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Cellular-Networks Simulation
Using SimuLTE

Antonio Virdis, Giovanni Nardini, and Giovanni Stea

5.1 Introduction

With the advent of their fourth-generation deployment, known as Long Term
Evolution (LTE), cellular networks have undergone a massive increase in pop-
ularity, due to their large bandwidth, ubiquitous coverage, and built-in features.
More interestingly, they have progressively shifted from single-service to general-
purpose access networks, capable of supporting diverse packet-based services
simultaneously. Such a paradigm shift has been accompanied by a parallel one
in the related research: research discussing physical-layer issues (i.e., waveforms,
signal propagation models, receiver algorithms, coding and modulation, etc.) has
lately been complemented by research related to Medium Access Control (MAC)
layer issues, like resource allocation, admission control, user-side power saving
techniques, performance guarantees, as well as the one dealing with the performance
of services offered through cellular networks, from mobile web browsing to smart
Internet of Things (IoT). Currently, cellular networks are being considered as
a viable alternative to other technologies, such as WiFi for traditional mobile
applications, IEEE 802.15.4 and Long Range (LoRa) [5] for sensors and smart
things, IEEE 802.11p for vehicular networks, and Asymmetric Digital Subscriber
Line (ADSL) for home Internet access. The main advantages of an LTE network
are: being infrastructure-based and operator-managed, which relieves service users
from the need of deploying and managing a (service-specific) infrastructure of their
own, or making do with the lack of one. The fact that it operates on licensed
spectrum, guaranteeing absence of external interference, and its built-in features
for security, mobility management, and terminal-side power saving. Current trends,
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such as the progression towards fifth-generation (5G) access and the standardization
of Multi-access Edge Computing (MEC), all concur to foresee that the role of
cellular networks in next-generation communications will increase, incorporating
new key features like Device-to-Device (D2D) communications and a tighter
coupling between communication and computation resources.

Evaluating the performance of cellular networks poses several challenges. The
fact that LTE includes a whole stack of layered protocols, each one having buffers
and timers, which interact with other features (such as power saving at both the base
station and the terminal), intrinsically defies analytical modeling. On the other hand,
building prototypes to do live measurements incurs non-trivial difficulties: despite
the fact that several efforts have been done to realize open-source frameworks
for LTE experimentation on Commercial Off-The-Shelf (COTS) hardware (e.g.,
OpenAirInterface [6]), licensed spectrum makes live experimentation difficult, and
prototypes can only scale so much as for number of users and base stations,
transmission and computing power, and available bandwidth. This leaves simulation
as the ideal performance evaluation technique, trading some accuracy for a large
gain in experiment manageability. Several simulators of cellular networks have
been developed so far. Some are link-level simulators (e.g., [2, 4]). These do an
extensive job of modeling the physical layer of a link, with little or no interest
in what is above it. They are good for evaluating signal propagation, spectral
efficiency, the impact of transmission techniques such as Multiple Input Multiple
Output (MIMO) or beamforming, and interference management, but they are
generally unsuitable to understand issues related to resource scheduling, protocol
interaction, or application-level performance. A different approach is instead that
of system-level simulators, where some modeling details (e.g., signal propagation)
are abstracted in favor of a stronger focus on the interplay and communication
among several complex submodels (e.g., protocol layers). Among system-level
LTE simulators, LTE-EPC Network simulAtor (LENA) [1] is part of the Network
Simulator 3 (ns-3) framework, and it focuses on the design and testing of Self-
Organizing Network (SON) algorithms and solutions.

This chapter presents SimuLTE, a system-level simulator based on OMNeT++
for 4G LTE and Long Term Evolution Advanced (LTE-A) networks. SimuLTE is
especially focused on the LTE data plane. Most of the control-plane functions are
abstracted by using an oracle, called the Binder, which the various modules can
query to obtain information which would otherwise require control-plane protocols
and elements. SimuLTE includes all the protocols of the LTE stack. It models
the effects of the physical layer by computing the received Signal-to-Interference-
plus-Noise-Ratio (SINR) at receivers, taking into account all the simultaneous
transmitters. This allows one to use it to test, for instance, interference-coordination
schemes. It allows both infrastructure-mode communications, where the endpoints
of communications are always one User Equipment (UE) and the evolved Node
B (eNB), and network-assisted D2D communications, where both endpoints are
UEs, and the eNB is in charge of resource scheduling. For the latter, both one-
to-one and one-to-many communications are modeled. Within SimuLTE, the LTE
functions are confined to a Network Interface Card (NIC), to facilitate the setup of
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mixed scenarios, where LTE coexists with other layer-2 technologies (like WiFi),
or to use LTE as a layer-2 technology in application scenario simulations (e.g.,
communicating vehicles).

The rest of this chapter is organized as follows: Sect. 5.2 describes the cellular-
networks background, to introduce the reader to the necessary terminology and
acronyms. Section 5.3 describes the modeling of an LTE network done within
SimuLTE. Section 5.4 presents two tutorials on hot topics in LTE research:
interference-coordination techniques at the MAC-level and D2D communications,
respectively.

5.2 Background

An LTE network is composed of the Evolved Packet Core (EPC) part and the
Radio Access Network (RAN) part, as shown in Fig. 5.1. The EPC is an Internet
Protocol (IP)-based network that includes entities performing core functionalities
for the network operator, such as Mobile Management Entity (MME), Home
Subscriber Server (HSS), and Serving Gateway (SGW). The Packet Data Network
Gateway (PGW) provides the EPC with the connectivity to the Internet. The RAN is
composed of base stations, called eNBs, which are in charge of resource allocation,
and UEs, e.g., smartphones or any device capable of connecting to an LTE network.
Downlink (DL) transmission occurs from the eNB to the UEs, and Uplink (UL)
ones in the opposite direction. As far as data-plane transmissions are concerned, in
the DL an eNB receives IP packets from the EPC, processes them through the LTE
protocol stack, which includes fragmentation and reassembly, and sends them on
the air.

While LTE occupies the layer 2 of the Open Systems Interconnection (OSI)
stack, its functions are split among three protocols, namely (from top to bottom)
the Packet Data Convergence Protocol (PDCP), the Radio Link Control (RLC), and

PGW

EPC RAN

eNodeB UE

Internet SGW

MMEHSS

Fig. 5.1 Architecture of the LTE network
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Fig. 5.2 Top-down traversal
of the LTE protocol stack
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the MAC. The downstream flow of data within the LTE stack, i.e., the one that
an IP packet would undergo on transmission, is shown in Fig. 5.2. At each layer,
data comes from the upper layer in the form of Service Data Units (SDUs) and
goes to the lower layer as Protocol Data Units (PDUs). A PDCP entity maintains
numbering and ciphering information, among others. Each PDCP SDU is assigned
a PDCP Sequence Number (SN) and ciphered so that only the peering PDCP
entity can decode it. Data from the PDCP is sent to the RLC. It is buffered in the
RLC transmission buffer, until sent down in the form of RLC PDUs, upon request
from the MAC layer. A flow is allocated to a PDCP and a RLC entity at a node,
and its PDCP/RLC entities at the transmitter and receiver are synchronized. The
RLC can work in one of three modes: Transparent Mode (TM), Unacknowledged
Mode (UM), or Acknowledged Mode (AM). The first one does not perform any
operation; hence, a RLC SDU corresponds exactly to a RLC PDU. The second
one performs segmentation/concatenation of SDUs on transmission, as well as
reassembly, duplicate detection, and reordering of PDUs on reception. The third
one adds an Automatic Repeat-reQuest (ARQ) mechanism on top of that to ensure
reliable delivery of RLC PDUs.

The MAC layer performs scheduling and multiplexing of RLC PDUs coming
from different flows and encapsulates them into MAC Transport Blocks (TBs),
which are sent over the physical layer. At every Transmission Time Interval (TTI),
which is 1 ms in LTE, the MAC scheduler at the eNB assembles the DL and the
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UL subframes. The latter include a fixed number of Resource Blocks (RBs), e.g.,
50 in a 10 MHz deployment. In the DL, the MAC scheduler selects which UEs
will receive information, how large their TB will be, and which RBs it will occupy.
The number of bits carried in each RB depends on the Modulation and Coding
Scheme (MCS) used by the eNB for that TB. The MCS is determined by the Channel
Quality Indicator (CQI) reported by the UE, which depends on the measured SINR.
A higher CQI warrants more bits per RB, hence a higher throughput. The MAC layer
includes a Hybrid Automatic Repeat-reQuest (H-ARQ) function for error recovery:
a receiving UE acknowledges (via ACKs) (or disacknowledges via NACKs) a MAC
TB four TTI after its transmission, and the eNB can schedule a predefined number
of retransmissions at any future TTI (asynchronous H-ARQ).

UL scheduling mirrors the DL one: the eNB allocates transmission grants to
UEs having backlogged data, specifying which RBs they can use, using which
modulation. However, since data is physically stored at the UEs, a signaling method
is needed for a UE to signal to the eNB its intention to transmit. UEs can append
quantized Buffer Status Reports (BSRs) to their scheduled data, to inform the eNB
of their residual backlog. UEs can also signal the presence of backlog using an
out-of-band Random Access (RAC) procedure. Simultaneous RAC requests from
different UEs may collide, in which case UEs undergo a backoff procedure before
attempting another RAC. The eNB responds to a RAC request by scheduling the
UE in a future TTI. If unanswered, RAC requests are reiterated. The handshake for
UL transmissions is summarized in Fig. 5.3. It consists of up to three parts: a RAC
request, usually followed by a (small) grant that the eNB gives to the UE, large
enough to contain a BSR, and finally a (larger) grant that the eNB can give to the
UE once it knows its backlog.

Unlike the DL ones, H-ARQ processes are synchronous, i.e., retransmissions are
scheduled exactly eight TTIs after the previous attempt.

In the latest LTE-A releases, new functions have been introduced to address
increasing traffic demand and the requirements of new services (e.g., IoT and vehic-
ular communications). For example, Coordinated MultiPoint (CoMP) transmission
and reception and D2D communications are two of the main innovations. CoMP
addresses the problem of mitigating the effects of inter-cell interference, since
all the eNBs in an LTE network share the same spectrum. In particular, CoMP
Coordinated Scheduling (CoMP-CS) and CoMP Joint Transmission (CoMP-JT)
techniques aim at improving the performance of cell-edge UEs. This is achieved by
allowing neighboring eNBs to exchange coordination information using a common

Fig. 5.3 Handshake for the
scheduling of uplink UE
traffic
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logical interface, called X2. On the other hand, D2D allows UEs in proximity
to communicate directly, without traversing the conventional infrastructure path
through the eNB (i.e., one UL and one DL transmission). This allows the UEs to
reduce latency and exploit better link quality. Although the standard focuses on one-
to-many D2D communication (one D2D transmission can be decoded by all UEs in
proximity), one-to-one D2D communication between two UEs is also envisaged,
especially in the research community. In network-controlled D2D, control functions
are still handled by the eNB: considering resource allocation as an example, UEs
have to request transmission grants from the eNB, using the same handshake
procedure as for standard UL communication. Given the short distance between the
endpoints of D2D communications (possibly reducing UEs’ transmission power),
the eNB can also allocate the same RBs to multiple D2D flows simultaneously if
their mutual interference is low, thus enabling frequency reuse and serving more
traffic with the same spectrum.

5.3 Structure of the SimuLTE Simulator

In this section, we describe the general structure of SimuLTE. We first describe the
main nodes composing a simulated LTE network in terms of their structure and
interconnections. We then move to the core of the architecture, i.e., the NIC card,
which implements the actual communication among nodes. Finally, we discuss the
available main functionalities, detailing where they are located in the codebase and
providing insights on design choices.

Figure 5.4 shows a simplified view of the project’s folder structure. The simu-
lations and test folders contain exemplary simulations together with the respective
networks and fingerprint-based tests, which are used for verification purposes. The

Fig. 5.4 Simplified
representation of the
SimuLTE-Project folders
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src folder contains all the source code and is further divided into subfolders, which
identify specific portion of the codebase. The apps folder contains four traffic
models, for Constant Bit Rate (CBR), Voice-over-IP (VoIP), Video on Demand
(VoD), and alert traffic. The common folder includes utility functions and definitions
of LTE-related parameters. The corenetwork folder contains the definition of all
nodes in the simulator, which are described in detail in the next section. epc and
x2 folders contain the definition of the entities involved, respectively, in the EPC
and in X2 communications. Finally, the stack folder contains the files defining the
structure of the LTE NIC card and all its internal layers and modules, as discussed
in Sect. 5.3.2.

5.3.1 Nodes

As we explained in Sect. 5.2, the two main nodes of a simulated LTE network
are eNBs and UEs, which handle all data-plane traffic through the LTE network.
SimuLTE adds a third node, namely, the Binder, which acts as the “oracle” of the
network, keeping track of communication associations, and which is also used to
abstract control-plane operations. Nothing prevents one to implement some of these
control procedures through the exchange of control messages in the LTE network, in
any case. Finally, one or more nodes can optionally be added to realize EPC-related
operations, e.g., for handover management. The general structure of a simulated
network is shown in Fig. 5.5.

LTE NIC

IP

PPP

LTE NIC

IP

Transport

Applica�on

radio

Binder

internet

EPC

Fig. 5.5 High-level view of the main simulator nodes
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5.3.1.1 Evolved Node B

The eNB is a communication relay for each transmission to/from UEs. It has a
Point-to-Point Protocol (PPP) interface towards the EPC, and an LTE NIC card
to communicate with UEs. Moreover, there is an array of PPP interfaces that
implement the X2 connections with neighboring eNBs. The architecture of the X2
interface will be discussed in more detail in Sect. 5.3.3.2. The eNB does not generate
traffic on the data plane, thus does not contain any application-layer module for
communication with UEs.

5.3.1.2 User Equipment

The UE node models the behavior of an LTE-based cellphone. Its structure is
inspired from INET’s StandardHost, having multiple Transmission Control Pro-
tocol (TCP)/User Datagram Protocol (UDP) applications, UDP and TCP modules
implementing the respective transport layer protocols. Each TCP/UDP application
is one end of a connection, the other end of which may be located within another
UE or anywhere else in the simulated network. SimuLTE provides models of real-
life applications (e.g., VoIP and VoD), but it can include any TCP/UDP-based
OMNeT++ application. The IP module is taken from the INET package as well.
Finally, an LTE NIC card is used for communication with the eNB or with other
UEs in case of D2D communications.

5.3.1.3 Binder

The Binder is a simple module that stores information about every LTE-related
node within the system. Its main purpose is to cover all the operations that are not
modeled as a message exchange, either to simplify the model or to speed up the
simulation process. This includes references to nodes, communication associations
among eNBs and UEs, peering associations for D2D pairs, etc.

Each module registers to the Binder during its initialize() function.
Listing 5.1 shows an exemplary registration process performed by the IP2LTE
submodule (which is explained in Sect. 5.3.2.5) residing in either a UE or an eNB.
In both cases, the module hierarchy is navigated to obtain a pointer to the module.
The getBinder() function is a utility function that returns a pointer to the Binder.
The registerNode() function is a member function of the Binder class. It stores
the OMNeT++ Identifier (ID) of the module and associates it with its node type, its
serving eNB specified via the Network Topology Description (NED) language in
case of UE registration, and a unique macNodeId. The latter value will be used to
obtain information on the node during the simulation.
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Listing 5.1 Example of a node registration to the Binder within the IP2LTE module

1 if (nodeType_ == UE)
2 {
3 cModule *ue = getParentModule()->getParentModule();
4 getBinder()->registerNode(ue, nodeType_, ue->par("masterId"));
5 }
6 else if (nodeType_ == ENODEB)
7 {
8 cModule *enodeb = getParentModule()->getParentModule();
9 MacNodeId cellId = getBinder()->registerNode(enodeb, nodeType_);

10 }

5.3.2 LTE NIC

The LTE NIC module implements the LTE stack within eNBs and UEs. Figure 5.6
shows its internal structure and connections with other modules, namely, one
between the UE and the eNB through an air channel and one with an IP module. The
LTE NIC module is built by extending INET’s IWirelessNic interface, to ease
its deployment into INET nodes. This is one of the key points that allows the creation
of complex scenarios, e.g., where LTE NICs are included in cars (e.g., Chap. 11)
or used to build hybrid connectivity scenarios (e.g., Chap. 13), where nodes are
equipped with both WiFi and LTE interfaces. With reference to Fig. 5.6, each of the
NIC submodules models a corresponding part of the LTE protocol stack. Following
the OMNeT++ paradigm, data-plane communications between the different layers
of the protocol stack take place only via message exchange, hence ensuring a tight
control over module interactions. The NIC structure is the same for both UE and
eNB, the only exception being the FeedbackGenerator, only implemented in
the UE. It is responsible for creating channel feedback that is then managed by the
Physical Layer (PHY) module.

Fig. 5.6 Internal structure of
the LTE NIC module
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Each layer is implemented as a base module, specifying interfaces and main
parameters. Base modules are then inherited to define specific versions for eNB
and UEs, with additional parameters and gates. The same approach is followed
for the implementation of the module behavior via C++ classes. In the following
subsections, we describe each submodule and its functionalities.

5.3.2.1 PHY

The PHY module resides at the bottom of the LTE protocol stack and implements
physical layer related functions, such as channel-feedback reporting and computa-
tion, simulation of the air channel, and data transmission and reception. It also stores
the node’s PHY parameters, like the transmission power and the antenna profile
(i.e., whether transmissions are omni-directional or anisotropic). This control over
transmission parameters allows one to define so-called heterogeneous scenarios,
composed of macro-, micro-, and pico-eNBs, each one having its one radiation
profiles.

PHY modules at both the eNB and the UE are associated with a module that
models the behavior of the physical channel as perceived by the node itself. Channel
modeling is implemented in a hierarchical manner: first, a base module called
LteChannelModel defines two main functions getSINR() and error().
The first one, getSINR(), should compute the SINR of a given transmission.
The second one, error(), should check if a packet has been corrupted during
transmission. In the following, we describe the implementation of this module,
which is available in the current implementation of SimuLTE. However, one can
easily obtain its own version of the channel model by implementing the above
interface.

Part of the tasks related to physical-layer procedures on the UE side is handled
by a module called FeedbackGenerator. The latter measures the status of the
channel and generates feedback, which is then sent to the eNB in the form of CQIs.
The feedback-generation process can be configured to work aperiodically, i.e., on
demand from the eNB, or periodically, with a configurable period. The feedback-
generation process models channel measurements using the functions provided by
the LteChannelModel module, in particular the getSINR() function. This
function returns a vector of SINR values, one for each RBs available in the
system bandwidth, which are then processed to generate CQIs. These can be either
wideband, one value for the whole bandwidth, or per-band. In the latter case, the
user can configure the number of RBs that compose a band.

As discussed above, the physical LTE channels, such as the Physical Uplink
Control Channel (PUCCH), the Physical Downlink Control Channel (PDCCH), and
the Physical Random Access Channel (PRACH), are not modeled down to the level
of Orthogonal Frequency Division Multiplex (OFDM) symbols. We implemented
the functions associated to said channels either via control messages sent between
the eNB and UE nodes or via function calls through the Binder. However, any
limitation or constraints imposed to the system by those channels (e.g., max. number
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of UEs that can be scheduled simultaneously on the PDCCH) can be simulated
by imposing constraints on the simulated message flow. Our modeling choice is to
limit both memory and processor usage while retaining a good level of simulation
accuracy.

As far as data flow is concerned, in the downstream MAC-PDUs received from
the MAC layer are encapsulated in packets of the type LteAirFrame. Packets
are marked with a type (i.e., data or control), a set of transmission parameters (e.g.,
transmission power and position, number of used RBs, etc.), and are sent to the
destination module using the sendUnicast() function. In the upstream, instead,
a received LteAirFrame is checked for its type and processed consequently:
control packets are assumed to be correctly received and are forwarded to the upper
layer. Data packets are instead checked for correct reception using the error()
function of LteChannelModel, then decapsulated and sent to the upper layer.
Note that while decapsulated packets are always forwarded upstream, they are
marked with the result of the error() function, which will be then evaluated at
the upper layers.

SimuLTE provides an implementation of the LteChannelModel base mod-
ule, which is called LteRealisticChannelModel. In this implementation,
each value of the SINR is computed as:

SINR = P eNB
RX

/(∑
i
P i
RX + N

)
, (5.1)

where P eNB
RX is the power received from the serving eNB, P i

RX is the power received
from the ith interfering eNB, and N is the Gaussian noise. Furthermore, PRX is
computed as PRX = PTX − Ploss − F − S, where PTX is the transmission power,
Ploss is the path loss due to the eNB-UE distance, which also depends on the
frequency where the considered RB lies, and F and S are the attenuation due to
fast and slow fading, respectively [3]. Computing the SINR on each RB allows one
to take into account interference on a per-RB basis, e.g., taking into account the
transmissions from neighboring eNBs. This can be used to evaluate interference-
coordination mechanism, notably the CoMP.

The error() function, instead, evaluates the correct LteAirFrame reception
by analyzing the CQI used at transmission and the current channel status. These two
values are used together with a set of realistic Block Error Rate (BLER) curves to
obtain an error probability X ∈ [0, 1]. Finally, a uniform random variable Perr is
sampled and the packet is assumed to be corrupted if X < Perr .

As stated above, custom models of the channel can be created and used within
SimuLTE. Two main approaches are possible in this respect:

1. Create a new module that extends the LteChannelModel base module, i.e.,
redefining the getSINR() and error() functions.

2. Create a new module that inherits from LteRealisticChannelModel,
redefining the functions for path loss, fading, and shadowing computation.
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5.3.2.2 MAC

Most of the intelligence of LTE nodes is implemented in the MAC module. The main
tasks of this module comprise buffering packets coming from lower layers (PHY)
and requesting data for transmission from upper ones (RLC), encapsulating MAC-
SDUs into MAC-PDUs and vice versa, handling and storing channel feedback,
performing scheduling, and Adaptive Modulation and Coding (AMC). Most of the
operations related to the flow of packets are the same at the UE and the eNB.
Scheduling and channel-feedback management, instead, are performed differently
on the two nodes.

Figure 5.7 shows a high-level view of the layer structure. The main functions
of the MAC layer are executed periodically at a 1 ms pace. This behavior is
implemented by the LteMacBase module, which schedules a self-message each
millisecond and handles it via the handleSelfMessage() function. The latter
is redefined to obtain specialized versions for the eNB and UE, respectively, by
the LteMacEnb and LteMacUe classes. Figure 5.8 shows an overview of the
operations performed by the handleSelfMessage() function in the two cases.
They both start with the decapsulation of the successfully decoded PDU from
the H-ARQ buffers in reception. In the upstream, MAC-PDUs coming from the
PHY are stored into H-ARQ buffers, where they are then checked for correctness,
decapsulated, and then forwarded to the RLC in the form of MAC-SDUs.

On the eNB side, UL connections are scheduled for transmission according to a
configurable policy. Scheduling decisions are notified to the UEs via grant messages,
i.e., the PDCCH is not simulated. Similarly, DL scheduling is performed by
selecting which connection to serve, and how much data to send. For each scheduled
connection, MAC-SDUs are then requested to the RLC layer and encapsulated into
MAC-PDUs. The latter are finally stored in the H-ARQ buffers and forwarded to the
PHY for transmission. The structure of H-ARQ buffers will be explained later on.

MAC 
BUFFERS

H-ARQ BUFFERS

MAC SDUs

MAC SDUs

MAC PDUs

Schedule 
List

MAC PDU
Creation

MAC SDU
Creation

SDU
request

Fig. 5.7 High-level view of the MAC layer structure
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Fig. 5.8 Main MAC-level operations

On the UE side, instead, each UE checks if any grants have been received and
decides which local connection will be able to use the granted resources, if any. If
no resources are available, it will perform a resource request via the RAC procedure,
which is again implemented through messages generated by the MAC module.
Then, the UE will check its H-ARQ buffers to see if any transmission is expected
for this TTI1 and will proceed with the scheduling of new transmissions otherwise.

H-ARQ buffers are used to store MAC-PDUs that are being sent and received.
There is one set of such buffers for transmissions and one for receptions, to which
we will refer as TxHbuff and RxHbuff, respectively, and as Hbuff to denote both.

A transmitted MAC-PDU is stored in the TxHbuff until it is received correctly or
the maximum number of retransmissions is reached. Correct reception is notified via
H-ARQ feedback messages. A received MAC-PDU is instead stored in the Rxbuff
until its decoding process has been completed. On the eNB side, H-ARQ buffers
store MAC-PDU information for each H-ARQ process, for each connected UE in
both downlink and uplink. In Fig. 5.9 we show the general structure of a Hbuff. The
latter contains K buffers, one for each active connection to another node. An eNB
has thus as many buffers as connected UEs in each direction, whereas a UE has up
to one per direction, as it communicates directly only with its serving eNB. This
architecture is slightly modified in case of D2D communications, where a UE has
one additional buffer for each peering UE.

1Please note that UL transmissions are synchronous.
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Each buffer is composed of N processes (usually N = 8), one per H-ARQ
process, and each process contains two units, to support single-user MIMO. Units
are the actual data structure containing the information related to a transmit-
ting/receiving MAC-PDU. The way unit status is stored depends on the feedback
management procedure, resulting in different data structures for Tx- and Rx-
Hbuffs. Figure 5.10 shows the finite-state automaton for transmissions (the one for
receptions is similar, mutatis mutandis). Acknowledgment (ACK) and Negative-
Acknowledgment (NACK) are the reception of the corresponding H-ARQ feedback.
T xCount is the transmission counter, which is increased in the SELECTED state
and then reset in the EMPTY one. maxT x is the maximum number of transmissions
before a PDU is discarded.
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Fig. 5.11 High-level view of
the architecture for the three
RLC modes

Multiplexer

AM UMTM

TX Buffers

RX Buffers

TX Buffers

RX Buffers

5.3.2.3 RLC

This module implements RLC operations, which are identical for the eNB and the
UE. It performs multiplexing and demultiplexing of MAC-SDUs to/from the MAC
layer, implements the three RLC modes TM, UM, and AM as defined in 3GPP-
TS 36.322, and forwards packets from/to the PDCP-Radio Resource Control (RRC)
to/from the proper RLC mode entity. Figure 5.11 shows the general structure of
the RLC module. As we can see, there is one different gate for each RLC mode,
which are connected towards the PDCP-RRC one. The TM submodule forwards
packets transparently and has no buffer, whereas AM and UM have their own set
of transmission and reception buffers, one for each connection associated to the
according RLC mode.

5.3.2.4 PDCP-RRC

The PDCP-RRC module models operations of the highest layer of the LTE protocol
stack. It receives data from the IP2LTE module (in the downstream direction) and
from the RLC one (in the upstream). In the first case, the PDCP-RRC performs a
RObust Header Compression (ROHC) of the received packet and assigns it a Logical
Connection Identifier (LCID). The latter uniquely identifies the connection to which
the packet belongs. It is obtained from the 4-tuple composed of <sourceIPAddr,
destIPAddr, sourcePort, destPort>. The packet is then encapsulated in a PDCP-PDU
and forwarded to the proper RLC port, according to the selected RLC mode. In the
upstream, a packet coming from the RLC is first decapsulated, then its header is
decompressed, and the resulting PDCP SDU is finally sent to the upper layer.

5.3.2.5 IP2LTE

The IP2LTE module acts as an interface between the network layer (i.e., IP)
and the LTE NIC. In the downstream, it receives layer-3 datagrams and extracts
both source/destination IP addresses and port numbers. The latter are written into
a ControlInfo object that is attached to the message before it is sent to the
lower layers, as shown in Listing 5.2. This allows the PDCP-RRC module to obtain
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the above 4-tuple without inspecting the packet and to associate a LCID to the
flow, as explained in the previous section. In the upstream, IP2LTE only forwards
the message from PDCP-RRC to the network layer without further processing.
Moreover, the IP2LTE is responsible for registering the LTE NIC to the Binder
and to the interface table of the network layer during the initialization.

Listing 5.2 Creation of the ControlInfo object

1 FlowControlInfo *controlInfo = new FlowControlInfo();
2 controlInfo->setSrcAddr(srcAddr.getInt());
3 controlInfo->setDstAddr(destAddr.getInt());
4 controlInfo->setSrcPort(srcPort);
5 controlInfo->setDstPort(dstPort);
6 [...]
7 datagram->setControlInfo(controlInfo);
8 send(datagram,stackGateOut_);

5.3.3 Main Functions

We now discuss the scheduling, inter-eNB, and D2D-communication operations.

5.3.3.1 Scheduling

As discussed in Sect. 5.2, resource scheduling is the process of deciding how to
allocate RBs to UEs, in both the DL and UL subframes. This process is realized at
the MAC layer and performed by the eNBs on each TTI. In SimuLTE, scheduling
operations are implemented at the eNB by the LteSchedulerEnb class, which
defines all the operations that are common to the DL and UL, such as data structure
initialization, allocation management via the Allocator, and statistics collection.
The Allocator is a C++ class that keeps the information about the RBs’ occupa-
tion. The core of this class is the schedule() function, whose main operations are
shown in Fig. 5.12. These are common to both the DL and UL scheduling. First, the
data structures containing the allocation decisions of the previous TTI are cleared,
and the per-UE modulation and coding information is updated using the most recent
channel information. Then, the actual scheduling is performed, processing RAC
requests (UL only), retransmissions, and first transmissions. The way these two last
operations are performed defines the scheduling policy, i.e., how contention among
UEs is managed. Finally, statistics on the allocation (e.g., the number of allocated
RBs) are computed and emitted to the simulation environment.

The scheduling hierarchy is shown in Fig. 5.13 (left part of the figure). The
LteSchedulerEnbUl and LteSchedulerEnbDl classes extend the base
class LteSchedulerEnb by implementing the rtxSchedule() method,
which handles RAC requests and manages retransmissions. Scheduling policies
are instead implemented by extending the LteScheduler class. The latter’s
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Fig. 5.12 Depiction of the main scheduling operations
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Fig. 5.13 High-level representation of the scheduling hierarchy

main function, called prepareSchedule(), is responsible for applying the
scheduling policy on backlogged connections and building a schedule list that
associates each connection to the number of allocated RBs. To build the schedule
list, the scheduling policy examines backlogged connections one at a time and
polls the Allocator, via the requestGrant() member function, to check
whether there are RBs available for the given connection. The latter obtains the
amount of bytes that can be transmitted in a single RB for that connection from the
AMC module. Finally, the schedule list is passed to the MAC layer, which enforces
it by fetching the data from the connections’ RLC buffers and constructing the
MAC-PDUs.
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Three well-known scheduling policies are included in the current release, namely,
Maximum Carrier-over-Interference (MaxC/I), Proportional Fair (PF), and Deficit
Round Robin (DRR), as depicted in Fig. 5.13 (right part of the figure). The schedul-
ing policy can be modified by changing the schedulingDisciplineDl and
schedulingDisciplineUl parameters of the MAC layer, as follows:

1 *.eNodeB.lteNic.mac.schedulingDisciplineDl = "MAXCI"
2 *.eNodeB.lteNic.mac.schedulingDisciplineUl = "MAXCI"

As far as RBs are concerned, SimuLTE allows one to group RBs into logical
bands, i.e., logical groups of RB that are considered as the minimum scheduling
unit by the scheduler. Let us consider the following exemplary configuration:

1 **.deployer.numRbDl = 20
2 **.deployer.numRbUl = 20
3 **.deployer.numBands = 20

The first two lines define the number of available RBs in the DL and UL
subframes, respectively. The third one defines the total number of logical bands
among which the RBs are divided into. In this case, we will end up with 20 logical
bands with 1 RB each, i.e., one RB for each band. The scheduling policy will work
on bands rather than the RBs, different mappings can hence be used to modify the
way the scheduler accesses resources.

Moreover, the scheduling policy can ask the Allocator to restrict the set
of RBs that can possibly be allocated to a connection, by using the BandLimit
concept. The latter is a data structure stored at the MAC layer of every eNB
that specifies, for each UE and RB, the amount of bytes (if any) that can be
allocated to that UEs connections in that RB. This concept can be exploited when
enforcing interference-coordination mechanisms, for which we provide an example
in Sect. 5.4.1.

5.3.3.2 Inter-eNB Communications

Interactions among eNBs are crucial to support functionalities like handover and
interference coordination, which are the subject of several research works. eNBs
interact via the X2 interface, which is modeled in SimuLTE. Within the eNB, we
model the X2 protocol stack depicted in Fig. 5.14, where the LteX2App handles
the communication with one peering eNB and runs on top of Stream Control
Transmission Protocol (SCTP) as the transport protocol. The task of the LteX2App
is to pass messages originated from the LTE NIC to the peering eNB and vice
versa. The two directions are managed by two different inner modules, namely,
X2AppServer and X2AppClient. If the eNB peers with multiple eNBs, one
LteX2App is needed for each connection. LteX2App is transparent to the kind of
messages to be sent on behalf of modules within the LTE protocol stack. Within the
latter, X2User entities are base modules that can be extended in order to implement
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a functionality that exploits the X2 to perform its task. LteX2App and X2User
modules are transparent to each other and the interface between them is provided
by the LteX2Manager, as shown in Fig. 5.15. Listing 5.3 shows the code of its
handleMessage() function, which calls different handlers based on the origin
of the message.
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Listing 5.3 The role of the LteX2Manager

1 void LteX2Manager:handleMessage(cMessage *msg)
2 {
3 cPacket* pkt = check_and_cast<cPacket*>(msg);
4 cGate* incoming = pkt->getArrivalGate();
5 if (strcmp(incoming->getBaseName(), "dataPort") == 0) // from LTE stack
6 {
7 EV << "LteX2Manager:handleMessage - Received message from LTE stack" <<

endl;
8 fromStack(pkt); // call handler
9 }

10 else // from X2
11 {
12 int gateIndex = incoming->getIndex();
13 EV << "LteX2Manager:handleMessage - Received message from X2, gate " <<

gateIndex << endl;
14 fromX2(pkt); // call handler
15 }
16 }

As an example, consider the CoMP-CS function implemented within SimuLTE:
in order to mitigate possible inter-cell interference, neighboring eNBs exchange
scheduling information via X2 and avoid allocating the same RBs. This is done
by the LteCompManager, which extends the X2User module. Therefore, the
LteCompManager can interact with the LTE protocol stack via direct method
calls and then sends its messages to the LteX2Manager, which in turn passes them
to the peering eNBs. According to the architecture explained above, if eNB i has to
send a CoMP message to neighboring eNB j and k, the LteCompManager only
needs to send one message to the LteX2Manager including the list of destinations.
The LteX2Manager then identifies the LteX2App modules handling the X2
connections to j and k and passes one copy of the message to each for the
transmission over the X2 interface.

5.3.3.3 D2D Operations

SimuLTE supports both one-to-one and one-to-many D2D communications. In the
one-to-one case, a D2D flow consists of a peering connection between two UEs. The
Binder keeps a data structure containing the peering relationships between D2D-
capable UEs, i.e., which pairs of UEs can communicate directly. For each pair of
D2D endpoints, the Binder also stores whether the flow actually uses the direct
path or the conventional infrastructure path through the eNB. The communication
mode can be either static or selected dynamically by the D2DModeSelection
module residing within each eNB. On the other hand, there are no peering
relationships for one-to-many communications. Messages transmitted by a UE
include a multicastGroupID field and only UEs enrolled within the multicast
group can try to decode the transmission.

Processing of D2D flows is carried out by specialized, D2D-enabled versions of
the LTE NIC (both the UE and the eNB sides), which inherit functionalities from
the base ones. To this aim, LteNicUe and LteNicEnb modules are extended
by LteNicUeD2D and LteNicEnbD2D, respectively. The latter, in turn, defines
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specialized versions of each layer, e.g., LteMacUeD2D and LteMacEnbD2D for
the MAC layer.

At the PHY layer, getSINR_D2D() and error_D2D() functions are pro-
vided to compute the SINR and check transmission errors of D2D flows. As far
as scheduling is concerned, frequency reuse among D2D flows is accomplished
by extending the Allocator module so that it can associate more than one UE
to each allocated RB. Frequency-reuse-enabled scheduling policies can then be
implemented on top of this general structure. Moreover, the eNB also needs to know
whether to schedule H-ARQ retransmissions for D2D flows, although (N)ACKs are
exchanged between UEs without involving the eNB. Thus, we allow the receiving
UE to send a copy of the (N)ACKs to the eNB, too. The MAC layer of the eNB uses
such information to update a data structure that mirrors the status of each TxHbuffs.
RLC layer does not need additional D2D-related functionalities, whereas the PDCP
layer takes care of associating downstream packets to either D2D or infrastructure
mode exploiting the Binder.

5.4 Tutorials

We now describe two case studies, namely: (1) an analysis of the problem of inter-
eNB interference coordination and (2) the mode selection for D2D. We use a tutorial
approach in both cases, starting with the problem statement, then guiding the reader
to the simulation-setup process, including the network definition and the parameters
configuration, and prompting some possible modifications to the code.

5.4.1 Tutorial 1: Interference Coordination

We consider the downlink of a multicell network, where eNBs serve their UEs
while sharing frequency resources. In such a scenario, CoMP-CS can be enforced
to mitigate inter-cell interference. In this context, eNBs participating in the coordi-
nation send their load information to one eNB, chosen as coordinator, through the
X2 interface. In turn, the coordinator periodically runs an algorithm to assign non-
overlapping sets of usable RBs to each eNB and communicates them which RBs
they can/cannot use in the subsequent scheduling operations. Thus, the objective of
this tutorial is to show how to configure X2 connections and change the coordination
algorithm implemented by the eNBs.

5.4.1.1 Network Definition

We consider the MultiCell_X2Mesh network depicted in Fig. 5.16, which is
composed of three eNB connected to each other via the X2 interface. In particular,
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Fig. 5.16 Network definition for the scenario MultiCell_X2Mesh

full-mesh topology is established between eNBs; hence, point-to-point connections
are provided between any pair of eNBs. Moreover, each eNB serves a set of UEs,
respectively, ue1[*], ue2[*], and ue3[*]. Parameters numUe1, numUe2, and
numUe3 specify the number of UEs served by each eNB.

5.4.1.2 Parameters Configuration

With reference to the snippet of the omnetpp.ini file in Listing 5.4, we first configure
X2-related parameters for this tutorial.

Listing 5.4 Configuration of X2-related parameters

1 # one x2App per peering eNodeB
2 *.eNodeB*.numX2Apps = 2
3
4 # X2 Server-side ports (x2App[0]=5000, x2App[1]=5001, ...)
5 *.eNodeB*.x2App[*].server.localPort = 5000 + ancestorIndex(1)
6
7 ################# Peering configuration ###################
8 # - eNodeB1%x2ppp0 <--> eNodeB2%x2ppp0
9 # - eNodeB1%x2ppp1 <--> eNodeB3%x2ppp0

10 # - eNodeB2%x2ppp1 <--> eNodeB3%x2ppp1
11 ###########################################################
12 *.eNodeB1.x2App[0].client.connectAddress = "eNodeB2%x2ppp0"
13 *.eNodeB1.x2App[1].client.connectAddress = "eNodeB3%x2ppp0"
14 *.eNodeB2.x2App[0].client.connectAddress = "eNodeB1%x2ppp0"
15 *.eNodeB2.x2App[1].client.connectAddress = "eNodeB3%x2ppp1"
16 *.eNodeB3.x2App[0].client.connectAddress = "eNodeB1%x2ppp1"
17 *.eNodeB3.x2App[1].client.connectAddress = "eNodeB2%x2ppp1"
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As explained in Sect. 5.3.3.2, the LteX2App module inside the eNB is respon-
sible for maintaining the connection with one peering eNB. In order to build a
full-mesh topology, we need to provide N − 1 LteX2App modules within each
eNB. To do this, we set the *.numX2Apps parameter to 2 in our example.

Then, we need to configure both the server- and the client-side of each
LteX2App. For the server-side, we need to ensure that LteX2Apps within
the same eNB are bound to different port numbers; otherwise, local forwarding
would not be possible. A simple way to achieve this is to assign incremental port
numbers to every LteX2App, as shown at line 5. On the other hand, the client-side
of each LteX2App must be configured so that it will connect to the IP address
of the peering eNB. This is accomplished by setting the connectAddress
parameter using symbolic addresses. Since each eNB has several X2 interfaces,
it is necessary to specify the full name of the desired interface using the format
<module%interface>. Note that the interface part of the address must specify
the gate index, too.

Once the X2 is ready, it can transport every kind of message between eNBs,
including CoMP messages. CoMP functionalities are disabled by default; hence,
we need to activate them by setting the compEnabled parameter to true. This is
exemplified in the ini configuration file below.

Listing 5.5 Configuration of CoMP-related parameters

1 ############### CoMP configuration ##################
2 *.eNodeB*.lteNic.compEnabled = true
3
4 # Master configuration
5 *.eNodeB1.lteNic.compManager.compNodeType = "COMP_CLIENT_COORDINATOR"
6 *.eNodeB1.lteNic.compManager.clientList = "2 3"
7
8 # Slaves configuration
9 *.eNodeB*.lteNic.compManager.coordinatorId = 1

10
11 # CoMP algorithm
12 *.eNodeB*.lteNic.compManagerType = "LteCompManagerProportional"
13
14 # Scheduling policy
15 *.eNodeB*.lteNic.mac.schedulingDisciplineDl = "MAXCI_COMP"

Since we modeled CoMP-CS algorithms according to the master–slave
paradigm, we need to specify the role of every eNB participating in the
coordination. Assume that the coordinator’s role is co-located with eNodeB1. Then
eNodeB1’s CoMP manager gets the value COMP_CLIENT_COORDINATOR
as its compNodeType. On the other hand, eNodeB2 and eNodeB3 get the
COMP_CLIENT default value. Moreover, the coordinator needs to know the IDs
of the client eNBs, whereas the latter have to be configured with the ID of the
coordinator. Parameter compManagerType allows one to instantiate different
user-defined CoMP algorithms. SimuLTE comes with a simple example that we
will introduce in the next subsection. Finally, a CoMP-enabled scheduling policy
has to be selected for the downlink scheduler.
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5.4.1.3 Modifying the Code

Coordinated-scheduling operations are defined within the LteCompManager
module. According to our model, at every TTI, the eNBs participating in the
coordination run a local algorithm that computes the required number of RBs
and sends those requests to the coordinator via the X2 interface. Then, at every
coordination period, the coordinator runs the coordination algorithm based on
the input received by the clients and sends the results back to the clients.
provisionalSchedule() and doCoordination() functions are virtual
methods. Thus, one can define its own coordination algorithm, by implementing
a new module derived from the LteCompManagerBase class, redefining the
provisionalSchedule() and doCoordination() functions.

Listing 5.6 Modifying the CoMP algorithm

1 void LteCompManagerBase:runClientOperations()
2 {
3 EV<<"LteCompManagerBase:runClientOperations - node "<<nodeId_<<endl;
4 provisionalSchedule();
5 X2CompRequestIE* requestIe = buildClientRequest();
6 sendClientRequest(requestIe);
7 }
8
9 void LteCompManagerBase:runCoordinatorOperations()

10 {
11 EV<<"LteCompManagerBase:runCoordinatorOperations - node "<<nodeId_<<endl;
12 doCoordination();
13 // for each client, send the appropriate reply
14 std:vector<X2NodeId>:iterator cit = clientList_.begin();
15 for (; cit != clientList_.end(); ++cit)
16 {
17 X2NodeId clientId = *cit;
18 X2CompReplyIE* replyIe = buildCoordinatorReply(clientId);
19 sendCoordinatorReply(clientId, replyIe);
20 }
21
22 if (nodeType_ == COMP_CLIENT_COORDINATOR) // local reply
23 {
24 X2CompReplyIE* replyIe = buildCoordinatorReply(nodeId_);
25 sendCoordinatorReply(nodeId_, replyIe);
26 }
27 }

SimuLTE provides the exemplary LteCompManagerProportional CoMP
module, which inherits functionalities from LteCompManagerBase and over-
rides the doCoordination() function. According to this policy, the master eNB
partitions the number of available RBs among eNBs in a proportional fashion based
on their requested RBs. Slave eNBs can then use only the assigned subset of the
available RBs when doing their scheduling. Listing 5.7 shows that the set of usable
bands in the next TTIs is received within the master’s reply. This information is then
used to pilot the BandLimit data structure mentioned in Sect. 5.3.3.1.
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Listing 5.7 Handling of CoMP master’s reply

1 void LteCompManagerProportional:handleCoordinatorReply(X2CompMsg* compMsg)
2 {
3 while (compMsg->hasIe())
4 {
5 X2InformationElement* ie = compMsg->popIe();
6
7 if (ie->getType() != COMP_REPLY_IE)
8 throw cRuntimeError("LteCompManagerProportional:

handleCoordinatorReply - Expected COMP_REPLY_IE");
9

10 // parse reply message
11 X2CompProportionalReplyIE* replyIe =
12 check_and_cast<X2CompProportionalReplyIE*>(ie);
13 std:vector<CompRbStatus> allowedBlocksMap =
14 replyIe->getAllowedBlocksMap();
15
16 UsableBands usableBands = parseAllowedBlocksMap(allowedBlocksMap);
17 setUsableBands(usableBands);
18
19 delete replyIe;
20 }
21 }

5.4.1.4 Results

We now discuss the results obtained by simulating the network from Fig. 5.16. We
consider 500 m as the inter-eNB distance and randomly deploy a varying number
of UEs per eNB. Each UE is the destination of a CBR data flow; hence, it runs
one CbrReceiver application on top of UDP. Flows originate at the server that
has one CbrSender application per UE, each of them sending a 40 B packet
every 20 ms. CbrSender and CbrReceiver applications are defined in the
apps folder. The available number of RBs is set to 25, corresponding to a 5 MHz
bandwidth system and MaxC/I is employed as the scheduling policy. We run five
independent repetitions for each scenario configuration.

We compare the results obtained with and without interference coordination
provided by the CoMP algorithm described in Sect. 5.4.1.3, to show that the latter
improves the system fairness in terms of UE throughput. To this aim, we obtain
the application-layer throughput by extracting the cbrReceivedThroughput
statistics from the simulations results and process it to produce the Lorenz curve
depicted in Fig. 5.17, in a scenario with 30 UEs per eNB. This curve provides
a graphical representation of the cumulative portion of the throughput (on the y-
axis) achieved by the cumulative portion of the UEs (on the x-axis). The bisector
represents the ideal case, where all the UEs obtain the same throughput; hence, the
more a curve is close to the bisector, the more the system is fair. Figure 5.17 shows
that the scenario where CoMP is enabled guarantees more fairness among UEs than
the scenario with no interference coordination.

This is due to the improvements of the channel quality for UEs close to
the cell edge, which are more protected from the interference produced by non-
serving eNBs. This argumentation is supported by MAC-level metrics provided by
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Fig. 5.18 Average CQI with increasing number of UEs

SimuLTE, such as the averageCqiDl one, which is shown in Fig. 5.18. The latter
reports the average CQI used by the eNBs for transmitting in the DL subframe,
with an increasing number of UEs per eNB. Besides improving throughput, better
channel quality also allows the eNBs to reduce resource utilization. Figure 5.19
reports the avgServedBlocksDl statistic, i.e., the average number of RBs
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Fig. 5.19 Average number of
allocated RBs with increasing
number of UEs
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occupied by one eNB on each TTI. While the subframe is basically saturated in
the baseline case, only a small number of RBs is used when CoMP is enabled.

5.4.2 Tutorial 2: D2D Communication

This tutorial describes the configuration of a scenario where two UEs are capable of
D2D communications and their serving eNB can switch their actual communication
mode from direct to infrastructure mode and vice versa. In this scenario, the
eNB periodically runs a decision algorithm that selects the communication mode
that ensures the best channel quality for the D2D-capable flows. We show which
parameters can be tuned in such a scenario and how to implement a new mode-
selection policy.

5.4.2.1 Network Definition

We consider the SingleCell_D2D network, which is composed of one eNB. As
Fig. 5.20 shows, UEs are divided into three groups, namely, ueCell, ueD2DTx,
and ueD2DRx, which, respectively, represent conventional cellular UEs, trans-
mitting D2D UEs, and receiving D2D UEs. The number of UEs can be config-
ured using the corresponding NED parameters numUeCell, numUeD2DTx, and
numUeD2DRx.
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Fig. 5.20 Network definition
for the D2D communication
scenario
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5.4.2.2 Parameters Configuration

With reference to the omnetpp.ini file portion shown in Listing 5.8, we first need
to enable D2D capabilities on both the eNB and the UEs by setting the D2D-
capable version of the LTE NICs, using the parameter nicType. Then, we specify
the d2dInitialMode parameter for ueD2DTx[0], i.e., the communication
mode used at the beginning of the simulation. In this example this parameter is
set; hence, ueD2DTx[0] performs transmissions using the D2D path. Regarding
the MAC layer, we need to specify the D2D mode for the AMC module, which
extends the default one supporting UL/DL communications only. We also allow
D2D flows to transmit using either fixed modulation or the CQI reported period-
ically. In the former case, we need to set the usePreconfiguredTxParams
parameter and specify d2dCqi in a range between 1 and 15. In the latter case, we
set enableD2DCqiReporting, whereas usePreconfiguredTxParams is
disabled and d2dCqi is ignored. For the purposes of this tutorial, the second mode
is used. Going down to the PHY layer, it is possible to select different transmission
power for UL and D2D communications through ueTxPower and d2dTxPower
parameters, expressed in dBm. By default, mode-selection functionality is disabled
at the eNB. We can enable it by specifying the name of the module implementing
the mode-selection algorithm with d2dModeSelectionType parameter. Since
mode selection is performed periodically by the eNB, it is possible to specify
the period duration through the modeSelectionPeriod parameter, expressed
in seconds. In the next subsection, we will show how to implement customized
algorithms.
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Listing 5.8 Configuration of D2D-related parameters

1 # Enable D2D for the eNB and the UEs involved in direct communications
2 *.eNB*.nicType = "LteNicEnbD2D"
3 *.ueD2D*[*].nicType = "LteNicUeD2D"
4
5 # Set the initial communication mode
6 *.ueD2DTx[0].lteNic.d2dInitialMode = true
7
8 # Select CQI reporting mode for D2D transmissions
9 *.eNB.lteNic.mac.amcMode = "D2D"

10 *.eNB.lteNic.phy.enableD2DCqiReporting = true
11 **.usePreconfiguredTxParams = false
12 **.d2dCqi = 7
13
14 # Select Tx Power
15 *.ueD2DTx[0].lteNic.phy.ueTxPower = 26 # in dBm
16 *.ueD2DTx[0].lteNic.phy.d2dTxPower = 20 # in dBm
17
18 # Enable Mode-selection algorithm
19 *.eNB.lteNic.d2dModeSelectionType = "D2DModeSelectionBestCqi"
20 *.eNB.lteNic.d2dModeSelection.modeSelectionPeriod = 1s

5.4.2.3 Modifying the Code

The module responsible for selecting the transmission mode of D2D-capable
flows is D2DModeSelectionBase. The latter provides basic functionalities
for periodic mode-selection operations and it can be extended to realize the
preferred policy. As shown in Listing 5.9, this module periodically schedules a
self-message, which serves as a trigger for calling the doModeSelection()
function. The latter implements the actual mode-selection algorithm. Since it is a
virtual function, one can build its own module extending the base one and redefining
the behavior of doModeSelection(). SimuLTE provides an example module,
called D2DModeSelectionBestCqi, which selects either UL or D2D for a
flow based on the best CQI value reported for the two links. After the execution
of doModeSelection(), the decisions are notified to the UEs involved in D2D-
capable communications.

Listing 5.9 Modifying the mode-selection algorithm

1 void D2DModeSelectionBase:handleMessage(cMessage *msg)
2 {
3 if (msg->isSelfMessage())
4 {
5 if (strcmp(msg->getName(),"modeSelectionTick") == 0)
6 {
7 // run mode selection algorithm
8 doModeSelection();
9 // send switch notifications to selected flows

10 sendModeSwitchNotifications();
11 scheduleAt(NOW+modeSelectionPeriod_, msg);
12 }
13 else
14 throw cRuntimeError("D2DModeSelectionBase:handleMessage -

Unrecognized self message %s", msg->getName());
15 }
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16 else
17 delete msg;
18 }

The message including a switch notification traverses the whole LTE stack at the
UE side in the upstream direction. This way, each layer is able to perform switching-
related tasks. Listing 5.10 refers to a snippet of the handleMessage() function
in LteMacUeD2Dmodule. If the message is recognized as a switch notification, the
corresponding handler macHandleD2DModeSwitch() is invoked. The MAC-
layer handler is responsible for clearing buffers and terminating ongoing H-ARQ
processes. However, one can re-implement this handler (as well as higher-layer
handlers) to provide advanced switching operations, e.g., to avoid packet loss.

Listing 5.10 Modifying mode-switching handler at the UEs

1 if (incoming == down_[IN])
2 {
3 UserControlInfo *userInfo = check_and_cast<UserControlInfo *>(pkt->

getControlInfo());
4 if (userInfo->getFrameType() == D2DMODESWITCHPKT)
5 {
6 EV<<"LteMacUeD2D:handleMessage - Received packet "<<
7 pkt->getName()<<" from port "<<pkt->getArrivalGate()->getName()<<endl;
8
9 // message from PHY_to_MAC gate (from lower layer)

10 emit(receivedPacketFromLowerLayer, pkt);
11
12 // call handler
13 macHandleD2DModeSwitch(pkt);
14 return;
15 }
16 }

5.4.2.4 Results

In order to demonstrate the effects of mode switching, we consider the network
from Fig. 5.20 and simulate one pair of D2D UEs. One UE is the transmitter
and one is the receiver of a CBR data flow, sending one packet every 20 ms. We
make the packet length vary from 500 B to 1000 B to assess the performance of
the D2D flow with different traffic loads. The two UEs are 300 m away from the
eNB and they swing back and forth in a straight line at a speed of 3 m/s. Such a
path allows the direct link between them to experience different channel quality
during the simulation, whereas the channel quality for UL stays constant. This
way, we can simulate a scenario where the eNB implements the aforementioned
D2DModeSelectionBestCqi() policy, making the flow bounce between the
direct link and the infrastructure one. We compare this scheme with the scenario
where mode selection is disabled and the flow uses always the direct link.

In this dynamic scenario, OMNeT++ vectors are useful to evaluate the behavior
of the system during the simulation. The left side of Fig. 5.21 reports the CQI used
by the transmitting UE, which experiences large variations due to the change in
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Fig. 5.22 Latency of CBR packets with increasing packet length

the distance between the UEs. The right part of Fig. 5.21, instead, shows the CQI
used when mode selection is employed: the chart is obtained by putting together
averageCqiD2D:vector and averageCqiUl:vector statistics, since the
flow periodically switches from the direct link to the infrastructure one and vice
versa. As a result, we observe that enabling mode selection allows the flow to use
better CQI, hence use better modulation.

This affects the latency of the flow, as shown in Fig. 5.22. The latter reports the
cbrFrameDelay:vector statistic with different packet lengths. When no mode
selection is active, the latency of the flow drastically increases at the points where
the CQI is smaller. This behavior is more pronounced when the traffic load increases
due to larger packets. On the other hand, the configuration with mode selection
allows the flow to keep the latency small.
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