 + η)

N4 = 1
4 (1 − ξ) (1 + η)

(4.3)

The Jacobian matrix of (x,y) with respect to (ξ , η), denoted as J, is used to establish the relationship between the derivatives
of physical and elemental displacement:
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where the differential entries of J are obtained through Eq. (4.5) below.
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Finally, strains are calculated using the strain-displacement matrix, B, composed of the differentials calculated above and
measured displacements, denoted here as (u,v) representing either ODS or mode shape coefficients.
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4.3.3 SEREP

Model reduction and expansion techniques are based on developing a transformation matrix, T, that maps between a reduced
space model (a-space) and a full space (n-space) model. Methods such as Guyan and Dynamic Condensation, for example,
use system mass and stiffness matrices to form the transformation matrix. SEREP however uses the full space mode shapes
as the basis for the transformation matrix which allows for exact preservation of the mode shapes and frequencies, as well
as the ability to arbitrarily select which modes and degrees of freedom (DOF) to include in the reduction/expansion [4]. The
analytical mode shapes of a FEM in full n-space are denoted by Un, whereas the same shapes at a reduced set of a DOF are
denoted by Ua. The SEREP transformation between full and reduced space mode shapes is then:

T = UnU
+
a (4.7)

where + indicates a generalized inverse. Experimental mode shapes, E, measured at a DOF can be expanded to the full FEM
n-space DOF by:

En = T Ea = UnU
+
a Ea (4.8)

This method is of course not without limitations and caveats in usage. While the FEM used does not need to be exactly
correlated to the test data, it is imperative that the FEM shapes span the space of the experimental shapes for an accurate
expansion. For this reason, analytical rigid body mode shapes must be retained. Also, to prevent En from being rank deficient,
the number of DOF kept needs to be greater than the number of preserved modes (a > m). It is also intuitive that including
analytical mode shapes dominated by components which were not measured or captured experimentally will cause issues in
the expansion process.

An example of an experimentally measured mode shape is shown in Fig. 4.7a. Using the FEM to create T, the same shape
expanded to full-space is shown in (Fig. 4.7b). This method was applied to all ten experimentally identified mode shapes, as
shown in Fig. 4.8.

The FEM used in this work was generally very well correlated to the test data, as shown by the modal assurance criterion
(MAC) in Fig. 4.9. One of the experimental shapes did not have a match in the FEM (mode 8, large contribution from
vibration cube), and experimental mode 9 was highly correlated to FEM shapes 14 and 15. Otherwise, the MAC values
are quite good. Even so, the analytical FEM shapes still did not quite span the space of some of the experimental shapes,
resulting in slightly imperfect expansions; two examples are shown in Fig. 4.10, where the experimental (mesh grid) and
expanded shapes (solid) do not perfectly align.

Modal displacement vectors are used as the basis for the transformation in Eq. (4.8). However, the data can be expanded
using other modal quantities as well. For example, if modal strain shapes from the FEM (εn) are available, they can be used
in the expansion to arrive at full n-space strain shapes directly as:

τ n = εnU
+
a Ea (4.9)

Fig. 4.7 Example of an original measured shape (a) expanded to full-space using SEREP (b)
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Fig. 4.8 Expansion of all experimentally derived mode shapes

Fig. 4.9 MAC between FEM and experimental mode shapes

SEREP can also be used as a least squares error minimization using shape vectors as the basis, removing variance from
measured data. We can exploit this as a method to smooth noisy measured mode shapes (Ea) using ODS (which potentially
have a higher signal-to-noise ratio) in addition to using Gaussian spatial filters:

E′
a = ÔaÔa

+
Ea (4.10)

Similar to Eq. (4.9), we can alternatively choose to use ODS derived strain shapes (τ̂ a , discussed in the next section,
can be extracted from Ôa using Polytec’s strain post-processor) as part of the basis for the smoothing, and directly arrive at
smoothed modal strain shapes in the measured a-space:

τ a = τ̂ aÔa
+
Ea (4.11)
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Fig. 4.10 Examples of imperfect shape expansions

4.4 LDV Direct Methods

As mentioned in the previous section, several methods for generating full-field modal strain shapes were utilized. All methods
can be grouped into two categories: direct or transformation methods. This section focuses on the direct methods, which can
be generated either on an ODS or modal quantity basis. Figure 4.11 shows the two direct methods; the “Direct ODS Method”
is the workflow on the left and the “Direct Modal Method” is the workflow on the right.

In some cases, it is expected that ODS extracted from sine dwell data near natural resonance frequencies (Ôa,f ) at
a-space measurement locations would be less noisy than traditionally fit mode shapes from LDV data (Ea). For example, if
a sine-dwell test had a better signal-to-noise ratio than a random vibration test from which modes would be extracted, the
Direct ODS Method could be used. The measured Ôa should then be smoothed with a Gaussian filter. Note that a Gaussian
filter of size σ less than approximately one third of the scan point spacing effectively provides no smoothing and leaves shapes
in an unfiltered or raw state. Once any desired filtering is applied, the shapes can be run through the strain post-processor
to arrive at an ODS-quantity estimation of the strain shapes in a-space, τ̂ a . For structures where the ODS well approximate
the mode shapes (i.e. resonances well separated), τ̂a will, to the same degree, approximate the τ a modal strain shapes we
are seeking, although they will be scaled differently. This method most closely aligns with the Polytec Strain Post-Processor
that is integrated into the LDV software, which operates on Band Data within a scan file.

For applications where a modal test can be conducted and relatively clean mode shapes and natural frequencies (Ea, ω)
extracted, the Direct Modal Method can be utilized. The same process of smoothing shapes with a Gaussian spatial filter and
post-processing the results for strain are used. In this case, the resulting τa strain shapes are actual modal quantities.

Both Direct methods have the benefits of not requiring a FEM of the test object nor needing an expansion process for
sufficiently dense measurement grids. However, both are subject to any noise in the measurements and are also highly
dependent on the spatial filter parameters used. To demonstrate these effects, Gaussian filters with σ = 0.5–3.5 mm
were evaluated. The scan grid on the c-channel faces of interest had a horizontal and vertical spacing of approximately
1.6 × 2.6 mm, respectively. This means that filter sizes of approximately 0.5 mm or less are providing almost no smoothing.
Surface strains (τ xx, τ yy, τ xy) in a-space were calculated for the two c-channel faces (X-surface and Z-surface, see Fig. 4.12),
although only τ yy results on the X-face are shown here for brevity. Figures 4.13 and 4.14 show the τ yy results of the Direct
ODS Method and Direct Modal Methods, respectively, for multiple filter sizes. Black indicates noise values that are out of
range.

Both figures show that filter sizes greater than the nominal spacing of measurement points is necessary to remove spurious
noise in the shapes, which is approximately 2.0 mm here. However, it is noted that the Direct ODS Method results for the
1.5 mm filter are noticeably noisier than their Modal counterparts, indicating the ODS for this test structure were not cleaner
than the mode shapes, as had been postulated. The test article exhibited nonlinear behavior which is believed to be the reason
for this observation. Filter effects near the edges are clearly observed in several shapes, for example ODS 5 and Mode 4;
as filter weight increases, the maximum strains at the edges are artificially reduced due to the distribution of the weighting
coefficients of the filter. There is a tradeoff between noise reduction and maximum strain accuracy, particularly near edges.
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Fig. 4.11 Direct methods for strain shape estimation

Fig. 4.12 Area patches where surface strains were calculated

Figures 4.13 and 4.14 also illustrate the differences between ODS and modal strain shapes, even for a structure whose modes
are well spaced and the ODS are very similar to the mode shapes, as illustrated by the MAC between the two in Fig. 4.15.

4.5 LDV Transformation Methods

The second category of methods utilize transformations to derive full-field modal strain shapes, as shown in Fig. 4.16.
The workflow on the right side of the figure will be referred to as the “Transformation Modal Method”. In this method, the

displacement mode shapes extracted from a measurement points (Ea) are expanded to the full FEM n-space using SEREP,
as shown in Eq. (4.8). These En shapes are then post-processed to obtain full n-space modal strain shapes τ n. Alternatively,
if the FEM includes analytical strain shapes (εn), the expansion in Eq. (4.9) can be used to directly arrive at the same τ n

without the need to use a standalone strain post-processor. Provided that strains are calculated the same in the FEM as the
standalone strain post-processor, these two variations will be identical and only circumstance would dictate which should
be used. In this work, εn were available from the FEM, so Eq. (4.9) is used for the Transformation Modal Method results
herein, but the alternative path was also computed to verify they produce equivalent results.

On the left side of Fig. 4.16 is the so-called “Transformation ODS Method”, although it is noted that both ODS Ôa and
mode shapes Ea are required. It should be noted that while this method required both shape sets, it does not need a FEM of
the test object. The first variation would be to use the ODS to smooth the measured mode shapes per Eq. (4.10) and then
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Fig. 4.13 Direct ODS method: X-Face τ yy for multiple filter sizes

post-process to obtain modal strain shapes τ a. It was observed in our application that the smoothed E′
a was still too noisy

to calculate strains and required the additional application of a Gaussian filter prior to being post-processed for strains. Note
that the results are in the measured a-space, as the SEREP implementation here is for smoothing only and does not involve
an expansion to n-space. The second variation of this method is to first calculate an ODS based set of strain shapes τ̂a using
either the Direct ODS Method or the Polytec Strain Post-Processor, which then feeds into Eq. (4.11) to directly arrive at
modal strain shapes in a-space, τ a. These two variations are mathematically identical, as can be shown by combining Eq.
(4.6) and Eqs. (4.10 and 4.11):

variation 1 : τ a = BE′
a = BWÔaÔa

+
Ea

variation 2 : τ a = τ̂ aÔa
+
Ea = BWÔaÔa

+
Ea

(4.12)

where W is the applied Gaussian filter weights matrix. Although these variations produce identical results, we choose to
leave them as different workflows to point out the two usage cases: (1) a modal test is performed, Ea, Ôa are both obtained
and a standalone strain post-processing is performed to generate modal strain shapes, versus (2) a modal test is performed in
conjunction with Fastscan testing via the Polytec LDV system and the results are combined to generate modal strain shapes.

The FEM was delivered with 300 modes and 127,155 DOF. Ten modes were experimentally extracted from the modal
test in which 2202 DOF were measured (a-space set) with the 3D SLDV system. Using SEREP, the FEM was reduced to 20
DOF and the first 18 analytical shapes were retained, which includes the rigid body modes and excludes modes dominated
by the vibration cube, since these were not well measured in the modal test. These were used in the Transformation Modal
Method calculations.

Twelve ODS were extracted from the sine dwell data (first 10 shown in figures below). A total of 2202 DOF were measured
with the 3D SLDV system, corresponding to the same set as the modal test. All DOF (a-space set) and all extracted ODS
were retained in the SEREP smoothing step of the Transformation ODS Method. Example results from the Transformation
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Fig. 4.14 Direct modal method: X-Face τ yy for multiple filter sizes

Fig. 4.15 MAC between ODS and mode shapes

ODS and Transformation Modal Methods are shown in Figs. 4.17 and 4.18, respectively, for the τ yy component of strain on
the X-Face of the c-channel support (see Fig. 4.12). As mentioned above, the smoothed E′

a shapes in the Transformation
ODS Method were still too noisy to use directly for strain calculations, so Gaussian filters were applied, ranging in size from
0.5 to 3.5 mm as can be seen in Fig. 4.17.

The results shown in Fig. 4.18 are practically identical to each other because the standalone strain post-processor and the
FEM calculated strains in the same manner. Overall, these results are very clean, are obtained in full n-space, and do not
exhibit filter edge effects that the methods which utilize the spatial filters suffer from. Further, the Transformation Modal
Method measurement a-space does not actually need to approach full-field; only enough measurement DOF to adequately
describe the shapes for the expansion process are required to then obtain full-field modal strain shapes.
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Fig. 4.16 Transformation methods for strain shape estimation

Fig. 4.17 Transformation ODS method: X-Face τ yy (both variations identical)
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Fig. 4.18 Transformation modal method: X-Face τ yy for both method variations

4.6 Comparison of Methods

Comparing all four methods is not trivial due to the differences in scaling between ODS strain shapes and modal strain
shapes. The MAC between the ODS and mode shapes was used to match ODS to shapes for comparison of the first six mode
shapes. The scaling is different between ODS and modal shapes as well. For comparison of the methods which utilize a
Gaussian filter, results from the 3.0 mm filter size were selected based on the overall tradeoff between edge effects and noise
reduction. Fig. 4.19 shows this final comparison between each of the methods and the FEM for the τ yy component of strain
on the c-channel X-face. The remaining components of strain were calculated for this and the Z-face as well but are omitted
for brevity as the results are typical in each case.

The traditional Direct ODS method produces very usable results, which are comparable to the Transformation ODS in
terms of noise. However, the results have the disadvantage of not being actual modal quantities. Although ODS data may
be obtained with the 3D SLDV much more rapidly than a modal test with the same number of measured DOF, there is an
advantage to extracting the modal parameters to use in the strain estimation, as evidenced by the difference between Direct
ODS and Direct Modal methods. While Direct Modal is still in a-space, it is obviously a smoothed modal quantity which
was a desired attribute of this work, and the results are good considering no FEM was required.

The Transformation ODS Method admittedly does not appear to be much of an improvement over the Direct ODS results,
but does render modal quantity results. The comparison to Direct Modal is comparable; both are in a-space, have similar
sensitivity to measurement noise, and suffer from filter edge effects. Given the amount of work that the Transformation ODS
Method takes compared to the Direct Modal method, the latter would likely be an easier choice between the two. However,
if Polytec Fastscan data and Strain Post-Processor are to be used, the Transformation ODS Method can be used to obtain
modal strain shapes from that data.

Finally, the Transformation Modal Method is found to perform very well. The method is very robust against measurement
noise, does not suffer from filter edge effects and provides results in full n-space. The obvious downside is the requirement
to have a FEM of your test object. The FEM does not have to be perfectly correlated to test data, however the analytical
shapes must span the space of the experimental shapes. The comparison of the experimental full-field modal strain shapes
from the Transformation Modal Method to the FEM is expectedly very good, since they are a superposition of FEM shapes.
The results may be a better indication of the actual strain fields than the FEM as they are experimentally derived and the
model is not fully correlated. While surface strains were of interest in this work due to use of the 3D SLDV measurements,
we note that this method can provide experimentally derived full-field n-space volume strains as well by substituting their
analytical FEM counterparts into Eq. (4.9) in place of εn surface strains.
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Fig. 4.19 Comparison of methods for X-face τ yy
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4.7 Conclusions

Several methods for determining full-field modal strain shapes from 3D SLDV data were evaluated. The Direct Modal
method was found to work reasonably well, does not require a FEM, and provides improvements over the Direct ODS
Method, which is considered as the current standard ODS strain shape measurement method. The use of direct measurements
(ODS or modal) without some manner of filtering to smooth the displacements is not recommended due to the sensitivity
to measurement noise in the strain estimation process. The Transformation ODS Method provides a means to convert ODS
strain shapes to modal quantities, also without use of a FEM. However, if starting from nothing, the Direct Modal Method
provided similar, if not better, results with less processing effort but potentially longer test times. Further, the SEREP
smoothing using (noisy) ODS may not provide enough smoothing by itself, driving the need to use a spatial filter in addition.
The test article used in this work was observed to exhibit nonlinear behavior, which is believed to have caused a reduction
in the ODS methods’ effectiveness. Finally, the Transformation Modal Method was shown to work very well; it is robust
against measurement noise, avoids spatial filter edge effects, results are obtained in full n-space, and either surface or volume
strains can be estimated. The primary drawback is that a FEM is required.
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Chapter 5
Characterization of a Small Electro-Mechanical Contact Using
LDV Measurement Techniques

Kelsey M. Johnson

Abstract Numerically modeling chatter behavior of small electrical components embedded within larger components is
challenging. Reduced order models (ROMs) have been developed to assess these components’ chatter behavior in vibration
and shock environments. These ROMs require experimental validation to instill confidence that these components meet their
performance requirements. While achieving conservative results, experimental validation is required, especially considering
that the ROMs neglect the viscous damping effects of the fluid that surrounds these particular components within their
system. Dynamic ring-down data of the electrical receptacles in air will be explored and will be assessed as to whether that
data provides a validation data set for this ROM. Additional data will be examined in which dynamic ring-down data was
taken on the receptacle while submerged in an oil, resulting in a unique experimental setup that should prove as a proof of
concept for this type of testing on small components in unique environments.

Keywords LDV · Experimental methods · Modal testing

5.1 Introduction

This report will explore the setup and results of an experiment conducted by Johnson [1] that aimed to provide a model
validation data set for a chatter predicting ROM developed by Lacayo and Brake [2]. This particular model is of a small
electrical assembly made up of a cylindrical pin and a bifurcated receptacle. The ROM models the receptacle as two pre-
loaded leaf-springs in the shape of a tuning fork. There is added complexity to this assembly, as there is a viscous fluid filling
the entire enclosure. The ROM currently neglects those effects of fluid damping on the system.

This experiment focused solely on the modal characteristics of the receptacle. This allowed for a simplified test that could
still provide useful data for the modelers as well as proof of concept for the experimental setup. First, dynamic ring-down
data of the bifurcated receptacle was measured in air to validate and instill confidence in the current state of modeling for
the system. Then, the same test was performed in a relatively large volume of fluid to observe the damping effects on the
receptacle.

The conditions of this particular sub-assembly lead to a unique experimental setup. First, the size of the electrical
receptacle had to be taken into account. It is important to validate models of such small components as small-scale effects,
such as friction and effective mass, can be large contributors and are challenging to model correctly. This small size leads
to unconventional actuation and measurement techniques so as to not mass-load the test article. Second, the experimental
setup had to accommodate the fluid found around the system, as viscous damping will affect the modal characteristics of the
receptacle. The fluid also creates a challenge with the actuation and measurement of the test article. The methods employed
for this experiment needed to be able to survive in a fluid environment. The techniques used during this test as well as the
challenges associated with them will be explored further.
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Fig. 5.1 Test fixture with fluid
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5.2 Experimental Setup

With the unique test boundary conditions, the setup pictured below was developed. This fixture creates a clamped boundary
condition for the receptacle while suspending it in a tank made of plexiglass (Fig. 5.1).

The actuation of the test article was provided by an Encapsulated PICMA® Stack Piezo Actuator made by Physik
Instrumente [3], which is tolerant of fluid environments. This method was chosen over other non-contact actuation methods,
such as ultrasonic, as the least invasive way to excite the test article without exciting the surrounding fluid excessively. The
actuator had a custom voltage signal applied to excite the part while pulling away slowly after actuation so as to not affect
the measurement of the test article. This signal is depicted in Fig. 5.2.

A laser doppler vibrometer is a common method for measuring the responses of test articles that cannot be mass-loaded
by accelerometers. For this experiment, a Polytec PSV-400 one dimensional system was used. A close-up module was added
to aid in focusing on the small receptacle. Plexiglass was chosen as the container so that the alpha angle to the normal part
surface wouldn’t be dramatically affected. The different test setups between air and added fluid changed the position of the
laser heads slightly, but it was simple to attain a good focus on the points regardless. Using Polytec’s proprietary software,
the voltage signal was supplied to the actuator and was timed with the measurement scans of each point.

The fluid used in the test setup is a XIAMETER® PMX-200 silicon oil with two different viscosities of 10cs and 20cs [4,
5]. Varying the viscosity of the oil was intended to give insight as to the effects of that viscosity on the part dynamics. This
also gives more data for modelers as to the differences between the part being surrounded by varying oils as well as air.

5.3 Testing and Results

As mentioned above, the Polytec software would supply the actuation signal to the piezoelectric actuator. Fifteen
measurement points were created on one tine of the bifurcated receptacle. This was done to maximize the measurement
surface area, but sacrificed measurement data from the second tine. The Polytec software produced fast Fourier transform
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Fig. 5.3 Frequency contact of electrical contact in air [1]

Fig. 5.4 Frequency contact of electrical contact in 10cs oil [1]

Fig. 5.5 Frequency contact of electrical contact in 20cs oil [1]

(FFT) data for each of the setups— one in air, one in 10cs oil, and the last in 20cs oil, as seen in Figs. 5.3, 5.4, and 5.5,
respectively. These FFTs aren’t quite right, as an input force measurement is required to get a proper transfer function. This
is due to a challenge with the actuation method used. The displacement of the actuator is 14 μm ± 10%. Without a more
complex test fixture, it is nearly impossible to get the actuator positioned to the part within that displacement value. The
actuation provided is technically the fluid, including the air, being displaced by the actuator. This fluid movement is what
excited the part enough for measurements to be taken by the LDV. Figures 5.6 and 5.7 display the measurement results from
the LDV of the first and second bending modes in air. All figures are referenced from Johnson’s results [1].
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Fig. 5.6 First bending mode in
air [1]

Fig. 5.7 Second bending mode
in air [1]

To process the time history data, Johnson used the Short Time Fourier Transform (STFT) method developed by Kuether at
Sandia National Laboratories. In short, this method takes the instantaneous frequency and damping as well as the amplitude
of the time history signal in short windows around the frequencies of interest. Using the estimated FFT from Polytec’s
measurements, Johnson was able to estimate the frequency locations of the modes of interest. Then, modal data was processed
using the STFT method, which was more mathematically exact than Polytec’s estimation. The settings used by Johnson for
the STFT method can be found in [1].

First, we’ll examine the results of the first bending modes of the system in the three different test configurations. Figures
5.8 and 5.9 show the Polytec measured FFT of the first bending mode in air and the STFT results. As mentioned before,
the receptacle is bifurcated. This means that there will be an in-phase and an out-of-phase mode for every mode of interest.
Theoretically, these modes should have the same frequency, but once losses are taken into account, it is expected that these
in-phase and out-of-phase modes will be slightly separated. The first mode data for 10cs and 20cs oil is shown in Figs. 5.10
or 5.11 and 5.12 or 5.13, respectively.



Fig. 5.8 Test in air – first bending mode [1]

Fig. 5.9 Test in air – first bending mode STFT data [1]
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Fig. 5.10 Test in 10cs Oil – first bending mode [1]

Fig. 5.11 Test in 10cs oil – first bending mode STFT data [1]
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Fig. 5.12 Test in 20cs Oil – first bending mode [1]

Fig. 5.13 Test in 20cs oil – first bending mode STFT data [1]
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Table 5.1 STFT extracted frequency and damping for first bending modes [1]

Air (in-phase) Air (out-of-phase) 10cst (in-phase) 10cst (out-of-phase) 20cst (in-phase) 20cst (out-of-phase)

Frequency 1030.00 Hz 1048.00 Hz 899.97 Hz 995.96 Hz 884.17 Hz 997.96 Hz
Damping ( ) 0.0015 0.0003477 0.0021 0.0019 0.0034 0.0007557

To summarize the above data, Table 5.1 shows the frequency and damping data extracted from each first bending mode
in the above tests. This comparison shows that with increasing viscosity, the frequency separation between the in-phase and
out-of-phase complimentary modes also increases as well as an overall frequency softening of the first modes. There were
challenges with the STFT code processing the data with the added oil, described by Johnson. “With increasing oil viscosity,
there is an increase in the measurement noise, which is most obvious in the spectrogram and STFT of the 20cst data. The
code is also having difficulty finding the first in-phase bending mode frequency peak. This is likely due to the displacements
being damped by the oil as well as the oil movement continuing past the actuation signal, causing more actuation in various
directions. There are also more fixture modes measured in oil than in air. Again, this is likely due to fluid movement during
the measurements.” [1]

As mentioned in the experimental setup section, a one-dimensional LDV was used for this testing. This limited Johnson’s
ability to measure the responses of both tines of the receptacle together. The simultaneous response of both tines together
was important to confirming the in-phase and out-of-phase modes. Two methods were used to confirm these complementary
modes. Both tests were completed without the added fluid. First, the one dimensional LDV was angled to the part so as to
maintain measuring the surface of the front tine of the receptacle, and also catch the inside edge of the back tine. The data
was measured with Polytec software, then processed in MATLAB®. The 2D coordinates measured by the Polytec 400 were
transformed to 3D coordinates manually. This transformed data was then processed through Randy Mayes Synthesize Modes
and Correlate algorithm (SMAC) [6]. This algorithm is ideal for closely spaced modes, which was perfect for this particular
situation of close complementary modes. The measurement point selection and processing is described more in [1]. The
results from SMAC are shown in Figs. 5.14 and 5.15. SMAC was able to confirm for Johnson that the in-phase mode was
located at the lower frequency and the out-of-phase mode was located at the higher frequency. This makes sense, as a base
deformation mode would be expected to be at a lower frequency.

The second method used to confirm the order of the first bending modes was the use of a 3D LDV. A Polytec PSV-500
was used. With this updated technology, measurements were able to be taken along the thin side profile of the tines. This
allowed for Johnson to see the measured response of both tines at once. The measured FFT can be seen in Fig. 5.16 and
the measured first bending mode FFTs can be seen in Fig. 5.17. Figures 5.18 and 5.19 show the real-time mode shape data
measured by the Polytec PSV-500. This data agrees with Mayes’ SMAC method and the STFT data processed by Johnson.

5.4 Model Validation

Lacayo and Brake employed the efforts of Blecke to create a modal model of the electrical system [7]. She used Sandia’s
Salinas Structural Dyanamics code for this model. Table 5.2 shows a comparison between the first bending modes extracted
by Johnson’s experiments and the first bending modes calculated by Blecke’s high-fidelity model. There is error of about
20 Hz (∼2%) between the measured and calculated modes. Johnson states that this is likely due to fixturing within the
experiment not exactly matching the fixed boundary condition of the model. There is added inherent error in the material
damping model. Examining the extent that this material model variation has on the data would require a statistical study.

5.5 Conclusion

Experiments on small-scale components are inherently difficult. In this particular case, there was added complexity due
to the viscous fluid environment. A unique test set up was developed, using the combination of LDV measurements and
piezoelectric excitation to extract modal data from a small bifurcated receptacle, while also accounting for that fluid. This
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Fig. 5.14 SMAC in-phase first bending mode [1]

experiment was able to validate current modeling efforts for the receptacle in an air environment, with minimal error, as well
as provide additional data for modelers to account for fluid damping effects.

Challenges with this experiment can be examined further for improvement in the test setup. A more precise fixture could
aid in aligning the actuator properly so as to accurately measure the input force to the test article. In regard to the test and
model comparison, the model could be changed to reflect the test setup boundary conditions as well as an improvement in the
experimental clamping of the test article. The test setup could also be expanded upon to better match the entire system. Future
work will include testing the full component with a clear container on a shaker, allowing for real-time chatter monitoring.
This work will provide the most realistic testing environment while also being able to excite the system with the actual
vibration and shock profiles that cause the chatter events. This will lead to matching recorded chatter during testing to mode
shape data during those events.

Model validation is key to providing low-cost confidence in the design phase of component development. Experimental
data that can point to mode shapes of interest that could possibly cause functionality issues can help designers avoid these
pitfalls in the future. Once there is sufficient data to support a model and its behaviors, these models will speed up the design
to manufacturing process and lead to more reliable components.
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Fig. 5.15 SMAC out-of-phase first bending mode

Fig. 5.16 3D LDV FFT measurement [1]
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Fig. 5.17 3D LDV FFT first bending mode [1]

Fig. 5.18 3D LDV in-phase first
bending mode [1]
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Fig. 5.19 3D LDV out-of-phase
first bending mode [1]

Table 5.2 Model vs experiment – first bending mode [1]

Air – first bending mode (in-phase) Air – first bending mode (out-of-phase)

High fidelity model frequency 1046.20 Hz 1053.70 Hz
Measured frequency data 1030.00 Hz 1048.00 Hz
% error 1.74% 0.54%
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Chapter 6
Remote Detection of Abnormal Behavior in Mechanical Systems

Greta Colford, Erica Jacobson, Kaden Plewe, Eric Flynn, and Adam Wachtor

Abstract Machinery can undergo many different types of operational faults during use. Mitigating these faults through
scheduled maintenance programs or upon failure is costly, inefficient, and can introduce safety hazards. An alternative
approach to identifying abnormal behavior in mechanical systems is through condition based monitoring, which is applied
by taking measurements of machinery and using spectral analysis to diagnose faults. The signals produced by machines
contain characteristic frequencies describing the operating state. The application of local sensors to monitor the health
of mechanical systems is often expensive or not feasible; it is of interest to find methods of remote sensing to allow for
detection of abnormalities in mechanical systems without the need for sensors at the local point of operation. This work
intends to utilize the method of remote detection to study the diminishment of fault feature observability as a function of
sensor location relative to operating equipment. In this study, the procedure used for fault detection consists of the following:
(1) collect signals for rotating machinery operating in a healthy, faulty, and off state (2) identify features that are unique
to a faulty operating state (3) use those features to identify faulty behavior. This procedure is performed at three locations.
For each location, the observable feature for a healthy, faulty and motor off state is calculated and compared using the
statistical mean, standard deviation, p-value and Bhattacharyya distance. The relationship between fault observability and
distance is presented as a function of Bhattacharyya distance and classified based on a one-way ANOVA test. Machine
fault diagnosis becomes more difficult as the measurement location increases. At greater distances, there is no statistical
significance between healthy and faulty machine operation. Using a predictable frequency response, machine faults can be
correctly identified up to a certain threshold determined by environment noise.

Keywords Condition Monitoring · Remote Sensing · Rotating Machinery · Signal Processing · Spectral Analysis

6.1 Introduction and Motivation

Condition Based Monitoring (CBM) is used to identify developing faults in mechanical systems and is desired by many
industries because of the significant economic and safety benefits that result from using this technology [1]. Specifically,
CBM can be used as an effective damage detection method for machinery or mechanical systems. A key part of CBM is to
acquire measurements of the system of interest and use the signals collected to diagnose the extent of damage experienced
by the machine. Local measurements on the system of interest are not always possible due to limited access or excessive
instrumentation costs. In this case, remote sensing can be used to collect signals for CBM and machine fault diagnosis. When
considering a Remote Condition Based Monitoring (RCBM) system, the distance between the equipment of interest and the
sensing system is a highly influential variable. As the sensing distance from the point of interest increases, the environmental
dependence of the signal being collected increases and, as a consequence, the signals of interest are less distinguishable. In
this study, the effect of distance in the process of RCBM is investigated experimentally.
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6.2 Background

Machine fault diagnosis and monitoring is not a new task, but recent developments in sensor technology, data processing,
and online monitoring open the possibility of improvements. Multiple methods of machine fault diagnosis exist, with the
most basic being operating the machine to failure. Most failures are the cause of inadequate training and misdiagnosis by
the machine analyst [2]. Another method of machine fault monitoring includes implementing a time-based maintenance
schedule where the machinery would cease operation and be analyzed for damage at periodic time intervals. Even time-
based maintenance systems have shortfalls which include the cost and hazards associated with pausing machine operation,
misdiagnosis on behalf of the human analyst, and delayed identification of machine damages. By outfitting machines of
interest with localized sensors, continuous machine monitoring can take place and damages can be detected before failure.
However, implementing localized CBM can come at a high capital cost and potential issues with machine accessibility
could exist. With new developments in remote sensing and machine learning, the practicality of implementing machine fault
diagnosis methods in systems that don’t facilitate local data collection is increasing.

With the availability of vibration signals (or another frequency characteristic measurements such as electrical signatures)
associated with rotating machinery, common fault types can be diagnosed. Faults that occur in machinery include unbalance,
misalignment, shaft cracks, rotor rub, looseness and bearing faults; all of which produce frequencies that can be characterized
and detected with available equipment and signal processing techniques [3]. Observations in operating behavior and digital
signals from AC motors such as characteristic frequencies, signal amplitudes, or ramp-up/ramp-down behavior can be
attributed to common AC induction motor abnormalities. The fault case for this study is a combination of bearing faults,
which included inner and outer race defects, as well as ball bearing defects. The frequencies of each fault can be calculated
based on the physical properties of the bearing.

CMB is typically implemented by collecting dynamic measurements of the mechanical system over time, extracting
features that indicate damage from the measurements, and performing a statistical analysis of the extracted features to
determine the state of the mechanical system [1]. Two common methods for performing fault detection of induction motors
are current analysis and vibration analysis. The superiority of each method is dependent on the type of fault being detected.
For example, Oakridge National Laboratory has been successful with remote damage detection on their nuclear power plants
using motor current signature analysis (MCSA) on the motor control power lines, successfully monitoring and detecting
faults from hundreds of feet away [4], and vibration analysis has been used to detect and diagnose electrical faults in induction
motors [5].

6.2.1 Modeling

Certain faults can be predicted if some basic properties of the operating system are known. Some abnormalities in the
current and vibration spectrums of AC induction motors can determine what type of fault is present in the motor. For
example, the SQI Machinery Fault Simulator instruction manual has a list of key frequencies and their associated faults
that come with the kit. An experiment performed on the SQI Rotating Machinery Fault Simulator detected bearing faults
through vibration spectral analysis. The harmonics of the running frequency were significantly increased in amplitude during
faulty operation. Characteristic frequencies of the bearing can also be spotted on the spectrum, but identification requires
extensive knowledge of the bearing geometry. These frequencies appear as sidebands on either side of the fundamental supply
frequency [6].

6.2.2 Data Acquisition

Some literature states that vibration measurements alone are insufficient to indicate electrical induction motor issues [7].
Others studies use accelerometers to detect most electrical faults [5]. Others have used thermal imaging, microphones,
and acoustic emissions sensors for fault detection. It was determined that the microphone was not able to read far-field
measurements without serious attenuation. The thermal imaging camera can only detect serious faults as they are happening,
and is slow to respond. Both methods have high risk associated with environment noise and conditions [8].
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6.2.3 Signal Processing

Common signal processing techniques used for modal analysis of rotating machinery include the Frequency Response
Function (FRF), Fast Fourier Transform (FFT), Short Time Fourier Transform (STFT) and Wavelet Transforms. Frequency
Response Functions (FRF) are used to identify characteristic frequencies and to define the relationship between an input and
output in the frequency domain. The FFT is useful for identifying natural frequencies but doesn’t retain temporal information,
making its application limited in time-varying signals [3, 9]. All these techniques have been used to process machine fault
signals. For this study, the Fourier transform is used to bring the time domain signal into the frequency domain for specific
frequency content identification and analysis.

Damage detection in mechanical systems is typically based on the comparison of real-time signals to a baseline that
represents the healthy state of the system. A coherence function is typically used to achieve this task in signal processing;
as it is a measure that can quantify the correlation between two frequency signals. Transmissibility a quantity used to
compare a signal response to the system input has also been implemented in mechanical fault detection procedures [10].
Wavelet transforms are also utilized as a mathematical tool for analyzing signals both in the time and frequency domain, and
can provide a solution to the limitations to the traditional Fourier Transform [11]. Wavelet transformation is beneficial for
data with wide frequency ranges, as the scale factors change how well the signal is represented in the frequency domain [11].

Rotating machinery, when operated at a constant speed, produces a periodic transient response in the vibrational signal
measured. A pseudo wavelet system was developed by [12] based on a fusion of multiple quasi-analytic wavelet tight frames,
and then the wavelet packets were evaluated using kurtosis and spectral kurtosis [12]. Measuring the RMS value of a signal
reveals that different faults increase the RMS value in different frequency bands. One method of CBM is to monitor the RMS
values real-time in different frequency bands. A fault is indicated when an RMS value exceeds a determined threshold [8].

Using a basic vibration signal, operational conditions can be monitored through calculations of RMS, kurtosis, and crest
factor [8]. These factors are to be monitored in frequency bands and compared to the healthy signal baseline threshold.
Another study recommends the use of a Hilbert Transform to increase accuracy of detecting electrical faults with vibration
data [5]. Another method, called the Spectral Distribution Function (SDF) is a finite integration of the power spectral
density (PSD) function. Through this integration, the data is compressed (good for storage issues), can be normalized (good
for comparison), and is simple to model [13]. Marmugi et al. found that remote sensing of rotating machinery can been
accomplished using radio-frequency optical atomic magnetometers (RF AM) to detect the magnetic signature of the rotating
machine at a distance of up to 2 m [14].

6.2.4 Machine Learning and Data Fusion

Data fusion and machine learning in the application of condition-based monitoring can increase the accuracy of fault
detection in mechanical systems. Fault frequency indicators can be derived from characteristic vibration signals, oftentimes
correlating with the rotating speed of the motor and by extracting the amplitude of the frequency domain signal. By adding
machine learning and data fusion, the process of fault detection becomes more accurate [11, 12]. Data can be combined at
the raw level, state vector level, or the decision level. Only commensurate data can be combined at the raw level. Features are
extracted from the data, then combined at the state vector level. Fusion at the decision level requires some sort of weighted
decision method to combine all features [15].

One study successfully demonstrated combining current and vibration data (using Waterfall Fusion Process Model)
after feature extraction and classification to enhance detection of a faulty bearing [16]. Another study used data fusion
in combination with a mathematical dynamics model to detect faults faster and more confidently than with sensors alone
[17]. However, this method requires extensive knowledge of the healthy structure and a substantial amount of training data.

Intelligent solutions for machine based condition monitoring include common machine learning algorithms such as
artificial neural networks (ANN) and support vector machines (SVMs) [12, 18]. Konar et al. used a continuous wavelet
transform and a feature extraction algorithm to feed three different parameters into an ANN and SVM in order to identify
bearing faults. The ANN and SVM approaches were then compared using the same set of data and it was found that the
SVM outperformed the ANN [11, 18] has demonstrated the use of a sophisticated three-level neural network in order to
detect and classify faults by detecting the changes in fault frequency of rotating machines. There have been machine learning
approaches that have been applied using total power over small frequency ranges as features in order to decide what state
a fan system is in [19]. Data fusion over multiple sensors has also been utilized to make decisions regarding the state of a
system [19].
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6.3 Experimental Setup

An experiment investigating the effect of distance of RCBM on rotating machinery was performed using the SpectraQuest
Inc. Machinery Fault Simulator (MFS). This device is capable of operating in a healthy condition and faulty condition, by
installing components which reconstruct common machine faults. A combination fault bearing was installed to simulate a
common bearing fault, which produced signatures related to inner race, outer race, and ball defects.

6.3.1 Data Acquisition Hardware and Testing Parameters

National Instrument’s LabVIEW software and USB-4431 DAQ hardware (G in Fig. 6.1) were used to acquire the data. A
local sensing station was created using multiple DAQ hardware, a desktop computer, and local sensing channels. A similar
setup was created for remote sensing on a cart using one USB-4431 DAQ, a laptop computer, and remote sensing channels.

All data was collected simultaneously, where local and remote sensing systems were synced with an internal clock. A
sampling frequency of 50 kHz and a block size of 3 minutes was used for each set. Ten sets of data were collected during a
single test for a total of 30 minutes per test. This was repeated for healthy operation, faulty operation, and motor off.

Data was recorded by alternating healthy, faulty, and motor off tests to ensure statistical separation in the data was due to
the machine operating conditions and not by time. The healthy and faulty bearing conditions were altered using the MFS kits
on the right bearing pedestal (C, in Fig. 6.1). The machine alteration procedure was closely documented to make the switch
between healthy and faulty as consistent as possible. The testing environment for each test was quantified and anomalies were
recorded in a testing data sheet. The machine was turned on and left running for a minimum of 1 minute before recording
data to eliminate any motor start-up transients in the recorded data. Time domain data was collected and saved from all
sensors, with local and remote sensor groups saved as separate files.

6.3.2 Local Sensing Channels

The MFS came stock with a 3-phase 1 HP variable speed AC induction motor, speed controller, tachometer, and a digital
speed readout. Figures 6.1 and 6.2 show the local sensing set up around the MFS. The variable speed controller (E) was used
to control the motor speed. Testing was performed with a speed of 3400 RPM, which was shown to be near resonance during
a ramp-up test of the motor. Motor speed of each test was recorded using the stock tachometer (D). A Pearson Electric Wide
Band Current Monitor current probe (H) was used to monitor current going through the fault simulator’s main power cord.

Fig. 6.1 Local measurement setup
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Fig. 6.2 Local current and voltage measurement setup

Fig. 6.3 Remote sensing setup

Local vibration data was recorded using accelerometers from MTS System’s PCB Piezotronics. Two tri-axial accelerometers
(356A43) with 10 mV/g sensitivity were adhered to the fault simulator on the motor (A) and left rotor deck bearing pedestal
(B). These accelerometers did not move over the testing period.

6.3.3 Remote Sensing Channels

One seismic tri-axial accelerometer (F) (three uniaxial seismic accelerometers with 1200 mV/g sensitivity, 393 C) was used
for remote vibration sensing. The seismic accelerometer was moved away from the zero point of the MFS to straight-line
distances of 7 and 16 m.

A LaCroy AP031 differential probe (I in Fig. 6.3) was used to monitor the voltage used by the fault simulator. An LF
Engineering Co. L-400 VLF/LF E-Probe antenna (J, not pictured) was placed near the fault simulator 5 feet in the Z direction
and 4 feet in the negative Y direction, with respect to the zero distance location. The antenna was mounted to a wall close to
the seismic accelerometer location. The voltage probe was plugged in to an outlet near the seismic accelerometer (I in Fig.
6.3). All voltage probe locations were on the same circuit, shown by building electrical schematics. Figure 6.3 shows the
remote sensing set up, and Fig. 6.4 shows a schematic of the remote sensing locations with respect to the MFS origin.

The current, tachometer, local accelerometer, and voltage data were all recorded but not analyzed, and therefore omitted
from this report of the study.
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Fig. 6.4 Remote sensing schematic

6.4 Data Collection and Signal Processing

Key frequencies that would show separation of features between machine operating conditions are dependent on the type
of fault. In the case of the combination bearing fault as provided in the fault simulator kit, new peaks appear at the inner
and outer ball pass frequencies. The geometry of the provided combination fault bearing was used to calculate possible fault
frequencies (Eq. 6.1). In this investigation, the ball pass inner frequency (BPIF) of 279.7 Hz showed the most significant
difference between the healthy and faulty operating conditions. A frequency range of 278–282 Hz was selected to calculate
features.

Ball Pass Inner F requecy = n

2
∗
(

1 − BD

PD
cos (θ)

)
∗ f (6.1)

Where n is the number of balls, BD and PD are the ball and pitch diameter, respectively, theta is the contact angle, and f
is the mechanical fundamental frequency – in our case the motor speed of 3400 RPM (or 56.6 Hz).

Once the frequency range of interest for separation was identified in the initial data sets, the recorded time data was down-
sampled by a factor of 20. A Fourier transform was performed on the down-sampled data, preserving a frequency resolution
of 0.0056 Hz but reducing the Nyquist frequency down to 1250 Hz. Autopower spectra were calculated for each 3-minute
set within a test. The ten sets of autopower spectra were averaged together to produce one column of data for each sensor
in a single test. This was repeated for all healthy, faulty, and motor off tests at local, 7 m, and 16 m from the MFS. Even
though tests were recorded in a healthy/faulty/motor off order, some variation was noticeable between each 30-minute test.
Averaging of the autopower spectra was used to attenuate background noise and transients that may have appeared within a
set of data, but nowhere else in the test.

6.5 Data Analysis

6.5.1 Feature Selection

An investigation into features that exhibited high variation between the healthy and faulty operating state of the induction
motor was important for (1) maximizing the observability of fault features and (2) reducing the feature space required for
classification. In this work, 70–80 data points were collected at three different locations for each operating state: healthy,
faulty, and motor off. Here, a single high-performing feature is selected to demonstrate the diminishment of the observability
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Table 6.1 Bhattacharyya distance and p-value for all seismic accelerometer features calculated for 278–282 Hz

SAX-RMS
(g2/Hz)

SeisX-Power
(g2)

SeisX-
Kurtosis

SeisY-RMS
(g2/Hz)

SeisY-Power
(g2)

SeisY-
Kurtosis

SeisZ-RMS
(g2/Hz)

SeisZ-Power
(g2)

SeisZ-
Kurtosis

0 m Bhattacharya
Dist.

0.816 0.589 0.484 0.673 0.450 0.429 1.67 1.37 1.15

P-Value 0.122 0.126 0.00370 0.0577 0.0474 0.00487 0.115 0.109 0.000105
7 m Bhattacharya

Dist.
0.610 0.449 0.206 1.09 0.835 0.277 0.864 0.648 0.544

P-Value 0.0940 0.153 0.0375 0.0267 0.0421 0.0146 0.0525 0.0609 0.00951
16 m Bhattacharya

Dist.
0.260 0.0495 1.34 0.0416 0.0317 0.267 0.915 0.796 0.218

P-Value 0.0778 0.301 0.0153 0.913 0.959 0.0732 0.313 0.326 0.297

From this set of features, SeisZ-Kurtosis is selected as the optimal feature because it has the largest Bhattacharyya distance in the group of features
with p-value >0.05

of a fault feature as the distance between the sensor and the motor is increased. For this application, “high-performing” is
defined using the Bhattacharyya distance and the p-value from a one-way ANOVA test.

The parameters that define the feature space that features are selected from include sensor type, frequency range and
spectral variables (RMS, power and kurtosis). The p-value from a one-way ANOVA test is used as a preliminary metric for
identifying features that show a statistically significant difference between healthy and faulty data sets. A p-value greater than
0.05 indicates that, for the selected feature, there is no evidence for variation between healthy and faulty measurements (null
hypothesis validation) and the opposite validation is true for p-values less than 0.05. The Bhattacharyya distance, which has
been shown to be a good metric for feature selection in classification problems [17, 20, 21], is used as a secondary measure
for ranking features with a null hypothesis rejection. The Bhattacharyya distance, BD(x, y), between two distributions x and
y is given by:

BD (x, y) = 1
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The Bhattacharyya distance represents the separation between two distributions, based on the mean (μ) and standard
deviation (σ ) of each. Hence, in this application, features with the highest Bhattacharyya distance between healthy and
faulty data sets are used for relating fault feature observability to distance.

Table 6.1 includes the Bhattacharyya distance and p-value for each feature calculated for the seismic accelerometer over
the frequency range of 278–282 Hz. Using the procedure described above and outlined in Fig. 6.5, the seismic Z-Axis
kurtosis feature was selected as the optimal feature within this set. This feature (SeisZ-Kurtosis) will be used to explain the
results from this work.

6.6 Results

The results from this study are drawn from comparing healthy, faulty and motor off distributions for the SeisZ-Kurtosis
feature over the frequency range of 278–282 Hz. The power spectrum for Z direction at the various test locations can be
seen in Fig. 6.6. At the local measurement location, the spectral magnitude of healthy and faulty response is separated from
environment noise, with an increase at the inner ball pass frequency in the faulty data. This peak is still detectable at 7 m,
but the amplitude falls closer to the environment noise. At 16 m, the faulty operating case is barely distinguishable from the
background noise. A tight frequency range around a predictable frequency for feature detection is critical to separate out
background noise from healthy and faulty operating cases.

While the SeisZ-Kurtosis feature outperformed a subset of the feature space that was studied in this work, it is likely
that there are other features outside of the feature set shown in Table 6.1 that have equal or better performance metrics.
Beyond the procedure that is outlined for the feature selection process, consideration was also given to the expected versus
observed behavior to avoid anomalies. For example, referencing Table 6.1, the SeisX-Kurtosis feature is considered an
anomaly because it does not show a consistent feature trend as the sensors are moved from 0 m to 16 m.
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Fig. 6.5 (a) Process flow diagram for feature selection in classification procedure. (b) Process flow diagram for application phase of classification
procedure

In Fig. 6.7, box-plots for local, healthy and motor off measurements are shown for each location. Within these boxes,
the 25th and 75th percentiles are represented by the lower and upper boundaries of the boxes, the line inside of the boxes
represents the median and the length of the whiskers on both ends of the box are the outlier thresholds. The motor off data
is plotted alongside the healthy and faulty data to ensure that the information contained in the signals is independent of
the noise floor. Taking this into consideration, it is evident that the combination of measurement, processing and analysis
techniques that were used in this study was able to capture information at 0 m and 7 m, but not at 16 m. This is because
the motor off features for 0 m and 7 m both behave as expected based on Table 6.1 and don’t resemble the calculated noise
distribution. In Figs. 6.6 and 6.7, it is evident that at 16 m, the healthy and faulty signals are strongly correlated to the noise
distribution.

Kurtosis is a useful feature for identifying bearing faults because it successfully quantifies power impulses that are caused
by cyclic impacts. These impulses appear in the frequency domain as sharp peaks occurring at the respective impulse
frequency. Here, the ball pass frequency for the inner race is identified within the range of 278–282 Hz and it is shown
in Fig. 6.7 that calculating the kurtosis over this range for the z-axis signals is successful in separating healthy versus faulty
operating conditions at 0 m and 7 m. It is important to note that kurtosis is dependent on the shape of a distribution, and
doesn’t necessarily represent the magnitude of a detected fault. Hence, the increase in magnitude in the healthy and faulty
distributions going from 0 m to 7 m is representative of the wave propagation path from the point of initiation to the sensor,
not the fault observability at each location. The fault observability can be recognized by the separation of distributions in
Fig. 6.7 or by the Bhattacharyya distance in Fig. 6.8.

The classification threshold shown in Fig. 6.8 represents the fault observability limit, with p-values less than and greater
than 0.05 indicating that the fault is and is not observable, respectively. For p-values less than 0.05, the Bhattacharyya
distance acts as a metric for relative observability. On this basis, the expected decrease in observability with sensing distance
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is depicted in Fig. 6.8. This decrease in observability can be attributed to the signatures of the machine attenuating to
the level of measured environment noise. Therefore, the average signals of healthy and faulty are dominated by noise and
not the mechanical signatures. To increase positive detection at further distances, greater separation is needed between the
environment noise and machine signatures.

Fig. 6.6 Power spectrum of healthy, faulty, and motor off at all test locations

Fig. 6.7 Comparison of healthy (H), faulty (F) and motor off (MO) states for each location with the Seismic Z-Axis Kurtosis feature
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Fig. 6.8 Bhattacharyya distance and p-values comparing healthy and faulty data sets for measurements taken locally, 7 m and 16 m away from
the motor. The classification threshold represents the null hypothesis limit (point at which healthy and faulty distribution

6.7 Conclusions

This research focused on the ability to detect mechanical signatures at several distances in a laboratory setting. With adequate
lengths of data, proper signal processing techniques, and indicated frequencies of interest, healthy and faulty operation
signatures can be separated using various features. In this case, long-duration time signals were averaged and brought in to the
frequency domain. One distinct feature to separate the healthy and faulty data was to calculate kurtosis over a frequency band
specific to the fault being tested. Statistically, the p-values and Bhattacharyya distances were used to calculate separation and
provide a threshold for detection. Of the three locations tested, the furthest exceeded this threshold, resulting in no statistical
separation between healthy and faulty signatures. However, these metrics were able to successfully detect healthy and faulty
signatures locally and at a distance of seven meters.

Remote sensing is a challenging problem that can be addressed using results found in this study. However, tests performed
in a laboratory setting produce consistent and predictable results, in contrast to field tests. While these results can be applied
to field and industry CBM, more research is required to determine the measurability of faults of industrial machinery. As
distance from the machine increases, there is a greater risk of environment noise interfering with the detection process,
therefore additional measures to attenuate environment noise and amplify fault signatures should be investigated and
implemented. Remote CBM could be enhanced through the implementation of data fusion on an array of sensors and machine
learning for automatic feature selection and fault detection.
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Chapter 7
Modal Analysis of a High-Speed Turbomachinery for Reliable
Prediction of RD Properties Throughout Operating Speed Range

Yuhei Shindo, Kazuhiko Adachi, Satoshi Kawasaki, and Mitsuru Shimagaki

Abstract In this study, a novel one-dimensional beam finite element rotor-bearing model considering rotor dynamic (RD)
fluid and gyroscopic forces is proposed, and modal analysis of a single shaft turbopump (TP) in the whole operating speed
range is performed to predict the rotor dynamic properties of the TP. The effects of both RD fluid and gyroscopic forces on
the RD properties of the TP were clearly shown on the Campbell diagram, and the damped natural circular frequencies of
the TP within the operating speed range were also successfully identified.

Keywords Rotordynamics · Fuel turbopump · Oxidizer turbopump · Rotor dynamic fluid force · Gyroscopic force

7.1 Introduction

A severe vibration of the high-speed turbomachinery might have happened during the normal operation, and it causes the
functional failure of the machinery and/or the whole system. In the case of the turbopump of the liquid rocket engine,
such functional failure leads to the rocket launch mission failure. A typical fuel or oxidizer turbopump (TP) consists of
several components such as an inducer, centrifugal impellers, a turbine, bearings, seal, and so on. These components are
mounted on the TP shaft, and their stiffness and damping characteristics strongly depend on the rotating speed of the TP
due to the effect of both rotor dynamic (RD) fluid and gyroscopic forces. As a result, throughout the operating speed range,
mode crossing/veering phenomena appeared on a Campbell diagram, and then the RD properties of the TP are dramatically
changed under the effect of both RD fluid and gyroscopic forces.

This study aims at proposing a novel one-dimensional beam finite element rotor-bearing model considering RD fluid and
gyroscopic forces and performing modal analysis of a high-speed TP in the whole operating speed range.

7.2 Method

The equation of motion of a rotor-bearing model considering RD fluid and gyroscopic forces is given by Eq. (7.1).

Mq̈ + (C + ωG) q̇ + Kq = fRD (ω) (7.1)

where q is the nodal displacement vector of the rotor. In this study, the rotor is modeled by one-dimensional two-node beam
element [1] in which each node has four degrees of freedom. The matrices M, C, and K are the mass, damping, and stiffness
matrices of the rotor, respectively. The matrix G is corresponding to the gyroscopic force. Support stiffness and damping
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Fig. 7.1 Rotor-bearing finite element model of single shaft turbopump

of the bearings are including both K and C matrices. In the right hand of the equation, fRD(ω) indicates the RD fluid forces
at the operating speed ω rpm. In the proposed model, RD fluid forces acting on the inducer, centrifugal impeller, and seal are
modeled by using nondimensional normalized direct and cross-coupled RD coefficients and introduced as matrices into the
node corresponding to the locations acting on the RD fluid forces as the following form:

fRDi (ω) = −
[

MRDi mRDi

mRDi MRDi

]{
q̈xi

q̈yi

}
−
[

CRDi cRDi

cRDi CRDi

]{
q̇xi

q̇yi

}
−
[

KRDi kRDi

kRDi KRDi

]{
qxi

qyi

}
(7.2)

Thomas force is adopted as the RD fluid force acting on the turbine [2]. In the numerical simulation of this study, RD
properties of a single shaft turbopump rotor system was analyzed by using the proposed modeling. The configuration of
the turbopump was adopted from reference [3]; however only an axial cross-sectional view was available. Therefore, in this
study, each component size of both fuel turbopump and oxidizer pump is evaluated based on the performance analysis of the
fuel pump. Figure 7.1 shows the rotor-bearing finite element model of the single shaft TP.

7.3 Results

Lower three damped natural circular frequencies and their vibration mode shapes were successfully obtained by the proposed
modeling. Due to the effect of both RD fluid and gyroscopic forces, each vibration mode was separated into backward and
forward modes. In the Campbell diagram, mode crossing/veering phenomena appeared from 0 rpm to the normal operating
speed 46,000 rpm. Lower three forward natural circular frequencies at 46,000 rpm are 1702 Hz, 882 Hz, and 1052 Hz,
respectively. First forward natural circular frequency is quite higher than the second and third forward natural circular
frequencies due to both RD fluid force and gyroscopic effect. Figures 7.2, 7.3, and 7.4 show these three forward mode
shapes.
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Fig. 7.2 First forward vibration mode shape at the normal operating speed 46,000 rpm

Fig. 7.3 Second forward vibration mode shape at the normal operating speed 46,000 rpm

Fig. 7.4 Third forward vibration mode shape at the normal operating speed 46,000 rpm
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7.4 Conclusion

A rotor-bearing finite element model for single shaft TP considering both RD fluid and gyroscopic forces was developed.
According to the modal analysis, the effect of both RD fluid and gyroscopic forces on the RD properties of the single shaft
TP was clearly shown on the Campbell diagram, and the damped natural circular frequencies of the TP within the operating
speed range were also successfully identified.
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Chapter 8
Mapping Motion-Magnified Videos to Operating Deflection
Shape Vectors Using Particle Filters

Aral Sarrafi and Zhu Mao

Abstract Phase-based motion estimation and magnification are targetless methods that have been used recently to perform
experimental modal analysis (EMA) and operational modal analysis (OMA) on a variety of structures. Mapping the motion-
magnified sequence of images into quantified operating deflection shape (ODS) vectors is currently being conducted via
edge detection methods that require intensive human supervision and interference. Within this study, a new hybrid computer
vision approach is introduced to extract the quantified ODS vectors from the motion-magnified sequence of images with
minimal human supervision. The particle filter point tracking method is utilized to follow the desired feature points in the
motion-magnified sequence of images. Moreover, the k-means clustering algorithm is employed as an unsupervised learning
approach to performing the segmentation of the particles and assigning them to specific feature points in the in the motion-
magnified sequence of images. This study shows that the cluster centers can be employed to estimate the ODS vectors, and
the performance of the proposed methodology is evaluated experimentally on a lab-scale cantilever beam and validated via
a finite element model.

Keywords Phase-based motion estimation · Video magnification · Particle filter · Computer vision · Clustering ·
Unsupervised learning

8.1 Introduction

In recent years using digital cameras for structural dynamics identification and structural health monitoring (SHM) has been
gaining much attention [1, 2]. As a non-contact measurement method, digital cameras have several advantages over other
traditional approaches for structural dynamics identification. In general, instrumentation of structures with accelerometers is
labor-intensive, time-consuming and costly, but for digital cameras, the instrumentation is normally much easier and attaching
a couple of optical targets is sufficient in most of the cases. Another major advantage of camera-based measurement over
traditional structural response measurement methods such as accelerometers or laser vibrometers is that the cameras can
provide full-field measurements in the field of view of the camera simultaneously [3]. Laser vibrometers can provide high
spatial resolutions [4], but normally scanning the surface of the measurement will take a long time that may increase the
testing time dramatically.

Although cameras-based measurements have several advantages compared to other techniques, the post-processing of
the sequence of images captured by the camera is generally an elaborate and complex task which involves advanced signal
processing [5, 6], computer vision, and computational photogrammetry algorithms. Computer vision is one of the fastest
growing branches in computer science that aims to extract useful information from the images captured from a scene.
3-dimensional digital images correlation (3D-DIC), and 3-dimensional point tracking (3DPT) are among the computer
vision algorithms that have been implemented successfully for measuring structural responses including displacements and
strains [7, 8]. These techniques are well developed and are being used extensively both in academic research and industrial
applications [9, 10]. Optical flow motion estimation algorithms are another set of approaches that have been showing
promising outcomes for structural dynamics identification from recorded videos. There have been several studies on using
Lucas-Kanade [11] and Horn-Schunck motion estimation algorithms in the context of structural dynamics identification that
can be found in the references [12–16].
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As discussed earlier, several computer vision algorithms have been studied in the literature to extract reliable modes from
a sequence of images for describing the dynamics of the structures. Phase-based motion estimation [17, 18], and phase-
based video magnification(VM) [19, 20] algorithms are among the most recent approaches that have been used for structural
dynamics identification. The phase-based motion estimation is based on the fact that the spatial motion can be retrieved
from the phase variations in the frequency domain. Phase-based video magnification is a more recent algorithm primarily
related to computational photogrammetry rather than computer vision, that can magnify the subtle motions in a video to
generate a new video in which the small motions are visible to the human vision system. Structural vibrations are normally
very small (less than 2 pixels) in the scope of video cameras, and phase-based motion magnification has been successfully
used by researchers in structural dynamics identification and structural health monitoring in both lab-scale structures such
as cantilever-beam [21, 22], three-story building model [23, 24], pipe-line cross-section [25], and large-scale structures [26]
such as wind turbine blades [27, 28], and bridges [29].

In previous studies on the applications of phase-based video magnification, very accurate visual perceptions of the ODSs
of the structures were obtained which can provide intuitive insight for the engineers about the ODSs and mode shapes of the
subjected structure. However, for engineering applications such as model-updating and model-validation visual perceptions
are not compatible with the available methodologies. Therefore, mapping the motion-magnified videos to quantified ODS
vectors is necessary. So far, the Canny edge detection was used in previous studies for mapping the motion-magnified videos
to quantified ODS vectors. However, almost all the previous publications have reported that to obtain reasonable ODS vectors
using the Canny edge detection, thresholding, trial, and error, and also intensive human supervision and interference were
needed [21, 23, 27]. The problem originates from the fact that the edges are low-level features of an image and the edge
detection algorithms often detect the edges that are associated with the background and some of the artifacts that are induced
to the motion-magnified video during the magnification procedure.

Within this paper, we have introduced a new approach for converting the motion-magnified sequence of images to
quantified ODS vectors that requires considerably less human-supervision that can make the ODS vector estimation
procedure much faster and more reliable due to eliminating the human factor. The proposed methodology requires basic
surface preparation such as painting high-contrast key-points on the structure. Then the particle filter point tracking method
is utilized to track the key-points through all the frames of the motion-magnified video. As the final step, the k-means
clustering method is used to group and assign the particles to specific key-points to represent the ODS vector. Also, the
performance of the methodology has been evaluated on a cantilever beam. It has been shown the proposed procedure can
convert the outcome of phase-based video magnification to quantified ODS vectors with higher precision and less human
supervision.

The paper starts with a brief theoretical background on the particle filters, and then the details on the experimental test-
setup will be presented. Afterward, the performance of the proposed methodology is evaluated on a lab-scale cantilever
beam. In the last section, the conclusions are available.

8.2 Particle Filter for Point Tracking

The particle filter is one of the most general and practical tools in estimation theory and has numerous applications in
all aspect of engineering especially in estimating the states of the dynamic systems such as navigation systems, robotic
systems, and smart structures [30]. In computer vision, particle filters can be utilized for point tracking applications [31].
Compared to Kalman filters, particle filters can estimate the states of a non-linear system with non-Gaussian noise, while
the conventional Kalman filter is derived based on the linear system dynamics and Gaussian process and measurement
noise distribution assumptions. Alternative versions of Kalman filter such as Unscented Kalman Filter (UKF) and Extended
Kalman Filter (EKF) can estimate the states of a non-linear system, but the Gaussian distribution of measurement and process
noise assumptions should be satisfied to achieve an optimal estimation.

Within this paper, only the critical subjects on implementing the particle filter for point tracking is presented, and the
detailed explanations on the derivation of the general particle filter framework are avoided.
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For point tracking, M particles will be initiated. By definition, each particle is a sample of the posterior distribution.
Within this study, it is assumed that each particle is a vector consisting of x and y coordinate of the targets and the velocity

of the targets in x and y-direction. Therefore particle number j at time step i can be represented as pj
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For implementing one step of particle filter first, the states in the next time step needs to be predicted. This step is mainly
implemented by only plugging in the particles in the current time step in the system dynamics. In this study, a constant
velocity system dynamics is as described below:
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ẏi+1

⎫
⎪⎪⎬

⎪⎪⎭
=

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎧
⎪⎪⎨

⎪⎪⎩

xi

yi

ẋi
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xi, yi are the location of the targets and ẋi , ẏi are the speed of the target at the frame i. In Eq. (8.1) nx, nyṅx ṅy are process
noise that can have an arbitrary distribution. After predicting the new states for all the particles, a new set of particles will

be obtained Pi+1 =
{
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i+1, p
2
i+1, . . . , p

j
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M
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}
we are using the notation Pi+1 to show that this is not the final

estimation for the time step i + 1. Each particle in Pi+1 is obtained by substituting a particle from Pi in Eq. (8.1).
The next step in the particle filter algorithm for tracking is to compute the likelihood function for each of the particles in

Pi+1.
The likelihood distribution function is selected based on the Euclidian distance between the RGB values of the target and

the RGB vector associated with each particle in Pi+1 as indicated below.

d =
√

(r − rt )
2 + (g − gt )

2 + (b − bt)
2. (8.2)

d is the Euclidian distance between the pixel RGB (from the particle) values and target RGB in which r, g, b are the RGB
values of the pixel associated with a particle in the scene and rt, gt, bt are the RGB values of the specific targets that are
desired to be tracked in the scene. The likelihood function can be expressed as below:

P
(
T |pj
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)
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2πσ
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2σ 2

)
. (8.3)

In Eq. (8.3) T stands for the target. This likelihood function evaluates the probability of a particle being the target based
on its RGB value. Therefore, for each of the particles in Pi+1, a weight can be assigned to determine the similarity of a

specific particle to the desired target w
j
i+1 = P

(
T

∣∣∣pj
i+1

)
. It is also worth mentioning that we are assuming that the target

is not changing in different frames; therefore, the target does not have an index to keep track of the time step. The final
stage of the particle filter algorithm for tracking is to resample the particles form Pi+1 with replacement, proportional to the
weight of each particle w

j
i+1 to populate the final estimation at time i + 1, i.e. Pi + 1. In other words, the particles with higher

weight in Pi+1 will be resampled more often compared to the particles with smaller weights. Therefore, the final particles
will represent a posterior distribution of the desired states.

At this stage, the particle filter will be tracking the targets in the motion-magnified videos. However, the particles are
not registered to specific targets. In other words, the computer perceives all the particles as a 2D point cloud. Therefore, a
clustering algorithm will be applied on top of the particle filter to assign the particles to specific targets [32]. Within this
study, we will be using the k-means clustering algorithm to group the particles and assign them to specific targets. In the
next section, first, the experimental test-setup for the evaluation of the algorithm will be presented, and then the results for
mapping the motion-magnified videos to quantified ODS vectors will be discussed in more detail.
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High Speed CameraCantilevered Beam

Field of View for the High-Speed Camera-Frame rate: 2500 fps

a) b)

c)

Fig. 8.1 (a, b) The CMOS high-speed camera and the cantilever beam, (c) field of view for the camera capturing the sequence of images of the
vibrating beam

8.3 Experimental Test-Setup

In order to evaluate the performance of the proposed algorithm, a lab-scale test setup has been prepared. A contrived
cantilever beam is selected as the case study. A CMOS high-speed camera shown in Fig. 8.1 captures the sequence of
images from the vibrating cantilever-beam. The sequence of images was recorded with a sampling rate of 2500 frames per
second, and based on the Nyquist theorem the resonant frequencies and operating deflection shapes can be extracted up to
1250 Hz without facing aliasing. Because there is no anti-aliasing filtering available for optical measurements the aliased
higher order frequencies can be detected often, and the post-processing of the data should be handled more carefully. High
contrast black dots are also painted on the edge of the cantilever-beam, which are going to be used as the key-points form
tracking.

8.4 Quantifying the ODS Vectors

Within this section, the performance of the proposed methodology will be evaluated on the cantilever-beam experimental
test-setup. Figure 8.2 shows the two snapshots of the motion-magnified videos for the first four ODSs of the cantilever-
beam when the beam is at its maximum deflection. The snapshots are overlaid by an image fusion method for visualization
purposes. The first four resonant frequencies of the cantilever-beam are 34.18 Hz, 212.4 Hz, 595.7 Hz, and 1167 Hz. The
resonant frequencies are obtained by applying the phase-based motion estimation on the original video captured by the
high-speed camera while the beam was vibrating. Applying the phase-based video magnification in frequency bands that
are containing only one of the resonant frequencies of the beam will generate motion-magnified videos that will reveal the
operating deflection shape of the cantilever-beam at the selected resonant frequency.
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Fig. 8.2 Frames of motion magnified videos representing the visual perception of the first four operating deflection shapes of the cantilever beam

Figure 8.2 is demonstrating a visual perception of the ODSs of the cantilever-beam that is obtained by applying the phase-
based motion magnification on the original video of the vibrating cantilever-beam. However, for engineering applications
such as model updating, model validation or structural health monitoring decision-makings recovering the quantified ODS
vectors is necessary. In order to obtain the ODS vectors from motion magnified-video the particle filter tracker is used to track
the key-points throughout the frames as discussed earlier in the introduction. In this study the targets are black; therefore
we have selected a target RGB vector will small values ([15], and σ = 20). Figure 8.3 shows the snapshots of the motion-
magnified video while the particle filter estimator is being used to track the key-points on the cantilever-beam. All the orange
dots converge to the key-points in the motion-magnified videos and track them frame by frame. Within this study, we are
using 220,000 particles to achieve a robust tracking performance in all the frames, while maintaining a fast execution time
for the particle filter algorithm.

Once the tracking is performed, the particles should be grouped and assigned to specific targets (key-points). This
procedure is completed via the k-means clustering algorithm. Figure 8.4 demonstrates the particles after applying the k-
means clustering. The number of cluster centers should be larger than the number of key-points. Within this case study, we
have 29 targets; therefore, we have selected 30 cluster centers. As it is clear the nearby particles will be grouped and assigned
to a cluster center which will be used later as the estimation of the ODS vector.
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Fig. 8.3 Tracking the targets in motion-magnified videos using the particle filter algorithm

After clustering the particles, the quantified ODS vectors are estimated. The center of the clusters is the average of
the grouped particles. Because the averaging is taking place among a swarm of particles, the cluster centers can be
a reliable estimation of the ODS vectors. Each of the clusters is represented with a different color, and the center of
the cluster is a circle with the black edge around it. Moreover, some of the outliers of the estimation that are detected
from the background can be eliminated by applying a median filter. The median filter can detect the points that are
not following the general trend of the ODS vector and excludes them from the estimated ODS vector as shown in
Fig. 8.5a–d.
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Fig. 8.4 Applying k-means clustering algorithm for assigning particles to a specific target (segmentation step)

For quantitative evaluation, the MAC values between the estimated ODS vectors using the proposed methodology and
the ODSs obtained from the finite element model (FEM) in ABAQUS are computed and presented in Table 8.1. The
MAC values on the main diagonal are relatively close to one, which indicates the high correlation between the ODSs
from the video processing method introduced in this paper and FEM model implemented in ABAQUS. Moreover, the
off-diagonal terms in the MAC matrix are close to zeros that implies the orthogonality across different modes. The cantilever-
beam is a simple structure and obtaining a reliable FEM model is feasible in this case. The high correlation between
the estimated ODS vectors and the ODS vectors from the FEM model validates that the correctness of extracted ODS
vectors
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Fig. 8.5 Quantified ODS vectors obtained from motion-magnified videos by applying particle filters for tracking and the k-means clustering for
segmentation. (a) ODS 1, (b) ODS 2, (c) ODS 3, (d) ODS 4

Table 8.1 MAC values between the ODS vectors obtained from VM and mode shapes obtained from FEM

ODS vectors from the motion-magnified video
Frequency extraction 34.18 Hz 212.4 Hz 594.5 Hz 1167 Hz

33.69 Hz 0.972 0.062 0.018 0.004
211.0 Hz 0.031 0.957 0.010 0.017
590.3 Hz 0.021 0.017 0.953 0.002
1155 Hz 0.020 0.021 0.014 0.920

8.5 Conclusions

The paper proposes a new computer vision approach for mapping motion-magnified videos to quantified ODS vectors, which
can be used to enhance structure model validation, model updating, and structural health monitoring. The main contribution
in the proposed framework is that the human supervision for estimating the ODS vectors is decreased dramatically and the
ODS vector estimation procedure can be considered (semi)-automatic. Our workflow uses the particle filter algorithm to track
the key points in the motion-magnified videos, which are visual perceptions of the ODSs of the structure. Once the tracking is
performed a segmentation step is applied to the particles via a k-means clustering algorithm. The segmentation stage groups
and assigns the particles to specific targets to recover the operating deflection shape of the structure. The cluster centers
are providing good estimations for the ODSs of the case study of this paper (cantilevered-beam). Therefore, evaluating the
performance of this framework on more complex structures with elaborate geometry is also necessary. For future studies,
further investigations on the hyper-parameters of the proposed methodology such as the optimal number of particles or the
number of cluster-centers can be pursued to enhance the reliability and accuracy of the approach.



8 Mapping Motion-Magnified Videos to Operating Deflection Shape Vectors Using Particle Filters 83

References

1. Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Photogrammetry and optical methods in structural dynamics–a review. Mech. Syst.
Signal Process. 86(Part B), 17 (2017)

2. Feng, D., Feng, M.Q.: Computer vision for SHM of civil infrastructure: from dynamic response measurement to damage detection–a review.
Eng. Struct. 156, 105–117 (2018)

3. Sarrafi, A., Poozesh, P., Mao, Z.: A comparison of computer-vision-based structural dynamics characterizations. In: Model Validation and
Uncertainty Quantification, Volume 3, pp. 295–301. Springer, Cham (2017)

4. Castellini, P., Martarelli, M., Tomasini, E.P.: Laser Doppler Vibrometry: development of advanced solutions answering to technology’s needs.
Mech. Syst. Signal Process. 20, 1265–1285 (2006)

5. Cigada, A., Mazzoleni, P., Zappa, E.: Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system.
Exp. Mech. 54, 255–271 (2014)

6. Mazzoleni, P., Zappa, E.: Vision-based estimation of vertical dynamic loading induced by jumping and bobbing crowds on civil structures.
Mech. Syst. Signal Process. 33, 1–12 (2012)

7. Li, J., Xie, X., Yang, G., Zhang, B., Siebert, T., Yang, L.: Whole-field thickness strain measurement using multiple camera digital image
correlation system. Opt. Lasers Eng. 90, 19–25 (2017)

8. Xie, X., Zeng, D., Li, J., Dahl, J., Zhao, Q., Yang, L.: Tensile test for polymer plastics with extreme large elongation using quad-camera digital
image correlation. SAE Technical Paper 0148-7191 (2016)

9. Baqersad, J., Niezrecki, C., Avitabile, P.: Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured
by stereophotogrammetry. Mech. Syst. Signal Process. 62, 284–295 (2015)

10. Baqersad, J., Niezrecki, C., Avitabile, P.: Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using
3D point tracking and a modal expansion technique. J. Sound Vib. 352, 16–29 (2015)

11. Baker, S., Matthews, I.: Lucas-kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56, 221–255 (2004)
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Chapter 9
Structural Health Monitoring of Wind Turbines Using a Digital
Image Correlation System on a UAV

Ashim Khadka, Yaomin Dong, and Javad Baqersad

Abstract Unmanned aerial vehicles (UAVs) have recently emerged as a robust tool for remote inspection and data
acquisition at places that are either inaccessible or riskier to perform measurements. To quantify the level of strain/stress
and loading conditions that the rotating structures such as wind turbine experience during operation, an approach is proposed
that can perform a nondestructive evaluation of these rotating structures using non-contact, three-dimensional (3D) digital
image correlation (DIC). This technique addresses the benefit of non-interference with structure functionality and can be
used for rotating or non-rotating structures. In this project, a synchronized set of a stereo camera system is used to acquire
the images of a rotating turbine. These images are processed to obtain displacement, geometry, and strain over the wind
turbine blades during deformation.

Keywords Modal analysis · DIC · Wind turbine · Drone · Structural health monitoring

9.1 Introduction

Recently, wind turbines with large rotor blades are frequently used in the wind industry. These blades are critical components
that their failure may lead to fatal physical and financial loss. Thus, there is an increasing need for periodic damage prognosis
and condition-based monitoring of these structures to ensure the reliability of such critical systems [1–2]. Present practices
usually allow monitoring the gearbox, shaft, and bearings with the sensors mounted near the nacelle while many turbines fail
due to the damages at turbine blades. Numerical models can be used to analyze the dynamics of wind turbines [3]. However,
these models need to be validated. Thus, developing a measurement technique that can quantify the level of strain/stress
and the loading conditions that the rotating structures experience during operation is of interest to the wind and rotorcraft
industry.

Contact-based sensors such as accelerometers and strain gages are conventionally used for health monitoring of structures.
Many researchers have used these sensors for performing measurements in laboratory conditions or test facilities [4–6].
However, it is very challenging to use these sensors for measurements on rotating structures.

Non-contact techniques such as laser Doppler vibrometer [7–9] and photogrammetry [10–12] have been recently used
to measure vibrations of rotating structures. These techniques do not need wiring and can be readily integrated for rotating
structures measurements. Photogrammetry and DIC have been used for measurements on wind turbines [13–19], helicopter
rotors [20, 21], automotive components [22–25], and bridges [26, 27]. Recently, there have also been some efforts to integrate
the numerical methods and experimental techniques to obtain full-field strain data [28–35]. However, wind farms are in
remote areas such as ocean offshore. Thus, it is very desirable to perform measurements using a mobile platform. Researchers
have installed DIC cameras on drones to measure defects on bridges [36]. However, most of these measurements were
performed on static test structures.

The current paper proposes using a drone to perform dynamic measurements. The paper shows the methodology for the
measurements. It also presents a laboratory test case for validating the results. A field test on a small scale wind turbine was
also performed to ensure the system can capture the dynamics of rotating turbines. This technique can be easily scaled up to
be used for utility-scale wind turbines.
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9.2 Methodology

In this paper, a non-destructive technique is proposed to monitor rotating wind turbines using digital image correlation. The
proposed approach uses a drone with eight motors and propellers. An experiment was performed on a small-scale wind
turbine (see Fig. 9.1) to show the merit of the approach.

Figure 9.1 shows the wind turbine that is used for this measurement. The test structure is a six-bladed wind turbine with
113 cm blade diameter and 154 cm hub height.

For measurement using DIC, the area of the test structure must be prepared before the measurement by applying a high
contrast speckle pattern on the structure. This system is also capable of point tracking, in which the 3D coordinates of optical
targets mounted to the structure are extracted during deformation.

The principal aim of the project was remote structural health monitoring. A pair of high-speed cameras was desired to
be mounted in an unmanned aerial vehicle. For this project, a UAV was used with eight propellers and eight motors that is
controlled by 9-channel remote. Figure 9.2 depicts the drone with the stereo camera installed on it for DIC measurements of
wind turbine blades. Moreover, for better flight and stability, this drone is equipped with a GPS.

Fig. 9.1 A six-bladed wind turbine that was used for measurement

Fig. 9.2 Flight control electronics and view screen
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Fig. 9.3 Point Grey GS3-U3-32S4M-C camera with Fujinon 1:1.4/12.5 mm CF12.5HA-1 lens

Fig. 9.4 Diagram of camera
configuration and focal length

To perform 3-dimensional DIC measurements, a pair of cameras are required. The drone used two Point Grey GS3-U3-
32S4M-C cameras with Fujinon 1:1.4/12.5 mm CF12.5HA-1 lenses. These lenses allow for a wide depth of field to maintain
image clarity and compensate for any movement of the drone while taking images.

The camera mounting beam consists of a single 1′′ × 1′′, 1/16′′ thick square aluminum tube. The camera configuration
for the test measurements is shown in Figs. 9.3 and 9.4. The cameras are 1.08 m (∼39.4′′) apart with a focal length of 2.65 m
(∼104.5 in). At this focal length, the cameras form a 23◦ with the target. The cameras were synchronized in slave-slave
configuration, and the triggering was performed remotely.

9.3 Laboratory Results/Validation

The first experiment was conducted before the actual test flight. For this case, the turbine blades were non-rotating with the
fixed drone.

The experiment was conducted in controlled conditions inside the laboratory where the light intensity and camera position
could be set according to the need. This indoor experiment was conducted with the non-rotating turbine blades. Figure 9.5
shows the laboratory setup for the measurement of non-rotating turbine blades. To excite the turbine for DIC measurements,
the tip of one of the blades were displaced and allowed to vibrate freely.

Figures 9.6 and 9.7 are respectively the deformation contour and a mode shape of the non-rotating turbine blades obtained
using images captured from standing stereo camera on the fixed drone.
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Fig. 9.5 Indoor laboratory test setup to measure vibrations of wind turbine

Fig. 9.6 Full field – analysis for
non-rotating blades

Fig. 9.7 Mode shape at 13.67 Hz
for non-rotating turbine blades
and fixed drone condition

9.4 Outdoor Measurement

For this measurement, the drone was hovering in front of the wind turbine as shown in Fig. 9.8. Three cameras were installed
on the drone; two designated for photogrammetry and the other one for live video output to the remote screen and computer
vision. The onboard computer was operated using remote desktop. The distance and location for the drone from where



9 Structural Health Monitoring of Wind Turbines Using a Digital Image Correlation System on a UAV 89

Fig. 9.8 Flying drone for capturing images of the wind turbine blades

Fig. 9.9 Full field analysis of rotating blades

it would capture the images of the turbine blades was set according to the live feed from the camera. After locating the
position, cameras were triggered to capture the images. These images were processed using digital image correlation to
obtain the dynamic characteristics of the wind turbine.

The full field analysis of the turbine blades requires analyzing the speckle pattern on the turbine blades. The processing
of the images includes selecting the area of interest (AOI) and placing reference points. The post-processing step requires
defining the global cylindrical coordinates into the turbine blades. The out of plane deformation of the wind turbine at a
sample time is shown in Fig. 9.9. Then the time domain displacement was post-processed in the frequency domain. FRF
plot shows that the natural frequency of this turbine blade is 13.83 Hz. This frequency compares well with the laboratory
measurement.
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9.5 Conclusion

This paper aims to obtain the dynamic characteristics of the structure, here wind turbine, using non-contact full field digital
image correlation. The experiments were conducted for both indoor and outdoor conditions. The full field method is based
on analyzing the speckle pattern on the structure while point tracking tracks the optical targets to obtain the mode shape and
natural frequency of the turbine blades. Both the indoor and outdoor experiments validate the use of the stereo camera for
DIC in a mobile platform. The technique allows for health monitoring of prototype wind turbines by obtaining its full field
displacement in operating conditions without affecting the functionality of the wind turbine.

References

1. Ciang, C.C., Lee, J.-R., Bang, H.-J.: Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas. Sci.
Technol. 19, 122001 (2008)

2. Larsen, F.M., Sorensen, T.: New lightning qualification test procedure for large wind turbine blades. In: Proceedings of International Conference
on Lightning and Static Electricity, Blackpool, UK, 2003

3. Baqersad, J., Niezrecki, C., Avitabile, P.: Numerical and experimental analysis of the boundary conditions effects on the dynamics of wind
turbines. Wind Eng. 39, 437–452 (2015)

4. Baqersad, J., Niezrecki, C., Avitabile, P., Slattery, M.: Dynamic characterization of a free-free wind turbine blade assembly. In: Special Topics
in Structural Dynamics, vol. 6, pp. 303–312. Springer (2013)

5. Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Comparison of modal parameters extracted using MIMO, SIMO, and impact hammer
tests on a three-bladed wind Turbine. In: Topics in Modal Analysis II, vol. 8, pp. 185–197. Springer (2014)

6. Obando, S.E., Baqersad, J., Avitabile, P.: Improved modal characterization using hybrid data. Sound Vib. 48, 8–12 (2014)
7. Yang, S., Allen, M.S.: Output-only modal analysis using continuous-scan laser Doppler Vibrometry and application to a 20 kW wind turbine.

Mech. Syst. Signal Process. 31, 228–245 (2012). https://doi.org/10.1016/j.ymssp.2012.04.012
8. Ozbek, M., Rixen, D.J., Erne, O., Sanow, G.: Feasibility of monitoring large wind turbines using photogrammetry. Energy. 35, 4802–4811

(2010). https://doi.org/10.1016/j.energy.2010.09.008
9. Ehrhardt, D.A., Allen, M.S., Yang, S., Beberniss, T.J.: Full-field linear and nonlinear measurements using continuous-scan

laser Doppler Vibrometry and high speed three-dimensional digital image correlation. Mech. Syst. Signal Process. 86, 82–97.
https://doi.org/10.1016/j.ymssp.2015.12.003

10. Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Photogrammetry and optical methods in structural dynamics – a review. Mech. Syst.
Signal Process. 86, 17–34. https://doi.org/10.1016/j.ymssp.2016.02.011

11. Sarrafi, A., Poozesh, P., Mao, Z.: A comparison of computer-vision-based structural dynamics characterizations. In: Barthorpe, R., Platz,
R., Lopez, I., Moaveni, B., Papadimitriou, C. (eds.) Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the
35th IMAC, A Conference and Exposition on Structural Dynamics 2017, pp. 295–301. Springer International Publishing, Cham (2017).
https://doi.org/10.1007/978-3-319-54858-6_29

12. Niezrecki, C., Baqersad, J., Sabato, A.: Digital image correlation techniques for NDE and SHM. In: Handbook of Advanced Non-Destructive
Evaluation, pp. 1–46 (2018). https://doi.org/10.1007/978-3-319-30050-4_47-1

13. Baqersad, J., Carr, J., Lundstrom, T., Niezrecki, C., Avitabile, P., Slattery, M.: Dynamic characteristics of a wind turbine blade using 3D digital
image correlation. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for
Optics and Photonics, pp. 83482I-83482I-83489 (2012)

14. Carr, J., Baqersad, J., Niezrecki, C., Avitabile, P., Slattery, M.: Dynamic stress–strain on turbine blades using digital image correlation
techniques part 2: dynamic measurements. In: Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, vol. 2, pp.
221–226. Springer, New York, NY (2012)

15. Lundstrom, T., Baqersad, J., Niezrecki, C., Avitabile, P.: Using high-speed stereophotogrammetry techniques to extract shape information from
wind turbine/rotor operating data. In: 30th IMAC, A Conference on Structural Dynamics, 2012, January 30, 2012–February 2, 2012, Springer
New York, Jacksonville, 2012, pp. 269–275. https://doi.org/10.1007/978-1-4614-2419-2_26

16. Poozesh, P., Sarrafi, A., Mao, Z., Avitabile, P., Niezrecki, C.: Feasibility of extracting operating shapes using phase-based motion magnification
technique and stereo-photogrammetry. J. Sound Vib. 407, 350–366 (2017). https://doi.org/10.1016/j.jsv.2017.06.003

17. Poozesh, P., Sarrafi, A., Mao, Z., Niezrecki, C.: Modal parameter estimation from optically-measured data using a hybrid output-only system
identification method. Measurement. 110, 134–145 (2017)

18. Sarrafi, A., Mao, Z.: Wind turbine blade damage detection via 3-dimensional phase-based motion estimation. In: Proceedings of the 11th
International Workshop on Structural Heath Monitoring 2017, (2017). https://doi.org/10.12783/shm2017/14154

19. Sarrafi, A., Poozesh, P., Niezrecki, C., Mao, Z.: Mode extraction on wind turbine blades via phase-based video motion estimation. In: SPIE
Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp.
101710E-101710E-101712, 2017

20. Lundstrom, T., Baqersad, J., Niezrecki, C.: Monitoring the dynamics of a helicopter Main rotor with high-speed Stereophotogrammetry. Exp.
Tech. (2015). https://doi.org/10.1111/ext.12127

21. Schneider, O.: Analysis of SPR measurements from HART II. Aerosp. Sci. Technol. 9, 409–420 (2005).
https://doi.org/10.1016/j.ast.2005.01.013

22. Patil, K., Baqersad, J., Sheidaei, A.: A multi-view digital image correlation for extracting mode shapes of a tire. In: Shock & Vibration,
Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, vol. 9, pp. 211–217. Springer, Cham (2017)

http://dx.doi.org/10.1016/j.ymssp.2012.04.012
http://dx.doi.org/10.1016/j.energy.2010.09.008
http://dx.doi.org/10.1016/j.ymssp.2015.12.003
http://dx.doi.org/10.1016/j.ymssp.2016.02.011
http://dx.doi.org/10.1007/978-3-319-54858-6_29
http://dx.doi.org/10.1007/978-3-319-30050-4_47-1
http://dx.doi.org/10.1007/978-1-4614-2419-2_26
http://dx.doi.org/10.1016/j.jsv.2017.06.003
http://dx.doi.org/10.12783/shm2017/14154
http://dx.doi.org/10.1111/ext.12127
http://dx.doi.org/10.1016/j.ast.2005.01.013


9 Structural Health Monitoring of Wind Turbines Using a Digital Image Correlation System on a UAV 91

23. Mange, A., Srivastava, V., More, J., Baqersad, J.: Using digital image correlation to measure dynamics of rolling tires. In: SAE World Congress,
SAE Technical Paper, Detroit (2018). https://doi.org/10.4271/2018-01-1217

24. Patil, K., Srivastava, V., Baqersad, J.: A Multi-view optical technique to obtain mode shapes of structures. Measurement. 122, 358–367 (2018).
https://doi.org/10.1016/j.measurement.2018.02.059

25. Srivastava, V., Patil, K., Baqersad, J., Zhang, J.: A multi-view DIC approach to extract operating mode shapes of structures. In: Structural
Health Monitoring, Photogrammetry & DIC, vol. 6, pp. 43–48. Springer (2019)

26. Kim, S.-W., Kim, N.-S.: Dynamic characteristics of suspension bridge hanger cables using digital image processing. NDT & E Int. 59, 25–33
(2013). https://doi.org/10.1016/j.ndteint.2013.05.002

27. Busca, G., Cigada, A., Mazzoleni, P., Zappa, E.: Vibration monitoring of multiple bridge points by means of a unique vision-based measuring
system. Exp. Mech. 54, 255–271 (2014). https://doi.org/10.1007/s11340-013-9784-8

28. Baqersad, J., Niezrecki, C., Avitabile, P.: Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using
3D point tracking and a modal expansion technique. J. Sound Vib. 352, 16–29 (2015). https://doi.org/10.1016/j.jsv.2015.04.026

29. Baqersad, J., Niezrecki, C., Avitabile, P.: Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured
by stereophotogrammetry. Mech. Syst. Signal Process. 62, 284–295 (2015). https://doi.org/10.1016/j.ymssp.2015.03.021

30. Carr, J., Baqersad, J., Niezrecki, C., Avitabile, P.: Full-field dynamic strain on wind turbine blade using digital image correlation techniques
and limited sets of measured data from photogrammetric targets. Exp. Tech. (2015). https://doi.org/10.1111/ext.12129

31. Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: A noncontacting approach for full-field strain monitoring of rotating structures. J. Vib.
Acoust. 138, 031008–031008 (2016). https://doi.org/10.1115/1.4032721

32. Baqersad, J., Bharadwaj, K., Poozesh, P.: Modal expansion using strain mode shapes. In: Shock & Vibration, Aircraft/Aerospace, Energy
Harvesting, Acoustics & Optics, vol. 9, pp. 219–226. Springer (2017)

33. Bharadwaj, K., Baqersad, J.: Strain Expansion Using Mode Shapes Obtained with Digital Image Correlation, Composite Structures (2018, in
press)

34. Chen, Y., Joffre, D., Avitabile, P.: Underwater dynamic response at limited points expanded to full-field strain response. J. Vib. Acoust. 140,
051016 (2018)

35. Rahneshin, V., Chierichetti, M.: An integrated approach for non-periodic dynamic response prediction of complex structures: numerical and
experimental analysis. J. Sound Vib. 378, 38–55 (2016). https://doi.org/10.1016/j.jsv.2016.05.017

36. Reagan, D., Sabato, A., Niezrecki, C.: Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring
of bridges. Struct. Health Monit. 17(5), 1056–1072 (2018). https://doi.org/10.1177/1475921717735326

http://dx.doi.org/10.4271/2018-01-1217
http://dx.doi.org/10.1016/j.measurement.2018.02.059
http://dx.doi.org/10.1016/j.ndteint.2013.05.002
http://dx.doi.org/10.1007/s11340-013-9784-8
http://dx.doi.org/10.1016/j.jsv.2015.04.026
http://dx.doi.org/10.1016/j.ymssp.2015.03.021
http://dx.doi.org/10.1111/ext.12129
http://dx.doi.org/10.1115/1.4032721
http://dx.doi.org/10.1016/j.jsv.2016.05.017
http://dx.doi.org/10.1177/1475921717735326


Chapter 10
Full-Field Mode Shape Identification of Vibrating Structures
from Compressively Sampled Video

Bridget Martinez, Yongchao Yang, Ashlee Liao, Charles Farrar, Harshini Mukundan, Pulak Nath,
and David Mascareñas

Abstract Video-based techniques for structural dynamics have shown great potential for identifying full-field, high-
resolution modal properties. One significant advantage of these techniques is that they lend themselves to being applied
to structures at very small length scales such as MEMS devices and living cells. These small structures typically will
have resonant frequencies greater than 1 Khz, thus requiring the use of high-speed photography to capture their dynamics
without aliasing. High speed photography generally requires the structure-under-test (e.g. living cell) to be exposed to high
levels of illumination. It is well-known that exposing delicate structures such as living cells to these high levels of light
energy can result in damage to their structural integrity. It is therefore desirable to develop techniques to minimize the
amount of illumination that is required to capture the modal properties of interest. This is particularly important given
that the mechanical properties of living cells have recently been found to be of interest to the biomedical community. For
example, it is known that changes in cell stiffness are correlated with grade of metastasis in cancer cells. Compressive
sensing techniques could help mitigate this problem, particularly in fluorescence microscopy applications where cells are
illuminated using a laser light source. Compressive sampling would allow for the cells to be exposed to the laser light with
a significantly lower duty cycle, thus resulting in less damage to the cells. As a result the structural dynamics of the cells
can be measured at increasingly high frequencies yielding new information about cellular material properties that can be
coupled with biochemical cues to yield new therapeutic strategies. Furthermore, video-based techniques would benefit from
the reductions in memory, bandwidth and computational requirements normally associated with compressive sampling. In
this work we present a technique that intimately combines solutions to the blind-source separation problem for video-based,
high-resolution operational modal analysis with compressive sampling.

Keywords Compressive sensing · Operational modal analysis · Imager · Microscopy · Cancer

10.1 Introduction

Since its introduction to the field of signal processing in 2004, compressed sensing (CS) has enabled many applications
which allow for the recovery of sparse or compressible signaling. Following the famous Shanon sampling theorem, CS
has proven a great triumph in the field of signal processing [1–4]. As abovementioned, CS is useful in the acquisition of
signals which are either spare or compressible; both compressibility and sparsity are properties that can be assigned to
information which can be represented in its entirety, or completeness with only a few, key components of data. Furthermore,
these characteristics are not limited to being represented in the original domain but can also exist in transform domains.
Traditionally, acquisition of sparse signals must meet Nyquist criterion, wherein the ratio of signal to data is increased,
as well as requires compressing the signal, transforming coefficients and retaining only some of the coefficients. CS was

B. Martinez (�) · A. Liao · C. Farrar · D. Mascareñas
Los Alamos National Lab, Engineering Institute, Los Alamos National Lab, Los Alamos, NM, USA
e-mail: bmartinez26@ucmerced.edu

Y. Yang
Energy and Global Security, Argonne National Laboratory, Lemont, IL, USA

H. Mukundan
Los Alamos National Lab, Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Lab, Los Alamos, NM, USA

P. Nath
Los Alamos National Lab, Applied Modern Physics, Los Alamos National Lab, Los Alamos, NM, USA

© Society for Experimental Mechanics, Inc. 2019
C. Niezrecki et al. (eds.), Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6, Conference Proceedings
of the Society for Experimental Mechanics Series, https://doi.org/10.1007/978-3-030-12935-4_10

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12935-4_10&domain=pdf
mailto:bmartinez26@ucmerced.edu
https://doi.org/10.1007/978-3-030-12935-4_10


94 B. Martinez et al.

inspired by efforts to decrease sampling amounts when most would eventually be discarded anyway. Since its introduction to
the field, this signal processing technique has become particularly attractive in the fields of microscopy and medical imaging,
where taking measurements poses great expense and sensing is time consuming and more prone to error [5–9].

CS appeal as a successful technique for imaging recovery comes from its utility in being able to reconstruct signals
perfectly with the use of non-linear reconstruction algorithms. As abovementioned, it has become particularly attractive in
the field of medicine. Its uses are evident in the reconstruction of x-ray cone-beam computed tomography (CBCT). In CBCT,
subsampling due to slow rotation and low frame rate of x-ray detectors is circumvented through content-driven hierarchical
reconstruction based on compressed sensing [10]. In addition, CS is also used in multichannel EEG signals. The study by
Lui et al., for example, shows how the simultaneous co-sparsity and low-rank optimization enables successful compressed
sensing of EEG signals. The study further highlights that this is true even during poor sparse representation. In this wireless
EEG system, the authors show that their proposed model with L0 norm with Schatten-O norm reduces the power consumption
of the system [11].

Compressed sensing has also been found useful in magnetic resonance imaging (MRI). This type of imaging is critical
in clinical settings where its sensitivity enables crucial diagnostic and research efforts. Patient comfort and compliance is
often hindered given the high cost and lengthy acquisition times of the imaging modality. For these reasons, compressed
sensing has been identified as a fruitful technique useful for lowering scan acquisition times. Normally, the minimum scan
acquisition time is set via the invariable amount of data that is necessitated to meet Nyquist criteria. Applying compressed
sensing theory, a MR image that is sparse, or which can be mathematically transformed into a sparse image, can be exploited
to recover high definition images [12]. The concept of random under sampling/data acquisition followed by a constrained
reconstruction has existed in the field of signal processing for some time, but the idea to apply the theory in the field of
medicine, especially in imaging modalities and its practicality in the field, are still being sorted [2]. Variation sparsity is
also exploited in other imaging modalities, including ultrasound computed tomography (UCT). For example, Van Sloun
et al. demonstrated that acquisition time is reduced by a complete order of magnitude while still maintaining high spatial
resolution using compressed acquisitions with concurrent randomized transmission in circular array configurations. UCT is
invaluable in medicine, enabling the reconstruction of tissue characteristics which provide the field of oncology with crucial
information. Moreover, while it is beneficial to reduce the slice acquisition time, it will be interesting to contemplate future
applications in 3-D UCT [13].

Given its utility in many imaging modalities, it seems possible that CS would also find utility in structural dynamics
at the cellular level. Current research aims are to develop and use sensitive image analysis techniques for quantitatively
characterizing cells undergoing cancer metastasis. There still exists significant gaps in quantitatively analyzing the data from
current techniques, and in using them to verify and validate finite element models describing the mechanics of cells. This is
primarily because of the lack of comprehensive techniques to measure the full-field structural stiffness of cells. There is a need
for novel and unique imaging techniques develop that provide verification and validation of finite element models of cellular
structure. Understanding how cellular structure drives resulting function can facilitate formulation of unique anti-cancer
treatments by directly affecting ECM structure, bypassing its drug-inhibitory effect in cancer cells altogether. Compressive
sensing techniques could help mitigate this problem, particularly in fluorescence microscopy applications where cells are
illuminated using a laser light source. Compressive sampling would allow for the cells to be exposed to the laser light with a
significantly lower duty cycle, thus resulting in less damage to the cells. As a result, the structural dynamics of the cells can
be measured at increasingly high frequencies yielding new information about cellular material properties that can be coupled
with biochemical cues to yield new therapeutic strategies. An additional benefit in using video-based techniques would be
the reductions in memory, bandwidth and computational requirements normally associated with compressive sampling. In
this work we present a technique that intimately combines solutions to the blind-source separation problem for operational
modal analysis with compressive sampling.

Recently, a significant useful technique has been identified as a potential tool to measure and characterize the mode
shapes of cells at very high spatial resolution. By combining the theory of structural dynamics with computer vision and
unsupervised machine learning algorithms, researchers have recently developed a technique that that is able to autonomously
and efficiently measure and characterize structural dynamics at very high spatial density using only an imager [21–23]. It
will be exciting to exploit this novel technique in hopes that it will provide a new, efficient tool for significantly better
characterization of how stiffness and mass distribution changes in a cell and in identifying its associated EMC biochemical
cues, highlighting potential therapeutic targets. This knowledge could be used to provide verification and validation of finite
element models of cellular structure. This highly interdisciplinary work combines knowledge and data from experimental
structural dynamics and molecular cellular biology in efforts to characterize the structural dynamics of cells at high spatial
resolution.
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10.2 Background

The algorithm for extracting full-field, high resolution structural dynamics information from video of vibrating structures
can be summarized as follows [14]:

1. Convert the intensity measurements at each pixel into a quantity that represents the displacement at each pixel. This
transformation can potentially be accomplished in a variety of ways. For in-plane motion phase-based optical flow [15–
17], provides a useful means to perform the conversion from pixel intensity to displacement and is used in this work.
Ultimately this procedure is applied across the time-span of the video and the result is a time series of displacement for
every pixel.

2. Perform principle components analysis (PCA) across all of the displacement time series in order to reduce the
dimensionality of the data. It is expected that the number of non-trivial eigenvalues calculated from the displacement
time series for each pixel generated from a video of a vibrating structure will be of the same order as the number of
mode shapes that are observable from the displacement time series. For this reason, it is only necessary to retain about the
number of top eigenvectors that correspond to the number of non-trivial singular values.

3. We now take advantage of the observation that the canonical form of the blind source separation problem has exactly the
same form as the linear, multi-degree-of-freedom, structural dynamics equations when written in the modal form [18, 19].
If the blind source separation problem is solved using the time series extracted from the principle components analysis
above as input, the columns of the mixing matrix provided by a blind source separation solution technique will yield the
mode shapes at high-spatial resolution, and the resulting individual signal sources correspond to the modal coordinates
for each mode. Thus far complexity pursuit [20] has been found to be an attractive algorithm for solving the blind-source
separation problem for structural dynamics applications.

After applying these steps to the video, the result is high-resolution mode shapes and modal coordinates that can be
used to estimate resonant frequencies and damping ratios. This approach to structural dynamics identification is attractive
because it is conceptually easy to understand and the mode shapes provided have spatial resolution on the order of the
pixel size. Furthermore, the algorithm lends itself to being automated, which makes it attractive for long-term monitoring of
structures. However, if one is particularly perceptive it is possible to see that this algorithm also inherently possess properties
of compressive sampling similar to those found in [21]. In fact, the algorithm in its current form allows for the automatic
estimation of the mode shapes when only a randomly selected subset of the frames are used for analysis.

Amazingly, it is not even necessary to know what the random measurement matrix is. In contrast, traditional applications
of compressive sampling to structural dynamics data requires the measurement matrix be known in order to perform an L1
minimization step to recover the original signal from the compressively sampled signal [22]. The reason that mode shapes
can be recovered automatically from randomly measured samples is related to the phenomena that allows this algorithm to
operate even when the video is captured at a framerate below the Nyquist frequency of the structural vibrations [23]. To
clarify, the canonical blind source separation problem can be written as:

x(t) = As(t) (10.1)

Where x(t) is a column vector of the time series for each measurement available for analysis, s(t) is a column vector of
time series associated with the sources generating the measured data, and A is the mixing matrix that indicates how the source
time series are combined to form the measured time series. For comparison, the linear, multi-degree-of-freedom structural
dynamics equations are written as:

x(t) = 	q(t) (10.2)

Where x(t) is once again a column vector of the time series for each measurement available for analysis. In this case
presumably displacement measurements from a vibrating structure. Φ is a matrix whose columns are the structural mode
shapes, and q(t) is a column vector of the modal coordinates. An examination of Eqs. (10.1) and (10.2) reveals that the
mixing matrix A, and by extension the mode shape matrix Φ do not depend on the temporal nature of the measurements
or the temporal nature of the generating sources/modal coordinates. As a result, if all that is needed is the high-resolution
mode shapes, the blind source separation step will theoretically extract the mode shapes regardless of whether all the frames
are present, or only a subset of the frames are present. In either case, the mixing relationship between the source signals is
preserved and therefore the algorithm will theoretically return the correct mode shapes.
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Furthermore, unlike in conventional compressive sampling procedures there is no need to perform any kind of L1
minimization-based reconstruction step, there is no need to know the form of the mixing matrix, and there is no need to
know the basis in which the signal is sparse. Solving the blind source separation problem automatically estimates the mode
shapes without any of this information or extra steps. It is interesting to note that theoretically it is possible to extract the
mode shapes even if the order of the random subset of frames were randomly shuffled. It is important to note that the modal
coordinates are not recovered by solving the blind source separation problem for the case of only a random subset of the
frames being used for the analysis. However, it is hypothesized that the modal coordinates could be recovered in the case of
a random subset of frames by using an L1 reconstruction step with knowledge of the measurement matrix and assuming the
modal coordinates are sparsely represented in a Fourier basis as is expected for a linear dynamical system. This hypothesis
will be explored in future work.

10.3 Experimental Setup

In order to demonstrate the performance of the blind source separation techniques for extracting high-resolution, full-field
mode shapes from a random subset of frames from the original video we consider the case of a vertical, aluminum cantilever
beam that has been subject to an impact excitation at its base. A video of the vibrating beam was captured at 480 frames per
second (FPS). A total of 600 frames were captured and the dimensions of the frames are 216 pixels × 384 pixels. Figure
10.1 shows a representative frame captured by the video camera.

For the sake of completeness, the original video was run through the algorithm described in the background section. The
algorithm was directed to search for 3 modes. Figure 10.2 provides the resulting modal coordinates shown in both the time
and frequency domain. An examination of the modal coordinates reveals that 3 modes can be observed from the video. These
modes occur at 7.2 Hz, 47.2 Hz, and 133.6 Hz. The three modes are highly separated in the frequency domain.

10.4 Analysis

Next, we demonstrate the ability of the algorithm described in the background section to extract high resolution mode shapes
from random subsets of the frames that make up the original video. Figure 10.3 shows the mode shapes extracted by the
algorithm for different numbers of frames in the subset of random frames used to perform the analysis. Row a shows the
mode shapes extracted from the original video as a benchmark. These mode shapes have the characteristics that would be
expected for a cantilever beam. The mode shapes shown for rows a through c were extracted with the algorithm directed
to find 3 mode shapes. The mode shapes extracted when only a random subset of 48.8% of the original frames were used
(row b) are visually identical to the case where 100% of the frames were used (row a). In the case where a random subset
of only 16.83% of the frames were used (row c) the first mode is essentially visually identical to the 100% frames case,
however the second and third modes appear to have experienced some degradation in comparison to the 100% frames case.

Fig. 10.1 Example frame
captured from the camera of the
vibrating beam. 600 frames were
captured at 480 frames per
second. Video pixel dimension is
216 × 384



10 Full-Field Mode Shape Identification of Vibrating Structures from Compressively Sampled Video 97

Fig. 10.2 The modal coordinates extracted from the video of the vibrating cantilever beam with no compressive downsampling. Mode 1 occurs at
7.2 Hz, mode 2 is at 47.2 Hz and Mode 3 occurs at 133.6 Hz. The original video is captured at 480 FPS

Fig. 10.3 Modes extracted from the randomly selected frames. The original video is captured at 480 FPS. The mode shapes have been rotated 90◦
from the vertical position in order to facilitate their display and visual comparison

It appeared that the algorithm was not able to observe the third mode in this case, and instead tried to split the second mode
into two separate independent shapes. This observation was based on the fact that the 2nd and 3rd mode shape extracted by
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the algorithm both only have 1 inflection point which is consistent with what would be expected for the 2nd mode shape of
a cantilever beam. Based on this observation, it was determined that in the case of using only a random subset of 16.83% of
the original frames it made sense to direct the algorithm to only search for 2 modes. The resulting modes are shown in row
d. An inspection of the mode shapes shown in row d show that the 1st and 2nd mode shape are visually identical to the mode
shapes captured in the case of 100% of the frames.

The results shown in Fig. 10.3 provide strong evidence that compressive sampling techniques can be effectively be used
when trying to estimate the mode shapes of structures. It is found that as the number of frames is decreased, the higher 3rd
mode is no longer observed. This result suggests that the technique gracefully degrades in performance as the number of
frames used in the analysis decreases. A quantifiable degradation in the performance of compressive sampling techniques
for structural dynamics applications was also observed in [22] and is arguably a desirable property of compressive sampling
techniques. Future research should focus on the development of improved techniques to automatically decide the number
of independent components that the algorithm should retain. The number of components that should be searched for will
be dependent on the number of frames used in the analysis and the number of modes that are excited during the structural
vibration.

10.5 Conclusions

In this work we demonstrate that full-field, high-resolution blind-source separation-based techniques for structural mode
shape identification are immediately suited for compressive sensing analysis. These techniques do not require knowledge
of the random measurement matrix, the basis in which the mode shapes are sparse, or an additional L1 reconstruction step.
These techniques are readily amenable to both field applications as well as to applications such as fluorescence microscopy
where it is desirable to reduce the duty cycle of active laser illumination on cells which might otherwise cause damage.
Furthermore, the application of compressive sampling techniques to high-resolution structural identification is particularly
attractive for structural monitoring applications in bandwidth-limited environments such as monitoring underwater structures
and monitoring from spacecraft. In addition, the use of compressive sampling techniques reduces the energy resources needed
to perform analysis in wireless multimedia sensor networks.
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Chapter 11
Experimental Modal Analysis of Tumorigenesis
and Cancer Metastasis

Bridget Martinez, Yongchao Yang, Charles Farrar, Harshini Mukundan, Pulak Nath, and David Mascareñas

Abstract Traditionally, performing an experimental modal analysis of a building/structure required instrumenting the
structure with a spatially distributed array of accelerometers or strain gages. Alternatively, a laser doppler vibrometer would
have to be scanned across the structure of interest in a sequential manner to measure structural response. Recently, researchers
at LANL developed a technology that combines the theory of structural dynamics with computer vision that provides the
capability to characterize structural dynamics at very high spatial density using only an imager. With this newfound success at
the macro-scale, we have exploited this novel technology to a whole new scale- to studying the basic structure of life itself, the
human cell. We hypothesize that this new technology and novel application will provide a significantly better understanding
of how stiffness and mass distribution changes in a cell as it undergoes epithelial-mesenchymal transition, and in identifying
its associated EMC biochemical cues, highlight potential therapeutic targets. For the first time it should be possible to measure
the high-resolution mode shapes of cells; given that all cells undergoing cancer metastasis experience a breakdown in the
cytoskeleton, this work will enable groundbreaking advances in various fields including medicine and structural dynamics. It
is imperative to highlight, that we are only beginning to understand the relationship between biophysical properties of cells
and their potential to regulate tumorigenesis and motility, which is commonly known as metastasis. This knowledge could
be used to provide verification and validation of finite element models of cellular structure. This work will represent the first
time that expertise in experimental structural dynamics will be brought to bear on the problem of characterizing the structural
dynamics of cells at high spatial resolution, which is novel and unique on its own. When successful, this new technology
could be used to couple the biophysical cues associated with other detrimental human pathologies.

Keywords Cancer · Mode shapes · Microscopy · Finite element models · Tumorigenesis

11.1 Introduction

Mechanoreciprocity refers to a cell’s ability to maintain tensional homeostasis in response to various types of forces. Physical
forces are continually being exerted upon cells of various tissue types, even those considered static tissues, such as the brain.
Through mechanoreceptors, cells sense and subsequently respond to these stimuli. These forces and their respective cellular
responses are prevalent in regulating everything from embryogenic tissue-specific differentiation, programmed cell death, and
in what has garnered the most attention, disease progression. Abnormal mechanical remodeling of cells can provide clues
as to the pathological status of many tissues. This becomes particularly important in cancer cells, where cellular stiffness
has been recently accepted as a novel biomarker for cancer metastasis. Several studies have elucidated the importance of
cell stiffness in cancer metastasis, with data highlighting that a reversal of tumor stiffness has the capacity to revert the
metastatic properties of cancer. Thus, our research endeavors to exploit this knowledge and, in using new strategies such as
recently developed video-based techniques for structural dynamics, venture to further our understanding of the mechanisms
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Fig. 11.1 Confocal light microscopy image; CCL1 mouse fibroblast cell line (10 × 10) (a) cells undergoing cell division (b) cell line displaying
normal dimorphism

which generate pathogenic cell stiffness. Our research strives to highlight potential new strategies which have the capacity to
advance our understanding of one of human-kind’s most detrimental medical pathologies, and in so doing, outline potential
new therapeutic targets against it.

The importance of maintenance of extracellular matrix (ECM) biophysical properties can be extrapolated from studies
showing that inappropriate alterations are associated with fibrotic, or tissue scarring conditions and metastatic cancer. Indeed,
it is well recognized that the ECM of a tumor is largely distinct from its physiologic counterpart [1–4]. Additionally,
studies which outline how post-translational cross-linking of the ECM in premalignant breast cancer is a necessary step
for transformation into a malignant cancer further enables us to appreciate how an ECM’s biochemical composition plays
such paramount importance in cancer progression [5, 6]. Similar results have been published for other various types of cancer,
including colorectal [7, 8]. This highly impactful data underscores the significance of ECM homeostasis and highlights the
necessity to better understand the mechanism(s) that drive ECM remodeling in the context of oncology.

Our current work seeks to succeed in the following two aims. The first aim of our study is to be able to extract full-field,
high resolution, modal properties from various types of cancer cells using technology that combines the theory of structural
dynamics with computer vision that provides the capability to characterize structural dynamics at very high spatial density
using only an imager. The image acquisition will be facilitated with the use of fluorescence microcopy, using GFP-alpha
tubulin to express cell structure and microtubule network. Our current work is focused on using the CCL1 mouse fibroblast
cell line (Fig. 11.1).

By combining the theory of structural dynamics with computer vision and unsupervised machine learning algorithms,
researchers have recently developed a technique that that is able to autonomously and efficiently measure and characterize
structural dynamics at very high spatial density using only an imager. It will be exciting to exploit this novel technique in
hopes that it will provide a new, efficient tool for significantly better characterization of how stiffness and mass distribution
changes in a cell and in identifying its associated EMC biochemical cues, highlighting potential therapeutic targets. With
the success of these studies, we will be well on our way to understanding the intricate relationship between the biophysical
properties of cells and their potential to regulate tumorigenesis and motility. This knowledge could be used to provide
verification and validation of finite element models of cellular structure. Our current research demonstrates the first time
that knowledge in experimental structural dynamics will be brought to bear on the problem of characterizing the structural
dynamics of cells at high spatial resolution.

The second aim of our study seeks to excite varying types of cancer cells using cavitation bubble techniques combined
with microfluidic capabilities. Sonoporation, or micro-bubble mediated cell lysis, facilitates gene-drug delivery to cells, here
we attempt to use the technique to excite cells to specific frequencies by controlling the distance from which cavitation
bubbles are induced, roughly around 40 um. We are currently working to develop a unique microfluidic device which allows
for the capacity to control “shooting distance” from cavitation bubble generation to cancer cell. The design will aim to enable
pre- as well as post-device applications, such as the ability to carry out genomic and proteomic capabilities. For example, it
would be ideal to be able to control the cell distance from the cavitation bubbles, as well as have the potential to remove single
cells from microfluidic devices and proceed straight to real-time polymerase chain reaction applications. Given that distance
from cavitation bubble to cell defines function, i.e. whether we are generating localized displacement of cellular membrane,
or simply exciting the cell to its natural frequency, it is imperative to able to develop a device that has the capacity to both
simply excite as well as lyse the cell. Cell lysis through this microbubble-medicated biophysical process will enable quick
throughput applications of specific cells, as well as remove the need to induce sonoporation through chemical interactions.
Here we provide a simple schematic of the proposed device (Fig. 11.2).
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Fig. 11.2 Proposed microfluid device configuration; controlling the distance from which cavitation bubbles are induced, roughly around 40 um

11.2 Conclusion

Currently, interesting non-contact/non-intrusive imaging methods are being used for diagnostic purposes is interferometric
phase microscopy (IPM), which provides several advantages over AFM [9]. The appeal of IPM is that it captures the entire
amplitude and phase data from the optical illumination of the sample, generating an optical thickness fluctuation map, which
indicates rigidity strength for every cell in the field of view [9], with the added benefit of cell to cell comparison. Even as
we circumvent existing limitations and find novel techniques that increase imaging sensitivity, it is imperative to note that
we are only beginning to understand the relationship between biophysical properties of cells, and their potential to regulate
tumorigenesis and motility [10]. There is a need for novel and unique imaging techniques develop that provide verification
and validation of finite element models of cellular structure. Understanding how cellular structure drives resulting function
can facilitate formulation of unique anti-cancer treatments by directly affecting ECM structure, bypassing its drug-inhibitory
effect in cancer cells altogether. As we circumvent more and more limitations and find novel techniques that increase imaging
sensitivity, it is imperative to note that we are only beginning to understand the relationship between biophysical properties of
cells and their potential to regulate tumorigenesis and motility. As more novel and unique imaging techniques develop which
can be used to provide verification and validation of finite element models of cellular structure, the knowledge obtained of
how cellular structure drives function could be used to formulate unique anti-cancer treatments by directly affecting ECM
structure, bypassing its drug-inhibitory effect in cancer cells altogether.
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Chapter 12
Full Field Strain Measurements Using 3D Laser Vibrometry

Samuel Tilmann

Abstract Obtaining accurate strain measurements is a critical component of testing when it comes to validating aerospace
structures designed for extreme environments. Using a 3D laser vibrometry system it is possible to measure the velocity
at a point and from that calculate displacement. From that displacement strain can be calculated across an array of points.
With a fine enough grid it is possible to obtain accurate full field dynamic strain measurements of an article under load.
One advantage this method has over traditional strain measuring techniques is that there is no need to install additional
instrumentation on the test article. This is critical to eliminate mass loading on lightly damped structures. Using 3D laser
vibrometry, it is also possible to obtain dynamic strain measurements in extreme thermal environments. In order for this
method to be verified it needs to be compared against more traditional, reliable strain measurement techniques. This paper
will be comparing the results of the 3D laser vibrometry system’s strain measurements using several different surface
treatments at several different temperatures to measurements obtained from traditional foil strain gages.

Keywords Laser vibrometry · Dynamic strain · Full field strain · Non-contact measurements

12.1 Introduction

Through the use of three laser vibrometers it is possible to obtain 3D velocity measurements of an article at multiple points
and from those measurements calculate full field displacement and strain of that article. This paper discusses the viability
of using this strain calculation method on thin skinned articles with high out of plane displacement. There is also concern
with the viability of the system at elevated temperatures due to interference from radiant heat sources or damage to the
surface treatment of the article. In the experiment a PSV-500 3D laser vibrometry system is used along with a 12,000 lbf
electrodynamic shaker to excite and take measurements from test articles at room temperature.

12.2 Background

12.2.1 3D Laser Vibrometry

Laser Doppler vibrometers make use of the Doppler Effect in order to measure instantaneous velocity of a single point.
By using three laser heads at different angles to measure the same point, a 3D velocity vector can be triangulated. From
these velocity measurements displacement can be calculated. Using the displacement measurements and a grid of points
with either a rectangular or triangular pattern full field strain measurements can be calculated. Three Polytec PSV500 laser
vibrometers along with a single high definition camera were mounted on a single stand in this experiment shown in Fig. 12.1.
The assembly was placed so that the front end of the top sensor had a standoff distance of 700 mm away from the article.
The laser heads were given a 2D alignment using an automatic 2D alignment tool available in Polytec’s PSV 9.2 Acquisition
Software. 3D alignment was done manually using an alignment plate. The target quality goal for a good 3D alignment is
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Fig. 12.1 Polytec PSV500 Assembly and high definition video camera

Fig. 12.2 Rectangular coupon second bending mode at 239.9 Hz

less than 0.3 mm error. The final error on the 3D alignment for the top, left, and right laser heads were 0.2 mm, 0.2 mm,
and 0.1 mm respectively. Fast video triangulation was performed using the high definition camera during the scan in order to
further reduce error. Video triangulation ensures that all three lasers are aimed at the same point by comparing the assigned
location of the lasers with the video feed and making small adjustments to ensure they match.

12.3 Experimental Setup

12.3.1 Rectangular Coupon

A rectangular aluminum coupon was chosen for this experiment because of its simple geometry and relatively uniform lines
of stress present in its bending modes. The second bending mode of the rectangular coupon was chosen due to its high stress
concentration near the middle of the coupon. The second bending mode of the coupon is at approximately 239.9 Hz with
a mode shape shown in Fig. 12.2. Five strain gages oriented in the X-axis were placed on the article near the center of the
article due to the high strain concentration as shown in Fig. 12.3.
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Fig. 12.3 Rectangular coupon strain gage locations

Fig. 12.4 12K Shaker Assembly, sine clamp holding test article

Table 12.1 Strain data
acquisition settings

Bandwidth 500 Hz
Bandwidth from 220 Hz
Bandwidth to 260 Hz
Number of lines 6400
Frequency resolution 78.125 mHz
Sampling frequency 1.25 kHz
Sample time 12.8 sec
# of averages 16

12.3.2 Excitation Method

The rectangular coupon was mounted to a 12,000 lbf electrodynamic shaker with a sine clamp as seen in Fig. 12.4. Broadband
random excitation (20–20,000 Hz) was used to determine mode shapes and frequencies from which a mode of interest was
chosen. The shaker then excited the article at a chosen mode in order to collect data for strain calculations using the data
acquisition settings shown in Table 12.1.

12.3.3 Coffin Coupon

A previously tested titanium coffin shaped coupon was also used in this experiment. Due to the nature of the aluminum
coupon it would not be able to be tested at elevated temperatures. The coffin coupon, shown in Fig. 12.5, was chosen because
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Fig. 12.5 Coffin coupon

Fig. 12.6 Rectangular coupon with retroreflective tape

of the more stable properties of titanium at elevated temperatures. The same method used to determine the natural frequencies
of the rectangular coupon was used to determine the natural frequencies and mode shapes of the coffin coupon. Due to the
nonlinearities present in the coupon around the mode that would be of interest, it was not a good candidate for this initial
testing of the systems strain measurement capabilities. This coupon is planned to be used in the future in order to test the
system on more complex structures with nonlinearities.

12.3.4 Surface Treatment

The rectangular coupon was covered with retroreflective tape which as shown in Fig. 12.6. This is done in order to improve
the speckle pattern of the reflected light from the laser which will in turn give a better return signal on the laser heads. The
adhesive on the retroreflective tape has a relatively low temperature limit so another coating method was devised for use
at elevated temperatures. For high temperature coating the front surface of the coffin coupon was coated with Cotronics
Corporation’s 1529FS Duraseal+ Compound and then evenly coated with a layer of 3Ms retroreflective glass beads. The
adhesive coating was then cured for 2 hours at room temperature and two additional hours at 425 ◦F. The resulting surface
finish can be seen in Fig. 12.7.

12.3.5 Elevated Temperature

The purpose of this elevated temperature testing is to assess the survivability of the surface treatment under dynamic load
at elevated temperature as well as determine if there is any degradation in the return signal or interference from the radiant
heat sources. For this test the coffin coupon was used since the titanium has more stable material properties at elevated
temperatures. Quartz lamps were used to radiantly heat the article while it was being excited at its fifth mode of 540.7 Hz by
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Fig. 12.7 Coffin coupon with high temperature surface treatment – glass bead coating

the 12K shaker. Since the lamps obstructed the view of a majority of the article it was not possible to obtain full field strain
measurements, instead a single point measurement was taken and the quality of the signal at temperature was evaluated along
with any visible degradation of the coating.

12.4 Results and Discussion

12.4.1 Temperature Drift

During the initial runs of this test there was difficulty controlling the ambient temperature of the room which lead to large 10–
15 ◦F fluctuations in temperature after the shaker had started. Not only did this affect the material properties and boundary
conditions at the clamp enough to significantly change strains, it also occasionally caused the coffin coupon to change modes
entirely due to the nonlinearities around the fifth mode. While these effects could be reduced by attempting to wait until the
room had reached a steady temperature they could not be entirely eliminated. This led to unacceptable results and postponing
the experiment until the climate could be better controlled.

12.4.2 Data Processing

The raw velocity data was post-processed using Polytec’s strain processing software in order to obtain displacement and
strain measurements. The software first calculated displacement measurements for each point and then calculated strain from
those displacement calculations. In order to determine strain from displacement measurements, a finite element approach is
used as described in the Polytec PSV Strain document [1]. After strain in each element is calculated, strain for each point
is determined by taking the average strain of all elements adjacent to that point. In this software the vibration data filter
setting has the most significant effect on the final calculated strain values. The vibration filter setting was increased enough
so that the data did not contain noise, but not so much that the actual signal started appearing in the FilterDiff results [2]. A
comparison of two FilterDiff results based on different filter settings can be seen in Fig. 12.8 below. The top image is of a
15 mm vibration filter while the bottom is of a 50 mm filter. With the larger filter the second mode is clearly visible which
indicates too large of a filter. While in this case it is clear which of these two is an appropriate filter due to the extremely large
filter on the second image, generally it is not so clear and comes down to a judgement call by the engineer. While simply
matching measured strain values in and of itself is not a sufficient method for choosing filters, it can be a good indicator
of an appropriate filter. Table 12.2 shows the strain results compared to the strain gage-measured value for several different
filter settings. In this table the top numbers of the magnitude columns represents the value for the signal filter with outliers
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Fig. 12.8 FilterDiff comparison of rectangular coupons second bending mode

Table 12.2 Filter comparisons

Point
Strain
gage

Measured strain
peak-peak (με)

7 mmO, 7 mm
geo magnitude
(με)

7 mmO, 15 mm
geo magnitude
(με)

10 mmO, 7 mm
geo magnitude
(με)

10 mmO,
15 mm geo
magnitude (με)

15 mmO, 7 mm
geo magnitude
(με)

15 mmO,
15 mm geo
magnitude (με)

86 1 235.2 295.8 278.6 285.9 270.9 272.0 260.4
267 2 229.5 263.1 255.8 253.7 243.8 245.8 234.6
445 3 225.3 231.1 231.4 229.4 227.7 228.6 225.6
622 4 229.5 235.7 231.2 234.7 229.2 235.6 231.1
796 5 234.0 275.1 262.6 268.4 258.3 259.1 252.2

removed while the bottom number represents the geometry filter used to process the data. The filter appeared to have a much
greater effect on the outer points while the inner points values only varied by a couple percent depending on the filter. The
final filter settings chosen were based on deviation from measured strain and qualitative assessment of the FilterDiff and
GeoDiff outputs from the strain processing software. The settings that obtained the best measurements were a vibration filter
of 15 mm with a geometry filter of 15 mm.

12.4.3 Displacement

A triangular grid pattern was used to collect data for the strain calculations. The velocity data was banded from 239 to
240.5 Hz around the second bending mode frequency of 239.9 and the strain processing software was applied using the
filters specified in the previous section. The displacement results for the coupon can be seen in Fig. 12.9. These displacement
results were used by the strain calculator to determine strain at each point.
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Fig. 12.9 Rectangular coupon displacement triangular grid

Fig. 12.10 Rectangular coupon X-strain triangular grid

Table 12.3 Triangular grid results and comparison

Strain gage Point RMS (με) Peak-peak (με) Calculated magnitude (με) Error

1 86 166.3 235.2 260.4 10.72%
2 267 162.3 229.5 234.6 2.21%
3 445 159.3 225.3 225.6 0.14%
4 622 162.3 229.5 231.1 0.69%
5 796 165.4 234.0 252.2 7.82%

12.4.4 Strain

The calculated strain results for the rectangular coupon can be seen in Fig. 12.10 below. The rectangular coupon was given
five strain gages oriented in the X-axis to compare calculated strain against. Measurement points were placed directly
opposite of the strain gages in order to have as direct of a comparison as possible, a summary of which can be seen in
Table 12.3. Measurement points 86, 267, 445, 622, and 796 correlate with the strain gages 1–5 as shown in Fig. 12.10. The
measured and calculated values and deviation from the strain gage-measured values can be seen below in Table 12.3. The
peak to peak value was assumed to be the RMS multiplied by the square root of two due to the sinusoidal excitation of
the specimen. The central three strain gages, 2–4, had very close values to the measured strain varying from 0.1% to 2.2%
deviation from the strain gage, while the outermost gages, 1 and 5, had a significantly higher deviation from the measured
strain of up to 10.7%. This difference in the outer measurements could be explained by the measurement points on the front
side being slightly offset from the strain gage on the back. The outer strain gages were placed in an area with a very high
strain gradient and any variance in position could drastically change the measured strain. It is also possible that these strain
calculations suffered from edge effects since the points were close to the top and bottom edges of the measured area.
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12.4.5 Elevated Temperature Signal

The temperature was raised to 850 ◦F with the coffin coupon being shaken at its fifth natural frequency of 540.7 Hz. The
signal remained acceptable throughout the entirety of the run with minimal damage to the surface treatment. While the actual
heat and vibration did not visibly damage the surface treatment, it was exceptionally susceptible to abrasion and scratching.
Any articles using this surface treatment must be handled with much more care than would otherwise be necessary.

12.5 Future Work

The ultimate goal for the use of this system is to be able to measure strains of a system under broadband random excitation
with multiple modes contributing to the overall strain levels. In order to reach this goal several steps must be taken to
validate this strain measurement method. The first step towards this goal is to ensure the strain measurements are reliable
and trustworthy for which more testing must be performed on multiple articles until a consistent process is established. It
must also be proven that this method can work with more than just simple articles like the rectangular coupon. In order to
do this the coffin coupon will be used as a slightly more complex structure with the complication of the nonlinear mode at
the frequency of interest. It must also be proven that the measurements taken at elevated temperature are accurate enough to
obtain accurate strain measurements. In order to do this an article must be excited at temperature without obstructing the laser
heads’ lines of sight. The results must then be compared to proven strain measurement techniques such as DIC or platinum
strain gages. Once this is done the system can be used in the structural validation branch’s acoustic chambers to take dynamic
strain measurements of test articles. The laser heads have often been used to take single point measurements during testing
but have not been used to take strain measurements during a test run. There is also an interest in newer infrared laser heads.
These infrared laser heads reportedly do not require any surface treatment of the test article which, if they work properly,
would make the need for surface treatments irrelevant and solve the issue with the high temperature surface treatment’s low
durability.

12.6 Conclusions

The use of 3D laser vibrometry to provide full field dynamic strain measurement is promising, however future work must be
done to ensure the reliability and consistency of strain measurements using this method. While the system is able to obtain
accurate central strain measurements it has difficulty dealing with measurement taken at the edge of an article. Filters had
a major effect on calculated strain and while there is some method to picking appropriate filters that selection process is
largely subjective at this point in time. The system takes an exceptionally long time to take enough high quality data for high
fidelity strain measurements. The time taken to complete the measurements presented in this paper was 72 hours. This can be
reduced in actual tests by either coarsening the grid or shrinking the area of interest, but any compromise lowers the fidelity
of the strain measurements. Special consideration must be given to maintaining steady state throughout the test whether that
is maintaining a constant temperature or avoiding nonlinearities.
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Chapter 13
Output-Only Modal Parameter Estimation Using a Continuously
Scanning Laser Doppler Vibrometer System with Application to
Structural Damage Detection

Y. F. Xu, Da-Ming Chen, and W. D. Zhu

Abstract Spatially dense vibration measurement can be obtained by use of a continuously scanning laser Doppler
vibrometer (CSLDV) system that sweeps its laser spot along a scan path. For a linear, time-invariant, viscously damped
structure undergoing free vibration, a new type of vibration shapes called free response shapes was defined and obtained by
the authors using a CSLDV system with the demodulation method. To date, application of free response shapes is limited
to structural damage identification, and they cannot be directly used for model validation while mode shapes can be. This
paper extends the concept of free response shapes by proposing a new output-only modal parameter estimation (OMPE)
method using a CSLDV system to estimate modal parameters of the structure undergoing free vibration, including natural
frequencies, modal damping ratios, and mode shapes. Advantages of the proposed method are: (1) modal damping ratios
and mode shapes can be accurately estimated from obtained free response shapes, (2) the scanning frequency of the CSLDV
system can be relatively low, and (3) estimated mode shapes can be used for structural damage identification as if they
were measured by stepped scanning of a scanning laser Doppler vibrometer. A baseline-free method is applied to identify
structural damage using mode shapes estimated by the proposed OMPE method. The analytical expression of free response
shapes of the structure is derived, based on which the OMPE method is proposed and presented as a step-by-step procedure.
In the proposed OMPE method, natural frequencies of the structure are identified from free response of certain fixed points on
the structure; its modal damping ratios and mode shapes are simultaneously estimated using free response shapes measured
by a CSLDV system. A numerical investigation is conducted to study the OMPE method and its application to baseline-free
damage identification with mode shapes estimated by the OMPE method.

Keywords Continuously scanning laser Doppler vibrometer system · Modal parameter estimation · Output-only method ·
Baseline-free structural damage identification · Demodulation method

13.1 Introduction

Vibration-based damage identification has been a major research topic of structural dynamics in the past few decades [1, 2].
More than often, occurrence of damage in a structure undermines its capability of supporting design loads and can result
in its excessive deformation, which is attributed to changes in its structural properties, such as its stiffness. One assumption
of a vibration-based damage identification method is that occurrence of damage changes modal parameters of a structure,
including natural frequencies, modal damping ratios, and mode shapes, which can be accurately estimated by modal analysis
[3]. Accurately estimated modal parameters can also assist model validation and updating. A continuously scanning laser
Doppler vibrometer (CSLDV) system is an ideal instrument for modal parameter estimation as it is capable of accurate, non-
contact and temporally dense vibration measurement and also capable of spatially dense mode shape measurement [4]. A
CSLDV system consists of three key components: a laser Doppler vibrometer, a scanner and a controller [5]. The vibrometer
measures the velocity of a point on a test structure where its laser spot is located. The laser beam of the vibrometer is
directly shined onto first-surface mirrors of the scanner and the spot is continuously swept along a prescribed scan path
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on the structure by rotating the mirrors that are controlled by the controller. While the spot is continuously swept, velocity
at each discrete measurement point on the scan path is measured, and the number of the measurement points can be tens
and even hundreds of thousands, depending on the sampling and scan frequencies of the vibrometer. A CSLDV system has
been successfully used for modal analysis and measurements of vibration shapes, such as mode shapes [6–8] and operating
deflection shapes [9–11], which can be achieved with high accuracy and in a relatively short time, e.g., in a few seconds.
Specifically, two operational modal analysis methods [12, 13] have been developed based on harmonic power spectra [14],
where only one CSLDV system is used to measure response of a structure under environmental excitation without any
additional sensors, and modal parameters of a wind turbine blade were measured [12, 13].

A CSLDV system has been used to measure high-fidelity vibration shapes of structures undergoing steady-state vibrations
for damage identification [5, 15], and the vibration shapes measured by a CSLDV system can be used to identify structural
damage as small as notch-size ones [16]. A new type of vibration shapes called free response shapes was defined and
measured by a CSLDV system when a linear underdamped beam underwent free vibration [17]. Free response shapes were
used to identify structural damage, where damage indices associated with multiple elastic modes of a beam could be obtained.
The free response shapes can be considered to be obtained in an output-only manner, since initial conditions of and excitation
given to the beam do not need to be measured. A free response shape is different from a mode shape, since the former
is time-varying with decaying amplitudes and the latter is not. So far, application of free response shapes is limited to
structural damage identification and they cannot be directly used for model validation and updating due to two reasons.
One is that a free response shape has an amplitude that is determined by excitation. Unless one can accurately measure the
excitation, a free response shape cannot be used for model validation and updating. Another reason is that damping ratios
cannot be estimated from free response shapes that are obtained in the method in Ref. [17]. An experimental modal analysis
method was proposed [8], where excitation to a test structure and its free response measured by a CSLDV system yielded
pseudo-frequency response functions of the structure, which were used to estimate modal parameters of the structure. In this
method, the measured response is lifted to each measurement point as if the response were measured in a pointwise manner.
A limitation of the method is that measured mode shapes of modes with relatively high natural frequencies can have low
qualities due to speckle noise caused by a relatively high scanning frequency, which is needed since the scanning frequency
of the CSLDV system is equal to the sampling frequency of the lifted response at each measurement point. While operational
modal analysis methods using a CSLDV system have been proposed and their capabilities of modal parameter estimation
have been experimentally validated, their resulting mode shapes and associated curvature mode shapes cannot be used for
structural damage identification. The reason is that the resulting mode shapes are represented by smooth sinusoidal functions
[12, 13] and local anomalies caused by existing local structural damage cannot be reflected in the mode shapes and associated
curvature mode shapes.

In this work, derivation of free response shapes of a linear, time-invariant, viscously damped structure undergoing free
vibration is shown. A new output-only modal parameter estimation (OMPE) method using free response measured by a
CSLDV system is proposed to accurately estimate modal parameters of the structure with a step-by-step procedure. The
proposed OMPE method extends the concept of free response shapes of the structure as they are directly related to its modal
damping ratios and mode shapes, which can be simultaneously obtained in the proposed method. A baseline-free non-model-
based damage identification method is applied to identify structural damage in a structure. In the identification method, a
curvature damage index (CDI) is obtained by comparing a curvature mode shape corresponding to a mode shape estimated
by the OMPE method with that from a polynomial that fits the estimated mode shape with a properly determined order.
Structural damage can be identified in neighborhoods with consistently large CDIs corresponding to multiple modes. A
numerical investigation is conducted to study the OMPE method and application of the damage identification method.

The remaining part of this paper is outlined as follows. Derivation of free response shapes is presented in Sects. 13.2.1
and 13.2.2, the new OMPE method using a CSLDV system is proposed in Sect. 13.2.3, and the structural damage
identification method is presented in Sect. 13.2.4. A numerical investigation of the OMPE method and baseline-free method
are presented in Sect. 13.3. Finally, conclusions of this study is presented in Sect. 13.4.

13.2 Methodology

13.2.1 Free Response of a Damped Structure

Free response in the form of the displacement of a linear, time-invariant, viscously damped structure can be obtained by
solving its governing partial differential equation:
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B

[
∂2z (x, t)

∂2t

]
+ C

[
∂z (x, t)

∂t

]
+ L [z (x, t)] = 0, x ∈ D, t ≥ 0 (13.1)

where B (· ), C (· ) and L (· ) are a mass operator, a damping operator and a stiffness operator, respectively, z is the
displacement of the structure at the spatial position x at time t , and D is its spatial domain. Boundary and initial conditions
of the structure are known. Note that the initial conditions can be induced by an external force that the structure is subject to
when t < 0. A solution to Eq. (13.1) can be obtained using the expansion theorem [18]:

z (x, t) =
∞∑

i=1

φi (x) ui (t) (13.2)

where φi is the i-th mass-normalized eigenfunction of the associated undamped structure, which is assumed to be self-
adjoint, and ui is the corresponding unknown time function. Orthonormality between φi and φj (j = 1, 2, . . . , ∞) with
respect to B is expressed by

∫

D

φj (p) B
[
φi (p)

]
dp = δij (13.3)

where δij denotes Kronecker delta function, which satisfies δij = 1 if i = j and δij = 0 if i �= j . Assuming that damping of
the structure can be modeled by Kelvin-Voigt viscoelastic model, which leads to a classically damped system [18, 19], one
can obtain ui in Eq. (13.2) by solving an ordinary differential equation:

üi (t) + 2ζiωi u̇i (t) + ω2
i ui (t) = 0 (13.4)

where ωi is the corresponding i-th undamped natural frequency of the structure, ζi is the i-th modal damping ratio, which is
smaller than 1 for an underdamped structure, and an overdot denotes differentiation with respect to t . The initial conditions
ui (0) and u̇i (0) can be determined from the initial conditions of Eq. (13.1). The solution to Eq. (13.4) can be expressed
by [20]

ui (t) = e−ωiζi t
[
ui (0) cos

(
ωi,d t

)+ u̇i (0)+ωiζiui(0)
ωi,d

sin
(
ωi,d t

)]

= Aie−ωiζi t cos
(
ωi,d t − γi

) (13.5)

where

ωi,d = ωi

√
1 − ζ 2

i (13.6)

is the i-th damped natural frequency of the structure,

Ai =
√

[ui (0)]2 +
[
u̇i (0) + ωiζiui (0)

ωi,d

]2

(13.7)

is an amplitude constant, and

γi = arctan2

(
u̇i (0) + ωiζiui (0)

ωi,d

, ui (0)

)
(13.8)

is a phase angle; ωiζi in Eq. (13.5) is referred to as the decaying rate of ui . Based on Eqs. (13.2) and (13.5), Eq. (13.2)
becomes

z (x, t) =
∞∑

i=1

Aiφi (x) e−ωiζi t cos
(
ωi,d t − γi

)
(13.9)
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13.2.2 Free Response Shapes

A free response shape associated with the i-th mode of the structure can be defined by

yi (x, t) = Aiφi (x) e−ωiζi t (13.10)

and Eq. (13.9) becomes

z (x, t) =
∞∑

i=1

yi (x, t) cos
(
ωi,d t − γi

)
(13.11)

The i-th eigenfunction φi that is the i-th undamped mode shape of the structure exists in the definition of yi in Eq. (13.10).
A similarity between φi and yi is that they both correspond to the i-th mode of the structure; however, the former is time-
invariant while the latter is time-varying due to the term e−ωiζi t in Eq. (13.10).

A CSLDV system continuously sweeps its laser spot over a surface of a structure with a specific scan path. The system
measures response of a measurement point on the structure with a certain sampling frequency, where its laser spot is located
during a scan, and a finite number of modes of the structure are included in free response measured by the system. Let x̃ (t)

be the position of a laser spot on the surface of the structure at time t , which describes the scan path on the structure as a
function of t . Free response of the structure measured by the CSLDV system along x̃ (t) can be expressed by

z̃ (t) =
N∑

i=1

ỹi

[
x̃ (t) , t

]
ũi (t) (13.12)

where N is the number of modes included in z̃, and ỹi and ũi are the free response shape and time function associated with
the i-th mode measured by the system, respectively. The free response shape ỹi in Eq. (13.12) can be written as

ỹi

[
x̃ (t) , t

] = Aiφi

[
x̃ (t) , t

]
e−ωiζi t (13.13)

The time function ũi can be expressed by

ũi (t) = cos
(
ωi,d t − αi − θi

)
(13.14)

where αi is the difference between the phase determined by the initial conditions and force associated with the i-th mode and
that by a mirror feedback signal, and θi is a phase variable that controls amplitudes of in-phase and quadrature components
of ỹi , which can be expressed by

ỹI,i = ỹi

[
x̃ (t) , t

]
cos (αi + θi) (13.15)

and

ỹQ,i = ỹi

[
x̃ (t) , t

]
sin (αi + θi) (13.16)

respectively [5]. The demodulation method has been used to obtain ỹi corresponding to each half-scan period by the system
[17]. A half-scan period starts when the laser spot of the system arrives at one end of a scan path and ends when the laser
spot arrives at the other end of the scan path. Multiple ỹi can be obtained from free response of the structure measured by the
system in one scan. To identify the start and end of a half-scan period, one can refer to mirror feedback signals of the system
and determine instants when its laser spot arrives at ends of a scan path.
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13.2.3 OMPE Method

The amplitude of ỹi in Eq. (13.13) is time-varying and exponentially decays to zero with t at the decaying rate ωiζi . In
order to obtain a non-zero amplitude of ỹi from the demodulation method, one needs to determine natural frequencies of the
structure and instants when the amplitude of ỹi decays to zero. The natural frequencies can be determined from the auto-
power spectrum of z at a point that is measured by the system, and the instants can be determined using the short-time Fourier
transform of z̃ [21], which is denoted by Ṽw. Some details of the short-time Fourier transform can be found in “Appendix:
Short-Time Fourier Transform”. Multiple non-zero ỹi can be obtained by using z̃ of the first Ni,0 half-scan periods, where
Ni,0 is an integer that is defined by

arg max
Ni,0

Ni,0T

2
≤ ti,0 − t1 (13.17)

in which T is the length of a scan period, ti,0 is the instant when Ṽw at the i-th natural frequency of the structure becomes
almost zero, and t1 is the instant when the first half-scan period starts.

Let

Qi = Aie−ωiζi t1 (13.18)

which is a complex constant, and Qiφi can also represent the i-th mode shape of the structure. One has Qi = Ai when
t1 = 0, and Eq. (13.13) with t ≥ t1 can be expressed by

ỹi

[
x̃ (t) , t

] = Qiφi

[
x̃ (t) , t

]
e−ωiζi (t−t1) (13.19)

One can estimate Qiφi in Eq. (13.19) if ζi is known. Let tk be the instant when the k-th half-scan period starts and ỹi,k be the
free response shape associated with the i-th mode in the k-th half-scan period. The term Qiφi in Eq. (13.19) associated with
ỹi,k is independent of t and can be estimated by eliminating e−ωiζi (t−t1) in ỹi,k; it can be expressed by

Qi,kφi,k

[
x̃ (t) , t

] = ỹi,k

[
x̃ (t) , t

]
eωiζi(t−t1) (13.20)

where 0 ≤ t − tk ≤ T . The mean of Qi,kφi,k with k ∈ [1, Ni], where Ni ≤ Ni,0, can be defined by

μi

(
x̃
) =

Ni∑
k=1

Qi,kφi,k

(
x̃
)

Ni

(13.21)

Though ωiζi in Eqs. (13.19) and (13.20) is unknown, it can be estimated by solving an optimization problem:

ωiζi = arg min
ωiζi

Ni∑

k=1

∣∣μ
(
x̃
)− Qi,kφi,k

(
x̃
)∣∣ (13.22)

where |·| denotes the L2-norm of a function in a half-scan period. Note that Ni must be greater than two; otherwise ωiζi

cannot be estimated since the problem in Eq. (13.22) becomes trivial. With estimated ωi,d and ωiζi , ζi can be estimated by

ζi = ωiζi√
ω2

i,d + (ωiζi

)2 (13.23)

This completes theoretical derivation of the OMPE method using free response of the structure measured by the CSLDV
system. The procedure of the method is summarized below:

Step 1. Measure z (t) of the structure using the system with its laser spot staying at least one fixed point of the structure.
Step 2. Estimate ωi,d of the structure using the auto-power spectrum of z measured in Step 1.
Step 3. Measure z̃ (t) using the system along a scan path with certain scan and sampling frequencies.
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Step 4. Estimate ỹi

(
x̃
)

associated with measured modes in Ni half-scan periods using the demodulation method.
Step 5. Estimate ζi based on Eq. (13.23) using ωiζi obtained by solving the optimization problem in Eq. (13.22).
Step 6. Express Qiφi

(
x̃
)

as ỹi,1
(
x̃
)

eωiζi(t−t1) with 0 ≤ t − t1 ≤ T and ωiζi obtained in Step 5.

13.2.4 Baseline-Free Structural Damage Identification

Local damage of a structure can cause prominent anomalies in its curvature mode shapes in neighborhoods of the damage, and
the damage can be identified by comparing the curvature mode shapes with those of the associated undamaged structure [22].
However, the curvature mode shapes of the undamaged structure that can be considered as baselines are usually unavailable
in practice. When the undamaged structure is geometrically smooth and made of materials without mass and/or stiffness
discontinuities, the curvatures of the undamaged structure can be well approximated by those from polynomials that fit mode
shapes of the damaged structure with properly determined orders. In previous works [15, 16, 23], a curvature damage index
(CDI) was proposed, which consists of the difference between a curvature mode shape of a damaged structure and that from
a polynomial fit:

δi (x) =
[
φ′′

i (x) − φ
p′′
i (x)

]2
(13.24)

where a prime denotes spatial differentiation with respect to the arc length s of a scan path at x, and φ
p

i is the corresponding
mode shape from the polynomial that fits φi . Since mode shapes corresponding to multiple modes can be measured in
one scan, CDIs corresponding to multiple modes can be obtained in the scan, and damage regions can be identified in
neighborhoods with consistently large CDI values associated with the measured modes. Note that use of δi corresponding
to rigid-body modes of a structure should be excluded in damage identification as their curvature mode shapes are zero,
and one should use δi corresponding to elastic modes of the structure in damage identification. An auxiliary CDI associated
with δi corresponding to various measured modes can be defined to assist identification of the neighborhoods; it can be
expressed by

δ̃ (x) =
∑

δ̂i (x̃) (13.25)

where δ̂i is a normalized CDI associated with the i-th mode of the structure with the maximum unit amplitude and
∑

denotes
summation of δ̂i over all measured modes. Since boundary distortions would occur in curvature free response shapes of a
structure associated with its free response shapes obtained from the demodulation method [17], similar distortions would
occur in curvature mode shapes here. Hence, boundary regions are excluded in normalization of δi in δ̃ and presenting them.
Neighborhoods with consistently large values of δi associated with measured modes can be identified in those with large
values of δ̃.

By nondimensionalizing s so that it ranges between −1 and 1, a polynomial that fits φi with an order r can be
expressed by

φ
p
i (s̃) =

r∑

q=0

aq s̃q (13.26)

where s̃ denotes the nondimensionalized s, aq are coefficients of the polynomial. As pointed out in Ref. [17], an increase of
r in the polynomial in Eq. (13.26) can improve the level of approximation of φ

p
i to φi . To determine a proper order of the

polynomial fit, the modal assurance criterion (MAC) value between a mode shape of the damaged structure and that from a
polynomial that fits the mode shape, which is defined by

MAC
(
φi, φ

p
i

) =
(
φH

i φ
p
i

)2
(
φH

i φi

) (
φ

pH
i φ

p
i

) × 100% (13.27)

where the superscript H denotes matrix Hermitization, is used. A proper order for the polynomial fit is two plus the minimum
order with which MAC

(
φi, φ

p

i

)
is greater than 90% [23]. Two is added here in order to preserve smoothness of a curvature

mode shape from the polynomial fit, since calculation of a curvature incurs second-order differentiation that reduces the
order of a polynomial by two.
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13.3 Numerical Investigation

A finite element model of a damaged aluminum cantilever beam with a length L = 0.8 m, Young’s modulus of 68.9 GPa, a
mass density of 2700 kg/m3 and a damping coefficient of Kelvin-Voigt damping model of 8 × 10−7 s is constructed using
ABAQUS. The beam has a uniform square cross-section with a side length of 0.01 m. The damage is in the form of thickness
reduction, which is located between x = 6

16L and x = 7
16L, where x is the position of a point on the beam. The damaged

portion of the beam has a height of 0.008 m and a length of 0.05 m. The beam has fixed and free ends at x = 0 and x = L,
respectively. The first five natural frequencies and modal damping ratios of the beam are listed in Table 13.1a, b, respectively.
The first five mass-normalized mode shapes of the beam from its finite element model are shown in Fig. 13.1.

In this section, a single impulse is applied to the damaged cantilever beam. Assume that the beam has zero initial
conditions; responses of the beam are calculated using the expansion theorem, where the number of included modes is
five. A simulated CSLDV system is used to measure responses of the beam caused by the forces with a scan period T = 2 s
and a sampling frequency of 16384 Hz. The simulated CSLDV system is capable of measuring response in the form of
displacement. Positions of the laser spot of the system on the beam in the first eight seconds of a scan is shown in Fig. 13.2.

A single impulse with an intensity of 0.01 Ns is applied to the free end of the damaged beam x = L at t = 0 s. Response
of the beam at x = 0.7 m is measured in the form of displacement for eight seconds, as shown in Fig. 13.3a, and its auto-
power spectrum is shown in Fig. 13.3b. Natural frequencies of the beam can be identified in the spectrum as frequencies
where prominent peaks are found, and identified natural frequencies are listed in Table 13.1a. The largest error between the
identified natural frequencies and those from the finite element model is 0.16%. Response of the beam is then measured using
the simulated CSLDV system, and the measured response in the first eight seconds are shown in Fig. 13.4a; the associated

Table 13.1 First five (a) natural
frequencies in Hz and (b) modal
damping ratios in percentage of
the damaged beam from its finite
element model and the OMPE
method using its response caused
by a single impulse

(a)

Mode Finite element OMPE method

1 12.64 12.62

2 79.04 79.00

3 222.0 222.0

4 434.8 434.7

5 711.2 711.2

(b)

Mode Finite element OMPE method

1 0.0032 0.0032

2 0.0199 0.0199

3 0.0558 0.0558

4 0.1093 –

5 0.1787 –
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Fig. 13.1 Mass-normalized mode shapes of the damaged cantilever beam associated with its first five modes from its finite element model
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Fig. 13.2 Position of the laser
spot of the simulated CSLDV
system on the damaged beam
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Fig. 13.3 (a) Response of the damaged cantilever beam at x = 0.7 due to the single impact at its free end and (b) the auto-power spectrum of the
response in (a)

0 2 4 6 8
-3

-2

-1

0

1

2

3 10-3

(a)

0 0.2 0.4 0.6 0.8
Frequency (kHz)

0

2

4

6

8

-150
-140
-130
-120
-110
-100
-90
-80
-70

(b)

Fig. 13.4 (a) Response measured by the simulated CSLDV system in the first eight seconds and (b) a spectrogram of the response in (a)

spectrogram is shown in Fig. 13.4b. It can be observed that amplitudes of frequency components associated with the third
through fifth modes decay faster than those with the first and second modes. Specifically, the frequency component associated
with the fourth mode decays to almost zero before the second half-scan period ends and that associated with the fifth mode
fast decays within the first half-scan period. Since the duration of a half-scan period is T

2 = 1 s, non-zero-amplitude free
response shapes of at least one half-scan period associated with the first through fourth modes can be obtained from the free
response measured by the CSLDV system and that associated with the fifth mode cannot. Free response shapes obtained
from the free response are shown in Fig. 13.5a–e, which correspond to the first through fifth modes, respectively. It can be
seen that amplitudes of the free response shapes associated with the fourth and fifth modes of the structure decay to almost
zero faster than those associated with the first three modes, which verifies the observations on the spectrogram in Fig. 13.4b.

Since there is only one non-zero-amplitude free response shape associated with the fourth mode and the free response
shape associated with the fifth mode has decayed almost to zero before the end of the first half-scan period of the CSLDV
system, modal damping ratios and mode shapes associated with the two modes cannot be estimated here. However, they can
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Fig. 13.5 Free response shapes of the damaged cantilever beam associated with its (a) first, (b) second, (c) third, (d) fourth and (e) fifth modes
obtained from the response measured by the CSLDV system

be estimated if a higher scan frequency is applied so that at least two non-zero-amplitude free response shapes associated
with each of the two modes can be obtained from the response measured by the CSLDV system. By applying the OMPE
method in Sect. 13.2.3, modal damping ratios and mode shapes associated with the first three modes can be estimated with the
obtained free response shapes here. Estimated damping ratios associated with the first three modes are listed in Table 13.1b,
which compare well with those from the finite element model. Estimated mode shapes are shown in Fig. 13.6, and modal
assurance criterion (MAC) values between mode shapes from the OMPE method and finite element model are above 99.99%,
which indicates that the mode shapes compare well with each other. Note that the mode shapes are normalized so that they
have a maximum unit amplitude.

The estimated mode shapes are then used for structural damage identification. The three mode shapes of the damaged
cantilever beam are fitted by polynomials with properly determined orders. The orders of the polynomial fits are 7, 8
and 11 for the first through third mode shapes, respectively. Curvature mode shapes corresponding to the first three mode
shapes and those from the polynomial fits are shown in Fig. 13.7. It can be seen that local anomaly due to the damage
can be well observed by comparing the curvature mode shapes of the beam with those from the polynomial fits. CDIs
corresponding to the three mode shapes are shown in Fig. 13.8a–c, and the auxiliary CDI corresponding to the three
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Fig. 13.6 Comparison between mode shapes of the damaged cantilever beam from the OMPE method using the free response shapes and its finite
element model associated with its (a) first, (b) second and (c) third modes
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Fig. 13.7 Comparison between curvature mode shapes of the damaged cantilever beam from the OMPE method and polynomial fits associated
with its (a) first, (b) second and (c) third modes
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Fig. 13.8 CDIs of the damaged cantilever beam associated with its (a) first, (b) second and (c) third modes; (d) the auxiliary CDI associated with
the curvature damage indices in (a) through (c). Ends of the damage are indicated by two dotted lines

damage indices is shown in Fig. 13.8d. The structural damage can be clearly and accurately identified in neighborhoods with
consistently large values of the CDIs in Fig. 13.8a–c and the auxiliary CDI in Fig. 13.8d can well assist identification of the
neighborhood.

13.4 Conclusions

Derivation of free response shapes of a linear, time-invariant, viscously damped structure is shown. The only current
application of free response shapes is structural damage identification and they cannot be used for model validation and
updating. A new OMPE method using free response measured by a CSLDV system is proposed to estimate modal parameters,
including natural frequencies, modal damping ratios, and mode shapes based on the concept of free response shapes. Natural
frequencies can be estimated by measuring free response of fixed points on the structure. A free response shape associated
with an elastic mode corresponds to the mode shape associated with the same mode. The amplitude of the free response
shape exponentially decays with a decaying rate that is directly related to the modal damping ratio and natural frequency of
the mode. When the decay is compensated with an accurately estimated decaying rate, the mode shape of the mode can be
automatically obtained as a result. In the proposed OMPE method, the modal damping ratio and mode shape associated with
an elastic mode can be simultaneously estimated by solving an optimization problem. Free response shapes of one elastic
mode in at least two half-scan periods are needed to estimate its modal damping ratio and mode shape. Using relatively
low scanning frequencies can yield mode shapes of high qualities. A baseline-free method is applied to identify structural
damage using mode shapes estimated by the OMPE method. In the numerical investigation, the proposed OMPE method is
applied to estimate modal parameters of a viscously damped damaged beam using its free response measured by a simulated
CSLDV system. Estimated modal parameters compare well with their theoretical ones and the damage can be accurately
identified using the auxiliary CDI.
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Appendix: Short-Time Fourier Transform

The short-time Fourier transform of z̃, denoted by Ṽw (t, f ), can be expressed by

Ṽw (t, ω) =
∫ ∞

−∞
z̃ (τ ) g∗

s (τ − t) e−jωτ dτ (13.28)

where gs is a window function with a scale s, the superscript ∗ denotes complex conjugation, and j = √−1. The scale s

determines the width of gs in the time domain, which should be smaller than that of a half-scan period. When Ṽw at the
i-th natural frequency of the structure becomes almost zero at an instant ti,0, the amplitude of ỹi is considered to be zero.
Note that in Eq. (13.28), Ṽw (t, ω) is visualized by use of a spectrogram whose intensity denotes the power spectral density
associated with Ṽw (t, ω); gs is a Hamming function that can be expressed by

gs (t) =
{

0.54 − 0.46 cos
(

2πt
s

)
, 0 ≤ t ≤ s

0 , otherwise
(13.29)
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