
Chapter 3
Modelling Through Linear Cellular
Automata

The irregular decimation was introduced to break the linearity of the PN-sequences.
However, in this chapter we will see that there exist linear structures that describe the
behaviour of the shrinking generators, designed as non-linear. The inherent linearity
of these structures can be used to cryptanalyse such generators as described in
Chap. 4.

3.1 The Concept of Cellular Automaton

Cellular automata (CAs) are particular forms of finite state machines defined as
uniform arrays of identical cells in an n-dimensional state. A cellular automaton
(CA) evolves in discrete time steps, within the content of one cell being affected
by the contents of cells in its neighbourhood on the previous time step. That is, the
value of the ith cell at time t + 1, denoted by xt+i

i , depends on the contents of the k

neighbour cells at time t .
One-dimensional CAs with k = 3 and with contents in the binary field are

called elementary CAs. There are 23 possible configurations for each cell and its
two immediate neighbours. The rule defining the cellular automaton must specify
the resulting state for each of these possibilities so there are 223

possible rules for
elementary CA evolution. These rules can be considered as Boolean functions.

Stephen Wolfram proposed a scheme, known as the Wolfram code, to assign each
rule a number from 0 to 255 [103]. Each possible current configuration of three
neighbour cells is written in the order, 111, 110, . . . , 001, 000, and the resulting
state for each configuration is written in the same order and interpreted as the binary
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representation of an integer. For example, one can find the four rules we will use in
this work below:

Rule 150: xt+1
i = xt

i−1 + xt
i + xt

i+1

111 110 101 100 011 010 001 000

1 0 0 1 0 1 1 0

Rule 90: xt+1
i = xt

i−1 + xt
i+1

111 110 101 100 011 010 001 000

0 1 0 1 1 0 1 0

Rule 102: xt+1
i = xt

i + xt
i+1

111 110 101 100 011 010 001 000

0 1 1 0 0 1 1 0

Rule 60: xt+1
i = xt

i−1 + xt
i

111 110 101 100 011 010 001 000

0 0 1 1 1 1 0 0

Notice that 10010110, 01011010, 01100110 and 00111100 are the binary represen-
tations of 150, 90, 102 and 60, respectively.

Many of the rules seem to generate patterns with evident structures. For example,
Fig. 3.1 shows the AC-images generated by these four rules after applying 15
iterations to the one-dimensional CA. One can notice the symmetry between rules
60 and 102 and that both rules generate a fractal structure. Rules 150 and 90 produce
symmetric structures and are both additive rules. Every additive rule is able to
emulate itself and produce nested patters [103].

Observe, for example, Rules 30 and 94, which are non-linear:

Rule 30: xt+1
i = xt

i−1 + xt
i + xt

i+1 + xt
i x

t
i+1

111 110 101 100 011 010 001 000

0 0 0 1 1 1 1 0

Rule 94: xt+1
i = xt

i−1 + xt
i + xt

i+1+ +xt
i−1x

t
i + xt

i x
t
i+1 + xt

i−1x
t
i x

t
i+1

111 110 101 100 011 010 001 000

0 1 0 1 1 1 1 0

Rule 102 Rule 60

Rule 150 Rule 90

Fig. 3.1 AC-images generated with Rules 102, 60, 150 and 90
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Rule 30 Rule 94

Fig. 3.2 AC-images generated by Rules 30 and 94

The AC-image generated by Rule 30 shows no recognizable pattern (see Fig. 3.2).
On the other hand, Rule 94 is an example of simple CA whose evolution corresponds
to computations that can be easily described in traditional mathematical terms.
Patterns can show both for linear rules (e.g., Rules 60 and 102) and for non-linear
rules (e.g., Rule 94).

When the rules involved in the CA use only XOR operations, the CA is said to be
linear. Notice that Rules 60, 102, 150 and 90 use only XOR operations. This means
that we will only consider linear CAs in this chapter.

Due to their capability to exhibit complex behaviours, CAs have applications in
many different areas, for example, in modelling physical systems [58, 100] and non-
linear chemical systems [102], studying problems of number theory [86, 102] or as
pseudorandom number generators [97].

Furthermore, due to the speed and randomness in their sequences, CAs are a
very good basis for stream ciphers. What is more, their hardware implementation
is simple and their regular structure makes possible to find an efficient software
implementation. The first cryptographic application of CAs was published in [101].
In this work, Wolfram used Rule 30 for building a stream cipher that was afterwards
broken by Meier and Stafflebach [66]. Besides, other authors have proposed stream
ciphers based on CAs along the years [20, 51, 73].

Next, we classify the elementary CAs.

Definition 3.1 An elementary CA is said to be:

• Uniform or regular if every cell is computed using the same rule.
• Hybrid if different rules are considered when computing the contents of the cells.
• Null if cells with null content are adjacent to the extreme cells when it is needed.
• Periodic or cyclic if extreme cells are adjacent.

In Table 3.1a we can find an example of a regular, cyclic 102-CA of length 3.
Furthermore, since Rule 102 only operates the contents of a cell and its right
neighbour cell, we consider cyclic boundary only on the right of the CA in order to
compute the last vertical sequence. Given the initial state {1 1 0}, the CA generates
as many new states of length 3 as we want in the following way:

1 1 0 | 1

⊕ ⊕ ⊕

0 1 1
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Table 3.1 Examples of elementary CAs

(a) Regular cyclic 102-CA

102 102 102

1 1 0 1

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0
.
.
.

.

.

.
.
.
.

(b) Regular cyclic 60-CA

60 60 60

1 0 1 1

0 1 1 0

1 1 0 1

1 0 1 1

0 1 1 0

1 1 0 1

1 0 1 1

0 1 1 0
.
.
.

.

.

.
.
.
.

(c) Hybrid null 150/90-CA

90 150 150 90

0 1 0 1 0 0

0 0 0 1 1 0

0 0 1 0 1 0

0 1 1 0 0 0

0 1 0 1 0 0

0 0 0 1 1 0

0 0 1 0 1 0

0 1 1 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.

However, at some point, these states start to recur; thus, the CA generates 3 (vertical)
output sequences with period 3.

In Table 3.1b, we find a regular, cyclic 60-CA of length 3. Since Rule 60 only
operates the contents of a cell and its left neighbour cell, in this case we consider
cyclic boundary only on the left of the CA. Note that the (vertical) output sequences
generated by this 60-CA are the same (vertical) sequences generated in the 102-CA
in Table 3.1a (they appear in inverse order).

Finally, in Table 3.1c, we can find one example of hybrid null 150/90-CA of
length 4. In this case, we have to consider null boundary in both sides of the CA.
Besides, the CA generates four (vertical) output sequences with period 7.

In general, the (vertical) sequences generated by a 102-CA (60-CA) have
different periods. In addition, due to the symmetry between rules 102 and 60, the
sequences generated by a 102-CA of length L can be also generated by a 60-CA of
length L.

3.2 Modelling a PN-Sequence

In this section we will see how to obtain PN-sequences by means of elementary
linear CAs. We recall that a PN-sequence is a sequence generated by an LFSR whose
characteristic polynomial is primitive.

3.2.1 Cattell–Muzio Algorithm

In [13], Cattell and Muzio presented a method for computing a 90/150-CA that
generates the same sequences as those produced by a given irreducible characteristic
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polynomial. This approach is based on a correspondence between the characteristic
polynomial calculations and GCD computations. In fact, they proved that each
irreducible polynomial has exactly two CA realizations.

First of all we need to recall the definition of trace of a polynomial.

Definition 3.2 ([13]) The trace of a polynomial q(x) with respect to an irreducible
polynomial p(x) of degree L is given by

Tr(q(x)) =
[
q(x) + q(x)2 + q(x)4 + · · · + q(x)2L−1

]
mod p(x).

It is worth noticing that the trace of a polynomial is always zero or one.

Example 3.1 Consider the polynomial p(x) = x2 and the primitive polynomial
p(x) = 1 + x2 + x5. First, we compute the powers of q(x):

q(x)2 = x4

q(x)4 = x8 mod p(x) = 1 + x2 + x3

q(x)8 =
(

1 + x4 + x6
)

mod p(x) = 1 + x + x3 + x4

q(x)16 =
(

1 + x2 + x6 + x8
)

mod p(x) = x.

Summing these polynomials, we find the trace of q(x):

Tr(q(x)) = q(x) + q(x)2 + q(x)4 + q(x)8 + q(x)16 = 0.

�
The method given in Algorithm 1 shows the necessary process to compute a CA

for a given irreducible characteristic polynomial p(x) of degree L. This algorithm
is very easy to code in languages such as Maple, Python, etc. As a consequence of
Algorithm 1, we can introduce the following result.

Theorem 3.1 ([28]) For a PN-sequence generated by a primitive polynomial of
degree L, there exists an hybrid, null 150/90-CA of length L that generates such
PN-sequence.

Example 3.2 Consider the primitive polynomial p(x) = 1+x2+x5. Since primitive
implies irreducible, we can apply Algorithm 1.
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Algorithm 1 Cattell–Muzio algorithm
Input: An irreducible polynomial p(x)

01: Compute f (x) = (
x2 + x

)
p′(x)

02: Compute g(x) = (1/f (x))2

03: if L is even
04: Find θ(x) with trace 1

05: Compute β(x) = ∑L−1
i=1

(∑i−1
j=0 g2j

)
θ2i

06: else
07: Compute β(x) = ∑(L−1)/2

i=1 g22i−1

08: endif
09: q(x) = β(x)f (x)

10: Compute gcd(p(x), q(x)), saving the quotients
11: Construct the CA from the constant terms of the quotients
Output:

A binary string of length L codifying a CA corresponding to the PN-sequence generated
by p(x)

We compute the derivative of p(x) modulo 2:

p′(x) mod 2 =
(

2x + 5x4
)

mod 2 = x4.

Now we compute f (x) modulo p(x):

f (x) =
(
x + x2

)
p′(x) =

(
x5 + x6

)
mod p(x) = 1 + x + x2 + x3.

Next, we use the extended Euclidean GCD algorithm to compute the inverse of
f (x):

1/f (x) = 1 + x2 + x3.

We compute g(x)

g(x) = (1/f (x))2 =
(

1 + x4 + x6
)

mod p(x) = 1 + x + x3 + x4

and the powers of g(x):

g2(x) =
(

1 + x2 + x6 + x8
)

mod p(x) = x

g4(x) = x2

g8(x) = x4

g16(x) = x8 mod p(x) = x3 + x2 + 1.



3.2 Modelling a PN-Sequence 51

Summing g(x) and its powers we get that the trace of g(x) with respect to p(x) is
zero.

Since L = 5 odd, we compute β(x) as follows:

β(x) =
2∑

i=1

g(x)22i−1 = g(x)2 + g(x)8 = x + x4.

Finally,

q(x) =
(
x + x2

)
p′(x)β(x)

=
(
x + x2

)
x4

(
x + x4

)

= 1 + x2 + x4.

Now, we apply the Euclid’s algorithm to search gcd(p(x), q(x)):

1 + x2 + x5 =
(

1 + x2 + x4
)

x +
(

1 + x + x2 + x3
)

1 + x2 + x4 = (1 + x)
(

1 + x + x2 + x3
)

+ x2

1 + x + x2 + x3 = (1 + x)x2 + (1 + x)

x2 = (1 + x)(1 + x) + 1

1 + x = (1 + x)1 + 0.

This process returns the quotients

[x, 1 + x, 1 + x, 1 + x, 1 + x]
and so the CA is constructed from the constant terms

[0, 1, 1, 1, 1]. (3.1)

Now, we substitute 0 and 1 by 90 and 150, respectively. Thus the CA given by
[90, 150, 150, 150, 150] generates the PN-sequences produced by p(x).

Now, we consider the mirror image of (3.1)

[1, 1, 1, 1, 0]

that represents the CA

[150 150 150 150 90]

that also generates the PN-sequences produced by p(x).
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Table 3.2 Null 105/90-CA
that generates the
PN-sequence produced by
p(x) = 1 + x2 + x5

150 150 150 150 90

1 0 1 0 1

1 0 1 0 0

1 0 1 1 0

1 0 0 0 1

1 1 0 1 0

0 0 0 1 1

0 0 1 0 1

0 1 1 0 0

1 0 0 1 0

1 1 1 1 1

0 1 1 1 1

1 0 1 1 1

1 0 0 1 1

1 1 1 0 1

0 1 0 0 0

1 1 1 0 0

0 1 0 1 0

1 1 0 1 1

0 0 0 0 1

0 0 0 1 0

0 0 1 1 1

0 1 0 1 1

1 1 0 0 1

0 0 1 1 0

0 1 0 0 1

1 1 1 1 0

0 1 1 0 1

1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 1 1 1 0

For instance, consider the PN-sequence

{1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 . . . }

generated by p(x) with initial state {1 1 1 1 1}, this sequence can be generated as
well by the 150/90-CA given in Table 3.2. �

The algorithm is sufficiently fast for practical applications and the number of
operations does not depend on the input polynomial, only on its degree.
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3.2.2 Other CAs that Generate PN-Sequences

In this section, we show that for every PN-sequence there also exists a 102-CA that
generates it.

We start the section with an important result about PN-sequences that will be
needed afterwards.

Theorem 3.2 ([9, Theorem 3.6]) For a PN-sequence {ai} generated by a primitive
polynomial p(x) of degree L, there exists a unique number D ∈ {2, 3, . . . , 2L − 2}
such that ai + ai+1 = ai+D . This number is D = Zα(1), with α ∈ F2L a
root of p(x).

It is worth recalling that Zα(1) is the Zech logarithm of 1 in basis α (see
Definition 2.1).

According to Theorem 3.2 and the general form of a 102-CA (see Table 3.3), if
the PN-sequence {ai} appears in the 0th column of a 102-CA, the other sequences
are shifted versions of such PN-sequence. Furthermore, the sequence in the t th
column it is a shifted version of {ai}, that is, {ai+d}, with d = t · D mod (2L − 1).
Eventually, the PN-sequence {ai} itself will appear again; thus, the 102-CA has finite
length. The general form of the columns of a 102-CA can be found in Sect. 4.6.1
(Method 2).

Next result, whose proof is left as an exercise, claims that given a primitive
polynomial there always exists a 102-CA that generates the PN-sequence produced
by such polynomial.

Theorem 3.3 There exists a regular, cyclic 102-CA of length 2L−1
gcd(D,2L−1)

, with D as
in Theorem 3.2 that generates the same PN-sequence as that produced by a primitive
polynomial p(x) of degree L.

As an example, consider the PN-sequence generated by p(x) = 1+x2+x5 given
in Example 3.2. There exists a regular, cyclic 102-CA of length 31 that generates
such PN-sequence (see Table 3.4). What is more, all the sequences are shifted
versions of the same PN-sequence. Since the characteristic polynomial of the PN-
sequence is p(x) = 1 + x2 + x5, it is easy to check that D = 18. This means that
the shift from one sequence to the following is 18. For example, the sequence in the
first column is a shifted version of the PN-sequence in the 0th column, but starting

Table 3.3 General form of a 102-CA

102 102 102 102 102 . . . 102 . . .

a0 a0 + a1 a0 + a2 a0 + a1 + a2 + a3 a0 + a4 . . . a0 + a8 . . .

a1 a1 + a2 a1 + a3 a1 + a2 + a3 + a4 a1 + a5 . . . a1 + a9 . . .

a2 a2 + a3 a2 + a4 a2 + a3 + a4 + a5 a2 + a6 . . . a2 + a10 . . .

a3 a3 + a4 a3 + a5 a3 + a4 + a5 + a6 a3 + a7 . . . a3 + a11 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
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in position 18 (see circled bits in Table 3.4). The sequence in the second column
is a shifted version of the PN-sequence in the 0th column but starting in position
2 · 18 mod 31, that is, in position 5 (see squared bits in Table 3.4) and so on.

Note that when gcd(D, 2L − 1) = 1, the length of the 102-CAs mentioned in
Theorem 3.3 is 2L−1. The length of the 150/90-CAs proposed in Sect. 3.2.1 is much
smaller. However, if we know p(x) and the PN-sequence {ai}, we can compute D

as in Theorem 3.2 and we can complete the 102-CA with the corresponding shifted
versions of {ai}. In addition, since the 102-CA proposed in Theorem 3.3 is regular,
every cell follows the same rule and the form of the CA is immediately obtained. On
the other hand, in order to find the form of the 150/90-CA in Sect. 3.2.1, we need to
apply the Cattell–Muzio Algorithm [13].

3.3 Modelling the Shrinking Generator

In this section, we present two different families of linear CAs that generate the
shrunken sequence produced by two maximum-length LFSRs. From now on, we
denote by p1(x) and p2(x) of degrees L1 and L2, the primitive characteristic
polynomials of such registers, respectively.

3.3.1 The Fúster–Caballero Algorithm

In [28] the authors proposed an algorithm that provides a 150/90-CA that generates
the shrunken sequence produced by two maximum-length LFSRs. This approach
is based on the Cattell–Muzio Algorithm [13] seen in Sect. 3.2.1 and a CA-
concatenation technique.

Algorithm 2 provides two hybrid, null 150/90-CAs that produce the shrunken
sequence generated by p1(x) and p2(x). Actually, the algorithm is based on
the concatenation of the CA produced applying the Cattell–Muzio algorithm for
p2(x) [13].

Notice that p1(x) only contributes the number of concatenations according to its
degree. This polynomial is no further implicated in the algorithm, this means that
with p2(x) fixed, for different values of p1(x) with degree L1 the algorithm would
return the same result.

Example 3.3 Consider the primitive polynomial p2(x) = 1 + x + x2 + x4 + x5 and
a primitive polynomial p1(x) of degree 3.

First, we compute N = 1 + 2 + 4 = 7 and the polynomial

p(x) =
(
x + α7

) (
x + α14

) (
x + α28

) (
x + α56

) (
x + α112

)
= 1 + x2 + x5,

where α is a primitive element of F25 , root of p2(x).
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Algorithm 2 Fúster–Caballero algorithm
Input: L1 and p2(x)

01: Compute N = 20 + 21 + 22 + · · · + 2L1−1

02: Compute p(x) = (
x + αN

) (
x + α2N

) · · ·
(
x + α2L2−1N

)
, with α root of p2(x)

03: Compute two linear 90/150 CA, denoted by si , i = 1, 2, for p(x) using the Cattell-Muzio
algorithm

04: for j = 1 : L1 − 1
05: Complement the last bit of si and denote the resultant string as ti
06: Compute de mirror image of ti , denoted by t∗i and concatenate both strings: si = ti t

∗
i

07: endfor
Output:

Two binary strings of length L2 · 2L1−1 codifying two CAs corresponding to the shrinking
generator

Now, applying the Cattell–Muzio algorithm to p(x), we obtain two strings that
represent two 150/90-CAs (see Example 3.2):

[01111] → [90 150 150 150 150]
[11110] → [150 150 150 150 90].

We choose, for example, the first CA and we perform the concatenation process
L1 − 1 = 2 times:

[01111]
[0111001110]
[01110011111111001110] .

For the second CA, we proceed in the same manner:

[11110]
[1111111111]
[11111111100111111111] .

Now, we substitute 0 and 1 by 90 and 150, respectively, and we obtain two CAs

[90 150 150 150 90 90 150 150 150 150 150 150 150 150 90 90 150 150 150 90]

[150 150 150 150 150 150 150 150 150 90 90 150 150 150 150 150 150 150 150 150] ,

both of them capable of generating the shrunken sequence generated by p2(x)

and p1(x). �
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3.3.2 Other CAs that Generate the Shrunken Sequence

In [9], the authors proposed a family of 102-CAs (60-CAs) that also generate the
shrunken sequence.

Again, consider two primitive polynomials p1(x) and p2(x) of length L1 and L2,
respectively. We can introduce the following result.

Theorem 3.4 ([9, Theorem 3.10]) The shrunken sequence generated by p1(x) and
p2(x) can be generated by a regular, cyclic 102-CA of length T

gcd(2L2−1,D)
, where

D = Zα(1), with α ∈ F2L2 root of p(x) (see Theorem 2.1) and T = 2L1−1(2L2 −1)

is the period of the shrunken sequence.

Apart from the shrunken sequence, other 2L1−1 − 1 sequences, the companion
sequences, with the same period and characteristic polynomial as those of the
shrunken sequence are generated by the 102-CA [9]. Furthermore, shifted versions
of these sequences, including the shrunken sequence, appear along the 102-CA.

Notice that the sequences in columns t ·2L1−1, with t = 1, 2, . . . , L/(2L1−1 −1),
are shifted versions of the shrunken sequence, with shift equal to t · D · 2L1−1, for
t = 1, 2, . . . , L/(2L1−1 − 1) [9, 11]. Moreover, the companion sequence in the
column t ·2L1−1 +m, for m = 1, 2, . . . , 2L1−1 −1 and t = 0, 1, . . . , L/(2L1−1)−1,
is a shifted version of the companion sequence in the mth column starting in position
t · D · 2L1−1[11].

Example 3.4 Consider the shrunken sequence generated by p1(x) = 1 + x + x2

and p2(x) = 1 + x + x3, in Example 2.2:

{1 0 1 1 1 0 0 0 1 1 0 1 0 1 . . .}.

This sequence has characteristic polynomial p(x)2 = (
1 + x2 + x3

)2
and period

T = 14. In Table 3.5 there is an example of a regular, cyclic 102-CA of length 14 that
generates this sequence in the 0th column. This CA generates 2 different sequences,
the shrunken sequence and one companion sequence, both with the same period and
characteristic polynomial. Shifted versions of these two sequences appear 7 times
along the 102-CA: the shrunken sequence appears in columns 0, 2, 4, 6, 8, 10 and
12, and the companion sequence appears in columns, 1, 3, 5, 7, 9, 11 and 13.

Now, we can compute 2L1−1 = 2 and D = Zα(1) = 5, with α ∈ F23 root
of p(x). We consider, for example, the 2nd column of the 102-CA. In this case
t = 1, therefore this sequence is a shifted version of the shrunken sequence with
shift equal to 2L1−1 · t ·D mod 14 = 10 (see the circled bit of the shrunken sequence
in Table 3.5). Consider now, for example, the 9th column of the 102-CA. Since now
t = 4, the considered sequence is a shifted version of the companion sequence with
shift equal to 2L1−1 ·t ·D mod 14 = 12 (see the squared bit of the shrunken sequence
in Table 3.5). �

In Sect. 2.1.2, we saw that the shrunken sequence is composed of interleaving
shifted versions of a PN-sequence generated by the primitive polynomial p(x).
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Table 3.5 CA that generates the shrunken sequence in Example 2.2

102 102 102 102 102 102 102 102 102 102 102 102 102 102

1 1 0 1 0 0 1 0 0 1 1 0 1 1

0 1 1 1 0 1 1 0 1 0 1 1 0 0

1 0 0 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 1 0 0 0 1 1 1 0 1

1 1 1 1 0 1 0 0 1 0 0 1 1 0

0 0 0 1 1 1 0 1 1 0 1 0 1 1

0 0 1 0 0 1 1 0 1 1 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 1 0 1 0 0 1 0 0 1

1 1 0 0 0 1 1 1 0 1 1 0 1 0

0 1 0 0 1 0 0 1 1 0 1 1 1 1

1 1 0 1 1 0 1 0 1 1 0 0 0 1

0 1 1 0 1 1 1 1 0 1 0 0 1 0

1 0 1 1 0 0 0 1 1 1 0 1 1 0

As a consequence of the formation rule of the 102-CA and the fact that summing
elements of a PN-sequence generates another PN-sequence [41], it is possible to
check that the companion sequences are also composed of interleaving shifted
versions of the same PN-sequence. We leave this claim as an exercise for the reader.

Let us denote the interleaved PN-sequences of the shrunken sequence by{
vd0

0 +i

}
,

{
vd0

1 +i

}
,

{
vd0

2 +i

}
, . . . ,

{
vd0

2L1−1−1
+i

}
, i = 0, 1, . . ., where d0

0 = 0.

Remember that the positions d0
k depend on the location of the 1s in the PN-sequence

{ai} generated by the first register R1 (see Sect. 2.1.5).
Now, for the first companion sequence, let us denote the interleaved PN-

sequences by
{
vd1

0 +i

}
,
{
vd1

1 +i

}
,
{
vd1

2 +i

}
, . . . ,

{
vd1

2L1−1−1
+i

}
, i = 0, 1, . . .,. We can

compute these new positions using Rule 102 and the definition the Zech logarithm
as follows:

d1
k = Zα

(
d0
k − d0

k+1

)
+ d0

k+1, k = 0, 1, . . . , 2L1−1 − 2,

d1
2L1−1−1

= Zα

(
d0

2L1−1−1
− 1

)
+ 1.

Similarly, we can compute the shift positions for the j th companion sequence,
j = 1, 2, . . . , L − 1 as

d
j
k = Zα

(
d

j−1
k − d

j−1
k+1

)
+ d

j−1
k+1 , k = 0, 1, . . . , 2L1−1 − 2,

d
j

2L1−1−1
= Zα

(
d

j−1
2L1−1−1

− 1
)

+ 1.
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Recall that the sequence in the column t · 2L1−1 + m, for m = 0, 1, 2, . . . ,

2L1−1 − 1 and t = 0, 1, . . . , L/(2L1−1) − 1, is a shifted version of the sequence in
the mth column starting in position t · D · 2L1−1. Therefore, we have that:

dt ·2L1−1+m
k = dm

k + t · D mod (2L2 − 1)

for k = 0, 1, . . . , 2L1−1−1, m = 0, 1, . . . , 2L1−1−1 and t = 0, 1, . . . , L/(2L1−1)−1.
This means that the positions d

j
k for the companion sequence in the j th column

with j ≥ 2L1−1 can be computed easily using the positions ds
i , with 0 ≤ s < 2L1−1

and without using logarithms.

Example 3.5 Consider again Example 3.4. If we decimate the shrunken sequence
and the companion sequence in the 102-CA by distance 2, we obtain that both
sequences are composed of interleaving shifted versions of the PN-sequence
{1 1 1 0 1 0 0 . . .} generated by p(x) = 1 + x2 + x3 (see Table 3.6a and b).

What is more, the positions of both PN-sequences of the shrunken sequence with
respect to its first interleaved PN-sequence are d0

0 = 0 and d0
1 = 5, respectively.

The positions of the interleaved PN-sequences of the companion sequence with
respect to the first PN-interleaved sequence of the shrunken sequence are d1

0 = 2 and
d1

1 = 4.
Let us consider the sequence in the 2nd column of the 102-CA. We have seen

that this sequence is a shifted version of the shrunken sequence with shift equal to
10. We know that t = 1 and D = 5, so the two interleaved PN-sequences of this
sequence are shifted versions of the first interleaved PN-sequence of the shrunken
sequence (Table 3.6c) starting in positions:

d2
0 = d0

0 + D · 1 mod 7 = 5 and d2
1 = d0

1 + D · 1 mod 7 = 1, respectively.

Consider again the sequence in the 9th column of the 102-CA. This sequence
was a shifted version of the companion sequence, with shift equal to 12. We know
that t = 4 and D = 5, so the two interleaved PN-sequences of this sequence are

Table 3.6 Interleaved
PN-sequences of the
shrunken sequence and the
companion sequences of
Example 2.2

(a)

1 000

d2
1 =1← 1 1

d1
0 =2← 1 0

d0
1 =d9

0 =3← 000 0

d1
1 =4← 1 1

d2
0 =d9

0 =5← 0 1

0 1

(b)

1 1

0 0

1 0

0 1

0 1

1 1

1 0

(c)

0 1

0 1

1 0

1 1

1 0

0 0

1 1

(d)

000 0

1 0

0 1

0 1

1 1

1 0

1 1
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the same as the first interleaved PN-sequence of the shrunken sequence (Table 3.6d)
starting in positions:

d9
0 = d1

0 + D · 3 mod 7 = 3 and d9
1 = d1

1 + D · 3 mod 7 = 5, respectively.

�

3.3.3 Comparison of both Families

In Sect. 3.3.1, we showed that the Fúster–Caballero algorithm produces an hybrid,
null 150/90-CA that generates the shrunken sequence. Given two maximal-length
LFSRs, this algorithm performs first the Cattell–Muzio algorithm explained in
Sect. 3.2.1 and carries out a concatenation procedure to find the CA that generates
the shrunken sequence. This fact makes impossible to predict the form of the CA,
which depends on L1 and p2(x).

In Sect. 3.3.2 since the 102-CAs (60-CAs) are regular we do not need to perform
any computations to find the form of the CA; we only need to find its length. On
the other hand, according to Theorem 3.4, the length of the 102-CA is, at the most,
T = 2L1−1

(
2L2 − 1

) (
when gcd

(
2L2 − 1, T

) = 1
)
, which is greater than(

2L1 − 1
)
L2 (the length of the 150-90-CA given in Sect. 3.3.1). However, the

102-CAs generate 2L1−1 different sequences, the other sequences are shifted
versions of these, which is an advantage compared to the 90/150-CA.

As a conclusion, we can say that the 102-CAs are longer but this disadvantage
becomes less relevant when we notice the complex process developed in the Fúster–
Caballero algorithm to obtain the 150/90-CAs. Besides, this length is reduced to
2L1−1, since the first 2L1−1 sequences repeat along the 102-CA.

3.4 Modelling the Generalized Self-Shrinking Generator

Since we have seen that the sequences produced by the MSSG and the SSG are
sequences produced by the GSSG (Sect. 2.4.3), in this section we only consider
the families of CAs that generate the generalized self-shrunken sequences. We
recall that the GSS-sequences are a family of sequences generated by a maximum-
length LFSR of L stages. We also recall that the characteristic polynomial of the
GSS-sequences is of the form pt (x) = (1 + x)t , with 0 < t ≤ 2L−1 − (L − 2).

3.4.1 Characterization of the 150/90-CA

In this section we present a family of 150/90-CA that generates the family of GSS-
sequences.
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Table 3.7 GSS-sequences
generated by
q(x) = 1 + x3 + x4

G S(G) pn(x)

0 0 0 0 0 0 0 0 0 0 0 0 0 p1(x)

1 0 0 0 1 000 000 000 111 111 000 111 111 p6(x)

2 0 0 1 0 0 0 1 1 1 1 0 0 p5(x)

3 0 0 1 1 0 0 1 0 0 1 1 1 p6(x)

4 0 1 0 0 0 1 1 1 0 0 1 0 p6(x)

5 0 1 0 1 0 1 1 0 1 0 0 1 p5(x)

6 0 1 1 0 0 1 0 0 1 1 1 0 p6(x)

7 0 1 1 1 0 1 0 1 0 1 0 1 p2(x)

8 1 0 0 0 1 1 1 1 1 1 1 1 p1(x)

9 1 0 0 1 1 1 1 0 0 1 0 0 p6(x)

10 1 0 1 0 1 1 0 0 0 0 1 1 p5(x)

11 1 0 1 1 1 1 0 1 1 0 0 0 p6(x)

12 1 1 0 0 1 0 0 0 1 1 0 1 p6(x)

13 1 1 0 1 1 0 0 1 0 1 1 0 p5(x)

14 1 1 1 0 1 0 1 1 0 0 0 1 p6(x)

15 1 1 1 1 1 0 1 0 1 0 1 0 p2(x)

Theorem 3.5 ([30]) Given a generalized self-shrunken sequence of period 2t , 0 ≤
t ≤ 2L−1, there exists an hybrid, null 150/90-CA of length 2t that generates such
sequence. Furthermore, the CA will have the form

[90 150 150 . . . 150 150 90].

Example 3.6 Given a primitive polynomial p(x) = x4 + x3 + 1 ∈ F2[x] and an
initial state {1 1 1 1}, the PN-sequence generated is {1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 . . .}.
In Table 3.7, it is possible to see the 16 GSS-sequences generated by this PN-
sequence. We choose, for example, the sequence number corresponding to G = 1,
{0 0 0 1 1 0 1 1 . . .}. This sequence has period 8; therefore, there exists a 105/90-CA
with length 8 and form

[90 150 150 150 150 150 150 90]

that generates such a sequence (see Table 3.8a). �

3.4.2 Characterization of the 102-CA

We start this section with two minor results, whose proofs can be found in [8].
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Table 3.8 CAs that generate the GSS-sequence of Example 3.6

(a) 150/90-CA

90 150 150 150 150 150 150 90

000 0 0 1 0 0 0 1

000 0 1 1 1 0 1 0

000 1 0 1 0 0 1 1

111 1 0 1 1 1 0 1

111 0 0 0 1 0 0 0

000 1 0 1 1 1 0 0

111 1 0 0 1 0 1 0

111 0 1 1 1 0 1 1

(b) 102-CA

102 102 102 102 102 102
000 0 0 1 1 1

000 0 1 0 0 1

000 1 1 0 1 1

111 0 1 1 0 1

111 1 0 1 1 1

000 1 1 0 0 1

111 0 1 0 1 1

111 1 1 1 0 1

(c) 60-CA

60 60 60 60 60 60
1 1 1 0 0 000

1 0 0 1 0 000

1 1 0 1 1 000

1 0 1 1 0 111

1 1 1 0 1 111

1 0 0 1 1 000

1 1 0 1 0 111

1 0 1 1 1 111

Lemma 3.1 ([8, Lemma 2]) Let {ui} be a binary sequence whose characteristic
polynomial is (x + 1)q(x) ∈ F2[x]. Then, q(x) generates the sequence {vi}, where
vi = ui + ui+1.

Lemma 3.2 ([8, Theorem 1]) Let {ui} be a binary sequence whose characteristic
polynomial is pt (x). Then, the characteristic polynomial of the sequence {vi}, where
vi = ui + ui+1, is pt−1(x).

Due to the previous results, we can introduce the following theorem that gives us
the length of the CAs that generate the GSS-sequences.

Theorem 3.6 ([10, Theorem 6]) Given a GSS-sequence with characteristic poly-
nomial pt (x), there exists a regular, null 102-CA of length t that generates such
sequence.

Recall that the previous results are similar for rule 60. In this case, the 60-CA
provides the same sequences but obtained in reverse order. Let us see an illustrative
example.

Example 3.7 Consider the GSS-sequence corresponding to G = 1 generated by an
LFSR with characteristic polynomial p(x) = 1 + x3 + x4 in Example 3.6:

{0 0 0 1 1 0 0 1 1 . . .}.

According to Theorem 3.6, there exists a regular, null 102-CA of length 6 that
generates this sequence as one of its output (vertical) sequences (see Table 3.8b).
The characteristic polynomial of this sequence is p6(x) and thus its linear com-
plexity is LC = 6. It is possible to check that the characteristic polynomials
of the remaining sequences in the CA are p5(x), p4(x), p3(x), p2(x) and p1(x),
respectively (consequence of Lemma 3.2). This means that the linear complexity of
the (vertical) sequences generated by the null 102-CA is strictly decreasing.

Recall that there exists a 60-CA of length 6 that generates the same exact
sequences in inverse order (see Table 3.8c). Therefore, all the results here obtained
can be applied to the 60-CA model. �
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Additionally, as a consequence of Lemmas 3.1 and 3.2, these CAs have a well-
defined structure which is given in the following result.

Theorem 3.7 ([10, Theorem 7]) Consider a GSS-sequence with linear complexity
LC. The regular, null 102-CA that generates such a sequence also produces:

• The identically 1 sequence (with period 1) in the rightmost column,
• 2i−1 sequences of period 2i , for 1 ≤ i ≤ L − 2 and
• LC − 2L−2 sequences of period 2L−1 (including the considered GSS-sequence).

For example, in Table 3.8b we have a 102-CA of length 6 that generates six
(vertical) sequences: the identically 1 sequence, one sequence with period 2, two
sequences with period 4 and finally, two sequences with period 8 (including the
given GSS-sequence).

Comparing the 90/150-CAs given in Sect. 3.4.1 with the 102-CAs (60-CAs)
proposed in this section, it can be stated that:

1. Both proposals provide CAs with a defined structure. For the 90/150-CAs, Rule
90 is applied to the extreme cells, while Rule 150 is applied to the remaining
cells:

[90 150 150 . . . 150 150 90].

The 102-CAs are regular; therefore, the same rule is applied for all the cells and
the form of the CAs is very simple:

[102 102 . . . 102 102].

2. The length of the proposed 90/150-CAs is 2L−1. On the other hand, the length of
the 102-CAs (60-CAs) is the linear complexity of the GSS-sequence considered.
We claimed, without proving, that 2L−2 < LC ≤ 2L−1 − (L−2). Therefore, the
improvement on the length is not much significant.

3. Finally, in the 90/150-CA model, all the cells (except extreme cells) use Rule
150, which involves the addition of three bits, while the 102-CA (60-CA)
model involves the addition of only two bits. Consequently, the number of logic
operations to compute the GSS-sequence is much smaller. Furthermore, the
periods of the (vertical) sequences of the 102-CA are well known (Theorem 3.7).
Therefore, we do not need to compute the whole sequences to complete the CA.
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