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Foreword

Over a decade ago, a group of researchers set out to identify the factors in early
childhood development that are key predictors of school readiness (Duncan et al.,
2007). By combining data from existing, large-scale, longitudinal data sets, they were
able to estimate how strongly early math, early reading, early attention, and early social
skills predicted later academic achievements. What came as a surprise to many at the
time, and resulted in a significant public attention, was their finding that early math
skills were not only a stronger predictor of later math skills, but also a robust predictor
of children’s later reading. Furthermore, Duncan et al.’s meta-analysis of all the
reported relationships between early competencies and later skills revealed that overall,
early math was the strongest predictor of later academic performance. These findings
had a huge impact on the field because they brought into sharp focus the importance of
early math skills and provoked greater attention to the study of how children learn
mathematics from an early age. Furthermore, these results also lead to a greater level of
interest in how to use evidence from research coming from a diversity of fields,
including cognitive psychology, educational psychology, cognitive science, and cog-
nitive neuroscience, to design evidence-based programs that foster mathematical skills
and understanding in young children.

In the 11 years that have passed since Duncan et al.’s seminal finding, many
researchers with different theoretical and methodological backgrounds have focused
their efforts to better characterize the mathematical minds of young children. Doing
so has led to the development of approaches for the assessment and characterization
of children’s early understanding of mathematics and the use of resulting knowl-
edge to find ways to optimally foster children’s mathematical skills and under-
standing to set them on a trajectory of learning and growth (Bailey et al., 2017).

Now is an optimal time to take stock of what fruits this period of research and
application of research has brought to bear. We have additionally obtained a better
understanding of the questions that remain unanswered, the novel avenues that have
emerged for research and mathematics education, and the directions that should be the
focus going forward. The present edited volume entitled “Early Mathematical Minds”
does exactly this and more. The present volume is edited by three esteemed scholars of
child development and mathematics education: Katherine M. Robinson,
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Helena P. Osana, and Donna Kotsopoulos. These editors have brought together a
well-regarded group of scholars who have contributed chapters that represent an
accessible, rich, diverse, and interdisciplinary synthesis of what we currently know
about the mathematical minds of young children. This volume is a must-read for those
seeking a broad overview of recent advances in our understanding of what factors
contribute to the successful development of young mathematical minds and how to best
foster early math skills and understanding. The contributions are written in accessible
language and thus are suitable for a multidisciplinary readership, ranging from edu-
cators and educational policy makers to undergraduate and graduate students as well as
researchers studying the emergence of mathematical minds.

The contributions within this volume are reflective of the breadth and complexity of
research on young children’s mathematical minds. By addressing such topics as spatial
thinking, computational thinking, the relationship between proportional reasoning and
fractions, and spatial and mathematical language spoken in the home environment, the
present volume sets itself apart from related books by going beyond a sole focus on
factors that influence the development of mathematical minds. The collection offers
perspectives on what constitutes effective ways of screening young children’s mathe-
matical skills and deeper understandings of how best to intervene in early development
in diverse educational settings, including language immersion classrooms. Furthermore,
the contributions cover important and widely debated subjects such as the role of
gender in mathematics, the role played by manipulatives in early math education, and
the potential of technology as a support for early math learning, both in the classroom
and in the home environment. By integrating contributions that focus on the latest
insights from empirical research into how children develop mathematical minds with
explorations of how to best foster this development, the present volume successfully
traverses the bridge between basic research on children’s early development of math-
ematical skills, on the one hand, and understanding the application of that research to
create both formal and informal learning environments to optimally support and engage
young mathematical minds on the other.

Daniel Ansari
Department of Psychology and

Faculty of Education Western University
London, Ontario
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Part I
Infancy and Preschool



Early Mathematical Minds:
Interdisciplinary Perspectives on Early
Mathematical Learning and Cognition

Donna Kotsopoulos, Katherine M. Robinson and Helena P. Osana

Supporting the mathematical development and learning of children is complex and
involves multiple stakeholder groups including parents, caregivers, early childhood
educators, teachers, researchers, and policymakers. Adding to the complexity is the
reality that diverse research disciplines inform conversations about children’s mathe-
matical understanding and learning. Research informingmathematical cognition and
learning stems from numerous disciplines and different methodological and theoret-
ical traditions, including education, psychology, educational psychology, cognitive
science, mathematics, and neuroscience. These diverse research traditions are often
constructed for different audiences, for different purposes, and independently of one
another, often resulting in siloed research.

It is our view that research, methods, and theories from different disciplines can
complement each other to advance children’s mathematics learning. An interdisci-
plinary approach may result in the creation and validation of approaches that are best
suited to support the learning of mathematics, perhaps more so than research typi-
cally aligned with traditional psychological methods and theories (Popescu, 2014).
Popescu (2014) proposed that it becomes difficult to capture the phenomena under
investigation when researchers do not collaborate or communicate fully. It could
be argued that educational psychology rests at the intersection between psychology
(including its broad range of subfields) and education, and as such, can serve as a
vehicle for such interdisciplinary collaboration.

There is also the enduring divide between research and practice (Farley-Ripple,
May, Karpyn, & Tilley, 2018; Penuel, Allen, Coburn, & Farrell, 2015). Farley-Ripple
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4 D. Kotsopoulos et al.

and colleagues (2018) described the problem as a “bidirectional problem in which
characteristics of both the research and practice communitiesmust be understood and
addressed to strengthen ties between research and practice in education” (p. 235).
While numerous hypotheses have been proposed to explain the lack of uptake of
research evidence in the practices of parents, early childhood educators, and teachers
(Lysenko, Abrami, Bernard, Dagenais, & Janosz, 2014), little consideration has been
given to the role the disciplinary tenets within silos have had on the chasm between
research and practice.

Educational psychology has evolved over the last 50 years. The original tenets of
educational psychology were based on cognitive psychology (Derry, 1992; Mayer,
1993). Although much of the field still has its roots there, the field itself has become
more situated in nature and directed toward the lives and experiences of individu-
als in school settings (e.g., discourse processes in mathematics classrooms, teachers’
day-to-day practices, students’ interpretations of mathematical representations). The
degree of applicationmay differ fromone study to another, butmany educational psy-
chologists conduct research in schools through close collaboration and consultation
with practitioners, such as school personnel.

Given the concerns about research uptake by school practitioners, mere collabo-
ration may be insufficient. Investigations of problems of practice that emerge from
classrooms are less common in educational psychology. Yet, such a shift may facili-
tate the bidirectional flow that Farley-Ripple and colleagues (2018) described because
it would require that the experiences and expertise of partners, such as researchers
and school personnel, mutually inform the questions that are asked and the way stud-
ies are developed. In this way, educators may claim more ownership of the solutions
that emerge from their experiences and practices.

The main objective of this book is to explore early mathematical learning and
cognition from interdisciplinary perspectives. The book aims to make a holistic con-
tribution to understanding the conditions under which children sharpen and extend
their mathematical thinking in a variety of settings. We are particularly proud of
the contributions to this edited volume. They reflect interdisciplinary perspectives
that are, in our view, appropriate springboards for conversations about bidirection-
ality in educational research. The studies intentionally borrow from different dis-
ciplines, but also reside in both research and practice, with clear implications for
practice—whether that is in home settings, preschool settings or schools.

The three sections of the book are organized around developmental periods in
cognition: (1) infancy and preschool; (2) the beginning of formal schooling; and
(3) elementary education. Our first section, infancy, and preschool, begins with this
chapter and than a chapter by Makosz, Zambryzcka, and Kotsopoulos, who explore
what they define as the “girl crisis.” Early childhood origins of gender differences
and future mathematics learning and participation are explored. The authors draw
from the extant literature, including their own. Evidence is explored to consider
whether different patterns of participation are motivated by cognitive, behavioral,
attitudinal, or socialized differences. Of considerable interest are their reflections on
the role of males, including fathers, in what we understand about gender differences
and the learning of mathematics. Their analysis suggests a lack of conclusiveness
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about gender gaps and a fade effect showing that these gender differences diminish
as children progress through the school years.

In Chap. 3, Lee, Hodgins, and Wood address spatial learning, technology, and
the role of parental talk. With technology-enhanced toys being widely available to
parents, this contribution is timely. The authors introduce the important differences
in spatial talk during technology-based play versus play with traditional manipula-
tives and discuss ways to capitalize on the affordances offered by each to enhance
children’s spatial learning.

In Chap. 4, Linder describes a five-week take-home “mathematics bags” interven-
tion designed to support and increase mathematics play interactions between parents
and preschool-aged children. The bags focused on various mathematics strands and
were designed to encourage mathematical inquiry in the home. Linder found high
levels of engagement and interest for both children and parents. Moreover, the inter-
vention demonstrated to other practitioners the efficacy and feasibility of such an
initiative.

Our second section, addressing the beginning of formal schooling, starts with
a contribution from Penner, Buckland, and Moes, who explore early identification
and interventions for kindergarten children at risk of mathematical difficulty. Using
research from longitudinal studies, these authors identified cognitive predictors of
numeracy skills and then identified evidence-based early screening tools for teachers
and researchers. This interdisciplinary work illustrates how such interventions can
happen in classrooms, with the ultimate goal of improving the long-term outcomes
of students.

In Chap. 6, Kotsopoulos, Floyd, Nelson, and Makosz examine the differences
between mathematical thinking and computational thinking. As the authors point
out, many young children begin school as significant users of technology and as
such, computational thinking is a topic of great interest among educators and inno-
vators alike. To explore differences between mathematical and computational think-
ing, kindergarten children’s free play was examined. Instances of free play that were
viewed as computational thinking were captured by teachers using digital devices
and then subsequently analyzed collaboratively by the teachers and the researchers.
Considerable overlaps between mathematical and computational thinking were dis-
covered, and teachers also enhanced their understanding of the distinctions between
both types of thinking.

In Chap. 7, Osana and Pitsolantis explore the meaningful use of manipulatives in
kindergarten. These authors investigate the instructional conditions that support the
development of children’s dual representation of manipulatives and the moderating
effects of prior numeracy knowledge. An important finding was that children with
higher prior knowledge were more successful at transferring their learning between
different types of tasks and demonstrated superior performance on an application
task.

In Chap. 8, Sevinc and Brady share classroom-based research that involved a
three-phased instructional cycle: (a) narrative introduction, (b) model development,
and (c) model sharing. The aim was to explore the extent to which activities elicited
model representations of length and area. This chapter illustrates how young learners
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are capable of developing models representing length and area through the use of
story, inquiry, and collaborative activity conducted in whole-class and small-group
settings.

In Chap. 9, Wijns, Torbeyns, De Smedt, and Verschaffel investigate patterning
in preschool and kindergarten settings. Patterning is proposed to have an important
role in children’s mathematical development. The authors share recent research,
compare different definitions and operationalizations of patterning, and elaborate on
the association between mathematical patterning abilities and other domain-specific
and domain-general cognitive abilities. Finally, interventions aimed at stimulating
patterning abilities in young children are explored.

The final section of the book focuses on the elementary school years and begins
with Chap. 10. Robinson explores the importance of arithmetic concepts and how
they fit with children’s knowledge of arithmetic facts and arithmetic problem-solving
procedures. A review of how concepts are assessed by researchers is presented as
well as current research on the development of six specific arithmetic concepts:
identity, negation, commutativity, inversion, associativity, and equivalence. Robin-
son explores several ways in which teachers and parents can increase children’s
understanding of arithmetic and promote the use of that knowledge to improve their
mathematical skills.

In Chap. 11, Martínez articulates a theoretical framework based on situated cog-
nition and one from sociolinguistics about second language education (i.e., commu-
nicative language teaching) to understand mathematics language integration. Using
classroom examples, Martinez illustrates how pedagogical practices consistent with
a situated perspective on mathematics education provide opportunities to engage
with the second language and how pedagogical practices consistent with a commu-
nicative perspective on second language education provide opportunities to engage
in mathematical activity.

In Chap. 12, Desmarais, Osana, and Lafay present an interesting chapter related
to children who have learning difficulties or intellectual disabilities. The authors
engaged in a classroom-based intervention called schema-based instruction (SBI;
Jitendra & Star, 2011). SBI uses visual representations to teach students the math-
ematical structure of word problems. The chapter outlines the literature, the inter-
vention, and the results. Their analysis of the ways in which disability intersects
with mathematical instruction may account for the students’ performance after the
intervention.

In Chap. 13, Dubé, Xu, Kacmaz, Alam, and Ren also consider technology; more
specifically, their chapter is about the role of tablets as an elementary mathematics
education tool for both parents and teachers. As the authors point out, there is little
consensus on whether or not tablets are effective tools for teaching mathematics, and
studies seem to provide contradictory explanations about their effects on children’s
learning. This chapter is a systematic literature review of the tablet literature up to
grade 5, published between 2012 and 2017.

In our final chapter, Fizpatrick and Hallett provide a comprehensive review of the
literature examining children’s early understanding of proportional reasoning and
division, and how these early conceptions contribute to children’s later understanding
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of fractions. Although early literature on proportional reasoning suggested that only
adolescents have a true understandingof proportional reasoning,more recent research
suggests that very young children, if asked appropriately, do demonstrate a basic or
intuitive understanding of proportional structures.

In addition to each chapter reflecting interdisciplinary perspectives on early math-
ematical learning, each chapter also articulates applications to practice—be it in the
home, early learning center, or school. A commitment to articulating application to
practice is a significant contribution of this collective work. This commitment is in
line with the tenets of this proposed new focus on bidirectionality in educational
research. We anticipate the book will be of interest to developmental psychologists,
neuroscientists, mathematics teachers, mathematics education researchers, and early
childhood researchers and practitioners.

The book would be an ideal text for an introductory course in early mathematical
cognition in a variety of disciplines, including psychology, education, educational
psychology, educational neuroscience, child development, and cognitive develop-
ment, particularly given the range of developmental periods, mathematical domains,
methodological approaches, and contexts of application that are represented. Our
sincere gratitude to our colleague authors who contributed so thoughtfully to this
work.
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The “Girl Crisis”: The Relationship
Between Early Gender Differences
and Future Mathematical Learning
and Participation

Samantha Makosz, Joanna Zambrzycka and Donna Kotsopoulos

There is a dominant view in society that early participation in the areas of science,
technology, engineering, and mathematics (STEM) is an important gateway to a
successful future—both professionally and financially. Evidence from a variety of
studies supports this perspective (Change the Equation, 2017; Conference Board of
Canada, 2014). By the end of high school and within most STEM-based disciplines,
a gender difference in terms of participation is evident. More youngmen thanwomen
choose to study in STEM-based disciplines in a post-secondary setting at the end of
high school (You, 2013). Further, women are less likely to choose a STEM program
in post-secondary, regardless of mathematical achievement in high school (Hango,
2013a), though by the end of high school, males’ mathematics scores are higher than
females’ (Hango, 2013b). In advanced graduate education in STEM disciplines, men
are overrepresented in most fields of study (Gillen & Tanenbaum, 2014). Indeed,
by the end of high school, one might argue that a “girl crisis” emerges in STEM
education that has serious implications for women in terms of future career prospects
and economic prosperity.

Our focus in this chapter is to explore the early childhood origins of this trajectory,
drawing from the extant of the literature and also referring to our own recent research.
We explore the evidence to consider whether different patterns of participation are
motivated by cognitive, behavioral, attitudinal, or socialized differences. Specifically,
we will examine gender differences and similarities, reasons for gender differences
(perception and beliefs, parent and teacher influences, gender stereotypes, and inter-
est and motivation), and the lack of representation of males and fathers in research.
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In addition, we will discuss the lack of conclusiveness in some of the gender gap
research.

Gender Differences and Similarities

Children’s mathematical knowledge begins to develop much sooner than the start of
formal schooling (Resnick, 1989). Infants as young as six months are sensitive to
numerosities (Starr, Libertus, & Brannon, 2013; Xu & Arriaga, 2007; Xu & Spelke,
2000; Xu, Spelke, & Goddard, 2005), but studies that have focused on infants typi-
cally do not take into account the role that gender may play. One study by Starkey
(1992) looked at gender and infants by examining addition and subtraction concepts
in 18- to 42-month-year-olds, but found no gender differences. A key issue when
attempting to detect gender differences in infants is the sample size across studies.
For instance, Spelke (2005) explains that most studies on infants do not report gen-
der differences because of the lack of effects and that infant studies have not been
incorporated in more powerful analyses such as meta-analyses.

The research on preschool- and kindergarten-aged children presents mixed find-
ings on gender differences. Ginsburg and Russell (1981) found that the only gender
differences for four- to five-year olds were in addition and subtraction tasks, with
girls performing better, but the study consisted of a small sample of children. How-
ever, studies that have incorporated larger samples with this age group have not found
gender or cultural differences on various numerical tasks, such as counting or arith-
metic (Lummis & Stevenson, 1990; Song & Ginsburg, 1987). From these findings,
there is little evidence to support gender differences in emergent numeracy abilities
from infancy to four years of age.

To accurately detect gender differences, sample size needs to be considered. Stud-
ies that have examined mathematics achievement from the Early Childhood Longi-
tudinal Study, Kindergarten Class of 1998–1999 (ECLS-K), which is a nationally
representative sample (approximately 21,400 kindergarteners) in the USA, found
that overall, there are no significant gender differences in mathematics at the start
of kindergarten (Penner & Paret, 2008; Robinson & Theule Lubienski, 2011). Con-
versely, Penner and Paret (2008) did find gender differences at the start of kinder-
garten in favor of males among those at the top distribution of the 95th percentile,
while a female advantage was present at the lower end of the distribution (1–40th
percentile). Notably, when examining the top scores for kindergarteners’ mathemat-
ics achievement, only 15% of females were in the top 1%. By eighth grade, 37%
of females were in the top 1% (Robinson & Theule Lubienski, 2011). Although an
increase is promising, this underrepresentation may account for the gender disparity
of females in mathematics-related careers, given that females still only represent a
third of the top achievers by eighth grade.

Further data from the ECLS-K demonstrated that parental education has a medi-
ating effect on the male advantage found in kindergarten mathematics. The sons
of parents with higher education levels had the greatest advantage; however, males
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from lower parental education levels still sustained an advantage when compared to
females. Females at the bottom of the distribution had similar results regardless of
parental education levels. By the time students progressed to the third grade, there
was no longer a female advantage for those in the lower end of the distribution, and
the male advantage had spread throughout the distribution (Penner & Paret, 2008).

Husain and Milimet (2009) coined the term “boy crisis,” which makes reference
to the fact that boys are lagging behind girls across multiple academic fields, except
for mathematics. Husain andMilimet used the data from the ECLS-K and found that,
by the start of kindergarten, males are marginally outperforming females, but by the
end of kindergarten, this gender gap doubles. Likewise, the gap continues to double
until the end of third grade. It is important to note that this early male advantage
was predominantly related to white males, and the same results were not found with
African–American or Hispanic children.

While it appears that boys are outperforming girls at the top of distribution, the
findings are inconsistent when assessing participants’ complex mathematical prob-
lem solving versus less complex mathematical tasks (e.g., computation). A meta-
analysis conducted by Hyde, Fennema, and Lamon (1990) examined 100 studies
and demonstrated that children as young as five years old do not show gender differ-
ences onmore complexmathematical problems, but thatmales outperformed females
in high school on similar measures. The meta-analysis did find that by grade two,
girls have better mathematical computation and problem solving skills than males,
but by the time students reach high school, males have better problem-solving skills
(Hyde et al., 1990). In another study, Pargulski and Reynolds (2017) examined mean
and variance differences on mathematical problem solving and numerical operations
for over 2000 participants between the ages of 4–19. The authors found a signifi-
cant male advantage for those categorized as high performers on problem solving,
but they did not examine at what age these gender differences emerge. Pargulski
and Reynolds did not find a gender difference for numerical calculations. Overall,
the emerging gender gap in complex mathematical problem solving is troublesome,
given the need for complex skills in order to enter STEM occupations.

Other studies have not necessarily found differences between boys’ and girls’
mathematical abilities, but have demonstrated differences in growth of mathematical
abilities. For instance, Aunola, Leskinen, Lerkkanen, and Nurmi (2004) found no
differences from preschool to the second grade using a sample of almost 200 Finnish
students, but males showed a faster increase in performance compared to females
and had more variability in their performance. For those who were ranked with high
ability in mathematics in kindergarten, their gender was able to predict their perfor-
mance in the second grade. Counting ability was also a predictor of mathematical
performance. This finding highlights that girls may benefit from more exposure to
and practice with counting, particularly prior to the start of formal schooling.

The most recent meta-analysis of over seven million American students from
grades two to eleven did not find any gender differences on standardized American
mathematics assessments (Hyde, Lindberg, Linn, Ellis, & Williams, 2008). Stan-
dard school assessments have been criticized for assessing lower-level mathematical
skills; thus, consequently, the authors also examined data from the National Assess-
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ment of Educational Progress (NAEP), which includes more complex mathematical
problems. The findings showed that by high school, females demonstrated similar
performance to males. In comparison with the meta-analysis (Hyde et al., 1990), the
NAEP data appear to show that gender differences in complex problem solving are
disappearing.

Given that the research suggests that gender differences diminish with age, it
may be that students’ motivational levels explain why females are less likely to
pursue mathematics in their future education and careers (Hyde, 2014). A review
of various meta-analyses proposed a gender similarity hypothesis in mathematics,
whereby there are more gender similarities than differences (Hyde, 2014). One area
of mathematics that Hyde (2014) suggested has moderate gender differences is in 3D
mental rotation, found in children as early as four years old, with a male advantage
(Levine, Huttenlocher, Taylor, & Langrock, 1999).

Other researchers have hypothesized that gender differences are disappearing
because of changes to education policies, such as No Child Left Behind (Cimpian,
Lubienski, Timmer,Makowski,&Miller, 2016). In response, Penner andParet (2008)
analyzed the ECLS-K: 2011 dataset and found that gender results were remarkably
similar to the 1999 dataset. Females are still less than one-third represented at the
top of the distribution as early as in the spring of kindergarten, thus suggesting that
these differences emerge before the start of kindergarten and may indeed be more
influenced by environmental factors.

A common limitation among the meta-analyses conducted is that the studies
included often lack samples that include children prior to the start of formal school-
ing. Robinson, Abbott, Berninger, and Busse (1996) prescreened children during
preschool in order to examine children with high mathematical abilities. They found
that on standardized mathematical tests, boys scored higher than girls on most of the
quantitative measures. Nevertheless, the gender results found for this study were not
based on the whole sample of students, and thus, there is a lack of generalizability
to young students of various mathematical abilities.

Reasons for Gender Differences

Researchers have attempted to tease apart the underlying causes for observed gender
differences in mathematics, arguing they are more complex than the nature versus
nurture debate. In fact, there are a variety of factors that interact with one another such
as psychology, biology, and socialization, alongwith environmental factors, attitudes,
and beliefs (Halpern,Wai, & Saw, 2005; Jacobs, Lanza, Osgood, Eccles, &Wigfield,
2002; Wood & Eagly, 2002). Other reasons that have been proposed to explain why
gender differences in mathematics emerge in the first few years of formal schooling
include perception and beliefs, parent and teacher influences, lack of representation
of males and fathers in research, gender stereotypes, and interest and motivation
(e.g., Dickhauser & Meyer, 2006; Eccles, Wigfield, Harold, & Blumenfeld, 1993;
Fredricks & Eccles, 2002; Gunderson, Ramirez, Levine, & Beilock, 2012; Jacobs &
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Eccles, 1992; Neuburger, Jansen, Heil, & Quaiser-Pohl, 2012). These factors will be
further discussed throughout the chapter.

Perception and Beliefs

Some researchers have found that males and females start school with the percep-
tion that they have strong abilities in mathematics (Bouffard, Marcoux, Vezeau, &
Bordeleau, 2003; Eccles et al., 1993), though this perception changes as children con-
tinue through elementary school. In a meta-analysis across a variety of ages, females
typically report negative attitudes toward mathematics (Hyde et al., 1990). By the
first grade, males have reported higher perceptions of their mathematical abilities
compared to females (Eccles et al., 1993).

Furthermore, Dickhauser and Meyer (2006) reported that males and females
between the ages of eight to nine years have different perspectives concerning their
personal attributions to mathematical ability. In this study, girls were more likely to
attribute failure in mathematics to their low ability; conversely, they were less likely
to attribute mathematical success to high ability. Additionally, girls did not consider
their actual mathematical performance (i.e., grades) when concluding their ability
attributions, even though their performance was usually positive. Boys did incorpo-
rate their actual mathematical performance when deciding their ability attributions.
This implies that children at the elementary level have developed their own percep-
tions of their mathematical ability and why they are or are not good at mathematics,
and that girls appear to have low confidence in their mathematical ability.

Parent and Teacher Influences

Parents have their ownperceptions regarding their children’s attributes. This is impor-
tant because if females at a young age are less interested in mathematics and per-
ceive that their parents do not value their competence in mathematics, they are less
likely to pursue mathematics in the future (Jacobs, Davis-Kean, Bleeker, Eccles, &
Malanchuk, 2005).

Research has found that mothers from the USA, Korea, Japan, and Taiwan tend
to believe that their sons are better at mathematics; consequently, mothers have
higher expectations for their sons in comparison with their daughters (Lummis &
Stevenson, 1990). Parents are also more likely to attribute their eight- to nine-year-
old daughters’ success in mathematics to their effort and their sons’ success to talent
(Yee & Eccles, 1988). This perspective underestimates daughters’ abilities, which in
turn leads young girls to potentially underestimate their own ability. Girls may not
be given the same confidence as boys. Interestingly, fathers have higher standards
for boys who already have low mathematical abilities than for girls (Yee & Eccles,
1988). This perspective appears to be true among teachers as well, where males’
failures in mathematics are attributed to lack of effort, but for females, their failure
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is attributed to lack of ability (Fennema, Peterson, Carpenter, & Lubinski, 1990;
Tiedemann, 2000).

Although one study that examined parents’ perceptions of their children from
kindergarten to the third grade found no gender differences in their beliefs, parents
believed mathematics was more important for their sons than for their daughters
(Eccles, Jacobs, & Harold, 1990). Many of these studies are almost three decades
old, and efforts have since been made to highlight the need for females to partake in
mathematics (Change the Equation, 2017).

There is ample research that supports teachers as socializing agents in children’s
mathematical abilities and beliefs (Beilock, Gunderson, Ramirez, & Levine, 2010;
Else-Quest, Hyde, & Linn, 2010; Gunderson et al., 2012; Upadyaya&Eccles, 2014).
Therefore, it is vital for teachers to be aware of their own mathematics anxieties
and beliefs, particularly because of the influence it may have on their students. For
example, one study examinedfirst-grade teacherswho exhibitedmathematics anxiety
and found that the teachers’ female students performed more poorly in mathematics
than males, which was mediated by the students’ own ability beliefs; there was no
influence of anxiety on first-grade males (Beilock et al., 2010).

Lack of Representation of Males and Fathers

Interestingly to note, studies that include teachers and parents tend to include more
female teachers and mothers. Beilock et al. (2010) analyzed only female teachers’
mathematics anxiety, with a rationale that over 90% of teachers in the USA are
female. Many studies examining only gender differences do not report which care-
giver consented to participate, but those that include caregivers tend to only include
mothers, with the justification that mothers typically respond to participate and spend
the most time with their children.

In addition, Lummis and Stevenson (1990) interviewed only mothers of kinder-
garten children with the reasoning that it would be too difficult to find the time to
interview fathers. Jacobs and Eccles’ (1992) studywas from a larger study (Michigan
Study of Adolescent Life Transitions), where both mothers and fathers were asked
to participate, but the authors used mothers as the sample given that more mothers
returned the survey questionnaires. No comparison numbers were provided in the
study, though the authors stated that similar results were found with fathers, which
were not presented in the paper.

Another large dataset is the Childhood and Beyond study, which started in 1983
and includes both cross-sectional and longitudinal information on children from
kindergarten to grade three (Jacobs et al., 2005). Both fathers and mothers responded
to various survey questions about their beliefs and interests and howoften they engage
in mathematical activities with their child. Jacobs and colleagues (2005) used the
Childhood and Beyond dataset to track children longitudinally from kindergarten to
grade three and to track parent involvement and parents’ perception in mathematics,
along with other influencing factors.
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Although the Childhood and Beyond dataset includes survey reports from fathers
and mothers, mothers were used for the majority of the analyses because more moth-
ers completed the surveys. For example, when examining what sorts of toys parents
buy for their child, they asked mothers instead of fathers, reasoning that mothers are
more likely to do the shopping. The mothers reported buying more mathematical
toys for their sons compared to daughters. This implies that boys may have more
opportunity and access to mathematical play experiences. Yet, mothers and fathers
were more likely to report being involved with mathematical activities with their
daughters, possibly because they believed their daughters needed more guidance in
the area (Jacobs et al., 2005).

Simpkins, Fredricks, and Eccles (2015a) used the Childhood and Beyond dataset
most recently and reported a total of 987 children, with 723 mothers and 541 fathers.
In their study, they focused on the larger sample with mothers because of higher sta-
tistical power. They also included a section of fathers, arguing that it was necessary
because of the dearth of research with participating fathers or data being indirectly
collected about fathers. Fathers’ behaviors predicted their child mathematical abil-
ities starting in grade two, but mothers’ did not, which may be explained by the
stereotype of who is “better at” and who values mathematics. Simpkins, Fredricks,
and Eccles (2015b) explained that they “could not directly test for mother and father
differences and that the samples of mothers and fathers are drawn from overlapping,
but not equivalent families” (p. 135), thus emphasizing the challenge of collecting
data from fathers even over a longitudinal study spanning more than 12 years. More
recent meta-analyses are needed to understand the influence fathers have on their
children, given that fathers spend more time with their children when the mother is
employed outside the home (Sandberg & Hofferth, 2001).

In our own research, we considered the same sorts of questions about mothers and
fathers and their engagementwith their young children. Eighteenmother–child dyads
between the ages of two to five years old (Mage = 39.39months; SD= 15.38; 10 boys)
and 18 matched sample father–child dyads also between the ages of two to five years
old (Mage = 39.72 months; SD = 15.07; 10 boys) participated in the study. Parents
completed a demographic questionnaire, amental rotation task (MRT;Vandenberg&
Kuse, 1978), and two activity surveys adapted from Dearing and colleagues (2012)
exploring spatial (e.g., building with blocks, puzzles) and mathematical activities
(e.g., sing counting songs) in the home. Children’s nonverbal quantitative reasoning
was measured by the Stanford-Binet Intelligence Scales for Early Childhood, Fifth
Edition (SB5: Roid, 2003). The Nonverbal Quantitative Reasoning subtest contains
18 items that require the child to answer questions based on quantity size, nonverbal
mental addition, number recognition, estimation, three-dimensional block counting,
and the relative magnitude of numbers.

Mothers were found to be more likely to report teaching their sons mathematics
compared to their daughters. There were no significant differences in what fathers
reported about their interactions with their daughters relative to their sons. A possible
explanation for thismay be thatmothers typically spendmore timewith their children
at home, thus are better able to report who they teach more often.
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Correlational analyses were conducted separately formothers and fathers to deter-
mine any associations between their child’s quantitative reasoning and a variety of
cognitive and social factors. The first set of correlational analyses were conducted
with the mother–child dyads and explored the relationship between children’s non-
verbal quantitative reasoning to the following factors: child’s age, gender, mother’s
education level, mother’s mental rotation scores, at home teaching activities, and
the frequency of spatial activities, including overall average frequency and the fre-
quency of each spatial activity. The correlational analyses for themother–child dyads
found child’s gender to be significantly correlated with their quantitative reasoning
ability (r = 0.52, p = 0.02), indicating that girls were more likely to outperform
the boys. For the father–child dyads, the correlational analyses revealed that child’s
age (r = 0.55, p = 0.01) and the frequency with which they engaged in building
with construction toys (r = 0.56, p = 0.01) were significantly correlated with their
quantitative reasoning scores. This indicates that as children aged their quantitative
reasoning scores improved and children who played more often, with construction
toys had higher quantitative reasoning scores. Our own results, therefore, support
the notion that gendered engagement in the home by mothers, but not by fathers, is
evident before formal schooling.

Gender Stereotypes

Gender stereotypes emerge early (Gelman, Taylor, & Nguyen, 2004). In conversa-
tion, subtle messages (i.e., reference to categories of gender, labeling of gender, and
contrastingmales vs. females) about gender bymothers can have an influence on their
toddlers’ gender beliefs (Gelman et al., 2004). In turn, the numeracy performance of
children as young as five years old is influenced by such stereotypes (Ambady, Shih,
Kim,& Pittinsky, 2001). Specifically, five-year-old Asian–American girls performed
worse on a numeracy task when their gender identity was activated.

In kindergarten, females are also susceptible to stereotype threat, given that they
aremore likely to performworse on amathematical taskwhen their gender stereotype
is activated—mothers who view mathematics as a field that is male dominated are
more likely to have daughters who performworse onmathematical tasks (Tomasetto,
Romana Alparone, & Cadinu, 2011). Additional research by Tomasetto, Mirisola,
Galdi, and Cadinu (2015), who studied 253 six-year-olds (131 girls and 122 boys),
and both their mothers and fathers, found that daughters’ math self-perception was
predicted by their mother’s math stereotypes. However, both mothers and fathers did
not differ in their math–gender stereotypes according to the gender of their child,
though fathersweremore likely to endorsemath as amale-dominatedfield.Moreover,
there was an association between fathers’ evaluations of their child’s ability and
children’s self-perception of ability. This was significant even after controlling for
the effect of mothers. These findings shed light on the important influence of fathers,
who are often underrepresented in the research.
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More evidence examining children in grades one, two, and four highlighted the
development of gender stereotypes (Freedman-Doan et al., 2000). Both males and
females provided gender-stereotyped answers when asked what task they were the
worst at. The majority of females stated science and computers, while males stated
reading. In relation to mathematics, females stated less often that they were good
at mathematics compared to males. Nonetheless, both genders believed they could
improve on the task that they believed to be the worst at, but by the fourth grade, most
students believed that they could not improve. Their reasoning for not being able to
improve was attributed to lack of ability. This finding verifies that as children of both
genders get older, they presume they are less capable of improving in their worst
qualities (Freedman-Doan et al., 2000). Further, it suggests that early on, students
are more confident in their abilities, but as they go through formal schooling, their
self-efficacy decreases.

Interest and Motivation

Children’s mathematical interest at the start of formal schooling is vital, as the higher
the mathematical interest displayed by the child, the more likely teachers attribute
their success to effort and ability, which then results in an increase in children’s inter-
est in mathematics (Upadyaya, Viljaranta, Lerkkanen, Poikkeus, & Nurmi, 2012). In
one study, children’s mathematical interest was tracked from kindergarten to grade
six and teachers’ perception of students’ perceived performance, and effort was the
most consistent factor in students’ motivation throughout the years (Upadyaya &
Eccles, 2014); there were no differences between genders with regards to children’s
interest and teacher beliefs, however. Nevertheless, both genders were equally sen-
sitive to teacher feedback.

Early motivation is also imperative, as those who display higher mathematical
motivation at the start of kindergarten perform higher on an arithmetic assessment
at the end of the school year, without showing any gender differences (Viljaranta,
Lerkkanen, Poikkeus, Aunola, & Nurmi, 2009). This is consistent with other stud-
ies that have not found gender differences in mathematical motivation at the start
of formal schooling (Jacobs et al., 2002). Unfortunately, by the third grade, girls’
motivation tends to decrease, but boys’ motivation remains stable (Bouffard et al.,
2003). This may explain why boys with high mathematical abilities in kindergarten
have significantly increased in their abilities by the third grade, whereas girls have
not (Husain & Millimet, 2009).

Children need to engage inmathematical play prior to the start of formal schooling,
so they enter kindergarten with an interest and motivation in mathematics. Gender
differences in mathematical motivation do not exist in preschool (Viljaranta et al.,
2009), which implies that prior to the start of formal schooling, both genders are
equally motivated in mathematics.
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Conclusion

Overall, the literature that has examined gender differences in mathematical abilities
prior to formal schooling suggests that they may be more socialized than innate. The
most substantial studies examining gender differences begin in kindergarten and only
find a male advantage at the top of the distribution. The most recent meta-analysis
(Hyde, 2014) found that gender differences are disappearing: “nonsignificant gender
difference, that is, a gender similarity, is as interesting and important as a gender
difference” (Hyde, 2014, p. 393).

Awareness of gender similarity in mathematical ability is an important and crit-
ical mind shift that is necessary. Early childhood experiences at home are crucial,
and more research is needed to examine how fathers spend time with their children.
Awareness of gender similarity inmathematical ability is also an importantmind shift
for schools. One implication of this review is that parents, caregivers, and educators
need to be informed of the importance of creating equal mathematical opportunities
for both boys and girls, not only at an early age, but throughout childhood. Although
most parents and teachers would readily agree that mathematical learning is impor-
tant, the extent to which the adults recognize their own biases in their interactions
with children may be limited.

The subversive nature of systemic gender bias inmathematical engagement,which
results in under participation of women in post-secondary STEM disciplines, regard-
less of ability, consequently impacts women’s future career choices, financial secu-
rity, and health access, particularly in the USA, where health care is less accessible
for low-income earners and their futures as women are more likely to be as single
parents (Andersen & Newman, 2005; US Census Bureau, 2016). This demonstrates
precisely how complex and yet utterly necessary it is to frame the situation as both
a “girl crisis” and one of gender similarity.
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Spatial Learning and Play
with Technology: How Parental Spatial
Talk Differs Across Contexts

Joanne Lee, Sarah Hodgins and Eileen Wood

Importance of Foundational Spatial Skills

Consider San Francisco’s Golden Gate Bridge, Toronto’s CN Tower, or the Eiffel
Tower in Paris. Each of these amazing feats of human engineering required spatial
knowledge as a foundation for success. Spatial visualization, spatial perception,
spatial orientation, and mental rotation serve as the foundation for a multitude of
everyday skills that adults and children perform. For example, we use simple spatial
skills to identify and describe two-dimensional (2D) and three-dimensional (3D)
shapes, the varying sizes, and orientations of these shapes and to represent andmodel
objects in the environment. In addition, simple spatial skills allow us to gauge spatial
relations between objects as well as between objects and ourselves. Using these basic
spatial skills, we are able to organize wardrobes, stack our groceries in grocery bags,
and avoid diving into shallow pools. We use more complex spatial skills to navigate
from one location to another such as when we plan a trip or select a good hiding spot
when playing hide-and-seek. Complex spatial skills are also evident when we apply
geometric concepts in real-world contexts including computer modeling. Overall,
spatial knowledge and skills direct and coordinate many of our informal and formal
experiences. They allow us to understand spatial properties and spatial relations,
and these, in turn, allow us to navigate the world, as well as to design the tools
and structures that define some of our most amazing feats (e.g., National Governors
Association Center for Best Practices, Council of Chief State School Officers, 2010;
National Research Council, 2006; Newcombe, Uttal, & Sauter, 2013).

We communicate much of our spatial knowledge through visual and verbal repre-
sentations. Language is a particularly important avenue of communication as spatial
words occur frequently in everyday exchanges between parents and their children
starting early in life. For example, spatial words are used to describe the features
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of an object, the rotation of an object, or the spatial relations between objects (e.g.,
Casasola & Bhagwat, 2007; Casasola, Bhagwat, & Burke, 2009). Research suggests
that, consistent with most complex cognitive skills, earlier acquisition of simple spa-
tial concepts leads to better performance in later academic and practical contexts
(e.g., Casey, Nuttall, Pezaris, & Benbow, 1995; Gunderson, Ramirez, Beilock, &
Levine, 2012; Shea, Lubinski, & Benbow, 2001; Verdine et al., 2014). Specifically,
foundational spatial skills are predictive of subsequent mathematics attainment in
elementary and even high school (e.g., Duncan et al., 2007; Magnuson, Duncan,
Lee, & Metzger, 2016; Mix et al., 2017; Watts, Duncan, Clements, & Sarama, 2018;
Wolfgang, Stannard, & Jones, 2003). Moreover, Science, Technology, Engineering
and Mathematics (STEM) careers typically are pursued by high school students
who have high spatial competence compared to those with lower spatial compe-
tence (Shea et al., 2001; Wai, Lubinski, & Benbow, 2009). Thus, attention has been
directed toward adult–child contexts, especially those involving parents and early
childhood educators, where the earliest influences on spatial skills and knowledge
can occur (e.g., McClure et al., 2017; Newcombe, 2010). In addition, technology,
especially software programs designed for infants, toddlers, and preschoolers, has
recently become a focus for research as these software programs are often explicitly
involved in providing instruction important for spatial development.

The following chapter will review current and unfolding research that examines
how spatial talk is provided to young children in traditional and technology-based
contexts, the factors that might influence the production of spatial language in these
contexts, and the caveats regarding technology use of applications (apps) on mobile
devices. Exploring language related to spatial concepts in these early interactions
provides a foundation for understanding children’s subsequent mathematics compe-
tence.

Why Is Spatial Language Important to Early Spatial
Development?

Language is a symbolic system used to embody and express our thoughts, feel-
ings, and conceptual understanding. Spatial language serves as a representational
tool to communicate mathematical thinking (e.g., Kuhn, 2000). It can be used to
direct children’s attention and facilitate encoding and understanding of spatial con-
cepts (Gentner, 2003; Gentner & Lowenstein, 2002; Gentner, Özyürek, Gürcanli,
& Goldin-Meadow, 2013). A body of research supports the early introduction of
spatial language as a means for facilitating the acquisition of spatial knowledge and
skills. For example, Casasola and Bhagwat (2007) provided 18-month-old children
with verbal labels to explain “support relations” between objects. “Support relations”
involves knowing whether there is appropriate support available to provide sufficient
balance to maintain a structure when stacking objects vertically or horizontally. As
such, spatial knowledge would be necessary to ensure a tower or bridge built from
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blocks does not collapse because of insufficient support. Having labels that clearly
defined relations between objects (e.g., two things placed on top of each other vs. one
thing in/inside another) facilitated learning even among very young learners. Among
slightly older infants (21- and 22-month-olds), understanding of tight-fit support rela-
tions was also enhanced when children were provided with language that allowed
them to discriminate between an object that was tightly in versus loosely in the other
(Casasola et al., 2009). Gains based on provision of linguistic labels are also evident
for older preschool-aged children. For example, hearing relational spatial words such
as on top, under, and to the left was strongly related to the enhanced understand-
ing of spatial locations between objects (Dessalegn & Landau, 2008; Loewenstein &
Gentner, 2005; Plumert &Nichols-Whitehead, 1996). In addition, hearing locational
spatial sentences such as “The toy is hidden by the frog” (where the frog is the closest
landmark to the toy location) versus non-locational spatial sentences such as “I’m
hiding the toy here” helped 4-year-olds perform significantly better at recalling the
toy location than the non-locational sentences group (Miller, Patterson, & Simmer-
ing, 2016). These laboratory-based studies identify the importance of early spatial
language exposure.

Predictive effects of spatial language on gains in spatial understanding among
young children have subsequently been demonstrated in naturalistic contexts. For
example, Pruden, Levine, and Huttenlocher (2011) found that parents who provided
descriptive words to identify shapes, size (e.g., long, small), and properties of 2D
and 3D objects (e.g., edge, corner) during everyday activities promoted spatial word
production and competence in their children. Similarly, Foster and Hund (2012)
demonstrated that four- and five-year-old children showed a more proficient under-
standing and use of spatial relational words (e.g., between and in the middle) when
these words were used by parents during daily interactions. Longitudinal benefits
have also been observed. Specifically, Pruden and colleagues (2011) found that 4.5-
year-old children of parents who used more spatial language when their children
were younger (i.e., 14 and 46 months of age) produced more spatial language (up to
525 spatial words over the nine 90-min home visits), than their peers whose parents
did not (5 spatial words over the same period). Gains in spatial word production and
competence at 54 months were evident even after controlling for other non-spatial
talks. Thus, early exposure to parental spatial language clearly resulted in gains
in children’s spatial language and competence; more importantly, these gains per-
sisted over time. These same advantages have been demonstrated for children with
learning challenges. Specifically, Landau, Spelke, and Gleitman (1984) found that
hearing spatial words facilitated the acquisition of spatial concepts, such as object
features and locations for children with visual impairments. In sum, the research evi-
dence from laboratory and naturalistic contexts consistently indicates that hearing
more spatial words, especially during ongoing natural interactions, enables young
children to acquire more spatial concepts. Having exposure to language regarding
spatial concepts allows these young children to form abstract representations of dif-
ferent spatial relations early in development (Casasola, 2008; Levinson, Kita, Haun,
& Rasch, 2002; Munnich, Landau, & Dosher, 2001).
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Supporting Foundational Spatial Development Through Play

Play is a naturally occurring context that provides opportunities for spatial language
exposure to and learning of spatial concepts. For example, children can increase their
knowledge about shapes and dimensions by exploring objects on their own or through
observation or interaction with a parent (Ginsburg, 2006; Seo & Ginsburg, 2004).
Children’s innate curiosity and exploration of the world around them provides the
foundation for parents to support their children’s development (Piaget, 1932; Vygot-
sky, 1978). Indeed, a wide body of literature supports parent–child interactions as
a means for promoting learning of mathematical concepts (e.g., Foster & Hund,
2012; Jirout & Newcombe, 2015; Levine, Suriyakham, Rowe, Huttenlocher, & Gun-
derson, 2010; Levine, Ratliff, Huttenlocher, & Cannon, 2012; Piaget, 1932; Pruden
et al., 2011). Parents and caregivers can facilitate children’s discoveries and cognitive
development by providing rich and diverse play opportunities (Bruner, 1972; Lancy,
2007; Vygotsky, 1978). Play offers an informal and interactive context for children to
form conceptual representations based on their experiences interacting with objects
and people around them (e.g., Ginsburg, 2006; Hirsh-Pasek, Michnick Golinkoff,
Berk, & Singer, 2009; National Association for the Education of Young Children
(NAEYC), 2009). For example, conceptual representations of objects’ affordances
are formed by infants discovering the properties of objects, exploring and manip-
ulating them, and acting on them to produce positive or negative effects in their
environment (Bourgeois, Khawar, Neal, & Lockman, 2005; Fontelle, Kahrs, Neal,
Newton, & Lockman, 2007; Gibson, 1988). Through play, parents and other adults
have opportunities to facilitate children’s acquisition of concepts by guiding or show-
ing them how things work. According to Vygotsky (1978), cognitive development
takes place in what he described as “the zone of proximal development,” which
defines the distance between what children can do independently and what they can
achieve when a knowledgeable adult scaffolds them. Recent research demonstrates
that scaffolding can improve shape knowledge for typical, atypical, and non-valid
exemplars of triangles, rectangles, pentagons, and hexagons. Four- and five-year-
old children who explored these concepts with an adult’s guidance performed better
compared to those who played on their own, without adult’s guidance (Fisher, Hirsh-
Pasek, Golinkoff, & Newcombe, 2013).

Opportunities for scaffolding to be effective depend on the abilities of the child
and the play context. Some play contexts may not be as conducive for scaffolding
as others. As noted above, early exposure to spatial language enhances early spa-
tial development (e.g., Casasola & Bhagwat, 2007; Casasola et al., 2009; Casey,
Andrews, Schindler, Kersh, Samper, & Copley, 2008; Ferrara, Hirsh-Pasek, New-
combe, Golinkoff, & Lam, 2011; Pruden et al., 2011). However, not all parent–child
engagement contexts equally elicit production of spatial words. For example, more
spatial language is generated when parents and their young children are engaged
with blocks and puzzles than when they are engaged in non-spatial activities such
as reading and drawing with their young children (Hermer-Vazquez, Moffet, &
Munkholm, 2001; Ferrara et al., 2011; Levine et al., 2012; Pruden et al., 2011). In
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Ferrara et al., (2011), parents used 90% more spatial language (average proportion
of spatial talk relative to the total of words produced) with their preschoolers during
free/unstructured block play compared to parents playing with their preschoolers
during free/unstructured play involving other toys such as puppets, dolls, pretend
food, and kitchen utensils (average proportion of spatial talk relative to the total of
words produced). Differences in parental production of spatial language such as these
suggest that some forms of play are more conducive to naturally exploring spatial
features.

Engaging in block play, for example, provides opportunities to use spatial lan-
guage related to location (e.g., “Wewill put this triangular block on top of the tower”),
spatial dimension (e.g., “Mine block is taller than yours”), and spatial features (e.g.,
“A square block has four sides”). As more sophisticated block structures are created,
spatial relational language (e.g., between, beside, on top) is introduced to help chil-
dren form spatial relationships between objects in the block structures. The nature
of puzzle play, on the other hand, elicits use of spatial words such as flat, straight,
and upside down to describe spatial features and locations of the shape puzzle pieces
(Levine et al., 2012). However, both block and puzzle play require spatial reasoning
skills and, thus, encourage language to support this reasoning. For example, paren-
t–child dyadsmust determine the exact location that fits each puzzle piece or block by
examining and discussing the spatial characteristics of the different puzzle pieces or
blocks (e.g., Caldera et al., 1999). Engaging in these discussions, and utilizing rele-
vant spatial language to do so, provides naturally occurring opportunities to facilitate
learning of spatially relevant concepts and language.

The production of spatial language, even within spatially relevant play contexts,
may be impacted as a result of instructional approaches (e.g., free play, structured
play) and individual characteristics of parents and children (e.g., including level of
interest and knowledge base). For example, the amount of parental spatial talk can
be influenced by the instructional information available through the toys themselves.
Specifically, less spatial language (i.e., 8.2%) was generated by parents when they
and their child were engaged with “talking” electronic shape sorters that provide
labels for shapes as well as other sounds than the parent–child dyads who played
with traditional 3D shape sorters that did not “talk” (i.e., 15.8%; Zosh et al., 2015).
Different instructional approaches adopted by parents also impact learning opportu-
nities. For example, parents engaged in free block play with their preschool children
produced 68% less spatial talk (average proportion of spatial talk relative to the
total of words produced) than parents engaged in guided block play where they
were asked to follow step-by-step instructions to construct a structure (Ferrara et al.,
2011). These empirical findings identify features within parent–child play contexts
in which richer spatial language is most likely elicited when engaged with traditional
three-dimensional (3D) spatial toys.

In addition, parental effect and anxiety towardmathematics can influence parents’
engagement inmathematical activities and talk (e.g., Blevins-Knabe, Austin,Musun,
Eddy,& Jones, 2000;Maloney, Ramirez, Gunderson, Levine, &Beilock, 2015b). For
example, parents with positive effect toward mathematical activities, as measured by
their enjoyment level in the study, were found to engage in more mathematical activ-
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ities with their 4- to 6-year-olds than those who did not (Blevins-Knabe et al., 2000).
Hence, the opportunities for children to hear mathematical talk could be reduced
if their parents were less likely to engage in mathematical activities (e.g., Levine
et al., 2012) because of their negative effect toward mathematics. Recent research
has revealed that mathematical anxiety among parents of first and second graders
was associated with lower mathematical performance for children who received fre-
quent help with their school work compared to peers whose parents did not provide
frequent help (Maloney et al., 2015a, 2015b). It is possible, then, that parents who
experience math anxiety may express more frustration and negativity while inter-
acting with their child as suggested by Maloney and colleagues (2015a, 2015b).
Consequently, we hypothesize that parents with heightened math anxiety may use
fewer and more rigid instructional approaches in mathematical contexts than other
parents, thereby negatively impacting children’s performance. Although Maloney
and colleagues (2015a, 2015b) did not directly examine the nature of parental math
talk, these differences in instructional approaches due to heightened math anxiety,
in turn, can negatively impact parent–child engagement and talk about mathematical
concepts during homework assistance (Maloney et al., 2015a, 2015b). Hence, there
is a renewed call by researchers to offer effective intervention or support programs
such as providing tip sheets or video models to help parents to identify and engage in
best practices during interactions with their children at home (e.g., Blevins-Knabe &
Austin, 2016; Maloney, Converse, Gibbs, Levine, & Beilock, 2015a; McClure et al.,
2017; Robinson, 2014).

Touch-Screen Technology and Early Spatial Development

Today,many parent–child interactions occur in the context of technology (e.g., Eagle,
2012; Flynn & Richert, 2015; Kabali et al., 2015; Rideout, 2014). With decreasing
costs, increasingmobility and a continuously growing array of software applications,
mobile, virtual, two-dimensional (2D) interactive devices (e.g., smartphones and
tablets) are becoming an increasingly important part of playtime for very young chil-
dren (e.g., Common Sense Media, 2017; Kabali et al., 2015). Among the plethora of
software programs available online are a multitude of programs targeting early math
learning (Baccaglini-Frank & Maracci, 2015; Ginsburg, 2017; Moyer-Packenham
et al., 2015). Affordances inherent in newer interactive touch-screen devices (e.g.,
immediate feedback, multimedia, and anywhere anytime learning) may differ from
affordances traditionally associated with tangible 3D toys (Geist, 2014; Guernsey &
Levine, 2015; National Association for the Education of Young Children (NAEYC)
& Fred Rogers Centre for Early Learning and Children’s Media, 2012). Mobile
touch-screen devices are lightweight and afford easy user interaction through swip-
ing and tapping gestures (e.g., Kucirkova, 2014; Neumann &Neumann, 2014). Most
software employs a “game-like format” which increases attention to and engagement
with the content (e.g., Abdul Jabbar & Felicia, 2015; Gee, 2008; Vogel et al., 2006).
How adult–child interactions translate from traditional contexts tomobile technology
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learning contexts is an emerging area of research, especially with respect to young
children acquiring spatial concepts.

Considerable literature in early childhood mathematics education supports the
need for children to explore and mathematize key concepts through application to
many varied novel contexts (e.g., Newcombe, 2010; Uttal, 2000). This would require
exposure to spatial concepts represented physically in the real-world and abstract rep-
resentations such as visual images, maps, and models. For example, understanding
the concept of a cylinder can involve exposure to physical examples found in chil-
dren’s everyday lives such as tinned goods, water bottles, and cookie jars. Similarly,
opportunities to manipulate physical representations can occur by providing children
with various cylindrical shapes in block building, puzzle solving, or other contexts.
The concrete nature of these types of physical manipulatives aligns with children’s
cognitive capabilities. However, because they are static and concrete, it may be nec-
essary for children to be exposed to multiple types of physical manipulatives before
they can extract the key spatial concepts.

Virtual 2Dmanipulatives, on the other hand, allow learners to dynamicallymanip-
ulate on-screen objects through simple swiping and tapping tools that are not possible
with physical 3D manipulatives (Moyer, Niezgoda, & Stanley, 2005; Yerushalmy,
2005). For example, virtual 2D manipulatives afford young children opportunities to
explore the concepts of composition and decomposition (e.g., taking apart a hexagon
tomake twopentagons and vice versa; Clements&Sarama, 2007;Moyer-Packenham
& Westernskow, 2013). Understanding of the salient features, especially abstract
ones, such as those specific to triangles, may be easier to communicate through
dynamic media. For example, the visual prototype of a triangle for young children
between four and six years old is an isosceles triangle. Identifying triangles (other
than an isosceles triangle) is difficult for most young children (Aslan &Aktas-Arnas,
2007; Clarke, 2004; Clements, Swaminathan,Hannibal,&Sarama, 1999;Yin, 2003).
Software representations can make salient features of different triangles more read-
ily apparent to young children by systematically resizing defining attributes such
as aspect ratios of width and height as well as skewness (or lack of symmetry) as
a child expands or shrinks the image of a triangle or series of triangles on screen.
As such, an extensive and “manipulatable” representation of various types of tri-
angles—isosceles, equilateral, right-angled—would be made available quickly and
seamlessly. Such dynamic andmultiple variations of triangles are not easily achieved
through single integrated presentations using physical manipulatives. Thus, the flexi-
bility of dynamic presentations offers the potential for parents and children to explore
and discuss a greater range of spatial concepts in any given learning session. Dynamic
representations of spatial features and relationships in a virtual medium, therefore,
provide diverse and varied opportunities to enhance children’s acquisition of abstract
spatial concepts (e.g., Sarama & Clements, 2016).
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Touch-Screen Technology and Parental Use of Spatial Words

To date, research on spatial input has mainly focused on spatial play with three-
dimensional (3D) objects such as tangible blocks and jigsaw puzzles, that children
can physically touch, hold, rotate, and manipulate in their hands (e.g., Levine et al.,
2012; Needham, 2009; Pruden et al., 2011). Initial examination of 2D touchpad
devices (e.g., tablets and smartphones) suggests that use of these devices impacts
parent–child interactions involving spatial language.

In a recent study, we examined the nature of spatial input—quantity and types of
spatial words—produced by parents when engaged with their preschoolers in two
separate 30-min play sessions at their home: one with 3D tangible blocks and puz-
zles, and the other using an iPad® featuring block and puzzle apps (Ho, Lee, Wood,
Kassies, & Heinbuck, 2017). Overall, 6.2% of the parental talk during the sessions
reflected spatial talk—words describing spatial properties and features, shapes, spa-
tial dimensions, orientations and transformations, location and directions, deictics
as well as continuous amount—in the 3D blocks and puzzles play context compared
to 5.8% spatial talk in the 2D iPad® play context. These overall percentages did not
differ statistically. However, developmental differences were evident in the amount
of spatial talk generated. Specifically, when using the 2D iPad® with their older
preschoolers, parents used fewer spatial words. Furthermore, although there was no
overall difference in the quantity of spatial talk across the two play contexts, there
were differences in the types of spatial talk that were elicited through each con-
text. More words associated with spatial dimensions (e.g., big, tall, small), location,
directions, and continuous amount (e.g., same, match, piece) were used by parents
in the 3D play contexts than in the 2D play contexts. In contrast, more words related
to orientations and transformations (e.g., turn, spin, rotate) as well as deictics (e.g.,
here, there, where) were produced in the 2D play contexts in comparison with the
3D context.

Thus far, the major focus of existing research on technology use of electronic
toys during early childhood has been on the amount of parental input (e.g., Sosa,
2016; Zosh et al., 2015) and this initial study by Ho and colleagues (2017) suggests
that amount may not differ. However, language acquisition research has shown that
it is not simply a matter of quantity over quality. Both quantity and quality (i.e.,
the diversity or variation of words) of parental input influence young children’s
subsequent vocabulary development (Huttenlocher, Waterfall, Vasilyeva, Vevea, &
Hedges, 2010; Rowe, 2012). Our research suggests that 2D and 3D play contexts
may complement the types of spatial talk generated by parents.

In a subsequent study using similar methodology, we again found differences in
the diversity of parental spatial words used in both the 3D (an average of 31 different
spatial words) and the 2D iPad® play contexts (an average of 25 different spatial
words) (Lee, Hodgins, Douglas, & Wood, 2017). Specifically, in 3D play contexts,
parents produced more diverse words related to spatial dimensions, shapes (e.g.,
shape, square, triangle), and continuous amount than in the 2D play contexts. In the
2D play contexts, parents used more diverse words associated with orientations and
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transformations than in the 3D play contexts. Aspects of the software programs may
contribute to these differences. For example, in the 2D context, software demands
required specific actions to be performed to complete the task. Specifically, one task
required turning an upside-down isosceles triangle 45° counterclockwise to fit into
the existinggeometric shape in the game inorder to progress to the next step in the app.
Importantly, the findings from both studies contrasting 2D iPad® and 3D traditional
toys demonstrate that these contexts elicit differences in the nature of parental spatial
talk and lend support to introducing touch-screen technology into play contexts at
home to complement the types of parental spatial input and engagement elicited in
the traditional 3D play contexts.

Instructional Affordances and Caveats Regarding
Pedagogical Content of Apps in Spatial Development

Although our two research studies, combined with earlier research, suggest that the
introduction of technologies could enhance spatial talk and facilitate mathematical
thinking, caution is required before fully integrating technology into home and even
early childhood settings. In particular, the design and content of software needs to
be more critically examined to ensure high pedagogy and developmental standards
are present. This would ensure that parents are able to tap into the full potential
of touch-screen technology as a learning tool (e.g., Carbonneau & Marley, 2015;
Hirsh-Pasek et al., 2015).

Unfortunately, emerging findings suggest shortcomings in many apps. For exam-
ple, in Larkin’s (2016) evaluation of geometry apps designed for children between
5 and 12 years old, only 7 of the 53 apps received a rating of 6 or higher on their
10-point scale based on three criteria: content, pedagogy (e.g., ease of use without
instruction), and facilitation of the learner’s thought process. Likewise, only 4 of the
19 geometry apps targeted for children between 3 and 5 years old covered at least 4
out of the 5 spatial concepts in a taxonomy reflecting developmental progression of
key concepts (Lee, Douglas, Wood, & Andrade, 2017). Additionally, when the apps
were evaluated with respect to instructional affordances, such as providing imme-
diate, accurate feedback and moving children to higher or lower levels of difficulty
based on performance, all but two of the 19 apps received a rating of 2 or lower on a
5-point scale. This is problematic because such instructional affordances (e.g., auto-
matic leveling and feedback) have been found to improve mathematical performance
of 4- to 7-year-old students using a tablet in the classroom (Outhwaite, Gulliford, &
Pitchford, 2017).

These findings underscore the need for caution in using software to complement
traditional math play contexts. Although apps may be labeled and advertised as
“educational,” the educational value of the app needs to be carefully examined. As
Hirsh-Pasek and colleagues (2015) explain, some apps simply “masquerade” as edu-
cational software, for example, by appearing to introduce important concepts such
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as shape recognition, but encouraging only rote memorization rather than the under-
lying knowledge of how geometry develops in terms of features and transformation
of shapes. As seen in other cognitive domains such as reading (e.g., Parish-Morris,
Mahajan, Hirsh-Pasek, Golinkoff, & Collins, 2013), instructional shortcomings in
software design and delivery can negatively impact learning and the nature of par-
ent–child interactions. For example, when parent–child dyads engaged in dialogic
reading with e-books compared to traditional book contexts, the nature of the ques-
tions posed by parents differed across the two contexts. In addition, children had
lower levels of comprehension of key story elements in the e-book condition than
in the traditional text condition. Differences in parent–child interactions apparent in
other domains, such as reading, may also arise in mathematical contexts. Software
design could thus also influence spatial language production and learning.

At present, parents and other caregivers have few reliable resources that iden-
tify developmentally appropriate apps based on the formal evaluation of their edu-
cational content (Guernsey & Levine, 2015; Rideout, 2014). Although a handful
of Web-based consumer concern groups (e.g., Common Sense Media, Moms with
Apps, Best Apps for Kids) provide some evaluation of the educational content of
the apps, these evaluations are not systematic or exhaustive. Drawing from recent
research regarding early literacy and reading software (Grant et al., 2012; Wood
et al., 2016), there is a critical need for (a) the construction of tools that would allow
parents and child-care educators to evaluate apps themselves, as well as (b) research
that evaluates the content, instructional affordances, and outcomes associated with
children’s math apps. These elements are necessary to determine what underlying
mathematical skills and processes are facilitated and to ensure that technology can
be used to provide value-added learning experiences and opportunities when parents
and children engage them.

Emerging research reinforces the need to investigate the impact of software design
on learning outcomes and, in particular, parent–child spatial talk. Interactivity in
software design, although typically associated with high engagement, may need to be
altered to meet the needs of very young learners (Choi &Kirkorian, 2016; Kirkorian,
Choi, & Pempek, 2016). Toddlers and preschoolers, for example, have less developed
executive functions such as the ability to focus attention and impulse control which
can be supported through app design that allows these children to easily disengage
from distracting interactive features and focus their attention on educational content.
Recent studies (Choi & Kirkorian, 2016; Kirkorian et al., 2016) have demonstrated
that programs requiring 2- and 3-year-olds to tap a localized spot within the screen
rather than tapping anywhere on screen facilitated their learning while older children
performed better when they could move forward by tapping anywhere on the screen.
In another study, design affordances such as repetitive and interactive features that
reduce cognitive task demands have been found to aid in learning of 4- to 7-year-
olds, especially for childrenwith poormemory abilities (Outhwaite et al., 2017). This
emerging research reinforces the need to examine individual differences in order to
better understand for whom and when design affordances will maximize learning. To
date, little is known about how design affordances may change the way parents use
spatial language with their young children at play. Hence, ongoing research needs
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to address the impact of various affordances within specific content areas, such as
spatial skills, in order to optimize learning opportunities for children when parents
engage them with technologies.

Conclusions

Individual differences in mathematics emerge before the age of four (e.g., Levine
et al., 2010; Verdine et al., 2014), and these differences persist into formal schooling
(e.g., Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; Duncan et al., 2007; Jordan,
Kaplan, Olah, & Locuniak, 2006). With respect to spatial-visual skills, foundational
skills can be introduced very early in life and can be facilitated through scaffolding
fromparents. Today, developmentally appropriate activities have expanded to include
technology-based platforms. Digital technologies provide the potential for unique
learning opportunities by exposing young children to developmentally appropriate
cognitive (including math) skills as well as enriched and spatially diverse parental
talk through play (e.g., Kabali et al., 2015; NAEYC & the Fred Rogers Centre for
Early Learning and Children’s Media, 2012; Rideout, 2014). Both 2D and 3D forms
of play offer opportunities for children to acquire different spatial representations
ranging from sensory-concrete to abstract. The diversity in media also influences
how parents scaffold and talk to their children during play, with early evidence sug-
gesting that 2D and 3D representations yield different but complementary spatial
talk from parents. Before advocating for the integration of 2D and 3D presentations
as the standard for play, however, considerable development is required regarding
our understanding of how affordances in software design impact children’s learning.
In addition, research needs to examine how different media contexts and different
software design elements impact parental engagement and language production in
math contexts. Although digital technologies are deemed as a potential significant
learning tool, parents play an important role in early spatial development. Extend-
ing our current initial understandings of these two important influences on early
development is an important goal for ongoing research.
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Supporting Mathematics Play in Home
Environments: A Feasibility Examination
of a Take-Home Bag Intervention

Sandra M. Linder

Family engagement is a critical component of early childhood education. A body of
research supports the notion that partnerships between high-quality childcare oppor-
tunities and high-quality family engagement can best support young children as they
progress through the infant/toddler and preschool years into kindergarten (Ginsburg,
2007; Linder, Ramey, & Zambak, 2013; McNeal, 2015; Wu & Qi, 2006). While it is
clear that family engagement is important, it is unclear what this engagement could
look like across some content areas.

Early literacy development is a good example. The value of high-quality home
literacy environments has been established as a predictor of success as children
transition from preschool to more formal education settings, such as kindergarten,
and as they progress through early childhood and elementary grade levels (Burgess,
Hecht, & Lonigan, 2002; High, 2008). These high-quality home literacy environ-
ments include materials that support literacy development (e.g., accessible library of
children’s books), but also include parent literacy interactions with children where
parents model the value of reading by engaging in the act of reading alongside of
their children (Gottfried, Schlackman, Gottfried, & Boutin-Martinez, 2015). Family
literacy bags have been used in the past to increase family engagement and provide
familieswith concrete ideas they could use to support children’s literacy development
(Barbour, 1998; Brand, Marchand, Lilly, & Child, 2014; Crawford & Zygouris-Coe,
2006; Dever & Burts, 2002).

There is also an established body of research that demonstrates children’s math-
ematical growth when engaging with mathematical tasks in home environments
(Claessens & Engel, 2013; LeFevre, Skwarchuk, Smith-Chant, Fast, Kamawar, &
Bisanz, 2009; Ramani & Siegler, 2008; Skwarchuk, Sowinski, & LeFevre, 2014).
Research supports the notion that parent and child interactions in relation to math-
ematics can support mathematical growth in young children (Anders et al., 2012;
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Huntsinger, Jose, & Luo, 2016; LeFevre, Polyzoi, Skwarchuk, Fast, & Sowinski,
2010). For example, Anders and colleagues (2012) examined mathematics play
through numeracy-related activities in home environments and found strong associa-
tions between early numeracy play and school success (Anders et al., 2012). Mathe-
matics play can take many forms. Direct mathematics activities such as board games
(Ramani & Siegler, 2008) or direct mathematics questioning (how many items do
you see?) are one type of mathematics play. Other types include more informal sce-
narios such as cooking with a parent, reading, and counting items in a story, building
structures with blocks or Legos, puzzle-making, and so forth (LeFevre et al., 2010).
These studies suggest that home mathematics environments could promote young
children’s cognitive growth in mathematics.

Despite this research, many parents or caregivers (herein called parents) are sim-
ply unsure of how to support early mathematical development (Huntsinger et al.,
2016). Examples of how parents can support mathematical thinking are necessary
and may be helpful to ensure that high-quality family engagement in mathemat-
ical play occurs in home environments. The tenets of high-quality home literacy
environments can potentially be translated to the mathematics domain to increase
mathematical play in home environments. These strategies should be play-based,
grounded in exploration, engaging enough that parents and children are motivated
to complete them continuously over time, and non-intrusive enough that parents and
children can explore with them in whatever way makes sense to their contexts and
schedules.

This chapter examines the feasibility of using play-based mathematics bags to
support mathematical play of preschoolers in home environments.While “take-home
bag” type products for school-aged children related to mathematics or STEM are
flooding themarketplace, empirical evidence to examine the impact of these products
on young children’s cognitive growth lags.

Some authors have examinedmathematics bag interventions for parents of school-
aged children and found that the practices outlined within these bags (primarily
numeracy focused) supported increased mathematical engagement in home envi-
ronments (Goos & Jolly, 2004; Kokoski & Patton, 1997; Muir, 2009, 2012). This
chapter builds on research related to school-aged children by examining the feasibil-
ity of a take-home mathematics bag intervention over a five-week period for families
of preschool age children. Two questions guided our work: (1) How and to what
extent did families interact with the materials in each mathematics bag? (2) What
did families learn about their children’s mathematical knowledge as a result of each
mathematics bag?

The interdisciplinary nature of this chapter draws from the worlds of psychol-
ogy and mathematics. Specifically, Bronfenbrenner’s Ecological Systems Theory of
Development (Bronfenbrenner, 1986) guides the development of the mathematics
bags used in this study. By capitalizing on the worlds that exist for each child within
that child’s individualmicrosystems (e.g. home and school), we can better support the
connections for the child within their mesosystem orwhere that child’s microsystems
interact. The mesosystem represents the connections that children can make between
home and school, between parent and teacher, and between the mathematical content
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explored with their peers in school and how it can relate to their world outside of
school (Bronfenbrenner, 1986). It is these connections that support cognitive growth
across domains (Downer & Pianta, 2006).

Preschool—Home Connections

This project started as part of a larger study focused on providing early mathematics
professional development for childcare teachers in southeastern United States. The
project, Building Environments for Early Mathematics Success (Project BEEMS)
examined the role of the teacher in creating effective classroom environments for
early mathematical thinking by making explicit connections between the child, the
mathematical content and processes, and the classroom space (Linder & Simpson,
2016; Simpson&Linder, 2016). In the second year of ProjectBEEMS, teacher partic-
ipants in four-year-old classrooms discussed strategies for connecting their students’
home lives to mathematical interactions within the classroom space. As part of these
discussions, the project team and BEEMS participants began to explore possibilities
for increasing mathematical interactions in home environments. From these discus-
sions, we determined that, in addition to being play-based and mathematics focused,
the intervention designed to increase family mathematical interactions must have the
following characteristics:

• The burden of time and cost on families must be small. Themajority of families
at these childcare centers had non-traditional schedules, in that they worked more
than one job or worked a second or a third shift in the evenings. These families
had little time to spend attending workshops or meetings, even if the meetings
were scheduled within the home setting, which has been successful for other early
childhood family interventions (Olds, 2006; Olds et al., 2013; Wagner, Spiker, &
Linn, 2002). Many of the families involved in this project were from single-parent
families and did not have childcare support in the evenings. The strategy should
not require parents to attend workshops or meetings, or spend time away from the
home. Rather, the strategy must allow parents to have flexibility for when and how
often they choose to engage in the task with their children.

• The burden of time and cost on teachers must be small. To ensure sustainability
of the interventionover timeand to set the stage for scale-uppossibilities, the family
mathematics strategy needed to be cost effective, in that the materials could be
shared across families and most of the materials used were non-consumable and
did not need to be replaced on a regular basis. In addition, teachers shared the same
time constraints as parents in terms of having to implement this intervention on top
of their already scheduled duties. To ensure that the strategy could be continued
beyond the scope of the project, we had to make it self-servicing, meaning that
families could implement it without a high level of external support from teachers.
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Mathematics Bags

With these characteristics in mind, the BEEMS project team and teacher participants
decided on take-home bags as a potential strategy for increasing familymathematical
interactions through play. The project team developed the bags and then took teacher
participants through the tasks during BEEMS PD sessions to ensure that they could
support parents during the implementation of the intervention if necessary (although
parents did not end up needing any support to use the mathematics bags). These bags
were self-servicing, in that they contained all of the materials necessary to explore
a mathematical content area through play. There were some bags that needed to
be refurbished when parents returned them, but the items needed were common
to childcare settings, such as crayons, stickers, and construction paper. The bags
also contained a task sheet that provided families with directions and suggested
questioning strategies for engagingwith thematerials. Themathematics bags allowed
for flexibility. Parents had the ability to choose when to play with their children
through the mathematics bags over the course of a week. Some played with each bag
one time, some played with the bags every day of the week.

Each bag focused on a mathematical content area (early number, geometry, mea-
surement, data analysis, algebra/patterning). Tasks were grounded in mathematical
process skills including problem solving, reasoning and proof, representation, com-
munication, and making connections (NCTM, 2014). We utilized the 5E learning
cycle approach (Bybee, 2015) to structure the framework within each bag. This
approach is commonly used in inquiry instruction to provide a framework for teach-
ers to support inquiry practices in classroom spaces. The 5E cycle begins with an
Engage phase where a topic or phenomenon is introduced and children often make
connections to what they already know about the topic. The cycle then continues with
the Explore phase where children engage in open-ended tasks designed to promote
inquiry processes such as problem-solving, asking questions, and thinking critically.
Following the Explore phase, children have an opportunity to reflect on the task
through the Explain phase. Finally, the Elaborate phase provides an opportunity to
children to extend what they learned through a new task. The fifth E stands for
Evaluate, which takes place throughout the learning cycle (Bybee, 2015). While the
learning cycle is often used in classroom settings, it was chosen for the mathematics
bags to provide a framework for parents who are using these inquiry practices for
what could be the first time at home.

Each bag contained a literature selection that connected to the mathematical con-
tent area of focus (Engage). Parents were asked to read and discuss the literature
selection with their child. Following this read aloud, task sheets provided potential
ways of exploring the materials that fostered mathematical play between parents and
children and opportunities to reflect on what they did together (Explore and Explain).
Task sheets also included ideas for extension and for making mathematical connec-
tions within the home environment (Elaborate). The use of reflection sheets within
each bag acted as the evaluation portion of the 5E framework.
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The contents of the data analysis math bag are included in Fig. 1 as an example of
the types of materials that were included across all five bags. The data analysis bag
began with a read aloud of “Do Like a Duck Does” by Judy Hindley and Ivan Bates.
This book allowed parents and children to discuss the similarities and differences
between the ducks and the fox in the story and the task sheet provided open-ended
questions for parents to ask children as they discuss during and following the story.
After the read aloud, families were encouraged to explore sorting with a variety of
buttons. The goal of these sorting tasks was for families to discuss potential rules for
sorting rather than parents telling their children to sort by a prescribed rule. Following
the sorting tasks, parents were encouraged to implement sorting tasks throughout the
day in their home environment (e.g., sorting toys or books, and sorting dishes.).
Table 1 provides an outline of the bag topic, read aloud, short task description, and
method of elaboration for each of the five bags in the study.

In total, ten families participated in the project. These ten families all had four-
year-old children at two of the childcare centers involved in Project BEEMS. Each
familywas recommendedby their child’s classroom teacher and,when contacted,was
willing to participate in the process. Although all familymembers, including siblings,
were typically involved in the mathematics play occurring at home through the math
bags, only female parents volunteered to engage in the pre-/post-data collection
processes. The highest education level obtained by the parent in the ten participating
families was as follows: two were high school graduates, three had attended some
college coursework, four had completed as associates degree and one had completed
a bachelor’s degree.

Participating families received a weekly mathematics bag on a Friday and had the
entire week to explore its contents. Families could engage with each mathematics
bag in a single play session or spread the tasks out over a weeklong period. Families
were encouraged to play with the materials multiple times throughout the week, but
were only required to engage once with the materials in order to remain part of the
project. On each subsequent Friday, families returned their mathematics bag to the

Fig. 1 Contents of data
analysis math bag
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Table 1 Outline of mathematics bags using the 5E learning cycle

Engage Explore Explain Elaborate

Early numeracy Read Aloud:
“How Many
Bugs in a Box”
(Carter, 1987)

Describing
relative size of
cups and
predicting how
many vegetables
can fit in each
cup. Composing
and
decomposing
sets for each cup

Comparing
predictions to
results and
identifying
strategies for
counting and
describing a set

Counting items
around the house
throughout the
week.
Describing
strategies for
counting and
describing sets
of objects

Geometry Read Aloud:
“Color Zoo”
(Ehlert, 1989)

Using pattern
cards and pattern
blocks to create
animal designs
with shapes,
removing cards
to create
additional
designs without
support

Describing
designs and
attributes of
shapes within
designs,
exploring how
shapes can be
comprised of
other shapes
within the
design

Engaging in
puzzle play to
explore
transformations,
playing I Spy to
identify shapes
around the house

Measurement “Who Sank the
Boat” (Allen,
1996)

Using a balance
and materials
commonly
found in class-
rooms/homes
(paper clips,
cotton balls,
q-tips, rubber
balls, marbles,
etc.) to explore
heavy and light

Comparing
predictions
about heavy and
light to results
from
exploration.
Describing
attributes of
objects in the
bag in terms of
weight

Examining
heavy and light
with water
instead of solid
objects and
making
connections to
sinking and
floating during
bath time or
outdoor play

Algebra “Max Found
Two Sticks”
(Pickney, 1994)

Replicating,
describing, and
creating sound
patterns using
rhythm sticks

Discussing the
rhythm patterns
and comparing
the patterns to
repeating
patterns made
with counting
animals

Replicating,
describing, and
creating patterns
throughout the
week using
stickers and
crayons/paper

Data Analysis “Do Like a Duck
Does” (Hindley
& Bates, 2002)

Finding multiple
ways to sort a set
of fabric buttons

Discuss the
various rules
they chose for
sorting, discuss
the sorts and
resulting groups

Sorting items
around the house
such as laundry,
dishes, and toys
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childcare center by putting it in their child’s backpack. In addition to learning about
the tasks during BEEMS PD sessions so they were able to help parents if necessary,
teachers supported the intervention by refurbishing and switching the mathematics
bags on Friday afternoon to ensure that each participating family had a new bag
to explore the following week. Teachers also made phone calls, texts, or e-mails to
participating families on Thursday evenings to remind them to send the mathematics
bags on Friday mornings.

Engaging in Math Play Parent Feedback Form
Content Area: Data Analysis

Parent’s name:

Child’s name:

Date:

How many times did you and/or child complete the task? _____________

This task was appropriate for my child Agree
Disagree

We enjoyed completing the task Agree
Disagree

The directions were clear Agree
Disagree

This was the first time my child and I did a task like this Agree
Disagree

What math understandings (or misunderstandings) did your child show when participating in 
the task?

What questions or conversations did you add to the task as you were doing it with your child?

How did you continue this task throughout the week (perhaps with different materials)?

Do you have any other comments or questions about the activity?

Fig. 2 Parent feedback form
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Included in each math bag was a parent feedback form (see Fig. 2) that asked
for self-reported data on bag usage, clarity of directions, and level of enjoyment.
The feedback form also contained open-ended questions regarding how families
interacted with the math bag throughout the week and what mathematical under-
standings children showed while engaging in mathematical play. In addition to this
weekly feedback form, parents completed semi-structured interviews following the
five-week intervention to determine their overall reaction to the intervention.

What Did Parents Say and Do?

Parents had an overwhelmingly positive reaction to themathematics bag intervention
as a strategy for increasing mathematical play in home environments. All families
completed the five-week intervention period and completed all the tasks within all
five mathematics bags. As far as the number of times families engaged with each
mathematics bag on a weekly basis, all families had a high level of engagement with
every bag (see Fig. 3). Mean level of engagement for all of the bags ranged from 3.3
to 3.88 times per week, indicating that on average, families played with the content
of the mathematics bags multiple times per week even though they were only asked
to play at least one time per week.

Table 2 shows participant responses to closed-ended statements about each bag.
Overall, parents felt that the bags were appropriate for the age level of the child and
that the directions were clear. In addition, parents enjoyed completing the tasks in
each bag with their children. In one case, a parent reported that they disliked the early
number bag but added a note to the feedback form that it was because her child had
difficulty recognizing numbers. Interestingly, many parents felt like this intervention

3
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3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Early Number Geometry Measurement Algebra/Pa erns Data Analysis

Average Times Per Week Family Engaged with Math Bags

Mean Times Weekly

Fig. 3 Weekly interactions with each math bag
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Table 2 Parent reactions to weekly math bags

Early
number
(%)

Geometry
(%)

Measurement
(%)

Algebra
(%)

Data
analysis
(%)

This task
was
appropriate
for my
child

Agree 100 100 90 90 100

Disagree 0 0 10 10 100

We
enjoyed
completing
the task

Agree 90 100 100 100 100

Disagree 10 100 100 100 100

The
directions
were clear

Agree 100 100 100 100 100

Disagree 0 0 0 0 0

This was
the first
time my
child and I
did a task
like this

Agree 60 50 80 70 60

Disagree 40 50 20 30 40

was the first time they experienced these types of tasks with their child. These results
show a high level of motivation (by completing each bag multiple times) and positive
reactions to the content of each of the five bags.

Content Specific Engagement and Parent Feedback

Early Number. Parents recognized that their children had the ability to count and
label sets with a total amount. Two parents described their child’s ability to use
one-to-one correspondence when counting sets. However, while the task in the early
number mathematics bag focused on composing and comparing sets, eight parents
described asking their child to add or subtract the sets. For example, the task called
for children to fill cups with a given amount of vegetable manipulatives (composing
sets) and then to separate the set into two cups (decompose) in as many ways as
they were able to find. Instead, parents would describe asking their children to take
away certain amounts of the vegetable manipulatives from the total set (subtraction).
Overall, parents felt their children did very well with the content of this mathematics
bag. One parent, Melissa (pseudonyms used throughout), made this comment: “My
daughter made me proud when she predicted a certain amount of veggies in the cup
and realized she had too many. She quickly fixed her mistake.”
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Geometry. Parents described their child’s ability to count the number of shapes
or identify the names of the shapes. Some even described asking their children to
add using the shapes even though the task did not call for parents and children to dis-
cuss number-related concepts. Oftentimes parents reported including questions that
related to sorting the shapes by colors. There were very few mentions of attributes of
shapes or higher-level analysis within geometric levels of thinking such as examin-
ing shapes in terms of their attributes. However, two parents did describe how their
child worked to make bigger shapes using the smaller shapes. These two families
also described additional questions that they asked their children while playing with
the bags, such as “What smaller shapes do you see in the bigger picture?” and “What
shapes do you see around the house?”

Measurement. Many of the parents recognized their child’s understanding of bal-
ancing items on a scale and the concepts of heavy versus light. They also described
their strategies for making connections around the house with measurement by
exploring heavy and light with water or using different materials than the ones pro-
vided with the balance that was included in this mathematics bag. Only one parent
(Bonnie) focused on the notion of countingwhen describing how they interactedwith
the materials, “We counted the paper clips, and the cotton balls, and feathers and put
them into the balance to see what side would weigh more.” While her approach was
reasonable, she did not mention any discussion of the attributes of these items and
why one object might be heavier than another object.

Algebra. Parents reported a high level of enjoyment from their children when
creating or replicating sound patterns as part of this mathematics bag. However,
even though patterning was the main focus of the read aloud and tasks in the bag,
again parents focused any additional questions on counting or number concepts
such as adding sets. While parents described creating patterns with stickers and
representing sound patterns using sticks, when asked to describe what their child
learned, responses often centered on early number.

Data. The majority of parents did not make any changes to the suggested tasks
provided in the data analysis bag. One parent described having her children act out
the parts of the book but did not make changes to the sorting suggestions. All of
the parents described their child’s process for counting and comparing each set of
buttons, which was appropriate for the task outlined in the bag. However, along with
counting and comparing, children were encouraged to engage in sorting sets with
a variety of rules. Parents often described suggesting the rules that children should
use to sort (color, design). Parents described extensions they made around the home
such as sorting dishes or clothing by how they were similar and different.

In general, parents did not describe any negative reactions to the materials, tasks,
or suggested questionswithin any of the bags. They all describedways that they added
to the content of the bags, such as adding additional questions or extensions to focus
on household connections, but no parents described intent to alter the mathematics
tasks suggested in each bag. However, based on reported feedback, parents at times
changed the intent of a mathematics bag task to be more traditionally oriented, such
as directing a child toward a particular rule for sorting rather than discussing potential
rules and deciding on one together. In addition, all but one parent reported children’s
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increased understandings related to early number, even when early number concepts
were not the focus of a particular mathematics bag. Only the early number and
data analysis bags had explicit connections to number concepts. The measurement,
geometry, and algebra/patterning bags had tasks that did not include explicit number
concept connections. This result may indicate that parents perceive mathematics for
young children as primarily related to counting or early number concepts. Additional
interview data gathered as part of this project asked parents to define mathematics
for young children. Parent responses to this line of questioning heavily focused on
number concepts (counting, adding, subtracting). In terms of bag implementation,
if parents perceive early mathematics as primarily related to early number concepts,
they may be more likely to promote these concepts over all others. The impact of
prioritizing these concepts warrants further investigation.

Analysis of the semi-structured interviews following the five-week implementa-
tion yielded three themes: (1) It was fun; (2) I was surprised by my child; and (3) I
need to do more. These themes are described below.

It was fun. Every participant described the five-week intervention as something
that was fun. While most of these families had overwhelming schedules with mul-
tiple jobs, sibling needs, and additional commitments, they all found time to play
with their children on multiple occasions throughout each week. They described the
mathematics bags as enjoyable and found that having set tasks to do with their child
helped their feelings of insecurity at not knowing how to best encourage their child’s
mathematical growth. Further, they recognized that their children were having fun
and found enjoyment in watching children explore the materials. Tonya, a parent of
twin boys, commented, “The kids really enjoyed doing these activities. I feel the
activities are a good learning experience for the kids.” Even parents who had self-
reported negative feelings or low levels of confidence related to mathematics saw
this intervention as enjoyable and something that they would have continued past
the five-week period and would like to repeat in the future. For example, one parent,
Wanda, reflected, “We did it every day because she isn’t going to let me forget, she’ll
be like, mama my bag, get my bag. I’m like ok-let me get your bag. She liked that
though-she’d be on me like mama-my bag, I’d say ok come on let’s get up to the
table and she’d run to the table, she enjoyed that. And I didn’t think she would but
she found a lot of stuff interesting. You know some people don’t but she really does.”

Surprised by my child. Parents reported being surprised at what their children
were capable of doing. Melinda, parent of four-year old Mason, stated, “I liked that
he was learning. Because I hadn’t really thought about putting shapes on top of
pictures and how many different triangles does it take to make a pentagon I never
really thought about asking him that and he actually wanted to count after asking the
questions I could see his mind working so I really like that. I like to see him amazed
when he learns something new.” However, they also felt overwhelmed by the amount
of mathematical content explored within each bag and it took some time to get used
to the notion that their children were capable of more than what they expected. For
example, Wanda stated,
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When I saw the first bag, I said oh my god, what are we going to have to do in this bag! But
as I took it out and read the instructions and everything, and me and her were sitting at the
table, everything we went through, the colors, the sticks, she loved the drum sticks like how
the little boy had the drum…she loved the little boat thing, I mean cause she understood how
to balance it because we were switching things out and she was showing me. And I said do
you understand how to balance it and she said yes and I asked what else does it look like
because she watches a lot of stuff, so she was like, it looks like a big boat mama. We had
fun with those bags, it was a lot of stuff and I didn’t realize we were going to do a lot of
different stuff with them.

I need to do more. Parents reported that the bags helped them to understand some
of the ways they could support their children throughout the day to encouraging
mathematical growth. Even though parents often described children’s understanding
in terms of early number, three parents also began to expand their horizons of how
mathematics can be connected to other content domains. One of these three parents,
Miranda, commented, “I didn’t think about math being associated with reading other
than just numbers on a paper.” The mathematics bags also pushed parents to reflect
on the types of interactions they had with their children both during the suggested
tasks and also during a typical day. Parents described the need to ask their children
more questions and talk about mathematics throughout the day. Bonnie commented,
“It was a lot of questions and I think the questions was what made him think, cause
I ask questions but I don’t ask them in the way the sheet was asking … Because a
lot of those questions I never thought to ask him, but now it is like ok I need to start
asking him a little bit more questions to open up his mind.”

Intentional Connections

The math bags made explicit connections between content areas to support math-
ematical play between parents and children. Every bag first included a literature
selection that connected to the mathematical content in the bag. On average, each
mathematics bag took 45 min to an hour to complete in its entirety and all parents
described their children wanted to do the entire bag each time they began to play.
They also described completing the tasks in each bag multiple times throughout the
week. Finally, the mathematics bags supported physical development by providing
materials that would also enhance other skills such as fine motor development (e.g.,
stickers, crayons, animal manipulatives) and gross motor development (e.g. rhythm
sticks and the possibility that they might make patterns with movement).

The overall feasibility of using mathematics bags as a way to encourage family
mathematical play interactions was extremely high for the parents in this study. Not
only did they go above and beyond theminimum requirements for the study, but every
family voiced a willingness to continue with the intervention for a longer duration
(two even stated that the five-week duration was too short and requested additional
bags). Families saw the mathematics bags as fun, easy to follow, and appropriate
for their child. In addition, they identified the flexibility to use the bags whenever
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they could find time within their schedule as a positive attribute to the intervention.
Further, families did not describe the need for additional support from a teacher to
complete the tasks within each bag. Each participant felt confident enough in their
own mathematics understanding and the mathematics understanding of their child
to engage with the tasks in each bag.

While families felt that the self-servicing aspect of the bagswas a positive attribute,
continued exploration of additional support could be worthwhile. Although parents
reported completing each task with fidelity, there were no observations of these play
periods in the home environments, although pre- and post-play periods did show
a significant increase in mathematical interactions between parents and children as
reported in a separate paper. Further, descriptions of how they engaged with each bag
from feedback forms and interviews indicate a heavy emphasis on early number at the
expense of other early childhoodmathematical concepts. These content shifts suggest
that parents may need increased support in understanding the depth of mathematical
content that young children can explore.

A central goal of this intervention was for it to remain non-intrusive on partic-
ipant or teacher time. Continued examination of this intervention could include an
alternative strategy for increased support such as online forums or a reference sheet
of frequently asked questions or common misconceptions included in each bag. Fur-
ther, it would be worthwhile to explore additional mathematics bags as part of this
intervention as participant fatigue did not occur as part of this study.

Conclusion

Mathematics bags seemed to be a fun and engaging intervention for increasing math-
ematical connections between home and school environments and for increasing the
amount and quality of mathematical interactions between parents and their children.
By capitalizing on the worlds that exist for each child within that child’s individual
microsystems (in this case, home and school), we can better support the connections
for the child within their mesosystem, or where that child’s microsystems inter-
act. The mesosystem represents the connections that children can make between
home and school, between parent and teacher, and between the mathematical con-
tent explored with their peers in school and how it can relate to their world outside of
school (Bronfenbrenner, 1986). The mathematics bags supported these connections
through inquiry-oriented tasks that allowed parents and children to interact through
mathematical play.

Thesemathematics bags can be easily created with items taken directly from early
childhood classrooms or with items that are commonly found in home environments.
Teachers can use the learning cycle framework to develop bags that allow parents to
engage their children with a read aloud, explore together with a mathematical task
that connects to the story, and then elaborate on this task by extending it to their
home environment. Throughout this cycle, parents should be encouraged to act as
a facilitator, asking open-ended questions, playing with their child throughout, and
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allowing their child to make decisions within the task. This approach can be used
within any mathematical content area.

This chapter acts as a small piece of a larger discussion of how to support high-
quality home mathematics environments and what implications these environments
can have on young children’s mathematics achievement and dispositions toward
mathematics. Future research should explore this type of non-intrusive mathematics
intervention with an increased number of families from varying backgrounds to
determine feasibility across multiple variables. Concurrently, this research should
explore the impact of this type of intervention on the amount and quality of parent
and child mathematical interactions. Finally, future research on mathematics bag
interventions should explore the predictive value of high-quality home mathematics
environments on children’s success as they transition to kindergarten and progress
toward increasingly difficult mathematical content over time.
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Early Identification of, and Interventions
for, Kindergarten Students at Risk
for Mathematics Difficulties

Marcie Penner, Chad Buckland and Michael Moes

Introduction

There are large individual differences in numeracy skill, even as early as kindergarten
(Jordan, Kaplan, Ramineni, & Locuniak, 2009). On average, there is a seven-year
span in ability within a single elementary classroom (Cockcroft, 1982). Of particular
concern is the finding that children who enter kindergarten with poor numeracy skills
do not catch up (Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; Clarren, Martin, &
Townes, 1993; Duncan et al., 2007; Jordan, Kaplan, Ramineni, & Locuniak, 2009;
Morgan, Farkas, & Wu, 2009; Shalev, Manor, & Gross-Tsur, 2005; Watts, Duncan,
Siegler, & Davis-Kean, 2014), likely due to the lack of early identification and inter-
vention tools (Mazzocco, 2005). One in ten children will persistently struggle to gain
numeracy skills (Mazzocco & Myers, 2003). This is problematic, as basic numer-
acy skills are important not only for later mathematics achievement, but also for
general academic performance and student retention (Duncan et al., 2007; Romano,
Babchishin, Pagani, & Kohen, 2010; Parsons & Bynner, 2005). Indeed, school-entry
numeracy skills were found to be the best predictor of later academic achievement
(Duncan et al., 2007; Romano, Babchishin, Pagani,&Kohen, 2010). Numeracy skills
are also important for life outcomes, including employment opportunities, obtaining
and retaining employment, promotion opportunities, owning a home, income, qual-
ity of health care, and mental health (Bynner & Parsons, 1997; Parsons & Bynner,
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1997, 2005; Ritchie & Bates, 2013). Thus, research focused on developing tools to
assess and predict children’s numeracy skills in kindergarten, or earlier, is critical.
This chapter will focus on (1) early cognitive predictors of numeracy skill, (2) diag-
nostic tools for early identification of at-risk students, and (3) early interventions for
students identified as at risk for mathematics difficulties.

Predictors of Numeracy

In order to identify which children are at risk for mathematics difficulties, we need
early, long-term (i.e., longitudinal) predictors of numeracy. In the past decade, applied
research across disciplines, including cognitive science, developmental psychology,
education, and developmental neuroscience, has focused on identifying these pre-
dictor skills (Cirino, 2011; Hornung, Schiltz, Brunner, Martin, 2014; Krajewski
& Schneider, 2009; LeFevre et al., 2010; Martin, Cirino, Sharp, & Barnes, 2014;
Mazzocco & Thompson, 2005; Sowinski et al., 2015; Xenadou-Dervou, Molenaar,
Ansari, van der Schoot, & van Lieshout, 2016). LeFevre et al. (2010) provide a
validated model, Pathways to Mathematics, which summarizes early cognitive pre-
cursors (i.e., preschool/kindergarten) to later numeracy skill. Three distinct types of
cognitive skills predict numeracy outcomes concurrently and longitudinally: quanti-
tative, working memory1, and linguistic skills (LeFevre et al., 2010; Sowinski et al.,
2015). The Pathways to Mathematics model (LeFevre et al., 2010) has been further
validated with a wider range of tasks for each skill (Cirino, 2011; Hornung et al.,
2014; Sowinski et al., 2015). Thus, we use it as a framework for investigating early
predictors here.

Quantitative Skills

Quantitative skills include subitizing (i.e., quickly determining the number of items
in a small set without counting), counting, number sequencing, number compari-
son (i.e., determining which set has more/less), non-symbolic arithmetic tasks (e.g.,
adding/subtracting with manipulatives), and estimation. These tasks may involve
symbolic representations of number (e.g., Arabic digits, spoken or written num-
ber words) or non-symbolic representations of number (e.g., objects or pictures of
objects). These early numeracy skills of quantifying, labeling, comparing, andmanip-
ulating sets provide the foundation for later mathematical achievement (Jordan &
Dyson, 2016).

1LeFevre et al. (2010) focused specifically on spatial attention (or visuospatial working memory),
but research has demonstrated a developmental trend from a contribution for visuospatial working
memory to verbal working memory in mathematics (Krajewski & Schneider, 2009; McKenzie, Bull
& Gray, 2003; Rasmussen & Bisanz, 2005), so in the current chapter we expand this predictor to
working memory more generally.
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Findings. To measure quantitative skills, LeFevre et al. (2010) used a subitizing
task and a non-symbolic arithmetic task. For the subitizing task, children were shown
small sets of dots on a computer screen and asked to state “how many” as quickly
as they could without making too many mistakes. If children are able to subitize,
their time to respond will be similar across sets of 1–3 items, which is considered the
subitizing range for this age group (Trick, Enns, &Brodeur, 1996). If they are instead
counting the objects, their time to respond should increase with each additional
item to enumerate. For the non-symbolic arithmetic task, both the experimenter and
the child had a toy barn and a set of animals. The experimenter lined up a set of
animals, saying “Farmer Smith is going to put some animals in the barn. See?” and
placed them in the barn. Once in the barn, the animals were not visible to the child.
For some trials, animals were added to (i.e., addition trials) or taken out of (i.e.,
subtraction trials) the barn. The child was asked to “show me how many animals
are in the barn now, using your own mat and animals.” LeFevre et al. (2010) found
that these quantitative skills in preschool and kindergarten predicted mathematics
outcomes two years later, including performance on a standardized calculation test
(Calculation subtest; Woodcock & Johnson, 1989) and standardized numeracy test
(KeyMath Test-Revised—Numeration Subtest; Connolly, 2000), after controlling for
gender, workingmemory, and linguistic skills. These findings are supported by those
of other researchers; counting and estimation skills in kindergarten each predicted
arithmetic performance in Grade 1 (Bartelet, Vaessen, Blomert, & Ansari, 2014).

Number comparison tasks are a commonmeasure of quantitative skill (for a review
seeDe Smedt, Noël, Gilmore, &Ansari, 2013), with numerical comparison proposed
as the key foundational capacity for numeracy (Gersten & Chard, 1999; Vanbinst,
Ansari, Ghesquière, & De Smedt, 2016). As shown in Fig. 1, number comparison
tasks may involve symbolic stimuli or non-symbolic stimuli. Performance on sym-
bolic number comparison tasks (e.g., with Arabic digits) in kindergarten predicted
performance on multiple mathematics outcome measures longitudinally in Grade 1,
including tests of mathematical achievement (De Smedt, Verschaffel, & Ghesquière,
2009), arithmetic fluency (Martin et al., 2014), computation (Martin et al., 2014), and
word problems (Martin et al., 2014). Performance on symbolic number comparison
tasks in kindergarten also predicted performance on multiple measures of mathe-
matics longitudinally in Grade 2, including arithmetic and word problems (Desoete,
Ceulemans, De Weerdt, & Pieters, 2010), mathematical fluency, and mathematical
reasoning (Toll, Viersen, Kroesbergen, & Van Luit, 2015).

Non-symbolic number comparison also predicts numeracy outcomes. Perfor-
mance on non-symbolic number comparison tasks (e.g., comparing one set of dots
to another) in kindergarten predicted arithmetic performance in Grade 1 (Desoete
et al., 2010) and mathematical fluency in Grade 2 (Toll et al., 2015). When con-
sidered together (Bartelet et al., 2014; Desoete et al., 2010; Toll et al., 2015), sym-
bolic number comparison demonstrates more predictive power than non-symbolic
(r = 0.30 and r = 0.24, respectively; Schneider et al., 2017meta-analysis). However,
non-symbolic comparison may be particularly useful when working with younger
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Fig. 1 Symbolic and non-symbolic number comparison tasks. Children respond by touching the
larger number (Hume & Hume, 2014b)

children2, who have not yet learned to link Arabic digits with the number of items
in a set (Nosworthy, Bugden, Archibald, Evans, & Ansari, 2013).

Working Memory

Working memory is a cognitive system responsible for the active maintenance and
temporary storage of task-relevant information (Baddeley, 1992; Miyake & Shaw,
1999) and is often measured using span tasks to determine how many items can
be held in working memory. Visuospatial working memory is responsible for the
maintenance and storage of visual and/or spatial information (Baddeley, 1992)—for
example, mentally counting the number of windows in your childhood home. To
measure visuospatial working memory, one common spatial span task, Corsi blocks,
involves an experimenter pointing to an increasing sequence of locations with the
child asked to copy the pattern, either in the same order or in reverse order (Orsini
et al., 1987). Verbal working memory is responsible for the maintenance and storage
of verbal information (i.e., inner speech; Baddeley, 1992)—for example, mentally
recalling a grocery list while in the store. To measure verbal working memory, in
one common verbal span task, digit span, the experimenter reads an increasing list of
numbers (e.g., 7 2 8 6) and the child is asked to repeat the list, either in the same order
or reverse order (Orsini et al., 1987).Workingmemory predicts bothmathematics and
general academic performance (Peng et al., 2016; Purpura&Ganley, 2014; Raghubar
& Barnes, 2017). In mathematics, working memory supports the performance of
multiple steps in counting, arithmetic, and problem-solving, the ability to keep track

2Non-symbolic number comparison, however, should not be considered as a developmental pre-
cursor that facilitates symbolic comparison performance, as evidence suggests that the direction
of this relation is actually the reverse—improvement in symbolic number comparison facilitates
performance on non-symbolic comparison (Lyons, Bugden, Zheng, De Jesus, & Ansari, 2017).
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of intermediate results, and the ability to visualize problems and solutions (LeFevre
et al., 2010; Peng et al., 2016).

Findings. To measure visuospatial working memory, LeFevre et al. (2010) used a
computerized spatial span task (shown in Fig. 2). In this task, the child viewed a frog
jumping in sequence from one lily pad to another. Once the frog was done jumping,
the child was asked to “copy the pattern” by pointing. LeFevre et al. (2010) found that
visuospatial working memory skill in preschool and kindergarten predicted mathe-
matics outcomes two years later, including performance on a standardized calcula-
tion test (Calculation subtest; Woodcock & Johnson, 1989) and standardized tests
of numeracy, geometry, and measurement (KeyMath Test-Revised—Numeration,
Geometry, and Measurement subtests; Connolly, 2000), after controlling for gender,
quantitative, and linguistic skills. LeFevre et al.’s findings are supported and extended
by those of other researchers. Visuospatial workingmemory skill in kindergarten pre-
dicted arithmetic and word problem performance in Grade 1 (Toll, Kroesbergen, &
Van Luit, 2016; Simmons, Singleton, & Horne, 2008).

Lee and Bull (2015) found that kindergarteners’ working memory (a com-
posite of visuospatial and verbal working memory) predicted both perfor-
mance and growth in mathematics from Grade 1 to 9. Martin et al. (2014)
measured both visuospatial and verbal working memory in kindergarten and
found that the two measures differentially predicted Grade 1 mathematics out-
comes; visuospatial working memory predicted performance on word problems,
whereas verbal working memory predicted performance on applied problems
(i.e., verbally presented word problems). A meta-analysis showed that visuospatial
working memory and verbal working memory contribute equally to skill in mathe-
matics (Peng et al., 2016).

Fig. 2 Visuospatial working
memory task. Children
watch the frog move to a
sequence of locations and
then copy the sequence by
touching the locations
(Hume & Hume, 2014a)
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Linguistic Skills

Early linguistic skills include phonological awareness (i.e., knowledge of the sound
structure of language) and receptive vocabulary (i.e., words the child understands).
Beyond predicting numeracy, phonological awareness is considered the key founda-
tional capacity for literacy (Gersten & Chard, 1999; Vanbinst, Ansari, Ghesquière,
& De Smedt, 2016). In mathematics, linguistic skills support the learning of math-
ematics vocabulary (e.g., number names and numerals, more than/less than/equal
to) and rules of the number system (e.g., base-ten; LeFevre et al., 2010; Purpura &
Ganley, 2014; Raghubar & Barnes, 2017).

Findings. To measure linguistic skills, LeFevre et al. (2010) used a receptive
vocabulary task and a phonological awareness task. Receptive vocabulary was mea-
sured using the Peabody Picture Vocabulary Test (Revised; Dunn & Dunn, 1997),
wherein children are shown a set of four pictures and asked to choose the picture that
corresponds to a verbally presented word (e.g., cobweb). Phonological awareness
was measured using the Elision subtest of the Comprehensive Test of Phonological
Processing (Wagner et al., 1999), wherein children are asked to repeat words, but
with a sound missing (e.g., “Say bold. Now say bold without saying /b/”).

LeFevre et al. (2010) found that linguistic skills in preschool and kindergarten,
including phonological awareness and receptive vocabulary, predicted mathematics
outcomes two years later, including performance on a standardized calculation test
(Calculation subtest; Woodcock & Johnson, 1989) and standardized tests of numer-
acy, geometry, and measurement (KeyMath Test-Revised—Numeration, Geometry,
and Measurement subtests; Connolly, 2000), after controlling for gender, quantita-
tive, and working memory skill. Consistent with the LeFevre et al. findings, kinder-
garten phonological awareness predicted Grade 1 word-problem performance (Mar-
tin et al., 2014; Simmons, Singleton, & Horne, 2008). Phonological awareness at
school entry was found to be the strongest predictor of both mathematics grades
and national mathematics test scores two years later (over and above the existing
school-readiness measure, free lunch eligibility, special education need, and gender),
resulting in a recommendation for schools to include phonological awareness as part
of baseline assessments to identify children who may need intervention (Savage &
Carless, 2004).

Summary

There is strong support for quantitative skills, working memory, and linguistic skills
as kindergarten predictors of later numeracy, across studies, countries, andmeasures.
The relations between workingmemory and linguistic skills in kindergarten and later
mathematics skill are mediated (or explained) by quantitative skills (Cirino, 2011;
Krajewski&Schneider, 2009; Hornung et al., 2014; Passolunghi&Lafranchi, 2012).
Children vary considerably in their numeracy skills (Cockcroft, 1982; Jordan et al.,



Early Identification of, and Interventions for, Kindergarten … 63

2009). Quantitative skills, working memory, and linguistic skills in combination
account for 44–79% of this variability in children’s arithmetic, 53–61% in word
problems, 48–64% in number system knowledge, and 36–84% in geometry, one or
more years later (Cirino, 2011; Hornung et al., 2014; LeFevre et al., 2010; Martin
et al., 2014). That said, the specific set of predictors for any given mathematics
outcome depends on the cognitive demands of the mathematics task (LeFevre et al.,
2010;Martin et al., 2014; Hornung et al., 2014). For example, quantitative skills were
found to predict arithmetic and knowledge of the number system, but not geometry
(LeFevre et al., 2010). The benefit of this robust set of early predictors of later
mathematics achievement, however, is that performance on these measures can be
used to identify which children are likely to struggle to gain numeracy skills.

Early Identification

The first step in helping children at risk for mathematics difficulties is to identify
which children are actually at risk. Given that children who enter kindergarten with
poor numeracy skills do not catch up, at least without appropriate intervention, iden-
tification of at-risk students should happen in kindergarten, or sooner. Here, we focus
on early identification tools appropriate for kindergarten students.

What is a numeracy screener?A numeracy screener is simply a test designed to
identify which individual students are currently struggling, or at risk of struggling,
to gain numeracy skills. Screeners are used to select children to receive intervention
and to gauge their progress.

Criteria for evaluating screeners. In our review of reported early identifica-
tion numeracy screeners, we focused on finding evidence-based screeners for use in
kindergarten that were: (1) a test consisting of specific questions and explicit scoring
instructions; (2) distributable, in either paper or computerized form; (3) practical for
school-based use; (4) reliable (i.e., consistent) and valid, including demonstration
of predictive validity longitudinally across grades; (5) normed or provided a cutoff
criterion for judgment of at-risk status; and (6) published in English.

A surprising number of early identification screeners reported in the literature
did not explicitly provide test items, and instead listed constructs or skills to be
tested (e.g., Mazzocco & Thompson, 2005), or did not provide scoring methods.
We focused on screeners that could be administered efficiently in classrooms by
teachers, either to individual students or groups of students. Some screeners have
demonstrated concurrent validity, they predict children’s numeracy skills at the same
point in time, but have not yet demonstrated predictive validity, predicting children’s
numeracy skills longitudinally (e.g., Nosworthy et al., 2013), across grades (e.g.,
Lembke & Foegen, 2009). Given the goal of early identification of children who will
persistently struggle to gain numeracy skills, predictive validity is essential. Finally,
simply having a child’s screening test score is not sufficient for making an informed
decision about whether the child is at risk; grade-level norms or cut-points are key
for identification. It should be noted that available screeners are at different stages of
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development, and some that do not currentlymeet all the criteriamay do so in the near
future. For example, Ansari and colleagues are currently evaluating the predictive
validity of the Numeracy Screener (Nosworthy et al., 2013; D. Ansari, personal
communication, June 15, 2017). A more exhaustive list of potential screening tools
can be found in Fuchs et al. (2007).

Evidence-based screeners. The following early identification screeners met the
above criteria: Number Sets Test (Geary, Hoard, Byed-Craven, Nugent, & Numtee,
2007) and Number Sense Screener (Jordan & Glutting, 2012; Jordan, Glutting, &
Ramineni, 2008, 2010; Jordan, Glutting, Ramineni, & Watkins, 2010). Both these
screeners focus on assessing early quantitative skills. Researchers developing early
numeracy screeners have focused on quantitative predictors, as they are seen to reflect
the core foundational skill/deficit (Gersten & Chard, 1999). It should be noted that
domain-general screeners exist for workingmemory (Nadler &Archibald, 2014) and
linguistic skills (Bridges & Catts, 2011), though the validity of these screeners for
numeracy outcomes has not been thoroughly investigated. Thus, working memory
and linguistic screeners should be used in concert with evidence-based quantitative
screeners to identify children at risk for mathematics difficulties, rather than as stand-
alone early numeracy screeners.

Number Sets Test

The Number Sets Test (Geary et al., 2007, 2009) is a timed pencil-and-paper test for
use in kindergarten to Grade 3 that can be group administered and takes about 10 min
to complete. Age-/grade-level norms have not yet been compiled, but cutoffs have
been determined to identify at-risk children (Geary et al., 2009). The four test sheets
contain combinations of two and three sets of the numbers 0–9 in symbolic (Arabic
digits), non-symbolic (objects, either the same or different), and mixed formats (both
symbolic and non-symbolic). See Fig. 3 for an example. Children are instructed to
circle all combinations on the sheet “that can be put together to make” the target
number (either 5 or 9) as quickly and accurately as possible (Geary et al., 2009, p. 3).
Key performance measures include the number of combinations correctly identified
as matching the target (i.e., hits) and the number of combinations incorrectly iden-
tified as matching the target (i.e., false alarms). These scores are used to derive a
measure of sensitivity, the difference between hits and false alarms.

The Number Sets Test demonstrates good concurrent validity in kindergarten
through Grade 3 (Geary et al., 2009), relating strongly to performance on a standard-
ized test of mathematics achievement (Numerical Operations subtest of theWechsler
Individual Achievement Test-II-Abbreviated; Wechsler, 2001). Predictive validity of
the Number Sets Test has been demonstrated for Grade 1 scores, which moderately
predicted mathematics achievement in Grade 3 (Geary et al., 2009), and strongly
predicted functional numeracy scores (i.e., arithmetic, fraction comparison, fraction
calculation, and word problems geared to employment) in Grade 7 (Geary, Hoard,
Nugent, & Bailey, 2013). Moreover, this relation held despite controlling for Grade 1
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Fig. 3 Sample items from the Number Sets Test (Geary et al., 2009). Children are instructed to
“Circle all the sets that add up to 9. Work as quickly as you can.”

counting ability, reading ability,workingmemory, intelligence, and in-class attention.
The Number Sets Test demonstrates good diagnostic accuracy (or clinical validity),
correctly identifying two out of three children in Grade 1 that would be identified as
having a mathematics learning disability in Grade 3 (i.e., sensitivity) and nine out of
ten children that would not (i.e., specificity; Geary et al., 2009). Interested teachers
and researchers can obtain the Number Sets Test by contacting the lead author, Dr.
David Geary (D. Geary, personal communication, June 19, 2017).

Number Sense Screener

The Number Sense Screener (Jordan et al., 2008, 2010a, 2010b; Jordan & Glut-
ting, 2012) is an untimed paper test for use in kindergarten and Grade 1 that is
individually administered and takes about 15 min to complete. Grade-level norms
have been compiled (Jordan & Glutting, 2012), and cutoffs have been determined
to identify at-risk children (Jordan et al., 2010b). The most recent iteration of the
screener (Jordan & Glutting, 2012) has 29 test items that cover six skills, includ-
ing counting (e.g., enumerating five items, rote counting to 20), digit recognition
(e.g., What number is this? 13), verbal symbolic number comparison (e.g., Which
is bigger: 5 or 4?), nonverbal addition/subtraction (i.e., using manipulatives), verbal
addition/subtraction facts (e.g., How much is 2 and 1?), and verbal story problems
(e.g., Jill has 2 pennies. Jim gives her 1 more penny. How many pennies does Jill
have now?). Raw accuracy scores are available for each skill as well as total raw
scores, grade-standardized scores, and percentile ranks. Test–retest reliability, the
consistency of individual results, in kindergarten was high (Jordan et al., 2010b).

The Number Sense Screener demonstrates good concurrent validity in Grade 1,
relating strongly to performance on a standardized test of mathematics achievement
(Applied Problems and Calculation subtests of theWoodcock–Johnson III; McGrew,
Schrank, & Woodcock, 2007) within the same grade, but at different testing points
(Jordan et al., 2009). Predictive validity of the Number Sense Screener has been
demonstrated for kindergarten and Grade 1 scores. Performance on the Number
Sense Screener at the beginning of kindergarten strongly predicted mathematics
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achievement at the end of Grade 3, and performance in Grade 1 strongly predicted
mathematics achievement inGrades 2–3 (Jordan et al., 2009). Performance in kinder-
garten andGrade 1 also strongly predictedwhich students wouldmeet state standards
for mathematics in Grade 3 (Jordan et al., 2010b). The Number Sense Screener
demonstrates good diagnostic accuracy (or clinical validity), correctly identifying
between seven out of ten and nine out of ten children in kindergarten and Grade 1
that would not meet state standards for mathematics in Grade 3 (i.e., sensitivity) and
between four out of ten and nine out of ten children that wouldmeet state standards in
Grade 3 (i.e., specificity; Jordan et al., 2010b). Interested teachers and researchers
can purchase the published version of the Number Sense Screener (currently $46.95
CAD; Jordan & Glutting, 2012).

Summary

Validated early screeners exist to identify which children are at risk for mathemat-
ics difficulties. In addition to these quantitative tools, early screening for working
memory and linguistic skills, which account for additional unique variance in chil-
dren’s numeracy, may be useful (Cirino, 2011; Hornung et al., 2014; LeFevre et al.,
2010; Martin et al., 2014; Raghubar & Barnes, 2017). It is important to note that
decisions on at-risk status must be re-evaluated at multiple time points within or
across years (Mazzocco & Myers, 2003), as decisions based on a single data point
may not reflect a persistent numeracy problem. It is also advisable to base decisions
of at-risk status on the results of more than one screener, as different screeners will
identify different groups of children as at risk (Mazzocco & Myers, 2003). Early
identification is only the first step. Once children are identified as at risk for math-
ematics difficulties, evidence-based interventions are needed to help these children
catch up to their typically developing peers. Although diagnostic tools may present
tantalizing opportunities for the creation of intervention tools, training performance
on screening measures is not necessarily an effective intervention that will impact
broader numeracy skills (Ansari, De Smedt, & Grabner, 2012).

Early Intervention

Once children at risk for mathematics difficulties have been identified with appropri-
ate screening tools, the next step is to intervene to change the developmental trajectory
and improve the numeracy outcomes of these students. Without early intervention,
students may experience persistent numeracy difficulties; more than 6 in 10 children
identified as having mathematics difficulties throughout kindergarten continued to
have difficulties in Grade 5 (Morgan, Farkas, & Wu, 2009). Here, we focus on early
intervention tools appropriate for kindergarten students.
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What Is a Numeracy Intervention?

Anumeracy intervention is an educational program designed to address areas of need
in a child who is struggling, or at risk of struggling, academically in mathematics.
The goal of the intervention is long-term academic improvement in mathematics.
Interventions are not one size fits all; the type and level of intervention should be
tailored to a child’s current level of numeracy performance (Clements & Sarama,
2011), rather than determined solely on the basis of their age or grade.

Criteria for Evaluating Interventions

In our review of reported early numeracy interventions, we focused on finding
evidence-based interventions for use in kindergarten that were: (1) a program, con-
sisting of a textbook, software and/or explicit instructional processes (Slavin, 2008);
(2) distributable, in either paper or computerized form; (3) practical for school-based
use; (4) intended for use with at-risk children, versus as a core curriculum; (5) pub-
lished in English; and (6) demonstrated to be effective with use in kindergarten. In
reviewing evidence of intervention efficacy, we identified interventions supported
by studies that were shown to meet the following key criteria, adapted and expanded
from Mononen, Aunio, Koponen, and Aro (2015), and Slavin (2008).

Studies must use children identified as at risk, based on low numeracy perfor-
mance, and contain an explicit, quantitative criterion to define low performance. To
determine if an intervention improves the mathematics performance of at-risk chil-
dren, it must be evaluated using at-risk children. The results of a given intervention
for typically developing children may vary considerably from those for at-risk chil-
dren. Definitions of low-performing and at-risk children vary widely in the literature
(from children performing below the 10th, 25th, or 50th percentile on a screening
test, to teacher identification, to measures like family income in place of numeracy
performance); the use of a criterion or cutoff explicitly specifies the group of children
the intervention has been evaluated for.

Studies must include an at-risk comparison group.Without a comparison group of
at-risk students, it is impossible to determine whether any effect of the intervention
is actually due to the intervention and not just due to regular learning/development.
The control group will ideally be an active control group (also called a seen control),
a group that receives another intervention, not just regular classroom instruction.
This is to control for Hawthorne effects—children improving based on receiving
special attention (i.e., motivation bias) versus the specific intervention (Fawcett &
Reid, 2009). A passive control group (also called an unseen control or business-as-
usual control), a group that receives only normal classroom instruction, is, however,
sufficient to demonstrate that any improvements are not due simply to regular learn-
ing/development. A typically developing control group may also be included, to
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determine whether at-risk children are closing the skills gap with their peers, but it
cannot be substituted for an at-risk control group3.

Group assignment (intervention/control) must be determined based on random
assignment. Random assignment means that each student included in the study has
an unbiased (or random) chance of being assigned to the intervention or the control
group(s). Random assignment is crucial for being able to infer that the interven-
tion caused any outcome differences between the groups. Without random assign-
ment, outcomes may instead be due to preexisting systematic differences between
the groups (e.g., the severity of numeracy difficulties, behavioral issues or English
proficiency) rather than the intervention.

Studies must include a pretest, immediate posttest, and delayed posttest.Apretest,
evaluatingperformanceon theoutcomemeasure prior to the intervention, is important
to evaluate the equivalency of groups prior to intervention, to show growth (growth
= posttest score – pretest score), and for use as a control variable in statistical
tests (as children who started at a lower or higher skill level may benefit more from
intervention). A posttest is when outcomes are evaluated at the end of an intervention.
These posttests may be immediate, following immediately after the intervention, or
delayed, following after some delay (e.g., 8 weeks after the intervention ended).
Given that the goal of an intervention is long-term improvement in numeracy, it
is important that an intervention demonstrates effects beyond the immediate time
frame.

Numeracy outcome measures must be reliable, valid, and unbiased. A reliable
measure is one that is consistent. Reliability is important for an outcome measure so
that changes can be attributable to learning versus random error. Without a reliable
and valid outcome measure, it is impossible to determine whether the intervention
improves numeracy. In some studies, the outcome measure may be biased toward
the intervention group; for example, the test measures precisely the same skills that
the intervention teaches, which are not skills taught in normal mathematics instruc-
tion. Often, this criterion of an unbiased outcome is achieved through the use of
a standardized mathematics test, though other measures can be reliable, valid, and
unbiased.

Interventions must demonstrate numeracy gains, compared to an appropriate
control group, that are both statistically significant and meet the Institute of Educa-
tional Sciences criterion for meaningful intervention effects. This criterion focuses
on whether an intervention actually works—whether at-risk children using the inter-
vention improve their numeracy skills more than those who do not. Intervention
effects that are statistically significant (generally p values < 0.05) are unlikely to
have occurred by chance. Effect sizes (e.g., Hedges’ g, Cohen’s d) allow you to
determine how large an effect the intervention had on numeracy outcomes. Thus,
effect sizes are useful, as they allow you to evaluate whether the effect of an inter-
vention is meaningful. The Institute for Educational Science (2014) has established

3One reason is the possibility of regression to the mean. Children identified as at risk based on one
time point may show improvement in later time points simply because they underperformed on that
particular test relative to their actual ability.
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a criterion of g ≥ 0.25 for a meaningful intervention effect. It is important to con-
sider both statistical significance and effect size, as interventions may demonstrate
statistically significant results, but the results may be so small as to not be worth
implementing, whereas other interventions may demonstrate large effects, but those
results may be likely to have occurred by chance (i.e., not statistically significant).

Evidence-Based Interventions

Only one early numeracy intervention—Number Sense Interventions (Dyson et al.,
2013; Jordan et al., 2012; Jordan & Dyson, 2014)—met the above criteria at imme-
diate posttest and, in a single study, an adapted version additionally met the criteria
at delayed posttest. Available interventions, however, are at different stages of devel-
opment and some that do not currently meet all the criteria may do so in the near
future. More exhaustive lists of potential intervention tools can be found in Chodura,
Kuhn, and Holling (2015) or Mononen et al. (2015).

Other interventions reviewed either did not have an appropriate study to allowus to
thoroughly evaluate intervention efficacy (e.g., Räsänen, Salminen, Wilson, Aunio,
& Dehaene, 2009; Salminen, Koponen, Räsänen, 2015; Toll & Van Luit, 2013) or
did not show significant and meaningful gains compared to a control group on an
unbiasedoutcomemeasure (e.g., Fuchs, Fuchs,Hamlet, Powell, Capizzi,&Seethaler,
2006). Many studies identified students as at risk based on low socioeconomic status
(SES; e.g., enrollment in a free/reduced lunch program) rather than low numeracy
performance (e.g., Dyson et al., 2013; Jordan et al., 2012; Ramani & Siegler, 2008;
Stacy, Cartwright,Arwood,Canfield,&Kloos, 2017).Although lowSESchildren are
more likely to demonstrate low numeracy performance than their higher SES peers
(Jordan, Huttenlocher & Levine, 1992; Jordan, Kaplan, Olah Nabors, & Locuniak,
2006), selecting children to receive interventions based on SES creates amixed group
with low and higher numeracy skills. Intervention studies using SES to select children
for participation show higher gains than those using actual numeracy performance
(Jordan & Dyson, 2016), potentially because children with typical to high numeracy
skills prior to intervention benefit more from the intervention.

Number Sense Interventions

Number Sense Interventions (Dyson et al., 2013; Jordan et al., 2012; Jordan &
Dyson, 2014; for a review see Jordan & Dyson, 2016) is an instructor-lead inter-
vention designed for small-group administration (recommended group size of four
children per instructor). The intervention was designed for use in kindergarten to
Grade 1 with children at risk for mathematics difficulties. The scripted guide (Jordan
& Dyson, 2014), which currently costs $46.50 CAD, contains 24 half-hour lessons,
including activities, printable worksheets, and games. The recommended interven-
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tion schedule is three times per week for a period of eight weeks. The intervention
follows a developmental progression (Frye et al., 2013) to build quantitative skills
related to number (e.g., subitizing, number recognition, mapping symbols to quan-
tities, number sequencing, and the base-ten system), number relations (e.g., number
comparison, before/after relations), and number operations (e.g., number combina-
tions, non-symbolic, and symbolic arithmetic).

The efficacy of Number Sense Interventions has been evaluated in four
randomized-control-trial studies (Dyson et al., 2013, Dyson et al., 2015; Hassinger-
Das, Jordan, & Dyson, 2015; Jordan et al., 2012; for a review, see Jordan & Dyson,
2016). Two of these studies defined at-risk status based on low numeracy perfor-
mance. Hassinger-Das et al. (2015) evaluated the efficacy of Number Sense Inter-
ventions in low numeracy children (defined as performance below the 25th per-
centile on the Number Sense Screener). Children were randomly assigned to three
groups: the intervention group, an active control group (who received a mathemat-
ics vocabulary intervention), and a passive control group (receiving regular class-
room instruction). All children completed a pretest, immediate posttest, and delayed
posttest (eight weeks afterward). Numeracy outcome measures included the Num-
ber Sense Screener, and standardized tests of calculation skill and word-problem
solution. Children who participated in the Number Sense Intervention performed
significantly better than both the active and passive control groups on calculation
skill at the immediate posttest and exceeded the effect size to demonstrate educa-
tional effectiveness (g of 0.58 and 0.59, respectively). No other immediate posttest
gains, nor any delayed-posttest gains, were statistically significant. Thus, significant
long-term effects of the intervention were not demonstrated in this study.

Dyson et al. (2015) also evaluated the efficacy of Number Sense Interventions
in low numeracy children (defined as performance below the 25th percentile on the
Number Sense Screener). Children were randomly assigned to three groups: the
Number Sense Interventions group, a group that received Number Sense Interven-
tions plus number-fact practice (fiveminutes of simple addition and subtraction flash
cards per session), and an active control group (receiving the school’s regular mathe-
matics intervention for the same time period). A typically developing, passive control
group was also included. All children completed a pretest, immediate posttest, and
delayed posttest (six weeks afterward). Numeracy outcome measures included the
Number Sense Screener, a standardized test of calculation skill (Woodcock–John-
son Calculation subtest), and a timed arithmetic task. Children who participated in
the regular Number Sense Intervention performed significantly better than the active
control group on timed arithmetic and calculation skill at the immediate posttest and
exceeded the effect size to demonstrate educational effectiveness (g of 0.69 and 0.58,
respectively). However, these gains did not remain significant in the delayed posttest.
Children who participated in the Number Sense Intervention plus number-fact prac-
tice performed significantly better than the active control group on the Number
Sense Screener, timed arithmetic, and calculation skill at the immediate posttest and
exceeded the effect size to demonstrate educational effectiveness (g of 0.82, 0.78,
and 0.60, respectively). Moreover, children who participated in the Number Sense
Intervention plus number-fact practice performed significantly better than the active
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control group on the Number Sense Screener and timed arithmetic at the delayed
posttest and demonstrated moderate educational effectiveness (g of 0.56 and 0.58,
respectively). Comparing the gains made by the Number Sense Interventions plus
number-fact practice group to those made by the typically developing control group,
receiving normal classroom instruction, suggests that this combined intervention has
the potential to close 44% of the achievement gap in number sense and 54% of the
achievement gap in timed arithmetic (Dyson et al., 2015). Thus, significant long-term
effects of the intervention were demonstrated in this study, but only when paired with
five minutes of number-fact practice/session. Additional research from other labo-
ratories is needed to independently replicate these findings, and further research is
needed to provide stronger evidence of the lasting effectiveness of Number Sense
Interventions and to tease apart the numeracy gains due to the intervention from
those of number-fact practice alone.

Summary

Despite a proliferation of early numeracy interventions, both instructor-led and
computer-based, only one (Number Sense Interventions; Jordan & Dyson, 2014)
has currently been shown to improve the numeracy outcomes of at-risk kindergarten
students when efficacy studies were evaluated using a rigorous set of criteria. Why
be so rigorous? School-based interventions require educational resources, including
instructional space, costs to purchase the intervention, purchase and maintain tech-
nology (in the case of computerized interventions), and to train and staff instructors.
Struggling students typically miss some portion of regular class instruction time,
which is instead devoted to the intervention. If the intervention does not improve stu-
dent numeracy outcomes, these resources have beenwasted alongwith an opportunity
to have lasting effects on a child’s academic and life success. Thus, it is important to
thoroughly evaluate the effectiveness of interventions.

Although three distinct types of cognitive skills predict numeracy outcomes, quan-
titative, working memory, and linguistic skills (LeFevre et al., 2010; Sowinski et al.,
2015), researchers developing early numeracy interventions have focused on build-
ing quantitative skills. This focus has been supported by research, as the only inter-
ventions to improve numeracy outcomes for children involve training quantitative
skills, such as subitizing, counting, non-symbolic arithmetic, and number compari-
son (Raghubar & Barnes, 2017). It should be noted, however, that domain-general
interventions exist for working memory (Agus, Mascia, Fastame, Melis, Pilloni,
& Penna, 2015; Holmes, Gathercole, & Dunning, 2009; Kroesbergen, van’t Noor-
dende, & Kolkman, 2014) and linguistic skills (Hulme, Bowyer-Crane, Caroll, Duff,
& Snowling, 2012; Bowyer-Crane et al., 2008), though these interventions have not
convincingly been shown to improve numeracy outcomes (Dowker, 2016; Melby-
Lervag&Hulme,Melby-Lervag andHulme 2013;Melby-Lervag, Redick, &Hulme,
2016). Although combining training in quantitative skills with working memory
and/or linguistic skills may lead to better student outcomes, this is likewise not yet
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supported by research (Kroesbergen et al., 2014; Raghubar & Barnes, 2017). Where
then doworkingmemory and linguistic skills come into play in early numeracy inter-
ventions? Working memory skills moderate the effect of numeracy interventions on
numeracy outcomes. Specifically, childrenwith better workingmemory skills benefit
more from numeracy interventions (Toll & van Luit, 2013). In contrast, for linguis-
tic skills, English-language learners (ELL) benefited more from the Number Sense
Interventions than non-ELL students (Dyson et al., 2015). Thus, considering chil-
dren’s working memory and linguistic skills can help guide the selection of suitable
interventions by capitalizing on an individual child’s relative cognitive strengths and
minimizing their weaknesses (Raghubar & Barnes, 2017).

Conclusion

This chapter outlined robust, early cognitive predictors of later numeracy skill (i.e.,
quantitative skills, working memory, and linguistic skills), indicated reliable and
valid diagnostic screening tools for early identification of at-risk students, and pro-
vided and applied criteria to evaluate the efficacy of early numeracy interventions.
The interdisciplinary body of applied numeracy research has grown substantially
over the past decade. There was, nonetheless, a paucity of screening tools and inter-
ventions that met our stringent methodological criteria. Stringent criteria are impor-
tant, however, lest we make poor educational choices for students. What educators
need are evidence-based tools, screeners and interventions, derived from this new-
found wealth of applied numeracy research. Moreover, we need a heightened level
of methodological rigor in the design and interpretation of the effectiveness of these
tools.

Given the strong, and pervasive link between basic numeracy skills and both later
academic and life outcomes, early identification and intervention can make a mean-
ingful difference in the lives of at-risk students, their families, and communities. Poor
numeracy skills constrain the educational and employment opportunities available
to individuals (Bynner & Parsons, 1997; Parsons & Bynner, 1997, 2005; Ritchie &
Bates, 2013). These negative outcomes may become more pronounced in the current
era where manufacturing and other skilled labor positions are disappearing, along
with retail positions, while educational requirements for these jobs are increasing
(Bynner & Parsons, 1997; Hicks & Devaraj, 2017). In addition to employment out-
comes, poor numeracy skills are associated with poorer decision-making and health
outcomes (Reyna, Nelson, Han, & Dieckmann, 2009), and higher levels of depres-
sion (Bynner & Parsons, 1997). Thus, interdisciplinary work moving from applied
research on children’s numeracy to applications of this knowledge—the development
and rigorous testing of early screening and intervention tools—though challenging,
is crucial.
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Mathematical or Computational
Thinking? An Early Years Perspective

Donna Kotsopoulos, Lisa Floyd, Vivian Nelson and Samantha Makosz

Children are born into a digital world, and from a very early age are engaging with
technology—from wanting to play on their parents’ cell phones to actually working
independently on a computer or some formofmobile technology.Countless toys exist
that are digital in nature and intended for young children (e.g., robotic toys and basic
computing devices). Consequently, many children starting school in kindergarten are
already users of technology (Blackwell, Lauricella, Wartella, Robb, and Schomburg,
2013).

While a young child’s world is inherently digitized, surprisingly, the same may
not be true in early learning settings where computers or mobile technology may not
be so readily available. Although technology in schools is increasing, there appears
to continue to be an underuse of technology in early years’ settings (Abu Al Rub,
2015; Blackwell et al., 2013). As Parette, Quesenberry, and Blum (2010) explain,
“technology applications are still used less frequently in early childhood education
settings than may be the case in real world settings” (p. 336).

The digital realities of most societies and the growing demand for careers that
require technology-literate individuals have inspired a need to consider the way in
which young children, from the onset of schooling, are also prepared to be future
producers of technology. Having an understanding of the basics of how computer
code works and being able to write programs affords individuals with the ability
to create and/or contribute ideas to software applications, rather than simply using
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“apps” that are created by others. While children may start school already using
technology, schooling may be lagging behind in terms of supporting an advancement
of their skills and understanding to become producers. In the early years, teachers and
early childhood educators (ECEs) may require a new and different set of pedagogical
skills and content-based competencies to support this type of development.

In this chapter, we describe applied educational psychology research where teach-
ers, ECEs, and researchers explored how to be both more mindful and intentional
about computational thinking (CT) in a kindergarten play-based setting as ameans of
potentially supporting children to be both users and future producers of technology.
Our objectives are as follows: (1) to advance teachers’ and ECEs’ thinking about CT
in early childhood education and (2) conceptualize CT andMT in relation to existing
frameworks.

Simply put, CT, described more fully next, is a collection of cognitive processes
and practices that are algorithmic in nature, may or may not use a computer, are
drawn from computer science, and are used to help in problem solving or the exe-
cution of simple and complex tasks (Gadanidis, Hughes, Minniti, and White, 2016;
Yadav, Mayfield, Zhou, Hambrusch, and Korb, 2014). A familiar activity that uses
CT is “coding”—or computer programming. Engaging in coding is one vehicle for
developing computational thinking, but certainly not the only activity (Grover & Pea,
2018). The integration of computational thinking (CT) into early childhood learning
is a field of growing importance; some argue that our digitized world has made CT
an essential skill for all students (Repenning, Basawapatna, and Escherle, 2016).

Over the course of one school year, we engaged in research that took place in a
large urban setting and included kindergarten teachers, early childhood educators,
and kindergarten children in six different classrooms from one school. Children in
these classes were age three to five, and in this jurisdiction, each kindergarten class
has one teacher and one ECE. For the purpose of this chapter, we refer to both of
these as “teachers.” According to demographic data gathered at the onset of the study,
teachers reported having very little comfort with or understanding of CT; indeed, the
vast interest in the topic in their school district and beyond was an impetus for
agreeing to engage in this research.

What Is CT?

CT can be defined as “the mental activity for abstracting problems and formulating
solutions that can be automated” (Yadav et al., 2014, p. 5:2). According to Wing
(2006), “computational thinking involves solving problems, designing systems, and
understanding human behavior, by drawing on the concepts fundamental to com-
puter science” (p. 33). Essentially, CT is about “thinking like a computer scientist”
(Grover & Pea, 2018, 21). Brennan and Resnick (2012) propose that CT consists
of both computational concepts and practices. Concepts are tools used in computer
programming, including sequences, loops, events, conditionals, operators, and data.
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Practices are the context for using the tools and include experimenting and iterating,
testing and debugging, reusing and remixing, and abstracting.

Though often confused as being limited to computers, CT processes are executed
in the daily activities of adults and children alike; CT can be expressed as a subcon-
scious process, but is still present in even the most mundane day-to-day tasks. For
example, everyday instances of CT can be as simple as doing laundry or finding a
name in an alphabetically sorted list. Each of these examples requires an individual
to follow a sequence of steps, where some steps are essential (e.g., add water, go
to a specific letter) and other steps may be optional or more efficient (e.g., adding
fabric softener, starting the beginning of the alphabet), the steps can be repeated to
achieve the same goals, and can be replicated by others. Effective use of CT can
enhance such strategies across all subject areas. CT is seen as “a powerful cognitive
skill that can have a positive impact on the areas of children’s intellectual growth”
(Horn, Crouser, & Bers, 2012, p. 380).

CT can be mischaracterized as simply problem solving. Indeed, CT also involves
problem solving. Problem solving requires an individual to define the problem, plan,
carry out a plan, and check the solution, as well as knowing when to apply these
strategies (Polya, 1957). The key difference or enhancement to problem solving is
using specificallymethods drawn fromcomputer science (e.g., programming, coding,
simulation, etc.) that can potentially lead to increased replication or iteration.

We see evidence of widespread acceptance regarding the importance of CT for
all children. Increasingly, jurisdictions across the world are implementing manda-
tory curriculum in CT, recognizing both the cognitive and tangible skills associated
with CT and the important growing demand for a highly skilled workforce in all
things digital (Berry, 2013; The White House, 2016) England, for example, has now
introduced computer programming as part of their nationwide curriculum and it is a
mandatory subject from first grade onward (Government of England, 2013). Estonia
has demonstrated similar standards since 2013, when coding curriculum starting in
first grade was also implemented (SITRA, 2014). North American trends are lean-
ing toward a mandatory curriculum component, but powerhouse countries like the
USA have not yet been able to completely integrate CT into all state curriculums
(The White House, 2016). In Canada, we have seen mandatory curriculum intro-
duced in several provinces and extensive dialogue about future curriculum across
most provinces (British Columbia Government, 2016; Province of New Brunswick,
2016; Province of Nova Scotia, 2015).

CT in a Classroom

As mentioned, although CT is often associated with computer programming, this
type of thinking can be developed through other contexts as well, including those
without a computer (Grover & Pea, 2018). The Canadian Pediatric Society (2017)
recommends limiting screen time use in young children and suggests that some-
times too much screen time can result in less opportunity for teaching and learning
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(p. 465). Furthermore, introducing CT along with programming on a computer may
add unnecessary complexity and result in children turning away fromCT (Yevseyeva
& Towhidnejad, 2012). Lu and Fletcher (2009) recommend teaching CT apart from
programming languages and separated from computer science to help children to bet-
ter grasp the key processes and concepts. Presenting CT without technology and in
familiar forms can provide a suitable approach for laying the foundation for becoming
producers in the digital, computer programming component.

Instances of CT that do not involve a computer are known as “unplugged” experi-
ences or activities (Lamagna, 2015; Taub, Armoni, and Ben-Ari, 2012). Unplugged
experiences can be cognitively demanding, but their main pedagogical purpose when
used intentionally is to develop a foundational understanding of CT concepts (Kot-
sopoulos et al., 2017). According to Curzon, McOwan, Plant, and Meagher (2014),
unplugged experiences allow for students to witness the processes involved in com-
pleting tasks, and this putsCT into amore relatable and familiar context. Furthermore,
unplugged experiences or activities make excellent gateways into the world of CT,
and could be encouraged by teachers as valuable points of introduction (Kotsopoulos
et al., 2017).

Children’s free play is already naturally unplugged when not using technology.
Free play encompasses artifacts intentionally designed for play, such as toys and
puzzles, and other artifacts found in a child’s natural environment. Further, and for
the most part, intentionally designed learning experiences in the early years may
also be predominantly unplugged. It may be that there is also significant CT already
embedded in some types of play or teacher-directed activity. The main challenge for
educators is in identifying CT instances and then engaging in meaningful provoca-
tions or extensions of these instances to support more purposeful play that advances
learning, checks for understanding, or reinforces concepts (Kotsopoulos&Lee, 2013,
2014).

The Relationship Between CT and Mathematical Thinking
(MT)

One question that was asked frequently during our work with the teachers was
whether what they were observing in their students’ play was CT, MT, or both.
The relationship between the CT and MT became a point of significant discussion in
our own work with the teachers. A guiding framework in our work with the teachers
was that of Sneider, Stephenson, Schafer, and Flick (2014), who describe differences
between CT, MT, and potential overlaps between the two (see Fig. 1). Sneider et al.
present an interesting analysis of the “capabilities,” that are distinct, those that are
shared, and the instances of CT and MT which have the potential to collide.

Sneider et al. (2014) propose that MT occurs when students “approach a new situ-
ation with a range of mathematical skills in mind” (p. 54). In contrast, they noted that
CT is an “awareness of the many ways that computers can help … visualize systems
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Fig. 1 Venn diagram of
mathematical thinking and
computational thinking
(Sneider et al., 2014)

and solve problems” (p. 54). Understanding whether the CT is simultaneously MT is
important. These researchers suggest that multiple capabilities, which we interpret
as something that has the potential to be done or completed by an individual, are
common to both MT and CT, and this area of overlap is of great importance in facil-
itating learning of both CT and MT. To fully support learning and to avoid missed
opportunities for expanding a child’s understanding, a nuanced knowledge of both
is required by teachers.

It is easy to understand why differences between CT and MT may be hard to
conceptualize. “Computational” in CT implies concepts and processes drawn from
computer science, whereas “computational” in a more familiar sense for teachers
implies calculations. Indeed, calculations as used for arithmetic, algebra, and other
MT identified by Sneider et al. (2014) are also inherently algorithmic, as are those in
computer science. While it has been reported that teachers sometimes fail to see the
mathematical aspects of children’s play (van Oers, 2010), it was nevertheless easier
for the teachers in this study to identify the mathematical aspects of the children’s
play than it was for them to identify the new concept of CT during play. There
appeared to be a blurring between concepts that required further contemplation by
the researchers and the teachers collectively.

Our Study

The teachers participated in six workshops during the school year, each led by
all the authors of this chapter. During the first two professional development (PD)
workshops, teachers, along with the research team, explored and learned about CT
by reviewing relevant literature (including understanding terms within frameworks
explored), engaging in unplugged activities, and engaging in whole-group analyses
of the activities and the relationship of these activities to the literature.

Between the second and the third workshop, teachers were asked to capture what
they thought were instances of CT in their classrooms using video or images. Kinder-
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garten in our jurisdiction is play-based where students are intended to be involved
in learning opportunities that are child-directed and foster problem solving, inves-
tigation, and exploration (Ministry of Education, 2016). Consequently, the artifacts
were produced by the students during self-initiated play with self-selected materials
and resources provided in the classroom. The artifacts they collected were analyzed
collaboratively during the third PDworkshop. In total, 25 student-generated artifacts
were analyzed. Teachers were only asked to capture instances of CT.During our anal-
ysis, we then asked whether artifacts were also instances of MT. Focusing teachers’
attentions on CT during the data collection allowed us to examine this intersection
between CT and MT without a confounding influence of MT from the onset.

Naturally, during the discussions about the artifacts, the question aboutwhether the
artifactwasCTorMTarose and becamepersistent. Sneider et al.’s (2014) capabilities
(see Fig. 1) were particularly useful in that all the terms were easily understandable.
Consequently, collectively, andwith the aimof consensus and agreement by the entire
group, these artifacts were coded as either CT, MT, or both CT and MT. We used
the mathematics curricular documents from our jurisdiction (Ontario Ministry of
Education and Training/OMET, 2005) to identify mathematical strands and to assist
with understanding the relationship between Sneider and colleagues’ framework and
the underlying mathematical processes and concepts. So, if something was coded as
MT, we also referred to the curriculum documents to further define the mathematics
concepts that were apparent. We provide examples of the coding of two artifacts
more fully below (see Figs. 2 and 3).

A student-generated artifact that demonstrated both CT and MT is featured in
Fig. 2. The student drew a treasure map that included directional arrows and land-
marks to indicate the correct path to take to find the treasure. When analyzing this
artifact from a CT perspective, there is clear evidence of algorithmic reasoning, in
the specific step-by-step instructions provided, but there is also evidence of MT in
the form of geometry and topology and in the overlap in the analysis and interpre-

Fig. 2 Treasure map
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Fig. 3 Hexagon patterning

tation of the data (Sneider et al., 2014). This area of overlap uses MT capabilities
and blends them with CT capabilities to solve a problem (in this example, to find the
treasure). This kind of unplugged free play naturally also encourages the use of CT
terms. The student, when asked to explain his/her map to the teacher, used words
such as “first,” “then,” “next,” and “last.” The teacher could have inspired more CT
and MT by modeling and then encouraging the student to use Boolean expressions
to explain how to continue on the right path after, for example, making one wrong
turn (i.e., “IF you accidentally turn right, THEN you will have to turn left three times
to make it back to the path”).

In Fig. 3, a student’s hexagon patterning artifact can also be viewed as evidence of
bothMT and CT. From the perspective of MT, there is evidence of counting, symme-
try, and geometric patterning (Ontario Ministry of Education and Training/OMET,
2005). The CT demonstrated in this artifact included algorithmic reasoning in the
form of patterning (Sneider et al., 2014). The student described the structure to the
teacher, explaining the need for symmetry in his design and his process of doing one
piece of the pattern at a time to be sure.

We did not observe all the capabilities outlined in Fig. 1 in the artifacts collected.
Those that were identified in the artifacts included counting (MT), algebra (MT),
geometry (MT), typology (MT), problem solving (MT-CT), modeling (MT-CT),
analyzing and interpreting data (MT-CT), simulation (CT), and algorithmic reasoning
(CT).

Three student artifacts were clearly only CT. For example, one student produced
an encrypted message (i.e., an unplugged version of “programming”). Another two
students engaged in a “simulation”—one artifact involved bridges and the third arti-
fact, airplanes. An additional artifact was deemed to be neither CT nor MT, despite
the teachers thinking otherwise, and this artifact involved students building a random
structure with some recycled packaging material available in the classroom referred
to by the students as “the doughnut castle.”

The teachers who identified “the doughnut castle” were under the impression that
the children were engaging in CT. As a group, we arrived at the consensus that it was
free play without any underlying CT or MT constructs. The children, for the most
part, were simply pushing around some large recycled paper tubing and engaging in
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some physical play (i.e., rolling it and climbing over it). This was also an important
observation that sometimes the child’s free play was just that and not all free play
could be construed as some type of observable learning. This is not to say that the
child was not learning, but the type of learning that was actually internalized was not
immediately apparent.

Apart from these four artifacts (one not CT or MT, and three only CT), there
was an intersection of MT and CT in the rest of the artifacts (n = 21), suggesting
an underlying relationship between them. At least four of the MT-only capabilities
(i.e., counting (MT), algebra (MT), geometry (MT), and typology (MT)) in Sneider
et al.’s (2014) framework may therefore be more appropriately represented as an
intersection between MT and CT. Further intersections may also exist but may not
have been evident in the samples we explored. This remains a persistent area for
further research. It may be, in fact, that there are few areas that do not overlap and
those may all be related to technology-based experiences identified in the CT-only
part of the framework. This would be an important theoretical contribution from this
applied educational psychology research.

There were three mathematical strands from the mathematics curriculum that
were particularly evident in artifacts that were deemed to be only MT according
to the model but also CT based on further analysis. These mathematical strands
were number sense and numeration, geometry and spatial sense, and patterning and
algebra. With respect to algebra, and given the age range of the children producing
the artifacts, early patterning can be considered an early form of algebraic reasoning
(National Council of Teachers of Mathematics/NCTM, 2006; Ontario Ministry of
Education and Training/OMET, 2005).

The observations by the teachers of the intersection between CT and MT in this
study are promising. Teachers were looking at play differently and began to see CT.
Simultaneously, they were also paying more attention to the mathematical aspects
of the play. It demonstrated to us that the professional development over the school
year was not only encouraging a growth in conceptual understanding of CT, but
also encouraging greater contemplation about MT and the relationship with CT.
The artifacts were all created by the children through unplugged experiences (i.e.,
without the use of a computer) during free play. Consequently, seeing the intersection
between CT and MT may have been easier than had the children been engaged in
actual computer coding on computers. Investigating whether the same is true in a
“plugged” (i.e., computer) context is an important future direction for research.

Why Is Seeing CT, MT, and the Overlap Between CT
and MT Important?

In our classroom-based exploration with teachers in an early years setting, we were
inspired by the depth of questioning about CT and MT and the relationship between
the two.Asmentioned, our task to the teachers at the onsetwas to identify instances of



Mathematical or Computational Thinking? … 87

CT based on the experiences teachers had in the professional development sessions.
The question about the relationship of CT to MT evolved naturally. The importance
of beginning to see the connections is important for student learning and so this
evolution in the context of the research and in the context of the teachers’ learn-
ing was transformative for us and for the teachers as well, based on their reports
back to us.

Seeing instances of CT,MT, and any potential overlap between CT andMTduring
children’s play is important. First, the perspective that CT can be seen in children’s
unplugged play and that CT can be developed without a computer is an important
perspective for teachers. Some studies suggest that teachers in the early years are
particularly anxious and lack professional learning around integrating technology
(Jeong & Kim, 2017); moreover, access to technology may not be so prevalent in the
early years (Abu Al Rub, 2015; Blackwell et al., 2013; Parette et al. 2010). Thinking
about CT through and in free play bypasses these barriers. Second, thinking about
play in “unplugged” terms opens opportunities for further CT experiences that may
be more complex and/or may also involve technology.

Teachers need to be able to see MT, CT, and instances where they converge in
order to support the learning of both versus one or the other. Recognizing MT in
CT and ensuring simultaneous focus in planned activities by teachers is important
because MT is sometimes missed or underemphasized in some CT contexts such as
coding (Gadanidis, 2015)—in short, the inability to recognizeMT inCTmay result in
missed opportunities for deeper mathematical learning. The aim, from amathematics
education perspective, is to encourage and support teachers to intentionally design
tasks that use CT to also enhance an understanding of MT.

Further Research and Professional Development

While our contributions are partially theoretical, they are also a good example of
applied educational psychology research occurring in school settings, with teach-
ers, guiding and informing their thinking and understanding. Teachers need both
content- and context-dependent understanding of both MT and CT—with CT being
a novel lens for most teachers. This knowledge should develop organically, situated
in children’s artifacts and naturally occurring events in the classroom.

Over the next decade, therewill be a significant need for professional development
for teachers that enhances their understanding of CT andCT pedagogy, but also about
the ways in which CT intersects with mathematics and even other disciplines. The
power and potential of CT is not limited to the computer science realm, but extends
to other disciplines as well. Our research demonstrates that oftentimes, instances of
CT during young children’s free play are in fact also instances of MT.

One clear implication of this research is the need to perhaps reconsider the dis-
tinction made in the Sneider et al. (2014) model—we found more overlap than what
was proposed in their model. Indeed, we propose that more in-depth examination
of the intersection between CT and MT is necessary. While the questions regarding
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the overlap of CT and MT seem to be of mind to researchers and practitioners alike,
only Sneider et al.’s framework was found and thus the only one available to us for
this analysis of the relationship between the two.

The field of teaching, including in early years education, is sure to see an increased
emphasis on computational thinking in coming years, and it is starting to be seen
as the core of all STEM fields (Román-González, Pérez-González, and Jiménez-
Fernández, 2017). As such, professional development for teachers and ECEs will
play a vital role in the introduction of CT in the classroom. Conceptually, unplugged
experiences lay an excellent foundation formore complex CT processes that could be
fully utilized in a classroom setting prior to digital coding experiences or engagement
with computers.

Practically, not all classrooms or even homes may be equipped with technology
or sufficient parental support to assist children in engaging in activities such as
coding. Unplugged experiences are accessible while building skills that could then
be related to more complex processes. These unplugged experiences also lay an
important foundation and partner for exploring MT given the level of intersection
we observed in our research. Aside from general CT training for teachers and ECEs,
an important implication for teachers is that the distinction and connection between
CT andMTmust bemade, so that teachers can appropriately incorporate both realms
of learning into their classroom activities but also to be able to recognize and thus
support them during play.

CT is also proposed to be widely applicable to other subject areas as well and
thus some level of understanding by teachers and ECEs can potentially be translat-
able to other learning. Finally, more recently Grover and Pea (2018) point out that
more recent definitions and elements of CT have also included collaboration and
creativity. Consequently, a deeper understanding and application of CT may also
have implications for collaborative learning and creativity more broadly.
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Supporting Meaningful Use
of Manipulatives in Kindergarten: The
Role of Dual Representation in Early
Mathematics

Helena P. Osana and Nicole Pitsolantis

Teachers frequently use concrete objects, often called manipulatives, to help young
children understand concepts such as number and place value (Carbonneau, Marley,
& Selig, 2013; Chao, Stigler, & Woodward, 2000; McNeil & Jarvin, 2007; Moyer,
2001). Typically, the educator’s goal for teaching with manipulatives is to make
abstract concepts more tangible or concrete (Bruner, 1964; Marley & Carbonneau,
2014a). Base ten blocks, for example, are often used to represent the conceptual
structure of the numeration system. Single blocks are intended to represent ones, ten
such blocks stuck together in a row are meant to represent one group of 10, and ten
such sticks attached represent ten groups of ten (or 100). Teachers often use these
blocks to illustrate concepts of place value and to assist students in their computation
and problem-solving activities (Dienes, 1964).

Reviews on the effectiveness of manipulatives on student learning in mathematics
have revealed mixed results (e.g., Carbonneau et al., 2013; Osana, Przednowek,
Cooperman,&Adrien, 2018). Part of the challenge in synthesizingwork in this area is
that the independent and dependent variables are disparate from one study to the next,
rendering comparisons practically impossible. In addition, establishing results that
are generalizable requires careful study of the conditions under which manipulatives
are effective. As such, research attention has shifted from crude comparisons of
manipulatives versus no manipulatives to examining the instructional conditions
that are most likely to positively impact students’ learning in the classroom (Marley
& Carbonneau, 2014b).

One factor that has been investigated at some length is the nature of the
instructional guidance provided to students while they engage in activities with
manipulatives. Scholars have tested the level of support, the type of support,
and the sequencing of specific lessons with manipulatives on a number of differ-
ent measures, including assessments of conceptual and procedural knowledge in
mathematics (Carbonneau & Marley, 2015; Fyfe, McNeil, Son, & Goldstone, 2014;
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Osana, Adrien, & Duponsel, 2017). We agree with Sarama and Clements (2009) and
others that the degree to which manipulatives are beneficial for learning is contingent
on students’ interpretations of the objects themselves. If left to their own devices,
however, children do not always construct the intended or even appropriate meaning
of manipulatives (Osana et al., 2018). Ultimately, students need to see “beyond” the
object itself to the abstract referent it is intended to represent.

In this chapter, we describe a study we conducted with kindergarten students that
aimed to explore different levels of instructional support on the children’squantitative
interpretations of base ten blocks. We provided a series of six brief lessons to a
group of children in kindergarten. Each lesson focused on a specific prerequisite
skill or concept that would support students’ interpretations of the blocks as specific
quantities. The unit culminated in direct instruction on how to use the objects to read
and represent quantities under 100. Our objective was to explore whether students
needed direct instruction on the meanings of the blocks or if certain prerequisite
skills could be marshaled by the students to construct the meanings for themselves.
We also were interested in examining potential differences in the development of
dual representation as a function of the children’s prior numeracy knowledge. Dual
representation refers to the notion that manipulatives are objects in their own right as
well as symbols that stand for something else (Uttal, Liu, & DeLoache, 2006). Dual
representation has been shown to predict children’s responsiveness to mathematics
instruction (Booth & Siegler, 2008; Fyfe, Rittle-Johnson, & DeCaro, 2012; Ramani
& Siegler, 2011).

Webeginwith a brief overviewof the importanceof guiding children tomake sense
ofmanipulatives, andwe include occasional forays, as necessary, into the literature on
external knowledge representations more broadly (e.g., pictures, diagrams; Belenky
& Schalk, 2014). We then describe the study we conducted and draw conclusions
from our data on the instructional factors that are promising for enhancing students’
quantitative interpretations of manipulatives.

Supporting Students’ Quantitative Interpretations
of Manipulatives

Our theoretical framework stems from the work in developmental psychology on
children’s symbolization (e.g., DeLoache, 2004; Uttal & Yuan, 2014). DeLoache
(1987) introduced 2½- and 3-year-old children to a room, complete with items and
pieces of furniture, and a scale model of the room that was identical in every way
except size. The children watched the experimenter hide a small toy in the model,
after which the experimenter asked the children to find the toy in the life-sized room.
DeLoache found differences between the two age groups in their ability to use the
scale model as a symbol that referred to where a toy was hidden in the actual room,
concluding in this and further studies that a developmental shift in children’s capacity
to use symbols occurs sometime shortly before the age of three (DeLoache, 2000;
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Marzolf &DeLoache, 1994; Uttal, Schreiber, &DeLoache, 1995). DeLoache (1995)
used the term dual representation to describe how by the age of three, the children
could represent the model room in two ways—as an object its own right, but also as
a symbol for the life-sized room that can be used to solve problems.

In mathematics, symbols are often used to illustrate ideas and procedures. They
include standard notation (e.g., numerals, operations, relational symbols, graphs), but
also idiosyncratic symbols, such as drawings,maps, and sketches. Uttal, Scudder, and
DeLoache (1997) argued that because of their representational role, manipulatives
can also be considered symbols (English, 2004; Goldin, 1998). In our work, we have
adopted the definition from Uttal and Yuan (2014), namely “A symbol is something
that someone intends to stand for something else” (p. 296). Under this definition, base
ten blocks can arguably be seen as symbols: A stick of ten single cubes (a “long”),
for example, can be considered a symbol for the abstract quantitative referent of one
group of ten units. As such, Uttal et al. (2006) proposed that dual representation can
be used to explain children’s learning mathematics with manipulatives—students do
not learn with them if they fail to view them as possessing two “identities,” namely
objects in their own right and representations of intended conceptual referents.

Dual representation of mathematical symbols, including concrete objects, is not
acquired spontaneously, and simply interactingwithmanipulativeswill not guarantee
it (Ambrose, 2002; Ball, 1992;Uttal et al., 2006). In a now seminal study, Resnick and
Omanson (1987) found that although students could compute with base ten blocks
and solve the same problems using the standard algorithm with numerals, they were
perfectly content to operate within each of the separate representational contexts
without making conceptual connections between them. For example, children were
presumably able to see the base ten “long” as a plastic yellow stick, but without
dual representation, they did not view it as a representation of a quantity (i.e., one
group of ten). Research on external knowledge representations at large has more
recently suggested that without conceptual links between representational systems,
children’s learning tends to be highly proceduralized, tightly connected to the context
of learning, and not easily transferred to novel contexts (Belenky & Schalk, 2014;
Martin & Schwartz, 2005; Richland, Stigler, & Holyoak, 2012; Vendetti, Matlen,
Richland, & Bunge, 2015; Verschaffel, De Corte, de Jong, & Elen, 2010). Indeed,
children’s difficulties in mathematics have often been ascribed to weak symbol-
referent correspondences (e.g., Hiebert, 1992; Janvier, 1987; Martí, Scheuer, & de
la Cruz, 2013).

Teachers, therefore, play an important role in helping students understand the
quantitativemeanings ofmanipulatives—that is, in supporting the acquisition of dual
representation (Brown, McNeil, & Glenberg, 2009; Marley & Carbonneau, 2014b;
Wearne&Hiebert, 1988).Much of the research on instructional effects has evaluated
the impact of different levels of guidance (e.g., unguided versus explicit instruction)
with manipulatives, and external knowledge representations more broadly, on a wide
variety of learning and transfer measures inmathematics and science (Alfieri, Nokes-
Malach, & Schunn, 2014; Carbonneau & Marley, 2015; Hushman & Marley, 2015;
Osana et al., 2017). Overall, the literature suggests that students need some form
of guidance when learning mathematics and science with manipulatives. The ideal
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level of explicitness in instruction remains an open question, but everything else
remaining constant, unguided discovery is almost uniformly the least beneficial for
students (Alfieri, Brooks, Aldrich, &Tenenbaum, 2011; Kirschner, Sweller, &Clark,
2006).

In contrast to this growing body of research, very little work has examined the
effects of different forms of guidance on students’ interpretations of the manipula-
tives themselves. In a recent study specifically targeting children’s dual representation
(Osana et al., 2018), we gave explicit explanations to first graders on the quantitative
referents for red and blue chips (blue = 1; red = 10) and showed the students how
to represent quantities with the chips in ways that aligned with their intended quan-
titative referents. Students were exposed to the same chips in two other conditions:
In a game-piece condition, the students used the chips as tokens in a board game
similar to checkers, and in a free play condition, students were allowed to play with
the chips in any way they wished. Students in a fourth condition (control) were not
exposed to the chips at all.

After the students were introduced to the chips in all conditions, Osana et al.
assessed their dual representation—namely, their ability to read the quantity repre-
sented by a display of colored chips and to construct a display given an assigned
quantity (Resnick & Omanson, 1987). We found that the students who were told
the quantitative referents of the chips were at a considerable advantage on the dual
representation tasks compared to all other conditions, a finding that is perhaps not
surprising given that the students in the other conditions had encoded the manip-
ulatives in ways that were deliberately non-quantitative. More striking, however,
was what happened subsequently. After the administration of the dual representation
tasks, all students engaged in small-group activities on addition problems using the
chips. After the addition activities, the dual representation tasks were administered
a second time. The students in the free play condition did not acquire quantitative
meanings for the chips even after using them quantitatively in the addition activity.
The students who used the chips as game pieces were also at a disadvantage relative
to the quantitative group.

Research also suggests that the extent to which students learn from instruction
in mathematics, and the ways in which they benefit from it, is contingent on their
prior knowledge in the domain (Booth & Siegler, 2008; Clarke, Ayres, & Sweller,
2005; Cook, 2006; Lee & Chen, 2014; Petersen & McNeil, 2013; Rittle-Johnson,
Star, & Durkin, 2009). Only a handful of studies have focused specifically on the
impact of prior knowledge on the extent to which children interpret concrete objects
as representing quantities. In Osana et al. (2018), we found, for example, that prior
encodings of manipulatives greatly influenced the ways children interpreted plastic
chips after addition activities. We also found that students’ prior perceptions of the
objects (as mathematical tools, game pieces, or toys) impacted their interpretations
of the chips after the activity.

In another study, Petersen and McNeil (2013) tested the interactive effects of
the perceptual salience (i.e., attractiveness) of manipulative counters and the prior
knowledge of preschool children on a counting task. The results revealed that chil-
dren only used the perceptually rich counters as symbols of quantity when their prior
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knowledge was low. Their established knowledge of what the counter represented
(e.g., a giraffe, a zebra) inhibited them from focusing on their knownmeaning instead
of their intended quantitative meaning; without prior knowledge (e.g., of objects that
did not cue real-world knowledge), the children were able to use the manipulatives
in ways that aligned with their intended quantitative referents. Addressing issues in
mathematics learning more generally, Gravemeijer, Doorman, and Drijvers (2010)
confirmed that “the meaning of external representations is dependent on the knowl-
edge and understanding of the interpreter” (p. 194).

The Kindergarten Study

In Osana et al. (2018), we concluded that explicit explanation plays an important role
in the acquisition of dual representation, but our study left unanswered two important
questions. First, we tested the effects of direct instruction on several different skills
in the same lesson: the chips’ referents, how to count with them, and how to use
them to represent quantities. It is unclear, however, how each one of those skills
contributes to the development of dual representation over the course of instruction.
It is possible, for example, that simply telling students the quantitative referents for
the manipulatives is not enough for dual representation to emerge. Practice using the
manipulatives in quantitative ways (e.g., grouping them, counting them, representing
quantities with them) may be a necessary condition for the development of dual
representation. Second, while we were able to conclude that prior encodings and
perceptions of the chips themselves were important prerequisites for subsequent
interpretations, the role of prior numeracy knowledge in children’s interactions with
manipulatives remains unanswered.

In the study described in this chapter, we explored the development of dual rep-
resentation over the course of a six-lesson unit in two kindergarten classrooms. Our
objectives were to examine the cumulative effects of a series of lessons, all using
direct instruction, that focused on specific prerequisite skills over the course of a
five-week instructional unit. We focused on the growth in children’s dual represen-
tation from lesson to lesson and whether their learning took different trajectories as
a function of their incoming number knowledge. We also delivered assessments of
how well the children learned each of the prerequisite skills after each lesson; these
data served as indices of the specific perquisite skills that might be catalysts for the
development of dual representation. We used base ten blocks in this study because
at the point during the school year when the data were collected, the children had
not yet been exposed to base ten blocks in their class. This minimized possible prior
exposure to the blocks interfering with the conclusions we could draw from the data.
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Overview

The study design is presented in Fig. 1. Participants were 12 children from two
kindergarten classrooms (six students from each class) in a private school in a large
cosmopolitan area in Canada. The children were all between the ages of 5 and 6. The
second author was the homeroom teacher for both classes. She delivered all six-unit
lessons and administered all the learning, dual representation, and transfer tasks with
the participants in their classrooms.

The children had not been formally introduced to base ten blocks prior to the study.
Prior numeracy knowledge was assessed using the Number Knowledge Test (NKT;
Okamoto & Case, 1996), which was administered to all children in both classes.
Six children who scored at grade 1/2 or higher were randomly selected for the high
knowledge group. Six children who scored at grade level were randomly selected to
be in the low knowledge group.

Six lessons were delivered over a five-week period. All lessons included a direct
instruction portion that entailed explicit demonstrations of targeted learning objec-
tives, which was then followed by small-group practice activities. Each lesson intro-
duced a distinct skill considered by Resnick and Omanson (1987) as prerequisite
to learning how base ten manipulatives map onto their quantitative referents. The
first three lessons focused on knowing the referents for each block (Lesson 1); com-
posing and decomposing groups of ten (Lesson 2); and counting groups of ten as
units (Lesson 3). The next two lessons focused on explicit demonstration of how to
read quantities displayed with blocks (“read a display,” Lesson 4) and how to use
the blocks to construct displays of given quantities (“construct a display,” Lesson 5),
also considered by Resnick and Omanson as indices of decimal numeration under-
standing. Lesson 6 focused on the correspondences between concrete and written
representations of quantities. In our previous research, we used measures based on
reading and constructing displays as evaluations of dual representation, and as such,
these tasks were the target learning objectives for the kindergarteners in our study
(Osana, Przednowek, Cooperman, & Adrien, 2013; Osana et al., 2018).

L1NKT

High
n = 6

Low
n = 6

LT

RDT
CDT

L2

LT

CDT

L3

LT

RDT

L4

CDT

L5

RDT

L6

LT

RDT
CDT

AT

Direct
Instr. 
CDT

Direct
Instr. 
RDT

5 weeks

Fig. 1 Design for the kindergarten study. NKT = Number Knowledge Test. LT = learning task.
RDT = read a display task. CDT = construct a display task. L = lesson. AT = application task
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After each ofLessons 1, 2, 3, and 6,we administered a learning task and at least one
dual representation task (i.e., a read a display or construct a display task) individually
to all 12 students. Given that direct instruction on the dual representation tasks was
provided in Lessons 4 and 5, the dual representation tasks that followed these lessons
served as their own learning tasks. A final application task was administered as a test
of far transfer after the unit.

Classroom Instruction

Each lesson lasted 25 min and was delivered to all the students in both classes.
Each lesson began with direct instruction in a whole-group context, followed by
small-group student practice activities that focused on the target idea in each lesson.
The teacher circulated through the classroom during the student practice activities
to provide them with guidance and feedback.

Lesson 1 focused on the quantitative referents for the unit (block) and the “long”
(i.e., stick of ten blocks). The teacher showed the students a unit and a long, named
each block, told the students the value of each block, and wrote the corresponding
number symbol on the board. Next, each student was given a unit and a long and
was asked to hold up each block in response to various teacher instructions (e.g., “if
your name starts with the letter A, hold up the ten.”) The class was then split into
two smaller groups for practice activities. In their small groups, students were given
units and longs to work with. Practice activities focused on rehearsing the name of
each block and stating its value.

Lesson 2 focused on composing a long from ten units and decomposing a long
into ten units. The instruction began with reviewing the ideas from Lesson 1 and then
focusing on the concept of “trading” the blocks for equivalent values. The teacher
demonstrated various trades (units for longs and longs for units), always focusing on
the idea that “ten ones are worth the same as one group of ten; they are both worth
ten.” Following the demonstration portion of Lesson 2, students were next split into
groups of three for practice activities.

Lesson 3 began with a review of the concepts covered in the two prior lessons
and then turned to demonstrations on how to count units and how to count groups
of ten by skip counting. For example, the teacher counted a group of 19 units and
explained that units are counted by ones because they are eachworth one. The teacher
next repeated the counting demonstration with longs and explained that longs are
counted by tens because they are each worth ten. Several more counting exercises
were shown, but units and longs were always counted separately. Following the
explicit demonstration portion of the lesson, students were given several counting
activities to complete in pairs. With a partner, each student counted a total of six sets
of blocks: three sets of units and three sets of longs.

Demonstrations were delivered in Lesson 4 on how to construct a display and in
Lesson 5 on how to read a display. Both lessons began with a review of the preceding
lessons. Next, using the base ten blocks, the teacher showed the students how to
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construct a display for a numeral presented on an index card (Lesson 4) and how
to read a display of pre-arranged blocks (Lesson 5). A new counting method was
introduced in Lesson 5: counting across units. In prior lessons that targeted counting
(Lessons 3 and 4), units and longs were always counted separately. For example, in
Lesson 3, the objective was to learn how to count with the blocks—to learn how to
count units (by ones) and longs (by tens)—not to tell howmany are in a set. In Lesson
4, the objective was to represent a given quantity with the blocks. To do so, one does
not need to be able to tell how many there are in the set. To determine the quantity
of a given set (i.e., read a display of blocks), however, the student must be able to
count across the different units to combine ones and tens. This was the objective of
Lesson 5; as such, the teacher explicitly demonstrated counting across units.

After both Lessons 4 and 5, the students were again placed into small groups
to complete practice activities. Practice activities involving constructing displays
required students to use the base ten blocks to represent one- and two-digit numerals
present on index cards. Activities involving reading displays required students to
count various pre-arranged sets of blocks, in quantities ranging from 12 to 68, and
to record their counts in number symbols on a mini-whiteboard.

Finally, Lesson 6 focused on the correspondence between concrete and writ-
ten representations for double-digit numerals. Using a place value mat, the teacher
demonstrated how to count a set of blocks and place them in the appropriate spot on
the mat. For example, the teacher counted a set of 15 blocks then placed the long in
the tens column on the mat and explained why it went there (i.e., because it is worth
ten). The teacher then placed the units in the ones column on the mat and explained
that she did so because units are worth one. Next, the teacher demonstrated how
to use the mat as a tool to write the corresponding number symbol by mapping the
number symbol to the display on the mat. For example, the teacher wrote 15 on the
mat and said, “To write 15, I look and see that I have one group of ten here, so I
write a 1 here, and I see that I have five ones here, so I write a 5 here. That’s 15 and
this is how you write 15.” The teacher repeated the demonstration and explanation
several more times. The students were then assigned to small groups of three or four
to complete similar practice activities.

Learning, Dual Representation, and Application Tasks

Each learning task assessed the skill that was directly addressed in the lesson preced-
ing it. The materials used for the learning tasks included base ten blocks (units and
longs), number symbol cards, and paper and pencil for recording written answers.
Dual representation was assessed with two tasks based on Resnick and Omanson
(1987). The read a display task (RDT) required students to determine the quantity
represented by a set of base ten blocks. The construct a display task (CDT) required
students to use the blocks to represent double-digit numbers read out loud by the
teacher. The dual representation tasks were set in contexts that were familiar to the
students. For example, for one CDT task, the teacher told the story of a student who
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Fig. 2 Partial setup for the
application task

collects hockey cards and brings them to school for show and tell. The child was
shown a numeral card corresponding to the number of hockey cards in the collection
and was asked to use the base ten blocks to represent that amount.

Finally, the application task (AT) was couched in the context of a pizza shop
and was used to assess far transfer. Items on the AT required students to compare
quantities that were represented with the blocks, show quantities in different ways,
and construct amounts to “pay” for their meals. The students were familiar with the
pizza shop because it was part of the dramatic play corner in the classroom. Props in
the shop included dishes and cutlery, pizza pans and utensils for making pizza dough,
an oven and stove, play food pizza toppings, and menus that were displayed on the
walls of the shop. The AT tasks were crafted as a role-play scenario in which the
student worked at the pizza shop and the teacher pretended to be a customer visiting
the shop. Part of the set up for the AT task is presented in Fig. 2.

The seven tasks on the AT are presented in Table 1. Like the RDT and CDT tasks,
the AT tasks required the students to either read a display of blocks or construct a
display of blocks in the pizza shop context. The tasks differed from the RDT and
CDT tasks, however, in that their objectives required the students to apply what they
had learned during the lessons in novel ways. This was achieved by building in goals
and constraints that would require the students to transfer their knowledge of dual
representation to complete the task. In Task 1, for example, the student was asked to
compare the cost of two pizzas presented in base ten blocks. The teacher constructed
the two displays prior to the start of the interview and covered them with a sheet of
paper. During the interview, the teacher revealed the two displays only briefly (3–4 s)
before covering them up again and asking the student to tell which pizza cost more.
By giving the student only a few seconds to look at the displays, the student was
unable to determine the value of the blocks by counting. This constraint forced the
student to estimate which of the two displays had the bigger value by focusing on
the type of blocks in each display. That is, the student would have to note that the
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Table 1 Items on the application task

Item number Item type Item objective Item description

1 RDT Comparing only the
10s in a display to tell
which is more

The teacher briefly
shows two displays,
side by side,
indicating which is
the student’s (3 longs
and 9 units) and
which is the teacher’s
(7 longs and 0 units),
and says, “Your pizza
costs this much and
my pizza costs this
much. Whose pizza
costs more?”

2 RDT and CDT Grouping ones into
piles of 10s when
counting a large
number of units,
OR
Showing a quantity in
two ways

The teacher says,
“Your pizza costs this
much (shows 47 units
in a small bin) but the
pizza shop does not
want so many ones
because the cash
register is too full.
Can you use the
blocks on the table
(point to a different
bin of blocks on the
table containing
longs and units) to
pay this much
another way? Can
you find a way to pay
this much without so
many ones?”

3 RDT Matching each digit
in a numeral to a
concrete display

The teacher looks at
the menu on the wall
and asks for an
extra-large cheese
pizza. She then says,
“My pizza costs this
much (shows 6 tens
and 6 ones with the
blocks). That number
looks like this (shows
numeral card 66).
Which of these
blocks mean this
much (points to the 6
in the tens place of
the numeral)? Which
of these blocks mean
this much (point to
the 6 in the ones
place)?”

(continued)
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Table 1 (continued)

Item number Item type Item objective Item description

4 CDT Match number
symbol to concrete
representation when
there is a 0

The teacher says,
“Your meal will cost
this much (shows
numeral card 40).
Can you use the
blocks to pay this
much?” Wait for
student to construct
the display then asks,
“Which of these
blocks means this
part of the number
(point to the 4 in 40)?
Which blocks mean
this part of the
number (points to the
0 in 40)?”

5 CDT Rebuild a display
with more of a
denomination

The teacher points to
the small pepperoni
pizza on the menu
and says, “A small
pepperoni pizza has
23 pepperonis on it.
Can you show how
much that is with the
blocks?” Allows the
student time to
construct the display
then asks, “Now can
you show me a
different way to do
it?”

6 RDT Comparing the tens
to tell which is more

The teacher briefly
shows two displays,
side by side,
indicating which is
the student’s (2 longs
and 8 units) and
which is the teacher’s
(6 longs and 1 unit),
and says, “Your pizza
costs this much and
my pizza costs this
much. Whose pizza
costs more?”

(continued)
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Table 1 (continued)

Item number Item type Item objective Item description

7 CDT Regrouping to
construct a display

The teacher says,
“This meal will cost
17 blocks. These are
the blocks you have
in your wallet (gives
the student 2 tens 3
units). These are the
blocks in the bank
(points to a bin on the
table containing
many units and
longs). Can you give
the shop 17 blocks?
You can trade some
of yours for some
that are in the bank.”

display containing more longs was the one with the bigger value because longs are
worth more than units.

The teacher administered the learning and dual representation tasks, in that order,
during individual interviews conducted in the classroom on the same day the lesson
was given. The interviews lasted between seven and 20 min, and all were video
recorded. The teacher used base ten blocks (units and longs), numeral cards, and
recording sheets for students’ written responses. The AT task was administered to
all 12 students in a separate interview, at the end of the six-lesson instructional unit
over a span of 10 days. The interviews were video recorded and lasted between 12
and 17 min.

Results

In this section, we first describe the development of dual representation across the
unit, with a focus on the relationship between children’s learning of each lesson’s
objective and their performance on the dual representation task after each lesson.
The next section describes the development of dual representation as a function of
the children’s learning and their prior numeracy knowledge. Finally, we focus on the
relationship between performance on the dual representation tasks across the unit
and the children’s ability to transfer their knowledge to a task couched in a real-world
context. Differences between prior knowledge groups will be addressed in relation to
transfer performance. We note that because of the size of the sample, no inferential
statistics were performed. As such, any patterns we report are based on descriptive
analyses only.
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The Development of Dual Representation Across the Sample

The means and standard deviations of the learning and read a display tasks (RDTs)
are presented in Table 2. We observed a steady increase in the performance across
groups on the RDT from the beginning to the end of the unit, whereas the children’s
performance on the learning tasks remained relatively constant throughout. These
data suggest that, while children were generally able to learn the target idea in each
lesson, providing explicit demonstrations on how to read a display of blocks appeared
to support students’ performance on the RDT. For instance, simply telling students
the quantitative referents for the unit and tens blocks (Lesson 1) was not enough for
them to use the blocks to read quantitative displays, despite their ability to remember
the quantitative referents after the lesson (accuracy was at 92% on the learning task
after Lesson 1). After Lesson 3, during which children were shown how to count
collections of units by ones and collections of tens by skip counting by 10, the
performance on the RDT improved, but it was not until direct demonstrations on
reading displays that their performance reached almost 80% accuracy.

A similar pattern was observed for the CDT (see Table 3). The performance
on the learning tasks leveled out by Lesson 4, but again, accuracy on the CDT
reached 75% (its highest level, up from 33% after the previous lesson) only after
direct instruction on the task itself. The students could repeat back to the teacher the
quantitative referent for each block (i.e., “this one means one and this one means
ten”; performance on the learning task after Lesson 1 reached 92% accuracy), but this
was not enough for them to use the blocks in quantitative ways on the CDT (mean
performance was 38%). After Lesson 2, which focused on showing children how to

Table 2 Means and (standard deviations) of the learning and read a display tasks after Lessons, 1,
3, 5, and 6

Measure Lesson

1 3 5a 6

Learning 0.92 (0.19) 0.77 (0.31) 0.77 (0.33) 0.75 (0.45)

Read a display 0.33 (0.44) 0.53 (0.44) 0.77 (0.33) 0.92 (0.29)

aData on the learning and read a display tasks for Lesson 5 represent performance on the same task

Table 3 Means and (standard deviations) of the learning and construct a display tasks after Lessons,
1, 2, 4, and 6

Measure Lesson

1 2 4a 6

Learning 0.92 (0.19) 0.63 (0.38) 0.75 (0.41) 0.75 (0.45)

Construct a display 0.38 (0.43) 0.33 (0.45) 0.75 (0.41) 0.75 (0.38)

aData on the learning and construct a display tasks for Lesson 4 represent performance on the same
task
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compose and decompose groups of ten with the blocks, students’ performance on
the CDT hovered at 33%, despite 63% accuracy on the learning task.

Differences in Prior Knowledge

The findings reported above must be interpreted in light of the different patterns
we observed in the low and high prior knowledge groups. Children’s scores on the
learning and dual representation tasks after each lesson are displayed as a function
of students’ prior knowledge profiles in Table 4 (RDT) and Table 5 (CDT). In each
group, dual representation performance increased over the five-week instructional
period on both tasks, but the high knowledge group began with DR scores that were
considerably higher after the first lesson than the low knowledge group. Specifically,
on the RDT, the performance in the high knowledge group (M = 0.50, SD = 0.45)
was three times that of the low knowledge group (M = 0.17, SD= 0.41) after Lesson
1; on the CDT, the students in the high knowledge group outperformed those in the
low knowledge group by a factor of 8. The data also show, however, that while both
groups improved on both dual representation tasks, the students in the low knowl-
edge group learned more because of the lower starting point. These findings mirror
those of Ramani and Siegler (2011), who found that children who demonstrated
lower numerical knowledge at baseline learned more than their higher knowledge
counterparts on magnitude estimation, numeral identification, and arithmetic.

Additional group differences were observed in the discrepancies between learn-
ing performance and dual representation performance after Lessons 1 and 3. These
discrepancies were considerably more pronounced in the low knowledge group than
in the high knowledge group on both dual representation tasks. After Lesson 1, for
instance, the performance on the learning tasks indicated that students in each group
were able to verbally state with 92% accuracy that the unit blocks represented “one”
and the tens blocks represented “ten.” In contrast, students in the low knowledge

Table 4 Means and (standarddeviations) of the learning and read adisplay tasks byprior knowledge
group after Lessons, 1, 3, 5, and 6

Measure Lesson

1 3 5a 6

Learning

Low 0.92 (0.20) 0.71 (0.33) 0.67 (0.44) 0.67 (0.52)

High 0.92 (0.20) 0.83 (0.30) 0.88 (0.14) 0.83 (0.41)

Read a display

Low 0.17 (0.41) 0.33 (0.42) 0.67 (0.44) 1.00 (0.00)

High 0.50 (0.45) 0.72 (0.39) 0.88 (0.14) 0.83 (0.41)

aData on the learning and read a display tasks for Lesson 5 represent performance on the same task
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Table 5 Means and (standard deviations) of the learning and construct a display tasks by prior
knowledge group after Lessons, 1, 2, 4, and 6

Measure Lesson

1 2 4a 6

Learning

Low 0.92 (0.20) 0.67 (0.41) 0.54 (0.51) 0.67 (0.52)

High 0.92 (0.20) 0.58 (0.38) 0.95 (0.10) 0.83 (0.41)

Construct a display

Low 0.08 (0.20) 0.11 (0.27) 0.54 (0.51) 0.61 (0.44)

High 0.67 (0.41) 0.56 (0.50) 0.95 (0.10) 0.89 (0.27)

aData on the learning and construct a display tasks for Lesson 4 represent performance on the same
task

group were not able to use the blocks with those quantitative meanings on either
the RDT or CDT tasks after the first lesson (M = 0.17, SD = 0.41; M = 0.08, SD
= 0.20, respectively). Those in the high knowledge group were more successful,
however, relative to both the students in the low knowledge group and to their own
learning after each lesson. After the second lesson, the gap between performance
on the dual representation tasks and the learning task was again considerably less
substantial in the high knowledge group than in the low knowledge group. In fact,
the mean CDT score in the low knowledge group after Lesson 2 was 83% lower than
their mean learning score, but the performance on the learning task and the CDT
was comparable in the high knowledge group. Similar patterns were observed after
Lesson 3 on learning and RDT performance.

After direct instruction, students in the high knowledge group continued to out-
perform those in the low knowledge group on the dual representation tasks, although
the gap between the two groups narrowed somewhat. Specifically, after Lesson 5,
during which direct instruction on reading displays of base ten blocks occurred, the
performance in the high knowledge group reached 88% compared to 67% in the low
knowledge group. After Lesson 4, which focused on demonstrating how to construct
displays of specific quantities, the performance on the CDT reached 96% in the high
knowledge group, whereas the performance in the low knowledge group was at 54%.

The apparent effect of direct instruction on dual representation performance was
that it was beneficial for both groups, but to different degrees. In the high knowledge
group, students’ performance on the RDT increased by 22% after direct instruction.
In contrast, students in the low knowledge group saw their performance double. On
the CDT, students in the high knowledge group increased their scores by 72% after
direct instruction; students in the low knowledge group by nearly 400%.
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Application Task

Children across both knowledge groups improved their performance on both dual
representation tasks over the course of the instructional unit, with mean accuracy
levels across the sample of 92% (SD = 29%) on the RDT and 75% (SD = 38%) on
the CDT after Lesson 6. We designed the application task (AT) to evaluate the extent
to which the children were able to apply their interpretations of the manipulatives
(i.e., as representing quantities) to a setting that simulated a real-world context—in
our case, a pizza parlor. The ATmeans as a function of prior knowledge are presented
alongside the RDT means in Table 6 and the CDT means in Table 7.

The mean AT score across groups was 61% (SD = 34%), but the performance
differed by prior knowledge group (low: M = 0.40, SD = 0.31; high: M = 0.83,
SD = 0.22). As the data in Tables 5 and 6 illustrate, AT performance of the high
knowledge group was consistent with their performance on both the RDT and CDT
by the end of the unit. In contrast, the low knowledge group’s AT performance dipped
substantially compared to their performance on the dual representation tasks after
Lesson 6. The children in the low knowledge group reached 100% accuracy on RDT
and 61% on the CDT after Lesson 6, but appeared to struggle on the AT, reaching
40% accuracy.

We also observed that the AT score in the low knowledge group, while higher
than each of the dual representation scores (RDT and CDT) after both Lesson 1 and
Lesson 2, was lower than both dual representation scores in the high knowledge
group after the first lesson. This is in spite of the fact that the students in the low

Table 6 Means and (standard deviations) of the read a display and application tasks across the
instructional unit by prior knowledge group

PK group Read a display AT

Lesson

1 3 5 6

Low 0.17 (0.41) 0.33 (0.42) 0.67 (0.44) 1.00 (0.00) 0.40 (0.31)

High 0.50 (0.45) 0.72 (0.39) 0.88 (0.14) 0.83 (0.41) 0.83 (0.22)

Note: AT = Application task; PK = prior knowledge

Table 7 Means and (standard deviations) of the construct a display and application tasks across
the instructional unit by prior knowledge group

PK group Construct a display AT

Lesson

1 3 5 6

Low 0.08 (0.20) 0.11 (0.27) 0.54 (0.51) 0.61 (0.44) 0.40 (0.31)

High 0.67 (0.41) 0.56 (0.50) 0.95 (0.10) 0.89 (0.27) 0.83 (0.22)

Note: AT = Application task; PK = prior knowledge
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knowledge group scored considerably higher on the RDT and at a comparable level
on the CDT after Lesson 6 than the students in the high knowledge group did on these
same tasks after Lesson 1. Together, these data suggest that, despite having learned
how to use the manipulatives in ways that aligned with their quantitative meanings,
there was a discrepancy between the two knowledge groups in terms of their ability
to transfer their knowledge to a more realistic context.

Discussion

Our objective in this chapter was to take the notion of “manipulatives as symbols”
(Uttal et al., 1997) into the kindergarten classroom and to use dual representation, a
central aspect of children’s symbolization, as a lens to examine its development in the
context ofmathematics instruction.Weworked closelywith a small group of children
as they learned how to interpret and use base ten blocks in ways that aligned with
their intendedquantitativemeanings.We further investigated the possible role of prior
knowledge in the development of children’s interactions with the blocks. Although
the study was exploratory and replications with larger samples are necessary, our
primary aim in this chapter was to provide a fine-grained view of how children
learn to interpret manipulatives quantitatively and to address, however tentatively,
the conditions under which teachers can foster such interpretations in the classroom.

Overall, the children in our study learned to use base ten blocks in ways that
aligned with their quantitative referents, and their performance strengthened over
the course of prolonged instruction. Although steady improvement in dual repre-
sentation was observed from lesson to lesson, substantial increases in performance
occurred immediately after explicit demonstrations were provided on the dual repre-
sentation tasks themselves. Our data also suggested that in an instructional context,
the development of children’s dual representation may interact in important ways
with their prior numeracy knowledge. In our study, for example, the benefits of
direct instruction were particularly pronounced for the students with lower numer-
acy knowledge.With less established knowledge of number, the ability of children in
this group to constructmeaning for the blocks, and to use them accordingly, may have
been compromised as a result. These observations are in line with those of Booth
and Siegler (2008), who found that, relative to their peers with stronger knowledge
of numerical magnitudes, first graders with weak prior numeracy knowledge were
subsequently hindered in learning new mathematical content.

In addition, relative to their high knowledge counterparts, the students with
weaker prior knowledge appeared less adept at transferring their learning from
each lesson to the dual representation task that followed. This finding is con-
sistent with Goswami’s (2004) claim that young children lack the background
knowledge to detect the correspondences between two conceptually similar con-
texts. Specific prerequisite skills, such as declarative knowledge of the blocks’
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quantitative referents, composing and decomposing groups of ten, and count-
ing collections of blocks, were seemingly not sufficient for the students in the
low knowledge group to use the blocks with meaning. It is possible that the defi-
ciencies in prior knowledge of the students in the low knowledge group impeded the
development of their dual representation and inhibited transfer to the final applica-
tion task. The children in the high knowledge group, in contrast, may have been in
a better position to marshal their learning on subsequent transfer tasks, which may
explain the relatively rapid improvement on the dual representation tasks for this
group and superior performance on the application task.

Together, these data may suggest that the students’ prior numeracy knowledge
served as an important foundation for transferring what they were told about the
blocks’ quantitative referents to contexts that required them to use the blocks in ways
that corresponded to those referents. This line of reasoning is supported byBaroody’s
(2017) argument that a child’s developmental level in a specificmathematical domain
is key to rendering manipulatives effective, as development plays a role in the child’s
ability to connect informal knowledge to concrete experiences and symbolic learning.
More specifically, telling the students the quantitative referents for the units and tens
blocks appeared to support the development of dual representation in more effective
ways for the students in the high knowledge group. The high knowledge students
also appeared to capitalize on other prerequisite skills, such as grouping and counting
activities (Lessons 2 and 3, respectively). Relative to their peers in the low knowledge
group, the naming, counting, and grouping activitiesmay have beenmoremeaningful
to the high knowledge students because they had the quantitative structures in place to
appropriate the blocks’ quantitative meanings during these activities. This, in turn,
may have more effectively supported the development of dual representation for
those students in the high knowledge group.

In contrast, while students in the low knowledge group learned how to compose
and count groups of ten, they could have simply engaged in such activities at a
more superficial (i.e., procedural) level relative to their high knowledge peers. This
could have contributed to their difficulties in transferring their learning to the dual
representation tasks. Our observations are consistent with the findings of McGuire
andKinzie (2013),who found that preschoolers have considerable difficulty grouping
and counting by ten, but our study also raises the possibility that students in both
groups attended to different aspects of the lessons, despite comparable performance
on the learning tasks. Future research is needed to explain how any differences
in the children’s responses to instruction might explain the development of dual
representation and transfer performance (Byrd,McNeil, Chesney,&Matthews, 2015;
Lobato, 2012).

The lack of established numerical structures in the low knowledge group may
explain only part of their relatively low performance on the final application task,
however. Another factor that may account for the variance is the nature of the instruc-
tion itself. The lessons we provided consisted exclusively of direct explanations; it is
possible that the low knowledge group would have benefited from a combination of
different types of activities. Fyfe, DeCaro, and Rittle-Johnson (2014), for example,
found that engaging children in exploratory activities before direct instruction was
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more effective for growth in both conceptual and procedural knowledge of mathe-
matical equivalence than providing explicit explanations first. The authors did not
examine these effects as a function of prior knowledge, however, but it is worth
considering that different types of instruction and its sequencing may account for
at least a portion of the differences observed in the present study. It is also possible
that children with lower prior knowledge do indeed benefit from explicit demon-
strations, including specific demonstrations of how and when to apply new concepts
(Kirschner et al., 2006). Additional research is required to tease apart the interrelated
factors of student characteristics, such as prior knowledge, and instructional condi-
tions, including the type and sequencing of lessons and the nature of the specific
representations used (see Osana et al., 2017).

Furthermore, our line of research promises to contribute to current understandings
of the role of prior knowledge and instruction when children engage in typical class-
room numeration activities. Indeed, grouping and counting activities with manipula-
tives emphasize unitizing—working with groups of ten as new units—the hallmark
of place value understanding (Carpenter, Fennema, Franke, Levi, & Empson, 2014;
Carpenter, Franke, Jacobs, Fennema, & Empson, 1998; Fosnot & Dolk, 2001), and
grouping activities have been found to be positively associatedwith children’s growth
in place value and numeration (e.g., Pagar, 2013; Peled, Meron, & Rota, 2007). Our
data contribute to this literature by suggesting a more nuanced interpretation of cur-
rent understandings of children’s numeration development in the early school years;
at the very least, our work provides the impetus for more research on the nature of
children’s manipulatives use in classroom contexts.

Clearly, there are limitations to the current study thatmust be acknowledgedbefore
any prescriptions for practice are made. For one, the sample was small and further
reduced by examining the relative effects of the two prior knowledge groups. In
addition, the psychometric properties of the dual representation tasks are unknown;
a fruitful avenue for further research would be on the construction of valid and
reliable assessments of children’s interpretations of mathematical representations.
Despite the study’s limitations, we contend that our results allow us to consider a
number of possible implications for practice. For one, our data appear to suggest
that children can learn specific facts and procedures, but have considerably more
difficulty transferring their knowledge to solve new problems. This finding is not
new, of course (e.g., see Barnett & Ceci, 2002; Lobato, 2012), but our research
highlights the notion that rich, quantitative interpretations of the symbols’ meanings
likely take time to develop. Moreover, the differences we observed in the students
with stronger and weaker prior knowledge may highlight that appropriate use of
manipulatives requires more than declarative knowledge of quantitative referents
or procedural fluency in counting objects. While a wide variety of grouping and
counting activities with manipulatives is likely necessary, children appear to need
sufficient prior knowledge to give meaning to their physical actions with the objects
(see alsoMartin&Schwartz, 2005).Whether or not kindergarten teachers incorporate
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base ten manipulatives and concepts into their classrooms, focusing on foundational
numeracy skills appears critical in the early years (see also Duncan et al., 2007).
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Kindergarteners’ and First-Graders’
Development of Numbers Representing
Length and Area: Stories
of Measurement

Serife Sevinc and Corey Brady

Introduction

Models-and-modeling perspective is a tradition in mathematics education research
that has investigated the nature and growth of conceptual systems of problem-
solvers across a wide variety of ages, disciplines, and settings (Lesh, 2006, Lesh &
Doerr, 2003a). To both stimulate and document problem-solving processes,modeling
researchers have developed a genre of activities known as model-eliciting activities
(MEAs) based on six design principles that have proven robust over decades of work
(Lesh, Hoover, Hole, Kelly, & Post, 2000). While much prior modeling research
has involved the design and implementation of MEAs with adult or teenage learn-
ers, recent work suggests MEAs may be applied productively with learners in the
early primary grades (i.e., K-2) (English, 2010; Lehrer & Kim, 2009; Lesh, English,
Riggs, & Sevis, 2013). In this chapter, we share two K-1 level story-based MEAs
for which we present a sample instructional cycle that supported the implementation
in K-1 classrooms and through which we characterized young learners’ models on
measurement.

Models-and-Modeling Perspective

The first fundamental question to be re-examined in light of primary grades’ appli-
cations of the modeling perspective concerns the nature of models and modeling.
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Building upon work by Lesh and colleagues, we adopt the following definition of
the term “model”:

Models are conceptual systems (consisting of elements, relations, operations, and rules
governing interactions) that are expressed using external notation systems, and that are used
to construct, describe, or explain the behaviors of other system(s)—perhaps so that the other
system can be manipulated or predicted intelligently. (Lesh & Doerr, 2000, p. 10)

Proceeding from this notion of models, the models-and-modeling perspective
asserts that real-world problem-solving processes are iterative, involving multi-
ple cycles in which learners describe a problematic situation, express “draft” of
solution approaches, test these approaches, and then revise or refine their ways
of thinking (i.e., their models) (Lesh & Lehrer, 2003). Idea development in these
cycles occurs through conceptual reorganization along multiple continua such as
concrete-versus-abstract, simple-versus-complex, intuitive-versus-formal, situated-
versus-decontextualized, and specific-versus-general (Lesh & Doerr, 2003a; Lesh &
Lehrer, 2003; Lesh & Yoon, 2004). However, it is not the case that an idea that is
further toward the “right-hand side” of each of these continua is always more useful
than the one that is further to the “left-hand side.”

Models developed in this complex manner suggest both a challenge and an oppor-
tunity for research. On the one hand, it shows that the essence of idea development is
not captured in the final structure of learners’models, albeit understanding the growth
of these structures is a critical part of understanding their nature. Moreover, under
normal circumstances, it is not easy to identify the conceptual systems that are active
in learners’ thoughts and actions, as these models are often tacit (c.f. Borromeo Ferri
& Lesh, 2013). On the other hand, because model development involves expressing
iterative drafts of increasingly sophisticated ways of thinking, it may be possible
to design a learning environment in which these cycles produce “thought-revealing
artifacts” (Lesh et al., 2000), which can serve as a record of the idea development
process. Indeed, MEAs, as a genre of learning environments, were developed pre-
cisely for this purpose (Lesh, 2006; Lesh &Doerr, 2003b; Lesh &Harel, 2003; Lesh,
Cramer, Doerr, Post, & Zawojewski, 2003).

Early design research on MEAs has produced the following six design principles
that guidemuch current work in the field: (a)model-construction principle, (b) reality
or personal meaningfulness principle, (c) self-assessment principle, (d) construct-
documentation principle, (e) construct-shareability and reusability principle, and (f)
effective prototype principle (Lesh et al., 2000). These six principles are essential
for the design and implementation of MEAs, ensuring that learners will develop
mathematically significant, generalizable, transferable, and reusable models (Lesh
et al., 2000). Moreover, we used these principles as an analytical frame to design
an instructional cycle emphasizing particular instructional practices that support the
implementation of MEAs in kindergarten and first-grade classrooms.
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Modeling at Early Years

In the last decade, researchers have increasingly argued that modeling should start
in preschool and become a core component of mathematics learning at all lev-
els. As argued, this is possible because the modeling process does not necessarily
require high-level mathematics (Greer & Verschaffel, 2007; Greer, Verschaffel, &
Mukhopadhyay, 2007). Moreover, it is valuable because modeling activities have
potential to help children develop “the skills and concepts necessary to be a com-
petent user of mathematics” (Usiskin, 2007, p. 263) and support them in “using
mathematics as a powerful personal tool for the analysis of issues important in their
personal lives and in society” (Verschaffel, 2002, p. 76).

Like adults or upper elementary and secondary school students, K-2 students are
capable of developing models and revising them iteratively (Biembengut, 2007).
However, the traditional mathematics curriculum might mask this capability in pri-
mary school students by posing stereotypical problems which (a) do not include
more information than needed (in contrast with the overabundance of information in
real-life situations), (b) do not require decisions about what information is relevant
to solving the problem, and (c) admit only a single answer, as opposed to the range of
possible solutions that may be appropriate under different assumptions or conditions
(Biembengut, 2007; Verschaffel, de Corte, & Lasure, 1994).

Verschaffel et al. (1994) analyzed textbookword problems, showing that although
these exercises aimed to connect mathematical ideas with real-life situations, most
did not require real-world knowledge or skills beyond the procedural and computa-
tional level. Moreover, only a small percentage of students’ responses (17%) to such
problems reflected realistic considerations (Verschaffel et al., 1994). In other words,
students are often presented with artificial problems in schools and, not surpris-
ingly, often give “school answers” which involve using simple arithmetic techniques
and ending up with non-realistic answers. Greer et al. (2007) hypothesized that this
tendency of elementary students might be exacerbated by teachers’ instructional
decisions, specifically their selection of questions and their own perceptions of the
problems. Worse still, another research suggests that as children progress in school,
they tend increasingly to concentrate on mathematics that they have already learned,
opting to solve new problems with familiar mathematical rules and procedures rather
than taking on different and alternative perspectives involving interdisciplinary or
real-life knowledge (Biembengut, 2007).

On the other hand, there are also indications that changes in instruction can sup-
port changes in students’ problem-solving behaviors.Verschaffel and deCorte (1997)
investigated the influence of instructional practices and classroomcultures that valued
real-world and commonsense knowledge resources on students’ modeling behavior.
They compared a fifth-grade treatment classroom that encouraged authentic problem
solving with a pair of sixth-grade comparison classrooms working on stereotypical
word problems. Pre- to post-test results showed a substantial increase in students’ use
of realistic considerations in their solutions to word problems in the treatment class-
room. Such studies offer hope that introducing innovative problem-solving activities
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in early schooling could provide a point of leverage for changing children’s later
problem-solving readiness.

This chapter contributes to an emerging belief that modeling activities can be
effective contexts for both learning of and research with young children. Thus, we
present two story-based modeling activities and discuss possible instructional prac-
tices that support the implementation of them in early primary grades. With the help
of these rich contexts, we aimed to understand the characteristics of young learners’
models on length and area measurement.

Story-Based MEAs for Young Learners

Here, we present two of the seven story-based MEAs implemented in a first-grade
and two kindergarten classrooms during spring semesters of three consecutive years
by the same teacher. The implementation of each MEA took approximately one
week, sometimes occupying additional time depending on the group.

All three classrooms were from the same rural midwestern school, where over
fifty percent of the students qualify for free or reduced lunch. This school placed spe-
cial emphasis on developing writing skills and welcomedMEAs in part because they
asked students to document their thinking bywriting short letters to present their solu-
tions to the fictional characters, which has commonly been used inmodeling research
as a technique to ensure particularly two of the six design principles—construct-
documentation and construct-shareability and reusability (Doerr & Lesh, 2011; Lesh
et al., 2003).

Two story-based MEAs, The Proper Hop and Fussy Rug Bugs, were designed to
support the development of young learners’ models on measurement in two different
dimensions; namely, length—1-dimensional measurement and area—2-dimensional
measurement. In theseMEAs,measurement constructswere built on counting knowl-
edge and skills that students already possess, but in both cases, students needed to
use numbers in ways that go beyond mere counting. Moreover, the activities asked
students to operationally define concepts involvingmaximization (e.g., maximal area
estimates) and minimization (e.g., shortest paths).

The Proper Hop MEA

This MEA is based on a story called The Proper Hop from the book titled Mathe-
matics around us: Skills and applications; kindergarten (Lesh & Nibbelink, 1978).
It deals with a community of frogs in Sugar Swamp, including the main character,
Beauregard. In the story, when communicating about the locations of lily pads where
Beauregard’s friends live, he observes a problem that emerged because of differences
in the length of hops of different frogs. So, Beauregard attempts to establish a con-
structed conventional unit of linear measure that he calls a “proper hop.” Following
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Fig. 1 The Proper Hop MEA

this story, students were given a rectilinear lattice whose dots represent lily pads.
The distance between lattice-connected dots was the length of a proper hop; that is,
the frogs are not allowed to hop diagonally. As seen in Fig. 1, three points on the
lattice (i.e., one dotted-white, one solid-black, and one squared-gray) were marked
to indicate where Beauregard’s three best friends live that he likes to visit every day.

Beauregard’s central problem was to determine where he should build his house
so that the sum of the distances to his three friends would be the smallest. In this
MEA, students used numbers to represent and optimize distance measurements that
involve both direction and magnitude.

Fussy Rug Bugs MEA

This MEA is based on a story called Fussy Rug Bugs from Mathematics around
us: Skills and applications; kindergarten (Lesh & Nibbelink, 1978). In this MEA,
ten-footed rug bugs wish to establish their own town and need to determine the
arrangement of their rug-dwellings depending on the shape of the rug bugs. Following
the story, students were given post-it notes and a habitat area defined by a closed
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Fig. 2 Fussy Rug Bugs MEA

rectilinear or curvilinear region, as shown in Fig. 2. They were asked to find the
largest number of rug bugs that could fit completely inside the habitat. Fussy Rug
Bugs MEA provided an occasion to describe a quantity—the amount the floor space
in different shapes—using a non-conventional proxy for the area (square, triangle, or
circle post-it notes). The Fussy Rug Bugs’ requirements—that their dwellings should
(a) fit entirely inside the habitat, (b) fit together as closely as possible without gaps,
(c) but not overlap—prompted students to develop optimal strategies for “tiling” or
“packing” the habitat regions with rug shapes.

Data Collection Methods in K-1 Classrooms

As the teacher implemented these MEAs in our K-1 classrooms, we col-
lected data through regularly photographing students’ work, which was based
on Rieger’s systematic visual measurement, particularly used to understand
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social change: “Photography is well-suited to this process because of its capacity
to record a scene with far greater speed and completeness than could ever be accom-
plished by a human observer taking notes” (1996, p. 144). We took Rieger’s premise
relating to a social change and extended it further to a cognitive change because
photographic sequences of students’ work provided us with a rich data source to ana-
lyze their cognitive change. The photograph sequences showing students’ work on
The Proper Hop and Fussy Rug BugsMEAs were useful not only for us, researchers,
but also for the teacher to understand the model development of young kids who are
not fully capable of expressing their thinking clearly. The teacher also used these
photographs in her class web blogs to communicate with parents.

Hence, our data collection method, photo-documentation, is followed by coding
and analysing the changes in the visual content of the photos. Our analysis allowed
us to display an instructional cycle and strategies which influenced young learners’
model development and to articulate the characteristics of students’ models about
the measurement of length and area.

Instructional Cycle for the Implementation of MEAs
in Early Grades

The use of MEAs in K-1 classrooms required special attention to encourage model
development because young students needed careful scaffolding to develop a model
as a solution to the problemsof the characters in thesemathematically rich stories.Our
classroom implementations ofMEAs unfolded a three-phased instructional cycle: (a)
narrative introduction, (b) model development, and (c) model sharing.

In the narrative introduction phase, the teacher read the story to the whole class,
introduced the characters and the problem situation through cartoon-like animated
PowerPoint presentations to motivate students toward the problem, and asked sev-
eral short questions to activate their initial approaches. She engaged the group in
a whole-class role-playing activity where students re-enacted aspects of the story
to deepen their understating. In the model development phase, students worked in
groups of three using hands-on materials to express, test, and revise their think-
ing. During this period, they also wrote response letters involving their solutions
to the problems of the characters in the stories. Finally, in model sharing phase
, groups presented their solutions, using a karaoke microphone and standing in front
of the class. Figure 3 presents the three-phased instructional cycle for implementing
story-based MEAs in K-1 classrooms.

While the narrative introduction phase is important formotivating students to solve
the problems involving numbers and measurement, the model development phase
encompasses young learners’ engagement in mathematical thinking and logico-
mathematical actions, in Piagetian terms. The model sharing phase of the instruc-
tional cycle intended not only to encourage students to share their final products with
others but also to lead them to articulate and refine their models by making some
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Fig. 3 Three-phased
instructional cycles for
implementing MEAs to
young learners

of that process public and visible to others and contending with the approaches of
other groups. In that sense, this final phase of the instructional cycle is as important
as the first two phases for helping young learners’ developing models on numbers
representing length and area measurement.

Embedded within this three-phased instructional cycle, the following five instruc-
tional practices were employed by the teacher:

1. using fanciful stories as contexts of MEAs,
2. role-playing and using concrete manipulatives within supportive social interac-

tions,
3. capturing the model development of young learners by photograph sequences,
4. using parallel whole-class and small-group activities, and
5. creating a class weblog about students’ work on MEAs.

In the next section, we present how each of these practices facilitated young learners’
models-and-modeling processes.

Using Stories as Contexts of MEAs

We have identified the power of fanciful stories in The Proper Hop and Fussy Rug
Bugs MEAs in terms of supporting students in seeing the problem context as mean-
ingful. Also, the characters of those stories offered mathematically relevant perspec-
tives to the problem situations. The stories of our two MEAs had fairly “thin” plots;
their characters were vivid and idiosyncratic. Their foibles and drives corresponded
to mathematically significant aspects of the MEA worlds. Beauregard’s need for
imposing order, regularity, and equivalency was a useful perspective for defining
a system of standard measurement; and the rug bugs’ fear of gaps between their
dwellings made the notions of tiling, tessellation, packing, and the measurement
of an area more concrete for young learners. Furthermore, these characters at the
MEAs offered means of anchoring perspectives that could serve as prototypes for
future problem-solving.

We also found that MEAs’ narratives amplified the self-assessment of students by
providing the core information that they needed to develop their models. This core
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information was composed of the answers to the following three questions: (a) who
are the main characters in the story that have a problem?, (b) why (in the worldview
of the characters) a solution is needed for this problem? and (c) what would constitute
a solution?

Role-Playing and Using Concrete Manipulatives Within
Supportive Social Interactions

The careful use of physical activity and concrete manipulatives in supportive social
settings was consistent with the assertion that knowledge and abilities are orga-
nized not only around abstractions but also around personal experiences (Lesh,
English, Riggs et al., 2013; Lesh, Hamilton, & Kaput, 2007). As an example of
this, during the narrative introduction phase of The Proper Hop, students role-
played Beauregard and practiced moving according to “proper hops” on a large
mat. The student playing Beauregard carried a stuffed animal puppet frog and
experimented with paths between the red lily pad (at one corner of the mat) and
the yellow lily pad (at the opposite corner of the mat). Other students in the
class observed and helped: counting hops, reminding Beauregard of the rules of
proper hopping and, with the teacher’s support, building number sentences reflecting
Beauregard’s movement (e.g., 3 hops + 4 hops = 7 hops).

Physically acting out proper-hop movement rules supported students in thinking
about the constraints of length measurement (e.g., counting hops, not pads, and only
vertical and horizontal hops being allowed) and how they affected travel distances.
For instance, when the student wanted to hop diagonally, some observer students said
“She can’t go like that [diagonally]. She can only go this way [horizontal] or that way
[vertical].” The teacher further probed students’ thinking with the question “why is
not this hop [diagonal hop] a proper hop?” Most students responded that the story of
Beauregard said so. Students were then asked to compare the length of the horizontal,
vertical, and diagonal hops, which made students realize that the diagonal hop was
longer (i.e., they needed to widen their legs more in the diagonal hop). Thus, students
who both physically acted out the hops andwere in the observer role gained important
insights about the problem situation, particularly about mathematical aspects of the
actions (i.e., diagonal hops are not at the size of proper hops).

In addition, role-playing invited students to enter into the worldview of the char-
acters who needed their help. For example, physically acting out Beauregard’s hops
promoted empathic feelingswhich became a powerful resource for developing a solu-
tion which would meet the need of Beauregard. In contrary to the observations of
Greer et al. (2007), young learners’ solutions did not reflect the teacher’s perspective
in relation to the instructional goal; rather, they were sensible within the contexts of
the stories and meaningful for the characters. Further, both stories involved students
emotionally in finding a suitable home for characters. Adopting a caring-for attitude
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toward the characters supported children in maintaining a focus on the requirements
for satisfactory solutions.

Capturing Model Development of Young Learners
by Photograph Sequences

In modeling research, students are often asked to present their solutions by letters.
For students with more experience with writing letters to an unseen reader, this
approach provides a stimulus to document the rationale for their solution and for
their final draft of thinking (Chamberlin & Coxbill, 2012; Diefes-Dux et al., 2004;
Lesh, Amit, & Schorr, 1997). In implementing MEAs with young learners, we also
used letter-writing to encourage students to document their thinking. However, it is
not surprising that the younger learners did not have a stable understanding of the
genres of the letters in literacy or skills to express their thinking through writing.
To support the consolidation of the construct-documentation principle, the teacher
periodically captured the states of students’ work while they were working during
the model development phase of the instructional cycle.

These time-sequenced images captured the variety of different approaches used
by either the same or different groups of students over the course of the activity.
On the one hand, this was useful for the teacher to decide (a) whether she needed
another day for the model development phase and (b) which groups to call on to
share their work during model sharing phase. On the other hand, these photographs
offered us, as researchers, insights into the students’ model development and the
existence of modeling cycles. For instance, the image sequences discussed in a later
section allowed both the teacher and us to understand that the three local strategies
let to different global outcomes (i.e., the overall appearances of the tiling solutions).

Using Parallel Whole-Class and Small-Group Activities

As mentioned above, the narrative introduction phase of the instructional cycle was
supported by a whole-class role-playing activity, which then fed into a period of
small-groupworkwhere studentswere again supportedwith similar physicalmanipu-
latives and social structures. During themodel development phase, groupswere given
a lily padboard anda toy frog to enactBeauregard’s proper hopson a smaller scale bet-
ter suited for recording path lengths. They calculated proper-hop distances between
candidate locations for Beauregard’s house and the houses of three of his friends.
Using a toy frog similar to the puppet frog that bridged from the whole-class to the
small-group experience also helped students to focus on counting actions (i.e., hops)
instead of endpoints (i.e., lily pads). In this sense, we found that use of parallel activ-
ities and manipulatives contributed to the consolidation of the model-construction
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principle for K-1 students because when students started their small-group work,
they could immediately continue to explore and develop the mathematical insights
that they initiated in the whole-class activity.

Creating Class Weblog for MEAs

The last instructional practice was publishing student work, which the teacher cap-
tured in photograph sequences, in classes’ web blogs. Through these blogs, parents
were able to follow their children’s work, achieving two goals. First, this indicated to
the students that their modeling work was a significant mathematical activity to share
with their parents. Second, it promoted conversation at home between students and
their parents about the MEAs. Extending the modeling activity outside of the school
setting also produced a possibility of a conversation about other similar situations in
which mathematical constructs could apply. So, it encouraged students to think of
their models as constructs that have applicability outside of the classroom.While we
could not followhowoften this school-to-homeconnection occurred, it is a suggestive
area for future research design. Regarding these aspects, the teacher’s writing on the
class weblog consolidated the construct-documentation and construct-shareability
and reusability principles.

In the next section, we present our articulation of the characteristics of young
learners’ models on measurement, which would not be possible to elicit without the
aforementioned instructional cycle incorporating the five instructional practices.

Characteristics of Young Learners’ Models on Measurement

The two story-based MEAs allowed us to see that young learners could use numbers
in non-standard but mathematically interesting situations to describe locations (i.e.,
the coordinates of the lily pads), measure lengths or distances (i.e., numbers of proper
hops), and estimate areas (i.e., numbers of rugs or post-it notes). Their thinking built
upon basic counting strategies but went beyond merely counting concrete objects.

In The Proper Hop MEA, students described absolute and relative locations (i.e.,
hops), and distance measures involving horizontal and vertical components. In Fussy
Rug Bugs, they used numbers to evaluate tilings and estimate areas (see details in
Lesh, English, Sevis, & Riggs, 2013). As expected, their solutions were informal,
did not explicitly reference these mathematical constructs, and did not exhibit a
high degree of mathematical formalism. Their models were more situated in the
narrative problem setting and grounded in concrete, socially negotiated actions and
measurements. However, we observed that their models were personally meaningful
andmathematically significant.Moreover, as we explain below, students were able to
transfer “big ideas” developed in these MEAs to other situations experienced in their
daily lives and remember the story contexts and their solutions, even many weeks
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later. Thus, this study revealed three characteristics of young learners’ models: They
tended to be tacit and intuitive; situated and embodied; and social and collaborative.

Tacit and Intuitive Models

Adistinctive feature of story-basedMEAswas consistently providing the learners the
opportunity and means to express their thinking through physical actions. However,
therewere still insights and ideaswhich could not be fully captured by the teacher and
the researchers. Modeling research has, in fact, argued that all models are composed
of both implicit and explicit dimensions. Even in settingswhenmodels are expressed,
tested and revised several times to reach nth draft of it, they still retain implicit features
which were called “visible tips of icebergs” (Borromeo Ferri & Lesh, 2013, p. 59).
Borromeo Ferri and Lesh (2013) also argued that “implicit models are especially
important for younger children, or for older students who are at early stages in
the development of specific models, or for students who are functioning at lower
cognitive levels” (p. 60). Therefore, special attention was required both in the design
and in the implementation of MEAs in K-1 classrooms.

To support students in using their tacit knowledge resources to build toward more
explicit articulations of their ideas, theywere asked to share their reasoning in front of
thewhole class. Furthermore, the teacher usedverbal interaction techniques including
re-voicing and a patient use of wait time to enable groups to express their models.
Table 1 presents the transcript of one group’s presentation at the end of Fussy Rug
Bugs MEA and the photograph sequence of this presentation.

As seen in the transcript, this group primarily attended to the boundary of the habi-
tat space, focusing on the shape of the post-it rugs that are in commonwith features of
that contour, and that constrained their placement. In the course of their presentation,
and with the support of the teacher, their approach became more concrete and fully
articulated.

The students’ packing strategy involved filling the most constrained areas first.
Their habitat contour included two squared peninsulas that each accommodated a
post-it rug so that it touched the border on three of its sides. They filled these first,
reasoning that the rug shape was directly suggested by the space and that the two
peninsulas were “exactly the same”—both the same as each other and the same
as the post-it rug. The mathematical notion of congruence lies behind this initial
strategy. The group then proceeded to the next-most constrained setting, the corners
of the habitat. Here, their attention was drawn to the right angles of their habitat
as compared to the right angles of the square post-it notes. Relaxing the notion of
congruence and attending to this common right-angle property, they “easily” placed
rugs in the corners. As with congruence, the identification of right angles in the
contour and in the rug shape was intuitive and tacit; in other words, the formal notion
of a right angle was not explicitly referenced. Together, the first and second strategies
for filling the habitat involved attending to the boundary and moving from the most
constrained spaces to less-constrained spaces.
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Table 1 Students’ presentation of their work on Fussy Rug Bugs MEA

T (Teacher): How you guys decided what you did for your rug bugs town. What’d you do first?
G (Girl): We, um, put this one right there (see Fig. 4a) and that one (see Fig. 4b). We did the
corners first (see Fig. 4c) and then we didn’t know where to put, em, because we didn’t want to
overlap
T: Good idea. Let me see if I understand. Can you hold up your map? Your rug-bug town? They
said they did this part (see Fig. 4b) and this part first (see Fig. 4a). And I’m going to peel that off
so you can see what it looks like. See how it sticks out? They thought that one rug bug could stay
there, which is pretty smart
B: And that one was exactly the same as that one (see Fig. 4b)
T: Ok. So they’re the exact same …. Okay, good idea. And then you said you did the corners,
right? And what’d you do after you did those corners?
B: um then we did um. Then we did these ones (see Fig. 5)
T: These ones? How come? Why?
(B hands microphone to G)
G: Because, because these were um easy and those weren’t

T: Ok. Do you see any problems with your rug bug town? (G nods) Ok. Tell me what the
problems are
B: um there’s a, there’re lines right there (indicating open spaces in Fig. 6a); right there; right
there, and right there, and right there, and right there (see Fig. 6a, b)
T: and so what would happen to the rug bugs?
B: I know. They would fall off
T: They would fall off? What else?
B: They would hurt their back
T: Ok all right (G) wants to say something, so let him have a turn
G: Because, because if they … if one of, em, had to go to their friend’s house and they um, and
there wasn’t another one (indicating open space) they would um fall
T: They would fall, they would trip, they might land on their backs, and they would not be happy,
would they? Boys and girls, give them a round of applause
(class claps) (B indicates he wants to talk)
T: (to B) ok, you want to say something?
B: um … these um squares um. They couldn’t fit right there and right there
T: mm-hmm … Not big enough, is it? (B shakes head)

B: and, we used ten all
T: Oh, ten in all …
B: 1 … 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (see Fig. 7).
T: Wow. How many did you guys think you were going to need, for this?
B: thirteen
G: thirty
B: thirty (laughing)
T: Thirty. But you really only used how many?
B: Ten
T: Wow, which is more, ten or thirty?
B: Thirty
T: That’s right. Ok, give ‘em a round of applause …
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(a) (b) (c)

Fig. 4 a Squared peninsula #1 considered in the model. b Squared peninsula #2 considered in the
model. c Corners considered in the model

Fig. 5 Lining up with one
side of the rugs

(a) (b)

Fig. 6 a Spot 1 indicating a limitation in students’ model. b Spot 2 indicating a limitation in
students’ model

Fig. 7 Number of rugs in
the model

They completed their tiling of the space by juxtaposing new rugs to rugs that had
already been placed. Here, they might have been guided by the characters’ story; the
rug bugs’ desire for neighbors whose dwellings line up perfectly with one side of
their own rug. The result was that their packing strategy built from the boundary and
toward the middle of the habitat, leaving gaps in the center. While they recognized
that there were shortcomings in their solution, within the model that they developed,
it was a reasonable one. As seen in the above exchange between students and the



Kindergarteners’ and First-Graders’ Development of Numbers … 129

teacher, features of the narrative (e.g., bugs’ hurting themselves when there are gaps
or overlaps between rugs) contributed substantially to ongoing model development,
supported students in externalizing aspects of their implicit models, and encountered
the inner logic behind alternative perspectives.

Other groups developed models that attended less exclusively to the boundary
of the habitat. As seen in Fig. 8a, one group started with filling the central region
without holes and then expanding it by adding layers around it, while another group
started by filling one side of the boundary and then adding rows below (see Fig. 8b).

The third group also startedwith the boundary, but not just one side; rather theyfirst
made one row along with the boundary and then added rows below it (see Fig. 8c).
These strategies were partly triggered by the teacher, who gave different groups
differently shaped habitat contours to work with. To better understand the differences
between models of the two groups which started from the boundary (Fig. 8b, c), we
analyzed the image sequences. The group in Fig. 8c started by placing post-it notes
around the inside perimeter, attending primarily to the alignment between the outer
borders of their “rugs” and the boundary line. They then made the second and third
rows below the upper boundary row to reach a packing of the whole area. In contrast,
the group in Fig. 8b attended more closely to pairs of constraining boundaries. Thus,
in placing rugs to fill the top row from left to right, they negotiated a tight fit not
only with the habitat boundary but also the last-placed rug. This approach supported
them in tiling the available area from top to bottom. Hence, the two local strategies
attending in a different way to boundary constraints led to different global outcomes
(i.e., the overall appearances of the tiling solutions).

Situated and Embodied Models

The students’ models were also highly situated with respect to the narratives. Engag-
ingwith the problemswas supported by thewhole-class introductory activities,where
students not only listened to the story and discussed but also enacted aspects of the

(a) (b) (c) 

Fig. 8 a Work of the group starting with central region. b Work of the group starting with one side
of the boundary. c Work of the group starting with along the boundary
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core problem situation. Students’ identification and empathy with the characters of
the MEA were fostered by the embodied and performative (i.e., theatrical) nature of
these role-playing activities.

The modeling literature suggests implementing model-extension activities fol-
lowing the MEAs in order to provide students with the opportunities of testing their
models outside of a specific real-world context, often using dynamic mathemat-
ics software (Doerr & Lesh, 2011; Lesh, 2010; Lesh, Carmona, & Moore, 2009).
Such activities contribute to the educational goal of supporting students in construct-
ing generalizable and reusable models. In our case with young learners, we saw
instances in which the situated nature of their models actually contributed to the
“re-shareability” and reusability of these models. Indeed, some students in the class
showed evidence of believing that their ways of thinking could be useful in under-
standing situations beyond the classroom. For instance, the teacher reported that
three weeks after The Proper Hop activity, one student made the comment that her
apartment complex was like Sugar Swamp, with a lot of lily pads. Her mother had
told her that she could not go on her own to visit a friend who lived in an apartment
on the other side of the complex. The student interpreted this in terms of proper hops:
Crossing the complex would be like Beauregard having to take twenty hops or more!
This student also reflected that she would like to be able to choose the location of
her home, as Beauregard had done so that her friends’ apartments would be within
reach.

Adapting solutions to new situations requires students to decenter their own ways
of thinking. From a psychology perspective, Piaget (1962) described this process as
“shifting one’s focus and comparing one action with other possible ones, particularly
with the actions of other people, leads to an awareness of ‘how’ and to true operations”
(p. 13). In the above example, the student shifted from the story context to a real-life
situation, from the locations of lily pads to the locations of apartments, and from
the concept of optimizing sums of proper-hop path lengths to ideas about distances
between next-door and across-the-complex neighbors. Hence, we found this example
promising for the reusability of the situated and embodied models of young learners.

Social and Collaborative Models

Our analysis revealed features of kindergarteners’ and first-graders’ social and col-
laborative ways of knowing. In itself, this was not a surprise: We would claim that
all knowledge is irreducibly social. What was noteworthy was when and how young
learners in these MEAs drew upon social resources.

In modeling research, small-group work has always been suggested to allow
problem-solvers to negotiate and combine their ideas (Lesh & Fennewald, 2010;
Lesh & Yoon, 2004, 2007). As Piaget articulated with an educational psychology
perspective, “… peer interaction can be a fruitful means of stimulating natural cogni-
tive conflicts that can generate accommodation to the views of others and evaluation
of one’s own concepts” (Wadsworth, 1971, p. 128). In our case, students’ interactions
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with the teacher and their peers significantly contributed to them placing measure-
ment units within the constraints of the measurement process and counting the hops
and rugs to find the measure of the length and area. In this sense, the social and
collaborative nature of the models revealed the important role of social interaction
on young learners’ conceptual development of measurement, which, in fact, is not
easy to achieve for K-1 students.

Given the limitation of communication and collaboration skills of the young learn-
ers, the teacher was encouraged to take a hands-off approach and focus on observing
the patterns of idea development. This was because teacher intervention could col-
lapse the diversity of thinking of the groups and promote a return to “school answers.”
Therefore, in our case, the teacher took an active role in tapping into the social
resources of the classroom as a whole to increase the diversity of ways of thinking
to which her students were exposed. When the teacher called for different groups
to share their ways of thinking, she made collaborative models developed within
small groups accessible by other groups and so made the diversity of approaches vis-
ible. Hence, we articulate that the social and collaborative nature of young learners’
models were the result of the leverage created by the teacher’s practices. And this
leverage was referred by Piaget as “the potential effect of the ‘right’ experience at the
‘right’ time” (Wadsworth, 1971, p. 118) on the cognitive development of a child. In
our case, the teacher’s practices created a potential cognitive conflict and triggered
accommodation(s) in the children’s measurement schemes, which were developed
collaboratively.

Conclusions

In this chapter, we considered kindergarten and first-grade implementations of two
story-based MEAs dealing with measurement. Our goal was to present a sample
instructional cycle that supported the implementation of two MEAs in kindergarten
and first-grade classrooms and characterize young learners’ models onmeasurement.
The conclusions that we drew from this case focus on (a) educational implications,
(b) conceptual understanding of measurement, and (c) implications for educational
psychology.

Concerning Educational Implications

The implementations of two story-based MEAs that we presented in this
chapter were supported by a three-phased instructional cycle. During the instruc-
tional phases, the teacher employed five instructional practices that offered
(a) pedagogical support—facilitating the implementation of MEAs in K-1 class-
rooms, (b) affective support—encouraging young learners’ model development, (c)
cognitive support—helping students in constructing, testing, and revising their mod-
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els, and (d) theoretical support—contributing to the consolidation of six principles
of MEAs for young learners.

These instructional practices within the instructional cycle were the main
resources for the model development and elaboration in early primary grades, which
also supports the claim of Verschaffel and de Corte (1997) about the role of instruc-
tional strategies on children’s problem-solving behaviors. In this regard, this study
illustrates that the support of instructional practices should not be underestimated by
researchers during the design of MEAs for young learners and by teachers during
the implementation of the MEAs in K-1 classrooms. We claim that teachers have a
distinct role in scaffolding students’ modeling processes either by design decisions
(e.g., distributing different habitats in the Fussy Rug Bugs MEA) or by facilitation
choices during the whole-class discussion. Indeed, during the model sharing phase,
she enabled the class as a whole to engage with this diversity productively. Although
sharing sessions gave groups occasions to develop and clarify their models, occasion-
ally, insights appeared in those sessions that could not be fully processed “on the fly.”
For example, in the transcript in Table 1, studentsmentioned that therewere problems
with their solutions owing to the spaces between post-it rugs. Because of these gaps,
the rug bugs would “fall off” and could “hurt their backs.” While the “boundary-
focused” approach that this group followed did not immediately suggest a remedy for
this problem, other groups who pursued “interior-focused” approaches might have
been used to suggest productive ways of improving the presented solution. However,
managing these opportunities for cross-fertilization of ideas is a formidable teacher
facilitation challenge.

Concerning Conceptual Understanding of Measurement

In this chapter, we exemplified that early primary learners were capable of devel-
oping models on their own, with the teacher’s effective scaffolds, which is similar
to other research investigating children’s modeling behaviors (e.g., English, 2010;
Lesh, English, Sevis, et al., 2013). Furthermore, our case investigation revealed three
features of kindergarten and first-grade students’ models: tacit and intuitive; situated
and embodied; and social and collaborative. Even though tacit, intuitive, and situated
models might be seen as low-level cognitive constructs, they provided rich informa-
tion about young learners’ mathematical thinking which is not easy to understand in
other ways.

In The Proper Hop and Fussy Rug Bugs MEAs, young learners iterated the equal
units (i.e., proper hops and rug shapes) and counted the number of iterated units that
covered the distance and the space to be measured. Therefore, they could recognize
numbers as representations of length and area even though they do not formally
name these concepts mathematically. Instead, they contextually labeled them as the
number of lily pads on the path of which Beauregard Frog traveled to visit his friends
and the largest number of rugs that could be placed to build a town for rug bugs.
For those scholars who may not interpret these constructions as the development
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of knowledge of length and area measurement, we remind readers about Piaget and
his colleagues’ work investigating a child’s understanding of measurement. Piaget,
Inhelder, and Szeminska (1960) describedmeasurement as “transferring a succession
of changes of position” (p. 121) where a subdivision was not needed and where
footsteps or fingers could be used for successive placement. In our K-1 level story-
based MEAs, this applied as the successive placement of proper hops along the
distance between lily pads and rug shapes without gaps and overlaps to cover the
town of rug bugs. Although young learners’ measurement of length and area were
based on their conceptions of numbers and counting skills, their models convinced
us that they understood the need of an invariant measurement unit (i.e., proper hop)
and the need for iteration without gaps and overlaps in order to measure.

Concerning Educational Psychology Implications

As mentioned earlier, one of the characteristics of young learners’ models is that
they are tacit and intuitive, but this should not lead us to underestimate the power
of these students’ models. The level of consciousness or awareness does not always
occur immediately as students engage in activities: “In fact, it is a very general
psychological law that the child can do something in action long before he really
becomes ‘aware’ of what is involved—‘awareness’ occurs long after the action”
(Gruber & Vonèche, 1977, p. 731). Although students’ models were still rooted in
their intuitions at the model sharing phase; expressing their reasoning for others
helped students become aware of their actions.

Another characteristic of the young learners’ models was situatedness. The story-
basedMEAs being simple, but not simplistic, allowed students to easily comprehend
the problem, start developing a way of thinking about the solution, and easily “pack-
age” the situation and the solution method to reuse in similar situations. Fussy Rug
BugsMEA could be packed into “placing rugs as close as possible” while The Proper
Hop MEA could be packed into “finding the shortest distance with proper hops.” As
modeling researchers, we know that weeks or evenmonths after learners engage with
an MEA, they often find themselves using that experience as a lens for looking at
new problems that exhibit similar mathematical structures (Lesh et al., 2000; Lesh,
English, Riggs et al., 2013). This is the essence of what it means for an activity to
serve as a prototype.

Both the simplicity of story-based MEAs and the characters in the narratives
offered a means to anchor perspectives that could serve as prototypes for future
problem-solving. More specifically, a young learner who has made the connection
between her apartment complex and Beauregard’s sugar swamps could productively
approach many new situations by asking, “What would Beauregard do here?” or
“What would the rug bugs think about this?” Although there may have been only
one student who could see the similarity between locations of lily pads and apartment
complexes, and who could extend her model to finding the location for her house to
be closest to her best friends that she wanted to visit frequently, it exemplified that
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even young learners have the potential to develop decontextualized models given
enough appropriate experiences.

We claim that this potential is the result of three types of experiences that the
young learners had as they worked on two story-based MEAs: physical experience
(Piaget, 1970), logico-mathematical experience (Piaget, 1970), and social experience
(Vygotsky, 1934/1986). Students acted in situations and coordinated their actions
by counting the hops and rugs and by publicizing their actions as they interacted
with the whole class and the teacher. With the help of these experiences and the
narratives, students had prototypical experiences, which they could become aware of
and potentially recall weeks later.We suggest thatmathematics education researchers
capitalize on cognitive psychology and the psychology of mathematics education
because these psychological aspects of concept development are rich sources for a
better understanding of cognitive development and the evolution of mathematical
ideas in the child’s mind (Fischbein, 1999).

Concluding Remarks

Being reminded of Bruner’s famous claim that “any subject can be taught effectively
in some intellectually honest form to any child at any stage of development” (1960,
p. 33), we presented in this chapter that young learners can develop powerful models
of length and area measurement. These models were initiated by their intuitions, sit-
uated in the story narrative, developed collaboratively, and expressed socially. This
chapter also contributes to the modeling literature by articulating the cognitive and
psychological characteristics of young learners’ models and by presenting the con-
ditions under which these models occur (i.e., three-phased instructional cycle and
supporting instructional practices).Well, why is it useful to understand the character-
istics of young learners’ models and the instructional practices mediating the model
development of K-1 students? With the current results in mind, our response to this
question is that we may design better interactions for young learners to increase their
potential conceptual development. As such, we may prepare children for the world
in the twenty-first century that “is increasingly governed by complex systems that
are dynamic, self-organizing, and continually adapting” (English, 2007, p. 121) and
that requires individuals to make legitimate decisions in organizing their lives and
developing different approaches to complex real-life problems.

Acknowledgements We would like to thank Chanda Riggs, the teacher of K-1 students, and
Emeritus Professor Richard Lesh for their contributions to this research.



Kindergarteners’ and First-Graders’ Development of Numbers … 135

References

Biembengut, M. S. (2007). Modelling and applications in primary education. In W. Blum, P. L.
Galbraith, H. -W. Henn, & M. Niss (Eds.), The 14th ICMI study: Modelling and applications in
mathematics education (pp. 451–456). New York, NY: Springer.

Borromeo Ferri, R., & Lesh, R. (2013). Should interpretation systems be considered to be models
if they only function implicitly? In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.),
Teachingmathematicalmodelling:Connecting to research and practice (pp. 57–66).Netherlands:
Springer.

Bruner, J. S. (1960). The process of education. Cambridge, MA: Harvard University Press.
Chamberlin, S. A., &Coxbill, E. (2012).Usingmodel-eliciting activities to introduce upper elemen-
tary students to statistical reasoning and mathematical modelling. Retrieved from http://www.
uwyo.edu/wisdome/_files/documents/chamberlin_coxbill.pdf.

Diefes-Dux, H., Follman, D., Imbrie, P. K., Zawojewski, J., Capobianco, B., & Hjalmarson, M.
(2004, June).Model eliciting activities:An in-class approach to improving interest and persistence
ofwomen in engineering. InProceedings of the 2004American Society forEngineeringEducating
Annual Conference & Exposition, Salt Lake City, UT.

Doerr, H. M., & Lesh, R. (2011). Trends in teaching and learning of mathematical modelling.
In G. Kaiser, W. Blum, R. B. Ferri, & G. Stillman (Eds.), Trends in teaching and learning of
mathematical modelling, international perspectives on the teaching and learning ofmathematical
modelling (pp. 247–268). Dordrecht: Springer.

English, L. (2007). Cognitive psychology and mathematics education: Reflections on the past and
the future (monograph 2). In The Montana mathematics enthusiast (pp. 119–126).

English, L. D. (2010).Modelingwith complex data in the primary school. In R. Lesh, P. L. Galbraith,
C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies
(pp. 287–299). New York, NY: Springer.

Fischbein,E. (1999). Psychology andmathematics education.Mathematical ThinkingandLearning,
1(1), 47–58. https://doi.org/10.1207/s15327833mtl0101_2.

Greer, B., & Verschaffel, L. (2007). Modelling competencies—Overview. In W. Blum, P. L. Gal-
braith, H. -W. Henn, & M. Niss (Eds.), The 14th ICMI study: Modelling and applications in
mathematics education (pp. 219–224). New York, NY: Springer.

Greer, B., Verschaffel, L., & Mukhopadhyay, S. (2007). Modelling for life: Mathematics and
children’s experience. In W. Blum, P. L. Galbraith, H. -W. Henn, & M. Niss (Eds.), The 14th
ICMI study: Modelling and applications in mathematics education (pp. 89–98). New York, NY:
Springer.

Gruber, H. E., & Vonèche, J. J. (Eds.). (1977). The essential Piaget. New York: Basic Books.
Lehrer, R., & Kim, M. J. (2009). Structuring variability by negotiating its measure. Mathematics
Education Research Journal, 21(2), 116–133.

Lesh, R. (2006). New directions for research on mathematical problem solving. In P. Grootenboer,
R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures and learning spaces, Proceedings
of the 29th Annual Conference of the Mathematics Education Research Group of Australasia,
Canberra (Vol. 1, pp. 15–34). Adelaide: MERGA.

Lesh, R. (2010). Tools, researchable issues & conjectures for investigating what it means to under-
stand statistics (or other topics) meaningfully. Journal of Mathematical Modelling and Applica-
tion, 1(2), 16–49.

Lesh, R., & Doerr, H. M. (2000). Symbolizing, communicating, and mathematizing: Key compo-
nents of models and modeling. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and
communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional
design (pp. 361–384). Mahwah, NJ: Lawrence Erlbaum Associates.

Lesh, R., & Doerr, H. (2003a). In what ways does a models and modeling perspective move beyond
constructivism? In R. Lesh & H. Doerr (Eds.), Beyond constructivism: A models and modeling
perspective (pp. 519–556). Mahwah, NJ: Lawrence Erlbaum Associates.

http://www.uwyo.edu/wisdome/_files/documents/chamberlin_coxbill.pdf
https://doi.org/10.1207/s15327833mtl0101_2


136 S. Sevinc and C. Brady

Lesh, R., & Doerr, H. (2003b). Foundations of a models and modeling perspective on mathematics
teaching, learning, and problem solving. In R. Lesh & H. Doerr (Eds.), Beyond constructivism:
A models and modeling perspective (pp. 3–33). Mahwah, NJ: Lawrence Erlbaum Associates.

Lesh, R., & Fennewald, T. (2010). Introduction to part I modeling:What is it?Why do it? In R. Lesh,
P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling
competencies (ICTMA 13) (pp. 5–10). New York: Springer.

Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development.Math-
ematical Thinking and Learning, 5(2–3), 157–189.

Lesh, R., & Lehrer, R. (2003). Models and modeling perspectives on the development of students
and teachers.Mathematical Thinking and Learning, 5(2–3), 109–129.

Lesh, R. A., & Nibbelink,W. H. (1978).Mathematics around us: Kindergarten. Glenview, IL: Scott
Foresman & Co.

Lesh, R., & Yoon, C. (2004). Evolving communities of mind—In which development involves
several interacting and simultaneously developing strands.Mathematical Thinking and Learning,
6(2), 205–226.

Lesh, R., & Yoon, C. (2007). What is distinctive in (our views about) models & modelling perspec-
tives on mathematics problem solving, learning, and teaching? In W. Blum, P. L. Galbraith, H.
-W. Henn, & M. Niss (Eds.), The 14th ICMI Study (New ICMI Study Series: Vol. 10). Modelling
and applications in mathematics education (pp. 161–170). New York: Springer.

Lesh, R., Amit, M., & Schorr, R. (1997). Using “real-life” problems to prompt students to construct
conceptual models for statistical reasoning. In I. Gal & J. B. Garfield (Eds.), The assessment
challenge in statistics education (pp. 65–83). Amsterdam: IOS Press.

Lesh, R., Carmona, G., & Moore, T. (2009). Six sigma learning gains and long term retention of
understandings and attitudes related to models & modeling.Mediterranean Journal for Research
in Mathematics Education, 9(1), 19–54.

Lesh, R., Cramer, K., Doerr, H. M., Post, T., & Zawojewski, J. S. (2003). Model development
sequences. In R. Lesh & H. Doerr (Eds.), Beyond constructivism: A models and modeling per-
spective (pp. 35–58). Mahwah, NJ: Lawrence Erlbaum Associates.

Lesh, R., English, L., Riggs, C., & Sevis, S. (2013, January). Problem solving in the primary school
(K-2) (Special issue). The Mathematics Enthusiast, Special Issue: International Perspectives on
Problem Solving Research in Mathematics Education, 10 (1 & 2), 35–60.

Lesh, R., English, L., Sevis, S., & Riggs, C. (2013). Modeling as a means for making powerful
ideas accessible to children at an early age. In S. Hegedus & J. Roschelle (Eds.), The SimCalc
vision and contributions: Democratizing access to important mathematics (pp. 419–436). Berlin:
Springer.

Lesh, R., Hamilton, E., & Kaput, J. (Eds.). (2007). Foundations for the future in mathematics
education. Mahwah, NJ: Lawrence Erlbaum Associates.

Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-
revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.),Handbook of research
design in mathematics and science education (pp. 113–149). Mahwah, NJ: Lawrence Erlbaum
Associates.

Piaget, J. (1962). Supplement to L. Vygotsky, thought and language. Cambridge, MA: MIT Press.
Piaget, J. (1970). Genetic epistemology (E. Duckworth, Trans.). New York: W. W. Norton.
Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child’s conception of geometry. New York:
Basic Books.

Rieger, J. (1996). Photographing social change. Visual Sociology, 11(1), 5–49.
Usiskin, Z. (2007). The arithmetic operations as mathematical models. In W. Blum, P. L. Galbraith,
H. -W. Henn, &M. Niss (Eds.), The 14th ICMI study: Modelling and applications in mathematics
education (pp. 257–264). New York, NY: Springer.

Verschaffel, L. (2002). Taking the modeling perspective seriously at the elementary school level:
Promises and pitfalls (Plenary lecture). In A. Cockburn & E. Nardi (Eds.), Proceedings of the
26th Annual Conference of the International Group for the Psychology ofMathematics Education



Kindergarteners’ and First-Graders’ Development of Numbers … 137

(Vol. 1, pp. 64–82). UK: School of Education and Professional Development, University of East
Anglia.

Verschaffel, L., & de Corte, E. (1997). Teaching realistic mathematical modeling in the elementary
school: A teaching experimentwith fifth graders. Journal for Research inMathematics Education,
28(5), 577–601.

Verschaffel, L., deCorte, E.,&Lasure, S. (1994). Realistic considerations inmathematicalmodeling
of school arithmetic word problems. Learning and Instruction, 4(4), 273–294.

Vygotsky, L. S. (1934/1986). Thought and language (A. Kozulin, Trans. and Ed.). Cambridge, MA:
MIT Press.

Wadsworth, B. J. (1971). Piaget’s theory of cognitive development: An introduction for students of
psychology and education. New York: David McKay Company.

Serife Sevinc is Assistant Professor at Mathematics Teacher Education Program at Middle East
Technical University, Turkey. She received her doctoral degree in the Mathematics Education Pro-
gram at Indiana University, USA, with a minor degree in inquiry methodology. Her main research
focus is mathematics teacher education with a particular interest in models-and-modeling perspec-
tives. She investigates the problem-solving processes of a wide range of learners through modeling
perspectives and is involved in projects investigating the mathematical thinking of elementary and
middle school students and teachers. She believes that communication with and about mathemat-
ics with different learners is her main resource as a researcher and a teacher educator.

Corey Brady is an Assistant Professor of the Learning Sciences at Vanderbilt University. His
research focuses on mathematical and computational modeling, with a particular emphasis on sup-
porting and understanding the collective learning of classroom groups. Prior to entering Academia
he has worked in industry, leading the design and development of Texas Instruments’ TI-Navigator
system (2001–2006). He has also been a classroom teacher at the middle school, high school,
and community college levels. He holds degrees in Pure Mathematics (M.S.), English Literature
(M.A.), and Mathematics Education (Ph.D.).



Young Children’s Patterning
Competencies and Mathematical
Development: A Review

Nore Wijns, Joke Torbeyns, Bert De Smedt and Lieven Verschaffel

Introduction

The past twenty years have witnessed a strong growth in research on young chil-
dren’s early mathematical competencies. Although several reasons can be given for
the growing interest of researchers in this topic (Clements & Sarama, 2007; New &
Cochran, 2007), one major argument is the impact of these competencies on chil-
dren’s future academic achievement (Claessens & Engel, 2013; Nguyen et al., 2016).
In an attempt to assess the mathematical difficulties children encounter as early as
possible, various indicators of early mathematics-related competencies have been
proposed. These indicators include subitizing (Schleifer & Landerl, 2011), counting
(Geary, Bow-Thomas, & Yao, 1992), transcoding a number from one representa-
tion to another (Göbel, Watson, Lervåg, & Hulme, 2014), comparing numerical
magnitudes (De Smedt, Noël, Gilmore, & Ansari, 2013), and positioning numeri-
cal magnitudes on an empty number line (Siegler & Booth, 2004). More recently,
these ability-oriented measures have been complemented withmeasures that address
the dispositional side of children’s early numerical development, particularly chil-
dren’s spontaneous focusing on numerosities (SFON; Hannula-Sormunen, Lehtinen,
& Räsänen, 2015), their spontaneous focusing on number symbols (SFONS; Rathé,
Torbeyns, De Smedt, & Verschaffel, 2017), or, more generally, their spontaneous
attention to number (Baroody, Li, & Lai, 2008). Although both researchers and
educational practitioners acknowledge the importance of the aforementioned indica-
tors of children’s later mathematical development (Clements & Sarama, 2007; Frye
et al., 2014), they have been criticized because of their limited—and more partic-

N. Wijns (B) · J. Torbeyns · L. Verschaffel
Centre for Instructional Psychology and Technology, KU Leuven,
Dekenstraat 2, Postbox 3773, 3000 Leuven, Belgium
e-mail: nore.wijns@kuleuven.be

B. De Smedt
Parenting and Special Education Research Unit, KU Leuven, Leuven,
Belgium

© Springer Nature Switzerland AG 2019
K. M. Robinson et al. (eds.),Mathematical Learning and Cognition in Early Childhood,
https://doi.org/10.1007/978-3-030-12895-1_9

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12895-1_9&domain=pdf
mailto:nore.wijns@kuleuven.be
https://doi.org/10.1007/978-3-030-12895-1_9


140 N. Wijns et al.

ularly: too exclusively numerical—scope (Mulligan et al., 2018; Starkey, Klein, &
Wakeley, 2004; Verschaffel, Torbeyns, & De Smedt, 2017). As stated by Clements
and Sarama (2007), “(t)he mathematical world of young children is much richer”
(p. 537).

The aim of this review is to give an overview of the available literature concerning
one particular topic that has recently been proposed as an interesting complementary
avenue for further research in early mathematics, namely early patterning (Björklund
& Pramling, 2014; English &Mulligan, 2013; New&Cochran, 2007; Nguyen et al.,
2016; Rittle-Johnson, Fyfe,McLean,&McEldoon, 2013; Sarama&Clements, 2004;
VanDerHeyden et al., 2011; Verschaffel et al., 2017). Early patterning comprises var-
ious activities (e.g., copying, creating, extending) that children in preschool and the
first years of elementary school can do with any type of discernible regular arrange-
ment of objects in their environment (e.g., repeating patterns like ABABAB, growing
patterns like 1–3–5, spatial structure patterns like :::). The motivation for promoting
patterning activities from an early age onwards appears to be evident. First, pat-
terning activities seem feasible and appropriate for young children, given that many
of them spontaneously create patterns during free play (Fox, 2005; Piccolo & Test,
2010; Seo & Ginsburg, 2004) and that activities with patterns (mainly extending or
copying a repeating pattern) are already common in many preschool settings (Cross,
Woods, & Schweingruber, 2009; Economopoulos, 1998). Second, the critical value
of patterning for (school) mathematics has been acknowledged for decades. Already
in the late 1980s, Steen (1988) stated that “(m)athematics is the science of patterns”
(p. 616, see also Wittmann & Müller, 2007), and, as will be discussed below, older
studies have already empirically documented that early patterning competencies
contribute to children’s later mathematical development (Herman, 1973; Threlfall,
2005). Early childhood teachers are also increasingly convinced that patterning is
an important mathematical topic (Sarama, Clements, Starkey, Klein, & Wakeley,
2008; Waters, 2004). This conviction is reinforced by the creation of a patterns and
(pre)algebra strand as part of the early mathematics curriculum in a growing number
of countries (e.g., acara, 2015; OntarioMinistry of Education and Training (OMET),
2005). The name and content of this strand reveal a fourth rationale underlying the
importance attached to these patterning activities, namely their potential as a route to
algebra (English &Warren, 1998; Hargreaves, Shorrocks-Taylor, & Threlfall, 1998;
National Research Council, 2001; NCTM, 1989, 2000; Smutny, 1998; Taylor-Cox,
2003). Nevertheless, the question remains whether the patterning activities that are
nowadays common in preschool optimally exploit this potential.

In sum, current mathematics education research, policy, and practice suggest the
implementation of patterning in the early school years, but questions arise about how
these activities are currently implemented and enacted. In an attempt to enhance our
understanding of early mathematical development and to support early educational
practices, several researchers have, since the start of the twenty-first century, been
focusing on early patterning. This review summarizes and discusses the recent liter-
ature on patterning in children in the transition from preschool to formal schooling
by considering four questions: (1) How is patterning defined and operationalized in
the context of early mathematics education? (2) How does patterning develop in the
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early school years? (3) What is the relation between early mathematical patterning
and other competencies? (4) What is the impact of interventions aimed at the early
stimulation of patterning?

While the above introduction might suggest that the attention for patterning in
earlymathematics education is a recent trend, it should be acknowledged that research
on early patterning did not start this century. Several older studies have already
looked into the nature of patterning, its link with other cognitive variables, and its
development and stimulation in young children (see Orton, 1999, for a partial review
of this older literature). Because this older research receives little or no attention in the
current work on the topic, we will start by giving a short summary of the contribution
of this older research to each of our four questions. It is, however, important to keep in
mind that this summary is not intended to be exhaustive, but only serves to delineate
the historical background for the more recent literature.

A Short History of Research on Early Mathematical
Patterning Competencies

In older research, a pattern is often not explicitly defined, but if so, it is described
as the abstract representation (Sternberg & Larson, 1976) or the rule (Close &
Glennon, 1977) of an indefinite sequence. Most studies focus on repeating pat-
terns (e.g., ABABAB; Close & Glennon, 1977; Herman, 1973; Sternberg & Lar-
son, 1976; Threlfall, 2005), and some studies also consider growing patterns (e.g.,
ABAABAAAB; Mckillip, 1970a). Several tasks are used to operationalize pattern-
ing, with the most common ones being copying (i.e., “make the same pattern”),
interpolating (i.e., “fill in missing elements”), extending (i.e., “continue the given
pattern”), generalizing (i.e., “make the same pattern with these different materials”),
and identifying the pattern (i.e., “find the same pattern”) (see Table 1 for our catego-
rization of patterning tasks).

With respect to the development of patterning, it is difficult to draw conclusions
from this older work, as longitudinal studies with large groups of children are miss-
ing. Some indications for development can be found in cross-sectional studies with
repeating patterns, which showed that copying or describing a repeating pattern is
easier than extending or interpolating it (McKillip, 1970a, 1970b). Other authors
concluded that gaining insight into the unit of repeat (i.e., the smallest sequence of
elements that constitutes a pattern, also referred to as the repetend) is a crucial step
in children’s mathematical development (Economopoulos, 1998; Threlfall, 2005).

The relationship between patterning abilities and general mathematical develop-
ment was never explicitly assessed in the older literature, but an intervention study by
Herman (1973) suggested an association between early patterning and early numer-
ical abilities. During that intervention, kindergarteners had to copy, extend, or inter-
polate repeating patterns in a series of 24 lessons. At the end of the school year,
the children from the intervention group performed better on a standardized test that
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Table 1 A classification of pattern tasks

Name also referred to as (by) Instruction Example

Copy
Duplicate
(Clements & Sarama, 2014)
Level 1
(Rittle-Johnson et al., 2013)

Make the same pattern

Create Make a pattern using these
blocks

Extend
Level 2
(Rittle-Johnson et al., 2013)

What element comes next?

Generalize
Extra-variable transfer
(Close & Glennon, 1977)
Translate
(Lüken, 2016; Threlfall, 2005)
Abstract, Level 3
(Rittle-Johnson et al., 2013)

Make the same pattern using
different materials

Make

Using (several)

Identify the pattern unit
Level 4
(Rittle-Johnson et al., 2013)

Which is the smallest part of
the pattern that repeats?

Recognize
(Sternberg & Larson, 1976)

Which pattern is the same?

Interpolate
Extrapolate
(Lüken, 2016)
Fix
(Clements & Sarama, 2014)
Understand
(Kidd et al., 2013)

Which element is missing?

Recognize Where do you see a pattern?
Is this a pattern?

assessed number knowledge compared to those from a comparison group. Unfor-
tunately, children were not randomly allocated to the intervention or comparison
group, and there was no pretest to indicate whether both groups were comparable in
their performance before the intervention.

The impact of a patterning intervention was researched in the study by McKillip
(1970a), in which three- to five-year-olds performed a sequence of activities with
repeating and growing patterns that were assumed to increase in difficulty, starting
from free play, through copying and describing, to interpolating and extending. A
growth in patterning abilities was observed for three and four-year-olds during the
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implementation of that intervention, but unfortunately the effect could not be properly
assessed as there was no control group.

Besides the methodological queries mentioned above, the design of the inter-
vention studies by Herman (1973) and McKillip (1970a) did not allow them to
determine whether the interventions actually stimulated any insight into the unit of
repeat, which was increasingly being considered to be the quintessence of patterning
skill. According to Threlfall (2005), perceiving the unit of repeat may occur nat-
urally, but most often it must be explicitly taught. He proposed several patterning
activities to teach this awareness, such as explicitly defining the unit of repeat or
generalizing a given pattern toward other materials (which he calls translating, see
Table 1). Remarkably, Close and Glennon (1977) found their generalization (which
they termed extra-variable transfer) and pattern identification tasks to be easier than
interpolation and extension. According to these authors, establishing a superficial
one-to-one correspondence strategy between the model pattern and the pattern to be
generalized or identified might be sufficient to complete a generalization or identi-
fication task, while a child must recognize the relation among the elements of the
pattern to some level for interpolation and extension.

Recent Research on Early Mathematical Patterning
Competencies

Definition and Operationalization

Although the word “pattern” is often used in daily interactions, defining a pattern
is not as easy as it might seem. There are two key features, namely regularity (or
order) andpredictability, that are explicitly present inmost current definitions (Lüken,
2010; Mulligan &Mitchelmore, 2009; Rittle-Johnson et al., 2013), and that can also
be found in older research (Close & Glennon, 1977; Sternberg & Larson, 1976),
albeit in more implicit terms. Furthermore, several contemporary researchers make
a distinction between a pattern, which refers to the sequence itself, and its structure,
which refers to the organization of or rule behind the pattern (Lüken, 2012; Mulligan
& Mitchelmore, 2009). They also differentiate between different types of patterns.
The most common are repeating patterns, growing patterns, and spatial structure
patterns (Papic & Mulligan, 2007). A repeating pattern contains a constant “unit
of repeat” that reoccurs indefinitely (e.g., ABABAB, ABCABCABC), whereas a
growing pattern increases or decreases systematically (e.g., ABAABAAAB, 1–3–5).
Spatial structure patterns are invariant and describe the organization of individual
elements in a two- or three-dimensional space (e.g., :::, , Papic &Mulligan, 2007).

In order to conceptualize patterning, Mulligan and associates introduced the con-
struct “Awareness of Mathematical Pattern and Structure” (AMPS; Mulligan &
Mitchelmore, 2009), which is assumed to comprise two components: a cognitive
one (i.e., knowledge of structure) and a metacognitive one (i.e., tendency to search
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for patterns and analyze them). So, their conceptualization ofAMPS seems to involve
both an ability and a dispositional component. Lüken proposed the concept “Early
Structure Sense” to refer to a collection of abilities “to easily and flexibly operate
with mathematical pattern and structure” (2012, p. 263). Kidd and colleagues prefer
the term “sequencing” over patterning and defined it as the “ability to understand
abstract relationships” (2013, p. 255). Not surprisingly, these different definitions
and interpretations of patterning have led to different ways of measuring patterning
competencies.

To measure AMPS, Mulligan and Mitchelmore (2009) constructed the Pattern
AndStructureAssessment (PASA), an instrument consisting of several tasks inwhich
children have to identify, visualize, represent, or replicate elements of pattern and
structure (i.e., repeating, growing, and spatial structure patterns, but also multiplica-
tive structures, measurement units, and data representation). For each task, a child’s
answer is categorized into five levels: pre-structural stage, emergent stage, partial
structural stage, stage of structural development, and advanced stage of structural
development. Different versions of the PASA exist for children in the foundational
years (five-year-olds), first grade, and second grade. Later, a similar instrument was
developed to measure patterning in four-year-olds: the Early Mathematical Pattern-
ing Assessment (EMPA; Papic, Mulligan, & Mitchelmore, 2011) consisting of sev-
eral diagnostic tasks in which children have to copy, extend, create, interpolate, and
represent repeating, spatial, and growing patterns.

To measure early structure sense, Lüken (2010, 2012) created an instrument con-
sisting of six task categories inwhich children have to conceive, reproduce, copy from
memory, use, extend, and create repeating and spatial structure patterns presented in
a visual, audio, or tactile mode. While the repeating patterns (e.g., a ten chain with
five red and five blue beads) in this study were rather unusual, Lüken (2016) focused
in a more recent study only on the more common repeating patterns (i.e., AB, ABC,
AAB patterns) presented visually. In one-on-one interviews, children had to copy,
extend, interpolate (in her terminology: extrapolate), and generalize (in her termi-
nology: translate) repeating patterns. Similarly, Rittle-Johnson and associates (2013)
created a construct map with four levels, namely (1) copy (or duplicate), (2) extend,
(3) generalize (or abstract), and (4) unit recognition, which formed the foundation
for their repeating pattern assessment tasks.

For Kidd and colleagues (2013, 2014), the current focus of early patterning
research on simple repeating alternations of the type AB or AAB does not cover
the full potential of these young children. To properly assess first graders’ patterning
skills, they used an interpolation task presented in a multiple choice format with four
options in which children were confronted not only with repeating patterns but also
with other patterns, which the authors consider to be more complex. The patterns
consisted of letters, numbers, clock faces, shapes, or objects and had increasing or
decreasing value, rotated, repeated, or were symmetrical.

From the overview above, it is clear that patterning comprises a broad range of
competencies that can be measured with several patterning tasks and types of pat-
terns. Throughout the years, a relatively consistent classification of different types
of patterning tasks has been distinguished, although the terms for these types may
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vary by author (see Table 1). The most common tasks are copying (i.e., making the
same pattern), extending (i.e., finding the next element), interpolating (i.e., finding
the missing element), and generalizing (i.e., making the same pattern with different
materials) (e.g., Lüken, 2016; Rittle-Johnson et al., 2013). In addition, several new
theoretical concepts covering a broader interpretation of patterns and structures (e.g.,
AMPS, early structure sense) have been introduced, together with new instruments
(e.g., PASA, EMPA). Quite often these instruments contain similar tasks (e.g., the
interpolation task in Kidd et al., 2013; extending spatial structure patterns in Mul-
ligan, Mitchelmore, & Stephanou, 2015), but new tasks have also been introduced
(e.g., structuring counters in Lüken, 2012).

Moreover, the studies reviewed above have used diverse types of patterns, with
repeating patterns, growing patterns, and spatial structure patterns being the most
common ones. Most researchers have focused on repeating patterns. The need for
more integrated research, in which multiple tasks with different types of patterns are
compared across ages, has already been urged byClements and Sarama (2014, 2009).
Making a valid comparison between types of patterns is difficult, however, because
implementing different types of patterns in the same task can yield pattern-specific
differences that are difficult to control.

A final issue is the almost exclusive focus on the ability side of patterning compe-
tence, thereby largely neglecting its dispositional aspects. With the term disposition,
we refer to children’s spontaneous attention to or feeling for mathematical patterns
and structures (Mulligan et al., 2018;Verschaffel et al., 2017).As stated above, during
the past decade, researchers have started to explore children’s spontaneous tendencies
to focus on mathematical elements such as numerosities, number symbols, or quan-
titative relations (e.g., Hannula & Lehtinen, 2005). Importantly, these spontaneous
tendencies are not aboutwhat children think and dowhen they are guided to themath-
ematical elements or relations in the situation by a researcher, teacher, or parent, but
rather they refer to what they spontaneously focus on in informal everyday situations.
Several researchers have recently made a plea for systematically investigating young
children’s spontaneous focusing on mathematical patterns and structures in particu-
lar (e.g., Sarama & Clements, 2009; Verschaffel et al., 2017). A few observational
studies have documented children’s spontaneous engagement in patterning activities
(Fox, 2005; Garrick, Threlfall, & Orton, 2005), including children from disadvan-
taged backgrounds (Seo & Ginsburg, 2004). Several decades ago, Mckillip (1970b)
already suggested that children exhibiting spontaneous engagement in patterning
activities might have more advanced patterning abilities than children with no such
spontaneous interest in patterns, simply because such a spontaneous engagement will
create more opportunities for “deliberate practice” (Lehtinen, Hannula-Sormunen,
McMullen, & Gruber, 2017). One could argue that the metacognitive component of
Mulligan and Mitchelmore’s AMPS construct, which they describe as “a tendency
to seek and analyze patterns” (Mulligan & Mitchelmore, 2009, p. 38), somehow
coincides with the notion of spontaneous focus on patterns. However, in their actual
research, the cognitive and metacognitive components of patterning are conceived
as one single construct that can be measured by the same assessment tool wherein
the instructions and tasks clearly guide the children toward patterning. Therefore, it
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is very hard to disentangle the nature and development of the dispositional side of
patterning on the basis of their research.

Development

In line with the older literature summarized in the introduction, more recent research
on the development of early patterning has mainly considered repeating patterns. In
an exploratory longitudinal study, Lüken (2016) found repeating patterning abilities
to growbetween the ages of three and four inGermankindergarteners. Three-year-old
children were not able to copy, interpolate, or extend a simple AB pattern. However,
one year later, most four-year-olds were able to do so not only with AB, but also with
ABC and AAB patterns. The generalizing task (termed by Lüken as translating) was
only completed by four-year-olds and appeared to be the most difficult task for them.

Rittle-Johnson and colleagues (2015, Study 1, 2013) observed a growth in repeat-
ing patterning abilities of four-year-old preschoolers. In the fall, most four-year-olds
were capable of duplicating and extending patterns, whereas almost one-third of
them could also generalize a pattern. Only a few children were able to identify the
unit of repeat (e.g., “What is the smallest tower you could make and still keep the
same pattern as this?”, Rittle-Johnson et al., 2013, p. 382). A growth in duplicating,
extending, and generalizing was observed between fall and spring scores, whereas
there was no improvement yet in pattern unit recognition. A decrease in the types of
errors that did not involve patterns was seen between fall and spring.

The results of these studies (Lüken, 2016; Rittle-Johnson et al., 2015, Study 1,
2013) are in line with the developmental progression that Clements and Sarama
(2014) propose in their learning trajectory for Pattern and Structure. According
to this trajectory, which is mainly based on their studies for the Building Blocks
program (Sarama & Clements, 2004) and the TRIAD project (Sarama et al., 2008),
three-year-olds are able to recognize a simple pattern, whereas four-year-olds can
interpolate (referred to as fix), copy (referred to as duplicate), and extend repeating
patterns (first AB patterns, later other repeating patterns like ABB patterns). Six-
year-olds are assumed to recognize a pattern unit (i.e., identify the unit of repeat and
generalize), and seven-year-olds should be able to work with growing patterns and
describe these patterns numerically. Although this learning trajectory appears to be a
useful tool for early childhood educators, the authors acknowledged their main focus
on repeating patterns and suggested more research is needed to extend this limited
interpretation of patterns and structures (Sarama & Clements, 2009). Moreover, the
empirical background of this (hypothetical) learning trajectory remains somewhat
obscure.

Within the context of development, one important element is the difficulty level
of a pattern item, which is assumed to mainly—but not exclusively—depend on two
aspects: the nature of the pattern (e.g., repeating, growing) and the type of patterning
task being used (e.g., copying, extending, interpolating). Concerning the nature of
the pattern, the five-year olds in the study of Skoumpourdi (2013) were better in



Young Children’s Patterning Competencies … 147

extendingor copying a repeatingpattern, than extending agrowingpattern.To thebest
of our knowledge, noother,more systematic, comparisonbetween the difficulty levels
of different types of patterns has been made for kindergartners. Studies in primary
school children have shown that activities with growing patterns were considerably
more difficult than similar activities with repeating patterns (Banerji & Ferron, 1998;
Gadzichowski, 2012b; Kyriakides &Gagatsis, 2003). It is, however, unclear whether
these researchers controlled for possible pattern-specific differences within a task.
Concerning the repeating patterns, a rational analysis suggests that themore elements
and the more different elements constitute a pattern unit, the more difficult it is to
fulfill a task (Simon, 1972). So, an AB pattern appears to be the easiest repeating
pattern and an AAB pattern is easier than an AABB pattern or an ABC pattern
(Close & Glennon, 1977). No research so far has looked into a similar progression
in difficulty level for growing or other types of patterns.

There is also a progression in difficulty level between patterning tasks. There
seems to be agreement among researchers on the easiest task, namely copying, which
is manageable by the age of three or four, and the most difficult task, namely identi-
fying the unit of repeat, which may remain even difficult for nine-year-olds (Warren
& Cooper, 2007). Extending and interpolating are also considered as rather easy
tasks that are already feasible for some four-year-olds (Brownell, Chen, Ginet, &
The Early Math Collaborative Erikson, 2014; Lüken, 2016; Rittle-Johnson et al.,
2013; Sarama & Clements, 2009). As most research so far has focused on repeating
patterns, it remains unclear whether children are able to fulfill the same tasks with
other types of patterns (e.g., growing patterns) at the same age.

In most theoretical accounts for the observed differences in difficulty of the dis-
tinct types of patterning tasks, a distinction is made between two levels of thinking,
namely recursiveversus functional thinking. Thismove from recursive, local thinking
toward functional, global thinking has been suggested to be an important milestone
in the development of early patterning abilities in older (Economopoulos, 1998;
Threlfall, 2005) and more recent studies (Lüken, 2012; Papic & Mulligan, 2007;
Rittle-Johnson et al., 2013). Children who think recursively only see the relationship
between consecutive elements in a pattern and therefore can only predict the next
one (i.e., the +1th), whereas those who are able to think functionally can see the
underlying structure of a pattern and therefore predict any (i.e., the nth) element of
a sequence. Consider, for example, an extending task involving a simple AB repeat-
ing pattern. In order to think functionally, children should acquire insight into the
unit of repeat (Economopoulos, 1998; Threlfall, 2005), instead of simply following
a recursive rule (e.g., “B follows A and A follows B”). For growing patterns, the
transition should be made from creating and applying a recursive rule (e.g., Xn =
Xn−1 + 3) to a functional rule (e.g., Xn = 2 + n * 3) (English & Warren, 1998).
Finding a functional rule for a growing pattern appears to be difficult, even at the end
of primary school (National Research Council, 2001).

Whilemost researchersmake a distinction between recursive and functional think-
ing, the question remains which patterning tasks require the latter type of thinking.
Moreover, children can use their understanding of the unit of repeat to solve tasks that
do not necessarily require functional thinking, such as copying, extending, or inter-
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polating. Making use of a variety of data they collected, Collins and Laski (2015)
suggested that the four-year-olds in their study solved a generalization task using
functional thinking (which they termed: a relational similarity strategy), whereas
copying and extending were approached by a more basic recursive strategy (which
they termed: a one-to-one appearance matching strategy). Performance on the unit
identification task was very low; therefore, it remains unclear which type of thinking
is required for good performance on the unit identification task. More research is
necessary to unravel the reasoning processes underlying young children’s good and
weak performance on the various patterning tasks.

As was already hinted at, the nature of the pattern and the type of patterning
task together do not fully account for the level of difficulty of a specific patterning
task. This difficulty is also affected by several additional factors related to the way
in which a given task is precisely implemented. For example, the difficulty level of
the interpolation task is also known to depend on the number of elements missing
and the number of options in the multiple choice response option (Gadzichowski,
2012a). Likewise, in the generalization task, the difficulty level—and the extent to
which it requires functional thinking—also depends on the relationship between the
features of the model pattern and those of the to-be-generalized pattern. Consider
the following examples. In the study of Close and Glennon (1977), children were
given a pattern with colored blocks they had to copy using colored houses. In other
studies (Collins & Laski, 2015; Rittle-Johnson et al., 2013, 2015), children were
given a pattern with colored shapes they had to copy using either colored blocks
(colors different from the model) or shapes (different from the model) in one color.
The former generalization task seems to be much easier than the latter, which might
explain why generalizing appeared to be easier than extending in the study of Close
andGlennon (1977), whereas the opposite was the case in the study of Rittle-Johnson
and associates (2013). Such inconsistent results may of course also be due to subject
characteristics, such as the amount of children’s experiences with various types of
patterns in their home or (pre)school environment.

Relationship with Other Cognitive Abilities

Several studies have explored the relationship of early patterning with other domain-
general and domain-specific cognitive abilities. We will consider the relationship
with mathematical abilities, reading abilities, and general cognitive abilities.

Indications of a relationship between early patterning abilities and mathematical
abilities have been found in numerous longitudinal studies, again most of which
focused on repeating patterns. In a first study with five- and six-year-olds, repeating
patterning abilities at the start of the school year (i.e., identify the unit of repeat,
extend, interpolate, and create a repeating pattern) predicted general mathematical
abilities at the end of the school year (Warren & Miller, 2013). Lüken, Peter-Koop,
and Kollhoff (2014) found a correlation between repeating patterning abilities (i.e.,
copy, extend, and explain an ABCC pattern) in preschool (i.e., four-year-olds) and
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mathematical abilities in preschool, kindergarten (i.e., five-year-olds) and first grade.
Rittle-Johnson and colleagues (2017) showed that patterning abilities of low-income
children in preschool (i.e., four-year-olds) predicted mathematics achievement in
fifth grade and that this effect was mediated by the patterning abilities in first grade.

Indications of a relationship between patterning abilities and mathematical
achievement have also been foundwith other types of patterns. A correlation between
patterning abilities in fall and mathematical achievement in spring suggested that
being able to interpolate growing number sequences at the start of first grade might
support mathematical achievement at the end of first grade (Pasnak et al., 2016).
Interestingly, the authors argued that interpolating these sequences might “reflect
fluid reasoning and that fluid reasoning is related to mathematics concepts” (p. 644).
Similar patterning abilities (i.e., interpolating a range of patterns) uniquely predicted
mathematical abilities, above executive functioning, in first graders (Schmerold et al.,
2017). Lüken (2012) found a correlation between early structure sense in first grade
and general mathematical ability in kindergarten (i.e., five-year-olds) and in second
grade. Variance in mathematical ability in Grade 2 was predicted by early mathemat-
ical abilities, early structure sense, and the interaction between both. The majority
of variance, however, remained unexplained. Additional qualitative analyses showed
that children with low patterning abilities (or, as Lüken states, low early structure
sense) had no difficulties perceiving the external aspects of a pattern (i.e., the different
colors or visual gaps that group sub-structures), but had difficulties connecting these
external aspects with their mathematical aspects, more particularly, their numeri-
cal structure. Children with high patterning abilities, on the other hand, showed an
understanding of the unit of repeat, which Lüken considered as a milestone in the
development of their patterning abilities.

Much less is known about the relationship between early patterning abilities and
reading abilities, although one research group did systematically look at this rela-
tionship in several cross-sectional studies in first grade (Bock et al., 2015; Pasnak
et al., 2016; Schmerold et al., 2017). In all these studies, first graders completed a
pattern interpolation task and a reading task. Bock and colleagues (2015) observed
a correlation between this patterning ability and early reading abilities in the fall
of first grade. Pasnak and colleagues (2016) found a correlation between patterning
abilities in the fall and word reading abilities in the spring of first grade, as well as
between reading abilities in the fall and patterning abilities in the spring. Accord-
ing to the latter authors, two mechanisms may explain their findings: (1) reading
and patterning may have a reciprocal relationship, or (2) a third (untested) variable,
such as executive functioning, may underlie the relationship between patterning and
reading. Schmerold and colleagues (2017) reported, however, that patterning ability
remained a unique predictor of word reading abilities after controlling for executive
functioning.

Research on the relationship between early patterning abilities and general cog-
nitive abilities can be divided into two sets. A first set of studies consists of two
cross-sectional studies with four-year-olds in which a relation was found between
cognitive variables and a repeating patterning instrument based on the four-level
construct map of Rittle-Johnson and colleagues (2013). Collins and Laski (2015)
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explored the relationship between these tasks and several cognitive measures (i.e.,
visuospatial short-term memory, verbal short-term memory, working memory, and
inhibition). General accuracy on the four patterning tasks was predicted by visuospa-
tial short-termmemory andworkingmemory, but patterning abilities did not correlate
with inhibition or verbal short-term memory. Accuracy on extending and identifying
the pattern unit was predicted by visuospatial short-term memory, whereas accuracy
on generalizing was predicted by working memory.

Miller, Rittle-Johnson, Loehr, and Fyfe (2016) explored the relationship between
the patterning instrument as a whole and several cognitive measures on two different
days. On the first day, children completed a pretest patterning instrument, as well as
an inhibition task and a set-shifting task. They also received brief instruction on six
generalization items that same day and on four more items the following day. On the
second day, they completed a posttest patterning assessment, a relational knowledge
task, and a working memory measure. Relational knowledge, working memory, and
set shifting were unique predictors of pretest repeating patterning abilities, whereas
inhibition was not. Moreover, working memory was a predictor for performance on
the posttest patterning task, suggesting that working memory might support learning
to generalize patterns.

A second set of studies consists of two cross-sectional studies inwhichfirst graders
completed an interpolation activity with a range of patterns. Bock and colleagues
(2015) found a correlation between this patterning activity and cognitive flexibility,
while Schmerold and colleagues (2017) found a correlation between this patterning
activity and both cognitive flexibility and working memory, but not inhibition. Only
cognitive flexibility—not workingmemory—appeared to be a predictor of patterning
abilities and the effect of cognitive flexibility on both reading and mathematics was
completely mediated by patterning (Schmerold et al., 2017).

To sum up, there is evidence for a relationship between patterning abilities, on the
one hand, and mathematical, reading, or cognitive abilities, on the other hand. Not
surprisingly, most studies on early patterning have investigated the relationship with
mathematical abilities. In these studies, patterning performance in preschool or first
grade predicted general mathematical achievement up to fifth grade (Lüken, 2012;
Lüken et al., 2014; Pasnak et al., 2016; Rittle-Johnson et al., 2017; Schmerold et al.,
2017; Warren & Miller, 2013). Additional qualitative analyses suggested that it was
the childrenwhohad insight into the unit of repeatwhoweremost likely to score better
on a general mathematics achievement test (Lüken, 2012; Warren & Miller, 2013).
The scarce evidence that is available on the relationship with reading abilities used
only one type of task, namely interpolating (Bock et al., 2015; Pasnak et al., 2016;
Schmerold et al., 2017). So far, it is unclear whether this relationship is consistent
over other patterning tasks. A few studies have also looked into general cognitive
abilities that might support patterning abilities, namely visuospatial and verbal short-
term memory, working memory, cognitive flexibility, relational knowledge, and set
shifting, but different tasks seem to rely on different cognitive abilities (Collins &
Laski, 2015; Miller et al., 2016). Certainly, more theoretical and empirical research
is needed to unravel the complex relationship between patterning abilities and these
general cognitive abilities (Verschaffel et al., 2017).
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Intervention

The research reviewed in theprevious sections has also led to avariety of interventions
on mathematical patterns and structures, some being implemented and tested in
broader research programs consisting of various studies. We will present four sets
of intervention studies, each time considering the nature of the intervention, how it
was implemented and tested, and its effects.

A first set of interventions focused on first graders and their performance on an
interpolation task with a range of patterns. During the intervention, children had to
find the missing element in a pattern with scaffolding of the teacher or the computer,
and the same interpolation task—without scaffolding—was used both as a pre- and
posttest. In a first study (Hendricks et al., 1999), four first graders received individual
instructional sessions of 15–20 min, 4 days per week, until the child had mastered
all items (>400). The intervention yielded an improvement in children’s patterning
abilities, IQ, and academic achievement. In a more systematic study in first graders
(Hendricks, Trueblood, & Pasnak, 2006), children received a 15 min intervention
for four days a week over a period of five months in groups of three. They were
randomly assigned to a patterning or control condition (i.e., extra lessons in general
subject matters). Children in the patterning intervention scored higher on the posttest
patterning assessment and a broad posttest measure of academic achievement. A
similar patterning intervention was used in three more recent studies (Kidd et al.,
2013, 2014; Pasnak et al., 2015). In all three studies, childrenwere randomly assigned
to four conditions (i.e., patterning, reading, mathematics, and social studies) in which
they individually received lessons of 15min three times a week over a period of six to
sevenmonths. In each study, children in the patterning condition performed afterward
equally well or better than children in one of the other conditions on patterning tasks
similar to the intervention, as well as on transfer tasks using patterns that were
different from those used in the intervention. Remarkably, children following the
patterning intervention scored as least as well or even better on mathematical tasks
than children following a mathematical intervention. In two of these studies, these
children scored as least as well on reading tasks compared to children following the
reading instruction (Kidd et al., 2014; Pasnak et al., 2015). In one study, it was shown
that these transfer effects of patterning instruction on reading and mathematics were
fully mediated by patterning abilities (Kidd et al., 2014).

A second set of intervention studies comprised of different implementations of
the Pattern and StructureMathematics Awareness Program (PASMAP) developed by
Mulligan and colleagues. The program consists of several activities (similar to activ-
ities of the assessment tool PASA) through which a child is encouraged to represent
pattern and structure (Mulligan, English, Mitchelmore, & Robertson, 2010). Teach-
ers using PASMAP are provided with materials and activities they can implement in
their classroom. In one study with a large group of low-achieving kindergarten (i.e.,
four- to six-year-olds) and primary school students, the PASMAP was implemented
over the course of ninemonths (Mulligan, Prescott, Papic, &Mitchelmore, 2006). An
improvement in PASA scores and measures of general mathematical achievement
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suggested possible learning and transfer effects. Because there was no control group
in this design, it is hard to derive conclusions concerning the program’s impact. In a
second study—again without a control group—a small group of low-achieving four-
to six-year-olds (kindergartners) following the PASMAP for one hour a week dur-
ing 15 weeks improved their scores on the PASA (Mulligan, Mitchelmore, Marston,
Highfield, & Kemp, 2008). In a later intervention study with a control group, kinder-
garten teachers were asked to implement either the standard mathematics curriculum
or PASMAP during three school terms (Mulligan, English, & Mitchelmore, 2013;
Mulligan et al., 2010). All teachers followed a one-day training session and received
professional support by weekly visits of the research team. Teachers in the interven-
tion condition could implement the program at their own pace, leading to different
implementation times from class to class (i.e., 50 min–5 h a week). At the start
of the intervention, there were no differences in PASA or mathematical competen-
cies between children in both conditions. Posttest results confirmed the impact of
PASMAP on PASA scores, but no differences were found in general mathematical
abilities.

The same research group tested a different, but similar, intervention with
repeating and spatial structure patterns (Papic et al., 2011). Over a period of
six months, five-year-olds were confronted—individually and in small group-
s—with several pattern-eliciting tasks (similar to the EMPA) and their teachers were
encouraged to “patternize” their regular school program.A similar kindergarten class
was tested pre- and post-intervention, serving as a contrast group. Posttest data sug-
gested a learning effect on patterning as well as transfer effects toward another type
of patterns, namely growing patterns, and general numerical abilities. According to
the authors, this transfer toward growing patterns might be caused by an acquired
tendency to look for patterns in the children who received the experimental program.
Additional qualitative analyses during the intervention and the posttest indicated that
a solid understanding of the unit of repeat helped children in tasks with repeating
patterns.

A third set of interventions assessed the impact of a short (20–30 min) feedback
session on four-year-olds’ repeating patterning abilities (Fyfe, McNeil, & Rittle-
Johnson, 2015; Rittle-Johnson et al., 2015, study 3, 2013). In such a feedback session,
children were given a few examples of generalization items (similar to those in their
assessment instrument) and they received feedback from a researcher on these items
or on a few generalization items they had to solve themselves. This feedback session
had a positive influence on children’s accuracy on generalization items, suggesting
the potential of this instructional technique for further stimulation in generalizing
patterns (Rittle-Johnson et al., 2015, study 3, 2013). When comparing the origin of
feedback, there were no differences in accuracy whether the instructor provided the
feedback, the child explained the pattern himself, or when a combination of both was
used (Rittle-Johnson et al., 2015, study 3). However, when comparing the kind of
feedback the instructor provided, results indicated that the use of abstract labels (e.g.,
A–B–A–B) yields better results on generalizing than the use of concrete labels (e.g.,
red–blue–red–blue) (Fyfe et al., 2015). According to the authors, abstract labels are



Young Children’s Patterning Competencies … 153

better since they draw children’s attention to the structure of the pattern and can be
shared across patterns.

Finally, Kampmann and Lüken (2016) designed an intervention study for first
graders that involved repeating, spatial structure, and growing patterns. The inter-
vention group followed 13 lessons on patterning, whichwere implementedwithin the
regular mathematics curriculum and were given by one of the researchers, whereas
the control group received the regular mathematics program. During the patterning
intervention, children could create, recognize, use, describe, and explain patterns and
structures. At the start of the intervention, there were no differences between the two
groups in intelligence or mathematical abilities, whereas differences inmathematical
abilities were found post-intervention, suggesting a transfer effect toward mathemat-
ical abilities in first-grade students. Moreover, it was the low-achieving children in
particular who benefited from the intervention.

In addition to these four groups of interventions specifically focusing on pat-
terning, various scholars have also designed, implemented, and tested general pro-
grams for earlymathematics that included patterning activities (e.g., BuildingBlocks,
Clements, Sarama, Spitler, Lange, &Wolfe, 2011; BigMath for Little Kids, Greenes,
Ginsburg, & Balfanz, 2004; TRIAD, Sarama et al., 2008; Pre-K Mathematics inter-
vention, Starkey et al., 2004). While there is evidence for the effectiveness of all
these programs in general, the design of these studies does not allow us to disen-
tangle the contribution of the patterning activities to the positive impact of these
intervention programs on their mathematical development in general and the growth
of their patterning competencies in particular (Frye et al., 2014).

To sum up, there is a wide range of interventions focusing on early patterning
abilities that have been developed and tested for both preschoolers and primary
school students, some in the context of short and strictly controlled psychological
experiments and others in the context of ecologically valid educational settings. Inter-
ventions aimed at four-year-olds (Fyfe et al., 2015; Rittle-Johnson et al., 2015, study
3, 2013) or five-year-olds (Mulligan et al., 2013, 2010) all yielded learning effects
toward patterning. A transfer effect toward numerical abilities was only observed
in one study (Papic et al., 2011), but multiple interventions for first graders yielded
transfer effects toward mathematics (Hendricks et al., 1999, 2006; Kampmann &
Lüken, 2016) and reading (Hendricks et al., 1999, 2006). Extensive and detailed
descriptions of the intervention programs are often missing. The above-mentioned
programs are also relatively broad and include multiple components, which is valu-
able from an educational perspective but makes it hard to determine which of these
components caused the observed learning and transfer effects. Therefore, it is difficult
to compare the different programs and their effects on a theoretical level.

Educational Implications

From this review, it is clear that there are multiple indications for a relationship
between a child’s patterning competencies in kindergarten and his or her mathemat-
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ical competencies later on (Lüken, 2012; Lüken et al., 2014; Pasnak et al., 2016;
Rittle-Johnson et al., 2017; Schmerold et al., 2017; Warren & Miller, 2013). More-
over, patterning competencies can be successfully stimulated throughwell-developed
early interventions and this stimulation might also improve young children’s con-
current or later mathematical or reading competencies (Hendricks et al., 1999, 2006;
Kampmann & Lüken, 2016; Papic et al., 2011). These findings suggest the value
of implementing patterning activities in early educational settings. Currently, pat-
terning is already part of the national early childhood curriculum in countries such
as Australia and Canada (acara, 2015; Ontario Ministry of Education and Train-
ing (OMET) 2005). The educational value of the current patterning approach to
algebra has, however, been criticized by a number of researchers, by claiming that
the patterning activities that are most often implemented lead children only toward
recursive thinking (Carraher & Schliemann, 2007; Hargreaves, Threlfall, Frobis-
cher, & Shorrocks-Taylor, 1999; Macgregor & Stacey, 1992; Radford, 2010; Tall,
1992). Indeed, the main focus of these national curricula is on copying and extending
(Clements & Sarama, 2014; Economopoulos, 1998; Mckillip, 1970b) and it is ques-
tionable whether these tasks require—and, thus, stimulate—the development of any
functional insight. There is, however, only limited empirical evidence that looks into
the level of thinking (i.e., recursive or functional) that is required while performing
a patterning task. Although several researchers acknowledge that patterning tasks
eliciting functional thinking are educationally more valuable (Lüken, 2012; Papic
& Mulligan, 2007; Rittle-Johnson et al., 2013), it is unclear whether, and if so to
what extent, the intervention programs designed by these same researchers imple-
ment tasks to stimulate functional thinking. The diversity in the existing intervention
studies makes it hard to provide teachers with good, evidence-based materials, tasks,
and techniques for working with patterns in an early childhood setting. Nevertheless,
researchers agree that kindergarten teachers should consider implementing more dif-
ficult tasks (i.e., tasks that are assumed to involve functional thinking and require
insight into the unit of repeat) and more difficult types of patterns (i.e., not only AB
repeating patterns).

Inmost interventionprograms so far (Fyfe et al., 2015;Hendricks et al., 2006;Kidd
et al., 2013, 2014; Pasnak et al., 2015; Rittle-Johnson et al., 2015, Study 3, 2013),
children received extra stimulation either individually or in small groups, which is
not always possible in regular educational settings. However, positive effects on
patterning (Mulligan et al., 2010, 2013) and mathematical achievement (Kampmann
& Lüken, 2016) were also found in studies involving whole classroom interventions.

Finally, patterning interventions were mostly carried out by the researchers them-
selves (except for PASMAP;Mulligan et al., 2010, 2013).Making available research-
based course material for early patterning is an important step toward the solution,
but attention should also be given to the quality of teacher education, both in-service
and pre-service. Unfortunately, teachers are generally not well prepared to teach
early mathematics in general (Ginsburg, Lee, & Boyd, 2008) and early patterning
in particular (Verschaffel et al., 2017). As for all other aspects of early mathematics
education, the development of teachers’ professional knowledge base should involve
various elements. Teachers should have sufficient content knowledge (CK) regard-
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ing patterning. Research has shown that preschool teachers themselves have diffi-
culty identifying multiple appropriate continuations of repeating patterns (Tsamir,
Tirosh, Levenson, Barkai, & Tabach, 2016) and defining repeating patterns (Tirosh,
Tsamir, Levenson, Barkai, & Tabach, 2017). Teachers frequently use the word “pat-
tern” (Houssart, 2000), but, as one teacher noticed, a pattern—in a mathematical
sense—“is not just a pretty design” (Brownell et al., 2014, p. 88). Teachers should
also have sufficient pedagogical content knowledge (PCK) to teach this patterning
content to young children. Research has shown that early childhood teachers often
do not know how to react when a child spontaneously creates a pattern (Björklund
& Barendregt, 2016; Fox, 2005; Hendershot, Berghout Austin, Blevins-Knabe, &
Ota, 2016; Waters, 2004). Understanding the learning trajectory (e.g., Clements &
Sarama, 2014) for patterning might help them to gain insight into the typical devel-
opment of patterning competencies, the difficulties young children might encounter,
and the typical errors theymake (Cross et al., 2009). Besides knowledge of children’s
learning trajectories, knowing which tasks are appropriate for these young children
and knowing how to schematically or symbolically represent and verbally discuss
patterns to preschoolers is another important component of teachers’ pedagogical
content knowledge. Teachers should also believe in the importance of patterning
for children’s further academic achievement and be convinced that their work in
preschool can provide a valuable contribution to children’s patterning competences.
One program has already been set up to stimulate teachers’ pedagogical content
knowledge and self-confidence to teach patterning in preschool (Tirosh, Tsamir,
Barkai, & Levenson, 2017), but more work is needed.

General Conclusion

The patterning concept covers a broad range of activities, from extension to unit
identification, which can be implemented with several types of patterns, with repeat-
ing, growing, and spatial structure patterns being the most common ones. Despite
the diversity in the definition and operationalization of early patterning, at least three
main conclusions can be drawn from the available research. First, children’s early
patterning abilities grow remarkably over the preschool years. Whereas three- to
four-year-olds are generally able to copy or extend an easy repeating pattern, five-
to six-year-olds seem to gain some insight into the unit of repeat and are able to
generalize a given pattern (Clements & Sarama, 2014; Rittle-Johnson et al., 2015).
Second, there is a relationship between children’s early patterning abilities and their
later mathematical and reading abilities (e.g., Lüken, 2012; Rittle-Johnson et al.,
2017; Schmerold et al., 2017). Third, early patterning abilities can be successfully
stimulated by means of well-developed interventions (e.g., Fyfe et al., 2015; Kamp-
mann & Lüken, 2016; Kidd et al., 2014; Mulligan et al., 2010; Papic, Mulligan,
Highfield, McKay-Tempest, & Garrett, 2015).

Although early patterning is defined and operationalized broadly, the above-
reviewed research on early patterning seems to focus only on a limited set of activities
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and types of patterns. Whereas the main focus so far has been on repeating patterns,
future research should also look into spatial structure and growing patterns, thusmak-
ing a global framework of early patterning possible. One promising starting point
for such an endeavor has already been provided by Clements and Sarama’s (2014)
learning trajectory for pattern and structure.Moreover, the distinction between recur-
sive and functional thinking that has been made by multiple researchers seems like
a valuable avenue for further exploration.
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The Elementary School Years
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Arithmetic Concepts in the Early School Years

A critical task of the early elementary school years is for children to start learn-
ing formal mathematics. They begin Grade 1 with varying amounts of knowledge
about informal mathematics, and as previous chapters in this volume have exam-
ined, children actually have a surprising amount of knowledge about varying aspects
of numbers and mathematics that they learn through informal and everyday experi-
ences.Making the transition from informal to formalmathematics can be challenging
for children. Children are taught a formal system with symbols attached to specific
numbers (e.g., **** objects are represented with the symbol 4) and specific symbols
indicatingwhether to add, subtract, tomake equal, and so forth (e.g.,+,−=). Further
complications arise as problems can be presented in horizontal or vertical formats.
In essence, children are being asked to learn a new language that often seems to
include more than one dialect. They are also being taught basic arithmetic facts such
as “2 and 2 make 4,” and eventually, they will be expected to automatically retrieve
these facts from memory, so they can free up cognitive resources to deal with the
complexity of algebra or calculus problems.

Before problems such as 2 + 2 trigger the answer 4 from long-term mem-
ory, children need considerable practice with these problems and also often need
to be taught problem-solving strategies or procedures for more difficult problems
(Siegler, 1996). For example, counting on your fingers might work well for a prob-
lem such as 3+ 4, but what happens when the problem requires more than 10 fingers
such as 7 + 8? Beyond the new language of math, learning arithmetic facts, and
learning strategies for how to solve more difficult problems, lies a series of com-
plex rules and relationships that need to be understood and applied when solving
the new or more challenging problems continuously being introduced to children as
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they move through their formal schooling. These rules and relationships and what
children know about them often get discussed under the umbrella term of “concep-
tual knowledge of arithmetic.” The focus of this chapter is on children’s conceptual
knowledge of arithmetic—on how children make sense of mathematics in the early
school years.

Procedural, Factual, and Conceptual Knowledge of Arithmetic

There are three general types of arithmetical knowledge: factual, procedural, and con-
ceptual (Bisanz & LeFevre, 1990). The first type of knowledge, factual knowledge,
is knowing math facts such as 5 + 2 and 6 × 8. When children have considerable
exposure to these problems and the correct answers, they eventually encode each
problem and its associated answer into long-term memory. Then, if they encounter
the problem again at some later time, the answer will automatically come to mind
(Siegler & Shipley, 1995; Siegler & Shrager, 1984). These math facts become so
well learned that it is virtually impossible for individuals to not reflexively think of
the answer when they see the problem. For example, when you read the following
math problem, try to prevent yourself from automatically retrieving the answer. Here
is the problem: 3 × 3. Most children and adults, once they have learned their basic
multiplication facts, cannot prevent themselves from thinking 9 when they see that
problem. But how did that problem go from being novel and new to being effortlessly
and automatically solved? That is where procedural and conceptual knowledge come
into play.

The second type of knowledge, procedural knowledge, is about the problem-
solving procedures or problem-solving strategies that children use when they cannot
automatically retrieve the answer from memory (Bisanz & LeFevre, 1990; Siegler
& Araya, 2005). That is, factual knowledge is not available or is insufficient to help
them out (Siegler & Shrager, 1984). In North America, most children and adults
have only learned the multiplication tables until the 12 times table. Ask a person
to solve a problem such as 6 × 13 and all of a sudden a simple arithmetic problem
is no longer quite as simple as if they had been asked to solve 6 × 11. So, how to
solve the problem of 6 × 13? This is where procedural knowledge is needed. There
are multiple methods, procedures, or strategies that can be used. One person might
immediately reach for a calculator, a second might count up by 13 six times (13, 26,
39, 54, 65, 78), another might solve the problem by multiplying 6 × 3 to get 18 and
then 6× 10 to get 60 and then add 18 and 60 together, and yet another person might
rely on his or her factual knowledge that 6× 12 is 72 and then add another 6, and so
on. All of these problem-solving strategies should yield the correct answer.

In some instances, some problem-solving strategies may be more attractive than
others. If you get told that you will win $1000 if you get the answer correct, you
might decide to put your faith in a calculator so that you are absolutely certain that
you get the right answer. On the other hand, if you are competing against 10 other
people for the $1000 and the fastest person to say the answer wins and you do not
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have a calculator handy, you might want to rely on a faster solution procedure such
as decomposition (6 × 12 = 72 + 6) as automatic retrieval of the first fact plus 6
more is quite fast compared to multiplying 6 × 3 than 6 × 10 and then adding the
two numbers. Or, you might just completely panic and make a wild guess!

But how comemost people knowmore than one way to solve any given arithmetic
problem (LeFevre, Sadesky, & Bisanz, 1996; Robinson, 2001)? Children start learn-
ing new problem-solving strategies or procedures before formal schooling and, once
they begin formal schooling, are taught several problem-solving procedures. Inmany
cases, children figure out new, more efficient problem-solving procedures on their
own without any help from their teachers or parents. In the case of the min proce-
dure, most children discover this more efficient problem-solving strategy themselves
(Groen & Resnick, 1977; Siegler & Jenkins, 1989). On a problem such as 2 + 6, if
a child does not yet know the answer by heart, he or she will initially use a count-all
strategy. That is, he or shewill painstakingly count the first number (1, 2) and then the
second (1, 2, 3, 4, 5, 6) and then put these two numbers together (often by using their
fingers). Eventually, they will realize that there is a better way and will start using the
count-on strategy where they will start with the first number (2) and count up from
there (3, 4, 5, 6, 7, 8). This is a faster problem-solving strategy and less prone to errors
than the count-all strategy. Finally, they will switch to the min strategy which is the
most efficient counting strategy as it always involves the minimum amount of count-
ing by startingwith the largest number (6) and counting up from there (7, 8). This pro-
gression is typically something that most children figure out on their ownwithout any
assistance or teaching from others. This figuring it out requires children to notice the
size of the numbers that they are dealingwith, to notice that on some problems such as
8 + 2, it takes less time to get the answer with the count-on strategy than when the
problem is switched to 2 + 8, and so forth. Children are starting to learn and under-
stand number, counting, and the operation of addition—they are starting to develop
conceptual knowledge of arithmetic.

The third type of arithmetical knowledge is conceptual knowledge which will
be the focus of the next section and the rest of this chapter. In the mean-
time, factual, procedural, and conceptual knowledge are deeply intertwined forms
of knowledge and they are considered to develop in an “iterative” fashion
(Rittle-Johnson & Alibali, 1999; Rittle-Johnson, Schneider, & Star, 2015). Each
type of knowledge informs the other types of knowledge, which in turn inform the
other types of knowledge, and so on and so forth. This makes it difficult to discuss
each of the types of knowledge on their own as they are not completely independent
on one another. However, factual and procedural knowledge are relatively straight-
forward to define and assess. Does a child know the answer to 28÷ 4 or 7× 8without
needing to use a problem-solving procedure? Does a child know three different ways
to solve a problem such as 26 – 9? Conceptual knowledge, on the other hand, has
both been challenging for researchers not only to assess but also to define.



168 K. M. Robinson

Defining Conceptual Knowledge

Conceptual knowledge has been defined in variousways, including as the understand-
ing ofmathematical concepts, operations, and the relations between them (Kilpatrick,
Swafford, & Findell, 2001). Hiebert and Lefevre (1986) discussed conceptual knowl-
edge as interconnected knowledge within the domain of mathematics. Bisanz and
LeFevre (1990) defined conceptual knowledge as concepts or principles needed to
understand mathematics. These definitions are somewhat vague, but are perhaps best
exemplified by the following from Kilpatrick et al. (2001) in their report for the U.S.
National Research Council:

Students with conceptual understanding know more than isolated facts and methods. They
understand why a mathematical idea is important and the kinds of contexts in which it is
useful. They have organized their knowledge into a coherent whole, which enables them
to learn new ideas to what they already know. Conceptual understanding also supports
retention. Because facts and methods learned with understanding are connected, they are
easier to remember and use, and they can be reconstructed when forgotten (p. 118).

As Kilpatrick et al. (2001) illustrate, factual, procedural, and conceptual knowl-
edge are deeply intertwined forms of knowledge, so measuring or assessing a child’s
conceptual knowledge or understanding of arithmetic can be challenging. Although
asking children “what do you know about addition?” or “what does the equal sign
mean?” can sometimes yield interesting information, children are not always able
to communicate or articulate what they know. Sometimes this is because of devel-
opmental issues related to language and cognitive capacity, other times it is because
they might not understand the question, or sometimes they will have knowledge that
they omit to communicate. Therefore, many researchers rely on more indirect routes
for assessing conceptual knowledge.

One of the earliest instances of this approach to assessing conceptual knowledge
comes from the work by Starkey and Gelman (1982). They presented young chil-
dren between 3 and 5 years of age with problems such as 2 + 3 − 3 using concrete
objects. They were investigating whether children understood that addition and sub-
traction are inversely related to one another—a concept first proposed by Piaget
(1952) as being critical for children’s understanding of number. If children under-
stand that because addition and subtraction are inverse or opposite operations, adding
and then subtracting the same number would be redundant. Instead, the answer can
easily be solved by ignoring or canceling out the 3s and stating the first number.
Thus, children’s understanding of the concept of inversion can be accessed via their
problem-solving strategies or procedures. Children who do not know that addition
and subtraction are inversely related will have to first add the 2 and the 3 together and
then subtract the second 3 from the sum of 5. This latter problem-solving procedure
takes longer and is more error-prone. Since the work by Starkey and Gelman (1982),
researchers have often used information about how children solve problems to infer
conceptual knowledge. Although this approach is commonly used, it is not without
some controversy (e.g., Prather & Alibali, 2009); nevertheless, it is the one approach
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to assessing conceptual knowledge that appears to be common to researchers’ inves-
tigations of many different arithmetic concepts (Crooks & Alibali, 2014).

The Importance of Conceptual Knowledge

Given my brief discussion of the struggles that researchers have faced
with both defining and assessing conceptual knowledge, why has research
on conceptual knowledge of arithmetic been steadily increasing since
Starkey and Gelman (1982)? Kilpatrick et al. (2001), in their report for the U.S.
National Research Council on what was known about children’s mathematics learn-
ing, have alreadymade a compelling case forwhy conceptual knowledge is important,
but Kilpatrick et al. are not alone by any means. The National Council of Teach-
ers of Mathematics (2000) emphasized the teaching of conceptual knowledge as
an effective method for increasing students’ problem-solving performance. The U.S.
NationalMathematics Advisory Panel (2008) proposed that conceptual knowledge is
essential for children to recognize and fix errors when performingmathematical tasks
and for generalizing problem-solving strategies to novel mathematical problems and
situations. The more expertise and knowledge that a student has in a domain such as
mathematics, the more a child’s knowledge and skills will become integrated into a
coherent knowledge structure (Schneider, Rittle-Johnson, & Star, 2011). Kilpatrick
et al. (2001) also noted that conceptual knowledge can result in students actually
having less to learn because they can extrapolate their current understanding to new
types of mathematical problems and concepts.

Following from this, the understanding of arithmetic concepts is a critical precur-
sor to successfully learning how to solve and understandmore complexmathematical
skills such as algebra (NMAP, 2008). The view that conceptual knowledge of arith-
metic is a foundational skill for later mathematical skills is shared widely (Falkner,
Levi, & Carpenter, 1999; Kilpatrick et al., 2001; NCTM, 2000; Nunes et al., 2008).
Those later mathematical skills are important predictors for attending college or uni-
versity or, for those who do pursue advanced education, enrolling in degrees in the
science, technology, engineering, and mathematics (STEM) disciplines, acquiring
basic mathematical skills and knowledge that are so heavily based on understand-
ing the domain of arithmetic is of great concern. In a recent UK report, Hudson,
Price, and Gross (2009) concluded that the failure to master basic mathematical
skills (such as mental arithmetic) in the early school years had a public cost in the
UK of 2.4 billion pounds a year, which they considered to be an underestimate as
it did not include factors such as higher social services costs, poorer health, and
an increased likelihood to be involved in the criminal justice system, which are all
factors correlated with poorer mathematical skills. They proposed that if effective
mathematics interventions were put into place when students were 7 years of age,
the annual savings would be up to 1.6 billion lb per year in the UK alone. Thus, the
development of mathematical knowledge in the early years of formal schooling has



170 K. M. Robinson

important long-term consequences not only for individuals, but also for societies as
a whole.

What Concepts Do Children Know When?

So, what conceptual knowledge do children in the early school years possess? Some
concepts will be specifically taught in schools, but a surprising number of arithmetic
concepts are ones that children discover for themselves (Baroody & Gannon, 1984)
in the sameway that they typically discover themin counting strategy for themselves.
Indeed, understanding of concepts may arise from informal, everyday experiences
with number rather than via formal instruction (Ginsburg, Cannon, Eisenband, &
Pappas, 2006). For the remainder of this chapter, the focus will be on six essential
arithmetic concepts (Robinson, Dubé, & Beatch, 2017; Robinson, Price, & Demyen,
2018). There are other concepts that could be considered (e.g., relation to operands,
complement, additive composition), but these particular six have all been the focus of
a substantive body of research. Each concept will be briefly examined to determine
when these concepts may be acquired and whether the instruction is required or not.
Finally, data from a recent study on these six concepts with children in Grades 1, 2,
and 3 will be presented.

Identity. Using the definition proposed by Gelman and Gallistel (1978), iden-
tity here refers to the understanding that when zero is subtracted from a number,
the identity or quantity of the original number remains the same, and remains an
untransformed quantity. Whether or not children understand identity can be assessed
by presenting them with problems of the form a − 0. Baroody, Lai, Li, and Baroody
(2009) investigated the concept of identity in children from 3 to 7 years of age
to determine whether understanding develops before or after the beginning of the
early school years. Baroody et al. used concrete objects to show a set of objects and
then demonstrated none of them being taken away and then asking children how
many objects remained. If children answered correctly on at least 75% of the tri-
als, they were deemed to understand the identity concept. Although only about half
of 3-year-olds had good understanding of the identity concept, about three-quarters
of 4-year-olds had good understanding, and nearly all 5- to 7-year-olds had good
understanding. These findings suggested that before formal schooling even begins,
children understand that when zero is subtracted from a number that number remains
unchanged.

The children in Baroody and colleagues’ (2009) study were presented with con-
crete objects and, as mentioned earlier in this chapter, children who may have good
knowledge of how many objects there are when they are asked to add three cook-
ies and two cookies may struggle when presented with the symbolic version of this
problem (i.e., 3 + 2 = ?). Robinson et al. (2017) investigated how well children
understood identity when presented with symbolic problems. They had children
in Grades 3, 4, and 5 solve problems such as 28 − 0, then state their answers,
and also explain how they got the answer. If children understand the concept of
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identity, i.e., that subtracting zero leaves the identity of the first number unchanged,
they should be able to explain this. Robinson et al. found that understanding of iden-
tity was at approximately 90% in all grades. After correctly answering the identity
problems, the typical description from children when asked how they had solved the
problem was to state that “when you take zero away from a number, it’s like you take
away nothing so the answer is just the first number.” These findings demonstrate that
even on symbolic problems, by Grade 3, understanding of identity is very strong and
that understanding of this concept probably develops without the need for formal
instruction.

Negation. Negation refers to the understanding that when a number is subtracted
from itself it “negates” that initial number, and therefore, there will be nothing, or
zero, left (Gelman & Gallistel, 1978). Whether or not children understand negation
can be assessed by presenting them with problems of the form a − a. Baroody et al.
(2009) investigated the concept of negation in children from 3 to 7 years of age to
again determine whether understanding develops before or after the beginning of
the early school years. Using concrete objects and correct answers as evidence for
conceptual knowledge, they found that about a quarter of 3-year-olds, about two-
thirds of 4-year-olds, and nearly all 5- to 7-year-olds understand negation. Robinson
et al. (2017) followed up Baroody et al.’s work with children in Grades 3–5 using
symbolic problems and asked children to report how they had solved the negation
problems.Negation hadover 90%understanding in all grades. The typical description
of children’s thinking on these problems was that “taking away the same number just
cancels the first number out so you are left with nothing, zero.” Overall, it appears
that across a wide range of ages and years of formal schooling, children have a solid
understanding of both identity and negation before they start formal schooling and
that even on symbolic problems, their understanding is strong by Grade 3.

Commutativity. The concepts of identity and negation appear to develop early,
require little formal instruction, and may transfer easily from concrete to symbolic
problems. Perhaps because these concepts do not seem to pose great difficulties for
children, there has been comparatively little research on them and curricula typically
do not mention these concepts as ones that need to be explicitly taught to children.
On the other hand, other additive concepts have garnered significantly more attention
both from researchers and educators. One such concept is the commutativity concept.
The commutativity concept involves understanding that the order in which numbers
are added together does not affect the answer (Baroody & Gannon, 1984). Whether
childrenunderstand commutativity canbe assessedbypresenting themwith problems
such as a + b = b + ?. Children who understand commutativity will often respond
that they solved the problem by “flipping” the numbers so that they know that the
answermust bea.This knowledge is critical for developing themin strategy discussed
previously (Rittle-Johnson&Siegler, 1998). In order for children to add two numbers
starting with the larger one, they must realize that even if the larger number is the
second one, it will not affect the answer (e.g., 3 + 28 = 28 + 3).

The consensus is that by the end of kindergarten, many children will understand
commutativity (Baroody & Gannon, 1984; Nunes & Bryant, 1998), but understand-
ing might be higher when solving concrete rather than symbolic problems (Canobi,
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Reeve, & Pattison, 1998, 2002, 2003). The Common Core Standards (National Gov-
ernors’ Association Center for Best Practices, & Council of Chief State School
Officers, 2010) state that, by the end of Grade 1, children are expected to understand
commutativity. Canobi found that almost all 7- to 9-year-old children in her study
(roughly equivalent to Grade 2–4) understood commutativity and were able to apply
it to symbolic problems. In a more recent study, Robinson et al. (2017) found that
understanding of commutativity was much weaker. Just over one-tenth of Grade 3
children, one-third of Grade 4 children, and just under two-thirds of Grade 5 children
reported using the commutativity concept to solve problems such as 4 + 9 = 9 +
?. A further study by Robinson et al. (2018) with Grade 5–7 children demonstrated
that understanding of commutativity was still not fully understood as only about two-
thirds of Grade 5 children and three-quarters of Grade 6 and 7 children reported using
the commutativity concept to solve problems. These findings suggest that, despite
the assertion that many young children discover commutativity on their own through
their informal arithmetic experiences (National Council of Teachers of Mathematics
& National Association for the Education of Young Children, 1999), commutativity
may require formal instruction, including instruction on what the equal sign means.

Inversion. Another even more researched arithmetic concept is the inversion
concept. The inversion concept is the understanding that addition and subtraction
are inversely related operations (Piaget, 1952). Starkey and Gelman (1982) used
problems of the form a + b − b to evaluate whether children could apply their
knowledge of inversion and realize that as both the same number was added and
subtracted, the answer to the problem was the first number and that no calculations
needed to be performed. One of the reasons that this concept has received so much
research attention (e.g., Gilmore & Bryant, 2006; Klein & Bisanz, 2000; Robinson,
Ninowski, & Gray, 2006; Siegler & Stern, 1998; Vilette, 2002) is that inversion
problems are novel problems so children must apply their conceptual knowledge to
formulate a new and efficient problem-solving strategy.

Children who use conceptually based problem-solving procedures—often termed
the “inversion shortcut”—on inversion problems (e.g., 4+ 3− 3) typically state that
the second and third numbers (e.g., 3 − 3) cancel each other out and the answer is
the first number (e.g., 4). Research has shown that even very young children have
some understanding of the inversion concept when solving concrete problems (e.g.,
Rasmussen, Ho, & Bisanz, 2003; Sherman & Bisanz, 2007), but Baroody et al.
(2009) found that it took until almost the beginning of formal schooling (i.e., 5 years
of age) for a slim majority of children to understand the concept of inversion. On
symbolic problems, Gilmore and Bryant (2008) found that almost all 8- and 9-year-
olds accurately answered inversion problemsof the forma+b−b, but it is possible to
answer these questions accurately without understanding and/or applying conceptual
knowledge. In a study where participants’ understanding of inversion was assessed
not only by accurate responses, but also by children reporting their problem-solving
procedures,Watchorn et al. (2014) classified almost 50%ofGrade 2 and 3 children as
understanding the inversion concept and 60% of Grade 4 children. This is similar to
Robinson andDubé (2009), who found that children inGrades 2 through 4 applied the
inversion shortcut on almost 50% of the problems. These results are also comparable
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to Robinson et al.’s (2017) slightly older sample of children with about one-third use
of conceptually-based problem-solving procedures by Grade 3 students and about
40% use by Grade 4 and 5 students.

Baroody et al. (2009), by comparing performance on identity, negation, and inver-
sion problems, proposed that the concepts of identity and negation precede the con-
cept of inversion. This makes sense, as inversion problems incorporate both negation
(b − b = 0) and identity (a − 0 = a), but few other studies on arithmetic concepts
have investigated the relationship among different concepts. Overall, inversion may
be similar to commutativity in that even though there are signs that children have an
informal understanding of the concept before formal schooling begins, once sym-
bolic forms of the inversion problems are presented, instruction may be required for
many children.

Associativity. One concept that has recently started to gain research attention is
the associativity concept as applied to problems of the form a + b − c. Associativity
involves the understanding that the operations of addition and subtraction can be
solved in any order (e.g., on a problem such as 8 + 23 − 3, the problem could
be solved from left to right, or it could be solved by first subtracting 23 – 3, then
adding 8 or even by subtracting 8 – 3, and then adding 23). Originally, associativity
was assessed in problems of the form of a + b + c (e.g., Canobi et al., 1998) to
investigate whether children knew they could solve the problem either by adding any
pair of numbers and then adding the remaining number (e.g., 3 + 4 + 5 could be
solved by adding 3 + 5 first and then the 4 or by adding 4 + 5 first and then the 3).
Realizing that the numbers could be added in any order could be particularly helpful
on problems such as 57 + 38 + 2 where adding the 38 + 2 first is much easier than
adding 57 + 38.

However, Klein and Bisanz (2000) noticed that the associativity concept
could also be used not only on three-term problems involving only addi-
tion but could also be applied on three-term problems involving both addi-
tion and subtraction These problems were originally included in studies on
the inversion concept as control problems (Bisanz & LeFevre, 1990). If
children were using the inversion shortcut on inversion problems such as
8 + 17 − 17, they should make few mistakes as no counting is required, but they
should make more errors on problems such as 8 + 17 − 16 which are comprised
of numbers of similar magnitudes as in the inversion problems, but calculations are
required to get the answer.Any time calculation is involved, errorswill bemore likely.
Klein and Bisanz (2000), in their study of the inversion concept with preschoolers,
noted that on the control problems, children sometimes made use of their under-
standing of the associative relationship between addition and subtraction to simplify
their problem solving. Associativity here refers to the fact that on these problems,
the numbers can be added or subtracted in any order. Children can make use of this
knowledge to make control problems, or what will from now on be called associa-
tivity problems, much easier to solve by solving the subtraction component first and
then adding the first number (e.g., on the problem of 8 + 17 − 16, children could
first perform 17 − 16 and get an answer of 1 and then add 1 on to the first number,
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8, for a final answer of 9 which is faster and less error-prone than first adding 8 +
17 and then subtracting 16 from the sum of 25 (Robinson & Dubé, 2009, 2013).

Using concrete problems, Klein and Bisanz (2000) found that the associativity
conceptwas applied by preschoolers on only 5%of problems. Even after several years
of formal schooling, associativity use does not increase much. Robinson and Dubé
(2009) found that children in Grades 2–4 applied their knowledge of associativity
on about 20% of the problems. Robinson et al. (2017) found lower understanding of
the associativity concept in Grade 3 through 5 children, who only made use of the
associativity concept on approximately 10% of problems.

The results, although they vary somewhat fromstudy to study, consistently demon-
strate that the associativity concept appears to be quite a difficult concept for chil-
dren to grasp. Even studies with older children have shown that understanding of the
associativity concept does not increase dramatically even by the end of the middle
school years (Robinson et al., 2006). These findings suggest that children need formal
instruction about the associative relationship between addition and subtraction.

Equivalence. Like the inversion concept, the equivalence concept has been the
focus of intensive research investigation. The equivalence concept involves the under-
standing that two sides of an equation are equal and interchangeable (McNeil, 2014).
It turns out that, although completely obvious to adults, this concept as assessed on
problems s of the form a + b + c = a + ? is often very challenging for children
(Crooks & Alibali, 2014). Children often interpret the equal sign in these problems
as an operation and therefore believe they need to “do something.” Usually, they
decide that that something should be to add all four of the numbers together (Perry,
Church, &Goldin-Meadow, 1988). On a problem such as 3+ 4+ 5= 3+ ?, children
commonly will add up all of the numbers (3, 4, 5, and 3) and stick the answer into
the empty blank (Rittle-Johnson & Alibali, 1999). Other children will add up all of
the numbers on the left side of the equation and determine that the sum of those three
numbers is what is missing from the right side of the equation.

To adults, these errors seem quite odd and unexpected (Sherman&Bisanz, 2009).
Indeed, themeaning of the equal sign is so obvious to us as adults thatwe overestimate
how well children understand the equal sign. Even teachers mistakenly believe that
their students have a far greater understanding of the equal sign than the children
actually do (Asquith, Stephens, Knuth, & Alibali, 2007; Sherman, 2007). This is
potentially concerning as it may mean that, although specifically included in many
mathematics curricula (e.g. U.S. Common Core Standards, 2010), teachers may not
believe that they need to spend as much time and effort teaching the meaning of the
equal sign as is actually needed.

That children need help with the concept of equivalence has been found across a
multitude of studies that have assessed children’s misunderstanding of the concept as
well as attempted to improve children’s understanding of the concept (e.g., McNeil
& Alibali, 2005; Sherman &Bisanz, 2009). According toMcNeil (2014), only about
20% of children between the ages of 7 and 11 are able to correctly solve equivalence
problems. Even in older children who were tracked until the end of the middle school
years, many Grade 8 children still did not have a solid understanding of the equal
sign symbol (Alibali, Knuth, Hattikudur,McNeil, & Stephens, 2007). Robinson et al.



Arithmetic Concepts in the Early School Years 175

(2017), in a studywithGrade 3, 4, and 5 children, found that children inGrade 3 never
reported using their understanding of equivalence when solving problems, Grade 4
children used knowledge of equivalence on approximately 10% of problems, while
Grade 5 children used their knowledge of equivalence on approximately 33% of
problems. Children who did understand the equivalence concept usually reported
that they needed to make both sides of the equation the same. Taken together, the
results are not encouraging.

Few studies have examined multiple concepts within the same study with a focus
on children in Grades 1 to 3—the developmental age range of interest for this section
of the present volume. To get a sense of how these concepts develop within the
first years of formal schooling requires the cobbling together of results from many
different studies using differentmethods,measures, andways of assessing conceptual
knowledge. What is needed is to investigate these concepts within one single study
for a more direct comparison of how concepts relate and develop in conjunction with
one another.

Investigating Multiple Concepts in Grades 1–3

As mentioned previously, few studies have investigated more than one or two con-
cepts at a time. As conceptual knowledge is an integrated set of knowledge about
operations and the relations among them, more research is needed that directly com-
pares children’s understanding ofmultiple concepts (Robinson et al., 2017, 2018). As
discussed previously, Baroody et al. (2009) investigated identity, negation, and inver-
sion within the same study as they proposed that identity and negation are important
precursors of inversion. Robinson and colleagues have investigated inversion and
associativity together as both of these concepts require paying attention to the entire
problem in order to notice that there is an easier way to solve the problem by applying
conceptual knowledge versus applying a rote left-to-right problem-solving procedure
(Robinson & LeFevre, 2012) and have consistently found that the inversion concept
is easier and acquired earlier than the associativity concept (Robinson&Dubé, 2009,
2013; Robinson et al., 2006). Commutativity and equivalence are similar concepts in
that they involve the understanding that both sides of the equation should be equal.
Despite often being investigated separately, most arithmetic concepts relate to other
concepts in some way or another. Children with strong conceptual knowledge are
children who understand the ways in which operations and numbers relate to one
another and thereby are able to build a coherent, integrated domain of knowledge
in mathematics (Schneider & Stern, 2009). In this section of the chapter, the results
of a recent study assessing the six concepts described in the previous section are
described. No previous research has investigated this age range of children on all of
these concepts simultaneously.

The participants in the current study were children in Grades 1, 2, and 3. The
study ran in the second and third month of the school year, so the children in Grade
1 had very little formal instruction in arithmetic before the study began. There were
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38 children in Grade 1, 30 children in Grade 2, and 30 children in Grade 3 from one
school in a mid-sized Canadian city. Children were presented with math problems on
sheets of paper and asked to solve the problems without using paper or pencil. Chil-
dren’s answers were recorded, and after each problem, they were asked how they had
solved the problem or, if they had difficulties while solving the problem, were asked
how they were trying to solve the problems. Based on their verbal reports of their
problem-solving procedures, children were classified as having applied conceptual
knowledge or not to solve the problem.

On an identity problem such as 8 − 0, children who were classified as using
conceptual knowledge would usually report that the answer was the first number
as when nothing is taken away, the first number remains unchanged. On a negation
problem such as 8 − 8, children using conceptual knowledge would usually report
that when you take something away from itself, then there is nothing left. On a com-
mutativity problem such as 8+ 2= 2+ ?, children credited with having conceptual
knowledge would mention that they had “flipped” the problem or that if you had an
8 and a 2 on one side, then you also had to have an 8 and 2 on the other side. On an
inversion problem such as 2 + 8 − 8, children with conceptual knowledge applied
the shortcut and would reference that the 8s canceled each other out or that when
you both add and subtract the same number, then the first number stayed the same.
On an associativity problem such as 2+ 8− 6, children who understood the concept
would report that they had solved the subtraction part first and then added the result
to the first number. On an equivalence problem such as 8 + 2 + 6 = 8 + ?, children
were credited with using their conceptual knowledge if they said they had added all
of the numbers on the left side and then subtracted the 8 on the second side or if they
said that the answer was the sum of the second and third numbers on the left side of
the equation.

As can be seen in the figure below, there were clear grade-related differences
as well as differences in conceptual knowledge across the six concepts that were
assessed in this study. Across all six concepts, Grade 3 children applied their con-
ceptual knowledge on almost 50% of the problems, closely followed by Grade 2
children who applied their knowledge on just over 40% of their problems, compared
to only 20%of problems byGrade 1 children. Consistent with the research previously
reported, identity and negation were quite well understood with understanding of 79
and 69%, respectively, but these results are weaker than those obtained by Baroody
et al. (2009) using concrete problems. The third most understood concept was the
inversion concept with overall understanding just under 33%. The remaining three
concepts of commutativity, associativity, and equivalence had weak understanding
with all having well under 20% understanding. It appears that in the early school
years, understanding of arithmetic concepts leaves considerable room for improve-
ment (Fig. 1).

When each grade is examined individually, the results are somewhat more heart-
ening. Clearly, as seen in the figure, Grade 1 children are struggling on all concepts
except for identity, and even then, understanding is just over 50%. There have not
been as many investigations of children’s understanding of concepts at the beginning
of formal schooling as many studies have either focussed on the time before children
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Fig. 1 Percentage use of conceptually based procedures by Grades 1, 2, and 3 children on six
concept types

start school or after they have been in school for a few years. As these children were
asked to solve these problems within the first few months of formal schooling, it is
perhaps not surprising that they struggled as much as they did given that these Grade
1 children had little experience with symbolic arithmetic problem solving and had
little time to learn basic arithmetic facts. Not only is their conceptual knowledge
weak, but so is their factual and procedural knowledge. As all of these forms of
knowledge are thought to develop iteratively, gains in one or more should lead to
gains in the other (Rittle-Johnson, Siegler, & Alibali, 2001).

As can also be seen in the figure, by Grade 2, the concepts of identity and negation
are well understood, which is more consistent with previous findings. The concept
of inversion remains the third most understood concept in Grades 2 and 3, but com-
mutativity, associativity, and equivalence remain very low. Only in Grade 3 does
understanding of commutativity and associativity increase to over 20%. In all grades,
the understanding of negation and identity is higher than that of inversion, which is
compatible with Baroody et al.’s (2009) assertion that understanding of the first two
concepts precedes the latter. The inversion concept was always stronger than the
associativity concept which is the same pattern as found by Robinson and colleagues
(2006), Robinson and Dubé (2009, 2013) and suggests that inversion may precede
associativity. Even though understanding of both the commutativity and equivalence
concepts was quite poor, understanding of commutativity was more than double than
that of equivalence in Grades 1 and 3, but was virtually the same for both concepts
in Grade 2. Therefore, there is some evidence that the concept of commutativity may
precede that of equivalence, but the pattern is not completely clear. Overall, these
results suggest that, within the early school years, these six concepts still need more
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time to develop and that some concepts will need more time than others. A longitu-
dinal study that follows the same children from even before they start their formal
schooling until they are well into their school years is needed to be able to ascertain
this.

Current Knowledge About Children’s Understanding
of Arithmetic Concepts in the Early School Years

In the absence of a longitudinal study that investigates the long-term development
of multiple concepts across many years, what can we conclude about what is known
about children’s knowledge of arithmetic concepts? First, arithmetic concepts mat-
ter. Children with strong conceptual knowledge of arithmetic are more likely to have
stronger mathematical skills overall. Even when they are presented with novel prob-
lems that they have never seen before, children with good conceptual knowledge are
able to apply what they know to come upwith their ownways to solve these problems
(Siegler & Stern, 1998) and so are not completely reliant on formal instruction.

Second, strong conceptual knowledge of basic arithmetic may be the foundation
for success with more complex mathematics. For example, children with a strong
understanding of the meaning of the equal sign at the beginning of Grade 5 achieved
higher scores on an algebra test at the end of the school year (Fyfe,Matthews, Amsel,
McEldoon, & McNeil, 2017).

Third, children often have amarkedly weak understanding of arithmetic concepts.
The results of the study with Grade 1–3 children presented in this chapter highlight
that arithmetic concepts are often difficult and take time to develop. This leads to
the fourth point that more instruction is needed to promote the development of the
conceptual knowledge of arithmetic. Classroom mathematics tends to focus on pro-
cedural and factual knowledge but, as many recent mathematics curricula highlight,
there is a need to spend instructional time on assessing and enhancing conceptual
knowledge of arithmetic (Nunes et al., 2008). Even though some children seem to
acquire conceptual knowledge without the need for prolonged formal instruction
(Siegler & Stern, 1998), many children need help or scaffolding in order to achieve
a good understanding of arithmetic operations and the relations among them.

Promoting Conceptual Knowledge

What are some methods for parents or teachers to increase children’s understanding
of arithmetic and increasing a child’s chance of success with later, more complex
mathematical skills? Four possible approaches are proposed here. First, the most
obvious approach is to teach children about the arithmetic concepts. For example,
inversion, associativity, and equivalence are often not taught to children. In the USA,
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equivalence has been specifically included in mathematics curricula, but in Canada,
many provincial mathematics curricula do not specifically address the concept of
equivalence. From a researcher perspective, that inversion, associativity, and some-
times equivalence problems are novel problems to children is a major advantage.
If children have never seen these problems before, it means that they have never
been taught a problem-solving procedure to solve them. Children who then make
use of the inverse or associative relation between addition and subtraction or make
both sides of an equation equal are doing so because they know the underlying
arithmetic concept instead of having been taught that “when you see X problem,
apply Y procedure” without understanding the meaning or concept underlying the
procedure. However, procedures can be taught with meaning and getting students to
reflect on why a problem-solving procedure works increases conceptual knowledge
(NMAP, 2008).

A second approach to increasing conceptual knowledge is encouraging flexibility
in children’s problem-solving procedures (Newton, Star, & Lynch, 2010). For most
arithmetic problems, there are several ways to solve a problem and get the correct
answer (Robinson, 2001; Siegler, 1987). However, children often get used to solving
problems a certain way that becomes increasingly familiar and practiced over time.
Just as arithmetic facts become encoded into long-term memory and are quickly
and easily accessed, so too can problem-solving procedures. As discussed near the
beginning of the chapter, some problem-solving procedures are more appropriate
than others, depending on the task demands. Much of the time, children solve prob-
lems in the same way that they read from left to right. Most arithmetic problems
in textbooks and worksheets are, when presented in a horizontal format, presented
from left to right. For example, in few instances would children encounter problems
in the following format: ? = 3 + 8 (McNeil et al., 2006). Instead, they see the math
problem on the left and the answer belongs on the right.

After several years of seeing problems in that left-to-right format, children become
used to solving them using a left-to-right approach. On an inversion problem such
as 4+ 29− 29 or an associativity problem such as 43+ 867− 865, applying a left-
to-right approach is going to result in a slow, cumbersome, and error-prone process.
When children are given demonstrations of how they could solve these problems
by dealing with the right side of the problem first (i.e., 29 − 29 or 867 − 865),
some children are astounded and delighted by the cleverness of this approach while
other children reject this approach as a way of “cheating.” (Robinson&Dubé, 2012).
These children often follow up this allegation of cheating by asserting that arithmetic
problems are always supposed to be solved from left to right. So, some children are
flexible and some children are inflexible when solving arithmetic problems. Teachers
and parents can encourage problem-solving flexibility by encouraging children to
come up with several different ways of correctly solving a problem and also by not
encouraging children to think that there is only one “proper” way to solve a problem.
This is an approach that has been successfully used in Asian classrooms for many
years (Stevenson et al., 1990) and may be at least part of the reason for why Asian
children tend to rank among the best in the world in mathematics (OECD, 2016).
This approach also is the foundation of the bookChildren’s mathematics: Cognitively
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based instruction (Carpenter, Fennema, Loef Frank, Levi, & Empson, 2014) which
is based on many years of mathematical education research and supported by online
videos developed for teachers and parents who are trying to improve children’s
mathematical knowledge and understanding.

Third, and related to both teaching problem-solving procedures and encouraging
flexibility, is the idea of mixing problem formats. McNeil (2014) proposed that one
of the reasons that children have such difficulties with equivalence problems is that
children become entrenched in their thinking. This change-resistance account posits
that over time, children become so used to seeing two-term problems presented in
the same format or pattern which they then solve by using the same left-to-right
algorithmic approach, that they form a misconception of the equal sign. The equal
sign becomes associated with something needs to be done, i.e., as an operation to
be performed. So, children who suddenly encounter problems such as 5 + 8 + 7
= 5 + ? think that the equal sign means that they need to add all of the numbers
and therefore the answer should be 5 + 7 + 8 +5. Indeed, this misconception
is so strong that even attempts to correct this misunderstanding of the equal sign
have often been unsuccessful (e.g., Alibali, Philips, & Fischer, 2009) as children
are unable to transfer the instruction they receive to new or different problems. So,
even if children are taught how to solve the problem and also encouraged to come up
with different problem-solving procedures, they are often so used to seeing problems
in a certain format that they are unable to overcome a strongly entrenched way of
solving problems. Instead, if children are regularly presented with problems in non-
traditional formats such as 3+ ?= 8, ?+ 3= 8, 8= 3+ ?, or 8= ?+ 3?, this may
prevent them from becoming change-resistant as they will not have had the chance
to form a misconception such as what an equal sign means.

Another way of mixing up formats is to also present children with problems that
have more than two terms or have more than one operation. They will need to be able
to solve problems with these characteristics when they are introduced to algebra,
and seeing these “different” problems earlier may remove some of the novelty of
algebra problems when they are exposed to them. In many of my studies, children
are startled when they see an inversion, associativity, or equivalence problem, and
the basis for their surprise appears to be due to either the problem having more
than two numbers and/or the inversion and associativity problems including more
than one operation. Disappointingly, it is not uncommon for children to tell me that
they do not know how to solve that kind of problem because they have never seen
them before and then choose to skip the question and move on to the next problem.
Overall, increasing children’s flexibility in their problem-solving strategies may not
only be about teaching children to consider more than one problem-solving strategy,
but also being presented with flexibly formatted problems so that they have even less
opportunity to develop a “this is the right way and the only way” attitude to problem
solving.

Finally, and also related to the above points, is the notion of attention. Con-
ceptual knowledge is more likely to be applied to inversion problems such as
85 + 23 − 23 than it is to associativity problems such as 17 + 98 − 95 (Gilmore &
Bryant, 2006). The inversion concept is probably easier for children to understand as
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it builds logically on the identity and negation concepts, but the associativity concept
does not have similarly easy concepts to build on.However, the inversion conceptmay
also be easier to apply during problem solving as even a quick glance will show that
there are two numbers that are the same. Indeed, when inversion problems are mixed
up and presented as 23+ 8− 23, application of the inversion concept decreases. This
finding supports the ideas of flexibility and entrenchment, but it also supports the
idea of encouraging children to pay attention to the whole problem before applying
a problem-solving procedure. This lack of attention, combined with entrenchment,
may be the reason why children and adults do not apply the associativity concept
when solving associativity problems because they simply do not notice that there is
an easier way to solve the problem (Robinson & LeFevre, 2012). In studies where
children are given a demonstration of how they can apply the associativity concept
in problem solving, many children are amazed and delighted when their attention is
drawn to the right side of the problem. Dubé and Robinson (2010) found that when
adults’ attention was drawn to the right side of the problem by having the problem
appear on a computer screen one symbol at a time going from right to left versus left
to right, participants were more likely to apply both the inversion and associativity
concepts in their problem-solving procedures. Thus, getting children to look at the
whole problem before choosing and implementing a problem-solving proceduremay
promote conceptual thinking during problem solving.

Arithmetic concepts are an integral part of children’s mathematical knowledge,
and increasing this understanding is considered critical both for current and future
success in mathematics. As the current research shows, there is significant room for
improvement about what children know about numbers, operations, and the relations
among them. There is also still a need for more research on arithmetic concepts in
order to determine which concepts develop when, which concepts are dependent
on each other, and which concepts might need the most instruction. In the mean-
time, there are several straightforward ways in which teachers and parents can easily
enhance the development of conceptual knowledge of arithmetic in their students and
children. Such efforts in the early school years have the potential to have long-lasting
impacts on children’s performance in the domain of mathematics.
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An Integrated Approach to Mathematics
and Language Theory and Pedagogy

José Manuel Martínez

To explore the relationship between mathematics and language in bilingual class-
rooms, I begin with a vignette from a third-grade Spanish immersion class in the
Midwest region of the USA. I use bilingual as an umbrella term to refer to contexts
where the teacher and the students communicate in more than one language. All
students’ native language was English, and the language of instruction was Spanish.
During a whole-class discussion conducted in Spanish, the class was determining
the number of squares in a 25× 8 grid. After a few students had suggested different
strategies that involved counting all the squares, one student suggested counting the
squares in the top row and adding that number eight times. This student went to the
board and, counting one by one, stated that there were 252 in each row and that now
they needed to add.

To elicit the usefulness of multiplication in this strategy, the teacher asked what
would be an efficient way to figure out the total number of squares if they know there
are eight rows. Daniel (all names are pseudonyms) responded by saying “Podemos
dividir” (we can divide). His suggestion immediately received a loud rejection from
many of his classmates, several of whom talked simultaneously telling Daniel they
needed tomultiply.Modeling themathematical practice of considering others’ think-
ing, the teacher asked Daniel to showwhat he meant. Daniel went to the board where
the teacher had projected the grid. Moving his finger along the vertical line that had
20 columns to the left and five to the right, he explained: “Podemos dividir esto [the
grid] en veinte y cinco, y ocho por cinco es cuarenta, y sumar ocho por vente. Esto es
más fácil que ocho por veinticinco” (We can divide this [the grid] in twenty and five,
and eight times five is forty, and add eight times twenty. That’s easier than eight times
twenty-five). Daniel was using the word “divide” in the informal everyday sense of
breaking into smaller components. He thought of splitting the 25 × 8 problem into
what he thought was the easier 5 × 8 + 20 × 8 problem.
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One interpretation of the relationship between mathematics and language in this
vignette is that mathematics and language are two separate components of the class
discussion. Following this interpretation, it would be reasonable to say that Daniel
needed more or different language learning opportunities before being able to com-
municate the mathematical idea he wanted to share. This approach could focus, for
example, on opportunities to develop Daniel’s understanding of the word divide in
mathematics as referring to the arithmetic operation of division. In this case, Daniel
would need to know the problem called for multiplication and that he could use the
distributive property to solve the problem. He may avoid using the informal, out-of-
school connotation of theword divide and insteadwould use the formalmathematical
connotation.

This interpretation has problematic implications for teaching and learning. This
is the typical challenge of “pull-out” programs (Honigsfeld, 2009) in which non-
native speakers of the language of instruction miss regular content classes to take
language classes. This format continues until students are supposed to have devel-
oped sufficient skills in the language of instruction. Assuming that students need to
learn the language first to then learn mathematics focuses students’ schooling on lan-
guage learning, delaying mathematics learning opportunities (Moschkovich, 2013).
Many of the so-called English language learners in the USA, students whose native
language is not English and who attend schools where English is the language of
instruction, are segregated in these pull-out programs (García & Kleifgen, 2010).

An alternative and perhapsmore compelling interpretation is thatmathematics and
language are interrelated and inseparable and, thus, using language to communicate
about mathematical ideas (re)shapes ideas and vice versa (Brown, 2002). Following
this interpretation, it would be reasonable to say that there were integrated elements
of language use and mathematical reasoning in Daniel’s contributions. This interpre-
tation would argue that through communication Daniel simultaneously engaged in
the second language use and in mathematics, thus avoiding the drawbacks and prob-
lematic assumptions discussed above. This integrated perspective implies providing
bilingual students the same mathematics learning opportunities their monolingual
peers have, while providing opportunities to learn the language.

The purpose of this chapter is to articulate a theoretical framework from psychol-
ogy about mathematics education (situated learning) and one from sociolinguistics
about the second language education (communicative language teaching) to under-
stand mathematics–language integration. I draw on examples from research in an
enrichment language immersion classroom. I follow Brisk’s(2011) definition of lan-
guage immersion classroom as one where students are native users of the commu-
nity’s dominant language and the language of instruction (in this case Spanish) is a
second or additional language. I illustrate how pedagogical practices consistent with
a situated perspective on mathematics education provide opportunities to engage
with the second language. Simultaneously, pedagogical practices consistent with a
communicative perspective on the second language education provide opportunities
to engage in mathematical activity.

The chapter is organized into twomain parts. First, I discuss points of convergence
between research that has examined mathematics teaching in bilingual classrooms
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and research that has examined the second language teaching in mathematics class-
rooms. Based on this discussion, I propose a unified theoretical framework of con-
tent–language integration that is specific to mathematics. In the second part, I draw
on examples from a classroom to illustrate the types of analysis that the integrated
framework facilitates.

Conceptualizing the Mathematics–Language Integrated
Phenomenon

Mathematics and Language as Related but Separated

The notion that articulating an idea helps further develop the idea and helps further
develop language (Halliday, 1978) has informed research in mathematics education
in general. For example, Pimm (1987) has argued that contrary to popular opinion,
mathematics is not a language-free discipline and language use in mathematics is
different from general language use. Similarly, Brown (2002) has drawn on a post-
structuralist view to challenge dichotomizations of language and mathematics as
separate. This line of research has highlighted that language plays a crucial role in
mathematical activity. These views have informed research in bilingual classrooms.
Previous research has made visible the challenges and tensions that teachers and
students face in bilingual classrooms (Adler, 1998; Barwell, 2005; Moschkovich,
2007; Planas & Civil, 2013; Planas & Setati-Phakeng, 2014). This body of literature
has called for pedagogies that meet bilingual mathematics learners’ specific needs.

Despite these important contributions, recommendations for bilingual mathemat-
ics classrooms have tended to conceptualize mathematics and language as separated
(Nikula, Dalton-Puffer, Llinares & Lorenzo, 2016). Specifically, the relationship
between the two has been portrayed as linear, arguing for students to master spe-
cific language structures before engaging in meaningful mathematical activity. For
example, Cambridge ESOL (2010) suggests that teachers identify the vocabulary
that students will use in a mathematical unit, so that they can teach those linguistic
skills before students engage in mathematics tasks. They give the example of graphs,
recommending that the teacher uses crosswords andfill in the blanks exercises for stu-
dents to learn words such as plot, slope, and axes. Similarly, Smit, Bakker, van Eerde
and Kuijpers (2016) argued for identifying the linguistic features of a mathematical
concept and teaching them to students. They, too, focused on graphs, suggesting that
teachers teach grammar structures such as “I’ll plot the line” so that students are not
confused when encountering this language in the mathematical unit. This framing
implies a separation between language and mathematics and the subordination of
language to the ultimate purpose of mathematics teaching and learning.

The search for bilingual pedagogies that integrate the content and second lan-
guage has been housed outside of mathematics education research. This research
has proposed models such as Content and Language Integrated Learning (CLIL)



190 J. M. Martínez

and the Sheltered Instruction Observation Protocol (SIOP) (Echevarria, Vogt, &
Short, 2004; Kareva, 2013; Mehisto, Frigols, & Marsh, 2008; Snow, Met, & Gene-
see, 1989). These models are motivated by the need to structure teachers’ efforts to
simultaneously teach a language and a subject matter. Rather than being content-
specific, however, these programs are generic. Proponents argue that these models
are flexible enough to be applicable to the different content areas that sometimes one
single teacher covers. The lack of content-specific recommendations, however, tasks
teachers with figuring out the under-researched connections between the content and
second language. Very few studies have examined these models of integrated content
and language in mathematics education (for exceptions see Barwell, 2005; Chval,
Pinnow, & Thomas, 2015; Novotna & Hofmannova, 2000).

To summarize, research onmathematics and language education in bilingual class-
rooms rarely maintains the interdisciplinary and interconnected nature of this phe-
nomenon. Instead, research has tended to focus on language learning as a prerequisite
formathematics learning.Moreover, each of these twobodies ofwork is disseminated
in its corresponding field, with few opportunities for interdisciplinary analysis. Seek-
ing to address this issue, I simultaneously draw on a theory of mathematics education
from psychology (situated learning) and a theory of the second language education
from sociolinguistics (communicative language teaching).

An Integrated Theoretical Framework

Situated learning has been extensively used in mathematics education (Boaler, 2000;
Greeno, 1991; Moschkovich, 2002; Sfard, 1998). This theory emerged as an alterna-
tive to frameworks that overemphasize cognition and the individual (Cobb&Bowers,
1999; Sfard, 1998). Other theories such as cognitivism regard learning as an individ-
ual cognitive process of constructing knowledge. Instead, situated learning theory
considers learning both individual and social, as learners interact with others to be
apprenticed into the ways of participating and using knowledge in a specific com-
munity of practice (Greeno, 1998; Lave & Wenger, 1991).

Similarly, communicative language teaching emerged as both a theoretical and
pedagogical approach that offered an alternative to frameworks that overemphasize
knowledge about language (Brumfit, 1988; Littlewood, 2014). Views of language
as an existing system of grammar structures, vocabulary, and phonemic rules focus
on individuals’ identification of these structures and rules. Accompanying teach-
ing approaches through which individuals got repetitive practice of the structures
explicitly shown includes the audiolingual and the direct translationmethods (Larsen
Freeman, 2011). The purpose of repetition is for the learner to gain automaticity in
recognizing and reproducing these structures. Conversely, communicative language
teaching is concerned with the need to use language to communicate (Richards,
2006). The focus is on language use naturally occurring in interactions, paying atten-
tion to language functions, that is, what people do with language in daily situations.



An Integrated Approach to Mathematics and Language … 191

I conceptualize situated learning and communicative language teaching as both
compatible and complementary. They are compatible in that both prioritize inter-
action to use knowledge in tasks and situations relevant to a community. At the
same time, these two theories have complementary foci. Situated learning focuses
on how individuals interact around mathematical activity in a particular context.
Communicative language teaching focuses on how individuals interact in a second
language duringmeaningful tasks. Thus, the integration of situated learning and com-
municative language teaching helps attend tomathematical activity and language use
simultaneously.

I focus on three practices that are common among pedagogies consistent with sit-
uated learning perspectives andwith communicative language teaching: (1) students’
autonomous exploration, (2) authentic communication, and (3) balance between flu-
ency and accuracy. First, both frameworks highlight the importance of students’
autonomous exploration as a means to engage in relevant disciplinary practices and
in meaningful situations. Autonomous exploration involves interactions among stu-
dents to communicate ideas around a particular situation. Through this communica-
tion, mathematical ideas emerge and develop. For example, from the point of view
of situated learning, Greeno (1998) has described the role that tasks contextualized
in situations relevant to students play in eliciting learners’ autonomous exploration
of mathematical ideas. Similarly, from the point of view of communicative language
teaching, Larsen Freeman (2011) has provided examples of language development
through student independent engagement with a situation that requires purpose-
ful communication. Therefore, an integrated framework to analyze the inseparable
mathematics–language phenomenon pays attention to students’ autonomous engage-
ment with tasks in which relevant mathematical and linguistic practices emerge and
develop.

A secondpedagogical practice common toboth frameworks is the focus onauthen-
tic communication. Students’ autonomous exploration entails naturally occurring
communication that typically involves students, the teacher, and textbooks. From
the point of view of situated learning, communication is inherent in the process of
learning to participate in a community of practice (Lave & Wenger, 1991). Some
of the practices regarded as important in mathematical activity include making
claims, hypothesizing, justifying, making arguments, and considering others’ think-
ing (Greeno, 1991; Sfard, 1998; Sfard, Nesher, Streefland, Cobb, & Mason, 1998).
Students have opportunities to learn how these practices are enacted in mathematical
activity when they engage in communication. From the point of view of commu-
nicative language teaching, communication is at the center of the second language
learning. In this approach, language functions drive the learning process (Larsen
Freeman, 2011). Language functions refer to the purposes for which people use
language, such as to greet, to apologize, or to make arrangements. The mathemat-
ical practices mentioned above correspond to language functions. Accordingly, an
integrated framework considers authentic communication as constitutive of both
mathematics and language teaching and learning.

Finally, a common consideration of both situated learning and communicative
language teaching is the balance between fluency and accuracy. A situated learning
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perspective analyzes the practices in which students engage that are valued by the
community of practice (Greeno, 1991). Currently,mathematics educators regard both
fluency and accuracy as important. TheNational Council of Teachers ofMathematics
(2000) states that “computational fluency refers to having efficient and accurate
methods for computing” (p. 152). That is, the ultimate goal of mathematics education
is not accuracy exclusively, but the flexible and appropriate use of diverse methods
in mathematical activity.

From the perspective of communicative language teaching, fluency refers to lan-
guage use in a way that allows the smooth flow of communication, while accuracy
refers to correct word use and production of grammatical structures (Lightbown
& Spada, 2006). Effective communication requires sufficient fluency and accuracy.
That is, communication is not effective when it is interrupted and unnaturally slow
for the sake of accuracy, or when it happens at a natural pace, but it is incompre-
hensible due to frequent or major errors. For the purpose of devising an integrated
framework, accuracy and fluency in language use are accuracy and fluency in math-
ematical activity and vice versa. Teaching and learning involve a balance between
fluency and accuracy in the co-constitutive phenomenon of mathematics–language.

These three pedagogical practices of an integrated approach to mathematics and
language have implications for teachers. Under this framework, teachers’ roles are in
opposition to views of teachers as transmitters of knowledge. Both situated learning
(Sfard, 2001) and communicative language teaching (Richards, 2006) acknowledge
the importance of these roles. Specifically, in a classroom where teachers are aware
of the interaction between language and mathematics, teachers act as facilitators of
discussions among students. To foster these discussions, teachers also take on the
role of designing tasks that promote autonomous exploration of mathematically and
linguistically rich situations that are relevant to students. For this exploration to take
place, teachers foster a class environment in which students are comfortable taking
risks, making mistakes, and exploring ideas. In the second part of the chapter, I
exemplify how the integrated framework can guide analyses of the interrelationship
between mathematics and language.

Classroom Example

This third-grade classroom, located in theMidwest region of theUSA, followed a lan-
guage enrichment full immersion model (Brisk, 2011) with Spanish as the language
of instruction. The teacher was Señora Abad, a US-born Latina who considered both
English and Spanish her native languages. Her background was in Spanish–English
bilingual education, and she had had four years of teaching experience, all at this
school. There were 23 students (ages eight to nine) in this classroom, including 9
female students (1 Latina, 1 African American, 7 White) and 14 male students (2
African American, 12 White). All students had attended this language immersion
program since kindergarten, except for one student (White female) who had started
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during first grade. All students were English native speakers and were comfortable
communicating in Spanish.

I had worked with Señora Abad for two years as participant–researcher (Dreyer,
1998, 2016), using interpretive ethnographic data generation methods such as class-
room observations, lesson video recording, and field note writing (Erickson, 2006,
2012; Spradley, 2016). My involvement included co-planning and co-teaching math-
ematics lessons with Señora Abad once a week for most of the school year (October
2015 to April of 2016) and every day during a teaching unit on geometry (May 2016),
and on number sense and problem solving (June 2016).

The Lesson

The examples I present come from the first lesson of a geometry unit. The teacher and
I adapted Mack’s (2007) task to elicit students’ understanding of two-dimensional
shapes and to explore the relationship between a shape’s name and its attributes.
There were five parts in this lesson. The first part was a whole-class discussion
that I facilitated and in which students answered the question “What do you know
about geometry?” During the second part, each student received the image of a two-
dimensional shape (i.e. a triangle, square, pentagon, hexagon, or circle). We asked
students to find classmates whose shapes were in the same category, without telling
students what we meant by “same category.”

In the third part of the lesson, we asked students to work within their category
groups deciding what the name of the category was and preparing a description to
share with the rest of the class. In the fourth part, each group described their shape
to the whole class. In the final part of the lesson, each student drew and named
one shape they made up. In their small groups, they shared their creation and what
the relationship was between the shape’s attributes and its name. I first describe the
integrated mathematical practices and language use that the tasks fostered and then I
focus on one student, analyzing a student’s interaction with the concept of hexagons
throughout the lesson.

Mathematics and Language Throughout the Lesson

Students had several mathematics and language learning opportunities through the
pedagogical practices highlighted in the integrated framework. These three peda-
gogical practices seem overlapping and mutually constitutive. The lesson fostered
students’ autonomous exploration of ideas as learners helped determine the direction
of whole-class discussions based on their contributions. Additionally, during the sec-
ond and third part of the lesson (making groups according to shapes, and naming and
describing the shapes), students worked independently to figure out shapes’ relevant
attributes thatmade thembelong to a category. This autonomous exploration required
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authentic communication for students to contribute and expand their ideas. Through
unrehearsed conversation, students showedwhat they knew about shapes and showed
possible directions to further their learning. One of those directions stemmed from
the balance between fluency and accuracy. For example, students freely expressed
some ideas, without the teacher or the researcher objecting, and at the same time,
those ideas helped us see the need to develop more accurate definitions of particular
shapes and categories.

One example of students’ contributions guiding the lesson took place during the
first whole-class discussion. As a geometry example, one student mentioned Rubik’s
Cubes which is a puzzle in the shape of a cube where each face is made up of nine
individually rotatable squares of the same color. This idea resonated with several
students who mentioned they had one or that they had a Pyramix, a puzzle similar
to a Rubik’s Cube but in the shape of a tetrahedron. The teacher asked what shapes
students could find in a Rubik’s Cube and in a Pyramix. Students mentioned cubes,
squares, triangles, and what a student called “mixed-up shapes.” When one of the
students, Bill, said that Rubik’s Cubes had hexagons, the following conversation
unfolded. Italicized text in parenthesis is my translation to English of speech origi-
nally uttered in Spanish. Text in brackets describes non-verbal communication. Bold
letters show speakers’ emphasis.

Researcher ¿Quién puede dibujar un hexágono? (Who can draw a hexagon?)
Bill ¡Yo puedo! (I can!). [Goes to the board and draws an octagon.]
Researcher ¿Cómosabes que es unhexágono? (Howdoyou know that’s a hexagon?)
Bill [Erases the octagon and draws another octagon.]
Duke Esto es un hexágono. (This is a hexagon). [Goes to the board and draws

a hexagon.]
Researcher ¿Y cómo sabes que es un hexágono? (And how do you know that’s a

hexagon?)
Daniel ¿Porque tiene seis partes? (Because it has six parts?)
Researcher ¿Seis partes? (Six parts?)
Daniel ¡Puntos! ¡Hay seis puntos! (Points! There are six points!)
Josh Lados. (Sides.)
Daniel ¡Lados! No. ¡Lados, lados! (Sides! No. Sides, sides!) [Gestures with his

arm and hand stretched out as if representing a straight line.]

Analyses of this excerpt from the perspective of the independent theories, situated
learning and communicative language teaching, could foreground eithermathematics
or language. Following a situated learning perspective would elicit an analysis of
important mathematical practices that emerged during the lesson. In this example,
those practices included naming geometric objects, using multiple representations to
make thinking public and attending to others’ reasoning. Following a communicative
language teaching perspective would elicit an analysis of important language use.
In the example, language use included naming and describing objects and images,
repairing miscommunication and understanding who, why, and what type questions
which require more than a yes or a no as a response. Focusing on situated learning
or on communicative language could yield interpretations of which phenomenon,
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mathematics practices or language use, was driving the lesson. These interpretations,
however, respond to the particular focus of each framework, artificially separating
mathematics and language.

The simultaneous consideration that the integrated framework facilitated seems
closer to the events as the students, the teacher, and the participant–researcher expe-
rienced them. In this example, participation in mathematical practices constituted
language use and language use constituted participation in mathematical practices.
Through participation in mathematical practices, we explored ideas about what a
hexagon is and what sides are. This exploration involved language skills such as
using vocabulary appropriately and accurately. Instead of differentiating or separat-
ingwhether the lesson provided language ormathematical learning opportunities, the
juxtaposition of the two merits analysis and constitutes the phenomenon of interest.
I further develop this point by expanding on Bill’s ideas about hexagons.

A Hexagon According to Bill

In this lesson, collective processes interacted with opportunities for individual sense
making. Although situated learning theory and the communicative language teaching
approach highlight the importance of the collective, these frameworks do not ignore
individual experience. Instead, these frameworks contextualize individual experience
in the collective.Accordingly, an integrated framework formathematics and language
should give account of the collective, the individual, and the interaction between the
two. In the previous description, I analyzed the lesson from the point of view of the
collective. I now focus on one particular student, Bill, and what the consideration of
the intersection of his mathematical practices and language use suggests about his
conceptualization of hexagons.

As described above, Bill mentioned the hexagon when the class started talking
about the Rubik’s Cube. In that case, the Rubik’s Cube was an artifact that served
as a springboard for both mathematical and linguistic exploration. Using artifacts
from the community is a mathematics teaching move that helps students participate
in multimodal mathematical interaction (O’Halloran, 2015). Using artifacts is also a
pedagogical practice in the second language where an artifact acts as a focal tangible
object that everybody can see or feel so that there is a common ground for communi-
cation (Lantolf, Thorne, & Poehner, 2015). Bill drew an octagon when asked to draw
a hexagon. This could be interpreted as suggesting he needed learning opportunities
to choose the accurate word in Spanish or to understand the mathematical concept of
hexagon. Considering Bill’s initial participation around the idea of “hexagon” from
the perspective of the integrated framework, however, we know that he recognized
“hexagon” as a word that could be used in a conversation about geometry. He also
knew that the word “hexagon” had to do with shapes and attempted a represen-
tation of a hexagon. Additionally, Bill knew that his contribution fitted within the
whole-class discussion, which is a situated practice in school mathematics and is
a communicative activity in the second language classrooms. From this integrated
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perspective, Bill was using the language as part of his exploration of mathematical
ideas.

During the second part of the lesson (finding classmates with similar shapes),
Bill received a regular pentagon; that is, all angles measured the same, and all sides
measured the same. He paired up with one classmate only, Judith, who had received
a concave pentagon. The two students proceeded to look for others with shapes in
their same category. Judith approached two of their classmates. As all four children
looked at their shapes, Bill counted from one to six as he pointed at each of the sides
of one of his classmate’s shape. He stated: “No. Ellos tienen seis” (No. They have
six), and he and Judith moved along looking for others. This interaction suggests
that he knew that the number of sides is a relevant attribute to categorize a shape. He
also knew a shape with five sides was not in the same category as a shape with six
sides. He knew to express the relationships between sides and shapes using the verb
to have.

In the third part of the lesson, Bill and Judith worked on naming and describing
their shapes:

Judith Es un… un… (It’s a… a…)
Bill Hexágono. (Hexagon.)
Judith Hexágono. Y tiene cinco part… Cinco… (Hexagon. And it has five par…

Five…)
Bill Lados. (Sides.)
Judith Cinco lados. Y es recta. (Five sides. And it’s straight.)

This interaction reinforces the interpretation that Bill understood sides as relevant
attributes of shapes. The support he provided for Judith to participate in this activity
went beyond providing language for her to express her mathematical ideas. Their
understanding of the concept at the moment was informed by the multi-semiotic
juxtaposition of language and image (O’Halloran, 2005). So far, Bill had used the
word hexagon to refer to shapes he could see in aRubik’s Cube and also in association
with the image of an octagon and of a pentagon. He had also seen a six-sided shape
and, without naming it, he had decided it did not belong in the same category as his.

When we transitioned to the fourth part of the lesson (each group sharing the
name and description of their shape), Judith suggested starting with the group whose
shape had the fewer number of sides:

Judith Empezamos con los triángulos que tiene tres lados. Luego ellos que
tiene cuatro. (Let’s start with the triangles that have three sides. Then
them that have four).

Duke No. Círculos. Círculos no tiene nada de lados. (No. Circles. Circles
doesn’t have any sides.)

Researcher ¿Qué significa lado? (What does side mean?)
Grant Línea. (Line.)
Researcher ¿Esto es una línea? (Is this a line?) [Drawing a curve on the board.]
Duke No. Porque es como un círculo. (No. Because it’s like a circle.)
Bill Es como curve. (It’s like curve.)
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Researcher ¿Es curvo? (It’s curve?)
Bill Si. No es como recto. (Yes. It’s not like straight.)
Duke Esto no es figura. (This isn’t shape.)
Bill Ajá. Los otros son hexágonos y estos son círculos. (Uh-huh. The other

ones are hexagons and these are circles.) [Pointing at the curve on the
board.]

After the group with triangles and quadrilaterals presented their shapes, Judith
announced her group was next:

Judith ¿Quién sigue? [Pause] Nosotros. ¿Qué es el nombre? (Who’s next?
[Pause] We are. What’s the name?)

Bill Hexágono. (Hexagon.)
Researcher Un momento… ¿Tenemos aquí alguien que tenga pentágonos? (Hold

on… Do we have anybody with pentagons?)
Judith ¿Quién tiene cinco? Tenemos cinco, cinco lados. (Who has five? We

have five, five sides.)
Researcher A ver, déjame ver. (Here, let me see.)
Judith Cinco lados. Uno, dos, tres, cuatro, cinco. (Five sides. One, two, three

four, five.) [Holding the shape for the class to see, she points at one side
with each number she says]

Researcher ¡Oh! ¿Como se llama la figura de ustedes? (Oh! What’s the name of
your shape?)

Judith [Shrugs]
Bill Hexágono. (Hexagon.)
Ariel Pentágono. (Pentagon.)
Judith Hexágono. (Hexagon.)
Mike ¡Penta! ¡Penta! (Penta! Penta!)
Researcher [Addressing the whole class] Tenemos una duda. Esta figura, unas per-

sonas opinan que es un pentágono y otras personas opinan que es un
hexágono. ¿Qué piensas? (We’re not sure about something. This shape,
some people think it’s a pentagon and others think it’s a hexagon. What
do you think?)

Leila Pentágono. (Pentagon.)
Researcher ¿Por qué? (Why?)
Leila Porque el pentágono tiene cinco lados. (Because the pentagon has five

sides.)
Researcher ¿El pentágono tienen cinco lados? ¿Cómo sabes? (The pentagon has

five sides? How do you know?)
Leila Pentagrama y pentágono. Cinco líneas y cinco lados. (Staff and pen-

tagon. Five lines and five sides.)
Researcher ¿Entonces el nombre de la figura y la figura tienen que ver? (So, the

name of the shape and the shape have something to do?)
Milo Si. Tri ángulo. Tres ángulo. Pen tagono. Tienen cinco lados y tienen

cinco esquinas. (Yes. Tri angle. Three angle. Pen tagon. They have five
sides and they have five corners.)
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Bill Ohhh!

First, Bill made a distinction between circles and hexagons. After that, it is clear
thatBill knew there are three-sided, four-sided, andfive-sided shapes.His classmates’
naming their shapes as triangles and quadrilaterals did not surprise him. When the
time came for his group to share, I heard him saying their shapewas a hexagonbefore I
could see their shape. Thinking we had skipped a shape, I asked for pentagons. Judith
responded expressing doubt, but Bill insisted that their shape was a hexagon. The
remaining of the interaction made explicit connections between shapes’ names and
their number of sides, to which Bill expressed surprised. After Bill’s expression of
realization at the end of this vignette, he stated their shape was a pentagon and Judith
agreed, counting the five sides.

Based on these interactions, it is not possible to be completely sure whether
Bill’s conceptualizations of a hexagon had to do with his language or his mathemat-
ical understanding. Instead, the integrated framework I use here draws attention to
both at the same time, considering this an issue of the mathematics–language phe-
nomenon. The autonomous exploration, authentic communication, and favoring of
fluency allowed Bill to use language in ways he thought appropriate in the context of
this mathematical discussion. These practices made Bill’s thinking about hexagons
public. In turn, the search for accuracy was grounded in the interaction between
mathematics and language, as students explained the relationship between a shape’s
name and its attributes.

Consider the alternative: having students follow a short lecture on the names of
geometric shapes and their number of sides, and a drilling exercise for them to pro-
duce specific sentences and match themwith shapes, such as “This is a hexagon. The
hexagon has six sides.” Language production would be accurate. There would be,
however, insufficient evidence regarding whether accurate language use reflected
mathematical understanding or just the recitation of memorized sentences. The
accuracy (or lack thereof) of language use relates to Bill’s understanding of what
a hexagon is. Similarly, his understanding of “hexagon” as a distinct concept comes
to be because of language use. Students cannot communicate what they do not know
and they do not know what they cannot communicate.

Conclusion

From a theoretical point of view, this chapter contributes and operationalizes a frame-
work that considers mathematics and language as integrated. In doing so, it initiates
a conversation between educational research in mathematics and in the second lan-
guage. Although the examples come from an enrichment language immersion class-
room, the analyses presented here could inform research in other contexts. The tenets
of mathematics–language activity described here could illuminate our understanding
of programs for English language learners. Specifically, an integrated framework can
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guide analyses that are close to classroom experience, where teachers and students
engage in mathematical activity and language use at the same time.

From an analytical point of view, each of the examples provided could have been
analyzed from one perspective only: situated learning in mathematics or a commu-
nicative approach to language teaching. As discussed in the conceptualization of
the mathematics–language phenomenon, previous attempts to relate the two usually
draw on linearity and causality to show how language knowledge allows mathemat-
ics activity and vice versa. These analytical options are limited when the boundaries
between exploring mathematical ideas and using language are blurred. Instead, the
proposed integrated framework focuses on the phenomenon of mathematics–lan-
guage as it realistically happens in the classroom. Teachers and students do not set
aside specific formal language to use it in the learning of mathematics, as models
such as CLIL or SIOP suggest. Instead, teachers and students deal with the integrated
phenomenon of mathematics–language at once, and learning one involves learning
the other.

From a pedagogical point of view, this chapter has implications for teachers. A
productive alternative to the current compartmentalization of language and math-
ematics in some of the models that teachers use is the integration of the two. The
pedagogical practices of fostering students’ autonomous exploration, authentic com-
munication, and a balance between fluency and accuracy could become part of the
principles that teachers consider when designing tasks. Since both the teacher and
the researcher in this study have expertise in the second language teaching, future
research could explore how to extend this integrated approach to other teachers with
different expertise.

This chapter has suggestions for parents supporting their children’s learning pro-
cess. The integrated framework invites parents to shift away from overemphasizing
children’s accurate use of the second language and of mathematical procedures.
Instead, parents’ expectations could continue to place value in children’s develop-
ment of accuracy and precisionwhile simultaneously recognizing themathematically
and communicative skills that students use in language immersion classrooms. Lan-
guage immersion classrooms depend on parents’ support and commitment to this
type of context that are not the well-known mainstream monolingual classroom.
Acknowledging children’s developing skills can further parents’ appreciation of and
patience with the complex task that teachers and children in these classrooms under-
take.

This chapter used the integrated theoretical framework to make sense of third-
graders working on geometry. From research on the second language, we know
young students have different ways of learning languages (Pinter, 2017), and from
research on mathematics education, we can infer that the interrelationship between
language and content such as numbers and operations is different from the interrela-
tionship between language and geometry. Therefore, more research is necessary to
operationalize this framework, acknowledging learners’ characteristics—including
their age—and specific mathematical content in diverse contexts.
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Schema-Based Instruction: Supporting
Children with Learning Difficulties
and Intellectual Disabilities

Kim Desmarais, Helena P. Osana and Anne Lafay

Children who have learning difficulties or intellectual disabilities have similar chal-
lenges when solving mathematical word problems, including creating an internal
representation of the problem structure and organizing the information to generate a
solution strategy. Students with learning difficulties in mathematics and those with
intellectual disabilities benefit from mathematics instruction that incorporates visual
aids and repetition, and promotes strategy flexibility to help develop conceptual
understanding. With regard to mathematical word problem solving, one approach
has shown promise for individuals with learning difficulties and typically devel-
oping youth. Schema-Based Instruction (SBI) uses visual representations to teach
students the mathematical structure of word problems. In this paper, we draw on
existing literature to outline some of the cognitive deficits that have been observed
in children with learning difficulties in mathematics and in those with intellectual
disabilities and describe the ways in which those deficits can manifest themselves in
the context of mathematical problem solving. We then describe the data we collected
from our own delivery of SBI to a group of students with intellectual disabilities and
compared their performance to students with and without learning difficulties. We
focus on instances of meaningful problem solving after the intervention, with a focus
on how the students may have circumvented or compensated for specific cognitive
deficiencies. We conclude the chapter with a discussion about the elements of the
instruction that may account for the students’ performance after the intervention.

Classrooms aremade up ofmany different types of learners, ranging from students
whoexcel academically to thosewho struggle to learn thematerial being taught. Some
students may have learning difficulties, intellectual disabilities, or other challenges,
such as autism spectrum disorders. Indeed, it is estimated that in Canada, 57.6%
of children aged 5–14 with intellectual disabilities are within the mild to moderate

K. Desmarais
Department of Psychology, Concordia University, Montreal, QC, Canada

H. P. Osana (B) · A. Lafay
Department of Education, Concordia University, Montreal, QC, Canada
e-mail: helena.osana@concordia.ca

© Springer Nature Switzerland AG 2019
K. M. Robinson et al. (eds.), Mathematical Learning and Cognition in Early Childhood,
https://doi.org/10.1007/978-3-030-12895-1_12

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12895-1_12&domain=pdf
mailto:helena.osana@concordia.ca
https://doi.org/10.1007/978-3-030-12895-1_12


204 K. Desmarais et al.

range, indicating that more than half are likely placed in inclusive school settings
(Human Resources and Skills Development Canada (HRSDC), 2011).

Existing educational policies in North America stipulate that children with learn-
ing difficulties or intellectual disabilities should have access to equal opportunities for
high-quality education that meet their needs (e.g., Education Act of Ontario, Ontario
Ministry of Education, 1990; No Child Left Behind Act (NCLB), 2001; Ministère
de l’éducation et de l’enseignement supérieur, 1999). Further, policies advocate for
access to general education in the regular classroom to help these children meet
the developmental goals established for all students (Individuals with Disabilities
Education Improvement Act (IDEA), 2004).

Typical school mathematics curricula and pedagogies are rarely tailored to chil-
dren with special needs (in our case, children with learning difficulties or intellectual
disabilities), despite the fact that they are often integrated with other students in
the classroom (Rose & Rose, 2007). Given the potential number of students who
need support in mainstream classrooms, it is of utmost importance that appropriate
programs are put into place to help support all children’s mathematical development.

Although research on effective mathematics instruction is often focused on the
typically developing student population, there is less research on effective practices
specifically for children with learning difficulties. Even less research attention has
been paid to mathematics instruction for children with intellectual disabilities and
the pedagogies that can support their learning. It would appear that, for the most part,
the mathematics instruction provided to children with intellectual disabilities has by
and large emphasized rote, procedural instruction, with little focus on the develop-
ment of conceptual understanding (Baroody, 1999; Cawley, Parmar, Yan, & Miller,
1998). More recently, Powell, Fuchs, and Fuchs (2013) argued that for students
with mathematics difficulties, instruction should increase its focus on fluency with
basic arithmetic skills, which are needed to solve problems that require conceptual
knowledge. Traditional views of children with mathematics difficulties and intellec-
tual disabilities are that they are “passive learners,” capable of learning lower-level
skills, but unable to devise or learn new strategies or transfer the skills previously
learned. Research has shown, however, that children with intellectual disabilities are
indeed capable of learning a number of mathematical skills and concepts with proper
instruction (Baroody, 1999; Fletcher, Lyon, Fuchs, &Barnes, 2006; Ginsburg, 1997).

In this chapter, we describe an instructional intervention that we delivered to a
small groupof studentswith intellectual disabilities and compare their performance to
that of children with and without learning difficulties. For purposes of clarity, we use
the term “learning difficulty” to describe students who are either (a) diagnosed with
a specific mathematics disability according the researcher’s criteria, or (b) students
who are underperforming in mathematics relative to their peers in the classroom,
but who have no known diagnoses. When we use the term “mathematics learning
disability,” we are referring only to those students with specific diagnoses reported
by the researchers. The intervention we delivered was a modified version of schema-
based instruction (SBI; Jitendra & Star, 2011), an empirically validated teaching
approach designed to support students’ understanding of the mathematical structure
of word problems.
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We begin the chapter by referring to the existing literature to outline some of the
cognitive deficits that have been observed in children with learning difficulties and
intellectual disabilities and the ways in which those deficits can manifest themselves
in the context of mathematical problem solving. We will then turn our attention to
the student data we collected to describe particular instances of meaningful prob-
lem solving after the intervention, with an eye toward how the students may have
circumvented or compensated for specific cognitive deficiencies. We conclude the
chapter with a discussion about the elements of the instruction that may account for
the students’ performance after the intervention. We note that the conclusions that
we can draw are limited because of the small number of participants in our study.
Because of this limitation, we do not claim that our data generated any robust effects,
causal, or other. Because of the dearth of research on the problem solving of children
with intellectual disabilities, however, our findings nevertheless make an important
contribution to this literature.

Mental Representation in Problem Solving

De Corte, Verschaffel, and De Win (1985) proposed a theoretical model of the pro-
cesses involved in solving mathematical word problems. The model consists of five
stages. In the first stage, the child processes the verbal text and creates a mental
representation of the word problem structure. In the second stage, the child selects
the appropriate arithmetic operation for finding the unknown. This selection is in
large part dependent on the mental representation constructed in the first stage. In
the third stage of the problem-solving model, the child executes the operation he or
she has chosen. During the fourth stage, the child reactivates the mental representa-
tion, inserting the answer that was calculated. In the last stage, the child verifies if
the answer is correct.

A study by Boonen, de Koning, Jolles, and van de Schoot (2016) nicely illustrates
how successful problem solving is contingent on a correct mental representation
of the problem structure. The authors found that children tended to write numbers
sentences with operations that were consistent with the relational terms (i.e., “more
than,” “less than”) used in the problem. In other words, the children were more likely
towrite number sentences with “+”when “more than”was used in theword problems
than when “less than” was used, even when subtraction may have been a legitimate
operation for the problem. This indicates that for children to be successful on incon-
sistent problems (when the relational terms do not match the required operation),
they need to rely on a mental representation of the problem structure and cannot get
by with superficial aspects of the problem text (e.g., the words “more” or “less”).

Students with learning difficulties are often challenged when creating mental rep-
resentations of problems and identifying the relevant information for solving them
(Xin, Jitendra, and Deatline-Buchman, 2005). This has been shown to negatively
impact problem solving in a number of ways, including reduced accuracy, difficulty
generating number sentences, and applying inappropriate strategies for solving the
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problems (Hutchinson, 1993; Montague & Applegate, 1993). Some of the difficul-
ties they have in creating mental representations of mathematics problems can be
explained by executive functioning deficits that have been identified in the literature
for children with intellectual disabilities (Oznoff & Schetter, 2007). Children with
learning difficulties are challenged when they solve problems that require visualiza-
tion and working memory capacity (Stein & Krishnan, 2007).

SBI specifically targets the first stage of the model—students’ internalization
of an appropriate problem structure. Without an appropriate mental representation,
students will be hindered in choosing an appropriate operation, which in turn, will
affect subsequent computations.Appropriatemental representations ofwordproblem
structures help students see the relationships among the quantities in the problem,
which then supports the identification of suitable strategies for solving it (Lucangeli,
Tressoldi, and Cendron, 1998).

Domain General Predictors of Word Problem Solving

Daroczy, Wolska, Meurers, and Nuerk (2015) proposed a model of the cognitive
factors that are predictive of successful word problem solving. Their model includes
domain general abilities as well as linguistic and numerical capabilities, and the
authors describe the ways in which these factors account for student performance.
In this section, we focus specifically on domain general abilities, such as execu-
tive functioning skills (e.g., working memory, shifting, and inhibition). The research
has identified two specific executive functions, namely working memory and cogni-
tive flexibility, as being especially important in mathematical problem solving (e.g.,
Geary, 2004; Geary, Hoard, Byrd-Craven, Nugent, and Numtee, 2007). Below, we
present a brief overview of the literature describing the impact of working memory
and flexibility on specific aspects of word problem solving.

Workingmemory.Workingmemory is the ability to hold amental representation
of information in one’s mind while simultaneously using other mental processes to
complete a task (Geary et al., 2007). Working memory plays a major role in predict-
ing problem-solving accuracy (Andersson, 2007; Swanson & Beebe-Frankenberger,
2004; Zheng, Swanson, and Marcoulides, 2011); it is involved in all aspects of the
problem-solving process because the students need to keep a number of pieces of
information in mind during text comprehension, all while selecting an appropriate
operation, executing the operation, and verifying the response.

Several researchers have demonstrated that students with learning difficulties and
those with intellectual disabilities have significant working memory deficits, which
in part explain their difficulty solving mathematics problems (Geary, 2004; Henry,
Messer, and Poloczek, 2018). These deficits are manifested in various ways when
children solve problems. For example, childrenwithmathematics learning difficulties
and with intellectual disabilities have trouble executing the required operation, and
as such will use less mature strategies and make more errors than children without
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difficulties. For instance, children with learning difficulties often resort to finger-
counting because it reduces the demands on working memory (Geary, 2004).

In addition, although little is known about the role of working memory in the
creation of a mental representation, it has been shown that working memory is
implicated in the construction of the mental number line (Geary, Hoard, Nugent,
and Byrd-Craven, 2008). It is therefore reasonable to attribute children’s struggles
in constructing a useful mental model for a word problem to their working memory
challenges. Furthermore, students with intellectual disabilities and learning difficul-
ties likely struggle to keep a mental representation in mind throughout the problem-
solving process (Lee, Ng, & Ng, 2009; Swanson & Sachse-Lee, 2001).

Judd and Bilsky (1989) attempted to alleviate cognitive load by providing a visual
aid (i.e., dots that represented the quantities in the word problem) to students with
and without intellectual disabilities while they were solving addition and subtraction
word problems. The authors observed that students in both groupswhowere provided
the visual representations were better able to retain the relevant information in the
problem. They also showed that of all the students who were provided the visual
aids, those who employed counting strategies were more likely to be successful (i.e.,
accurate) relative to those who were not provided the visual aids. Finally, Judd and
Bilsky found that the errors made by children with intellectual disabilities were often
characterized by overcounting or undercounting during the execution of the solution
strategy.

Strategy flexibility. Flexibility in strategy use is defined as adapting one’s strate-
gies to the characteristics of the task at hand (Van der Heijden, 1993, cited in Ver-
schaffel, Torbeyns, De Smedt, Luvwel, and Van Dooren, 2007). Ostad (1997) exam-
ined the addition strategies of children with mathematics learning difficulties and
found that the children in the primary and upper elementary grades relied more on
“back-up” strategies than retrieval strategies relative to their typically developing
peers, which appears to be related to working memory deficits (Geary, Hoard, Byrd-
Craven, and DeSoto, 2004). Back-up strategies are overt strategies that are visible
or audible, such as counting on one’s fingers. Retrieval strategies are those in which
the answers are retrieved from long-term memory and can support performance on
complex tasks because they require fewer demands on working memory (Powell
et al., 2013; Raghubar, Barnes, and Hecht, 2010). In addition, Ostad found that chil-
dren with mathematics learning difficulties exhibited considerably less flexibility in
their strategy use compared to those students without difficulties. In particular, they
tended to use one strategy repeatedly, as opposed to their typically developing peers,
who used a range of strategies when solving problems. Ostad used the term “strategy
rigidity” to describe those children who repeatedly use a smaller number of primitive
back-up strategies when solving word problems.

Children with intellectual disabilities also struggle with strategy flexibility. Chil-
dren with autism spectrum disorders, for example, have significant limitations with
regard to cognitive flexibility and planning (Oznoff & Schetter, 2007), specifically
at the conceptual level, making it difficult for these individuals to shift from one
concept to the next. This is especially problematic when they engage in mathematics
activities that require frequent shifting between various strategies or operations. It
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also appears that there is a relationship between the construction of an accurate repre-
sentation of a problem’s structure and flexibility in strategy use. Indeed, childrenwho
lack conceptual understanding of the quantitative relationships in a problem—that
is, who lack an accurate mental representation of the problem structure—tend to be
rigid in terms of the solution strategies they generate (Baroody, 1999; Lee et al.,
2009).

Word Problem-Solving Instruction and SBI

There is evidence that children with learning difficulties and children with intel-
lectual disabilities can acquire the same mathematical knowledge as their typically
developing peers if additional and appropriate instruction is provided (e.g., Clements
& Sarama, 2009; Fletcher et al., 2006). For example, young children with intellec-
tual disabilities can learn oral counting, one-to-one correspondence, and cardinality
(Baroody, 1999). In addition, they can learn basic numeracy skills (e.g., counting and
subitizing) to the same level as their typically developing peers, as long as instruction
is explicit and provides opportunities for practice (Bird & Buckley, 2001).

Three reviews of the literature focused on the effects of mathematics interven-
tions on the learning of children with intellectual disabilities (i.e., Browder, Spooner,
Ahlgrim-Delzell, Harris, and Wakemanxya, 2008; Butler, Miller, Lee, and Pierce,
2001;Mastropieri, Bakken, and Scruggs, 1991) and of childrenwith autism spectrum
disorders (Browder et al., 2008). Together, these reviews showed that interventions
targeting word problem solving with children and teenagers presenting with intel-
lectual disabilities and autism were effective when they focused on the training of
cognitive self-control strategies (e.g., checklists), the analysis of problem statements,
and the use of concrete objects during the execution of solution strategies.

Bissonnette, Richard, Gauthier, and Bouchard (2010) conducted an overview of
several reviews of the literature on mathematics interventions in students with learn-
ing difficulties. They demonstrated that explicit instruction is more effective than
pedagogical methods based on constructivism for teaching word problem solving
in children with learning difficulties. More recently, Jitendra, Nelson, Pulles, Kiss,
and Houseworth (2016) reviewed the literature on instructional interventions cen-
tered specifically on teaching students the structure of mathematical problems with
either visual representations (e.g., schematic drawings of part-whole and compare
word problems) or with concrete representations, such as manipulatives. The 25
studies reviewed by the authors targeted students with learning difficulties and those
at risk for mathematics learning disabilities. The findings showed that visual repre-
sentations, whether on their own or in combination with concrete objects, positively
impacted students’ problem-solving performance.

SBI is an instructional approach that uses visual representations of problem struc-
tures to teach students how to solve a variety of word problems (Jitendra & Star,
2011). The findings from several studies have shown that SBI supports youth with
learning difficulties, those at risk for mathematics learning disabilities, and typically
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developing students in their efforts to solve different types of word problems (Fuchs,
Fuchs, Finelli, Courey, and Hamlett, 2004a; Fuchs et al., 2004b; Jitendra, DiPipi, and
Perron-Jones, 2002; Jitendra & Star, 2011). A number of studies have also shown
evidence of conceptual understanding following SBI as evidenced by performance
on transfer problems (e.g., Fuchs et al., 2004a, 2004b; Jitendra et al., 2002), and
Rockwell, Griffin, and Jones (2011) found maintenance effects for up to six weeks.

SBI’s framework is based on schema theory. Schemata are knowledge structures
that organize information in the learner’s long-term memory (Bransford & Johnson,
1972; Griffin & Jitendra, 2009). In problem solving, schemata assist the learner in
categorizing information, identifying the relationships between the quantities in a
problem, and determining the best strategy for solving the problem (Chen, 1999).
Chen (1999) found that when students are able to internalize what he termed “general
schemata,” defined as abstract representations of a problem’s structure, their perfor-
mance on transfer problems is enhanced. In addition, a general schema is one that
is not linked to a specific procedure (Chen, 1999). When teachers provide students
with a multitude of problems and diverse solution strategies, children can abstract
a general schema which can then be used to solve novel problems, offering more
flexibility across a range of contexts. The use of general schemata allows children
to understand the semantic relations between the sets in the problem, which in turn
supports a conceptual understanding about increases, decreases, and combinations
involving sets (Cummins, 1991).

Xin and Jitendra (1999) argued that one of the reasons for the success of SBI is that
it emphasizes conceptual understanding by creating representational links between
the various aspects ofword problems, thus enhancing students’ ability to successfully
solve them. SBI has been said to address the working memory and attention deficits
of childrenwith learning difficulties, and greatly differs from traditionalmathematics
teaching for children with intellectual disabilities, which tends to emphasize rote,
procedural instruction (Cawley et al., 1998). Another possible reason for the success
of SBI, particularly for childrenwith learning difficulties, is that the creation of visual
representations of the problem structure helps children solve problems by reducing
cognitive load.

AModified Version of SBI

Given that SBI has been found to be effective with students with a wide range of
mathematical and cognitive abilities, we delivered a version of SBI to support the
problem solving of three groups of first- and second-grade students: (a) a group of
children with comorbid intellectual disabilities and autism spectrum disorders, (b) a
group of children with learning difficulties (i.e., who were identified by their teacher
as performing below the level of their peers), and (c) a group of children who were
not struggling in mathematics in school.

Our delivery of SBI was a slightly modified version of the SBI protocol published
by its designers (i.e., Fuchs et al., 2004a, 2004b; Jitendra & Star, 2011). Wemodified
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the typical SBI protocol by breaking the problem-solving process into smaller units
for instruction. In addition, we also supplemented SBIwith instructional features that
were recommended by the National Mathematics Advisory Panel (2008), namely
collaborative activity during problem solving and the sharing of solution strategies.
We also encouraged students to solve the problems in whichever ways they found
meaningful, which is also a departure from the typical SBI protocol. Finally, the
instructor asked follow-up questions to encourage students to explain their strategies
to their peers as clearly as possible, and also to encourage the students to identify
any errors.

Participants

Our study had three groups of children,with three students in each group.All students
were between 7 and 8 years old. The first group consisted of three students with
comorbid intellectual disabilities and autism spectrum disorders who were finishing
the first grade (ID group). The second group consisted of three second-grade students
with learning difficulties, all from the same classroom (LD group). The final group
consisted of three second-grade students, from the same class as the LD group, who
exhibited average mathematics performance in school (AM group).

SBI and Student Data

All nine children received three instructional hours of SBI over four sessions (45 min
each) that were delivered in small groups by the first author, a trained graduate
student in educational research. During instruction, children were specifically taught
“Action” problems (also known as join and separate problems; Carpenter, Fennema,
Franke, Levi, and Empson, 2014; but also called “Group” or “Change” problems in
the SBI literature; Jitendra&Star, 2011). Action problems describe an actionwhere a
given set is either increasedor decreased, resulting in a different final quantity. In these
problems, the unknown can be the initial set, the change set, or the end set. Consider
the following word problem, “There are 9 apples in the bin. Five apples fall out of
the bin. How many apples are left?” Described is a decreasing (or separating) action
of apples falling from the bin, which changes the initial amount in the problem (9
apples). Two other problem types (part-whole and compare; Carpenter et al., 2014)
were not used during our instruction, but were used as transfer problems on the
assessments before and after the intervention.

Traditionally, SBI consists of two separate phases that we refer to here as the
Problem Learning Phase and the Solution Generation Phase. In our study, each phase
was completed in two instructional sessions spanning 45-min each. We used the
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same schematic representation, or schema,1 for Action problems as those used in
previous SBI studies (e.g., Fuchs et al., 2004a, 2004b), which can be found in Fig. 1.
In the Problem Learning Phase, we provided explicit explanations of the different
components of the schema, as is standard to SBI. Because the goal of this phase
was for the children to learn the different components of the schema and where the
numbers should be placed in it, we used story scenarios instead of word problems,
which is also standard SBI practice. Story scenarios are word problems in which
there is no unknown—that is, all of the numbers in the problem are provided. To
illustrate using the word problem involving apples above, the corresponding story
problem would be, “There are 9 apples in the bin. Five apples fall out of the bin.
Now there are 4 apples left.”

In the second phase, the Solution Generation Phase, the children were encouraged
to generate their own strategies to solve a set of word problems, this time with
unknowns. The students were provided with manipulatives (plastic chips) and paper
and pencil to solve the problems in any way that was meaningful to them. The
instructor also encouraged the students to use more than one strategy to solve a given
problem and to share their strategies with the other students in their group. After the
children had solved a given problem using a strategy of their choice, the instructor
asked them if there was any other way the problem could be solved.

Before and after the modified SBI, we administered two tasks to the students to
assess their mental representations of different problem types and their problem solv-
ing. Mental representations were assessed using the Problem Structure Test (PST),
a multiple-choice test that we constructed specifically for this study. The PST con-
tained six items, each of which required the student to read a word problem and
choose one visual representation among three that best matched the structure of the
problem (the fourth choice was “none of these”). A sample item from the PST is
presented in Fig. 2. Four of the problems on the PST were action problems, and to
assess transfer, the PST included one compare and one a part-whole problem. Cor-
rect answers were assigned 1 point and incorrect answers 0 points. The points were
summed and converted to percent.

The students were also givenword problems to solve before and after the interven-
tion. Before the intervention, they solved six problems (i.e., four action, one compare,
and one part-whole), and after the intervention, they solved eight problems, which

Fig. 1 Action schema
illustrated on a workbook
page used during the
Problem Learning Phase

19 stickers in her sticker collection. She gave 7 stickers to her sister.
Now Kelly has 12 stickers left in her collection.

7

19 12

1For the remainder of the chapter, we use the term “schema” to refer to the schematic drawing that
represents the structure of the word problem.
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Fig. 2 Choices for the
following problem on the
Problem Structure Test:
“Jesse’s mom made cookies
for the bake sale. She sold 19
cookies and she has 5 left
over. How many cookies did
Jesse’s mom bake for the
bake sale?”

consisted of isomorphic versions of the problems given before the intervention, and
two additional action problems in which the quantities were not presented in the typ-
ical start–action–end order. The compare, part-whole, and atypical-sequence action
problems were used to assess transfer.

We examined two aspects of the students’ problem solving. First, regardless of
counting or computation errors, we assessed whether the strategy used by the student
reflected the structure of the problem. Those that were aligned with the problem
structure were coded as “appropriate” and those that were not aligned were coded as
“not appropriate.” In addition, we coded the type of strategies the children used on the
same task. We used Carpenter et al.’s (2014) taxonomy of problem solving strategies
as our coding scheme. Direct modeling strategies were characterized by physical
representations of the objects and actions in the problem. Counting strategies were
those where the child was able to first represent one quantity abstractly (i.e., without
representing it physically) and used some tools, such as fingers or tallies, to keep
track of counts to find the solution. Derived fact strategies were those where the
student used a known fact (e.g., single-digit addition facts) to derive a solution. For
example, for 6+ 7, a child using a derived fact strategy may explain that the answer
is 13 because she knows that 6 and 6 are 12, and then one more is 13. Strategies
based on known facts only were coded as recall. Strategy type allowed us to examine
whether students were able to use more than one strategy type after the intervention.
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Aspects of Problem Solving Before and After
the Intervention

Identification of Word Problem Structure

As reviewed earlier in this chapter, one of the biggest challenges experienced by
children with learning difficulties and children with intellectual disabilities is to
identify the underlying word problem structure. This is consistent with what we
observed prior to SBI instruction. Students in the ID group and in the LD group were
unable to identify the word problem structures before the intervention. Specifically,
themean PST percent score for the ID groupwas 5% (SD= 9.2) and for the LDgroup
was 27% (SD = 9.8) before the intervention. This suggests that these students were
either unable to extract an appropriate mental representation of the word problems
on the test, or had difficulty interpreting the visual representations provided in the
choices on each item. If they did identify the correct structure, itwas almost always for
the action problems. TheAMgroupperformedbetter than the other twogroups before
the interventionon theproblemstructure testwith an averagePSTscore of 44%(SD=
25.5) before the intervention.Although their performance left room for improvement,
they identified the correct structure for action problems more frequently and were
also better able to choose the appropriate structure for the part-whole problem on the
test.

Following the intervention, the mean PST scores for the students in the ID and
LD groups improved. Mean scores on the PST were at 45% (SD = 14.4) for the
ID group and 62% (SD = 25) for the LD group, with the AM group’s performance
remaining unchanged. After the intervention, the students in both the ID and LD
groups were more consistently able to identify the structure for action problems and
most of the students (5 of 6) across both groups were also able to correctly identify
the structure for part-whole problems. This was an interesting finding, as the students
were not exposed to part-whole problems during the intervention. This, paired with
the fact that students in the AM group were able to correctly identify the structure of
part-whole problems before the intervention, suggests that there may be something
intuitive about the representation we created for part-whole problems, which was
a different representation of the one originally created for SBI. Further, it could be
that learning the structure of action problems facilitates transfer to problems with
different mathematical structures.

Strategy Use

The students in the ID and LD groups were observed to more often use appro-
priate problem-solving strategies after the intervention compared to before. It is
possible that having a concrete way of organizing the information presented in the
problem—that is, the schema—and to see the relevant information in the schema
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decreased working memory load, thereby allowing for the allocation of cognitive
resources to finding an appropriate solution strategy. It is also possible that the avail-
ability of manipulatives used during problem solving alleviated cognitive load. They
were able to physically represent themathematical actions required to solve the prob-
lems (e.g., removing tokens or joining them). Because the children could represent
the quantities in the problem using tokens, they did not have to keep the numbers in
their minds, thus offloading valuable working memory resources.

The use of the schemas appeared to support the problem solving of the children
in all three groups, but the ID and LD groups seemed to benefit the most from the
visual representations. The majority of the students in these two groups combined
(i.e., 5 of 6) continued to use the schema after the intervention to help organize the
information in the problem. We observed one student in the LD group rely on the
schema when she reached an impasse while attempting to solve the problems. When
shewas unsure of what solution strategy to use, shewould draw the schema and insert
the numbers into it. Organizing the information in this way seemed to help clarify
critical aspects of the problem and she was then able to determine an appropriate
strategy for solving it.

Strategy Flexibility

Most students demonstrated little change in the ability to use more than one type
of strategy for the same problem after the intervention. This is consistent with the
literature on strategy rigidity describing children with difficulties in mathematics
using one type of strategy across problems (Ostad, 1997). We observed that when
the researcher asked for an alternative strategy, most children gave a response in the
same category as their first strategy, both before and after the SBI instruction. This
was seen for most students in all three groups for all problems. For example, one
child in the LD group used direct modeling (physically representing the quantities
and actions in the problem) using tokens for his first strategy, but when asked if there
was another way to solve the problem, he drew the objects in the problem on a piece
of paper and acted on those representations by circling and crossing out objects.
Although both strategies looked different on the surface, they were both coded as
direct modeling, and as such, did not constitute strategy flexibility.

We also observed three students (two from the AM group and one from the
LD group) change the operation for the second strategy, both before and after the
intervention. That is, they used the standard written algorithm for their first strategy,
and for the second, used the standard algorithm for a different operation. For example,
on his first strategy, one child in the AM group performed the standard written
algorithm for 198− 116 and correctly solved the problem. When asked for a second
strategy, he used the standard algorithm for the inverse operation and computed 198
+ 116. Thus, we saw some evidence for strategy rigidity as most students would use
the same type of strategy to solve a given problem.
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Only one student in the LD group was able to successfully use more than one
type of strategy on the problems after the intervention. On one problem, he used the
standard written algorithm as his first problem-solving strategy for one of the end
unknown problems. When asked for a different strategy, he explained what he would
do to directly model the problem. He did not physically act it out by counting out
tokens or drawing tallies, but clearly explained his direct modeling strategy verbally.

Pedagogical Implications

Despite the tentative nature of the conclusions that can be drawn from our small data
set, the results are still promising with regard to intervention planning for inclusive
classrooms. All students benefited from the instruction in one way or another. In
the following section, we will describe some of our observations of the students’
problem solving during the instruction that may account for their performance after
the intervention.

Overall, the instruction appeared beneficial for children on most of the assess-
ments we administered. Explicitly teaching the children the different components of
the schema helped them prepare for the problem solving that followed. Indeed, we
noticed that about half of the children continued to use the schemas during prob-
lem solving following the intervention, which presumably helped them to monitor
their work and verify their responses. This may have supported the construction of
appropriate mental representations of the mathematical structure of the problems,
which could in part account for the greater use of appropriate strategies after the
intervention.

A practice that we found to be especially helpful was when the instructor asked
questions to encourage the children to reflect on their thinking so they could them-
selves correct any errors and find amore promising avenue for the solution. Instructor
questions, together with the feedback of the other members of the group, encouraged
the students to “talk out” the problem and change course during problem solving if
necessary. This may have increased students’ reflections about the relative appro-
priateness of a number of different solution strategies. By asking questions, the
instructor was also provided with information about how the children were thinking
about the problems. This, in turn, let the instructor modify her instruction to address
the children’s specific difficulties or misconceptions.

Another aspect that seemed to benefit the studentswaswhen the instructor focused
on the structural and conceptual aspects of the problems when teaching the different
problem types. For example, for action problems, the instructor would describe the
action as something that would lead to a decrease or increase in the start number.
When children understood this, their ability to monitor and correct their own work
appeared to improve, therebyneeding less prompting from the instructor. To illustrate,
one child completed an action problem but made an error. To help the child see his
error, the instructor asked questions about the structure of the problem. She reread
the problem with the child. She asked him what would happen to the start number
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(the initial number of apples in the problem) if apples fell out of the bin. The child
answered that the number would go down. The instructor asked him to look at the
end number (the final number of apples after the action) and compare it to the start.
In doing so, the child said, “Wait, that’s not right. The number can’t be bigger!”

When the children used the schemas during instruction, the visual representations
appeared to help them organize the information provided in the problem. Prior to
instruction,most children in the IDgroup struggled tomake sense of how the numbers
related to one another. At times, we observed some children in this group having
difficulty using the correct numbers, despite having the information in front of them.
The use of the schemas during and after instruction may have had a positive effect
on students’ ability to manipulate several pieces of information at once; the schemas
presumably allowed the students to offload the numerical information in the problem
so they could better focus on the problem structure and select an appropriate strategy.
This is consistent with research showing that children with learning difficulties have
workingmemorydeficits and tend to rely on immature problem-solving strategies like
finger counting as a result (e.g., Geary, 2004). The organizational support provided
by the schemas appeared to provide easier access to key parts of the problem, thereby
freeing up their working memory capacity.

While our instruction brought forth positive change in students’ problem solving,
some modifications are required to further enhance performance in students with
learning difficulties as well as those with intellectual disabilities. First, the Action
problems presented during the instruction all described the start, action, and end sets
in that order (e.g., Lisa had 324 pennies (start). She found some more pennies on
the sidewalk (action). Now she has 434 pennies (end). How many pennies did Lisa
find on the sidewalk?). This led to difficulties in successfully solving the atypical-
sequence action transfer problems, especially for the ID group. These students began
to enter the numbers into the schema in a rote manner. That is, they would automat-
ically put the first number in the problem in the first part of the schema, the second
number in the problem in the second component, and the third number in the last
component, disregarding what each component meant within the structure of the
problem. This was evident as most of the students in the ID and LD groups failed to
correctly solve problems that presented information out of sequence at posttest. This
is consistent with research on “psychological sets” (Duncker, 1945): Strategies can
become automatic after repetitive use (i.e., in this case, putting the numbers into the
schema in a certain order), so that it becomes rote. In these situations, the students
did not appear to stop to think about the problem, but rather engaged in a behavior
that had served them well in the past.

Another issue centered on the use of multiple strategies. Across the groups, both
before and after the intervention, most students used only one strategy. Sometimes,
they offered two different variations of the same strategy type category (e.g., direct
modeling on fingers and direct modeling by drawing tallies on paper). There are sev-
eral possible explanations for the lack of flexibility, which are important to consider
in the design of future implementations of SBI with children with learning difficul-
ties and children with intellectual disabilities. For one, the length of the intervention
may have impacted the children’s ability to demonstrate flexibility. As previously
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mentioned, all students received a total of three hours of instruction over a two-week
period. It is possible that three hours are not enough time for children to become
more flexible in their strategy use. Increased opportunities for practice are especially
important for children who exhibit strategy rigidity (Baroody, 1996; Ostad, 1997).
Perhaps with more practice and increased exposure to different types of strategies,
children may have been more flexible following the intervention.

Although we believe more time would have been beneficial, we also suggest that
flexibility gains were not observed because the strategies that were shared during
the intervention may have all been of the same type. That is, as opposed to seeing a
direct modeling strategy followed by a counting strategy, for example, children may
have seen two different ways to directly model the same problem or two different
ways to use counting strategies. In fact, evidence that this occurred was observed
following instruction. Furthermore, previousmathematics instruction could also have
played a role in children’s choice to use the same strategy. It is possible that during
the instruction they had received in school, they were not given the opportunity to
explore different solution strategies.

Another possibility is that perhaps students with learning difficulties and children
with intellectual disabilities need explicit instruction on how to use a variety of strate-
gies to solve a given problem. In fact, there is a debate in the literature as to whether
mathematics instructors should explicitly teach strategy flexibility to students who
have learning difficulties. Specifically, the controversy centers on whether children
should be taught to use a variety of strategies flexibly, or only a small handful of
strategies for solving problems (Verschaffel et al., 2007). One argument is that chil-
dren who struggle could benefit from using a small number of strategies repeatedly,
whichwould alleviate pressures onworkingmemory (Baxter,Woodward, andOlson,
2001). On the other hand, others have argued that flexibility should be explicitly tar-
geted from the beginning (e.g., Butler et al., 2001; Verschaffel et al., 2007).

Conclusion

In this chapter, we described an instructional intervention based on SBI that we
delivered to three small groups of children, one group with intellectual disabilities
and autism spectrum disorders, a second group who were identified by their teacher
because they were performing poorly relative to their peers, and a third group of
students who were average performers. We described elements of improved prob-
lem solving after the intervention and speculated about how our instantiation of SBI
may have supported students’ performance. Our conclusions are necessarily tenta-
tive because our sample was small; nevertheless, the speculations we draw offer an
existence proof that students with learning difficulties and intellectual disabilities
can indeed learn and use key mathematical concepts in the context of appropriate
instruction. Our approach deviates from existing work in the field in that we shifted
attention away from students’ deficits toward their strengths. In this way, our obser-
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vations can inspire new lines of research on the mathematical potential of students
with difficulties and intellectual disabilities.

Children with intellectual disabilities need to learn adaptive mathematical skills
(such as problem solving) to help them become as autonomous as possible in their
daily lives. In this chapter, we provided some evidence that students with intellectual
disabilities and autism spectrum disorders, as well students presenting with math-
ematical learning difficulties, are able to develop both conceptual and procedural
knowledge. Our observations are encouraging teachers and other practitioners who
work with this population. Further, given the positive effects of instruction that was
delivered in small-group settings, it appears that SBI could be a promising approach
for teaching mathematical word problem solving in inclusive classrooms.

References

Andersson, U. (2007). The contribution of working memory to children’s mathematical word prob-
lem solving. Applied Cognitive Psychology, 21(9), 1201–1216. https://doi.org/10.1002/acp.1317.

Baroody, A. J. (1996). Self-invented addition strategies by children with mental retardation. Amer-
ican Journal on Mental Retardation, 101, 72–89.

Baroody, A. J. (1999). The development of basic counting, number, and arithmetic knowledge
among children classified as mentally handicapped. International Review of Research in Mental
Retardation, 22, 51–103. https://doi.org/10.1016/s0074-7750(08)60131-7.

Baxter, J. A.,Woodward, J., &Olson, D. (2001). Effects of reform-basedmathematics instruction on
low achievers in five third-grade classrooms. The Elementary School Journal, 101(5), 529–547.
https://doi.org/10.1086/2F499686.

Bird, G., & Buckley, S. (2001). Number skills for individuals with down syndrome—An overview.
In Down Syndrome Issues and Information. https://doi.org/10.3104/9781903806135.

Bissonnette, S., Richard, M., Gauthier, C., & Bouchard, C. (2010). Quelles sont les stratégies
d’enseignement efficaces favorisant les apprentissages fondamentaux auprès des élèves en diffi-
culté de niveau élémentaire? Résultats d’une méga-analyse. Revue de Recherche Appliquée sur
l’Apprentissage, 3, art. 1.

Boonen, A. J., de Koning, B. B., Jolles, J., & van der Schoot, M. (2016). Word problem solving
in contemporary math education: A plea for reading comprehension skills training. Frontiers in
Psychology, 7, 191. https://doi.org/10.3389/fpsyg.2016.00191.

Bransford, J. D., & Johnson, M. K. (1972). Contextual prerequisites for understanding: Some
investigations of comprehension and recall. Journal of Verbal Learning and Verbal Behavior,
11(6), 717–726. https://doi.org/10.1016/s0022-5371(72)80006-9.

Browder, D.M., Spooner, F., Ahlgrim-Delzell, L., Harris, A. A., &Wakemanxya, S. (2008). Ameta-
analysis on teaching mathematics to students with significant cognitive disabilities. Exceptional
Children, 74(4), 407–432. https://doi.org/10.1177/001440290807400401.

Butler, F. M., Miller, S. P., Lee, K. H., & Pierce, T. (2001). Teaching mathematics to students
with mild-to-moderate mental retardation: A review of the literature. Mental Retardation, 39(1),
20–31. https://doi.org/10.1352/0047-6765(2001)039%3c0020:tmtswm%3e2.0.co;2.

Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (2014). Children’s mathe-
matics: Cognitively guided instruction (2nd ed.). Portsmouth, NH: Heinemann.

Cawley, J. F., Parmar, R. S., Yan,W., &Miller, J. H. (1998). Arithmetic computation performance of
students with learning disabilities: Implications for curriculum. Learning Disabilities Research
& Practice, 13(2), 68–74.

https://doi.org/10.1002/acp.1317
https://doi.org/10.1016/s0074-7750(08)60131-7
https://doi.org/10.1086/2F499686
https://doi.org/10.3104/9781903806135
https://doi.org/10.3389/fpsyg.2016.00191
https://doi.org/10.1016/s0022-5371(72)80006-9
https://doi.org/10.1177/001440290807400401
https://doi.org/10.1352/0047-6765(2001)039%3c0020:tmtswm%3e2.0.co;2


Schema-Based Instruction: Supporting Children … 219

Chen,Z. (1999). Schema induction on children’s analogical problemsolving. Journal of Educational
Psychology, 91(4), 703–715. https://doi.org/10.1037/0022-0663.91.4.703.

Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories
approach. New York: NY: Routledge. https://doi.org/10.4324/9780203883389.

Cummins, D. D. (1991). Children’s interpretations of arithmetic word problems. Cognition and
Instruction, 8(3), 261–289. https://doi.org/10.1207/s1532690xci0803_2.

Daroczy, G., Wolska, M., Meurers, W. D., & Nuerk, H. C. (2015). Word problems: A review of
linguistic and numerical factors contributing to their difficulty. Frontiers in Psychology, 6, 348.
https://doi.org/10.3389/fpsyg.2015.00348.

De Corte, E., Verschaffel, L., & De Win, L. (1985). Influence of rewording verbal problems on
children’s problem representations and solutions. Journal of Educational Psychology, 77(4),
460–470. https://doi.org/10.1037/0022-0663.77.4.460.

Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5), 270.
Fletcher, J. M., Lyon, G. R., Fuchs, L. S., & Barnes, M. A. (2006). Learning disabilities: From

identification to intervention. Guilford Press. 10.1080%2F09297040701455171.
Fuchs, L. S., Fuchs, D., Finelli, R., Courey, S. J., &Hamlett, C. L. (2004a). Expanding schema-based
transfer instruction to help third graders solve real-life mathematical problems. The American
Educational Research Journal, 41(2), 419–445. https://doi.org/10.3102/00028312041002419.

Fuchs, L. S., Fuchs, D., Prentice, K., Hamlett, C. L., Finelli, R., & Courey, S. J. (2004b). Enhancing
mathematical problem solving among third-grade students with schema-based instruction. Jour-
nal of Educational Psychology, 96(4), 635–647. https://doi.org/10.1037/0022-0663.96.4.635.

Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(4),
4–15. https://doi.org/10.1177/00222194040370010201.

Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple
and complex addition: Contributions of working memory and counting knowledge for children
with mathematical disability. Journal of Experimental Child Psychology, 88(2), 121–151. https://
doi.org/10.1016/2Fj.jecp.2004.03.002.

Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mech-
anisms underlying achievement deficits in children with mathematical learning disability. Child
Development, 78(4), 1343–1359. https://doi.org/10.1111/j.1467-8624.2007.01069.x.

Geary, D. C., Hoard,M. K., Nugent, L., &Byrd-Craven, J. (2008). Development of number line rep-
resentations in children with mathematical learning disability. Developmental Neuropsychology,
33(3), 277–299. https://doi.org/10.1080/87565640801982361.

Ginsburg, H. P. (1997). Mathematics learning disabilities: A view from developmental psychology.
Journal of Learning Disabilities, 30(1), 20–33. https://doi.org/10.1177/002221949703000102.

Griffin, C. G., & Jitendra, A. K. (2009). Word problem-solving instruction in inclusive third-grade
mathematics classrooms. The Journal of Educational Research, 12(3), 187–201. https://doi.org/
10.3200/joer.102.3.187-202.

Henry, L. A., Messer, D. J., & Poloczek, S. (2018). Working memory and intellectual disabilities.
In T. P. Alloway (Ed.), Working memory and clinical developmental disorders: Theories, debates
and interventions (pp. 9–21). Abingdon-on-Thames, UK: Routledge. https://doi.org/10.4324/
9781315302072.

Human Resources and Skills Developmental Canada. (2011). Disability in Canada: A 2006 pro-
file (Cat. No. HS64/2010). Retrieved from http://www.hrsdc.gc.ca/eng/disability_issues/reports/
disability_profile/2011/index.shtml.

Hutchinson, N. L. (1993). Effects of cognitive strategy instruction on algebra problem solving of
adolescents with learning disabilities. Learning Disability Quarterly, 16(1), 34–63. https://doi.
org/10.2307/1511158.

Individuals with Disabilities Education Improvement Act. (2004). 20 U.S.C. § 1400.
Jitendra, A. K., & Star, J. R. (2011). Meeting the needs of students with learning disabilities
in inclusive mathematics classrooms: The role of schema-based instruction on mathematical
problem-solving. Theory into Practice, 50(1), 12–19. https://doi.org/10.1080/00405841.2011.
534912.

https://doi.org/10.1037/0022-0663.91.4.703
https://doi.org/10.4324/9780203883389
https://doi.org/10.1207/s1532690xci0803_2
https://doi.org/10.3389/fpsyg.2015.00348
https://doi.org/10.1037/0022-0663.77.4.460
https://doi.org/10.3102/00028312041002419
https://doi.org/10.1037/0022-0663.96.4.635
https://doi.org/10.1177/00222194040370010201
https://doi.org/10.1016/2Fj.jecp.2004.03.002
https://doi.org/10.1111/j.1467-8624.2007.01069.x
https://doi.org/10.1080/87565640801982361
https://doi.org/10.1177/002221949703000102
https://doi.org/10.3200/joer.102.3.187-202
https://doi.org/10.4324/9781315302072
http://www.hrsdc.gc.ca/eng/disability_issues/reports/disability_profile/2011/index.shtml
https://doi.org/10.2307/1511158
https://doi.org/10.1080/00405841.2011.534912


220 K. Desmarais et al.

Jitendra, A. K., DePipi, C. M., & Perron-Jones, N. (2002). An exploratory study of schema-
based-word-problem-solving instruction for middle school students with learning disabilities:
An emphasis on conceptual and procedural understanding. The Journal of Special Education,
36(1), 23–38. https://doi.org/10.1177/00224669020360010301.

Jitendra, A. K., Nelson, G., Pulles, S. M., Kiss, A. J., & Houseworth, J. (2016). Is mathematical
representation of problems an evidence-based strategy for students with mathematics difficulties?
Exceptional Children, 83(1), 8–25. https://doi.org/10.1177/0014402915625062.

Judd, T. P., & Bilsky, L. H. (1989). Comprehension and memory in the solution of verbal arithmetic
problems by mentally retarded and nonretarded individuals. Journal of Educational Psychology,
81(4), 541–546. https://doi.org/10.1037/0022-0663.81.4.541.

Lee, K., Ng, E. L., & Ng, S. F. (2009). The contributions of working memory and executive func-
tioning to problem representation and solution generation in algebraic word problems. Journal
of Educational Psychology, 101(2), 373–387. https://doi.org/10.1037/a0013843.

Lucangeli,D., Tressoldi, P.E.,&Cendron,M. (1998).Cognitive andmetacognitive abilities involved
in the solution of mathematical word problems: Validation of a comprehensive model. Contem-
porary Educational Psychology, 23(3), 257–275. https://doi.org/10.1006/ceps.1997.0962.

Mastropieri, M. A., Bakken, J. P., & Scruggs, T. E. (1991). Mathematics instruction for individuals
with mental retardation: A perspective and research synthesis. Education and Training in Mental
Retardation, 26, 115–129.

Ministère de l’éducation et de l’enseignement supérieur (1999).Policy on special education: Adapt-
ing our schools to the needs of all students. Retrieved from: http://www.education.gouv.qc.ca/
fileadmin/site_web/documents/dpse/adaptation_serv_compl/polite00A.pdf.

Montague, M., & Applegate, B. (1993). Mathematical problem-solving characteristics of middle
school students with learning disabilities. Journal of Special Education, 27, 175–201. https://doi.
org/10.1177/002246699302700203.

National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the
National Mathematics Advisory Panel. Washington, D.C..: U.S. Department of Education.

No Child Left Behind Act of 2001. (2002). P.L. 107–110, 20 U.S.C. § 6319.
Ontario Ministry of Education. (1990). The Education Act, Bill 82, § 7 et seq.
Ostad, S. A. (1997). Developmental differences in addition strategies: A comparison of mathemat-
ically disabled and mathematically normal children. British Journal of Educational Psychology,
67(3), 345–357. https://doi.org/10.1111/j.2044-8279.1997.tb01249.x.

Ozonoff, S., & Schetter, P. L. (2007). Executive dysfunction in Autism spectrum disorders: From
research to practice. In L. Meltzer (Ed.), Executive function in education: From theory to practice
(pp. 287–308). New York, NY: Guilford. https://doi.org/10.5860/choice.45-1588.

Powell, S. R., Fuchs, L. S., & Fuchs, D. (2013). Reaching themountaintop: Addressing the common
core standards in mathematics for students with mathematics difficulties. Learning Disabilities
Research & Practice, 28(1), 38–48. https://doi.org/10.1111/ldrp.12001.

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A
review of developmental, individual difference, and cognitive approaches. Learning and Individ-
ual Differences, 20(2), 110–122. https://doi.org/10.1016/j.lindif.2009.10.005.

Rockwell, S. B., Griffin, C. C., & Jones, H. A. (2011). Schema-based strategy instruction in mathe-
matics and the word problem-solving performance of a student with. Focus on Autism and Other
Developmental Disabilities, 26(2), 87–95. https://doi.org/10.1177/1088357611405039.

Rose, D., & Rose, K. (2007). Deficits in executive function processes. In L.Meltzer (Ed.),Executive
function in education: From theory to practice (pp. 287–308). New York, NY: Guilford. https://
doi.org/10.5860/choice.45-1588.

Stein, J. A., & Krishnan, K. (2007). Nonverbal learning disabilities: The challenges of effective
assessment and teaching. In L. Meltzer (Ed.), Executive function in education: From theory to
practice (pp. 287–308). New York, NY: Guilford. https://doi.org/10.5860/choice.45-1588.

Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory
and mathematical problem solving in children at risk and not at risk for serious math difficul-

https://doi.org/10.1177/00224669020360010301
https://doi.org/10.1177/0014402915625062
https://doi.org/10.1037/0022-0663.81.4.541
https://doi.org/10.1037/a0013843
https://doi.org/10.1006/ceps.1997.0962
http://www.education.gouv.qc.ca/fileadmin/site_web/documents/dpse/adaptation_serv_compl/polite00A.pdf
https://doi.org/10.1177/002246699302700203
https://doi.org/10.1111/j.2044-8279.1997.tb01249.x
https://doi.org/10.5860/choice.45-1588
https://doi.org/10.1111/ldrp.12001
https://doi.org/10.1016/j.lindif.2009.10.005
https://doi.org/10.1177/1088357611405039
https://doi.org/10.5860/choice.45-1588
https://doi.org/10.5860/choice.45-1588


Schema-Based Instruction: Supporting Children … 221

ties. Journal of Educational Psychology, 96(3), 471–491. https://doi.org/10.1037/0022-0663.96.
3.471.

Swanson, H. L., & Sachse-Lee, C. (2001). Mathematical problem solving and working memory
in children with learning disabilities: Both executive and phonological processes are important.
Journal of Experimental Child Psychology, 79(3), 294–321. https://doi.org/10.1006/jecp.2000.
2587.

Verschaffel, L., Torbeyns, J., De Smedt, B., Luwel, K., &VanDooren,W. (2007). Strategy flexibility
in children with low achievement in mathematics. Educational and Child Psychology, 24(2),
16–27.

Xin,Y. P.,& Jitendra,A.K. (1999). The effects of instruction in solvingmathematicalword problems
for students with learning problems: A meta-analysis. The Journal of Special Education, 32(4),
207–225. https://doi.org/10.1177/002246699903200402.

Xin, Y. P., Jitendra, A. K., & Deatline-Buchman, A. (2005). Effects of mathematical word problem-
solving instruction on middle school students with learning problems. The Journal of Special
Education, 39(2), 181–192. https://doi.org/10.1177/00224669050390030501.

Zheng, X., Swanson, H. L., &Marcoulides, G. A. (2011). Working memory components as predic-
tors of children’smathematicalword problem solving. Journal of Experimental Child Psychology,
110(4), 481–498. https://doi.org/10.1016/j.jecp.2011.06.001.

https://doi.org/10.1037/0022-0663.96.3.471
https://doi.org/10.1006/jecp.2000.2587
https://doi.org/10.1177/002246699903200402
https://doi.org/10.1177/00224669050390030501
https://doi.org/10.1016/j.jecp.2011.06.001


Tablets as Elementary Mathematics
Education Tools: Are They Effective
and Why

Adam K. Dubé, Sabrina Shajeen Alam, Chu Xu, Run Wen
and Gulsah Kacmaz

Descriptors such as ‘easy to use’, ‘accessible’, and ‘fun’ often accompany the promo-
tion of tablets in education (Connell, Lauricella, & Wartella, 2015). Tablets are per-
ceived this way because they are controlled by simple gestures that appear to require
a low degree of formal instruction (Aziz, 2013) and because many of the educational
apps are seen either as interactive hands-on approaches to traditional academic tasks
or are framed as educational games (McEwen &Dubé, 2017). According to a survey
of the educational applications (apps) category on iTunes, four of the top five apps
are for STEM subject areas (Science, Technology, Engineering, and Mathematics)
and mathematics apps account for the greatest number of subject-specific content
(Shuler, 2012). It is possible that the reason tablets are used as mathematics learning
tools and the reasonmathematics apps are so popular is because the proclaimed ‘easy
to use’, ‘accessible’, and ‘fun’ aspects of mathematics apps offset the attitude that
the subject is ‘difficult’, ‘inaccessible’, and ‘boring’ (Larkin & Jorgensen, 2016).

Indeed, an optimistic attitude towards both tablets generally and tablet mathemat-
ics apps specifically seems to be held by children, educators, and parents alike but
the reasons behind the optimism vary. For children, a study of kindergarten to grade
2 children’s use of mathematics tablet apps found that they were far more engaged
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(i.e. played twice as long) with apps that incorporated interactive hands-on activities
or gaming than they were with apps that mimicked more traditional academic tasks
(i.e. mad minutes, flash cards; McEwen & Dubé, 2016). This suggests that children
enjoymathematics apps of a certain kind and do not simply like thembecause they are
on a tablet. A survey of 1234 teachers on their use of educational technology found
that teachers who report more student-centred teaching pedagogies were more likely
to use educational technology in the classroom and that tablets were among the top
four most used devices in the classroom—alongside digital cameras, video games,
and computers (Blackwell, Lauricella, &Wartella, 2014), which are all technologies
now subsumed by tablets. Perhaps the intimate (i.e. individualized) nature of tablets
espoused in the original iPad marketing (Apple, 2010) contributed to teachers both
viewing tablets as student-centred and subsequently using them in their classrooms.
For parents, Wood et al. (2016) found that over 94% of parents allowed their children
to access mobile technologies like tablets and believed that their children were both
familiar with and held favourable attitudes towards iPads. In fact, one study found
that 61%of parents’ believed children should be introduced to iPads prior to 2.5 years
of age and fewer than 10% of parents believed that introduction to iPads should wait
until school age (Wood et al., 2016). Further, Kosko and Ferdig (2016) found that
parents specifically singled out the ability of tablets to increase their child’s interest
in and understanding of mathematics. Clearly tablets are popular with children and
teachers, but whether the efficacy of tablets as mathematics learning tools warrants
this level of optimism and interest is a more important question to consider.

Are Tablets Effective Mathematics Education Tools?

Since the introduction of the iPad in 2010, there has been a surge in research on the use
of tablets inmathematics education. Fabian, Topping, and Barron (2016) conducted a
meta-analysis on the effectiveness of mobile devices (i.e. cell phones, tablets, iPods)
as mathematics learning tools and identified over 60 studies. One issue highlighted
by Fabian and colleagues is the problem of how to measure effectiveness; is a math-
ematical app effective if it simply gets children to use it (behavioural engagement),
does it have to make children better at math (achievement), or does it even have to
make them like math (attitudes)? Previous research and theory have argued that each
of these outcomes makes an equally important contribution to understanding the use
of information communication technologies (ICT) for learning (Mouza & Lavigne,
2012). However, it is not common for all three aspects to be measured in one study
and previous research on other related ICTs (e.g. educational video games) has been
criticized for focusing on one aspect (engagement) to the detriment or neglect of oth-
ers (i.e. attitudes and achievement, Mayer, 2014). Thus, a review on the effectiveness
of tablet mathematics apps requires consideration of all possible outcome metrics.

While Fabian et al’s. (2016) review included multiple outcome metrics, drawing
conclusions from this study about the potential of tablets as mathematics learning
tools for elementary education is limited due to three issues. First, all of the studies
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included in the review were conducted in 2012 or earlier and a substantial propor-
tion of them were published in 2011 or sooner (e.g. 78% of the studies investigating
achievement outcomes). This means that they were conducted prior to the tablet
surge caused by the release of the iPad in 2010 and, resultantly, were conducted with
technology markedly different than modern tablets. Second, the studies include all
types of mobile devices and not just tablets, which further limit the generalizabil-
ity of the review to modern tablet computers. Third, the reviewed studies covered
mathematics education from kindergarten to grade 12 and therefore groups together
very different areas of mathematics (e.g. counting, arithmetic, calculus). The present
review addresses these issues and focuses on studies published since 2012 in which
tablet computers are used as mathematics learning tools by early elementary students
(i.e. kindergarten to grade 5).

Review Methodology and Goals

The present review involved a search ofmath-related tablet learning studies published
in the years of 2012–2017. The search process involved four researchers using index-
ing databases (Scopus, Web of Knowledge, Google Scholar, ProQuest, WorldCat,
OAlster) and academic hosting websites (ResearchGate, Academia.edu) to search
for relevant studies. The keywords used in the search were tablets, touch screens,
learning,mathematics, arithmetic, and variations of these terms (e.g. ‘tablet’ included
tablets, tablet computer, iPad, Android tablet, LeapPad). This search resulted in 204
articles, which were saved into a Mendeley shared database and then reviewed to
ensure the bibliographic information and abstracts were accurate. The abstracts of
the articles were then exported and screened to remove any non-tablet studies (e.g.
cell phone) leaving 47 studies in total and then further screened to remove studies
with participants outside of kindergarten to grade 5 (e.g. adult or infant studies). The
final 25 studies were then coded according to their outcome metrics (i.e. engage-
ment, math attitudes, achievement; see Table 1) and were used to inform the present
literature review. Some of the studies that did not meet the strict inclusion criteria
were also used when they reinforce or extend the conclusions from the selected 25
studies.

The goal of this review is to discuss whether tablet computers are useful mathe-
matics learning tools and why. To this end, the studies will be compared to determine
whether tablet computers are effective at one of three tasks: (1) engaging children
with mathematics, (2) improving children’s attitudes towards mathematics, and (3)
improving children’s mathematics achievement. Addressing why tablets are effec-
tive is critical because even though several studies may show a significant effect of
tablets, the cause for the effect can differ from study to study and this has impor-
tant implications for how to use tablets effectively. Simply introducing tablets into
a classroom may not improve engagement, attitudes, and achievements, but smartly
introducing them into classrooms may.
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Table 1 Recent studies of tablets in elementary mathematics education

Studies Engagement Achievement Attitudes

Bebell and Pedulla (2015) X

Bray and Tangney (2016) X

Carr (2012) X

Clarke and Abbott (2016) X

Desoete, Praet, Velde, Craene, and Hantson (2016) X

Dubé and McEwen (2016) X

Fabian et al. (2016) X X X

Falloon (2013) X

Hwang, Shadiev, Tseng, and Huang (2015) X

Ingram, Williamson-Leadley, and Pratt 2016 X X

Jackson, Brummel, Pollet, and Greer (2013) X

Jong, Hong, and Yen (2013) X

Kiili, Ketamo, Koivisto, and Finn (2014) X

Kyriakides et al. (2016) X

Larkin and Jorgensen (2016) X

McEwen and Dubé (2016) X

McEwen and Dubé (2015) X

Musti-Rao and Plati (2015) X

Riconscente (2013) X X

Sinclair and Heyd-Metzuyanim (2014) X

Sinclair, Chorney, and Rodney (2016) X

Strouse et al. (2017) X X X

Tucker, Moyer-Packerman, Westenskow, and
Jordan (2016)

X X

Yang, Chang, Cheng, and Chan (2016) X

Zhang, Trussell, Gallegos, and Asam (2015) X

In the discussion on engagement, the review will outline how most studies focus
on behavioural engagement (i.e. keeping children playing) whereas relatively few
studies investigate cognitive engagement and how it is facilitated through visual
design, gesture-based interactions, gamification, and discursive collaboration (i.e.
children working together). The discussion on math attitudes uses Pekrun’s (2006)
theory of achievement emotions to argue that the interactive nature of tablets gives
children a sense of control over their math learning, which fosters feelings of mastery
and improves math attitudes. Finally, the review of math achievement research will
demonstrate how the learning theory used by the researcher determines if and how
tablets improve children’s mathematics ability.
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Can Tablets Engage Children with Math?

The belief that new technologies can engage learners is at the heart of why they
have been introduced into education since audio-visual materials (i.e. photographs)
were considered a new educational innovation (Dale, 1954). In the context of tablet
mathematics apps, there are three levels of engagement, cognitive, emotional, and
behavioural (Annetta, Minogue, Holmes, & Cheng, 2009). Cognitive engagement
means that tablet users are mentally invested in the learning activity and willing to
exert effort to complete the academic task (Fredricks, Blumenfeld, & Paris, 2004).
Emotional engagement refers to how the use of the mathematical app can elicit
positive (i.e. interest) and negative (i.e. boredom) feelings that serve as motivators
to either maintain or cease users’ continued cognitive or behavioural engagement
with the app (Chang, Evans, Kim, Deater-Deckard, & Norton, 2014). Behavioural
engagement includes attentiveness, diligence, and following the rules of the mathe-
matical app (Deater-Deckard, Chang, & Evans, 2013), and it is the most frequently
measured aspect of engagement, often indexed by the total amount of tablet use
or degree of goal-directed tablet use (e.g. Dubé & McEwen, 2016). While these
three aspects of engagement are often measured separately, the goal is for initial
behavioural engagement with the app to evoke feelings of interest or joy that trans-
late into prolonged interaction with mathematics content and, consequently, cogni-
tive engagement with the mathematics content itself. However, cognitive engage-
ment or emotional engagement are not a guaranteed result of prolonged behavioural
engagement and educational technology research has been criticized for making this
assumption (Mayer, 2014). Instead, cognitive and emotional engagement may be
somewhat, but not entirely, independent of behavioural engagement.

The most robust finding from research on tablets in mathematics education is
that tablets can engage children with mathematics, but the studies differ significantly
in terms of why this occurs. Some researchers argue that the gamification of tablet
mathematics apps produces this engagement (e.g.Kyriakides,Meletiou-Mavrotheris,
& Prodromou, 2016; Strouse et al., 2017); some researchers think that the interaction
modalities and visuals of tablets are responsible (Desoete et al., 2016); others argue
that including tablet mathematics apps in a classroom increases engagement because
it facilitates students’ discussions aboutmathematics (Ingram et al., 2016), and others
propose that the gestures used to interact with tablets make them more ‘hands-on’
and that this is responsible for increased levels of both cognitive engagement and
affective engagement (Dubé &McEwen, 2015; Tucker et al., 2016). Basically, most
researchers in this area seem to agree that tablet mathematics apps are engaging.
However, there is less of a consensus on why tablet mathematics apps are engaging.
One source of disagreement stems from the type of mathematical app experience
researchers choose to study. Some researchers evaluate apps currently available to
children, while others design their own custom apps. Not surprisingly, how app
developers, who need to make a profit, attempt to engage children with math seems
to differ from how researchers attempt to engage children with math.
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Why Mathematics Apps Available ‘in Stores’ Engage Children

A recent tablet study by Strouse et al. (2017) frames the behavioural engagement pro-
duced by tablets as a means to foster and promote math practice, an often-ignored
topic, and proposes that gamification is the reason why tablets are engaging. The
authors noticed that math practice is not supported outside of topic-specific home-
work assignments (cf., reading practice provided in libraries) and that parents have
difficulty constructing and providing feedback with mathematics tasks. In response,
they propose that tablet mathematics apps are particularly well suited to solving
these issues because they keep children engaged and contain ready-made sets of
math problems.

In their study, children from kindergarten to grade 6 (n = 181) individually used
the iPad app IXLmath either in a school setting or in a summer programme to practice
basic addition, subtraction, multiplication, division, or fractions for 1–20 h (Strouse
et al., 2017). IXL math is based on the US common core curriculum and reportedly
contains over 24 billion unique math questions presented in a gamified manner with
feedback and reward systems (i.e. badges). Not only did the IXL app engage children,
with organizers reporting no behavioural problems during the practice sessions and
being able to ‘hear the drop of a needle’ during the practice sessions (Strouse et al.,
2017, p. 179), but also that students found the math practice fun, that they reported
feeling less nervous about math during practice, and that they reported believing that
the practice helped them become better at math. Thus, tablets’ ability to keep children
engaged not only makes them good vehicles for practising math outside of school,
a difficult and often-ignored challenge, but this engagement may go beyond mere
continued exposure tomath and can result in improved attitudes towards both practice
and mathematics itself. The question remains, however, how are mathematics apps
like IXL math able to produce these results?

Howcommercially available tabletmathematics apps go beyondmere behavioural
engagement requires a look at the apps themselves. Desoete et al. (2016) identified
the 80 most downloaded children’s mathematics apps available on the iTunes app
store and categorized them according to how they cognitively engage users through
their interaction types and visuals. For interaction types, Desoete et al. (2016) cat-
egorized commercial mathematics apps as offering either modifiable, manipulable,
or passive interaction, with each of these containing varying levels of cognitive
engagement (Goodwin & Highfield, 2013). Apps with modifiable interactions allow
learners to construct new representations of mathematics by having the user modify
or change content on the screen and then reflect on this change. Slice Fractions is
an example of just such an app, in which learners segment whole objects into frac-
tional amounts through swipes/slices of their fingers (a la Fruit Ninja) to solve novel
fraction problems (Shapiro, 2017). Apps with manipulative interactions allow for
discovery and experimentation with existing mathematics representations but do not
focus on building new understanding. The app Park Math HD is a good example of
this type of gesture, in which learners practise their understanding of the equal sign
by dragging numbers to either side of a scale to balance an equation (McEwen &
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Dubé, 2017). Apps with passive interactions focus on instruction and the practice of
existing knowledge (i.e. mad minutes) and tend to produce engagement by giving
the learner control over the pace of their mathematics learning/practice (Kiili et al.,
2014).

For visuals, Desoete et al. (2016) categorized apps into one of three visual levels.
Level 1 apps rely solely on the use of text and numerals. Level 2 apps include
visuals and colours as simple ‘add-ons’ that do not contribute to the mathematics
content itself. Level 3 apps use colour, geometric shapes, simulations, graphs, or 3D
representations to directly inform the mathematics content. These categories were
created based on all the mathematics apps in the review, but the proportion of apps
in each category varied substantially. Disappointingly, but not surprisingly, Desoete
et al.’s (2016) review found that the majority of existing commercially available
mathematics apps are cognitively engaging children at a low level and are not taking
full advantage of the interaction or visual available on tablets. Specifically, they found
that only 3 of the 78 apps reviewed allowed for modifiable interactions and only 20 of
the apps used the interface and visuals at Level 3 (Level 2= 40 apps). This contextual
review of popular mathematics apps supports findings from two previous studies of
children’s use of commercially available mathematics apps, a behavioural analysis
and an eye-tracking study.

McEwen and Dubé (2016) video recorded kindergarten to grade 2 children’s use
of mathematics apps (n = 36) on 1 of 4 different tablet computers (iPad, LeapPad2,
Innotab, Acer Tab). Three different mathematics apps were used on each device,
to ensure that apps made full use of each tablet’s unique features (see McEwen &
Dubé, 2016 for a list and description of each app). Children’s behavioural interac-
tions with the devices were coded to determine the variety and frequency of gestures
used by children and the proportion of time spent passively watching content (i.e.
instruction), practising existingmath knowledge, or exploringmathematics construc-
tively. While most of the apps offered a variety of gestures (e.g. drag, swipe, tilting)
and interaction affordances, children spent 90% of their time engaged in practice
of previously learned content using only 1 gesture (i.e. tap) to interact with over
90% of the content on the screen. McEwen and Dubé’s (2015) eye-tracking study
compared how grade 2 children’s gaze data differed between visually simple and
complex tablet mathematics apps. The visually simple apps in this study fall under
Level 3 of Desoete et al.’s (2016) classification system, as they used colour, geomet-
ric shapes, and 3D representations to directly inform the mathematics content. The
visually complex apps fall under Level 2, as they included colour and images but
ones that did not inform themathematics content. The labels simple and complex also
refer to the overall amount of visual information present on the screen, with simple
apps containing fewer visual elements than complex app. The study further coded
the visual content as either extraneous, germane or intrinsic, according to cognitive
load theory (Sweller, 1994). Extraneous content is unrelated to the math content and
adds unnecessary cognitive load, while germane and intrinsic content either inform
or are central to the math content and add necessary cognitive load (Sweller, Van
Merriënboer, & Paas, 1998). McEwen and Dubé (2015) found that the more visually
complex the apps, the more children paid attention to the extraneous, unimportant



230 A. K. Dubé et al.

content in those apps. Further, difficulty ignoring unrelated content was exacerbated
for children with low attentional control (i.e. those that need the most help).

What is particularly worrisome is that the visually complex apps in the eye
tracker study were the ones children played longer and reported liking more in
the behavioural observation study (McEwen & Dubé, 2016). Considering the results
from Desoete et al. (2016) and McEwen and Dubé (2015, 2016) together, it seems
that themajority of commercially available mathematics apps attempt to engage chil-
dren using visuals that are simple add-ons that do not inform themathematics content
and, unfortunately, that these Level 2 apps engage children the most, for the wrong
reasons, and with the wrong kind of content. So, commercial tablet apps are engag-
ing children but why they are engaging children is troublesome. The majority of the
apps available to children, parents, and teachers rely on relatively simplistic cognitive
engagement approaches that are drawing more attention to the entertainment aspect
of the apps than the math itself (Falloon, 2014).

Why Mathematics Apps Made or Chosen by Researchers
Engage Children

The potential of tablet mathematics apps to engage children in more complex ways,
as seen in a handful of commercially available apps, has spurred researchers into
either studying these small handful of quality apps or creating custom tablet mathe-
matics apps. The majority of this work has focused on how tablets allow students to
physically interact with mathematics through gestures.

Gestures like tap and drag are synonymouswith tablets, and this central affordance
of the devices has caused many to think of tablets as a ‘hands-on’ way to learn
mathematics (Aziz, 2013; Dubé & McEwen, 2015). For example, commercial apps
like Motion Math Zoom go beyond the simple tap to select an answer found in
most tablet mathematics apps to using gestures to cognitively engage students with
the underlying mathematics content in ways that align and reinforce the conceptual
underpinnings of the content. In Motion Math Zoom, learners navigate a virtual
number line that scales from 1 to 10, 10 to 100, and 100 to 1000 using the drag
gesture to move linearly through the number line from left to right (drag to the
right and the numbers increase, i.e. 5, 6, 7, 8) and using the pinch gesture to move
exponentially (expand two fingers apart to quickly shift the scale up from 1s to
10s to 100s to 1000s and pinch two fingers together to shift down). How children
interact with this app directly aligns with the underlying continuous nature of the
mental number line, as dragging spans the distance between numbers while simply
tapping a number would treat them as discrete quantities. An alignment between
gestures and content cognitively engages children with mathematics concepts in a
moremeaningfulway—partially because gestures constitute an embodied interaction
that brings together physical movement and conceptual learning (Abrahamson &
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Bakker, 2016; Alibali & Nathan, 2012)—and has been found to improve subsequent
performance on related mathematics tasks.

For example, Dubé andMcEwen (2015) used two custom number line tablet app-
s—one where numbers were placed on the number line using a tap gesture and one
where numbers where placed with a drag gesture—and found that placement accu-
racy was greater with the drag gesture and that participants who used the drag gesture
performed better on subsequent near and far transfer tasks requiring a continuous
understanding of numbers. Further, Moyer-Packenham et al. (2016) found that not
only does the gesture-content alignment of an app improve learning of mathematics
but that there must also be a gesture-ability alignment as well. In their study, 100
preschool to grade 2 children’s interactions with 18 tablet mathematics apps were
coded to investigate whether the cognitive ability of the child affected their use of
helping and hindering gestures. Interestingly, whether a specific gesture was helping
or hindering depended less on the gesture itself and its use in the app than it depended
on the child. For some children, the use of a drag gesture to group objects together
in an addition task helped them connect the operation of addition to the concept of
grouping. For other children, the drag gesture resulted in objects being misplaced or
dragged to the incorrect location and a simple tap gesture to place the object would
have been better.

This gesture-ability alignment was further explored by Tucker et al. (2016) in a
follow-up study involving 45 min observations of 33 grade 2 children using the same
mathematics app. They found that children’s use of a given gesture changed as a
function of time spent with the app. For example, a child might start by grouping
objects together in a counting task using the drag gesture but over the course of
using the app would switch to using the tap gesture to instantaneously transport the
object from one location to the next (Tucker et al., 2016). This change in gesture use
suggests that initial interactions with tablet mathematics apps often begin with the
use of more concrete and real gesture but, with time, transition towards more abstract
ones (Novack et al., 2014).

Sinclair et al. (2016) interdisciplinary approach to the study of tablet mathematics
apps goes one step beyond that of Tucker et al. (2016) andDubé andMcEwen (2016).
They argue that not only do gestures cognitively engage children with mathematics
to varying degrees of success but that the act of physically touching the screen is itself
a form of affective engagement that lies at the core of using tablets as a learning tool.
Sinclair and colleagues propose that the gestures used to manipulate mathematics
content build a ‘rhythm’ of interaction that constitutes a ‘dynamic coupling’ ofmove-
ment and learning that is motivating and engaging. Imagine a child using a tablet app
to count objects on the screen through the use of a drag gesture. For each object, the
child places their finger on it, drags the object to a given location, and then repeats
this motion for every item in the set. This repetition creates a flow like experience,
which is said to be intrinsically enjoyable and engaging (Csikszentmihalyi, 1990).
In Sinclair and colleagues’ observations of grade 1 and 2 children’s use of the app
Touch Counts, they found that the act of gesturing was somewhat self-perpetuating
and could sometimes override the mathematics task itself. For example, one child
was observed counting objects using a drag gesture and became so engrossed in the
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activity that he did not cease counting, or even flinch, when the app accidentally reset
the tally. Instead, he just kept executing the gesture again and again, enacting the
gesture divorced from its original purpose. This example and the concept of rhythm
further highlight how children physically interact with mathematics on tablets (i.e.
gestures) may be just as important to engagement as either the mathematics content
in the lesson or the visual representations of the content on the screen.

Thus, tablet mathematics apps not only result in children interacting with math
for an extended period but, if they are well designed, then the child is experiencing a
multi-level interaction that includes behavioural, affective, and cognitive components
that may translate into increased interest or competence in math.

Many Kids ‘Hate’ Math: Can Tablets Improve Children’s
Attitudes Towards Mathematics?

The idea that tablets can somehow change or shape children’s attitudes towards
mathematics may be just as important as increasing their competency. Children’s
negative attitudes towards mathematics start early and intensify across elementary
education (Ma & Kishor, 1997; Wigfield & Meece, 1988), are precursors to math
anxiety (Ahmed,Minnaert, Kuyper, &VanDenWerf, 2012; Hembree, 1990), and are
somewhat responsible for the majority of adults holding a negative attitude towards
mathematic, with women holding stronger negative attitudes than men (Dowker,
Sarkar, & Looi, 2016). Research suggests that children possess a positive opinion of
tablets in education (Dündar and Akçayir 2014) and the possibility that tablets might
ameliorate children’s attitudes towards mathematics should not be undervalued.

There is a relative dearth of research on the effect of tablets on children’s attitudes
towards mathematics (Fabian et al., 2016). The preponderance of work in this area
has focused on children’s attitudes towards the technology (e.g. Jackson et al., 2013),
on the effect of other related technologies (e.g. Shin, Sutherland, Norris, & Soloway,
2012), or on the attitudes of older students (e.g. Ross, Sibbald, & Bruce, 2009).
Fabian et al. (2016) also found there was a lack of research on math attitudes (5
studies in total), most of the research reviewed was conducted before the iPad was
released, and that the results from these studies were mixed (2 positive: Main &
O’Rourke, 2011; Wu, Hsiao, Chang, & Sung, 2006, 3 neutral: Jaciw, Toby, & Ma
2012; Miller & Robertson 2010, 2011). The following review suggests that tablets
can improve children’s attitudes towards mathematics and Pekrun’s control-value
theory of achievement emotions (2006) will be used to understand why.

One study by Larkin and Jorgensen (2016) used the video feature of iPads to
collect the math attitudes of children in grades 3 and 6 (n = 105) over a 10-week
period in a sort of ‘Big Brother’ confession room format. Even though this study did
not look at the effect of tablets on math attitudes, it reinforced previous findings that
math attitudes become increasingly negative in the later school years (e.g. Wigfield
& Meece, 1988) and provides guidance as to how tablets could improve students’
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attitudes towards math. One year 6 student reported that, ‘It absolutely sucks. And it
sucks because it’s hard and you have to do it every single day’ (Larkin & Jorgensen,
2016, p. 938). Themost commonly reported negative attitudes towardsmath included
the idea that math is boring, that is useless/not applicable to everyday life, that it
involves too many paper and pencil practice problems that students must copy off the
board by ‘writ[ing] them all down’ (p. 940), and that the problems are too difficult.
These issues could all theoretically be addressed through the use of mathematics
apps like Strouse et al. (2017) previously discussed in their study of IXL math,
which gamifies learning (boredom), contains ‘billions’ of problems (writing them
all down) that are presented in authentic contexts (useless), and can be adjusted to the
learners ability (difficulty). In that study, children who held negative math attitudes
used the IXL app to practise math just as frequently as children who held positive
attitudes towardsmath and both groups reported feeling less anxious about practising
math after using the app. However, Strouse and colleagues’ study was not designed
to directly assess math attitudes and these results were anecdotal.

To our knowledge, only one study has systematically investigated the effect of
a tablets on children’s attitudes towards mathematics, but the results from this sin-
gle study are compelling. Riconscente (2013) used a repeated measures crossover
experimental design in which grade 5 children (n= 122) played the fraction-number
line game Motion Math (not the same as Motion Math Zoom discussed previously)
20 min a day for 5 consecutive days or received traditional mathematics instruction
not on fractions. Given the crossover design of the study, both groups of participants
used the app and served as controls. For the first half of the study, one group was
the experimental condition (Class 1) and the other was the control condition (Class
2). Then, halfway through the study, the groups switched. Motion Math involves
placing fractional amounts on a number line (e.g. place 1/5 on a number line from
0 to 1) and was chosen because of how number line reasoning may elucidate the
proportional and continuous nature of fractions (Wu, 2008). Attitudes towards frac-
tions were assessed in terms of fraction self-efficacy (e.g. “I am good at fractions”),
fraction liking (e.g. “Fractions are fun”), and fraction-number line knowledge (e.g.
“I know where 1/2 goes on the number line”) (p. 197).

The change in attitudes reported in Riconscente (2013)’s study is striking (see
Fig. 1). Students’ sense of self-efficacy for and liking of fractions increased fol-
lowing tablet mathematical app use. More importantly, children’s attitudes towards
fractions decreased when they received traditional instruction not on fractions and
then increasedwhen they did use the app. Specifically, the delayed intervention group
reported poorer attitudes towards fractions following traditional instruction (midtest)
than they did at pretest, but their attitudes then increased to match or exceed that of
the intervention first group. The author argue that the immediate feedback, multiple
opportunities to solve each problem (cf., the single submission situation of a class-
room assignment), and the self-paced nature of the app contributed to the students’
sense of mastery over the content (i.e. control, Pekrun, 2006) and that this increased
their self-efficacy and liking. Conversely, the author pointed out that the number line
nature of the game was not particularly authentic (i.e. low in value) and that this
may account for why fraction knowledge was assessed as being low, as the students
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Fig. 1 Change in fraction self-efficacy, liking, and knowledge. Reproduced with Permission from
Riconscente (2013)

had difficulty relating the activity in the game to a real-world task. Understanding
why mathematics apps may improve children’s attitudes requires consideration of
how the interactivity and gamification present in tablet mathematics apps increase
children’s sense of control over and value of mathematics.
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Why Tablets Improve Children’s Attitudes Towards Math:
A Theoretical Approach

Pekrun’s control-value theory of achievement emotions (2006) provides a useful
framework for understanding how tablet mathematics apps may improve children’s
attitudes towards mathematics. According to Pekrun, achievement emotions are the
result of prospective, retrospective, and activity (i.e. in the moment of learning)
appraisals of perceived levels of control and value. Control is the extent to which
the learner feels they can influence the outcome or execution of their achievement
activity (i.e. agency) while value refers to whether the learner judges the achievement
activity to be worthwhile for either extrinsic (grades) or intrinsic (useful in its own
right) reasons (Goetz, Frenzel, Pekrun, & Hall, 2007; Pekrun, 2006). Achievement
activities judged as providing high levels of control and intrinsic sources of value
result in positive emotions such as interest, joy, and pride while activities judged
as providing low levels of control and extrinsic sources of value are more likely
to produce feelings of boredom, sadness, and shame (Muis, Ranellucci, Trevors, &
Duffy, 2015; Pekrun, 2006). Thus, tablet mathematics apps may improve children’s
attitudes towards mathematics if they are able to provide a sense of control over
mathematics learning and convey why mathematics skills are useful.

The interactive and game-like nature of tablet mathematics appsmay contribute to
children’s appraisals of control and value. Interactivity is often identified as a central
feature of tablets and cited as a reason why tablets are better than other forms of
passive educational technology like video (Dillenbourg & Evans, 2011; Namukasa,
Gadanidis, Sarina, Scucuglia, &Aryee, 2016). In terms of achievement emotions, the
degree of interactivity (cf., passive learning) may increase children’s appraisals of
control. For example, in a study of children’s tablet mathematical app use, apps with
a higher frequency of interaction were judged as more enjoyable and were played
longer than apps with a higher proportion of passive consumption (i.e. watching
videos or listening to instructions, McEwen & Dubé, 2016). The interactive nature
of tablet mathematics apps may result in increased levels of control and this could
elicit more positive emotions and improve children’s attitudes towards mathematics.
However, the extent to which tablet apps enable interactivity varies considerably
(Namukasa et al., 2016) and there is more to improving achievement attitudes than
just feeling a sense of control over learning.

The gamification of academic tasks that occurs in most tablet mathematics apps
may also affect children’s attitudes towards mathematics, but the mechanism respon-
sible for this outcome may not be as clear as it first seems. One would think that
making mathematics a game results in academic tasks that are inherently fun, but
this does not seem to be the case. Dubé and Keenan’s (2016) review of educational
math game research found that few studies actively and purposefully incorporate fun
into the design of math games—instead these studies assume that fun ‘just happens’
because the mathematics task is labelled as a ‘game’. Also, few studies value and
measure children’s experience of fun (e.g. Lee, Luchini,Michael, Norris, & Soloway,
2004), with those studies that do measure fun finding that children report wanting to
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play other games, ‘games that are fun’ (Ke, 2008, p. 1614). If the fun aspect of math
games does not seem to be responsible for children’s increased appraisals of value,
this requires a more complex understanding of what makes an activity a game.

According to Suits (1978, p. 55), ‘Playing a game is the voluntary attempt to over-
come unnecessary obstacles’. In many math games, the obstacle to be surmounted
is a problem in the game world that can only be solved using specific strategies or
facts germane to the mathematical skill being trained (Chorianopoulos, Giannakos,
& Chrisochoides, 2014). Solving problems in a math game may increase children’s
appraisals of intrinsic value because math knowledge is being applied to achieve a
goal (i.e. beat the game) instead of being applied as a form of practice (Boyle et al.,
2016).

How well math problems are integrated into gameplay and made meaningful to
the player varies considerably from game to game. This is something that is not lost
on children, who have exclaimed ‘Oh these are math games…’ while playing games
like Candy Factory (Ke, 2008). However, other games like DragonBox Algebra are
designed to fully integrate the mathematical skill, in this case algebra, into the game-
play and children playing these games have reported even being unaware that the type
of thinking used to play the game involved mathematics (Tucker & Johnson, 2017).
Thus, the interactive and game-like interactions found in some tablet mathematics
apps may result in increased appraisals of both control and value for mathematical
tasks and this could result in increased experiences of positive emotions elicited
during mathematics learning and subsequently increased positive attitudes towards
mathematics.

There are sound theoretical and practical reasons for investigating the effect of
tablets on children’s attitudes towards mathematics. In fact, the one study directly
measuring this effect not only suggests considerable promise for this area of research
but also aligns with existing theories on the role of achievement emotions. To date,
this has been an understudied area andFabian et al.’s (2016) reviewof related research
on older children and on other ICTs suggests that math attitudes be pursued further
by researchers.

Can Tablets Improve Children’s Math Achievement?

Fabian et al. (2016) review of mobile math research paints a hopeful but cautious
picture for the use of tablets as mathematics education tools. In Fabian’s review, there
was a moderate effect size (i.e. the bigger the effect, the greater the change in math
performance) across all of the mobile device interventions but the effect size shrank
alongside the length of the intervention and the rigour of the experimental design
(i.e. greater effect sizes for pretest–posttest designs without control groups than for
longitudinal designswith control groups). Further, interventions targeting elementary
education were robustly positive whereas studies targeting high schools were less
consistent. These results underline the importance of reviewing methodologically
rigourous studies when evaluating the effectiveness of educational technology, as
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the ability of new educational technology to temporarily engage students can result
in a Hawthorne Effect that wanes as technology inexorably transitions from novel
tool to common place resource (Bakker, van den Heuvel-Panhuizen, & Robitzsch,
2016; Parsons, 1974).

One of the earliest, methodologically rigourous studies on the use of iPads in
mathematics education did not show much promise for tablets as mathematics learn-
ing tools. Carr’s (2012) study involved one grade five classroom (n= 56) using iPads
every day during their mathematics course in a 1:1 learning scenario for nine weeks
and another comparable grade 5 classroom (n= 48) not using iPads but covering the
same material (number and number sense; computation and estimation; measure-
ment, geometry, probability and statistics; and patterns, functions, and algebra). A
pretest–posttest comparison using a 50-itemmultiple choice test based on the grade 5
mathematics curricula found no difference between the iPad intervention classroom
and the control classroom. In fact, the improvement between pretest and posttest were
nearly identical between the iPad and control group (6.74 and 6.67%, respectively).
According to the criteria outlined by Fabian et al. (2016), Carr’s (2012) investigation
was ideal in that it used comparable groups and was conducted over a relatively long
period of time. Thus, the results from this more rigourous study would suggest that
educators, researchers, and tablet mathematical app designers should be cautious
when adopting or developing tablets as mathematics learning tools for achievement
purposes. However, Carr’s study is not as informative as it first seems because of a
methodological practice that is not uncommon among educational technology and
educational game studies.

Carr’s (2012) study did not specify, control, or investigate how the iPads should
be incorporated into the mathematics classroom. Instead, the iPad activities included
in the study were open-ended and left up to the discretion of the teachers and stu-
dents. These activities included playing tablet math games, using iPads to review
lessons, watching online video tutorials, or using mathematics apps with manipula-
tives. Thus, the study lumped together a collection of practices under the umbrella
of using tablets as mathematics learning tools and, somewhat unsurprisingly, found
no cumulative effect of these different practices. This lumping together of different
pedagogical approaches under the umbrella of tablet math use is akin to the prob-
lematic practice identified by Dubé and Keenan’s (2016) study of educational math
games. There, researchers and developers were testing the effectiveness of varying
mathematics activities, grouping them all under the category of ‘games’, and finding
inconsistent results. This practice only muddies the waters and makes comparisons
between individual studies problematic.

Why Tablets Improve Math Achievement

Reviewing studies to determine if tablets improve mathematics achievement is com-
plicated by each study taking a different approach to why tablets affect learning. In
one study, tablets are supposed to support learning because they provide individual-
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ized practice (e.g. Musti-Rao & Plati, 2015) while in another study tablets support
learning because they provide opportunities for collaboration (Hwang et al., 2015).
These differences in how tablet technology results in mathematics achievement is
likely due to the different learning theories used in each study. Fabian et al. (2016)
identified ‘a gap in terms of [the] discussion [of] how mobile technologies support
the learning process in mathematics … and that studies should consider linking ped-
agogical theories to technology’ (p. 97). In line with Fabian’s critique, no review to
date has compared the learning theories researchers use to investigate whether tablet
computers aid mathematics achievement. Doing so will not only help answer the
question of whether tablets improve mathematics achievement but should also help
identify why they improve achievement.

To this end, we had four researchers code 92 of the original 204 studies identified
by the search process according to their dominant learning theory. Of the 204 studies
originally identified, only 92 focussed on mathematics education. Of the 92 studies
on mathematics education only 25 were included in the review as the remaining
studies included papers that either did not fit the target age range (i.e. were outside
the kindergarten to grade 5 age range) and/or looked at other educational technologies
(e.g. smartboards). However, we coded all 92 studies to ensure that the coding system
accurately captured the learning theories used to study the effect of technology on
mathematics education and therefore could be applied to the 25 studies included in
this review.

The 22 learning theories identified by Millwood’s (2013) Holistic Approach to
Technology Enhanced Learning (HoTEL) were included in the coding scheme, as
Millwood’s list contains the most commonly used learning theories from educational
technology research (see Appendix). An additional 8 theories were added to include
approaches not captured byMillwood’s classification system (i.e. activity theory, crit-
ical making, multimedia learning theory, embodied cognition, TPACK, engagement
theory, self-regulated learning, information processing). For a theory to be ascribed to
a study, the learning theory had to be specifically mentioned by the authors by name
or the theoretical approach had to be explained. For articles where the theory was
explained but not named, the descriptions from the article where compared against
the definitions provided by HoTEL (Millwood, 2013). To establish the reliability of
the coding scheme, one of the researchers randomly selected and recoded 10 of the
25? studies specifically investigating tablets in mathematics education. The resulting
inter-rater reliability of the coding scheme was 80%. Disagreements were resolved
through a discussion among the original coder, the secondary coder, and the principle
investigator.

For the 25 studies focusing on tablets in kindergarten to grade 5 mathematics
education, there was considerable diversity in the learning theories deployed. A total
of 13 different learning theories were used, with the most common theories being
information processing (12%), constructivism (8%), and discovery learning (8%).
The majority of studies (40%) used a learning theory not used by another study.
In line with research on educational math games (Dubé & Keenan, 2016), 32% of
the articles in the review neither named nor explained the learning theory being
tested by the study. For the studies that specifically measured the effect of tablets
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on mathematics achievement, a total of 10 learning theories were used with only
discovery learning being used by more than one study. Only 2 studies measuring
achievement failed to name or explain their learning theory approach, suggesting
that researchers specifically investigating learning outcomes are considering how
pedagogical practices translate into technological interventions.

Given the diversity of pedagogical approaches used to study the effect of tablets
on mathematics achievement, a comparison between studies is not appropriate but
a brief review of the findings provides some common themes. The study by Bebell
and Pedulla (2015) further highlights the problem of a theoretically implementing
tablets into mathematics classrooms. They set out to establish whether 1 student:1
tablet ratio is an effective means of improving kindergarten to grade 3 children’s
literacy and mathematics achievement using two experiments. The first experiment
involved a randomized pretest–posttest intervention in which kindergarten to grade 3
students (n= 266) used iPads or not in a 1:1 ratio for a 9-week period. Following this,
a second experiment involved making iPads available to all students in the school
district at a 1:1 ratio and comparisonswere drawn between studentswho had access to
the iPads and students from previous years who did not. Only the second experiment
compared students’ math performance (i.e. measurement, numeracy, operations, and
patterns) and neither study specifically controlled how the tablets were to be used in
the classroom. Rather, they simply compared how access to iPads did or did not affect
achievement. The authors argue that the atheoretical nature of the tablet deployment
was essential, as it mirrors how tablets are being implemented in schools today with a
focus on access over specific pedagogical approaches. Both studies found significant
improvements in literacy because of iPad accessibility but this pattern was not found
for mathematics. Specifically, no significant differences on any of the subtests were
found for any of the kindergarten to grade 3 students and the only non-significant
trend was for small improvements in kindergarten.

Bebell and Pedulla’s (2015) results further suggest that implementing tablets into
mathematics education requiresmore consideration of the pedagogical approach than
simply making the devices available. This outcome could have arisen from teachers
not knowing how to effectively use tablets in their mathematics classroom, from
students not being engaged by the chosen implementation, or by the mathematics
apps available at the time of the study not being of sufficient quality (i.e.Desoete et al.,
2016). Obviously, simply putting an iPad in the classroom is not going to improve
mathematics performance and determining how tablets can improve mathematics
achievement requires consideration of how the tablets are being used.

For example, Zhang et al. (2015) tested the effectiveness of three mathematics
apps (MotionMathZoom,SplashMath, andLongMultiplication) that the researchers
considered to be of high quality because they provided feedback, opportunities for
practice, and adjusted their difficulty to the learners’ ability. Following four sessions
of use, grade 4 participants demonstrated improved understanding of the mathemat-
ics concepts practised in the apps (i.e. place value, decimals, multiplication) and that
using the apps even closed a performance gapbetween struggling and typical learners.
This investigation shows that some tablet mathematics apps can improve mathemat-
ics achievement and demonstrates the potential problem of lumping together low-
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and high-quality apps to make general claims about tablets as mathematics education
tools (i.e. Bebell & Pedulla, 2015). However, Zhang et al. (2015) study did not have a
control group and did not identify why or how these high-quality apps improvemath-
ematics achievement, as the specific learning theory was neither named or described,
and this makes it difficult to draw conclusions about other tablet apps based on this
study. Without a sound theory explaining why Motion Math Zoom and Splash Math
are effective, how can educators or developers use the results from this study to iden-
tify other effective apps? Failure to connect the investigation to a learning theory
limits the utility of the results and places teachers in the same unguided situation as
seen in the studies by Bebell and Pedulla (2015) and Carr (2012); the goal of tablet
research cannot be to identify high-quality apps three at a time.

When researchers are explicit about the learning theories underlying their investi-
gation, it is easier to make guidelines for finding and using high-quality mathematics
apps. For example, Jong et al. (2013) took a learning styles approach and investigated
whether the temperaments of 119 kindergartners affected how well tablet counting
apps can be implemented in the classroom. Further, the study compared two different
types of tablet mathematics apps, gesture (control the app by making a gesture in the
air above the screen) or touch-based apps (control the app by touching the screen).
The study found that kindergartners performed better with the touch-based apps
and that participants with a persistent temperament (i.e. easily on-task/focused) per-
formed particularly well at posttest using the touch-based apps. From this result, the
authors recommend that the learning style/temperament of the child be considered
when implementing tablets into mathematics.

Similarly, Riconscente (2013) took an embodied cognition approach and found
that 5 consecutive days of mathematical app use produced a significant improvement
in grade 5 children’s fraction knowledge (d = 1.27). The authors concluded that the
gamification of the number line task helped motivate students to persist long enough
(i.e. through all 750 problems) for the app to be effective but that the effectiveness
was largely attributable to the embodied nature of the interaction. As was argued
by Dubé and McEwen (2015), touching the screen and tilting the device provides
proprioceptive feedback that aligns the physical actions of the learner with the under-
lying mathematics concepts (see Siegler & Ramani, 2009 for similar arguments with
mathematics board games). Based on these results, Riconscente recommends that
researchers and teachers consider how the learners’ physical interactions with the
tablet inform their mathematics understanding when choosing among various tablet
apps. The results form both Riconscente (2013) and Jong et al. (2013) demonstrate
how making recommendations for tablet mathematical app use is easier and more
effective when there is a clear link between the learning theory and the investigation.
However, evaluating the effectiveness of tablets as mathematics learning tools is
more complicated than simply collating the recommendations of individual studies.

Even when multiple studies agree that tablets can improve mathematics achieve-
ment, the learning theories employed can produce contradictory explanations and
recommendations. Musti-Rao and Plati (2015) used a discovery learning approach
to tablets in math education and found that a tablet intervention produced significant
improvements in grade 3 children’s multiplication fact fluency above and beyond
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another effective math intervention. In the study, half of the children were assigned
to the student-paced iPad app Math Drills, which individually presented 3 sets of 12
multiplication facts (i.e. 36 problems in total) to students and then tested them on
those facts with immediate feedback. The other half were assigned to a teacher-paced
discovery (complete a set of problems)-practice (students identify errors and practice
those items)-repair (timed assessment of all items) intervention (DPR, Poncy, Skin-
ner, & O’Mara, 2006). Not only did both teachers and students prefer the iPad inter-
vention, subsequent performance on paper and pencil ‘MadMinute’ worksheets was
better for the iPad than theDPRcondition and the iPad condition showedgreater gains
from pretest. The authors concluded that the self-paced nature of the iPad allowed
students to practise more items, nearly twice as many as the DPR intervention, but
spend less time practising individual items because responses were provided with a
tap instead of writing them down. This study concluded that not only are iPads good
for practising mathematics, but that this individualized self-paced form of practice
is more preferred and more effective than teacher led math interventions.

Interestingly, Musti-Rao and Plati’s (2015) recommendation contradicts the con-
clusions from two other studies. Hwang et al. (2015) tested the effectiveness of
touchscreen tabletops for improving fourth graders’ reasoning about fractions and
argued that the devices were effective because they facilitated collaboration (i.e.
social constructivism). In contrast, an established PC-based intervention used in the
study as a comparison did not allow students to work together and discuss math-
ematics. Similarly, Yang et al. (2016) found that tablet-supported reciprocal peer
tutoring (i.e. social constructivism) was more effective at improving second graders
mathematics achievement than 1:1 self-paced practice conducted with traditional
materials. Although the learning theory used in each study did not change whether
the tablet intervention was effective at improving mathematics achievement, the dif-
ferent theories produced contradictory reasons as to why this type of technology is
effective (self-directed vs collaborative learning).

There is a potential for tablets to improve mathematics achievement at the early
elementary level. This potential rests onwhether tablets are being deployed inmathe-
matics classroom in a purposeful way. If the deployment strategy is structured around
a learning theory, then it seems tablets can be useful mathematics learning tools.
Unfortunately, not all research takes a theory driven approach and we are not aware
of any mass tablet deployments in schools that are theory driven. In fact, the asso-
ciation of community and comprehensive schools in Ireland published a guidebook
on the use of tablet devices in schools (Hallissy, Gallagher, Ryan, & Hurley, n.d.)
and specifically called for a more pedagogically driven approach to tablets, despite
not providing one themselves. Instead, they opted for making general recommenda-
tions on how to use tablets as resources in the classroom (i.e. digital textbooks, word
processing). The evidence supports the potential of tablets as mathematics education
tools in classrooms, but now research needs to go beyond identifying potential and
make clear recommendations.
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Summary

Whether researchers and educators should consider tablets as tools for elementary
mathematics education turns out to be a complex question with many answers. All
the research seems to suggest that tablets can engage children with mathematics
but the explanations as to why engagement occurs includes the ‘cool’ factor of
new technology, the interactive and visual nature of the apps, the gamification of
learning, and the hands-on aspect of touch screens. Little research has been done on
whether the engagement students experience with tablets translates into improved
math attitudes. The scant existing research suggests that tablet mathematics apps
can increase students’ liking for specific math subjects (e.g. fractions) by giving the
learner a sense of control over their math practice and by increasing their perception
of value by using math knowledge to solve meaningful problems. Engaging students
and changing their attitudes are both worthy goals but, arguably, the push towards
tablets started because of an interest in improving children’s math ability.

Will the push to incorporate tablets into the classroom improve children’s math
skill? If current practices continue and tablets are simply thrust into the classroom
without any guidance then the answer seems to be a resounding no (Bebell & Pedulla,
2015; Carr, 2012). This answer reflects the first author’s own anecdotal experience
studying tablets in elementary settings and teaching educational technology courses
to teachers. In both situations, teachers comment that they do not know how to
use the iPads provided by the schools, that finding good apps is difficult, and that
there is no guidance for figuring out what makes a good educational app. When
a good mathematical app is identified then they seem to be effective at improving
math achievement (i.e. Hwang et al., 2015; Musti-Rao & Plati, 2015; Yang et al.,
2016). Yet, the recommendations for educators and researchers based on these few
good apps are not always copasetic and often contradictory. Again, what is needed
is for researchers to go beyond studying whether individual apps are effective and
start investigating which generalizable tablet-based pedagogical approaches result
in learning. Perhaps this could be achieved if more tablet researchers implemented
systematic Design Researchmethodologies (i.e. Sandoval, 2014) in which the design
of the study is structured aroundhow the technology is theoretically supposed to result
in learning (c.f., studies simply designed to test if learning occurs).

So, where does this leave the state of tablet math research? Are tablets effective
math learning tools? Perhaps the answer to this requires a juxtaposition against
the idea of Maslow’s Hammer (1966), popularized by the phrase, ‘I suppose it is
tempting, if the only tool you have is a hammer, to treat everything as if it were a nail’
(p. 15). Perhaps it is tempting to see tablets as hammers, as a singular-use tool that
either does or does not work for mathematics instruction. Testing this hypothesis is
easy, introduce tablets into amathematics classroom and see if engagement, attitudes,
or grades improve. However, tablets are not hammers or even tools. They are tool-
belts, holsters for the some odd 80,000+ educational apps (Hirsh-Pasek et al., 2015)
currently available to researchers and educators, and only research grounded in sound
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learning theory is going to help us decide which types of mathematics apps should
be loaded into the math educators’ tool belt.

Appendix

Learning theories (number of the 25 studies included in the review using the theory)

Situated learning Self-regulated learning

Organizational learning Activity theory

Experiential learning Critical making

Learning styles (1) Multimedia learning theory (1)

De-schooling society Embodied cognition (1)

Unschooling TPACK theory

Critical pedagogy Engagement theory (1)

Montessori education (1) Instructivism

Experiential education (1) Theory not clear (8)

Expressive constructivism

Radical constructivism

Constructivism (2)

Constructionism

Social constructivism (1)

Connectivism (1)

Expanse learning (1)

Discovery learning (2)

Meaningful learning

Multiple intelligences (1)

Mastery learning

Behaviourism

Information processing (3)
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Early Understanding of Fractions
via Early Understanding of Proportion
and Division

Cheryll L. Fitzpatrick and Darcy Hallett

When one thinks about early conceptions of math, fractions do not immediately
come to mind. Fractions have been called “without doubt the most problematic area
in mathematics education” (Streefland, 1991, p. 6). Not only are they known to be
difficult to learn in elementary school (Kerslake, 1986; Mack, 1995; Ni & Zhou,
2005), they are known to be a difficult concept for adolescents as well (Hecht, Vagi,
& Torgesen, 2007). At the same time, they are instrumental to later math learning
and have been stressed as an area that needs additional focus in our education system
(National Mathematics Advisory Panel, 2008).

Nevertheless, just because fractions are inherently difficult to learn does not mean
young children lack all understanding of fractions or fraction-related concepts before
the start of formal instruction. Researchers have demonstrated that children do indeed
have prior conceptions of fractions, and this is often called the “informal” knowledge
of fractions (Mack, 1995). For example, many children know, even before learning
fractions in school, that if one pizza is shared between three people and another
pizza of the same size is shared between four people, three people would get more
pizza. At the same time, these same children commonly say that 1/3 is less than
1/4 (Kornilaki & Nuñes, 2005). As this example illustrates, informal knowledge is
not complete and can sometimes interfere with fraction understanding (see Ni &
Zhou, 2005, for a discussion on the whole number bias). Furthermore, there are also
many different kinds of informal knowledge, which relate to the different ways that
fractions are used. Previous research inmathematics education has observed that part
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of the reason that fractions are difficult to learn is that they have different functions,
what are sometimes called the subconstructs of fractions (Behr, Harel, Post, & Lesh,
1992; Charalambous & Pitta-Pantazi, 2007; Nuñes, Desli, & Bell, 2003). One of
these subconstructs is the part–whole construct, where fractions are used to indicate
the relation between a part and the whole to which it belongs. Another subconstruct is
the quotient construct, where a fraction represents a division where a certain number
of objects are divided into so many pieces. These different subconstructs (and there
are others; see Behr et al., 1992; Nuñes et al., 2003) reflect different understandings
of fractions and are therefore likely to be based on different kinds of preconceptions.

The purpose of this chapter is to explore the precursors of fraction understanding
by examining children’s understanding of two related areas: proportional reasoning
and division. These topics were chosen for two reasons. First, each of these topics
reflects one of the subconstructs of fractions—the part–whole construct is reflected in
proportional reasoning, while the quotient construct is reflected in the understanding
of division. Second, both of these areas have research literatures investigating chil-
dren’s early conceptions. This chapter reviews and analyzes these literatures with the
purpose of better understanding what the early conceptions of these topics are and
how they relate to the understanding of fractions. We then draw some conclusions
about what these early understandings of proportional reasoning and division can tell
us about the early understanding of fractions, as well as the educational implications
for fraction learning.

Proportional Reasoning

Proportional reasoning is a complex skill that humans, and non-humans, use daily.
This skill has been described as “a pervasive activity that transcends topical barriers
in adult life” (Ahl, Moore, & Dixon, 1992, p. 81). Proportional information is vital
in dealing with a diverse array of topics such as relational spatial contrasts, tem-
peratures, densities, concentrations, and recipe formulation (Boyer & Levine, 2012;
Möhring, Newcombe, & Frick, 2015; Moore, Dixon, & Haines, 1991; Noetling,
1980a, 1980b; Sielger & Vago, 1978). Understanding proportionality is a key con-
cept in mathematics and has been stated by the National Council of Teachers of
Mathematics as deserving whatever time can be afforded to its development (as
cited in Boyer, Levine, & Huttenlocher, 2008). There are many topics children will
encounter in the elementary school mathematics curriculum in which proportional
reasoning is central, such as fraction equivalence, long division, and measurement
conversion (Lesh, Post, & Behr, 1988, as cited in Boyer & Levine, 2012). One of the
interesting things about using proportional reasoning to make decisions in our every-
day lives is that judgements can be made quite readily in the absence of numerical
scales (Ahl et al., 1992).

The purpose of this section is to explore the research on children’s understand-
ing of proportion. Although the focus here is on children’s early understanding of
proportion, we will start by reviewing the research looking at adolescent understand-



Early Understanding of Fractions via Early Understanding … 251

ing of proportional reasoning. This will help us to understand what is different about
proportional reasoning in older children compared to that in younger children, which
will provide a better picture of what children’s early understanding of proportion is
really like.

“True” Versus “Intuitive” Proportional Understanding

Like many things, some of the first insights into the development of proportional rea-
soning start with Piaget and Inhelder (Inhelder & Piaget, 1958; Piaget & Inhelder,
1975). They argued that proportional understanding is beyond the capabilities of
young children, as it requires knowledge of formal operations (e.g., reasoning about
the “relation between relations”). Piaget and Inhelder based these conclusions on chil-
dren’s responses to questions about the operations of systems, as well as responses
to questions about games of chance. One example of a system’s task was the balance
scale task (Inhelder & Piaget, 1958), where children were given a typical balance
scale with which to experiment and asked to explain what happens when weights of
varying amounts are placed at different distances from the center on either side, and
why it happens that way. They found that only young adolescents (i.e., those who
Piaget called formal operational) could explain that the scale would be in equilibrium
when the proportional difference in the weights was countered with a proportional
difference in the distance of these weights from the center. In this “true” understand-
ing, older children understand the situations to which proportional reasoning applies
and can do exact calculations. Younger children (7- to 10-year-olds, i.e., those who
Piaget called concrete operational) understand that larger weights have to be closer
to the center than smaller weights in order to achieve equilibrium, but do not under-
stand the relation as mathematically proportional. Piaget and Inhelder called this an
intuitive understanding of proportion.

Many studies published in the aftermath of the work of Piaget and Inhelder, using
different kinds of procedures, supported the assertion that a true understanding of
proportion is not achieved until formal operations (e.g., Chapman, 1975; Offenback,
Gruen, & Caskey, 1984; Siegler & Vago, 1978). Although some studies seemed
to suggest that younger children could solve proportion tasks (e.g., Davies, 1965;
Goldberg, 1966; Yost, Siegel, & Andrews, 1962), critics pointed out that these tasks
could be solved by choosing the larger number without paying attention to proportion
(Chapman, 1975). Studies by Noelting (1980a, 1980b) illustrated this difference.
Children were presented with sets consisting of different numbers of glasses with
orange juice concentrate and water and had to choose which sets of glasses would
result in the strongest (most orange tasting) orange juicemixture. Noelting found that
7-year-olds could solve the task if the amount of water was held constant while the
amount of orange juice concentrate changed, as children could just choose the larger
number to get the correct answer. However, even 10- and 12-year-olds had difficulty
with this task when the amount of water was not held constant, which requires a
more complete understanding of proportion.
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However, given that our purpose is to look for early conceptions of proportion
that can relate to fraction understanding, an intuitive notion of proportion may still
be useful. Children might not be able to calculate the proportions, but they may
still understand something about how they work, and this may be enough to sup-
port fraction learning. Related to this question is the extent to which the study of
children’s understanding of proportion is tied to the understanding that proportion
is needed in the context of a given task. In situations like the balance task, Inhelder
and Piaget (1958) are not simply testing children’s understanding of proportions, but
their understanding that these tasks are governed by a proportional relation. If chil-
dren can show this understanding, as they do in early adolescence, then it is true that
they must also understand proportion. However, it is possible the younger children
are able to reason proportionally, but they just do not know that they are supposed
to reason proportionally when faced with proportion tasks like the ones described
above.

Furthermore, a closer look at some of the studies presented above suggests some
potential for proportional understanding at earlier ages. Chapman (1975) concluded
that children were not at adult levels in their understanding of proportion, but the
Grade 5 children did perform above chance on his task. Similarly, Offenbach et al.
(1984) found that just under a third of Grade 6 children were using a proportion
strategy. Finally, Siegler and Vago (1978) found that if the children were explicitly
instructed on how to do their task, albeit in a very extensive and stepwise way, then
90% of the children (of all ages) could solve it.

The Right Context Can Elicit Proportional Reasoning
in Younger Children

As it turns out, more recent research has found that younger children can demon-
strate understanding of proportional reasoning if you ask them in the right way. For
example, Acredolo, O’Connor, Banks, and Horobin (1989) asked 7-, 9-, and 11-
year-olds to guess the probability of drawing a target (jelly beans in one study and
ladybugs in another), while they varied the number of targets and the total number
in the collection. They found that the children’s responses demonstrated an effect of
changing the target number (i.e., probability was lower if the number of targets was
lower), changing the total number (i.e., probability was lower if the total number
was higher), and even the interaction between the two (i.e., the effect of increased
probability when the number of targets increased would be larger at lower total item
levels). However, the probabilities chosen by the children did not match the actual
probabilities. This means that children were able to adapt their answers in a relative
way to match changing circumstances, but their absolute judgements of the prob-
abilities were off. These results suggest that children as young as 7 years old are
thinking of likelihood in a proportional way, even if they cannot calculate the actual
probabilities.
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Spinillo and Bryant (1991, 1999) presented children with pictures of boxes filled
with blue and white blocks and asked them to choose which of two boxes in front
of them matched the picture (i.e., had the same proportion of blue to white blocks).
They found that the youngest children, 4- and 5-year-olds, did not succeed on these
tasks. However, starting at age 6, children began to correctly identify the proportion
and offered proportional justifications for doing so, but they did this mostly when
the proportions in the two boxes were on either side of a half. Spinillo and Bryant
argued that these trials could be solved by using part–part reasoning (the blue part
was more than the white part in one box, while the white part was more than the
blue part in the other box), and for this reason, there was something special about
the half boundary. For the trials where the proportions were on the same side of half,
children would have to use part–whole reasoning, which they found more difficult.

Sophian andWood (1997) also investigated part–part versus part–whole reasoning
in a group of 5- to 7-year-olds. In contrast to Spinillo and Bryant (1991), Sophian and
Wood found that 7-year-old children chose the part–whole option above chance both
when compared to a non-matching option and when compared to a part–part option,
although they argued that their taskmight elicit a different reasoning than Spinillo and
Bryant (1991). Moore, Dixon, and colleagues (Ahl et al., 1992; Moore et al., 1991)
had children watch two containers of water, of different temperatures, get mixed
together and were then asked what temperature the combined water would be. They
found that Grade 5 students demonstrated proportional reasoning when descriptors
were used for the temperature (i.e., “very cold,” “cold,” “medium,” “hot,” or “very
hot”), but not when numbers were used. All these cases provide further evidence that
younger children can understand proportions if the task is framed in a particular way.

In the studies reviewed above, children who are about 6 or 7 years old are the ones
who are starting to succeed in these proportional tasks, while younger children (if
they are included in the study) are still failing them. There are studies, however, that
have revealed successful proportional thinking in 3-, 4-, and 5-year-old children. Ng,
Heyman, and Barner (2011, Study 2) found that an expectation that resources should
be divided equally (i.e., they tell the children that two people worked equally hard to
earn some coins to be shared) will help even young children focus on the proportion
rather than the absolute amount. Goswami (1989) and Singer-Freeman andGoswami
(2001) were able to show that 3-year-olds (Singer-Freeman & Goswami, 2001) and
4-year-olds (Goswami, 1989; Singer-Freeman&Goswami, 2001)were able tomatch
proportions if theywere presented as a visual analogy, either as abstract pictures (e.g.,
half a circle is to half a square, as a quarter of a circle is to blank of a square) or
as models of food (e.g., if the experimenter took away 2/8 of their food model, the
child had to take away 1/4 of their food model). In both studies, these young children
scored above chance on these tasks, although they seemed to do better on 1/2 and
3/4 proportions than they did on the 1/4 proportions.

Going even younger, research has demonstrated that even infants respond to pro-
portional information. Using habituation studies (where infants’ looking behavior is
observed to infer their ability to notice changes in proportion), 6-month-olds were
found to, at the very least, represent proportions and notice large departures from
a given proportion, independent of the absolute number of images seen (McCrink
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&Wynn, 2007). Similarly, Xu and Denison (2009), and Xu and Garcia (2008) have
shown that 8- and 10-month-olds notice when a proportion of colored balls varies
significantly from what would be expected. Provided with proportional information,
Denison and Xu (2010, 2014) found that, more often than chance, 10- to 14-month-
olds chose a cup that was more likely to have a desired object. Interestingly, Girotto,
Fontanari, Gonzalez, Vallortigara, and Blaye (2016) found that 3- and 4-year-olds
were not above chance on this same forced-choice task (see Xu&Denison, 2009; Xu
&Garcia, 2008), although the 5-year-olds were. Nevertheless, this evidence suggests
that even infants possess a sensitivity to proportion.

Discrete Versus Continuous Tasks

Whether stimuli are continuous or discrete is another factor that can explain why
younger children are succeeding on some proportional tasks while failing on oth-
ers (Mix, Huttenlocher, & Levine, 2002; Mix, Levine, & Huttenlocher, 1999). For
example, Boyer and colleagues (2008) asked kindergarten to Grade 4 students to help
Wally Bear mix his juice (similar to the method used by Noelting, 1980a, 1980b). On
a computer screen, they saw a proportion of juice to water that Wally Bear wanted
to make, and they were then asked to pick which of two alternatives would make the
same tasting juice (see Fig. 1).Wally Bear’s target exemplar and the choices to match
to that exemplar were represented by partially shaded vertical bars; sometimes these
bars were continuous, and sometimes they were discrete (i.e., divided into equal
sized units using demarcating lines; see Fig. 1). In their first study, second and third
graders, but not younger children, were able to do these tasks, but performance was
the poorest when the target and the choice alternatives were both presented as dis-
crete quantities. Furthermore, children did worse depending on the wrong choice
(or foil) that was presented to them. The juice-matching foil matched the number
of units of juice but had a different total, while the total-matching foil matched the
total number of units but had a different number of units of juice (all the examples in
Fig. 1 are juice-matching foils). The children had worse performance when there was
a juice-matching foil than when there was a total-matching foil. These results again
suggest that the format of the stimuli may lead children to engage in non-proportional
reasoning in tasks such as this.

Jeong, Levine, andHuttenlocher (2007) observed very similar results using donut-
shaped spinners with red and blue regions that were sometimes demarcated (discrete)
and sometimes not (continuous). Children were presented a choice of two spinners
(the diameter of the spinners varied so that the size of the red regionwould not predict
the answer) and asked to pick which one they would like to use to maximize their
chance of landing in the red region. They found that all children were above chance
on the continuous trials, but the 6-year-olds were not above chance on the discrete
trials. The 8- and 10-year-olds, by contrast, were above chance on the discrete trials,
but onlywhen the larger number of shaded red regions also corresponded to the larger
proportion. Put succinctly, even the youngest children succeeded at the continuous
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Fig. 1 An illustration of the juice-mixing options where the target could be continuous or discrete
and the choice could be continuous or discrete. This is taken from Fig. 1 from Boyer et al. (2008),
reproduced with permission

trials, the 8- and 10-year-olds succeeded on the discrete trials if the larger number
of units coincided with the larger proportion, and even the oldest children did not
succeed on the discrete trials if the larger number of units did not coincide with
the larger proportion. All of these results suggest two main points. First, continuous
stimuli, more than discrete stimuli, will facilitate children’s proportional thinking.
Second, the discrete stimuli seemed to lead children, even 8- and 10-year-olds, to
use a non-proportional strategy that they do not use with continuous stimuli. The
implication is that continuous stimuli might bias children to pay attention to the
relative differences between the quantities, while discrete stimuli might bias children
to count the units and use absolute number (rather than proportion) to guide their
answers.

Reconciling the Evidence for Children’s Early Proportional
Reasoning

Although children younger than 8 years old may not have a true understanding of
proportion, the research reviewed above is abundant and methodologically diverse,
and it offers convincing evidence that preadolescent children (indeed, even children
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inGrade 1) can nevertheless solve proportional tasks. Furthermore, a fairly consistent
finding was that children could solve tasks using continuous stimuli at earlier ages
than they could with a parallel task using discrete stimuli. One explanation for this
difference, tested and supported explicitly by Boyer and colleagues (2008), is that if
one presents the stimuli in these tasks as something suggestive of counting, children
at these ages are biased to count them and use that count information (rather than pro-
portion) to answer the task. Nevertheless, the studies that demonstrated proportional
reasoning with some of the youngest children (i.e., 3- to 5-year-olds) used discrete
stimuli. Ng and colleagues (2011) used plates of pennies in their task to demonstrate
different sharing situations. Singer-Freeman and Goswami (2001) used models of
food where fractions of the food were divided into non-attached pieces (eighths for
the experimenter and quarters for the children). Both these sets of stimuli seem as
countable as that used by Boyer and his colleagues (Boyer et al., 2008; Boyer &
Levine 2012; Jeong et al., 2007), so why did the first set of studies show successful
proportional reasoning at very young ages while the second set did not?

Perhaps, it is not simply the countability of discrete stimuli that hinders propor-
tional understanding, but countability in particular situations where one of the parts
of the proportion is somehowmore focal or seen asmore salient. Some of the original
studies using discrete stimuli (e.g., Chapman, 1975; Inhelder & Piaget, 1958) were
about probability, where children were asked to pick the option that was more likely
to get them their target. Perhaps, when you ask a young child to choose which one of
two options is more likely to get the target, the child might interpret that as a quantity
question, focus on the target, and resort to counting absolute targets. Limiting one’s
proportional reasoning to a single quantity in this way has been referred to as uni-
variate reasoning (Lobato, Hawley Orrill, Druken, & Jacobson, 2011). The orange
juice tasks (e.g., Boyer et al., 2008; Noelting, 1980a, 1980b) may be similar, in that
children asked to judge the tastiness of orange juice concentrate mixed with water
will focus on the amount of the active ingredient, if given an easy way to quantify
it. Ng and colleagues (2011), however, structured their task to be about fairness, and
when the situation was designed so that it would be socially expected to evenly split
the pennies, children paid attention to the proportion and not the absolute amount.
Singer-Freeman and Goswami (2001) did not ask children to choose a larger or
smaller of two proportions—they asked them to manipulate a model in front of them
to match what the experimenter had done with their model. The crucial difference
here may be because the child did the manipulation him or herself, or it may be
because the situation did not draw attention to an active focal component that, in the
child’s mind, was the main component in the likelihood of getting a target piece or
in the taste of the orange juice. Further research is needed to test this idea, but the
research so far suggests that discrete stimuli can still be used in early conceptions of
proportion reasoning if the situation is carefully constructed to avoid these pitfalls.
At the same time, using continuous stimuli also avoids these pitfalls.

In sum, the research on proportional reasoning suggests that even very young
children can attend to proportional reasoning, even if it is also very easy to distract
them from attending to it. As such, the early understanding of proportion may be able
to support the development of an early understanding of fractions. The next section
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explores the research regarding the early understanding of division to see if it has a
similar potential to support the learning of fractions.

Division

According to the CommonCore State Standards inMathematics, children are not for-
mally taught algorithms to solve division problems until they reachGrade 3 (National
Governors Association Center for Best Practices & Council of Chief State School
Officers, 2010). Nevertheless, there is a fair amount of the research on children’s
understanding and performance on division problems occurring before they are
taught division at school. This research uses illustrations (e.g., Kornilaki & Nuñes,
2005; Matalliotaki, 2012; Squire & Bryant, 2002b, 2003a) and concrete materials
(Correa, Nuñes, & Bryant, 1998; Frydman & Bryant, 1988; Squire & Bryant 2002a),
aimed at examining topics like children’s understanding of the inverse quotient–di-
visor relationship (e.g., Correa et al., 1998; Squire & Bryant, 2003b), discrimination
of the dividend, divisor, and quotient (e.g., Squire & Bryant 2002b, 2003a), and
sharing discrete and continuous quantities (e.g., Kornilaki & Nuñes, 2005; Sophian,
Garyantes, & Chang, 1997). Although this research is not as extensive as the studies
on proportion, and not as contradictory, there are many features of early division
understanding that have the potential to inform our understanding of early fraction
knowledge.

Division as Sharing

One of the predominant themes in the research on early division concepts is how it
is understood through the concept of sharing, in particular, through a sharing action
schema or model of the action (Correa et al., 1998; Fischbein, Deri, Nello, &Marino,
1985; Kornilaki & Nuñes, 2005; Matalliotaki, 2012). The activity of sharing occurs
almost daily in the life of a child, and the skill is quite relevant and beneficial to their
development. In fact, the concept of sharing is strongly engrained in humans as we
have evolved a psychological structure that deals with sharingwhich has been shaped
by our ancestors who engaged in food sharing and resource allocation in order to
survive (Cormas, 2014). Naturally, young children’s ability to share becomes the
basis for their first ideas about division (Bryant & Nuñes, 2002), and because of
this notion, division seems a very obvious topic to study in children. However, to
determine if young children do have an understanding of division, researchers must
examine children’s understanding of the principles of division, and that includes
the relations between the dividend, divisor, and quotient (e.g., Correa et al., 1998;
Kornilaki & Nuñes, 2005; Kouba, 1989; Squire & Bryant, 2002a).

Many of the studies examining children’s (e.g., 5- to 8-year-olds) preformal under-
standing of division compare partitive division tasks to quotitive division tasks. In
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partitive division tasks, the total number and the number of sets are known, and the
solution involves finding the number in each set (e.g., eight children, four tables; how
many at each table?). In a quotitive division task, the total number and the number in
each set are known, and the solution involves finding the number of sets (e.g., eight
children, four at each table; howmany tables?). Fischbein and colleagues (1985) liken
partitive division tasks to sharing and quotitive division tasks to repeated subtraction
(as cited in Matallikotaki, 2012). Fischbein and colleagues (1985) further argue that
partitive division is based on action schemas of sharing, but quotitive division must
be acquired later through instruction.

If it is true that partitive tasks are solved with sharing, and sharing is something
that children easily understand, while quotitive tasks are learned later, then young
children should show better performance on partitive questions than quotitive ques-
tions. In most studies that use partitive and quotitive division problems, children—at
all ages—perform better in the partitive division tasks (e.g., Correa et al., 1998;
Matallikotaki, 2012; Squire & Bryant, 2002a, 2002b, 2003b). There also tends to
be a developmental jump around 7 years of age, where performance begins to differ
between older children and younger children (e.g., 5-year-olds), especially in the
quotitive division tasks. Some of these studies, however, have also explored how dif-
ferent ways of pregrouping the items to be divided can affect performance, and what
this might say about the nature of the sharing schema. Squire and Bryant (2002a)
investigatedwhether grouping stimuli by the quotient may help students perform bet-
ter in quotitive division tasks while grouping stimuli by the divisor would work better
in partitive tasks. For example, take a partitive version of 6÷ 3 where 6 children are
to sit at 3 tables, and the question is how many children will sit at each table if the
same number is seated at each (see Fig. 2). When the children are grouped by divisor,
then the number of groups (not the size of the group) is determined by the divisor, so
the picture of the problemwould group the children together into 3 groups of 2.When
children are grouped by quotient, then the number of groups is determined by the
quotient (i.e., 2), so the picture of the problem would show 2 groups of 3. A quotitive
version of this problem would say that there are 6 children who sit 3 to a table, so
how many tables would they need; this problem could also be illustrated with either
grouping procedure (see Fig. 2; also see Figs. 2 and 3 in Squire & Bryant, 2002a,
e.g., with 12 ÷ 4). Children only saw a partitive or quotitive division task and were
asked eight questions (four grouping-by-divisor and four grouping-by-quotient). As
predicted, they found that performance was better in the partitive division task when
the portions were grouped by the divisor and in the quotitive division task when the
portions were grouped by the quotient. Looking at only partitive tasks in a different
set of three studies, Squire and Bryant (2002b) consistently found an advantage for
grouping-by-divisor.

These results suggest partitive andquotitive tasks are easier in grouping-by-divisor
and grouping-by-quotient conditions, respectively, because the items are grouped in
a way that facilitates a sharing action sequence. Carpenter, Fennema, and Franke
(1996) suggest the two types of division problems elicit different strategies to reflect
the different actions being described in the problem text. In the example above,
having 3 groups of 2 in the partitive task is more easily understood as each table’s
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Partitive division problems (6÷3).
There are 6 people total and 3 tables. How many at each table?

Grouping-by-divisor Grouping-by-quotient

Quotitive division problems (6÷3).
There are 6 people total and each table takes 3 people. How many tables are needed?

Grouping-by-divisor Grouping-by-quotient

Fig. 2 An illustration of the difference between grouping-by-divisor and grouping-by-quotient for
partitive and quotitive division tasks

share, so the size of the group is the answer. If there were 2 groups of 3, children
defaulting toward a sharing scheme would have to share out the members of the 3
groups, one group at a time, until each table had 2 at it, and this would be more
onerous and error-prone. In the quotitive version of the task, when there are 2 groups
of 3 children, the table share is already set as 3, so it is easier to simply count the
number of groups. When there are 3 groups of 2, then solving the quotitive problem
would involve either regrouping into sets of three or taking one person from each
group to make a table of three and realizing you can do that two times, which again
would be more error-prone.
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Although the evidence reviewed above suggests that 4- and 5-year-olds are able
to share out quantities in a one-for-me, one-for-you manner (Desforges &Desforges,
1980; Frydman & Bryant, 1988), this does not mean that they apply all aspects of
sharing to their understanding of division. For example, they still have difficulty with
understanding equivalence in cardinal values. Frydman and Bryant (1988) asked 4-
and 5-year-olds to divide a group of sweets between somedolls.Most children did this
using a sharing action schema.Once the children had allotted all the sweets, theywere
asked how many sweets one of the dolls had. Importantly, they then were asked how
many sweets the other dolls had. Not one of the 4-year-olds spontaneously responded
and instead began to count the items in front of the other dolls. This suggests they
do not understand that shares should be equal and should not need recounting. The
experimenter covered the blocks and then asked the children again if they knew
how many sweets the doll had without counting, and not even half of the 4-year-
old children (10/24) responded correctly. However, Frydman and Bryant, as well as
Correa and colleagues (1998), found that this task can be performed successfully by
5-year-olds, which suggests a developmental shift at around this time.

In addition to examining the predominance of the sharing schema in early fraction
understanding, many of these same studies also investigated other key aspects of
understanding division. One of these key understandings, a core feature of fractions
as well as division, is the inverse nature of division—as the divisor increases, the
quotient decreases. Younger children still struggle with this concept regardless of
how well they can share.

Relations Between Dividend, Divisor, and Quotient

Correa and colleagues (1998) investigated the extent to which young children under-
stand the relation between the three terms that make up a division problem, namely
the dividend, divisor, and quotient in a partitive (Study 1) or quotitive (Study 2)
division task. This study also looked for evidence of the inverse divisor–quotient
relationship. Children were asked to give treats to a group of rabbits under two con-
ditions, the same- and different-divisor conditions, while the dividend remained the
same. In the same-divisor condition, there were an equal number of blue and pink
rabbits (e.g., two blue rabbits and two pink rabbits); in the different-divisor condi-
tion, there were a different number of blue and pink rabbits. In Study 1, the children
were asked to determine if the blue rabbits and pink rabbits would receive the same
amount of treats, but, in Study 2, the children were asked to determine if the same
number of blue and pink rabbits could be invited to the picnic if each rabbit were to
receive a specific amount of carrots. They found that understanding of the inverse
divisor–quotient relationship was present in about half of the 6-year-olds and only
a third of 5-year-olds. In other words, the younger children demonstrated difficulty
in reasoning about and comparing the outcome of dividing the same number among
different divisors (e.g., sharing 12 carrots among 3 rabbits will result in more carrots
per rabbit than when sharing 12 carrots among 4 rabbits). Instead, a commonmistake



Early Understanding of Fractions via Early Understanding … 261

these children made was to erroneously apply a “more is more” rule, thinking the
more rabbits there are in a group, the more sweets are needed, and the more sweets
means the more the rabbits will get. Older children were also highly susceptible to
the more is more rule.

Squire and Bryant (2003a) also examined if 5- to 8-year-old children understood
the inverse relation between divisor and quotient. To do so, the authors used stimuli
similar to those used by Correa et al. (1998); there were always the same number of
carrots for the rabbits, but the number of rabbits varied. The experimenter pointed to
one red and one blue rabbit and asked the children if the rabbits would get the same
amount of carrots. They found that the children performed better on the same-divisor
condition than in the different-divisor condition, and that there were no differences
in the different-divisor condition depending on the size of the difference between
divisors (small vs. large). As was the case for Correa and colleagues (1998), errors in
the different-divisor condition demonstrated that 5-year-olds do not understand the
inverse nature of the divisor–quotient relation. At the same time, these studies also
demonstrate that most 7- and 8-year-olds do have this understanding, and they have
this understanding even before they are taught about division in school.

Discrete Versus Continuous Tasks

Similar to the studies described in the proportional reasoning section, research exam-
ining children’s understanding of division also differentiates between continuous and
discrete quantities. When it comes to proportional reasoning tasks, children tend to
perform better when quantities are presented as continuous (e.g., Jeong et al., 2007;
Boyer et al., 2008); however, this is not the case when it comes to children’s per-
formance in division problems. When division questions are framed as a sharing
situation, children historically have more difficulty sharing continuous quantities
compared to discrete quantities, usually because children do not know how to prop-
erly subdivide the continuous pieces (Kornilaki&Nuñes, 2005). In tasks that examine
the relations between the dividend, the divisor, and the quotient, however, the results
are a little different.

Kornilaki and Nuñes (2005) used discrete (e.g., small fish) and continuous stimuli
(e.g., fish cakes) when examining young children’s (5- to 7-year-olds) understanding
of division. In the discrete condition, children were presented with two groups of
cats, brown and white cats, that were eating fish. There were 12 or 24 fish in a pile
for each group of cats. In the continuous condition, the children were told the cats
were eating fish cakes (1, 2, or 3). The children were told that the cats were going
to share the fish fairly. There were also same- and different-divisor conditions (i.e.,
either there were the same amount of brown and white cats or there were a different
amount of brown and white cats). The experimenter pointed to one brown and one
white cat and asked the children if the cats would receive the same amount of fish.

There was no difference in children’s performance on the continuous questions
versus the discrete questions (Kornilaki & Nuñes, 2005). However, children did
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have a more difficult time offering justifications for their answers for the continuous
questions. This general pattern held true in both partitive and quotitive division
tasks. All of the children who performed well on the different-divisor condition
also performed well on the same-divisor condition, but the reverse was not always
true. The authors suggest children’s understanding of the inverse relation between
the divisor and the quotient develops later than their understanding of equivalence.
They also suggest that children are able to generalize their intuitive understanding of
division of discrete items to inform them in their solution process using continuous
quantities.

A challenge associated with sharing continuous quantities is that it does not easily
facilitate the child’s intuitive understanding of sharing, that is, one-for-me and one-
for-you. Frydman and Bryant (1988) asked 4- and 5-year-olds to share sweets (12
or 24 blocks) among dolls (2, 3, and 4) so that everyone gets the same amount.
However, sometimes the blocks were doubled up (e.g., attached) so that two single
blocks were equivalent to a one double block (2:1). To succeed on this task, children
would have to consider that giving one doll a double block meant that another doll
would have to receive two single blocks to ensure equal sharing. The 4-year-olds
ignored the double (and triple) blocks and distributed them among the dolls in a
one-to-one fashion, but the 5-year-olds performed significantly better on this task
than the 4-year-olds. However, Frydman and Bryant (1988) also trained a separate
group of 4-year-olds on how to approach the same task using color cues. During
the intervention, children were shown how to group, for example, three single blue
blocks as being equivalent to a yellow triple block. Children in the intervention group
performed significantly better in the posttest than those in the control group. This
is especially important because, during the posttest, the color cues were removed.
The 4-year-olds only required minimal exposure showing how the task should be
performed, and they were able to generalize that information to a task when color
cues were not available to them.

Overall, the evidence supports the idea that children have a sense of the com-
ponents involved in division long before they receive any formal instruction. While
young children do have a sense of division, their early understanding is very much
based on their intuitive sense of sharing, more specifically, their sense of sharing on a
one-to-one basis. Partitive division tasks are much easier for young children because
it corresponds to their natural desire to share by individual rather than by groups of
items. It had also been argued that quotitive division problems are more challenging
for the same reason; the one-to-one distribution does not equate to the quotient in
quotitive division tasks. Despite early understanding of division concepts and the
one-to-one allocation method, however, children still struggle with equivalent cardi-
nal items. For example, preschoolers who see a set of objects divided in half, andwho
are provided with the number of objects in one of the halves, are unable to infer that
the other half has the same number of objects (Frydman & Bryant, 1988). However,
there are promising signs that young children already have the intuitive knowledge in
place to be successful in division and that, prior to any type of formal education, they
are demonstrating strategies that are used to instruct formal knowledge of division
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in the school systems (see Kouba, 1989; Mulligan & Mitchelmore, 1997; Mulligan
& Watson, 1998).

Educational Implications for Fractions

In this section, we consider the implications of the research on early understanding
of proportion and division on the early understanding of fractions. In doing so, we
qualify these suggestions by reconciling these findings with the literature on early
understanding of fractions.

Discrete Versus Continuous Stimuli

In the research reviewed above, children’s understanding of proportion was found to
be facilitated by the use of discrete stimuli compared to continuous stimuli. Studies on
the early understanding of fractions also examined this distinction, but these studies
do not consistently favor continuous stimuli. Some conclude that discrete stimuli are
easier for children in fraction tasks, and there is a debate within the math education
field about which stimuli teachers should use for teaching fractions (see Wilkerson
et al., 2015). Hunting and Sharpley (1998) investigated 4-year-olds’ understanding
of a number of different fraction questions and found that children performed the
best on the discrete task where they had to share 12 crackers between 3 dolls. Mix
et al. (1999) demonstrated that 4- and 5-year-olds could observe a transformation,
hidden behind a screen, of separate pieces (e.g., quarters of a circle) being added
or subtracted and then match them with a continuous picture of the resulting sum
or difference. Wilkerson and colleagues (2015) followed kindergarten and Grade 3
children over a series of lessons that switched between models using discrete and
continuous stimuli. The observational evidence suggested that children (and teachers)
were more comfortable working with discrete models of fractions. Consistent with
this, kindergarten children improved the most on discrete items over the course of
the lessons. Grade 3 children, however, improved the most on continuous items.
Nevertheless, Wilkerson and colleagues (2015) suggest the bulk of the evidence
favors discrete items, largely because children find them easier to share.

It may be that continuous stimuli may best support the understanding of the
proportional aspect of fractions (Empson, 1999) while discrete stimuli support the
division aspect of fractions (Kornilaki & Nuñes, 2005; Squire & Bryant, 2002a,
2002b). At the same time, young children are still able to succeed on tasks using
continuous stimuli (Squire & Bryant, 2002a). The division literature (Kornilaki &
Nuñes, 2005) suggests the main difficulty with sharing continuous items is that they
are difficult to know how to partition. This parallels findings in the fraction literature
as well. In Hunting and Sharpley’s (1998) tasks, one of the main difficulties that 3-
and 4-year-olds had in dividing materials was to actually make the pieces equal in
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size.When asked to cut a blanket to share between two dolls,many kids could roughly
assess where the halfway point was, but none of them did any kind of checking to
see if the pieces were the same size. When asked to divide a sausage or a string
between many dolls, the pieces were most often of varying sizes, and quite often
there would be an extra piece left over. Given these difficulties, it seems plausible
that interventions could be designed that focus on how to subdivide wholes into equal
pieces. This extra bit of expertise would build on the intuitions that children already
appear to have and may help to improve their fraction understanding.

Instructing children on how to divide into equal pieces can build on the findings
that suggest that the notion of a half is special. Spinillo and Bryant (1991; 1999)
demonstrated that 6- and 7-year-olds are sensitive to the notion of a half; at least,
they were able to distinguish two proportions when they fell on either side of the
half boundary but not when they were on the same side of that boundary. Consistent
with this idea, Barth, Baron, Spelke, and Carey (2009) demonstrated that 5- and
6-year-olds could mentally halve a component, although Barth and colleagues did
not test to see if children were better at halving compared to some other reduction
proportions. The notion that half is special is consistent with other research in early
fraction understanding. Hunting and Sharpley (1998) tested 3- and 4-year-olds about
their conceptions of 1/2, 1/3, and 1/4. To do this, they gave the children scenarios
that asked them, for example, to cut a piece of cloth so that it can be shared between
two dolls fairly. About a third of these young children could do this task, but almost
none of them could do it when they were dividing the cloth between three dolls
(although they were not asked to complete this particular task with four dolls). This
supports the idea that the notion of half is a privileged reference point, and it has been
incorporated through the Common Core Standards for Mathematics. For example,
the report mentions that during the teaching of concepts such as measurement and
data and geometry, there is a focus on half as being a unique attribute (National
Governors Association Center for Best Practices & Council of Chief State School
Officers, 2010).

Although fraction learning may be easier with discrete stimuli, Empson (1999)
has demonstrated that, with adequate instruction, even first-grade children can suc-
ceed on fraction tasks that make use of continuous stimuli. Furthermore, this study
demonstrates a way in which fractions other than half can be taught. First-grade
students were given a 5-week, 15-lesson instructional intervention that was collec-
tively developed by Empson and the students’ teachers. Children were quite skilled
at halving and repeated halving to solve fraction problems, even before instruction.
However, the training covered ways to build on this intuition, using equal sharing, to
partition wholes into pieces other than half. Roughly, half of the first-grade students
were able to take their knowledge of equal sharing and apply it to novel fraction
problems. This approach not only supports the half as a privileged reference point,
it also supports using the notion of sharing to facilitate fraction learning, which we
turn to next.
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Sharing

One predominant theme in the research on division is that children’s early under-
standing of division is rooted in the notion of sharing. It seems logical, then, that one
considers ways in which fractions could be understood as sharing. At one level, this
is fairly straightforward, because, in many ways, a fraction is just a division opera-
tion. It is the numerator divided by the denominator, and the sharing situation turns
that into the number of objects to be shared (the numerator) divided by the number
of people to share them between (the denominator). What separates the use of this
metaphor in division from its use in fractions, however, is that division problems are
usually presented as discrete wholes that do not need to be subdivided to equally
distribute them. When in a situation where the wholes cannot be equally distributed,
there is a remainder, and as such, there is the potential to delve into the world of
fractions. As it turns out, young children are hesitant when dealing with a remainder.
When faced with a remainder, children will often ignore it or incorporate it back into
their whole number answer (e.g., Guerrero &Rivera, 2001; Lautert & Spinillo, 2004,
2005). Fortunately, there is evidence demonstrating the benefit of intervention train-
ing to help children properly incorporate the remainder (Carpenter, Ansell, Franke,
Fennema, & Weisbeck, 1993; Guerrero & Rivera, 2001; Lautert, Spinillo, & Cor-
rea, 2012; Spinillo & Lautert, 2006). More than simply recognizing the remainder
for what it is, however, these situations allow for exploring the notion of fractions
by subdividing the remaining pieces to then be shared. This approach is essentially
what is used by Streefland (1991, 1997) in his realistic program for teaching frac-
tions. Streefland has devised fraction learning situations through sharing scenarios
(often sharing pizzas) that inevitably lead to subdividing the pizza. The research on
children’s use of sharing to understand division would suggest there is merit to this
approach.

Understanding the Relational Aspects of Fractions

Another key aspect to early understanding of division is children’s intuitive notions
of the relation between the dividend, the divisor, and the quotient. Essentially, this
amounts to knowing that the quotient (answer/quantity) will increase as the dividend
(numerator) increases, but it will decrease as the divisor (denominator) increases.
These exact relations also exist in the understanding of fractions and of proportions.
However, even though these notions are the same in both division understanding
and proportional reasoning, they each can be framed using fraction subconstructs
as either the part–whole situation (proportional reasoning) or a quotient situation
(division). Furthermore, research with fractions demonstrates that this can make a
difference in performance. Grade 1 students performed better on fraction items (e.g.,
naming, ordering, and indicating equivalence)when theywere presented in a quotient
situation than they did in a part–whole situation (Mamede, Nuñes, & Bryant, 2005).
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This parallels the findings described above that division problems are easiest for
young children when they are presented as partitive tasks (Correa et al., 1998; Squire
& Bryant, 2002a, 2002b, 2003a, 2003b).

In sum, these findings suggest that continuous stimuli are used when focusing
on the part–whole aspect of fractions and that discrete stimuli are used when in
quotient situations. If using discrete stimuli, however, care should be taken not to
structure them in a way that encourages counting, and there should be a focus on
how to subdivide any remaining pieces. Children also have an intuitive aspect of
the relational aspects of fractions, so instruction could also serve to reinforce the
parallels between proportion, division, and fractions.

Although the research reviewed here focuses on an early understanding of frac-
tions, what children cannot do is suggestive of what might separate early conceptions
of fractions with more mature understandings. The findings from Acredolo and col-
leagues (1989), for example, suggest that even thoughyoung childrenmayunderstand
how proportion changes as numerators and denominators change, they are not able
to match them with exact probabilities. Recent research with fraction understanding
has found, however, that understanding the quantity that fractions represent is a key
predictor of later success on fraction ability (Hamdan & Gunderson, 2017; Siegler,
Fazio, Bailey, & Zhou, 2013). The difficulty in properly connecting proportions to
quantity may represent a key aspect of fraction understanding that separates early
understanding of fractions to a more mature understanding of them.

Building on Children’s Intuitions

In the pages above, we have reviewed research findings about children’s early con-
ceptions of proportional reasoning and division. Our goal was to identify the infor-
mal knowledge that children intuitively knew to support fraction learning. Cog-
nitively Guided Instruction (CGI; Carpenter, Fennema, & Franke, 1996; Fennema
et al., 1996) is a non-traditional primary school mathematics program developed by
researchers that also seeks to identify children’s early intuitions about math. More
specifically, CGI does not directly instruct teachers on what these intuitions are, but
instead trains teachers to listen to children, identify the intuitions themselves, and
then build on them.

Analyses of children’s solution processes indicate that students model the struc-
ture of a problem, first with diagrams or manipulatives and later relying on more
efficient counting and fact-derived strategies. Some of the intuitions described by
these researchers match quite well with those described above. For example, divi-
sion problems were often spontaneously solved with an equal sharing strategy, and
children would dynamically switch between a grouping-by-divisor and a grouping-
by-dividend strategy depending on whether it was a partitive or quotitive division
problem (Carpenter et al., 1996). More importantly, CGI researchers have demon-
strated the benefits of building on these intuitions. In a multi-year longitudinal study,
students in classrooms of teachers trained in CGI showed an improvement in per-



Early Understanding of Fractions via Early Understanding … 267

formance and understanding of various mathematical concepts. Those students who
received instruction from CGI teachers over more years showed increasingly greater
gains. The gains experienced by students in CGI classrooms also had a lasting effect,
as non-CGI teachers in later grades reported students coming from CGI classrooms
were able to solve more problems, were more enthusiastic about math problems, and
were more eager and willing to talk about their problem-solving solutions (Fennema
et al., 1996).

These findings reaffirm that children possess intuitive knowledge of mathematical
concepts prior to any formal instruction (Kornilaki & Nuñes, 2005; Kouba, 1989;
Mulligan&Mitchelmore, 1997;Mulligan&Watson, 1998; Piaget& Inhelder, 1975).
If students are entering the classroom already equipped with some of the neces-
sary tools, educational instruction would do well to capitalize on children’s existing
knowledge. The CGI studies clearly indicate that teacher’s and student’s mathemat-
ical knowledge alike can benefit from intuitive understanding.

Conclusions

This chapter has covered an extensive body of the literature demonstrating the link
between early understanding in proportional reasoning and division to the develop-
ment of fraction understanding. Despite the early findings in the proportional rea-
soning literature, a reconciled view of this research supports the notion that young
children, prior to any type of formal education, have the knowledge to succeed on
proportional tasks and these skills can support the development of the early under-
standing of fractions. The same can be said in regard to the division research: Young
children are showing early signs of understanding the relation between the com-
ponents involved in division, and these concepts are also related to understanding
fractions (e.g., part–part and part–whole relations, partitive and quotitive division
tasks). If one places the lessons of early proportional reasoning and early division
understanding together, recommendations emerge about how to best facilitate early
learning of fractions. Building on children’s intuitive understanding of proportions
and division is a logical place to start (see Empson, 1999).We also have to bemindful
of the proper use of discrete and continuous stimuli, as they can help support different
aspects of fraction understanding. In particular, proportional reasoning and division
understanding can come together when fraction scenarios require children to subdi-
vide pieces, as proportional reasoning (even earlier occurring part–part reasoning)
can help children learn to make the pieces equal in size. Many of these recommen-
dations are not new (see Carpenter et al., 1996; Streefland, 1991, 1997), but deriving
them from both an understanding of proportion and an understanding of division has
the potential to support many different aspects of fraction learning. To the extent that
this chapter helps to achieve this end, we can only hope that we have done our part.
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