
Chapter 1
Introduction to Stream Ciphers

The word cryptology comes from two Greek roots meaning “hidden” and “word”,
and is the generic name used to describe the entire field of secret communications.
Cryptology clearly splits into two opposite but complementary disciplines: cryp-
tography and cryptanalysis. Cryptography seeks methods to ensure the secrecy of
a confidential message while cryptanalysis seeks to break such methods in order
to recover the confidential message. In fact, the original message upon which
the cryptographer applies the cryptographic transformation is called the plaintext
message, or simply the plaintext. The result of this transformation is called the
ciphertext message, or simply the ciphertext, or most often the cryptogram. In
order to control the enciphering process, the cryptographer always makes use of
an exclusive information, the key. The general assumption in cryptology is that the
cryptanalyst has full access to the cryptogram. Moreover, at present the Kerckhoff’s
assumption [64] is almost universally adopted by the cryptological community.
According to this precept, the security of the cipher must reside entirely in the key
or, equivalently, the entire cryptosystem except for the value of the key is known to
the cryptanalyst.

Cryptographic systems provide secrecy by means of transformations. Depending
on the type of transformation and on the type of key, the cryptosystems are
commonly classified into symmetric and asymmetric cryptographic systems.

In symmetric cryptography (also called secret key cryptography), there is only
a single piece of private and necessarily secret information the so-called key. Such
a secret key is known to and used by the sender to encrypt the original message
into a ciphertext as well as such a secret key is also known to and used by the
legitimate receiver to decrypt the ciphertext into the original message. It is assumed
that this double operation of encryption/decryption is impossible to be carried out
without the knowledge of the secret key. Thus, in symmetric cryptography the key
is shared by both legitimate communicating parties. As a result, any two users who
want to communicate secretly must have previously exchanged the key in a safe
way, e.g., using a trusted courier. All cryptography from ancient times until 1976
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was exclusively based on symmetric methods. Nowadays symmetric cryptography
is still in widespread use, particularly for data encryption and integrity check of
messages.

In asymmetric cryptography (also called public key cryptography), there are two
pieces of information where at least one of which is computationally infeasible to
recover from the knowledge of the other. One of the pieces is the encryption key
(public piece of information) used by the sender to encrypt the information to be
secured. The other one is the decryption key (secret piece of information) used by
the receiver to decrypt the received ciphertext. Thus, in asymmetric cryptography
each legitimate communicating party has a double key: a secret key non-shared with
anyone and a public key that is known to everyone simply looking up in a public
directory. In 1976, public key cryptography arose as an entirely different concept
in the field of cryptography. It was first introduced by W. Diffie and M. Hellman
in their mythic paper “New directions in cryptography” [21]. Asymmetric ciphers
are currently used in digital signatures and key establishment as well as for classical
data encryption.

Conceptually speaking, asymmetric methods seem to be more adequate for
cryptographic purposes as they avoid the crucial problem of key distribution.
Nevertheless, due to the nature of its operations public key algorithms are much
slower than secret key algorithms. In practice, an hybrid solution is required: the key
exchange is performed by public key methods and then the encryption/decryption
procedure is performed by secret key methods.

Traditionally, symmetric cryptography has been split into stream ciphers and
block ciphers, which can be easily distinguished.

Stream ciphers encrypt bits individually. This operation is performed by adding
a bit from a pseudorandom sequence (keystream sequence) to a plaintext bit. Thus,
the generation of the ciphertext is reduced to an addition of bits. Stream ciphers are
synchronous when the keystream sequence depends only on the secret key and are
asynchronous when the keystream sequence also depends on the ciphertext. Most
practical stream ciphers are synchronous as the totality of stream ciphers considered
in this book are. As example of asynchronous cipher, the cipher feedback (CFB)
mode can be referenced [78, Chapter 5].

Block ciphers encrypt an entire block of plaintext bits at a time by using the same
secret key. Thus, the encryption of any plaintext bit inside a given block depends on
every other plaintext bit in the same block. In practice, the majority of block ciphers
have a block length of 128 bits such as the Advanced Encryption Standard (AES)
[19]. Nevertheless, important block ciphers with a block length of 64 bits, e.g., the
Data Encryption Standard (DES) [77] or the triple DES (3DES) [78, Chapter 3],
can also be referenced, although they are not recommended any more for practical
applications.

In addition, different designs of sponge-based constructions [2] complete the
previous categorization. Indeed, a sponge function is a generalization of both hash
functions, which have a fixed output length, and stream ciphers, which have a fixed
input length.
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Nowadays stream ciphers are the fastest and simplest among the encryption
procedures so they are implemented in many technical applications, e.g., cell
phones, Internet traffic or embedded devices with little computational resources.
In the following sections of this chapter, main characteristics and generalities of
stream ciphers will be revised. In addition, a brief description of the most important
families of stream ciphers that can be found in the literature will also be provided.

1.1 Stream Cipher

The basic problem in stream cipher design is to generate from a short and truly
random key a long pseudorandom bit sequence called the keystream sequence. For
encryption, the sender performs the bitwise XOR (exclusive-OR) operation among
the bits of the original message or plaintext and the keystream sequence. The result
is the ciphertext to be sent to the receiver. For decryption, the receiver generates the
same keystream sequence, performs the same bitwise XOR operation between the
received ciphertext and the keystream sequence and recovers the original message.
Notice that both encryption and decryption procedures use the same operation what
simplifies considerably the software/hardware implementation of this type of cipher.
Moreover, such an operation is nothing but the mod 2 addition or XOR logic
operation, an extremely simple and balanced operation. At any rate, the security
of a stream cipher depends on the nature of the keystream sequence employed.

The precursor of the modern stream cipher is the one-time pad (OTP) or Vernam
cipher invented by Gilbert Vernam in 1917. According to [52] and [78, Chapter 2],
Vernam built an electromechanical machine for teletypewriter communications. The
plaintext was fed into the machine as one punched paper tape and the keystream
sequence as the second tape of the same characteristics. This was the first time
in which encryption and transmission was automated in one machine. The main
features of the OTP are:

1. The keystream sequence is only known to the legitimate communicating parties.
2. The keystream sequence is generated by a true random number generator.
3. The keystream sequence needs to be as long as the plaintext.
4. Every keystream sequence is used only once.

Under the previous conditions, the OTP is unconditionally secure or, equivalently,
exhibits a mathematically proven security. Condition 1 is an habitual requirement
for symmetric cryptography. Concerning conditions 2, 3 and 4, the implications are
much more severe. In fact, conditions 2 and 3 mean that the keystream sequence
must be generated from a physical process with length at least equal to the length
of the original message, then duplicated and sent to sender and receiver through
a secure channel. Moreover, we need one bit of key for each bit of plaintext.
Condition 4 means that the process of generation and delivery of the sequence must
be repeated every time that a secure communication is required. Clearly, the OTP
is an impractical cryptographic procedure for a massive use in e-mail encryption,
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mobile phones, smart cards, web browsers or similar daily applications even though
it is unconditionally secure.

In practice, stream cipher substitutes the truly random keystream sequence for
a pseudorandom keystream sequence generated from a short random key, e.g.,
no more than 128 bits, and a deterministic algorithm (the keystream generator)
publicly known. Once sender and receiver have exchanged the random key in a safe
way and generated the same keystream sequence, then the encryption/decryption
procedure is performed as described in the Vernam cipher. Due to the substitution of
a truly random keystream sequence (Vernam cipher) for a pseudorandom keystream
sequence (stream cipher), the latter cipher procedure does not exhibit unconditional
security. In practice, the best we can do is to design keystream generators assumed
to be computationally secure. In terms of symmetric cryptography, it means that
there is no cryptanalytic attack with a better complexity than an exhaustive search.
In brief, stream cipher is just an approximation to OTP; the more the keystream
sequence looks like a truly random sequence, the more secure the stream cipher
will be.

Due to its conceptual simplicity, stream cipher is the fastest among the present
cryptosystems so it is easy to find many of its technological applications every-
where, e.g., the algorithms A5 in GSM communications (see Sect. 1.2.6), the
encryption system E0 in Bluetooth network specifications [24], the algorithm RC4
used in Microsoft Word processor and Microsoft Excel spreadsheet [80] or the
SNOW 3G Generator [49] for wireless communication of high-speed data with
4G/LTE (long-term evolution) technology.

Finally, it must be stressed that stream cipher is mainly the cipher system for
military and diplomatic purposes, for which this type of symmetric cryptography
is well suited. This is the reason why many important designs and practical
applications of stream ciphers are and will be condemned to the most absolute
obscurantism.

1.1.1 A Basic Structure in Stream Cipher: The Linear
Feedback Shift Register (LFSR)

In this subsection, we provide some basic notation and concepts that will be used
throughout the book.

Let p be a prime, m a positive integer and q = pm. Let Fq denote a finite field
with q elements. The order of an element α ∈ Fq , denoted by ord(α), is the smallest
positive integer k such that αk = 1. An element α with order q − 1 is called a
primitive element in Fq . The primitive elements are exactly the generators of F∗

q ,
the multiplicative group consisting of the nonzero elements of Fq . Thus, a finite
field Fq consists of 0 and appropriate powers of a primitive element.

Let {ai}, i = 0, 1, 2, . . ., be a sequence over Fp if ai ∈ Fp, for all i ≥ 0. The
sequence {ai} is periodic if and only if there exists an integer T > 0 such that
ai+T = ai holds for all i ≥ 0.
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Let L be a positive integer, and let c0, c1, . . . , cL−1 be given elements of the
finite field Fp. A sequence {ai} of elements of Fp satisfying the relation

ai+L = c1ai+L−1 + c2ai+L−2 + . . . + cL−1ai+1 + cLai, i ≥ 0, (1.1)

is called an Lth order linear recurring sequence in Fp. The terms a0, a1, . . . , aL−1,
which determine uniquely the rest of the sequence, are referred to as the initial
values. A relation of the form given in (1.1) is called an Lth order homogeneous
linear recurrence relationship. The monic polynomial of degree L

p(x) = xL + c1x
L−1 + c2x

L−2 + . . . + cL−1x + cL ∈ Fp[x] (1.2)

is called the characteristic polynomial of the linear recurring sequence and the
sequence {ai} is said to be generated by p(x). The polynomial of the lowest
degree in the set of characteristic polynomials of {ai} over Fp is called the minimal
polynomial of {ai} over Fp. For a survey of linear recurring sequences over finite
fields, the interested reader is referred to [59].

In this book, we will consider sequences defined exclusively over the binary field
F2, i.e., p = 2 and q = 2m, while the extension field will be denoted by F2m . It
should be noticed that the analysis provided here can be extended to sequences over
any prime extension Fpm .

The generation of linear recurring sequences can be implemented on linear
feedback shift registers (LFSRs). These devices handle information in the form of
elements of F2 and they are based on shifts and linear feedback. A conventional
or Fibonacci LFSR consists of L interconnected stages numbered 0, 1, · · · , L −
1 (from left to right) capable of storing one bit, the feedback or connection
polynomial1 and the initial state (stage contents at the initial instant). In addition, a
clock controls the movement (shifts) of data. During each unit of time, the following
operations are performed (see Fig. 1.1):

1. The content of stage 0 is output and forms part of the output sequence.
2. The content of stage n is moved to stage n − 1 for each n (1 ≤ n ≤ L − 1).
3. The new content of stage numbered L−1 is the feedback bit calculated by adding

mod 2 the previous contents of a fixed subset of stages (taps) determined by the
feedback polynomial.

In terms of practical implementation, the Galois LFSRs appear as alternative
structures that generate exactly the same linear recurring sequences as those of
Fibonacci LFSRs. More precisely, in Galois LFSRs the taps are not concatenated
so they can be updated in parallel, increasing the speed of execution.

For a minimal polynomial p(x) as this one defined in Eq. (1.2), the output of
the LFSR with nonzero initial state is the string of elements {a0, a1, a2, a3, . . .}

1The feedback polynomial of the LFSR and the minimal polynomial of its linear recurrence
relationship are reciprocal polynomials.
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ai ai+1 ai+2 ··· ai+L−2 ai+L−1

ai+LcL cL−1 cL−2 ··· c2 c1

+ + + ··· + +

Fig. 1.1 LFSR of length L

generated in intervals of one-time unit (see Fig. 1.1). If the minimal polynomial of
the linear recurring sequence is primitive [7], then the LFSR is called maximal-
length LFSR and its output sequence has period 2L − 1, see [41]. This output
sequence is called PN-sequence (pseudonoise sequence) or mmm-sequence (maximal
sequence). In the sequel, all LFSRs considered will be maximal-length LFSRs. In
the cryptographic literature, the LFSR minimal polynomial is simply termed as
characteristic polynomial.

Linear Feedback Shift Registers are used in many of the keystream generators
that have been proposed in the literature. The main reasons for such a continuous
use can be enumerated as follows:

1. LFSRs provide high performance when used as sequence generators.
2. They are particularly well-suited to hardware implementations.
3. They generate output sequences with large period and good statistical properties.

In fact, such sequences satisfy Golomb’s pseudorandomness postulates [41].
4. Due to their simple structure, LFSRs can be readily analysed by means of

algebraic techniques.

According to Golomb’s pseudorandomness postulates [41], the PN-sequences are
balanced (the difference between the number of ones and zeros in one period of
the sequence does not exceed one), the number of binary runs (consecutive ones
or consecutive zeros) occurs with the right probability (half of runs have length
one, one-fourth length two, one-eighth length three, etc., as long as for each of
these lengths the number of one-runs equals the number of zero-runs) and their
autocorrelation function is two-valued.

At first glance, sequences obtained from maximal-length LFSRs might look like
good candidates to keystream sequences. Nevertheless, as explained later, they do
not satisfy a fundamental condition required to all cryptographic sequence and
related with the linear character of these registers.

The linear complexity (LC) of a sequence {ai} is defined as the length of
the shortest LFSR that can generate such a sequence or, equivalently, the order
of the shortest linear recurrence relationship satisfied by such a sequence. In
a general sense, linear complexity is related with the amount of sequence that
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is needed to determine the whole sequence. The Berlekamp–Massey algorithm
efficiently computes the length and characteristic polynomial of the shortest LFSR
given at least 2 · LC sequence bits, see [63]. Indeed, the running time of the
Berlekamp–Massey algorithm is O(N2), where N is the length of the sequence
under consideration.

Linear complexity is a much used metric of the security of a keystream
sequence. In cryptographic terms, linear complexity must be as large as possible.
The recommended value is approximately half the sequence period, LC � T/2.
According to the own definition of linear complexity, sequences generated from
maximal-length LFSRs of length L will have a LC of value equal to L, what
is too far from the recommended value of T/2 � 2L−1. Consequently, LFSRs
should never be used alone as keystream generators. Indeed, the linear complexity
of their output sequences has to be increased before such sequences are employed
for cryptographic purposes.

1.2 LFSR-Based Sequence Generators

In order to overcome the low LC inherent to the sequences generated by LFSRs,
in the literature several approaches are proposed. In the sequel, different methods
of designing keystream sequence generators will be briefly described. All of them
pursue the same goals:

• To preserve the good statistical properties of the PN-sequences.
• To increase the LC of the sequences generated by LFSRs.

Besides LC, other properties must be taken into account when keystream sequences
are considered.

In fact, balancedness is one of the good statistical properties that every keystream
sequence must satisfy. Roughly speaking, a binary sequence is balanced if it has
approximately the same number of ones as zeros. Due to the long period of a
keystream sequence (T � 1038 bits in current cryptographic applications), it
is not feasible to produce an entire cycle of such a sequence and then count
the number of ones and zeros. Therefore, in practice, portions of the keystream
sequence are chosen randomly and the frequency test (monobit test) [70, Chapter 5]
is applied to all these subsequences. If all of them pass the statistical test, then
the sequence is accepted as being balanced. Nevertheless, passing the frequency
test merely provides probabilistic evidence that the generator produces a balanced
sequence. In the literature, balancedness of keystream sequences has been treated in
a deterministic way [31, 32, 45]. Indeed, there are simple binary models based on
the sequence generator parameters that allow one to compute the exact number of
ones in the keystream sequence without producing the whole sequence. The same
can be applied to the computation of the number of runs of any length in a keystream
sequence [25].



8 1 Introduction to Stream Ciphers

In brief, long period, balancedness, good run distribution and large linear com-
plexity are some necessary (never sufficient) conditions for a keystream sequence to
be considered secure [32]. In addition, such sequences have to pass a battery of tests
(NIST tests [76], DIEHARD tests [61] and Tuftests [62]) to be accepted as cryp-
tographic sequences. Traditionally, the key of these stream cipher cryptosystems is
the initial contents of the LFSRs included in the design. Next, a quick overview of
the main families of LFSR-based sequence generators is introduced.

1.2.1 Non-linear Combination Generators

A classical technique for destroying the linearity inherent to LFSRs is to use N

LFSRs working synchronously. The keystream sequence {sj } is produced as the
image of a non-linear Boolean function f whose N variables at time t are the
corresponding output bits of the N registers [59]. The function f is expressed
in algebraic normal form (ANF) as the mod 2 addition (XOR logic operation) of
distinct nth order products in its N variables with 0 ≤ n ≤ N . The non-linear order
of f is the maximum order of the terms appearing in its ANF. This construction is
illustrated in Fig. 1.2, where s(t) = st is the t th term of the keystream sequence.
These keystream sequence generators are called non-linear combination generators
(or non-linear combiners) and f is the combining function.

The security of those generators is conditioned by the properties of such a
function. In general, the non-linear combination generators provide sequences with
large period, good statistical properties and moderate linear complexity. Depending
on the combining function choice, these generators can be vulnerable to certain
cryptanalytic attacks (e.g., correlation attacks).

As a representative example of this type of generator, we can analyse the well-
known Geffe generator [70, Chapter 6], see Fig. 1.3.

This generator is made up of three maximal-length LFSRs of lengths L1, L2, L3,
which are pairwise relatively prime. The combining function is

f (x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x3,

where the symbol ⊕ means the XOR logic operation. LFSR2 acts as selector
switching the output between LFSR1 and LFSR3. The keystream sequence {sj }
obtained from the Geffe generator has period T = (2L1 − 1)(2L2 − 1)(2L3 − 1) and

Fig. 1.2 Non-linear
combiner

LFSR1

LFSR2
...

LFSRN

f s(t)
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Fig. 1.3 Geffe generator
LFSR1

LFSR2

LFSR3

x1(t)

x2(t)

x3(t)

s(t)

AND

AND

Table 1.1 Truth table for the
Geffe generator

x1(t) x2(t) x3(t) s(t)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

linear complexity LC = L1L2 +L2L3 +L3. Recall that in this type of combination
generators and under a variety of conditions [89] the linear complexity of the output
sequence satisfies LC = f (L1, L2, L3). Thus, the LC of the output sequence is
closely related to the order of the combining function.

Concerning balancedness, we can see in Table 1.1 that the combining function f

is balanced as well as the three PN-sequences generated by the LFSRs are. In [31],
a general expression in terms of Li (i = 1, 2, 3) provides the exact number of ones
in the output sequence of a Geffe generator. Such an expression is

No(1′s) = 2L1−12L2−1(2L3 − 1) + (2L1 − 1)(2L2 − 1)2L3−1.

For lengths of the LFSRs in a cryptographic range Li � 60, the number of ones in
the output sequence is No(1′s) � T/2. Consequently, the generated sequence can
be considered as a quasi-balanced sequence.

The Geffe generator is cryptographically weak because information about the
successive bits from LFSR1 and LFSR3 leaks into the output sequence. In fact, let
x1(t), x2(t), x3(t) be the t th output bit of LFSRi (i = 1, 2, 3) and s(t) = st the
t th output bit of the keystream sequence, respectively. According to Table 1.1, the
correlation probability between x1(t) and s(t) and between x3(t) and s(t) is

P(s(t) = x1(t)) = P(s(t) = x3(t)) = 3

4
,
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although the correlation probability between x2(t) and s(t) is given by P(s(t) =
x2(t)) = 1

2 . Consequently, the Geffe generator is vulnerable to a simple correlation
attack as it is shown in [70, Chapter 6].

In general, the combining function f (x1, x2, · · · , xN) must be carefully selected
in order to avoid a statistical dependence between any subset of the N PN-sequences
and the keystream sequence. This condition can be guaranteed if f is chosen to be
mth order correlation immune [70, Chapter 6], m being an integer m < N . The
non-linear order of a Boolean function and the correlation immunity are properties
closely related in the sense that if f (x1, x2, · · · , xN) is chosen to be mth order
correlation immune, then its non-linear order is at most N − m.

Different principles of design for good non-linear combination generators based
on binary LFSR structures can be recommended:

1. Use maximal-length LFSRs to get long period and good short-term statistics in
the output sequence.

2. Choose the LFSR lengths L1, L2, · · · , LN to be relatively prime, i.e.,
gcd(Li, Lj ) = 1 for i 	= j , to get long period.

3. Apply the practical design of balanced sequence combination generators given
in [31] to get a balanced or quasi-balanced output sequence.

4. Choose the non-linear order of f to obtain a good compromise between linear
complexity and correlation immunity.

5. Choose the non-linear function f to have terms of each order to get good
confusion.

6. Let the key determine some terms of the function f .

The Geffe generator is an example of memoryless combination generator. Nev-
ertheless, with the use of memory the combining function f becomes a non-linear
finite state machine (FSM) which greatly increases the number of options available
for these structures [88, Chapter 9]. In this case, the memoryless combining function
is responsible for the level of correlation immunity and the balanced distribution
of the output, whereas the next-state function is responsible for the level of non-
linearity. The summation generator is a good example of memory combination
generator where memory is included in the carry bit [88, Chapter 9]. Moreover,
integer addition is a cryptographically useful function as it is extremely non-linear
when viewed over the binary field F2.

1.2.2 Non-linear Filters

Another general technique for destroying the linearity inherent to LFSRs is to use a
non-linear filter. In this case, the keystream sequence {sj } is generated as the image
of a non-linear Boolean function f in the L stages of a unique LFSR, that is, the L

variables of the Boolean function are the binary contents of the LFSR stages at each
time instant t . This construction is illustrated in Fig. 1.4. These keystream sequence
generators are called non-linear filters and f is the filtering function. Period and
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Fig. 1.4 Non-linear filter

s(t)

f

···

···

statistical properties of the filtered sequences are characteristics deeply studied in
the literature, see references [70, 78, 88].

Concerning the linear complexity, it can be stated that if the non-linear order of
the Boolean function is k, then the linear complexity of the filtered sequence is at
most

LCmax =
k∑

i=1

(
L

i

)
.

Nevertheless, the problem of determining the exact value of the linear complexity
attained by filtering functions is still an open problem [27, 55, 60]. At any rate,
several contributions to the linear complexity of non-linearly filtered sequences can
be quoted:

1. In [88, Chapter 5], Rueppel proves that the output sequence from non-linear
filters including a unique term of equidistant stages has a linear complexity lower
bounded by LC ≥ (

L
k

)
, where L is the LFSR length and k ≈ L/2 the order of the

filtering function. For (L, k) in a cryptographic range, e.g., (128, 64), the lower
bound is quite large.

2. Later, in [79] the equivalence between the root presence test [88, Chapter 5] and
the discrete Fourier transform approach is established, which allows the author to
give lower bounds on the linear complexity for new classes of filtering functions.

3. In [56], the authors provide an improved lower bound LC ≥ (
L
k

) + (
L

k−1

)
on

the linear complexity of filtered sequences. In any case, this lower bound is only
applicable to non-linear filters of order k ∈ [2, 3, L − 1, L], which is outside the
standard cryptographic range.

4. Finally, in [26] a method of computing all the non-linear filters applied to an
LFSR with LC ≥ (

L
k

)
is developed. The procedure is based on the concept of

equivalence classes of non-linear filters and is performed by means of additions
and shiftings of filtering functions coming out from different classes. The method
formally completes the family of non-linear filters found in the literature with a
large guaranteed linear complexity.
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Concerning balancedness, it can be proved that if the filtering function f is a
balanced function, then the filtered sequence will have the same period as that of
the underlying LFSR [91, Theorem 1]. In addition, a binary model to compute the
exact number of ones in the output sequence of a non-linear filter can be found in
[32, subsection 3.2]. The computational method analyses the form of the Boolean
function f and is based exclusively on the handling of binary strings by means
of logic operations. The proposed model serves as a deterministic alternative to
existing probabilistic methods for checking balancedness in this type of sequence
generators.

Different principles of design for a good non-linear filter based on a binary LFSR
structure can be recommended:

1. Use a maximal-length LFSR to get long period and good short-term statistics in
the output sequence.

2. Choose a non-linear order k in the filtering function f to get large linear
complexity, e.g., k ≈ L/2, where L is the LFSR length.

3. Include a linear term and several terms of each small order in f to get good
short-term statistics.

4. Apply the computational method given in [32] to check balancedness in the
output sequence.

5. Include some terms of every order up to k in f to get good confusion.
6. Let the key determine some terms of the function f .

As a representative example of this type of generator, we can describe the Hitag2
generator. Hitag2 is an encryption algorithm designed by NXP Semiconductors that
is used in electronic vehicle immobilizers and anti-theft devices [98]. Hitag2 uses
a proprietary stream cipher with a key of 48 bits. Such a generator is a non-linear
filter made up of a 48-stage LFSR and a filtering function. The feedback polynomial
includes the binary contents of 16 stages in the feedback loop. The filtering function
consists of three different functions fa , fb and fc, see Fig. 1.5. In fact, fa and fb

take as their four input variables the contents of different LFSR stages, while fc

takes as its five input variables the output bits of the functions fa and fb. Next,

fa fb fb fb fa

f c

s(t )

0 1 2 3 4 5 6 7 8 ... 11 12 13 14 15 16 17 ... 21 22 23 ... 25 26 27 28 29 30 31 32 33 34 ... 41 42 43 44 45 46 47

Fig. 1.5 Hitag 2
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serial(0-31) key(0-15)

fa fb fb fb fa

f c key(16-47)

IV(0-31)

0 1 2 3 4 5 6 7 8 ... 11 12 13 14 15 16 17 ... 21 22 23 ... 25 26 27 28 29 30 31 32 33 34 ... 41 42 43 44 45 46 47

Fig. 1.6 Hitag 2 initialization

the fc output variable is the corresponding bit s(t) of the keystream generator. The
previous functions are defined as follows:

fa(i) = (0x2C79)i ,

fb(i) = (0x6671)i ,

fc(i) = (0x7907287B)i,

where the output of these functions for the input i is the ith bit of the above
hexadecimal values.

Previously to the keystream generation, Hitag2 needs an initialization phase to
fill the 48 stages of the LFSR. The initialization procedure is described as follows.
In addition to the 48-bit key, this sequence generator uses a 32-bit serial number and
a 32-bit initialization vector (IV). In fact, the LFSR is filled with the 32 bits of the
serial number and the first 16 bits of the key, see Fig. 1.6. Next, the cipher works
in an autonomous mode for 32 cycles where the LFSR feedback bit is the result of
the mod 2 addition among the corresponding key bit (16–47), the corresponding IV
bit (0–31) and the Hitag2 output bit. Once the 32 cycles have been performed, the
LFSR stage contents are the LFSR initial state for the register to start generating the
keystream sequence.

Due to its short key, Hitag2 is considered an insecure stream cipher. Different
algebraic attacks have been proposed in the literature, e.g., algebraic attacks [18, 93],
attacks with a specific hardware [92, 99] or an exhaustive search attack with low
cost technology [34]. Due to cost reasons, the automotive industry is surprisingly
reluctant to migrate to other more secure products with a longer key.

1.2.3 Clock-Controlled Generators

In Sect. 1.2.1, the N LFSRs of a non-linear combination generator were clocked
regularly, that is, the shift of data in all the registers was controlled by the same
clock. Nevertheless, the main idea behind a clock-controlled generator is that the
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Fig. 1.7 Alternating-step generator

output sequence of one LFSR controls the clock of at least other LFSR. This
irregular clocking of any LFSR is a simple strategy that introduces non-linearity
into the output sequence.

As the most representative example of this type of generator, the alternating-
step generator [43] is described in Fig. 1.7. The alternating-step generator uses
three maximal-length LFSRs, notated LFSRi (i = 1, 2, 3), of lengths L1, L2, L3,
which are pairwise relatively prime. In order to generate the output sequence {sj }
the following steps are repeated:

1. The register LFSR1 is clocked.
2. If the output bit of LFSR1 equals 1, then LFSR2 is clocked while LFSR3 is

not clocked but repeats its previous output bit.
3. If the output bit of LFSR1 equals 0, then LFSR3 is clocked while LFSR2 is

not clocked but repeats its previous output bit.
4. The t th bit of the keystream sequence s(t) is the mod 2 addition between the

output bits of LFSR2 and LFSR3 at the time instant t .

For the first clock cycle, the previous output bit of registers LFSR2 and LFSR3 is
taken to be 0. The alternating-step generator is based on the stop-and-go generator
of Beth and Piper [3] where only one of the LFSR was irregularly clocked.

The keystream sequence {sj } obtained from the alternating-step generator has
period T = 2L1(2L2 − 1)(2L3 − 1) and its linear complexity LC satisfies the
inequality

(L1 + L3) 2L1−1 < LC ≤ (L2 + L3) 2L1 .

The distribution of patterns in the output sequence is almost uniform. In fact, if Ss

denotes a pattern of any s consecutive bits, then the probability P that Ss appears in
the output sequence is given by P(Ss) � ( 1

2 )s .
Recall that in this type of clock-controlled generators the linear complexity of

the output sequence is lower bounded by 2L1−1, that is, LC is exponential in the
length of one of the LFSRs. It means that the fact of introducing irregular clocking
makes increase dramatically the value of the linear complexity.
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Fig. 1.8 LILI keystream generators

The security of the alternating-step generator is based on a right choice of
the lengths Li that should be about the same, that is, L1 � L, L2 � L and
L3 � L. In that case, the best known attack on this generator is a divide and
conquer attack on the control register LFSR1 [43] that takes approximately 2L

steps. Thus, if L = 128, then the generator is secure against this type of attack.
Certain correlation attacks against clock-controlled shift registers can also be found
in [35, 39] with approximately the same computational complexity as that one of
the attack previously mentioned.

Among other interesting clock-controlled keystream generators, we can refer:

1. The Gollmann cascade generator [70, Chapter 6] made up of a succession of
m maximal-length LFSRs of the same length L. The clock of the LFSRi is
controlled by all the previous LFSRj with j < i. The output sequence exhibits
large period T = (2L − 1)m and excellent LC ≥ L (2L − 1)m−1.

2. The LILI family of keystream generators [91] that can be viewed as a clock-
controlled non-linear filter, see Fig. 1.8. The clock-control block (LFSRc + non-
linear filter fc) determines the shift of the LFSRd to whom stages a non-linear
filter fd is applied. This type of design offers large period and LC. However,
some algebraic attacks can be found in the literature [16, 17]. At any rate, an
attack against LILI-128 [17] can take 257 CPU clocks but the requirements of
intercepted bits are far from being practical.

1.2.4 Decimation-Based Generators

The underlying idea of this type of generators is the irregular decimation of a PN-
sequence according to the bits of another one. The result of this decimation is
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an output sequence that will be used as keystream sequence in the cryptographic
procedure of encryption/decryption.

Irregularly decimated generators produce good cryptographic sequences charac-
terized by long periods, good correlation, excellent run distribution, balancedness,
simplicity of implementation, etc. Inside the family of irregularly decimated
generators, we can enumerate: (a) the shrinking generator proposed by Coppersmith,
Krawczyk and Mansour [15] that includes two LFSRs, (b) the self-shrinking
generator designed by Meier and Staffelbach [67] involving only one LFSR, (c)
the generalized self-shrinking generator or family of generators proposed by Hu
and Xiao [46] that includes the self-shrinking generator and (d) the modified
self-shrinking generator introduced by Kanso [53] that is related with the family
of generalized self-shrinking generators. Indeed, the generalized self-shrinking
generator can be seen as a specialization of the shrinking generator as well as
a generalization of the self-shrinking generator. In fact, the output sequence of
the self-shrinking generator is just an element of the family of generalized self-
shrinking sequences.

This book focuses on decimation-based sequence generators with application
in stream ciphers. Next chapters address systematically diverse features of these
generators and their corresponding keystream sequences.

1.2.5 Dynamic LFSR Generators

In [74], Mita et al. proposed a new keystream sequence generator for cryptographic
application based on LFSRs that they called “topology with dynamic linear
feedback shift register” (DLFSR). In fact, such a topology consists in changing
dynamically the feedback polynomial of the main LFSR included in the design.
In this way, the output sequence of this type of generator {sj } is nothing but the
concatenation of different portions of distinct PN-sequences. This new topology
was first introduced in a generic way by means of one LFSR whose feedback
polynomial was updated according to the stage contents of a secondary LFSR.
In this proposal, the authors provided only series of experimental data from this
particular implementation. Later in [82], Peinado et al. analysed and modelled
different cryptographic parameters of the generated sequences, e.g., period, linear
complexity, autocorrelation, run distribution, etc.

Basically, a DLFSR consists of:

1. A main LFSR with n stages and Np primitive feedback polynomials that will be
successively applied according to a particular order determined by the feedback
module.

2. A feedback control module including, among other structures, a secondary
LFSR with m stages and a unique primitive feedback polynomial. This module
is going to control the feedback polynomial of the main register.
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Although the method of generating output sequence is common to all DLFSRs, such
generators can be classified into different categories depending on the operation
mode:

1. DLFSR generators that apply the different Np primitive feedback polynomials
in the same order to generate the same number of output bits with each applied
polynomial [68, 69, 83].

2. DLFSR generators that apply the Np feedback polynomials in the same order
to produce a different number of output bits with each one of the applied
polynomials [84].

3. The most general case in which the DLFSR generators apply the Np feedback
polynomials in a pseudorandom order to produce with each polynomial a
different number of output bits [1, 14, 54].

As illustrative example of DLFSR generators, Fig. 1.9 depicts a generic DLFSR
generator belonging to the third category above mentioned. In fact, it is a general-
ization of the DLFSR module designed in [84]. The proposal represented in Fig. 1.9
is made up of two LFSRs (main and secondary registers) with n and m stages,
respectively, and a counter that counts backwards from a particular value determined
by the state of the secondary LFSR. At the same time, the counter controls CLK2 the
clock of the secondary LFSR. The choice of the feedback polynomial applied to the
main LFSR is determined by k1 bits of the secondary LFSR among the Np primitive
feedback polynomials previously selected. Both LFSRs are initialized with their

feedback polynomial

am−1 am−2 am−3 ··· a0

Counter polynomial
selection

feedback polynomial

bn−1 bn−2 bn−3 ··· b0

a j

CLOCK

CLOCK2

s(t)

Module of feedback control

Fig. 1.9 DLFSR
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corresponding initial states (key of the keystream generator). After the initialization
process, the generation of the output sequence is detailed as follows:

1. The counter is initialized with k2 bits of the secondary LFSR with k2 ≤ log2 m.
2. The main LFSR starts generating bits of the output sequence.
3. Simultaneously, the counter starts counting backwards until the value 0 is

obtained. At that moment, the clock CLK2 is activated and the secondary LFSR
generates a bit.

4. The new secondary LFSR state determines by means of k1 bits the new feedback
polynomial as well as by means of k2 bits the new value of the counter.

The design here presented improves the period and linear complexity of the output
sequence when compared with the same parameters obtained in DLFSR proposals
[14, 74].

1.2.6 Other Types of Keystream Sequence Generators

Other types of keystream generators not included in the previous subsections can be
also described. In this subsection, we consider the multiple speed Massey–Rueppel
generator and the algorithms A5/1 and A5/2 used in GSM (global system for mobile
communications) technology.

The Massey–Rueppel generator [65] is a keystream sequence generator employ-
ing multiple speed LFSRs. Therefore, the speed factor is treated as an additional
variable in the sequence generation. The underlying idea in multiple speed gen-
erators is that, when a speed factor is introduced, a single LFSR with a fixed
feedback polynomial can generate the PN-sequence corresponding to other LFSR
with different feedback polynomial. Thus, multiple speed gives a new dimension to
the design of secure generators.

In Fig. 1.10, an example of the simplest Massey–Rueppel generator is depicted. It
consists of only two maximal-length LFSRs, notated LFSRi (i = 1, 2), of lengths
L1 and L2, respectively, which are relatively prime. The lower register LFSR2 is
clocked at a clock rate greater than that of the upper register LFSR1. The LFSR2
clock rate, notated d, is the speed factor of the generator and can be kept secret as
a part of the key. The output bit s(t) is the mod 2 addition of the logic products
(AND operation) among the contents of the corresponding stages in both registers.
The output sequence exhibits an excellent short-term statistics, no leakage and a
long period of value T = (2L1 − 1)(2L2 − 1). The weakness of this generator is its
moderate linear complexity as LC is proportional to the lengths of both LFSRs. In
fact, LC = L1 L2 although the scheme can be iterated to N LFSRs to get greater
linear complexity of value LC = L1 L2, . . . , LN . The fact of changing the speed
factors allows the user to generate distinct output sequences keeping unchanged the
LFSRs included in the design.

Next, a different family of keystream generators is also described. The A5
stream cipher was designed to protect the over-the-air privacy of GSM telephone
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Fig. 1.10 Massey–Rueppel generator

conversations. This algorithm has two main variants: the stronger A5/1 version used
by millions of customers in Europe and the weaker A5/2 version used by another
millions of customers in other markets. The functional schemes of both versions
will never be published. At any rate, they were reverse engineered by M. Briceno
and later confirmed against official test vectors [6].

A GSM conversation is sent as a sequence of frames where every frame contains
228 bits. Each GSM conversation is encrypted by a session key K derived from
algorithm A8 included in the more general algorithm COMP128, see [4]. For each
frame, the key K is mixed with the corresponding frame counter (a known number
of 22 bits) and the result serves as initial state of the LFSRs. From this initial state,
the keystream generator first produces 100 bits that will be rejected and then the
corresponding 228 keystream bits. Such bits are mod 2 added with the 228 bits of
the conversation frame in order to produce the 228 bits of the ciphered conversation
frame. The same process is repeated systematically for each one of the successive
frames. Recall that for each conversation frame the key K is always the same only
the frame counter is different.

In the following, the description of both generators A5/1 and A5/2 and their
cryptanalysis are detailed.

The A5/1 generator is made up of three maximal-length LFSRs, notated
LFSRi (i = 1, 2, 3), of lengths L1 = 19, L2 = 22 and L3 = 23. According
to Fig. 1.11, the taps of LFSR1 are at bit positions 14, 17, 18 and 19 (numbered
from right to left); the taps of LFSR2 are at bit positions 21 and 22; and the taps
of LFSR3 are at bit positions 8, 21, 22 and 23. The internal state of A5/1 at time t
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Fig. 1.11 Algoritmo A5/1

is the binary contents of the LFSRs at this particular moment. The three LFSRs are
clocked in a stop/go fashion using the following majority rule:

1. Each LFSR has a single clocking stage, notated c1, c2 and c3, corresponding to
bit 9 in LFSR1, bit 11 in LFSR2 and bit 11 in LFSR3.

2. At each clock cycle, the majority function F defined as

F(c1, c2, c3) = c1c2 ⊕ c1c3 ⊕ c2c3

is computed.
3. Only those LFSRs whose clocking stages agree with the majority function are

actually clocked.
4. At each clock cycle, one output bit is produced as the mod 2 addition of the most

significant bits in the three LFSRs.

Recall that at each clock cycle either two or three LFSRs are clocked. Moreover
each LFSR moves with probability 3/4 and stops with probability 1/4.

Different cryptanalyses of the A5/1 generator have appeared in the literature.
Particularly important is the work developed in [37], where the author describes
a general time-memory trade-off attack concluding that it is possible to find the
A5/1 key. This attack is based on the knowledge of a certain amount of intercepted
keystream sequence and a precomputed table storing internal states and their
corresponding output sequence portions. Comparing the intercepted sequence with
these output prefixes, an intermediate state in some frame could be identified. Then,
A5/1 runs backwards until getting the initial state of this particular frame. The key
can be extracted from any frame initial state reversing the effect of the known frame
counter. At any rate, for this cryptanalytic attack the requirements of intercepted
keystream sequence and space in the table were unrealistic.
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Nevertheless, keeping in mind all these ideas but in a more refined way, Biryukov
et al. succeeded in performing an outstanding cryptanalysis [4] that revealed the
insecurity of the A5/1 generator. In fact, they introduced the concept of “special
states” in A5/1 or states able to produce output bits starting with a particular pattern
alpha of length k = 16. The idea was scanning the intercepted sequence until
such a particular pattern was encountered. Once an intermediate state had been
identified, the rest of the cryptanalytic attack was the same as that one described by
Golic [37]. Indeed, the fact of using just special states allowed the cryptanalysts to
reduce dramatically the amount of intercepted sequence and size of the precomputed
table until rather realistic levels. In brief, the easy generation of the special states,
the frequent A5/1 setup routine where the same key is repeated in each frame
initialization and the high probability of getting a coincidence between intercepted
and stored patterns (guaranteed by the birthday paradox) are the most remarkable
weaknesses of this keystream generator.

The A5/2 generator is a modified version of the previous generator including
a fourth LFSR. Figure 1.12 depicts the general scheme of the A5/2 algorithm. In
fact, the registers LFSRi (i = 1, 2, 3) are the same as those ones used in the A5/1
generator, while the additional register LFSR4 is an LFSR of length L4 = 17
whose taps are at bit positions 12 and 17. Notice that LFSR4 controls the shift of
the remaining registers: each LFSRi is clocked when its corresponding clocking
variable ci equals 1. According to Fig. 1.12, the majority function F defined as
before appears four times in different parts of the scheme. At each clock cycle, one
output bit is produced as the mod 2 addition of the most significant bits in the three
LFSRs plus the results of three majority functions taking values in the stages of
LFSRi (i = 1, 2, 3).

As most representative cryptanalysis of the A5/2 generator, the algebraic attack
described in [85] can be referenced. It consists in writing out a system of equations
that relates the state variables of the LFSRi (i = 1, 2, 3) with the output bit by
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means of a clock-control sequence produced by the register LFSR4 starting at a
particular initial state. In the worst case, all the 217 − 1 possible initial states of
LFSR4, paradoxically the shortest register, must be considered. Each one gives rise
to a different system of equations. The linearization of these equations is performed
by substitution of the non-linear terms by new and linear variables. After having
written about 620 equations in each one of those linearized systems, many linearly
dependent equations appear. The knowledge of four frames of keystream sequence
and the linear dependences allow the cryptanalysts to reconstruct the following bits.
Then, comparing reconstructed sequences with the intercepted sequence, the right
keystream sequence is selected. The time complexity of this attack is proportional
to 217. Frequent reinitialization of the frames, small number of skipped bits (just
100 bits rejected) in the initialization process and/or a bad distribution of taps in the
LFSRs seem to be the origin of these linear dependences that this attack successfully
exploits.

1.3 eSTREAM

The eSTREAM, the European stream cipher project, was a multi-year effort
launched by the ECRYPT (European Network of Excellence in Cryptology) in
November 2004. The goal of eSTREAM was to “promote the design of efficient and
compact stream ciphers suitable for widespread adoption”. After public discussions
at the State of the Art of Stream Ciphers (SASC) a workshop held in Bruges
(October 2004), ECRYPT published its call for stream cipher primitives and the
result was the eSTREAM project [96].

The stream cipher proposals were classified into two different profiles:

1. Profile 1. Stream ciphers for software applications with high throughput require-
ments.

2. Profile 2. Stream ciphers for hardware applications with restricted resources such
as limited storage, gate count, or power consumption.

After the call for primitives, 34 candidates were submitted to eSTREAM. Apart
from a panel of experts, it was the cryptographic community at large who, after a
formal evaluation in three phases, selected the most suitable stream cipher proposals
for the final portfolio.

The main evaluation criteria were:

1. Security.
2. Performance when compared to AES in some appropriate mode (e.g., counter

mode).
3. Performance when compared to other submissions.
4. Justification and supporting analysis.
5. Simplicity and flexibility.
6. Completeness and clarity of the submission.
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Moreover, several requirements concerning the length of the key and the initializa-
tion vector (IV) as well as further technical characteristics were also defined.

The required parameter values were:

1. Profile 1.
A key length of 128 bits must be accommodated.
An IV length of at least one of 64 or 128 bits must be accommodated.

2. Profile 2.
A key length of 80 bits must be accommodated.
An IV length of at least one of 32 or 64 bits must be accommodated.

Software performance is an aspect particularly significant for Profile 1 candi-
dates. In fact, software performance can be measured in many different ways. In
order to make comparisons as fair as possible, eSTREAM developed a testing
framework to assure that all stream cipher proposals were submitted to the same
tests under the same circumstances. This testing framework and documentation
available in [94] has been and continues to be used by other researchers outside
of eSTREAM.

As a result of the project, a portfolio of eight new and promising stream ciphers
was announced in April 2008, see Table 1.2. Later the eSTREAM portfolio was
revised in September 2008 when M. Hell and T. Johansson [44] published a
cryptanalytic attack in real time against the F-FCSR-H v2. As a consequence, the
ECRYPT had to eliminate the cipher F-FCSR-H v2 from the previous list. At the
present moment, the eSTREAM portfolio contains the ciphers listed in Table 1.3
with seven stream ciphers.

Descriptions, possible weaknesses and reports on software/hardware perfor-
mance of not only the proposals in the portfolio but also of all eSTREAM candidates
can be found in the corresponding links of the official eSTREAM website [94]. The
portfolio is periodically revised as the algorithms mature. Different reviews of the
eSTREAM portfolio were published in October 2009, January 2012 and another
one recently, see [94]. At the same time, a volume published by Springer [87] in
2008 provides full specifications of all 16 ciphers that reached the final phase of the

Table 1.2 First eSTREAM
portfolio

Profile 1 (SW) Profile 2 (HW)

HC-128 Grain v1

Rabbit MICKEY v2

Salsa20/12 Trivium

SOSEMANUK F-FCSR-H v2

Table 1.3 Final eSTREAM
portfolio

Profile 1 (SW) Profile 2 (HW)

HC-128 Grain v1

Rabbit MICKEY v2

Salsa20/12 Trivium

SOSEMANUK
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eSTREAM project. In fact, it is a very detailed survey covering both the software-
and the hardware-oriented finalists. In addition, a prototype of an ASIC containing
all Profile 2 candidates was designed and fabricated on 0.18µm CMOS, as part of
the eSCARGOT project [95].

Keeping in mind that the goal of eSTREAM was to stimulate works in the area
of stream ciphers, undoubtedly the project has been a great success. It served to:

1. revitalize the field of stream ciphers after the widespread deployment of AES,
and

2. identify two areas where a dedicated stream cipher design might offer advantages
over block ciphers:

• areas where exceptionally high throughput is required in software, and
• areas where exceptionally low resource consumption is required in hardware.

Over the following years the eSTREAM proposals have been assessed with
regard to both security and practicality by the cryptographic community, and the
results presented at major conferences and specialized workshops dedicated to the
state of the art of stream ciphers. Until now, the stream ciphers included in the
portfolio list remain unchanged.
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