
Chapter 2
Keystream Generators Based
on Irregular Decimation

In this chapter, we study the definition and the principal characteristics of the main
keystream generators based on irregular decimation: the shrinking generator, the
self-shrinking generator, the modified self-shrinking generator and the generalized
self-shrinking generator.

First of all, we need to recall the concept of decimation. Let {vi}, i = 0, 1, 2, . . .,
be a linear recursive sequence over a finite field. The decimation of this sequence
by distance d is a new sequence {vd·i}, i = 0, 1, 2, . . ., obtained by taking every dth
term of {vi} (see [22]).

Example 2.1 Consider the LFSR of length 3 with characteristic polynomial p(x) =
1 + x + x3. If we consider the initial state {1 0 0}, the PN-sequence generated is the
following:

{ai} = {1 0 0 1 0 1 1 . . .}.

Since p(x) is primitive, {ai} has maximum-period equal to 7. Now, if we denote by
{bi} the sequence obtained decimating {ai} by distance 2:

b0 b4 b2 b5 b3 b6

↑ ↑ ↑ ↑ ↑ ↑
1 0 0 1 0 1 1 . . .

this sequence has the form {bi} = {a2i} = {1 0 0 1 0 1 1 . . .}. Notice that {bi} is the
same PN-sequence {ai}. This is due to the fact that the period of the PN-sequence
and the distance of decimation are relatively primes, that is, gcd(7, 2) = 1 [41]. �
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2.1 Shrinking Generator

In this section we present the main characteristics of the first generator based on
irregular decimation, the shrinking generator.

2.1.1 Definition and Basic Features

The shrinking generator (SG) was introduced by Coppersmith, Krawczyk and
Mansour in [15]. This generator was very attractive in that moment, due to its
conceptual simplicity, since it combines two binary maximum-length LFSRs in a
simple way. The output sequence of the generator is produced by shrinking the
output sequence of one LFSR under the control of the other. In other words, the
PN-sequence {ai}, i = 0, 1, 2, . . . , produced by one of the registers, denoted
by R1, decimates the PN-sequence {bi}, i = 0, 1, 2, . . ., produced by the other
register, denoted by R2. Let L1 and L2, with gcd(L1, L2) = 1, be the number
of stages (or length) of R1 and R2 and p1(x), p2(x) ∈ F2[x] their characteristic
polynomials, respectively. We consider these polynomials to be primitive, to assure
the output sequences are maximum-period or PN-sequences. We will denote by
{sj }, j = 0, 1, 2, . . ., the output sequence of the generator and we will call it the
shrunken sequence. The decimation rule is very simple:

{
If ai = 1, then sj = bi .

If ai = 0, then bi is discarded,

that is, the output bit of R2 is taken if the current bit of R1 is 1, otherwise it is
discarded.

The key of the generator is the initial states of both registers and the characteristic
polynomials, which are recommended to be part of the key.

When gcd(L1, L2) = 1, the period of the shrunken sequence is

T = 2L1−1
(

2L2 − 1
)

,

and its linear complexity, denoted by LC, satisfies L22L1−2 < LC ≤ L22L1−1.

Furthermore, the shrunken sequence is balanced and has other good cryptographic
properties [15]. Therefore, this scheme is supposed to be suitable for practical
implementation in encryption procedures.

Let us see an illustrative example of this generator.

Example 2.2 Consider R1 the LFSR with characteristic polynomial p1(x) = 1 +
x + x2 and initial state {1 0}. The PN-sequence generated by R1, in this case, is
{ai} = {1 0 1 . . .} . Consider also R2 the LFSR with characteristic polynomial
p2(x) = 1 + x + x3 and initial state {1 0 0}. The PN-sequence produced is {bi} =
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{1 0 0 1 0 1 1 . . .}. Then, the shrunken sequence can be computed in the following
way:

{ai} : 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 . . .

{bi} : 1 ��0 0 1 ��0 1 1 ��1 0 0 ��1 0 1 ��1 1 0 ��0 1 0 ��1 1 . . .

{sj } : 111 000 111 111 111 000 000 000 111 111 000 111 000 111 . . .

The shrunken sequence {sj } has period 14 and, thanks to the Berlekamp–Massey
algorithm [63], it is not difficult to check that its characteristic polynomial is

p(x)2 = (
1 + x2 + x3

)2
, consequently its linear complexity equals 6. �

Despite its simplicity, there are currently no known attacks better than exhaustive
search of the initial states of the registers, when the characteristic polynomials are
secret.

It is worth noticing that there may be multiple initial states that produce the same
keystream sequence (equivalent keys). For example, let us consider the registers
used in Example 2.2. If we consider initial states {0 1} and {0 1 1}, respectively, we
obtain the following shrunken sequence:

{ai} : 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 . . .

{bi} : ��0 1 1 ��1 0 0 ��1 0 1 ��1 1 0 ��0 1 0 ��1 1 1 ��0 0 1 . . .

{sj } : 111 111 000 000 000 111 111 000 111 000 111 111 000 111 . . .

On the other hand, if we consider initial states {1 1} and {1 1 1}, respectively, we
obtain the following shrunken sequence:

{ai} : 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 . . .

{bi} : 1 1 ��1 0 0 ��1 0 1 ��1 1 0 ��0 1 0 ��1 1 1 ��0 0 1 ��0 . . .

{sj } : 111 111 000 000 000 111 111 000 111 000 111 111 000 111 . . .

which is the same as before. Due to leading 0s in the first two PN-sequences, both
keys generate the same shrunken sequence. For this reason, we always consider
initial states that start with 1. Thus, the effective key size is smaller than the key
space.

From now on, we consider two registers R1 and R2, with primitive characteristic
polynomials p1(x), p2(x) ∈ F2[x], lengths L1 and L2 and gcd(L1, L2) = 1,
respectively. Besides, the PN-sequences generated by both registers are denoted by
{ai} and {bi} and have periods T1 = 2L1 − 1 and T2 = 2L2 − 1, respectively. We
assume without loss of generality that a0 = 1.

2.1.2 Characteristic Polynomial and Interleaved PN-Sequences

In this section, we will see that the shrunken sequence is constructed interleaving
one unique PN-sequence and the form of its characteristic polynomial.
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Theorem 2.1 ([9]) The 2L1−1 sequences obtained decimating the shrunken
sequence by distance 2L1−1 starting in positions 0, 1, 2, . . . , 2L1−1 −1, respectively,
are PN-sequences with characteristic polynomial

p(x) =
(
x + αT1

) (
x + α2T1

) (
x + α4T1

)
· · ·

(
x + α2L2−1T1

)
,

where α ∈ F
L2
2 is a root of the polynomial p2(x) and T1 = 2L1 − 1 is the period of

the PN-sequence generated by R1.

All the interleaved PN-sequences of the shrunken sequence are generated by the
same characteristic polynomial, this means that all of them are shifted versions of
the same PN-sequence.

It is worth remarking that, since α is a primitive element of the field F
L2
2 , p2(x)

needs to be primitive.

Example 2.3 Consider two registers, R1 and R2, with characteristic polynomials
p1(x) = 1 + x + x3 and p2(x) = 1 + x + x4 and initial states {1 0 0} and {1 0 0 0},
respectively. Denote by {ai} and {bi} the PN-sequences generated by R1 and R2,
respectively. The shrunken sequence generated by these registers has period T = 60
and is given by

{sj } = {100011111010000110010110110011010100001011100011011101011011 . . .}.

If we decimate the shrunken sequence {sj } by distance 2L1−1 = 4 starting in
positions 0, 1, 2 and 3, respectively, we obtain four interleaved PN-sequences:

{s4j } : 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 . . .

{s4j+1} : 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 . . .

{s4j+2} : 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 . . .

{s4j+3} : 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 . . .

(2.1)

According to Theorem 2.1, the characteristic polynomial of the interleaved PN-
sequences is given by

p(x) =
(
x + α7

) (
x + α14

) (
x + α28

) (
x + α56

)
= 1 + x3 + x4,

where α ∈ F24 is a root of p2(x). Therefore, the four interleaved PN-sequences are
shifted versions of the same PN-sequence generated by p(x). In expression (2.1),
we can check that the bits 0 , 0 and 0 in the PN-sequence {s4j } represent the
starting points of the sequences {s4j+i} (1 ≤ i ≤ 3), respectively. �
Corollary 2.1 ([9, Corollary 1]) If L2 = L1 + 1, then the polynomial p(x), given
in Theorem 2.1, is the reciprocal polynomial of p2(x).
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It is worth reminding that the reciprocal polynomial of the polynomial r(x) =
r0+r1x+· · ·+rl−1x

l−1+rlx
l is of the form r∗(x) = rl+rl−1x+· · ·+r1x

l−1+r0x
l .

Now, we introduce the form of the characteristic polynomial of the shrunken
sequence.

Theorem 2.2 ([28]) The characteristic polynomial of the shrunken sequence has
the form p(x)m, for 2L1−2 < m ≤ 2L1−1 with p(x) as in Theorem 2.1.

Notice that p(x)2L1−1
always generates the shrunken sequence, but sometimes

this polynomial might not be the characteristic polynomial of lowest degree. For
instance, consider again the shrunken sequence generated in Example 2.3. In this
case, we computed the polynomial p(x) = 1+x3 +x4. Now, we know that p(x)4 =(
1 + x3 + x4

)4
generates the shrunken sequence and, since p(x)3 does not generate

it, we can assume that p(x)4 is its characteristic polynomial.

Example 2.4 Consider the registers with characteristic polynomials p1(x) = 1 +
x2 + x5 and p2(x) = 1 + x + x2 + x3 + x4 + x5 + x7, respectively. Consider the
shrunken sequence generated by these two registers, which has period T = 24(27 −
1) = 2032. According to Theorem 2.1, the polynomial p(x) can be computed as:

p(x) =
(
x + α31

) (
x + α62

) (
x + α124

) (
x + α248

) (
x + α496

)
(
x + α992

) (
x + α1984

)
= 1 + x + x3 + x6 + x7,

where α ∈ F27 is a root of p2(x). In this case, we know that p(x)16 generates the
shrunken sequence. However, it is easy to check that p(x)15 is the characteristic
polynomial. �

Interestingly, p(x) only depends on p2(x) and L1. This means that if we fix a
primitive polynomial p2(x) and we consider any primitive polynomial with degree
L1 we always obtain the same p(x).

2.1.3 Shrunken Sequences and Difference Equations

In this section, we show that the shrunken sequence is a solution of a difference
equation.

The characteristic polynomial p(x) (with degree L) of an arbitrary sequence {ai}
specifies its linear recurrence relationship. This means that the element ai can be
written as a linear combination of the previous elements:

ai ⊕
L∑

j=1

cj ai−j = 0, i ≥ L.
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The linear recursion can be expressed as a linear difference equation:

⎡
⎣EL ⊕

L∑
j=1

cjE
L−j

⎤
⎦ ai = 0, i ≥ 0, (2.2)

with E being the one-sided shift operator that acts on the sequence terms:

Eai = ai+1,

Ekai = ai+k.
(2.3)

If the characteristic polynomial p(x) is primitive and α is one of its roots, then
α,α2,α22

, . . . , α2L−1
are the L different roots of such a polynomial as well as

primitive elements of F2L [59]. Now, if the characteristic polynomial of an arbitrary
sequence {sj } is of the form p(x)m, then its roots will be the same as those of p(x)

but each one with multiplicity m. The corresponding difference equation is given by

[
EL ⊕

L∑
k=1

EL−k

]m

sj = 0,

and its solutions are of the form sj = ∑L−1
i=0

∑m−1
k=0

(
j
k

)
A2i

k α2i j , where Ak is an
arbitrary element in F2L . Different choices of Ak give rise to different sequences
{sj }. A particular choice of Ak provides the shrunken sequence generated by p(x)m.

2.1.4 Obtaining the Second PN-Sequence from the Shrunken
Sequence

Given the shrunken sequence {sj } generated by two registers, R1 and R2, it is
possible to compute the PN-sequences generated by both registers. In this section,
we explain how to obtain the PN-sequence {bi} produced by R2.

Proposition 2.1 ([11, Proposition 1]) Let δ ∈ {1, 2, 3, . . . , T2 − 1} be such that
T1δ = 1 mod T2. If the first PN-interleaved sequence is decimated by distance δ,
then the resultant sequence is {bi}.
Example 2.5 Consider again the shrunken sequence obtained in Example 2.3 and
consider the interleaved PN-sequences given in expression (2.1). Since L1 = 3 and
L2 = 4, the unique value for δ such that 7δ = 1 mod 15 is δ = 13. This means
that if we decimate the first interleaved sequence {s4j } by distance 13, according to
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Proposition 2.1, we obtain {bi}, the PN-sequence generated by p2(x) = 1 + x + x4:

b0 b7 b14 b6 b13 b5 b12 b4 b11 b3 b10 b2 b9 b1 b8

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
{s4j } : 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1

{s4j+1} : 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0
{s4j+2} : 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1
{s4j+3} : 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1

In this case {bi} = {1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 . . .}. �
The previous proposition leads us to the following two results.

Corollary 2.2 ([11, Corollary 2]) If the polynomials p1(x), p2(x) ∈ F2[x] have
degrees L1 and L1 + 1, respectively, then δ = T2 − 2.

In Example 2.5, we had that L2 = L1 + 1 = 4, then it was not necessary to solve
the equation given in Proposition 2.1, it was enough to compute δ = T2 − 2 = 13.

Theorem 2.3 ([11, Corollary 1]) If the shrunken sequence is decimated by dis-
tance 2L1−1δ, then the obtained sequence is the PN-sequence {bi}.
Example 2.6 Consider again the shrunken sequence obtained in Example 2.2. In
this example we had that L1 = 2 and L2 = 3, then according to Corollary 2.2,
δ = 5. Now, according to Theorem 2.3, we know that if we decimate the shrunken
sequence by distance 10:

b0 b3 b6 b2 b5 b1 b4

↑ ↑ ↑ ↑ ↑ ↑ ↑
1 0 1 1 1 0 0 0 1 1 0 1 0 1 . . .

then we obtain again the PN-sequence generated by the second register, R2:

{bi} = {1 0 0 1 0 1 1 . . .}.
�

2.1.5 Obtaining the First PN-Sequence from the Shrunken
Sequence

In this section, we analyse how to recover the PN-sequence {ai} produced by R1
from the shrunken sequence {sj }.
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Assume the first interleaved PN-sequence of {sj } is denoted by {vi}. Since
the other interleaved sequences are shifted versions of the same PN-sequence, it
means they are shifted versions of {vi}. Then, we assume they have the form{
vd1+i

}
,
{
vd2+i

}
, . . . ,

{
vd

2L1−1−1
+i

}
, for some positions di ∈ {

0, 1, 2, . . . , 2L2−2
}
:

{vi} : {
v0 v1 v2 . . . vT2−1 . . .

}
{
vd1+i

} : {
vd1 vd1+1 vd1+2 . . . vd1+T2−1 . . .

}
{
vd2+i

} : {
vd2 vd2+1 vd2+2 . . . vd2+T2−1 . . .

}
...

...
...

...
...{

vd
2L1−1−1

+i

}
:
{
vd

2L1−1−1
vd

2L1−1−1
+1 vd

2L1−1−1
+2 . . . vd

2L1−1−1
+T2−1 . . .

}
.

In order to illustrate this idea, consider again Example 2.3. We had four
interleaved PN-sequences that correspond to:

{s4j } = {vi}, {s4j+1} = {vd1+i}, {s4j+2} = {vd2+i} and {s4j+3} = {vd3+i}.

In this case, the positions are d1 = 9, d2 = 5 and d3 = 3:

d3=3 d2=5 d1=9

↑ ↑ ↑
{s4j } : 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1

{s4j+1} : 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0
{s4j+2} : 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1

{s4j+3} : 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1

(2.4)

Before introducing the next result, it is worth reminding that a maximum-length
LFSR of L stages produces a PN-sequence with 2L−1 ones in its first period [41].

Example 2.7 Consider the LFSR with characteristic polynomial p(x) = 1+x +x4

and initial state {1 1 1 1}. The PN-sequence generated by this register is given by

{1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 . . .}.

Notice that this PN-sequence has 23 ones in its period, that is, in its first 15 bits. �
Theorem 2.4 ([11, Proposition 2]) If {0, i1, i2, . . . , i2L1−1−1} is the set of indices
of the 1s in the PN-sequence {ai} in its first period, then dk = δ·ik mod

(
2L1−1 − 1

)
,

for k = 1, 2, . . . , 2L1−1 − 1, where δ has the form given in Proposition 2.1.

In Example 2.3, we had four interleaved PN-sequences {vi}, {vi+d1}, {vi+d2} and
{vi+d3} and δ = 13. We know that d1 = 9, d2 = 5 and d3 = 3 (see expression (2.4)).
Then, according to Theorem 2.4, we can compute the indices {0, i1, i2, i3} of the
four 1s in the first period of {ai} (i0 = 0, without loss of generality) solving the
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following system: ⎧⎪⎪⎨
⎪⎪⎩

13 · i1 = 9 mod 15

13 · i2 = 5 mod 15

13 · i3 = 3 mod 15.

Therefore, the set of indices is given by {0, 3, 5, 6} and then the PN-sequence
produced by R1 is given by {ai} = {1 0 0 1 0 1 1 . . .}.

2.2 Self-Shrinking Generator

The self-shrinking generator (SSG) was introduced by Meier and Staffelbach
in [67]. They presented a simple structure using only one maximal-length LFSR,
whose output sequence {ai} is self-decimated. The key consists of the initial state of
the register and the characteristic polynomial is again recommended as part of the
key.

Let L be the length and p(x) ∈ F2[x] the characteristic polynomial of the
register. We consider again p(x) primitive, to assure the output sequence has
maximum-period. We will denote by {sj }, j = 0, 1, 2, . . ., the output sequence of
the generator and we will call it, the self-shrunken sequence (SS-sequence). The
decimation rule is very simple,{

If a2i = 1, then sj = a2i+1.

If a2i = 0, then a2i+1 is discarded,

that is, pairs of bits are considered: if a pair happens to take the value 10 or 11, this
pair is taken to produce the bit 0 or 1, depending on the second bit of the pair. On
the other hand, if a pair happens to be 01 or 00, it will be discarded.

Example 2.8 Consider the LFSR of L = 3 stages with characteristic polynomial
p1(x) = 1 + x2 + x3 and initial state {1 0 0}. The corresponding PN-sequence is
given by {1 0 0 1 1 1 0 . . .}. Now the self-shrunken sequence can be computed in
the following way:

R : 1 000︸︷︷︸
000

0 1 1 111︸︷︷︸
111

0 1 0 0 1 111︸︷︷︸
111

1 000︸︷︷︸
000

. . .

The corresponding self-shrunken sequence is given by {sj } = {0 1 1 0 . . .}. �
The period T of a self-shrunken sequence [67] produced by a maximal-length

LFSR of L stages satisfies

T ≥ 2� L
2 	.
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Due to experimental observations, we claim that the period of the self-shrunken
sequences is always T = 2L−1, when L > 3 and p(x) is primitive. However, no
proof has been found yet. We encourage the reader to prove this claim.

According to Meier and Staffelbach [67] and Blackburn [5], we can say that the
linear complexity satisfies

2� L
2 	 < LC ≤ 2L−1 − (L − 2).

Again, due to experimental observations, we claim that the lower bound for the
linear complexity can be improved to: LC > 2L−2. However, no proof has been
found so far. Actually, this is also a natural consequence of T = 2L−1. We let the
reader think about this open problem.

Proposition 2.2 ([33]) The characteristic polynomial of the self-shrunken
sequences has the following form: pLC(x) = (1 + x)LC , where LC is the linear
complexity of such a sequence.

For instance, consider Example 2.8. We had the self-shrunken sequence {sj } =
{0 1 1 0 . . .} produced by p(x) = 1 + x2 + x3. It is possible to check that the
self-shrunken sequence has period T = 23−1 and its characteristic polynomial is
p3(x) = (1+x)3 (see Berlekamp–Massey algorithm [63]). Consequently, the linear
complexity of {sj } is LC = 3.

2.3 Modified Self-Shrinking Generator

In [53] Kanso introduced a variant of the self-shrinking generator called the
modified self-shrinking generator (MSSG). This generator, intended for hardware
implementation, uses an extended selection rule based on the XORed value of a pair
of bits in the PN-sequence. The resultant sequences are balanced and have good
statistical properties.

The decimation rule is very simple and can be described as follows: given three
consecutive bits {a3i , a3i+1, a3i+2}, i = 0, 1, 2, . . ., of a PN-sequence {ai}, the
output sequence {sj } is computed as

{
If a3i + a3i+1 = 1 then sj = a3i+2,

If a3i + a3i+1 = 0 then a3i+2 is discarded.

The output sequence {sj } is known as the modified self-shrunken sequence (MSS-
sequence).

Example 2.9 Let us consider the LFSR of three stages with characteristic polyno-
mial q(x) = 1 + x2 + x3 and initial state {1 1 1}. The PN-sequence generated by
this register is given by {1 1 1 0 1 0 0 . . .}. In this case, the modified self-shrunken
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sequence can be computed as follows:

{ai}
⊕:

: 1 1︸︷︷︸
0

��1 0 1︸︷︷︸
1

000 0 1︸︷︷︸
1

111 1 0︸︷︷︸
1

111 0 0︸︷︷︸
0

��1 1 1︸︷︷︸
0

��0 1 0︸︷︷︸
1

000 . . .

The sequence {sj } = {0 1 1 0 . . .} (encircled bits) is the MSS-sequence generated
by q(x). �

Now, we are ready to study the properties of this generator. According to [53], if
we consider a maximal-length LFSR of L (odd) stages, then:

1. The period T of the MSS-sequence satisfies

2� L
3 	 ≤ T ≤ 2L−1.

2. The linear complexity LC of the MSS-sequence satisfies

2� L
3 	−1 ≤ T ≤ 2L−1 − (L − 2).

Although the MSS-sequences seem to have lower bounds on the period and
linear complexity than those of the SSG, Kanso claimed that these sequences
provide a higher level of security against several well-known attacks. Besides,
Kanso demonstrated that the MSS-sequences possess better randomness properties
than those of the SSG. In next section, we will see that both sequences belong to the
family of generalized self-shrunken sequences.

2.4 Generalized Self-Shrinking Generator

In [46] Hu and Xiao introduced a specialization of the shrinking generator and
a generalization of the self-shrinking generator. This new generator, known as
generalized self-shrinking generator (GSSG), produces a family of sequences
that has group structure. These sequences are also balanced and have quite good
correlation.

2.4.1 Definition and Features

Let {ai}, i = 0, 1, 2, . . ., be a PN-sequence produced by an LFSR of L stages. Now,
consider the binary vector

G = [g0, g1, . . . , gL−1] ∈ F
L
2



36 2 Keystream Generators Based on Irregular Decimation

and the sequence {vi}, i = 0, 1, 2, . . ., sometimes denoted by v(G), such that

vi = g0ai + g1ai−1 + · · · + gL−1ai−L+1.

Consider the following decimation rule:

{
If ai = 1, then sj = vi .

If ai = 0, then vi is discarded.

This means that the PN-sequence {ai} decimates the sequence {vi}, for each value
of G.

We denote the sequence {sj }, j = 0, 1, 2, . . ., by s(v) or s(G) and call
it generalized self-shrunken sequence (GSS-sequence). The family of GSS-
sequences s(a) = {s(G) | G ∈ F

L
2 } is the family of self-shrunken sequences based

on the PN-sequence {ai}.
It is worth noticing that the family of sequences

{
{vi}i≥0, | vi = g0ai + g1ai−1 + · · · + gL−1ai−L+1,G ∈ F

L
2 ,G 
= 0

}

includes all the 2L − 1 shifts sequences of {ai}. Then, the PN-sequence {ai}
decimates shift versions of itself.

For simplicity, we refer G as the decimal representation of the vector G.

Example 2.10 Consider the PN-sequence

{ai} = {1 1 1 0 0 1 0 . . .}

generated by the primitive polynomial p(x) = 1 + x + x3. Since {ai} has period
equal to 7, then we get 7 generalized self-shrunken sequences based on {ai} plus the
identically zero sequence (see Table 2.1). �

Table 2.1 GSS-sequences
generated by 1 + x + x3 G v(G) s(G) LC

0 0 0 0 0 0 0 0 0 0 000 000 000 000 0

0 0 1 1 0 1 1 1 0 0 111 000 111 000 2

0 1 0 0 1 1 1 0 0 1 000 111 111 000 3

0 1 1 1 1 0 0 1 0 1 111 111 000 000 3

1 0 0 1 1 1 0 0 1 0 111 111 111 111 1

1 0 1 0 1 0 1 1 1 0 000 111 000 111 2

1 1 0 1 0 0 1 0 1 1 111 000 000 111 3

1 1 1 0 0 1 0 1 1 1 000 000 111 111 3

1 1 1 0 0 1 0
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The family s(a) is an L-dimensional linear space on F2, so it is an Abelian group
with neutral element {0 0 . . . 0 0} [46]. Then, |s(a)| = 2L.

The following results evidence the relation between some values of G and the
generated sequences.

Theorem 2.5 ([46, Theorem 1])

1. s(G) = {0 0 0 . . .} if and only if G = [0, 0, . . . , 0].
2. s(G) = {1 1 1 . . .} if and only if G = [1, 0, . . . , 0].
3. s(G) is balanced otherwise.

Theorem 2.6 ([46, Theorem 5])

1. There are two sequences from s(G) with period equal to 2, which are {1 0 1 0 . . .}
and {0 1 0 1 . . .}.

2. There are two sequences from s(G) with period equal to 1, which are {0 0 0 0 . . .}
and {1 1 1 1 . . .}.
This means that the identically 0 sequence, the identically 1 sequence and

the sequences that alternate 0 and 1 belong to every family of GSS-sequences.
Furthermore, the sequences different from the identically 0 sequence and the
identically 1 sequence are balanced.

Theorem 2.7 ([10, Theorem 5]) The characteristic polynomial of the GSS-
sequences generated by a PN-sequence is pLC(x) = (1 + x)LC , where LC is
the linear complexity of the considered GSS-sequence.

Example 2.11 Consider the family of GSS-sequences obtained from the LFSR with
characteristic polynomial p(x) = 1 + x + x3 in Example 2.10. There are four
different sequences (the others are shifted versions of these four) and it is possible to
check, via the Berlekamp–Massey algorithm, that their corresponding characteristic
polynomials are given by

{0} : 0 0 0 0 → p0(x) = 1

{4} : 1 1 1 1 → p1(x) = (1 + x)

{1, 5} : 1 0 1 0 → p2(x) = (1 + x)2

{2, 3, 6, 7} : 0 1 1 0 → p3(x) = (1 + x)3. �

The generalized self-shrinking generator has hardly been studied. For example,
there are no works on the period nor the complexity of the sequences. Since any
PN-sequence possesses 2L−1 ones in its first period [41], it seems evident that the
period of the sequences s(G) is a power of 2, that is, 2t with t ≤ L−1. Again, due to
experimental observations, we can claim that the period of the sequences different
from the sequences mentioned in Theorem 2.6 is always 2L−1. Furthermore, the
linear complexity of these sequences seems to satisfy:

2L−2 < LC ≤ 2L−1 − (L − 2).
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The upper bound can be obtained adapting the proof given by Blackburn for the
self-shrunken sequence in [5] . None of the other bounds has been proven yet. We
encourage the reader to think about it.

Given a primitive polynomial p(x) of degree L, the 2L−1 GSS-sequences
generated are divided into L − 1 different groups depending on their LC:

• 1 sequence of LC = 0, the identically 0 sequence.
• 1 sequence of LC = 1, the identically 1 sequence.
• 2 sequences of LC = 2, sequences {0 1 0 1 . . .} and {1 0 1 0 . . .}.
• 2i+1 sequences of linear complexity LCi , with 2L−2 < LCi ≤ 2L−1 − (L − 2),

for i = 1, 2, . . . , L − 2, and L1 < L2 < · · · < LL−2.

Example 2.12 In Table 2.2, we can find the 32 GSS-sequences generated by p(x) =
1 + x2 + x3 + x4 + x5. There are:

• 1 sequence with LC = 0, the identically 0 sequence.
• 1 sequence with LC = 1, the identically 1 sequence.
• 2 sequences with LC = 2, sequences {0 1 0 1 . . .} and {1 0 1 0 . . .}.
• 4 sequences with LC = 10.
• 8 sequences with LC = 12.
• 16 sequences with LC = 13.

�

2.4.2 Generalized Self-Shrunken Sequences and Difference
Equations

In this section we present the GSS-sequences as solutions of linear difference
equations.

According to Theorem 2.7 and other results seen in the previous section, we know
that the characteristic polynomial of the GSS-sequence generated by a maximal-
length LSFR is of the form:

pt(x) = (1 + x)t , t ≤ 2L−1 − (L − 2).

This implies a linear recurrence relationship of the form:

(E + 1)t sj = 0, (2.5)

with E being the one-sided shift introduced in expression (2.3). Expression (2.5)
represents a linear binary constant coefficient difference equation whose character-
istic polynomial pt (x) has a unique root λ = 1 with multiplicity t . The solutions of
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Table 2.2 GSS-sequences generated by p(x) = 1 + x2 + x3 + x4 + x5

G s(G) LC

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 12

2 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 13

3 111 111 000 111 000 000 000 111 111 000 111 111 111 000 000 000 13

4 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 0 10

5 000 111 111 111 000 000 111 000 111 111 000 000 111 000 000 111 12

6 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 13

7 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 13

8 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 13

9 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 13

10 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 12

11 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2

12 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 13

13 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 13

14 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1 12

15 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 10

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 0 1 1 0 0 0 0 0 1 0 1 1 1 1 0 12

18 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 13

19 0 0 1 0 1 1 1 0 0 1 0 0 0 1 1 1 13

20 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 10

21 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 12

22 0 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 13

23 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 13

24 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 13

25 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 13

26 0 0 0 1 1 0 1 0 1 1 1 1 0 1 0 0 12

27 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2

28 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 13

29 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 0 13

30 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 12

31 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 1 10

this equation are binary sequences {sj } whose generic term is given by

sj =
(

j

0

)
c0 +

(
j

1

)
c1 + · · · +

(
j

t − 1

)
ct−1,

with cj ∈ F2 and
(
j
i

)
as binomial coefficients modulo 2, for i = 0, 1, . . . , t −1 [59].

In fact, each binomial coefficient defines a succession of binary values with constant
period Tj . Table 2.3 depicts the first binomial coefficients with their corresponding
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Table 2.3 Binomial
coefficients reduced modulo
2, binary sequences and
periods

Bino. coeff. Binary sequences Tj(
j
0

)
11111111 T0 = 1(

j
1

)
01010101 T1 = 2(

j
2

)
00110011 T2 = 4(

j
3

)
00010001 T3 = 4(

j
4

)
00001111 T4 = 8(

j
5

)
00000101 T5 = 8(

j
6

)
00000011 T6 = 8(

j
7

)
00000001 T7 = 8

binary sequences and periods. The 2t possible choices of ci , i = 0, 1, . . . , t − 1,
provide the different binary sequences {sj } that satisfy expression (2.5). Particular
choices of ci give rise to the generalized self-shrunken sequences generated by an
LFSR of L stages (including the SS-sequence and the MSS-sequence). Interestingly,
all the solutions of expression (2.5) are the bit-wise sum of the basic sequences
coming from the binomial coefficients (see Table 2.3) and weighted by ci , i =
0, 1, . . . , t − 1.

2.4.3 Relationship with the Modified Self-Shrinking Generator

In this section, we see how the MSS-sequence generated by a primitive polynomial
q(x) of degree L can be obtained as one of the GSS-sequences generated by another
primitive polynomial of the same degree.

Theorem 2.8 ([10, Theorems 1–2]) The MSS-sequence obtained by self-
decimating a PN-sequence with characteristic polynomial q(x) of degree L, with
L odd, can be computed as one of the GSS-sequences using another primitive
polynomial p(x) of degree L given by

p(x) =
(
x + α3

) (
x + α6

) (
x + α12

)
· · ·

(
x + α3·2L−1

)
,

where α ∈ F2L is a root of q(x).

Notice that the self-shrunken sequence is also a generalized self-shrunken
sequence [107]. When the PN-sequence {vi} is shifted 2L−1 bits regarding the PN-
sequence {ai}, then the generated sequence is the self-shrunken sequence.

Example 2.13 Given the LSFR with characteristic polynomial q(x) = 1 + x2 + x5

and the initial state {1 1 1 1}, we can obtain the following MSS-sequence:

{1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 . . .}.
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According to Theorem 2.8, this sequence can be also obtained using the GSSG with
primitive polynomial

p(x) =
(
x + α3

) (
x + α6

) (
x + α12

)(
x + α24

) (
x + α48

)
= 1+x2+x3+x4+x5,

where α ∈ F25 is a root of q(x). In Table 2.2 we can find the 32 GSS-sequences
generated by p(x) using the different values of G. For G = 5 (G = [1 0 1 0 0]),
the generated GSS-sequence is a shifted version of the MSS-sequence generated
by q(x).

The self-shrunken sequence generated by p(x) = 1 + x2 + x3 + x4 + x5 is also
a GSS-sequence. For instance, consider the initial state {1 1 1 1 1}, we generate the
following SS-sequence:

{1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 . . .},

which is exactly the GSS-sequence corresponding to G = 3 (G = [0 0 0 1 1]) (see
Table 2.2). �

Now, in order to know which GSS-sequence is the MSS-sequence, we need
to recall the definition of Zech logarithm. Zech logarithms are named after Julius
Zech who published in 1849 a table of this type logarithms (which he called
addition logarithms) for doing arithmetic in Zp. These logarithms are also called
as Jacobi logarithms after C.G.J. Jacobi who used them for number theoretic
investigations [48].

Definition 2.1 Let Fq be the Galois field of q elements and α ∈ Fq a primitive
element. The Zech logarithm with basis α is the application Zα : Zq → Z

∗
q ∪{∞},

such that each element t ∈ Zq corresponds to Zα(t), attaining 1 + αt = αZα(t).

Now we are ready to compute the value of G that produces a MSS-sequence as
a GSS-sequence.

Theorem 2.9 ([10, Theorem 3]) The MSS-sequence generated from a PN-
sequence with primitive characteristic polynomial q(x) is also a GSS-sequence
obtained from a PN-sequence generated by a primitive polynomial p(x)

(see Theorem 2.8) that decimates a shifted version of itself with shift (D −
2)3−1 mod (2L − 1), where D = Zα(1), α ∈ F2L is a root of p(x) and L is
the degree of p(x) and q(x).

Assume {ai} is a PN-sequence generated by a primitive polynomial and assume
{bi} = {ai+(D−2)3−1} is the shifted version of {ai} that is decimated by {ai} in
order to obtain the MSS-sequence (see Theorem 2.9). According to the definition
of GSSG, to find the value of G = [g0, g1, . . . , gL−1] that generates {bi} from {ai},
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we have to know L bits of {ai} and 2L−1 bits of {bi} to solve the following system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a0 = b0g0 + b2L−2g1 + b2L−3g2 + · · · + b2L−LgL−1

a1 = b1g0 + b0g1 + b2L−2g2 + · · · + b2L−(L−1)gL−1
...

aL−1 = bL−1g0 + bL−2g1 + bL−3g2 + · · · + b0gL−1.

(2.6)

The exact necessary bits of each sequence are {ai}L−1
i=0 and {bi}L−1

i=0 ∪ {bi}2L−2
i=2L−L

,
respectively.

Let us see a clarifying example.

Example 2.14 Consider the MSS-sequence generated in Example 2.13:

{sj } = {1 1 0 0 1 0 0 1 000 1 1 1 0 0 1 0 . . .}. (2.7)

According to Theorem 2.8, {sj } can be generated as a GSS-sequence using the
primitive polynomial p(x) = 1 + x2 + x3 + x4 + x5. Given the PN-sequence {ai}
generated by p(x), we consider the PN-sequence {bi} = {ai+k} which is a shifted
version of {ai}, with shift k = (Zα(1)−2) ·3−1 mod 31, α root of q(x). This means
that {bi} = {ai+26}.

Taking the initial state {1 1 1 1 1}, we can generate the PN-sequence

{ai} = {1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 . . .}

that decimates a shifted version of itself,

{bi} = {0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1},

with shift equal to 26. Thus, we obtain the output sequence

{0 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1 . . .},

which is a shifted version of the MSS-sequence {sj } starting at the underlined
position (see expression (2.7)).

Now, in order to obtain the value of G = [g0, g1, g2, g3, g4], we have to solve
the system given in (2.6). In this case we have

{ai}4
i=0 = {0 1 1 1 0}, {bi}4

i=0 = {1 1 1 1 1} and {bi}30
i=27 = {0 1 0 0}.
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Table 2.4 GSS-sequences obtained with G = 5

Initial state 5th GSS-sequence

1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1

1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0

1 0 1 0 1 1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0

Therefore, system (2.6) has the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 = g0 + g3

1 = g0 + g1 + g4

1 = g0 + g1 + g2

1 = g0 + g1 + g2 + g3

0 = g0 + g1 + g2 + g3 + g4,

whose solution is G = [0 0 1 0 1] (G = 5). Then, the GSSG with primitive
polynomial p(x) = 1 + x2 + x3 + x4 + x5 produces the MSS-sequence {sj } for
G = 5 (G = [0 0 1 0 1]) for any given initial state. For example, in Table 2.4,
we can see that the GSS-sequence produced with G = 5 using three different
initial states provides shifted versions of the same sequence, the MSS-sequence
{1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0}. �
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