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Preface

Cryptography is a hot research area which affects all of us whether or not we
are aware of it on a daily basis: connecting to the internet, unlocking a car door
with a remote control device, sending or receiving WhatsApp messages or paying
with a credit card. Other emerging applications, including e-health, the so-called
Internet of Things (IoT) and smart buildings, are making cryptography even more
ubiquitous.

There are two kinds of cryptosystems: symmetric and asymmetric. Asymmetric
systems use a public key to encrypt a message and a private key to decrypt it. In
symmetric systems, the same secret key is used to encrypt and decrypt a message.
Furthermore, symmetric key ciphers are implemented as either block ciphers or
stream ciphers (even though sponge-based constructions are also emerging). After
the irruption of public-key cryptography, with its new and fascinating possibilities,
it seemed that secret-key cryptography had been confined to a few irrelevant
applications. Nothing is further from the truth, since there are many examples of
secret-key cryptography hardware devices and stream ciphers are simple and the
fastest among all encryption/decryption procedures.

The ECRYPT stream cipher project, called eSTREAM, revitalized the field
of stream ciphers after the widespread deployment of AES and highlighted the
importance of stream ciphers in many technological areas. It is not surprising that
the conjunction of simplicity and speed in a single process preserves its leading part
in any application.

This book addresses a particular class of stream ciphers known as irregular
decimation-based sequence generators. This family has given rise to a wide
collection of designs, high-speed implementations and the subsequent development
of cryptanalytic attacks. Our main purpose is to gather in a comprehensive survey
all the research literature on this topic. In particular, we shall focus on the four
most important decimation-based generators: the shrinking, self-shrinking, modified
and generalized self-shrinking generator. Moreover, parallel modelling in terms of
linear cellular automata reveals the implicit linearity of such generators, which
were paradoxically designed and conceived to exhibit non-linearity. Indeed, these
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results confirm the subtle thought by J. L. Massey: “Linearity is the curse of the
cryptographer” (Crypto’89).

Our approach is based on traditional linear feedback shift registers (one bit per
LFSR stage), meaning that the decimation criterion depends on a single binary digit.
Due to the novel design of such registers over extended fields (more than one bit per
LFSR stage), new decimation criteria have to be designed. As a consequence, the
family of decimation-based sequence generators must be redefined according to this
new scenario. Therefore, the new challenge is to design secure irregular decimation-
based generators over extended fields.

We have tried to make this text self-contained and accessible to graduate
or advanced undergraduate students, as well as engineers and enthusiasts. The
mathematical background is not very demanding, and we clarify the main concepts
with many illustrative examples, tables and figures.

The authors wish to thank Professor Carlile Lavor for the opportunity to write
this book and Professor Henrique Sá Earp for many valuable corrections and
suggestions to the manuscript. We also thank the Springer team for their support
and encouragement, with special gratitude to our editors Vinodhini Srinivasan and
Robinson dos Santos.

Campinas, Brazil Sara Díaz Cardell
Madrid, Spain Amparo Fúster-Sabater
February 2018
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Chapter 1
Introduction to Stream Ciphers

The word cryptology comes from two Greek roots meaning “hidden” and “word”,
and is the generic name used to describe the entire field of secret communications.
Cryptology clearly splits into two opposite but complementary disciplines: cryp-
tography and cryptanalysis. Cryptography seeks methods to ensure the secrecy of
a confidential message while cryptanalysis seeks to break such methods in order
to recover the confidential message. In fact, the original message upon which
the cryptographer applies the cryptographic transformation is called the plaintext
message, or simply the plaintext. The result of this transformation is called the
ciphertext message, or simply the ciphertext, or most often the cryptogram. In
order to control the enciphering process, the cryptographer always makes use of
an exclusive information, the key. The general assumption in cryptology is that the
cryptanalyst has full access to the cryptogram. Moreover, at present the Kerckhoff’s
assumption [64] is almost universally adopted by the cryptological community.
According to this precept, the security of the cipher must reside entirely in the key
or, equivalently, the entire cryptosystem except for the value of the key is known to
the cryptanalyst.

Cryptographic systems provide secrecy by means of transformations. Depending
on the type of transformation and on the type of key, the cryptosystems are
commonly classified into symmetric and asymmetric cryptographic systems.

In symmetric cryptography (also called secret key cryptography), there is only
a single piece of private and necessarily secret information the so-called key. Such
a secret key is known to and used by the sender to encrypt the original message
into a ciphertext as well as such a secret key is also known to and used by the
legitimate receiver to decrypt the ciphertext into the original message. It is assumed
that this double operation of encryption/decryption is impossible to be carried out
without the knowledge of the secret key. Thus, in symmetric cryptography the key
is shared by both legitimate communicating parties. As a result, any two users who
want to communicate secretly must have previously exchanged the key in a safe
way, e.g., using a trusted courier. All cryptography from ancient times until 1976

© The Author(s), under exclusive licence of Springer Nature Switzerland AG 2019
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2 1 Introduction to Stream Ciphers

was exclusively based on symmetric methods. Nowadays symmetric cryptography
is still in widespread use, particularly for data encryption and integrity check of
messages.

In asymmetric cryptography (also called public key cryptography), there are two
pieces of information where at least one of which is computationally infeasible to
recover from the knowledge of the other. One of the pieces is the encryption key
(public piece of information) used by the sender to encrypt the information to be
secured. The other one is the decryption key (secret piece of information) used by
the receiver to decrypt the received ciphertext. Thus, in asymmetric cryptography
each legitimate communicating party has a double key: a secret key non-shared with
anyone and a public key that is known to everyone simply looking up in a public
directory. In 1976, public key cryptography arose as an entirely different concept
in the field of cryptography. It was first introduced by W. Diffie and M. Hellman
in their mythic paper “New directions in cryptography” [21]. Asymmetric ciphers
are currently used in digital signatures and key establishment as well as for classical
data encryption.

Conceptually speaking, asymmetric methods seem to be more adequate for
cryptographic purposes as they avoid the crucial problem of key distribution.
Nevertheless, due to the nature of its operations public key algorithms are much
slower than secret key algorithms. In practice, an hybrid solution is required: the key
exchange is performed by public key methods and then the encryption/decryption
procedure is performed by secret key methods.

Traditionally, symmetric cryptography has been split into stream ciphers and
block ciphers, which can be easily distinguished.

Stream ciphers encrypt bits individually. This operation is performed by adding
a bit from a pseudorandom sequence (keystream sequence) to a plaintext bit. Thus,
the generation of the ciphertext is reduced to an addition of bits. Stream ciphers are
synchronous when the keystream sequence depends only on the secret key and are
asynchronous when the keystream sequence also depends on the ciphertext. Most
practical stream ciphers are synchronous as the totality of stream ciphers considered
in this book are. As example of asynchronous cipher, the cipher feedback (CFB)
mode can be referenced [78, Chapter 5].

Block ciphers encrypt an entire block of plaintext bits at a time by using the same
secret key. Thus, the encryption of any plaintext bit inside a given block depends on
every other plaintext bit in the same block. In practice, the majority of block ciphers
have a block length of 128 bits such as the Advanced Encryption Standard (AES)
[19]. Nevertheless, important block ciphers with a block length of 64 bits, e.g., the
Data Encryption Standard (DES) [77] or the triple DES (3DES) [78, Chapter 3],
can also be referenced, although they are not recommended any more for practical
applications.

In addition, different designs of sponge-based constructions [2] complete the
previous categorization. Indeed, a sponge function is a generalization of both hash
functions, which have a fixed output length, and stream ciphers, which have a fixed
input length.
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Nowadays stream ciphers are the fastest and simplest among the encryption
procedures so they are implemented in many technical applications, e.g., cell
phones, Internet traffic or embedded devices with little computational resources.
In the following sections of this chapter, main characteristics and generalities of
stream ciphers will be revised. In addition, a brief description of the most important
families of stream ciphers that can be found in the literature will also be provided.

1.1 Stream Cipher

The basic problem in stream cipher design is to generate from a short and truly
random key a long pseudorandom bit sequence called the keystream sequence. For
encryption, the sender performs the bitwise XOR (exclusive-OR) operation among
the bits of the original message or plaintext and the keystream sequence. The result
is the ciphertext to be sent to the receiver. For decryption, the receiver generates the
same keystream sequence, performs the same bitwise XOR operation between the
received ciphertext and the keystream sequence and recovers the original message.
Notice that both encryption and decryption procedures use the same operation what
simplifies considerably the software/hardware implementation of this type of cipher.
Moreover, such an operation is nothing but the mod 2 addition or XOR logic
operation, an extremely simple and balanced operation. At any rate, the security
of a stream cipher depends on the nature of the keystream sequence employed.

The precursor of the modern stream cipher is the one-time pad (OTP) or Vernam
cipher invented by Gilbert Vernam in 1917. According to [52] and [78, Chapter 2],
Vernam built an electromechanical machine for teletypewriter communications. The
plaintext was fed into the machine as one punched paper tape and the keystream
sequence as the second tape of the same characteristics. This was the first time
in which encryption and transmission was automated in one machine. The main
features of the OTP are:

1. The keystream sequence is only known to the legitimate communicating parties.
2. The keystream sequence is generated by a true random number generator.
3. The keystream sequence needs to be as long as the plaintext.
4. Every keystream sequence is used only once.

Under the previous conditions, the OTP is unconditionally secure or, equivalently,
exhibits a mathematically proven security. Condition 1 is an habitual requirement
for symmetric cryptography. Concerning conditions 2, 3 and 4, the implications are
much more severe. In fact, conditions 2 and 3 mean that the keystream sequence
must be generated from a physical process with length at least equal to the length
of the original message, then duplicated and sent to sender and receiver through
a secure channel. Moreover, we need one bit of key for each bit of plaintext.
Condition 4 means that the process of generation and delivery of the sequence must
be repeated every time that a secure communication is required. Clearly, the OTP
is an impractical cryptographic procedure for a massive use in e-mail encryption,
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mobile phones, smart cards, web browsers or similar daily applications even though
it is unconditionally secure.

In practice, stream cipher substitutes the truly random keystream sequence for
a pseudorandom keystream sequence generated from a short random key, e.g.,
no more than 128 bits, and a deterministic algorithm (the keystream generator)
publicly known. Once sender and receiver have exchanged the random key in a safe
way and generated the same keystream sequence, then the encryption/decryption
procedure is performed as described in the Vernam cipher. Due to the substitution of
a truly random keystream sequence (Vernam cipher) for a pseudorandom keystream
sequence (stream cipher), the latter cipher procedure does not exhibit unconditional
security. In practice, the best we can do is to design keystream generators assumed
to be computationally secure. In terms of symmetric cryptography, it means that
there is no cryptanalytic attack with a better complexity than an exhaustive search.
In brief, stream cipher is just an approximation to OTP; the more the keystream
sequence looks like a truly random sequence, the more secure the stream cipher
will be.

Due to its conceptual simplicity, stream cipher is the fastest among the present
cryptosystems so it is easy to find many of its technological applications every-
where, e.g., the algorithms A5 in GSM communications (see Sect. 1.2.6), the
encryption system E0 in Bluetooth network specifications [24], the algorithm RC4
used in Microsoft Word processor and Microsoft Excel spreadsheet [80] or the
SNOW 3G Generator [49] for wireless communication of high-speed data with
4G/LTE (long-term evolution) technology.

Finally, it must be stressed that stream cipher is mainly the cipher system for
military and diplomatic purposes, for which this type of symmetric cryptography
is well suited. This is the reason why many important designs and practical
applications of stream ciphers are and will be condemned to the most absolute
obscurantism.

1.1.1 A Basic Structure in Stream Cipher: The Linear
Feedback Shift Register (LFSR)

In this subsection, we provide some basic notation and concepts that will be used
throughout the book.

Let p be a prime, m a positive integer and q = pm. Let Fq denote a finite field
with q elements. The order of an element α ∈ Fq , denoted by ord(α), is the smallest
positive integer k such that αk = 1. An element α with order q − 1 is called a
primitive element in Fq . The primitive elements are exactly the generators of F∗

q ,
the multiplicative group consisting of the nonzero elements of Fq . Thus, a finite
field Fq consists of 0 and appropriate powers of a primitive element.

Let {ai}, i = 0, 1, 2, . . ., be a sequence over Fp if ai ∈ Fp, for all i ≥ 0. The
sequence {ai} is periodic if and only if there exists an integer T > 0 such that
ai+T = ai holds for all i ≥ 0.
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Let L be a positive integer, and let c0, c1, . . . , cL−1 be given elements of the
finite field Fp. A sequence {ai} of elements of Fp satisfying the relation

ai+L = c1ai+L−1 + c2ai+L−2 + . . . + cL−1ai+1 + cLai, i ≥ 0, (1.1)

is called an Lth order linear recurring sequence in Fp. The terms a0, a1, . . . , aL−1,
which determine uniquely the rest of the sequence, are referred to as the initial
values. A relation of the form given in (1.1) is called an Lth order homogeneous
linear recurrence relationship. The monic polynomial of degree L

p(x) = xL + c1x
L−1 + c2x

L−2 + . . . + cL−1x + cL ∈ Fp[x] (1.2)

is called the characteristic polynomial of the linear recurring sequence and the
sequence {ai} is said to be generated by p(x). The polynomial of the lowest
degree in the set of characteristic polynomials of {ai} over Fp is called the minimal
polynomial of {ai} over Fp. For a survey of linear recurring sequences over finite
fields, the interested reader is referred to [59].

In this book, we will consider sequences defined exclusively over the binary field
F2, i.e., p = 2 and q = 2m, while the extension field will be denoted by F2m . It
should be noticed that the analysis provided here can be extended to sequences over
any prime extension Fpm .

The generation of linear recurring sequences can be implemented on linear
feedback shift registers (LFSRs). These devices handle information in the form of
elements of F2 and they are based on shifts and linear feedback. A conventional
or Fibonacci LFSR consists of L interconnected stages numbered 0, 1, · · · , L −
1 (from left to right) capable of storing one bit, the feedback or connection
polynomial1 and the initial state (stage contents at the initial instant). In addition, a
clock controls the movement (shifts) of data. During each unit of time, the following
operations are performed (see Fig. 1.1):

1. The content of stage 0 is output and forms part of the output sequence.
2. The content of stage n is moved to stage n − 1 for each n (1 ≤ n ≤ L − 1).
3. The new content of stage numbered L−1 is the feedback bit calculated by adding

mod 2 the previous contents of a fixed subset of stages (taps) determined by the
feedback polynomial.

In terms of practical implementation, the Galois LFSRs appear as alternative
structures that generate exactly the same linear recurring sequences as those of
Fibonacci LFSRs. More precisely, in Galois LFSRs the taps are not concatenated
so they can be updated in parallel, increasing the speed of execution.

For a minimal polynomial p(x) as this one defined in Eq. (1.2), the output of
the LFSR with nonzero initial state is the string of elements {a0, a1, a2, a3, . . .}

1The feedback polynomial of the LFSR and the minimal polynomial of its linear recurrence
relationship are reciprocal polynomials.
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ai ai+1 ai+2 ··· ai+L−2 ai+L−1

ai+LcL cL−1 cL−2 ··· c2 c1

+ + + ··· + +

Fig. 1.1 LFSR of length L

generated in intervals of one-time unit (see Fig. 1.1). If the minimal polynomial of
the linear recurring sequence is primitive [7], then the LFSR is called maximal-
length LFSR and its output sequence has period 2L − 1, see [41]. This output
sequence is called PN-sequence (pseudonoise sequence) or mmm-sequence (maximal
sequence). In the sequel, all LFSRs considered will be maximal-length LFSRs. In
the cryptographic literature, the LFSR minimal polynomial is simply termed as
characteristic polynomial.

Linear Feedback Shift Registers are used in many of the keystream generators
that have been proposed in the literature. The main reasons for such a continuous
use can be enumerated as follows:

1. LFSRs provide high performance when used as sequence generators.
2. They are particularly well-suited to hardware implementations.
3. They generate output sequences with large period and good statistical properties.

In fact, such sequences satisfy Golomb’s pseudorandomness postulates [41].
4. Due to their simple structure, LFSRs can be readily analysed by means of

algebraic techniques.

According to Golomb’s pseudorandomness postulates [41], the PN-sequences are
balanced (the difference between the number of ones and zeros in one period of
the sequence does not exceed one), the number of binary runs (consecutive ones
or consecutive zeros) occurs with the right probability (half of runs have length
one, one-fourth length two, one-eighth length three, etc., as long as for each of
these lengths the number of one-runs equals the number of zero-runs) and their
autocorrelation function is two-valued.

At first glance, sequences obtained from maximal-length LFSRs might look like
good candidates to keystream sequences. Nevertheless, as explained later, they do
not satisfy a fundamental condition required to all cryptographic sequence and
related with the linear character of these registers.

The linear complexity (LC) of a sequence {ai} is defined as the length of
the shortest LFSR that can generate such a sequence or, equivalently, the order
of the shortest linear recurrence relationship satisfied by such a sequence. In
a general sense, linear complexity is related with the amount of sequence that
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is needed to determine the whole sequence. The Berlekamp–Massey algorithm
efficiently computes the length and characteristic polynomial of the shortest LFSR
given at least 2 · LC sequence bits, see [63]. Indeed, the running time of the
Berlekamp–Massey algorithm is O(N2), where N is the length of the sequence
under consideration.

Linear complexity is a much used metric of the security of a keystream
sequence. In cryptographic terms, linear complexity must be as large as possible.
The recommended value is approximately half the sequence period, LC � T/2.
According to the own definition of linear complexity, sequences generated from
maximal-length LFSRs of length L will have a LC of value equal to L, what
is too far from the recommended value of T/2 � 2L−1. Consequently, LFSRs
should never be used alone as keystream generators. Indeed, the linear complexity
of their output sequences has to be increased before such sequences are employed
for cryptographic purposes.

1.2 LFSR-Based Sequence Generators

In order to overcome the low LC inherent to the sequences generated by LFSRs,
in the literature several approaches are proposed. In the sequel, different methods
of designing keystream sequence generators will be briefly described. All of them
pursue the same goals:

• To preserve the good statistical properties of the PN-sequences.
• To increase the LC of the sequences generated by LFSRs.

Besides LC, other properties must be taken into account when keystream sequences
are considered.

In fact, balancedness is one of the good statistical properties that every keystream
sequence must satisfy. Roughly speaking, a binary sequence is balanced if it has
approximately the same number of ones as zeros. Due to the long period of a
keystream sequence (T � 1038 bits in current cryptographic applications), it
is not feasible to produce an entire cycle of such a sequence and then count
the number of ones and zeros. Therefore, in practice, portions of the keystream
sequence are chosen randomly and the frequency test (monobit test) [70, Chapter 5]
is applied to all these subsequences. If all of them pass the statistical test, then
the sequence is accepted as being balanced. Nevertheless, passing the frequency
test merely provides probabilistic evidence that the generator produces a balanced
sequence. In the literature, balancedness of keystream sequences has been treated in
a deterministic way [31, 32, 45]. Indeed, there are simple binary models based on
the sequence generator parameters that allow one to compute the exact number of
ones in the keystream sequence without producing the whole sequence. The same
can be applied to the computation of the number of runs of any length in a keystream
sequence [25].
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In brief, long period, balancedness, good run distribution and large linear com-
plexity are some necessary (never sufficient) conditions for a keystream sequence to
be considered secure [32]. In addition, such sequences have to pass a battery of tests
(NIST tests [76], DIEHARD tests [61] and Tuftests [62]) to be accepted as cryp-
tographic sequences. Traditionally, the key of these stream cipher cryptosystems is
the initial contents of the LFSRs included in the design. Next, a quick overview of
the main families of LFSR-based sequence generators is introduced.

1.2.1 Non-linear Combination Generators

A classical technique for destroying the linearity inherent to LFSRs is to use N

LFSRs working synchronously. The keystream sequence {sj } is produced as the
image of a non-linear Boolean function f whose N variables at time t are the
corresponding output bits of the N registers [59]. The function f is expressed
in algebraic normal form (ANF) as the mod 2 addition (XOR logic operation) of
distinct nth order products in its N variables with 0 ≤ n ≤ N . The non-linear order
of f is the maximum order of the terms appearing in its ANF. This construction is
illustrated in Fig. 1.2, where s(t) = st is the t th term of the keystream sequence.
These keystream sequence generators are called non-linear combination generators
(or non-linear combiners) and f is the combining function.

The security of those generators is conditioned by the properties of such a
function. In general, the non-linear combination generators provide sequences with
large period, good statistical properties and moderate linear complexity. Depending
on the combining function choice, these generators can be vulnerable to certain
cryptanalytic attacks (e.g., correlation attacks).

As a representative example of this type of generator, we can analyse the well-
known Geffe generator [70, Chapter 6], see Fig. 1.3.

This generator is made up of three maximal-length LFSRs of lengths L1, L2, L3,
which are pairwise relatively prime. The combining function is

f (x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x3,

where the symbol ⊕ means the XOR logic operation. LFSR2 acts as selector
switching the output between LFSR1 and LFSR3. The keystream sequence {sj }
obtained from the Geffe generator has period T = (2L1 − 1)(2L2 − 1)(2L3 − 1) and

Fig. 1.2 Non-linear
combiner

LFSR1

LFSR2
...

LFSRN

f s(t)
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Fig. 1.3 Geffe generator
LFSR1

LFSR2

LFSR3

x1(t)

x2(t)

x3(t)

s(t)

AND

AND

Table 1.1 Truth table for the
Geffe generator

x1(t) x2(t) x3(t) s(t)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

linear complexity LC = L1L2 +L2L3 +L3. Recall that in this type of combination
generators and under a variety of conditions [89] the linear complexity of the output
sequence satisfies LC = f (L1, L2, L3). Thus, the LC of the output sequence is
closely related to the order of the combining function.

Concerning balancedness, we can see in Table 1.1 that the combining function f

is balanced as well as the three PN-sequences generated by the LFSRs are. In [31],
a general expression in terms of Li (i = 1, 2, 3) provides the exact number of ones
in the output sequence of a Geffe generator. Such an expression is

No(1′s) = 2L1−12L2−1(2L3 − 1) + (2L1 − 1)(2L2 − 1)2L3−1.

For lengths of the LFSRs in a cryptographic range Li � 60, the number of ones in
the output sequence is No(1′s) � T/2. Consequently, the generated sequence can
be considered as a quasi-balanced sequence.

The Geffe generator is cryptographically weak because information about the
successive bits from LFSR1 and LFSR3 leaks into the output sequence. In fact, let
x1(t), x2(t), x3(t) be the t th output bit of LFSRi (i = 1, 2, 3) and s(t) = st the
t th output bit of the keystream sequence, respectively. According to Table 1.1, the
correlation probability between x1(t) and s(t) and between x3(t) and s(t) is

P(s(t) = x1(t)) = P(s(t) = x3(t)) = 3

4
,
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although the correlation probability between x2(t) and s(t) is given by P(s(t) =
x2(t)) = 1

2 . Consequently, the Geffe generator is vulnerable to a simple correlation
attack as it is shown in [70, Chapter 6].

In general, the combining function f (x1, x2, · · · , xN) must be carefully selected
in order to avoid a statistical dependence between any subset of the N PN-sequences
and the keystream sequence. This condition can be guaranteed if f is chosen to be
mth order correlation immune [70, Chapter 6], m being an integer m < N . The
non-linear order of a Boolean function and the correlation immunity are properties
closely related in the sense that if f (x1, x2, · · · , xN) is chosen to be mth order
correlation immune, then its non-linear order is at most N − m.

Different principles of design for good non-linear combination generators based
on binary LFSR structures can be recommended:

1. Use maximal-length LFSRs to get long period and good short-term statistics in
the output sequence.

2. Choose the LFSR lengths L1, L2, · · · , LN to be relatively prime, i.e.,
gcd(Li, Lj ) = 1 for i 	= j , to get long period.

3. Apply the practical design of balanced sequence combination generators given
in [31] to get a balanced or quasi-balanced output sequence.

4. Choose the non-linear order of f to obtain a good compromise between linear
complexity and correlation immunity.

5. Choose the non-linear function f to have terms of each order to get good
confusion.

6. Let the key determine some terms of the function f .

The Geffe generator is an example of memoryless combination generator. Nev-
ertheless, with the use of memory the combining function f becomes a non-linear
finite state machine (FSM) which greatly increases the number of options available
for these structures [88, Chapter 9]. In this case, the memoryless combining function
is responsible for the level of correlation immunity and the balanced distribution
of the output, whereas the next-state function is responsible for the level of non-
linearity. The summation generator is a good example of memory combination
generator where memory is included in the carry bit [88, Chapter 9]. Moreover,
integer addition is a cryptographically useful function as it is extremely non-linear
when viewed over the binary field F2.

1.2.2 Non-linear Filters

Another general technique for destroying the linearity inherent to LFSRs is to use a
non-linear filter. In this case, the keystream sequence {sj } is generated as the image
of a non-linear Boolean function f in the L stages of a unique LFSR, that is, the L

variables of the Boolean function are the binary contents of the LFSR stages at each
time instant t . This construction is illustrated in Fig. 1.4. These keystream sequence
generators are called non-linear filters and f is the filtering function. Period and
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Fig. 1.4 Non-linear filter

s(t)

f

···

···

statistical properties of the filtered sequences are characteristics deeply studied in
the literature, see references [70, 78, 88].

Concerning the linear complexity, it can be stated that if the non-linear order of
the Boolean function is k, then the linear complexity of the filtered sequence is at
most

LCmax =
k∑

i=1

(
L

i

)
.

Nevertheless, the problem of determining the exact value of the linear complexity
attained by filtering functions is still an open problem [27, 55, 60]. At any rate,
several contributions to the linear complexity of non-linearly filtered sequences can
be quoted:

1. In [88, Chapter 5], Rueppel proves that the output sequence from non-linear
filters including a unique term of equidistant stages has a linear complexity lower
bounded by LC ≥ (

L
k

)
, where L is the LFSR length and k ≈ L/2 the order of the

filtering function. For (L, k) in a cryptographic range, e.g., (128, 64), the lower
bound is quite large.

2. Later, in [79] the equivalence between the root presence test [88, Chapter 5] and
the discrete Fourier transform approach is established, which allows the author to
give lower bounds on the linear complexity for new classes of filtering functions.

3. In [56], the authors provide an improved lower bound LC ≥ (
L
k

) + (
L

k−1

)
on

the linear complexity of filtered sequences. In any case, this lower bound is only
applicable to non-linear filters of order k ∈ [2, 3, L − 1, L], which is outside the
standard cryptographic range.

4. Finally, in [26] a method of computing all the non-linear filters applied to an
LFSR with LC ≥ (

L
k

)
is developed. The procedure is based on the concept of

equivalence classes of non-linear filters and is performed by means of additions
and shiftings of filtering functions coming out from different classes. The method
formally completes the family of non-linear filters found in the literature with a
large guaranteed linear complexity.
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Concerning balancedness, it can be proved that if the filtering function f is a
balanced function, then the filtered sequence will have the same period as that of
the underlying LFSR [91, Theorem 1]. In addition, a binary model to compute the
exact number of ones in the output sequence of a non-linear filter can be found in
[32, subsection 3.2]. The computational method analyses the form of the Boolean
function f and is based exclusively on the handling of binary strings by means
of logic operations. The proposed model serves as a deterministic alternative to
existing probabilistic methods for checking balancedness in this type of sequence
generators.

Different principles of design for a good non-linear filter based on a binary LFSR
structure can be recommended:

1. Use a maximal-length LFSR to get long period and good short-term statistics in
the output sequence.

2. Choose a non-linear order k in the filtering function f to get large linear
complexity, e.g., k ≈ L/2, where L is the LFSR length.

3. Include a linear term and several terms of each small order in f to get good
short-term statistics.

4. Apply the computational method given in [32] to check balancedness in the
output sequence.

5. Include some terms of every order up to k in f to get good confusion.
6. Let the key determine some terms of the function f .

As a representative example of this type of generator, we can describe the Hitag2
generator. Hitag2 is an encryption algorithm designed by NXP Semiconductors that
is used in electronic vehicle immobilizers and anti-theft devices [98]. Hitag2 uses
a proprietary stream cipher with a key of 48 bits. Such a generator is a non-linear
filter made up of a 48-stage LFSR and a filtering function. The feedback polynomial
includes the binary contents of 16 stages in the feedback loop. The filtering function
consists of three different functions fa , fb and fc, see Fig. 1.5. In fact, fa and fb

take as their four input variables the contents of different LFSR stages, while fc

takes as its five input variables the output bits of the functions fa and fb. Next,

fa fb fb fb fa

f c

s(t )

0 1 2 3 4 5 6 7 8 ... 11 12 13 14 15 16 17 ... 21 22 23 ... 25 26 27 28 29 30 31 32 33 34 ... 41 42 43 44 45 46 47

Fig. 1.5 Hitag 2
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serial(0-31) key(0-15)

fa fb fb fb fa

f c key(16-47)

IV(0-31)

0 1 2 3 4 5 6 7 8 ... 11 12 13 14 15 16 17 ... 21 22 23 ... 25 26 27 28 29 30 31 32 33 34 ... 41 42 43 44 45 46 47

Fig. 1.6 Hitag 2 initialization

the fc output variable is the corresponding bit s(t) of the keystream generator. The
previous functions are defined as follows:

fa(i) = (0x2C79)i ,

fb(i) = (0x6671)i ,

fc(i) = (0x7907287B)i,

where the output of these functions for the input i is the ith bit of the above
hexadecimal values.

Previously to the keystream generation, Hitag2 needs an initialization phase to
fill the 48 stages of the LFSR. The initialization procedure is described as follows.
In addition to the 48-bit key, this sequence generator uses a 32-bit serial number and
a 32-bit initialization vector (IV). In fact, the LFSR is filled with the 32 bits of the
serial number and the first 16 bits of the key, see Fig. 1.6. Next, the cipher works
in an autonomous mode for 32 cycles where the LFSR feedback bit is the result of
the mod 2 addition among the corresponding key bit (16–47), the corresponding IV
bit (0–31) and the Hitag2 output bit. Once the 32 cycles have been performed, the
LFSR stage contents are the LFSR initial state for the register to start generating the
keystream sequence.

Due to its short key, Hitag2 is considered an insecure stream cipher. Different
algebraic attacks have been proposed in the literature, e.g., algebraic attacks [18, 93],
attacks with a specific hardware [92, 99] or an exhaustive search attack with low
cost technology [34]. Due to cost reasons, the automotive industry is surprisingly
reluctant to migrate to other more secure products with a longer key.

1.2.3 Clock-Controlled Generators

In Sect. 1.2.1, the N LFSRs of a non-linear combination generator were clocked
regularly, that is, the shift of data in all the registers was controlled by the same
clock. Nevertheless, the main idea behind a clock-controlled generator is that the
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clock LFSR1

LFSR2

LFSR3

s(t)

Fig. 1.7 Alternating-step generator

output sequence of one LFSR controls the clock of at least other LFSR. This
irregular clocking of any LFSR is a simple strategy that introduces non-linearity
into the output sequence.

As the most representative example of this type of generator, the alternating-
step generator [43] is described in Fig. 1.7. The alternating-step generator uses
three maximal-length LFSRs, notated LFSRi (i = 1, 2, 3), of lengths L1, L2, L3,
which are pairwise relatively prime. In order to generate the output sequence {sj }
the following steps are repeated:

1. The register LFSR1 is clocked.
2. If the output bit of LFSR1 equals 1, then LFSR2 is clocked while LFSR3 is

not clocked but repeats its previous output bit.
3. If the output bit of LFSR1 equals 0, then LFSR3 is clocked while LFSR2 is

not clocked but repeats its previous output bit.
4. The t th bit of the keystream sequence s(t) is the mod 2 addition between the

output bits of LFSR2 and LFSR3 at the time instant t .

For the first clock cycle, the previous output bit of registers LFSR2 and LFSR3 is
taken to be 0. The alternating-step generator is based on the stop-and-go generator
of Beth and Piper [3] where only one of the LFSR was irregularly clocked.

The keystream sequence {sj } obtained from the alternating-step generator has
period T = 2L1(2L2 − 1)(2L3 − 1) and its linear complexity LC satisfies the
inequality

(L1 + L3) 2L1−1 < LC ≤ (L2 + L3) 2L1 .

The distribution of patterns in the output sequence is almost uniform. In fact, if Ss

denotes a pattern of any s consecutive bits, then the probability P that Ss appears in
the output sequence is given by P(Ss) � ( 1

2 )s .
Recall that in this type of clock-controlled generators the linear complexity of

the output sequence is lower bounded by 2L1−1, that is, LC is exponential in the
length of one of the LFSRs. It means that the fact of introducing irregular clocking
makes increase dramatically the value of the linear complexity.
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fc fd
c(t)

k n

··· ···

LFSRc LFSRd

s(t)

CLOCK-CONTROL DATA GENERATION

Fig. 1.8 LILI keystream generators

The security of the alternating-step generator is based on a right choice of
the lengths Li that should be about the same, that is, L1 � L, L2 � L and
L3 � L. In that case, the best known attack on this generator is a divide and
conquer attack on the control register LFSR1 [43] that takes approximately 2L

steps. Thus, if L = 128, then the generator is secure against this type of attack.
Certain correlation attacks against clock-controlled shift registers can also be found
in [35, 39] with approximately the same computational complexity as that one of
the attack previously mentioned.

Among other interesting clock-controlled keystream generators, we can refer:

1. The Gollmann cascade generator [70, Chapter 6] made up of a succession of
m maximal-length LFSRs of the same length L. The clock of the LFSRi is
controlled by all the previous LFSRj with j < i. The output sequence exhibits
large period T = (2L − 1)m and excellent LC ≥ L (2L − 1)m−1.

2. The LILI family of keystream generators [91] that can be viewed as a clock-
controlled non-linear filter, see Fig. 1.8. The clock-control block (LFSRc + non-
linear filter fc) determines the shift of the LFSRd to whom stages a non-linear
filter fd is applied. This type of design offers large period and LC. However,
some algebraic attacks can be found in the literature [16, 17]. At any rate, an
attack against LILI-128 [17] can take 257 CPU clocks but the requirements of
intercepted bits are far from being practical.

1.2.4 Decimation-Based Generators

The underlying idea of this type of generators is the irregular decimation of a PN-
sequence according to the bits of another one. The result of this decimation is
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an output sequence that will be used as keystream sequence in the cryptographic
procedure of encryption/decryption.

Irregularly decimated generators produce good cryptographic sequences charac-
terized by long periods, good correlation, excellent run distribution, balancedness,
simplicity of implementation, etc. Inside the family of irregularly decimated
generators, we can enumerate: (a) the shrinking generator proposed by Coppersmith,
Krawczyk and Mansour [15] that includes two LFSRs, (b) the self-shrinking
generator designed by Meier and Staffelbach [67] involving only one LFSR, (c)
the generalized self-shrinking generator or family of generators proposed by Hu
and Xiao [46] that includes the self-shrinking generator and (d) the modified
self-shrinking generator introduced by Kanso [53] that is related with the family
of generalized self-shrinking generators. Indeed, the generalized self-shrinking
generator can be seen as a specialization of the shrinking generator as well as
a generalization of the self-shrinking generator. In fact, the output sequence of
the self-shrinking generator is just an element of the family of generalized self-
shrinking sequences.

This book focuses on decimation-based sequence generators with application
in stream ciphers. Next chapters address systematically diverse features of these
generators and their corresponding keystream sequences.

1.2.5 Dynamic LFSR Generators

In [74], Mita et al. proposed a new keystream sequence generator for cryptographic
application based on LFSRs that they called “topology with dynamic linear
feedback shift register” (DLFSR). In fact, such a topology consists in changing
dynamically the feedback polynomial of the main LFSR included in the design.
In this way, the output sequence of this type of generator {sj } is nothing but the
concatenation of different portions of distinct PN-sequences. This new topology
was first introduced in a generic way by means of one LFSR whose feedback
polynomial was updated according to the stage contents of a secondary LFSR.
In this proposal, the authors provided only series of experimental data from this
particular implementation. Later in [82], Peinado et al. analysed and modelled
different cryptographic parameters of the generated sequences, e.g., period, linear
complexity, autocorrelation, run distribution, etc.

Basically, a DLFSR consists of:

1. A main LFSR with n stages and Np primitive feedback polynomials that will be
successively applied according to a particular order determined by the feedback
module.

2. A feedback control module including, among other structures, a secondary
LFSR with m stages and a unique primitive feedback polynomial. This module
is going to control the feedback polynomial of the main register.
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Although the method of generating output sequence is common to all DLFSRs, such
generators can be classified into different categories depending on the operation
mode:

1. DLFSR generators that apply the different Np primitive feedback polynomials
in the same order to generate the same number of output bits with each applied
polynomial [68, 69, 83].

2. DLFSR generators that apply the Np feedback polynomials in the same order
to produce a different number of output bits with each one of the applied
polynomials [84].

3. The most general case in which the DLFSR generators apply the Np feedback
polynomials in a pseudorandom order to produce with each polynomial a
different number of output bits [1, 14, 54].

As illustrative example of DLFSR generators, Fig. 1.9 depicts a generic DLFSR
generator belonging to the third category above mentioned. In fact, it is a general-
ization of the DLFSR module designed in [84]. The proposal represented in Fig. 1.9
is made up of two LFSRs (main and secondary registers) with n and m stages,
respectively, and a counter that counts backwards from a particular value determined
by the state of the secondary LFSR. At the same time, the counter controls CLK2 the
clock of the secondary LFSR. The choice of the feedback polynomial applied to the
main LFSR is determined by k1 bits of the secondary LFSR among the Np primitive
feedback polynomials previously selected. Both LFSRs are initialized with their

feedback polynomial

am−1 am−2 am−3 ··· a0

Counter polynomial
selection

feedback polynomial

bn−1 bn−2 bn−3 ··· b0

a j

CLOCK

CLOCK2

s(t)

Module of feedback control

Fig. 1.9 DLFSR
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corresponding initial states (key of the keystream generator). After the initialization
process, the generation of the output sequence is detailed as follows:

1. The counter is initialized with k2 bits of the secondary LFSR with k2 ≤ log2 m.
2. The main LFSR starts generating bits of the output sequence.
3. Simultaneously, the counter starts counting backwards until the value 0 is

obtained. At that moment, the clock CLK2 is activated and the secondary LFSR
generates a bit.

4. The new secondary LFSR state determines by means of k1 bits the new feedback
polynomial as well as by means of k2 bits the new value of the counter.

The design here presented improves the period and linear complexity of the output
sequence when compared with the same parameters obtained in DLFSR proposals
[14, 74].

1.2.6 Other Types of Keystream Sequence Generators

Other types of keystream generators not included in the previous subsections can be
also described. In this subsection, we consider the multiple speed Massey–Rueppel
generator and the algorithms A5/1 and A5/2 used in GSM (global system for mobile
communications) technology.

The Massey–Rueppel generator [65] is a keystream sequence generator employ-
ing multiple speed LFSRs. Therefore, the speed factor is treated as an additional
variable in the sequence generation. The underlying idea in multiple speed gen-
erators is that, when a speed factor is introduced, a single LFSR with a fixed
feedback polynomial can generate the PN-sequence corresponding to other LFSR
with different feedback polynomial. Thus, multiple speed gives a new dimension to
the design of secure generators.

In Fig. 1.10, an example of the simplest Massey–Rueppel generator is depicted. It
consists of only two maximal-length LFSRs, notated LFSRi (i = 1, 2), of lengths
L1 and L2, respectively, which are relatively prime. The lower register LFSR2 is
clocked at a clock rate greater than that of the upper register LFSR1. The LFSR2
clock rate, notated d, is the speed factor of the generator and can be kept secret as
a part of the key. The output bit s(t) is the mod 2 addition of the logic products
(AND operation) among the contents of the corresponding stages in both registers.
The output sequence exhibits an excellent short-term statistics, no leakage and a
long period of value T = (2L1 − 1)(2L2 − 1). The weakness of this generator is its
moderate linear complexity as LC is proportional to the lengths of both LFSRs. In
fact, LC = L1 L2 although the scheme can be iterated to N LFSRs to get greater
linear complexity of value LC = L1 L2, . . . , LN . The fact of changing the speed
factors allows the user to generate distinct output sequences keeping unchanged the
LFSRs included in the design.

Next, a different family of keystream generators is also described. The A5
stream cipher was designed to protect the over-the-air privacy of GSM telephone
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s ( t )

···

··· ···

LFSR1

LFSR2

Fig. 1.10 Massey–Rueppel generator

conversations. This algorithm has two main variants: the stronger A5/1 version used
by millions of customers in Europe and the weaker A5/2 version used by another
millions of customers in other markets. The functional schemes of both versions
will never be published. At any rate, they were reverse engineered by M. Briceno
and later confirmed against official test vectors [6].

A GSM conversation is sent as a sequence of frames where every frame contains
228 bits. Each GSM conversation is encrypted by a session key K derived from
algorithm A8 included in the more general algorithm COMP128, see [4]. For each
frame, the key K is mixed with the corresponding frame counter (a known number
of 22 bits) and the result serves as initial state of the LFSRs. From this initial state,
the keystream generator first produces 100 bits that will be rejected and then the
corresponding 228 keystream bits. Such bits are mod 2 added with the 228 bits of
the conversation frame in order to produce the 228 bits of the ciphered conversation
frame. The same process is repeated systematically for each one of the successive
frames. Recall that for each conversation frame the key K is always the same only
the frame counter is different.

In the following, the description of both generators A5/1 and A5/2 and their
cryptanalysis are detailed.

The A5/1 generator is made up of three maximal-length LFSRs, notated
LFSRi (i = 1, 2, 3), of lengths L1 = 19, L2 = 22 and L3 = 23. According
to Fig. 1.11, the taps of LFSR1 are at bit positions 14, 17, 18 and 19 (numbered
from right to left); the taps of LFSR2 are at bit positions 21 and 22; and the taps
of LFSR3 are at bit positions 8, 21, 22 and 23. The internal state of A5/1 at time t
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Fig. 1.11 Algoritmo A5/1

is the binary contents of the LFSRs at this particular moment. The three LFSRs are
clocked in a stop/go fashion using the following majority rule:

1. Each LFSR has a single clocking stage, notated c1, c2 and c3, corresponding to
bit 9 in LFSR1, bit 11 in LFSR2 and bit 11 in LFSR3.

2. At each clock cycle, the majority function F defined as

F(c1, c2, c3) = c1c2 ⊕ c1c3 ⊕ c2c3

is computed.
3. Only those LFSRs whose clocking stages agree with the majority function are

actually clocked.
4. At each clock cycle, one output bit is produced as the mod 2 addition of the most

significant bits in the three LFSRs.

Recall that at each clock cycle either two or three LFSRs are clocked. Moreover
each LFSR moves with probability 3/4 and stops with probability 1/4.

Different cryptanalyses of the A5/1 generator have appeared in the literature.
Particularly important is the work developed in [37], where the author describes
a general time-memory trade-off attack concluding that it is possible to find the
A5/1 key. This attack is based on the knowledge of a certain amount of intercepted
keystream sequence and a precomputed table storing internal states and their
corresponding output sequence portions. Comparing the intercepted sequence with
these output prefixes, an intermediate state in some frame could be identified. Then,
A5/1 runs backwards until getting the initial state of this particular frame. The key
can be extracted from any frame initial state reversing the effect of the known frame
counter. At any rate, for this cryptanalytic attack the requirements of intercepted
keystream sequence and space in the table were unrealistic.
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Nevertheless, keeping in mind all these ideas but in a more refined way, Biryukov
et al. succeeded in performing an outstanding cryptanalysis [4] that revealed the
insecurity of the A5/1 generator. In fact, they introduced the concept of “special
states” in A5/1 or states able to produce output bits starting with a particular pattern
alpha of length k = 16. The idea was scanning the intercepted sequence until
such a particular pattern was encountered. Once an intermediate state had been
identified, the rest of the cryptanalytic attack was the same as that one described by
Golic [37]. Indeed, the fact of using just special states allowed the cryptanalysts to
reduce dramatically the amount of intercepted sequence and size of the precomputed
table until rather realistic levels. In brief, the easy generation of the special states,
the frequent A5/1 setup routine where the same key is repeated in each frame
initialization and the high probability of getting a coincidence between intercepted
and stored patterns (guaranteed by the birthday paradox) are the most remarkable
weaknesses of this keystream generator.

The A5/2 generator is a modified version of the previous generator including
a fourth LFSR. Figure 1.12 depicts the general scheme of the A5/2 algorithm. In
fact, the registers LFSRi (i = 1, 2, 3) are the same as those ones used in the A5/1
generator, while the additional register LFSR4 is an LFSR of length L4 = 17
whose taps are at bit positions 12 and 17. Notice that LFSR4 controls the shift of
the remaining registers: each LFSRi is clocked when its corresponding clocking
variable ci equals 1. According to Fig. 1.12, the majority function F defined as
before appears four times in different parts of the scheme. At each clock cycle, one
output bit is produced as the mod 2 addition of the most significant bits in the three
LFSRs plus the results of three majority functions taking values in the stages of
LFSRi (i = 1, 2, 3).

As most representative cryptanalysis of the A5/2 generator, the algebraic attack
described in [85] can be referenced. It consists in writing out a system of equations
that relates the state variables of the LFSRi (i = 1, 2, 3) with the output bit by

F
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Fig. 1.12 Algorithm A5/2
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means of a clock-control sequence produced by the register LFSR4 starting at a
particular initial state. In the worst case, all the 217 − 1 possible initial states of
LFSR4, paradoxically the shortest register, must be considered. Each one gives rise
to a different system of equations. The linearization of these equations is performed
by substitution of the non-linear terms by new and linear variables. After having
written about 620 equations in each one of those linearized systems, many linearly
dependent equations appear. The knowledge of four frames of keystream sequence
and the linear dependences allow the cryptanalysts to reconstruct the following bits.
Then, comparing reconstructed sequences with the intercepted sequence, the right
keystream sequence is selected. The time complexity of this attack is proportional
to 217. Frequent reinitialization of the frames, small number of skipped bits (just
100 bits rejected) in the initialization process and/or a bad distribution of taps in the
LFSRs seem to be the origin of these linear dependences that this attack successfully
exploits.

1.3 eSTREAM

The eSTREAM, the European stream cipher project, was a multi-year effort
launched by the ECRYPT (European Network of Excellence in Cryptology) in
November 2004. The goal of eSTREAM was to “promote the design of efficient and
compact stream ciphers suitable for widespread adoption”. After public discussions
at the State of the Art of Stream Ciphers (SASC) a workshop held in Bruges
(October 2004), ECRYPT published its call for stream cipher primitives and the
result was the eSTREAM project [96].

The stream cipher proposals were classified into two different profiles:

1. Profile 1. Stream ciphers for software applications with high throughput require-
ments.

2. Profile 2. Stream ciphers for hardware applications with restricted resources such
as limited storage, gate count, or power consumption.

After the call for primitives, 34 candidates were submitted to eSTREAM. Apart
from a panel of experts, it was the cryptographic community at large who, after a
formal evaluation in three phases, selected the most suitable stream cipher proposals
for the final portfolio.

The main evaluation criteria were:

1. Security.
2. Performance when compared to AES in some appropriate mode (e.g., counter

mode).
3. Performance when compared to other submissions.
4. Justification and supporting analysis.
5. Simplicity and flexibility.
6. Completeness and clarity of the submission.
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Moreover, several requirements concerning the length of the key and the initializa-
tion vector (IV) as well as further technical characteristics were also defined.

The required parameter values were:

1. Profile 1.
A key length of 128 bits must be accommodated.
An IV length of at least one of 64 or 128 bits must be accommodated.

2. Profile 2.
A key length of 80 bits must be accommodated.
An IV length of at least one of 32 or 64 bits must be accommodated.

Software performance is an aspect particularly significant for Profile 1 candi-
dates. In fact, software performance can be measured in many different ways. In
order to make comparisons as fair as possible, eSTREAM developed a testing
framework to assure that all stream cipher proposals were submitted to the same
tests under the same circumstances. This testing framework and documentation
available in [94] has been and continues to be used by other researchers outside
of eSTREAM.

As a result of the project, a portfolio of eight new and promising stream ciphers
was announced in April 2008, see Table 1.2. Later the eSTREAM portfolio was
revised in September 2008 when M. Hell and T. Johansson [44] published a
cryptanalytic attack in real time against the F-FCSR-H v2. As a consequence, the
ECRYPT had to eliminate the cipher F-FCSR-H v2 from the previous list. At the
present moment, the eSTREAM portfolio contains the ciphers listed in Table 1.3
with seven stream ciphers.

Descriptions, possible weaknesses and reports on software/hardware perfor-
mance of not only the proposals in the portfolio but also of all eSTREAM candidates
can be found in the corresponding links of the official eSTREAM website [94]. The
portfolio is periodically revised as the algorithms mature. Different reviews of the
eSTREAM portfolio were published in October 2009, January 2012 and another
one recently, see [94]. At the same time, a volume published by Springer [87] in
2008 provides full specifications of all 16 ciphers that reached the final phase of the

Table 1.2 First eSTREAM
portfolio

Profile 1 (SW) Profile 2 (HW)

HC-128 Grain v1

Rabbit MICKEY v2

Salsa20/12 Trivium

SOSEMANUK F-FCSR-H v2

Table 1.3 Final eSTREAM
portfolio

Profile 1 (SW) Profile 2 (HW)

HC-128 Grain v1

Rabbit MICKEY v2

Salsa20/12 Trivium

SOSEMANUK
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eSTREAM project. In fact, it is a very detailed survey covering both the software-
and the hardware-oriented finalists. In addition, a prototype of an ASIC containing
all Profile 2 candidates was designed and fabricated on 0.18µm CMOS, as part of
the eSCARGOT project [95].

Keeping in mind that the goal of eSTREAM was to stimulate works in the area
of stream ciphers, undoubtedly the project has been a great success. It served to:

1. revitalize the field of stream ciphers after the widespread deployment of AES,
and

2. identify two areas where a dedicated stream cipher design might offer advantages
over block ciphers:

• areas where exceptionally high throughput is required in software, and
• areas where exceptionally low resource consumption is required in hardware.

Over the following years the eSTREAM proposals have been assessed with
regard to both security and practicality by the cryptographic community, and the
results presented at major conferences and specialized workshops dedicated to the
state of the art of stream ciphers. Until now, the stream ciphers included in the
portfolio list remain unchanged.



Chapter 2
Keystream Generators Based
on Irregular Decimation

In this chapter, we study the definition and the principal characteristics of the main
keystream generators based on irregular decimation: the shrinking generator, the
self-shrinking generator, the modified self-shrinking generator and the generalized
self-shrinking generator.

First of all, we need to recall the concept of decimation. Let {vi}, i = 0, 1, 2, . . .,
be a linear recursive sequence over a finite field. The decimation of this sequence
by distance d is a new sequence {vd·i}, i = 0, 1, 2, . . ., obtained by taking every dth
term of {vi} (see [22]).

Example 2.1 Consider the LFSR of length 3 with characteristic polynomial p(x) =
1 + x + x3. If we consider the initial state {1 0 0}, the PN-sequence generated is the
following:

{ai} = {1 0 0 1 0 1 1 . . .}.

Since p(x) is primitive, {ai} has maximum-period equal to 7. Now, if we denote by
{bi} the sequence obtained decimating {ai} by distance 2:

b0 b4 b2 b5 b3 b6

↑ ↑ ↑ ↑ ↑ ↑
1 0 0 1 0 1 1 . . .

this sequence has the form {bi} = {a2i} = {1 0 0 1 0 1 1 . . .}. Notice that {bi} is the
same PN-sequence {ai}. This is due to the fact that the period of the PN-sequence
and the distance of decimation are relatively primes, that is, gcd(7, 2) = 1 [41]. �
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2.1 Shrinking Generator

In this section we present the main characteristics of the first generator based on
irregular decimation, the shrinking generator.

2.1.1 Definition and Basic Features

The shrinking generator (SG) was introduced by Coppersmith, Krawczyk and
Mansour in [15]. This generator was very attractive in that moment, due to its
conceptual simplicity, since it combines two binary maximum-length LFSRs in a
simple way. The output sequence of the generator is produced by shrinking the
output sequence of one LFSR under the control of the other. In other words, the
PN-sequence {ai}, i = 0, 1, 2, . . . , produced by one of the registers, denoted
by R1, decimates the PN-sequence {bi}, i = 0, 1, 2, . . ., produced by the other
register, denoted by R2. Let L1 and L2, with gcd(L1, L2) = 1, be the number
of stages (or length) of R1 and R2 and p1(x), p2(x) ∈ F2[x] their characteristic
polynomials, respectively. We consider these polynomials to be primitive, to assure
the output sequences are maximum-period or PN-sequences. We will denote by
{sj }, j = 0, 1, 2, . . ., the output sequence of the generator and we will call it the
shrunken sequence. The decimation rule is very simple:

{
If ai = 1, then sj = bi .

If ai = 0, then bi is discarded,

that is, the output bit of R2 is taken if the current bit of R1 is 1, otherwise it is
discarded.

The key of the generator is the initial states of both registers and the characteristic
polynomials, which are recommended to be part of the key.

When gcd(L1, L2) = 1, the period of the shrunken sequence is

T = 2L1−1
(

2L2 − 1
)

,

and its linear complexity, denoted by LC, satisfies L22L1−2 < LC ≤ L22L1−1.

Furthermore, the shrunken sequence is balanced and has other good cryptographic
properties [15]. Therefore, this scheme is supposed to be suitable for practical
implementation in encryption procedures.

Let us see an illustrative example of this generator.

Example 2.2 Consider R1 the LFSR with characteristic polynomial p1(x) = 1 +
x + x2 and initial state {1 0}. The PN-sequence generated by R1, in this case, is
{ai} = {1 0 1 . . .} . Consider also R2 the LFSR with characteristic polynomial
p2(x) = 1 + x + x3 and initial state {1 0 0}. The PN-sequence produced is {bi} =
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{1 0 0 1 0 1 1 . . .}. Then, the shrunken sequence can be computed in the following
way:

{ai} : 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 . . .

{bi} : 1 ��0 0 1 ��0 1 1 ��1 0 0 ��1 0 1 ��1 1 0 ��0 1 0 ��1 1 . . .

{sj } : 111 000 111 111 111 000 000 000 111 111 000 111 000 111 . . .

The shrunken sequence {sj } has period 14 and, thanks to the Berlekamp–Massey
algorithm [63], it is not difficult to check that its characteristic polynomial is

p(x)2 = (
1 + x2 + x3

)2
, consequently its linear complexity equals 6. �

Despite its simplicity, there are currently no known attacks better than exhaustive
search of the initial states of the registers, when the characteristic polynomials are
secret.

It is worth noticing that there may be multiple initial states that produce the same
keystream sequence (equivalent keys). For example, let us consider the registers
used in Example 2.2. If we consider initial states {0 1} and {0 1 1}, respectively, we
obtain the following shrunken sequence:

{ai} : 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 . . .

{bi} : ��0 1 1 ��1 0 0 ��1 0 1 ��1 1 0 ��0 1 0 ��1 1 1 ��0 0 1 . . .

{sj } : 111 111 000 000 000 111 111 000 111 000 111 111 000 111 . . .

On the other hand, if we consider initial states {1 1} and {1 1 1}, respectively, we
obtain the following shrunken sequence:

{ai} : 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 . . .

{bi} : 1 1 ��1 0 0 ��1 0 1 ��1 1 0 ��0 1 0 ��1 1 1 ��0 0 1 ��0 . . .

{sj } : 111 111 000 000 000 111 111 000 111 000 111 111 000 111 . . .

which is the same as before. Due to leading 0s in the first two PN-sequences, both
keys generate the same shrunken sequence. For this reason, we always consider
initial states that start with 1. Thus, the effective key size is smaller than the key
space.

From now on, we consider two registers R1 and R2, with primitive characteristic
polynomials p1(x), p2(x) ∈ F2[x], lengths L1 and L2 and gcd(L1, L2) = 1,
respectively. Besides, the PN-sequences generated by both registers are denoted by
{ai} and {bi} and have periods T1 = 2L1 − 1 and T2 = 2L2 − 1, respectively. We
assume without loss of generality that a0 = 1.

2.1.2 Characteristic Polynomial and Interleaved PN-Sequences

In this section, we will see that the shrunken sequence is constructed interleaving
one unique PN-sequence and the form of its characteristic polynomial.
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Theorem 2.1 ([9]) The 2L1−1 sequences obtained decimating the shrunken
sequence by distance 2L1−1 starting in positions 0, 1, 2, . . . , 2L1−1 −1, respectively,
are PN-sequences with characteristic polynomial

p(x) =
(
x + αT1

) (
x + α2T1

) (
x + α4T1

)
· · ·

(
x + α2L2−1T1

)
,

where α ∈ F
L2
2 is a root of the polynomial p2(x) and T1 = 2L1 − 1 is the period of

the PN-sequence generated by R1.

All the interleaved PN-sequences of the shrunken sequence are generated by the
same characteristic polynomial, this means that all of them are shifted versions of
the same PN-sequence.

It is worth remarking that, since α is a primitive element of the field F
L2
2 , p2(x)

needs to be primitive.

Example 2.3 Consider two registers, R1 and R2, with characteristic polynomials
p1(x) = 1 + x + x3 and p2(x) = 1 + x + x4 and initial states {1 0 0} and {1 0 0 0},
respectively. Denote by {ai} and {bi} the PN-sequences generated by R1 and R2,
respectively. The shrunken sequence generated by these registers has period T = 60
and is given by

{sj } = {100011111010000110010110110011010100001011100011011101011011 . . .}.

If we decimate the shrunken sequence {sj } by distance 2L1−1 = 4 starting in
positions 0, 1, 2 and 3, respectively, we obtain four interleaved PN-sequences:

{s4j } : 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 . . .

{s4j+1} : 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 . . .

{s4j+2} : 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 . . .

{s4j+3} : 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 . . .

(2.1)

According to Theorem 2.1, the characteristic polynomial of the interleaved PN-
sequences is given by

p(x) =
(
x + α7

) (
x + α14

) (
x + α28

) (
x + α56

)
= 1 + x3 + x4,

where α ∈ F24 is a root of p2(x). Therefore, the four interleaved PN-sequences are
shifted versions of the same PN-sequence generated by p(x). In expression (2.1),
we can check that the bits 0 , 0 and 0 in the PN-sequence {s4j } represent the
starting points of the sequences {s4j+i} (1 ≤ i ≤ 3), respectively. �
Corollary 2.1 ([9, Corollary 1]) If L2 = L1 + 1, then the polynomial p(x), given
in Theorem 2.1, is the reciprocal polynomial of p2(x).
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It is worth reminding that the reciprocal polynomial of the polynomial r(x) =
r0+r1x+· · ·+rl−1x

l−1+rlx
l is of the form r∗(x) = rl+rl−1x+· · ·+r1x

l−1+r0x
l .

Now, we introduce the form of the characteristic polynomial of the shrunken
sequence.

Theorem 2.2 ([28]) The characteristic polynomial of the shrunken sequence has
the form p(x)m, for 2L1−2 < m ≤ 2L1−1 with p(x) as in Theorem 2.1.

Notice that p(x)2L1−1
always generates the shrunken sequence, but sometimes

this polynomial might not be the characteristic polynomial of lowest degree. For
instance, consider again the shrunken sequence generated in Example 2.3. In this
case, we computed the polynomial p(x) = 1+x3 +x4. Now, we know that p(x)4 =(
1 + x3 + x4

)4
generates the shrunken sequence and, since p(x)3 does not generate

it, we can assume that p(x)4 is its characteristic polynomial.

Example 2.4 Consider the registers with characteristic polynomials p1(x) = 1 +
x2 + x5 and p2(x) = 1 + x + x2 + x3 + x4 + x5 + x7, respectively. Consider the
shrunken sequence generated by these two registers, which has period T = 24(27 −
1) = 2032. According to Theorem 2.1, the polynomial p(x) can be computed as:

p(x) =
(
x + α31

) (
x + α62

) (
x + α124

) (
x + α248

) (
x + α496

)

(
x + α992

) (
x + α1984

)

= 1 + x + x3 + x6 + x7,

where α ∈ F27 is a root of p2(x). In this case, we know that p(x)16 generates the
shrunken sequence. However, it is easy to check that p(x)15 is the characteristic
polynomial. �

Interestingly, p(x) only depends on p2(x) and L1. This means that if we fix a
primitive polynomial p2(x) and we consider any primitive polynomial with degree
L1 we always obtain the same p(x).

2.1.3 Shrunken Sequences and Difference Equations

In this section, we show that the shrunken sequence is a solution of a difference
equation.

The characteristic polynomial p(x) (with degree L) of an arbitrary sequence {ai}
specifies its linear recurrence relationship. This means that the element ai can be
written as a linear combination of the previous elements:

ai ⊕
L∑

j=1

cj ai−j = 0, i ≥ L.
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The linear recursion can be expressed as a linear difference equation:

⎡

⎣EL ⊕
L∑

j=1

cjE
L−j

⎤

⎦ ai = 0, i ≥ 0, (2.2)

with E being the one-sided shift operator that acts on the sequence terms:

Eai = ai+1,

Ekai = ai+k.
(2.3)

If the characteristic polynomial p(x) is primitive and α is one of its roots, then
α,α2,α22

, . . . , α2L−1
are the L different roots of such a polynomial as well as

primitive elements of F2L [59]. Now, if the characteristic polynomial of an arbitrary
sequence {sj } is of the form p(x)m, then its roots will be the same as those of p(x)

but each one with multiplicity m. The corresponding difference equation is given by

[
EL ⊕

L∑

k=1

EL−k

]m

sj = 0,

and its solutions are of the form sj = ∑L−1
i=0

∑m−1
k=0

(
j
k

)
A2i

k α2i j , where Ak is an
arbitrary element in F2L . Different choices of Ak give rise to different sequences
{sj }. A particular choice of Ak provides the shrunken sequence generated by p(x)m.

2.1.4 Obtaining the Second PN-Sequence from the Shrunken
Sequence

Given the shrunken sequence {sj } generated by two registers, R1 and R2, it is
possible to compute the PN-sequences generated by both registers. In this section,
we explain how to obtain the PN-sequence {bi} produced by R2.

Proposition 2.1 ([11, Proposition 1]) Let δ ∈ {1, 2, 3, . . . , T2 − 1} be such that
T1δ = 1 mod T2. If the first PN-interleaved sequence is decimated by distance δ,
then the resultant sequence is {bi}.
Example 2.5 Consider again the shrunken sequence obtained in Example 2.3 and
consider the interleaved PN-sequences given in expression (2.1). Since L1 = 3 and
L2 = 4, the unique value for δ such that 7δ = 1 mod 15 is δ = 13. This means
that if we decimate the first interleaved sequence {s4j } by distance 13, according to
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Proposition 2.1, we obtain {bi}, the PN-sequence generated by p2(x) = 1 + x + x4:

b0 b7 b14 b6 b13 b5 b12 b4 b11 b3 b10 b2 b9 b1 b8

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
{s4j } : 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1

{s4j+1} : 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0
{s4j+2} : 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1
{s4j+3} : 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1

In this case {bi} = {1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 . . .}. �
The previous proposition leads us to the following two results.

Corollary 2.2 ([11, Corollary 2]) If the polynomials p1(x), p2(x) ∈ F2[x] have
degrees L1 and L1 + 1, respectively, then δ = T2 − 2.

In Example 2.5, we had that L2 = L1 + 1 = 4, then it was not necessary to solve
the equation given in Proposition 2.1, it was enough to compute δ = T2 − 2 = 13.

Theorem 2.3 ([11, Corollary 1]) If the shrunken sequence is decimated by dis-
tance 2L1−1δ, then the obtained sequence is the PN-sequence {bi}.
Example 2.6 Consider again the shrunken sequence obtained in Example 2.2. In
this example we had that L1 = 2 and L2 = 3, then according to Corollary 2.2,
δ = 5. Now, according to Theorem 2.3, we know that if we decimate the shrunken
sequence by distance 10:

b0 b3 b6 b2 b5 b1 b4

↑ ↑ ↑ ↑ ↑ ↑ ↑
1 0 1 1 1 0 0 0 1 1 0 1 0 1 . . .

then we obtain again the PN-sequence generated by the second register, R2:

{bi} = {1 0 0 1 0 1 1 . . .}.
�

2.1.5 Obtaining the First PN-Sequence from the Shrunken
Sequence

In this section, we analyse how to recover the PN-sequence {ai} produced by R1
from the shrunken sequence {sj }.
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Assume the first interleaved PN-sequence of {sj } is denoted by {vi}. Since
the other interleaved sequences are shifted versions of the same PN-sequence, it
means they are shifted versions of {vi}. Then, we assume they have the form{
vd1+i

}
,
{
vd2+i

}
, . . . ,

{
vd

2L1−1−1
+i

}
, for some positions di ∈ {

0, 1, 2, . . . , 2L2−2
}
:

{vi} : {
v0 v1 v2 . . . vT2−1 . . .

}
{
vd1+i

} : {
vd1 vd1+1 vd1+2 . . . vd1+T2−1 . . .

}
{
vd2+i

} : {
vd2 vd2+1 vd2+2 . . . vd2+T2−1 . . .

}

...
...

...
...

...{
vd

2L1−1−1
+i

}
:
{
vd

2L1−1−1
vd

2L1−1−1
+1 vd

2L1−1−1
+2 . . . vd

2L1−1−1
+T2−1 . . .

}
.

In order to illustrate this idea, consider again Example 2.3. We had four
interleaved PN-sequences that correspond to:

{s4j } = {vi}, {s4j+1} = {vd1+i}, {s4j+2} = {vd2+i} and {s4j+3} = {vd3+i}.

In this case, the positions are d1 = 9, d2 = 5 and d3 = 3:

d3=3 d2=5 d1=9

↑ ↑ ↑
{s4j } : 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1

{s4j+1} : 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0
{s4j+2} : 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1

{s4j+3} : 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1

(2.4)

Before introducing the next result, it is worth reminding that a maximum-length
LFSR of L stages produces a PN-sequence with 2L−1 ones in its first period [41].

Example 2.7 Consider the LFSR with characteristic polynomial p(x) = 1+x +x4

and initial state {1 1 1 1}. The PN-sequence generated by this register is given by

{1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 . . .}.

Notice that this PN-sequence has 23 ones in its period, that is, in its first 15 bits. �
Theorem 2.4 ([11, Proposition 2]) If {0, i1, i2, . . . , i2L1−1−1} is the set of indices
of the 1s in the PN-sequence {ai} in its first period, then dk = δ·ik mod

(
2L1−1 − 1

)
,

for k = 1, 2, . . . , 2L1−1 − 1, where δ has the form given in Proposition 2.1.

In Example 2.3, we had four interleaved PN-sequences {vi}, {vi+d1}, {vi+d2} and
{vi+d3} and δ = 13. We know that d1 = 9, d2 = 5 and d3 = 3 (see expression (2.4)).
Then, according to Theorem 2.4, we can compute the indices {0, i1, i2, i3} of the
four 1s in the first period of {ai} (i0 = 0, without loss of generality) solving the
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following system:
⎧
⎪⎪⎨

⎪⎪⎩

13 · i1 = 9 mod 15

13 · i2 = 5 mod 15

13 · i3 = 3 mod 15.

Therefore, the set of indices is given by {0, 3, 5, 6} and then the PN-sequence
produced by R1 is given by {ai} = {1 0 0 1 0 1 1 . . .}.

2.2 Self-Shrinking Generator

The self-shrinking generator (SSG) was introduced by Meier and Staffelbach
in [67]. They presented a simple structure using only one maximal-length LFSR,
whose output sequence {ai} is self-decimated. The key consists of the initial state of
the register and the characteristic polynomial is again recommended as part of the
key.

Let L be the length and p(x) ∈ F2[x] the characteristic polynomial of the
register. We consider again p(x) primitive, to assure the output sequence has
maximum-period. We will denote by {sj }, j = 0, 1, 2, . . ., the output sequence of
the generator and we will call it, the self-shrunken sequence (SS-sequence). The
decimation rule is very simple,

{
If a2i = 1, then sj = a2i+1.

If a2i = 0, then a2i+1 is discarded,

that is, pairs of bits are considered: if a pair happens to take the value 10 or 11, this
pair is taken to produce the bit 0 or 1, depending on the second bit of the pair. On
the other hand, if a pair happens to be 01 or 00, it will be discarded.

Example 2.8 Consider the LFSR of L = 3 stages with characteristic polynomial
p1(x) = 1 + x2 + x3 and initial state {1 0 0}. The corresponding PN-sequence is
given by {1 0 0 1 1 1 0 . . .}. Now the self-shrunken sequence can be computed in
the following way:

R : 1 000︸︷︷︸
000

0 1 1 111︸︷︷︸
111

0 1 0 0 1 111︸︷︷︸
111

1 000︸︷︷︸
000

. . .

The corresponding self-shrunken sequence is given by {sj } = {0 1 1 0 . . .}. �
The period T of a self-shrunken sequence [67] produced by a maximal-length

LFSR of L stages satisfies

T ≥ 2� L
2 
.



34 2 Keystream Generators Based on Irregular Decimation

Due to experimental observations, we claim that the period of the self-shrunken
sequences is always T = 2L−1, when L > 3 and p(x) is primitive. However, no
proof has been found yet. We encourage the reader to prove this claim.

According to Meier and Staffelbach [67] and Blackburn [5], we can say that the
linear complexity satisfies

2� L
2 
 < LC ≤ 2L−1 − (L − 2).

Again, due to experimental observations, we claim that the lower bound for the
linear complexity can be improved to: LC > 2L−2. However, no proof has been
found so far. Actually, this is also a natural consequence of T = 2L−1. We let the
reader think about this open problem.

Proposition 2.2 ([33]) The characteristic polynomial of the self-shrunken
sequences has the following form: pLC(x) = (1 + x)LC , where LC is the linear
complexity of such a sequence.

For instance, consider Example 2.8. We had the self-shrunken sequence {sj } =
{0 1 1 0 . . .} produced by p(x) = 1 + x2 + x3. It is possible to check that the
self-shrunken sequence has period T = 23−1 and its characteristic polynomial is
p3(x) = (1+x)3 (see Berlekamp–Massey algorithm [63]). Consequently, the linear
complexity of {sj } is LC = 3.

2.3 Modified Self-Shrinking Generator

In [53] Kanso introduced a variant of the self-shrinking generator called the
modified self-shrinking generator (MSSG). This generator, intended for hardware
implementation, uses an extended selection rule based on the XORed value of a pair
of bits in the PN-sequence. The resultant sequences are balanced and have good
statistical properties.

The decimation rule is very simple and can be described as follows: given three
consecutive bits {a3i , a3i+1, a3i+2}, i = 0, 1, 2, . . ., of a PN-sequence {ai}, the
output sequence {sj } is computed as

{
If a3i + a3i+1 = 1 then sj = a3i+2,

If a3i + a3i+1 = 0 then a3i+2 is discarded.

The output sequence {sj } is known as the modified self-shrunken sequence (MSS-
sequence).

Example 2.9 Let us consider the LFSR of three stages with characteristic polyno-
mial q(x) = 1 + x2 + x3 and initial state {1 1 1}. The PN-sequence generated by
this register is given by {1 1 1 0 1 0 0 . . .}. In this case, the modified self-shrunken
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sequence can be computed as follows:

{ai}
⊕:

: 1 1︸︷︷︸
0

��1 0 1︸︷︷︸
1

000 0 1︸︷︷︸
1

111 1 0︸︷︷︸
1

111 0 0︸︷︷︸
0

��1 1 1︸︷︷︸
0

��0 1 0︸︷︷︸
1

000 . . .

The sequence {sj } = {0 1 1 0 . . .} (encircled bits) is the MSS-sequence generated
by q(x). �

Now, we are ready to study the properties of this generator. According to [53], if
we consider a maximal-length LFSR of L (odd) stages, then:

1. The period T of the MSS-sequence satisfies

2� L
3 
 ≤ T ≤ 2L−1.

2. The linear complexity LC of the MSS-sequence satisfies

2� L
3 
−1 ≤ T ≤ 2L−1 − (L − 2).

Although the MSS-sequences seem to have lower bounds on the period and
linear complexity than those of the SSG, Kanso claimed that these sequences
provide a higher level of security against several well-known attacks. Besides,
Kanso demonstrated that the MSS-sequences possess better randomness properties
than those of the SSG. In next section, we will see that both sequences belong to the
family of generalized self-shrunken sequences.

2.4 Generalized Self-Shrinking Generator

In [46] Hu and Xiao introduced a specialization of the shrinking generator and
a generalization of the self-shrinking generator. This new generator, known as
generalized self-shrinking generator (GSSG), produces a family of sequences
that has group structure. These sequences are also balanced and have quite good
correlation.

2.4.1 Definition and Features

Let {ai}, i = 0, 1, 2, . . ., be a PN-sequence produced by an LFSR of L stages. Now,
consider the binary vector

G = [g0, g1, . . . , gL−1] ∈ F
L
2
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and the sequence {vi}, i = 0, 1, 2, . . ., sometimes denoted by v(G), such that

vi = g0ai + g1ai−1 + · · · + gL−1ai−L+1.

Consider the following decimation rule:

{
If ai = 1, then sj = vi .

If ai = 0, then vi is discarded.

This means that the PN-sequence {ai} decimates the sequence {vi}, for each value
of G.

We denote the sequence {sj }, j = 0, 1, 2, . . ., by s(v) or s(G) and call
it generalized self-shrunken sequence (GSS-sequence). The family of GSS-
sequences s(a) = {s(G) | G ∈ F

L
2 } is the family of self-shrunken sequences based

on the PN-sequence {ai}.
It is worth noticing that the family of sequences

{
{vi}i≥0, | vi = g0ai + g1ai−1 + · · · + gL−1ai−L+1,G ∈ F

L
2 ,G 	= 0

}

includes all the 2L − 1 shifts sequences of {ai}. Then, the PN-sequence {ai}
decimates shift versions of itself.

For simplicity, we refer G as the decimal representation of the vector G.

Example 2.10 Consider the PN-sequence

{ai} = {1 1 1 0 0 1 0 . . .}

generated by the primitive polynomial p(x) = 1 + x + x3. Since {ai} has period
equal to 7, then we get 7 generalized self-shrunken sequences based on {ai} plus the
identically zero sequence (see Table 2.1). �

Table 2.1 GSS-sequences
generated by 1 + x + x3 G v(G) s(G) LC

0 0 0 0 0 0 0 0 0 0 000 000 000 000 0

0 0 1 1 0 1 1 1 0 0 111 000 111 000 2

0 1 0 0 1 1 1 0 0 1 000 111 111 000 3

0 1 1 1 1 0 0 1 0 1 111 111 000 000 3

1 0 0 1 1 1 0 0 1 0 111 111 111 111 1

1 0 1 0 1 0 1 1 1 0 000 111 000 111 2

1 1 0 1 0 0 1 0 1 1 111 000 000 111 3

1 1 1 0 0 1 0 1 1 1 000 000 111 111 3

1 1 1 0 0 1 0
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The family s(a) is an L-dimensional linear space on F2, so it is an Abelian group
with neutral element {0 0 . . . 0 0} [46]. Then, |s(a)| = 2L.

The following results evidence the relation between some values of G and the
generated sequences.

Theorem 2.5 ([46, Theorem 1])

1. s(G) = {0 0 0 . . .} if and only if G = [0, 0, . . . , 0].
2. s(G) = {1 1 1 . . .} if and only if G = [1, 0, . . . , 0].
3. s(G) is balanced otherwise.

Theorem 2.6 ([46, Theorem 5])

1. There are two sequences from s(G) with period equal to 2, which are {1 0 1 0 . . .}
and {0 1 0 1 . . .}.

2. There are two sequences from s(G) with period equal to 1, which are {0 0 0 0 . . .}
and {1 1 1 1 . . .}.
This means that the identically 0 sequence, the identically 1 sequence and

the sequences that alternate 0 and 1 belong to every family of GSS-sequences.
Furthermore, the sequences different from the identically 0 sequence and the
identically 1 sequence are balanced.

Theorem 2.7 ([10, Theorem 5]) The characteristic polynomial of the GSS-
sequences generated by a PN-sequence is pLC(x) = (1 + x)LC , where LC is
the linear complexity of the considered GSS-sequence.

Example 2.11 Consider the family of GSS-sequences obtained from the LFSR with
characteristic polynomial p(x) = 1 + x + x3 in Example 2.10. There are four
different sequences (the others are shifted versions of these four) and it is possible to
check, via the Berlekamp–Massey algorithm, that their corresponding characteristic
polynomials are given by

{0} : 0 0 0 0 → p0(x) = 1

{4} : 1 1 1 1 → p1(x) = (1 + x)

{1, 5} : 1 0 1 0 → p2(x) = (1 + x)2

{2, 3, 6, 7} : 0 1 1 0 → p3(x) = (1 + x)3. �

The generalized self-shrinking generator has hardly been studied. For example,
there are no works on the period nor the complexity of the sequences. Since any
PN-sequence possesses 2L−1 ones in its first period [41], it seems evident that the
period of the sequences s(G) is a power of 2, that is, 2t with t ≤ L−1. Again, due to
experimental observations, we can claim that the period of the sequences different
from the sequences mentioned in Theorem 2.6 is always 2L−1. Furthermore, the
linear complexity of these sequences seems to satisfy:

2L−2 < LC ≤ 2L−1 − (L − 2).
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The upper bound can be obtained adapting the proof given by Blackburn for the
self-shrunken sequence in [5] . None of the other bounds has been proven yet. We
encourage the reader to think about it.

Given a primitive polynomial p(x) of degree L, the 2L−1 GSS-sequences
generated are divided into L − 1 different groups depending on their LC:

• 1 sequence of LC = 0, the identically 0 sequence.
• 1 sequence of LC = 1, the identically 1 sequence.
• 2 sequences of LC = 2, sequences {0 1 0 1 . . .} and {1 0 1 0 . . .}.
• 2i+1 sequences of linear complexity LCi , with 2L−2 < LCi ≤ 2L−1 − (L − 2),

for i = 1, 2, . . . , L − 2, and L1 < L2 < · · · < LL−2.

Example 2.12 In Table 2.2, we can find the 32 GSS-sequences generated by p(x) =
1 + x2 + x3 + x4 + x5. There are:

• 1 sequence with LC = 0, the identically 0 sequence.
• 1 sequence with LC = 1, the identically 1 sequence.
• 2 sequences with LC = 2, sequences {0 1 0 1 . . .} and {1 0 1 0 . . .}.
• 4 sequences with LC = 10.
• 8 sequences with LC = 12.
• 16 sequences with LC = 13.

�

2.4.2 Generalized Self-Shrunken Sequences and Difference
Equations

In this section we present the GSS-sequences as solutions of linear difference
equations.

According to Theorem 2.7 and other results seen in the previous section, we know
that the characteristic polynomial of the GSS-sequence generated by a maximal-
length LSFR is of the form:

pt(x) = (1 + x)t , t ≤ 2L−1 − (L − 2).

This implies a linear recurrence relationship of the form:

(E + 1)t sj = 0, (2.5)

with E being the one-sided shift introduced in expression (2.3). Expression (2.5)
represents a linear binary constant coefficient difference equation whose character-
istic polynomial pt (x) has a unique root λ = 1 with multiplicity t . The solutions of
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Table 2.2 GSS-sequences generated by p(x) = 1 + x2 + x3 + x4 + x5

G s(G) LC

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 12

2 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 13

3 111 111 000 111 000 000 000 111 111 000 111 111 111 000 000 000 13

4 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 0 10

5 000 111 111 111 000 000 111 000 111 111 000 000 111 000 000 111 12

6 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 13

7 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 13

8 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 13

9 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 13

10 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 12

11 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2

12 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 13

13 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 13

14 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1 12

15 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 10

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 0 1 1 0 0 0 0 0 1 0 1 1 1 1 0 12

18 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 13

19 0 0 1 0 1 1 1 0 0 1 0 0 0 1 1 1 13

20 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 10

21 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 12

22 0 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 13

23 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 13

24 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 13

25 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 13

26 0 0 0 1 1 0 1 0 1 1 1 1 0 1 0 0 12

27 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2

28 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 13

29 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 0 13

30 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 12

31 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 1 10

this equation are binary sequences {sj } whose generic term is given by

sj =
(

j

0

)
c0 +

(
j

1

)
c1 + · · · +

(
j

t − 1

)
ct−1,

with cj ∈ F2 and
(
j
i

)
as binomial coefficients modulo 2, for i = 0, 1, . . . , t −1 [59].

In fact, each binomial coefficient defines a succession of binary values with constant
period Tj . Table 2.3 depicts the first binomial coefficients with their corresponding
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Table 2.3 Binomial
coefficients reduced modulo
2, binary sequences and
periods

Bino. coeff. Binary sequences Tj(
j
0

)
11111111 T0 = 1

(
j
1

)
01010101 T1 = 2

(
j
2

)
00110011 T2 = 4

(
j
3

)
00010001 T3 = 4

(
j
4

)
00001111 T4 = 8

(
j
5

)
00000101 T5 = 8

(
j
6

)
00000011 T6 = 8

(
j
7

)
00000001 T7 = 8

binary sequences and periods. The 2t possible choices of ci , i = 0, 1, . . . , t − 1,
provide the different binary sequences {sj } that satisfy expression (2.5). Particular
choices of ci give rise to the generalized self-shrunken sequences generated by an
LFSR of L stages (including the SS-sequence and the MSS-sequence). Interestingly,
all the solutions of expression (2.5) are the bit-wise sum of the basic sequences
coming from the binomial coefficients (see Table 2.3) and weighted by ci , i =
0, 1, . . . , t − 1.

2.4.3 Relationship with the Modified Self-Shrinking Generator

In this section, we see how the MSS-sequence generated by a primitive polynomial
q(x) of degree L can be obtained as one of the GSS-sequences generated by another
primitive polynomial of the same degree.

Theorem 2.8 ([10, Theorems 1–2]) The MSS-sequence obtained by self-
decimating a PN-sequence with characteristic polynomial q(x) of degree L, with
L odd, can be computed as one of the GSS-sequences using another primitive
polynomial p(x) of degree L given by

p(x) =
(
x + α3

) (
x + α6

) (
x + α12

)
· · ·

(
x + α3·2L−1

)
,

where α ∈ F2L is a root of q(x).

Notice that the self-shrunken sequence is also a generalized self-shrunken
sequence [107]. When the PN-sequence {vi} is shifted 2L−1 bits regarding the PN-
sequence {ai}, then the generated sequence is the self-shrunken sequence.

Example 2.13 Given the LSFR with characteristic polynomial q(x) = 1 + x2 + x5

and the initial state {1 1 1 1}, we can obtain the following MSS-sequence:

{1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 . . .}.
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According to Theorem 2.8, this sequence can be also obtained using the GSSG with
primitive polynomial

p(x) =
(
x + α3

) (
x + α6

) (
x + α12

)(
x + α24

) (
x + α48

)
= 1+x2+x3+x4+x5,

where α ∈ F25 is a root of q(x). In Table 2.2 we can find the 32 GSS-sequences
generated by p(x) using the different values of G. For G = 5 (G = [1 0 1 0 0]),
the generated GSS-sequence is a shifted version of the MSS-sequence generated
by q(x).

The self-shrunken sequence generated by p(x) = 1 + x2 + x3 + x4 + x5 is also
a GSS-sequence. For instance, consider the initial state {1 1 1 1 1}, we generate the
following SS-sequence:

{1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 . . .},

which is exactly the GSS-sequence corresponding to G = 3 (G = [0 0 0 1 1]) (see
Table 2.2). �

Now, in order to know which GSS-sequence is the MSS-sequence, we need
to recall the definition of Zech logarithm. Zech logarithms are named after Julius
Zech who published in 1849 a table of this type logarithms (which he called
addition logarithms) for doing arithmetic in Zp. These logarithms are also called
as Jacobi logarithms after C.G.J. Jacobi who used them for number theoretic
investigations [48].

Definition 2.1 Let Fq be the Galois field of q elements and α ∈ Fq a primitive
element. The Zech logarithm with basis α is the application Zα : Zq → Z

∗
q ∪{∞},

such that each element t ∈ Zq corresponds to Zα(t), attaining 1 + αt = αZα(t).

Now we are ready to compute the value of G that produces a MSS-sequence as
a GSS-sequence.

Theorem 2.9 ([10, Theorem 3]) The MSS-sequence generated from a PN-
sequence with primitive characteristic polynomial q(x) is also a GSS-sequence
obtained from a PN-sequence generated by a primitive polynomial p(x)

(see Theorem 2.8) that decimates a shifted version of itself with shift (D −
2)3−1 mod (2L − 1), where D = Zα(1), α ∈ F2L is a root of p(x) and L is
the degree of p(x) and q(x).

Assume {ai} is a PN-sequence generated by a primitive polynomial and assume
{bi} = {ai+(D−2)3−1} is the shifted version of {ai} that is decimated by {ai} in
order to obtain the MSS-sequence (see Theorem 2.9). According to the definition
of GSSG, to find the value of G = [g0, g1, . . . , gL−1] that generates {bi} from {ai},
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we have to know L bits of {ai} and 2L−1 bits of {bi} to solve the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a0 = b0g0 + b2L−2g1 + b2L−3g2 + · · · + b2L−LgL−1

a1 = b1g0 + b0g1 + b2L−2g2 + · · · + b2L−(L−1)gL−1
...

aL−1 = bL−1g0 + bL−2g1 + bL−3g2 + · · · + b0gL−1.

(2.6)

The exact necessary bits of each sequence are {ai}L−1
i=0 and {bi}L−1

i=0 ∪ {bi}2L−2
i=2L−L

,
respectively.

Let us see a clarifying example.

Example 2.14 Consider the MSS-sequence generated in Example 2.13:

{sj } = {1 1 0 0 1 0 0 1 000 1 1 1 0 0 1 0 . . .}. (2.7)

According to Theorem 2.8, {sj } can be generated as a GSS-sequence using the
primitive polynomial p(x) = 1 + x2 + x3 + x4 + x5. Given the PN-sequence {ai}
generated by p(x), we consider the PN-sequence {bi} = {ai+k} which is a shifted
version of {ai}, with shift k = (Zα(1)−2) ·3−1 mod 31, α root of q(x). This means
that {bi} = {ai+26}.

Taking the initial state {1 1 1 1 1}, we can generate the PN-sequence

{ai} = {1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 . . .}

that decimates a shifted version of itself,

{bi} = {0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1},

with shift equal to 26. Thus, we obtain the output sequence

{0 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1 . . .},

which is a shifted version of the MSS-sequence {sj } starting at the underlined
position (see expression (2.7)).

Now, in order to obtain the value of G = [g0, g1, g2, g3, g4], we have to solve
the system given in (2.6). In this case we have

{ai}4
i=0 = {0 1 1 1 0}, {bi}4

i=0 = {1 1 1 1 1} and {bi}30
i=27 = {0 1 0 0}.
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Table 2.4 GSS-sequences obtained with G = 5

Initial state 5th GSS-sequence

1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1

1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0

1 0 1 0 1 1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0

Therefore, system (2.6) has the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 = g0 + g3

1 = g0 + g1 + g4

1 = g0 + g1 + g2

1 = g0 + g1 + g2 + g3

0 = g0 + g1 + g2 + g3 + g4,

whose solution is G = [0 0 1 0 1] (G = 5). Then, the GSSG with primitive
polynomial p(x) = 1 + x2 + x3 + x4 + x5 produces the MSS-sequence {sj } for
G = 5 (G = [0 0 1 0 1]) for any given initial state. For example, in Table 2.4,
we can see that the GSS-sequence produced with G = 5 using three different
initial states provides shifted versions of the same sequence, the MSS-sequence
{1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0}. �



Chapter 3
Modelling Through Linear Cellular
Automata

The irregular decimation was introduced to break the linearity of the PN-sequences.
However, in this chapter we will see that there exist linear structures that describe the
behaviour of the shrinking generators, designed as non-linear. The inherent linearity
of these structures can be used to cryptanalyse such generators as described in
Chap. 4.

3.1 The Concept of Cellular Automaton

Cellular automata (CAs) are particular forms of finite state machines defined as
uniform arrays of identical cells in an n-dimensional state. A cellular automaton
(CA) evolves in discrete time steps, within the content of one cell being affected
by the contents of cells in its neighbourhood on the previous time step. That is, the
value of the ith cell at time t + 1, denoted by xt+i

i , depends on the contents of the k

neighbour cells at time t .
One-dimensional CAs with k = 3 and with contents in the binary field are

called elementary CAs. There are 23 possible configurations for each cell and its
two immediate neighbours. The rule defining the cellular automaton must specify
the resulting state for each of these possibilities so there are 223

possible rules for
elementary CA evolution. These rules can be considered as Boolean functions.

Stephen Wolfram proposed a scheme, known as the Wolfram code, to assign each
rule a number from 0 to 255 [103]. Each possible current configuration of three
neighbour cells is written in the order, 111, 110, . . . , 001, 000, and the resulting
state for each configuration is written in the same order and interpreted as the binary

© The Author(s), under exclusive licence of Springer Nature Switzerland AG 2019
S. Díaz Cardell, A. Fúster-Sabater, Cryptography with Shrinking Generators,
SpringerBriefs in Mathematics, https://doi.org/10.1007/978-3-030-12850-0_3
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representation of an integer. For example, one can find the four rules we will use in
this work below:

Rule 150: xt+1
i = xt

i−1 + xt
i + xt

i+1

111 110 101 100 011 010 001 000

1 0 0 1 0 1 1 0

Rule 90: xt+1
i = xt

i−1 + xt
i+1

111 110 101 100 011 010 001 000

0 1 0 1 1 0 1 0

Rule 102: xt+1
i = xt

i + xt
i+1

111 110 101 100 011 010 001 000

0 1 1 0 0 1 1 0

Rule 60: xt+1
i = xt

i−1 + xt
i

111 110 101 100 011 010 001 000

0 0 1 1 1 1 0 0

Notice that 10010110, 01011010, 01100110 and 00111100 are the binary represen-
tations of 150, 90, 102 and 60, respectively.

Many of the rules seem to generate patterns with evident structures. For example,
Fig. 3.1 shows the AC-images generated by these four rules after applying 15
iterations to the one-dimensional CA. One can notice the symmetry between rules
60 and 102 and that both rules generate a fractal structure. Rules 150 and 90 produce
symmetric structures and are both additive rules. Every additive rule is able to
emulate itself and produce nested patters [103].

Observe, for example, Rules 30 and 94, which are non-linear:

Rule 30: xt+1
i = xt

i−1 + xt
i + xt

i+1 + xt
i x

t
i+1

111 110 101 100 011 010 001 000

0 0 0 1 1 1 1 0

Rule 94: xt+1
i = xt

i−1 + xt
i + xt

i+1+ +xt
i−1x

t
i + xt

i x
t
i+1 + xt

i−1x
t
i x

t
i+1

111 110 101 100 011 010 001 000

0 1 0 1 1 1 1 0

Rule 102 Rule 60

Rule 150 Rule 90

Fig. 3.1 AC-images generated with Rules 102, 60, 150 and 90



3.1 The Concept of Cellular Automaton 47

Rule 30 Rule 94

Fig. 3.2 AC-images generated by Rules 30 and 94

The AC-image generated by Rule 30 shows no recognizable pattern (see Fig. 3.2).
On the other hand, Rule 94 is an example of simple CA whose evolution corresponds
to computations that can be easily described in traditional mathematical terms.
Patterns can show both for linear rules (e.g., Rules 60 and 102) and for non-linear
rules (e.g., Rule 94).

When the rules involved in the CA use only XOR operations, the CA is said to be
linear. Notice that Rules 60, 102, 150 and 90 use only XOR operations. This means
that we will only consider linear CAs in this chapter.

Due to their capability to exhibit complex behaviours, CAs have applications in
many different areas, for example, in modelling physical systems [58, 100] and non-
linear chemical systems [102], studying problems of number theory [86, 102] or as
pseudorandom number generators [97].

Furthermore, due to the speed and randomness in their sequences, CAs are a
very good basis for stream ciphers. What is more, their hardware implementation
is simple and their regular structure makes possible to find an efficient software
implementation. The first cryptographic application of CAs was published in [101].
In this work, Wolfram used Rule 30 for building a stream cipher that was afterwards
broken by Meier and Stafflebach [66]. Besides, other authors have proposed stream
ciphers based on CAs along the years [20, 51, 73].

Next, we classify the elementary CAs.

Definition 3.1 An elementary CA is said to be:

• Uniform or regular if every cell is computed using the same rule.
• Hybrid if different rules are considered when computing the contents of the cells.
• Null if cells with null content are adjacent to the extreme cells when it is needed.
• Periodic or cyclic if extreme cells are adjacent.

In Table 3.1a we can find an example of a regular, cyclic 102-CA of length 3.
Furthermore, since Rule 102 only operates the contents of a cell and its right
neighbour cell, we consider cyclic boundary only on the right of the CA in order to
compute the last vertical sequence. Given the initial state {1 1 0}, the CA generates
as many new states of length 3 as we want in the following way:

1 1 0 | 1

⊕ ⊕ ⊕

0 1 1
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Table 3.1 Examples of elementary CAs

(a) Regular cyclic 102-CA

102 102 102

1 1 0 1

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0
.
.
.

.

.

.
.
.
.

(b) Regular cyclic 60-CA

60 60 60

1 0 1 1

0 1 1 0

1 1 0 1

1 0 1 1

0 1 1 0

1 1 0 1

1 0 1 1

0 1 1 0
.
.
.

.

.

.
.
.
.

(c) Hybrid null 150/90-CA

90 150 150 90

0 1 0 1 0 0

0 0 0 1 1 0

0 0 1 0 1 0

0 1 1 0 0 0

0 1 0 1 0 0

0 0 0 1 1 0

0 0 1 0 1 0

0 1 1 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.

However, at some point, these states start to recur; thus, the CA generates 3 (vertical)
output sequences with period 3.

In Table 3.1b, we find a regular, cyclic 60-CA of length 3. Since Rule 60 only
operates the contents of a cell and its left neighbour cell, in this case we consider
cyclic boundary only on the left of the CA. Note that the (vertical) output sequences
generated by this 60-CA are the same (vertical) sequences generated in the 102-CA
in Table 3.1a (they appear in inverse order).

Finally, in Table 3.1c, we can find one example of hybrid null 150/90-CA of
length 4. In this case, we have to consider null boundary in both sides of the CA.
Besides, the CA generates four (vertical) output sequences with period 7.

In general, the (vertical) sequences generated by a 102-CA (60-CA) have
different periods. In addition, due to the symmetry between rules 102 and 60, the
sequences generated by a 102-CA of length L can be also generated by a 60-CA of
length L.

3.2 Modelling a PN-Sequence

In this section we will see how to obtain PN-sequences by means of elementary
linear CAs. We recall that a PN-sequence is a sequence generated by an LFSR whose
characteristic polynomial is primitive.

3.2.1 Cattell–Muzio Algorithm

In [13], Cattell and Muzio presented a method for computing a 90/150-CA that
generates the same sequences as those produced by a given irreducible characteristic
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polynomial. This approach is based on a correspondence between the characteristic
polynomial calculations and GCD computations. In fact, they proved that each
irreducible polynomial has exactly two CA realizations.

First of all we need to recall the definition of trace of a polynomial.

Definition 3.2 ([13]) The trace of a polynomial q(x) with respect to an irreducible
polynomial p(x) of degree L is given by

Tr(q(x)) =
[
q(x) + q(x)2 + q(x)4 + · · · + q(x)2L−1

]
mod p(x).

It is worth noticing that the trace of a polynomial is always zero or one.

Example 3.1 Consider the polynomial p(x) = x2 and the primitive polynomial
p(x) = 1 + x2 + x5. First, we compute the powers of q(x):

q(x)2 = x4

q(x)4 = x8 mod p(x) = 1 + x2 + x3

q(x)8 =
(

1 + x4 + x6
)

mod p(x) = 1 + x + x3 + x4

q(x)16 =
(

1 + x2 + x6 + x8
)

mod p(x) = x.

Summing these polynomials, we find the trace of q(x):

Tr(q(x)) = q(x) + q(x)2 + q(x)4 + q(x)8 + q(x)16 = 0.

�
The method given in Algorithm 1 shows the necessary process to compute a CA

for a given irreducible characteristic polynomial p(x) of degree L. This algorithm
is very easy to code in languages such as Maple, Python, etc. As a consequence of
Algorithm 1, we can introduce the following result.

Theorem 3.1 ([28]) For a PN-sequence generated by a primitive polynomial of
degree L, there exists an hybrid, null 150/90-CA of length L that generates such
PN-sequence.

Example 3.2 Consider the primitive polynomial p(x) = 1+x2+x5. Since primitive
implies irreducible, we can apply Algorithm 1.
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Algorithm 1 Cattell–Muzio algorithm
Input: An irreducible polynomial p(x)

01: Compute f (x) = (
x2 + x

)
p′(x)

02: Compute g(x) = (1/f (x))2

03: if L is even
04: Find θ(x) with trace 1

05: Compute β(x) = ∑L−1
i=1

(∑i−1
j=0 g2j

)
θ2i

06: else
07: Compute β(x) = ∑(L−1)/2

i=1 g22i−1

08: endif
09: q(x) = β(x)f (x)

10: Compute gcd(p(x), q(x)), saving the quotients
11: Construct the CA from the constant terms of the quotients
Output:

A binary string of length L codifying a CA corresponding to the PN-sequence generated
by p(x)

We compute the derivative of p(x) modulo 2:

p′(x) mod 2 =
(

2x + 5x4
)

mod 2 = x4.

Now we compute f (x) modulo p(x):

f (x) =
(
x + x2

)
p′(x) =

(
x5 + x6

)
mod p(x) = 1 + x + x2 + x3.

Next, we use the extended Euclidean GCD algorithm to compute the inverse of
f (x):

1/f (x) = 1 + x2 + x3.

We compute g(x)

g(x) = (1/f (x))2 =
(

1 + x4 + x6
)

mod p(x) = 1 + x + x3 + x4

and the powers of g(x):

g2(x) =
(

1 + x2 + x6 + x8
)

mod p(x) = x

g4(x) = x2

g8(x) = x4

g16(x) = x8 mod p(x) = x3 + x2 + 1.
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Summing g(x) and its powers we get that the trace of g(x) with respect to p(x) is
zero.

Since L = 5 odd, we compute β(x) as follows:

β(x) =
2∑

i=1

g(x)22i−1 = g(x)2 + g(x)8 = x + x4.

Finally,

q(x) =
(
x + x2

)
p′(x)β(x)

=
(
x + x2

)
x4
(
x + x4

)

= 1 + x2 + x4.

Now, we apply the Euclid’s algorithm to search gcd(p(x), q(x)):

1 + x2 + x5 =
(

1 + x2 + x4
)

x +
(

1 + x + x2 + x3
)

1 + x2 + x4 = (1 + x)
(

1 + x + x2 + x3
)

+ x2

1 + x + x2 + x3 = (1 + x)x2 + (1 + x)

x2 = (1 + x)(1 + x) + 1

1 + x = (1 + x)1 + 0.

This process returns the quotients

[x, 1 + x, 1 + x, 1 + x, 1 + x]
and so the CA is constructed from the constant terms

[0, 1, 1, 1, 1]. (3.1)

Now, we substitute 0 and 1 by 90 and 150, respectively. Thus the CA given by
[90, 150, 150, 150, 150] generates the PN-sequences produced by p(x).

Now, we consider the mirror image of (3.1)

[1, 1, 1, 1, 0]

that represents the CA

[150 150 150 150 90]

that also generates the PN-sequences produced by p(x).
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Table 3.2 Null 105/90-CA
that generates the
PN-sequence produced by
p(x) = 1 + x2 + x5

150 150 150 150 90

1 0 1 0 1

1 0 1 0 0

1 0 1 1 0

1 0 0 0 1

1 1 0 1 0

0 0 0 1 1

0 0 1 0 1

0 1 1 0 0

1 0 0 1 0

1 1 1 1 1

0 1 1 1 1

1 0 1 1 1

1 0 0 1 1

1 1 1 0 1

0 1 0 0 0

1 1 1 0 0

0 1 0 1 0

1 1 0 1 1

0 0 0 0 1

0 0 0 1 0

0 0 1 1 1

0 1 0 1 1

1 1 0 0 1

0 0 1 1 0

0 1 0 0 1

1 1 1 1 0

0 1 1 0 1

1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 1 1 1 0

For instance, consider the PN-sequence

{1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 . . . }

generated by p(x) with initial state {1 1 1 1 1}, this sequence can be generated as
well by the 150/90-CA given in Table 3.2. �

The algorithm is sufficiently fast for practical applications and the number of
operations does not depend on the input polynomial, only on its degree.
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3.2.2 Other CAs that Generate PN-Sequences

In this section, we show that for every PN-sequence there also exists a 102-CA that
generates it.

We start the section with an important result about PN-sequences that will be
needed afterwards.

Theorem 3.2 ([9, Theorem 3.6]) For a PN-sequence {ai} generated by a primitive
polynomial p(x) of degree L, there exists a unique number D ∈ {2, 3, . . . , 2L − 2}
such that ai + ai+1 = ai+D . This number is D = Zα(1), with α ∈ F2L a
root of p(x).

It is worth recalling that Zα(1) is the Zech logarithm of 1 in basis α (see
Definition 2.1).

According to Theorem 3.2 and the general form of a 102-CA (see Table 3.3), if
the PN-sequence {ai} appears in the 0th column of a 102-CA, the other sequences
are shifted versions of such PN-sequence. Furthermore, the sequence in the t th
column it is a shifted version of {ai}, that is, {ai+d}, with d = t · D mod (2L − 1).
Eventually, the PN-sequence {ai} itself will appear again; thus, the 102-CA has finite
length. The general form of the columns of a 102-CA can be found in Sect. 4.6.1
(Method 2).

Next result, whose proof is left as an exercise, claims that given a primitive
polynomial there always exists a 102-CA that generates the PN-sequence produced
by such polynomial.

Theorem 3.3 There exists a regular, cyclic 102-CA of length 2L−1
gcd(D,2L−1)

, with D as
in Theorem 3.2 that generates the same PN-sequence as that produced by a primitive
polynomial p(x) of degree L.

As an example, consider the PN-sequence generated by p(x) = 1+x2+x5 given
in Example 3.2. There exists a regular, cyclic 102-CA of length 31 that generates
such PN-sequence (see Table 3.4). What is more, all the sequences are shifted
versions of the same PN-sequence. Since the characteristic polynomial of the PN-
sequence is p(x) = 1 + x2 + x5, it is easy to check that D = 18. This means that
the shift from one sequence to the following is 18. For example, the sequence in the
first column is a shifted version of the PN-sequence in the 0th column, but starting

Table 3.3 General form of a 102-CA

102 102 102 102 102 . . . 102 . . .

a0 a0 + a1 a0 + a2 a0 + a1 + a2 + a3 a0 + a4 . . . a0 + a8 . . .

a1 a1 + a2 a1 + a3 a1 + a2 + a3 + a4 a1 + a5 . . . a1 + a9 . . .

a2 a2 + a3 a2 + a4 a2 + a3 + a4 + a5 a2 + a6 . . . a2 + a10 . . .

a3 a3 + a4 a3 + a5 a3 + a4 + a5 + a6 a3 + a7 . . . a3 + a11 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
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in position 18 (see circled bits in Table 3.4). The sequence in the second column
is a shifted version of the PN-sequence in the 0th column but starting in position
2 · 18 mod 31, that is, in position 5 (see squared bits in Table 3.4) and so on.

Note that when gcd(D, 2L − 1) = 1, the length of the 102-CAs mentioned in
Theorem 3.3 is 2L−1. The length of the 150/90-CAs proposed in Sect. 3.2.1 is much
smaller. However, if we know p(x) and the PN-sequence {ai}, we can compute D

as in Theorem 3.2 and we can complete the 102-CA with the corresponding shifted
versions of {ai}. In addition, since the 102-CA proposed in Theorem 3.3 is regular,
every cell follows the same rule and the form of the CA is immediately obtained. On
the other hand, in order to find the form of the 150/90-CA in Sect. 3.2.1, we need to
apply the Cattell–Muzio Algorithm [13].

3.3 Modelling the Shrinking Generator

In this section, we present two different families of linear CAs that generate the
shrunken sequence produced by two maximum-length LFSRs. From now on, we
denote by p1(x) and p2(x) of degrees L1 and L2, the primitive characteristic
polynomials of such registers, respectively.

3.3.1 The Fúster–Caballero Algorithm

In [28] the authors proposed an algorithm that provides a 150/90-CA that generates
the shrunken sequence produced by two maximum-length LFSRs. This approach
is based on the Cattell–Muzio Algorithm [13] seen in Sect. 3.2.1 and a CA-
concatenation technique.

Algorithm 2 provides two hybrid, null 150/90-CAs that produce the shrunken
sequence generated by p1(x) and p2(x). Actually, the algorithm is based on
the concatenation of the CA produced applying the Cattell–Muzio algorithm for
p2(x) [13].

Notice that p1(x) only contributes the number of concatenations according to its
degree. This polynomial is no further implicated in the algorithm, this means that
with p2(x) fixed, for different values of p1(x) with degree L1 the algorithm would
return the same result.

Example 3.3 Consider the primitive polynomial p2(x) = 1 + x + x2 + x4 + x5 and
a primitive polynomial p1(x) of degree 3.

First, we compute N = 1 + 2 + 4 = 7 and the polynomial

p(x) =
(
x + α7

) (
x + α14

) (
x + α28

) (
x + α56

) (
x + α112

)
= 1 + x2 + x5,

where α is a primitive element of F25 , root of p2(x).
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Algorithm 2 Fúster–Caballero algorithm
Input: L1 and p2(x)

01: Compute N = 20 + 21 + 22 + · · · + 2L1−1

02: Compute p(x) = (
x + αN

) (
x + α2N

) · · ·
(
x + α2L2−1N

)
, with α root of p2(x)

03: Compute two linear 90/150 CA, denoted by si , i = 1, 2, for p(x) using the Cattell-Muzio
algorithm

04: for j = 1 : L1 − 1
05: Complement the last bit of si and denote the resultant string as ti
06: Compute de mirror image of ti , denoted by t∗i and concatenate both strings: si = ti t

∗
i

07: endfor
Output:

Two binary strings of length L2 · 2L1−1 codifying two CAs corresponding to the shrinking
generator

Now, applying the Cattell–Muzio algorithm to p(x), we obtain two strings that
represent two 150/90-CAs (see Example 3.2):

[01111] → [90 150 150 150 150]
[11110] → [150 150 150 150 90].

We choose, for example, the first CA and we perform the concatenation process
L1 − 1 = 2 times:

[01111]
[0111001110]
[01110011111111001110] .

For the second CA, we proceed in the same manner:

[11110]
[1111111111]
[11111111100111111111] .

Now, we substitute 0 and 1 by 90 and 150, respectively, and we obtain two CAs

[90 150 150 150 90 90 150 150 150 150 150 150 150 150 90 90 150 150 150 90]

[150 150 150 150 150 150 150 150 150 90 90 150 150 150 150 150 150 150 150 150] ,

both of them capable of generating the shrunken sequence generated by p2(x)

and p1(x). �
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3.3.2 Other CAs that Generate the Shrunken Sequence

In [9], the authors proposed a family of 102-CAs (60-CAs) that also generate the
shrunken sequence.

Again, consider two primitive polynomials p1(x) and p2(x) of length L1 and L2,
respectively. We can introduce the following result.

Theorem 3.4 ([9, Theorem 3.10]) The shrunken sequence generated by p1(x) and
p2(x) can be generated by a regular, cyclic 102-CA of length T

gcd(2L2−1,D)
, where

D = Zα(1), with α ∈ F2L2 root of p(x) (see Theorem 2.1) and T = 2L1−1(2L2 −1)

is the period of the shrunken sequence.

Apart from the shrunken sequence, other 2L1−1 − 1 sequences, the companion
sequences, with the same period and characteristic polynomial as those of the
shrunken sequence are generated by the 102-CA [9]. Furthermore, shifted versions
of these sequences, including the shrunken sequence, appear along the 102-CA.

Notice that the sequences in columns t ·2L1−1, with t = 1, 2, . . . , L/(2L1−1 −1),
are shifted versions of the shrunken sequence, with shift equal to t · D · 2L1−1, for
t = 1, 2, . . . , L/(2L1−1 − 1) [9, 11]. Moreover, the companion sequence in the
column t ·2L1−1 +m, for m = 1, 2, . . . , 2L1−1 −1 and t = 0, 1, . . . , L/(2L1−1)−1,
is a shifted version of the companion sequence in the mth column starting in position
t · D · 2L1−1[11].

Example 3.4 Consider the shrunken sequence generated by p1(x) = 1 + x + x2

and p2(x) = 1 + x + x3, in Example 2.2:

{1 0 1 1 1 0 0 0 1 1 0 1 0 1 . . .}.

This sequence has characteristic polynomial p(x)2 = (
1 + x2 + x3

)2
and period

T = 14. In Table 3.5 there is an example of a regular, cyclic 102-CA of length 14 that
generates this sequence in the 0th column. This CA generates 2 different sequences,
the shrunken sequence and one companion sequence, both with the same period and
characteristic polynomial. Shifted versions of these two sequences appear 7 times
along the 102-CA: the shrunken sequence appears in columns 0, 2, 4, 6, 8, 10 and
12, and the companion sequence appears in columns, 1, 3, 5, 7, 9, 11 and 13.

Now, we can compute 2L1−1 = 2 and D = Zα(1) = 5, with α ∈ F23 root
of p(x). We consider, for example, the 2nd column of the 102-CA. In this case
t = 1, therefore this sequence is a shifted version of the shrunken sequence with
shift equal to 2L1−1 · t ·D mod 14 = 10 (see the circled bit of the shrunken sequence
in Table 3.5). Consider now, for example, the 9th column of the 102-CA. Since now
t = 4, the considered sequence is a shifted version of the companion sequence with
shift equal to 2L1−1 ·t ·D mod 14 = 12 (see the squared bit of the shrunken sequence
in Table 3.5). �

In Sect. 2.1.2, we saw that the shrunken sequence is composed of interleaving
shifted versions of a PN-sequence generated by the primitive polynomial p(x).
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Table 3.5 CA that generates the shrunken sequence in Example 2.2

102 102 102 102 102 102 102 102 102 102 102 102 102 102

1 1 0 1 0 0 1 0 0 1 1 0 1 1

0 1 1 1 0 1 1 0 1 0 1 1 0 0

1 0 0 1 1 0 1 1 1 1 0 1 0 0

1 0 1 0 1 1 0 0 0 1 1 1 0 1

1 1 1 1 0 1 0 0 1 0 0 1 1 0

0 0 0 1 1 1 0 1 1 0 1 0 1 1

0 0 1 0 0 1 1 0 1 1 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 1 0 1 0 0 1 0 0 1

1 1 0 0 0 1 1 1 0 1 1 0 1 0

0 1 0 0 1 0 0 1 1 0 1 1 1 1

1 1 0 1 1 0 1 0 1 1 0 0 0 1

0 1 1 0 1 1 1 1 0 1 0 0 1 0

1 0 1 1 0 0 0 1 1 1 0 1 1 0

As a consequence of the formation rule of the 102-CA and the fact that summing
elements of a PN-sequence generates another PN-sequence [41], it is possible to
check that the companion sequences are also composed of interleaving shifted
versions of the same PN-sequence. We leave this claim as an exercise for the reader.

Let us denote the interleaved PN-sequences of the shrunken sequence by{
vd0

0 +i

}
,
{
vd0

1 +i

}
,
{
vd0

2 +i

}
, . . . ,

{
vd0

2L1−1−1
+i

}
, i = 0, 1, . . ., where d0

0 = 0.

Remember that the positions d0
k depend on the location of the 1s in the PN-sequence

{ai} generated by the first register R1 (see Sect. 2.1.5).
Now, for the first companion sequence, let us denote the interleaved PN-

sequences by
{
vd1

0 +i

}
,
{
vd1

1 +i

}
,
{
vd1

2 +i

}
, . . . ,

{
vd1

2L1−1−1
+i

}
, i = 0, 1, . . .,. We can

compute these new positions using Rule 102 and the definition the Zech logarithm
as follows:

d1
k = Zα

(
d0
k − d0

k+1

)
+ d0

k+1, k = 0, 1, . . . , 2L1−1 − 2,

d1
2L1−1−1

= Zα

(
d0

2L1−1−1
− 1

)
+ 1.

Similarly, we can compute the shift positions for the j th companion sequence,
j = 1, 2, . . . , L − 1 as

d
j
k = Zα

(
d

j−1
k − d

j−1
k+1

)
+ d

j−1
k+1 , k = 0, 1, . . . , 2L1−1 − 2,

d
j

2L1−1−1
= Zα

(
d

j−1
2L1−1−1

− 1
)

+ 1.
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Recall that the sequence in the column t · 2L1−1 + m, for m = 0, 1, 2, . . . ,

2L1−1 − 1 and t = 0, 1, . . . , L/(2L1−1) − 1, is a shifted version of the sequence in
the mth column starting in position t · D · 2L1−1. Therefore, we have that:

dt ·2L1−1+m
k = dm

k + t · D mod (2L2 − 1)

for k = 0, 1, . . . , 2L1−1−1, m = 0, 1, . . . , 2L1−1−1 and t = 0, 1, . . . , L/(2L1−1)−1.
This means that the positions d

j
k for the companion sequence in the j th column

with j ≥ 2L1−1 can be computed easily using the positions ds
i , with 0 ≤ s < 2L1−1

and without using logarithms.

Example 3.5 Consider again Example 3.4. If we decimate the shrunken sequence
and the companion sequence in the 102-CA by distance 2, we obtain that both
sequences are composed of interleaving shifted versions of the PN-sequence
{1 1 1 0 1 0 0 . . .} generated by p(x) = 1 + x2 + x3 (see Table 3.6a and b).

What is more, the positions of both PN-sequences of the shrunken sequence with
respect to its first interleaved PN-sequence are d0

0 = 0 and d0
1 = 5, respectively.

The positions of the interleaved PN-sequences of the companion sequence with
respect to the first PN-interleaved sequence of the shrunken sequence are d1

0 = 2 and
d1

1 = 4.
Let us consider the sequence in the 2nd column of the 102-CA. We have seen

that this sequence is a shifted version of the shrunken sequence with shift equal to
10. We know that t = 1 and D = 5, so the two interleaved PN-sequences of this
sequence are shifted versions of the first interleaved PN-sequence of the shrunken
sequence (Table 3.6c) starting in positions:

d2
0 = d0

0 + D · 1 mod 7 = 5 and d2
1 = d0

1 + D · 1 mod 7 = 1, respectively.

Consider again the sequence in the 9th column of the 102-CA. This sequence
was a shifted version of the companion sequence, with shift equal to 12. We know
that t = 4 and D = 5, so the two interleaved PN-sequences of this sequence are

Table 3.6 Interleaved
PN-sequences of the
shrunken sequence and the
companion sequences of
Example 2.2

(a)

1 000

d2
1 =1← 1 1

d1
0 =2← 1 0

d0
1 =d9

0 =3← 000 0

d1
1 =4← 1 1

d2
0 =d9

0 =5← 0 1

0 1

(b)

1 1

0 0

1 0

0 1

0 1

1 1

1 0

(c)

0 1

0 1

1 0

1 1

1 0

0 0

1 1

(d)

000 0

1 0

0 1

0 1

1 1

1 0

1 1
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the same as the first interleaved PN-sequence of the shrunken sequence (Table 3.6d)
starting in positions:

d9
0 = d1

0 + D · 3 mod 7 = 3 and d9
1 = d1

1 + D · 3 mod 7 = 5, respectively.

�

3.3.3 Comparison of both Families

In Sect. 3.3.1, we showed that the Fúster–Caballero algorithm produces an hybrid,
null 150/90-CA that generates the shrunken sequence. Given two maximal-length
LFSRs, this algorithm performs first the Cattell–Muzio algorithm explained in
Sect. 3.2.1 and carries out a concatenation procedure to find the CA that generates
the shrunken sequence. This fact makes impossible to predict the form of the CA,
which depends on L1 and p2(x).

In Sect. 3.3.2 since the 102-CAs (60-CAs) are regular we do not need to perform
any computations to find the form of the CA; we only need to find its length. On
the other hand, according to Theorem 3.4, the length of the 102-CA is, at the most,
T = 2L1−1

(
2L2 − 1

) (
when gcd

(
2L2 − 1, T

) = 1
)
, which is greater than(

2L1 − 1
)
L2 (the length of the 150-90-CA given in Sect. 3.3.1). However, the

102-CAs generate 2L1−1 different sequences, the other sequences are shifted
versions of these, which is an advantage compared to the 90/150-CA.

As a conclusion, we can say that the 102-CAs are longer but this disadvantage
becomes less relevant when we notice the complex process developed in the Fúster–
Caballero algorithm to obtain the 150/90-CAs. Besides, this length is reduced to
2L1−1, since the first 2L1−1 sequences repeat along the 102-CA.

3.4 Modelling the Generalized Self-Shrinking Generator

Since we have seen that the sequences produced by the MSSG and the SSG are
sequences produced by the GSSG (Sect. 2.4.3), in this section we only consider
the families of CAs that generate the generalized self-shrunken sequences. We
recall that the GSS-sequences are a family of sequences generated by a maximum-
length LFSR of L stages. We also recall that the characteristic polynomial of the
GSS-sequences is of the form pt (x) = (1 + x)t , with 0 < t ≤ 2L−1 − (L − 2).

3.4.1 Characterization of the 150/90-CA

In this section we present a family of 150/90-CA that generates the family of GSS-
sequences.
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Table 3.7 GSS-sequences
generated by
q(x) = 1 + x3 + x4

G S(G) pn(x)

0 0 0 0 0 0 0 0 0 0 0 0 0 p1(x)

1 0 0 0 1 000 000 000 111 111 000 111 111 p6(x)

2 0 0 1 0 0 0 1 1 1 1 0 0 p5(x)

3 0 0 1 1 0 0 1 0 0 1 1 1 p6(x)

4 0 1 0 0 0 1 1 1 0 0 1 0 p6(x)

5 0 1 0 1 0 1 1 0 1 0 0 1 p5(x)

6 0 1 1 0 0 1 0 0 1 1 1 0 p6(x)

7 0 1 1 1 0 1 0 1 0 1 0 1 p2(x)

8 1 0 0 0 1 1 1 1 1 1 1 1 p1(x)

9 1 0 0 1 1 1 1 0 0 1 0 0 p6(x)

10 1 0 1 0 1 1 0 0 0 0 1 1 p5(x)

11 1 0 1 1 1 1 0 1 1 0 0 0 p6(x)

12 1 1 0 0 1 0 0 0 1 1 0 1 p6(x)

13 1 1 0 1 1 0 0 1 0 1 1 0 p5(x)

14 1 1 1 0 1 0 1 1 0 0 0 1 p6(x)

15 1 1 1 1 1 0 1 0 1 0 1 0 p2(x)

Theorem 3.5 ([30]) Given a generalized self-shrunken sequence of period 2t , 0 ≤
t ≤ 2L−1, there exists an hybrid, null 150/90-CA of length 2t that generates such
sequence. Furthermore, the CA will have the form

[90 150 150 . . . 150 150 90].

Example 3.6 Given a primitive polynomial p(x) = x4 + x3 + 1 ∈ F2[x] and an
initial state {1 1 1 1}, the PN-sequence generated is {1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 . . .}.
In Table 3.7, it is possible to see the 16 GSS-sequences generated by this PN-
sequence. We choose, for example, the sequence number corresponding to G = 1,
{0 0 0 1 1 0 1 1 . . .}. This sequence has period 8; therefore, there exists a 105/90-CA
with length 8 and form

[90 150 150 150 150 150 150 90]

that generates such a sequence (see Table 3.8a). �

3.4.2 Characterization of the 102-CA

We start this section with two minor results, whose proofs can be found in [8].
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Table 3.8 CAs that generate the GSS-sequence of Example 3.6

(a) 150/90-CA

90 150 150 150 150 150 150 90

000 0 0 1 0 0 0 1

000 0 1 1 1 0 1 0

000 1 0 1 0 0 1 1

111 1 0 1 1 1 0 1

111 0 0 0 1 0 0 0

000 1 0 1 1 1 0 0

111 1 0 0 1 0 1 0

111 0 1 1 1 0 1 1

(b) 102-CA

102 102 102 102 102 102
000 0 0 1 1 1

000 0 1 0 0 1

000 1 1 0 1 1

111 0 1 1 0 1

111 1 0 1 1 1

000 1 1 0 0 1

111 0 1 0 1 1

111 1 1 1 0 1

(c) 60-CA

60 60 60 60 60 60
1 1 1 0 0 000

1 0 0 1 0 000

1 1 0 1 1 000

1 0 1 1 0 111

1 1 1 0 1 111

1 0 0 1 1 000

1 1 0 1 0 111

1 0 1 1 1 111

Lemma 3.1 ([8, Lemma 2]) Let {ui} be a binary sequence whose characteristic
polynomial is (x + 1)q(x) ∈ F2[x]. Then, q(x) generates the sequence {vi}, where
vi = ui + ui+1.

Lemma 3.2 ([8, Theorem 1]) Let {ui} be a binary sequence whose characteristic
polynomial is pt (x). Then, the characteristic polynomial of the sequence {vi}, where
vi = ui + ui+1, is pt−1(x).

Due to the previous results, we can introduce the following theorem that gives us
the length of the CAs that generate the GSS-sequences.

Theorem 3.6 ([10, Theorem 6]) Given a GSS-sequence with characteristic poly-
nomial pt (x), there exists a regular, null 102-CA of length t that generates such
sequence.

Recall that the previous results are similar for rule 60. In this case, the 60-CA
provides the same sequences but obtained in reverse order. Let us see an illustrative
example.

Example 3.7 Consider the GSS-sequence corresponding to G = 1 generated by an
LFSR with characteristic polynomial p(x) = 1 + x3 + x4 in Example 3.6:

{0 0 0 1 1 0 0 1 1 . . .}.

According to Theorem 3.6, there exists a regular, null 102-CA of length 6 that
generates this sequence as one of its output (vertical) sequences (see Table 3.8b).
The characteristic polynomial of this sequence is p6(x) and thus its linear com-
plexity is LC = 6. It is possible to check that the characteristic polynomials
of the remaining sequences in the CA are p5(x), p4(x), p3(x), p2(x) and p1(x),
respectively (consequence of Lemma 3.2). This means that the linear complexity of
the (vertical) sequences generated by the null 102-CA is strictly decreasing.

Recall that there exists a 60-CA of length 6 that generates the same exact
sequences in inverse order (see Table 3.8c). Therefore, all the results here obtained
can be applied to the 60-CA model. �
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Additionally, as a consequence of Lemmas 3.1 and 3.2, these CAs have a well-
defined structure which is given in the following result.

Theorem 3.7 ([10, Theorem 7]) Consider a GSS-sequence with linear complexity
LC. The regular, null 102-CA that generates such a sequence also produces:

• The identically 1 sequence (with period 1) in the rightmost column,
• 2i−1 sequences of period 2i , for 1 ≤ i ≤ L − 2 and
• LC − 2L−2 sequences of period 2L−1 (including the considered GSS-sequence).

For example, in Table 3.8b we have a 102-CA of length 6 that generates six
(vertical) sequences: the identically 1 sequence, one sequence with period 2, two
sequences with period 4 and finally, two sequences with period 8 (including the
given GSS-sequence).

Comparing the 90/150-CAs given in Sect. 3.4.1 with the 102-CAs (60-CAs)
proposed in this section, it can be stated that:

1. Both proposals provide CAs with a defined structure. For the 90/150-CAs, Rule
90 is applied to the extreme cells, while Rule 150 is applied to the remaining
cells:

[90 150 150 . . . 150 150 90].

The 102-CAs are regular; therefore, the same rule is applied for all the cells and
the form of the CAs is very simple:

[102 102 . . . 102 102].

2. The length of the proposed 90/150-CAs is 2L−1. On the other hand, the length of
the 102-CAs (60-CAs) is the linear complexity of the GSS-sequence considered.
We claimed, without proving, that 2L−2 < LC ≤ 2L−1 − (L−2). Therefore, the
improvement on the length is not much significant.

3. Finally, in the 90/150-CA model, all the cells (except extreme cells) use Rule
150, which involves the addition of three bits, while the 102-CA (60-CA)
model involves the addition of only two bits. Consequently, the number of logic
operations to compute the GSS-sequence is much smaller. Furthermore, the
periods of the (vertical) sequences of the 102-CA are well known (Theorem 3.7).
Therefore, we do not need to compute the whole sequences to complete the CA.



Chapter 4
Cryptanalysis

Cryptanalytic attacks against cryptosystems can be divided into two different
classes: direct and indirect attacks.

The direct class attacks the algorithmic nature of the cryptosystem regardless of
its implementation.

The indirect class makes use of a physical implementation of the cryptosystem
and applies a wide variety of techniques either to give the attacker some intrinsic
information about the cryptosystem or to influence its internal state.

In the literature we can find both types of attacks against stream ciphers in general
and against the family of shrinking generators in particular, e.g., correlation attacks
[40, 50, 90], fast correlation attacks [38, 57, 106], distinguishing attacks [23] or
fault attacks [42]. At any rate, this chapter focuses exclusively on the first type of
cryptanalytic attacks.

In next sections, we introduce and describe different attacks against the shrinking
generator and the self-shrinking generator. Although any correlation attacks are also
detailed, most of the cryptanalytic attacks in this chapter make use of the properties
of irregular decimation-based generators developed in the two previous chapters. In
fact, these attacks exploit:

• the inherent linearity of the output sequences, and
• the modelling of such generators by means of linear CAs.

Successive performance comparisons for the distinct proposals are also provided.

4.1 An Algebraic Attack: Strategic Bits of the Shrinking
Generator

This section focuses on an algebraic attack against the shrinking generator [29].
This approach requires less intercepted bits than other attacks. The kernel of this
cryptanalysis is the fact that the shrunken sequence is an interleaved sequence, see

© The Author(s), under exclusive licence of Springer Nature Switzerland AG 2019
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Sect. 2.1.2. The properties of the interleaved sequences reveal weaknesses that lead
to practical attacks.

In this algebraic attack, the shrinking generator is considered under the following
assumptions:

• The key of the cryptosystem is the initial state of both registers.
• The characteristic polynomials of both registers are known and there are no

constraints on the number nor the position of their corresponding feedback taps
(LFSR’s stages included in the feedback loop).

• The intercepted bits are the (L2 × L1) strategic bits of the shrunken sequence.

In this section, we keep the same notation for the shrinking generator as that of
Sect. 2.1. In fact, the selector register R1 has length L1, characteristic polynomial
p1(x) ∈ F2[x] and its output sequence is denoted by {ai}, i = 0, 1, 2, . . . . The
decimated register R2 has length L2, characteristic polynomial p2(x) ∈ F2[x] and
its output sequence is denoted by {bi}, i = 0, 1, 2, . . . . In addition, the lengths
of both registers L1, L2 are relatively prime gcd(L1, L2) = 1 with L1 < L2,
the characteristic polynomials p1(x), p2(x) are primitive polynomials in F2[x] and
both output sequences {ai} and {bi} are PN-sequences of period T1 = (2L1 − 1) and
T2 = (2L2 − 1), respectively.

The output sequence of the shrinking generator, the shrunken sequence denoted
by {sj } j = 0, 1, 2, . . ., is a subsequence of {bi} whose terms are chosen according
to the positions of the ones (1s) in the sequence {ai}. As it was stated in Sect. 2.1,
the period T of the shrunken sequence is

T = 2L1−1(2L2 − 1),

its linear complexity LC satisfies the inequality

L2 2L1−2 < LC ≤ L2 2L1−1,

and its characteristic polynomial, Pss(x), is of the form

Pss(x) = p(x)m,

where p(x) is a primitive polynomial of degree L2 (see Theorem 2.2) and m is an
integer in the interval 2L1−2 < m ≤ 2L1−1. Due to the period, linear complexity
and good statistical properties of the generated sequence, this scheme has been
traditionally used as keystream sequence generator in secret-key cryptography.

4.1.1 The Shrunken Sequence as an Interleaved Sequence

In order to cryptanalyse this keystream sequence generator, the 2L1−1(2L2 − 1) bits
of a period of the shrunken sequence {sj } can be arranged into a (2L2 −1)×2(L1−1)

matrix that will be called interleaved matrix and denoted by IM . In fact,
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IM =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

s0 s1 s2 . . . s2(L1−1)−1
s2(L1−1) s2(L1−1)+1 s2(L1−1)+2 . . . s2·2(L1−1)−1
s2·2(L1−1) s2·2(L1−1)+1 s2·2(L1−1)+2 . . . s3·2(L1−1)−1
s3·2(L1−1) s3·2(L1−1)+1 s3·2(L1−1)+2 . . . s4·2(L1−1)−1

. . . . . . . . . . . . . . .

s(2L2 −2)·2(L1−1) s(2L2 −2)·2(L1−1)+1 s(2L2 −2)·2(L1−1)+2 . . . s(2L2 −1)·2(L1−1)−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

As {sj } is a subsequence of {bi}, each element of the matrix IM can be
substituted by its corresponding term of the sequence {bi}. Thus, IM can be
rewritten as follows:

IM =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

bo0 bo1 . . . bo(2(L1−1)−1)

b(2L1 −1)+o0 b(2L1 −1)+o1 . . . b(2L1 −1)+o(2(L1−1)−1)

b2·(2L1 −1)+o0 b2·(2L1 −1)+o1 . . . b2· (2L1 −1)+o(2(L1−1)−1)

b3·(2L1 −1)+o0 b3·(2L1 −1)+o1 . . . b3· (2L1 −1)+o(2(L1−1)−1)

. . . . . . . . . . . .

b(2L2 −2)·(2L1 −1)+o0 b(2L2 −2)·(2L1 −1)+o1 . . . b(2L2 −2)·(2L1 −1)+o(2(L1−1)−1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.1)

where the value of the double subindex oj (j = 0, 1, . . . , 2(L1−1) − 1) depends on
the positions of the 1s in the sequence {ai}. Indeed, if ak = 1 is the (j + 1)th 1 of
{ai}, then the corresponding subindex oj = k.

Recall that j denotes the column of IM and that all the subindices in IM are
taken mod

(
2L2 − 1

)
, that is, the period of the sequence {bi}. The number of 1s in

the PN-sequence {ai} is 2L1−1, which is also the number of columns in the matrix
IM . Thus, all the elements of any column of IM come from the same term ai = 1
as well as two consecutive elements of any column of IM are two terms of {bi} at a
distance 2L1 − 1.

As different pairs of R1 and R2 initial states can generate the same shrunken
sequence, in the sequel we assume without loss of generality that the first term of
the sequence {ai} equals 1, that is, a0 = 1. Thus, the subindex o0 = 0.

Next, the following result analyses the characteristics of the columns of the
matrix IM .

Theorem 4.1 ([29]) The sequences {uj } = {bk+oj : k = 0, (2L1 − 1), 2 · (2L1 −
1), . . . , (2L2 − 2) · (2L1 − 1)} (j = 0, 1, . . . , 2(L1−1) − 1) corresponding to the
columns of the matrix IM are shifted versions of a unique PN-sequence whose
characteristic polynomial of degree L2 is given by

p(x) = (x + αT1)(x + α2·T1)(x + α22·T1) . . . (x + α2(L2−1)·T1), (4.2)

where T1 = 2L1 − 1 is the period of the PN-sequence {ai} and α ∈ F2L2 is a root of
the primitive polynomial p2(x).
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The target of this cryptanalysis is the calculation of the initial states of both
registers R1 and R2. From some known bits of the shrunken sequence, we have to
determine the first L2 bits {b0, b1, . . . , bL2−1} of the PN-sequence {bi} (initial state
of R2) as well as the first L1 bits {a0, a1, . . . , aL1−1} of the sequence {ai} (initial
state of R1). The number of bits needed for the attack is at most (L2 × L1) bits,
which is a negligible value compared with its linear complexity LC. Nevertheless,
these bits must be located at very specific positions inside the shrunken sequence.
In fact, the required bits (strategic bits) are exclusively those terms located at the
top-left corner (L2 × L1) submatrix of IM , denoted by SUBIM

SUBIM =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b0 bo1 . . . bo(L1−1)

b2L1−1 b(2L1−1)+o1 . . . b(2L1−1)+o(L1−1)

b2· (2L1−1) b2·(2L1−1)+o1 . . . b2·(2L1−1)+o(L1−1)

b3·(2L1−1) b3·(2L1−1)+o1 . . . b3·(2L1−1)+o(L1−1)

. . . . . . . . . . . .

b(L2−1)·(2L1−1) b(L2−1)·(2L1−1)+o1 . . . b(L2−1)·(2L1−1)+o(L1−1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

It is worth noticing that the strategic bits are not all consecutive. Moreover,
between two consecutive rows of the submatrix there is a great number of shrunken
sequence bits (as many as 2(L1−1) − L1) whose knowledge is not necessary. The
generation of the strategic bits is directly related with the state succession in both
registers. Indeed, the first bit of each row of SUBIM is generated when the register
states are:

• the initial state of R1, and
• a state of R2 at a distance 2L1 − 1 from the state that generated the first bit of the

previous row.

The procedure is repeated systematically for every row of SUBIM . Clearly, the first
row of the submatrix is generated from the initial states of R1 and R2. Keeping in
mind all these features, the cryptanalytic attack is divided into two different steps.
In the first one, the computation of the initial state of R2 is performed. In the second
step and based on the R2 initial state, the corresponding initial state of the register
R1 is determined.

4.1.2 Computation of the R2 Initial State

The computation of the R2 initial state is described as follows.
Theorem 4.1 reveals that the column {u0} of IM is the PN-sequence we obtain

decimating the sequence {bi} by distance 2L1 − 1 starting in b0. Therefore, the bits
{b0, b1, . . . , bL2−1} are terms of {u0}. For the sake of simplicity such a column will
be denoted by {u0} = {ui} (i = 0, 1, . . . , 2L2 − 2). In addition, the first column of
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the submatrix SUBIM corresponds to the first L2 bits {u0, u1, . . . , uL2−1} of {u0},
which are known.

According to the properties of the PN-sequences [41], any term uk of {ui} can be
expressed as a linear combination of the first L2 bits {u0, u1, . . . , uL2−1} by means
of the modular expression:

q(x) = xk mod p(x),

where q(x) = cL2−1x
L2−1 + . . . + c1x + c0 ∈ F2[x] and ci ∈ F2.

Thus, the term uk can be written as:

uk = cL2−1uL2−1 + . . . + c1u1 + c0u0. (4.3)

Therefore, the computation of the bits {b0, b1, . . . , bL2−1} is reduced to:

1. Determine the positions of the terms b0, b1, . . . , bL2−1 in the sequence {ui}.
2. Compute the value of such terms.

From Eq. (4.1), it is clear that bn· (2L1−1) is the (n + 1)th element of the first
column of IM . Thus, solving the following system of modular equations in the
unknowns ni :

{
ni · (2L1 − 1) ≡ i mod 2L2 − 1 (i = 0, 1, . . . , L2 − 1), (4.4)

we can determine the positions of the R2 initial state bits in the sequence {ui}. Next
making use of Eq. (4.3), we compute the values of {uni

} (i = 0, 1, . . . , L2 − 1)

that correspond to the bits uni
= bi . Consequently, the initial state of R2,

{b0, b1, . . . , bL2−1}, has been uniquely determined.

4.1.3 Computation of the R1 Initial State

The computation of the R1 initial state is described as follows.
As before, from the first column of SUBIM and Eq. (4.3), any term uk of {ui}

can be calculated. Over the sequence {u0} we compute (L2 − 1) subsequences
of L2 consecutive bits, denoted by {Bi} (i = 1, 2, . . . , L2 − 1), starting each
of them in the term uni

(i = 1, 2, . . . , L2 − 1), respectively. That is {Bi} =
{uni

, uni+1, uni+2, . . . , uni+L2−1} where the integers ni are defined in (4.4).
Since the columns {uj } (j = 0, 1, . . . , 2(L1−1) − 1) of IM are exactly the same

PN-sequence but starting at different points, we try to determine the first element
of each {uj } (j = 1, . . . , L1 − 1) as a term of {bi}. Therefore, we compare each
subsequence {Bi} with the successive columns of the submatrix SUBIM in order
to check the coincidence of the L2 bits compared. More precisely, we compare
{Bi} (i = 1, 2, . . . , L2 − 1) with the first L2 bits of {u1}. If there is coincidence for
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i = k, then unk
is the first element of {u1}. Therefore, unk

= bk and the bits of the
R1 initial state will be: a0 = 1, a1 = a2 = . . . = ak−1 = 0 and ak = 1.

Next we compare {Bi} (i = k + 1, . . . , L2 − 1) with the first L2 bits of {u2}. If
there is coincidence for i = l, then unl

is the first element of {u2}. Therefore, unl
=

bl and the bits of the R1 initial state will be: a0 = 1, a1 = a2 = . . . = ak−1 = 0,
ak = 1, ak+1 = ak+2 = . . . = ak+l−1 = 0, al+k = 1 and so on. The procedure
ends when the last bit aL1−1 has been determined. The key idea is to identify the
first element of each {uj } with its corresponding term of the sequence {bi}. Then we
deduce easily the bits {a0, a1, . . . , aL1−1}.

In brief, the simple comparison of the subsequences {Bi} with the successive
columns of SUBIM allows one to compute the R1 initial state {a0, a1, . . . , aL1−1}.

An illustrative example clarifies this cryptanalysis.

4.1.4 An Illustrative Example

Let us consider a shrinking generator characterized by:

1. R2 with length L2 = 5, characteristic polynomial p2(x) = 1+x2 +x3 +x4 +x5

and output sequence {bi}.
2. R1 with length L1 = 4, characteristic polynomial p1(x) = 1 + x3 + x4 and

output sequence {ai}.
3. The characteristic polynomial of the shrunken sequence is Pss(x) = p(x)m =

(1 + x + x2 + x3 + x5)8.

Given 20 bits of the shrunken sequence corresponding to the (5 × 4) submatrix
SUBIM

SUBIM =

⎛

⎜⎜⎜⎜⎜⎝

1 0 1 1
1 0 0 1
0 1 0 1
0 1 1 1
0 0 0 1

⎞

⎟⎟⎟⎟⎟⎠
,

we can launch a cryptanalytic attack against the shrinking generator to obtain the
initial states of both registers.

Computation of the R2 Initial State According to Sect. 4.1.2, we compute the
positions of {b0, b1, . . . , b4} in {u0} solving the system of modular equations:

{
ni · 15 ≡ i mod 31 (i = 0, 1, . . . , 4).

That is n0 = 0, n1 = 29, n2 = 27, n3 = 25 and n4 = 23. According to the first
column of SUBIM , we have u0 = 1, u1 = 1 and u2 = u3 = u4 = 0. Then, via
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Eq. (4.3), we write:

un0 = u0 = 1

un1 = u29 = u4 + u3 + u2 = 0

un2 = u27 = u2 + u1 + u0 = 0

un3 = u25 = u3 + u1 = 1

un4 = u23 = u4 + u2 + u0 = 1.

As uni
= bi (i = 0, 1, . . . , 4), then the initial state of the register R2 is

{b0, b1, b2, b3, b4} = {1, 0, 0, 1, 1}.
Table 4.1 shows the calculations performed to cryptanalyse this shrinking genera-

tor. In fact, the most left column in the table represents the generic index k numbered
(0, 1, . . . , 2L2 − 2 = 30). Next column shows the positions ni (i = 0, 1, . . . , 4) of
the terms {b0, b1, . . . , b4} of the sequence {bi}. The following columns of Table 4.1
represent the matrix IM: in boldface the top-left corner (5 × 4) submatrix SUBIM

with the known bits and the symbol − corresponds to unknown bits of the shrunken
sequence not needed for the cryptanalysis.

Computation of the R1 Initial State According to Sect. 4.1.3, we compute 4
subsequences {Bi} (i = 1, 2, . . . , 4) of 5 consecutive bits where

{Bi} = {uni
, uni+1, uni+2, uni+3, uni+4} (i = 1, 2, 3, 4).

It is worth noticing that the bits of {u0} used in {Bi} are all concentrated in the
last positions of the sequence, see Corollary 2.2. Thus, the application of the linear
recurrence relationship given by the polynomial p(x), that is, un+5 = un+3+un+2+
un+1 + un with (n = 30, 29, 28, . . . , 23), is here enough to compute the terms used
in {Bi}, see Table 4.1.

Therefore, {B1} = {0, 0, 1, 1, 0}, {B2} = {0, 1, 0, 0, 1}, {B3} = {1, 0, 0, 1, 0}
and {B4} = {1, 1, 1, 0, 0}.

Now we compare {B1} = {0, 0, 1, 1, 0} with the first 5 bits of {u1}. There is
coincidence for i = 1, then un1 = u29 is the first element of {u1}. Therefore,
u29 = un1 = b1 and the bits of the R1 initial state will be: a0 = 1 and a1 = 1.

Next we compare {B2} = {0, 1, 0, 0, 1} with the first 5 bits of {u2}. There is no
coincidence.

Then we compare {B3} = {1, 0, 0, 1, 0} with the first 5 bits of {u2}. There is
coincidence for i = 3, then un3 = u25 is the first element of {u2}. Therefore,
u25 = un3 = b3 and the bits of the R1 initial state will be: a0 = 1, a1 = 1, a2 = 0
and a3 = 1.

The procedure ends as the last bit a3 has been determined. Therefore, the R1
initial state is {a0, a1, a2, a3} = {1, 1, 0, 1}.
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Table 4.1 Matrix IM corresponding to the described shrinking generator

k {bi} {u0} {u1} {u2} {u3} {u4} {u5} {u6} {u7}
0 b0 1 0 1 1 − − − −
1 1 0 0 1 − − − −
2 0 1 0 1 − − − −
3 0 1 1 1 − − − −
4 0 0 0 1 − − − −
5 − − − − − − − −
6 − − − − − − − −
7 − − − − − − − −
8 − − − − − − − −
9 − − − − − − − −
10 − − − − − − − −
11 − − − − − − − −
12 − − − − − − − −
13 − − − − − − − −
14 − − − − − − − −
15 − − − − − − − −
16 − − − − − − − −
17 − − − − − − − −
18 − − − − − − − −
19 − − − − − − − −
20 − − − − − − − −
21 − − − − − − − −
22 − − − − − − − −
23 b4 1 − − − − − − −
24 1 − − − − − − −
25 b3 1 − − − − − − −
26 0 − − − − − − −
27 b2 0 − − − − − − −
28 1 − − − − − − −
29 b1 0 − − − − − − −
30 0 − − − − − − −

Notice that just the knowledge of three columns of the submatrix SUBIM has
been necessary to identify the initial state of R1. Indeed, the number of columns
needed equals the number of 1s in the initial state of the selector register. The
maximum number of needed bits corresponds to L2 × L1 when the R1 initial state
is the identically 1 state. In the remaining cases, less bits are sufficient.

Once the initial states of both register have been determined, the whole shrunken
sequence, that is, the keystream sequence, can be computed.

The previous cryptanalysis shows that not all the bits in the shrunken sequence
have the same relevance. Some bits are much more important than others. Thus,
the knowledge of a few strategic bits allows one to launch a simple and efficient
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attack whose computational complexity is minimum O(L2). In fact, the number
of intercepted bits is at most L2 × L1, while the computational requirements are
reduced to solve a system of L2 modular equations and successive applications (no
more than L2

2) of a linear recurrence relationship.
In brief, if the attacker without knowledge of the key obtains the physical

encryption device and can manipulate it to get the strategic bits, then this simple
approach is realistic.

4.2 Linear Consistency Test Against the Shrinking
Generator

In this section, a cryptanalysis of the shrinking generator based on the linear
consistency test (LCT) [104] is introduced.

In keystream sequence generators, it is sometimes possible to single out a certain
subkey K1 from the entire cryptosystem key K and write out a system of linear
equations:

Ax = b, (4.5)

where the coefficient matrix A is determined by the own keystream generator and
parameterized by K1, the fixed right-side vector b is the segment of intercepted bits
and the solution vector x can be used to compute the remaining bits of the key K . If
the proposed K1 coincides with the right subkey used in generating the intercepted
sequence, then such a system of linear equations will certainly be consistent.
Otherwise, the consistency probability will be very small [104, Theorem 1]. Thus,
in order to find the right subkey K1, we only need to test the consistency of the
linear equation system with respect to all possible choices of the subkey K1. In this
way, the amount of work needed is dramatically reduced regarding the exhaustive
search of the entire key K .

The cryptanalysis here presented combines the LCT method with the fact that
the shrunken sequence is an interleaved sequence (see Sects. 2.1 and 4.1.1). More
precisely, this cryptanalytic attack applies the LCT to the interleaved PN-sequences
of the shrunken sequence [12].

In this algebraic attack, the shrinking generator is considered under the following
assumptions:

• The key of the cryptosystem is the initial states of both registers.
• The characteristic polynomials of both registers are known and there are no

constraints on the number nor the position of their corresponding feedback taps.
• The intercepted bits used in this attack are N consecutive bits of the shrunken

sequence.
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In this section, we keep the same notation for the shrinking generator as that of
Sects. 2.1 and 4.1. Indeed, the selector register R1 has length L1, characteristic
polynomial p1(x) ∈ F2[x] and its output sequence is denoted by {ai}, i =
0, 1, 2, . . .. The decimated register R2 has length L2, characteristic polynomial
p2(x) ∈ F2[x] and its output sequence is denoted by {bi}, i = 0, 1, 2, . . .. Moreover,
the lengths of both registers L1, L2 are relatively prime gcd(L1, L2) = 1 with
L1 < L2, the characteristic polynomials p1(x), p2(x) are primitive polynomials
in F2[x] and both output sequences {ai} and {bi} are PN-sequences of period
T1 = (2L1 − 1) and T2 = (2L2 − 1), respectively. As before, the output sequence of
the shrinking generator, the shrunken sequence, is denoted by {sj } j = 0, 1, 2, . . ..

Previously to the attack description, additional notation is introduced:

• The initial states of registers R1 and R2 are denoted by is1 = {a0, a1, . . . , aL1−1}
and is2 = {b0, b1, . . . , bL2−1}, respectively.

• The subsequence S = {s0, s1, . . . , sN−1} denotes the N intercepted bits of the
shrunken sequence. Currently, the number N can be written as N = N1 + N2,
where N1 bits are used to compute the pair (is1, is2), while N2 bits are used to
check the correctness of the previous pair.

• According to Proposition 2.1, δ is an integer δ ∈ {1, 2, 3, . . . , T2 − 1}, such that
T1δ ≡ 1 mod T2.

As it was seen in Sect. 4.1.1, the shrunken sequence can be written as a
(2L2 − 1) × 2(L1−1) matrix IM whose columns, the sequences {uj } = {bk+oj :
k = 0, (2L1 − 1), 2 · (2L1 − 1), . . . , (2L2 − 2) · (2L1 − 1)} (j = 0, 1, . . . , 2(L1−1) −
1), are shifted versions of a unique PN-sequence with characteristic polynomial
p(x) defined in (4.2). Now the N intercepted bits are elements of the successive
interleaved PN-sequence {uj }. Nevertheless, in this attack we only focus on the first
interleaved sequence {u0}. For the sake of simplicity such a column will be denoted
by {u0} = {ui} (i = 0, 1, . . . , 2L2 −2). As in Sect. 4.1.2, any term uk of {ui} can be
expressed as a linear combination of the first L2 bits {u0, u1, . . . , uL2−1} by means
of the modular expression:

q(x) = xk mod p(x),

where q(x) = cL2−1x
L2−1 + . . . + c1x + c0 ∈ F2[x] and ci ∈ F2.

Thus, the term uk can be written as:

uk = cL2−1uL2−1 + . . . + c1u1 + c0u0.

The proposed attack is divided into two phases:
In phase 1, we check the 2L1−1 initial states is1 starting with 1 (as only the

1s of {ai} generate bits in the shrunken sequence) to determine a set Q of possible
candidates for initial state of R1. Each checking applies the LCT to a linear equation
system.
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In phase 2, for every is1 in Q its corresponding is2 will be computed. The pair
(is1, is2) able to generate the shrunken sequence will be the key of the cryptosystem.
Next, a general outline of the algorithm is depicted.

Algorithm 1 Cryptanalysis of the shrinking generator
Input: Lengths L1, L2, polynomials p1(x), p2(x) and N intercepted bits {s0, s1, . . . sN−1}
01: Compute Phase 1.
02: Compute Phase 2.

Output:
The pair (is1, is2) that generates the shrunken sequence.

Now a detailed description of the algorithm is given.
Phase 1:
For each is1 do:

Step 1: Starting in is1, generate a portion of sequence {ai} until N1 1s are
obtained. Such 1s will be located at positions ik (k = 0, 1, . . . , N1 − 1) in {ai}.

Step 2: Determine N1 positions in the sequence {ui} as

dk ≡ δ · ik mod T2 (k = 0, 1, . . . , N1 − 1).

Step 3: Assign the N1 intercepted bits to the previous positions

udk
= sk (k = 0, 1, . . . , N1 − 1).

Step 4: Express each udk
as a function of the first L2 terms of {ui}, that is, udk

=
fk(u0, u1, . . . , uL2−1), by means of

xdk mod p(x) (k = 0, 1, . . . , N1 − 1).

It turns out to be a system of linear equations

{
fk(u0, u1, . . . , uL2−1) = sk (k = 0, 1, . . . , N1 − 1), (4.6)

with N1 equations in the {u0, u1, . . . , uL2−1} unknowns.
Step 5: Apply the Linear Consistency Test (LCT) to check the consistency of the

previous system,
if the system is consistent, then include is1 in Q

else is1 is rejected.

end do
The result of this phase is the set Q of possible candidates for initial state of R1

that will be checked in the next phase. Recall that the state is1 under consideration
parameterizes the coefficient matrix in the system of linear equations (4.6) and that
the subkey K1 is is1.
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Phase 2:
For each is1 in Q do:

Step 1: Express each bik as a function of the first L2 terms of {bi}, that is, bik =
gk(b0, b1, . . . , bL2−1), by means of

xik mod p2(x) (k = 0, 1, . . . , N1 − 1).

It turns out to be a system of linear equations

{
gk(b0, b1, . . . , bL2−1) = sk (k = 0, 1, . . . , N1 − 1),

with N1 equations in the {b0, b1, . . . , bL2−1} unknowns.
Step 2: Apply the Linear Consistency Test (LCT) to check the consistency of the

previous system,
if the system is not consistent, then reject (is1, is2)

else if the pair (is1, is2) can generate the shrunken sequence (checked by means
of the N2 bits),
then cryptosystem broken !!!
else is1 is rejected.

end do
The result of this phase is the pair (is1, is2) generating the shrunken sequence

that is the key of the cryptosystem.
For illustrative purposes, a software implementation of the previous attack has

been performed on a laptop device with the following specifications:

• Operative system: Arch Linux
• CPU: Dual core Intel Core i7-4510U, Cache 4096 KB, Freq. 3100 MHz
• RAM: 8 GB, Type: DDR3
• Hard Disk: Type SSD, Size 256.1 GB

The application of the LCT to this generator writes out a system of linear
equations equal to that of Eq. (4.5), where A is an (N1 × L2) binary coefficient
matrix, x is the (L2 × 1) vector of unknowns and b is the (N1 × 1) right-side
vector of intercepted bits. Each initial state is1 parameterizes the coefficient matrix
A as each is1 writes out a different system of linear equations (4.6). Then the linear
consistency test (LCT) [104] checks the consistency of the corresponding equation
system. The running time of the attack is dominated by phase 1 which has a time
complexity of O(2L1−1 · (N1 × L2)

3) that is exponential in L1 due to the number
of is1 considered and polynomial in L2. In fact, the work factor needed for each
test is that of the Gauss elimination algorithm applied to the augmented matrix
(A, b), which is cubic in the dimension of the matrix. In any case, the cubic factor
is irrelevant compared with the exponential factor.

Some numerical results are depicted in Table 4.2 where L1, L2 are the lengths
of registers R1 and R2, respectively, T is the period of the corresponding shrunken
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Table 4.2 Numerical results
for the algorithm

L1 L2 T N1 c(Q) t (s)

4 5 248 10 1 0.0064

5 6 1008 12 1 0.0173

9 10 261,888 20 1 0.3856

10 11 1,048,064 22 1 0.8552

11 12 4,193,280 24 1 1.8114

12 13 16,775,168 26 1 4.2623

13 14 67,104,768 28 1 9.0739

14 15 268,427,264 30 1 20.0681

15 16 1.0737·109 32 1 44.9963

16 17 4.2949·109 34 2 98.1865

17 18 1.7180·1010 36 1 217.9489

18 19 6.8719·1010 38 2 477.1288

19 20 2.7488·1011 40 1 1092.7125

20 21 1.0995·1012 42 1 2327.2800

21 22 4.3980·1012 44 1 4997.0925

sequence, N1 is the number of intercepted bits for computation, c(Q) is the cardinal
of Q, that is, the number of candidates for initial state of R1, and t is the running time
expressed in seconds. It must be noticed that the period of the shrunken sequence
is much greater than the number of intercepted bits needed to successfully run the
algorithm within a reasonable time. In fact, N1 = 2 · L2, while N2 is currently
chosen as N2 = N1. In brief, the requirements of intercepted sequence are extremely
low. In Table 4.3, the same results are shown but now the number of intercepted
bits N1 equals L2. In this case, since N1 has been reduced, the execution time has
been reduced too. Nevertheless, the number of candidates has grown considerably.
Table 4.4 shows the numerical results corresponding to the verification of a unique
initial state is1 in the phase 1 of the algorithm. Recall that even for large values of
L1 and L2 the execution time of such routine is very low. The program makes use
of SageMath, an algebraic computation systems based on Python. In order to handle
polynomials in F2[x], SageMath uses the libraries NLT. In order to compute with
matrices over F2, SageMath uses the libraries M4RI. In the LCT application, the
system of equations is transformed into a low reduced echelon form. This step is
important in the computation efficiency as the system consistency is reduced to test
the existence of a row {0, 0, . . . , 0, 1} in the coefficient matrix of the system.

Both phases of this algorithm are fully parallelizable and some tweaks can be
made to optimize the LCT step.

The most remarkable features of the proposed attack are:

1. The low amount of intercepted bits needed for its execution. In fact, N1 = n ·L2,
n being a small integer (n = 2, 3, 4), and N2 ≤ N1 are enough to conclude this
attack successfully. Thus the amount of sequence required is linear in the length
of the register R2.
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Table 4.3 Numerical results
for the algorithm when
N1 = L2

L1 L2 T N1 c(Q) t (s)

4 5 248 5 5 0.0046

5 6 1008 6 14 0.0099

6 7 4064 7 25 0.0216

7 8 16,320 8 46 0.0513

8 9 65,408 9 78 0.11969

9 10 261,888 10 160 0.2478

10 11 1,048,064 11 210 0.7123

11 12 4,193,280 12 708 1.3290

12 13 16,775,168 13 1183 3.1078

13 14 67,104,768 14 2227 6.0204

14 15 268,427,264 15 4494 13.0011

15 16 1.0737·109 16 8710 29.4033

16 17 4.2949·109 17 6183 57.9891

17 18 1.7180·1010 18 35351 151.4661

Table 4.4 Numerical results
for the verification of one is1

L1 L2 N1 t (s)

5 6 12 0.00080

6 7 14 0.00106

7 8 16 0.00112

8 9 18 0.00130

9 10 20 0.00157

10 11 22 0.00169

20 21 42 0.00911

30 31 62 0.01044

40 41 82 0.01980

50 51 102 0.03160

59 60 120 0.03547

60 61 122 0.03794

61 62 124 0.03806

62 63 126 0.04035

63 64 128 0.04108

2. The maximum complexity for attacking such a model is O(2L1−1 · (N1 × L2)
3),

exponential in L1 and polynomial in L2. Thus, in terms of complexity we can
say that the computational complexity of this cryptanalysis is O(2L1−1).

3. The attack is deterministic and always recovers both initial states.

Compared with the cryptanalysis described in Sect. 4.1, we can see that the
amount of intercepted sequence is very low in both cases. Nevertheless, as the
N bits intercepted from the shrunken sequence are now consecutive, then the
computational complexity is much greater.

Another cryptanalysis against the shrinking generator that makes use of the LCT
without considering the shrunken sequence as an interleaved sequence can be found
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in [75]. In this approach, the maximum complexity is O(2L1) and the requirements
of intercepted sequence are greater than in the previous cryptanalytic attack.

4.3 102-CA Recovery Attack Against the Shrinking
Generator

In this section, we present two deterministic attacks based on 102-CAs (60-CAs)
that recover the shrunken sequence.

4.3.1 Overlapping Attack

In order to recover the shrunken sequence, we make use of the properties of the
102-CAs (60-CAs) that generate such a sequence. Mainly, we take advantage of the
fact that shifted versions of the shrunken sequence and other companion sequences
appear several times along the 102-CA (see Sect. 3.3.2).

In order to illustrate this idea, consider again Example 3.4. We had a shrunken
sequence of period T = 14 and a 102-CA of length 14 that generated such a
sequence in its leftmost column (see Table 4.5). If we intercept the first 6 bits of
the shrunken sequence, then we can recover 21 elements in the CA using rule 102
(see the triangle in the top-left corner of the 102-CA in Table 4.5). According to the
102-CA properties, shifted versions of the shrunken sequence and other companion
sequences are repeated along the 102-CA (see Example 3.4). Thus, we can recover

Table 4.5 CA that generates the shrunken sequence in Example 3.4

102 102 102 102 102 102 102 102 102 102 102 102 102 102

1 1 0 1 0 0 1 0 0 1 1 1

0 1 1 1 0 1 0 1 0

1 0 0 1 1 1 1 1 0 1 0 0

1 0 1 0 0 1 1 1 0

1 1 1 1 0 1 0 0 1 0 0 1

0 0 1 1 1 0 1 0 1

0 0 1 0 0 1 1 1 1 1 0 1

0 1 0 1 0 0 1 1 1

1 1 1 1 0 1 0 0 1 0 0 1

0 0 1 1 1 0 1 0 1

0 1 0 0 1 0 0 1 1 1 1 1

1 1 0 1 0 1 0 0 1

0 1 1 1 1 1 0 1 0 0 1 0

1 0 0 1 1 1 0 1 0
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the same number of bits in other positions (see the other triangles in Table 4.5). In
this case, the triangles of recovered bits overlap. Therefore, we can recover all the
elements in the CA and, consequently, all the shrunken sequence.

In general, we need to intercept

N = 2L1−1(2L2 − Zα(1))

bits of the shrunken sequence for the triangles to overlap. This number depends
on L1, L2 and the value of Zα(1), which in turn depends on the characteristic
polynomial p(x) of the interleaved PN-sequences (see Theorem 2.1). Nevertheless,
this number of required bits might be unrealistic for practical applications. For
instance, if we consider a shrinking generator with L1 = 3 and L2 = 4, then the
period of the shrunken sequence is T = 60. There are two primitive polynomials
of degree 4, q1(x) = 1 + x + x4 and q2(x) = 1 + x3 + x4, for which Zα(1)

takes the values 4 and 12, respectively. Thus, we need N1 = 48 intercepted bits for
p(x) = q1(x) and N2 = 16 intercepted bits for p(x) = q2(x). The designer would
have chosen q1(x), while the cryptanalyst would have preferred q2(x).

4.3.2 CA-Based Cryptanalysis Against the Shrinking
Generator

In this subsection, we introduce a cryptanalysis against the shrinking generator
based on the results given in Sects. 2.1 and 3.3.2. The attack [11] performs an
exhaustive search over the 2L1−1 initial states of the register R1 starting with 1.

Given n bits of the shrunken sequence, denoted by sss = {s0, s1, . . . , sn−1}, Algo-
rithm 2 checks the correctness of a given R1 initial state aaa = {a0, a1, . . . , aL1−1}.
For each checked state, we perform rule 102 on the intercepted bits to generate as
many bits as possible in the sequences of 102-CA (see Sect. 3.3.2). The idea is
to determine bits of the first interleaved PN-sequence of the shrunken sequence by
using not only the n intercepted bits but also the bits obtained from other companion
sequences. If two different bits are assigned to the same position, then there is a
discrepancy and the initial state aaa is rejected. Otherwise, Algorithm 2 returns the
matrix M with the values and positions of the recovered bits in the first interleaved
sequence. Then, the R2 initial state bits are computed via Proposition 2.1.

It is worth pointing out that this attack can be equivalently designed with rule 60,
xt+1
i = xt

i−1 + xt
i . In that case, the sequences would appear in reverse order along

the CA, but the results would be identical. Next a numerical example is introduced.

Example 4.1 Consider a shrinking generator with two registers R1 and R2 whose
characteristic polynomials are p1(x) = 1 + x + x6 and p2(x) = 1 + x3 + x7,
respectively. Now the period of the shrunken sequence is 25(27 − 1) = 4064.
Since L2 = L1 + 1, we know that p(x) is the reciprocal polynomial of p2(x)



4.3 102-CA Recovery Attack Against the Shrinking Generator 81

Algorithm 2 Crypto: Test an initial state for R1

Input: p1(x), p(x), δ, sss and aaa

function [M,Stop] =Crypto(p1(x), p(x), δ, sss,aaa)

01: Compute {ai} using p1(x) and aaa until finding n = length(sss) ones;
02: Store in P the positions of the n 1s;
03: Store in P the new positions computed as Pi · d mod (2L2 − 1);
04: Store [Pi, si ] in a matrix M;
05: Stop = 1 and � = length(P );
06: while Stop = 1 and � > 1 do
07: Update P and � with the new positions;
08: Update sss with {s0 + s1, s1 + s2, . . . , sn−2 + sn−1};
09: Store [m,n] = size(M);
10: for j = 0 to m − 1 do
11: for k = 0 to length(P ) − 1 do
12: if Mj1 = Pk and Mj2 	= sk then
13: Initialise M with zeros;
14: Stop = 0;
15: end if
16: Store [Pk, sk] in M;
17: end for
18: end for
19: end while
end function
Output:
M: Recovered bits and their positions in the first interleaved PN-sequence.
Stop: 1 if the initial state is considered correct and 0 otherwise.

(Corollary 2.1), then p(x) = 1 + x4 + x7. Moreover, according to Proposition 2.1,
the decimation distance is δ = T2 − 2 = 27 − 3 = 125.

Assume we intercept n = 6 bits of the shrunken sequence: sss = {1, 0, 1, 0, 0, 0}.
In order to check the correctness of an R1 initial state, e.g., aaa = {1, 1, 1, 1, 0, 1},

we apply Algorithm 2.
Input: p1(x) = 1 + x + x6, p(x) = 1 + x4 + x7, aaa = (1, 1, 1, 1, 0, 1), δ = 125

and sss = {1, 0, 1, 0, 0, 0}.
Compute the PN-sequence generated by R1 starting in aaa until 6 ones are found:

{1, 1, 1, 1, 0, 1, 0, 0, 0, 1}.
The positions of the 1s are: pos = {0, 1, 2, 3, 5, 9}.
The positions of the 6 intercepted bits in the first interleaved PN-sequence are:

d0
i = {0, 125, 123, 121, 117, 109} (i = 0, 1, . . . , 5).

Store this information in matrix M:

MT =
(

0 125 123 121 117 109
1 0 111 0 0 0

)
.

We compute new positions and new bits to update the matrix M . The new bits are
computed applying rule 102 to the terms of sss. They are {1 + 0, 0 + 1, 1 + 0, 0 +
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0, 0 + 0} = {1, 1, 1, 0,000} to be stored, respectively, in the positions:

d1
0 = Zα( 0 − 125) + 125 = Zα(2) + 125 = 65

d1
1 = Zα(125 − 123) + 123 = Zα(2) + 123 = 63

d1
2 = Zα(123 − 121) + 121 = Zα(2) + 121 = 61

d1
3 = Zα(121 − 117) + 117 = Zα(4) + 117 = 124

d1
4 = Zα(117 − 109) + 109 = Zα(8) + 109 = 123.

Position 123 appears again and we have to store the value 0, but there is yet
another bit in the same position with value 1. There is a discrepancy, so the guessed
initial state aaa is not correct.

Output: Stop = 0. The initial state aaa = {1, 1, 1, 1, 0, 1} is not correct since a
discrepancy has been found. �

In this example we had just to compute Zα(1) since, due to the properties of
Zech logarithm, Zα(2) = 2 · Zα(1), Zα(4) = 4 · Zα(1), Zα(8) = 8 · Zα(1). The
computation of Zech logarithms is the most time-consuming part of the algorithm.
Therefore, a certain number of logarithms, e.g., L1 − 1 corresponding to the zero-
run lengths in the PN-sequence generated by R1, can be previously computed and
stored in a table to be reused. At any rate, the properties of this discrete logarithm
can be efficiently used to reduce the number of logarithms to be calculated [11, 47].

This algorithm requires an exhaustive search over 2L1−1 initial states of R1. In
Table 4.6 some numerical results are depicted. We denote by p1(x) and p2(x) the
characteristic polynomials of R1 and R2, respectively, n is the number of intercepted

Table 4.6 Some numerical results for the algorithm

p1(x) p2(x) n T NIS

1 + x2 + x3 1 + x3 + x4 8 60 1

1 + x2 + x3 1 + x3 + x5 9 124 1

1 + x2 + x5 1 + x + x6 11 1008 1

1 + x3 + x5 1 + x + x7 13 2032 1

1 + x2 + x5 1 + x3 + x7 14 2032 1

1 + x + x6 1 + x3 + x7 16 4046 1

1 + x + x7 1 + x2 + x3 + x4 + x8 16 16,320 1

1 + x + x7 1 + x4 + x9 16 32,704 1

1 + x2 + x3 + x4 + x8 1 + x4 + x9 17 65,408 1

1 + x4 + x9 1 + x3 + x10 18 261,888 1

1 + x4 + x9 1 + x2 + x5 + x9 + x10 19 261,888 1

1 + x2 + x11 1 + x + x5 + x8 + x12 27 4,193,280 3

1 + x9 + x10 + x12 + x13 1 + x + x2 + x5 + x6 + x13 + x14 30 67,104,768 3

1 + x9 + x10 + x12x13 1 + x + x4 + x15 + x16 52 268,431,360 1

1 + x + x2 + x5 + x6 + x13 + x14 1 + x2 + x5 + x14 + x15 40 268,427,264 126

1 + x2 + x5 + x14 + x15 1 + x + x4 + x6 + x16 50 1,073,725,440 29

1 + x + x4 + x15 + x16 1 + x + x2 + x6 + x10 + x11 + x17 58 4,294,934,528 206
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bits, T represents the period of the corresponding shrunken sequence and NIS

denotes the number of R1 initial states with no discrepancy. From these results, we
can deduce that our algorithm presents two main advantages against other proposals.

The algorithm here presented is deterministic. It means that depending on the
number of intercepted bits, the set of the possible correct states can have different
sizes, but the correct one is certainly contained in such a set. This is an advantage
against other probabilistic attacks. Besides, the required keystream length grows
linearly in the length of R2, while the period of the shrunken sequence grows
exponentially. It means that the number of intercepted bits n needed for the attack
is very low compared with the period of the shrunken sequence, fact that did not
happen in other proposals like [50]. Low requirement of intercepted bits is a quite
realistic condition for practical cryptanalysis.

The number of initial states for R1 with no discrepancy is much smaller than the
number of initial states analysed, so it simplifies the checking of the true pair of
initial states in both registers R1 and R2.

Finally, this algorithm is particularly adequate for parallelization, that is, we can
divide the 2L1−1 possible initial states into different groups and process each group
separately.

4.4 Different Attacks Against the Shrinking Generator:
A Comparison

In Table 4.7, a comparison among distinct attacks against the shrinking generator is
provided. In order to asses deterministic and probabilistic proposals, a typical cor-
relation attack [90] is also included. This probabilistic attack requires computation
of the joint probability for all possible R2 initial states even though R2 is the longest
register. Moreover, to recover the R1 initial state a further search (faster than 2L1 but
exponential in L1) is also required.

In brief, according to Table 4.7 just the strategic bit attack exhibits jointly a linear
computational complexity as well as a reduced number of intercepted bits, although
these bits must be located at very specific positions.

In the sequel, different attacks against the self-shrinking generator will be the
kernel of the following sections.

Table 4.7 Performance of different attacks against the shrinking generator

Attack No. of intercepted bits Computational complexity Type of attack

Strategic bits N = L2 · L1 O(L2) Deterministic

LCT attack N = n · L2 (n = 2, 3, 4) O(2L1−1) Deterministic

Overlapping attack N = 2L1−1(2L2 − Zα(1)) O(L3
2) Deterministic

102-CA recovery attack N = n · L2 (n = 2, 3, 4) O(2L1−1) Deterministic

Correlation attack N = 20 · L2 O(2L2 ) Probabilistic
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4.5 A Probabilistic Attack Against the Self-Shrinking
Generator

As a representative example of probabilistic cryptanalysis against irregularly deci-
mated generators, an algorithm for cryptanalysis of the self-shrinking generator [71]
is presented and discussed. In this paper, the self-shrinking generator is considered
under the following assumptions:

• The key of the cryptosystem is the initial state of the LFSR.
• The LFSR characteristic polynomial is known and there is no constraint on the

number of LFSR feedback taps.
• The number of intercepted bits from the self-shrunken sequence is under a given

limit (e.g., no more than 1010 bits).

According to these assumptions, this probabilistic approach is capable of finding the
LFSR initial state with probability close to 1. The work here considered improves,
in what computational complexity and constraints on the LFSR are concerned,
previous cryptanalysis found in the literature such as [36, 72] as well as it makes
use of the own self-decimation mechanism of the self-shrinking generator.

This attack, which can be classified as a “guess-and-determine” attack, uses the
intercepted self-shrunken sequence not only for hypothesis testing but also to reduce
the set of hypothesis to be tested.

The parameters of this approach are defined as:

• L is the LFSR length, for simplicity L is an even number.
• {ai}, i = 0, 1, 2, . . ., is the PN-sequence generated by the LFSR.
• {sj } (0 ≤ j ≤ N − 1) is the portion of intercepted self-shrunken sequence as

well as N is the number of intercepted bits.
• l < L/2 is the supposed number of 1s in the current state, that is, a candidate for

LFSR initial state.

In addition, {sj } is divided into �(N − L)/l
 l-dimensional successive but non-
overlapping segments Sk = [skl+n], (k = 0, 1, . . . , �(N − L)/l
 − 1), (n =
0, 1, . . . , l−1). Recall that for an arbitrary pair of bits of the PN-sequence {ai, ai+1},
if ai = 1, then ai+1 = sn, that is, ai+1 equals a term of the intercepted sequence;
otherwise, if ai = 0, then ai+1 = X, that is, ai+1 equals an unknown bit of the
PN-sequence.

The basic idea of this attack is to test the possible LFSR states able to generate
a segment Sk of length l. Notice that, according to the generation rule of the self-
shrinking generator, these candidate states will have l 1s located at even positions
in the considered LFSR state. Roughly speaking, this approach consists in the
repetition of the following steps until the true initial state is reached:

1. Consider candidate states with l 1s at even positions and 0s at the remaining
(L/2 − l) even positions. The number of possible candidates with these charac-
teristics is

(
L/2

l

)
.
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2. For each l-dimensional segment Sk (k = 0, 1, . . . , �(N − L)/l
 − 1) of the
self-shrunken sequence do the following:

• Put the l values sn of Sk at the odd positions next to the positions with 1.
Thus, for each candidate 2l + (L/2− l) state positions are already determined
(l positions filled with 1s, l positions with values sn and (L/2 − l) positions
with 0′s).

• Give binary values to the remaining (L/2 − l) not filled positions, in total
2(L/2−l) different binary configurations.

• Check if among the constructed candidate states is the true one.

The appropriate choice of the parameter l in step 1 could yield probabilistic
reduction of the number of hypothesis to be tested in step 2.

In [71], the recommended value for the parameter l is the maximum integer l

such that

1 ≤ �(N − L)/l
2−L/2
(

L/2

l

)
.

According to the paper [71], this approach ensures the cryptanalysis with overall
complexity 2L−l assuming that the required length N of intercepted sequence is
upper bounded by

N ≤ l 2L/2
(

L/2

l

)
.

In a more detailed way, the previous algorithm can be described as follows:
Input: The LFSR characteristic polynomial and the N bits of intercepted

sequence {sj } (0 ≤ j ≤ N − 1).
Initialization: Determine the value of the parameter l and divide the sequence

{sj } into �(N − L)/l
 l-dimensional successive non-overlapping segments Sk .
For each one of the

(
L/2
l

)
different locations of l 1s do steps 1–5.

Step 1: Set l 1s at even positions and 0s at the remaining (L/2 − l) even positions
of the current state.
For each segment Sk (k = 0, 1, . . . , �(N − L)/l
 − 1), do steps 2–5.

Step 2: Put the value skl+n at the odd position whose left-side neighbour position
contains the (n + 1)th 1 (n = 0, 1, . . . , l − 1) in the segment Sk .
For each one of the 2(L/2−l) different binary configurations, do steps 3–5.

Step 3: Put a particular binary configuration at the odd positions not filled in step
2.

Step 4: According to the current LFSR initial content determined in steps 1–3,
generate L∗ ≥ L output bits from the self-shrinking generator.

Step 5: If the L∗-segment generated in step 4 is equal to the segment
[s(k+1)l+n] (n = 0, 1, . . . , L∗ − 1), then conclude that the initial state (secret
key) is reconstructed and Stop. Otherwise continue the searching.
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Output: The reconstructed initial state (secret key) or the conclusion that the
solution is not found because of the probabilistic nature of the algorithm.

The previous cryptanalysis is a probabilistic attack. According to [71], it can be
stated that:

1. The probability p that the set of hypothesis tested by the algorithm contains the
true one is

p = 1 − (1 − 2−L/2
(

L/2

l

)
)�(N−L)/l
.

So the proposed algorithm allows with probability close to 1 the recon-
struction of the secret key assuming a sufficiently long intercepted segment
{sj } (0 ≤ j ≤ N − 1).

2. The number of hypothesis H to be tested is upper bounded by

H ≤
(

L/2

l

)
�(N − L)/l
2L/2−l .

3. The expected number of hypothesis H̄ to be tested is upper bounded by

H̄ ≤ 2L−l .

4. The expected gain g obtained by this algorithm compared with the attack
proposed in [67] is lower bounded by

g >
20.75L

2L−l
= 2l−.25L.

The complexity of the above algorithm is determined by the number of hypothe-
sis to be tested. In Table 4.8 the upper bound on the algorithm complexity Cub and
the expected lower bound on the gain glb are depicted for different LFSR length
L and intercepted sequence length N . The algorithm performance does not depend

Table 4.8 Complexity and
gain of this algorithm for
different values of L and N

L N Cub glb

60 1.88 × 105 235 210

60 6.96 × 107 232 213

80 5.85 × 107 245 215

80 4.11 × 109 243 217

100 4.86 × 108 257 218

100 3.12 × 109 256 219



4.5 A Probabilistic Attack Against the Self-Shrinking Generator 87

on the number of LFSR feedback taps and makes use of a length of intercepted
sequence under a given limit. The attack succeeds if and only if any of the internal
state guess matches the corresponding l internal state bits that generated the segment
of intercepted bits under consideration.

4.5.1 Other Probabilistic Attacks Against the Self-Shrinking
Generator

There are other cryptanalytic attacks performed over this generator which need a
different amount of intercepted bits. In particular, two other guess-and-determine
attacks are next discussed. The basic idea in these examples is to guess some bits of
the LFSR internal state and derive the remaining bits from the intercepted keystream
sequence. Then, the acceptance or rejection of each guessed internal state must be
individually checked.

• In [105], a new approach is developed. Now the algorithm requires less than
2L/2 intercepted bits, the knowledge of the LFSR characteristic polynomial and
a block of 20.25·L LFSR internal state guesses with binary values assigned to l

bits (l < L/2). For each one of these guesses do:

(a) Write out a system of linear equations in the remaining L − l LFSR internal
state bits by using the intercepted bits;

(b) Check the consistency of such an equation system; and
(c) If the linear consistency is confirmed, then solve the linear system and

generate keystream sequence from this internal state. If the generated
sequence matches the intercepted bits, then the guess is accepted as LFSR
internal state. Otherwise shift the keystream by one bit forward and repeat
the process. If after the successive shifts along the intercepted keystream
sequence there is no matching solution, then try a new LFSR internal state
guess and go again to step (a).

• In [81], a cryptanalytic attack based on the previous one is described. Compared
with [105], reference [81] is a more refined procedure in what the choice of
internal state guesses is concerned. Table 4.9 shows a comparison of parameters
for the different authors when the LFSR length is L = 40. In addition, Q is the
number of internal state guesses and N the number of intercepted bits. Moreover,
Table 4.10 introduces a comparison of complexities (time, memory and data) for
the different cryptanalysis.

Table 4.9 Parameter
comparison among different
authors for L = 40

Author Q N

Mihaljevic (l = 20) 2L−l = 1, 048, 576 106

Pazo-Robles et al. (l = 20) 2736 700 − 800

Zhang et al. (l = 25) 222 O(28)
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Table 4.10 Complexities for
the different authors

Author CT CM CD

Mihaljevic O(20.7∗L) O(L) O(20.5∗L)

Pazo-Robles et al. O(20.6∗L) O(L2) < O(20.25∗L)

Zhang et al. O(2L) O(L2) O(20.2∗L)

4.6 CA-Based Linearization Attack Against the
Self-Shrinking Generator

In Chap. 3, it was seen that the output sequences obtained from decimation-
based generators can be modelled by means of linear 102-CA (60-CA). Although
this linearization procedure can be applied to different sequence generators (see
Chap. 3), in this section we focus exclusively on the self-shrinking generator.
Indeed, in [8, Theorem 2] it is proved that the self-shrunken sequence {sj } j =
0, 1, 2, . . ., is generated by an uniform null linear 102-CA (60-CA) of length n. The
idea of this section is to exploit the linearity of these cellular structures in order to
recover the self-shrunken sequence from a certain amount of intercepted bits.

In this attack, the self-shrinking generator is considered under the following
assumptions:

• The key of the cryptosystem is the initial state of the LFSR.
• The LFSR characteristic polynomial is not needed.
• The number of intercepted bits from the self-shrunken sequence is the length n

of the CA.

According to these assumptions, this deterministic approach determines the CA
initial state just performing simple XOR operations. Once such an initial state
is known, the rules 102/60 allow one the generation of the whole self-shrunken
sequence. It is worth noticing that in this cellular scenario, the output sequence is
recovered without knowledge of the cryptosystem key. Let us see an illustrative
example of generation of the self-shrunken sequence by means of rules 102 and 60.

Example 4.2 Given an LFSR with length L = 4, characteristic polynomial p(x) =
1+x3+x4 ∈ F2[x] and initial state {1, 0, 1, 0}, the self-shrunken sequence obtained
is {sj } = {00101101}, with period T = 23. The characteristic polynomial of this
sequence is p5(x) = (1 + x)5. In Table 4.11, a double example of one-dimensional
linear CAs of length 5 is depicted. Table 4.11a represents an uniform null linear 102-
CA where the sequence in bold at the first column (numbered from left to right) is
the self-shrunken sequence. It is easy to check that the characteristic polynomials
of the remaining sequences are pt(x) = (x + 1)t (t = 4, 3, 2, 1), respectively.
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Table 4.11 CAs that generate the self-shrunken sequence in Example 4.2

(a) Uniform null linear 102-CA

102 102 102 102 102
0 0 1 1 1

0 1 0 0 1

1 1 0 1 1

0 1 1 0 1

1 0 1 1 1

1 1 0 0 1

0 1 0 1 1

1 1 1 0 1

(b) Uniform null linear 60-CA

60 60 60 60 60
1 1 1 0 0
1 0 0 1 0
1 1 0 1 1
1 0 1 1 0
1 1 1 0 1
1 0 0 1 1
1 1 0 1 0
1 0 1 1 1

The same CA of length 5 with rule 60 is depicted in Table 4.11b. Now the output
sequences will be the same as before but in reverse order. �
In brief, a linear 102-CA (60-CA) starting at a particular initial state models the
previous self-shrunken sequence.

In the following subsections, distinct features of this cryptanalysis are consid-
ered. In fact, two different methods of determining the CA initial state have been
developed. Next, the number of XOR operations needed to recover the whole self-
shrunken sequence is computed. The last subsection exhibits a comparison between
the CAs used in this work and those ones proposed in [33].

4.6.1 Computation of the CA Initial State

In order to simplify the notation, it is assumed that the linear complexity of the
self-shrunken sequence is denoted by n. From the previous section, we know
that there exists a linear 102-CA of length n that generates the self-shrunken
sequence and whose last sequence (numbered from left to right) is the identically 1
sequence. Assume that n − 1 bits of the self-shrunken sequence {s0, s1, . . . , sn−2}
are intercepted. These bits correspond to a portion of the sequence generated by the
CA at the first column. Two different methods of computing the CA initial state are
now described:

Method 1 From the (n − 1) intercepted bits and according to rule 102, we can
compute (n − 2) bits of the sequence located at the 2nd column that will be {s0 +
s1, s1 + s2, . . . , sn−3 + sn−2} performing (n − 2) XOR operations. Next, we can
compute (n − 3) bits of the sequence located at the 3rd column, {s0 + s2, s1 +
s3, . . . , sn−4 + sn−2} performing (n − 3) XOR operations and so on. Proceeding in
this way, the CA initial state {s0, s0 + s1, s0 + s2, . . . , 1} (the first bit of each vertical
sequence) is obtained just making use of XOR operations. Therefore, it is enough
to know (n − 1) bits of the self-shrunken sequence (the first vertical sequence) to
compute the CA initial state, and then from it to recover the remaining bits.
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Table 4.12 Necessary bits to
recover the CA initial state

102 102 102 102 102

0 0 1 1 1

0 1 0 1

1 1 1

0 1

1

1

1

1

Furthermore, the number of XOR operations needed to compute the CA initial
state is

n−2∑

i=1

i = (n − 1)(n − 2)

2
.

In Example 4.2, the self-shrunken sequence had period T = 8 and linear
complexity LC = 5. In Table 4.12, we can see that given 4 intercepted bits of
the self-shrunken sequence (the bits in bold at the first column), we can reconstruct
portions of the other sequences to compute the CA initial state {0, 0, 1, 1, 1}. As
n = 5, we need to perform six XOR operations to recover the CA initial state.

Method 2 In this case, a general expression for each bit of the CA initial state
is deduced. Assume {si} is the sequence at the first column of the CA. Let N

be a positive integer and let i0, i1, i2, . . . , it be binary coefficients for the binary
representation of N , that is, N = i020 + i121 + i222 + · · · + it2t . Define J =
{k | ik 	= 0, k = 0, 1, 2, . . . t}, with |J | = m and m ≤ t . Now denote the elements
of J = {j0, j1, . . . , jm−1}, then,

N = 2j0 + 2j1 + · · · + 2jm−1 .

The first bit of the (N + 1)th sequence (the (N + 1)th bit of the CA initial state) is
given by

s0 +
m−1∑

l=0

s2jl +
m−1∑

l1=0

m−1∑

l2 = 0
l2 	= l1

s
2
jl1 +2

jl2

+
m−1∑

l1=0

m−1∑

l2 = 0
l2 	= l1

m−1∑

l3 = 0
l3 	= l1
l3 	= l2

s
2
jl1 +2

jl2 +2
jl3

+ · · · + sN .

(4.7)
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In the same way, the second bit of the (N + 1)th sequence is given by

s1 +
m−1∑

l=0

s2jl +1 +
m−1∑

l1=0

m−1∑

l2 = 0
l2 	= l1

s
2
jl1 +2

jl2 +1

+
m−1∑

l1=0

m−1∑

l2 = 0
l2 	= l1

m−1∑

l3 = 0
l3 	= l1
l3 	= l2

s
2
jl1 +2

jl2 +2
jl3 +1

+ · · · + sN+1.

(4.8)

According to the rule 102, the first bit of the (N + 2)th sequence (the (N + 2)th bit
of the CA initial state) is given by Eq. (4.7) plus Eq. (4.8).

As a simple numerical example, let N = 12. Since N = 4 + 8, the 13th bit
will have the form s0 + s4 + s8 + s12. Furthermore, the 14th bit will have the form
s0 + s4 + s8 + s12 + s1 + s5 + s9 + s13. In [8, Appendix A], two arrays with the
generation of the first nine columns of the CA and the generation of the first nine
bits of the CA initial state are depicted. Both expressions can be proven by induction
over the number N , see [8].

4.6.2 Reconstruction of the Self-Shrunken Sequence: The
Number of XOR Operations

Given the CA initial state of length n and considering that the period of the
self-shrunken sequence is 2L−1, we would like to compute the number of XOR
operations needed to reconstruct the self-shrunken sequence. We know that the last
sequence is the identically 1 sequence. Next sequence (from right to left) is uniquely
determined by the first bit, that is, if this bit is 0, then the sequence is {010101 . . .}.
Otherwise, if this bit is 1, then the sequence is {101010 . . .}.

According to [8, Theorem 4], the next two sequences have period 4. Since the
first bit of both sequences (bits of the CA initial state) is known and according to
rule 102, just three XOR operations must be performed to compute the remaining
three bits (one operation per bit). That is, we have to perform six operations to
thoroughly compute both sequences.

In general, according to [8, Theorem 4], there are: 2i−1 sequences with period
2i for (i = 2, . . . , L − 2) and n − 2L−2 sequences with period 2L−1. Therefore,
following the same procedure as before, it is clear that the number of XOR
operations needed to recover the first 2L−1 bits of the self-shrunken sequence is
given by

L−2∑

i=2

(2i − 1)2i−1 + (n− 2L−2)(2L−1 − 1) = 3n(2L−1 − 1) − 22L−2 − 2

3
. (4.9)
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Fig. 4.1 Necessary XOR
operations needed to compute
the self-shrunken sequence

0 0 1 1 1
0 1 0 0 1
1 1 0 1 1
0 1 1 0 1
1 0 1 1 1
1 1 0 0 1
0 1 0 1 1
1 1 1 0 1

⊕ ⊕ ⊕
⊕ ⊕ ⊕
⊕ ⊕ ⊕
⊕
⊕
⊕
⊕

In Table 4.11a, it is showed that the computed CA initial state is {0, 0, 1, 1, 1}.
In this case, we know that n = 5 and L = 4 (from Example 4.2). Then, according
to expression (4.9), we have to perform 13 XOR operations. These operations are
depicted in Fig. 4.1. The bits on grey rectangles are the portions of sequences we
can deduce without computing any operation.

4.6.3 102/60 vs. 90/150 CA Proposals

In [33], the authors propose a family of CAs based on rules 90/150 that generate
the self-shrunken sequence too. Such CAs have a well-defined structure; rule 90 is
applied to the extreme cells, while rule 150 to the remaining cells. In the present
work, the CAs have a very specific structure as well. Indeed, the last column is the
identically 1 sequence. Besides, there is always a sequence of period 2 (the sequence
{0101 . . .} or the sequence {1010 . . .}). After this, there are 2 sequences of period
4, 22 sequences of period 8 and so on, until we get 2L−3 sequences with period
2L−2, L being the LFSR length. The remaining sequences (the length of the CA
minus 2L−2) have period 2L−1, including the self-shrunken sequence. On the other
hand, we know that the linear complexity n of the self-shrunken sequence satisfies
the inequality 2L−2 < n ≤ 2L−1 − (L − 2). Hence the length of these CAs is
less than 2L−1, the length of those ones proposed in [33]. For instance, in order
to model the self-shrunken sequence in Example 4.2, we need a CA of length 5
(see Table 4.11a). In case of using the CA proposed in [33], the CA length would
have been 8. As far as L increases the length of the 102/60 CAs is smaller than
that of the 90/150 CAs. Furthermore, taking into account that the rule 102 is based
on the XOR of 2 bits, while the rule 150 is based on the XOR of 3 bits [33], the
amount of operations required to recover the self-shrunken sequence with the CAs
here proposed is significantly smaller.

Currently the linear complexity of a sequence is computed by means of the
Berlekamp–Massey algorithm. In order to compute the linear complexity n of a
sequence, this algorithm needs to analyse 2 n bits of such a sequence. Hence, recall
that the amount of intercepted bits (n− 1) needed by the 102/60 CAs to recover the
whole sequence is half the bits needed by the Berlekamp–Massey algorithm.



4.7 Different Attacks Against the Self-Shrinking Generator: A Comparison 93

4.7 Different Attacks Against the Self-Shrinking Generator:
A Comparison

The class of guess-and-determine attacks against the self-shrinking generator is
characterized by:

• They are probabilistic attacks.
• They need about 2L/2 intercepted bits.
• The knowledge of the LFSR characteristic polynomial (which is recommended

to be a part of the key) is needed.
• They involve a large computational complexity to check the number of guessed

initial states.

On the other hand, the method of sequence reconstruction based on 102/60 CAs
is characterized by:

• It is a deterministic attack.
• It requires a much greater amount of intercepted bits (2L−2 < n < 2L−1) than

the previous attacks.
• The knowledge of the LFSR characteristic polynomial (which is recommended

to be a part of the key) is not needed.
• The computation is performed exclusively by means of XOR logic operations.

Thus, both types of cryptanalytic attacks are suitable only against self-shrinking
generators where L is not large. Consequently, the self-shrinking generator cannot
be considered practically secure if the underlying LFSR length is small.
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