
Recent Advances
in Network
Simulation

Antonio Virdis
Michael Kirsche Editors

The OMNeT++ Environment and
its Ecosystem

EAI/Springer Innovations in Communication and Computing

EAI/Springer Innovations in Communication
and Computing

Series editor
Imrich Chlamtac, European Alliance for Innovation, Gent, Belgium

Editor’s Note

The impact of information technologies is creating a new world yet not fully
understood. The extent and speed of economic, life style and social changes
already perceived in everyday life is hard to estimate without understanding the
technological driving forces behind it. This series presents contributed volumes
featuring the latest research and development in the various information engineering
technologies that play a key role in this process.

The range of topics, focusing primarily on communications and computing
engineering include, but are not limited to, wireless networks; mobile communica-
tion; design and learning; gaming; interaction; e-health and pervasive healthcare;
energy management; smart grids; internet of things; cognitive radio networks;
computation; cloud computing; ubiquitous connectivity, and in mode general
smart living, smart cities, Internet of Things and more. The series publishes a
combination of expanded papers selected from hosted and sponsored European
Alliance for Innovation (EAI) conferences that present cutting edge, global research
as well as provide new perspectives on traditional related engineering fields.
This content, complemented with open calls for contribution of book titles and
individual chapters, together maintain Springer’s and EAI’s high standards of
academic excellence. The audience for the books consists of researchers, industry
professionals, advanced level students as well as practitioners in related fields
of activity include information and communication specialists, security experts,
economists, urban planners, doctors, and in general representatives in all those
walks of life affected ad contributing to the information revolution.

About EAI

EAI is a grassroots member organization initiated through cooperation between
businesses, public, private and government organizations to address the global
challenges of Europe’s future competitiveness and link the European Research
community with its counterparts around the globe. EAI reaches out to hundreds of
thousands of individual subscribers on all continents and collaborates with an insti-
tutional member base including Fortune 500 companies, government organizations,
and educational institutions, provide a free research and innovation platform.

Through its open free membership model EAI promotes a new research and inno-
vation culture based on collaboration, connectivity and recognition of excellence by
community.

More information about this series at http://www.springer.com/series/15427

http://www.springer.com/series/15427

Antonio Virdis • Michael Kirsche
Editors

Recent Advances in Network
Simulation
The OMNeT++ Environment
and its Ecosystem

123

Editors
Antonio Virdis
University of Pisa
Pisa, Italy

Michael Kirsche
Brandenburg University of Technology
Cottbus-Senftenberg
Cottbus, Brandenburg, Germany

ISSN 2522-8595 ISSN 2522-8609 (electronic)
EAI/Springer Innovations in Communication and Computing
ISBN 978-3-030-12841-8 ISBN 978-3-030-12842-5 (eBook)
https://doi.org/10.1007/978-3-030-12842-5

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-12842-5

Foreword

I see a simulator has two main functions. A simulator is first of all a convenient tool
for assessing performance and capabilities of a target system—whether the system
already exists, partially exists, or is still entirely on a design board. A simulator can
be used to help understand the operation of the system and obtain performance-
related results (such as throughput, latency, stability, robustness, and scalability),
potentially with different design alternatives, under different configurations, in
different operating conditions and runtime scenarios.

Another function of the simulator is to provide a common platform for designing
and studying the target system. Most complex engineering systems contain many
moving parts. It would be unrealistic to study such systems by focusing on only
one specific part in isolation. The software components of a network system, for
example, are organized into protocols and services, more or less in a hierarchical
fashion. Encapsulation allows the upper-layer protocols or applications to operate
using the functions and services of lower-layer protocols. A network system should
also be seen as an ecosystem: a new protocol must operate in real network traffic
situations where multiple applications and protocols coexist and interoperate. In
such cases, a simulator can provide a common platform for developing and testing
models for various components of the target system. By doing so, one can focus on
a specific component of the system (e.g., a protocol in a network simulation) and
rely on existing models built by other developers for the rest of the system. A robust
community can thus be built on such premise, and modeling becomes a community
effort. As a common platform, a simulator should not only provide methods for
composing models of sorts but also support code verification and model validation
by offering standard test harnesses, common use scenarios, and possibly additional
capabilities, such as graphical user interface and visualization.

The first successful open-source network simulator with a broad community
support is the one with the eponym network simulator (ns), mostly known by its
second version Network Simulator 2 (ns-2). ns was developed in the mid-1990s
and has been used predominantly in several research areas, such as Transmission
Control Protocol (TCP) congestion control and wireless ad hoc routing. ns has

v

vi Foreword

brought tremendous impact to network research, although many also saw potential
alternatives in the simulator’s software design in order to improve usability and
performance.

OMNeT++, which stands for Open Modular Network Testbed in C++, is an
outstanding example of such alternatives. As its name suggests, OMNeT++ features
a modular design that separates the discrete-event simulation engine (aka the
simulation library or framework) from the network models built on top of it.
Discrete-event simulation refers to the technique of modeling systems as a series of
events at discrete time instances that represent the potential change to the system’s
state. In addition to supporting discrete-event simulation, OMNeT++ provides an
Eclipse-based Integrated Development Environment (IDE) and additional tools for
model configuration, data analysis, and visualization. Network models built on
top of the OMNeT++ framework represent detailed network operations, including
sending and receiving data between simulated entities (hosts, servers, routers,
switches, mobile stations, and so on) over either wired or wireless transmission
media. OMNeT++ consists of many network models, including various protocols
for the traditional TCP/Internet Protocol (IP) network as well as other types
of networks, including peer-to-peer/overlay networks (e.g., BitTorrent), cellular
networks (e.g., Long Term Evolution (LTE)), vehicular networks, satellite networks,
Mobile Ad Hoc NETworks (MANETs), storage networks in parallel/distributed file
systems, and so on.

The development effort of OMNeT++ dated back in the early 2000s, and the
simulator quickly became a very successful one. One can measure the success of an
open network simulator in three interdependent aspects. First, the simulator needs to
have a broad user base. As such, one can find models developed by various users as
the building blocks for implementing, testing, and validating new network research.
Second, the simulator needs to have many active projects with ongoing development
efforts. Significant activities can ensure that simulator be constantly maintained
and documented with continued support. Last, the simulator needs to support
experimentation and generate results in research publications. Standard modules
and common test scenarios can help cross-validation of and ensure reproducibility
for published results. By all measures, I see that OMNeT++ is a successful network
simulator. As a case in point, the simulator has so far generated about 500 research
papers according to Google Scholar. It is certainly indicative to the level of success
the simulator has achieved. There is an active research community at work.

This book provides a comprehensive introduction to the OMNeT++ simulation
environment and its network models. It is in my view a must-have for those who
need to use OMNeT++ for their daily research. Especially to the newcomers of
OMNeT++, I would like to welcome them to the ever-growing community of users
and developers. I hope they will enjoy the ride on the success of the simulator. As
a part of a vibrant community, I hope everyone will be able to make his or her
contributions.

Florida International University, Miami, FL, USA Jason Liu
19 June 2018

Preface

This book testifies the joint efforts of the OMNeT++ community in continuously
extending and improving the OMNeT++ ecosystem of frameworks and simulation
modules. It finds its roots within the OMNeT++ Community Summit events, where
OMNeT++ researchers and developers meet annually to present their results and
discuss the latest developments in the field. The first summit took place in 2014,
replacing the conference co-located workshop format of OMNeT++ events initiated
in 2008.

OMNeT++—the Open Modular Network Testbed in C++—provides a versatile
environment to conduct all kinds of simulative experiments that follow the Discrete
Event-based Simulation (DES) principle. The number and heterogeneity of research
works and simulation tools that are publicly available for OMNeT++ are large
enough to be seen as a Simulation Ecosystem, i.e., a set of connected yet independent
software projects, all sharing the same working ground, the OMNeT++ engine,
which allows them to coexist and to be potentially interoperable. This offers a great
potential to researchers who can build complex simulation scenarios just by tapping
into this simulation ecosystem.

So far, the only ways to discover these independent projects were to either
dig into the various forums and websites covering the frameworks, models, and
topics or to follow the OMNeT++ community initiatives. This book aims to provide
researchers and users with a detailed overview of the OMNeT++ ecosystem,
describing both large frameworks and smaller building blocks, which contribute to
the same simulation environment. Each book chapter offers the reader a tutorial-
centric presentation of a specific simulation topic, still formally presenting the
overall research scenario but focusing on the practical aspects that will reduce the
time to simulation. Moreover, each chapter will be connected to a website, providing
links to the project code, additional examples, and tutorial and teaching material that
will significantly ease the learning process.

This book is divided into three distinct parts. The first part introduces the
OMNeT++ simulation framework, accompanied by a number of practical examples.
The basics of OMNeT++ simulations and special topics are introduced here.
The second part of the book presents the OMNeT++ ecosystem by covering the

vii

viii Preface

major extension frameworks being used and actively maintained today. Six indi-
vidual chapters cover the frameworks INET, INETMANET, SimuLTE, RINASim,
SimuLTE, Veins, and SEA++ . These frameworks range from generic ones like
INET, which includes simulation models for the TCP/IP communication stack,
to application-specific ones like SimuLTE, which includes simulation models for
LTE communication use cases. Each framework chapter introduces the individual
framework and gives background information as well as details for practical
usage. The third book part collects eight different chapters that introduce novel
research topics and recent developments actively pursued by the OMNeT++ com-
munity. Chapter 8 discusses the topic of reproducibility of OMNeT++ simulations.
Chapter 9 introduces a remote interface to control OMNeT++ simulations and
modify simulation parameters during runtime. In Chap. 10, simulation models
for in-vehicular networks are introduced along with a domain-specific description
language to design automotive networks. The topic of simulating vehicular mobility
is covered in Chap. 11 with an introduction of the LIMoSim framework. Vehicular
communication is also the topic in Chap. 12 where Artery is introduced, a frame-
work that covers vehicular communication that complies to European specifications.
A combination of said Artery framework with the SimuLTE framework (introduced
in Chap. 5) is discussed by the authors of Chap. 13 to combine vehicular commu-
nication simulation with LTE communication simulation. Chapter 14 discusses the
simulation of Opportunistic Networks (OppNets) and, in particular, the topics of
data dissemination models and evaluation metrics for OppNets. Chapter 15 presents
a simulation model for the Deterministic and Synchronous Multi-Channel Extension
(DSME), a Medium Access Control (MAC) protocol extension for the popular IEEE
802.15.4 standard that is used in resource-constrained wireless networks. The wide
range of topics in this third part of the book reflects the versatility of OMNeT++ as
a simulation tool.

We want to thank a number of persons that helped with the creation of this
book: first and foremost, we thank all the authors of the 15 individual chapters who
provided their ideas and input, their expertise, and their hard work, both in writing
and in reviewing, to fill this book with life. We would also like to thank all the
researchers involved in the OMNeT++ community, who contribute to the ecosystem
by sharing their ideas and insights and taking part in the community events. Finally,
we want to say thank you to our families for their patience during the writing and
editing process when free time was often scarce.

Pisa, Italy Antonio Virdis
Cottbus, Germany Michael Kirsche
October 2018

Typographic and Stylistic Conventions

The following list of typographic conventions apply to the formatting of text and the
use of markups throughout this book.

Characteristic Definition/Meaning Examples

TypeWriter A fixed width font is used in source
code listings and for all source-code-related
markups (e.g., to mark function or class names,
constants, variables, and likewise)

“The class
TrafficGen is”
“Use copy(&msg,
bool)”

Cursive Cursive markups are used to emphasize all
non-source-code-related terms (e.g., scientific
terms, special topics, adjectives)

“The service primitive is”

Program Words written in boldface indicate individual
computer programs or product names

“The opp_run program”

file.xyz File names use a slanted italic font “The omnetpp.ini file”

[KeyName] Cursive names in squared brackets represent
keys on the keyboard

“Press [Ctrl] or [Alt]”

[Key1]+[Key2] Keys combined with a “+” sign are meant to be
pressed simultaneously

“Press
[Ctrl]+[Shift]+[W]”

Term→Term Cursive terms in combination with arrows (→)
mark command sequences in user interface
elements, dialogs, pop-up, or pull-down menus

“Menu→File→Save
As. . . ”

... Three dots inside tables and source code listings
indicate left out or abbreviated parts

(�) A letter symbol marks the corresponding author

ix

Support Material

Support material (e.g., links to project websites, model and framework source code,
additional examples, tutorials, teaching material) for each chapter is available online
at the following companion website:

https://omnetpp.github.io/omnetpp-ecosystem-book

xi

https://omnetpp.github.io/omnetpp-ecosystem-book

Contents

Part I The OMNeT++ Simulation Environment

1 A Practical Introduction to the OMNeT++ Simulation
Framework . 3
Andras Varga

Part II The OMNeT++Ecosystem

2 INET Framework. 55
Levente Mészáros, Andras Varga, and Michael Kirsche

3 INETMANET Framework . 107
Alfonso Ariza and Vincenzo Inzillo

4 RINASim . 139
Vladimír Veselý, Marcel Marek, and Kamil Jeřábek

5 Cellular-Networks Simulation Using SimuLTE . 183
Antonio Virdis, Giovanni Nardini, and Giovanni Stea

6 Veins: The Open Source Vehicular Network Simulation
Framework . 215
Christoph Sommer, David Eckhoff, Alexander Brummer,
Dominik S. Buse, Florian Hagenauer, Stefan Joerer,
and Michele Segata

7 SEA++ : A Framework for Evaluating the Impact of Security
Attacks in OMNeT++/INET . 253
Marco Tiloca, Gianluca Dini, Francesco Racciatti,
and Alexandra Stagkopoulou

xiii

xiv Contents

Part III Recent Developments

8 Simulation Reproducibility with Python and Pweave 281
Kyeong Soo (Joseph) Kim

9 Live Monitoring and Remote Control of OMNeT++ Simulations 301
Janina Hellwege, Maximilian Köstler, and Florian Kauer

10 Simulation of Mixed Critical In-Vehicular Networks 317
Philipp Meyer, Franz Korf, Till Steinbach, and Thomas C. Schmidt

11 LIMoSim: A Framework for Lightweight Simulation of
Vehicular Mobility in Intelligent Transportation Systems 347
Benjamin Sliwa and Christian Wietfeld

12 Artery: Large Scale Simulation Environment for ITS Applications . . 365
Raphael Riebl, Christina Obermaier, and Hendrik-Jörn Günther

13 Simulating LTE-Enabled Vehicular Communications 407
Raphael Riebl, Giovanni Nardini, and Antonio Virdis

14 Simulating Opportunistic Networks with OMNeT++ 425
Asanga Udugama, Anna Förster, Jens Dede,
and Vishnupriya Kuppusamy

15 openDSME: Reliable Time-Slotted Multi-Hop Communication
for IEEE 802.15.4 . 451
Florian Kauer, Maximilian Köstler, and Volker Turau

Index . 469

List of Figures

Fig. 1.1 The OMNeT++ Integrated Development Environment. 5
Fig. 1.2 A wireless simulation running under the Qtenv 7
Fig. 1.3 Plotting a result vector . 8
Fig. 1.4 Sequence chart example . 9
Fig. 1.5 The resulting two rectangles . 43
Fig. 1.6 Visual output of the hang-glider animation example 45

Fig. 2.1 A simple wired INET network with hosts, router, switch,
and network configurator module . 57

Fig. 2.2 A StandardHost instance in the Qtenv GUI 60
Fig. 2.3 Changing signal strength along frequency . 72
Fig. 2.4 The submodule tree of Ieee80211Mac expanded. 82
Fig. 2.5 IEEE 802.11 distributed coordination function . 83
Fig. 2.6 Packet log view of an IEEE 802.11 ad hoc ping exchange 91
Fig. 2.7 Visualization of wireless communication and the

underlying wireless medium . 93
Fig. 2.8 Visualization of communication links between different

protocol layers . 93
Fig. 2.9 Visualization of a wireless network using osgEarth and

OpenStreetMap . 94
Fig. 2.10 Popping chunks from a packet . 97
Fig. 2.11 Using packet tags for cross-layer communication 98

Fig. 3.1 Inheritance of the MANET routing protocols implemented
in INETMANET . 110

Fig. 3.2 MANET routing node with the MANET routing protocol
connected directly to the networkLayer module 110

Fig. 3.3 Exemplary tendency graph with possible simulation errors 118
Fig. 3.4 Example of two functions with overlapping confidence

interval . 118
Fig. 3.5 Physical layer logical block diagram . 120
Fig. 3.6 The StandardHost module . 121

xv

xvi List of Figures

Fig. 3.7 Wireless network with MPP nodes, and detail of an MPP
node with a direct connection between the wireless MAC
and the Ethernet MAC. 132

Fig. 3.8 ApRelayNode implementation in OMNeT++ with a
relay unit that connects an IEEE 802.11 interface that
operates in mesh mode and an 802.11 interface that
operates in access point mode . 133

Fig. 3.9 Topology of the network used in Listing 3.30 . 136

Fig. 4.1 Application Process and Application Entity relationship. 141
Fig. 4.2 Distributed Inter-Process Communication Facility,

Distributed Application Facility, Distributed Application
Process, and Inter-Process Communication Process illustration. . 143

Fig. 4.3 Overview of IPCP local identifiers . 146
Fig. 4.4 Example of a RINA network with three levels of DIFs and

different nodes . 147
Fig. 4.5 Message passing between RINA components . 151
Fig. 4.6 A EFCP instance divided into DTP and DTCP part 152
Fig. 4.7 Examples of RINASim node modules of different types 155
Fig. 4.8 Overview of the DAF modules . 157
Fig. 4.9 IPCP’s DIF modules . 161
Fig. 4.10 Demonstration network diagram . 168
Fig. 4.11 Data transfer path illustration for the demonstration network. 172
Fig. 4.12 Reliable data transfer illustration of two directly

connected hosts . 175

Fig. 5.1 Architecture of the LTE network . 185
Fig. 5.2 Top-down traversal of the LTE protocol stack . 186
Fig. 5.3 Handshake for the scheduling of uplink User Equipment traffic . . 187
Fig. 5.4 Simplified representation of the SimuLTE-Project folders

structure . 188
Fig. 5.5 High-level view of the main simulator nodes . 189
Fig. 5.6 Internal structure of the LTE NIC module . 191
Fig. 5.7 High-level view of the MAC layer structure . 194
Fig. 5.8 Main MAC-level operations . 195
Fig. 5.9 Internal structure of H-ARQ buffers. 196
Fig. 5.10 High-level view of H-ARQ operations . 196
Fig. 5.11 High-level view of the architecture for the three Radio

Link Control modes . 197
Fig. 5.12 Depiction of the main scheduling operations . 199
Fig. 5.13 High-level representation of the scheduling hierarchy 199
Fig. 5.14 High-level view of the X2 stack . 201
Fig. 5.15 High-level view of the X2 manager . 201
Fig. 5.16 Network definition for the MultiCell_X2Mesh scenario 204
Fig. 5.17 Lorenz curve, 30 User Equipments per evolved Node B 208

List of Figures xvii

Fig. 5.18 Average Channel Quality Indicator with increasing number
of User Equipments . 208

Fig. 5.19 Average number of allocated Resource Blocks with
increasing number of User Equipments . 209

Fig. 5.20 Network definition for the Device-to-Device
communication scenario . 210

Fig. 5.21 Channel Quality Indicator with mode selection disabled
(left) and enabled (right) . 213

Fig. 5.22 Latency of Constant Bit Rate packets with increasing
packet length. 213

Fig. 6.1 High-level architecture of Veins . 217
Fig. 6.2 Selection of existing openly available scenarios for SUMO.. 220
Fig. 6.3 The IEEE Wireless Access in Vehicular Environments

stack and its representation in Veins. 221
Fig. 6.4 Analogue models and their effect on the Received Signal

Strength compared to real-world measurements. 225
Fig. 6.5 Azimuth and elevation planes of example vehicular

antenna patterns (gain in dBi). (a) Monopole antenna on
glass roof (based on [34]). (b) Monopole antenna (based
on [31]). (c) Patch antenna (based on [31]) . 228

Fig. 6.6 Overview of the newly added antenna classes . 228
Fig. 6.7 Dependence of the azimuth angle based on Line of Sight

and orientation vector . 229
Fig. 6.8 Dependence of the elevation angle based on Line of Sight

and orientation vector . 229
Fig. 6.9 Average number of neighbors in reach when simulating the

LuST scenario with and without 2D antenna patterns as
well as 3D antenna patterns (including diffraction effects) 230

Fig. 6.10 Screenshot of a platoon simulated in Veins . 236
Fig. 6.11 High-level architecture of PLEXE components . 237
Fig. 6.12 Screenshot of an intersection simulated in Veins 240
Fig. 6.13 The heterogeneous networking stack introduced in Veins LTE. . . 245
Fig. 6.14 Screenshot of the sample simulation of Veins_INET

running in the OMNeT++ GUI . 247
Fig. 6.15 Screenshot of the Instant Veins virtual appliance, showing

the OMNeT++ IDE after clicking on the OMNeT++
launch icon. 248

Fig. 7.1 Overview of the SEA++ framework flowchart . 257
Fig. 7.2 Attack Simulation Engine architecture with two enhanced

network nodes.. 268
Fig. 7.3 Attack Simulation Engine architecture with an enhanced

OpenFlow switch. 269
Fig. 7.4 Simulation output on the OMNeT++/INET GUI during

the injection attack . 275

xviii List of Figures

Fig. 7.5 Packet reception rate on the server node . 276

Fig. 8.1 Integrated processing of document and Python source code
based on Pweave . 285

Fig. 8.2 A Jupyter notebook example. 286
Fig. 8.3 A workflow for generating a final PDF output file from a

Pweave source file . 289
Fig. 8.4 Mean queuing time vs. service time (with 99% confidence

intervals) . 298

Fig. 9.1 Architecture of the remote control approach . 303
Fig. 9.2 Publish/subscribe with the WAMPInterfaceForOmnetpp . . . 304
Fig. 9.3 Remote procedure call with the

WAMPInterfaceForOmnetpp . 305
Fig. 9.4 Screenshot of the running TicToc simulation . 308
Fig. 9.5 Tic plot in the graphical user interface . 310
Fig. 9.6 Running the Crossbar.io router . 311
Fig. 9.7 Screenshot of an exemplary Aloha simulation run 313

Fig. 10.1 Domain decomposition of a traditional car network 320
Fig. 10.2 IEEE 802.1Qav transmission selection algorithms 321
Fig. 10.3 Overview of the contributed simulation environment 323
Fig. 10.4 Workflow of simulation projects—from network

description to result analysis . 327
Fig. 10.5 Abstract Network Description Language generated

network consisting of two CAN buses and a real-time
Ethernet backbone with two gateways, two Ethernet nodes,
and one switch . 329

Fig. 10.6 Audio Video Bridging credit vector (s1 port 1) as seen in
OMNeT++ . 330

Fig. 10.7 Central CAN gateway design . 332
Fig. 10.8 One Ethernet switch design . 333
Fig. 10.9 Aggregation of CAN messages with an pool . 337
Fig. 10.10 Utilized bandwidth on three Ethernet links . 338
Fig. 10.11 Minimal and maximal jitter on three Ethernet links 340
Fig. 10.12 Ethernet backbone within the RECBAR car . 341

Fig. 11.1 Example scenarios for anticipatory mobile networking 348
Fig. 11.2 IPC-based coupling using a dedicated coupling protocol 350
Fig. 11.3 Architecture of the proposed LIMoSim framework

consisting of the two main modules simulation kernel and UI 351
Fig. 11.4 Hierarchical mobility model . 352
Fig. 11.5 Example usage of the Intelligent Driver Model . 353
Fig. 11.6 Example road excerpt using the OpenStreetMap data model 355
Fig. 11.7 Synchronization of the event queues of OMNeT++ and

LIMoSim . 356

List of Figures xix

Fig. 11.8 Map of the reference scenario illustrating the road network
topology and the base station locations . 357

Fig. 11.9 Example temporal behavior of velocity, acceleration, and
measured RSSI . 359

Fig. 11.10 Accuracy evaluation of the mobility prediction schemes in
the considered scenario with different prediction horizons. 361

Fig. 12.1 Dependency graph of Artery incorporating other
OMNeT++ models as well as ordinary C/C++ libraries 369

Fig. 12.2 Depiction of the exemplary simulation scenario 370
Fig. 12.3 Artery architecture and multiple instantiation for every

vehicle within the simulation . 372
Fig. 12.4 Life cycle management of Artery. 374
Fig. 12.5 Screenshot of SUMO running the created highway scenario

(standalone) . 382
Fig. 12.6 Extended simulation scenario: the police car (0) is

equipped with a radar sensor for detecting vehicles ahead 391
Fig. 12.7 Interaction between Artery’s perception components 392
Fig. 12.8 Canvas of GlobalEnvironmentModel with

line-of-sight checks . 398
Fig. 12.9 Storyboard mechanism . 400
Fig. 12.10 Condition tree with three layers . 400

Fig. 13.1 LTE world network artery.lte.World . 412
Fig. 13.2 Suggested SUMO grid map for evaluating the

BlackIceWarner . 418

Fig. 14.1 Dissemination of information in an emergency using
OppNets . 426

Fig. 14.2 Generic OPS architecture, with its interactions with
OMNeT++/INET. 430

Fig. 14.3 An example node configuration of an OPS node in OMNeT++ . . 432
Fig. 14.4 Procedure followed in running a simulation with the OPS

framework . 444

Fig. 15.1 Hidden node problem . 452
Fig. 15.2 Integration of openDSME in the network stack 453
Fig. 15.3 Basic structure of IEEE 802.15.4 DSME . 454
Fig. 15.4 GTS allocation handshake . 457
Fig. 15.5 Software structure of the openDSME implementation 459
Fig. 15.6 Static topology of concentric circles . 463
Fig. 15.7 Adding wildcards for result files . 463
Fig. 15.8 Filter result file for sinkRcvdPk:count . 464
Fig. 15.9 Number of received packets from every node for CSMA 464
Fig. 15.10 Number of received packets from every node for DSME 464

List of Tables

Table 3.1 List of MANET routing protocols and the option that
has been selected in the configuration file to enable the
corresponding routing protocol . 111

Table 3.2 List of the signals received by the routing modules 113

Table 4.1 Values of the hostA and the hostB EFCP . 177
Table 4.2 CDAP messages . 179

Table 7.1 Attack Specification Language abbreviations for different
communication layers. 262

Table 8.1 Long table generated by the Python code chunk
from Listing 8.8 . 293

Table 10.1 Number of Electronic Control Units per CAN bus 332
Table 10.2 Number of CAN messages per period . 333
Table 10.3 Utilized bandwidth: analytical vs. simulation results 335
Table 10.4 Exemplary end-to-end latencies . 335
Table 10.5 Comparison of minimal and maximal jitter . 335
Table 10.6 Initial pool configuration . 338
Table 10.7 Maximum end-to-end latency for some CAN-IDs

on canbus1 . 339
Table 10.8 Number of CAN messages within a pool . 340
Table 10.9 End-to-end latency for some CAN-IDs on canbus1 of

the RECBAR car . 342

Table 12.1 List of available triggering conditions . 401
Table 12.2 List of available effects . 401

Table 13.1 Black ice warnings and traction losses . 422

xxi

xxii List of Tables

Table 14.1 High-level comparison between OppNets simulators 429
Table 14.2 Simulation parameters for use case 1 . 446
Table 14.3 Simulation results for use case 1 . 446
Table 14.4 Simulation parameters for use case 2 . 447
Table 14.5 Simulation results for use case 2 . 447

List of Acronyms

6TiSCH Internet Protocol Version 6 over the Time-Slotted Channel

Hopping mode of IEEE 802.15.4e

ACC Adaptive Cruise Control

ACK Acknowledgment

ACT Allocation Counter Table

ADAS Advanced Driver Assistance System

ADSL Asymmetric Digital Subscriber Line

AE Application Entity

AEI Application Entity Instance

AEI-id Application Entity Instance Identifier

AEN Application Entity Name

AFDX Avionics Full-Duplex Switched Ethernet

AM Acknowledged Mode

AMC Adaptive Modulation and Coding

ANDL Abstract Network Description Language

ANI Application Naming Information

ANSA Automated Network Simulation and Analysis

AODV Ad Hoc On-Demand Distance Vector

AP Application Process

API Application Programming Interface

API-id Application Process Instance Identifier

APN Application Process Name

ARP Address Resolution Protocol

ARQ Automatic Repeat-reQuest

xxiii

xxiv List of Acronyms

ASE Attack Simulation Engine

ASI Attack Specification Interpreter

ASL Attack Specification Language

ASN.1 Abstract Syntax Notation One

AVB Audio Video Bridging

BAG Bandwidth Allocation Gap

BATMAN Better Approach To Mobile Adhoc Networking

BDD Behavior-Driven Development

BER Bit Error Rate

BGP Border Gateway Protocol

BLE Bluetooth Low Energy

BLER Block Error Rate

BMBF German Federal Ministry of Education and Research

BO Beacon Order

BPSK Binary Phase Shift Keying

BSD Berkeley Software Distribution

BSR Buffer Status Report

BSS Basic Service Set

BTP Basic Transport Protocol

C2C Car-to-Car

C2I Car-to-Infrastructure

C-V2X Cellular Vehicle-to-Everything (V2X)

CA Cooperative Awareness

CACC Cooperative Adaptive Cruise Control

CACE Common Application Connection Establishment

CAM Cooperative Awareness (CA) Message

CAN Controller Area Network

CAP Contention Access Period

CBR Constant Bit Rate

CBS Credit-Based Shaper

CC Cruise Control

CCA Clear Channel Assessment

CDAP Common Distributed Application Protocol

CDP Cisco Discovery Protocol

CEP-id Connection Endpoint Identifier

List of Acronyms xxv

CFP Contention-Free Period

CLI Command Line Interface

CoAP Constrained Application Protocol

CoMP Coordinated MultiPoint

CoMP-CS Coordinated MultiPoint (CoMP) Coordinated Scheduling

CoMP-JT CoMP Joint Transmission

CoRE4INET Communication over Real-time Ethernet for INET

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CQI Channel Quality Indicator

CRC Cyclic Redundancy Check

CSMA Carrier Sense Multiple Access

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CSMA/CD Carrier Sense Multiple Access with Collision Detection

CSV Comma-Separated Values

CTS Clear to Send

D2D Device-to-Device

DA Distributed Inter-Process Communication Facility Allocator

DAF Distributed Application Facility

DAN Distributed Application Name

DAP Distributed Application Process

DCC Decentralized Congestion Control

DDoS Distributed Denial-of-Service

DEN Decentralized Environmental Notification

DENM Decentralized Environmental Notification (DEN) Message

DES Discrete Event-based Simulation

DGA Deterministic Gossip Algorithm

DHCP Dynamic Host Configuration Protocol

DIF Distributed Inter-Process Communication Facility

DL Downlink

DRF Data Run Flag

DRR Deficit Round Robin

DSCP Differentiated Services Code Point

DSDV Destination-Sequenced Distance Vector

DSL Domain-Specific Language

xxvi List of Acronyms

DSME Deterministic and Synchronous Multi-Channel Extension

DSR Dynamic Source Routing

DSRC Dedicated Short-Range Communication

DSSS Direct-Sequence Spread Spectrum

DTCP Data Transfer Control Protocol

DT-PDU Data Transfer Protocol Data Unit

DTLS Datagram Transport Layer Security

DTN Delay-Tolerant Network

DTP Data Transfer Protocol

DYMO DYnamic MANET On-demand

E2E End-to-End

ECN Explicit Congestion Notification

ECU Electronic Control Unit

EDCA Enhanced Distributed Channel Access

EFCP Error and Flow Control Protocol

EFCPI Error and Flow Control Protocol Instance

EIGRP Enhanced Interior Gateway Routing Protocol

EMC Electromagnetic Compatibility

eNB evolved Node B

EPC Evolved Packet Core

ERP-OFDM Extended Rate Physical Orthogonal Frequency Division

Multiplex

ETSI European Telecommunications Standards Institute

FA Flow Allocator

FAI Flow Allocator Instance

FCS Frame Check Sequence

FDMA Frequency Division Multiple Access

FEL Future Event List

FES Future Event Set

FHSS Frequency-Hopping Spread Spectrum

FiCo4OMNeT Fieldbus Communication for OMNeT++

FIFO First In First Out

FLoRa Framework for Long Range

FOT Field Operational Test

GEM Global Environment Model

List of Acronyms xxvii

GEP Global Event Processor

GIS Geographic Information System

GN GeoNetworking

GPS Global Positioning System

GPSR Greedy Perimeter Stateless Routing

GTS Guaranteed Time Slot

GUI Graphical User Interface

H-ARQ Hybrid Automatic Repeat-reQuest

HIL Hardware-in-the-Loop

HLA High-Level Architecture

HR-DSSS High-Rate Direct-Sequence Spread Spectrum

HSS Home Subscriber Server

HT High Throughput

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HWMP Hybrid Wireless Mesh Protocol

IAS Intersection Assistance System

ICMP Internet Control Message Protocol

ICMPv6 Internet Control Message Protocol for Internet Protocol Version 6

ICT Information and Communications Technology

ID Identifier

IDE Integrated Development Environment

IDM Intelligent Driver Model

IEEE Institute of Electrical and Electronics Engineers

IGMP Internet Group Management Protocol

IKEv2 Internet Key Exchange Version 2

IoT Internet of Things

IP Internet Protocol

IPC Inter-Process Communication

IPCP Inter-Process Communication Process

IPsec Internet Protocol security

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

IR Infrared

IRM Inter-Process Communication Resource Manager

xxviii List of Acronyms

IS-IS Intermediate System to Intermediate System

ISM Industrial, Scientific and Medical

ISO International Organization for Standardization

ITS Intelligent Transportation System

ITS-S Intelligent Transportation System-Station

IVC Inter-Vehicle Communication

LAN Local Area Network

LCID Logical Connection Identifier

LDM Local Dynamic Map

LDP Label Distribution Protocol

LEM Local Environment Model

LENA LTE-EPC Network simulAtor

LEP Local Event Processor

LER Label Edge Router

LGPL GNU Lesser General Public License

LIB Label Information Base

LIGO Laser Interferometer Gravitational-Wave Observatory

LIMoSim Lightweight Information and Communications

Technology-centric Mobility Simulation

LIN Local Interconnect Network

LLC Logical Link Control

LLDN Low Latency Deterministic Network

LLDP Link Layer Discovery Protocol

LoRa Long Range

LoRaWAN Long Range Wide Area Network

LOS Line of Sight

LP Logical Process

LSP Label-Switched Path

LSR Label-Switching Router

LTE Long Term Evolution

LTE-A Long Term Evolution Advanced

lwIP lightweigh Internet Protocol

LWM2M Lightweight Machine-to-Machine

M2M Machine-to-Machine

MAC Medium Access Control

List of Acronyms xxix

MANET Mobile Ad Hoc NETwork

MATSim-T Multi-Agent Transport Simulation Toolkit

MaxC/I Maximum Carrier-over-Interference

MCPS Medium Access Control Common Part Sublayer

MCS Modulation and Coding Scheme

MEC Multi-access Edge Computing

MIB Management Information Base

MIMO Multiple Input Multiple Output

MIP Mobile Internet Protocol

MIPv6 Mobile Internet Protocol version 6

MLME Medium Access Control Sublayer Management Entity

MME Mobile Management Entity

mmWave millimeter Wave

MO Multi-Superframe Order

MOBIL Minimizing Overall Braking Induced by Lane change

MOST Media Oriented Systems Transport

MPDU Medium Access Control Protocol Data Unit

MPEG Moving Picture Experts Group

MPEG-4 Moving Picture Experts Group Layer-4 Video

MPL Maximum Packet Lifetime

MPLS Multiprotocol Label Switching

MPP Mobile Peer-to-Peer Protocol

MRIP Multiple Replications In Parallel

MSDU Medium Access Control Service Data Unit

NACK Negative-Acknowledgment

NED Network Topology Description

NETA NETwork Attacks Framework for OMNeT++

NFS Network File System

NIC Network Interface Card

ns-2 Network Simulator 2

ns-3 Network Simulator 3

NSC Network Simulation Cradle

NSM Namespace Management

OCB Outside the Context of a Basic Service Set

ODD Organic Data Dissemination

xxx List of Acronyms

OEM Original Equipment Manufacturer

OFDM Orthogonal Frequency Division Multiplex

OLSR Optimized Link State Routing

OMNeT++ Open Modular Network Testbed in C++

ONE Opportunistic Network Environment

OPEN One-Pair Ether-Net

OpenGL Open Graphics Library

OppNet Opportunistic Network

OPS Opportunistic Protocol Simulator

OS Operating System

OSCORE Object Security for Constrained RESTful Environments

OSG OpenSceneGraph

OSI Open Systems Interconnection

OSM OpenStreetMap

OSPF Open Shortest Path First

OTV Overlay Transport Virtualization

P2P Peer-to-Peer

PAN Personal Area Network

PASER Position-Aware Secure and Efficient Mesh Routing Protocol

PCAP Packet Capture

PCAPng Packet Capture next generation

PDCCH Physical Downlink Control Channel

PDCP Packet Data Convergence Protocol

PDES Parallel Discrete-Event Simulation

PDR Packet Delivery Ratio

PDU Protocol Data Unit

PDUFG Protocol Data Unit Forwarding Generator

PER Packet Error Rate

PF Proportional Fair

PGW Packet Data Network Gateway

PHB Per-Hop Behavior

PHY Physical Layer

PID Proportional, Integral, and Derivative

PIM Protocol-Independent Multicast

PIM-DM Protocol-Independent Multicast-Dense Mode

List of Acronyms xxxi

PIM-SM Protocol-Independent Multicast-Sparse Mode

PoA Point of Attachment

POSIX Portable Operating System Interface

PPP Point-to-Point Protocol

PRACH Physical Random Access Channel

PRNG Pseudo-Random Number Generators

PUCCH Physical Uplink Control Channel

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

RAl Resource Allocator

RAC Random Access

RAN Radio Access Network

RB Resource Block

RED Random Early Detection

RFC Request for Comments

RIB Resource Information Base

RIBd Resource Information Base Daemon

RINA Recursive InterNetwork Architecture

RIP Routing Information Protocol

RLC Radio Link Control

RLWE Receiver’s Left Window Edge

RMT Relaying and Multiplexing Task

RNG Random Number Generator

ROHC RObust Header Compression

ROI Region of Interest

RPC Remote Procedure Call

RRC Radio Resource Control

RRS Randomized Rumor Spreading

RRWE Receiver’s Right Window Edge

RSS Received Signal Strength

RSSI Received Signal Strength Indicator

RSTP Rapid Spanning Tree Protocol

RSVP Resource Reservation Protocol

RSVP-TE Resource Reservation Protocol-Traffic Engineering

xxxii List of Acronyms

RTP Real-time Transport Protocol

RTS Request to Send

RTT Round-Trip Time

SAB Slot Allocation Bitmap

SACK Selective Acknowledgment

SAE Society of Automotive Engineers

SAP Service Access Point

SAORS Socially-Aware Opportunistic Routing System

SAS Smart Antenna System

SCADA Supervisory Control and Data Acquisition

SCF Store-Carry-Forward

SCTP Stream Control Transmission Protocol

SDK Software Development Kit

SDN Software-Defined Networking

SDU Service Data Unit

SGW Serving Gateway

SHB Single-Hop Broadcast

SIM Subscriber Identity Module

SINR Signal-to-Interference-plus-Noise-Ratio

SLWE Sender’s Left Window Edge

SN Sequence Number

SNMP Simple Network Management Protocol

SNR Signal-to-Noise Ratio

SNIR Signal-to-Noise-plus-Interference Ratio

SO Superframe Order

SON Self-Organizing Network

SRWE Sender’s Right Window Edge

SSH Secure Shell

STL Standard Template Library

STP Spanning Tree Protocol

SUMO Simulation of Urban MObility

SV Summary Vector

SVG Scalable Vector Graphics

SWIM Small Worlds in Motion

TAP Terminal Access Point

List of Acronyms xxxiii

TAS Time-Aware Shaper

TB Transport Block

TCP Transmission Control Protocol

TDD Test-Driven Development

TDMA Time Division Multiple Access

TED Traffic Engineering Database

TLS Transport Layer Security

TM Transparent Mode

TraCI Traffic Control Interface

TRILL Transparent Interconnection of Lots of Links

TSCH Time-Slotted Channel Hopping

TSN Time-Sensitive Networking

TTC Time To Collision

TTI Transmission Time Interval

TTL Time To Live

TUN TUNnel

TXOP Transmit Opportunity

UAV Unmanned Aerial Vehicle

UDG Unit Disk Graph

UDP User Datagram Protocol

UE User Equipment

UI User Interface

UL Uplink

ULA Uniform Linear Array

UM Unacknowledged Mode

UML Unified Modeling Language

URI Uniform Resource Identifier

URLLC Ultra-Reliable Low-Latency Communication

UWB-IR Ultra-Wideband Impulse Radio

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Everything

VANET Vehicular Ad Hoc Network

VBR Variable Bit Rate

VDP Vehicle Data Provider

xxxiv List of Acronyms

Veins Vehicles in Network Simulation

VHT Very High Throughput

VLAN Virtual Local Area Network

VLC Visible Light Communication

VoD Video on Demand

VoIP Voice-over-IP

VPN Virtual Private Network

WAMP Web Application Messaging Protocol

WAN Wide Area Network

WAVE Wireless Access in Vehicular Environments

W-CDMA Wideband Code Division Multiple Access

WGS84 World Geodetic System 1984

WLAN Wireless Local Area Network

WSA Wave Service Advertisement

WSM Wave Short Message

WSN Wireless Sensor Network

XML Extensible Markup Language

Part I
The OMNeT++ Simulation Environment

Chapter 1
A Practical Introduction
to the OMNeT++ Simulation Framework

Andras Varga

1.1 Introduction

OMNeT++1 is often quoted as a network simulator, but it is really a generic
simulation framework for the research and development of complex distributed
systems. During the many years it has been available, countless simulation models
and model frameworks have been written on top of OMNeT++ by researchers in
diverse areas: queuing, resource modeling, internet protocols, wireless networks,
switched local area networks, peer-to-peer networks, media streaming, mobile
ad-hoc networks, mesh networks, wireless sensor networks, vehicular networks,
networks-on-chip, optical networks, high-performance computing systems, cloud
computing, storage area networks, and more. Most of these model frameworks are
open source, developed as independent projects and follow their own release cycles.

One of most useful and largest model frameworks is the INET Framework, or
INET for short. It provides protocols, agents, and other models for working with
communication networks. INET is especially useful when designing and validating
new protocols, or exploring new or exotic scenarios.

Several other simulation frameworks take INET as a base and extend it into
specific directions, such as vehicular networks (e.g., Veins which is introduced in
Chap. 6), real-time Ethernet communication (e.g., CoRE4INET which is introduced
in Chap. 10), overlay/peer-to-peer networks (e.g., OverSim), or Long Term Evo-
lution (LTE) (e.g., SimuLTE which is introduced in Chap. 5). Veins, for example,

1OMNeT++ community website: http://www.omnetpp.org.

A. Varga (�)
Opensim Ltd, Budapest, Hungary
e-mail: andras@omnetpp.org

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_1&domain=pdf
http://www.omnetpp.org
mailto:andras@omnetpp.org
https://doi.org/10.1007/978-3-030-12842-5_1

4 A. Varga

offers a comprehensive suite of models for intervehicle communications. To that
end, it uses components from INET and relies on co-simulation with a 3rd-party
road traffic simulator.

OMNeT++ provides a solid foundation and rich facilities for writing simulation
frameworks like INET. The C++ simulation kernel provides support to structure and
parametrize models, use event scheduling, add and control random numbers, collect
statistical results, support graphics and animation, and much more. OMNeT++
comes with an Integrated Development Environment (IDE) that provides a com-
fortable environment for developing simulation models. Using the IDE is optional:
model files can be edited in any text editor, and nearly all functionalities of the
IDE are also accessible using command-line utilities. Simulations can be run under
a graphical runtime environment (Qtenv) that supports 2D/3D animation and also
allows one to explore the internal state of the model. A console-based runtime
environment (CmdEnv) is provided for batch execution and other use cases that do
not need a Graphical User Interface (GUI).

While many network simulators have a more-or-less fixed architecture for repre-
senting network nodes, OMNeT++ provides a generic component architecture and
leaves it up to the model designer to decide how to map concepts such as network
nodes, network interfaces, protocols, and applications to model components. Model
components are termed modules, and, if well designed, modules can be used in
a variety of different environments and can be combined in various ways like
LEGOTM blocks. Modules primarily communicate via message passing, either
directly or via predefined connections. Messages may represent events, packets,
commands, jobs, or other entities depending on the model domain.

OMNeT++ can be extremely versatile. There are extensions for real-time
simulation, network emulation, parallel distributed simulation, co-simulation, Sys-
temC integration, federated simulations (High-Level Architecture (HLA)), database
connectivity, running simulations in computing clouds, and several other functions.
At the time of writing, adding Python support is underway, mainly for result
analysis and simulation control.

The rest of this chapter will give a brief and practical overview of OMNeT++ and
its capabilities. We start from simple things like running an existing simulation and
gradually move on to more advanced topics such as how to implement new protocol
models or how to set up network emulation.

1.2 Getting Started

We will start our journey by running an example simulation from the INET
Framework and observing the simulation results. We will use the simulation IDE
for our work. The IDE contains everything one needs for developing, running,
and analyzing simulation models. There is a dual-mode (graphical/text) editor for
designing modules and networks, a simulation configuration editor, C++ editing and
build support, a simulation launcher also capable of running simulation batches, a

1 A Practical Introduction to the OMNeT++ Simulation Framework 5

result plotting and analysis tool, a tool that visualizes simulation execution on a
sequence chart, and other utilities like a Doxygen-based documentation generator.

1.2.1 Starting the IDE

If you have a complete OMNeT++ installation, the IDE is part of it by default. You
can start it by typing the omnetpp command in the terminal.

1.2.2 Installing INET

The first time you start it, the IDE will offer downloading and installing the current
(matching) version of the INET Framework. Accept it and wait until the download
and the subsequent C++ build finishes. If you miss the initial dialog, you can also
find it in the menu under Help→Install→Simulation Models.

While INET builds, you can explore the IDE (see Fig. 1.1). In the top left part
of the window, you can find an area labeled Project Explorer. In the IDE, the
workspace contains projects, and projects can contain files and folders. Find the
inet project in the Project Explorer and open it. You will see several folders under

Fig. 1.1 The OMNeT++ Integrated Development Environment (IDE)

6 A. Varga

inet, the most important folders are src, examples, showcases, and tutorials. The src
folder holds the source files of various protocols and other components provided
by the INET Framework, while the latter three contain example simulations and
tutorials.

1.2.3 Exploring an Example Simulation

Let us take a look at one of the example simulations. Go into the /inet/showcases/-
wireless/hiddennode/ folder in the Project Explorer and look at the files it contains.
You will find a file with the .ned extension (HiddenNodeShowcase.ned), one called
omnetpp.ini, and some others.

The Network Topology Description (NED) file contains the structure of the
network to be simulated. You can view its contents by double-clicking it to open
an editor inside the IDE that displays the network both in graphical and in textual
source form. You can edit and change either representation, the two will be kept
consistent.

The omnetpp.ini file contains model parameters and simulation kernel settings.
It is read automatically by the simulation program when it starts. INI configuration
files with other names can also be used, but they must be explicitly added to the
command-line arguments. Double-clicking the file opens it in an editor where you
can view or edit it either in text mode or using forms. Hovering over entries or lines
in the INI editor will display help.

The most frequently used configuration options are network=... to select
which network to simulate and sim-time-limit=... to set a limit for the
time span to be simulated. Most simulations would run indefinitely if there was
no simulation time limit, CPU time limit, or some other stopping criteria set.

1.2.4 Running the Simulation

To run the simulation, select the simulation’s folder or the omnetpp.ini file in the
Project Explorer and click the green Run button on the toolbar. A new application
window titled OMNeT++/Qtenv should appear, displaying the simulated network
and various controls on its toolbar. The window belongs to Qtenv, OMNeT++’s
graphical runtime interface for simulations. The primary function of Qtenv is to
let you interactively execute the simulation (run, pause/resume, step, and restart)
and observe the sequence of events and the state of the simulation in a convenient
way. To run the simulation, click the Run button on the toolbar. This will cause the
simulation to run slowly with full animation, as shown in Fig. 1.2. The slider on the
toolbar will allow you to control the animation speed. You can pause the simulation
with the Stop toolbar button at any time, and inspect the log or the objects the model

1 A Practical Introduction to the OMNeT++ Simulation Framework 7

Fig. 1.2 A wireless simulation running under the Qtenv

is composed of. To run the simulation at full speed, choose the Express button. If
the simulation runs to completion or you want to restart it at any time, you can do
so with the Restart toolbar button.

Run the simulation to completion and exit Qtenv to return to the OMNeT++ IDE.

1.2.5 Looking at the Simulation Results

By default, result files are created in the results folder under the simulation’s
working directory. Open this folder and double-click on a file with the .sca or
.vec extension. A dialog will come up, offering the creation of an analysis file (.anf
extension). After accepting the dialog, the Analysis Editor will open.

The Analysis Editor lets you work with the contents of the .sca and .vec result
files listed on its Inputs page. The .sca files store results that are scalar in nature,
such as scalar values, summary statistics, histograms, etc. The .vec files, on the
other hand, store output vectors (basically time series data). The Browse Data page
lets you browse the contents of the files.

Try the Analysis Editor by double-clicking on a vector on the Browse Data
page to plot it. The vector will open on a separate page (depicted in Fig. 1.3). The
resulting chart can be zoomed, panned, and its graphical properties changed. It can
also be exported in various formats.

8 A. Varga

Fig. 1.3 Plotting a result vector

1.2.6 Visualizing a Sequence Chart

Simulations may contain complex interactions among components. The OMNeT++
IDE can visualize these interactions on a sequence chart drawn from a log recorded
from the simulation. A sequence chart can be used to explore the sequence of events
and timing relationships.

The input of a sequence chart is an eventlog file recorded by the simulation. To
record an eventlog, rerun the simulation with eventlog recording enabled. There are
several ways to do that; one of the easiest ones is to use Record Eventlog button on
the Qtenv toolbar.

To open the sequence chart, find the file with the .elog extension in the results
folder, and double-click it. The initial view might be a little overwhelming because
every module is visualized on its own axis and all types of interactions are shown,
resulting in too many axes and arrows. However, after some filtering (e.g., show only
the top-level modules, hostA, hostB, and hostC) and playing with the display
options, one can arrive at the display shown in Fig. 1.4.

The three horizontal axes represent three hosts. Time increases from left to right.
The blue strips represent frame transmissions. Note that time is not linear: large
intervals are shrunk and small intervals are blown up, in order to make better use of
the finite screen area.

1 A Practical Introduction to the OMNeT++ Simulation Framework 9

Fig. 1.4 Sequence chart example

It is not difficult to interpret the chart: hostA and hostC transmit frames to
hostB. Some transmissions are successful (are acknowledged by hostB), but
others are not, because the two transmitting hosts do not know of each other and
their transmissions overlap at hostB, producing a collision.

1.3 Assembling and Running Simulations

In this section, we move on from simply being consumers of existing simulation
models and learn how to assemble new models from components provided by INET
or other frameworks, how to parametrize them, and how to run large simulation
campaigns. But first, we need to learn about the component model of OMNeT++.

1.3.1 The Component Model

The OMNeT++ component model consists of four key components: simple and
compound modules, connections, and parameters. The following subsections give a
short introduction to each key component.

10 A. Varga

1.3.1.1 Simple Modules and Compound Modules

It has been mentioned that an OMNeT++ model consists of modules that commu-
nicate with message passing. The active modules are termed simple modules; they
are implemented in C++, using the simulation class library. Simple modules can be
grouped and structured to form compound modules. Compound modules may also
contain other compound modules; the number of hierarchy levels is not limited.

In network simulations, simple modules may represent user agents, traffic
sources and sinks, exemplary protocol entities like Transmission Control Protocol
(TCP), network devices like an IEEE 802.11 Network Interface Card (NIC), data
structures like routing tables, or user agents that generate traffic. Simulation-related
functions such as controlling the movement of mobile nodes or auto-assigning
Internet Protocol (IP) addresses in a network are also often cast as simple mod-
ules. Network nodes such as hosts and routers are typically compound modules
assembled from simple modules. Additional hierarchy levels are occasionally used
above node level (to represent subnetworks) or within nodes (i.e., to group simple
modules representing individual protocols of the Internet Protocol Version 6 (IPv6)
family into an IPv6 compound module).

Both simple and compound modules are instances of module types. While
describing the model, the user defines module types; instances of these module types
serve as components for more complex module types. The network to be simulated
is an instance of a module type. When a module type is used as a building block,
there is no distinction whether it is a simple or a compound module. This allows the
user to transparently split a module into several simple modules within a compound
module, or do the opposite, re-implement the functionality of a compound module
in one simple module, without affecting existing users of the module type. The
feasibility of model reuse is proven by simulation model frameworks like INET and
its various extensions.

1.3.1.2 Connections

Modules communicate with messages, which, in addition to predefined attributes
such as timestamps, may contain arbitrary data. Simple modules typically send
messages via gates, but it is also possible to send them directly to their destination
modules. There are input, output, and inout gates. An input and an output gate or two
inout gates may be linked with a connection. Connections are defined as part of a
compound module, and may connect two submodules, a submodule with the parent,
or two gates of the parent module. Connections spanning across hierarchy levels are
not permitted, as it would hinder model reuse. Due to the hierarchical structure
of the model, messages typically travel through a chain of connections, to start
and arrive in simple modules. Compound modules act as “cardboard boxes” in the
model, transparently relaying messages between their inside and the outside world.
Properties such as propagation delay, data rate, and bit error rate can be assigned to

1 A Practical Introduction to the OMNeT++ Simulation Framework 11

connections. One can also define connection types with specific properties (termed
channels) and reuse them in several places.

1.3.1.3 Parameters

Modules can have parameters, which are used to pass configuration data to simple
modules and to help define the model topology. Supported parameter types are
string, integer, double, boolean, and XML, the latter being used to access custom
XML-based configuration files. Parameters may have default values, units of
measurement, and other attributes attached to them. Parameters may also be volatile,
enabling them to be re-evaluated every time the simulation code reads their values.
For example, when a volatile parameter has the expression exponential(2.0)
assigned to it, the simulation code will get a different random number from the
exponential distribution every time it reads the parameter. Volatile parameters are
commonly used to pass stochastic input to modules.

1.3.2 Setting Up a New Project

When you work from the IDE, a new project can be created with File→New→
OMNeT++ Project. There are several project templates (with or without example
content) to choose from. The usual project layout is to have a src folder for
components (simple modules, etc.) and a separate simulations folder for the actual
simulations.

Once the project is created, almost all of its configuration settings can be found in
the Project Properties dialog, available from the Project menu or via right-clicking
the project in the Project Explorer. This dialog has several pages; here, we review
some of the practically most important ones.2

If your simulation will use components from another project, say INET, you will
need the Project References page. It contains a list of all projects with a check box
in front of each. Make sure the projects that your project depends on are checked.

The OMNeT++→NED Source Folders page allows you to specify where your
NED files are. You only need to specify the root folder(s) of the NED package
hierarchy, not each and every folder that contains a NED file. Usually, they will
be the src and the simulations (or examples) folders. If your simulation uses extra
icons, put them into the images folder inside your project.

2More information is available in the OMNeT++ documentation, namely in the User Guide.

12 A. Varga

1.3.3 The NED Language

OMNeT++ has its own domain-specific language (DSL), called the Network
Topology Description (NED), for describing the above component model. Typical
ingredients of NED descriptions are simple module declarations, compound module
definitions, and network definitions. To support simulation in-the-large (the INET
Framework contains over 500 module types), the NED language supports inner
types, component inheritance, parametric submodule types and module/channel
interfaces, metadata annotations called properties, a package system inspired by
Java, and a documentation system not unlike Doxygen or Javadoc.

Simple module declarations include the description of the external interface of
the module, including the list of module interfaces it conforms to, and the names
and types of its gates and parameters. Compound module definitions consist of
the declaration of the module’s external interface (module interfaces, gates, and
parameters), plus the definition of its internal structure. The latter includes the list
of submodules and their interconnection. It is possible to declare a submodule to be
an array of fixed or parametric size (submodule vectors) (see Listing 1.3). For the
connections part, limited programming constructs (loop, conditional) are available
in order to allow for creating parametric topologies, such as a router with an arbitrary
number of ports, or a hexagonal mesh with parametric dimensions.

Network definitions are compound modules that qualify as self-contained simu-
lation models. Examine the subsequent simple example of a NED module definition
in Listing 1.1. The NED definition of a compound module is given in Listing 1.2.

Listing 1.1 An exemplary simple module NED description

1 // Models the network layer.
2 simple Routing
3 {
4 parameters:
5 @display("i=block/switch");
6 gates:
7 input in[];
8 output out[];
9 input localIn;

10 output localOut;
11 }

Listing 1.2 An exemplary compound module NED description

1 // A "Node" consists of a Routing module, an App module,
2 // and one L2Queue per port.
3 module Node
4 {
5 parameters:
6 int address;
7 string appType;
8 @display("i=misc/node_vs,gold");
9 gates:

10 inout port[];
11 submodules:
12 app: <appType> like IApp {

1 A Practical Introduction to the OMNeT++ Simulation Framework 13

13 address = address;
14 @display("p=140,60");
15 }
16 routing: Routing {
17 @display("p=140,130");
18 gates:
19 in[sizeof(port)];
20 out[sizeof(port)];
21 }
22 queue[sizeof(port)]: L2Queue {
23 @display("p=80,200,row");
24 }
25 connections:
26 routing.localOut --> app.in;
27 routing.localIn <-- app.out;
28 for i=0..sizeof(port)-1 {
29 routing.out[i] --> queue[i].in;
30 routing.in[i] <-- queue[i].out;
31 queue[i].line <--> port[i];
32 }
33 }

Listing 1.3 Parametric submodule types

1 moduleinterface IFilterNode {
2 gates: input in; output out;
3 }
4
5 module DelayerNode like IFilterNode {
6 gates: input in; output out;
7 }
8
9 network Example {

10 submodules:
11 filter: <default("DelayerNode")> like IFilterNode;
12 //...
13 }

In order to be prepared for unforeseen use cases, the NED language supports
adding metadata annotations to types, parameters, submodules, connections, and
other items. So far, metadata annotations have been used to store graphics attributes
(position, icon, etc.); to override the default choice of the underlying C++ class
name for simple modules and channels; to denote the C++ namespace; to mark
gates that are expected to remain unconnected; to declare measurement units and
prompt text for parameters; to label gates for automatic matching by the graphical
editor’s connect tool; to denote compound modules that represent physical network
nodes in the INET Framework; and for other purposes.

1.3.3.1 Editing NED

The IDE provides a graphical editor for editing NED files. Files can be edited
in source as well, and the two representations are always kept in sync. The
opp_nedtool utility can be used to convert or pretty-print NED files from the
command line.

14 A. Varga

1.3.4 Configuring Simulations

INI files contain model parameters and configurations for the simulation. They are
simple text files that follow the conventional structure composed of sections and
key-value pairs. An example is given in Listing 1.4. Keys may denote configuration
options, model parameters, and per-object configuration options. Configuration
options are easy to recognize because they do not contain a dot character. We
have already seen two, network and sim-time-limit, but there are about
a hundred of them at the time of the writing of the book. They configure
execution limits, Random Number Generators (RNGs), verbosity (for non-GUI
execution), result recording, C++ debugging support, logging, and other features.
Other configuration options allow one to replace parts of the simulation runtime
with custom components.

Keys that specify model parameters consist of the hierarchical name of the
module plus the parameter name, using dots as separators. In order to be able to set
the parameters of several modules together, the key may contain wildcards (*, **,
?) and numerical ranges for vector indices and numbers embedded in names. The
double asterisk (**) is able to match several components in the path (e.g., modules
at multiple hierarchy levels), while the single asterisk is not. If several keys match
the same model parameter, the first match is used. Parameters that have a fixed value
assigned from NED will not be looked up in the INI file, only the ones that have
just a default value or no value at all.

Per-object configuration keys look similar to parameters, but the part after the
last dot is the name of a configuration option, and it contains a hyphen. There are
nearly twenty per-object options, and they configure the per-module logging, the
per-module RNG settings, the per-item result recording options, and so on. One can
get a list of the available global and per-object configuration options by running any
simulation or opp_run with the -h configdetails option.

INI files may contain several named configurations. Configurations can build
upon each other, adding new settings or overriding existing ones. This is practi-
cally multiple inheritance. The base is defined with the extends configuration
option; sections that do not have it implicitly extend the special section named
[General]. INI files can also define parameter studies; this will be covered in
a later section.

Listing 1.4 An exemplary omnetpp.ini with several configuration options

1 [General]
2 network = Aloha
3 Aloha.numHosts = 20
4 Aloha.txRate = 9.6kbps
5 Aloha.host[*].pkLenBits = 952b
6

1 A Practical Introduction to the OMNeT++ Simulation Framework 15

7 [Config PureAloha] # extends [General]
8 description = "pure Aloha, overloaded"
9 Aloha.host[*].iaTime = exponential(2s)

10
11 [Config SlottedAloha] # extends [General]
12 description = "slotted Aloha, overloaded"
13 Aloha.slotTime = 100ms
14 Aloha.host[*].iaTime = exponential(0.5s)

1.3.4.1 Editing INI Files

The simulation IDE has a dual-mode (form and text) editor and several associated
views for setting up and editing simulation options, parameter settings, and other
configuration information. The editor provides wizards, syntax highlighting, content
assist, on-the-fly validation, and other convenience features.

1.3.5 Launching Simulations

When you launch a simulation by clicking the green Run button in the IDE for the
first time, you create a launch configuration. A launch configuration is an editable
piece of configuration that stores which program to launch and with what options,
so it can be used to launch the same simulation later again.

Launch configurations can be edited in the Run Configurations dialog. The dialog
can be opened in several ways, e.g., by [Ctrl]-clicking the Run button, via the local
menu of the Run button, or from the Run menu. The dialog offers many options for
controlling how you want to launch the simulation, one of the most important ones
of them being the combo titled User Interface.

You can select Cmdenv or Qtenv. Qtenv, the graphical runtime environment, has
been mentioned before. Cmdenv is command-line runtime user interface that runs
simulation without user interaction. Using Cmdenv is more convenient than Qtenv
if (when) you no longer want to follow what happens in the simulation, and you
are only interested in the results. Cmdenv is also much more convenient for batch
execution of, e.g., parameter studies.

When you run the simulation under Cmdenv, it will run without user interaction.
You can follow its progress using the Progress view or the Console view.

1.3.5.1 Running Simulations from the Command Line

Simulations compiled to an executable are self-running, so they can be run like
any other program on your system. Simulations compiled to a shared library, for
example INET in its default setup, can be run using the opp_run or opp_run_dbg

16 A. Varga

utilities which are part of OMNeT++.3 Qtenv and Cmdenv are not separate
programs, but libraries that are part of the simulation program. They can be activated
using the -u Cmdenv or -u Qtenv command-line options. Other controls in the
launch configuration dialog translate to further command-line options.

The opp_runall utility lets one run simulation campaigns, making use of several
CPUs. This tool is covered in Sect. 1.3.7.4.

1.3.6 Interactive Execution Using Qtenv

The primary function of Qtenv is to let you interactively execute the simulation
(run, pause/resume, step, and restart) while visualizing and letting you inspect the
events and the internal state of the simulation as much as possible. To this end, it
has advanced visualization and animation capabilities, lets you inspect the log and
the internals of simulation objects, can record an event log for later analysis, and
has many more features. Because of this, Qtenv is not only valuable when you are
developing your own model or want to demonstrate it, but also when you are trying
to understand a model written by someone else.

You can explore Qtenv by trying out the Run buttons on the toolbar. The run
modes they represent (normal, fast, express) differ in the amount of animation and
frequency of display updates they perform. Express mode reduces User Interface
(UI) overhead to almost zero, so the simulation can execute at full speed. If the
simulation runs to completion or you want to restart it, you can do so with the
Restart button.

At any time, you can examine the model’s state. The current simulation time and
serial number of the current simulation event are displayed in the top-right corner.

You can explore the components and other objects the model is composed of in
the top-left and bottom-left areas, named Object Tree and Object Inspector. Double-
clicking one of the hosts or another icon in the graphical network view will go into
that component and let you view its internals.

The bottom part of the window displays the log from the currently displayed
part of the model. It has two modes. In messages mode, it shows the history of the
message flow between model components, and in log mode, the informational and
debug log produced by the components. Both can be extremely useful when one
needs to figure out what is going on inside the simulation.

Qtenv provides network animation. Animation is automatic, that is, the sim-
ulation code does not need to be instrumented with animation requests. The
animation is also generic, that is, not specific for network simulation: it works
equally well for queuing network simulations, process chain simulations, and other
simulations. Qtenv lets the user open a graphical inspector (animation canvas)

3The difference between opp_run and opp_run_dbg is that the former is used with release-mode
binaries and the latter with debug-mode ones. Debug and release builds are covered in Sect. 1.4.3.1.

1 A Practical Introduction to the OMNeT++ Simulation Framework 17

for any compound module or several compound modules. The canvas shows the
submodules (network nodes, protocols, etc.) and their interconnections. Positions,
icons, background image, and other graphics attributes come from the module (or
channel) display strings. At the startup, Qtenv automatically opens a canvas for the
top-level compound module which represents the network.

During the simulation, Qtenv animates as messages or packets travel between
modules and animates method calls between modules as well. The simulation author
can affect the animation by manipulating display strings (for example, updating
coordinates of a mobile node, or changing the coloring of a protocol module
depending on its state) during simulation.

Qtenv provides live animation, as opposed to playback provided by the ns-2 nam
tool. Compared to playback, live animation has its advantages (all objects can be
examined in detail at any time and it can be combined with C++ debugging) and
disadvantages (backward play or replay of the history is not possible) as well.

1.3.7 Parameter Studies

Simulations are often used to explore a parameter space, for example, to gather
data on how certain protocols or networks behave under different conditions or with
different parameter settings. In this section, we look at how such parameter studies
can be defined and carried out using OMNeT++.

1.3.7.1 Defining a Parameter Study

INI files offer a convenient syntax for defining parameter studies (cf. Listing 1.5).
If an INI file configuration contains one or more iteration variable of the form
${...}, for example ${numHosts=1..5,10,20,50}, the simulation run-
time will take the Cartesian product of the sequences and generate a simulation
run for each. For example, the above numHosts iteration variable together with
a ${pkLen=100,200,500} variable will generate 8 × 3 = 24 simulation
runs. If not all combinations are needed, the user can specify a constraint to
filter out the unwanted ones. For example, the constraint $numHosts>10 ||
$pkLen==500 would mean that, e.g., a run with numHosts = 20 and pkLen =
100 will be left out.

Listing 1.5 An exemplary parameter study, defined in the omnetpp.ini configuration file

1 [Config ThroughputTest]
2 **.numHosts = ${numHosts=1..5,10,20,50}
3 **.pkLen = ${pkLen=100,200,500}
4 constraint = $numHosts>10 || $pkLen==500
5 repeat = 10

18 A. Varga

It is also possible to specify that each run has to be repeated 10 times
with different random number generator seeds, yielding 24 × 10 = 240 runs.
They are numbered from 0 through 239, and the user can tell the simulation
program (via command-line options) to execute, say, run #146 of configuration
ThroughputTest in the specified configuration file. The seeds for these runs
are generated automatically (but in a configurable way) from the run number and/or
the repetition counter. It is also possible to specify seeds manually, but this is rarely
needed or desired.

1.3.7.2 Running Parameter Studies

Although the easiest way to run parameter study is from the IDE, for a better
understanding, let us first see how running it from the command line would look
like. First of all, we would use Cmdenv because the Qtenv UI is not needed for
batch execution. If we just specify the name of the INI configuration file containing
the parameter study with the -c option, Cmdenv will perform all simulations one
after another. The -r allows to pass a run filter expression as well. An example is
as follows:

$./aloha -u Cmdenv -c PureAlohaExp -r ’$numHosts>15’

This command will do the job and execute the desired simulation runs, but it is
not optimal for a number or reasons. For example, if one run crashes, the program
will be terminated and the rest of the runs will not be executed at all. Also, it will
only use one CPU core.

We could execute each simulation in its own process by querying the list of run
numbers matching the filter first (-q runnumbers), and running them one by
one:

$./aloha -u Cmdenv -c PureAlohaExp -r ’$numHosts>15’ -s \
-q runnumbers
28 29 30 31 32 33 34 35 36 37 38 39 40 41
$./aloha -u Cmdenv -c PureAlohaExp -r 28
$./aloha -u Cmdenv -c PureAlohaExp -r 29
$./aloha -u Cmdenv -c PureAlohaExp -r 30

...

$./aloha -u Cmdenv -c PureAlohaExp -r 40
$./aloha -u Cmdenv -c PureAlohaExp -r 41

To make use of multiple CPUs, we could first launch as many simulations as we
have CPUs, then launch new ones every time one of them finishes, to keep all CPUs
busy. This is exactly what both the IDE and the opp_runall command line do.

1 A Practical Introduction to the OMNeT++ Simulation Framework 19

1.3.7.3 Using the IDE

The easiest way to run a parameter study is to use the launcher in the IDE. To try it,
simply open the Run Configurations dialog, select or create a launch configuration
for your simulation, and select the INI configuration file containing the parameter
study from the Config Name combo box. Make sure Cmdenv is selected as the user
interface (it is more suitable for this purpose than Qtenv), then click Run. The IDE
will run all simulations of the parameter study in the background. You will be able
to track progress in the Progress view, and also terminate the batch if you wish.

If you want to use more than one CPU core, make sure to select the Allow
Multiple Processes checkbox in the dialog. This option will divide the series of
simulation runs into smaller batches of a fixed size (e.g., 2 or 5 runs each), and
launch a separate Cmdenv instance for each batch. When one Cmdenv instance (one
batch) finishes, the IDE will launch another one, keeping the specified number of
CPU cores busy.

1.3.7.4 Using opp_runall

The opp_runall program is an OMNeT++ utility that supports running sim-
ulation batches from the command line. Its feature set is similar to the IDE
launcher. The following command will run the ./aloha simulation program with the
PureAlohaExp INI configuration file for the $numHosts>15 condition using
4 CPU cores:

$ opp_runall -j4 ./aloha -c PureAlohaExp -r ’$numHosts>15’

1.3.8 Analyzing the Results

Simulation results are normally written to the results folder under the simulation’s
working directory. Open this folder and double-click on a .sca or .vec file to create
an ANF (analysis) file. ANF files describe the analysis, which can be examined in
the Analysis Editor, integrated in the OMNeT++ IDE.

The analysis editor is a multipage editor, where one can switch between pages
using the tabs at the bottom of the editor area. The Inputs page is used for selecting
the result files that serve as input for the analysis. The Browse Data page lets you
view the simulation results in the files specified on the Inputs page. The Charts page
contains chart specifications as labeled icons. Double-clicking on a chart icon will
cause the computations to be performed and the resulting chart to be opened in a

20 A. Varga

separate page.4 Charts are live, so they allow zooming and panning, and may also
be interactive. Some chart properties can be edited using a Properties dialog.

Although charts can be created as easily as double-clicking items in the Browse
Data page, the heart of each chart is a Python script that relies on packages like
Numpy, Scipy, and Pandas. The script can be modified by the user to include
arbitrary computations and chart types, so the possibilities are practically limitless.
The results can plotted using Matplotlib or the analysis tool’s built-in chart types.
The built-in chart types are more limited in features, but usually scale significantly
better than Matplotlib charts.

opp_scavetool can be used to query simulation result files (.sca and .vec files)
and export them in Comma-Separated Values (CSV) and other formats, possibly
after filtering. CSV can be directly imported into Python /Pandas, GNU R, or
other programs, e.g., spreadsheets for further (interactive or scripted) processing.

1.3.9 Eventlog and Sequence Charts

Sequence charts are for exploring the sequence of events and timing relationships.
OMNeT++ simulations can optionally create an eventlog file that records simulation
events such as: message creations and deletions, event scheduling and cancellation,
message sends and packet transmissions, model topology changes, display string
changes, debug log messages from simple modules, etc. Message and packet fields
may also be captured in the event log file at a configurable detail level; this feature
relies on reflection information generated by the message compiler.

The simulation IDE can visualize the log using an interactive sequence diagram,
which significantly facilitates the verification of protocol models. The chart can
be panned and zoomed, there are several ways (linear, nonlinear, step, etc.) to
map simulation time and events to the x-axis, and the chart can be filtered by
modules and by various other criteria. Tooltips show the properties of events and
messages/packets in detail, and it is also possible to browse the detailed log of
actions by simulation event. The sequence chart can also be exported in the Scalable
Vector Graphics (SVG) format. During operation, the tool only keeps parts of the
file in memory, so it is feasible to view event log files of several gigabytes with
it. opp_eventlogtool can be used to query and filter eventlog (.elog) files from the
command line.

4This text describes the Analysis Editor from OMNeT++ version 6.0, which was under develop-
ment at the time of writing. Older versions (4.x, 5.x) differ significantly.

1 A Practical Introduction to the OMNeT++ Simulation Framework 21

1.4 Model Development

This section provides an introduction into the practice of writing OMNeT++
models, that is, simple modules involving C++ code.

Developing new simulation components in C++ is not unlike developing any
C++ program or library. One needs to set up a project with a suitable build system,
followed by the edit-build-run cycle. Debugging is often inevitable, as are other
tools that provide higher-level information about the model’s operation. Tests to
uncover problems and regressions are often a must, especially for larger and longer-
lived projects. The following subsections provide some practical guidance for these
topics.

1.4.1 Editing C++ Source Files

The OMNeT++ IDE has special editors for NED, MSG, and INI files. C++ editing is
provided by the CDT (C/C++ Development Tools) project of Eclipse. In addition to
the usual editor functions like syntax highlighting, folding, undo/redo, find/replace,
and incremental search, the C++ editor also offers several “smart” features like
autocompletion and content assist, various ways to explore and navigate the code
(e.g., go to declaration, find references, or show type hierarchy), and refactoring
operations like rename, extract local variables, or extract functions. Most “smart”
features require the project to be indexed by Eclipse.

1.4.2 Version Control

We strongly recommend to keep source files under version control. We recommend
the use of Git. If you intend to make your project public, create a repository on
GitHub. However, even small personal projects with only a local Git repository
benefit from being able to review changes.

The OMNeT++ IDE has built-in Git support. When you import a project under
version control (has a .git folder), the IDE automatically picks that up without
any extra configuration. Git-related functions such as commit, push, and pull are
available in the Team submenu of the project’s or file’s context menu. Managing a
project repository by mixing the IDE and external tools like gitk or git-gui is also
possible.

22 A. Varga

1.4.3 C++ Build

To build, choose Build Project from the Project menu, or hit [Ctrl]+[B].
C++ build settings can be configured on the OMNeT++→Makemake page of the

Project Properties. The page shows the folder structure of your project and allows
you to choose for each folder whether you want to generate a makefile in that folder,
and if so, with what options. Usually, you only want to have a makefile in the src
folder. If your project depends on another project or on external C/C++ libraries,
this page is also the place where you can specify that you want to link with those
libraries. The generated makefiles file will be updated before each build.

1.4.3.1 Debug vs Release Build

In order to be able to debug the simulation in a meaningful way, the compiled code
must contain debug information. OMNeT++ allows models to be compiled in one
of two modes: release and debug. The former one is the default mode, and it will
instruct the compiler to emit optimized code; the latter is meant for debugging. In the
IDE, you can switch between the two modes by selecting the Build Configurations
→Set Active item from the project’s context menu.

When working from the command line, use the make MODE=debug command
to build the model in debug mode. Debug mode builds produce binaries that have
the _dbg suffix in their names, to allow debug and release mode binaries to co-exist
in the same directory.

1.4.3.2 Project Features

It takes a while to compile INET from source. You can reduce both the compilation
time and the size of the binaries if you exclude parts you do not need for your
simulation study from the build process. To do that, go into the Project menu
and choose Project Features from it. A dialog will pop up where you can select
which protocols and components you need. After making your choice you need to
recompile INET (choose Build Project from the Project menu, or hit [Ctrl]+[B]).

1.4.3.3 Command-Line Usage

If you do not use the IDE for some reason, you can use the opp_makemake utility
with the appropriate options to generate a makefile. One of the most useful options
is --deep, which instructs opp_makemake to generate a makefile that covers files
in the whole source tree, not just in the current folder. The -make-so option
(or -s for short) sets the target type to shared library (the default is building an
executable), and -o can be used to specify the base name of the output. For example,

1 A Practical Introduction to the OMNeT++ Simulation Framework 23

the following command will create a makefile that builds a shared library named
libFoo.so or libFoo_dbg.so on Linux, and Foo.dll or Foo_dbg.dll on Windows:

$ opp_makemake -f --deep --make-so -o Foo

opp_makemake is fully compatible with the makefile generator in the IDE.
Once a makefile is present, use the make -j4 command to perform the build

(replace “4” with the number of CPU cores you wish to use). To perform a debug
build, enter the make -j4 MODE=debug command (as the default mode in the
generated makefiles is release.)

The opp_featuretool program lets you query, enable, and disable project features
from the command line.

1.4.4 Debugging

OMNeT++ simulations are essentially C++ programs, so C++ debuggers can be
used to find the source of crashes and facilitate tracking down other problems.
This section deals with debugging simulations. However, debugging is not always
necessary or practical, and tools that provide a higher-level view of the simulation
are sometimes of more help. Two such tools are the Qtenv runtime and the Sequence
Chart tool in the IDE. Qtenv has three facilities relevant here: animation, inspection,
and logs.

In addition to animation, Qtenv lets the user inspect objects and variables in
the model. For example, you can view the list of scheduled events, examine
module parameters, state variables, contents of queues, messages and packets, and
look at the current values of statistics. You can also search among all objects in
the simulation by various filter criteria. Qtenv also displays debug log output by
modules as well as the packet flow. The latter feature is comparable to a network
analyzer like Wireshark. Note that Qtenv runs as part of the simulation program,
so if the simulation crashes, it will bring down the Qtenv UI as well.

1.4.4.1 Debugging in the IDE

The OMNeT++ IDE contains an integrated C/C++ debugger that comes from the
Eclipse CDT project. Beyond the basics (single-stepping, stack trace, breakpoints,
watches, etc.), it also offers several convenience and advanced functionalities
such as inspection tooltips and smart breakpoints. Currently, CDT uses the GNU
Debugger (gdb) as the underlying debugger; LLDB support is underway.

Launching a simulation in debug mode is very similar to running it, only you have
to select the Debug toolbar icon or menu item instead of Run. When debugging, the
IDE will switch to an alternative layout (the Debug perspective) better suited for
debugging, and specialized views like Debug, Breakpoints, and Expressions will

24 A. Varga

appear. After you are done with debugging, you can switch back to the Simulation
perspective using the perspective switching controls in the top-right corner.

Debugging a simulation is by and large the same as debugging any C/C++
program, so we do not go into detail about it in this chapter. However, we will
cover some OMNeT++ features that facilitate debugging.

1.4.4.2 Just-in-Time Debugging

When the simulation stops with a runtime error, being able to debug may help in
identifying the cause of the error. To allow such just-in-time debugging, enable
the debug-on-errors option before running the simulation, e.g., by selecting the
appropriate checkbox in the launch configuration. It will cause the program to be
stopped in the debugger when the error occurs, and you can look at the stack trace
and examine variables.

1.4.5 Sanitizing

When your simulation starts to have random crashes or display other nondetermin-
istic behavior, it is time to sanitize it. Unfortunately, C++ is a language that, in
addition to allowing you to create very efficient code, also lets you shoot yourself
in the foot: use of uninitialized variables, array over-indexing, buffer overflows,
heap use-after-delete, stack use-after-return, memory leaks, and the list goes on
and on. These types of errors are difficult to track down using a debugger. Instead,
the number one tool to turn to is Valgrind under Linux (or comparable tools like
DrMemory under Windows).

Valgrind is a suite of tools for debugging and profiling code on Linux. Valgrind
can automatically detect various memory access and memory management bugs
and perform detailed profiling of your program. The IDE supports launching your
simulation under Valgrind (use the Profile button on the toolbar, next to Run and
Debug), or you can do the same from the command line. One downside is that
programs run quite a bit slower (e.g., 20×) under Valgrind; however, it produces a
report that is both comprehensive and reliable. It is a good idea to “valgrind” your
simulation from time to time, even if it seemingly works correct.

An alternative to Valgrind are sanitizers, a family of dynamic testing tools built
into the Clang and GCC C++ compilers. AddressSanitizer finds memory errors
such as use-after-free, buffer overflows, and leaks; MemorySanitizer finds uses of
uninitialized memory; UndefinedBehaviorSanitizer finds other kinds of undefined
behavior, such as use of incorrect dynamic type, shift by illegal amount, and many
others. To use these sanitizers, you need to compile the simulation (and possibly the
OMNeT++ libraries as well) with certain flags such as -fsanitize=address
to produce an instrumented binary that will print diagnostic messages when it is
run. The need for a special build is an inconvenience compared to Valgrind which

1 A Practical Introduction to the OMNeT++ Simulation Framework 25

is able to detect errors in the unmodified program, but the simulation will execute
significantly faster than under Valgrind (expect 2×–3× slowdown instead of 20×).

Code quality can also be improved using static analysis tools like Coverity, PVS
Studio, or CppCheck. One upside of static analysis tools is that they can find errors
in all parts of the program, not only those that were exercised during execution; a
downside is that the reports produced tend to contain false positives.

1.4.6 Profiling

Many simulations need to be run for several hours or longer to obtain meaningful
simulation results, or are run several hundred or thousand times as part of a
simulation study. Thus, optimizing them for speed is often vital. Profiling answers
the question of how much time is spent executing various parts of the program,
which helps you to figure out which parts of the program are worthwhile to optimize.

The simplest way of profiling, which requires no special tool, is to manually
stop the program from time to time in the debugger, each time checking the
stack trace. If it frequently stops in the same part of the program, it is a strong
indication that the program spends a lot of its time there, and therefore it is a good
candidate for optimizations. One class of profilers called statistical profilers utilizes
and extends this idea. Other classes of profilers include instrumentation-based and
hypervisors/instruction set simulators.

Valgrind is also useful here. While Valgrind has become synonymous with
Memcheck, its memory sanitizer tool, it contains other tools too, like the Callgrind
profiler. Running the simulation program under Callgrind will produce a trace file
that can be viewed using KCacheGrind, an excellent graphical frontend. Other
profiling tools are GNU gprof, gperftools (originally Google Performance Tools),
and the system-wide Linux profilers Sysprof and OProfile.

1.4.7 Validation and Verification

Correctness of the simulation model is a primary concern of the developers
and users of the model, because they want to obtain credible simulation results.
Verification and validation are activities conducted during the development of a
simulation model with the ultimate goal of producing an accurate and credible
model. Verification of a model is the process of confirming that it is correctly
implemented with respect to the conceptual model, that is, it matches specifications
and assumptions deemed acceptable for the given purpose of application. During
verification, the model is tested to find and fix errors in the implementation of the
model.

Validation checks the accuracy of the model’s representation of the real system.
Model validation is defined to mean “substantiation that a computerized model

26 A. Varga

within its domain of applicability possesses a satisfactory range of accuracy
consistent with the intended application of the model” [6]. A model should be built
for a specific purpose or set of objectives and its validity determined for that purpose.

Of the two, verification is essentially a software engineering issue, so it can be
assisted with tools used for software quality assurance, for example testing tools.
Validation is not a software engineering issue.

1.4.8 Fingerprints

When an existing simulation model is refactored or extended with new features, it is
important that changes do not accidentally break existing functionality. Regression
tests are widely employed to ensure that. There are many ways to write regression
tests, but a very practical and easy-to-use technique is built into OMNeT++:
fingerprints. Fingerprint tests are a low-cost but effective tool for regression testing
of simulation models. A fingerprint is a hash computed during the simulation from
various properties of simulation events, messages, and statistics. The hash value is
continuously updated as the simulation executes, and thus, the final fingerprint value
is characteristic of the simulation’s trajectory.

For regression testing, one needs to compare the computed fingerprints to that
from a reference run—if they differ, the simulation trajectory has changed. In
general, fingerprint tests are useful to ensure that a code change (e.g., refactoring,
a bugfix, or a new feature) did not break the simulation. The fingerprint implemen-
tation allows to select what to include in the hash value. Changing the ingredients
allows one to make the fingerprint sensitive for certain changes while keeping it
immune to others.

Syntactically, a fingerprint is a string of hex digits that represent a 32-bit number,
followed by a slash character and a group of letters that indicate the ingredients of
the fingerprint. Each ingredient is identified with a letter. The t, for instance, stands
for the simulation time. The omnetpp.ini source code excerpt in Listing 1.6 means
that a fingerprint needs to be computed with the simulation time (t), the module full
path (p), the received packet’s bit length (l), and the extra data (x) included for each
event. The result is expected to be 53de-64a7.

Listing 1.6 Specifying the expected fingerprint

1 fingerprint = 53de-64a7/tplx

OMNeT++ contains a script for automated fingerprint tests as well. The script
runs either all or selected simulations defined in a CSV file (with columns like
the working directory, the command to run, the simulation time limit, and the
expected fingerprints) and reports the results. The following excerpt from a CSV
file prescribes the fingerprint tests to run:

1 A Practical Introduction to the OMNeT++ Simulation Framework 27

examples/aodv/, inet -c Static, 50s, 4c29-95ef/tplx
examples/aodv/, inet -c Dynamic, 60s, 8915-f239/tplx
examples/dhcp/, inet -c Wired, 800s, e88f-fee0/tplx
examples/dhcp/, inet -c Wireless, 500s, faa5-4111/tplx

1.4.9 Documenting

When a simulation model is expected to be shared with other people, documenting
it is usually a good idea. OMNeT++ includes support for generating documentation
from NED file and message definition comments. The generated documentation lists
modules, channels, messages, etc. and presents their details including description,
gates, parameters, assignable submodule parameters, and syntax-highlighted source
code. The documentation also includes network diagrams, usage diagrams, and
inheritance diagrams. The documentation tool integrates with Doxygen, meaning
that it can hyperlink simple modules and message classes to their C++ implementa-
tion classes in the Doxygen documentation. Documentation is embedded in normal
C/C++ code comments (//). An example is given in Listing 1.7.

Listing 1.7 Exemplary NED documentation

1 // Ethernet MAC. Performs transmission and reception of Ethernet frames. [...]
2 //
3 // @see ~EtherEncap, ~EtherFrame
4 simple EtherMac like IEtherMac {
5 parameters:
6 string address = default("auto"); // MAC address (hex string) or "auto"
7 bool duplex = default(true); // full duplex (true) or half duplex (false)
8 bool promiscuous = default(false); // if true, receive all packets
9 }

1.5 Writing Components

This section will show you how to develop new simulation components in C++.
It covers discrete event simulation fundamentals and several Application Pro-
gramming Interfaces (APIs) of the OMNeT++ simulation kernel, from random
number generation, timers, and packets to statistical result collection, implementing
animation, and many more topics.

1.5.1 Discrete Event Simulation

Before starting to write protocol models in OMNeT++, we need to get familiar with
the concepts of Discrete Event-based Simulation (DES). Readers already familiar
with DES are unlikely to find much new in this subsection and may skip it.

28 A. Varga

1.5.1.1 Discrete Event Systems

A discrete event system is a system where state changes (events) happen at discrete
instances in time, and events take zero time to happen. It is assumed that nothing
(i.e., nothing interesting) happens between two consecutive events, that is, no
state change takes place in the system between the events. This is in contrast
to continuous systems where state changes are continuous. Systems that can be
viewed as discrete event systems can be modeled using discrete event simulation,
DES. Computer networks are usually viewed as discrete event systems, where
events represent things like the start or end of a frame transmission, expiry of a
retransmission timeout, or an application opening/closing a socket.

The time when events occur is often called the event timestamp; with OMNeT++
we use the term arrival time (because in the class library, the word “timestamp” is
reserved for a user-settable attribute in the event class). Time within the model is
typically called simulation time, model time, or virtual time, to distinguish it from
real time or CPU time which refer to how long the simulation program has been
running and how much CPU time it has consumed.

1.5.1.2 The Discrete Event-Based Simulation Algorithm

A discrete event simulator maintains a set of future events in a data structure called
the Future Event List (FEL), a.k.a. the Future Event Set (FES). Such simulators
usually work according to the following pseudocode from Listing 1.8.

Listing 1.8 Pseudocode of the DES event loop

1 initialize() # insert initial events into FES, set now = 0
2
3 while not isEmpty(FES) and not completed:
4 event = removeFirst(FES)
5 now = timestampOf(event)
6 process(event) # may insert events into FES or remove scheduled ones
7
8 finalize() # write statistical results, etc.

The initialization step usually builds the data structures representing the simula-
tion model, calls any user-defined initialization code, and inserts initial events into
the FES to ensure that the simulation can start. Initialization strategies can differ
considerably from one simulator to another. The subsequent loop consumes events
from the FES and processes them. Events are processed in strict timestamp order
to maintain causality, that is, to ensure that no current event may have an effect
on earlier events. Processing an event involves calls to user-supplied code. For
example, using the computer network simulation example, processing a “timeout
expired” event may consist of re-sending a copy of the network packet, updating the
retry count, scheduling another “timeout” event, and so on. The user code may also
remove events from the FES, for example when canceling timeouts. The simulation
stops when there are no events left or when it is not necessary for the simulation

1 A Practical Introduction to the OMNeT++ Simulation Framework 29

to run further because the model time or the CPU time has reached a given limit,
or because the statistics have reached the desired accuracy. At this time, before the
program exits, the user will typically want to record statistics into output files.

In practice, the FES often contains events with the same timestamp value, and it is
important to decide how they should be ordered relative to each other. In OMNeT++,
this issue is resolved with two simple rules: first, an event scheduled (i.e., inserted
into the FES) earlier will also be processed earlier. Second, the effect of scheduling
order can be overridden by a priority field in the event.

1.5.1.3 Simulation Time

When implementing a discrete event simulator, one would be tempted to represent
simulation time with double-precision floating-point numbers (C/C++ double).
This is generally not a good idea, because such simulation time would have dimin-
ishing precision as simulation time advances. OMNeT++ represents simulation
time with a simtime_t type which is a 64-bit fixed-point number with a base-
10 exponent. The exponent is stored in a global variable to eliminate the need for
normalization, and to conserve memory. The range provided by 64 bits is more than
enough for practical simulations (approx. ±292 years with nanosecond precision or
±107 days with picosecond-precision).

1.5.2 Modules, Messages, and Events

Simple modules are implemented as C++ classes, derived from the library class
cSimpleModule. Listings 1.9 and 1.10 present two simple examples of a source
and sink module that demonstrate the subsequently described basic tasks. Message
sending and receiving are the most frequent tasks in simple modules. Messages
are represented with the cMessage class. A module can send messages to another
module via output gates and connections using the send() call, or directly to other
modules using the sendDirect() function.

The simulation kernel sends messages to the handleMessage(cMessage*)
method of the module; module authors primarily need to override this method
to add functionality. The alternative to handleMessage() is a process-style
description, where users have to override the activity() method, and messages
are delivered as the return value of blocking receive calls. In general, using
activity() is not recommended because it does not scale due to the underlying
coroutine stacks, but there are situations when it is extremely useful, such as when
porting a process-based program into a simulation.

30 A. Varga

Timers and timeouts are implemented with normal messages that the module
sends to itself.5 These self-messages are sent with a scheduleAt() call and
are delivered back to the module in the same way as messages arriving from other
modules. Self-messages can also be canceled. Note that there is no separate event
class, its role is fulfilled by cMessage.

The programmer can provide code to execute during module initializa-
tion and finalization by overriding dedicated methods of the module class
(initialize(), finish()). Finalization takes place on successful simulation
termination only, and its code is most commonly used to record summary simulation
results. OMNeT++ also supports multi-stage initialization, and it has proven
essential for large models like the INET Framework as a tool for managing complex
initialization interdependencies across various model components. Listing 1.11
gives an example of a multi-stage initialization process.

Listing 1.9 A simple module C++ class that implements a source

1 class Source : public cSimpleModule {
2 protected:
3 virtual void initialize() override;
4 virtual void handleMessage(cMessage *msg) override;
5 };
6
7 Define_Module(Source);
8
9 void Source::initialize() {

10 scheduleAt(simTime(), new cMessage("timer"));
11 }
12
13 void Source::handleMessage(cMessage *msg) {
14 send(new cMessage("generatedMsg"), "out");
15 scheduleAt(simTime() + 1, msg);
16 }

Listing 1.10 A simple module C++ class implementing a sink

1 class Sink : public cSimpleModule {
2 protected:
3 int numReceived;
4 virtual void initialize() override;
5 virtual void handleMessage(cMessage *msg) override;
6 virtual void finish() override;
7 };
8
9 Define_Module(Sink);

10
11 void Sink::initialize() {
12 numReceived = 0;
13 }
14
15 void Sink::handleMessage(cMessage *msg) {
16 EV << "received message ’" << msg->getName() << "’\n";

5Other simulators implement timers as callbacks invoked from the simulation kernel. OMNeT++
prefers the handleMessage approach, because we have found that it results in code that is easier to
understand and maintain.

1 A Practical Introduction to the OMNeT++ Simulation Framework 31

17 numReceived++;
18 delete msg;
19 }
20
21 void Sink::finish() {
22 EV << "received total " << numReceived << " messages\n";
23 }

Listing 1.11 Multi-stage initialization

1 class MultiStage : public cSimpleModule {
2 protected:
3 virtual int numInitStages() const override { return 4; }
4 virtual void initialize(int stage) override;
5 //...
6 };
7
8 void MultiStage::initialize(int stage) {
9 switch (stage) {

10 case 0: /*...*/; break;
11 case 1: /*...*/; break;
12 case 2: /*...*/; break;
13 case 3: /*...*/; break;
14 }
15 }

1.5.3 Accessing Parameters

Module parameters declared in NED files can be accessed with the par() method
of the module/channel. par() expects the name of the parameter as an argument
and returns a reference to the parameter object which has the type cPar (cf. List-
ing 1.12). The cPar value can be read with methods that correspond to the parame-
ter’s NED type: boolValue(), intValue() (returns intpar_t, an integer
at least 64 bits wide), doubleValue(), stringValue() / stdstring-
Value() (they return const char * and std::string, respectively), and
xmlValue() (returns cXMLElement*). There are also overloaded type cast
operators for the corresponding types (bool; all integer primitive types like int,
long, etc.; double; const char *; and cXMLElement *).

A parameter can be declared volatile in the NED file. The volatile
modifier indicates that a parameter is re-read every time a value is needed
during simulation. Volatile parameters are typically used for things like ran-
dom packet generation interval (cf. Listing 1.13) and are assigned values like
exponential(1.0) (numbers drawn from the exponential distribution with
mean 1.0). In contrast, nonvolatile NED parameters are constants and reading their
values multiple times is guaranteed to yield the same value. When a nonvolatile
parameter is assigned a random value like exponential(1.0), it is evaluated
once at the beginning of the simulation and replaced with the result, so all reads will
get the same (randomly generated) value. The typical use of nonvolatile parameters

32 A. Varga

is to read them once in the initialize() method of the module class and store
the values in class variables for easy access later when necessary.

Listing 1.12 Reading a parameter in a module

1 class JobSource : public cSimpleModule {
2 protected:
3 long numJobs;
4 virtual void initialize();
5 //...
6 };
7
8 void JobSource::initialize() {
9 numJobs = par("numJobs");

10 //...
11 }

volatile parameters need to be re-read every time the value is needed. For
example, a parameter that represents a random packet generation interval may be
used like in the example from Listing 1.13:

Listing 1.13 Reading a volatile parameter

1 void Source1::handleMessage(cMessage *msg) {
2 //...
3 scheduleAt(simTime() + par("interval").doubleValue(), timerMsg);
4 //...
5 }

The code above looks up the parameter by name every time. This name lookup
can be avoided by storing the parameter object’s pointer in a class variable, resulting
in the following code from Listing 1.14:

Listing 1.14 Sparing the per-read lookup of a volatile parameter

1 class Source2 : public cSimpleModule {
2 protected:
3 cPar *intervalp;
4 cMessage *timerMsg;
5 virtual void initialize() override;
6 virtual void handleMessage(cMessage *msg) override;
7 //...
8 };
9

10 void Source2::initialize() {
11 intervalp = &par("interval");
12 //...
13 }
14
15 void Source2::handleMessage(cMessage *msg) {
16 //...
17 scheduleAt(simTime() + intervalp->doubleValue(), timerMsg);
18 //...
19 }

1 A Practical Introduction to the OMNeT++ Simulation Framework 33

1.5.4 Random Numbers

If you run the same discrete event simulation multiple times, it will always produce
the same results. This is because “random” numbers consumed by simulations are
not really random, but rather produced by deterministic algorithms, called Pseudo-
Random Number Generators (PRNG) (or RNG for short). The benefit of using
PRNGs is that simulations are repeatable (in contrast to emulations or field tests).
PRNGs generate the “random” sequence from a seed (start) value. To generate a
different sequence of “random” numbers, one needs to supply a different seed start
value. By default, OMNeT++ takes care of assigning seed values. For example,
by specifying repeat=10 in the INI file you request 10 repetitions of the same
simulation; all of them will run with different seed values. Listing 1.15 demonstrates
how random numbers are generated in the source code.

Listing 1.15 Generating random numbers

1 unsigned long k = intrand(10); // random integer from [0,9]
2 double d = dblrand(); // random double integer from [0,1)

OMNeT++ primarily uses the Mersenne Twister PRNG [5] for the generation
of random numbers.6 A configurable number of global random number streams are
provided to the simulation. Global random number streams are mapped to module-
local ones; module parameters and module source code consume random numbers
from these module-local streams. The mapping from global streams to module-local
ones can be configured/parametrized in a flexible way, allowing the use of variance
reduction techniques and other “tricks” without the need to change anything in the
actual simulation model.

Seeding is automatic, but it is also possible to use manually selected seeds in the
configuration. The simulation requires as many seeds as the configured number of
global RNG streams. Due to the practically infinite cycle length of the Mersenne
Twister, overlapping RNG streams is not an issue in OMNeT++.

Random variate generation builds on top of the above-described random number
architecture. Several distributions are available (cf. Listing 1.16 for an excerpt).
Continuous ones include uniform, exponential, normal, truncated normal, gamma,
beta, Erlang, chi-square, Student-t, Cauchy, triangular, lognormal, Weibull, and
Pareto; discrete ones include uniform, Bernoulli, binomial, geometric, negative
binomial, and Poisson distributions.

6The Mersenne Twister is the RNG class selected by default in OMNeT++, but two others are
available as well (the LCG-32, a.k.a. the “default standard” RNG, and another one wrapping
random numbers from the Akaroa library). It is also possible to write other RNG classes and
select them from the INI-file, without changing anything in the simulation framework.

34 A. Varga

Listing 1.16 Generating random variates

1 double x = exponential(10); // draw from exponential distribution with mean=10
2 double y = normal(0,1); // draw from the unit normal distribution
3 double z = normal(0,1,2); // same, using RNG 2 of the containing module

It is possible to add new distributions programmed by the user and make them
available in the NED language and in the configuration (see Sect. 1.3.4). It is also
possible to dynamically load distributions defined as histograms.

1.5.5 The Simulation Library

1.5.5.1 Classes

Most classes in the OMNeT++ simulation library represent various parts of the
component model: modules, channels, gates, module parameters, objects, and so
on. Messages and packets are represented by cMessage class and its subclass,
cPacket. A frequently used container class is cQueue, which can also be set
up to operate as a priority queue. The simulation library contains a topology
discovery class, cTopology, which can extract a network topology from the model
according to the user’s specification, make it available as a graph, and support
algorithms such as Dijkstra’s shortest path.

1.5.5.2 Ownership Tracking

Instances of several classes in the OMNeT++ class library, most notably
cMessage, maintain pointers back to their owners. The owner is usually the
module which has created or received the given message, a queue or other container
object in a module, or the simulation kernel (more precisely, the future events list).
The owner pointer allows the simulation kernel to catch common mistakes such as
sending the same message object twice, sending out a message while it is sitting in
a queue, or accessing a message which is being held by another module.

Ownership management is transparent for most of the time. The most frequent
case when it needs manual help is when a module passes a message object to another
module by means of a C++ method call; then, the target module explicitly needs to
take the object from its current owner. Modules are soft owners and will yield to
such requests, but if the owner is a queue for example, it is a hard owner and will
raise an error instead.

Since modules maintain a list of owned objects, it is possible to recursively
enumerate all objects in the simulation in a generic way, that is, without using
pointer fields declared in simple module subclasses. This mechanism makes it
possible for the user to inspect the simulation in the graphical runtime environment
on object level, and to find leaked objects.

1 A Practical Introduction to the OMNeT++ Simulation Framework 35

1.5.6 Representing Network Packets

An important aspect of network simulation is the representation of network packets.
In OMNeT++, packets are C++ classes derived from cPacket, which is in turn a
subclass of cMessage. cPacket’s fields include the length of the packet, an error
flag used to signal a corrupted packet, and a pointer to the encapsulated packet. The
latter is used by the packet’s encapsulate() and decapsulate() methods
that are used when a message is passed up or down between protocol layers. These
methods automatically update the length of the outer packet. The encapsulated
packet pointer also gives an opportunity to OMNeT++ to reduce the number of
packet object duplications by performing reference counting and copy-on-access on
the encapsulated packet.

1.5.6.1 The Message Compiler

In OMNeT++, messages and network packets are represented with C++ classes.
With getter and setter methods for each field, a copy constructor, assignment
operator, and a virtual dup() function (network packets are often copied or
duplicated during simulation), plus hand-written reflection information needed for
displaying packet contents in the graphical runtime Qtenv, it would be a time-
consuming and tedious task to implement packet classes in plain C++. OMNeT++
takes the burden off the simulation programmers by providing a simple language
(not unlike C structs with metadata annotation support) to describe messages, and
the build system automatically generates C++ classes from them during the build
process. Generic classes and structs may also be generated this way, not only
packets and messages. If customizations are needed, the message compiler can
be asked (via metadata annotations) to generate an intermediate base class only,
from which the programmer can derive the final packet class with the necessary
customizations. The success of the concept is proven by the fact that in modern
OMNeT++ models practically all packet classes are generated. An exemplary
message description is given in Listing 1.17:

Listing 1.17 An exemplary MSG message description

1 // Represents a packet in the network.
2 packet SamplePacket
3 {
4 int srcAddr;
5 int destAddr;
6 int hopLimit = 32;
7 }

The opp_msgtool utility can be used to translate MSG files to C++, to convert,
or to pretty-print them from the command line.

36 A. Varga

1.5.6.2 Control Info

In OMNeT++, protocol layers are usually implemented as modules that exchange
packets. However, communication between protocol layers often requires sending
additional information to be attached to packets. For example, when a TCP
implementation sends down a TCP packet to IP, it needs to specify the destination
IP address and possibly other parameters. When IP passes up a packet to TCP after
decapsulating it from an IP datagram, it will want to let TCP know at least the
source and the destination IP addresses. This additional information is represented
by control info objects in OMNeT++. Control info objects are attached to packets.

1.5.7 Wired Packet Transmission

When modeling wired connections, packets are sent from the transmitter (e.g., the
Medium Access Control (MAC) or Physical Layer (PHY) module) of one network
node to the receiver of another node, via a connection path that contains exactly
one channel object. Like modules, channels are programmable in C++ as well,
and they are responsible for modeling propagation delay, calculating and modeling
transmission duration, and performing the transmission error modeling. The default
channel model, the DatarateChannel, performs a simple Bit Error Rate (BER)
and/or Packet Error Rate (PER)-based error modeling. Error modeling sets a flag in
the packet. It is then the responsibility of the receiver module to check this flag and
act accordingly (e.g., drop a packet).

Normally, the packet object is delivered to the receiver module at the simulation
time that corresponds to end of the reception of the packet. However, the receiver
module may request that packets are delivered to it at the beginning of their
reception, by “reprogramming” the receiver gate with an appropriate API call. The
last transmission duration is available in a field of the packet object, and may be
used by the receiver to determine how long the channel is to be considered busy.

1.5.8 Wireless Packet Transmission

Due to diverse and often conflicting requirements, such as the level of detail versus
performance tradeoffs, the OMNeT++ simulation kernel does not have a built-in
mechanism for modeling the wireless channel and wireless packet transmissions.
Instead, it is left to simulation model frameworks to implement such functionality
using facilities of the OMNeT++ simulation kernel.

Wireless transmissions are usually implemented with sending the pack-
ets directly to the wireless nodes within range, using the aforementioned
sendDirect() call. Usually, there is a separate dedicated module (for instance,
the channel controller) for keeping track which nodes are within range of each

1 A Practical Introduction to the OMNeT++ Simulation Framework 37

other, and which frequency they occupy. The packet (frame) may be encapsulated
into a conceptual air frame which contains the physical properties of the radio
transmission. The (air) frame object needs to be duplicated for each receiving
node.7 The task of modeling the wireless channel and the radio reception is shared
between the channel controller and the actual destination node(s).

1.5.9 Dynamic Module Instantiation

Usually, all modules of a simulation are instantiated statically as part of the network
setup procedure before the simulation begins, and destroyed when the simulation
is terminated. However, it is also possible to dynamically instantiate (or delete)
modules while the simulation is running. Of course, such operations may only be
initiated programmatically, i.e., from a simple module or another active component
(cf. Listing 1.18). Both simple and compound modules may be created at runtime,
the latter will have its complete internal structure (submodules, connections) built
out automatically as well.

Dynamic instantiation can be useful in a number of cases, for instance when the
network topology is loaded from a file or generated by an algorithm at runtime,
or when the network is changing dynamically (e.g., mobile devices are constantly
arriving or leaving the playground, network links are repeatedly being added or cut).

Listing 1.18 All-in-one module instantiation

1 // find a module type, and instantiate it as a child of our parent module
2 cModuleType *moduleType = cModuleType::get("nodes.WirelessNode");
3 cModule *mod = moduleType->createScheduleInit("node", getParentModule());

1.5.10 Signals

The OMNeT++ simulation library contains a built-in notification mechanism, which
allows for publish-subscribe style communication between simulation components
among many other uses. Components (modules and channels) can emit notifications
termed signals, and other modules (or arbitrary pieces of code) can subscribe to
them. Signals are identified by names, but for efficiency, calls use dynamically
assigned numeric signal identifiers. Names and identifiers are globally valid in the
whole simulation. Listing 1.19 shows an exemplary signal definition:

7Duplicating all protocol layers encapsulated in the frame would be a waste of CPU cycles
because in a wireless network, most frames are immediately discarded by the receiver due to
incorrect reception or wrong destination MAC address. Hence, OMNeT++ uses reference counting
on encapsulated packets and only duplicates them if needed, that is, when they actually get
decapsulated in a higher layer protocol module.

38 A. Varga

Listing 1.19 Declaring signals in the NED language

1 module Queue {
2 @signal[queueLength](type=long);
3 @signal[queueingTime](type=simtime_t);
4 }

Signals propagate upwards in the module hierarchy. At any level, one can register
callbacks called listeners which will be notified (called back) whenever a signal is
emitted. Compare Listing 1.20 for an exemplary registering process and Listing 1.21
for the opposed listening process.

Listing 1.20 Registering and emitting a signal in the C++ source

1 simsignal_t queueLengthSignal; // class member
2 queueLengthSignal = registerSignal("queueLength"); // into initialize()
3 emit(queueLengthSignal, queue.getLength()); // into handleMessage()

Listing 1.21 Listening on a signal

1 class NoisyListener : public cListener { // listener class
2 protected:
3 virtual void receiveSignal(cComponent *source, simsignal_t signalID,
4 long value, cObject *details) override
5 {
6 const char *signalName = cComponent::getSignalName(signalID);
7 EV << "Received " << value << " on signal " << signalName << endl;
8 }
9 };

10 // into initialize():
11 simsignal_t queueLengthSignal = registerSignal("queueLength");
12 subscribe(queueLengthSignal, new NoisyListener());

The significance of upwards propagation is that listeners registered at a certain
module will receive signals from all components in that submodule tree. Listeners
registered at the top level will receive signals from the whole simulation. Since
a module can register listeners at any other module, it can get notified about
events anywhere it wishes. For example, a simple module representing a routing
protocol may register a listener for the hypothetical INTERFACE_UP and INTER-
FACE_DOWN signals at the parent compound module that represents the router and
initiate action to update the routing tables accordingly.

When a signal is emitted, it can carry a value with it. The value can be of a basic
type (e.g., long, double, string, etc.) or a pointer to an arbitrary object. Objects can
be already existing objects, or ones specially crafted for the purpose of emitting the
signal. Computing the signal value or propagating the signal may cost valuable CPU
cycles, so the signal mechanism was implemented in a way that helps avoid emitting
or further propagating signals for which there are no listeners.

Simulation signals can be used for several purposes, in particular:

• to implement publish-subscribe style communication among modules; it is
advantageous when the producer and consumer of the information do not know

1 A Practical Introduction to the OMNeT++ Simulation Framework 39

about each other, and there is, possibly, a many-to-one or a many-to-many
relationship between them;

• when some module needs to be notified about simulation model changes such
as module creation and deletion, connection creation and deletion, parameter
changes, and so on. Such signals, both pre- and post-change ones, are emitted by
the OMNeT++ simulation kernel, with attached objects that contain the details
of the change;

• for emitting variables to be recorded as simulation results, for example queue
lengths, packet drops, or End-to-End (E2E) delays. Then, it is up the simulation
framework to add listeners which record the selected data in some form;

• for emitting animation primitives or auxiliary information that can be used by an
animation engine;

• for emitting Packet Capture (PCAP) traces that can be captured and written into
a file by a dedicated module(s) or the simulation framework.

1.5.11 Statistical Result Collection

1.5.11.1 Scalar and Vector Results

OMNeT++ distinguishes three types of results: scalars, vectors, and statistics. A
scalar is a single number; vectors are timestamped time series; and statistics are
records composed of statistical properties (mean, variance, minimum, maximum,
etc.; possibly also histogram data) of time series. Recording of individual vectors,
scalars, and statistics can be enabled or disabled via the configuration (INI file), and
it is also the place to set up the recording intervals for vectors. Simulation results
are recorded into textual, line-oriented scalar files (which actually hold statistics
results as well) and vector files. The advantage of a text-based format is that it is
very accessible for 3rd party tools. The file format is well specified, extensible, and
open for other simulators to adapt. There are standalone implementations available
for recording and for loading the format.

Result files are self-describing: they contain many attributes of the simulation
run: the network, experiment-measurement-replication labels, iteration variables,
time/date, host, process ID of the simulation, etc. By default, one file contains data
from only one run. Vectors are recorded into a separate file for practical reasons:
vector data usually consume several magnitudes more disk space than others. The
vector file contains data clustered by vectors indexed for efficient access. This allows
for extracting certain vectors from the file, and even near random access within
vectors, without having to read the full contents of the vector file even once.

40 A. Varga

1.5.11.2 Declarative Result Recording

Declarative result recording is based on two pillars: signals and NED properties.
Signals, emitted from modules, act as data source, and NED properties contain the
declarations of which signals to record and in what form (cf. Listing 1.22). One
is able to record a particular variable as a vector, as a statistic (mean, variance,
histogram bins, etc.), or to record only a single property of the variable (mean, time
average, count, maximum value, etc.) as a scalar. The signal framework also allows
to implement aggregate statistics (e.g., total number of packet drops in the network)
and warmup periods (ignoring an initial time interval when computing scalars or
statistics). Signals also allow the user to employ dedicated statistics collection and
aggregation modules in the simulation, without the need to change existing modules.

Listing 1.22 Declared statistics

1 @signal[qlen](type=long);
2 @signal[qtime](type=simtime_t);
3 @statistic[queueLength](title="queue length";
4 source=qlen; record=vector,timeavg,max;
5 interpolationmode=sample-hold);
6 @statistic[queueingTime](title="queueing time";
7 source=qtime; record=histogram,vector?;
8 unit=s; interpolationmode=none);

1.5.11.3 Programmatic Result Recording

An alternative to using signals and @statistic is to collect and record results
from the C++ model code. Then, one would keep intermediate results in class
variables inside modules and record them during the finalization phase (finish()
method) using C++ calls (cf. Listing 1.23 for an example). Counts or totals can be
simply collected in plain int, long, or double variables. If summary statistics
such as mean, standard deviation, min/max, etc. are needed, a cStdDev object
can be used. To also record a histogram, the cHistogram class is provided by
OMNeT++. cHistogram is highly configurable, but most of the time it does not
need to be configured at all (cf. Listing 1.24), because it automatically creates a good
histogram due to built-in techniques such as precollection, auto-extension, and bin
merging. Alternatives to cHistogram are cPSquare and cKSplit, both giving
up some accuracy for being able to produce a higher quality histogram without
having a priori information about the distribution. Output vectors (time series) can
be recorded using cOutVector objects.

Listing 1.23 Recording scalars, vectors, and histograms from C++ code

1 class ResultRecording : public cSimpleModule {
2 int packetCount = 0;
3 cHistogram histogram;
4 cOutVector outputVector;
5 protected:
6 virtual void initialize() override;

1 A Practical Introduction to the OMNeT++ Simulation Framework 41

7 virtual void handleMessage(cMessage *msg) override;
8 virtual void finish() override;
9 };

10
11 void ResultRecording::initialize() {
12 histogram.setName("packetLength");
13 outputVector.setName("packetLength");
14 }
15
16 void ResultRecording::handleMessage(cMessage *msg) {
17 packetCount++;
18 int64_t packetLength = check_and_cast<cPacket*>(msg)->getByteLength();
19 histogram.collect(packetLength);
20 outputVector.record(packetLength);
21 delete msg;
22 }
23
24 void ResultRecording::finish () {
25 recordScalar("packetCount", packetCount);
26 histogram.record();
27 }

Listing 1.24 Exemplary collection of data into a histogram

1 cHistogram hist("histogram");
2 for (int i = 0; i < 1000000; i++) {
3 double value = normal(0,1);
4 hist.collect(value);
5 }
6 hist.recordAs("demoHistogram");

1.5.12 Graphics and Animation

1.5.12.1 Display Strings

Display strings are a simple way to customize the default OMNeT++ animation.
They are @display NED properties that can be placed in module definitions
and in submodules as well. The basic use case is to assign icons and positions to
submodules, like it is demonstrated in the following code example:

Listing 1.25 Assigning an icon to a module type, and position it as a submodule in the network

1 module Router {
2 @display("i=abstract/router"); // "i" tag sets the icon
3 //...
4 }
5
6 network Network {
7 submodules:
8 router1: Router { @display("p=50,50"); } // "p" tag sets the position
9 //...

42 A. Varga

Other possibilities include using a geometric shape (rectangle or oval) instead of
an icon, displaying additional “decoration” elements like a small status icon or a
status text near the icon, colorizing the icon, or drawing a circle or disc around the
icon to indicate the transmission range. Display strings may also be manipulated at
runtime. The following C++ source code example alters the module’s display string
to make the module icon 50% red.

Listing 1.26 Programmatically updating a display string

1 getDisplayString().setTagArg("i", 1, "red");
2 getDisplayString().setTagArg("i", 2, "50");

1.5.12.2 The Canvas

When you reach the limits of display strings, the next level is to use the Canvas API.
The Canvas API is the figure-based 2D drawing API of OMNeT++. It facilitates
enriching simulations with graphical elements when viewed under a graphical user
interface like Qtenv. Every module has one canvas by default (the same area where
submodules are also visualized). Additional ones can also be created, so there can
be a virtually unlimited number of canvases.

Canvases hold items called figures. Many figure types are available, including
various shapes, text, and image, including an SVG-like path item (a generalized
polygon/polyline, with arcs and Bezier curves). Transformations (scaling, rotation,
and skewing) are also supported, as well as transparency. Figures can be nested or
grouped to create compound images that can be moved, scaled, or rotated together
as one unit. Figures can also be created statically from NED files using @figure
properties as well as dynamically from C++ code. Statically created figures may
also be accessed and dynamically manipulated at runtime.

Listing 1.27 Adding a rounded, filled, semitransparent, rotated rectangle to the canvas via a
definition in the NED description

1 network Canvas {
2 @figure[greenRect](type=rectangle;bounds=50,10,160,100;cornerRadius=5;

fillColor=green;fillOpacity=0.5;transform=rotate(15));

When creating figures from C++ code, the key classes are cCanvas and
cFigure. cFigure is an abstract base class, and concrete figure types are
subclasses of cFigure. The following code in Listing 1.28 shows how to create
and set various graphical attributes of a figure from within the C++ source code.
The subsequent result is shown in Fig. 1.5.

1 A Practical Introduction to the OMNeT++ Simulation Framework 43

Fig. 1.5 The resulting two
rectangles

Listing 1.28 Adding another rounded rectangle, this time via C++ source code

1 cRectangleFigure *rect = new cRectangleFigure("blueRect");
2 rect->setBounds(cFigure::Rectangle(50,20,160,100));
3 rect->setCornerRadius(5);
4 rect->setFilled(true);
5 rect->setFillColor(cFigure::BLUE);
6 rect->setFillOpacity(0.5);
7 rect->rotate(10 * M_PI/180);
8 getSystemModule()->getCanvas()->addFigure(rect);

Canvas drawing use cases are limitless. For example, in mobile and wireless
simulations, the canvas API can be used to draw the scene including a background
(like a street map or a floor plan), mobile objects (vehicles, people), obstacles
(trees, buildings, and hills), antennas with orientation, and extra information like a
connectivity graph, movement trails, visualization of individual transmissions, and
much more. In other simulations, the canvas API can be used to display textual
annotations, status information, live statistics in the form of plots, charts, gauges,
counters, and so on.

1.5.12.3 Refreshing

When programming a simulation with dynamic visualization, one might wonder
what is the best place for code that updates display strings and maintains canvas
figures and 3D scene(s). handleMessage() is usually a poor choice because it
does not know when and how often the graphical user interface actually refreshes
the application window, so it would often work needlessly. A better option is the
refreshDisplay() method.

refreshDisplay() is expressly intended to serve as a container for visuali-
zation-related code. It is invoked from graphical user interfaces like Qtenv on
demand, whenever GUI contents need to be refreshed. Cmdenv does not invoke
this method at all. Moving display string updates and canvas figures maintenance
into refreshDisplay() can result in significant performance gain and, in some
cases, also in more consistent information being displayed.

44 A. Varga

1.5.12.4 Smooth Animations

When running a simulation in Qtenv, events are usually processed as fast as possible,
and execution only pauses momentarily to give built-in animation effects, like
message sending, time to play out. However, it is also possible to have the simulation
run at (scaled) real-time and meanwhile perform smooth animation, regardless when
and how often simulation events occur. This features allows one to properly animate
the movement of a mobile node or a signal wavefront, regardless of how many
simulation events are there in those periods.

The key to enable such smooth animation is to set an animation speed on the
canvas, using its setAnimationSpeed() method. This will put the GUI into
the “scaled real-time” operation mode (where the scale is the animation speed),
and causes refreshDisplay() to be called repeatedly at a reasonable rate to
allow code in it to render frames. The actual playing speed of the animation can be
modified interactively using the speed slider on the Qtenv toolbar.

Listing 1.29 An example of a smooth animation of a sun symbol moving along a sine wave,
independent of simulation events

1 void AnimatorModule::initialize() {
2 cCanvas *canvas = getSystemModule()->getCanvas();
3 imageFigure = new cImageFigure(); // imageFigure should be be a class member
4 imageFigure->setImageName("misc/sun");
5 canvas->addFigure(imageFigure);
6 canvas->setAnimationSpeed(10, this); // animate at a speed 10x real time
7 scheduleAt(simTime(), new cMessage()); // start events too (not shown)
8 }
9

10 void AnimatorModule::refreshDisplay() const {
11 double t = simTime().dbl();
12 double x = fmod(10*t,500), y = 100 + 50*sin(t/2);
13 imageFigure->setPosition(cFigure::Point(x, y));
14 }

1.5.12.5 3D Graphics

OMNeT++ allows simulations to be animated using advanced 3D-based graphics.
Support for 3D graphics is facilitated through the inclusion and use of the open
source OpenSceneGraph (OSG)8 and osgEarth9 libraries.

OpenSceneGraph is an OpenGL-based high-performance 3D graphics toolkit,
used by application developers in fields such as visual simulation, games, virtual
reality, scientific visualization, and modeling. osgEarth, in turn, is a geospatial Soft-
ware Development Kit (SDK) and terrain engine built on top of OpenSceneGraph,
not quite unlike Google Earth. osgEarth can use a variety of map providers, satellite
imaging providers, and elevation data sources. It can also download such data for

8OpenSceneGraph (OSG) project website: http://www.openscenegraph.org/.
9osgEarth website: http://osgearth.org/.

http://www.openscenegraph.org/
http://osgearth.org/

1 A Practical Introduction to the OMNeT++ Simulation Framework 45

Fig. 1.6 Visual output of the hang-glider animation example

offline use, which is especially useful if the simulation itself depends on elevation
or other data obtained from osgEarth.

Using OSG and osgEarth, one can visualize terrain, roads, urban street networks,
indoor environments, satellites, and more. In a vehicular network simulation,
people, cars, and aircraft can be visualized (cf. Fig. 1.6). For simulations of wireless
networks, one can create a scene that, in addition to the faithful representation of
the physical world, also displays the transmission range of wireless nodes, their
connectivity graph, various statistics, and shows individual wireless transmissions
with an animation effect.

OMNeT++ basically exposes the OpenSceneGraph API. One needs to assemble
an OSG scene graph in the model, and give it to OMNeT++ for display. The
rendered scene will appear in the Qtenv main window. The scene graph can be
updated at runtime, and changes will be reflected in the display. When a scene graph
has been built by the simulation model, it needs to be given to a cOsgCanvas
object to inform the OMNeT++ GUI about it. cOsgCanvas wraps a scene graph,
plus hints for the GUI on how to best display the scene (e.g., the default camera
position). In the GUI, the user can use the mouse to manipulate the camera to view
the scene from various angles and distances, look at various parts of the scene, etc.

The following two code fragments exemplify the basic use of the OSG and
osgEarth APIs. The result of running the simulation under Qtenv is shown in
Fig. 1.6.

Listing 1.30 Example of displaying a 3D interactive earth globe with OpenStreetMap

1 // #include <osgDB/ReadFile>
2 cOsgCanvas *osgCanvas = getSystemModule()->getOsgCanvas();
3 osgCanvas->setViewerStyle(cOsgCanvas::STYLE_EARTH);
4 osg::Node *scene = osgDB::readNodeFile("openstreetmap.earth");
5 osgCanvas->setScene(scene);

46 A. Varga

Listing 1.31 Example continued: a huge hang-glider above Budapest

1 // #include <osgEarth/MapNode>
2 // #include <osgEarthUtil/ObjectLocator>
3 double lat = 47.500, lon = 19.047;
4 auto mapNode = osgEarth::MapNode::findMapNode(scene);
5 auto locatorNode = new osgEarth::Util::ObjectLocatorNode(mapNode->getMap());
6 auto modelNode = osgDB::readNodeFile("glider.osgb.50.scale");
7 locatorNode->addChild(modelNode);
8 mapNode->getModelLayerGroup()->addChild(locatorNode);
9 locatorNode->getLocator()->setPosition(osg::Vec3d(lon, lat, 100));

10 locatorNode->getLocator()->setOrientation(osg::Vec3d(0, 0, 0));
11 osgCanvas->setEarthViewpoint(cOsgCanvas::EarthViewpoint(lon, lat, 50, 0, -90,

500));

1.6 Advanced Usage

Next to the basic functionalities introduced in the previous sections, OMNeT++
provides support for a number of advanced functions like cloud computing support,
debug checkpointing, and parallel and co-simulation. These and other advance
functions are introduced in the following subsections.

1.6.1 Swarms and Cloud Computing

With parameter studies, it is easy to reach the point of combinatorial explosion,
and then even counting with short simulation runs, one easily arrives at a point
where the total simulation campaign would require days or weeks to complete on a
single computer. However, CPU power is available nowadays in abundance in cloud
computing services, at very affordable prices. There are numerous cloud services
(e.g., Amazon AWS, Microsoft Azure, DigitalOcean, Google Cloud Platform, etc.).
These services, following a registration, allow users to run their code on a high
number of CPUs, often at surprisingly low prices.

At the same time, virtualization, and especially container technology like Docker,
has matured tremendously. Docker, via Docker images, makes packaging and
deployment of software, including simulation programs, very convenient on cloud
nodes. Docker Swarm Mode, which acts as a layer above Docker that adds cluster
management and orchestration features, is also very useful for running simulation
campaigns, and can be used in cloud services like AWS and also to make use of
local computing resources.

Docker and cloud computing significantly lower the entry barrier compared
to grid computing characterized by middleware such as HTCondor and Oracle
Grid Engine and offer a lot more power than traditional setups like cross-
mounted Network File System (NFS) directories combined with Secure Shell (SSH)
execution.

1 A Practical Introduction to the OMNeT++ Simulation Framework 47

Significant work has been done to allow simulations and simulation campaigns to
be easily deployable in cloud services like AWS and in local clusters using Docker
Swarm. At the time of writing, after a relatively painless setup procedure, INET
simulations can be run with a single command analogous to opp_runall on a local
Docker Swarm or on AWS, and on completion, simulation results appear in the local
results directory. The code and instructions are available on the OMNeT++ website
as a tutorial.10 Further work is expected in this area, and it is possible that similar
features will become integral parts of the OMNeT++ software as well.

1.6.2 Checkpointing

Debugging long-running simulations can be challenging, because one often needs
to run the simulation for a long time just to get to the point of failure and be able
to start debugging. Checkpointing can facilitate debugging such error cases. It is
a technique that basically consists of saving a snapshot of the application’s state,
and being able to resume execution from there, even multiple times. OMNeT++
itself contains no checkpointing functionality, but it is available via external tools.
It depends on the tool whether it is able to restore GUI windows (usually not the
case). The following list contains checkpointing software available on Linux:

• Berkeley Lab Checkpoint/Restart (BLCR),
• DMTCP (Distributed MultiThreaded Checkpointing),
• CRIU is a user space checkpoint lib,
• Docker and its underlying technology have a checkpoint and restore mechanism.

1.6.3 Running Multiple Replications in Parallel

A specialized way to use clusters is Akaroa [2, 8]. It is an implementation of the
Multiple Replications In Parallel (MRIP) principle, which can be used to speed up
steady-state simulations. Akaroa runs multiple instances of the same simulation
program (but with different seeds) simultaneously on different processors, e.g., on
nodes of a computing cluster, and a central process monitors certain output variables
of the simulation. When Akaroa decides that it has enough observations to form an
estimate of the required accuracy of all variables, it halts the simulation. When using
n processors, simulations need to run only roughly 1/n times the required sequential
execution time. Akaroa support is integrated into OMNeT++.

10OMNeT++ tutorial website: https://docs.omnetpp.org/.

https://docs.omnetpp.org/

48 A. Varga

1.6.4 Emulation, Real-Time, and Hardware-in-the-Loop
Support

OMNeT++ provides a facility to replace the event scheduler class with a custom
one, which is the key for many features including co-simulation, real-time simula-
tion, network or device emulation, and distributed simulation. The event scheduler’s
job is to always return the next event to be processed by the simulator. The default
implementation returns the first event in the FEL. For real-time simulation, this
scheduler is replaced with one augmented with wait calls (e.g., usleep) that
synchronize the simulation time to the system clock. Different options are available
when the simulation time has fallen behind: one may re-adjust the reference time,
leave it unchanged and hope to catch up later, or stop with an error message.

For emulation, the real-time scheduler is augmented with code that captures
packets from real network devices and inserts them into the simulation. The INET
Framework contains an emulation scheduler and uses PCAP to capture packets,
and raw sockets to send packets to the real network device. Emulation in INET
also relies on header serializer classes that convert between protocol headers and
their C++ object representations used within the simulation. The emulation feature
has been successfully used to test the interoperability of INET’s Stream Control
Transmission Protocol (SCTP) model with real-life SCTP implementations [9].

1.6.5 Co-simulation Support: HLA, SystemC, and TraCI

OMNeT++ supports distributed simulation using HLA11 (IEEE 1516 [4]) as well.
The OMNeT++ scheduler plays the role of the HLA Federate Ambassador, is
responsible for exchanging messages (interactions, change notifications, etc.) with
other federates, and performs time regulation. OMNeT++ also supports mixing Sys-
temC (IEEE 1666-2005 [3]) modules with OMNeT++ modules in the simulation.
When this feature is enabled, there are two FELs in the simulation, OMNeT++’s and
SystemC’s, and a special scheduler takes care that events are consumed from both
lists in increasing timestamp order. This method of performing mixed simulations
is orders of magnitude faster and also more flexible than letting the two simulators
execute in separate processes and communicate over a pipe or socket connection.

Another example of co-simulation is Veins, a framework for simulating intervehi-
cle communication (see Chap. 6). Veins integrates the SUMO road traffic simulator
with OMNeT++: SUMO simulates the movement of vehicles and an OMNeT++
model is responsible for simulating the communication among vehicles. With Veins,
each simulation is performed by executing the two simulators in parallel, in separate

11The source code for the HLA and SystemC integration features is not open source. Nevertheless,
it is available for researchers free of charge on request.

1 A Practical Introduction to the OMNeT++ Simulation Framework 49

processes. The SUMO process and the OMNeT++ simulation process communicate
over a TCP socket, using a protocol known as Traffic Control Interface (TraCI).
TraCI enables the bidirectionally coupled simulation of road traffic and network
traffic. The movement of vehicles in SUMO is reflected as node movement in
the OMNeT++ simulation. Nodes can then interact with the running road traffic
simulation, e.g., to simulate the influence of the communication on the road traffic.

1.6.6 Parallel Simulation Support

Parallel Discrete-Event Simulation (PDES) refers to the execution of a single dis-
crete event simulation on a parallel computer. Both shared-memory multiprocessors
and computing clusters can be used for PDES, but the former are preferred because
of the sensitivity of the PDES algorithm to the messaging latency among CPUs.

For parallel execution, the model is to be partitioned into several Logical
Processes (LPs) that will be simulated independently on different processors. Each
LP will have its own local FES and thus will maintain its own local simulation time.
The main challenge of parallel simulations is keeping LPs synchronized in order
to avoid violating the causality of events. Without synchronization, a message sent
from one LP could arrive in another LP when the simulation time in the receiving LP
has already passed the timestamp of the message, breaking the causality of events in
the receiving LP. There are two broad categories of parallel simulation algorithms
that differ in the way they handle causality problems outlined above. Conservative
synchronization algorithms prevent incausalities from happening, while optimistic
ones allow incausalities to occur but detect and repair them.

OMNeT++ implements conservative parallel simulation via the Chandy-Misra
Null Message algorithm [1, 7]. For parallel simulation, the scheduler is modified to
listen for messages arriving from other LPs, and inserts them into the simulation.
The scheduler also blocks the simulation when it is not safe to execute the next
event due to potential causality violation, until clearance arrives from other LPs to
continue in the form of a null message.

Due to messaging and especially synchronization overhead, parallel simulation
is not guaranteed to provide any speedup. In unfortunate cases, PDES might
execute magnitudes slower than sequential simulation. Success depends on two
factors: the messaging latency among processors and the parallelism available in
the model (lookahead). For example, wireless simulations usually perform poorly
under PDES. A formula [10] has been developed to help determining the chance
of success for parallelization of a particular simulation. The formula uses easy-to-
measure quantities as input. It is documented in the OMNeT++ manual.

50 A. Varga

1.6.7 Custom Result Recording

The OMNeT++ simulation kernel allows to replace the standard way of recording
simulation results into traditional OMNeT++ .sca and .vec files with custom, user-
defined recorders. Alternative recorders which produce SQLite database files are
provided with recent OMNeT++ releases, but given the user requirements, anyone
can implement their own custom recorders.

1.6.8 Embedding the Simulation Kernel

The OMNeT++ simulation kernel is a C++ library that can be added into custom
applications to provide simulation capabilities. This has been demonstrated in real-
life applications several times. Models can be developed and tested in the simulation
IDE, then compiled into the application in an unchanged form. The OMNeT++
core itself is modular, and you can choose which parts to keep and which parts
to replace. For example, you can choose whether to keep INI files as means to
configure simulations, or implement a custom configuration provider.

1.6.9 IDE Extensibility

The simulation IDE is based on Eclipse. Eclipse is most known as a programming
language IDE, but it is also an integration platform for all sorts of developer-
oriented applications. In the simulation IDE, the Eclipse platform provides the
workbench infrastructure and workspace handling (projects, etc.). Additional plug-
ins written by the OMNeT++ team provide simulation-related capabilities. C++
development and Git support come from Eclipse projects. Other features (Unified
Modeling Language (UML) modeling, bug tracker integration, LATEX editing,
Python development, database access, etc.) can be installed into Eclipse from the
Eclipse Marketplace.12

In the same fashion, it is also possible for 3rd party developers to extend the
OMNeT++ IDE and add features like project-specific topology generation, network
scenario generation, and the like. For this reason, the OMNeT++ Eclipse plug-ins
are well documented, as they provide a public API and expose extension points
where new functionality can be plugged in or existing functions can be customized.
To further simplify the deployment of plug-ins, the simulation IDE loads plug-ins
not only from the installation directory but from user projects as well. This makes
it possible to bundle simulation framework-specific plug-ins (such as the INET

12Eclipse Marketplace website: http://marketplace.eclipse.org/.

http://marketplace.eclipse.org/

1 A Practical Introduction to the OMNeT++ Simulation Framework 51

Framework) with the simulation frameworks, so when a user imports the simulation
framework into the IDE, the framework-specific UI contributions will immediately
appear in the IDE.

The IDE also makes it possible to write wizards without any Java or C++ pro-
gramming, using an XML-based UI description language and a template language
for content generation. This feature offers a relatively quick and painless way to add
topology generators and file importers into the IDE.

1.7 Conclusion

With the presented features of OMNeT++ you have a versatile toolset for devel-
oping your own discrete event-based simulations, with or without the support of
existing frameworks such as the ones presented subsequently in Part II in this book.

References

1. Chandy, M., Misra, J.: Distributed simulation: a case study in design and verification of
distributed programs. IEEE Trans. Softw. Eng. SE-5(5), 440–452 (1979). https://doi.org/10.
1109/TSE.1979.230182

2. Ewing, G., Pawlikowski, K., McNickle, D.: Akaroa2: exploiting network computing by
distributing stochastic simulation. In: Proceedings of the European Simulation Multiconference
(ESM’900), pp. 175–181. International Society for Computer Simulation, San Diego (1999)

3. IEEE Standards Association: IEEE Standard System C Language Reference Manual. IEEE
Std 1666-2005, IEEE Standards Association (IEEE-SA), Piscataway (2006). https://doi.org/
10.1109/IEEESTD.2006.99475

4. IEEE Standards Association: IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)– Framework and Rules. IEEE Std 1516-2010 (Revision of IEEE Std 1516-
2000), IEEE Standards Association (IEEE-SA), Piscataway (2010). https://doi.org/10.1109/
IEEESTD.2010.5553440

5. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform
pseudorandom number generator. ACM Trans. Modeling Comput. Simul. 8(1), 3–30 (1998)

6. SCS Technical Committee: Terminology for model credibility. Simulation 32(3), 103–104
(1979). https://doi.org/10.1177/003754977903200304

7. Sekercioglu, Y.A., Varga, A., Egan, G.K.: Parallel simulation made easy with OMNeT++. In:
Proceedings of the 15th European Simulation Symposium (ESS) (2003)

8. Sroka, S., Karl, H.: Using Akaroa2 with OMNeT++. In: Proceedings of the 2nd International
OMNeT++ Workshop, pp. 43–50 (2002)

9. Tüxen, M., Rüngeler, I., Rathgeb, E.P.: Interface connecting the INET simulation framework
with the real world. In: Proceedings of the 2nd Conference on Simulation Tools and
Techniques. ICST (2008)

10. Varga, A., Sekercioglu, Y.A., Egan, G.K.: A practical efficiency criterion for the null message
algorithm. In: Proceedings of the 15th European Simulation Symposium (ESS) (2003)

https://doi.org/10.1109/TSE.1979.230182
https://doi.org/10.1109/TSE.1979.230182
https://doi.org/10.1109/IEEESTD.2006.99475
https://doi.org/10.1109/IEEESTD.2006.99475
https://doi.org/10.1109/IEEESTD.2010.5553440
https://doi.org/10.1109/IEEESTD.2010.5553440
https://doi.org/10.1177/003754977903200304

Part II
The OMNeT++Ecosystem

Chapter 2
INET Framework

Levente Mészáros, Andras Varga, and Michael Kirsche

2.1 Introduction

The INET Framework is one of the oldest and the single largest collection of
simulation models for OMNeT++. Frameworks, in general, provide a number
of simulation models for specific application fields to extend the generic and
application-independent OMNeT++ discrete-event simulator. INET can be seen
as a standard communication protocol library that facilitates the simulation of
communication network scenarios. It has a long and intertwined history with
OMNeT++: from its starting point—the OMNeT++ Internet Protocol Suite—back
in 2000, over its renaming and recreation as the INET Framework in 2004, to
the releases of INET versions 4 and 4.1 covered in this book chapter. INET has
grown and pushed the evolution of OMNeT++ just like OMNeT++ has constantly
influenced INET’s development.

INET is designed to be suitable for research and experimentation in the field
of communication network simulation. It is especially useful when exploring new
scenarios or designing and validating new communication protocols from all layers
of the protocol stack. INET’s target audience includes academic researchers, post-
doctorates, Ph.D. as well as undergrad students. The framework is particularly
well applicable to educational purposes as it is easy to learn and experiment with.
INET is widely used by many reputable universities throughout the world. INET

L. Mészáros (�) · A. Varga
Opensim Ltd, Budapest, Hungary
e-mail: levy@omnetpp.org; andras@omnetpp.org

M. Kirsche
Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Brandenburg, Germany
e-mail: michael.kirsche@b-tu.de

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_2

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_2&domain=pdf
mailto:levy@omnetpp.org
mailto:andras@omnetpp.org
mailto:michael.kirsche@b-tu.de
https://doi.org/10.1007/978-3-030-12842-5_2

56 L. Mészáros et al.

is furthermore also used by many large and widely known industrial users for
commercial purposes.

INET contains an extensive number of models. The project has started out as
a model suite for the Internet protocol stack (e.g., IPv4, TCP, and UDP), and
has gradually expanded to other areas, in particular: Ethernet, IEEE 802.11, QoS
mechanisms, MPLS, DiffServ, Internet routing protocols, node mobility, MANET
routing protocols, further wireless MAC protocols, IPv6, and SCTP, just to name a
few. Recent advancements include physical layer and physical medium modeling,
advanced visualization features, and improved network emulation capabilities.
INET is useful for the simulation of a wide range of networks, from backbones
to data centers, mobile ad hoc to (wireless) sensor networks. Later in this chapter,
separate sections are devoted to the simulation of various classes of networks.

INET is an open-source project with many contributors and a large and
active community. Other frameworks like INETMANET (see Chap. 3), SimuLTE
(see Chap. 5), or Veins (see Chap. 6) take INET as a base for their own developments
in specific application areas. The INET source code is freely available on Github1

for anyone to modify and use. The license of most components is GNU Lesser
General Public License (LGPL), which is particularly suitable in academic settings.

2.2 Assembling Simulations

INET is an extensive and complex framework that uses OMNeT++’s inherent
modularity. The majority of INET’s components and models can be combined
in various ways and adjusted/parameterized according to the requirements of the
simulation scenario. Assembling a simulation scenario with INET is therefore
feasible and complex at the same time because of the diversity and pure size
of the model library. Users have a wide range of models available with a large
number of adjustable parameters. On the other hand, the sheer amount of model
and configuration options and the incorporation of all components into a running
simulation can be overwhelming for new users. Luckily, INET facilitates the
construction of simulation scenarios without requiring programming experience if
changes to existing components are only made in terms of parametrization. Users
can start to assemble small configurations and scenarios and extend or reuse them
to build large-scale network simulations by composing the existing models. This
section discusses the process of assembling a simulation scenario. The range of
available simulation modules in INET is introduced along the various steps of
creating a complete full-stack simulation scenario.

A first step for new INET users is to get accustomed with the directory structure
of the framework. The source code of the actual simulation models is contained
within the src/ folder. Example simulation scenarios (located in the examples/

1INET Github repository: https://github.com/inet-framework/inet.

https://github.com/inet-framework/inet

2 INET Framework 57

directory), showcases (located in the showcases/ directory), and tutorials (located
in the tutorials/ directory) provide a wide range of starting points for the user’s own
simulations. Documentation is found in the doc/ folder, but it can also be browsed
online.

Inside src/, the source code of components is organized into folders that
correspond to Network Topology Description (NED) packages. For example, the
src/inet/node/inet/ folder corresponds to the inet.node.inet package. Pack-
ages are organized along Open Systems Interconnection (OSI) layers (physical, data
link, network, transport, and application), with a few extra folders for components
that do not fit into the OSI model (mobility models, energy modeling, physical
environment, visualization, and common utility components, among others).

2.2.1 Network Definition

Every OMNeT++ (and thus every INET) simulation requires a special compound
module (cf. Chap. 1) that represents the actual network to be simulated. This
network definition assembles all simple and compound modules that are present
in the simulation. An example of a wired INET network is depicted in Fig. 2.1.
It contains different network nodes (router, switch, client, and server), a support
module to automate the network configuration, and cable connections between
the nodes. Complex networks can be structured and organized through compound
modules, nesting smaller networks into hierarchical larger ones. OMNeT++ also
provides wizards to generate topologies or to import them from various file formats.
Such networks can be assembled using the OMNeT++ Integrated Development
Environment (IDE), using the graphical editor or editing the NED source shown
in Listing 2.1.

Fig. 2.1 A simple wired INET network with hosts, router, switch, and network configurator
module

58 L. Mészáros et al.

Listing 2.1 NED source code of the wired INET network example

1 import inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator;
2 import inet.node.inet.Router;
3 import inet.node.inet.StandardHost;
4 import inet.node.ethernet.EtherSwitch;
5 import ned.DatarateChannel;
6
7 network WiredNetworkExample
8 {
9 parameters:

10 int numClients; // number of clients in the network
11 submodules:
12 configurator: Ipv4NetworkConfigurator;
13 server: StandardHost;
14 router: Router;
15 switch: EtherSwitch;
16 client[numClients]: StandardHost;
17 connections: // network level connections
18 router.pppg++ <--> { datarate = 1GBps; } <--> server.pppg++; // PPP
19 switch.ethg++ <--> Eth1G <--> router.ethg++; // ethernet
20 for i=0..numClients-1 {
21 client[i].ethg++ <--> Eth1G <--> switch.ethg++; // ethernet
22 }
23 }

The NED source defines a network named WiredNetworkExample. Inside
the definition, the submodules section lists the elements of the network
(e.g., switches, and routers) and support modules (e.g., configurators, and
visualizers). StandardHost, Router, and EtherSwitch are some of the pre-
assembled module types that INET provides. The content of the connections
section describes the “cables” between the wired hosts in the example. The
model above uses various parameterized instances of OMNeT++’s existing
DatarateChannel channel model. Other elements of the NED file import
the necessary types (import lines at the top), define the number of client nodes as
a parameter for the network (parameters section), and define a channel type for
local use within the network (types section).

The above network needs to be configured before it can be simulated. The
configuration is given in INI files, usually named omnetpp.ini. The INI file contains
the name of the network to be simulated as well as its parameters. Although
practically all modules in INET have parameters, most have suitable defaults,
so usually only a small subset of parameters need to be explicitly given in
the omnetpp.ini file. A suitable configuration for the above network is given in
Listing 2.2.

Listing 2.2 Wired network configuration example

1 network = WiredNetworkExample
2 *.numClients = 10 # number of clients in network
3 *.client[*].numApps = 1 # number of applications on clients
4 *.client[*].app[0].typename = "TcpSessionApp" # client application type
5 *.client[*].app[0].connectAddress = "server" # destination address
6 *.client[*].app[0].connectPort = 1000 # destination port
7 *.client[*].app[0].sendBytes = 1MB # amount of data to send
8 *.server.numApps = 1 # number of applications on server
9 *.server.app[0].typename = "TcpEchoApp" # server application type

10 *.server.app[0].localPort = 1000 # TCP server listen port

2 INET Framework 59

Another example shows a wireless network. Wireless networks are somewhat
different, because wireless nodes do not use OMNeT++ channels. Instead, an
additional module which represents the transmission medium needs to be included
in the network. The NED code in Listing 2.3 shows an exemplary IEEE 802.11
network with two hosts and an access point.

Listing 2.3 An INET wireless network example (imports omitted)

1 network WirelessNetworkExample
2 {
3 submodules:
4 configurator: Ipv4NetworkConfigurator; // network autoconfiguration
5 radioMedium: Ieee80211ScalarRadioMedium; // shared wireless medium
6 host1: WirelessHost { @display("p=200,100"); } // infrastructure wifi
7 host2: WirelessHost { @display("p=500,100"); }
8 accessPoint: AccessPoint { @display("p=374,200"); } // wifi router
9 }

In general, there are many ways to combine INET modules, as it will be shown in
the subsequent sections, not only inside network nodes but also on the network level.
For example, you could have several wireless transmission mediums in a network,
each with its own physical environment, representing distant locations, which do
not really affect each other, and which are connected via a wired network.

2.2.2 Network Participants

INET’s ready-to-be-used network elements are located in the src/inet/node/ folder,
sorted according to use cases. StandardHost, used in Listing 2.1, is one of the
most prominent network node types. StandardHost represents a widely config-
urable general-purpose network host with protocols of the Internet Protocol (IP)
suite and several network interfaces. Figure 2.2 shows the graphical representation
of a host instance in Qtenv. (Some optional components are missing from the
screenshot, because they were not used in the particular simulation.) Other, pre-
assembled node types take StandardHost and specialize it for other use cases.
WirelessHost, for instance, provides wireless network interfaces pre-configured
in infrastructure mode, while AdhocHost has wireless interfaces pre-configured
for ad hoc operation.

Further models represent various other network devices, such as EtherSwitch
that implements an Ethernet switch, AccessPoint that models a WiFi access
point, Router, which is a generic IP router with routing protocols like Open Short-
est Path First (OSPF) or Border Gateway Protocol (BGP), and LdpMplsRouter
and RsvpMplsRouter, which are Multiprotocol Label Switching (MPLS) routers
with Label Distribution Protocol (LDP) and Resource Reservation Protocol-Traffic
Engineering (RSVP-TE) as signaling protocol.

60 L. Mészáros et al.

Fig. 2.2 A StandardHost instance in the Qtenv GUI

Most of these node types are widely configurable, but nevertheless, they are not
universal. Think of them as examples of how protocol models can be combined to
form network nodes. Sometimes, it can be a good idea (or may even be necessary)
to assemble purpose-built network node models for particular simulation scenarios.

Internal Structure StandardHost and other nodes are composed of protocol
models and other components. Protocol models are typically implemented as
OMNeT++ simple modules, although some complex ones like Ieee80211Mac
contain further submodules for structuring and flexibility.

OMNeT++ connections are used to interconnect the modules and represent
the communication channels between different layers and protocols. As seen in
Fig. 2.2, StandardHost is organized roughly by OSI layers. At places where
many-to-many or many-to-one communication is needed, typically between layers,
dispatcher modules are inserted. (Dispatchers appear in the graphics as elongated
thin blue rectangles.) Dispatchers are zero-configuration components which dis-
cover and learn about their environment, and allow messages to “find their way”
through the communication stack. In simpler node architectures where only one-to-
one communication exists between layers, dispatchers can be omitted.

Applications Traffic generators and other application-layer modules can be added
into StandardHost via configuration. Applications are in StandardHost’s
app[] submodule vector, where both the number and the individual types of the
submodules are configurable.

2 INET Framework 61

1 app[numApps]: <> like IApp;

To add applications, one needs to specify the number of submodules in the
numApps parameter, and types of the individual submodules using the typename
syntax, and then set the parameters of the applications themselves.

1 **.hostA.numApps = 2 # number of applications
2 **.hostA.apps[0].typename = "UdpBasicApp" # NED module type
3 **.hostA.apps[1].typename = "PingApp" # NED module type
4 **.hostA.apps[1].destAddr = "host2" # further parameter setting

INET provides various applications that communicate via Transmission Control
Protocol (TCP), User Datagram Protocol (UDP), Stream Control Transmission
Protocol (SCTP), or directly over lower-layer protocols. Many are generic and can
be parameterized to generate constant (CBR) or variable bit rate (VBR) traffic,
or emulate simple file transfer or request-response protocols. A sample of these
applications:

• PingApp: periodic Internet Control Message Protocol (ICMP) echo requests,
• TcpBasicClientApp: generic client application model for use with TCP,
• TcpGenericServerApp: generic server model for TCP application,
• TcpSinkApp: consumes/discards incoming packets from TCP connections,
• TcpSessionApp: models a TCP application that opens a new connection,

sends a configurable (scriptable) amount of data, and closes the connection,
• UdpBasicApp: generic UDP traffic generator,
• UdpBasicBurst: models UDP burst traffic,
• UdpEchoApp: “echoes” received packets back to the sender,
• UdpSink: consumes and discards UDP packets,
• UdpVideoStreamClient& UdpVideoStreamServer: client and server

models for UDP-based video streaming,
• SimpleVoipSender & SimpleVoipReceiver: sender and receiver mod-

els for Voice-over-IP (VoIP) sessions with (alternating) talkspurts and silences,
• VoipStreamSender & VoipStreamReceiver: simulate a VoIP session

that uses real-life audio data for the transmission,
• HttpBrowser & HttpServer: part of the HttpTools package, implement

client and server Hypertext Transfer Protocol (HTTP) traffic models.

Most applications are network layer agnostic and work over both Internet
Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6); the destination
address decides which protocol will be used. The applications can be programmed
using INET’s socket classes that provide an API similar to Unix sockets.

Network Interfaces An important ingredient is network interfaces. The concept
of network interfaces roughly coincides with that in operating systems, that is, a
network interface in INET represents the combination of hardware and software
elements that provide the network connectivity. Network interfaces occupy layer

62 L. Mészáros et al.

1 and 2 (the physical and data link layers) of the OSI reference model. There are
several pre-assembled network interface modules in INET:

• LoopbackInterface providing a link-local loopback in the node,
• EthernetInterface representing an Ethernet interface,
• PppInterface an interface for wired Point-to-Point Protocol (PPP) links,
• WirelessInterface and other, more specialized wireless interface types,
• TunInterface provides a tunneling for use by upper layers,
• ExtInterface for emulation and Hardware-in-the-Loop (HIL) simulations.

INET’s network interfaces are compound modules that connect to the above lay-
ers. The most important component of a network interface is the implementation of
the layer-2 protocol. For some interfaces such as PppInterface, this is a single
module; for others like EthernetInterface and Ieee80211Interface,
it consists of separate modules for Medium Access Control (MAC), Logical Link
Control (LLC), and possibly other subcomponents.

The physical layer is not always present as a separate submodule. For example,
Ieee80211Interface and other wireless interfaces contain a radio module, but
it is implicit for PPP and Ethernet.

Other ingredients in a network interface are optional, and can be added via
parameters in simulations where they are needed. For example, the output queue: it
is absent by default, because most layer-2 protocol implementations already contain
an internal queue which is more efficient to work with. The possibility to plug
in an “external” queue module allows one to experiment with different queuing
policies and implement Quality of Service (QoS), Random Early Detection (RED),
etc. Another type of components that can be added are traffic conditioners. They
allow packet classifiers/markers, and traffic shaping and policing elements to be
added to the interface, for example to implement a DiffServ router.

Now that we have covered the basics, in the next sections we will delve into the
details of simulating various types of networks using INET.

2.3 Simulating TCP/IP Networks

TCP/IP or the Internet Protocol suite is the foundation of the Internet and many
other networks, so being able to simulate TCP/IP-based networks is essential. INET
not only provides the necessary protocol models, but built-in network nodes like
StandardHost and Router already contain TCP/IP support in their default
configuration.

In network nodes, all protocol components are optional, and their presence can
be controlled with parameters like hasUdp, hasTcp, hasSctp, hasIpv4, and
hasIpv6. By default, UDP, TCP, and IPv4 are present, others can be added by
setting corresponding parameter to true. For example, one can create a node with
a dual IP stack (i.e., with both IPv4 and IPv6) by setting hasIpv6 (an addition to
hasIpv4) to true.

2 INET Framework 63

Network nodes also allow the protocol models to be replaced with alternative
implementations. This especially makes sense with TCP, as INET already contains
useful alternative implementations, but it also allows a protocol model to be
replaced with a modified (tweaked) or mock version for experimentation or testing.
Listings 2.4 and 2.5 illustrate the idea.

Listing 2.4 Replacing TCP and UDP modules with alternative implementations

1 **.tcp.typename = "TcpLwip"
2 **.udp.typename = "MyTweakedUdp"

Listing 2.5 Transport protocols in StandardHost

1 submodules:
2 udp: <default("Udp")> like IUdp if hasUdp;
3 tcp: <default("Tcp")> like ITcp if hasTcp;
4 sctp: <default("Sctp")> like ISctp if hasSctp;

Internet Protocol Version 4 IPv4 is a network (or in the original terminol-
ogy, internetwork) layer protocol that provides a hop-by-hop, unreliable, and
connectionless delivery service for higher layers. IPv4 is implemented by the
Ipv4 module, which performs encapsulation and decapsulation, fragmentation and
assembly, and forwarding of IP datagrams. Routes are kept in a separate module,
Ipv4RoutingTable. Ipv4 and other modules use C++ calls to query and
update the routes.

In addition to interacting with other modules by exchanging packets, Ipv4 also
supports a Linux-like C++ Netfilter Application Programming Interface (API) that
allows other modules to hook into the operation of Ipv4, intercept packets at
various stages of processing, and change their default treatment. The Netfilter API is
useful for implementing on-demand routing protocols without modifying the Ipv4
module’s code, for example.

Ipv4, Ipv4RoutingTable, and implementations of related protocols
(Icmp, Arp, Igmpv2/Igmpv3, etc.) are assembled into a compound module
called Ipv4NetworkLayer, and that module type is used as a building block in
node types such as StandardHost and Router. Submodules are replaceable;
for instance, Address Resolution Protocol (ARP) has an alternative implementation
called GlobalArp, which looks up addresses in a shared global table without
actually exchanging ARP protocol messages. It can be used in place of the Arp
module in scenarios where simulating the actual ARP exchanges is not necessary.

Dynamic Host Configuration Protocol (DHCP) support is provided by two
module types, DhcpServer and DhcpClient. They can be installed into nodes,
formally into the application layer, when needed.

Internet Protocol Version 6 IPv6 is the successor of IPv4. IPv6 not just lifts the
limit on the number of available IP addresses by using larger, 128-bit addresses but
also does many things differently from IPv4. For example, several features that were

64 L. Mészáros et al.

added to IPv4 as an afterthought (often as separate protocols) have been integrated
into IPv6 and are part of the base protocol.

Similarly to IPv4, IPv6 support is implemented in INET by several cooper-
ating modules. The base protocol is in the Ipv6 module, which relies on the
Ipv6RoutingTable to store the routes. The Ipv6NeighbourDiscovery
module implements all tasks associated with neighbor discovery and stateless
address auto-configuration. The data structures themselves (destination cache,
neighbor cache, and prefix list) are kept in Ipv6RoutingTable. The rest of
the Internet Control Message Protocol for Internet Protocol Version 6 (ICMPv6)
functionality, such as error messages and echo request/reply, is implemented in
Icmpv6.

Mobile IPv6 Mobile IPv6 support has been contributed to INET by the xMIPv6
project. The main module is xMIPv6, which implements Fast Mobile Internet
Protocol version 6 (MIPv6), Hierarchical MIPv6, and Fast Hierarchical MIPv6
(thus, x ∈ F,H,FH). The binding cache and related data structures are kept in
the BindingCache module.

Alternative Network Protocols Built-in network nodes like StandardHost and
Router may also contain alternative network layer protocols instead of (or in
addition to) IPv4 and IPv6. For example, the NextHopForwarding module
is simple and straightforward implementation of the next-hop forwarding concept
(without support for hierarchical routing and fragmentation, for example), and can
use mere integers as addresses (as opposed to IPv4 or IPv6 addresses). It can be used
for experimentation or for teaching purposes. NextHopForwarding is added
to nodes as a NextHopNetworkLayer compound module that also contains a
NextHopRoutingTable.

Transport Layer Protocols On the transport layer, INET currently provides sup-
port for the TCP, UDP, SCTP, and Real-time Transport Protocol (RTP) protocols.

INET contains three implementations of the TCP protocol. The Tcp module
is the primary implementation. It is a complete implementation in the sense that
it reproduces TCP features like the connection state machine, window-based flow
control, persistence and keep-alive timers, adaptive retransmission timeout com-
putation, delayed acknowledgment, Nagle’s algorithm, selective acknowledgment
(SACK), and SACK-based loss recovery. It also supports various congestion control
schemes like Tahoe, Reno, New Reno, Westwood, and Vegas. The Tcp model was
designed for readability, extensibility, and experimentation. The code is extensively
commented, many features like Nagle and delayed acknowledgment can be enabled
or disabled via parameters, and detailed logging and statistics are provided. Adding
a new congestion control algorithm is as simple as writing and registering a C++
class.

The other two implementations, TcpLwip and TcpNsc wrap 3rd-party TCP
implementations, are primarily provided for validating the main TCP model. The
three implementations are drop-in replaceable, and can even be mixed in the same

2 INET Framework 65

network. TcpLwip is a wrapper around the lightweigh Internet Protocol (lwIP)
library, a widely used open-source TCP/IP stack designed for embedded systems.
TcpNsc wraps the Network Simulation Cradle (NSC), a library that allows real-
world TCP/IP network stacks to be used inside a network simulator.

SCTP is a lesser known transport-layer protocol, which is regarded by many as
the successor of TCP. SCTP is message oriented, and ensures reliable, in-sequence
transport of messages with congestion control like TCP. It also provides multi-
homing and redundant paths to increase resilience and reliability. The Sctp model
has been contributed to INET and is being maintained by the team of Michael Tüxen
at the FH Münster [6].

The RTP protocol is more specialized than previous ones, its purpose is
multimedia streaming. The protocol is implemented by the modules Rtp and Rtcp.
INET provides a separate node type, RtpHost, for modeling RTP traffic.

Configuring Addresses and Routing An IP network needs a substantial amount of
configuration to be able to work: interfaces need IP addresses, routing tables need to
be filled in, and so on. In real life, host IP addresses are often obtained dynamically
via DHCP or a similar protocol, and routers’ routing tables are filled in by routing
protocols. However, for many simulation scenarios it is quite sufficient to statically
assign addresses and fill in the routing tables at the beginning of the simulation.

Early versions of INET have required the user to provide all such information
explicitly, in the form of configuration files. However, it has proven to be tedious and
error prone for even small networks. Modern INET versions provide a configurator
module which, when added into the network, configures the interfaces and routing
tables at the start of the simulation.

Ipv4NetworkConfigurator supports both manual (when the user specifies
each address and route) and automatic network configuration, plus any mix of them.
The latter means that the user can provide a partial manual configuration, and the
configurator will fill in the gaps automatically. The configurator takes subnets into
account when assigning addresses and supports hierarchical routing. (Hierarchical
routing can be set up by using only a fraction of configuration entries compared to
the number of nodes.) The configurator also performs routing table optimization by
merging routes, which reduces the size of routing tables in large networks.

A noteworthy architectural detail is that Ipv4NetworkConfigurator only
computes and remembers IPv4 configuration information, but does not apply it.
Applying the configuration is done by an additional, per-node module called
Ipv4NodeConfigurator. This separation enables implementing simulated
node crashes, shutdowns, and reboots in INET. After a simulated reboot, when
the node starts with a clean slate, the node configurator can restore the node’s
configuration by reading it from the global configurator.

66 L. Mészáros et al.

Ipv4NetworkConfigurator expects the specification of its job in an XML
file. Here is an example configuration file that deals with address assignment and
adds a manual route as well:

Listing 2.6 Ipv4NetworkConfigurator XML configuration

1 <config>
2 <interface among="host{0-2} router0" address="10.0.0.x"/>
3 <interface among="host{3-5} router1" address="10.0.1.x"/>
4 <interface among="host{6-8} router2" address="10.0.2.x"/>
5 <interface hosts="router*" address="10.1.x.x"/>
6 <route hosts="host0 host1" destination="10.0.2.0" netmask="255.255.255.0"
7 gateway="router1" interface="eth0" metric="100"/>
8 </config>

Routing Protocols INET has models for several internet routing protocols, includ-
ing Routing Information Protocol (RIP), OSPF, and BGP. The easiest way to add
routing to a network is to use the Router NED type for routers. Router contains
a conditional instance for each of the above protocols. These submodules can be
enabled by setting the hasRIP, hasOSPF, and/or hasBGP parameters to true.
There are also NED types called RipRouter, and OspfRouter, BgpRouter,
which are all Router’s with the appropriate routing protocol enabled. Detailed
configuration for the routing protocols can be provided via XML files.

Additional routing protocols such as Intermediate System to Intermediate System
(IS-IS), Enhanced Interior Gateway Routing Protocol (EIGRP), and Babel are
available from the Automated Network Simulation and Analysis (ANSA) project.2

Multicast INET has basic support for multicast networks. Ipv4RoutingTable
and Ipv4 are multicast-capable, and the Internet Group Management Proto-
col (IGMP) protocol is implemented with the Igmpv2 and Igmpv3 modules.
For multicast based on shared trees, INET contains models of the Protocol-
Independent Multicast-Sparse Mode (PIM-SM) and Protocol-Independent Multi-
cast-Dense Mode (PIM-DM) protocols in the PimSm and PimDm modules. Many
of the multicast-related protocol models were contributed by the ANSA project.

Differentiated Services Differentiated Services or DiffServ is a scalable mecha-
nism primarily for providing Quality of Service (QoS) in IP networks. In DiffServ,
packets are classified and marked as belonging to a specific class, and routers
implement per-hop behaviors (PHBs) that are tied to the traffic classes.

INET’s network interface modules, for example the EthernetInterface
or the PppInterface module, have the possibility to install traffic conditioner
elements into them to implement Differentiated Services in a network. Traffic
conditioners have one input and one output gate, and can transform the incoming
traffic by dropping or delaying packets. They can also set the Differentiated Services

2ANSA project website: https://ansa.omnetpp.org/.

https://ansa.omnetpp.org/

2 INET Framework 67

Code Point (DSCP) field of the packet, or mark them other way, for differentiated
handling in the queues.

Traffic conditioners perform the following actions:

• classify the incoming packets,
• meter the traffic in each class,
• mark/drop packets depending on the result of metering, and
• shape the traffic by delaying packets to conform to the desired traffic profile.

INET provides classifier, meter, and marker modules that can be composed to
build a traffic conditioner as a compound module.

Network interfaces also contain an optional external queue component. (In the
absence of an external queue module, layer-2 protocol modules use an internal drop-
tail queue to buffer the packets while the line is busy.) A queue component has one
input and one output gate, and implements a passive queue behavior: it only delivers
a packet when the module connected to its output explicitly requests it to.

The elements of which traffic conditioners and output queues can be built are:

• queue: container of packets, accessed via First In First Out (FIFO) strategy.
• dropper: attached to one or more queue, it can limit the queue length below some

threshold by selectively dropping packets.
• scheduler: decide which packet is transmitted first, when more packets are

available on their inputs.
• classifier: classify the received packets according to their content (e.g.,

source/destination, address and port, protocol, and DSCP field of IP datagrams)
and forward them to the corresponding output gate.

• meter: classify the received packets according to the temporal characteristic of
their traffic stream.

• marker: marks packets by setting their fields to control their further processing.

2.4 Simulating MPLS Networks

MPLS is a “layer 2.5” protocol for high-performance telecommunication networks.
MPLS directs data from one network node to the next based on numeric labels
instead of network addresses, avoiding complex lookups in a routing table and
allowing traffic engineering. The labels identify virtual links (label-switched paths
or LSPs, also called MPLS tunnels) between distant nodes rather than endpoints.
The routers that make up a label-switched network are called label-switching routers
(LSRs) inside the network (“transit nodes”), and label edge routers (LERs) on
the edges of the network (“ingress” or “egress” nodes). In each Label-Switching
Router (LSR), the label information base (LIBs) table contains the output interface
and label operations for incoming MPLS packets.

A fundamental MPLS concept is that two LSRs must agree on the meaning
of the labels used to forward traffic between and through them. This common

68 L. Mészáros et al.

understanding is achieved by using signaling protocols by which one LSR informs
another of label bindings it has made. Such signaling protocols are also called label
distribution protocols. The two main label distribution protocols used with MPLS
are LDP and RSVP-TE. LDP and RSVP-TE keep their view of the network in the
traffic engineering database (TED) and use it as input to determine what Label-
Switched Paths (LSPs) they should build and maintain.

INET provides basic support for building MPLS simulations. It provides models
for the MPLS, LDP, and RSVP-TE protocols and their associated data structures,
and pre-assembled MPLS-capable router models: Mpls implements the MPLS
protocol; LibTable holds the Label Information Base (LIB); Ldp implements
the LDP protocol; RsvpTe implements the RSVP-TE protocol; and Ted con-
tains the traffic engineering database. A further module, LinkStateRouting,
implements a simple hypothetical routing protocol that provides network topology
information for Ted. INET also contains configurable ingress classifier modules
such as RsvpClassifier; the job of such classifiers is to assign labels to packets
as they enter an MPLS domain.

INET provides two pre-assembled MPLS LSR models: LdpMplsRouter uses
the LDP signaling protocol and RsvpMplsRouter uses RSVP-TE.

2.5 Simulating Ethernet Networks

Ethernet is the most popular wired Local Area Network (LAN) technology nowa-
days, and its use is also growing in metropolitan area and wide area networks. Today,
switched Ethernet is prevalent, and most links operate in full duplex mode. INET
contains support for all major Ethernet technologies and device types.

There are several node models that can be used in an Ethernet network.
Node models such as StandardHost and Router are Ethernet-capable.
EtherSwitch models an Ethernet switch, i.e., a multiport bridging device.
EtherHub models an Ethernet hub or multiport repeater. EtherBus can be used
to model legacy Ethernet networks that use coaxial cable (10BASE2 or 10BASE5
network segments). A minimal sample node to generate “raw” Ethernet traffic is
also provided (EtherHost).

INET cables (fiber optic/twisted pair) are represented by OMNeT++
connections. Connections used in Ethernet LANs must be derived from
DatarateConnection and should have their delay and datarate
parameters set. The delay parameter can be used to model the distance between
the nodes. INET has the following predefined channel types: Ether10M,
Ether100M, Ether1G, Eth10G, Eth40G, Eth100G, and recently also
Eth200G and Eth400G.

Ethernet Interface The EthernetInterface compound module imple-
ments the IWiredInterface interface. It complements EtherMac and
EtherEncap with an output queue for QoS and RED support.

2 INET Framework 69

The Ethernet Medium Access Control (MAC) layer transmits the Ethernet frames
on the physical media. This is a sublayer within the data link layer. Because encap-
sulation/decapsulation is not always needed (e.g., switches do not perform encap-
sulation/decapsulation), it is implemented in separate modules (EtherEncap and
EtherLlc) that are part of the LLC layer.

Nowadays almost all Ethernet networks operate using full-duplex point-to-point
links between hosts and switches. This means that there are no collisions, and the
behavior of the MAC component is much simpler than in classic Ethernet that
used coaxial cables and hubs. INET contains two MAC modules for Ethernet: the
EtherMacFullDuplex is simpler to understand and easier to extend, because it
supports only full-duplex links. The EtherMac module contains the implementa-
tion of Carrier Sense Multiple Access with Collision Detection (CSMA/CD), and it
can operate both half-duplex and full-duplex mode.

Switches An essential component of Ethernet switches is the MAC relay unit. A
relay unit has N gate pairs that connect it to the switch ports that are instances of
EthernetInterface. The default relay unit type is MacRelayUnit.

Switches also contain a MacAddressTable module which stores the mapping
between ports and MAC addresses. (MacRelayUnit has a parameter that holds
the path to its associated MacAddressTable instance.) The address table is
filled dynamically as the switch learns which addresses are reachable via each port.
Entries are deleted if their age exceeds a certain limit. The table can also be pre-
loaded from a text file while initializing the relay unit.

When the relay unit receives a data frame, it updates the table with the (source
address, input port) pair. Then, it looks up the destination address in the address
table. If it was found, the frame is sent out to the corresponding port. If the address
was not in the table, the frame is broadcast to all ports except the one it was received
from. (If the destination was on the subnet of the source port, it must have already
received the original frame.)

Spanning Tree Support In Ethernet networks containing multiple switches,
broadcast storms are prevented by using a spanning tree protocol (Spanning Tree
Protocol (STP) or Rapid Spanning Tree Protocol (RSTP)) that disables selected
links to eliminate cycles from the topology. Ethernet switch models in INET
contain support for STP and RSTP.

Ieee8021dRelay is a MAC relay unit to be used instead of MacRelayUnit
when STP or RSTP is needed.

The Stp module type implements STP. STP is a network protocol that builds a
loop-free logical topology for Ethernet networks. The basic function of STP is to
prevent bridge loops and the broadcast radiation that results from them. STP creates
a spanning tree within a network of connected layer-2 bridges and disables those
links that are not part of the spanning tree, leaving a single active path between any
two network nodes.

Rstp implements RSTP, an improved version of STP. RSTP provides signifi-
cantly faster recovery in response to network changes or failures.

70 L. Mészáros et al.

Related Projects Several projects extend or complement the Ethernet models in
INET. Communication over Real-time Ethernet for INET (CoRE4INET)3 adds
Virtual Local Area Network (VLAN) support, TTEthernet, and Audio Video
Bridging (AVB) support. The ANSA project4 provides models for layer-2 protocols
like Link Layer Discovery Protocol (LLDP), Cisco Discovery Protocol (CDP), and
Transparent Interconnection of Lots of Links (TRILL).

2.6 Simulating Wireless Networks

Wireless networks went through tremendous growth in the last two decades, and
have become ubiquitous by today. INET contains models for simulating IEEE
802.11 networks, as well as several other wireless technologies; these models will
be covered in later sections. In this section, we look at the physical layer and the
related infrastructure INET provides for the detailed (or not-so-detailed, depending
on the needs) simulation of wireless networks.

Simulating wireless communication is significantly more complex and challeng-
ing than wired communication for several reasons. First, the wireless channel is a
shared medium that leads to more complicated MAC protocols than in most wired
networks. More importantly, unlike wired networks where the physical layer can
usually be abstracted away in simulation, the effects of the underlying physical
reality cannot be ignored in wireless simulations. In wired networks, signal power
usually does not attenuate significantly enough to cause high error rates by the
time it reaches the receiver; in contrast, wireless signals suffer from path loss,
obstacle loss, interference from background noise, and other effects, potentially
resulting in garbled reception. These effects must be accounted for in the simulation.
Transmission power, gains of the transmitter and receiver antennas (any or both of
which may be a directional antenna), reception sensitivity, and other aspects also
need to be taken into account. In addition, while in the wired case two signals
overlapping at the receiver are normally a clear collision, in the wireless case the
weaker signal may or may not make the stronger signal unrecognizable, depending
on the Signal-to-Noise Ratio (SNR).

These challenges lead to an increased model complexity and increased runtimes.
Scaling wireless simulations to a higher number of nodes is also more challenging
than with wired networks, due to the shared nature of the wireless medium. Because
of these reasons, it is crucial that the wireless infrastructure in the simulator provides
flexibility and scalable level of detail. It must be possible to turn off the simulation
of certain aspects for gaining performance if they are not important for a certain
simulation. On the other hand, it must also be possible to increase the detail level of
the simulation for scenarios that require it, even at the cost of consuming more CPU

3CoRE4INET website: https://core4inet.core-rg.de.
4ANSA website: https://ansa.omnetpp.org.

https://core4inet.core-rg.de
https://ansa.omnetpp.org

2 INET Framework 71

cycles. One extreme may be using a unit disk radio; the other extreme a symbol-level
or sample-level simulation with detailed physical layer model (e.g., ray tracing).

The infrastructure that INET provides for wireless simulations has three ingre-
dients: per-node radio (or more generally, transceiver) models that include the
antenna as well; the global transmission medium that keeps track of ongoing
transmissions; and the model of the physical environment (obstacles, terrain, etc.).
We will examine them shortly, and we will see that each one consists of several
smaller components. The subcomponents can be individually configured or replaced
with another built-in or custom-developed component, providing a very flexible and
versatile foundation for a diverse range of wireless simulations. INET also provides
visualization features specific to wireless simulations, which can be helpful while
developing or demonstrating simulations.

2.6.1 Signal Representation

When describing the physical phenomenon of a wireless signal, the focus is on the
analog domain representation. The reason is that other domains, the bit domain for
example, where forward error correction, scrambling, and interleaving happen; or
the symbol domain where modulation happens, are computationally very expensive
to simulate, and thus they are often just approximated. In fact, the effect of these
physical layer processes can be integrated into the error model of the receiver, which
is based on the analog domain representation of the signal and the interference.

INET provides multiple analog domain representations, each having its own
advantages and application areas.

Scalar Representation A reasonable approximation to characterize a wireless
signal in the analog domain is to use a scalar signal power which stays constant
over the signals’s frequency interval and time interval. The scalar representation is
mostly appropriate for narrowband wireless signals. It already allows using many
path loss algorithms such as free-space path loss, log-normal shadowing, Rician
fading, etc., while it can still be stored and calculated with efficiency.

Nevertheless, the scalar analog domain representation may be inappropriate for
several cases, for instance:

• when simulating the coexistence of multiple different wireless technologies,
• when simulating the crosstalk between adjacent WiFi channels,
• or when simulating wideband wireless signals, because the interference between

such wireless signals requires a more accurate representation in either the time
and/or the frequency domains.

Dimensional Representation A more accurate but also computationally more
expensive way to characterize a wireless signal in the analog domain is to use
a signal power which changes over time and/or frequency. The dimensional

72 L. Mészáros et al.

Fig. 2.3 Changing signal strength along frequency

representation uses multiple signal power values for individual time and/or fre-
quency coordinates and uses linear or sample-hold interpolation in between.

For example, when simulating crosstalk between adjacent WiFi channels, the
signal power must be represented in the frequency domain more accurately than
just a constant power over a frequency range, so the effect of cross-channel
interference can be correctly computed. The real signal’s power spectral density
can be approximated using multiple signal power values at different frequency
coordinates (cp. Fig. 2.3).

Another example where dimensional representation has proven to be useful
is the simulation of IEEE 802.15.4’s Ultra-Wideband Impulse Radio (UWB-IR)
Physical Layer (PHY). This radio transmits wideband signals composed of short
pulses with gaps in between. Here, the scalar representation which assumes constant
power over the whole duration of the frame is clearly not sufficient. Hence, the
Ieee802154UwbIrRadio model uses dimensional representation where the
signal power varies over time to be able to describe the impulses. This approach
allows for the effect of multipath self-interference to be taken into account correctly.

Unit Disk In contrast, for simulation studies that concentrate on higher layers, even
the scalar signal representation may prove to be too detailed. In such cases, the unit
disk graph model, a simplistic but fast and predictable physical layer model can
provide a suitable alternative. This model is applicable if network nodes need to
have a finite communication range, but physical effects of signal propagation are to
be ignored. It has been widely used in the study of mobile wireless ad hoc networks,
for example routing in such networks.

The INET implementation, UnitDiskRadio, allows three radii to be given as
parameters: communication range, interference range, and detection range. Signals
are correctly received within the communication range of the transmitter; they
render other signals unreceivable within the interference range; and are detectable
(as nonempty channel) by receivers within the detection range. As a bonus, one can

2 INET Framework 73

also turn off interference modeling (meaning that signals colliding at a receiver will
all be received correctly), which is sometimes a useful abstraction.

Bit- and Symbol-Domain Modeling INET also contains several modules for
the accurate simulation of the individual processing steps of the bit and symbol
domains.

For example, the transmitter modules of the 802.11 Orthogonal Frequency Divi-
sion Multiplex (OFDM) radio are the Ieee80211LayeredOfdmTransmitter,
the Ieee80211OfdmEncoder, and the Ieee80211OfdmModulator. The
encoder module further contains a ConvolutionalCoder for the forward error
correction, an Ieee80211OfdmInterleaver for the interleaving, and an
AdditiveScrambler for the scrambling. Similarly, the detailed receiver mod-
ules for the 802.11 OFDM radio are the Ieee80211LayeredOfdmReceiver,
the Ieee80211OfdmDecoder, and the Ieee80211OfdmDemodulator.
These modules together are capable of simulating the 802.11 OFDM PHY down to
the symbol-level accuracy.

For another example, the detailed transmitter modules for a hypothetical ampli-
tude and phase-shift keying radio are the ApskLayeredTransmitter, the
ApskEncoder, the ApskModulator, and similarly to the receiver above the
ApskLayeredReceiver, the ApskDecoder, and the ApskDemodulator.

2.6.2 Modeling the Radio

The Radio module represents the physical device which is capable of transmitting
and receiving signals on the transmission medium. The Radio module contains an
antenna, a transmitter, a receiver, and an optional energy consumer submodule. The
antenna is shared between the transmitter and the receiver. The energy consumer
model is only used when the simulation of energy consumption is necessary.

INET contains several additional radio modules derived from Radio, some of
which are specific to a particular physical layer. For example, Ieee80211Radio
represents the IEEE 802.11 PHY, and the ApskRadio and the UnitDiskRadio
are hypothetical radios.

The transmitter submodule represents the physical process which converts
packets into electric signals. The receiver submodule represents the opposite
physical process that converts electric signals into packets. There are many
variants for both, for example Ieee80211ScalarTransmitter and
Ieee80211ScalarReceiver are the ones which represent the signal with
a scalar power in the analog domain.

Determining reception errors is the crucial part of the reception process. The
receiver module contains another replaceable submodule called the error model.
The error model describes how the Signal-to-Noise-plus-Interference Ratio (SNIR)
affects the amount of errors at the receiver. INET contains protocol agnostic error

74 L. Mészáros et al.

models such as the StochasticErrorModel, but there are also protocol-
specific error models, the IEEE 802.11 error models, for instance, are discussed
in Sect. 2.7.

In wireless networks, the position of the antennas is decisive. The position and
orientation of antennas are provided by the network node’s mobility by default. In
some simulations, the antenna is not located at the same position as the network
node, or its orientation is different from the node’s, in such cases the antenna has
its own mobility submodule. This feature allows, for example, the simulation of a
moving vehicle with multiple radio interfaces, each placed at a specific location in
the vehicle and each oriented differently than the vehicle itself.

Directional Antennas By default, INET radios use the IsotropicAntenna, a
theoretical point source, which radiates with the same intensity in all directions.
Nevertheless, the physical layer also supports directional antennas, and INET
contains several models. For example, the DipoleAntenna represents a dipole,
the ParabolicAntenna represents a parabolic antenna, the CosineAntenna
is a hypothetical model, and the AxiallySymmetricAntenna is a generic
model which can be used to describe any 3D axially symmetric antenna lobe.

2.6.3 Transmission Medium

Wireless network models are required to contain a special module that represents the
shared physical medium where the communication takes place. The medium module
keeps track of transceivers, noise sources, ongoing transmissions, background noise,
and other ongoing noises. It also contains models of signal propagation, path loss,
obstacle loss, signal analog model, and background noise.

The transmission medium is modeled as an OMNeT++ compound module with
several replaceable submodules. These submodules are used via C++ method calls
and are responsible for modeling signal propagation, path loss, obstacle loss, signal
analog model, and background noise. With the help of its submodules, the medium
module computes when, where, and how signals arrive at receivers, including the set
of interfering signals and noises. Additional submodules implement various caches
for efficiency.

Propagation Models The propagation model describes how the wireless signal
travels through space over time, and its main purpose is to compute when and
where the signal’s start and end arrive at various (potentially moving) receivers.
By default, INET uses a model that represents constant speed propagation, with
the speed of light (speed is configurable via a module parameter). This model
ignores the movement of receivers during signal’s travel which is suitable for radio
communication, but a more sophisticated model might be necessary for simulating
acoustic (e.g., underwater) communication, where signal speeds are much closer to
the speed of transceivers.

2 INET Framework 75

Path Loss Models As a signal propagates through space, its power density
decreases. This is called path loss, and it is the combination of many effects such as
free-space loss, refraction, diffraction, reflection, and absorption. In INET, the main
purpose of the path loss model is to compute the power loss for a given signal, but
it is also capable of estimating the range for a given loss. The latter is useful, for
example, to allow visualizing the communication range.

INET contains the implementations of a number of well-known path loss
algorithms that differ in their parametrization and application area: free-space path
loss (this is the default), breakpoint path loss (dual-slope free-space model with two
separate path loss exponents), log-normal shadowing, two-ray ground reflection,
Rician fading, Rayleigh fading, and Nakagami fading. The following example
replaces the default free-space path loss model with log-normal shadowing:

Listing 2.7 Replacing the default path loss model with log-normal shadowing

1 *.radioMedium.pathLoss.typename = "LogNormalShadowing" # module type
2 *.radioMedium.pathLoss.sigma = 1.1 # override default value of 1

Obstacle Loss Models When the signal propagates through space, it also passes
through physical objects present in that space. As the signal penetrates physical
objects, its power decreases when it is absorbed by the object’s material and also
when it reflects from surfaces. There are various ways to model this effect, which
differ in the trade-off between accuracy and performance. In INET, the main purpose
of an obstacle loss model is to compute the power loss based on the signal’s path
and the frequency.

INET contains two built-in obstacle loss models: an “ideal” obstacle loss model
that regards obstacles to be fully opaque to all signals, and a dielectric obstacle loss
model that takes the material of the obstructing physical object into account when
computing power loss. These obstacle loss models use the physical environment
model to determine the set of penetrated physical objects. (Statistical obstacle loss
models are also possible but currently not included in INET.)

By default, the medium module does not contain any obstacle loss model. The
following example shows how to select the dielectric obstacle loss model:

Listing 2.8 Obstacle loss model configuration example

1 *.radioMedium.obstacleLoss.typename = "DielectricObstacleLoss" # module type

Background Noise Models Thermal noise, cosmic background noise, and other
random fluctuations of the electromagnetic field affect the quality of the commu-
nication channel. This kind of noise does not come from a particular source, so
it does not make sense to model it as a signal that propagates through space. In
INET, the main purpose of a background noise model is to compute the analog
representation of the background noise for a given space–time interval. For example,
IsotropicScalarBackgroundNoise computes a background noise that is

76 L. Mészáros et al.

independent of space–time coordinates, and its scalar power is determined by a
module parameter.

The simplest background noise model can be configured as follows:

Listing 2.9 Background noise model configuration example

1 *.radioMedium.backgroundNoise.typename = "IsotropicScalarBackgroundNoise" #type
2 *.radioMedium.backgroundNoise.power = -110 dBm # isotropic scalar noise power

Analog Models The analog signal is a complex physical phenomenon which can
be modeled in many different ways. Choosing the right analog domain signal
representation is the most important factor in the trade-off between accuracy and
performance. The analog model of the transmission medium determines how signals
are represented while being transmitted, propagated, and received.

In INET, an analog model is an OMNeT++ simple module. Its main purpose
is to compute the received signal from the transmitted signal. The analog model
combines the effect of the antenna, path loss, and obstacle loss models. Transceivers
must be configured to transmit and receive signals according to the representation
used by the analog model.

The most commonly used analog model, which uses a scalar signal power
representation over a frequency and time interval, can be configured as follows:

Listing 2.10 Analog model configuration example

1 *.radioMedium.analogModel.typename = "ScalarAnalogModel" # module type

Filters and Caches As a central component, the medium module influences
performance to a large extent, so it also provides a couple of parameters for
optimization. For example, the rangeFilter parameter controls how the set of
affected receivers is determined based on their distance when the signal enters the
medium.

The medium module also employs several caches (neighbor cache, medium
limits cache, and communication cache) to improve its performance. These caches
are replaceable, because different data structures may be the optimal choice under
different circumstances. For example, the neighbor cache has three alternative
implementations, based on neighbor lists, grid, and quad tree data structure.

2.6.4 Modeling the Physical Environment

The transmission medium model heavily relies on the one that represents the
physical environment. The main purpose of the physical environment model is to
describe buildings, walls, furniture, vegetation, terrain, weather, and other physical
objects and conditions that might have profound effects on the simulation.

2 INET Framework 77

In INET, the physical environment is modeled by the PhysicalEnvironment
compound module. This module normally has one instance in the network, and it
provides services for other parts of the simulation. It contains submodules to model
physical objects and the ground as well as a few parameters for the physical
properties of the environment.

Physical Objects The most important aspect of the physical environment is the
objects which are present in it. The physical environment model stores the shape,
position, orientation, and material of each object. (Objects are assumed to be
homogeneous, which is a simplified description but still allows for a reasonable
approximation of reality.) Listing 2.11 shows how to define physical objects using
the XML syntax supported by the physical environment model:

Listing 2.11 Defining physical objects

1 <environment>
2 <!-- an object defined with an in-line shape and material -->
3 <object position="min 1 2 0" orientation="90 -45 0" shape="cuboid 40 10 20"
4 material="brick" line-color="0 0 0" fill-color="126 43 32"/>
5 <!-- separately defined shapes and materials -->
6 <shape id="11" type="cuboid" size="1 2 3"/>
7 <shape id="12" type="sphere" radius="1000"/>
8 <shape id="13" type="prism" height="100" points="0 0 2 0 2 2 0 2"/>
9 <shape id="14" type="polyhedron" points="0 0 0 2 0 0 2 2 0 0 2 0 ..."/>

10 <material id="11" resistivity="8" relativePermittivity="2.5"/>
11 <!-- an object that uses a previously defined shape and material -->
12 <object position="min 1 1 0" orientation="60 30 0" shape="13" material="11"/>
13 </environment>

The file must be passed to the physical environment model in a parameter:

Listing 2.12 Physical objects configuration example

1 *.physicalEnvironment.config = xmldoc("objects.xml") # load physical objects

Ground Models In many outdoor simulation scenarios, the terrain has profound
effects on signal propagation. For example, vehicles on the opposite sides of a
mountain cannot directly communicate with each other. In INET, the ground model
describes the 3D surface of the terrain. Its main purpose is to provide elevation
data for locations. INET currently contains two grounds models: FlatGround
which represents a flat surface parallel to the XY-plane at a certain height, and
OsgEarthGround which uses the osgEarth API to provide elevation data from
an external map data source.

Geographic Coordinate System Models Internally, INET uses a 3D Cartesian
coordinate system, scene coordinates, to describe locations. In scenarios where
it is important where the simulation scene is located on the surface of the earth
(e.g., those involving osgEarth-based visualization or ground model), a geographic
coordinate system module provides the mapping between scene coordinates and
geographic coordinates. INET contains two geographic coordinate system models.
SimpleGeographicCoordinateSystem implements a simple formula that

78 L. Mészáros et al.

uses linear approximation, while OsgGeographicCoordinateSystem pro-
vides an accurate mapping on top of the osgEarth library.

Listing 2.13 shows how the geographic coordinate system module can be
configured to place the simulation scene at a particular geographic location and
orientation.

Listing 2.13 Geographic coordinate system configuration

1 *.physicalEnvironment.coordinateSystemModule = "coordinateSystem" # reference
2 *.*.mobility.coordinateSystemModule = "coordinateSystem" # reference
3 *.coordinateSystem.sceneLongitude = -71.070421deg # scene origin
4 *.coordinateSystem.sceneLatitude = 42.357824deg # scene origin
5 *.coordinateSystem.sceneHeading = 68.3deg # scene orientation

Object Cache The physical environment model also contains an object cache
to accelerate looking up obstacles in the signal propagation path, as it might
affect performance quite heavily. Multiple cache implementations are provided,
as different cache data structures may be optimal for different scenarios. For
example, GridObjectCache organizes objects into a 3D spatial grid, while
BvhObjectCache organizes them into a tree data structure based on a recursive
3D volume division.

2.7 Simulating IEEE 802.11 Networks

IEEE 802.11, also known as WiFi, is the most widely used and universal wireless
networking standard. Specifications (e.g., [3]) are updated every few years, adding
more features and ever increasing bit rates.

There are several node models that can be used for building a WiFi net-
work. For example WirelessHost and AdHocHost: both are derived from
StandardHost, and are pre-configured to have one Ieee80211Interface.
By default, WirelessHost’s interface is set up for 802.11 infrastructure mode
and AdHocHost’s for 802.11 ad hoc mode. Access points are represented with
the AccessPoint node type, which also happens to have Ethernet interfaces and
frame relaying functionality. Other nodes can also become WiFi-enabled by adding
an Ieee80211Interface to them. WiFi networks also require a matching
transmission medium module to be present in the network, which is usually an
Ieee80211ScalarRadioMedium.

The number of wireless network interfaces is configurable in all built-in node
types that support wireless networks (see Listing 2.14).

Listing 2.14 Multiple wireless interfaces example

1 *.host[*].numWlanInterfaces = 2 # number of wireless network interfaces
2 *.host[*].wlan[0].agent.defaultSsid = "alpha" # connects to alpha network
3 *.host[*].wlan[1].agent.defaultSsid = "bravo" # connects to bravo network

2 INET Framework 79

Network Interface Ieee80211Interface is composed of several submod-
ules. The llc submodule performs encapsulation and decapsulation for the network
layer. The mgmt submodule implements authentication, association, beaconing,
channel scanning, etc. The agent submodule initiates channel scanning and
connecting to access points on behalf of the user. The mac submodule transmits
and receives frames according to the 802.11 medium access procedure. The radio
submodule transmits and receives 802.11 PHY signals.

Operation mode (infrastructure vs. ad hoc) is determined by the management
component. It has several implementations which differ in their role and
level of detail. Ieee80211MgmtAdhoc is for ad hoc mode stations,
Ieee80211MgmtSta and Ieee80211MgmtStaSimplified for infrastruc-
ture mode stations, and Ieee80211MgmtAp and Ieee80211MgmtApSimplif
ied for access points.

The “simplified” ones assume that stations are statically associated to an access
point for the entire duration of the simulation (the scan-authenticate-associate
process is not simulated), so they cannot be used in experiments involving handover.

The agent component is only needed for interfaces containing the component
Ieee80211MgmtSta. Ieee80211MgmtSta does not take any action by itself,
it requires an agent component to initiate actions. Ieee80211AgentSta is the
default agent. By modifying or replacing the agent, one can alter the dynamic
behavior of stations in the network, for example implement different handover
strategies.

An example configuration that configures nodes for static access point attach-
ment is as follows:

1 *.host*.wlan[0].mgmt.typename = "Ieee80211MgmtStaSimplified"
2 *.ap.wlan[0].mgmt.typename = "Ieee80211MgmtApSimplified"
3 *.*.wlan[0].agent.typename = ""
4 *.ap.wlan[0].mac.address = "10:00:00:00:00:00"
5 *.host*.wlan[0].mgmt.accessPointAddress = "10:00:00:00:00:00"

Options for Configuring the PHY Ieee80211Radio, just like other radios in
INET, contains a transmitter, a receiver, an energyConsumer, and an
antenna submodule. One can choose from several predefined radios with different
levels of detail for the signal analog domain representation. The various radio types
(with the matching transmission medium types in parentheses) are:

• Ieee80211ScalarRadio (Ieee80211ScalarRadioMedium),
• Ieee80211DimensionalRadio (Ieee80211DimensionalRadioMedium),
• and Ieee80211UnitDiskRadio (UnitDiskRadioMedium).

The radio submodules have numerous parameters, which allow them to be fully
configured and used on their own, but in a typical setting the radio is configured by

80 L. Mészáros et al.

the MAC module automatically. The following configuration snippet illustrates the
PHY parameters:

1 **.wlan[*].radio.transmitter.power = 2mW
2 **.wlan[*].radio.receiver.sensitivity = -190dBm
3 **.wlan[*].radio.receiver.snirThreshold = 4dB

The radio modules supports several physical layers defined by the standard:
OFDM, ERP-OFDM, HT, VHT, HR-DSSS, DSSS, FHSS, and IR. The various well-
known WiFi operation modes (802.11 a/b/g/n/p/ac) are composed of the supported
optional and mandatory data rates using the required PHY characteristics. One can
define new WiFi operation modes by composing a different set of physical layers
and data rates in C++. Both the 2.4 and 5 GHz bands are supported with multiple
WiFi channels but experimenting with new configurations is also possible.

In INET radios, receivers contain an important module, called the error
model. The error model is responsible for determining whether a received
packet contains errors or not based on the SNIR. The 802.11 physical layer
provides several alternative error models: Ieee80211NistErrorModel,
Ieee80211YansErrorModel, Ieee80211BerTableErrorModel. The
former two modules use predefined error rate probability functions (based on the
SNIR), while the latter allows defining arbitrary mappings. Error models also have
a corruptionMode parameter which determines the level of detail for how to
represent corrupt packets. Refer to Sect. 2.13.3 for more details on the representation
of packets.

For the OFDM PHY, INET also includes a bit-level transmitter and receiver
model which carries out many radio functions such as forward error correction,
scrambling, interleaving, and modulation in the bit and symbol domains. This
model itself is implemented in Ieee80211LayeredOfdmTransmitter, in
Ieee80211OfdmEncoder, in Ieee80211OfdmModulator, and in their
corresponding receiver, decoder, and demodulator counterparts. The detailed 802.11
radio is slower than the default one, but it allows experimenting with many physical
layer techniques in the context of a more complete network simulation stack.

Configuring and Experimenting with the MAC The Ieee80211Mac module
type represents the IEEE 802.11 MAC, and it is arguably the most important and
most complex part of the Ieee80211Interface. Ieee80211Mac receives
data and management frames from the upper layers and transmits them according
to the frame exchange sequences allowed by the coordination function. It also
implements MAC data services such as aggregation and fragmentation, provides
multiple access categories for QoS, implements block acknowledgment, and follows
the Transmit Opportunity (TXOP) procedures according to the IEEE 802.11 MAC
standard.

The most distinguishing feature of Ieee80211Mac is that it is extremely mod-
ular in order to facilitate experimenting with various aspects of the protocol. The
immense number of features provided by the IEEE 802.11 standard are implemented

2 INET Framework 81

by numerous simple and compound modules cooperating via C++ methods calls.
Each of these modules have their own parameters to control their behavior. The
following configuration snippet illustrates some of the MAC parameters:

1 **.wlan[*].mac.dcf.channelAccess.cwMin = 7
2 **.wlan[*].mac.dcf.rateControl.interval = 1s
3 **.wlan[*].mac.dcf.rtsPolicy.rtsThreshold = 500B
4 **.wlan[*].mac.dcf.recoveryProcedure.shortRetryLimit = 15
5 **.wlan[*].mac.hcf.edcaTxopProcedures[1].txopLimit = 7ms
6 **.wlan[*].mac.hcf.originatorAckPolicy.blockAckReqTreshold = 12
7 **.wlan[*].mac.hcf.originatorMacDataService.msduAggregationPolicy.

aggregationLengthThreshold = 10000B

The Ieee80211Mac compound module is assembled from these smaller com-
ponents, using composition several levels deep (see Fig. 2.4), and most components
are replaceable from the configuration. The practical implications are that users can
experiment with various policies, features, and algorithms, etc., without the need to
touch a single line of code in the existing implementation.

Policies, which are the most likely to be experimented with, are also extracted
into their own modules. They are easy to implement, because they focus on
in what conditions a certain procedure should be applied as opposed to how
to actually execute the procedure. The model has replaceable built-in policies
for the Acknowledgment (ACK) procedure, the Request to Send (RTS)/Clear to
Send (CTS) procedure, the initiation and acceptance of block ACK agreements,
for the decision for Medium Access Control Service Data Unit (MSDU) and
Medium Access Control Protocol Data Unit (MPDU) aggregation, and similarly
for fragmentation.

The many other separate components of Ieee80211Mac are derived from the
IEEE 802.11 standard and have well-identified purposes. These components are
often way more complicated than the aforementioned simple policies, but they allow
deeper experimentation with many aspects of the standard. For example, they allow
experimenting with more access categories, alternative backoff periods and con-
tention mechanisms, new recovery procedures, modified block ACK agreements,
different rate selection and rate control algorithms, new frame exchange sequences,
alternative channel protection mechanisms and TXOP procedures, modified channel
access methods and coordination functions, and new MAC data services.

As for the module structure, Ieee80211Mac contains two separate coor-
dination functions as submodules, Dcf (depicted in Fig. 2.5) and Hcf. Both
coordination functions are further divided into the corresponding channel access
function, Dcaf for Dcf, and Edca having one Edcaf submodule per access
category for Hcf.

Each channel access function has its own Contention submodule which
executes the exponential backoff mechanism. The coordination functions contain
further submodules, the originator and recipient MAC data services (responsible
for data transformations), the rate selection and rate control algorithms (responsible
for selecting the data rate on a per frame basis), the protection mechanism (which
allows keeping the channel ownership), and several policies. The Hcf coordina-
tion function is even more complicated than Dcf because it includes multiple

82 L. Mészáros et al.

mac (Ieee80211Mac)
dcf (Dcf)

channelAccess (Dcaf)
contention (Contention)

originatorMacDataService (OriginatorMacDataService)
fragmentationPolicy (BasicFragmentationPolicy)

recipientMacDataService (RecipientMacDataService)
rateSelection (RateSelection)
recoveryProcedure (NonQosRecoveryProcedure)
originatorProtectionMechanism (OriginatorProtectionMechanism)
originatorAckPolicy (OriginatorAckPolicy)
recipientAckPolicy (RecipientAckPolicy)
rtsPolicy (RtsPolicy)
ctsPolicy (CtsPolicy)

hcf (Hcf)
edca (Edca)

edcaf[4] (Edcaf)
contention (Contention)

collisionController (EdcaCollisionController)
hcca (Hcca)
originatorMacDataService (OriginatorQosMacDataService)

msduAggregationPolicy (BasicMsduAggregationPolicy)
mpduAggregationPolicy (BasicMpduAggregationPolicy)
fragmentationPolicy (BasicFragmentationPolicy)

recipientMacDataService (RecipientQosMacDataService)
rateSelection (QosRateSelection)
singleProtectionMechanism (SingleProtectionMechanism)
edcaMgmtAndNonQoSRecoveryProcedure (NonQosRecoveryProcedure)
edcaDataRecoveryProcedures[4] (QosRecoveryProcedure)
edcaTxopProcedures[4] (TxopProcedure)
originatorAckPolicy (OriginatorQosAckPolicy)
recipientAckPolicy (RecipientQosAckPolicy)
rtsPolicy (QosRtsPolicy)
ctsPolicy (QosCtsPolicy)

ds (Ds)
rx (Rx)
tx (Tx)
statistics (BasicStatistics)

Fig. 2.4 The submodule tree of Ieee80211Mac expanded. Any module can be replaced with a
custom version

2 INET Framework 83

Fig. 2.5 IEEE 802.11 distributed coordination function

TxOpProcedure and QosRecoveryProcedure submodules, and additional
policy submodules for aggregation and block ACK agreements.

The presented loosely coupled structure makes it possible to build alterna-
tive, potentially nonstandard compliant, 802.11 MAC modules using standard
OMNeT++ composition. For example, increasing the number of access categories
with a few new ones having different parameters requires very little programming
and configuration.

Additionally, any of the MAC submodules can also be replaced with alternative
implementations as long as the corresponding C++ interface (having the same
name as the module interface) is properly implemented. These features of the
Ieee80211Mac module allows exploring research topics which go way beyond
experimenting only with alternative policies. Refer to Sect. 2.14.3 for a complete
rate control example.

2.7.1 WSN MAC Protocols

The choice of wireless protocol for a Wireless Sensor Network (WSN) depends
on the application requirements. IEEE 802.15.4 and IEEE 802.11 are commonly
used, but there are also MAC protocols designed specifically for the requirements
of wireless sensor networks: low data rate, low complexity, and low energy
consumption.

84 L. Mészáros et al.

B-MAC (Berkeley MAC) is a Carrier Sense Multiple Access (CSMA)-based
protocol designed for low-traffic, low-power communication and is one of the most
widely used protocols (e.g., it is part of the TinyOS operating system for WSNs).
Its model in INET is the BMac module [2], but there is also a BMacInterface,
which is a WirelessInterface with the MAC type set to BMac.

L-MAC (Lightweight MAC) is another energy-efficient MAC protocol, but it
uses Time Division Multiple Access (TDMA) to give nodes in the WSN the
opportunity to communicate collision-free. The network is self-organizing in terms
of time slot assignment and synchronization. INET’s model is LMac [7], and there
is also an LMacInterface.

X-MAC is another CSMA-based protocol that reduces latency and improves
energy consumption compared to B-MAC while retaining the advantages of low
power listening, namely low power communication, simplicity and a decoupling of
transmitter and receiver sleep schedules. INET’s model is XMac [5], and there is
also an XMacInterface.

The flexibility of INET network interfaces allows experimenting with various
WSN MAC protocols and it also allows comparing the results for the same scenario.

2.7.2 Alternative Network Layer Protocols

INET contains several network layer protocols in addition to the IPv4 and IPv6
standards. These network layers are not part of StandardHost and other network
nodes by default, but they can be enabled and configured from INI files.

Flooding, for example, implements a plain packet flooding protocol which
avoids re-broadcasting the same packet. The ProbabilisticBroadcast and
the AdaptiveProbabilisticBroadcast modules provide stochastic data
dissemination services. WiseRoute is a simple loop-free routing algorithm that
builds a routing tree from a central network node. It is especially useful for wireless
sensor networks and convergecast traffic. NextHopForwarding is a simplified
variant of IPv4 which uses network interface module Identifiers (IDs) as addresses.

Some of these alternative network layer protocols only serve educational pur-
poses, but they demonstrate in any case the flexibility and extensibility of INET.

2.7.3 Energy Modeling

Sensor nodes are battery-powered and are often equipped with solar panels. Hence,
the ability to model the storage and consumption of energy is crucial for the
simulations of low-power WSNs and many wireless ad hoc networks, to be able
to design and evaluate energy-aware and power saving routing and MAC protocols,
and to evaluate the energy efficiency of network configurations in general.

2 INET Framework 85

INET’s energy modules are capable of modeling processes and components to
store, consume, generate, and manage energy. The models are grouped into these
four basic types and either located in the /src/inet/power folder or allocated to a
specific layer (e.g., the physical layer). All models fall into one of the following two
categories: those based on charge and current (abbreviated Cc), and those based on
energy and power (abbreviated Ep). The category abbreviations are included in the
names of each energy consumer/generator/management/storage model.

The energy modeling components are decoupled from the communication
protocol stack and other models to increase interchangeability. Interface classes
for the major types enable an easy exchange of models through parametric
(sub-)module types.

Energy Consumers Energy is consumed in various components inside a
communication network. CPUs, transceivers, displays, and many other components
use energy when signals are processed and data packets are routed through
the network. All of these components can be modeled in INET, if required
for the specific use case and purpose of the simulation scenario. An INET
energy consumer model is represented by a simple OMNeT++ module that
implements the consumption of energy of a device or a (software) process
over time. Typically, consumer models provide the current consumption or the
power for the current simulation time (or a time span). INET includes two
models: AlternatingEpEnergyConsumer as an exemplary statistical energy
consumer model and StateBasedEpEnergyConsumer as a transceiver
energy consumer model aiming at the different transceiver states (e.g.,
transmit or receive). The configuration excerpt in Listing 2.15 shows how the
StateBasedEpEnergyConsumer model can be configured for the simulation
of the power consumption in a wireless communication scenario. We can observe
that transmitter and receiver power consumption amounts are configured here. The
time that the transceiver spends in one of these states is counted to calculate the
amount of consumed energy.

Listing 2.15 Exemplary energy consumer configuration

1 *.host[*].wlan[*].radio.energyConsumerType = "StateBasedEpEnergyConsumer"
2 *.host[*].wlan[*].radio.energyConsumer.sleepPowerConsumption = 0.1mW
3 *.host[*].wlan[*].radio.energyConsumer.receiverIdlePowerConsumption = 2mW
4 *.host[*].wlan[*].radio.energyConsumer.receiverBusyPowerConsumption = 5mW
5 *.host[*].wlan[*].radio.energyConsumer.receiverReceivingPowerConsumption = 10mW
6 *.host[*].wlan[*].radio.energyConsumer.transmitterIdlePowerConsumption = 2mW
7 *.host[*].wlan[*].radio.energyConsumer. \
8 transmitterTransmittingPowerConsumption = 100mW # continue previous line

Energy Generators The generation of energy is also a crucial process that can be
modeled with INET. Components like solar panels can provide energy resources for
stationary and mobile network participants; a vital functionality for applications like
WSNs. INET provides a basic module for the statistical generation of energy/power,

86 L. Mészáros et al.

called AlternatingEpEnergyGenerator. It models the generation of energy
using a physical phenomena over time, providing the current power generation level
for the current simulation time. Listing 2.16 depicts a configuration example for the
power generator. Note that the generator requires a so-called energy sink module
where the generated energy is eventually stored (see line 2).

Listing 2.16 Exemplary energy generator configuration

1 *.host[*].energyGeneratorType = "AlternatingEpEnergyGenerator"
2 *.host[*].energyGenerator.energySinkModule = "^.energyStorage" # module ref.
3 *.host[*].energyGenerator.powerGeneration = 1mW
4 *.host[*].energyGenerator.sleepInterval = exponential(10s) # random intervals
5 *.host[*].energyGenerator.generationInterval = exponential(10s)

Energy Storage Mobile, nonstationary network devices without a permanent con-
nection to a power grid require an energy storage component. Batteries are typically
employed in mobile devices, either as standalone solutions or connected to energy
generators. INET provides several simple modules that take the energy generated
by energy generators and model the physical phenomena used to store the produced
energy. The built-in models are the IdealEpEnergyStorage model, an ide-
alistic model with unlimited energy capacity, the SimpleEpEnergyStorage
model, a nontrivial model that integrates the difference between the generated
and the consumed power over time, and the SimpleCcBattery model, which
provides a charge/current-based model of a simple battery. All storage models
compute the amount of available energy at the current simulation time, to be
further used in other simulation models. Listing 2.17 shows how to configure the
SimpleEpEnergyStorage model.

Listing 2.17 Exemplary energy storage configuration

1 *.host[*].energyStorageType = "SimpleEpEnergyStorage"
2 *.host[*].energyStorage.nominalCapacity = 0.05J # maximum capacity
3 *.host[*].energyStorage.initialCapacity = uniform(0J, this.nominalCapacity)

Energy Management The last of the four basic energy model types considers the
task of monitoring energy storage models and managing node status. Estimation
algorithms and control functionalities can be implemented here to make sure that the
energy storage component is always operating in a safe state. Listing 2.18 depicts
the parameters for the INET SimpleEpEnergyManagement module. It can be
used together with the node failure modeling approaches provided by INET.

Listing 2.18 Exemplary energy management configuration

1 *.host[*].energyManagementType = "SimpleEpEnergyManagement"
2 *.host[*].energyManagement.nodeStartCapacity = 0.025J # start threshold
3 *.host[*].energyManagement.nodeShutdownCapacity = 0J # shutdown threshold

2 INET Framework 87

2.8 Scripting

Simulation scenarios often contain complex setups that are impossible to describe
by just using a static configuration provided at the simulation start. INET provides
the user with scripting support so that users can express what actions shall be
executed at which simulation time (e.g., change a connection or a parameter value,
remove a route, and restart a router). The ScenarioManager module initializes
and controls such scripted simulation experiments. Users can choose from actions
such as creating/deleting a connection or a module, setting/changing a module
or a channel parameter, and inducing a life cycle operation such as crash or
reboot. Further commands are dispatched to other OMNeT++ simple modules (and
executed there).

ScenarioManager expects the script in XML form. Listing 2.19 shows an
exemplary scenario script that uses most of the built-in commands.

Listing 2.19 Exemplary scenario manager XML script

1 <scenario>
2 <set-param t="10" module="host[1].mobility" par="speed" value="5"/>
3 <at t="12">
4 <create-module type="inet.node.inet.Router" parent="."
5 submodule="routerX"/>
6 </at>
7 <at t="16">
8 <set-param module="host[1].mobility" par="speed" value="25"/>
9 <connect src-module="router1" src-gate="ethg[1]"

10 dest-module="routerX" dest-gate="ethg[0]"
11 channel-type="ned.DatarateChannel">
12 <param name="delay" value="1us"/>
13 <param name="datarate" value="1Gbps"/>
14 </connect>
15 </at>
16 <at t="23">
17 <shutdown module="routerX"/>
18 </at>
19 <at t="42">
20 <disconnect src-module="routerX" src-gate="ethg[0]"/>
21 </at>
22 <at t="61">
23 <delete-module module="routerX"/>
24 </at>
25 </scenario>

The t attribute defines the simulation time when a command must be executed.
The <at> command is used to collect several commands to be executed at the same
time. ScenarioManager takes its script input directly inline in the configuration
file (feasible for short scripts) or as a reference to an external XML file.

88 L. Mészáros et al.

2.9 Recording PCAP Files

Packet Capture (PCAP) is a widely used file format for capturing, analyzing,
and replaying network traffic. INET is capable of recording PCAP files from a
simulation for further processing using 3rd-party tools such as Wireshark.

The PcapRecorder module is integrated into all network nodes, so capturing
packet traces can be simply enabled from the INI configuration file as follows:

Listing 2.20 PCAP recording configuration example

1 *.router.numPcapRecorders = 1
2 *.router.pcapRecorder[*].pcapFile = "results/router.pcap"
3 *.router.pcapRecorder[*].pcapNetwork = 1 # for ethernet
4 *.router.pcapRecorder[*].moduleNamePatterns = "eth[*]"
5 *.router.pcapRecorder[*].packetDataFilter="inet::Ipv4Header and timeToLive(3)"

PCAP recording captures traffic on the network level by default, but it also
supports recording packets between protocols inside the network node. In order to
reduce the PCAP file size and increase simulation performance, PCAP recording
also supports filtering the recorded packets based on the data they contain.

2.10 Network Emulation

In contrast to the general definition (e.g., in [1]) and use of the term emulation, INET
uses a broader definition to describe a system which is partially implemented in the
real world and partially in the simulation.

There are several reasons to use emulation, here are the most prominent ones:

• Out of necessity, because some part of the system only exists in the real world
or as a simulation model. For example, streaming video to a real media player
program over a simulated network, running the real Linux Ad Hoc On-Demand
Distance Vector (AODV) routing daemon over a simulated MANET, running a
newly researched simulated TCP congestion algorithm over a real network.

• For validating a simulation model by replacing it with its real-world counterparts.
For example, comparing the accuracy of the IEEE 802.11 MAC & PHY
simulation models against a real-world Wifi card.

• To test the interoperability of a simulated model with its real-world counterparts.
For example, simulating an OSPF router connected to a real network.

• As a means of implementing hybrid simulations. The real-world network may
contain several network emulator devices or simulations running in emulation
mode. Such a setup provides a relatively easy way for connecting heterogeneous
simulators/emulators with each other, omitting the necessity of High-Level
Architecture (HLA) or a custom interoperability solution.

2 INET Framework 89

Owing to the highly modular design of INET, there are many ways to mix the
real-world elements with the simulated ones. INET allows mixing real and simu-
lated subnetworks, network nodes, network interfaces, protocols, and applications.

The most important INET modules for emulation are the following:

• ExtLowerEthernetInterface represents an Ethernet network interface
which has its upper part in the simulation and its lower part in the real world.
This interface allows, for example, using a real network interface in a simulation.
Packets received by the simulated network interface from above will be sent out
on the underlying real network interface. Packets received by the real network
interface (or rather, an appropriate subset of them) from the network will be
received on the simulated network interface. This module requires a real or a
virtual Ethernet interface on the host OS. The simulation sends and receives
packets through this network interface using the OS socket API.

• ExtUpperEthernetInterface represents an Ethernet network interface
which has its upper part in the real world and its lower part in the simulation.
This interface allows, for instance, using a real routing protocol in a simulation.
Basically, it works the opposite way of ExtLowerEthernetInterface.
Packets received by the simulated network interface from the network will be
received on the real interface. Packets received by the real network interface
from above will be sent out on the underlying simulated network interface. This
module requires a network Terminal Access Point (TAP) device in the host OS.
The simulation sends and receives packets through the TAP device using the
operating system’s file API.

• ExtUpperIeee80211Interface represents an IEEE 802.11 wireless net-
work interface which works similarly to ExtUpperEthernetInterface.

• ExtLowerUdp represents the UDP protocol which has its upper part in the
simulation and its lower part in the real world. This module allows simulated
applications and protocols using UDP (e.g., some routing protocols) to be run on
the real network stack as standalone applications.

The host OS that runs the simulation program may need extra configuration such
as adding virtual Ethernet interfaces, virtual Ethernet links, TAP and TUNnel (TUN)
devices, configuring MAC and IP addresses, and adding routes. In order to operate
properly, real network interfaces and their corresponding simulated parts must have
the exact same configuration (e.g., MAC address, IP address).

Most often only packets are exchanged between the simulation and the real-
world elements. To exchange packets, they must be converted to their binary
representation, which requires enabling computing checksums for all involved
protocols:

1 **.fcsMode = "computed" # enables FCS computation for MAC protocols
2 **.crcMode = "computed" # enables CRC computation for higher layer protocols

All network nodes found in INET (e.g., StandardHost, Router) can be
configured to have external network interfaces and external protocols by simply
configuring the appropriate module type parameter.

90 L. Mészáros et al.

The following configuration shows how to replace a network interface with an
external network interface connected to the eth0 host OS device:

1 *.host1.eth[0].typename = "ExtLowerEthernetInterface" # replaces original type
2 *.host1.eth[0].device = "eth0" # device name on the host OS

In order to use emulation, the simulator must be run so that simulation time is
synchronized with the real clock. One way to achieve this is to configure a special
OMNeT++ event scheduler which takes care of executing events in a timely manner:

1 scheduler-class = "inet::RealTimeScheduler" # scheduler C++ class name

RealTimeScheduler also supports reading multiple file descriptors effi-
ciently using the OS select Portable Operating System Interface (POSIX) [4]
API. This approach works only if the relative speed of the simulation compared to
real time (the simsec/sec value) is significantly larger than one.

Alternatively, for some emulations, the time perception of the participating real
programs (e.g., applications or routing protocols) can be changed to be synchronized
to the simulation time. The trick is to pre-load a library, when the application is
started, which connects to the simulation and overrides all time-related functions of
the underlying operating system. This approach does not have the above limitation
but it may slow down real programs.

2.11 Exploring Simulations

When you need to explore, demonstrate, or troubleshoot a simulation, a good
Graphical User Interface (GUI) can make this task significantly easier. Qtenv, the
GUI-based simulation runtime of OMNeT++ is such a tool, and its capabilities go
well beyond displaying animations.

When you run an INET simulation in Qtenv, it will display the network in a
graphical form in the main area of the window. Each network node, represented
by a submodule, will be shown as an icon. You can enter the node by double-
clicking its icon. Doing so will reveal the submodules that represent applications,
communication protocols, network interfaces, and other elements inside the node.
Several submodules display basic statistics in text labels above the icons, to provide
a quick overview of the network’s past and current operation.

The routes of a network node can be inspected by opening a network layer (e.g.,
the ipv4 submodule). Routes are contained by ipv4’s routingTable submod-
ule (type Ipv4RoutingTable), and can be inspected in the Properties view by
selecting the submodule and opening the fields routes or multicastRoutes.
Network interface information such as IP or MAC address can be accessed
by selecting a particular interface in the network node. It is also possible to
peek into the detailed configuration of all network interfaces by selecting the
interfaceTable submodule (of type InterfaceTable) and inspecting its
contents in Properties.

2 INET Framework 91

Fig. 2.6 Packet log view of an IEEE 802.11 ad hoc ping exchange

The Find Objects functionality of Qtenv also makes accessing multiple objects
easy, without the need to manually shift through the hierarchy of submodules. For
example, using the *.routingTable object full path filter will find and list all
routing tables within the network.

Qtenv also contains a Packet Log view, which, when inspecting the network
module, displays the recently exchanged packets between network nodes. INET
extends the default OMNeT++ Packet Log view with communication network
simulation-specific columns. For example, INET automatically extracts source
address, destination address, protocol, packet type, packet length, and additional
protocol-specific information (see Fig. 2.6) from the captured packets.

When a packet is selected, the Properties view displays the contents of the
packet. On the network level, a packet is always encapsulated into a physical signal.
Inside network nodes, the physical signal is not used. The actual protocol data can be
inspected further deep down in the protocol-specific data structures, in the individual
chunks. Additionally, packets and chunks can be always inspected as raw hex bytes
and raw bits.

The end result is that the INET Packet Log view allows the user to browse
the recently exchanged packets similarly to the well-known protocol analyzer,
Wireshark.

2.12 Visualization

When the simulation is running under Qtenv, INET is able to visualize a wide
range of events and conditions in the network, for instance packet drops, data link
connectivity, wireless signal path loss, transport connections, routing table routes,
and many more. Visualization is implemented as a collection of configurable INET
modules that can be added to simulations at will.

Since the Qtenv environment supports both 2D (via the Canvas API)
and 3D (via OSG/osgEarth) graphics, there are two variants of each visu-
alizer. For instance, there are separate MediumCanvasVisualizer and
MediumOsgVisualizer modules, but there is also a MediumVisualizer
which contains both.

The visualization features of the all visualizer modules can be used by adding
an IntegratedVisualizer module to the network. This module contains all
single-task visualizers, making all visualization features available in a simulation.

The customization of the visualization is possible via the visualizer modules’
parameters. Most visualizers have a boolean “master switch” parameter which

92 L. Mészáros et al.

enables the visualization in the first place. Other parameters define the scope,
appearance, and other aspects of the visualization.

Communication and Activity Visualizers Several visualizers focus on the com-
munication activity aspect of INET simulations. PacketDropVisualizer, for
instance, indicates dropped packets with an animation; MediumVisualizer
displays radio signals as well as communication and interference ranges of radios,
RadioVisualizer indicates radio modes, transmitting and receiving states,
and antenna directional characteristics; recent successful communication activity
is displayed with the PhysicalLinkVisualizer, DataLinkVisualizer,
NetworkPathVisualizer, and TransportRouteVisualizer for the
respective OSI layer in the form of arrows. The arrows may pass through several
network nodes for higher OSI layers.

State Visualizers A large group of visualizers display various communication-
related states present in the simulation. For example, RoutingTableVisualiz
er indicates IP routes with arrows; MobilityVisualizer indicates mobility
states, such as speed, movement trails, and orientation; InterfaceTableVisua
lizer displays information about network interfaces, such as interface name, IP
and MAC address; StatisticVisualizer displays the last collected value
of a chosen statistic; SubmoduleInfoVisualizer displays the internal state
of a module or a submodule; TransportConnectionVisualizer indicates
the endpoints of established transport connections; QueueVisualizer indi-
cates queue length/queue utilization; EnergyStorageVisualizer displays
the charge level of energy storages; Ieee80211Visualizer indicates members
of an IEEE 802.11 network; NetworkNodeVisualizer displays a network
node.

Infrastructure Visualizers Another class of visualizers display various auxil-
iary information. PhysicalEnvironmentVisualizer, for example, displays
objects of the physical environment module; SceneOsgEarthVisualizer
displays a map using OsgEarth; SceneVisualizer displays the simulation
scene and the coordinate axes; and TracingObstacleLossVisualizer
shows signal power loss in obstacles.

Visualization Examples For illustration, let us have a look at the effect of some
visualizers. Fig. 2.7, for instance, is a screenshot from a wireless simulation where
MediumVisualizer has been enabled. The circles in the screenshot indicate
communication ranges of the wireless nodes. When the screenshot was taken,
a radio signal was being transmitted by host1 with a transmission power of
−30 dBW. The signal wavefront had already passed accessPoint1, and the
signal strength at that node was −111 dBW. The signal had not arrived at router
yet.

The second example illustrates activity visualizers that indicate recent successful
packet transmissions via arrows. Separate visualizers are used for the different OSI
layers; for example, data link activity is shown by the DataLinkVisualizer.

2 INET Framework 93

Fig. 2.7 Visualization of wireless communication and the underlying wireless medium

Fig. 2.8 Visualization of communication links between different protocol layers

The screenshot in Fig. 2.8 was taken from a wireless simulation where multiple
activity visualizers were enabled. In Fig. 2.8, physical link transmissions are
indicated by dotted arrows, data link layer transmissions by green ones, and network
layer transmission between hostA and hostB with a polyline.

The third example demonstrates the 3D visualization of INET using OSG and
osgEarth. The map in Fig. 2.9 shows a small part of downtown Boston using

94 L. Mészáros et al.

Fig. 2.9 Visualization of a wireless network using osgEarth and OpenStreetMap

OpenStreetMap as data provider. The image shows a WiFi access point in a road
junction and a car moving away from the access point. The figure also indicates the
WiFi signal strengths above the network nodes as usual. The circles and the dome
on the ground indicate an ongoing wireless transmission from the access point at
the moment when the signal wavefront reaches the car.

2.13 Developing New Protocol Models and Other
Components

Earlier sections have shown how to use the components shipped with INET to
assemble and configure simulations of various types of networks. This was possible
to do with only editing NED and INI files (and sometimes, additional configuration
files of XML or other formats). In this section, however, we introduce the reader to
some of the “secrets” of writing new INET components using C++.

For the most part, writing an INET component (protocol model, application
model, or some support component) is not fundamentally different from writing any
other OMNeT++ simple module. The difference mainly lies in the fact that INET
is already a complex system, and in order to write code that extends it or properly
interoperates with it, one needs to know about its internal APIs, mechanisms, and
conventions. For example, new protocols have to be added to the list of known
protocols, and they also have to be registered during initialization in order to allow
the message dispatching mechanism to work.

2 INET Framework 95

It is impossible to cover all INET development topics within the limits of this
chapter, so this section conveys only the most important concepts, and illustrate
them with short code examples.

2.13.1 Initialization

All INET modules need to be initialized before the simulation starts. Module ini-
tialization comprises tasks like reading module parameters, initializing the internal
state, scheduling timers, subscribing to signals, and processing XML configurations.

The initialization of a module often relies on information produced by the
initialization of another module. For example, adding static routes to the routing
table requires IP addresses to be assigned throughout the network. Therefore,
INET initialization heavily relies on the OMNeT++multistage initialization feature.
INET uses one or more stages for each OSI layer, and several additional stages
for mobility, power consumption, physical environment, and so on. Initialization
generally occurs by OSI layers bottom up. Stages are identified in the code
with constants like INITSTAGE_LOCAL, INITSTAGE_PHYSICAL_LAYER, and
INITSTAGE_LINK_LAYER.

2.13.2 Life Cycle and Failure Modeling

Similar to the initialization process, INET provides a whole life cycle management
of modules. Modules can support start up (representing the process of booting/start-
ing a network node), shut down (the process of a regular/orderly shutdown), crash (a
nongraceful shutdown event), and possible restart events to evaluate the effects on
the network protocol or the application under examination. Life cycle operations are
also executed in multiple stages to solve possible dependencies between modules,
just like in the initialization process. The LifecycleController class provides
an API to control the necessary operations.

The exact behavior of a crash or a shutdown event needs to be explicitly modeled
and programmed into the affected network component. Effects like the loss of
nonpersistent data, the tear-down of connections, the reset of protocol states, and
the clearing of routing tables need to be considered. INET components are prepared
for such life cycle events (e.g., the Tcp module closes all open sockets/connections,
Ipv4 clears its routing table, application modules reset their state, switches clear
their MAC address tables). Components generally ignore and discard messages that
are sent to them while they are down.

Life cycle events are usually triggered from scripts (cf. Sect. 2.8), but can also
be done via C++ code. For example, energy management components can be
configured to trigger shutdown or crash events when a device runs out of battery
power.

96 L. Mészáros et al.

2.13.3 Working with Packets

In INET, all packets are represented by the Packet class data structure. Packet
is largely just a generic container, real data is stored in chunks inside the packet.
Chunks may represent protocol headers (or parts of them), protocol trailers, and
payload.

There are several kinds of chunks. The most common ones represent specific
protocol headers. For example, the Ipv4Header chunk represents the IPv4 header.
Such chunks subclass from FieldsChunk (which itself subclasses from Chunk),
and have a data member for each protocol header field; for example, Ipv4Header
contains fields like srcAddress, destAddress, and timeToLive.

INET also contains several generic (protocol-agnostic) chunks. BytesChunk
stores raw bytes. There is also a BitsChunk for storing data that are not multiple
of 8 bits. ByteCountChunk and BitCountChunk can be used when the actual
values are not important.

Several chunks can be combined to form a larger chunk by adding them into a
SequenceChunk. Another chunk type, SliceChunk, is particularly useful for
implementing fragmentation. SliceChunk represents a slice of another chunk by
wrapping it and additionally storing an offset and length.

Typically, packet contents is either a SequenceChunk of protocol-specific
chunks, or in the case of emulation, a BytesChunk.

All protocol-specific chunks support serialization and deserialization to and from
raw data, allowing packet contents to be automatically converted from one format
to the other. For example, when a packet is peeked for raw data but the packet
is represented with protocol-specific headers, serialization is called automatically.
Similarly when a packet is peeked for a protocol-specific header but the packet is
represented with a BytesChunk, deserialization is called automatically. Serializa-
tion and deserialization of protocol-specific headers are provided as separate C++
classes, which must be registered.

Integrated serialization has several important benefits. First, it allows simulated
protocol models to talk to other implementations or real protocols transparently
without relying on a specific representation. Second, it also allows injecting bit
errors into arbitrary packets, potentially leading to misinterpretation at the receiver
side.

When deserializing a FieldsChunk, it may be marked as incomplete if there
is not enough binary data available for a complete representation. The resulting
FieldsChunk may also be improperly represented if the binary data cannot be
mapped to the fields of the chunk. For example, when one of the fields would contain
an invalid value. Finally, a chunk may also be marked to be incorrect, without
actually changing it, for example, when a packet gets corrupted in the physical layer.
These states are represented with flags in the FieldsChunk class.

When a chunk is added to a packet, it automatically becomes immutable
(frozen), and cannot be changed anymore. The advantage of freezing chunks is
that immutable chunks can be shared among multiple packets using C++ shared

2 INET Framework 97

Fig. 2.10 Popping chunks
from a packet

Headers Data Trailers

backOffsetfrontOffset

pointers, which saves both memory and CPU time compared to duplication. Chunks
can also be added to and shared between in-order send and receive queues using
ChunkQueue, and out-of-order receive buffers using ReassemblyBuffer or
ReorderBuffer.

In order to facilitate processing packets at the receiver side, packets maintain two
offset values that split its contents into three parts, as indicated by Fig. 2.10. The
front and back parts denote the “already processed” parts, and the middle one is the
“unprocessed” part (see Fig. 2.10).

During processing in the receiver node, the packet is passed through the protocol
layers, and meanwhile, headers and trailers are popped off from its beginning and its
end. The pop operation adjusts the corresponding (front or back) offset, effectively
reducing the remaining unprocessed part, but leaving intact the actual data stored in
the packet. This approach makes processing more efficient (compared to mutating
the packet) and allows inspecting the whole packet in higher layers, too.

It is entirely possible (on purpose) that a protocol misunderstands a packet. This
can happen when popping a different protocol-specific header than the one that is
meant to be in the binary representation (BytesChunk) of a packet. This normally
happens in the case of corrupt packets which are actually modified, or when
emulation is used. By default, INET protects users from programming errors which
would cause converting one protocol-specific header to another using serialization
and immediate subsequent deserialization.

Communication protocols sometimes use a Cyclic Redundancy Check (CRC)
or Frame Check Sequence (FCS) field to carry some form of a checksum of some
packet part. In INET, such checksums are often not modeled explicitly to save CPU
cycles, and instead, just a flag is stored indicating the checksum’s state (declared
correct or declared incorrect). Alternatively, the checksums can also be totally
disabled, or can be properly computed if explicit checksums are more important
than performance. All protocol models that contain a CRC or FCS field allow the
checksum computing mode to be set via parameters.

An essential part of communication network simulation is the understanding of
protocol behavior in the presence of errors. INET provides several alternatives for
representing corrupt packets. The alternatives range from simple but computation-
ally cheap, to accurate but computationally expensive solutions. For example, the
whole packet can be marked erroneous (inaccurate but fast), or individual chunks
can be marked erroneous (more accurate and a good compromise), or bytes or bits
in raw chunks can be altered (accurate but slow). Communication protocols detect
errors by checking the error bits on packets and chunks, and by verifying checksums.

Several user interface and other features require understanding what data is
inside a Packet. This task is not as simple as it seems. Simply examining the

98 L. Mészáros et al.

chunks present in the packet may be insufficient, because parts or the whole packet
may be represented, for instance, with BytesChunk. INET contains numerous
protocol-specific packet dissectors which can deeply analyze the packet contents
approximately according to the logic of the involved protocols.

It is also often required to filter packets based on their contents. With the help
of the aforementioned packet dissectors, INET implements arbitrary packet filters.
Such packet filters can be specified, for example, to visualizers or PCAP recorders
to limit the scope of packets to be visualized or recorded.

2.13.4 Tagging Packets and Cross-Layer Communication

When protocols communicate with each other inside a network node, they often
need to pass meta-information along with packets. For example, when a transport
layer protocol, for instance TCP, wants to send a packet over IP, it needs to supply
the IP layer with the requested destination address in addition to the packet itself.
Sometimes metadata needs to travel several layers, for example, when a sensor
node application wants send a packet with a specific transmission power instead
of the default one. The latter case, when nonadjacent protocols exchange metadata,
is commonly called cross-layer communication.

Such metadata in INET is represented with tags. Tags are plain C++ data classes
usually generated by the OMNeT++ message compiler. A packet can carry an
arbitrary number of tags of various types. Tags can be attached either to the packet
as a whole (packet tags) or to a specific region of the packet’s contents (region tags).

Packet Tags The primary purpose of packet tags is communication between
protocol layers within a network node. Packet tags can pass through protocol
layers, and they can travel multiple layers from the originator protocol in both the
downward and upward direction (see Fig. 2.11). Most packet tags fall into one of
the following two categories:

• Requests carry information from a higher layer towards lower layers.
• Indications carry information from a lower layer towards higher layers.

Fig. 2.11 Using packet tags for cross-layer communication

2 INET Framework 99

The most notable exception (i.e., a tag which is neither a request nor an
indication) is PacketProtocolTag, which indicates the uttermost protocol
of the packet. This is necessary because the protocol cannot be unambiguously
identified just by looking at the raw data.

Request Tags Request tags can be seen as parameters accompanying the packet.
For example, a protocol above a LAN interface can attach a MacAddressReq to
the packet to request a specific destination and/or source MAC address to be used
in the layer-2 frame the packet will be encapsulated in.

Because tags can travel multiple layers, an application can control which
interface a specific UDP packet is transmitted on by attaching an InterfaceReq
tag to the packet. The forwarding protocol, e.g., IPv4, will take the request into
account if possible. Similarly, an application in a wireless ad hoc network can
request a specific transmission power to be used for a packet, by attaching a
SignalPowerReq to it.

Most request tags are considered as hints. That is, the corresponding protocol
implementation may chose to ignore the request, e.g., if it is configured that way.

In theory, request tags could be removed from the packet as soon as they have
been processed (taken into account or willfully ignored). However, the solution
chosen in INET is to remove them in the last (lowest) protocol module, that is,
just before sending out the packet to the network.

The following code fragment shows how a packet is tagged by the Ipv4 protocol
module before sending it to the network interface.

Listing 2.21 Packet tagging example

1 void Ipv4::sendDown(Packet *packet, Ipv4Address nextHopAddr, int interfaceId)
2 {
3 auto macAddressReq = packet->addTag<MacAddressReq>(); // add new tag for MAC
4 macAddressReq->setSrcAddress(selfMacAddress); // source is our MAC address
5 auto nextHopMacAddress = resolveMacAddress(nextHopAddr); // simplified ARP
6 macAddressReq->setDestAddress(nextHopMacAddress); // destination is next hop
7 auto interfaceReq = packet->addTag<InterfaceReq>(); // add tag for dispatch
8 interfaceReq->setInterfaceId(interfaceId); // set designated interface
9 auto packetProtocolTag = packet->addTagIfAbsent<PacketProtocolTag>();

10 packetProtocolTag->setProtocol(&Protocol::ipv4); // set protocol of packet
11 send(packet, "out"); // send to MAC protocol module of designated interface
12 }

Indication Tags Indication tags carry information obtained in lower layers dur-
ing the processing of an incoming packet towards higher layers. For example,
InterfaceInd is attached to a packet to indicate which interface the packet was
received on. Another tag, SignalPowerInd, is attached to a packet in wireless
networks by the radio’s receiver module to indicate the received signal strength.
Such information can be used for arbitrary purposes by any higher layer protocol,
e.g., by a routing protocol.

Normally, indication tags are deleted together with the packet when the packet
has been processed and is discarded in a higher layer such as an application, a
routing protocol, or a stream-based transport protocol like TCP. In other cases, when

100 L. Mészáros et al.

the packet is sent down again to lower layers, possibly after modification, it is the
responsibility of that protocol to remove the indication tags from the packet. For
example, Ipv4 is obliged to remove the indication tags when the packet is being
forwarded and sent down to an outgoing interface.

Region Tags As opposed to packet tags, region tags do travel across network
links, as they have been designed to solve a completely different set of problems.
A representative problem is how to measure in the application layer the End-to-
End (E2E) delay of data sent over a TCP connection. The issue is that in a TCP
stream, the data can be arbitrarily split, reordered, and merged in the underlying
network. However, when the sender attaches the current time in a region tag to
a byte offset (or byte region) of the data it sends, the region tag will survive the
transmission over TCP, and can be read by the receiver application.

The packet data representation maintains the attached region tags as if they were
individually attached to bits, and ensures that the tags move together with the data.

2.13.5 Using Sockets

INET sockets are C++ classes which wrap the standard OMNeT++ message
passing interface of the corresponding communication protocol into a more natural
C++ interface. INET provides several socket classes for the most commonly
used protocols, for example UdpSocket, TcpSocket, Ipv4Socket, and
EthernetSocket.

Sockets are most often used by applications and routing protocols to access the
underlying protocol services. Applications simply call the socket class member
functions (e.g., bind(), connect(), send(), and close()) to create and
configure sockets, and to send packets. They can also implement the socket-specific
callback interface to receive packets. Applications often use several sockets of the
same kind or of different kinds simultaneously.

Using TCP Sockets As an example, the following gives a quick glance at how TCP
sockets are used in INET.

Since TCP is a connection oriented protocol, a connection must be established
before applications can start exchanging data. For example, a server application can
start listening at a local address and port for incoming TCP connections as follows:

Listing 2.22 Listening for incoming TCP connections

1 socket.bind(Ipv4Address("192.168.1.1"), 12000); // local address/port
2 socket.listen(); // start listening for incoming connections

2 INET Framework 101

A client application can initiate a new connection by calling connect() with
a remote address and a port:

Listing 2.23 Initiating a new TCP connection

1 socket.connect(Ipv4Address("192.168.1.1"), 12000); // remote address/port

The Tcp module automatically notifies the server application about an incoming
connection using the TcpSocket:ICallback interface, which is implemented
by the application. The TCP connection is established if the server application
accepts the incoming connection. After the connection is established, both appli-
cations can send data to the remote peer via a simple method call:

Listing 2.24 Sending data through a TCP socket

1 socket.send(packet);

Packet data is enqueued by the local Tcp module, and it gets transmitted over
time according to the TCP protocol logic. The remote Tcp module notifies the
application about the received data using the corresponding method of the callback
interface.

When the TCP connection is no longer needed, either application can close it via
a method call, and the other application is notified via the socket callback interface.

Other sockets have similar C++ interfaces and they also have their own specific
callback interfaces.

2.14 Experimenting with New Protocols and Algorithms

INET allows for experimentation by providing several options for extensions
and customizations at different abstraction levels: networks, nodes, interfaces,
protocols, and applications. The following three subsections demonstrate how such
experiments can be carried out with INET.

2.14.1 TCP Congestion Algorithm Experiments

INET’s Tcp module, as mentioned in Sect. 2.3, supports several TCP congestion
control algorithms, and users can also extend it with new ones. The TCP flavor can
be selected via the tcpAlgorithmClass parameter of the Tcpmodule, like this:

1 **.tcp.tcpAlgorithmClass = "TcpWestwood"

The string "TcpWestwood" is actually the name of the C++ class that
implements the TCP Westwood algorithm. Thus, adding support for a new con-
gestion control algorithm is technically very simple: a C++ class that encapsu-
lates the desired behavior needs to be written and registered with OMNeT++’s

102 L. Mészáros et al.

Register_Class() macro. After that, the class can be used by setting the
tcpAlgorithmClass parameter to contain the name of the class. Listing 2.25
shows the implementation skeleton of the new class.

Listing 2.25 C++ skeleton for a custom TCP congestion control algorithm

1 // header file:
2 class INET_API TcpCustom : public TcpBaseAlg
3 {
4 public:
5 TcpCustom();
6 virtual void receivedDataAck(uint32 firstSeqAcked) override;
7 virtual void receivedDuplicateAck() override;
8 virtual void dataSent(uint32 fromseq) override;
9 virtual void segmentRetransmitted(uint32 fromseq, uint32 toseq) override;

10 };
11
12 // this should go into the implementation (.cc) file:
13 Register_Class(TcpCustom);

At runtime, the Tcp module creates a TcpConnection C++ object for each
connection. Each TcpConnection creates for itself an instance of the configured
TCP algorithm class. The class must be derived from TcpAlgorithm, a class with
a number of pure virtual methods that define how TcpConnection will interact
with it. TcpBaseAlg, which is used as base class in the above listing, is derived
from TcpAlgorithm, and provides a convenient default implementation for many
of TcpAlgorithm’s methods.

Methods of TcpAlgorithm are called back from TcpConnection on
events that might be interesting for the congestion control algorithm to learn
about. Such events are: connection established; connection closed; timer expired;
send command invoked; out-of-order-segment received; receive sequence changed;
data acknowledged; duplicate ACK received (this often indicates data loss); ACK
received for data not yet sent (this should not happen); ACK sent; data sent;
segment retransmitted; retransmit timer restarted; etc. If the reader is interested in
implementing a new congestion control algorithm, the reading of the documentation
of the TcpAlgorithm class and studying the existing implementations can
provide further guidance.

2.14.2 Mobile Ad Hoc Network Routing

This subsection illustrates how one can implement a new reactive Mobile Ad Hoc
NETwork (MANET) routing protocol for INET. The new protocol is implemented
as an OMNeT++ simple module. The NED module definition must implement
the IManetRouting module interface to allow it to be used in ManetRouter
network nodes. Listing 2.26 presents the NED definition.

2 INET Framework 103

Listing 2.26 NED definition of the new routing protocol

1 simple NewProtocol like IManetRouting
2 {
3 parameters:
4 string ipv4Module = default(absPath("^.ipv4.ip"));
5 }

The new routing protocol is a reactive one, which means that it is going
to start a route discovery when a route is needed for a packet. Therefore, the
C++ module class is going to implement the INetfilter::IHook interface
(or rather a subclass from NetfilterBase::HookBase which is a default
implementation). Netfilter is a widely used programming API provided by the
Linux kernel. It allows various networking-related operations to be implemented
in the form of customized event handlers. For example, Netfilter interface allows
implementing on-demand routing protocols, packet filtering, network address and
port translation, and many other interesting functions. INET itself offers a very
similar programming API for its network layer protocols (e.g., IPv4 and IPv6):
the INetfilter interface. Modules can register hooks into a network protocol
module by implementing the INetfilter::IHook interface. When multiple
hooks are registered, their priority determines their call sequence. The following
hook types are enabled by the Netfilter interface:

• PREROUTING hooks are called before routing a lower layer datagram.
• POSTROUTING hooks are called before sending a datagram to the lower layer.
• FORWARD hooks are called after routing a datagram.
• LOCALIN hooks are called before sending a datagram to the upper layer.
• LOCALOUT hooks are called before routing an upper layer datagram.

Hooks can examine and/or modify the packet data as well as the attached packet
tags as they see fit. For instance, they may change specific fields in the protocol
headers such as IPv4 addresses and/or TCP ports, or attach request tags such as
InterfaceReq or NextHopAddressReq to influence the routing decision.
Moreover, hooks return a result which affects the processing of the datagram with
respect to the remaining hooks. The possible hook return results are as follows:

• ACCEPT allows the datagram to pass to the next hook.
• DROP does not allow the datagram to pass to the next hook, it is instead deleted.
• QUEUE queues the datagram for later re-injection (e.g., when the route discovery

is complete).
• STOLEN does not allow a datagram to pass to next hook, but does not delete it.

104 L. Mészáros et al.

The code snippet in Listing 2.27 shows which Netfilter hooks must be overridden.

Listing 2.27 Routing Netfilter hook interface

1 class NewRouting : public cSimpleModule, public NetfilterBase::HookBase
2 {
3 Result datagramPreRoutingHook(Packet *datagram) override
4 { return ensureRouteForDatagram(datagram); }
5 Result datagramPostRoutingHook(Packet *datagram) override { return ACCEPT; }
6 Result datagramForwardHook(Packet *datagram) override { return ACCEPT; }
7 Result datagramLocalInHook(Packet *datagram) override { return ACCEPT; }
8 Result datagramLocalOutHook(Packet *datagram) override
9 { return ensureRouteForDatagram(datagram); }

10 }

The Netfilter hook must be registered at the Ipv4 module, which can be found
by using a module path parameter, as follows.

Listing 2.28 Netfilter hook registration

1 auto np = getModuleFromPar<INetfilter>(par("ipv4Module"), this);
2 np->registerHook(0, this); // register with 0 priority

The reactive routing protocol works as follows. If there is an existing route for
the destination, then the datagram is accepted and the normal IP processing resumes.
Otherwise, the datagram is inserted into a queue, and if there is no ongoing route
discovery for the given destination address, then the protocol starts a new one. When
the route discovery completes, all queued datagrams are re-injected for forwarding.
The implementation of this process is shown in Listing 2.29.

Listing 2.29 Implementation of the custom routing protocol

1 INetfilter::IHook::Result NewRouting::ensureRouteForDatagram(Packet *datagram)
2 {
3 auto ipv4Header = datagram->popAtFront<Ipv4Header>();
4 Ipv4Address destination = ipv4Header->getDestAddress();
5 Ipv4Route *route = routingTable->findBestMatchingRoute(destination);
6 if (route != nullptr) // if a route already exists for destination
7 return ACCEPT;
8 else {
9 delayDatagram(datagram); // store datagram for later re-injection

10 if (!hasOngoingRouteDiscovery(destination)) // check for discovery
11 startRouteDiscovery(destination); // start a new one
12 return QUEUE;
13 }
14 }
15
16 void NewRouting::completeRouteDiscovery(Ipv4Address& destination)
17 {
18 auto lt = delayedPackets.lower_bound(destination);
19 auto ut = delayedPackets.upper_bound(destination);
20 for (auto it = lt; it != ut; it++) // for all delayed datagrams
21 networkProtocol->reinjectQueuedDatagram(it->second);
22 }

Typically, a routing protocol would communicate with its peers using UDP as
part of the route discovery process. As the UDP communication part is similar to an
application, this part is omitted from the example and the descriptions here.

2 INET Framework 105

2.14.3 IEEE 802.11 Rate Control

The IEEE 802.11 standard [3] includes a mechanism that is able to adapt the data
frame bit rate to various channel conditions and to dynamically choose the optimal
bit rate for the current conditions. For example, when too many packets are lost
(their ACKs do not arrive), the bit rate is lowered; when several packets are sent
without loss, the bit rate is increased. This mechanism is called the rate control.
INET implements several variants (e.g., ARF, AARF, and ONOE); in this section,
we illustrate how one can implement a new rate control algorithm.

The rate control mechanism is encapsulated into a submodule in the compound
module Ieee80211Mac. The submodule has parametric type, making it very
easy to implement and install a new rate control mechanism without changing
other aspects of the simulation. (There are several such replaceable modules in
Ieee80211Mac.)

The INI configuration file fragment in Listing 2.30 shows how the rate control
mechanism is replaced with the new one.

Listing 2.30 Rate control configuration example

1 [Config RateControlExperimentation]
2 *.host[0].wlan[*].mac.dcf.rateControl.typename = "NewRateControl"

The NewRateControl module type must be declared in NED (Listing 2.31)
and implemented in C++ (Listing 2.32) before it can be used. The C++ class must
implement the IRateControl C++ interface, because other modules will use it
via C++ method calls.

Listing 2.31 NED definition of NewRateControl module

1 simple NewRateControl like IRateControl {
2 //...
3 }

The C++ class is informed about important events by other parts of the MAC
by calling its frameTransmitted() and frameReceived() methods, and
the MAC obtains the bit rate suggested by the algorithm by calling its getRate()
method. The class may use additional information available from other modules by
subscribing to signals or accessing the required modules via C++ directly.

Listing 2.32 Implementation of the new NewRateControl class

1 class NewRateControl : public IRateControl {
2 IIeee80211Mode *getRate() { ... }
3 void frameTransmitted(Packet *f, int retryCount, bool isSuccessful,
4 bool isGivenUp) { ... }
5 void frameReceived(Packet *frame) { ... }
6 }

106 L. Mészáros et al.

2.15 Conclusion

The introduced INET Framework is a versatile library of simulation models for
all layers of the communication stack. Users base their simulative experiments
on the existing models, extend them, or derive their own simulation models and
integrate them into the INET cosmos. Being developed and maintained by a number
of OMNeT++ developers also ensures that INET model implementations often use
new OMNeT++ features. New OMNeT++ and INET users are therefore advised to
go through the code base of INET and use the extensive examples library and the
showcases and tutorials provided by the OMNeT++ developers and the community.

References

1. Beuran, R.: Introduction to Network Emulation. Pan Stanford Publishing, Singapore (2012)
2. Förster, A.: Code contribution: implementation of the B-MAC protocol for WSN in MiXiM. In:

Proceedings of the 4th International Workshop on OMNeT++ (2011). https://summit.omnetpp.
org/archive/2011/uploads/slides/OMNeT_WS2011_S5_C1_Foerster.pdf

3. IEEE Standards Association: IEEE Standard for Information Technology – Telecommunications
and Information Exchange Between Systems Local and Metropolitan Area Networks– Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. IEEE Std 802.11-2016 - Revision of IEEE Std 802.11-2012, Institute
of Electrical and Electronics Engineers, Piscataway (2016). https://doi.org/10.1109/IEEESTD.
2016.7786995

4. IEEE Standards Association: IEEE Standard for Information Technology–Portable Operating
System Interface (POSIX(R)) Base Specifications, Issue 7. Tech. rep. (2018). https://doi.org/10.
1109/IEEESTD.2018.8277153

5. Oller, J., Demirkol, I., Casademont, J., Paradells, J., Gamm, G.U., Reindl, L.: Has time come
to switch from duty-cycled MAC protocols to wake-up radio for wireless sensor networks?
IEEE/ACM Trans. Netw. 24(2), 674–687 (2016). https://doi.org/10.1109/TNET.2014.2387314

6. Rüngeler, I., Tüxen, M., Rathgeb, E.P.: Integration of sctp in the omnet++ simulation environ-
ment. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques
for Communications, Networks and Systems & Workshops, Simutools’08, pp. 78:1–78:8. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
ICST, Brussels (2008). http://dl.acm.org/citation.cfm?id=1416222.1416310

7. van Hoesel, L., Havinga, P.: A lightweight medium access protocol (LMAC) for wireless sensor
networks: reducing preamble transmissions and transceiver state switches. In: Proceedings of
the 1st International Workshop on Networked Sensing Systems (INSS), pp. 205–208. Society of
Instrument and Control Engineers (SICE), Tokyo (2004)

https://summit.omnetpp.org/archive/2011/uploads/slides/OMNeT_WS2011_S5_C1_Foerster.pdf
https://summit.omnetpp.org/archive/2011/uploads/slides/OMNeT_WS2011_S5_C1_Foerster.pdf
https://doi.org/10.1109/IEEESTD.2016.7786995
https://doi.org/10.1109/IEEESTD.2016.7786995
https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.1109/TNET.2014.2387314
http://dl.acm.org/citation.cfm?id=1416222.1416310

Chapter 3
INETMANET Framework

Alfonso Ariza and Vincenzo Inzillo

3.1 Introduction

Mobile Ad Hoc NETworks (MANETs) is an area of networking research that has
been the focus of a special attention in the latest years. With the emergence of
the Internet of Things (IoT) concept, the protocols that had been developed for
MANETs have returned to be an object of interest. A characteristic of this type of
networks is the auto-configuration capability. The nodes in a MANET can discover
the topology of the network, adapting autonomously to possible topology changes,
and creating a mesh network with the ability to send data using intermediate nodes
(e.g., routers), thus being able to reach nodes that are outside their coverage area.

Several simulation tools have offered solutions to support the modeling and
simulation of MANETs. However, all have several aspects in common, namely
support for MANET routing protocols, the inclusion of wireless technologies that
could work in ad-hoc mode and in the Industrial, Scientific and Medical (ISM)
bands, wireless propagation models, and mobility models that allow to simulate the
movement of the nodes. Some of these simulators also include energy models, which
allow simulating the battery consumption of the nodes, as well as obstacles models,
which allow studying the performance of a network in the presence of obstacles that
attenuate the radio signal strength.

A. Ariza (�)
E.T.S.I. Telecomunicación, Universidad de Málaga, Málaga, Spain
e-mail: aarizaq@uma.es

V. Inzillo
DIMES, University of Calabria, Arcavacata, Italy
e-mail: v.inzillo@dimes.unical.it

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_3

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_3&domain=pdf
mailto:aarizaq@uma.es
mailto:v.inzillo@dimes.unical.it
https://doi.org/10.1007/978-3-030-12842-5_3

108 A. Ariza and V. Inzillo

The first version of the INET Framework had serious limitations in the simulation
of MANET networks. It included only a basic support of some of these modules,
offering some mobility models and the support of the standard IEEE 802.11b-1999.

Keeping this in mind, INETMANET emerged initially as a fork of the INET
Framework focused on the simulation of wireless MANETs with the inclusion of
several MANET routing protocols. It offered a modified INET Framework including
an adaptation of the protocol Ad Hoc On-Demand Distance Vector (AODV) [13]
while overcoming some of the INET Framework limitations. A significant limitation
of the first INET versions (before the release of the current INET Framework version
4.0, see Chap. 2) regarding the simulation of realistic MANET networks was the link
layer protocol support and the lack of routing protocols.

INETMANET overcame this limitation by introducing advanced IEEE 802
protocols; in this case, it included 802.11a/g/e and 802.15.4 (now both included in
INET as well), to enable the simulation of realistic scenarios and complex networks.

Later, INETMANET included the propagation models developed for MIXIM,1

allowing a comparison with the simulation results obtained with Network Simulator
2 (ns-2) (even if the interference model of ns-2 is very basic).

Another limitation that the INET Framework had in its initial versions (up
until version 3.0 where energy consumer and producer models were integrated)
was the lack of an energy model. With the objective of solving this problem,
INETMANET adapted the code of MiXiM, thus facilitating the simulation of the
energy consumption in wireless networks.

With the objective of using some of the tools developed for ns-2, the module
Ns2MotionFile was included in INETMANET, thus allowing the usage of
several tools that can generate mobility patterns for ns-2.

Another aspect to be solved was the necessity of a source of traffic with the
capacity of generating complex patterns. To solve this, INETMANET includes the
model UDPBasicBurst that allows generating different patterns of traffic with
the objective to test the performance of MANETs.

Several simulation models and support code that was originally developed
for INETMANET have been included in INET Framework over time. However,
INETMANET continues to have differences with INET, focusing on the following
aspects:

• routing protocols,
• mobility models,
• applications model,
• routing and forwarding in the link layer,
• antenna models,
• and miscellaneous tools.

1The MiXiM project has been discontinued, and its contents have been merged into the INET
Framework. New projects should be based on a recent version of INET instead of MiXiM.

3 INETMANET Framework 109

Despite these differences, INETMANET is fully compatible with INET. Any
code and model developed for INET works without modification in INETMANET.

3.2 Routing Protocols

The initial fork of INETMANET had the objective to include several MANET
routing protocols, which at that moment were not included in INET. Later, the INET
Framework incorporated several routing protocols, but INETMANET continues
to support link-layer routing and protocol implementations that are not present
in INET. The INETMANET specific routing protocol implementations that were
ported from external projects are depicted in Fig. 3.1 and listed as follows:

• AODV-UU2—Ad Hoc On-Demand Distance Vector [13],
• DYMO-UM3—DYnamic MANET On-demand [14],
• DYMO-FAU4—DYnamic MANET On-demand [14],
• OLSR-UM5—Optimized Link State Routing [7],
• DSR-UU6—Dynamic Source Routing [10],
• BATMAN7— Better Approach To Mobile Adhoc Networking [12],
• SAORS8—Socially-Aware Opportunistic Routing System,
• PASER9—Position-Aware Secure and Efficient Mesh Routing Protocol [16, 17],
• DSDV—Destination-Sequenced Distance Vector [15].

Most of these routing protocols are defined in their respective Request for
Comments (RFC) as programs that run in the user space and use the User Datagram
Protocol (UDP) transport protocol [10, 13–15]. However, INETMANET has a
peculiar implementation as the MANET routing protocols are directly connected
to the Internet Protocol (IP) network layer module. Nevertheless, the MANET
protocols encapsulate packets into UDP datagrams to ensure realistic overhead
simulation. The main difference is that the identifier of the protocol type in the
IP header is set to 254.

2https://sourceforge.net/projects/aodvuu/.
3https://sourceforge.net/projects/dymoum/.
4http://www.ccs-labs.org/~sommer/projects/dymofau/.
5https://sourceforge.net/projects/um-olsr/.
6https://sourceforge.net/projects/dsruu/.
7https://downloads.open-mesh.org/batman/releases/batman-0.3.2/batman-0.3.2.tar.gz.
8https://sourceforge.net/projects/saors/.
9http://www.paser.info/index.php/downloads.html.

https://sourceforge.net/projects/aodvuu/
https://sourceforge.net/projects/dymoum/
http://www.ccs-labs.org/~sommer/projects/dymofau/
https://sourceforge.net/projects/um-olsr/
https://sourceforge.net/projects/dsruu/
https://downloads.open-mesh.org/batman/releases/batman-0.3.2/batman-0.3.2.tar.gz
https://sourceforge.net/projects/saors/
http://www.paser.info/index.php/downloads.html

110 A. Ariza and V. Inzillo

Fig. 3.1 Inheritance of the MANET routing protocols implemented in INETMANET

Fig. 3.2 MANET routing node with the MANET routing protocol connected directly to the
networkLayer module

The MANET routing protocol is directly connected to the network layer module
(cf. Fig. 3.2). To activate the routing protocol it is enough to set the option
**.routingProtocol in the configuration file. For example, to select the
Dynamic Source Routing (DSR) protocol [10] one only has to include the option
shown in Listing 3.1 in the configuration file (by default omnetpp.ini).

3 INETMANET Framework 111

Listing 3.1 Exemplary selection of the DSR protocol

1 **.routingProtocol = "DSR"

Table 3.1 List of MANET
routing protocols and the
option that has been selected
in the configuration file to
enable the corresponding
routing protocol

Option Routing protocol

DSR DSR-UU

AODVUU AODV-UU

DSDV_2 DSDV

OLSR OLSR

OLSR_ETX OLSR with ETX implementation

DYMOUM DYMO-UM

DYMO DYMO-FAU

BATMAN BATMAN

SaorsManager SAORS

PASER PASER

The list of available protocols for this option is presented in Table 3.1.
Besides the configuration parameters specific to each protocol, some common

configuration parameters are available (cf. Listing 3.2), the most important one
being the interfaces parameter, which controls the interfaces that the routing
protocol will use to disseminate the routing packets.

Listing 3.2 Common configuration options of the routing protocols

1 string excludedInterfaces = default(" "); // list of interfaces excluded by the
MANET routing protocol

2 string interfaces = default("prefix(wlan)"); // list of routing interfaces were
the routing protocol is active, the prefix(namei) indicate all the

interfaces with "namei" in his names
3 bool useManetLabelRouting = default(true); // the routing en-tries are marked

IPv4Route::MANET, this label force an exact search with independent of
the mask

4 bool useICMP = default(true); // By default the module use the ICMP but it’s
necessary to activate with the method set-SendToICMP(true)

5 bool setICMPSourceAddress = default(false); // Set the datagram source address
if the address is undefined to the address of node. This parameter allow
that the ICMP messages could arrive to the source applications

6 bool manetPurgeRoutingTables = default(true); // The code deleted the entries
in the IP routing table at the simulation be-ginning.

7 bool autoassignAddress = default(false); // assign IP addresses automatically
to the interfaces

8 string autoassignAddressBase = default("10.0.0.0");

112 A. Ariza and V. Inzillo

3.2.1 ManetRoutingBase Class

As depicted in Fig. 3.1, most of the routing protocols are derived from the
ManetRoutingBase class. This class offers an abstraction interface to other
modules in the INET Framework (e.g., access to the information of the routing
or interfaces tables) that facilitates the adaptation of code. This class simplifies
porting code from other simulators like ns-2 or its successor, Network Simulator
3 (ns-3).10 Another advantage of this class is that it facilitates the adaptation of
routing protocols to work in different layers. The routing protocols can work in
the network layer, but also in the link layer, facilitating the routing and forwarding
within the link layer as proposed in the standard IEEE 802.11s [8].

The basic services that ManetRoutingBase offers to derived classes are:

• signal processing,
• timer triggering functions,
• the position of the node in the simulation area (similar to a Global Positioning

System (GPS) based device),
• access to the Internet Control Message Protocol (ICMP),
• access to the IP routing table,
• access to the interface table (it is also possible to access the node interfaces),
• discovery of the wireless interfaces,
• UDP encapsulation,
• and a transparent interface that allows the same code to be executed using IP, or

directly in the link layer without the network layer.

It is mandatory that protocols derived from the ManetRoutingBase class
invoke the method registerRoutingModule() in the initialize()
function in the stage INITSTAGE_ROUTING_PROTOCOLS as shown in List-
ing 3.3.

Listing 3.3 Example for the protocol registration in the initialization() function

1 class MyClass : public ManetRoutingBase
2 {
3 public:
4 MyClass();
5 virtual ~MyClass();
6 virtual void initialize(int stages) override{
7 if (stages == INITSTAGE_ROUTING_PROTOCOLS) {
8 // Initialize common manet routing protocol structures, mandatory
9 registerRoutingModule();

10 }
11 }
12 }

10ns-3 project website: https://www.nsnam.org/.

https://www.nsnam.org/

3 INETMANET Framework 113

3.2.1.1 Signals

Table 3.2 shows the signals that a routing protocol can receive from the lower
layers, and the method that will be triggered by these signals. These methods
simplify the implementation of the link-layer feedback mechanisms. For example,
the method processLinkBreak() (see Listing 3.4—line 20) will be executed
automatically every time the node cannot confirm the correct reception of a frame,
which allows implementing the link-layer feedback functionalities present in the
AODV, DSR, and DYnamic MANET On-demand (DYMO) protocols. The method
processFullPromiscuous() (see Listing 3.4—line 29) is used by the DSR
protocol to implement the overhearing mechanism recommended in the standard.

Table 3.2 List of the signals received by the routing modules

Signal Method Description

NF_LINK_PROMISCUOUS processPromiscuous() Allow to receive any packet that
is destined to this node in the
routing module.

NF_LINK_FULL_PROMISCUOUS processFullPromiscuous() Send all packets received by the
node to the routing modules
(even the packets that are
destined to other nodes).

NF_LINK_BREAK processLinkBreak() Notify the routing module that
the transmission of a packet has
failed.

Listing 3.4 Example of signals usage

1 class MyClass : public ManetRoutingBase
2 {
3 public:
4 MyClass();
5 virtual ~MyClass();
6 virtual void initialize(int stages) override
7 {
8 if (stages == INITSTAGE_ROUTING_PROTOCOLS) {
9 // Initialize common manet routing protocol structures, mandatory

10 registerRoutingModule();
11 /// Activate the LLF break (subscribe to NF_LINK_BREAK)
12 linkLayerFeeback();
13 /// activate the promiscuous option (subscribe to NF_LINK_PROMISCUOUS)
14 linkPromiscuous();
15 /// Activate the full promiscuous option (subscribe to

NF_LINK_FULL_PROMISCUOUS)
16 linkFullPromiscuous();
17 }
18 }
19
20 virtual void processLinkBreak(const cObject *details) override
21 {
22 if (dynamic_cast<IPv4Datagram *>(const_cast<cObject*> (details))) {
23 dgram = const_cast<IPv4Datagram *>(check_and_cast<const IPv4Datagram *>(

details));
24 packetFailed(dgram);
25 return;

114 A. Ariza and V. Inzillo

26 }
27 }
28
29 void processFullPromiscuous(const cObject *details) override
30 {
31 if (dynamic_cast<Ieee80211TwoAddressFrame *>(const_cast<cObject*> (details))

) {
32 Ieee80211TwoAddressFrame *frame = dynamic_cast<Ieee80211TwoAddressFrame

>(const_cast<cObject>(details));
33 L3Address sender(frame->getTransmitterAddress());
34 }
35 }
36
37 void processPromiscuous(const cObject *details) override
38 {
39 if (dynamic_cast<Ieee80211DataFrame *>(const_cast<cObject*> (details))) {
40 Ieee80211DataFrame *frame = dynamic_cast<Ieee80211DataFrame *>(const_cast

<cObject*>(details));
41 cPacket * pktAux = frame->getEncapsulatedPacket();
42 if (dynamic_cast<IPv4Datagram *>(pktAux)) {
43
44 }
45 }
46 }
47 };

3.2.1.2 Timer Handling

Timers can be implemented using the ManetRoutingBase class. It is necessary
to derive the new timer from the class ManetTimer and re-implement the method
expire(). This method will be automatically executed when the timer expires.

The method scheduleEvent() programs the next event. It should be called
at the end of handleMessage() to guarantee that events are correctly executed
at the programmed simulation time. At the beginning of handleMessage() the
method checkTimer() should be called (cf. Listing 3.5).

Listing 3.5 The checkTimer method

1 if (checkTimer(msg)) {
2 // Timer events
3 scheduleEvent(); // before return schedule events
4 return;
5 }

In Listing 3.6, it is possible to observe an example of how to use the
ManetTimer class. As shown there, it is necessary to call the method
createTimerQueue() in the initialize() method.

Listing 3.6 Example of how to use ManetTimer class

1 class MyTimer : public ManetTimer
2 {
3 public:
4 virtual void expire() {
5 EV << "expire " << endl;
6 }

3 INETMANET Framework 115

7 myTimer(ManetRoutingBase* agent) : ManetTimer(agent) {};
8 };
9

10 class MyClass : public ManetRoutingBase
11 {
12 public:
13 MyClass();
14 virtual ~MyClass();
15 virtual void initialize(int stages) override{
16 if (stages == INITSTAGE_ROUTING_PROTOCOLS) {
17 // Initialize timer queue, it is necessary for to use ManetTimer class
18 createTimerQueue();
19 // Initialize common manet routing protocol structures, mandatory
20 registerRoutingModule();
21 }
22 }
23 }
24
25 virtual void handleMessage(cMessage *msg) override {
26 if (checkTimer(msg)) {
27 // Timer events
28 scheduleEvent(); // before return schedule events
29 return;
30 }
31 MyTimer * myTimer = new MyTimer();
32 myTimer->resched(simTime()+10); // schedule the event 10 seconds in the

future
33 scheduleEvent(); // before return schedule events
34 }

3.2.1.3 Position Access

ManetRoutingBase provides methods that allow accessing the position, speed,
and direction of the node (see Listing 3.7).

Listing 3.7 Methods to access position, speed, and direction

1 virtual const Coord& getPosition(); .
2 virtual double getSpeed(); // provides the actual node position in the

landscape
3 virtual const Coord& getDirection();

• getPosition(): provides the current position of the node in the playground.
• getSpeed(): provides the speed of the node in meters per second.
• getDirection(): provides a unit vector with the correct movement direction

of the node.

3.2.1.4 Encapsulation

The method sendToIp() allows encapsulating the messages over UDP before
sending them to the IP layer. In case that the routing protocol is executed directly in
the link layer, the UDP encapsulation is not performed.

116 A. Ariza and V. Inzillo

Listing 3.8 Encapsulation methods

1 virtual void sendToIp(cPacket *pk, int srcPort, const L3Address& destAddr, int
destPort, int ttl, double delay, const L3Address& ifaceAddr);

2 virtual void sendToIp(cPacket *pk, int srcPort, const L3Address& destAddr, int
destPort, int ttl, double delay, int ifaceIndex = -1);

3.2.1.5 Access to the Routing Table

In order to simplify porting the code of routing protocols to INETMANET, the
ManetRoutingBase class provides methods that ease the access and modifica-
tion of the information in the routing tables (cf. Listing 3.9).

Listing 3.9 Access to the routing table

1 void omnet_chg_rte(const L3Address &dst, const L3Address >wy, const L3Address
&netm, short int hops, bool del_entry, const L3Address &iface =

L3Address());
2 L3Address omnet_exist_rte(const L3Address&);
3 virtual void omnet_clean_rte();

• omnet_chg_rte(): allows writing or deleting a new routing entry in the
Internet Protocol Version 4 (IPv4) module. It can be easily extended to work
with an Internet Protocol Version 6 (IPv6) routing table, allowing the routing
protocols to work with IPv4 and IPv6 without any significant modification.

• omnet_exist_rte(): extracts the next-hop address to a particular destina-
tion in the IP routing tables. It returns the address of the next hop if the entry
exists in the routing table, otherwise it returns an unspecified L3Address.

• omnet_clean_rte(): deletes all the entries in the IPv4 routing table.

3.2.2 Simulating MANET Routing Protocols

In this section, we cover typical mistakes that can occur when simulating MANET
routing protocols.

3.2.2.1 Simulating Time

One of the most common issues is the use of a short simulation time. In order
to obtain sound results, it is necessary to choose a simulation time that allows
generating several hundred thousands of the type of events that we want to study;
for instance, in case of routing protocols it is necessary to put attention to the
actualization mechanism. If the routing protocol is proactive and the actualization of
the routing tables is every 60 s, a simulation time of 300 s, a value quite commonly
used in the simulation of MANET networks, is inadequate, as it only forces five
actualizations of the routes in the node.

3 INETMANET Framework 117

If the repetition of the experiment with different seeds presents high variations,
this can be a symptom of a too short simulation time.

3.2.2.2 Landscape Area and Coverage Area

Sometimes the simulation area and the radio coverage area can be of comparable
size. In this case, this will not be adequate to simulate a multi-hop scenario, as
nodes will all be within each other’s communication range. On the other hand, if the
area is too big and the nodes are deployed randomly in the floor plan, a partitioned
network might be possible, resulting in a lack of communication among nodes. This
problem can be solved either by adding more nodes, by reducing the simulation
area, or by placing the nodes adequately within the simulation area.

3.2.2.3 Mobility Models

The used mobility model has an enormous impact on the behavior of routing
protocols. It must be chosen carefully. Many of the used models do not reflect
the behavior of real nodes, but this does not imply that they are not useful. If the
objective is to test the performance of a routing protocol under stress, random way-
point or constant speed models can be useful, even if these mobility models are not
very realistic.

The most common mistakes when using mobility models are:

• Inadequate model: As an example, if the network under analysis is composed
of laptops, the mobility model should represent the behavior of nodes that are
static for the whole simulation period. If the network is a Vehicular Ad Hoc
Network (VANET), a random way-point model is not meaningful, as vehicles
usually move along predefined paths (roads). Moreover, some models tend to
concentrate the nodes in the center of the simulation area. In this case, it is
possible that all the nodes could be neighbors.

• Inadequate parameters: If the objective is to simulate a network of pedestrians
using smartphones, the speed must be consistent with the speed of a pedestrian,
not an Olympic runner. Another common issue with the parameters is related to
the random way-point model: if the minimum allowed speed is near to 0, the
nodes will stop their movement together with the time (if the speed is very close
to 0, the node will need a time bigger than the simulation time to move a meter).

3.2.2.4 Statistic Errors

There are two common statistic errors in the simulation. The first one is related
to the trend of the plots, as displayed in Fig. 3.3. The trend shown for the Packet
Delivery Ratio (PDR) as a function of the mobility of nodes is quite unlikely. This

118 A. Ariza and V. Inzillo

Fig. 3.3 Exemplary tendency graph with possible simulation errors

Fig. 3.4 Example of two functions with overlapping confidence interval

behavior could be due to several reasons: a too short simulation time, errors in the
configuration parameters, or errors in the data used to create the plot. There can also
be multiple possible causes. Further investigations are therefore necessary when a
figure with a strange trend is obtained.

Another common error is to draw conclusion without considering result vari-
ances. We can use Fig. 3.4 to undermine this. If we consider only the functions
without the errors, then function PDR 2 is better compared to function PDR 1. But
if we consider the error interval computed using the T-Student confidence interval,
we can observe that both functions are overlapping. In this case, it is practically
impossible to state that function PDR 2 certainly performs better than function PDR

3 INETMANET Framework 119

1. Only when the confidence intervals are non-overlapping it is possible to state,
from the point of view of the data obtained in the simulation, that a solution is better
than the other.

In order to obtain the confidence intervals, one should repeat the simulation
multiple times using different seeds. There is not an ideal number of replications,
it depends on the variance of the results. Replicating the simulation at least 5 times
can be a starting point. Considering that an inverse square root relationship exists
between confidence intervals and sample sizes, if the variance of the results is
high, it will be necessary to increase the number of experiments in order to reduce
the confidence interval. An excellent book to delve into this topic is “Design and
Analysis of Experiments” [11].

3.2.2.5 Traffic Sources

The selection of an appropriate traffic source is fundamental for the simulation. This
source must be chosen depending on the parameters under study. For example, if the
goal is to evaluate the performance of a routing protocol in terms of PDR or End-
to-End (E2E) delay, the traffic source must be of type UDP. It is very common to
choose the destination for every packet randomly. This type of selecting destinations
presents disadvantages for reactive protocols against proactive, but the real traffic
has a bursty nature. Usually, the traffic from a source to a destination is composed
of several tens to hundreds of consecutive packets.

3.3 Physical Layer Models

The INET Framework provides several modules that allow the simulation of the
most common node features and operations related to the physical layer, including
channel propagation, modulation, energy-consumption, and channel-error models.

Figure 3.5 illustrates the hierarchical block diagram of the main modules
involved in the physical-layer operations. The radio model describes the physical
device and implements transmission/reception functionalities. The Radio module
serves an analogical model that is responsible for supporting the wireless channel
propagation model for example. The Radio module contains the following main
parameters:

Listing 3.10 Main parameters from the Radio.ned file

1 module Radio like IRadio {
2 parameters:
3 string antennaType; // the antenna model
4 string transmitterType; // transmitter model
5 string receiverType; //receiver model
6 string energyConsumerType = default(""); // energy consumer model
7 string radioMediumModule = default("radioMedium"); // path of the medium module
8 string energySourceModel = default(""); // path of the energy source module

120 A. Ariza and V. Inzillo

Fig. 3.5 Physical layer logical block diagram

The antennaType parameter points to the .ned of the used antenna module;
the transmitterType and receiverType indicate, respectively, the kind
of transmitter and receiver module that is equipped in the mobile node. Please
note that the antennaType, the transmitterType, and the receiverType
parameters are tightly related to the kind of radioMediumModule set in the
.ini configuration file. More specifically, the INET Framework provides several
radioMediumModule; the most significant are:

• IdealRadioMedium: provides a simple channel-propagation model, includ-
ing a path-loss free-space model and a constant-speed propagation model; in
this regard, the transmitter and the receiver nodes are equipped with isotropic
antennas.

Listing 3.11 Contents of the IdealRadioMedium.ned file

1 module IdealRadioMedium extends RadioMedium {
2 parameters:
3 propagationType = default("ConstantSpeedPropagation");
4 pathLossType = default ("FreeSpacePathLoss");
5 analogModelType = default("IdealAnalogModel");

• ScalarRadioMedium: this radio-medium model uses scalar transmission
power in the analog representation; it is possible to choose between the different
propagation models offered by INET and to equip the nodes with one of the
different antenna models provided by INET.

Listing 3.12 Contents of the Ieee80211ScalarRadioMedium.ned file

1 module Ieee80211ScalarRadioMedium extends Ieee80211RadioMedium {
2 parameters:
3 analogModelType = default("IdealAnalogModel");
4 backgroundNoiseType = default("IdealAnalogModel");

Listing 3.12 shows the features of the Ieee80211ScalarRadioMedium,
one of the most relevant ScalarRadioMedium modules. It should be noted
that the analog model provided by this class is also scalar, whereas the
type of noise is almost “ideal”; this module is usually used in cooperation
with a ScalarTransmitter and a ScalarReceiver that perform their
operations depending on the value of power that is set in the configuration

3 INETMANET Framework 121

Fig. 3.6 The StandardHost module

file. The IdealTransmitter/Receiver instead operates according to the
maxCommunicationRange parameter, which determines the coverage area of a
certain mobile node.

The physical layer features related to nodes are defined in the StandardHost
module as functions of the type of the RadioMedium model set in the simulation.
Figure 3.6 shows the internal structure of an exemplary StandardHost. It can be
noted that the overall structure is designed according to the Transmission Control
Protocol (TCP)/IP stack principle. The layered architecture in Fig. 3.2 is related
to a mobile node, in fact, the third level (from bottom to top) that is the network
layer executes the AODV protocol, a routing protocol for MANETs; however, the
analysis of the routing-protocol modules is beyond the scope of this section. The
physical layer communicates with the data link layer, which in this case consists
of a set of Network Interface Card (NIC) interfaces either in wired or in wireless
mode. It is important to highlight that all the physical-layer functionalities and
modules are not mapped in the default StandardHost architecture, consequently
the communication process with the data link layer is indirect.

122 A. Ariza and V. Inzillo

3.3.1 Antenna Models

The package inet.physicalLayer.antenna contains all the antenna mod-
ules of INET. The default available modules are the following:

• ConstantGainAntenna: a simple antenna having a unique basic parameter,
the gain. As suggested by the name, the gain set in the configuration file
remains constant while a simulation is executed. This module is useful when
information such as the orientation and the direction of the signal do not need to
be considered.

• CosineAntenna: is the cosine pattern antenna designed in [6]. This model is
very usefully for Wideband Code Division Multiple Access (W-CDMA) systems
where the handover issue could become a critical task. Basically, this antenna is
a combination of a directional high capacity antenna and a sectorized antenna.
This combination allows to achieve some intra-cell benefits such as the isolation
of interferences and user signals.

• DipoleAntenna: the well-known dipole antenna consisting of two identical
conductive elements, which are bilaterally symmetrical; it is possible to set the
length of the dipole (in meters) in the configuration file.

• InterpolatingAntenna: this antenna model computes the gain in a func-
tion of the direction of the signal, using linear interpolation. More specifically the
antenna gain is computed based on the direction of the signal using linear inter-
polation extracting direction information expressed in Euler angles. Results from
this antenna module are useful when a fast-scanning and approximated antenna
pattern is required if particular constraints of time-consuming applications need
to be satisfied.

• IsotropicAntenna: is the classical omnidirectional/isotropic antenna. It
provides a unity gain by radiating the signal at the same way towards all
directions.

• ParabolicAntenna: this model is based on a parabolic approximation of
the main lobe radiation pattern. The gain is the function of the maxGain and
the minGain together with the 3 dB beam-width. This module is very useful
when employed in environments where path loss issues have to be addressed.
In particular, through the functionalities of this antenna it is possible to avoid
problems such as inter-cell interference that usually occurs when an antenna with
poor orientation is used. The resulted main beam in this case is very directive.

Observe that, originally, the only antenna modules provided for INETMANET
were the IsotropicAntenna and the DipoleAntenna; other modules have
been developed later and then added to INETMANET. In order to understand the
logical structure of a generic antenna module, the following two listings illustrate
the source code of the most simple antenna module offered by INETMANET, the
IsotropicAntenna module.

3 INETMANET Framework 123

Listing 3.13 IsotropicAntenna.h main functions

1 class INET_API IsotropicAntenna : public AntennaBase
2 {
3 public:
4 IsotropicAntenna();
5 virtual std::ostream& printToStream(std::ostream& stream, int level)

const override;
6 virtual double getMaxGain() const override { return 1; }
7 virtual double computeGain(const EulerAngles direction) const override {

return 1; }
8 };

Listing 3.14 AntennaBase.h main functions

1 class INET_API AntennaBase : public IAntenna, public cModule
2 {
3 protected:
4 IMobility *mobility;
5 int numAntennas;
6 virtual void initialize(int stage) override;
7
8 public:
9 AntennaBase();

10 virtual std::ostream& printToStream(std::ostream& stream, int level)
const override;

11 virtual IMobility *getMobility() const override { return mobility; }
12 virtual int getNumAntennas() const override { return numAntennas; }
13 };

Listing 3.13 highlights the main functions of the IsotropicAntenna.h file, in
particular computeGain() and getMaxGain(). The first one implements
the gain computation expression and returns the gain value. The gain expression
depends on the kind of the used antenna. With regards to the isotropic antenna,
for example, the gain is unitary and consequently the getMaxGain() function
returns 1. It is important to note that the IsotropicAntenna class inherits all
functions and variables of the AntennaBase class whose features are exposed
in Listing 3.14. Observe that in the AntennaBase class, it is possible to set the
number of antennas used by the node to create an antenna array. This parameter
is an integer and is denoted by numAntennas. The mobility interface points
to the mobility pattern .ned file associated with the node; the utility function
getNumAntennas() simply returns the number of antennas related to a certain
node.

Because the standard INET Framework does not support directional antennas
and asymmetrical communications between nodes, we extended the INETMANET
default features by adding a new antenna module which operates according to the
Smart Antenna System (SAS) technology. Hence, future versions of INETMANET
will provide a PhasedArray antenna module [9]. This module allows to emulate
the most simple SAS strategy that is the switched-beam technology [4]. Note that the
array elements are placed in the space according to the Uniform Linear Array (ULA)
pattern. Listing 3.15 displays the main features of the PhasedArray module and
the main parameters of a phased array antenna technology.

124 A. Ariza and V. Inzillo

Listing 3.15 PhasedArray.h main functions and parameters

1 class INET_API PhasedArray : public AntennaBase, IEnergyConsumer, protected
cListener

2 {
3 public:
4 static simsignal_t phaseArrayConfigureChange;
5
6 protected:
7 m length;
8 double freq;
9 double distance;

10 mutable double phiz;
11
12 virtual double getMaxGain() const override {
13 int numel = getNumAntennas();
14 double maxGain = numel * log10(numel);
15 return maxGain;
16 }
17 virtual double computeGain(EulerAngles direction) const override;
18 virtual double getPhizero() {return phiz; }
19 }

The most important parameters include the distance which represents the
fraction of the horizontal spacing between elements in the array expressed in
wavelength and the phiz that denotes the steering angle. The gain computation
is implemented in the PhasedArray.cc file, given in Listing 3.16.

Listing 3.16 computeGain function from the PhasedArray module

1 double PhasedArray::computeGain(EulerAngles direction) const
2 {
3 IRadio *radio= check_and_cast<IRadio *>(getParentModule());
4 IRadioMedium *ra = const_cast< IRadioMedium *> (radio->getMedium());
5 RadioMedium *rm=dynamic_cast< RadioMedium *>(ra);
6
7 if (phiz == -1) {
8 return 1; // omni-directional
9 }

10
11 double c = 300000 * 10 * 10 * 10; // speed of light
12 double lambda = c / freq;
13 double d = distance * lambda;
14 double k = (2 * M_PI) / lambda; // wave number
15 double phizero = phiz * (M_PI / 180);
16 double psi = k * d * (cos(direction.beta) - cos(phizero));
17 double num = sin((numel * psi) / 2);
18 double den = sin(psi / 2);
19 double rap = num / den;
20 double mod = fabs(rap);
21 double ef = cos(direction.beta);
22 double efa = fabs(ef);
23 double gain = 10 * log10(mod * efa);
24 return gain;
25 }

3 INETMANET Framework 125

The gain is implemented according to the following three equations:

G(θ, φ)T OT = G(θ, φ)EF ∗ G(θ, φ)AF (3.1)

AF =
∣
∣
∣
∣
∣
∣

sin
(

Nψ
2

)

N sin
(

ψ
2

)

∣
∣
∣
∣
∣
∣

(3.2)

ψ = kd (cos φ − cos φ0) (3.3)

In Eq. (3.1), the total gain G(θ, φ)T OT is expressed as a function of the element
factor gain G(θ, φ)EF and the array factor gain G(θ, φ)AF, where AF is the array
factor while ψ is a term that depends on the steering angle. Please note that Eq. (3.2)
is normalized with respect to the number of antenna elements N.

3.4 Mobility Models

INETMANET includes, in addition to the mobility models provided by the INET
Framework, two additional models: TRACI and LaptopModelManager.

3.4.1 The Traffic Control Interface Model

The Traffic Control Interface (TraCI) model is an adaptation of the TraCI imple-
mentation of the Veins framework (see Chap. 6). It allows to connect the simulation
with the Simulation of Urban MObility (SUMO) tool.11 This tool simulates realistic
VANET movements. The main parameters used by the TraCI module are:

• updateInterval: time interval between updates of the SUMO simulation,
• moduleType: which OMNeT++ module (in this case the module, defined in

the Network Topology Description (NED) language, that is going to be used in
the simulation) to instantiate for each driving vehicle,

• port: which TCP port the client must use to connect to SUMO,
• launchConfig: configuration file sent to SUMO,
• roiRects: to limit the simulation to vehicles currently driving within a Region

of Interest (ROI),
• host: address of the node where SUMO is installed.

11SUMO website: http://www.sumo.dlr.de/userdoc/Tools/Main.html.

http://www.sumo.dlr.de/userdoc/Tools/Main.html

126 A. Ariza and V. Inzillo

If you want to install and execute SUMO, you can use the standard Veins
tutorial.12 There is an example in the directory examples/traci with the necessary
files to launch and configure SUMO.

This model has two limitations. The first one is that the nodes are created but they
are not shown in the OMNeT++ Graphical User Interface (GUI). The second one is
that nodes are dynamically created during simulation time. Modules that configure
themselves at the start of the simulation (e.g., IPv4NetworkConfigurator) do
therefore not work. It is possible to use the module HostAutoConfigurator2
inside the node model. This module can configure the node during runtime, as soon
as a new node is created.

3.4.2 The LaptopModelManager Module

This module allows one to create and delete nodes at runtime. This facilitates model
implementations similar to the presence of a set of laptop computers in an area. The
computers dynamically appear and disappear, changing the number of nodes over
time. The model configuration parameters are given in Listing 3.17.

Listing 3.17 The LaptopModelManager configuration options

1 int NumNodes = default(0); // Maximum number of nodes that can be active at the
same time in the simulation

2 volatile double startLife @unit(s); // Distribution of how new nodes will be
added at the simulation

3 volatile double endLife @unit(s); // Lifetime
4 string nodeType; // NED description of the node that will be created
5 string nodeName; // Base name of the nodes that will be created

It is possible to have multiple LaptopModelManager simultaneously with
different types of nodes, the only restriction is that the nodeName parameter
must be different. An example in the directory examples/manetrouting/dynam-
icNodeCreation shows how the model works. In Listing 3.18, the configura-
tion for two LaptopModelManager modules is shown. In this case, the first
LaptopModelManager creates 10 nodes in the time interval between 30 s and
140 s with a uniform distribution and a node lifetime from 500 s to 600 s. The names
of the nodes created by this LaptopModelManager are node1[*]. The second
LaptopModelManager creates 20 nodes in the time interval between 60 s and
140 s with a uniform distribution and a node lifetime of 300 s to 1000 s. In this case,
the nodes have the name node2[*].

Listing 3.18 Exemplary configuration options with two LaptopModelManager modules

1 **.dinamicWirelessNodeManager1.NumNodes = 10
2 **.dinamicWirelessNodeManager1.startLife = uniform(30s,140s)
3 **.dinamicWirelessNodeManager1.endLife = uniform(500s,600s)

12Veins tutorial website: http://veins.car2x.org/tutorial/.

http://veins.car2x.org/tutorial/

3 INETMANET Framework 127

4 **.dinamicWirelessNodeManager1.nodeType = "inet.node.inet.AdhocHost"
5 **.dinamicWirelessNodeManager1.nodeName = "node1"
6
7 **.dinamicWirelessNodeManager2.NumNodes = 20
8 **.dinamicWirelessNodeManager2.startLife = uniform(60s,200s)
9 **.dinamicWirelessNodeManager2.endLife = uniform(300s,1000s)

10 **.dinamicWirelessNodeManager2.nodeType = "inet.node.inet.AdhocHost"
11 **.dinamicWirelessNodeManager2.nodeName = "node2"

Listing 3.19 shows the NED file of a network with two LaptopModelManager.
It is possible to observe that the configuration IPv4NetworkConfigurator
has been removed as the nodes use either the HostAutoConfigurator or the
HostAutoConfigurator2. Using HostAutoConfigurator is required to
dynamically create modules during simulation. IPv4NetworkConfigurator
can only configure the nodes at the start of the simulation.

Listing 3.19 A NED file with two LaptopModelManager modules

1 import inet.node.inet.AdhocHost;
2 import inet.mobility.single.LaptopModelManager;
3 import inet.physicallayer.ieee80211.packetlevel.Ieee80211ScalarRadioMedium;
4 import inet.networklayer.configurator.ipv4.IPv4NetworkConfigurator;
5 import inet.physicallayer.ieee80211.packetlevel.Ieee80211ScalarRadioMedium;
6
7 network TestNetwork
8 {
9 submodules:

10 radioMedium: Ieee80211ScalarRadioMedium {
11 @display("p=60,50;i=misc/sun");
12 }
13
14 laptopModelManager1: LaptopModelManager {
15 @display("p=68,28;is=s");
16 }
17
18 laptopModelManager2: LaptopModelManager {
19 @display("p=78,28;is=s");
20 }
21 }

3.5 Application Models

INETMANET includes two additional useful models for UDP use cases:

• UDPBasicBurstNotification and
• UDPVideoStreamSvr2 /UDPVideoStreamCli2.

The first one solves the problem of nodes getting dynamically created at runtime,
where the possible destinations can change dynamically. The second model supports
the Video-Trace Library of the University of Arizona [1].

128 A. Ariza and V. Inzillo

3.5.1 UDPBasicBurstNotification

When nodes are created or erased dynamically in the simulation scenario, usually
the position or the status of a certain receiver node related to a communication
process also changes dynamically. For example, it is possible that a source node
attempts to send a packet towards a receiver node but that packet could not reach the
destination because the receiver changed its position in the network or, alternatively,
the receiver no longer exists within the network. A source node might also be unable
to successfully send packets to nodes that are created after the traffic application at
the source is initialized.

To solve this problem, INETMANET has a special implementation of the
source UDPBasicBurst. This source emits a signal every time that a source
of this type is created or destroyed, forcing the rest of sources of the type
UDPBasicBurstNotification to re-evaluate the possible destinations. The
class AddressModule is the base module that facilitates this behavior. It defines
two signals (cf. Listing 3.20) that are registered in the system module. This way, it
does no matter what AddressModule emits the signal, the module will receive it.

Listing 3.20 shows that the signal changeAddressSignalInit is emitted
when a new module is created. Likewise, when the module is destroyed because
the module has been deleted, the signal changeAddressSignalDelete is
emitted. Thus, it is possible to rebuild the list of possible destinations every time
a node is created or deleted.

Listing 3.20 AddressModule signal definition

1 simsignal_t AddressModule::changeAddrSignalInit;
2 simsignal_t AddressModule::changeAddrSignalDelete;
3
4 void AddressModule::initModule(bool mode) {
5 ...
6 getSimulation()->getSystemModule()->subscribe(changeAddrSignalInit,this);
7 getSimulation()->getSystemModule()->subscribe(changeAddrSignalDelete,this);
8 if (simTime() > 0)
9 owner->emit(changeAddressSignalInit, this);

10 ...
11 }
12
13 AddressModule::~AddressModule() {
14 ...
15 cSimpleModule * owner = check_and_cast<cSimpleModule*> (getOwner());
16 owner->emit(changeAddressSignalDelete,this);
17 getSimulation()->getSystemModule()->unsubscribe(changeAddrSignalDelete,this);
18 getSimulation()->getSystemModule()->unsubscribe(changeAddrSignalInit,this);
19 ...
20 }

A function that UDPBasicBurstNotification and UDPBasicBurst
implement, which is not available in INET, is the possibility of generating broadcast
packets. Listing 3.21 depicts an example of how to configure the source to emit
broadcast packets. The interface name is mandatory. It is possible to set this
parameter to ALL. In this case, the source will emit broadcast packets in all
interfaces.

3 INETMANET Framework 129

Listing 3.21 Configuration parameters for broadcast packet transmission

1 **.destAddresses = "Broadcast" # destination address broadcast
2 **.outputInterfaceMulticastBroadcast = "wlan0" # interface in which
3 # the broadcast packets will be sent, it can be "ALL"
4 **.setBroadcast = true # configure the socket for receive broadcast packets

3.5.2 The UDPVideoStreamSvr2 and
UDPVideoStreamCli2 Models

The source models UDPVideoStreamSvr2 and UDPVideoStreamCli2
allow one to use realistic video traffic. They use the Video-Trace Library of the
Arizona State University [1]. This library offers trace files with the codification
in Moving Picture Experts Group Layer-4 Video (MPEG-4) of different videos. A
description of the format and sample use of H.264 traces are available in [18].

The trace file has seven fields per row (cf. Listing 3.22): the first column is the
sequence number, the second is the time of the frame creation, the third is the type of
frame, the fourth is the size (expressed in bits) of the frame, and the last three fields
contain information about the signal/noise of the codified frame. From the point of
view of the source, only the first four fields have useful information.

Listing 3.22 The trace file format

1 0 0.0000 I 8776 60.0000 60.0000 60.0000
2 2 0.0667 P 456 60.0000 60.0000 60.0000
3 1 0.0333 B 64 60.0000 60.0000 60.0000
4 4 0.1333 P 488 84.3880 60.0000 60.0000
5 3 0.1000 B 80 79.9947 60.0000 60.0000
6 6 0.2000 P 608 79.8017 60.0000 60.0000

The UDPVideoStreamSvr2 generates the traffic using the information from
the file, the time at which the frame must be sent, and its size. The client can compute
the total number of frames for each type that it has received. Using this information
it is possible to compute the distortion introduced by the network.

In Listing 3.23, it is possible to see the configuration parameters of the mod-
ule UDPVideoStreamSvr2. This source includes some additional parameters
such as traceFileName, which contains the route and name of the trace
file; macroPackets, if true, the source, instead of sending MPEG-4 frames
encapsulated in UDP packets, can store several frames in a single UDP packet;
maxSizeMacro is the size (expressed in bits) of the macro packets; in this case,
the source creates aggregated frames up to this size. It is also possible to use this
source to broadcast video frames if the parameter videoBroadcast is true.

Listing 3.23 Configuration parameters of the UDPVideoStreamSvr2 module

1 string interfaceTableModule; // The path to the InterfaceTable module
2 int localPort; // port to listen on

130 A. Ariza and V. Inzillo

3 volatile double sendInterval @unit(s); // interval between sending video stream
packets

4 volatile int packetLen @unit(B); // length of a video packet in bytes
5 volatile int videoSize @unit(B); // length of full a video stream in bytes
6 volatile double stopTime @unit(s) = default(0);
7 string traceFileName = default(""); // University of Arizona video trace format
8 bool macroPackets = default(false); // it allows that several video frames can

be grouped in a packet
9 int maxSizeMacro @unit(B) = default(512B); // maximum size of a grouped packet

10 bool videoBroadcast = default(false); // the server will send broadcast video
frames

11 double startBroadcast @unit(s) = default(0s); // start time of the video
broadcast

12 string broadcastInterface = default("wlan0"); // interface used to broadcast
the video frames

13 volatile double restartBroadcast @unit(s) = -1s; // after finish the broadcast
sequence the server will restart the broadcast after an interval

The configuration of the client from Listing 3.24 also includes some differences
with respect to the basic UDPVideoStreamCli module. The most interesting
parameters are reintent and multipleRequest. The first allows that the
client starts a new connection if the first one has failed; the second allows a client to
start another connection as soon as the current one finishes.

Listing 3.24 Configuration parameters of the UDPVideoStreamCli2 module

1 int localPort = default(-1); // local port (-1: use ephemeral port)
2 string serverAddress; // server address
3 int serverPort; // server port
4 double startTime @unit(s) = default(1s); // start time of the client
5 volatile double reintent @unit(s) = default(60s); // the client will request a

new sequence if no video frame has arrived after this period, if a video
frame has been received, the client can request other sequences only if
the parameter multipleRequest is true

6 bool multipleRequest = default(false); // if true the client request other
sequence after finish the current

7 double timeOut @unit(s) = default(10s); // maximum time without receive a frame
that the client use to determine a fail of request or end of sequence.

If it is an end of sequence and multipleRequest = false the client does
not request another sequence, if the client has never received a video
frame, it will request another sequence

8 double limitDelay @unit(s) = default(0.5s); // maximum delay in a video frame
to discard it

3.6 Link Layer Models

INETMANET includes several link layer models that are not present in the INET
Framework. The most interesting ones are a basic implementation of link layer
routing and forwarding similar to the ones available in the 802.11 standard, and
the implementation of the Very High Throughput (VHT) extension, included in the
latest revision of the standard [8].

3 INETMANET Framework 131

3.6.1 Routing and Forwarding in the Link Layer

The current implementation only covers the forwarding and routing aspects,
including the possibility to use several routing protocols. The routing protocols
that the implementation can use are DYMO [14], Hybrid Wireless Mesh Protocol
(HWMP) [8], AODV [13], and Optimized Link State Routing (OLSR) [7]. The
module that implements the forwarding mechanism is Ieee80211Mesh. It has
additional feature that is not included in the basic Ieee80211MgmtAdhoc
module incorporated in the INET Framework. These extended functionalities are:

1. start the routing protocols in the link layer,
2. forward the IEEE 802.11 four address frames using the information obtained by

the routing protocols,
3. flood the broadcast IEEE 802.11 frames in the network,
4. encapsulate IEEE 802.11 frames over Ethernet [3].

The Ieee80211Mesh configuration is similar to Ieee80211MgmtAdhoc
but it includes additional parameters. These parameters are shown in the List-
ing 3.25.

Listing 3.25 Configuration parameters of the Ieee80211Mesh module

1 string meshReactiveRoutingProtocol = default("inet.routing.extras.DYMOUM");
2 bool useHwmp = default(false); // If active automatically deactivate

useProactive and useReactive and activate ETXEstimate
3 bool useProactive = default(false);
4 bool useReactive = default(true);
5
6 bool useGreenie = default(false);
7 bool greenieCompleteNode = default(true);
8
9 bool FixNode = default(false); // used by routing protocol to indicate no

mobility node
10 bool UseLwMpls = default(false);
11 double maxDelay = default(0.1);
12 int maxTTL = default(32); // the same that IP, sets the maximum number of hops

that a frame can propagate in the network.
13 bool ETXEstimate = default(false);
14 bool IsGateWay = default(false);
15 double GateWayAnnounceInterval @unit("s") = default(100s);

The four parameters useGreenie, useProactive, useReactive, and
useHwmp are used to select the routing protocol. The protocol used in each
case is:

• useHwmp: HWMP.
• useReactive: OLSR.
• useProactive: the protocol that is being selected in the configuration field
meshReactiveRoutingProtocol, by default DYMO-UM.

• useGreenie: Greenie, a hybrid protocol designed for wireless mesh networks,
which operates on the link layer [2].

132 A. Ariza and V. Inzillo

Fig. 3.7 Wireless network with MPP nodes, and detail of an MPP node with a direct connection
between the wireless MAC and the Ethernet MAC

The parameter FixNode is used by the Greenie routing protocol. This permits
the protocol to handle static nodes and mobile nodes differently, allowing Greenie
to search more stable routes, with lower probability of breaking.

The parameter IsGateWay permits the module to use a functionality that is
not in the standards. With it, it is possible to extend the wireless network using
wired Ethernet segments. In this case, the gateway nodes can encapsulate the 802.11
frames over an Ethernet frame and send the frame to other Mobile Peer-to-Peer
Protocol (MPP) gateways that re-inject the frame in the network. In Fig. 3.7, a
network with MPP nodes is shown. It is possible to observe the connection between
the 802.11 Medium Access Control (MAC) and the Ethernet MAC.

In order to integrate 802.11 nodes in infrastructure mode into this type of
network, a special module called LocatorModule has been developed and a new
type of node has been included in INETMANET.

The new type of node is called ApRelayNode (cf. Fig. 3.8). It connects an
interface that works in mesh mode with an interface that works in access point mode.
This node allows the frames to arrive at the client nodes connected to the access
point and to the frames sent by the clients to arrive at the mesh network. By using
this, frames can arrive at the destination.

3.6.2 VHT and the IEEE 802.11ac Standard

INETMANET has implemented the standard IEEE 802.11ac that allows to use bit
rates up to 6933.3 Mbit/s. This implementation has already been ported to the new

3 INETMANET Framework 133

Fig. 3.8 ApRelayNode
implementation in
OMNeT++ with a relay unit
that connects an IEEE 802.11
interface that operates in
mesh mode and an 802.11
interface that operates in
access point mode

INET Framework version 4.x. It adds the new classes Ieee80211VHTMode and
Ieee80211VHTCode and modifies the Ieee80211NistErrorModel and
the Ieee80211YansErrorModel class.

The class Ieee80211VHTMode implements the different modulation modes
and computes the bit rates for the different modes. It also computes the different time
parameters used in the 802.11ac implementation, like the physical header duration
or the DIFS or SIFS parameters used in the MAC sublayer.

The Ieee80211NistErrorModel and Ieee80211YansErrorModel
classes have been modified to include the errors models for the different modulations
used in the VHT standard. The class Ieee80211Band has also been modified
to include the new bands used in the VHT standard that allow to compute the
interferences between the different channels.

Listing 3.26 displays the selection of the 802.11ac mode and the selection of
the bandwidth to compute the central frequency of the channel and the interference
among channels. The available bit rates are calculated with a 400 ns guard interval,
except for the mandatory bit rates that are computed using the 800 ns guard interval.
If multiple entries with the same bit rate exist, the model selects the entry with lower
bandwidth and/or lower modulation.

Listing 3.26 Configuration parameters to select IEEE 802.11ac

1 **.bandName = "5 GHz&20 MHz" #,"5 GHz&40 MHz","5 GHz&80 MHz","5 GHz&160 MHz"
2 **.opMode = "ac"
3 **.bitrate = 693.3Mbps
4 **.wlan[*].radio.antenna.numAntennas = 8 #max. nr. of 802.11ac streams is 8

134 A. Ariza and V. Inzillo

3.7 Miscellaneous Tools

INETMANET includes some modules that help in the simulation and
analysis of wireless networks. These modules are WirelessNumHops,
WirelessGetNeig, DijkstraKshortest, and GlobalWireless-
LinkInspector.

3.7.1 The WirelessNumHops Class

This class can be used to find a path between any pair of nodes (if it exists),
assuming that the maximum distance between two nodes that can communicate is
a known parameter. Listing 3.27 shows an example that assumes that the maximum
separation between two neighbor nodes is 120 m.

Listing 3.27 Example use of the WirelessNumHops class

1 #include "inet/common/WirelessNumHops.h"
2
3 IPv4Address myAddress;
4 IPv4Address destAddress;
5 ...
6 WirelessNumHops *routing = new WirelessNumHops();
7 routing->setRoot(myAddress);
8 std::deque<IPv4Address> pathNode;
9 bool found = routing->findRoute(120.0, destAddress,pathNode);

10 if (found) { ... }

This class can be used to find out if a possible route exists, even if the routing
protocol cannot find it.

3.7.2 The WirelessGetNeig Class

This class is similar to WirelessNumHops, but in this case, it only provides the
list of nodes having a separation lower than a predetermined distance. Listing 3.28
depicts a usage example.

Listing 3.28 Example use of the WirelessGetNeig class

1 #include "inet/common/WirelessGetNeig.h"
2
3 IPv4Address node;
4 ...
5 WirelessGetNeig *neig = new WirelessGetNeig();
6 std::vector<IPv4Address> neigList;
7 neig->getNeighbours(nodee, neigList, 120.0);
8 ...

3 INETMANET Framework 135

3.7.3 The DijkstraKshortest Module

The module DijkstraKshortest provides a solution for the K Shortest
problem [19]. This solution follows the algorithm presented by Chong et al. [5],
and allows finding the K shortest paths between a source and a destination, if they
exist. In the case that the number of possible routes is lower than the parameter K,
this implementation finds all possible routes.

This solution can be used to resolve the problem of multiple constrained shortest
path [20]. It is possible to set multiple cost parameters to each link and to find the
minimum path cost, with respect to a parameter. At the same time, the cost of the
rest of the parameters in the path must not exceed a predefined limit.

In Listing 3.29, we show an example that extracts the topology using the class
cTopology. In this case, the example tries to find a maximum of 5 routes per
destination. The routes are ordered from lower to higher costs, with route[0]
being the route of the lowest cost.

Listing 3.29 Example of use DijkstraKshortest module

1 cTopology topo("topo");
2 topo.extractByProperty("networkNode");
3 cModule *mod = getContainingNode(this);
4 DijkstraKshortest djk;
5
6 djk.setFromTopo(&topo, L3Address::IPv6);
7 L3Address id = L3AddressResolver().addressOf(mod, L3AddressResolver::ADDR_IPv6)

;
8 djk.setRoot(id);
9 djk.setKLimit(5); // 5 paths

10 djk.run();
11
12 for (int i = 0; i < topo.getNumNodes(); i++) {
13 cTopology::Node *destNode = topo.getNode(i);
14 if (mod == destNode->getModule())
15 continue;
16 L3Address nodeId = L3AddressResolver().addressOf(destNode->getModule(),

L3AddressResolver::ADDR_IPv6);
17 for (int i = 0; i < djk.getNumRoutes(nodeId); i++) {
18 std::vector<L3Address> pathNode;
19 EV<<"Total paths "<<djk.getNumRoutes(nodeId)<<" to node "<<nodeId<<"\n";
20 if (djk.getRoute(nodeId, pathNode,i)) {
21 EV << "Path :"<< i << "Nodes ;
22 for (auto elem : pathNode) {
23 EV << elem;
24 if (elem != pathNode.back())
25 EV << "-";
26 else
27 EV << "\n";
28 }
29 }
30 }
31 }

Listing 3.30 gives an example of how to define the network from Fig. 3.9 in an
object of type inetmanet-DijkstraKshortest. For simplicity, all the links
in this example have the same cost (cost = 1, delay = 0.2 units, available bandwidth
= 100 units, and quality = 10 units).

136 A. Ariza and V. Inzillo

Listing 3.30 Defining the connections using the class DijkstraKshortest with constrained
cost, applied to the network from Fig. 3.9

32 DijkstraKshortest djk;
33 // cost, delay, bandwidth, quality
34 djk.addEdge(L3Address(IPv4Address(1)),L3Address(IPv4Address(2)),1,0.1,100,10);
35 djk.addEdge(L3Address(IPv4Address(2)),L3Address(IPv4Address(1)),1,0.1,100,10);
36 djk.addEdge(L3Address(IPv4Address(1)),L3Address(IPv4Address(3)),1,0.1,100,10);
37 djk.addEdge(L3Address(IPv4Address(3)),L3Address(IPv4Address(1)),1,0.1,100,10);
38 djk.addEdge(L3Address(IPv4Address(2)),L3Address(IPv4Address(3)),1,0.1,100,10);
39 djk.addEdge(L3Address(IPv4Address(3)),L3Address(IPv4Address(2)),1,0.1,100,10);
40 djk.addEdge(L3Address(IPv4Address(2)),L3Address(IPv4Address(4)),1,0.1,100,10);
41 djk.addEdge(L3Address(IPv4Address(4)),L3Address(IPv4Address(2)),1,0.1,100,10);
42 djk.addEdge(L3Address(IPv4Address(3)),L3Address(IPv4Address(5)),1,0.1,100,10);
43 djk.addEdge(L3Address(IPv4Address(5)),L3Address(IPv4Address(3)),1,0.1,100,10);
44 djk.addEdge(L3Address(IPv4Address(2)),L3Address(IPv4Address(5)),1,0.1,100,10);
45 djk.addEdge(L3Address(IPv4Address(5)),L3Address(IPv4Address(2)),1,0.1,100,10);
46 djk.addEdge(L3Address(IPv4Address(3)),L3Address(IPv4Address(4)),1,0.1,100,10);
47 djk.addEdge(L3Address(IPv4Address(4)),L3Address(IPv4Address(3)),1,0.1,100,10);
48 djk.addEdge(L3Address(IPv4Address(4)),L3Address(IPv4Address(6)),1,0.1,100,10);
49 djk.addEdge(L3Address(IPv4Address(6)),L3Address(IPv4Address(4)),1,0.1,100,10);
50 djk.addEdge(L3Address(IPv4Address(5)),L3Address(IPv4Address(6)),1,0.1,100,10);
51 djk.addEdge(L3Address(IPv4Address(6)),L3Address(IPv4Address(5)),1,0.1,100,10);

Fig. 3.9 Topology of the
network used in Listing 3.30

Listing 3.31 shows how to execute an exemplary search of a multiple-constrained
path between nodes 1 and 6. The limits have been set to 10, 1, 10, and 1000. Please
note that the bandwidth metric is concave, whereas the other metrics are additives.

Listing 3.31 Running a multiple-constrained path search using DijkstraKshortest

1 DijkstraKshortest djk;
2 ...
3 std::vector<double> limits;
4 limits.resize(4);
5 limits[0] = 10; // cost limit, additive
6 limits[1] = 1; // delay limit, additive
7 limits[2] = 10; // bandwith limit, concave
8 limits[3] = 1000; // qos limit, additive
9

10 djk.setLimits(limits);
11 djk.setRoot(L3Address(IPv4Address(1)));
12 djk.setKLimit(5); // 5 paths
13 djk.runUntil(L3Address(IPv4Address(6)));
14 if (djk.getRoute(L3Address(IPv4Address(6)), pathNode)) {

3 INETMANET Framework 137

15 EV << "Path :"<< i << "Nodes ;
16 for (auto elem : pathNode) {
17 EV << elem;
18 if (elem != pathNode.back())
19 EV << "-";
20 else
21 EV << "\n";
22 }
23 }

3.7.4 The GlobalWirelessLinkInspector Module

The objective of the module GlobalWirelessLinkInspector is to aid in
debugging routing protocols. This module can record the changes in the routing
tables that are derived from ManetRoutingBase class (cf. Sect. 3.2.1). The
module must be set in the landscape, it helps finding the source-destination path.

3.7.5 NETA Framework Integration

INETMANET has integrated the NETwork Attacks Framework for OMNeT++
(NETA) framework13 as well. NETA allows to simulate three types of attacks in an
IPv4 network, in particular sink-hole attacks, delay attacks, and IP dropping attacks.
By default, this module is disabled in the basic configuration of INETMANET. It
can be activated by selecting the box Net attack in the project features list.

References

1. Arizona State University: Video Trace Library. http://trace.eas.asu.edu/
2. Barekatain, B., Maarof, M.A., Quintana, A.A., Cabrera, A.T.: Greenie: a novel hybrid routing

protocol for efficient video streaming over wireless mesh networks. EURASIP J. Wirel.
Commun. Netw. 2013(1), 168 (2013). https://doi.org/10.1186/1687-1499-2013-168

3. Barekatain, B., Raahemifar, K., Ariza, A., Triviño, A.: Promoting wired links in wireless mesh
networks: an efficient engineering solution. PLoS One 10(3), e0119679 (2015). https://doi.org/
10.1371/journal.pone.0119679

4. Bellofiore, S., Balanis, C.A., Foutz, J., Spanias, A.S.: Smart-antenna systems for mobile
communication networks. Part 1. Overview and antenna design. IEEE Antennas Propag. Mag.
44(3), 145–154 (2002)

5. Chong, E., Maddila, S., Morley, S.: On finding single-source single-destination K shortest
paths. In: Proceedings of the International Conference on Computing and Information
(ICC’95), pp. 40–47 (1995)

13NETA website: https://nesg.ugr.es/index.php/en/2015-06-10-08-14-34/neta-2.

http://trace.eas.asu.edu/
https://doi.org/10.1186/1687-1499-2013-168
https://doi.org/10.1371/journal.pone.0119679
https://doi.org/10.1371/journal.pone.0119679
https://nesg.ugr.es/index.php/en/2015-06-10-08-14-34/neta-2

138 A. Ariza and V. Inzillo

6. Chunjian, L.: Efficient antenna patterns for three-sector WCDMA systems. M.Sc. thesis,
Chalmers University of Technology, Göteborg (2003)

7. Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR). RFC 3626. IETF,
Fremont (2003)

8. IEEE Standards Association: IEEE Standard for Information Technology – Telecommunica-
tions and Information Exchange between Systems Local and Metropolitan Area Networks–
Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. IEEE Std 802.11-2016—Revision of IEEE Std 802.11-2012,
Institute of Electrical and Electronics Engineers, Piscataway (2016). https://doi.org/10.1109/
IEEESTD.2016.7786995

9. Inzillo, V., De Rango, F., Quintana, A., Santamaria, A.: A new switched beam smart antenna
model for supporting asymmetrical communications extending inet OMNeT++ framework.
In: International Symposium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS). IEEE, Piscataway (2017)

10. Johnson, D., Hu, Y., Maltz, D.: The Dynamic Source Routing Protocol (DSR) for Mobile Ad
hoc Networks for IPv4. RFC 4728. IETF, Fremont (2007)

11. Montgomery, D.: Design and Analysis of Experiments, 8th edn. Wiley, London (2012). https://
books.google.es/books?id=XQAcAAAAQBAJ

12. Neumann, A., Aichele, C., Lindner, M., Wunderlich, S.: Better Approach to Mobile Ad-hoc
Networking (BATMAN). Draft. IETF, Fremont (2008)

13. Perkin, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector (AODV) Routing.
RFC 3561. IETF, Fremont (2003)

14. Perkin, C., Ratliff, S., Dowdell, J.: Dynamic MANET On-demand (AODVv2) Routing. Draft.
IETF, Fremont (2010)

15. Perkins, C., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector routing
(DSDV) for mobile computers. In: ACM SIGCOMM’94 Conference on Communications
Architectures, Protocols and Applications, pp. 234–244. ACM, New York (1994)

16. Sbeiti, M., Wietfeld, C.: PASER: Position Aware Secure and Efficient Mesh Routing Protocol.
Draft. IETF, Fremont (2012)

17. Sbeiti, M., Goddemeier, N., Behnke, D., Wietfeld, C.: PASER: secure and efficient routing
approach for airborne mesh networks. IEEE Trans. Wirel. Commun. 15(3), 1950–1964 (2016).
https://doi.org/10.1109/TWC.2015.2497257

18. Seeling, P., Reisslein, M.: Video transport evaluation with H.264 video traces. IEEE Commun.
Surv. Tutorials 14, 1142–1165 (2012)

19. Yen, J.Y.: Finding the K shortest loopless paths in a network. Manag. Sci. 17(11) (1971). http://
www.jstor.org/stable/2629312

20. Ziegelmann, M.: Constrained shortest paths and related problems. Ph.D. thesis, Universität des
Saarlandes (2001). https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/23809

https://doi.org/10.1109/IEEESTD.2016.7786995
https://doi.org/10.1109/IEEESTD.2016.7786995
https://books.google.es/books?id=XQAcAAAAQBAJ
https://books.google.es/books?id=XQAcAAAAQBAJ
https://doi.org/10.1109/TWC.2015.2497257
http://www.jstor.org/stable/2629312
http://www.jstor.org/stable/2629312
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/23809

Chapter 4
RINASim

Vladimír Veselý, Marcel Marek, and Kamil Jeřábek

4.1 Introduction

Recursive InterNetwork Architecture (RINA) is the clean-slate architecture aimed
to change the whole Internet unlike just temporary fixes for current status quo. The
RINA concept is based on John Day’s thoughts, lectures, and book [2] regarding
International Organization for Standardization (ISO)/Open Systems Interconnec-
tion (OSI) initiative failure, Transmission Control Protocol (TCP)/Internet Protocol
(IP) development, commercial adoption of the Internet, and other technical/political
events in Internet history.

The proposed RINA architecture is fundamentally different from the current
TCP/IP networking. The RINA approach focuses on a few principles instead
of a broad and complex ecosystem of the modern Internet. The idea of the
recursive composition of layers arises naturally from the structure of repeating
computer networking patterns. Instead of strictly separating network functions into a
predefined set of layers, RINA enables to compose a stack of layers that may offer a
nearly the same set of functions. All RINA layers employ the same protocols which
contrast to the TCP/IP model, where each layer defines its set of protocols. RINA
was designed to provide a simpler and efficient alternative to the current Internet
architecture.

Section 4.2 provides brief information how to install RINASim and start working
with it. Section 4.3 starts with a description of high-level RINA network nodes.
Section 4.4 goes deeper and outlines various components and policies. The whole

V. Veselý (�) · M. Marek · K. Jeřábek
Brno University of Technology, Brno, Czech Republic
e-mail: veselyv@fit.vutbr.cz; imarek@fit.vutbr.cz; ijerabek@fit.vutbr.cz

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_4

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_4&domain=pdf
mailto:veselyv@fit.vutbr.cz
mailto:imarek@fit.vutbr.cz
mailto:ijerabek@fit.vutbr.cz
https://doi.org/10.1007/978-3-030-12842-5_4

140 V. Veselý et al.

content of Sect. 4.5 is dedicated to a thorough description of simulations that
illustrate basic scenarios of RINA network operation. This chapter is summarized
in Sect. 4.6.

4.2 Installation

RINASim [22] is a stand-alone framework for the OMNeT++ Discrete Event-based
Simulation (DES) environment. RINASim is coded from scratch and independent
from other (model) libraries. The main purpose is to offer the community a reliable
and the most up-to-date tool (in the sense of RINA specification compliance)
for simulating RINA-based computer networks. RINASim, in its current state,
represents a working implementation of the simulation environment for RINA. The
simulator contains all mechanisms of RINA according to the current specifications.

The RINASim installation is a straightforward process with two key phases: (1)
obtain/download the source code; (2) compile the RINASIM project, which creates
one static library (librinasimcore, containing the simulation core) and one
dynamic library (librinasim, binding together the core and the implementation
of various policies).

RINASim is developed for OMNeT++ v5.2.1. RINASim August 2016’s release
is the last one that is compatible with OMNeT++ v4.6. The current trend is to
make RINASim compatible with any OMNeT++ version that supports the C++
11 language standard and the GCC 4.9.2 compiler. All source codes (including
master and other thematic branches) are publicly available on the project’s GitHub
repository [23]. The manual installation and building RINASim from the source
code is pretty simple. Just clone or download the main branch, import the project
into OMNeT++ (it is named rina), compile it, and start simulating with RINASim.
The user should be prepared for a rather long initial compilation time.

4.3 High-Level Design

The purpose of this section is to provide future RINASim users with a short
introduction (or more accurately an executive summary) to RINA concepts. These
concepts and ideas formulate the design and development of the whole RINASim
framework.

4.3.1 Overview

We now introduce the theoretical background. However, an explanation of the
complete Recursive InterNetwork Architecture is beyond the scope of this chapter.

4 RINASim 141

Hence, only parts relevant to the current RINASim functionality are captured.
The synthesis of RINA information provided below is from the following sources
[8, 9, 11, 12, 14].

4.3.1.1 Nature of Applications and Application Protocols

The set of Internet applications was rather simplistic before the world wide web—
one application with a single instance using only one protocol. Hence, there is
nearly no distinction between an application and its networking part. However, the
web completely changed this situation—one application protocol may be used by
more than one application (e.g., Hypertext Transfer Protocol (HTTP) is being over-
employed as a communication protocol), and also one application may have many
application protocols (e.g., web browsers, mail clients).

The following terms are recognized in the context of RINA, their relationship is
depicted in Fig. 4.1:

• Application Process (AP): Program instantiation to accomplish some purpose,
• Application Entity (AE): AE is the part of AP, which represents application

protocol and application aspects concerned with communication.

There may be multiple instances of the AP in the same system. AP may have
multiple AEs; each one may process a different application protocol. There also
may be more than one instance of each AE type within a single AP.

All application protocols are stateless; the state is and should be maintained in
the application. Thus, all application protocols modify shared state external to the
protocol itself on various objects (e.g., data, file, hardware peripherals). Because
of that, there is only one application protocol that contains trivial operations (e.g.,
read/write, start/stop). Data transfer protocols modify state internal to the protocol;
the only external effect is the delivery of Service Data Units (SDUs).

Fig. 4.1 Application
Process (AP) and Application
Entity (AE) relationship

AE AE

Application Process
(AP)

Application entities

Outside network

Inside network

142 V. Veselý et al.

4.3.1.2 Core Terms

The data transport and inter-networking tasks together (generally known as net-
working) constitute Inter-Process Communication (IPC). IPC between two APs on
the same operating system needs to locate processes, evaluate permission, pass
data, schedule tasks, and manage memory. IPC between two APs on different
systems works similarly plus adding functionality to overcome the lack of shared
memory.

In traditional networking stacks, the layer provides a service to the layer
immediately above it. The recursion (and repeating of patterns) is the main feature
of the whole architecture. Layer recursion became more popular even in TCP/
IP with technologies like Virtual Private Networks (VPNs) or overlay networks
(e.g., Overlay Transport Virtualization (OTV), TOR). Recursion is a natural thing
whenever we need to affect the scope of communicating parties. However, so far it
was just recursion of repeating functions in existing layers.

In ISO/OSI or TCP/IP, there is a set of layers each with completely different
functions. RINA, on the other hand, yields the idea of the single generic layer
with fixed mechanisms but configurable policies. In RINA, this layer is called
Distributed Inter-Process Communication Facility (DIF)—a set of cooperating APs
providing IPC. There is not a fixed number of DIFs in RINA; we can stack them
according to the application or network needs. From the DIF point of view the actual
stack depth is irrelevant, DIF must know only (N + 1)-layer above and (N − 1)-
layer below. DIF stacking partitions networks into smaller, thus, more manageable
parts.

The concept of the RINA layer could be further generalized to a Distributed
Application Facility (DAF)—a set of cooperating APs in one or more computing
systems, which exchange information using IPC and maintain a shared state.
A DIF is a DAF that does only IPC. Distributed Application Process (DAP)
is a member of a DAF. The Inter-Process Communication Process (IPCP) is
a special AP within a DIF delivering inter-process communication. The IPCP
is an instantiation of a DIF membership; computing system can perform IPC
with other DIF members via its IPC process within this DIF. An IPCP is a
specialized DAP. The relationship between all newly defined terms is depicted in
Fig. 4.2.

DIF limits and encloses cooperating processes in the one scope. However,
its functionality is more general and versatile apart from rigid TCP/IP layers
with dedicated functionality (i.e., a data link layer for adjacent node commu-
nication, a transport layer for reliable data transfer between applications). DIF
provides IPC to either another DIF or to DAF. Therefore, DIF uses a single
application protocol with generic primitive operations to support inter-DIF com-
munication.

4 RINASim 143

(N
-1

)-D
IF

s
(N

)-
FID

FAD

DIF B DIF C

DIF A

DAF Y

DAF Z

Fig. 4.2 DIF, DAF, DAP, and IPCP illustration

4.3.1.3 Connection-Oriented vs. Connectionless

The clash between connection-oriented and connectionless approaches (that also
corrupted ISO/OSI tendencies) is from the RINA perspective quite easy to settle.
Connection-oriented and connectionless communication are both just functions of
the layer that should not be visible to applications. Both approaches are equal, and
it depends on application requirements which one to use. On the one hand, con-
nectionless is characterized by the maximal dissemination of the state information
and dynamic resource allocation. On the other hand, connection-oriented limits the
dissemination and tends toward static resource allocation. The first one is good for
low volume stochastic traffic. The second one is especially useful for scenarios with
deterministic traffic flows.

If the applications request the allocation of communication resources, then the
layer determines what mechanisms and policies to use. Allocation is accompanied
with access rights and description of Quality of Service (QoS) (e.g., what minimum
bandwidth or delay is needed for correct operation of application). QoS demands
are then translated into the appropriate QoS class called QoS-cube.

4.3.1.4 Delta-t Synchronization

All properly designed data transfer protocols are soft-state. There is no need
for explicit state synchronization (hard-state) or tools like SYN and FIN
flags.

144 V. Veselý et al.

Initial synchronization of communicating parties is done with the help of the
Delta-t protocol with the main variable denoted as Δt (cf. [15, 27]). Delta-t
was developed by Richard Watson, who proposed a time-based synchronization
technique. He proved that conditions for distributed synchronization were met if
the following three timers are realized: (a) Maximum Packet Lifetime (MPL); (b)
maximum time to attempt retransmission a.k.a. maximum period during sender is
holding a Protocol Data Unit (PDU) for retransmission while waiting for a positive
acknowledgment (a.k.a. R); (c) maximum time before an Acknowledgment (ACK)
(a.k.a. A).

Delta-t assumes that all connections exist constantly. Synchronization state is
maintained only during the activity, which is defined as 2 ·Δt from the receiver side
and 3 · Δt from the sender side, where Δt = R + MPL + A. After 2–3 Δt periods
without any traffic the state may be discarded, effectively resetting the connection.
Because of that, there are no hard-state protocols (with explicit synchronization),
only soft-state ones. Delta-t postulates that port allocation and synchronization are
distinct.

4.3.1.5 Separation of Mechanism and Policy

We understand the term mechanism as the fixed part and policy as the flexible
part of IPC. If we clearly separate them, we discover that there are two types of
mechanisms:

• tightly-bound that must be associated with every PDU, which handles fundamen-
tal aspects of data transfers,

• loosely-bound that may be associated with some data transfer PDUs, which
provide additional features (in particular reliability and flow control).

Both groups are coupled through a state vector maintained separately per flow;
every active flow has its state-vector holding state information. For instance, the
behavior of retransmission and flow control can be heavily influenced by chosen
policies, and they can be used independently of each other.

This implies that only a single generic data transfer protocol based on Delta-
t is needed, which may be governed by different transfer control policies. This
data transfer protocol modifies the state internally, whereas the application protocol
(carried inside) modifies the state externally.

4.3.1.6 Naming and Addressing

The AP communicates in order to share states. We mentioned that an AP consists of
AEs. We need to differentiate between different APs and also different AEs within
the same AP. RINA is therefore using the following set of identifiers to achieve the
desired naming properties:

4 RINASim 145

• Distributed Application Name (DAN) is the name that identifies a distributed
application. It is globally unambiguous. One DAF might have assigned more
than one DAN with different access control properties.

• Application Process Name (APN) is a globally unambiguous synonym for an AP
of the DAF.

• Application Process Instance Identifier (API-id) is an identifier bound to an AP
instance to distinguish multiple AP instances. It is unambiguous within the AP.

• Application Entity Name (AEN) is unambiguous within the scope of the AP.
• Application Entity Instance Identifier (AEI-id) is an identifier that is also

unambiguous within a single AP. It facilitates the identification of different
Application Entity Instances (AEIs).

• Application Naming Information (ANI) references a complete set of identifiers to
name particular application. It consists of a four-tuple: APN, API-id, AEN, and
AEI-id. The only required part of ANI is APN, others are optional.

An IPC process has an APN to identify it among other DIF members. A RINA
address is a synonym for the IPCP’s APN with a scope limited to the layer and
structured to facilitate forwarding. The APN is useful for management purposes but
not for forwarding. Address structure may be topologically dependent (indicating
the nearness of IPCPs). APN and address are simply two different means to locate
an object in different context. There are two local identifiers important for IPCP
functionality—port-id and connection-endpoint-id. Port-id binds this (N)-IPCP and
(N + 1)-IPCP/AP; both of them use the same port-id when passing messages. Port-
id is returned as a handle to the communication allocator. It is unambiguous within a
computing system. Connection Endpoint Identifier (CEP-id) identifies a shared state
of one communication endpoint. Since there may be more than one flow between
the same IPCP pair, it is necessary to distinguish them. For this purpose, connection-
id is formed by combining source and destination CEP-ids with QoS requirements
descriptor. CEP-id is unambiguous within IPCP and connection-id is unambiguous
between a given pair of IPCPs. Figure 4.3 depicts all relevant identifiers between
two IPCPs.

Watson’s Delta-t implies port-id and CEP-id in order to help separate port
allocation and synchronization. RINA’s connection is a shared state between ends
identified by CEP-ids. RINA’s flow is when connection ends are bound to ports
identified by port-ids. The lifetimes of flow and its connection(s) are independent of
each other.

The relationship between node and Point of Attachment (PoA) is relative—node
address is (N)-address, and its PoA is (N−1)-address. Routes are sequences of (N)-
addresses, where (N)-layer routes based on this addresses (not according to (N −
1)-addresses). Hence, the layer itself should assign addresses because it understands
address structure.

146 V. Veselý et al.

src CEP-id dst CEP-id

Ports with
port-ids

EFCPIs with
CEP-ids

Connection-id

N-PDU

Structured
IPCP address

src
CEP-id

dst
CEP-id user-data

Port allocation

State synchronization

Connection

Flow

Fig. 4.3 Overview of IPCP local identifiers

4.3.2 Nodes

There are only three basic kinds of nodes in a RINA network (illustrated in Fig. 4.4).
Each kind represents a computing system running RINA:

• Hosts: end-devices for IPC containing AEs in the top layer; they employ two or
more DIF levels;

• Interior routers: interim devices, which are interconnecting (N)-DIF neighbors
via multiple (N − 1)-DIFs; they employ two or more DIF levels;

• Border routers: interim devices, which are interconnecting (N)-DIF neighbors
via (N−1)-DIFs, where some of (N−1)-DIFs are reachable only through (N−2)-
DIFs; they employ three or more DIF levels.

As depicted in Fig. 4.4, the main difference between node kinds is in an overall
number of DIF levels present in a computing system. Due to the limited number of
Network Interface Cards (NICs), hosts usually have a single 0-DIF (connected to
the physical medium) and a few 1-DIFs leveraging on this lowest level DIF. Interior
routers have potentially a lot of 0-DIFs (for each interface) but only a few relaying
1-DIFs. Border routers also perform relaying but serve as gateways between those
(N − 1)-IPCs, which are not connected directly. Thus, an (N − 2)-DIF is needed to
reach the physical medium.

4 RINASim 147

Border
Router

Interior
Router

Border
Router

Host

(N
)-D

IF
(N

+1
)-D

IF
(N

-1
)-D

IF

Host

Physical
medium

Relaying RMT

Multiplexing
RMTs

Physical
medium

Fig. 4.4 Example of a RINA network with three levels of DIFs and different nodes

4.3.3 DAF Design

4.3.3.1 DIF Allocator Interface

The primary task of the Distributed Inter-Process Communication Facility Allocator
(DA) is to return a list of DIFs where the destination application may be found
based on the ANI reference and access control information. An additional and more
complex DA description is available in [25]. The DA contains and works with
multiple mapping tables to provide its services:

• Naming information table: provides an association between the APN and its
synonyms;

• Search table: provides a mapping between the requested APN and the list of DAs
where to search for it next;

• Neighbor table: maintains a list of adjacent peers when trying to reach other DAs;
• Directory: contains records mapping the APNs with access rights to the list of

supporting DIFs including the DIF’s name, access control information, and the
provided QoS.

148 V. Veselý et al.

4.3.3.2 IPC Resource Manager

Inter-Process Communication Resource Manager (IRM) (cf. the specification [6]),
as its name suggests, manages DAF resources. This involves multiple different
tasks:

• IRM processes allocate calls by delegating them to appropriate local IPCPs in
relevant DIFs;

• IRM manages DA queries and acts upon their responses. When the DA response
contains more than one DIF, the IRM chooses which DIF to use;

• IRM administers the use of flows between AEs and DIFs. IRM may choose to
multiplex a single or multiple AE flows into single/multiple flows to a set of
DIFs;

• IRM initiates joining or creating a DAF and/or a DIF. The IRM acts upon the
DAF, or a DIF lost (e.g., sending notifications or perform subsequent actions).

4.3.3.3 Application Process

The Application Process (AP) is a program intended to accomplish some purpose,
which can be instantiated on a processing system. An AP contains one or more AEs,
which are introduced in the following section. The AP manages some of the system
resources, for example the processor, the storage, and the IPC. An AP must have
at least one AE. Otherwise, the AP would have no input/output and would lack the
state-sharing purpose.

4.3.3.4 Application Entity

An Application Entity (AE) is a component of an AP (task). An AP needs to
communicate with other APs for multiple purposes, potentially at the same time.
The goal of AEs is to create and manage these application connections. The AE
implements an application protocol that provides a shared understanding of the
purpose of communication, protocol, set of objects, and their meaning that the two
AEs exchange. There is only one application protocol called Common Distributed
Application Protocol (CDAP) used for communication.

AEs could be implemented by subroutine libraries which should be hidden
to application programmers—they would control it via Application Programming
Interface (API) calls (e.g., similar to Berkeley Software Distribution (BSD) sock-
ets). The example should provide a better understanding of the purpose of the
AEs. Imagine an application that contains two different AEs. One AE should be
responsible for serving requests for web pages, while another AE might be involved
in communicating with network database server. Each of these AEs has its defined
purpose, set of objects they communicate, and communication protocol.

4 RINASim 149

4.3.3.5 Instances of Application Processes and Application Entities

The Application Process Instance (AP Instance) and the Application Entity Instance
(AE Instance) are instantiations of the AP and AE tasks. One processing system may
contain multiple instances of the same AP. It is also possible to have many instances
of the same AE in one AP. It is fruther possible to create an application connection
specifically to one of the instances of the AP and the AE. Each instance can
manipulate with unique data, and it can have unique parameters. A video conference
is a good use-case of how the AP and the AE instances might be distinguished.
Imagine that one AP instance is a video call with more than one participant. An AE
implements a video-streaming protocol and an AEI represents the feed from one
camera of a single participant.

4.3.3.6 Common Distributed Application Protocol

The Common Distributed Application Protocol (CDAP) is the only required appli-
cation protocol in RINA. It provides a platform for building all distributed appli-
cations. CDAP allows distributed applications to deal with communication at the
object level without the need to do an explicit serialization and other input/output
operations. The CDAP unifies the approach of sharing data over the network, so we
do not need to create any additional specialized protocols.

From the application perspective, the only operations that can be performed on
objects are create/delete, read/write, and start/stop (execute/suspend). These oper-
ations are primarily supported by the CDAP, which consists of three subparts: (1)
Common Application Connection Establishment (CACE), which is involved in con-
nection initialization; (2) Authentication, which is responsible for authentication of
communication parties; and (3) the CDAP, which is processing all other messages.

4.3.3.7 Enrollment

Enrollment is the phase of communication that follows right after the CDAP
connection is established with a member of a DIF/DAF. Two types of enrollment
exist in RINA: within a DIF and within a DAF. They differ mainly from the
perspective of the information that is exchanged during this phase. An AP must
always be enrolled to become a full-featured member of a DAF.

The enrollment may perform the following operations:

• determine the current state of the member AP (if AP is joining the DAF for the
first time, or if it is a returning member);

• assign capabilities and synonyms to the new member relevant within the DAF;
• initialize static aspects, policies, and synchronize the Resource Information

Bases (RIBs);
• create additional connections.

150 V. Veselý et al.

4.3.3.8 Resource Information Base

The Resource Information Base (RIB) is the logical representation of the local
repository of objects in the DAF. Each member of a DAF has its portion of the
information stored in the local RIB. All objects are accessible via the RIB Daemon,
which is responsible for managing and maintaining them. The RIB is a storage
(from the operating system perspective) and there are no restrictions on how to
implement it. In the DAF, it should most likely be implemented as some (key-
value/relational/temporal) database of application objects. In current TCP/IP based
networks, the RIB can be compared to the Management Information Base (MIB) of
the Simple Network Management Protocol (SNMP), which is also used for storing
objects.

4.3.3.9 Objects

The object is the designation for a structured data that the CDAP is dealing with.
Objects are the primary building blocks of the RIB. Two communicating AEs create
a shared object space, and they provide access to the portion of the application’s
RIB. All objects enforce some access rights. There are two types of RIB objects:
passive (that contain static data) and active (which trigger various control events).

4.3.3.10 RIB Daemon

The Resource Information Base Daemon (RIBd) is one of the key components of
the AP. It is responsible for managing and maintaining objects in the RIB within
the DAF. The RIBd monitors all events occurring within the DAF and notifies the
subscribers. The AP of a DAF may have several tasks (threads), which share a state
via the RIB with the help of the RIBd. If any task has requirements for information
from another participant in a distributed application, it uses the RIBd to get the
information.

The RIBd accepts subscriptions from tasks. The subscription for an object is
a mechanism to manage (read or write) data objects in the RIB. The subscription
requests should be time-driven, event-driven, or direct. The RIBd should process
the subscriptions as efficiently as possible. The main functions of the RIBd within a
DAF are:

• notify sets of members about the current value of selected objects;
• monitor events occurring within the DAF;
• provide the RIBd API that can be used by APs sub-tasks;
• respond to requests for information from other members of the DAF;
• maintain a mandatory log of received events.

4 RINASim 151

4.3.4 DIF Design

4.3.4.1 Delimiting

The SDU in RINA is a contiguous chunk of data. IPC might fragment the SDU
(when passing it down to the (N − 1)-DIF) or combine user-data (when passing it
up to the (N + 1)-DIF). Hence, the operation performed by the delimiting module
(for specification cf. [3, 10]) is to delimit the SDU into/from the PDU’s user-
data preserving its identity. Employed mechanism indicates the beginning and/or
the end of the SDUs. Either internal (special pattern) or external (SDU length)
delimiting could be used. The delimiting module can perform both fragmentation
and concatenation.

Encapsulation/decapsulation of data messages happens in the RINA components
lying in the data path. Figure 4.5 depicts this process in the DIF/DAF together with
the message nomenclature.

Delimiting

EFCPI

SDU Protection
RMT

Delimiting

EFCPI

SDU Protection
RMT

SDU Protection
IRM-controlled

RMT

AP with AE AE
CDAP message

SDU

user-data field

PDU

SDU

user-data field

PDU

SDU

opCode invokeId

version src
Address

dst
Address Connection-Id

…….

SDU
delimiter flags

SDU sequence
number

SDU
delimiter flags

SDU sequence
number

SDU
data

PDU
data

PDU
length

PDU
type flags sequence

number user-data field

src
CEP-id

dst
CEP-id QoS-id

Fig. 4.5 Message passing between RINA components

152 V. Veselý et al.

4.3.4.2 Data Transfer with Error and Flow Control

The Error and Flow Control Protocol (EFCP) is split in two independent protocol
machines coupled and coordinated through a state vector. EFCP guarantees data
transfer and data control. The full EFCP functionality is described in [13]. The
Data Transfer Protocol (DTP) implements mechanisms tightly coupled with the
transported SDUs, for instance reassembly and sequencing. The DTP protocol
machine operates on data PDU’s fields requiring minimal processing: source/des-
tination addresses, QoS requirements, connection-id, and (optionally) sequence
number or checksum. DTP carries the user-data in the Data Transfer Protocol Data
Unit (DT-PDU).

The Data Transfer Control Protocol (DTCP) implements mechanisms that are
loosely coupled with the transported SDUs, for instance (re)transmission control
using various acknowledgment schemes and flow control with data-rate limiting.
DTCP functionality is based on Delta-t and DTCP processes control PDUs (Con-
trolPDU). DTCP provides error and flow control over user-data.

There is an Error and Flow Control Protocol Instance (EFCPI) module per every
active flow. EFCPI consists of DTP and DTCP submodules. The QoS demands drive
DTCP policies. The DTCP submodule is unnecessary for flows that do not need it,
i.e., flows without any requirements for reliability or flow control. The relationship
between DTP and DTCP is illustrated in Fig. 4.6. Depicted are also data transfer and
data control transfer paths. The control traffic stays out of the main data transfer.

4.3.4.3 Relaying and Multiplexing Task

The Relaying and Multiplexing Task (RMT) modules have two main responsibilities:
relaying and multiplexing as characterized in [7]. The goal of multiplexing is to pass
PDUs from the EFCPIs and the RIBd to appropriate (N − 1)-flows and reverse of
that. Relaying handles incoming PDUs from (N −1)-ports that are not directed to its

State VectorTightly-bound
DTP

Loosely-bound
DTCP

EFCP instance

control traffic

Fig. 4.6 A EFCP instance divided into DTP and DTCP part

4 RINASim 153

IPCP and forwards them to other (N − 1)-ports using the information provided by
its forwarding policy. RMT instances in hosts and bottom layers of routers usually
perform just the multiplexing task, while RMTs in the top layers of interior/border
routers do both multiplexing and relaying. In addition to that, RMTs in top layers of
border routers perform flow aggregation.

Each (N−1)-port handled by the RMT has its set of input and output buffers. The
number of buffers, their monitoring, the scheduling discipline, and the classification
of traffic into distinct buffers are all policy matter. The RMT is a straightforward
high-speed component. As such, most of its management (state configuration,
forwarding policy input, buffer allocation, data rate regulation) is handled by the
resource allocator, who makes the decisions based on the observed IPC process
performance.

4.3.4.4 SDU Protection

The SDU Protection is the last part of the IPCP data path, before an SDU is handed
over to an underlying DIF. It is responsible for protecting SDUs from untrusted
(N − 1)-DIFs by providing mechanisms for lifetime limiting, error checking,
data integrity protection, and data encryption. The SDU protection also provides
mechanisms for data compression or other two-way manipulations that depend on
the (N − 1)-flow.

Due to different levels of trust, the SDU protection handles each (N − 1)-flow
on its own. This gives us the ability to skip some SDU protection mechanisms in
favor of performance for trusted networks while still being protected from untrusted
networks. This is controlled by using different policies that may protect SDU
content with the help of integrity checks or encryption.

4.3.4.5 Flow Allocator

The Flow Allocator (FA), as specified in [5], processes allocate/deallocate IPC
API calls and further management of all IPCP flows. The FA instantiates a Flow
Allocator Instance (FAI) to manage each flow; FA is a controller/container for all
flow allocator instances. An FAI is created upon allocate request call. It manages a
given flow for its whole lifetime. The FAI handles creating/deleting EFCPIs while
managing a single flow’s connection. FAI returns port-id to the allocation requestor
upon successful allocation as a referencing handle. The FAI participates only on
port allocation, not on synchronization, which is the responsibility of the EFCPI.
The FAI maintains a mapping between the flow’s local port-id and the connection’s
local CEP-id.

An FA contains a Namespace Management (NSM) interface for assigning
and resolving names (including synonyms) within a DIF. This activity involves
maintaining the table with entries that map a requested ANI to the IPCP’s address.

154 V. Veselý et al.

The Flow object contains all information necessary to manage any given flow
between communicating parties. It is carried inside create/delete flow request/re-
sponse messages controlling the FA and FAI operation. A flow object contains: a
source and a destination ANI, source and destination port-ids, a connection-id, a
source and a destination address, the QoS requirements, a set of policies, access
control information, hop-count, and current and maximal retries of create flow
requests.

4.3.4.6 Resource Allocator

If a DIF has to support different qualities of service, then different flows will have
to be allocated to different policies and traffic for them will be treated differently.
The Resource Allocator (RAl), delineated in [4], is a component accomplishing this
goal by handling the management of various IPCP resources, in particular:

• controls the creating/deleting and the enlarging/shrinking of RMT queues;
• modifies EFCPI’s DTCP policy parameters;
• controls the creating/deleting of (N−1)-flows and their assignment to appropriate

RMT queue(s);
• manage QoS classes and their assignment to RMT queue(s);
• manage routing information affecting RMT’s relaying, initiate congestion con-

trol.

The RAl maintains a catalog of meters and dials by monitoring various manage-
ment resources. Each catalog item can be manipulated and shared with other IPC
processes within the DIF.

4.4 Components and Policies

This section provides a general overview of the components design, which includes
high-level abstract models of computing systems (like hosts and routers) and also
their low-level submodules (like the IPCP). In general, a structure of RINASim
models follows the structure proposed in the RINA specification. This intentional
correspondence enables anyone understanding the RINA specifications to orient
easily in RINASim as well. Though this structure does not always stand for the
most natural representation of the RINA concepts in simulation models, it provides
a framework for evaluating properties of the architecture and to identify missing or
inaccurate information in the original specification.

The RINA specifications present the proposed network architecture as a generic
framework, where mechanisms are intended to perform basic common functionality
and policies are defined to select the most appropriate implementation of variable
functionality. Rather than providing an exhaustive implementation of policies for

4 RINASim 155

each parameterized function, RINASim provides interfaces that are used by the core
implementation to call functions defined by the selected policies.

The RINASim policy framework is based on the OMNeT++ Network Topology
Description (NED) module interface [20], which helps to minimize the need for
modifying existing C++/NED source code. Instead of placing a simple module with
a policy implementation inside the simulation network graph, a placeholder inter-
face module is used. This design allows the potentially unlimited amount of user
policy implementations to be defined and easily switchable via the configuration
files (by setting a parameter of the encompassing module). Each policy consists of
a NED module interface and a base C++ class.

4.4.1 Nodes

RINASim offers a variety of high-level models simulating the behavior of inde-
pendent computing system (examples of all three types are provided in Fig. 4.7).
These models can be employed to quickly set up simulation experiments. Through
parameterization and extension, it is possible to test different deployments and

Border
Router

Interior
Router

Border
Router

Host

(N
)-D

IF
(N

+1
)-D

IF
(N

-1
)-D

IF

Host

Physical
medium

Relaying RMT

Multiplexing
RMTs

Physical
medium

Fig. 4.7 Examples of RINASim node modules of different types

156 V. Veselý et al.

settings. Based on the RINA specification, we can distinguish the following node
types:

• Host nodes, which represent devices or systems that run distributed applications.
These nodes implement the full RINA stack and they contain an application
process(es) as well. AP instances are configured to communicate with each other
to simulate the behavior of an arbitrary RINA application. Currently, there are
several predefined host nodes depending on a count of APs and AEs.

• Routers (intermediate nodes), which can be either interior or border routers. A
router is a device that interconnects different underlying DIFs and often does not
run user applications. Just as in the RINA specification, there are either interior
or border routers depending on the DIF stack depth (influenced partially also by
a count of interfaces).

4.4.2 DAF Modules

DAF components can be divided into submodules: (a) representing IPC endpoints;
(b) interconnecting APs and available IPCPs; and (c) discovering APNs. The
internal structure of these components and their relationship are depicted in Fig. 4.8
and described below.

4.4.2.1 DIF Allocator

The difAllocator module handles locating a destination application based on
its name. The DA is a component of the DAP’s IPC management that takes the ANI
and access control information and returns a list of DIF-names through which the
requested application is available. Moreover, the difAllocatormodule provides
statically configured knowledge about the simulation network graph. RINASim’s
DA overloads any NSM calls. The DA comprises the following submodules:

• da: delivers the core functionality of the DA;
• namingInformation: provides the mapping between APN synonyms;
• directory: provides a mapping between APN and DIF-names;
• searchTable: provides the mapping between APN and peer DA for authori-

tative search;
• neighborTable: provides the mapping between peer DA and neighboring DA

instances.

4 RINASim 157

Fig. 4.8 Overview of the DAF modules

158 V. Veselý et al.

4.4.2.2 IPC Resource Manager

The ipcResourceManager module currently queries the DA module to find
suitable IPCP and relays communication between the AE and the IPCP. It comprises
the following submodules:

• irm: the broker between APs and IPCs, handles AP flow (de)allocation calls;
• connectionTable: maintains the state of the N − 1 flows.

4.4.2.3 Enrollment

The enrollment module manages all communication within the CACE phase
and during the enrollment phase. It is responsible for managing the states of
communication and exchanging initial application objects. The enrollment
module contains the following submodules:

• enrollment: delivers the core functionality of Enrollment;
• enrollmentStateTable: provides state information about connections.

4.4.2.4 Application Process

The applicationProcess module currently handles all application communi-
cation from initialization of the first connection to deallocation of all resources. The
module acts as an independent unit within the DAF. The applicationProcess
module also provides statically configured information about its name within
the DAF. The following submodules comprise the applicationProcess
module:

• apInst: spawns a running application;
• rib: provides an interface for object management in the database;
• ribDaemon: handles subscription for objects and manages them within DAF

members;
• enrollment: handles initial phases of communication;
• applicationEntity: wrapper for standard AEIs;
• aeManagement: wrapper for AE management instances.

4.4.2.5 AE Monitor Instance

The AEMonitor module is an instance of a specialized AE that mimics a ping-like
application. It contains the following submodules:

• iae: delivers the core functionality of an AEI;
• commonDistributedApplicationProtocol: handles CDAP mes-

sages;

4 RINASim 159

• socket: application buffer for read/write operations cooperating with (N − 1)-
EFCP.

4.4.2.6 AE Management Instance

The mgmtae module is used for handling the management communication. It is
mainly used for enrollment and for maintaining RIB updates. It comprises the
following submodules:

• aemgmt: delivers the core functionality;
• commonDistributedApplicationProtocol: handles CDAP mes-

sages;
• enrollmentNotifier: serves as the mediator in communication between
enrollment and aemgmt;

• socket: application buffer for read/write operations cooperating with (N − 1)-
EFCP.

4.4.2.7 RIB Daemon

The ribDaemon module manages objects in the local RIB repository. It provides
an interface for manipulating objects (e.g., read/write/delete) in the RIB.

4.4.2.8 RIB

The rib module acts as a database of application objects. It has an interface for
searching, writing, and deleting objects. The RIB is primarily accessed by the RIBd
that manages these objects within the AP.

4.4.2.9 Common Distributed Application Protocol

The commonDistributedApplicationProtocol module accepts and
sends all CDAP messages. The following submodules help to differ between types
and purposes of CDAP messages and allows their logging.

• cace: handles all messages that belong to CACE;
• auth: handles messages that belong to authentication phase;
• cdap: accepts and sends all other messages;
• cdapSplitter: forwards messages to appropriate module;
• cdapMsgLog: provides logging of all messages.

160 V. Veselý et al.

4.4.3 DIF Modules

All currently implemented DIF components are enclosed to the IPCProcess
container module (IPCP instance). The overall structure of the IPCProcess is
depicted in Fig. 4.9. The following subsections describe the included (sub)modules.

4.4.3.1 Delimiting

The delimiting module handles SDUs in the form of SDUData from the N + 1
DIF and produces the UserDataField for the EFCP instance module. In the
opposite direction, it accepts the UserDataField and produces the SDUData to
the N + 1 DIF. The module is capable of fragmenting and concatenating incoming
SDUs. Fragmentation is based on maxPDUsize. Concatenation takes the incoming
SDUs and puts them in a single PDUData until maxPDUSize is met or until the
delimiting timer expires. The delimiting module does not contain any submodules.
No policies are currently associated with this module.

4.4.3.2 EFCP Compound Module

The efcp compound module handles the data transfer and the associated state
vectors. It takes the SDUs from the (N + 1)-IPCP or the CDAP message from
the RIBd and creates PDUs. This module dynamically spawns EFCP instances.
Dynamic modules consist of one delimiting module (delimiting_<portId>)
and (possibly) multiple EFCPI modules (efcp_<cepId>) per one flow. The
EFCPI module itself is also a compound module and contains the static modules
DTP and DTPState. If the flow (QoS demands) requires control, then there are
DTCP and DTCPState modules. It also includes the efcpTable to store bind-
ings between instances of delimiting and EFCP. Moreover, there is a mockEFCPI
module containing a simplified EFCPI with only DTP-like capabilities for manage-
ment flows.

There are three static submodules:

• efcp: creates and deletes EFCP instances and delimiting modules;
• efcpTable: contains bindings between delimiting and EFCPI (DTP and

DTCP);
• mockEFCPI: it is a simplified EFCPI with only DTP-like capabilities;

Furthermore, the efcp compound module may contain dynamically created
pairs of delimiting and EFCPI modules:

• delimiting_<portId>: handles fragmentation/concatenation;
• efcpi_<cepId>: handles data transfer and control loop functions.

Policies related to the EFCP are specified in the DTP and DTCP subsections.

4 RINASim 161

Fig. 4.9 IPCP’s DIF modules

162 V. Veselý et al.

4.4.3.3 EFCPinstance

An EFCP instance locally manages the established flow. The efcpi_<cepId>
module contains the DTP and DTPState submodules. Any necessary policy
submodules associated with the flow are part of this compound module as well.
The incorporated submodules are:

• dtp: this module implements the DTP. The dtp module accepts user data
content from the delimiting module, generates PDUs, and passes them to
relayAndMux. If necessary, it asks dtcp for reliable data transfer. DTP
policies are configurable via the config.xml file by specifying an EFCP policy
set in the QoS-cube;

• dtpState: this module holds properties related to the actual data transfer. In
RINASim, dtpState module stores all necessary variables and queues;

• dtcp: this module implements the DTCP. The dtcp handles retransmission and
flow control related tasks. From the perspective of RINASim, dtcp executes
policies to update the dtcpState. Policies react to situations when error
recovery and/or flow control are expected. The current implementation supports
retransmission, window-based flow control, allowed gap, and A-Time;

• dtcpState: It maintains DTCP-related variables;
• northG,southG: these pass-through modules enable better link visualization.

The dtp module is associated with the following DTP policy types:

• InitialSeqNumPolicy: it allows some discretion in selecting the initial
sequence number when a Data Run Flag (DRF) is going to be sent. (default:
sets the new sequential number to 1);

• RcvrInactivityPolicy: if no PDUs arrive in the watched period, the
receiver should expect a DRF in the next transfer PDU. This policy represents
a timer that should be set to 2 · (MPL + R + A). (default: resets all receiver-side
variables and queues);

• SenderInactivityPolicy: this policy represents a timer, which detects
long periods of no traffic. It indicates that a DRF should be sent. Δt should be
set to 3 · (MPL + R + A). (default: resets all sender-side variables and queues);

• RTTEstimatorPolicy: this policy is executed by the sender to estimate the
duration of the retransmission timer. This policy is usually based on an estimate
of Round-Trip Time (RTT) and received/lost ACKs. (default: computes RTT as
an average from the current RTT and the last computed estimate).

The associated DTCP policies are:

• ECNPolicy: handles the Explicit Congestion Notification (ECN) bit in incom-
ing DT-PDUs. (default: sets inner variable based on bit in DT-PDU header);

• ECNSlowDownPolicy: it is executed after IPCP’s RAl receives a congestion
notification. (default: no action);

4 RINASim 163

• LostControlPDUPolicy: determines what action to take when the protocol
machine detects that a control PDU (ACK or flow control) may have been lost.
(default: sends ControlAck and empty DT-PDU);

• NoOverridePeakPolicy: allows the rate-based flow control to exceed its
nominal rate for a presumably short period of time. (default: puts the DT-PDU
on ClosedWindowQ);

• NoRateSlowDownPolicy: is used to lower the send rate momentarily below
the allowed rate. (default: no action);

• RateReductionPolicy: is executed in case of rate-based flow control.
When local shortage of buffers occur or when buffers are less full than a
given threshold, this policy increases the rate agreed during the connection
establishment. (default: slows down by 10% if buffers are getting clogged);

• RcvFCOverrunPolicy: it determines what action to take if the receiver
receives PDUs, but the credit or rate has been exceeded. (default: drops the PDU
and sends a control PDU as response);

• RcvrAckPolicy: the policy is executed by the receiver of the DT-PDU,
as it provides some discretion in the action taken. (default: either acknowl-
edges immediately or starts the A-Timer and acknowledges the
RcvLeftWindowEdge when it expires);

• RcvrControlAckPolicy: executes when receiving the ControlAckPDU.
(default: it checks the received values and, if needed, returns a control PDU with
updated information);

• RcvrFCPolicy: this policy is invoked when a DT-PDU is received to give the
receiving protocol machine an opportunity to update the flow control allocations.
(default: increments receiver’s right window edge);

• ReceivingFCPolicy: it is invoked by the receiver of a DT-PDU in case
there is a flow control present, but no retransmission control. (default: sends
FlowControlPDU).

• ReconcileFCPolicy: it is invoked when both credit and rate-based flow
control are in use, and they disagree on whether the protocol machine can send
or receive data. If this is the case, then the protocol machine can send or receive;
otherwise, it cannot;

• RxTimerExpiryPolicy: it is executed by the sender when a retransmission
timer expires. This policy must be run in less than the maximum time to ACK.
(default: retransmits DT-PDU with seqNum equal to the one in RXTimer);

• SenderAckPolicy: this policy is executed by the sender when PDUs might
be deleted from the retransmission queue. It is useful for multicast-like use-cases,
when it is feasible to delay the removal of PDUs from the retransmission queue.
(default: removes DT-PDU from retransmission queue up to the acknowledged
sequence number);

• SenderAckListPolicy: is executed by the sender when PDUs might be
deleted from the retransmission queue. The policy is used in conjunction with the
selective ACK aspects. It is useful for multicast transfers just like the previous
policy. (default: removes specified seqNum ranges from retransmission queue);

164 V. Veselý et al.

• SendingAckPolicy: is executed upon A-Timer expiration in case there
is a DTCP present. (default: updates receiver’s left window edge and sends
ACK/FlowControlPDU);

• SndFCOverrunPolicy: it determines what action to take if the sender has a
DT-PDU ready for dispatch but values of SndRightWindowEdge or SndRate
are blocking them. (default: put DT-PDU in ClosedWindowQueue);

• TxControlPolicy: it is used when there are conditions that warrant sending
fewer PDUs than allowed by the sliding window flow control. (default: puts as
many DT-PDUs from generatedPDUQ to postablePDUQ as possible).

4.4.3.4 RMT

The Relaying and Multiplexing Task represents a stateless function that takes
incoming PDUs and relays them within the current IPC or passes them to the
outgoing port. In particular, the RMT takes PDUs from (N − 1)-port Identifiers
(IDs), consults their address fields, and performs one of the subsequent actions:

• If the address is not an address (or a synonym) for this IPC process (which
is determined by RAl’s AddressComparator policy), it consults the PDU
forwarding policy and posts it to the appropriate (N − 1)-port(s).

• If the address is one assigned to this IPC process, the PDU is delivered either to
the appropriate EFCP flow or the RIBd (via a mock EFCP instance).

• Outgoing PDUs from EFCP instances or the RIBd are posted to the appropriate
(N − 1)-port-id(s).

In RINASim, all functionality of the RMT, including a policy architecture,
is encompassed in a single compound module named relayAndMux, which is
present in every IPC process. The included RMT submodules are:

• relayAndMux: consists of multiple simple modules of various types, some of
which are instantiated dynamically at runtime;

• Static submodules:

– rmt: implements fundamental RMT logic that decides what should be done
with messages passing through the module;

– allocator: a manager unit for dynamic modules that provides an API for
adding, deleting, and reconfigurating RMT ports and queues;

• Dynamic submodules:

– RMTPort (encompassed in RMTPortWrapper): a single endpoint of an
(N − 1)-flow;

– RMTQueue: a representation of either an input or an output queue. The
number of RMTQueues per (N − 1)-port is a matter of RAl policies;

– sdup: it performs SDU protection.

4 RINASim 165

The RMT provides the following policies:

• schedulingPolicy: it is invoked each time that some (N − 1)-port has data
to send. The policy employs the algorithm to make a decision about which of the
port’s queues should be handled first;

• queueMonitorPolicy: it is a stateful policy that manages variables used by
other RMT policies. It is invoked by various events occurring inside RMT and its
ports and queues;

• maxQueuePolicy: this is a policy used for deciding what to do when queue
lengths are overflowing their threshold lengths. It is invoked whenever the size
of items in a queue reaches a threshold;

• pduForwardingPolicy: it is a policy deciding where to forward a PDU. It
accepts the PDU as an argument, does a lookup in its internal structures (usually
a forwarding table populated by the Protocol Data Unit Forwarding Generator
(PDUFG) policy), and returns a set of (N − 1)-ports.

4.4.3.5 Routing

The Routing module is a policy that serves by exchanging information with other
IPCPs in the DIF in order to generate a set of routing information. It indirectly
provides input for populating the RMT PDUForwardingPolicy. Routing poli-
cies are used to propagate information about routing in the DIF. They depend
on the PDUFG. The policies consist of a single replaceable policy that conducts
routing within the DIF. There are examples of policies (e.g., DummyRouting,
DomainRouting, SimpleRouting) leveraging distance-vector, link-state, or
native RINA approaches for routing PDUs.

4.4.3.6 Flow Allocator

The flowAllocator module handles (de-)allocation request and response calls
from the IRM, RIBDaemon, DAFEnrollment, or the AE. The FA itself is
separated in the flow table and the flow management modules. Included submodules
are:

• fa: provides the core functionality involving the instantiation of FAIs;
• nFlowTable: it maintains mappings between (N)-flow and bound FAI;
• fai_<portId>_<CEPid>: it manages the whole flow lifecycle.

The supported policies of the flowAllocator module are:

• allocateRetryPolicy: occurs whenever initiating an FAI receives a nega-
tive create flow response. It allows the FAI to reformulate the request and/or to
recover properly from failure;

• qosComparePolicy: checks if existing (N − 1)-flows can be used to support
a (N)-flow;

166 V. Veselý et al.

• newFlowRequestPolicy: is invoked after the FAI’s instantiation. Policy
subtasks involve both (1) evaluation of access control rights and (2) translation of
QoS requirements specified in allocate request to appropriate RAl’s QoS-cubes.

4.4.3.7 Resource Allocator

The resourceAllocator is one of the most important components of an
IPC process. It monitors the operation of the IPC process and makes adjust-
ments to its operation to keep it within the specified operational range. The
resourceAllocator submodules are:

• ra: provides core functionality by managing the RMT and the connections to
other IPCPs via (N − 1)-flows;

• nm1FlowTable: maintains a table containing information about the active
(N − 1)-flows;

Supported/included policies are:

• pduFwdGenerator: a policy, to manage the RMT’s PDU forwarding policy;
• queueAllocPolicy: a policy handling RMT queue allocation strategy;
• queueIdGenerator: a policy generating queue IDs from flow information

and PDUs;
• addressComparator: a policy matching PDU address and IPCP address.

4.5 Demonstrations

This section outlines some of the scenarios where RINA is employed as the
native network stack. General instructions (how to set up and run the examples)
are provided for the reader. Furthermore, a detailed description tries to reveal
advantages of adopting RINA for certain Internet use-cases. Demonstration source
codes are located in the /examples/ folder, each one includes the following files
(which may be reused as templates when creating other RINASim scenarios):

• <name>.ned : the OMNeT++ simulation network, which contains definitions of
nodes and their interconnections;

• omnetpp.ini : the scheduled setup including model configurations (e.g., node
addresses, ANI for AEs, references to the XML configuration) applied during
the initialization of scenario;

• config.xml : the file contains more complex/structured configurations (e.g., DA’s
mappings, RAl’s QoS-cubes, pre-allocation and pre-enrollment settings) in the
form of XML data, which are mostly applied during initialization;

• *.anf : the file is describing which statistics should be collected and evaluated
during a simulation run;

• ./results/* : the scalar/vector results of various simulation runs.

4 RINASim 167

4.5.1 Demonstration Network

Simulation source code files relevant for this scenario are located in the example
folder /examples/Demos/UseCase5. The motivation behind the demo simulation is
to show a ping-like application within the simple network consisting of all different
node types. The topology contains two host nodes (called HostA and HostB), two
border routers (called BorderRouterA and BorderRouterB), and one interior
router (identified as InteriorRouter) interconnected together.

There are a total of six named DIFs of three different ranks. The network is shown
in Fig. 4.10. Please note the addressing scheme where the same node may use the
same (italicized) address on a different DIF as long as this address is unambiguous
within the layer’s scope. The RINA address length and syntax is policy-dependent
(compared to IP or Medium Access Control (MAC) addresses). The demonstration
uses a flat address space with simple strings as addresses. The six DIFs are:

• The TopLayer DIF is common to HostA (with address hA), BorderRouterA
(address rA and self-enrolled), BorderRouterB (address rB), and HostB
(hB). Self-enrolled APs/IPCPs in RINASim are automatically members of some
DAF/DIF and they are skipping the enrollment phase during any communication.

• The three middle DIFs are MediumLayerA, MediumLayerAB, and Medium-
LayerB. MediumLayerA is common to HostA (ha) and BorderRouterA
(address ra and self-enrolled). MediumLayerAB is common to BorderRouterA
(rA), InteriorRouter (address rC and self-enrolled), and BorderRouterB
(rB). MediumLayerB is common to BorderRouterB (address rb and self-
enrolled) and HostB (hb).

• The two bottom most DIFs are BottomLayerA and BottomLayerB. BottomLayerA
is common to BorderRouterA (ra) and InteriorRouter (address rc and
self-enrolled). BottomLayerB is common to InteriorRouter (address rc and
self-enrolled) and BorderRouterB (rb).

By default, every RAl contains an implicit QoS-cube (with QoS-id MGMT-
QoSCube) that defines QoS parameters (e.g., reliability and minimum bandwidth)
for management traffic and that guarantees successful mapping of management
SDUs onto the appropriate (N)-flow. Apart from this default QoS-cube, each RAl
loads the QoS-cube set according to the simulation configuration. For demon-
stration, there are two more QoS-cubes available for each RAl called QoSCube-
RELIABLE and QoSCube-UNRELIABLE (with the same QoS parameters differing
only in data transfer reliability).

The DA implementation currently allows only the static change of its settings
(namely different kinds of mappings). Hence, the necessary configuration step is
to initialize the DA properly in order to provide services to FA, RAl, and other
components depending on naming information. In particular, two DA’s tables are
important for overall functionality: Directory (helps to search target IPCP for a
given APN) and NeighborTable (used by the FA to find a neighbor IPCP for a
given IPCP).

168 V. Veselý et al.

Fig. 4.10 Demonstration network diagram

4 RINASim 169

The simulation description is divided into two phases:

1. Enrollment Phase: if another IPCP wants to communicate within a given DIF,
then it needs to be enrolled by a DIF member. Self-enrolled IPCPs are members
of certain DIFs from the beginning of the simulation. They also help other
IPCPs to join a DIF. In order to allow communication between any node, the
simulation is scheduled to commence enrollment of: BorderRouterA into
BottomLayerA at t = 1 s; BorderRouterA into MediumLayerAB at t = 1.5 s;
BorderRouterB into TopLayer at t = 2 s; and HostB into TopLayer at
t = 5 s. The enrollment usually involves recursive calls of enrollment procedures
in lower ranked DIFs.

2. Data Transfer Phase: the IPC comprises of flow allocation, data transfer, and
optional flow deallocation. HostA and HostB are configured to exchange
messages via a ping-like protocol (measuring one-way and round-trip delays). In
this case, flow allocation is initiated at t = 10 s, the first ping is sent at t = 15 s
and flow deallocation occurs at t = 20 s.

All steps related to the enrollment phase are described in the example of an
application connection in Sect. 4.5.2. For now, let us skip the enrollment phase
by stating that except HostA all other DIF/DAF members were successfully
enrolled. All flows created during the enrollment phase carry only CACE messages
(for connection establishment), and they are intended for direct RIBd-to-RIBd
communication employing various management messages. These flows are called
management flows.

The main outcome of this scenario is a simulation of data transfer events between
ping-like applications (APPing) that run on HostA and HostB. This ping-like
protocol sends probe request (M_READ) from HostA to HostB, where HostB
replies with the response (M_READ_R). One-way and round-trip time delays are
measured according to the timestamp differences of these messages.

The data flow allocation starts at t = 10 s. HostA’s applicationProcess1
requests flow for communication with HostB’s applicationProcess1. The
event goes through the following set of steps:

1. An Allocate request is delivered to the IRM. Over there, the DA is asked to
resolve the destination ANI into an IPC address within certain DIF available to
HostA. The following result is returned yielding that the destination is reachable
via IPCP hB in the TopLayer;

2. HostA can access the TopLayer leveraging ipcProcess1. Hence, IRM
delegates a allocate request call to ipcProcess1’s FA. The FA instantiates
the EFCPI and verifies whether the IPCP is enrolled into the DIF before any
attempt for sending the create request flow. A couple of enrollment events repeat
recursively: (a) enrollment of HostA’s ipcProcess0 into MediumLayerA
by BorderRouterA; (b) creation of management flow between IPCP ha and
IPCP ra within MediumLayerA; (c) enrollment of HostA’s ipcProcess1
into TopLayer by BorderRouterA;

170 V. Veselý et al.

3. After a successful enrollment of ipcProcess1, the FA may continue with the
flow allocation. FA exchanges the create request/respond flow with HostB. This
includes the creation of an (N − 1)-flow between ha and ra in MediumLayerA
and the creation of the (N)-flow between hA and hB in the TopLayer. It gets more
complex in the TopLayer because M_CREATE and M_CREATE_R messages
must be relayed by the border routers to reach HostB, which causes additional
recursive flow allocations between interim devices (i.e., BorderRouterA, Interior-
Router, BorderRouterB). All interim devices are already enrolled into their DIFs,
thus the established flows serve as carriers for HostA and HostB data transfer;

4. M_CREATE from HostA to HostB is received by BorderRouterA’s
relayIpc. BorderRouterA inspects the create request flow and determines
BorderRouterB with the help of the DA as the next-hop. Because
border routers are not directly connected, they can communicate via
InteriorRouter as a proxy. Therefore, BorderRouterA establishes a
flow between ra and rc of BottomLayerA and sends a create request flow in
MediumLayerAB;

5. M_CREATE from BorderRouterA to BorderRouterB is received by
InteriorRouter’s relayIpc. The message then needs to be relayed to
BorderRouterB. Hence, the flow is created between rc and rb in Bottom-
LayerB. Then, the create request flow is forwarded within this DIF;

6. M_CREATE from BorderRouterA to BorderRouterB within Medi-
umLayerAB is received by BorderRouterB’s ipcProcess2. Border
RouterB accepts the flow and sends a create response flow back to
BorderRouterA. Because the flow connecting both border routers (rA and
rB within MediumLayerAB) is established, the flow allocation from step 4 may
continue;

7. M_CREATE from HostA to HostB is received by BorderRouterB’s
relayIpc after passing through flows created during steps 5 and 6. Bor-
derRouterB inspects the create request flow and determines that HostB is
reachable via its MediumLayerB. In order to successfully relay M_CREATE to
its final destination, BorderRouterB allocates the flow between rb and hb in
MediumLayerB. Subsequently, M_CREATE is forwarded to HostB;

8. M_CREATE is received by HostB’s ipcProcess1. The FA then notifies
the applicationProcess1 about the current flow allocation. The flow is
accepted by applicationProcess1 for data transfer between APs. The
decision is returned to ipcProcess1’s FA. The IRM is asked to create
bindings between the AP and the IPCP. The FA instantiates the EFCPI, updates
the flow object, and replies back to the requestor with M_CREATE_R;

9. M_CREATE_R is relayed via all flows formed during steps 4–7 to HostA until
ipcProcess1’s FA receives this message. The FA updates the flow object
and notifies applicationProcess1 about the successful flow allocation.
Then the IRM adds the missing bindings, and the whole data path between
HostA and HostB is ready. The (N)-flow in TopLayer can carry data traffic
between AEs with the help of all underlying flows.

4 RINASim 171

The next event is a transfer of data traffic between AEs. HostA sends five ping-
like probing objects inside the M_READ message starting at t = 15 s. Upon the
reception of these messages, HostB replies with a probe response (in the form of
a dedicated M_READ_R message). Data path and flows are depicted in Fig. 4.11
with different colors accompanied by the following description. The event consists
of five repetitions of these two steps:

1. HostA’s applicationProcess1 sends an M_READ message, which
is passed through the IRM into ipcProcess1 to a flow prepared during
the previous event and descends to ipcProcess0. The message travels
through the medium and flow connecting HostA with BorderRouterA
in MediumLayerA, where it is received by ipcProcess1. It is relayed by
BorderRouterA’s relayIpc to ipcProcess2 and flow interconnect-
ing BorderRouterA and BorderRouterB in MediumLayerAB. Because
border routers are not directly connected, the message is passed to a lower
bottomIpc into flow interconnecting BorderRouterA with the neighbor-
ing InteriorRouter in BottomLayerA. The message traverses through the
medium and it reaches InteriorRouter’s ipcProcess0. Over there,
the message ascends to relayIpc, where it is relayed within MediumLay-
erAB. Then it descends to ipcProcess1 into the flow interconnecting the
InteriorRouter and the BorderRouterB in BottomLayerB. The message
travels through the medium to BorderRouterB’s bottomIpc. It ascends
to ipcProcess2 and is relayed by relayIpc to ipcProcess1. Finally,
the message reaches HostB’s ipcProcess0 through the medium inside the
flow within MediumLayerB. It ascends to the flow in ipcProcess1 (member
of TopLayerB) and through the IRM to HostB’s applicationProcess1
as the recipient;

2. HostB’s applicationProcess1 responds with an M_READ_R message
that returns to HostA traveling in opposite direction through the same data path
(marked with a thick line) as in step 1. Referring to Fig. 4.11, the message is
either encapsulated or decapsulated depending on the direction.

After the APs exchanged pings, HostA’s AE closes the connection and sends a
deallocate submit to HostB at t = 20 s. Deallocation affects only the flow present
in the TopLayer. The current RINASim implementation leaves the underlying (N −
1/2)-flows (i.e., those not directly connected with APs) intact because they may
be reused later by other applications. This event is accompanied by the following
steps:

1. HostA’s applicationProcess1 tells the IRM to deliver a deallocate
submit. The IRM unbinds the port from its side. Then, the IRM delegates the
flow deallocation to ipcProcess1’s FA;

2. This FA generates an M_DELETE message with an updated Flow object state
inside and sends the object towards HostB through the flow in the TopLayer.
The message follows the data path leveraging existing management flows created
during the enrollment phase;

172 V. Veselý et al.

To
reyaL

p
AreyaL

muide
M

Bo
�o

m
La

ye
rA

M
edium

LayerB

Bo�om
LayerB

Border
RouterA

Interior
Router

Border
RouterB

HostA HostB

Physical medium Physical medium

M
edium

LayerAB

Fig. 4.11 Data transfer path illustration for the demonstration network

3. HostB’s ipcProcess1 receives the M_DELETE. The FA updates its version
of the Flow object. The FA then delivers a deallocation submit to HostB’s
applicationProcess1, which tells the IRM to remove the bindings;

4. ipcProcess1’s FA on HostB then replies with an M_DELETE_R acknowl-
edging the successful flow deallocation. This message is carried back to HostA;

5. HostA’s ipcProcess1 receives the M_DELETE_R. The FA marks the flow
as deallocated and disconnects remaining bindings between IPCP and IRM.

The result of the flow (de)allocation and the flow’s state is maintained in
ipcProcess1’s NFlowTable of HostA and HostB.

4.5.2 Simple Application

The simulation source code that is relevant for this scenario is located in the folder
/examples/Demos/UseCase2. There is only one named DIF Layer0 connecting
hostA and hostB. The demonstration uses a flat address space with simple strings
as addresses. The IPCP at hostA has the address 1 and the IPCP at hostB has the
address 2. The application on hostA has the APN SourceA and the destination
application on hostB has the APN DestinationB.

4 RINASim 173

Every application starts with the creation of an application connection to an AP
that is part of a DAF. This process contains several events such as AEI creation,
flow allocation, management connection establishment, and enrollment that need to
proceed before the application connection is created. The application goes through
the following steps to enable a communication within the DAF:

1. In HostA’s applicationProcess1, the connection request to HostB’s
applicationProcess1 is induced via an API call. Because HostA’s
applicationProcess1 is not a DAF member yet, it must create a man-
agement connection to the destination AP first. The applicationProcess1
of HostA spawns a management AEI inside AEManagement that is used to
handle the management communication between APs in a DAF. The flow to the
destination AP is allocated. HostB’s applicationProcess1 spawns the
corresponding management AEI when it accepts flow allocation. The connection
is successfully allocated, and the CACE between the APs may proceed;

2. HostA’s management AEI sends an M_CONNECT request carry-
ing the authentication information. The HostB’s management AEI
receives the M_CONNECT, validates the authentication data, and sends
the M_CONNECT_R back. The application connection is successfully
established upon reception of the positive response (the CACE phase proceeded
successfully);

3. The next communication phase is the enrollment. The application
Process1 of HostA sends an M_START message containing object(s) related
to the enrollment. The HostB applicationProcess1 replies with an
M_START_R. Subsequent exchange of M_CREATE / M_CREATE_R initiated
by HostB’s applicationProcess1 (that is a member of the DAF) may
proceed. These messages should synchronize essential objects in RIBs, which
would allow HostA’s applicationProcess1 to operate as a full-fledged
member of the DAF. RINASim has placeholders to leverage this synchronization
property of the enrollment;

4. When the necessary objects are created, an M_STOP message is generated by
the HostB AP. HostA’s applicationProcess1 sends an M_STOP_R
indicating that no more messages need to be exchanged. Otherwise, the
HostA applicationProcess1 might send several M_READs to
obtain information from the member AP (i.e., HostB). Then HostA’s
applicationProcess1 is a new member of the DAF.

The mentioned enrollment phase is the enrollment applied on a DAF member-
ship. Enrollment within a DIF follows the same message order and states except
for the data in the exchanged objects. In case of a DIF, RIBd processes above-
mentioned message directly instead of AEs (because AEs are not part of any DIF).

Once the management connection is established and the enrollment phase is
finished, the AP starts to operate as a full-fledged member of a DAF. The simple
ping-like application follows these steps:

174 V. Veselý et al.

1. HostA’s applicalicationProcess1 spawns a AEMonitor instance
(which is a specialized AE offering ping-like behavior). The AEMonitor
instance requests the underlying IPCP (i.e., ipcProcess1) for the flow with a
specified application QoS. The flow is then allocated (refer to Sect. 4.5.1 for
additional details);

2. HostB’s applicationProcess1 instantiates the AEMonitor in
response to the positive allocation of the requested flow. The application
Process1 of HostA generates an M_CONNECT carrying the authen-
tication information and HostB’s applicationProcess1 sends an
M_CONNECT_R with a positive response back. This establishes the application
connection (the CACE phase is completed), and the data objects may be
transferred over this connection;

3. Generally, AEs support two types of communication: either via the RIB or
direct messaging omitting the RIB completely. Our ping-like application uses the
direct messaging to keep the demonstration as simple as possible. The HostA
applicationProcess1 sends an M_READ message request with a specific
object. The request is received by HostB’s applicationProcess1 (by an
instance of AEMonitor), which replies with an M_READ_R;

4. The HostA applicationProcess1 receives the M_READ_R. The appli-
cation then displays a result to the user (e.g., a console text). Another round
of M_READ/M_READ_R exchange follows later. The object inside these
messages contains just an integer value that is incremented by each host.

This simple ping-like application shows a direct communication between two
APs. The communication in a real ping scenario should be the same.

4.5.3 Reliable Data Transfer

The simulation source code is the same as in the case of Sect. 4.5.2. It is located
in the folder /examples/Demos/UseCase2. In this scenario, we demonstrate reliable
data transfer with a detailed description of EFCP events. We use a minimal topology
with just two hosts (see Fig. 4.12), each one with a single IPCP for the sake of
simplicity. We omit the description of events prior to the EFCP instance creation
like the enrollment phase or the flow allocation.

We demonstrate the reliable data transfer using a ping-like application between
hostA and hostB (see Fig. 4.12). The transfer over the link between hostA and
hostB is delayed by 0.4 s in both directions. As described before, the ping-like
application exchanges ping request and response (i.e., M_READ and M_READ_R
messages containing appropriate object referencing time). Both messages are sent
inside the DataTransferPDU and are acknowledged by the ControlPDU type.
The EFCP connection is configured with the default policy set. Both flow control
(i.e., speed administration) and retransmission control (i.e., acknowledgments and
retransmits guarantee that nothing gets lost) are active.

4 RINASim 175

Fig. 4.12 Reliable data transfer illustration of two directly connected hosts

At time t = 5 s, the applicationProcess1 on hostA initiates the
communication. The data transfer starts after the successful enrollment phase and
the flow allocation at t = 14.8 s. The reliable data transfer includes the following
steps:

1. The module delimiting_57043 encapsulates the incoming SDU (i.e., ping
request in form of an M_READ) into a PDUData, fragments it if necessary, and
forwards it to the EFCP instance efcpi_20757 as a UserDataField. In
the EFCP instance it is handled by the dtp module. The dtp module initializes
dtpState upon the reception of UserDataField.

The UserDataField is encapsulated in the DataTransferPDU with
a DT-PDU header. The SequenceNumber is set to the value produced by
initialSeqNumPolicy which generates a random number by default. For
simplicity, we use 1 as the initial sequence number in our example. The first PDU
is labeled with the DRF indicating the start of a new connection.

After the complete PDU has been generated, the control is handed over to the
DTCP which tries to send it. With the window-based flow control active (with
the maximum windows size of 10 PDUs), dtcp checks if the Sender’s Right
Window Edge (SRWE) is bigger than the sequence number of the DT-PDU it is
trying to send. The initial value of the SRWE is set to the sum of nextSeqNum
and intialSenderCredit.

All DT-PDUs that satisfy the flow control check are put in the
postablePDUs queue. The DTP then iterates over the set of postablePDUs
and sends them to the RMT. Simultaneously, the DTP also puts their copies into
the retransmissionQ queue and starts the RetransmissionTimer. The
timer is initiated with a default RTT value of the first PDU in the connection.
The RTT value is adjusted during the connection lifetime using ControlPDUs

176 V. Veselý et al.

and the RTTEstimatorPolicy. After passing the PDU to the RMT, the
SenderInactivityTimer is started.

2. At time t = 15.2 s, the DataTransferPDU is delivered to the EFCP instance
in the ipcProcess0 on hostB. Since the PDU has the DRF set, it indicates
the (re)start of a (new) connection. In the case of a restart, DTP dequeues as many
PDUs from reassemblyQ to the delimiting module as possible and deletes
the rest. Subsequently, DTP sets the Receiver’s Left Window Edge (RLWE)
to the seqNum of the incoming PDU (in our example to 1) and adds the
PDU to the reassemblyQ. Simultaneously, DTP updates the state vector.
The SVUpdate initiates RcvrAckPolicy which sends an AckFlowPDU to
confirm the DT-PDU (the one with seqNum = 1). The ACK received by hostA
updates the SRWE. Then, the UserDataField is passed on hostB to the
delimiting module and the rcvrInactivityTimer is started.

3. The AP on hostB sends back a ping response (i.e., an M_READ_R)
message. The same set of steps (see step 1) related to the first DT-PDU
applies to hostB’s EFCPI as in case of hostA’s corresponding EFCPI:
EFCP generates the initial sequence number, sets the DRF, and starts the
senderInactivityTimer.

4. At time t = 15.6 s, the EFCP on hostA receives the AckFlowPDU. This
triggers both the RTTEstimatorPolicy (subsequently updating the RTT
value) and the SenderAckPolicy. The SenderAckPolicy removes a
subset of the DT-PDUs from the retransmissionQ with the sequence
numbers up to the value in the AckFlowPDU.

At the same time, hostA also processes the DT-PDU with the ping response
message. The same steps as in step 2 are repeated on hostA.

5. At time t = 15.6 s, hostA sends a new ping request. The EFCP fills the header
with sequenceNumber= 2, puts the PDU in retransmissioQ with asso-
ciated RetransmissionTimer, and restarts the SenderInactiveTimer.

6. At time t = 16 s, hostB receives an ACK of the last ping response.
As a result, the DT-PDU with sequenceNumber= 1 is removed from
retransmissionQ.

7. Simultaneously to step 6 at the time t = 16 s, the ipcProcess0 on hostB
receives a DT-PDU with the second ping request, and sends back an ACK. The
process repeats itself afterwards.

The summary of hostA’s state vector is in Table 4.1a and hostB’s state vector
is in Table 4.1b. Both tables include Receiver’s Right Window Edge (RRWE) and
Sender’s Left Window Edge (SLWE), which are counterparts of RLWE and SRWE.
The values indicate the state after the corresponding event.

Both state vectors continue to evolve in a similar fashion throughout the rest
of the communication. After the last DataTransferPDU is sent, the inactivity
timers are restarted one last time. After they expire, the state-vectors are deallocated.

The events are mirrored on both hosts, because the application on top is sending
data in both directions. The EFCP instance on both sides uses its receiver and sender
state vector and finite state machine.

4 RINASim 177

Table 4.1 Values of the hostA and the hostB EFCP

(a) (b)

Variable Value Variable Value

Event #1 #4 #5 #6 Event #2 #3 #7 #8

Time 14.8 s 15.6 s 15.6 s 16 s Time 15.2 s 15.2 s 16 s 16 s

Next SeqNum 2 2 2 3 Next SeqNum 1 2 2 2

RLWE 0 0 1 1 RLWE 1 1 1 2

RRWE ∞ ∞ 11 11 RRWE 11 11 11 12

SLWE 0 2 2 2 SLWE 0 2 2 2

SRWE 10 11 11 11 SRWE 10 10 11 11

RetransmissionQ 1 ∅ ∅ 2 RetransmissionQ ∅ 1 ∅ ∅

4.6 Conclusion

In this chapter, we described the core RINA principles. We summarized the RINA
theory in the text that lacks any forward references. We know how hard the “mental
shift” from TCP/IP concepts towards RINA is, thus we urge a reader to follow the
citations in order to learn more. We described different kinds of high-level RINA
nodes including hosts, interior routers, and border routers. Subsequently, we dived
into the low-level RINA components that are being used by the DIF and DAF.

RINASim, in its current state, represents an entirely working implementation
of the simulation environment for RINA. The simulator contains all mechanisms
of RINA according to the current specification. The RINASim philosophy benefits
from the clever OMNeT++ module interfacing, which enables flexible changes of
the employed policies. Furthermore, the chapter also contains a detailed illustration
of the RINA principles using three RINASim scenarios. The demonstration descrip-
tions show the impact of recursion and help others to understand the enrollment
and the flow (de)allocation procedures in practice. The demonstration setup may be
employed as a template when creating new scenarios.

The main motivation behind RINASim’s development is that it should allow:

• researchers to prototype and test new policies and mechanisms in a native and
fully-compliant RINA environment—scientific goal;

• others to visualize and understand the RINA principles—educational goal.

RINASim (first published in [26]) started as an FP7 EU PRISTINE deliverable
and continued beyond the end of the project. However, RINASim is just one
independent implementation of the RINA concepts (cf. Appendix). RINASim is an
open environment that can be extended with experimental features. The simulator
helps to evaluate new features and to compare them with existing methods.

Our future work involves the following improvements for RINASim:

• Real-life layer-2 simulation modules: RINASim’s core lacks any real-life 0-DIF
medium implementations (e.g., Ethernet, Long Term Evolution (LTE), serial).
This severely impacts some simulation results and collected statistics because

178 V. Veselý et al.

the medium’s main properties (delay and bandwidth) are fixed and do not respect
the usual processing.

• Topology generator: preparing a scenario and the accompanied configuration
is a cumbersome process even with all the help of OMNeT++’s Integrated
Development Environment (IDE). We want to create a dedicated web-application
that would allow to generate even complex RINASim topologies using a few
mouse clicks and drag-and-drop operations.

• Hardware-in-the-Loop (HIL) simulation: by the time that this book is publicized,
RINA will already pass the ISO standardization process. Since multiple projects
obey the RINA specification, we would like to try connect our simulation
modules with real operating system implementations.

We encourage anyone interested in RINA to step in and contribute to the project!

Acknowledgements This work was supported by the Brno University of Technology organization
and by the research grant FIT-S-17-3964.

RINASim is a joint international project, which would not be possible without the huge support
and contribution of the following individuals:

• Tomáš Hykel—Brno University of Technnology (Czech Republic);
• Sergio Leon Gaixas—Universitat Politècnica de Catalunya (Spain);
• Ehsan Elahi—TSSG in the Waterford Institute of Technology (Ireland);
• Kewin Rausch—Fondazione Bruno Kessler (Italy);
• Peyman Teymoori—University of Oslo (Norway);
• Kleber Leal—Universidade Federal de Pernambuco (Brazil).

Appendix

CDAP Messages

Table 4.2 collects all CDAP messages for further reference.

RINA Adoption

Pouzin Society [21] is the formal body in charge of maintaining the RINA
specifications. Any individual or organization can become a member and participate
in related research and development. RINA is successfully targeted as an alternative
to the traditional TCP/IP stack in the frame of multiple EU projects. Here is a list
of projects and their main interests concerning RINA:

• IRATI [18]: IRATI advances the state of the art of RINA towards an architecture
reference model and specifications that are closer to enable implementations
deployable in production scenarios. The design and implementation of the IRATI

4 RINASim 179

Table 4.2 CDAP messages

Message opcode Purpose

M_CONNECT Initiate a connection from a source to a destination application

M_CONNECT_R Response to M_CONNECT, carries connection information or
an error indication

M_RELEASE Orderly close of a connection

M_RELEASE_R Response to M_RELEASE, carries final resolution of the close
operation

M_CREATE Create an application object

M_CREATE_R Response to M_CREATE, carries result of the create request,
including identification of the created object

M_DELETE Delete a specified application object

M_DELETE_R Response to M_DELETE, carries result of the deletion attempt

M_READ Read the value of a specified application object

M_READ_R Response to M_READ, carries parts or all of the object values,
or an error indication

M_CANCELREAD Cancel a prior read issued using M_READ for which a value
has not been completely returned

M_CANCELREAD_R Response to M_CANCELREAD, indicates outcome of the
cancellation

M_WRITE Write a specified value to a specified application object

M_WRITE_R Response to M_WRITE, carries the result of the write
operation

M_START Start the operation of a specified application object, used when
the object has operational and non-operational states

M_START_R Response to M_START, indicates the result of the operation

M_STOP Stop the operation of a specified application object, used when
the object has operational and non-operational states

M_STOP_R Response to M_STOP, indicates the result of the operation

prototype on top of Ethernet permits further evaluation and deployment of RINA
in real computer networks;

• IRINA [16]: IRINA aims to compare RINA against TCP/IP in a lab environment
using the IRATI prototype. Moreover, it proposes use-cases, where RINA is a
better option for big national research and educational networks;

• PRISTINE [24]: PRISTINE investigates the programmability of the RINA
architecture, in particular its separation of mechanisms and policies to achieve
more flexible behavior of network components;

• OCARINA [19]: OCARINA’s objectives are to research and develop new
congestion control and routing mechanisms in RINA to show that RINA is a
better solution for the Internet than TCP/IP in terms of performance;

• ARCFIRE [1]: ARCFIRE’s main goal is to demonstrate the RINA benefits
at a large scale by running real life experiments on the FIRE+ experimental
facilities, for instance the deployment of virtualized infrastructure, the End-to-

180 V. Veselý et al.

End (E2E) service provisioning, or the applicability of Distributed Denial-of-
Service (DDoS) attacks in the RINA stack;

• RINAiSense [17]: The RINAiSense project improves the scalability and security
of wireless sensor networks while investigating the applicability of RINA to
resource-constrained systems.

Moreover, notable implementations are introduced and facts about RINA readi-
ness and deployment status:

• OpenIRATI: open-source programmable implementation of RINA protocols for
Linux. Enables Linux device to behave as a RINA-enabled host or software
router;

• rlite: open-source implementation of RINA for Linux. The implementation is
divided into user-space and kernel-space parts. Kernel-space parts can be loaded
as modules in the unmodified Linux kernel;

• Ouroboros: prototype IPC subsystem for Portable Operating System Inter-
face (POSIX) operating systems, that incorporates a fully decentralized packet
switched transport network based on a part of the RINA concepts;

• ProtoRINA: a RINA architecture implementation that serves as a teaching tool
and also enables the design and development of new protocols and applications;

• RINASim: the official OMNeT++ framework to simulate the RINA architecture.

References

1. ARCFIRE Consortium: ARCFIRE project—experimenting with RINA on FIRE+. http://ict-
arcfire.eu/ (2018)

2. Day, J.: Patterns in Network Architecture: A Return to Fundamentals. Pearson Education,
London (2008). https://books.google.cz/books?id=5FDdAAAACAAJ

3. Day, J.: D-Base-2010-007: Delimiting Module. Tech. rep., Pouzin Society (2009)
4. Day, J.: RINA-RFC-2010-002: Notes on the Resource Allocator. Tech. rep., Pouzin Society

(2010)
5. Day, J.: D-Base-2011-015: Flow Allocator Specification. Tech. rep., Pouzin Society (2011)
6. Day, J.: D-Base-2011-017: IPC Resource Manager (IRM) Specification. Tech. rep., Pouzin

Society (2012)
7. Day, J.: D-Base-2012-010: Relaying and Multiplexing Task Specification. Tech. rep., Pouzin

Society (2012)
8. Day, J.: RINARefModelPart3-1 140102: Part 3—Distributed InterProcess Communication,

Chapter 1—Fundamental Structure. Tech. rep., Pouzin Society (2012)
9. Day, J.: RINARefModelPart3-2 140102: Part 3—Distributed InterProcess Communication,

Chapter 2—DIF Operations. Tech. rep., Pouzin Society (2012)
10. Day, J.: DelimitingGeneral130904: Delimiting Module. Tech. rep., Pouzin Society (2013)
11. Day, J.: RINARefModelPart1-0 130925: Part 1—Basic Concepts of Distributed Systems. Tech.

rep., Pouzin Society (2013)
12. Day, J.: RINARefModelPart2-1 130925: Part 2—Distributed Applications, Chapter 1—Basic

Concepts of Distributed Applications. Tech. rep., Pouzin Society (2013)
13. Day, J., Marek, M., Tarzan, M., Bergesio, L.: Error and Flow Control Protocol Specification

version 6.6. Tech. rep., Pouzin Society (2015)

http://ict-arcfire.eu/
http://ict-arcfire.eu/
https://books.google.cz/books?id=5FDdAAAACAAJ

4 RINASim 181

14. Day, J., Trouva, E.: RINARefModelPart2-2 140102: Part 2—Distributed Applications, Chap-
ter 2—Introduction to Distributed Management Systems. Tech. rep., Pouzin Society (2014)

15. Fletcher, J.G., Watson, R.W.: Mechanisms for a reliable timer-based protocol. Comput. Netw.
2(4), 271–290 (1978). http://dx.doi.org/10.1016/0376-5075(78)90006-5

16. GÉANT Project: IRINA. https://geant3plus.archive.geant.net/opencall/Optical/Pages/IRINA.
aspx (2018)

17. IMEC-Distrinet: The Recursive Internet Architecture as a solution for optimal resource
consumption, security and scalability of sensor networks. https://distrinet.cs.kuleuven.be/
research/projects/RINAiSense (2018)

18. IRATI Consortium: Investigating RINA as an Alternative to TCP/IP. http://irati.eu/ (2018)
19. OCARINA: OCARINA: Optimizations to Compel Adoption of RINA. http://www.mn.uio.no/

ifi/english/research/projects/ocarina/ (2018)
20. OMNeT++: OMNeT++ Simulation Manual. https://www.omnetpp.org/doc/omnetpp/

manual/#sec:ned-ref:module-interfaces (2018)
21. Pouzin Society: Pouzin Society | Building a better network. http://pouzinsociety.org/
22. Pouzin Society: RINASim—Recursive InterNetwork Architecture Simulator. https://rinasim.

omnetpp.org/
23. Pouzin Society: kvetak/RINA: RINA Simulator. https://github.com/kvetak/RINA (2018)
24. PRISTINE Consortium: PRISTINE | PRISTINE will take a major step forward in the

integration of networking and distributed computing. http://ict-pristine.eu/ (2018)
25. Trouva, E., Grasa, E., Day, J., Bunch, S.: Layer discovery in rina networks. In: 2012 IEEE 17th

International Workshop on Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD), pp. 368–372. IEEE, Piscataway (2012)

26. Vesely, V., Marek, M., Hykel, T., Rysavy, O.: Skip this paper-rinasim: your recursive
internetwork architecture simulator. arXiv preprint arXiv:1509.03550 (2015)

27. Watson, R.W.: Delta-t protocol specification. UCID 19293, Lawrence Livermore National
Laboratory, Livermore (1983)

http://dx.doi.org/10.1016/0376-5075(78)90006-5
https://geant3plus.archive.geant.net/opencall/Optical/Pages/IRINA.aspx
https://geant3plus.archive.geant.net/opencall/Optical/Pages/IRINA.aspx
https://distrinet.cs.kuleuven.be/research/projects/RINAiSense
https://distrinet.cs.kuleuven.be/research/projects/RINAiSense
http://irati.eu/
http://www.mn.uio.no/ifi/english/research/projects/ocarina/
http://www.mn.uio.no/ifi/english/research/projects/ocarina/
https://www.omnetpp.org/doc/omnetpp/manual/#sec:ned-ref:module-interfaces
https://www.omnetpp.org/doc/omnetpp/manual/#sec:ned-ref:module-interfaces
http://pouzinsociety.org/
https://rinasim.omnetpp.org/
https://rinasim.omnetpp.org/
https://github.com/kvetak/RINA
http://ict-pristine.eu/

Chapter 5
Cellular-Networks Simulation
Using SimuLTE

Antonio Virdis, Giovanni Nardini, and Giovanni Stea

5.1 Introduction

With the advent of their fourth-generation deployment, known as Long Term
Evolution (LTE), cellular networks have undergone a massive increase in pop-
ularity, due to their large bandwidth, ubiquitous coverage, and built-in features.
More interestingly, they have progressively shifted from single-service to general-
purpose access networks, capable of supporting diverse packet-based services
simultaneously. Such a paradigm shift has been accompanied by a parallel one
in the related research: research discussing physical-layer issues (i.e., waveforms,
signal propagation models, receiver algorithms, coding and modulation, etc.) has
lately been complemented by research related to Medium Access Control (MAC)
layer issues, like resource allocation, admission control, user-side power saving
techniques, performance guarantees, as well as the one dealing with the performance
of services offered through cellular networks, from mobile web browsing to smart
Internet of Things (IoT). Currently, cellular networks are being considered as
a viable alternative to other technologies, such as WiFi for traditional mobile
applications, IEEE 802.15.4 and Long Range (LoRa) [5] for sensors and smart
things, IEEE 802.11p for vehicular networks, and Asymmetric Digital Subscriber
Line (ADSL) for home Internet access. The main advantages of an LTE network
are: being infrastructure-based and operator-managed, which relieves service users
from the need of deploying and managing a (service-specific) infrastructure of their
own, or making do with the lack of one. The fact that it operates on licensed
spectrum, guaranteeing absence of external interference, and its built-in features
for security, mobility management, and terminal-side power saving. Current trends,

A. Virdis · G. Nardini (�) · G. Stea
University of Pisa, Pisa, Italy
e-mail: antonio.virdis@unipi.it; g.nardini@ing.unipi.it; giovanni.stea@unipi.it

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_5

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_5&domain=pdf
mailto:antonio.virdis@unipi.it
mailto:g.nardini@ing.unipi.it
mailto:giovanni.stea@unipi.it
https://doi.org/10.1007/978-3-030-12842-5_5

184 A. Virdis et al.

such as the progression towards fifth-generation (5G) access and the standardization
of Multi-access Edge Computing (MEC), all concur to foresee that the role of
cellular networks in next-generation communications will increase, incorporating
new key features like Device-to-Device (D2D) communications and a tighter
coupling between communication and computation resources.

Evaluating the performance of cellular networks poses several challenges. The
fact that LTE includes a whole stack of layered protocols, each one having buffers
and timers, which interact with other features (such as power saving at both the base
station and the terminal), intrinsically defies analytical modeling. On the other hand,
building prototypes to do live measurements incurs non-trivial difficulties: despite
the fact that several efforts have been done to realize open-source frameworks
for LTE experimentation on Commercial Off-The-Shelf (COTS) hardware (e.g.,
OpenAirInterface [6]), licensed spectrum makes live experimentation difficult, and
prototypes can only scale so much as for number of users and base stations,
transmission and computing power, and available bandwidth. This leaves simulation
as the ideal performance evaluation technique, trading some accuracy for a large
gain in experiment manageability. Several simulators of cellular networks have
been developed so far. Some are link-level simulators (e.g., [2, 4]). These do an
extensive job of modeling the physical layer of a link, with little or no interest
in what is above it. They are good for evaluating signal propagation, spectral
efficiency, the impact of transmission techniques such as Multiple Input Multiple
Output (MIMO) or beamforming, and interference management, but they are
generally unsuitable to understand issues related to resource scheduling, protocol
interaction, or application-level performance. A different approach is instead that
of system-level simulators, where some modeling details (e.g., signal propagation)
are abstracted in favor of a stronger focus on the interplay and communication
among several complex submodels (e.g., protocol layers). Among system-level
LTE simulators, LTE-EPC Network simulAtor (LENA) [1] is part of the Network
Simulator 3 (ns-3) framework, and it focuses on the design and testing of Self-
Organizing Network (SON) algorithms and solutions.

This chapter presents SimuLTE, a system-level simulator based on OMNeT++
for 4G LTE and Long Term Evolution Advanced (LTE-A) networks. SimuLTE is
especially focused on the LTE data plane. Most of the control-plane functions are
abstracted by using an oracle, called the Binder, which the various modules can
query to obtain information which would otherwise require control-plane protocols
and elements. SimuLTE includes all the protocols of the LTE stack. It models
the effects of the physical layer by computing the received Signal-to-Interference-
plus-Noise-Ratio (SINR) at receivers, taking into account all the simultaneous
transmitters. This allows one to use it to test, for instance, interference-coordination
schemes. It allows both infrastructure-mode communications, where the endpoints
of communications are always one User Equipment (UE) and the evolved Node
B (eNB), and network-assisted D2D communications, where both endpoints are
UEs, and the eNB is in charge of resource scheduling. For the latter, both one-
to-one and one-to-many communications are modeled. Within SimuLTE, the LTE
functions are confined to a Network Interface Card (NIC), to facilitate the setup of

5 Cellular-Networks Simulation Using SimuLTE 185

mixed scenarios, where LTE coexists with other layer-2 technologies (like WiFi),
or to use LTE as a layer-2 technology in application scenario simulations (e.g.,
communicating vehicles).

The rest of this chapter is organized as follows: Sect. 5.2 describes the cellular-
networks background, to introduce the reader to the necessary terminology and
acronyms. Section 5.3 describes the modeling of an LTE network done within
SimuLTE. Section 5.4 presents two tutorials on hot topics in LTE research:
interference-coordination techniques at the MAC-level and D2D communications,
respectively.

5.2 Background

An LTE network is composed of the Evolved Packet Core (EPC) part and the
Radio Access Network (RAN) part, as shown in Fig. 5.1. The EPC is an Internet
Protocol (IP)-based network that includes entities performing core functionalities
for the network operator, such as Mobile Management Entity (MME), Home
Subscriber Server (HSS), and Serving Gateway (SGW). The Packet Data Network
Gateway (PGW) provides the EPC with the connectivity to the Internet. The RAN is
composed of base stations, called eNBs, which are in charge of resource allocation,
and UEs, e.g., smartphones or any device capable of connecting to an LTE network.
Downlink (DL) transmission occurs from the eNB to the UEs, and Uplink (UL)
ones in the opposite direction. As far as data-plane transmissions are concerned, in
the DL an eNB receives IP packets from the EPC, processes them through the LTE
protocol stack, which includes fragmentation and reassembly, and sends them on
the air.

While LTE occupies the layer 2 of the Open Systems Interconnection (OSI)
stack, its functions are split among three protocols, namely (from top to bottom)
the Packet Data Convergence Protocol (PDCP), the Radio Link Control (RLC), and

PGW

EPC RAN

eNodeB UE

Internet SGW

MMEHSS

Fig. 5.1 Architecture of the LTE network

186 A. Virdis et al.

Fig. 5.2 Top-down traversal
of the LTE protocol stack

PD
CP

RL
C

M
AC

PH
Y

flow jflow i

tx buffer

RL
C

en
�t

y

RL
C

en
�t

y
PD

CP
 e

n�
ty

PD
CP

 e
n�

tyPDCP SDU

PDCP SDU

RLC PDU

RLC PDUs

tx buffer

RLC PDUs

PDCP SDU

PDCP SDU

RLC PDU

Scheduling & Mul�plexing

MAC SDUsMAC SDUs

MAC TB

Air frame

the MAC. The downstream flow of data within the LTE stack, i.e., the one that
an IP packet would undergo on transmission, is shown in Fig. 5.2. At each layer,
data comes from the upper layer in the form of Service Data Units (SDUs) and
goes to the lower layer as Protocol Data Units (PDUs). A PDCP entity maintains
numbering and ciphering information, among others. Each PDCP SDU is assigned
a PDCP Sequence Number (SN) and ciphered so that only the peering PDCP
entity can decode it. Data from the PDCP is sent to the RLC. It is buffered in the
RLC transmission buffer, until sent down in the form of RLC PDUs, upon request
from the MAC layer. A flow is allocated to a PDCP and a RLC entity at a node,
and its PDCP/RLC entities at the transmitter and receiver are synchronized. The
RLC can work in one of three modes: Transparent Mode (TM), Unacknowledged
Mode (UM), or Acknowledged Mode (AM). The first one does not perform any
operation; hence, a RLC SDU corresponds exactly to a RLC PDU. The second
one performs segmentation/concatenation of SDUs on transmission, as well as
reassembly, duplicate detection, and reordering of PDUs on reception. The third
one adds an Automatic Repeat-reQuest (ARQ) mechanism on top of that to ensure
reliable delivery of RLC PDUs.

The MAC layer performs scheduling and multiplexing of RLC PDUs coming
from different flows and encapsulates them into MAC Transport Blocks (TBs),
which are sent over the physical layer. At every Transmission Time Interval (TTI),
which is 1 ms in LTE, the MAC scheduler at the eNB assembles the DL and the

5 Cellular-Networks Simulation Using SimuLTE 187

UL subframes. The latter include a fixed number of Resource Blocks (RBs), e.g.,
50 in a 10 MHz deployment. In the DL, the MAC scheduler selects which UEs
will receive information, how large their TB will be, and which RBs it will occupy.
The number of bits carried in each RB depends on the Modulation and Coding
Scheme (MCS) used by the eNB for that TB. The MCS is determined by the Channel
Quality Indicator (CQI) reported by the UE, which depends on the measured SINR.
A higher CQI warrants more bits per RB, hence a higher throughput. The MAC layer
includes a Hybrid Automatic Repeat-reQuest (H-ARQ) function for error recovery:
a receiving UE acknowledges (via ACKs) (or disacknowledges via NACKs) a MAC
TB four TTI after its transmission, and the eNB can schedule a predefined number
of retransmissions at any future TTI (asynchronous H-ARQ).

UL scheduling mirrors the DL one: the eNB allocates transmission grants to
UEs having backlogged data, specifying which RBs they can use, using which
modulation. However, since data is physically stored at the UEs, a signaling method
is needed for a UE to signal to the eNB its intention to transmit. UEs can append
quantized Buffer Status Reports (BSRs) to their scheduled data, to inform the eNB
of their residual backlog. UEs can also signal the presence of backlog using an
out-of-band Random Access (RAC) procedure. Simultaneous RAC requests from
different UEs may collide, in which case UEs undergo a backoff procedure before
attempting another RAC. The eNB responds to a RAC request by scheduling the
UE in a future TTI. If unanswered, RAC requests are reiterated. The handshake for
UL transmissions is summarized in Fig. 5.3. It consists of up to three parts: a RAC
request, usually followed by a (small) grant that the eNB gives to the UE, large
enough to contain a BSR, and finally a (larger) grant that the eNB can give to the
UE once it knows its backlog.

Unlike the DL ones, H-ARQ processes are synchronous, i.e., retransmissions are
scheduled exactly eight TTIs after the previous attempt.

In the latest LTE-A releases, new functions have been introduced to address
increasing traffic demand and the requirements of new services (e.g., IoT and vehic-
ular communications). For example, Coordinated MultiPoint (CoMP) transmission
and reception and D2D communications are two of the main innovations. CoMP
addresses the problem of mitigating the effects of inter-cell interference, since
all the eNBs in an LTE network share the same spectrum. In particular, CoMP
Coordinated Scheduling (CoMP-CS) and CoMP Joint Transmission (CoMP-JT)
techniques aim at improving the performance of cell-edge UEs. This is achieved by
allowing neighboring eNBs to exchange coordination information using a common

Fig. 5.3 Handshake for the
scheduling of uplink UE
traffic

1 2 3 4 5

R
A

C
 re

q

B
SR

da
ta

+B
SR

gr
an

t (
B

SR
)

gr
an

t (
da

ta
)

scheduling scheduling

188 A. Virdis et al.

logical interface, called X2. On the other hand, D2D allows UEs in proximity
to communicate directly, without traversing the conventional infrastructure path
through the eNB (i.e., one UL and one DL transmission). This allows the UEs to
reduce latency and exploit better link quality. Although the standard focuses on one-
to-many D2D communication (one D2D transmission can be decoded by all UEs in
proximity), one-to-one D2D communication between two UEs is also envisaged,
especially in the research community. In network-controlled D2D, control functions
are still handled by the eNB: considering resource allocation as an example, UEs
have to request transmission grants from the eNB, using the same handshake
procedure as for standard UL communication. Given the short distance between the
endpoints of D2D communications (possibly reducing UEs’ transmission power),
the eNB can also allocate the same RBs to multiple D2D flows simultaneously if
their mutual interference is low, thus enabling frequency reuse and serving more
traffic with the same spectrum.

5.3 Structure of the SimuLTE Simulator

In this section, we describe the general structure of SimuLTE. We first describe the
main nodes composing a simulated LTE network in terms of their structure and
interconnections. We then move to the core of the architecture, i.e., the NIC card,
which implements the actual communication among nodes. Finally, we discuss the
available main functionalities, detailing where they are located in the codebase and
providing insights on design choices.

Figure 5.4 shows a simplified view of the project’s folder structure. The simu-
lations and test folders contain exemplary simulations together with the respective
networks and fingerprint-based tests, which are used for verification purposes. The

Fig. 5.4 Simplified
representation of the
SimuLTE-Project folders
structure

test
simula�ons

x2
stack
epc
corenetwork
common
apps

src
simulte

5 Cellular-Networks Simulation Using SimuLTE 189

src folder contains all the source code and is further divided into subfolders, which
identify specific portion of the codebase. The apps folder contains four traffic
models, for Constant Bit Rate (CBR), Voice-over-IP (VoIP), Video on Demand
(VoD), and alert traffic. The common folder includes utility functions and definitions
of LTE-related parameters. The corenetwork folder contains the definition of all
nodes in the simulator, which are described in detail in the next section. epc and
x2 folders contain the definition of the entities involved, respectively, in the EPC
and in X2 communications. Finally, the stack folder contains the files defining the
structure of the LTE NIC card and all its internal layers and modules, as discussed
in Sect. 5.3.2.

5.3.1 Nodes

As we explained in Sect. 5.2, the two main nodes of a simulated LTE network
are eNBs and UEs, which handle all data-plane traffic through the LTE network.
SimuLTE adds a third node, namely, the Binder, which acts as the “oracle” of the
network, keeping track of communication associations, and which is also used to
abstract control-plane operations. Nothing prevents one to implement some of these
control procedures through the exchange of control messages in the LTE network, in
any case. Finally, one or more nodes can optionally be added to realize EPC-related
operations, e.g., for handover management. The general structure of a simulated
network is shown in Fig. 5.5.

LTE NIC

IP

PPP

LTE NIC

IP

Transport

Applica�on

radio

Binder

internet

EPC

Fig. 5.5 High-level view of the main simulator nodes

190 A. Virdis et al.

5.3.1.1 Evolved Node B

The eNB is a communication relay for each transmission to/from UEs. It has a
Point-to-Point Protocol (PPP) interface towards the EPC, and an LTE NIC card
to communicate with UEs. Moreover, there is an array of PPP interfaces that
implement the X2 connections with neighboring eNBs. The architecture of the X2
interface will be discussed in more detail in Sect. 5.3.3.2. The eNB does not generate
traffic on the data plane, thus does not contain any application-layer module for
communication with UEs.

5.3.1.2 User Equipment

The UE node models the behavior of an LTE-based cellphone. Its structure is
inspired from INET’s StandardHost, having multiple Transmission Control Pro-
tocol (TCP)/User Datagram Protocol (UDP) applications, UDP and TCP modules
implementing the respective transport layer protocols. Each TCP/UDP application
is one end of a connection, the other end of which may be located within another
UE or anywhere else in the simulated network. SimuLTE provides models of real-
life applications (e.g., VoIP and VoD), but it can include any TCP/UDP-based
OMNeT++ application. The IP module is taken from the INET package as well.
Finally, an LTE NIC card is used for communication with the eNB or with other
UEs in case of D2D communications.

5.3.1.3 Binder

The Binder is a simple module that stores information about every LTE-related
node within the system. Its main purpose is to cover all the operations that are not
modeled as a message exchange, either to simplify the model or to speed up the
simulation process. This includes references to nodes, communication associations
among eNBs and UEs, peering associations for D2D pairs, etc.

Each module registers to the Binder during its initialize() function.
Listing 5.1 shows an exemplary registration process performed by the IP2LTE
submodule (which is explained in Sect. 5.3.2.5) residing in either a UE or an eNB.
In both cases, the module hierarchy is navigated to obtain a pointer to the module.
The getBinder() function is a utility function that returns a pointer to the Binder.
The registerNode() function is a member function of the Binder class. It stores
the OMNeT++ Identifier (ID) of the module and associates it with its node type, its
serving eNB specified via the Network Topology Description (NED) language in
case of UE registration, and a unique macNodeId. The latter value will be used to
obtain information on the node during the simulation.

5 Cellular-Networks Simulation Using SimuLTE 191

Listing 5.1 Example of a node registration to the Binder within the IP2LTE module

1 if (nodeType_ == UE)
2 {
3 cModule *ue = getParentModule()->getParentModule();
4 getBinder()->registerNode(ue, nodeType_, ue->par("masterId"));
5 }
6 else if (nodeType_ == ENODEB)
7 {
8 cModule *enodeb = getParentModule()->getParentModule();
9 MacNodeId cellId = getBinder()->registerNode(enodeb, nodeType_);

10 }

5.3.2 LTE NIC

The LTE NIC module implements the LTE stack within eNBs and UEs. Figure 5.6
shows its internal structure and connections with other modules, namely, one
between the UE and the eNB through an air channel and one with an IP module. The
LTE NIC module is built by extending INET’s IWirelessNic interface, to ease
its deployment into INET nodes. This is one of the key points that allows the creation
of complex scenarios, e.g., where LTE NICs are included in cars (e.g., Chap. 11)
or used to build hybrid connectivity scenarios (e.g., Chap. 13), where nodes are
equipped with both WiFi and LTE interfaces. With reference to Fig. 5.6, each of the
NIC submodules models a corresponding part of the LTE protocol stack. Following
the OMNeT++ paradigm, data-plane communications between the different layers
of the protocol stack take place only via message exchange, hence ensuring a tight
control over module interactions. The NIC structure is the same for both UE and
eNB, the only exception being the FeedbackGenerator, only implemented in
the UE. It is responsible for creating channel feedback that is then managed by the
Physical Layer (PHY) module.

Fig. 5.6 Internal structure of
the LTE NIC module

PDCP-RRC

MAC

PHY

RLC

Feedback
Generator

IP2lte

192 A. Virdis et al.

Each layer is implemented as a base module, specifying interfaces and main
parameters. Base modules are then inherited to define specific versions for eNB
and UEs, with additional parameters and gates. The same approach is followed
for the implementation of the module behavior via C++ classes. In the following
subsections, we describe each submodule and its functionalities.

5.3.2.1 PHY

The PHY module resides at the bottom of the LTE protocol stack and implements
physical layer related functions, such as channel-feedback reporting and computa-
tion, simulation of the air channel, and data transmission and reception. It also stores
the node’s PHY parameters, like the transmission power and the antenna profile
(i.e., whether transmissions are omni-directional or anisotropic). This control over
transmission parameters allows one to define so-called heterogeneous scenarios,
composed of macro-, micro-, and pico-eNBs, each one having its one radiation
profiles.

PHY modules at both the eNB and the UE are associated with a module that
models the behavior of the physical channel as perceived by the node itself. Channel
modeling is implemented in a hierarchical manner: first, a base module called
LteChannelModel defines two main functions getSINR() and error().
The first one, getSINR(), should compute the SINR of a given transmission.
The second one, error(), should check if a packet has been corrupted during
transmission. In the following, we describe the implementation of this module,
which is available in the current implementation of SimuLTE. However, one can
easily obtain its own version of the channel model by implementing the above
interface.

Part of the tasks related to physical-layer procedures on the UE side is handled
by a module called FeedbackGenerator. The latter measures the status of the
channel and generates feedback, which is then sent to the eNB in the form of CQIs.
The feedback-generation process can be configured to work aperiodically, i.e., on
demand from the eNB, or periodically, with a configurable period. The feedback-
generation process models channel measurements using the functions provided by
the LteChannelModel module, in particular the getSINR() function. This
function returns a vector of SINR values, one for each RBs available in the
system bandwidth, which are then processed to generate CQIs. These can be either
wideband, one value for the whole bandwidth, or per-band. In the latter case, the
user can configure the number of RBs that compose a band.

As discussed above, the physical LTE channels, such as the Physical Uplink
Control Channel (PUCCH), the Physical Downlink Control Channel (PDCCH), and
the Physical Random Access Channel (PRACH), are not modeled down to the level
of Orthogonal Frequency Division Multiplex (OFDM) symbols. We implemented
the functions associated to said channels either via control messages sent between
the eNB and UE nodes or via function calls through the Binder. However, any
limitation or constraints imposed to the system by those channels (e.g., max. number

5 Cellular-Networks Simulation Using SimuLTE 193

of UEs that can be scheduled simultaneously on the PDCCH) can be simulated
by imposing constraints on the simulated message flow. Our modeling choice is to
limit both memory and processor usage while retaining a good level of simulation
accuracy.

As far as data flow is concerned, in the downstream MAC-PDUs received from
the MAC layer are encapsulated in packets of the type LteAirFrame. Packets
are marked with a type (i.e., data or control), a set of transmission parameters (e.g.,
transmission power and position, number of used RBs, etc.), and are sent to the
destination module using the sendUnicast() function. In the upstream, instead,
a received LteAirFrame is checked for its type and processed consequently:
control packets are assumed to be correctly received and are forwarded to the upper
layer. Data packets are instead checked for correct reception using the error()
function of LteChannelModel, then decapsulated and sent to the upper layer.
Note that while decapsulated packets are always forwarded upstream, they are
marked with the result of the error() function, which will be then evaluated at
the upper layers.

SimuLTE provides an implementation of the LteChannelModel base mod-
ule, which is called LteRealisticChannelModel. In this implementation,
each value of the SINR is computed as:

SINR = P eNB
RX

/(∑

i
P i

RX + N
)

, (5.1)

where P eNB
RX is the power received from the serving eNB, P i

RX is the power received
from the ith interfering eNB, and N is the Gaussian noise. Furthermore, PRX is
computed as PRX = PT X − Ploss − F − S, where PT X is the transmission power,
Ploss is the path loss due to the eNB-UE distance, which also depends on the
frequency where the considered RB lies, and F and S are the attenuation due to
fast and slow fading, respectively [3]. Computing the SINR on each RB allows one
to take into account interference on a per-RB basis, e.g., taking into account the
transmissions from neighboring eNBs. This can be used to evaluate interference-
coordination mechanism, notably the CoMP.

The error() function, instead, evaluates the correct LteAirFrame reception
by analyzing the CQI used at transmission and the current channel status. These two
values are used together with a set of realistic Block Error Rate (BLER) curves to
obtain an error probability X ∈ [0, 1]. Finally, a uniform random variable Perr is
sampled and the packet is assumed to be corrupted if X < Perr .

As stated above, custom models of the channel can be created and used within
SimuLTE. Two main approaches are possible in this respect:

1. Create a new module that extends the LteChannelModel base module, i.e.,
redefining the getSINR() and error() functions.

2. Create a new module that inherits from LteRealisticChannelModel,
redefining the functions for path loss, fading, and shadowing computation.

194 A. Virdis et al.

5.3.2.2 MAC

Most of the intelligence of LTE nodes is implemented in the MAC module. The main
tasks of this module comprise buffering packets coming from lower layers (PHY)
and requesting data for transmission from upper ones (RLC), encapsulating MAC-
SDUs into MAC-PDUs and vice versa, handling and storing channel feedback,
performing scheduling, and Adaptive Modulation and Coding (AMC). Most of the
operations related to the flow of packets are the same at the UE and the eNB.
Scheduling and channel-feedback management, instead, are performed differently
on the two nodes.

Figure 5.7 shows a high-level view of the layer structure. The main functions
of the MAC layer are executed periodically at a 1 ms pace. This behavior is
implemented by the LteMacBase module, which schedules a self-message each
millisecond and handles it via the handleSelfMessage() function. The latter
is redefined to obtain specialized versions for the eNB and UE, respectively, by
the LteMacEnb and LteMacUe classes. Figure 5.8 shows an overview of the
operations performed by the handleSelfMessage() function in the two cases.
They both start with the decapsulation of the successfully decoded PDU from
the H-ARQ buffers in reception. In the upstream, MAC-PDUs coming from the
PHY are stored into H-ARQ buffers, where they are then checked for correctness,
decapsulated, and then forwarded to the RLC in the form of MAC-SDUs.

On the eNB side, UL connections are scheduled for transmission according to a
configurable policy. Scheduling decisions are notified to the UEs via grant messages,
i.e., the PDCCH is not simulated. Similarly, DL scheduling is performed by
selecting which connection to serve, and how much data to send. For each scheduled
connection, MAC-SDUs are then requested to the RLC layer and encapsulated into
MAC-PDUs. The latter are finally stored in the H-ARQ buffers and forwarded to the
PHY for transmission. The structure of H-ARQ buffers will be explained later on.

MAC
BUFFERS

H-ARQ BUFFERS

MAC SDUs

MAC SDUs

MAC PDUs

Schedule
List

MAC PDU
Creation

MAC SDU
Creation

SDU
request

Fig. 5.7 High-level view of the MAC layer structure

5 Cellular-Networks Simulation Using SimuLTE 195

Decapsulate decoded PDUs

UL Scheduling

Prepare PDCCH (grants)

DL Scheduling

Create MAC PDUs

Send PDUs to PHY

Decapsulate decoded PDUs

Check PDCCH (grants)

Check for Retransmissions

UL Scheduling

Create MAC PDUs

Send PDUs to PHY

LteMacEnb LteMacUe

Fig. 5.8 Main MAC-level operations

On the UE side, instead, each UE checks if any grants have been received and
decides which local connection will be able to use the granted resources, if any. If
no resources are available, it will perform a resource request via the RAC procedure,
which is again implemented through messages generated by the MAC module.
Then, the UE will check its H-ARQ buffers to see if any transmission is expected
for this TTI1 and will proceed with the scheduling of new transmissions otherwise.

H-ARQ buffers are used to store MAC-PDUs that are being sent and received.
There is one set of such buffers for transmissions and one for receptions, to which
we will refer as TxHbuff and RxHbuff, respectively, and as Hbuff to denote both.

A transmitted MAC-PDU is stored in the TxHbuff until it is received correctly or
the maximum number of retransmissions is reached. Correct reception is notified via
H-ARQ feedback messages. A received MAC-PDU is instead stored in the Rxbuff
until its decoding process has been completed. On the eNB side, H-ARQ buffers
store MAC-PDU information for each H-ARQ process, for each connected UE in
both downlink and uplink. In Fig. 5.9 we show the general structure of a Hbuff. The
latter contains K buffers, one for each active connection to another node. An eNB
has thus as many buffers as connected UEs in each direction, whereas a UE has up
to one per direction, as it communicates directly only with its serving eNB. This
architecture is slightly modified in case of D2D communications, where a UE has
one additional buffer for each peering UE.

1Please note that UL transmissions are synchronous.

196 A. Virdis et al.

Process
Unit
Unit

Process
Unit
Unit

Buffer

Process
Unit
Unit

Process
Unit
Unit

Buffer

Hbuff

K

...... ...N

Fig. 5.9 Internal structure of H-ARQ buffers

SELECTED

WAITING

send PDU
EMPTY BUFFERED

insert PDU

ACK
or

(NACK and TxCount>MAX_TX)

NACK
and

TxCount<MAX_TX

Selected
for reTX

Fig. 5.10 High-level view of H-ARQ operations

Each buffer is composed of N processes (usually N = 8), one per H-ARQ
process, and each process contains two units, to support single-user MIMO. Units
are the actual data structure containing the information related to a transmit-
ting/receiving MAC-PDU. The way unit status is stored depends on the feedback
management procedure, resulting in different data structures for Tx- and Rx-
Hbuffs. Figure 5.10 shows the finite-state automaton for transmissions (the one for
receptions is similar, mutatis mutandis). Acknowledgment (ACK) and Negative-
Acknowledgment (NACK) are the reception of the corresponding H-ARQ feedback.
T xCount is the transmission counter, which is increased in the SELECTED state
and then reset in the EMPTY one. maxT x is the maximum number of transmissions
before a PDU is discarded.

5 Cellular-Networks Simulation Using SimuLTE 197

Fig. 5.11 High-level view of
the architecture for the three
RLC modes

Multiplexer

AM UMTM

TX Buffers

RX Buffers

TX Buffers

RX Buffers

5.3.2.3 RLC

This module implements RLC operations, which are identical for the eNB and the
UE. It performs multiplexing and demultiplexing of MAC-SDUs to/from the MAC
layer, implements the three RLC modes TM, UM, and AM as defined in 3GPP-
TS 36.322, and forwards packets from/to the PDCP-Radio Resource Control (RRC)
to/from the proper RLC mode entity. Figure 5.11 shows the general structure of
the RLC module. As we can see, there is one different gate for each RLC mode,
which are connected towards the PDCP-RRC one. The TM submodule forwards
packets transparently and has no buffer, whereas AM and UM have their own set
of transmission and reception buffers, one for each connection associated to the
according RLC mode.

5.3.2.4 PDCP-RRC

The PDCP-RRC module models operations of the highest layer of the LTE protocol
stack. It receives data from the IP2LTE module (in the downstream direction) and
from the RLC one (in the upstream). In the first case, the PDCP-RRC performs a
RObust Header Compression (ROHC) of the received packet and assigns it a Logical
Connection Identifier (LCID). The latter uniquely identifies the connection to which
the packet belongs. It is obtained from the 4-tuple composed of <sourceIPAddr,
destIPAddr, sourcePort, destPort>. The packet is then encapsulated in a PDCP-PDU
and forwarded to the proper RLC port, according to the selected RLC mode. In the
upstream, a packet coming from the RLC is first decapsulated, then its header is
decompressed, and the resulting PDCP SDU is finally sent to the upper layer.

5.3.2.5 IP2LTE

The IP2LTE module acts as an interface between the network layer (i.e., IP)
and the LTE NIC. In the downstream, it receives layer-3 datagrams and extracts
both source/destination IP addresses and port numbers. The latter are written into
a ControlInfo object that is attached to the message before it is sent to the
lower layers, as shown in Listing 5.2. This allows the PDCP-RRC module to obtain

198 A. Virdis et al.

the above 4-tuple without inspecting the packet and to associate a LCID to the
flow, as explained in the previous section. In the upstream, IP2LTE only forwards
the message from PDCP-RRC to the network layer without further processing.
Moreover, the IP2LTE is responsible for registering the LTE NIC to the Binder
and to the interface table of the network layer during the initialization.

Listing 5.2 Creation of the ControlInfo object

1 FlowControlInfo *controlInfo = new FlowControlInfo();
2 controlInfo->setSrcAddr(srcAddr.getInt());
3 controlInfo->setDstAddr(destAddr.getInt());
4 controlInfo->setSrcPort(srcPort);
5 controlInfo->setDstPort(dstPort);
6 [...]
7 datagram->setControlInfo(controlInfo);
8 send(datagram,stackGateOut_);

5.3.3 Main Functions

We now discuss the scheduling, inter-eNB, and D2D-communication operations.

5.3.3.1 Scheduling

As discussed in Sect. 5.2, resource scheduling is the process of deciding how to
allocate RBs to UEs, in both the DL and UL subframes. This process is realized at
the MAC layer and performed by the eNBs on each TTI. In SimuLTE, scheduling
operations are implemented at the eNB by the LteSchedulerEnb class, which
defines all the operations that are common to the DL and UL, such as data structure
initialization, allocation management via the Allocator, and statistics collection.
The Allocator is a C++ class that keeps the information about the RBs’ occupa-
tion. The core of this class is the schedule() function, whose main operations are
shown in Fig. 5.12. These are common to both the DL and UL scheduling. First, the
data structures containing the allocation decisions of the previous TTI are cleared,
and the per-UE modulation and coding information is updated using the most recent
channel information. Then, the actual scheduling is performed, processing RAC
requests (UL only), retransmissions, and first transmissions. The way these two last
operations are performed defines the scheduling policy, i.e., how contention among
UEs is managed. Finally, statistics on the allocation (e.g., the number of allocated
RBs) are computed and emitted to the simulation environment.

The scheduling hierarchy is shown in Fig. 5.13 (left part of the figure). The
LteSchedulerEnbUl and LteSchedulerEnbDl classes extend the base
class LteSchedulerEnb by implementing the rtxSchedule() method,
which handles RAC requests and manages retransmissions. Scheduling policies
are instead implemented by extending the LteScheduler class. The latter’s

5 Cellular-Networks Simulation Using SimuLTE 199

Update Modula�on/Coding Info

Schedule RAC Requests (UL only)

Schedule Retransmissions

Schedule Transmissions

Compute Sta�s�cs

Clean alloca�on structures

Fig. 5.12 Depiction of the main scheduling operations

eNB
Scheduler

eNB
Scheduler UL

eNB
Scheduler DL

Scheduling
Policy

MAX C/I PF DRR

Fig. 5.13 High-level representation of the scheduling hierarchy

main function, called prepareSchedule(), is responsible for applying the
scheduling policy on backlogged connections and building a schedule list that
associates each connection to the number of allocated RBs. To build the schedule
list, the scheduling policy examines backlogged connections one at a time and
polls the Allocator, via the requestGrant() member function, to check
whether there are RBs available for the given connection. The latter obtains the
amount of bytes that can be transmitted in a single RB for that connection from the
AMC module. Finally, the schedule list is passed to the MAC layer, which enforces
it by fetching the data from the connections’ RLC buffers and constructing the
MAC-PDUs.

200 A. Virdis et al.

Three well-known scheduling policies are included in the current release, namely,
Maximum Carrier-over-Interference (MaxC/I), Proportional Fair (PF), and Deficit
Round Robin (DRR), as depicted in Fig. 5.13 (right part of the figure). The schedul-
ing policy can be modified by changing the schedulingDisciplineDl and
schedulingDisciplineUl parameters of the MAC layer, as follows:

1 *.eNodeB.lteNic.mac.schedulingDisciplineDl = "MAXCI"
2 *.eNodeB.lteNic.mac.schedulingDisciplineUl = "MAXCI"

As far as RBs are concerned, SimuLTE allows one to group RBs into logical
bands, i.e., logical groups of RB that are considered as the minimum scheduling
unit by the scheduler. Let us consider the following exemplary configuration:

1 **.deployer.numRbDl = 20
2 **.deployer.numRbUl = 20
3 **.deployer.numBands = 20

The first two lines define the number of available RBs in the DL and UL
subframes, respectively. The third one defines the total number of logical bands
among which the RBs are divided into. In this case, we will end up with 20 logical
bands with 1 RB each, i.e., one RB for each band. The scheduling policy will work
on bands rather than the RBs, different mappings can hence be used to modify the
way the scheduler accesses resources.

Moreover, the scheduling policy can ask the Allocator to restrict the set
of RBs that can possibly be allocated to a connection, by using the BandLimit
concept. The latter is a data structure stored at the MAC layer of every eNB
that specifies, for each UE and RB, the amount of bytes (if any) that can be
allocated to that UEs connections in that RB. This concept can be exploited when
enforcing interference-coordination mechanisms, for which we provide an example
in Sect. 5.4.1.

5.3.3.2 Inter-eNB Communications

Interactions among eNBs are crucial to support functionalities like handover and
interference coordination, which are the subject of several research works. eNBs
interact via the X2 interface, which is modeled in SimuLTE. Within the eNB, we
model the X2 protocol stack depicted in Fig. 5.14, where the LteX2App handles
the communication with one peering eNB and runs on top of Stream Control
Transmission Protocol (SCTP) as the transport protocol. The task of the LteX2App
is to pass messages originated from the LTE NIC to the peering eNB and vice
versa. The two directions are managed by two different inner modules, namely,
X2AppServer and X2AppClient. If the eNB peers with multiple eNBs, one
LteX2App is needed for each connection. LteX2App is transparent to the kind of
messages to be sent on behalf of modules within the LTE protocol stack. Within the
latter, X2User entities are base modules that can be extended in order to implement

5 Cellular-Networks Simulation Using SimuLTE 201

Fig. 5.14 High-level view of
the X2 stack

X2AppServer X2AppClient

LteX2App []

SCTP

IP

PPP []

Fig. 5.15 High-level view of
the X2 manager X2User[0]

X2User[1]

X2User[2]

X2User[N]

LteX2App[0]

LteX2App[1]

LteX2App[2]

LteX2App[M]

Lt
eX

2M
an

ag
er

... ...

a functionality that exploits the X2 to perform its task. LteX2App and X2User
modules are transparent to each other and the interface between them is provided
by the LteX2Manager, as shown in Fig. 5.15. Listing 5.3 shows the code of its
handleMessage() function, which calls different handlers based on the origin
of the message.

202 A. Virdis et al.

Listing 5.3 The role of the LteX2Manager

1 void LteX2Manager:handleMessage(cMessage *msg)
2 {
3 cPacket* pkt = check_and_cast<cPacket*>(msg);
4 cGate* incoming = pkt->getArrivalGate();
5 if (strcmp(incoming->getBaseName(), "dataPort") == 0) // from LTE stack
6 {
7 EV << "LteX2Manager:handleMessage - Received message from LTE stack" <<

endl;
8 fromStack(pkt); // call handler
9 }

10 else // from X2
11 {
12 int gateIndex = incoming->getIndex();
13 EV << "LteX2Manager:handleMessage - Received message from X2, gate " <<

gateIndex << endl;
14 fromX2(pkt); // call handler
15 }
16 }

As an example, consider the CoMP-CS function implemented within SimuLTE:
in order to mitigate possible inter-cell interference, neighboring eNBs exchange
scheduling information via X2 and avoid allocating the same RBs. This is done
by the LteCompManager, which extends the X2User module. Therefore, the
LteCompManager can interact with the LTE protocol stack via direct method
calls and then sends its messages to the LteX2Manager, which in turn passes them
to the peering eNBs. According to the architecture explained above, if eNB i has to
send a CoMP message to neighboring eNB j and k, the LteCompManager only
needs to send one message to the LteX2Manager including the list of destinations.
The LteX2Manager then identifies the LteX2App modules handling the X2
connections to j and k and passes one copy of the message to each for the
transmission over the X2 interface.

5.3.3.3 D2D Operations

SimuLTE supports both one-to-one and one-to-many D2D communications. In the
one-to-one case, a D2D flow consists of a peering connection between two UEs. The
Binder keeps a data structure containing the peering relationships between D2D-
capable UEs, i.e., which pairs of UEs can communicate directly. For each pair of
D2D endpoints, the Binder also stores whether the flow actually uses the direct
path or the conventional infrastructure path through the eNB. The communication
mode can be either static or selected dynamically by the D2DModeSelection
module residing within each eNB. On the other hand, there are no peering
relationships for one-to-many communications. Messages transmitted by a UE
include a multicastGroupID field and only UEs enrolled within the multicast
group can try to decode the transmission.

Processing of D2D flows is carried out by specialized, D2D-enabled versions of
the LTE NIC (both the UE and the eNB sides), which inherit functionalities from
the base ones. To this aim, LteNicUe and LteNicEnb modules are extended
by LteNicUeD2D and LteNicEnbD2D, respectively. The latter, in turn, defines

5 Cellular-Networks Simulation Using SimuLTE 203

specialized versions of each layer, e.g., LteMacUeD2D and LteMacEnbD2D for
the MAC layer.

At the PHY layer, getSINR_D2D() and error_D2D() functions are pro-
vided to compute the SINR and check transmission errors of D2D flows. As far
as scheduling is concerned, frequency reuse among D2D flows is accomplished
by extending the Allocator module so that it can associate more than one UE
to each allocated RB. Frequency-reuse-enabled scheduling policies can then be
implemented on top of this general structure. Moreover, the eNB also needs to know
whether to schedule H-ARQ retransmissions for D2D flows, although (N)ACKs are
exchanged between UEs without involving the eNB. Thus, we allow the receiving
UE to send a copy of the (N)ACKs to the eNB, too. The MAC layer of the eNB uses
such information to update a data structure that mirrors the status of each TxHbuffs.
RLC layer does not need additional D2D-related functionalities, whereas the PDCP
layer takes care of associating downstream packets to either D2D or infrastructure
mode exploiting the Binder.

5.4 Tutorials

We now describe two case studies, namely: (1) an analysis of the problem of inter-
eNB interference coordination and (2) the mode selection for D2D. We use a tutorial
approach in both cases, starting with the problem statement, then guiding the reader
to the simulation-setup process, including the network definition and the parameters
configuration, and prompting some possible modifications to the code.

5.4.1 Tutorial 1: Interference Coordination

We consider the downlink of a multicell network, where eNBs serve their UEs
while sharing frequency resources. In such a scenario, CoMP-CS can be enforced
to mitigate inter-cell interference. In this context, eNBs participating in the coordi-
nation send their load information to one eNB, chosen as coordinator, through the
X2 interface. In turn, the coordinator periodically runs an algorithm to assign non-
overlapping sets of usable RBs to each eNB and communicates them which RBs
they can/cannot use in the subsequent scheduling operations. Thus, the objective of
this tutorial is to show how to configure X2 connections and change the coordination
algorithm implemented by the eNBs.

5.4.1.1 Network Definition

We consider the MultiCell_X2Mesh network depicted in Fig. 5.16, which is
composed of three eNB connected to each other via the X2 interface. In particular,

204 A. Virdis et al.

server router2

router1

router3

pgw
eNodeB1

eNodeB2

eNodeB3

ue1[numUe1]

ue2[numUe2]

ue3[numUe3]

Fig. 5.16 Network definition for the scenario MultiCell_X2Mesh

full-mesh topology is established between eNBs; hence, point-to-point connections
are provided between any pair of eNBs. Moreover, each eNB serves a set of UEs,
respectively, ue1[*], ue2[*], and ue3[*]. Parameters numUe1, numUe2, and
numUe3 specify the number of UEs served by each eNB.

5.4.1.2 Parameters Configuration

With reference to the snippet of the omnetpp.ini file in Listing 5.4, we first configure
X2-related parameters for this tutorial.

Listing 5.4 Configuration of X2-related parameters

1 # one x2App per peering eNodeB
2 *.eNodeB*.numX2Apps = 2
3
4 # X2 Server-side ports (x2App[0]=5000, x2App[1]=5001, ...)
5 *.eNodeB*.x2App[*].server.localPort = 5000 + ancestorIndex(1)
6
7 ################# Peering configuration ###################
8 # - eNodeB1%x2ppp0 <--> eNodeB2%x2ppp0
9 # - eNodeB1%x2ppp1 <--> eNodeB3%x2ppp0

10 # - eNodeB2%x2ppp1 <--> eNodeB3%x2ppp1
11 ###
12 *.eNodeB1.x2App[0].client.connectAddress = "eNodeB2%x2ppp0"
13 *.eNodeB1.x2App[1].client.connectAddress = "eNodeB3%x2ppp0"
14 *.eNodeB2.x2App[0].client.connectAddress = "eNodeB1%x2ppp0"
15 *.eNodeB2.x2App[1].client.connectAddress = "eNodeB3%x2ppp1"
16 *.eNodeB3.x2App[0].client.connectAddress = "eNodeB1%x2ppp1"
17 *.eNodeB3.x2App[1].client.connectAddress = "eNodeB2%x2ppp1"

5 Cellular-Networks Simulation Using SimuLTE 205

As explained in Sect. 5.3.3.2, the LteX2App module inside the eNB is respon-
sible for maintaining the connection with one peering eNB. In order to build a
full-mesh topology, we need to provide N − 1 LteX2App modules within each
eNB. To do this, we set the *.numX2Apps parameter to 2 in our example.

Then, we need to configure both the server- and the client-side of each
LteX2App. For the server-side, we need to ensure that LteX2Apps within
the same eNB are bound to different port numbers; otherwise, local forwarding
would not be possible. A simple way to achieve this is to assign incremental port
numbers to every LteX2App, as shown at line 5. On the other hand, the client-side
of each LteX2App must be configured so that it will connect to the IP address
of the peering eNB. This is accomplished by setting the connectAddress
parameter using symbolic addresses. Since each eNB has several X2 interfaces,
it is necessary to specify the full name of the desired interface using the format
<module%interface>. Note that the interface part of the address must specify
the gate index, too.

Once the X2 is ready, it can transport every kind of message between eNBs,
including CoMP messages. CoMP functionalities are disabled by default; hence,
we need to activate them by setting the compEnabled parameter to true. This is
exemplified in the ini configuration file below.

Listing 5.5 Configuration of CoMP-related parameters

1 ############### CoMP configuration ##################
2 *.eNodeB*.lteNic.compEnabled = true
3
4 # Master configuration
5 *.eNodeB1.lteNic.compManager.compNodeType = "COMP_CLIENT_COORDINATOR"
6 *.eNodeB1.lteNic.compManager.clientList = "2 3"
7
8 # Slaves configuration
9 *.eNodeB*.lteNic.compManager.coordinatorId = 1

10
11 # CoMP algorithm
12 *.eNodeB*.lteNic.compManagerType = "LteCompManagerProportional"
13
14 # Scheduling policy
15 *.eNodeB*.lteNic.mac.schedulingDisciplineDl = "MAXCI_COMP"

Since we modeled CoMP-CS algorithms according to the master–slave
paradigm, we need to specify the role of every eNB participating in the
coordination. Assume that the coordinator’s role is co-located with eNodeB1. Then
eNodeB1’s CoMP manager gets the value COMP_CLIENT_COORDINATOR
as its compNodeType. On the other hand, eNodeB2 and eNodeB3 get the
COMP_CLIENT default value. Moreover, the coordinator needs to know the IDs
of the client eNBs, whereas the latter have to be configured with the ID of the
coordinator. Parameter compManagerType allows one to instantiate different
user-defined CoMP algorithms. SimuLTE comes with a simple example that we
will introduce in the next subsection. Finally, a CoMP-enabled scheduling policy
has to be selected for the downlink scheduler.

206 A. Virdis et al.

5.4.1.3 Modifying the Code

Coordinated-scheduling operations are defined within the LteCompManager
module. According to our model, at every TTI, the eNBs participating in the
coordination run a local algorithm that computes the required number of RBs
and sends those requests to the coordinator via the X2 interface. Then, at every
coordination period, the coordinator runs the coordination algorithm based on
the input received by the clients and sends the results back to the clients.
provisionalSchedule() and doCoordination() functions are virtual
methods. Thus, one can define its own coordination algorithm, by implementing
a new module derived from the LteCompManagerBase class, redefining the
provisionalSchedule() and doCoordination() functions.

Listing 5.6 Modifying the CoMP algorithm

1 void LteCompManagerBase:runClientOperations()
2 {
3 EV<<"LteCompManagerBase:runClientOperations - node "<<nodeId_<<endl;
4 provisionalSchedule();
5 X2CompRequestIE* requestIe = buildClientRequest();
6 sendClientRequest(requestIe);
7 }
8
9 void LteCompManagerBase:runCoordinatorOperations()

10 {
11 EV<<"LteCompManagerBase:runCoordinatorOperations - node "<<nodeId_<<endl;
12 doCoordination();
13 // for each client, send the appropriate reply
14 std:vector<X2NodeId>:iterator cit = clientList_.begin();
15 for (; cit != clientList_.end(); ++cit)
16 {
17 X2NodeId clientId = *cit;
18 X2CompReplyIE* replyIe = buildCoordinatorReply(clientId);
19 sendCoordinatorReply(clientId, replyIe);
20 }
21
22 if (nodeType_ == COMP_CLIENT_COORDINATOR) // local reply
23 {
24 X2CompReplyIE* replyIe = buildCoordinatorReply(nodeId_);
25 sendCoordinatorReply(nodeId_, replyIe);
26 }
27 }

SimuLTE provides the exemplary LteCompManagerProportional CoMP
module, which inherits functionalities from LteCompManagerBase and over-
rides the doCoordination() function. According to this policy, the master eNB
partitions the number of available RBs among eNBs in a proportional fashion based
on their requested RBs. Slave eNBs can then use only the assigned subset of the
available RBs when doing their scheduling. Listing 5.7 shows that the set of usable
bands in the next TTIs is received within the master’s reply. This information is then
used to pilot the BandLimit data structure mentioned in Sect. 5.3.3.1.

5 Cellular-Networks Simulation Using SimuLTE 207

Listing 5.7 Handling of CoMP master’s reply

1 void LteCompManagerProportional:handleCoordinatorReply(X2CompMsg* compMsg)
2 {
3 while (compMsg->hasIe())
4 {
5 X2InformationElement* ie = compMsg->popIe();
6
7 if (ie->getType() != COMP_REPLY_IE)
8 throw cRuntimeError("LteCompManagerProportional:

handleCoordinatorReply - Expected COMP_REPLY_IE");
9

10 // parse reply message
11 X2CompProportionalReplyIE* replyIe =
12 check_and_cast<X2CompProportionalReplyIE*>(ie);
13 std:vector<CompRbStatus> allowedBlocksMap =
14 replyIe->getAllowedBlocksMap();
15
16 UsableBands usableBands = parseAllowedBlocksMap(allowedBlocksMap);
17 setUsableBands(usableBands);
18
19 delete replyIe;
20 }
21 }

5.4.1.4 Results

We now discuss the results obtained by simulating the network from Fig. 5.16. We
consider 500 m as the inter-eNB distance and randomly deploy a varying number
of UEs per eNB. Each UE is the destination of a CBR data flow; hence, it runs
one CbrReceiver application on top of UDP. Flows originate at the server that
has one CbrSender application per UE, each of them sending a 40 B packet
every 20 ms. CbrSender and CbrReceiver applications are defined in the
apps folder. The available number of RBs is set to 25, corresponding to a 5 MHz
bandwidth system and MaxC/I is employed as the scheduling policy. We run five
independent repetitions for each scenario configuration.

We compare the results obtained with and without interference coordination
provided by the CoMP algorithm described in Sect. 5.4.1.3, to show that the latter
improves the system fairness in terms of UE throughput. To this aim, we obtain
the application-layer throughput by extracting the cbrReceivedThroughput
statistics from the simulations results and process it to produce the Lorenz curve
depicted in Fig. 5.17, in a scenario with 30 UEs per eNB. This curve provides
a graphical representation of the cumulative portion of the throughput (on the y-
axis) achieved by the cumulative portion of the UEs (on the x-axis). The bisector
represents the ideal case, where all the UEs obtain the same throughput; hence, the
more a curve is close to the bisector, the more the system is fair. Figure 5.17 shows
that the scenario where CoMP is enabled guarantees more fairness among UEs than
the scenario with no interference coordination.

This is due to the improvements of the channel quality for UEs close to
the cell edge, which are more protected from the interference produced by non-
serving eNBs. This argumentation is supported by MAC-level metrics provided by

208 A. Virdis et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

T
hr

ou
gh

pu
t

Ideal
Baseline

CoMP

Fig. 5.17 Lorenz curve, 30 UEs per eNB

 0

 2

 4

 6

 8

 10

 12

Baseline CoMP

C
Q

I

UEs per eNB
10
20
30

Fig. 5.18 Average CQI with increasing number of UEs

SimuLTE, such as the averageCqiDl one, which is shown in Fig. 5.18. The latter
reports the average CQI used by the eNBs for transmitting in the DL subframe,
with an increasing number of UEs per eNB. Besides improving throughput, better
channel quality also allows the eNBs to reduce resource utilization. Figure 5.19
reports the avgServedBlocksDl statistic, i.e., the average number of RBs

5 Cellular-Networks Simulation Using SimuLTE 209

Fig. 5.19 Average number of
allocated RBs with increasing
number of UEs

 0

 5

 10

 15

 20

 25

Baseline CoMP

A
llo

ca
te

d
R

B
s

UEs per eNB
10
20
30

occupied by one eNB on each TTI. While the subframe is basically saturated in
the baseline case, only a small number of RBs is used when CoMP is enabled.

5.4.2 Tutorial 2: D2D Communication

This tutorial describes the configuration of a scenario where two UEs are capable of
D2D communications and their serving eNB can switch their actual communication
mode from direct to infrastructure mode and vice versa. In this scenario, the
eNB periodically runs a decision algorithm that selects the communication mode
that ensures the best channel quality for the D2D-capable flows. We show which
parameters can be tuned in such a scenario and how to implement a new mode-
selection policy.

5.4.2.1 Network Definition

We consider the SingleCell_D2D network, which is composed of one eNB. As
Fig. 5.20 shows, UEs are divided into three groups, namely, ueCell, ueD2DTx,
and ueD2DRx, which, respectively, represent conventional cellular UEs, trans-
mitting D2D UEs, and receiving D2D UEs. The number of UEs can be config-
ured using the corresponding NED parameters numUeCell, numUeD2DTx, and
numUeD2DRx.

210 A. Virdis et al.

Fig. 5.20 Network definition
for the D2D communication
scenario

server

router

ueCell[numUeCell]

eNB

pgw

ueD2DTx[numUeD2DTx] ueD2DRx[numUeD2DRx]

5.4.2.2 Parameters Configuration

With reference to the omnetpp.ini file portion shown in Listing 5.8, we first need
to enable D2D capabilities on both the eNB and the UEs by setting the D2D-
capable version of the LTE NICs, using the parameter nicType. Then, we specify
the d2dInitialMode parameter for ueD2DTx[0], i.e., the communication
mode used at the beginning of the simulation. In this example this parameter is
set; hence, ueD2DTx[0] performs transmissions using the D2D path. Regarding
the MAC layer, we need to specify the D2D mode for the AMC module, which
extends the default one supporting UL/DL communications only. We also allow
D2D flows to transmit using either fixed modulation or the CQI reported period-
ically. In the former case, we need to set the usePreconfiguredTxParams
parameter and specify d2dCqi in a range between 1 and 15. In the latter case, we
set enableD2DCqiReporting, whereas usePreconfiguredTxParams is
disabled and d2dCqi is ignored. For the purposes of this tutorial, the second mode
is used. Going down to the PHY layer, it is possible to select different transmission
power for UL and D2D communications through ueTxPower and d2dTxPower
parameters, expressed in dBm. By default, mode-selection functionality is disabled
at the eNB. We can enable it by specifying the name of the module implementing
the mode-selection algorithm with d2dModeSelectionType parameter. Since
mode selection is performed periodically by the eNB, it is possible to specify
the period duration through the modeSelectionPeriod parameter, expressed
in seconds. In the next subsection, we will show how to implement customized
algorithms.

5 Cellular-Networks Simulation Using SimuLTE 211

Listing 5.8 Configuration of D2D-related parameters

1 # Enable D2D for the eNB and the UEs involved in direct communications
2 *.eNB*.nicType = "LteNicEnbD2D"
3 *.ueD2D*[*].nicType = "LteNicUeD2D"
4
5 # Set the initial communication mode
6 *.ueD2DTx[0].lteNic.d2dInitialMode = true
7
8 # Select CQI reporting mode for D2D transmissions
9 *.eNB.lteNic.mac.amcMode = "D2D"

10 *.eNB.lteNic.phy.enableD2DCqiReporting = true
11 **.usePreconfiguredTxParams = false
12 **.d2dCqi = 7
13
14 # Select Tx Power
15 *.ueD2DTx[0].lteNic.phy.ueTxPower = 26 # in dBm
16 *.ueD2DTx[0].lteNic.phy.d2dTxPower = 20 # in dBm
17
18 # Enable Mode-selection algorithm
19 *.eNB.lteNic.d2dModeSelectionType = "D2DModeSelectionBestCqi"
20 *.eNB.lteNic.d2dModeSelection.modeSelectionPeriod = 1s

5.4.2.3 Modifying the Code

The module responsible for selecting the transmission mode of D2D-capable
flows is D2DModeSelectionBase. The latter provides basic functionalities
for periodic mode-selection operations and it can be extended to realize the
preferred policy. As shown in Listing 5.9, this module periodically schedules a
self-message, which serves as a trigger for calling the doModeSelection()
function. The latter implements the actual mode-selection algorithm. Since it is a
virtual function, one can build its own module extending the base one and redefining
the behavior of doModeSelection(). SimuLTE provides an example module,
called D2DModeSelectionBestCqi, which selects either UL or D2D for a
flow based on the best CQI value reported for the two links. After the execution
of doModeSelection(), the decisions are notified to the UEs involved in D2D-
capable communications.

Listing 5.9 Modifying the mode-selection algorithm

1 void D2DModeSelectionBase:handleMessage(cMessage *msg)
2 {
3 if (msg->isSelfMessage())
4 {
5 if (strcmp(msg->getName(),"modeSelectionTick") == 0)
6 {
7 // run mode selection algorithm
8 doModeSelection();
9 // send switch notifications to selected flows

10 sendModeSwitchNotifications();
11 scheduleAt(NOW+modeSelectionPeriod_, msg);
12 }
13 else
14 throw cRuntimeError("D2DModeSelectionBase:handleMessage -

Unrecognized self message %s", msg->getName());
15 }

212 A. Virdis et al.

16 else
17 delete msg;
18 }

The message including a switch notification traverses the whole LTE stack at the
UE side in the upstream direction. This way, each layer is able to perform switching-
related tasks. Listing 5.10 refers to a snippet of the handleMessage() function
in LteMacUeD2Dmodule. If the message is recognized as a switch notification, the
corresponding handler macHandleD2DModeSwitch() is invoked. The MAC-
layer handler is responsible for clearing buffers and terminating ongoing H-ARQ
processes. However, one can re-implement this handler (as well as higher-layer
handlers) to provide advanced switching operations, e.g., to avoid packet loss.

Listing 5.10 Modifying mode-switching handler at the UEs

1 if (incoming == down_[IN])
2 {
3 UserControlInfo *userInfo = check_and_cast<UserControlInfo *>(pkt->

getControlInfo());
4 if (userInfo->getFrameType() == D2DMODESWITCHPKT)
5 {
6 EV<<"LteMacUeD2D:handleMessage - Received packet "<<
7 pkt->getName()<<" from port "<<pkt->getArrivalGate()->getName()<<endl;
8
9 // message from PHY_to_MAC gate (from lower layer)

10 emit(receivedPacketFromLowerLayer, pkt);
11
12 // call handler
13 macHandleD2DModeSwitch(pkt);
14 return;
15 }
16 }

5.4.2.4 Results

In order to demonstrate the effects of mode switching, we consider the network
from Fig. 5.20 and simulate one pair of D2D UEs. One UE is the transmitter
and one is the receiver of a CBR data flow, sending one packet every 20 ms. We
make the packet length vary from 500 B to 1000 B to assess the performance of
the D2D flow with different traffic loads. The two UEs are 300 m away from the
eNB and they swing back and forth in a straight line at a speed of 3 m/s. Such a
path allows the direct link between them to experience different channel quality
during the simulation, whereas the channel quality for UL stays constant. This
way, we can simulate a scenario where the eNB implements the aforementioned
D2DModeSelectionBestCqi() policy, making the flow bounce between the
direct link and the infrastructure one. We compare this scheme with the scenario
where mode selection is disabled and the flow uses always the direct link.

In this dynamic scenario, OMNeT++ vectors are useful to evaluate the behavior
of the system during the simulation. The left side of Fig. 5.21 reports the CQI used
by the transmitting UE, which experiences large variations due to the change in

5 Cellular-Networks Simulation Using SimuLTE 213

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50

C
Q

I

Time [s]

Mode Selection: Disabled

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50
Time [s]

Mode Selection: Enabled

UL
D2D

Fig. 5.21 CQI with mode selection disabled (left) and enabled (right)

0

20

40

60

80

100

120

0 10 20 30 40

D
el

ay
 [m

s]

Time [s]

Packet size = 500B

Mode Selection
Disabled
Enabled

0

20

40

60

80

100

120

0 10 20 30 40 50

Time [s]

Packet size = 750B

0

20

40

60

80

100

120

0 10 20 30 40 50

Time [s]

Packet size = 1000B

Fig. 5.22 Latency of CBR packets with increasing packet length

the distance between the UEs. The right part of Fig. 5.21, instead, shows the CQI
used when mode selection is employed: the chart is obtained by putting together
averageCqiD2D:vector and averageCqiUl:vector statistics, since the
flow periodically switches from the direct link to the infrastructure one and vice
versa. As a result, we observe that enabling mode selection allows the flow to use
better CQI, hence use better modulation.

This affects the latency of the flow, as shown in Fig. 5.22. The latter reports the
cbrFrameDelay:vector statistic with different packet lengths. When no mode
selection is active, the latency of the flow drastically increases at the points where
the CQI is smaller. This behavior is more pronounced when the traffic load increases
due to larger packets. On the other hand, the configuration with mode selection
allows the flow to keep the latency small.

214 A. Virdis et al.

References

1. Baldo, N., Miozzo, M., Requena-Esteso, M., Nin-Guerrero, J.: An open source product-oriented
LTE network simulator based on ns-3. In: Proceedings of the 14th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM
’11, pp. 293–298. ACM, New York (2011). https://doi.org/10.1145/2068897.2068948

2. Bouras, C., Diles, G., Kokkinos, V., Kontodimas, K., Papazois, A.: A simulation framework for
evaluating interference mitigation techniques in heterogeneous cellular environments. Wirel.
Pers. Commun. 77(2), 1213–1237 (2014). https://doi.org/10.1007/s11277-013-1562-5

3. Jakes, W. (ed.): Microwave Mobile Communications. Wiley, New York (1975)
4. Mehlführer, C., Wrulich, M., Ikuno, J.C., Bosanska, D., Rupp, M.: Simulating the long term

evolution physical layer. In: 2009 17th European Signal Processing Conference, pp. 1471–1478
(2009)

5. Sanchez-Iborra, R., Sanchez-Gomez, J., Ballesta-Viñas, J., Cano, M.D., Skarmeta, A.F.: Perfor-
mance evaluation of LoRa considering scenario conditions. Sensors 18(3), 772 (2018). https://
doi.org/10.3390/s18030772

6. Virdis, A., Iardella, N., Stea, G., Sabella, D.: Performance analysis of openairinterface system
emulation. In: 2015 3rd International Conference on Future Internet of Things and Cloud, pp.
662–669 (2015). https://doi.org/10.1109/FiCloud.2015.77

https://doi.org/10.1145/2068897.2068948
https://doi.org/10.1007/s11277-013-1562-5
https://doi.org/10.3390/s18030772
https://doi.org/10.3390/s18030772
https://doi.org/10.1109/FiCloud.2015.77

Chapter 6
Veins: The Open Source Vehicular
Network Simulation Framework

Christoph Sommer, David Eckhoff, Alexander Brummer, Dominik S. Buse,
Florian Hagenauer, Stefan Joerer, and Michele Segata

6.1 Introduction

Veins [56] is a model library for (and a toolbox around) OMNeT++, which supports
researchers conducting simulations involving communicating road vehicles; either
as the main focus of a study (such as Vehicular Ad Hoc Networks - VANETs) or as
a component (such as in Intelligent Transportation Systems - ITS). It is distributed
as open-source software; as such, it is free to download, adapt, and use.

The model library includes a full stack of simulation models for investigating
communicating vehicles and infrastructure; as of Veins 4.7, predominantly cars and
trucks using Wireless Local Area Network (WLAN)-based technologies. For this,

C. Sommer (�) · D. S. Buse · F. Hagenauer
Heinz Nixdorf Institute and Department of Computer Science, Paderborn University, Paderborn,
Germany
e-mail: sommer@ccs-labs.org; buse@ccs-labs.org; hagenauer@ccs-labs.org

D. Eckhoff (�)
TUMCREATE Ltd, Singapore, Singapore
e-mail: david.eckhoff@tum-create.edu.sg

A. Brummer
Computer Networks and Communication Systems, University of Erlangen-Nürnberg, Erlangen,
Germany
e-mail: alexander.brummer@fau.de

S. Joerer
Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
e-mail: joerer@ccs-labs.org

M. Segata
Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
e-mail: msegata@disi.unitn.it

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_6

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_6&domain=pdf
mailto:sommer@ccs-labs.org
mailto:buse@ccs-labs.org
mailto:hagenauer@ccs-labs.org
mailto:david.eckhoff@tum-create.edu.sg
mailto:alexander.brummer@fau.de
mailto:joerer@ccs-labs.org
mailto:msegata@disi.unitn.it
https://doi.org/10.1007/978-3-030-12842-5_6

216 C. Sommer et al.

Veins includes a sophisticated model of IEEE 802.11 MAC layer components [12]
used by standards such as IEEE Wireless Access in Vehicular Environments
(WAVE) (of which a simple simulation model is included), ETSI ITS-G5 (as
provided by, e.g., Artery [43] which is described in Chap. 12), or ARIB T-109 [23].
Because Veins is a modular framework, it can equally well be used as the basis
for modeling other mobile nodes such as pedestrians, bikes, trains, and Unmanned
Aerial Vehicles (UAVs)—or for other communication technologies like Long
Term Evolution (LTE) mobile broadband [21] (cf. Sect. 6.4.1) and Visible Light
Communication (VLC) [37].

The history of Veins goes back to early 2006 with the first public release being
an extension for the INET Framework version 2006-10-20. Because of limitations
in the fidelity of wireless channel modeling at the time, for its 1.0 release Veins
was ported to be an extension of MiXiM (an alternative, now discontinued library
of OMNeT++ simulation models for wireless channel modeling) instead. Veins was
then increasingly augmented with new models, e.g., of IEEE 802.11p, IEEE 1609.4,
and WAVE, which would later be re-factored all the way down to the physical
layer for the 2.0 release. As more refactoring and rewriting was taking place in the
channel models, Veins 3.0 became a proper fork of MiXiM, but was kept compatible
with mixed simulations incorporating models from the INET Framework. Up to
the current 4.7 release, Veins was then continuously streamlined and augmented
with more and more of the aforementioned models specific to communicating road
vehicles. This release is compatible with OMNeT++ 5 (up to the current version
5.4.1) and SUMO 0.32.0 (the latest release of SUMO; please refer to Sect. 6.2.1 for
details on its role for Veins). A full compatibility list is available online.1

Veins has become well-established in the domain of Vehicular Ad Hoc Networks
(VANETs) and Intelligent Transportation System (ITS). It is employed by both
academia and industry around the globe. It serves as the basis of hundreds
of publications and contributed to the standardization process of Inter-Vehicle
Communication (IVC). Common fields of application include channel access
control [17, 58], safety applications [26, 57], privacy [14] and security [44], pla-
tooning [49], communication with traffic lights [16], electric vehicle operation [3],
as well as traffic optimization [65]. For some of these uses cases there exist
dedicated extensions for Veins such as PREXT for location privacy [19], PLEXE

for platooning [48], an extension to incorporate a real world driving simulator [2],
or a simulation framework for electric vehicles [3].

In this chapter, we give a brief overview of recent developments regarding the
internals of Veins (bi-directional coupling, communication stack, antenna charac-
teristics, unit testing, and timer management; in Sect. 6.2), present two practical use
cases (platooning and intersection collision avoidance; in Sect. 6.3), and conclude
with a brief discussion of two extensions (Veins LTE and Veins_INET) as well as
using Veins as a virtual appliance (cf. Sect. 6.4).

1http://veins.car2x.org/.

http://veins.car2x.org/

6 Veins 217

6.2 Internals

In this section, we explain how the bi-directional coupling works (cf. Sect. 6.2.1)
and give details on the implementation of the IEEE 802.11p-based communication
stack (cf. Sect. 6.2.2). Discussion on Veins internals continues with the modeling
of antenna characteristics (cf. Sect. 6.2.3), followed by a section on how unit
testing can help in the development of new simulation models (cf. Sect. 6.2.4), and
simplified timer management (cf. Sect. 6.2.5).

6.2.1 Architecture and Bidirectional Coupling

Contrary to what might be expected, Veins does not include custom mobility models
of road vehicles. Rather, it has simulations establish a connection to a dedicated road
traffic simulator which is running as a separate process, as illustrated in Fig. 6.1.
This way, Veins can benefit from the years of research and development by domain
experts who have created fully featured tools for road traffic simulation. The road
traffic simulator that Veins was designed to interoperate with is Simulation of Urban
MObility (SUMO)2 (though, in theory, any simulator supporting the Traffic Control
Interface (TraCI) simulator coupling interface can be used).

SUMO can simulate medium to large road networks of cities, urban areas,
highways, and freeways. On those, it can simulate the movement of road vehicles

O
M
N
eT

++

Discrete Events

Si
m

ul
at

io
n

C
on

tro
l

R
es

ul
t D

at
a

C
ol

le
ct

io
n

SU
M
O

Ve
in
s

MobilityBehavior

Physical Layer

Medium Access Emissions

Road Traffic

Dissemination

Data Generation

Traffic Efficiency

Content Delivery

ITS Application

Comfort

Message Exchange

ITS Application

Traffic Safety

Data Dissemination

ITS Application

Traffic Efficiency

Channel Trips and Routes

Road Network

Fig. 6.1 High-level architecture of Veins

2SUMO website: http://sumo.dlr.de/.

http://sumo.dlr.de/

218 C. Sommer et al.

like cars and trucks, of scooters and bicycles, of pedestrians, and of trains.
SUMO supports a wide range of different mobility models (from idealized, lane-
discrete models to sub-lane models of mixed car/scooter traffic), a set of different
intersection controllers (from simple right of way to demand-actuated traffic lights),
and a wide range of road network input formats (from OpenStreetMap and TIGER
to proprietary, specialist Geographic Information System (GIS) formats).

By default, mobility information is polled from SUMO at fixed intervals of,
e.g., 100 ms, though adaptive polling is equally well supported by the interface.
Execution of the OMNeT++ simulation pauses while SUMO computes mobility
information for the desired point in time. The performance impact of this is, how-
ever, minimal as SUMO is designed to simulate at least an order of magnitude more
mobile nodes than can be afforded in a highly detailed wireless network simulation.
As a consequence, in a reasonably complex wireless network simulation, only
fractions of percent of simulation time are spent calculating and communicating
mobility information.

Whenever SUMO simulates the departure of a mobile node, Veins creates a
dedicated simulation module in OMNeT++. Then, as the mobile node moves in
SUMO, Veins keeps the corresponding OMNeT++ module updated wrt its position,
heading, and speed (along with the status of turn signal indicators and similar
miscellaneous data). Similarly, when SUMO simulates the mobile node arriving
at its destination, Veins removes the corresponding OMNeT++ module from the
simulation. This way, Veins couples node mobility in OMNeT++ to that in SUMO.

This coupling is bi-directional: in addition to the OMNeT++ simula-
tion evolving as dictated by the SUMO simulation, the OMNeT++ sim-
ulation can influence the simulated road traffic in SUMO, for example,
to have cars choose a different route to their destination in response to
received traffic information—or to have a car perform an emergency brake
in response to received warnings. This is done by calling methods of the
TraCICommandInterface and component class instances associated with
each mobile node. They are available by obtaining a pointer to the mobility module
via TraCIMobilityAccess().get(getParentModule()) and calling
its getCommandInterface() or getVehicleCommandInterface()
method from any simulation model of a mobile node that contains a mobility model
of type TraCIMobility (a requirement for mobile nodes managed by Veins).
These interfaces offer a wealth of methods—from the simple, like getRoadId
and newRoute (for vehicles) to the complex, like setProgramDefinition
(for a traffic light). Details on this concept are available in the literature [56].

Programmatically, the coupling is performed by instantiating a simulation
module of type TraCIScenarioManager, which bi-directionally couples
OMNeT++ and SUMO. However, the user needs to manually run one SUMO
simulation for every OMNeT++ simulation. As an alternative and to ease the
management of two simulators running in parallel, Veins also includes tools to auto-
matically set up and run SUMO simulations. This is done by instantiating a subclass
of TraCIScenarioManager called TraCIScenarioManagerLaunchd. It
expects the user to have run a command line utility, sumo-launchd.py, which waits

6 Veins 219

for incoming network connections from an OMNeT++ simulation and launches one
instance of SUMO for each simulation and proxies the connection. Alternatively,
another subclass called TraCIScenarioManagerForker can be employed,
which will directly run a local instance of SUMO when needed. All of these
coupling variants are included with Veins.

What is not included with Veins are road traffic scenarios to generate the SUMO
traffic from. While, these days, road network data and building positions are easy
to come by (thanks to open data sources), information about traffic demand (that is,
how typical traffic moves through the road network), traffic light timings, or meta-
data like bus and train schedules are much harder to obtain. In the early days of
VANET simulation, road traffic scenarios were thus often generated synthetically,
e.g., modeling an ideal Manhattan Grid of roads. This had the obvious downside
of requiring a lot of skill on the part of the researcher generating the road traffic
scenario (lest the simulation test the system under study in unrealistic conditions).

A better choice is to pick one of the well-tested road traffic scenarios that have
been made available recently. Examples for the SUMO road traffic simulator are:

• The Bologna “Pasubia” and “Acosta” scenarios [6], depicted in Fig. 6.2a, feature
9k trips each on two areas of 2 km × 1 km each.3 They can be run individually
or as one bigger road traffic scenario and feature traffic driving in a small part of
the city core of Bologna, though care must be taken as no building positions are
included with the scenario.

• The Bologna “Ringway” scenario [4], depicted in Fig. 6.2b, features 22k trips
on an area of 4 km × 3 km.4 It focuses on road traffic on an arterial road running
around a city center. Like the Pasubia and Acosta scenarios, no building positions
are included with the scenario.

• The Luxembourg “LuST” scenario [10], depicted in Fig. 6.2c, features 288k trips
on an area of 14 km × 11 km.5 It is the largest and most complete scenario to
date and includes a full day of mobility data for a complete city, including the
positions of buildings and parking lots.

• The Monaco “MoST” scenario [9] in Fig. 6.2d includes 18k trips in an area of
10 km × 7 km.6 Still under development, it focuses on multi-modal traffic, com-
prising added information regarding public transport, bicycles, and pedestrians.

3http://sourceforge.net/projects/sumo/files/traffic_data/scenarios/Bologna_small.
4http://www.cs.unibo.it/projects/bolognaringway/.
5https://github.com/lcodeca/LuSTScenario.
6https://github.com/lcodeca/MoSTScenario.

http://sourceforge.net/projects/sumo/files/traffic_data/scenarios/Bologna_small
http://www.cs.unibo.it/projects/bolognaringway/
https://github.com/lcodeca/LuSTScenario
https://github.com/lcodeca/MoSTScenario

220 C. Sommer et al.

Fig. 6.2 Selection of existing openly available scenarios for SUMO. (a) Bologna: Pasubia and
Acosta. (b) Bologna: Ringway. (c) Luxembourg: LuST. (d) Monaco: MoST

6.2.2 The MAC and PHY Layer

One of the core features of Veins is the detailed modeling of the lower layers of Inter-
Vehicle Communication (IVC). For the evaluation of most IVC applications and
networks, a detailed packet-level simulation using accurate models of the evaluated
technology is required [15]. For vehicular networks, the technology in question is
often IEEE WAVE (or ETSI ITS-G5 in Europe). The core of this family of standards
is the IEEE 1609.4 multi-channel operation using the IEEE 802.11p Medium Access
Control (MAC) and Physical Layer (PHY). An overview of the stack is given in
Fig. 6.3a. While it is possible to implement and integrate each of these layers and
standards, Veins puts a focus on the lower layers as these are decisive for the actual
channel access and transmission of packets [17]. Other simulation models (not
included with Veins, but publicly available, such as ARIB T-109 [23]) can build
on this foundation if additional protocol layers of the various protocol stacks of ITS
protocols around the world are to be modeled as well.

Figure 6.3b shows the representation of the stack within Veins. Each node, be it
a vehicle, a road-side unit, or even a pedestrian or cyclist making use of wireless
communications would need to consist of at least an 802.11p Network Interface

6 Veins 221

Applications
(1609.1, SAE, ...)

TCP / UDP

IPv6
WSMP

(1609.3)

Logical Link Control
(802.2)

MAC
(802.11p)

PHY
(802.11p)

Multi-
Channel
(1609.4)M

an
ag

em
en

t
(1

60
9.

3)

S
ec

ur
ity

 &
 P

riv
ac

y
(1

60
9.

2)

Layer 1

Layer 2

Layer 2.5

Layer 3-6

Layer 7

(a) (b)

Fig. 6.3 The IEEE WAVE stack and its representation in Veins. (a) The IEEE WAVE family of
standards. PHY, MAC, and application layer are represented in Veins. (b) Layer representation in
OMNeT++

Card (NIC) to be able to communicate with other devices. Higher layers (in some
stacks: the application layer) are directly connected to this NIC which itself is a
compound model consisting of the MAC and the PHY layer. This results in a simple
APP-MAC-PHY architecture for each node in Veins. The veinsmobility
module is responsible for updating the position of the vehicle (see Sect. 6.2.1). In
the case of a road-side unit, the mobility would be a constant BaseMobility.

In OMNeT++, each module can exchange messages with other modules if they
are connected. These messages can be of any type inheriting from cMessage*, that
is, just plain messages or (encapsulated) packets of any given message format (e.g.,
Wave Short Messages (WSMs) or Wave Service Advertisements (WSAs)). Inside a
node, messages can either be “normal” messages that might be forwarded to layers
above or below or control messages to trigger a certain action in the receiving layer.
Depending on the type, a different function will be called in the receiving layer. As
can be seen in the figure, the physical layer is connected only to the MAC layer and
to the outside world.

In the following subsections, we will discuss how messages are generated,
processed, forwarded, and received.

6.2.2.1 Medium Access Control and Upper Layers

The Medium Access Control (MAC) layer in the simulation should represent the
simulated system as closely as possible (for example, evaluating an IEEE 802.11p
system for IVC using a model for IEEE 802.11b can give misleading or even wrong
results) [15, 27]. Veins comes with a detailed IEEE 1609.4 and IEEE 802.11p
MAC layer that supports multi-channel operation, channel switching (alternate
access), transmission of unicast and broadcast messages, and an IEEE 802.11e
Enhanced Distributed Channel Access (EDCA) implementation with four different

222 C. Sommer et al.

access categories [12]. For a detailed description we refer the interested reader
to IEEE 802.11e and IEEE 802.11p [12, 15, 53] and the actual standardization
documents [25] and [24]. The level of detail in Veins’ MAC and PHY layer imple-
mentation allows researchers to conduct various simulation studies, for instance
comparing wireless network performance [17, 58], studying the applicability of
the wireless network for vehicular cooperative safety [26] (cf. Sect. 6.3.2), or the
simulative analysis of platoons [48] (cf. Sect. 6.3.1).

The implementation in Veins follows a different paradigm compared to most
other OMNeT++ frameworks. The behavior of the MAC layer can be specified
in the form of a state machine, which is a useful method to understand as well
as implement the system. Transitions between states are triggered after, e.g., a
timeout has expired, the backoff counter has reached zero, a packet arrived, and
so on. Indeed, an implementation might choose to directly follow the state diagram.
However, the MAC layer has several properties which make such an implementation
hard to maintain and read: packets can arrive from an upper layer regardless of
the state the MAC layer is in, multiple timers can run in parallel (e.g., for each of
the EDCA queues as well as the channel switching time), and the multi-channel
operation would require two independent state machines. Not only does this lead to
plenty of nested if statements in each function (to check which state the system is
currently in) which makes extending and understanding the code base challenging,
it also has an impact on performance as multiple timers have to be managed in
parallel, i.e., inserted into and removed from the event queue.

This prompted the design decision to not rely on a state machine implementation
but follow a different, more efficient approach: The MAC layer always tracks the
time at which it can send the next packet, instead of tracking all the different
intervals such as interframe spaces or backoff times, separately. When an event
occurs that affects this time, e.g., the channel turns busy or a new packet in a higher
priority queue arrives from the upper layer, the timer is canceled or rescheduled and
the backoff counters for each EDCA queue are updated. When the channel turns
idle again, the time is recomputed and the timer is scheduled again. The result of
this design is that Veins will only use one single timer (nextMacEvent) when
using a single channel MAC layer with broadcast messages only, which is a rather
common setup for vehicular networks. Multi-channel operation and unicast packets
require additional timers.

Transmitting a Packet The MAC layer expects a WaveShortMessage from
higher layers (e.g., the application layer) with attached information on which
channel it should be sent and a user priority which will be mapped to an EDCA
queue. The packet will be queued accordingly and the nextMacEvent timer will
be updated if necessary. If the channel is busy and the respective EDCA queue has
a backoff counter of 0 with the newly arrived packet at the front of the queue, then
a backoff procedure is invoked according to the standard.

The core of the MAC layer is the startContent function which models the
start of contention for the channel and returns the time the next packet can be sent.
It iterates through each of the EDCA queues and computes this time based on the

6 Veins 223

queue-specific interframe time (AIFSn × slot length + SIFS), the current backoff
counter, and the last time the channel went idle. If the channel was idle long enough
when a new packet arrives from the upper layer, the packet will be sent at the next
slot boundary. When the timer expires, the MAC layer sets the channel to busy
and calls the stopContent function. In this function, the backoff counters of
the remaining EDCA queues are updated and Transmit Opportunitys (TXOPs) for
ready-to-transmit queues are generated. Then initiateTransmit function is
invoked which is responsible for returning the actual packet that is supposed to be
sent. In the case of an internal collision, that is, when there are two or more packets
ready, the lower priority queues will be sent into backoff. The winning packet will be
encapsulated with the corresponding MAC header and controlInfo (containing
transmit power and data rates), and if there is enough time left in the current control
or service channel interval, handed to the PHY layer. The stopContent function
is also invoked when the channel turns busy due to an external transmission. In this
case, no TXOPs are generated and the nextMacEvent timer is canceled.

Receiving a Packet The role of the MAC layer in the reception of a packet is
straightforward. If the PHY layer sends up a Mac80211Pkt, the MAC will check
whether the destination address is the layer 2 broadcast address or whether it
matches its own MAC address. If this is the case, the packet will be decapsulated and
the WaveShortMessage will be handed to the application layer. When dealing
with unicast transmissions, the received packet can be an Acknowledgment (ACK)
packet. The reception of an ACK packet marks the successful transmission of a
unicast packet, causing the MAC layer to remove it from the respective EDCA
queue. If the MAC layer is expecting an ACK packet but has received another
packet, then the originally sent packet has to be retransmitted.

The PHY layer also informs the MAC layer of several other events such as
successful or unsuccessful reception of a packet, the channel turning busy or idle,
erroneous decoding of a packet, and so on. This is achieved by means of control
messages. Veins collects various statistics about received packets and failures (split
by broadcast and unicast and by cause of loss) as well as about internals of the state
machine (e.g., how busy the channel was), giving the researcher methods to evaluate
the underlying network in great detail.

6.2.2.2 The Physical Layer and the Wireless Channel

The benefit of packet level simulation is the capability to (more or less) realistically
determine for each packet if it can be successfully received. There are several factors
affecting the decoding of a packet: the position in space of sender and receiver, the
antenna characteristics (see Sect. 6.2.3), whether there is an obstacle blocking the
line of sight, and interference from other transmitting nodes. While Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) significantly reduces the
chance of two nearby nodes (i.e., they can hear each other) sending at the same

224 C. Sommer et al.

time, it does not offer a solution to the hidden terminal problem [22]. All these
effects can be captured by Veins. In this section, we will outline the functionality of
the PHY.

The described models of the Physical Layer and the wireless channel in Veins are
currently based on a fork of MiXiM [64], a discontinued framework which models
radio signals as generic n-dimensional objects (power levels expressed in, e.g., time
and frequency) and provides a math toolbox to work with them.

It should be noted that, while this is the most flexible way of modeling radio
signals, it is also computationally expensive. Thus, Veins has been updated to use a
more specific abstraction of radio signals, tailored to the feature set used in common
Vehicle-to-Vehicle (V2V) communication (e.g., forcing any radio signal to always
have a time and a frequency dimension—never more, never less) and optimized
for efficiency. While this has the obvious drawback of not being able to model
radio signals in dimensions other than time and space, these adaptations can allow
simulations to run faster—in some cases up to two orders of magnitude. While this
functionality is not yet available in Veins 4.7, it is available on Github and will be
integrated into upcoming releases of Veins.

Analogue Models The connection manager of OMNeT++ maintains a connectiv-
ity map to be able to hand transmitted messages to the receiving nodes. Every node
inside a configurable interference range of a transmitting node will be handed a copy
of the transmitted packet. Determining whether this packet is successfully received
then lies within the responsibility of the node itself. The setting of an interference
range is purely an optimization: it defines an artificial range beyond which no radio
transmission needs to be considered as interfering. Naturally, it should be set much
larger than the maximum range of any successful transmission, as also packets that
have a too low receive power (or Received Signal Strength (RSS)) to be decoded
can still affect the successful reception of other packets.

The connection manager will hand an airframe at least twice to the PHY layer
via the handleMessage function: when the receiving starts and when it ends. The
first thing that has to be computed is the actual receive power of the frame as this
determines whether the channel turns busy or remains idle. This is done by applying
the antenna gains (Gt,Gr) and iteratively applying all the configured loss models L

in the filterSignal function (see Eq. (6.1)).

Pr = Pt + Gt + Gr −
∑

L (6.1)

Common deterministic loss models include the free space path-loss model and
the two-ray interference path-loss model [52] that considers the reflected signal
from the road that can cause cancellation and amplification of the received signal. A
detailed explanation of these models can be found in [13]. To account for fast fading
effects, Veins can make use of Nakagami-m fading which is a probabilistic method
to reflect multi-path propagation in urban environments [59].

The effect of obstacles (e.g., buildings in the scenario description file) is also
accounted for by the use of a loss model. Assuming each obstacle is a polygon,
then the receive power is reduced based on the number of edges n the signal

6 Veins 225

is intersecting (e.g., walls) and the distance m covered inside of polygons (e.g.,
inside a building). These values are weighted using parameters β and γ which
were calibrated using real world measurements (see Eq. (6.2)). They can be changed
according to the material of the obstacle, e.g., brick, concrete, etc.

Lbuild = β · n + γ · m (6.2)

Listing 6.1 shows how to configure a simple chain of analogue models (an XML
configuration set as the physical layer’s analogueModels parameter). In this
configuration, each received signal is first passed through a free-space path loss
model, then through an obstacle shadowing model.

A comparison of the different models as well as their ability to reproduce real-
world measurements [55] is given in Fig. 6.4.

Listing 6.1 Content of the config.xml file (part one)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <root>
3 <AnalogueModels>
4 <AnalogueModel type="SimplePathlossModel">
5 <parameter name="alpha" type="double" value="2.0"/>
6 <parameter name="carrierFrequency" type="double" value="5.890e+9"/>
7 </AnalogueModel>
8 <AnalogueModel type="SimpleObstacleShadowing">
9 <parameter name="carrierFrequency" type="double" value="5.890e+9"/>

10 </AnalogueModel>
11 </AnalogueModels>
12 </root>

The Decider Once all loss models have been applied, the airframe is handed to
the Decider which is an outsourced class that determines whether packets can be
successfully decoded. If the received power is below the configurable Clear Channel

0 200 400 600 800

−40

−30

−20

−10

0

Sender−Receiver Distance (in m)

R
el

at
iv

e
R

SS
 (i

n
dB

) Freespace
Two−ray interference
Real data

(a)

0 50 150 250 350

−70
−60
−50
−40
−30
−20
−10

0

Time index

R
el

at
iv

e
R

SS
 (i

n
dB

) Real data
Model

(b)

Fig. 6.4 Analogue models and their effect on the Received Signal Strength (RSS) compared to
real-world measurements. (a) Real-world measurements compared to the free-space model and the
two-ray interference model based on [52]. (b) Real-world measurements compared to the obstacle
model in Eq. (6.2) based on [55]

226 C. Sommer et al.

Assessment (CCA) sensitivity, this packet is unable to set the channel to busy. The
MAC layer will not be notified. If the packet is above the CCA threshold, the decider
checks whether the node is already transmitting or receiving another packet. In both
cases the packet will fail to decode.

The processSignalEnd function in the decider is called when the connec-
tion manager hands the airframe to the physical layer the last time. It is the task of
the decider to finally determine whether the packet is decodable. To this end, it first
has to compute the Signal-to-Interference-plus-Noise-Ratio (SINR) as depicted in
Eq. (6.3): the receive power of the packet in question i is divided by the power of all
interfering packets j and the background noise N .

SINR(i) = Pi

N + ∑

i �=j Pj

; (6.3)

Once the SINR has been obtained, it can be fed to a bit error model. Depending
on the modulation scheme (e.g., Binary Phase Shift Keying (BPSK), Quadrature
Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM)), a different
equation is applied to calculate the probability of one bit being decoded erroneously.
Bit error rates for header and payload are computed separately and then applied to
the packet length to derive a packet error rate. Two randomly drawn numbers then
decide whether the header and the payload can be decoded successfully.

The packet is handed to the MAC layer or, in the case of an error, a control
message is sent. Listing 6.2 shows how to configure the decider model (an XML
configuration set as the physical layer’s decider parameter). Each received signal
is then passed through this chain of models.

Listing 6.2 Content of the config.xml file (part two)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <root>
3 <Decider type="Decider80211p">
4 <parameter name="centerFrequency" type="double" value="5.890e9"/>
5 </Decider>
6 </root>

6.2.3 Modeling Antenna Patterns

Antennas are an integral part of wireless communications as they constitute the
interface between the radio device and the transmission medium. Yet, despite the
multitude of detailed models for the PHY and MAC layers described before, the
impact of antenna patterns has not been taken into account in VANET simulation
for a long time—even though the gain (or loss) of an antenna can critically influence
the receive power and thus the decodability of a sent message. This dependence is

6 Veins 227

already indicated by Eq. (6.1) (on page 224) with the terms Gt and Gr being related
to the sender’s and receiver’s antenna gain, respectively.

Early work on the impact of antenna patterns on V2V communication [18]
demonstrated that the vast majority of messages were received either from the front
or from the rear direction of the vehicle. It also demonstrated that, as a consequence,
the overall number of received beacons in a typical cooperative awareness simu-
lation was decreased by up to 20% compared to simulations neglecting antenna
influence (i.e., assuming isotropic radiators).

A highly configurable model for the consideration of antenna patterns has been
added to the Veins framework as of version 4.5.

The power of the sent or received signal depends on several aspects, first of all the
type of antenna in use. In the case of an ideal, isotropic antenna, the transmit power
is radiated in all directions equally. Omnidirectional antennas, e.g., monopoles, emit
the signal power equally in a certain plane. Another category are highly directional
antennas, which concentrate the power in one or a few selected directions. These
differences in power are usually stated as a dBi value, that is, on a logarithmic scale
with respect to an ideal, isotropic radiator.

In the context of vehicular networks, radiation characteristics are further influ-
enced by the vehicles themselves. An important factor is the mounting location,
which might be on the roof, at the front, at the rear, on the side mirrors, or even
under the car. Example patterns as measured in [31, 34] are depicted in Fig. 6.5.
For example, the radiation pattern of a vehicle with patch antennas on the side
mirrors (see Fig. 6.5c) exhibits a substantial prevalence towards the front of the car.
Moreover, material properties of parts surrounding the antenna can influence the
power of a transmitted or received signal. A distinct example is shown in Fig. 6.5a.
This radiation pattern is the result of a study by Kwoczek et al. [34] who investigated
the consequences of an antenna being mounted next to a panorama glass roof. As
can be seen, this leads to a substantial attenuation of up to 20 dBi towards the front
of the vehicle as the signal tends to get reflected within the glass roof.

It is quite obvious that such an influence on the signal power can make all
the difference in simulation when deciding on the decodability of a packet, which
is why the support for antenna patterns has been added to the Veins framework.
For this purpose, an object of the newly introduced Antenna class is assigned
to every vehicle (or more generally: to every module containing a radio). For
this, an Antenna member is added to the BasePhyLayer class, which itself
is present in every module capable of wireless communication (see Fig. 6.6). The
Antenna class can be seen as the superclass for all kinds of specialized antenna
implementations and simply returns a factor of 1.0 (representing an isotropic
pattern).

This approach facilitates the implementation of various antenna subclasses that
differ in the way of computing the specific gain. The subclass capturing one of
the most common use cases is SampledAntenna1D, which deals with two-
dimensional antenna patterns, i.e., only the horizontal plane is considered. In this
case the resulting gain depends on one variable, namely the signal’s horizontal angle
of incidence. The user needs to pick a representative antenna from the included

228 C. Sommer et al.

Azimuth Plane

45°445°

135°1 5135°225°°5225°

315315°3315°5

55551111−−− 55551−−

55−−555−−

5 dBi5 dBiBd5

Elevation Plane

45°445°

135°1 5135°225°°5225°

315315°3315°5

55−55−−

5 dBi5 dBiBd5

(a)

Azimuth Plane

45°445°

135°1 5135°225°°5225°

315315°3315°5

55551111−−− 55551−−

55−−555−−

5 dBi5 dBiBd5

Elevation Plane

45°445°

135°1 5135°225°°5225°

315315°3315°5

5555555525222222222−22−−−−2522222−2−−−−

55−55−−

5 dBi5 dBiBd5

(b)

Azimuth Plane

45°445°

135°1 5135°225°°5225°

315315°3315°5

55551111−−− 55551−−

55−−555−−

5 dBi5 dBiBd5

Elevation Plane

45°445°

135°5135°225°°5225°

315315°3315°5

55555525222222222−2255555555552522222−−−−−2−−−−

55551111−− 5551−−

55−55−−

5 dBi5 dBiBd5

(c)

Fig. 6.5 Azimuth and elevation planes of example vehicular antenna patterns (gain in dBi). (a)
Monopole antenna on glass roof (based on [34]). (b) Monopole antenna (based on [31]). (c) Patch
antenna (based on [31])

BasePhyLayer Antenna

SampledAntenna1D

Fig. 6.6 Overview of the newly added antenna classes

database (or provide samples of the radiation pattern at equidistant angles between
0◦ and 360◦).

For the actual gain calculation, the signal direction has to be determined first. As
illustrated in Fig. 6.7, this angle of incidence φ (also called azimuth angle) depends
on the sender’s and receiver’s position as well as on the orientation of the antenna in
question. As all of these parameters are known to the simulation, the azimuth angle
φ can be determined with the help of the scalar product. Next, the stored antenna
gain samples are queried at the determined angle. If the angle of the required gain

6 Veins 229

vorient vLOSφ

Fig. 6.7 Dependence of the azimuth angle based on Line of Sight (LOS) and orientation vector

θ LOS

vorient

vLOS
θ orient

θ

Fig. 6.8 Dependence of the elevation angle based on Line of Sight (LOS) and orientation vector

value is located between two samples, linear interpolation is applied. Finally, the
signal power is multiplied by the determined antenna gain factor.

Recent work also examined the influence of 3D antenna patterns in a three-
dimensional environment [8]. To this end, another antenna class has been imple-
mented, namely SampledAntenna2D. As the name implies, the antenna gain
is now dependent on two parameters. Besides the already introduced horizontal
(azimuth) angle φ, the vertical (elevation) angle θ needs to be determined as well.
It can be computed based on the (now three-dimensional) antenna positions and
orientation of the ego vehicle (see Fig. 6.8). Only if both angles are known is it
possible to specify the signal direction in the three-dimensional space.

Obviously, the user has to provide a 3D antenna pattern in the first place. As a
full representation is rarely available and would imply a large number of samples,
only the two principal planes are required for our model. The azimuth plane pattern
has already been used for the 2D antenna implementation. In addition, the elevation
plane pattern becomes necessary. Again, equidistant samples of both patterns of the
antenna type to simulate need to be provided by the user. In order to estimate the
antenna gain in an arbitrary direction, the 3D antenna pattern interpolation method
described by Leonor et al. [36] is applied. It is based on determining the four closest
gain values on the principal planes and summing them up weighted proportionally
to their contribution. This way, the three-dimensional antenna gain in the required
direction can be estimated.

230 C. Sommer et al.

A
vg

. n
r.

of
 n

ei
gh

bo
rs

 in
 r

ea
ch

Starting time
4 am 5 am 6 am 7 am

0
4

8
16

24
32

isotropic

2D antennas

3D ant. + diffr.

Fig. 6.9 Average number of neighbors in reach when simulating the LuST scenario with and
without 2D antenna patterns as well as 3D antenna patterns (including diffraction effects) [8]

As a matter of course, the assignment of 3D antenna patterns only makes sense
if the whole environment of the scenario under investigation itself is modeled in a
three-dimensional way. This means that the underlying road network has to include
z-coordinates and that this additional 3D data also has to be exchanged between
SUMO and OMNeT++, where it can be used for the three-dimensional antenna
model.

Note, however, that 3D antenna patterns are not the only aspect that needs to
be considered for a sufficient three-dimensional simulation of VANET scenarios:
Brummer et al. [8] demonstrate that diffraction effects caused by surrounding
terrain and other vehicles in the LOS should not be neglected either. Figure 6.9
demonstrates the impact that considering both 3D antenna patterns and terrain has
on a simulation measuring the average number of neighbors in reach of a car.
It shows substantially differing numbers for the three setups independent of all
simulated starting times (and thus traffic densities).

In conclusion, it can be said that antenna characteristics (as well as diffraction
effects in the 3D case) should be taken into account for more realistic and reliable
results. The means to achieve that are readily available in the Veins framework.

6.2.4 Unit Testing in Veins

Automated testing has become a central element of modern software development.
In a world of rapidly changing requirements and short development cycles, a quick
and repeatable assurance of code correctness is essential. Automated testing can

6 Veins 231

provide such assurance by running suites of programmed tests. Each test calls a
portion of the original code and compares the results (and in some cases side-effects)
to reference values embedded in the test. If all tests pass and the test suites cover
all (or a large enough portion) of the original code, one can be assured that the code
behaves as expected. If some tests fail, one can gain hints about which part of the
code is not behaving as expected by observing which tests fail and which portion of
the code they call.

The whole process of running a test and evaluating its results can nowadays
be integrated into software version control and development workflows to support
continuous integration.

Veins users usually implement models of algorithms or protocols to conduct
research. While this is not the same as releasing a software product to end users,
asserting correctness of the software is just as important in this domain. Before
being able to rely on data generated from a simulation (or, indeed, publishing
findings based on it), the author has to be confident that all models of the simulation
behave as expected. Typically, this is done by comparing measurements recorded
from the simulated model to reference data obtained from analytical models or from
conducted real-world measurements.

This approach treats the model as a single large black box. Only behavior that is
observable from the outside is compared to reference data. While this approach is
useful to verify the overall correctness of the model, it is hard to cover the model’s
complete behavior. For example, there may not be enough reference data for all
use cases or there may be mechanisms inside the model that are hard to verify
from the outside. Finally, manually comparing the model with reference data is a
cumbersome process that takes time and may be prone to errors due to its repetitive
nature.

Aside from manual result comparison, Veins and OMNeT++ have provided three
more automated testing mechanisms for a while now.

The first one is a simple regression testing approach, already described in
Chap. 1. After a simulation finishes, OMNeT++ can output its fingerprint, a hash
value of its defining characteristics (such as its event trace). Later fingerprints can
then be used to verify that changes in the code did not affect how the simulation
behaves.

The second testing mechanism is to simply run a simulation model that itself
contains calls into model code and assertions to check the results. Veins uses this
in its TraCITestApp to check if some basic interactions with the SUMO traffic
simulation lead to expected results. This approach shares the pros and cons of the
general usage of assertions within model code: preconditions and postconditions
within model code can easily be checked and are straightforward to write. However,
the approach is unstructured and not well suited for testing an entire simulation
model. Many checks have to be integrated into a single simulation scenario and
may depend upon each other. The whole simulation kernel has to be loaded
which eventually increases runtime and complexity. Finally, there is no support for
established testing tools, e.g., for automation, coverage reporting, or debugging.

232 C. Sommer et al.

The third mechanism is the OMNeT++ opp_test tool.7 It can run tests in a
managed environment similar to the execution environment of the OMNeT++
simulation kernel. Message creation and sending as well as result recording and
other OMNeT++ utilities are available just like during simulation execution. Such
an environment is hard to set up manually when using generic testing facilities.
Tests are completely encapsulated into single test files and run by the opp_test
tool. Correctness can be ensured by observing the successful termination of the
simulation and by validating simulation output of file streams, such as result
files and standard output or standard error. All of this makes opp_test the prime
tool for testing OMNeT++, its modules, and code that is tightly integrated with
(or relying on) OMNeT++ mechanisms, such as messages and channels. For
everything that is not touching the OMNeT++ simulation kernel or library, however,
opp_test is not the most straightforward tool to use. The test file format introduces
unnecessary overhead—and having to find all values to check against in file streams
is cumbersome.

Thus, for testing plain C++ code, more generic unit testing frameworks provide
a better solution. A very popular example of such frameworks is Catch2.

Catch2 is a powerful C++ unit testing framework that facilitates writing, running,
and evaluating unit tests for C++ code.8 Tests are written in plain C++ (with some
macros), compiled into an executable, and run by a built-in runner application. This
runner allows control of the way tests are run, e.g., output verbosity and format
(e.g., for continuous integration services). It can also limit a run to subsets of the
test suite via tags to speed up execution time or automatically spawn a debugger on
failing tests. As it is easy to learn, powerful in its capabilities, and available under
a nonrestrictive license (i.e., the Boost Software License Version 1.0), it is an ideal
framework to test Veins code that does not touch the OMNeT++ kernel or library.

Limiting tests to plain C++ code may appear to be a restriction, but it is actually
an opportunity for improving the code design. When implementing models of
algorithms and protocols using Veins, ideally only a small fraction of the code has
to be written specifically for OMNeT++. Algorithms can easily be expressed as
pure C++ functions or classes—and even protocol implementations can be written
more cleanly if they do not rely on the concrete messaging model employed
by the OMNeT++ simulation kernel. Code written in such a manner contains
fewer external dependencies and moving parts. Especially the ownership model of
OMNeT++ messages (which heavily relies on passing raw pointers) is contrary to
C++ best practices of high-layer application development and a common source
of errors. Integration can then happen in a thin layer of code that implements
OMNeT++ modules, channels, or messages and, e.g., could be tested with the
opp_test tool. This approach results in code that is much easier to test and also much
easier to debug (as models can be executed without a full simulation environment)
and to port to other simulators or platforms at the same time.

7https://www.omnetpp.org/doc/omnetpp/manual/.
8https://github.com/catchorg/Catch2.

https://www.omnetpp.org/doc/omnetpp/manual/
https://github.com/catchorg/Catch2

6 Veins 233

In Catch2, tests are implemented in C++ files (see Listing 6.3) which only have
to include a single header file. As discussed, these files are compiled individually
and linked together, which also includes a special runner program that is generated
by Catch2. The result is a plain binary that can be executed to run the contained
tests.

Since Veins 4.7, this process has been automated in the Veins_Catch subproject.
The subproject contains a Makefile that automatically builds the test binary from
C++ files found in its source directory. It dynamically links the file to the shared
library compiled from the original Veins code, so that both can be built individually.
This also means that the original Veins code is fully independent of the test code.
The test code, on the other hand, only needs to include header files from Veins code
as if it were a part of Veins itself.

In addition, all the components (including the test runner) are compiled indi-
vidually and only have to be recompiled if changed. As a result, build times
stay short, which benefits frequent testing and development styles like Test-Driven
Development (TDD).

In order to run the tests, one only has to execute the veins_catch binary produced
by the Makefile (given that it and Veins itself have been successfully compiled). The
binary provides a number of command line switches to control how and which tests
are run. For example, -s provides detailed output even for successful tests and -b
spawns a debugger in case of an error or failed test. The names or tags of tests to be
run can be given as command line arguments. See the Catch2 documentation or run
it with the -v switch for more information.

New tests can be added to existing or new C++ files in the src directory within the
Veins_Catch subproject. Ideally, every unit (e.g., class or set of functions) should get
its own file, mirroring the structure of the original Veins code to some degree. Each
such test file first has to include the Catch2 header file (catch/catch.hpp) and then
any headers of Veins components it wants to test against. Include paths are already
configured in a way such that test code can include headers from Veins code as if it
was a part of Veins itself. However, if new libraries or dependencies are introduced
to Veins (in a way that affects header files), the configuration of Veins_Catch has to
be adapted in the same way.

Tests can be written in two styles: normal and Behavior-Driven Development
(BDD) style. The former is faster to type, the latter is more expressive in terms of
debug output and test case structure. In any case, each individual test case (either
stated as a TEST_CASE or a SCENARIO) gets a description text. Within such a test
case, one can write arbitrary C++ code to set up the test. Assertions are then added
via the REQUIRE macro (there is in fact a whole family of macros to cover a wide
range of use cases). It is important to always add at least one assertion to each test
case, otherwise it might not be run. Sample test cases and invocation of the unit tests
are shown in Listings 6.3 and 6.4.

234 C. Sommer et al.

Listing 6.3 Sample test case written in Catch2 in the Veins_Catch subproject

1 #include "catch/catch.hpp"
2 #include "veins/modules/mobility/traci/TraCICoordinateTransformation.h"
3
4 using Veins::TraCICoordinateTransformation;
5 using Veins::TraCICoord;
6 using OmnetCoord = TraCICoordinateTransformation::OmnetCoord;
7
8 SCENARIO("coordinates can be transformed", "[netbound]") {
9 auto o1 = OmnetCoord(2414.90142, 1578.44161, 0.0);

10 auto t1 = TraCICoord(646854.991, 5493242.54);
11
12 GIVEN("The boundaries from a scenario") {
13 TraCICoordinateTransformation nb{ {644465.09, 5491786.25},

{647071.55,5494795.98}, 25 };
14
15 THEN("omnet coords correctly translate to traci coords") {
16 auto t2 = nb.omnet2traci(o1);
17 REQUIRE(t2.x == Approx(t1.x));
18 REQUIRE(t2.y == Approx(t1.y));
19 }
20 THEN("traci coords correctly translate to omnet coords") {
21 auto o2 = nb.traci2omnet(t1);
22 REQUIRE(o2.x == Approx(o1.x));
23 REQUIRE(o2.y == Approx(o1.y));
24 }
25 }
26 }

Listing 6.4 Sample invocation of test cases in the Veins_Catch subproject

1 veins/subprojects/veins_catch% ./configure
2 Creating Makefile in veins/subprojects/veins_catch/src...
3 veins/subprojects/veins_catch% make
4 Creating binary: src/veins_catch
5 veins/subprojects/veins_catch% ./src/veins_catch
6 All tests passed (4 assertions in 1 test case)

6.2.5 Simple Timer Management

A common use case in many protocols is the handling of timers, that is, doing some-
thing and—after a certain time interval elapsed—doing something else, possibly
repeatedly. OMNeT++ offers the concept of Self-Messages to support this use case:
any simulation module may schedule an event to be delivered to itself (using the
scheduleAt method), annotating its event handler with code to treat this special
event as expiration of a timer. Commonly, users create such events in a module’s
initialize method, schedule them in some user-defined method, and handle
them in a module’s handleMessage method.

At the scale (regarding number of timers) needed for many advanced protocols,
however, this way of modeling timers has a number of drawbacks for code
complexity. Because creation, scheduling, and handling of timeouts is split across
multiple methods, data must be communicated in the events themselves (commonly
found patterns subclass from cMessage to achieve this). Further, boilerplate code

6 Veins 235

needs to be included with every handler to free memory or re-schedule repeated
events, depending on whether the timer is a one-shot or a repeating one.

Starting with Veins 4.7, the model library includes a utility class TimerManager
to ease writing timers. It supports users needing to write timers in two respects:

• it takes care of all memory management associated with OMNeT++ events; and
• it enforces robust, modern coding standards by relying on C++11 lambda

constructs (or, indeed, any std::function) for passing data to callback
handlers.

To use this functionality, all an OMNeT++ module needs to do is create a
private instance of the TimerManager class and pass received events to it (by
introducing a small chunk of code in its handleMessage method). Timers can
then be introduced by calling the create method of this private instance, passing
it an object containing a lambda to execute when the callback fires. This lambda can,
of course, bind any local variable (or a reference thereto) that needs to be available
in the callback.

Listings 6.5 and 6.6 illustrate the use of the TimerManager class by way
of a simple example. Though (for the single timer taking a single integer value
demonstrated in this example) the overhead in terms of code that needs to be written
is identical to a solution using raw OMNeT++ events, it is easy to see that this
overhead is now simply a constant—independent of how many timers need to be
managed by a protocol implementation.

Listing 6.5 Content of the TimerExample.h file

1 #include "veins/modules/utility/TimerManager.h"
2
3 class TimerExample : public cSimpleModule {
4 protected:
5 virtual void initialize();
6 virtual void handleMessage(cMessage *msg);
7 // create a private instance of the TimerManager
8 Veins::TimerManager timerManager{this};
9 };

Listing 6.6 Content of the TimerExample.cc file

1 Define_Module(TimerExample);
2
3 void TimerExample::initialize() {
4 int n = intuniform(0, 255);
5 // example: remind ourselves about the value of n in 500ms from now
6 auto callback = Veins::TimerSpecification([this, n](){
7 EV << "value of n was " << n << std::endl;
8 });
9 timerManager.create(callback.oneshotIn(SimTime(500, SIMTIME_MS)));

10 }
11
12 void TimerExample::handleMessage(cMessage *msg) {
13 // allow TimerManager to handle any timer events
14 if (timerManager.handleMessage(msg)) return;
15 // regular handleMessage follows...
16 }

236 C. Sommer et al.

Naturally, the TimerManager instance offers not just a method to create, but
also to cancel timers—and timers can be both one-shot and repeating (either in a
given time interval or for a given number of repetitions).

6.3 Use Cases

In this section, we present two practical use cases for Veins. We give insights on the
simulation of platoons (cf. Sect. 6.3.1) and intersection scenarios (cf. Sect. 6.3.2).

6.3.1 Simulation of Platoons

Cooperative driving and automated car following (or platooning, illustrated in
Fig. 6.10), although not a new idea, is now an active research topic due to the
ever-increasing demand for highly safe and sustainable transportation. In brief,
the idea of platooning is to form road trains of vehicles—where one vehicle
leads the group and others autonomously follow it. The follow distance should be
small, much shorter than the safety distance maintained by human drivers. A close
following gap improves infrastructure utilization, as it reduces the portion of road
wasted for the safety distance. With an improved utilization comes a reduction of
traffic congestion, resulting in a more sustainable transportation infrastructure. In
addition, a distance in the order of a few meters reduces the air drag, lowering
fuel consumption and thus emissions. Finally, autonomously driven vehicles can
improve safety: more than 90% of road accidents are due to human errors [11].

Platooning is becoming technologically feasible, as witnessed by the projects
working on this topic and realizing successful Field Operational Tests (FOTs), such
as SARTRE, PATH, KONVOI, COMPANION, and PROMOTE-CHAUFFEUR [7, 30, 33,
35, 51]. Before the actual market introduction, however, platooning should be tested
in large scale settings to understand to which extent platooning technologies and
solutions would provide their expected benefits. In this setting (i.e., with tens or
hundreds of vehicles) FOTs are simply infeasible. The solution is thus to resort to
realistic simulations and this is what PLEXE has been designed for [47, 48].

PLEXE is a Veins extension designed for the analysis of platooning systems
from different perspectives. From a low-level perspective, it enables the analysis

Fig. 6.10 Screenshot of a platoon simulated in Veins

6 Veins 237

Wireless channel

App

Communication protocol

Network card

Ve
hi

cl
e

1

...

Scenario

App

SUMO mobility

Engine model

Control algorithm(s)

Ve
hi

cl
e

1

App

Communication protocol

Network card

Ve
hi

cl
e

N

Scenario

App

Engine model

Control algorithm(s)

Ve
hi

cl
e

NSU
M

O
Ve

in
s

Fig. 6.11 High-level architecture of PLEXE components

of cooperative control systems under realistic vehicle dynamics and network con-
ditions. This is especially useful to understand the impact of network impairments
on the performance of the control system, including heterogeneous vehicles in the
analysis. From a high-level perspective, PLEXE permits to design, implement, and
test platooning maneuvers, as well as to analyze the impact of different strategies on
traffic efficiency.

Figure 6.11 shows the high-level architecture of PLEXE. It does not only extend
Veins, but also SUMO:

• On the SUMO side, autonomous control algorithms and vehicle dynamics are
implemented.

• On the Veins side, users can develop protocols and applications which take high-
level decisions on vehicles’ behavior.

On the SUMO side of PLEXE, the difference between a “standard” SUMO
simulation and a simulation of a cooperative driving system is mobility modeling.
SUMO is designed for the simulation of transportation systems with a special

238 C. Sommer et al.

focus on human traffic. Vehicles behave as dictated by car-following models which
decide, for each time-step, what a vehicle should do depending on its surrounding
environment, including other vehicles, intersections, traffic lights, etc. Standard
SUMO models such as the Intelligent Driver Model (IDM) [60] or the Krauss
model [32] reproduce mobility patterns which are typical of human driving. In
cooperative driving, instead, decisions are taken by an automated system, which
clearly behaves in a completely different manner. In this regard, PLEXE implements
a new car-following model in SUMO which embeds different control systems—and
that can thus behave like a cooperative autonomous vehicle.

More formally, PLEXE gives access to a set of systems called cruise controllers.
The Cruise Control (CC) controller, as the name suggests, automatically maintains
a desired speed set by the driver: this way there is no need to keep the foot
on the throttle. This system is only a comfort feature, as the driver is required
to manually disengage it when approaching a slower vehicle. The next step in
automation, automatic braking, is provided by the Adaptive Cruise Control (ACC),
which exploits a radar mounted in the front bumper to maintain a safety gap to the
front vehicle, if required.

Although the ACC provides the required functionality, it does not implement
platooning in the strict sense. The reason is that, due to the delays introduced by the
engine driveline and the radar sensor, it cannot perform close following [41]. The
safety distance maintained by an ACC is comparable to safety distances typical of
human driving, and it would thus fail in providing the required benefits.

The solution to this problem comes from cooperation, i.e., by sharing information
through a wireless link to implement a Cooperative Adaptive Cruise Control
(CACC) [1, 20, 38, 40, 42, 45] (how this information is shared via the wireless link
is modeled in the Veins side of PLEXE, described later in this section). A CACC can
have a huge performance improvement with respect to an ACC as communication
overcomes the limitations of sensor-based systems. As an example, exploiting a
wireless link, the leader can communicate with all its members simultaneously,
while a front-mounted radar is only capable of providing information about the
preceding vehicle. In addition, any vehicle can share intended actions which will
be executed in the near future: a radar can only sense an event after its occurrence.

In essence, the PLEXE car-following model in SUMO makes it easy for users to
implement cruise control algorithms. PLEXE already provides some sample imple-
mentations, i.e., the ACC defined in [41] and the CACCs designed in [40, 42, 45].
The software is in continuous development and newly developed control systems
are announced on the official website.9

In addition to the control algorithms, PLEXE models engine characteristics and
vehicle dynamics. The control system computes a desired acceleration which needs
to be realized by the vehicle. This process, however, requires a certain amount
of time, the actuation lag, due to the engine driveline or to the braking system.
This can be properly taken into account, increasing the realism of the analysis and

9PLEXE website: http://plexe.car2x.org.

http://plexe.car2x.org

6 Veins 239

the trustworthiness of the results. PLEXE provides two sample implementations: a
simple but widely assumed first order lag (i.e., a first order low-pass filter) as well as
a realistic engine model which takes into account engine torque curve, gear ratios,
vehicle mass, aerodynamic characteristics, etc. Describing these models is out of
the scope of this chapter. The interested reader can find a detailed mathematical
description of the models (as well as of the control algorithms) in [46].

We now turn to the Veins side of PLEXE. On the Veins side of the simulation, each
vehicle has a corresponding network node implementing communication protocols,
applications, and scenarios (see Fig. 6.11). Each module can influence the behavior
of its corresponding vehicle (or retrieve data about it) using the extension of the
TraCI Application Programming Interface (API) provided by PLEXE.

The scenario module implements the high-level behavior of the vehicle. Two
basic examples included in the online tutorial are the sinusoidal and the braking
scenarios. In the first, the scenario continuously changes the leader speed to analyze
the behavior of the control system under disturbance. In the second, the leader
instead performs an emergency braking, coming to a complete stop.

Applications influence the behavior of vehicles as scenarios do, but they do so
based on the information they receive through wireless communication. The most
simple example is feeding the CACC using the data of a member of the same
platoon. In this case, depending on whether the information is correctly received
or not, the behavior of the vehicle changes (as the CACC computes different
control actions). Another use case is the implementation of a maneuver and its
corresponding protocol. In the case of a join maneuver, for instance, a vehicle might
get instructions for joining from the leader of a platoon.

Below the application level we find communication components. In particular,
we have communication protocols that implement beaconing strategies. This way
it is possible to understand what happens to the control system depending on the
employed data dissemination mechanism [49, 50]. As an example, the user can
analyze the difference between a static beaconing approach vs. a coordinated one.
Even further down the stack, we find the network card and the wireless channel
models that are included in the standard Veins release. They provide the necessary
level of realism for IEEE 802.11p-based V2V communication.

PLEXE’s structure on the Veins side is meant for defining the base concepts
and to ease the development process. It also enables users to define their own
application/communication structure, providing them with the maximum possible
flexibility.

6.3.2 Communication on Intersections

In May 2018, the European Commission announced that it wants to reduce the num-
ber of fatalities per year on European roads by 2050 to nearly zero. Beside passive
safety measures (e.g., advanced seat belts, improved safety glass) the commission
proposed different kinds of active safety measures (often called Advanced Driver

240 C. Sommer et al.

Fig. 6.12 Screenshot of an intersection simulated in Veins

Assistance Systems (ADAS)), which aim to support drivers and prevent accidents.
The envisioned safety features of future vehicles include advanced emergency
braking, intelligent speed assistance, and lane keeping assistance.

Some of the safety-relevant ADAS do already exist and use various sensor
technologies to assess the situation. However, the current systems are limited by
their sensors to visual range. Using inter-vehicle communication, sensor data can
be distributed among vehicles outside one another’s field of view. One prominent
example is Intersection Assistance Systems (IAS) which rely on location and
movement information. Veins is a natural fit for simulating communication while
vehicles are approaching an intersection (illustrated in Fig. 6.12) in a potentially
dangerous situation. SUMO, on the other hand, is designed to simulate collision-
free traffic, which makes it a less natural fit. Its car-following models are designed
to be collision-free, i.e., vehicles approaching an intersection will never have a crash
nor get into a potentially dangerous situation. However, starting with SUMO version
0.20.0, it is possible to turn off different safety checks of the car-following models.
Hence, simple crash situations can be simulated by letting two vehicles start at the
same time and distance to an intersection. In addition, the time when safety checks
are disabled can be varied and hence a wider variety of crash situations simulated.
This is possible for all implemented car following models.

Several measurements on how drivers approach intersections can be found in
the literature [5]. A comparison of existing car-following models (e.g., the Krauss

6 Veins 241

model [32] or the IDM [60]) quickly reveals that the IDM better reflects human
behavior when approaching an intersection [28]. Note also that default simulation
time steps (in the magnitude of seconds) for data exchange between SUMO and
OMNeT++ will not allow to sufficiently model such complex situations. Depending
on the vehicular safety application under investigation, simulation time steps
between 1 and 100 ms will be reasonable. For a detailed analysis of the simulation
time step, we refer the reader to the literature [26].

In the following, insights on how Veins can be used to research safety metrics
and situation-aware communication for IAS are shared.

Other than typical metrics of network behavior (like latency or load) and
typical metrics of road traffic behavior (like emissions or travel time [54]), the
primary metrics for traffic intersection must assess criticality. Metrics that assess
the criticality of driving situations are called safety metrics. The criticality of a
situation can only be estimated when driving information of all involved vehicles is
available. The information to estimate the risk depends heavily on the situation, but
might include: the exact geographical position, the driving direction, the speed, the
acceleration, the planned route, or even typical driving behavior of the current driver.
Please note that most of these parameters can be accessed in Veins directly or by an
extension of the data exchange interface (TraCI) between SUMO and OMNeT++.

Finally, it is of course important to detect crash situations at intersections.
This feature is implemented in Veins, which also enables the result recording of
interesting simulation data directly in OMNeT++.

In the following, a closer look on intersection scenarios is presented, i.e., a
possibility to estimate the likelihood of a crash at an intersection is explained. For
a detailed description, we refer the reader to the literature [29]. The considered
information for two vehicles A and B, which are approaching an intersection, is as
follows:

• distances dA and dB reflecting the distance to the intersection of trajectories,
• speeds vA and vB , and
• the maximum acceleration amax and the maximum deceleration (negative) amin.

The values of amin and amax would, of course, be different for each vehicle, but
the vehicle-dependent indices are omitted for simplicity.

The intersection collision probability can be estimated by considering all possible
driver behaviors (called trajectories) of approaching vehicles. A trajectory is a
feasible function of time that satisfies the constraints:

TA(t0) = dA, ṪA(t0) = vA, amin ≤ T̈A(t) ≤ amax. (6.4)

All possible future trajectories are denoted as TA and defined by TA = ⋃
TA. Of

course, this set depends on the current distance dA and speed vA as each trajectory
does. In addition, it is limited by the two trajectories applying constant maximum
acceleration amax and constant maximum deceleration amin.

A crash between vehicles A and B happens if the bounding boxes (defined by
the length and width of the vehicles) overlap. This is used to define a function

242 C. Sommer et al.

coll (TA,TB), which returns 0 if no crash happens and 1 if a crash happens for
the given trajectories.

The intersection collision probability PC depends on the probability that two
trajectories are chosen which lead to a crash. This probability function is denoted as
p(TA,TB). Therefore, the intersection collision probability PC can be calculated
by integrating over all possible trajectories and summing up the probabilities as
follows:

PC =
∫

TB

∫

TA

p(TA,TB) coll (TA,TB) dTA dTB. (6.5)

Aside from serving as an output metric of simulations, this metric can also
be used to improve communication on intersection scenarios, as we describe
subsequently.

Figure 6.3a on page 221 shows that Veins already provides all necessary lower
layers for evaluating communication strategies. Therefore, one can directly start
designing the application layer, e.g., a message dissemination algorithm, which
determines parameters like the content of messages or the interval of message
generation. The content of the message may include position, speed, acceleration,
and heading, but also neighbor information (last received message sequence number
or time) might be helpful for advanced communication strategies.

The message generation interval was subject to extensive research during
the past decade (e.g., [58]). Several congestion control mechanisms have been
proposed to keep the channel load in a reasonable and efficient range. To improve
communication reliability in dangerous situations, safety metrics can be used to alter
the message dissemination interval alongside congestion control mechanisms.

The intersection collision probability can be used to realize situation-aware com-
munication for intersections. Basically, each vehicle can calculate its intersection
collision probability when receiving a message from another vehicle. If the proba-
bility exceeds a certain threshold, the vehicle will temporarily lower its message
dissemination interval accordingly. Hence, vehicles in a dangerous situation are
trying to communicate more frequently, whereas others will automatically adapt
their message intervals (which, in turn, helps to keep the channel load balanced).

Finally, proposed communication strategies (such as situation-aware communi-
cation) need to be evaluated. Basically, a detailed analysis of message arrival times
(which can be recorded in OMNeT++) is sufficient. The following three metrics
represent a basis for evaluating communication strategies of safety applications
(refer to [26] for details):

• Last Before Unavoidable: the last message received and the point in time before
a crash becomes unavoidable is of particular concern.

• Worst-Case Update Lag: the update lag measures the time between two consec-
utive messages. Obviously, the most critical update lag is the longest during a
certain time interval before a crash happens (called worst-case update lag).

• Unsafe Time: when a certain update lag is required by an application, it can help
to sum up all times where the update lag was not maintained.

6 Veins 243

6.4 Extensions

In this section, we discuss how to use Veins in simulations involving LTE networks
(see Sect. 6.4.1) and in simulations involving regular Internet-centric protocols, that
is, with models included in the INET Framework (see Sect. 6.4.2). A discussion of
Instant Veins for classroom use and quick deployment in general (see Sect. 6.4.3)
concludes the chapter.

6.4.1 Using LTE Models in Veins (Veins LTE)

Combining multiple networking technologies for ITS is called Heterogeneous
Vehicular Networking. In the context of vehicular networks these networks are often
LTE- and IEEE 802.11p-based, i.e., a cellular and an short range communication
network. LTE is already widely deployed, mainly for use in mobile phones—but
new cars regularly come equipped with a Subscriber Identity Module (SIM). In
the EU, as of April 2018, all new cars need to be equipped with the eCall system
used to automatically call emergency services if an accident occurs. Due to the
centralized nature of cellular networks, scheduling can be used to handle situations
with an overloaded channel. Nevertheless, there are disadvantages: vehicles are not
considered in currently deployed cellular networks, especially when it comes to
periodic beaconing. Since 2017, LTE-Vehicle-to-Everything (V2X) is standardized
in a first version in LTE Release 14 as an extension to LTE Device-to-Device
(D2D). The standard added two additional D2D modes which specifically focus
on vehicular networking, one of them requiring an evolved Node B (eNB) (Mode 3)
while the other one works in a distributed manner (Mode 4). Nonetheless, there
are various points of discussion and an update to LTE-V2X is included in LTE
Release 15, which is scheduled for release in 2018. If the infrastructure cannot
cope with the additional load of cars using the cellular network (mode 4 is only
used when there is no eNB in transmission range), there is the question who pays
for the necessary upgrades. Not only the infrastructure improvements need to be
paid for, someone needs to finance the usage of the cellular networks. Currently this
is mostly included in the price of the cars, but if more cars come equipped with
cellular technology this might change. Overall cellular networks are an alternative
to WLAN-based networks when it comes to vehicular networking. Nevertheless,
they have their own disadvantages, so research has been conducted to use both
technologies. Additionally, research is conducted on other alternatives such as VLCs
and Bluetooth.

The basic idea of heterogeneous vehicular networking is to use the strengths of
one networking technology to overcome the weakness of the other when used in a
certain application scenario. Take long-range communication in vehicular networks
as an example. Transmitting data to a distant node in an IEEE 802.11p-based
network needs a connected network from the source car to the destination. If the

244 C. Sommer et al.

network is not fully connected, the data might get lost or a large delay due to the
use of store-carry-forward is induced. When using cellular networks, this is not
the case as long as the cars are in range of a base station, i.e., an eNB, which can
handle the transmission via the backbone. Similarly, IEEE 802.11p-based networks
allow to have a simpler (and potentially faster) communication between cars close
to each other compared to using a cellular network where every message potentially
needs to traverse the backbone. Furthermore, heterogeneous technologies can be a
fall back mechanism if one of them is not available. This might prove useful in the
initial deployment phases of connected vehicles where IEEE 802.11p will not be
used widely while LTE infrastructure exists already.

When using Veins alone, cellular networks can only be simulated in a very
rudimentary way by using direct communication with a small amount of delay.
Therefore, various solutions exist which support and provide more complete
heterogeneous simulations:

• SimuLTE: a framework for OMNeT++ which recently introduced experimental
support to combine it with Veins [61–63].

• Veins LTE: a framework integrating Veins and SimuLTE resulting in a toolbox to
develop algorithms exploiting both IEEE 802.11p and LTE channels [21].

• Artery: a framework for simulation of ETSI ITS-G5 protocols which among
various others includes Veins and SimuLTE [43].

As an example of a framework providing support for heterogeneous vehicular
networks, we briefly introduce the first one with support for vehicles, i.e., Veins
LTE and its features [21] (a discussion of SimuLTE and Artery can be found in
Chaps. 5 and 12, respectively). Veins LTE combines short-range communication
(Veins providing IEEE 802.11p) with cellular communication (SimuLTE providing
LTE).

SimuLTE is, as the name gives away, a simulation model library for LTE.
It currently provides support for the major parts of LTE including base stations
(eNodeBs), mobile nodes (UEs), a (nearly) complete data plane, multiple example
applications, an extensive MAC layer implementation, the backbone in the form
of the X2 interface [39], and various basic scheduling algorithms. The downsides
of SimuLTE are that it focuses on the user plane and only covers a rudimentary
control plane as well as only basic handover between base stations. Both simulation
model libraries, SimuLTE and Veins, are based on OMNeT++, which allows to
integrate them with each other. The focus of the integration was to include cars as
nodes into the cellular network. While instantiating models from both libraries at
the same time is easy due to them both using OMNeT++, there are certain issues
with their network models, which have proven to be incompatible. This is especially
true for the treatment of mobility. On the one hand, SimuLTE did expect a fully set
up network (including all moving nodes) and did not allow nodes to enter or leave at
runtime. On the other hand, Veins relies on nodes dynamically entering and leaving
the simulation to simulate realistic traffic conditions. To successfully integrate Veins
with SimuLTE, the whole LTE stack on User Equipment (UE) and eNB side was

6 Veins 245

Fig. 6.13 The heterogeneous
networking stack introduced
in Veins LTE [21]

App App

Decision Maker

Adaptation (IP)

LTE NIC

Adaptation (DSRC)

IP DSRC
WAVE / ITS-G5

IEEE 802.11p NIC

App

modified to accommodate the addition of new vehicles and the correct removal of
them during runtime.

The overall architecture of Veins LTE can be seen in Fig. 6.13. To make the
development of new heterogeneous algorithms easier, a new layer was introduced—
the Decision Maker. Residing between the application layer and the two network
stacks, it adds the possibility to provide a scheduler spanning both the IEEE 802.11p
and the LTE network stack. If the application has set a specific network technology,
the corresponding stack is used by this module, even if the chosen network is
currently not available. If no such network is set by the application, this layer
allows a developer to add a decider module, which decides the network layer on
which to send the packet. Such a scheduler can, for instance, choose the target
network stack based on the channel load or make this decision based on the distance
between sender and receiver. Furthermore, this is useful to test an algorithm with
barely any configuration overhead both in an IEEE 802.11p and in an LTE setting.
Below this layer is the adaption layer, which adds the necessary parameters to
the heterogeneous message in order to make it possible to send it via the chosen
stack. An application only needs to set the most basic parameters (e.g., destination,
payload) and the rest is added or adapted by the decision maker layer. After applying
the necessary attributes to the messages, they are sent via the selected networking
stack.

These features, especially the integration of two networking technologies and
the decision layer, allow a user of Veins LTE to focus on the development of the
algorithm rather than on the underlying network.

246 C. Sommer et al.

6.4.2 Using INET Framework Models in Veins (Veins_INET)

Often, Veins simulations need to be combined with simulations of common Internet
protocols. Conversely, systems employing Internet protocols like those of cloud
services, backbone networks, or Mobile Ad Hoc NETworks (MANETs) often need
to be simulated with nodes carried in road traffic. One is the domain of Veins, the
other is the domain of the INET Framework, the prime OMNeT++ model library
for Internet protocol simulation (see Chap. 2).

Veins hence includes an extension, Veins_INET, which allows models of the
INET Framework to use Veins as a mobility model. Because many other simulation
model libraries, in turn, rely on INET for modeling node movement, this extension
also allows any of these simulation model libraries to model nodes in road traffic.

The extension is included as a subproject, that is, as a separate simulation project
but contained in the source tree of Veins.

All that is needed is to have the target simulation project use the model libraries of
all of Veins, the INET Framework, and Veins_INET. In the OMNeT++ Integrated
Development Environment (IDE), this is achieved by importing all three projects
into the workspace and changing the target simulation’s project settings to use all
three as referenced projects. On the command line, this is achieved by supplying
the corresponding -I, -L, and -l switches to opp_makemake—as well as the
corresponding -l and -n switches to opp_run.

In such simulations, instantiating a module VeinsInetManager in the net-
work will take care of connecting to a SUMO road traffic simulation, instantiating
one simulation module per road traffic participant in the SUMO simulation, and
updating the modules’ position information as the simulation executes (as detailed in
Sect. 6.2.1). Care must only be taken that modules intended to represent road traffic
participants contain VeinsInetMobility as their INET Framework mobility
module (e.g., by configuring this in the omnetpp.ini file).

Figure 6.14 illustrates such a combined simulation. Note the presence of a
VeinsInetManager module in the network (named “manager”) and a mobility
module of type VeinsInetMobility (named “mobility”) in the module repre-
senting a car.

6.4.3 Instant Veins

Many moving parts comprise a typical Veins simulation: (1) the road traffic
simulation tool SUMO; (2) the OMNeT++ simulation kernel, (3) the simulation
model under study, and (4) all model libraries it is based on. For example, a
simulation model of vehicles communicating with a cloud service reachable via
LTE will typically rely not just on Veins, but also on INET (for Internet protocols,
see Chap. 2), SimuLTE (for LTE simulation models, see Chap. 5), as well as
Veins_INET (for linking them together, see Sect. 6.4.2).

6 Veins 247

Fig. 6.14 Screenshot of the sample simulation of Veins_INET running in the OMNeT++ GUI

Interested users have to download all of these components, compile them, and
configure them for linking into a mixed simulation. In addition, care must be taken
that the software versions of these tools are closely aligned, so that they remain
interoperable.

This is a common source of error or delay for newcomers who want to quickly
try out a novel tool—and a source of frustration for the teacher who needs to oversee
the installation and deployment on hundreds of student machines every course.

Veins is therefore also made available as a virtual appliance, Instant Veins, which
can be installed with a single click—and run independent of the operating system
of the target machine. Its only prerequisite is pre-installed virtualization software,
such as the open-source tool Oracle VM VirtualBox or any other tool that can
read the Open Virtual Appliance (.ova) file format, such as the popular VMware
Workstation Player. Instant Veins already contains compatible versions of all of
Veins, the INET Framework, and Veins_INET to link the two (and, as a special
download, also of SimuLTE)—along with OMNeT++ and SUMO.

On most machines, all that is needed is to double-click the downloaded .ova
virtual appliance file to import it into the user’s virtualization tool, from where it
can then be launched directly—though some machines might have a slightly more
involved installation procedure for .ova files, e.g., requiring the user to confirm
opening the file first. After booting the virtual appliance and logging in, all needed
tools can be started from the graphical shell (by clicking their respective launch

248 C. Sommer et al.

Fig. 6.15 Screenshot of the Instant Veins virtual appliance, showing the OMNeT++ IDE after
clicking on the OMNeT++ launch icon

icon). For example, after clicking on the OMNeT++ launch icon, a user is soon
presented with the usual OMNeT++ IDE, which already has a workspace open that
includes all four mentioned simulation libraries—ready to run (Fig. 6.15).

Instant Veins is built on fully open-source tools, most importantly Debian
GNU/Linux as its base (taking care to only include re-distributable software with
the base installation). This makes Instant Veins particularly useful in the classroom:
Aside from getting students up and running within as little as a minute, the virtual
appliance file can be freely shared with and among students.

Acknowledgements The authors are grateful to the community surrounding Veins, the many
people who keep contributing their time and smarts to its continuous improvement. We par-
ticularly acknowledge the research labs at Univ. Paderborn, Univ. Erlangen-Nuremberg, Univ.
Trento, TUMCREATE Singapore, Univ. Sydney, UCLA, Univ. Innsbruck, Univ. Luxembourg, TH
Ingolstadt, Fraunhofer, TU Berlin, Carnegie Mellon University, and the German Aerospace Center.

The author D. Eckhoff was financially supported by the Singapore National Research Foun-
dation under its Campus for Research Excellence And Technological Enterprise (CREATE)
programme.

6 Veins 249

References

1. Ali, A., Garcia, G., Martinet, P.: The flatbed platoon towing model for safe and dense
platooning on highways. IEEE Intell. Transp. Syst. Mag. 7(1), 58–68 (2015). https://doi.org/
10.1109/MITS.2014.2328670

2. Aramrattana, M., Larsson, T., Jansson, J., Nåbo, A.: A simulation framework for cooperative
intelligent transport systems testing and evaluation. Transport. Res. F: Traffic Psychol. Behav.
(2017). https://doi.org/10.1016/j.trf.2017.08.004

3. Bedogni, L., Bononi, L., Di Felice, M., D’Elia, A., Mock, R., Morandi, F., Rondelli, S.,
Salmon Cinotti, T., Vergari, F.: An integrated simulation framework to model electric vehicles
operations and services. IEEE Trans. Veh. Technol. 65(8) (2015). https://doi.org/10.1109/TVT.
2015.2453125

4. Bedogni, L., Gramaglia, M., Vesco, A., Fiore, M., Härri, J., Ferrero, F.: The Bologna ringway
dataset: improving road network conversion in SUMO and validating urban mobility via
navigation services. IEEE Trans. Veh. Technol. 64(12), 5464–5476 (2015). https://doi.org/10.
1109/TVT.2015.2475608

5. Berndt, H., Wender, S., Dietmayer, K.: Driver braking behavior during intersection approaches
and implications for warning strategies for driver assistant systems. In: IEEE Intelligent
Vehicles Symposium (IV’07), pp. 245–251. IEEE, Istanbul (2007). https://doi.org/10.1109/
IVS.2007.4290122

6. Bieker, L., Krajzewicz, D., Morra, A.P., Michelacci, C., Cartolano, F.: Traffic simulation for
all: a real world traffic scenario from the city of Bologna. In: SUMO User Conference 2014,
pp. 19–26. Deutsches Zentrum für Luft - und Raumfahrt e.V., Berlin (2014). https://doi.org/10.
1007/978-3-319-15024-6_4

7. Bonnet, C., Fritz, H.: Fuel consumption reduction in a platoon: experimental results with
two electronically coupled trucks at close spacing. In: Future Transportation Technology
Conference. SAE, Costa Mesa (2001)

8. Brummer, A., German, R., Djanatliev, A.: On the necessity of three-dimensional considerations
in vehicular network simulation. In: 14th IEEE/IFIP Conference on Wireless on demand
Network Systems and Services (WONS 2018), Isola 2000, pp. 75–82. IEEE, Isola (2018).
https://doi.org/10.23919/WONS.2018.8311665

9. Codecá, L., Härri, J.: Towards multimodal mobility simulation of C-ITS: the monaco SUMO
traffic scenario. In: 9th IEEE Vehicular Networking Conference (VNC 2017), pp. 97–100.
IEEE, Torino (2017). https://doi.org/10.1109/VNC.2017.8275627

10. Codeca, L., Frank, R., Engel, T.: Luxembourg SUMO traffic (LuST) scenario: 24 hours of
mobility for vehicular networking research. In: 7th IEEE Vehicular Networking Conference
(VNC 2015). IEEE, Kyoto (2015). https://doi.org/10.1109/VNC.2015.7385539

11. Dávila, A., Nombela, M.: Sartre - safe road trains for the environment reducing fuel
consumption through lower aerodynamic drag coefficient. In: 25th SAE Brasil International
Congress and Display. SAE Brasil, São Paulo (2011)

12. Eckhoff, D., Sommer, C.: A multi-channel IEEE 1609.4 and 802.11p EDCA model for
the Veins framework. In: 5th ACM/ICST International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems (SIMUTools 2012): 5th ACM/ICST
International Workshop on OMNeT++ (OMNeT++ 2012), Poster Session. ACM, Desenzano
(2012)

13. Eckhoff, D., Sommer, C.: Simulative performance evaluation of vehicular networks. In: Chen,
W. (ed.) Vehicular Communications and Networks: Architectures, Protocols, Operation and
Deployment, pp. 255–274. Woodhead Publishing, Sawston (2015). https://doi.org/10.1016/
B978-1-78242-211-2.00012-X

14. Eckhoff, D., Sommer, C.: Readjusting the privacy goals in vehicular ad-hoc networks: a safety-
preserving solution using non-overlapping time-slotted pseudonym pools. Elsevier Comput.
Commun. 122, 118–128 (2018). https://doi.org/10.1016/j.comcom.2018.03.006

https://doi.org/10.1109/MITS.2014.2328670
https://doi.org/10.1109/MITS.2014.2328670
https://doi.org/10.1016/j.trf.2017.08.004
https://doi.org/10.1109/TVT.2015.2453125
https://doi.org/10.1109/TVT.2015.2453125
https://doi.org/10.1109/TVT.2015.2475608
https://doi.org/10.1109/TVT.2015.2475608
https://doi.org/10.1109/IVS.2007.4290122
https://doi.org/10.1109/IVS.2007.4290122
https://doi.org/10.1007/978-3-319-15024-6_4
https://doi.org/10.1007/978-3-319-15024-6_4
https://doi.org/10.23919/WONS.2018.8311665
https://doi.org/10.1109/VNC.2017.8275627
https://doi.org/10.1109/VNC.2015.7385539
https://doi.org/10.1016/B978-1-78242-211-2.00012-X
https://doi.org/10.1016/B978-1-78242-211-2.00012-X
https://doi.org/10.1016/j.comcom.2018.03.006

250 C. Sommer et al.

15. Eckhoff, D., Sommer, C., Dressler, F.: On the necessity of accurate IEEE 802.11p models for
IVC protocol simulation. In: 75th IEEE Vehicular Technology Conference (VTC2012-Spring),
pp. 1–5. IEEE, Yokohama (2012). https://doi.org/10.1109/VETECS.2012.6240064

16. Eckhoff, D., Halmos, B., German, R.: Potentials and limitations of green light optimal speed
advisory systems. In: 5th IEEE Vehicular Networking Conference (VNC 2013), pp. 103–110.
IEEE, Boston (2013). https://doi.org/10.1109/VNC.2013.6737596

17. Eckhoff, D., Sofra, N., German, R.: A performance study of cooperative awareness in ETSI
ITS G5 and IEEE WAVE. In: 10th IEEE/IFIP Conference on Wireless on demand Network
Systems and Services (WONS 2013), pp. 196–200. IEEE, Banff (2013). https://doi.org/10.
1109/WONS.2013.6578347

18. Eckhoff, D., Brummer, A., Sommer, C.: On the impact of antenna patterns on VANET
simulation. In: 8th IEEE Vehicular Networking Conference (VNC 2016), pp. 17–20. IEEE,
Columbus (2016). https://doi.org/10.1109/VNC.2016.7835925

19. Emara, K.: Poster: PREXT: privacy extension for veins VANET simulator. In: 8th IEEE
Vehicular Networking Conference (VNC 2016), Poster Session. IEEE, Columbus (2016).
https://doi.org/10.1109/VNC.2016.7835979

20. Giordano, G., Segata, M., Blanchini, F., Lo Cigno, R.: A joint network/control design for
cooperative automatic driving. In: 9th IEEE Vehicular Networking Conference (VNC 2017),
pp. 167–174. IEEE, Torino (2017)

21. Hagenauer, F., Dressler, F., Sommer, C.: A simulator for heterogeneous vehicular networks. In:
6th IEEE Vehicular Networking Conference (VNC 2014), Poster Session, pp. 185–186. IEEE,
Paderborn (2014). https://doi.org/10.1109/VNC.2014.7013339

22. Hassan, M.I., Vu, H.L., Sakurai, T.: Performance analysis of the IEEE 802.11 MAC protocol
for DSRC safety applications. IEEE Trans. Veh. Technol. 60(8), 3882–3896 (2011). https://doi.
org/10.1109/TVT.2011.2162755

23. Heinovski, J., Klingler, F., Dressler, F., Sommer, C.: A simulative analysis of the performance
of IEEE 802.11p and ARIB STD-T109. Elsevier Comput. Commun. 122, 84–92 (2018). https://
doi.org/10.1016/j.comcom.2018.03.016

24. IEEE: IEEE standard for Wireless Access in Vehicular Environments (WAVE) - multi-channel
operation. Std 1609.4-2016. IEEE, Piscataway (2016)

25. IEEE: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions. Std 802.11-2016. IEEE, Piscataway (2016)

26. Joerer, S.: Improving intersection safety with inter-vehicle communication. Phd thesis (disser-
tation), University of Innsbruck (2016)

27. Joerer, S., Dressler, F., Sommer, C.: Comparing apples and oranges? Trends in IVC simula-
tions. In: 9th ACM International Workshop on Vehicular Internetworking (VANET 2012), pp.
27–32. ACM, Low Wood Bay (2012). https://doi.org/10.1145/2307888.2307895

28. Joerer, S., Segata, M., Bloessl, B., Lo Cigno, R., Sommer, C., Dressler, F.: To crash or not
to crash: estimating its likelihood and potentials of Beacon-based IVC systems. In: 4th IEEE
Vehicular Networking Conference (VNC 2012), pp. 25–32. IEEE, Seoul (2012). https://doi.
org/10.1109/VNC.2012.6407441

29. Joerer, S., Segata, M., Bloessl, B., Lo Cigno, R., Sommer, C., Dressler, F.: A vehicular
networking perspective on estimating vehicle collision probability at intersections. IEEE Trans.
Veh. Technol. 63(4), 1802–1812 (2014). https://doi.org/10.1109/TVT.2013.2287343

30. Jootel, P.S.: SAfe Road TRains for the Environment. Final project report, SARTRE project
(2012)

31. Kornek, D., Schack, M., Slottke, E., Klemp, O., Rolfes, I., Kürner, T.: Effects of antenna
characteristics and placements on a vehicle-to-vehicle channel scenario. In: IEEE International
Conference on Communications (ICC 2010), Workshops. IEEE, Capetown (2010). https://doi.
org/10.1109/ICCW.2010.5503935

32. Krauß, S., Wagner, P., Gawron, C.: Metastable states in a microscopic model of traffic flow.
Phys. Rev. E 55(5), 5597–5602 (1997). https://doi.org/10.1103/PhysRevE.55.5597

https://doi.org/10.1109/VETECS.2012.6240064
https://doi.org/10.1109/VNC.2013.6737596
https://doi.org/10.1109/WONS.2013.6578347
https://doi.org/10.1109/WONS.2013.6578347
https://doi.org/10.1109/VNC.2016.7835925
https://doi.org/10.1109/VNC.2016.7835979
https://doi.org/10.1109/VNC.2014.7013339
https://doi.org/10.1109/TVT.2011.2162755
https://doi.org/10.1109/TVT.2011.2162755
https://doi.org/10.1016/j.comcom.2018.03.016
https://doi.org/10.1016/j.comcom.2018.03.016
https://doi.org/10.1145/2307888.2307895
https://doi.org/10.1109/VNC.2012.6407441
https://doi.org/10.1109/VNC.2012.6407441
https://doi.org/10.1109/TVT.2013.2287343
https://doi.org/10.1109/ICCW.2010.5503935
https://doi.org/10.1109/ICCW.2010.5503935
https://doi.org/10.1103/PhysRevE.55.5597

6 Veins 251

33. Kunze, R., Ramakers, R., Henning, K., Jeschke, S.: Organization and operation of electron-
ically coupled truck platoons on German motorways. In: Automation, Communication and
Cybernetics in Science and Engineering 2009/2010, pp. 427–439. Springer, Berlin (2011)

34. Kwoczek, A., Raida, Z., Láčík, J., Pokorný, M., Puskely, J., Vágner, P.: Influence of
car panorama glass roofs on Car2car communication. In: 3rd IEEE Vehicular Networking
Conference (VNC 2011), Poster Session, pp. 246–251. IEEE, Amsterdam (2011). https://doi.
org/10.1109/VNC.2011.6117107

35. Larson, J., Liang, K.Y., Johansson, K.H.: A distributed framework for coordinated heavy-duty
vehicle platooning. IEEE Trans. Intell. Transp. Syst. 16(1), 419–429 (2015). https://doi.org/10.
1109/TITS.2014.2320133

36. Leonor, N.R., Caldeirinha, R.F.S., Sánchez, M.G., Fernandes, T.R.: A three-dimensional
directive antenna pattern interpolation method. IEEE Antennas Wirel. Propag. Lett. 15, 881–
884 (2016). https://doi.org/10.1109/LAWP.2015.2478962

37. Memedi, A., Tsai, H.M., Dressler, F.: Impact of realistic light radiation pattern on vehicular
visible light communication. In: IEEE Global Telecommunications Conference (GLOBECOM
2017). IEEE, Singapore (2017). https://doi.org/10.1109/GLOCOM.2017.8253979

38. Milanés, V., Shladover, S.E., Spring, J., Nowakowski, C., Kawazoe, H., Nakamura, M.:
Cooperative adaptive cruise control in real traffic situations. IEEE Trans. Intell. Transp. Syst.
15(1), 296–305 (2014). https://doi.org/10.1109/TITS.2013.2278494

39. Nardini, G., Virdis, A., Stea, G.: Modeling X2 backhauling for LTE-advanced and assessing its
effect on CoMP coordinated scheduling. In: 1st International Workshop on Link- and System
Level Simulations (IWSLS 2016). IEEE, Vienna (2016). https://doi.org/10.1109/IWSLS.2016.
7801582

40. Ploeg, J., Scheepers, B., van Nunen, E., van de Wouw, N., Nijmeijer, H.: Design and exper-
imental evaluation of cooperative adaptive cruise control. In: IEEE International Conference
on Intelligent Transportation Systems (ITSC 2011), pp. 260–265. IEEE, Washington (2011).
https://doi.org/10.1109/ITSC.2011.6082981

41. Rajamani, R.: Vehicle Dynamics and Control, 2nd edn. Springer, Cham (2012)
42. Rajamani, R., Tan, H.S., Law, B.K., Zhang, W.B.: Demonstration of integrated longitudinal

and lateral control for the operation of automated vehicles in platoons. IEEE Trans. Control
Syst. Technol. 8(4), 695–708 (2000). https://doi.org/10.1109/87.852914

43. Riebl, R., Günther, H.J., Facchi, C., Wolf, L.: Artery - extending veins for VANET applications.
In: 4th International Conference on Models and Technologies for Intelligent Transporta-
tion Systems (MT-ITS 2015). IEEE, Budapest (2015). https://doi.org/10.1109/MTITS.2015.
7223293

44. Riebl, R., Monz, M., Varga, S., Maglaras, L., Janicke, H., Al-Bayatti, A.H., Facchi, C.:
Improved security performance for VANET simulations. In: 4th IFAC Symposium on Telemat-
ics Applications (TA 2016), vol. 49, pp. 233–238. Elsevier, Porto Alwegre (2016). https://doi.
org/10.1016/j.ifacol.2016.11.173

45. Santini, S., Salvi, A., Valente, A.S., Pescapè, A., Segata, M., Lo Cigno, R.: A consensus-based
approach for platooning with inter-vehicular communications and its validation in realistic
scenarios. IEEE Trans. Veh. Technol. 66(3), 1985–1999 (2017). https://doi.org/10.1109/TVT.
2016.2585018

46. Segata, M.: Safe and efficient communication protocols for platooning control. Ph.D. thesis
(dissertation), University of Innsbruck (2016)

47. Segata, M.: Platooning in SUMO: an open source implementation. In: SUMO User Conference
2017, pp. 51–62. DLR, Berlin (2017)

48. Segata, M., Joerer, S., Bloessl, B., Sommer, C., Dressler, F., Lo Cigno, R.: PLEXE: a platooning
extension for Veins. In: 6th IEEE Vehicular Networking Conference (VNC 2014), pp. 53–60.
IEEE, Paderborn (2014). https://doi.org/10.1109/VNC.2014.7013309

49. Segata, M., Bloessl, B., Joerer, S., Sommer, C., Gerla, M., Lo Cigno, R., Dressler, F.: Towards
communication strategies for platooning: simulative and experimental evaluation. IEEE Trans.
Veh. Technol. 64(12), 5411–5423 (2015). https://doi.org/10.1109/TVT.2015.2489459

https://doi.org/10.1109/VNC.2011.6117107
https://doi.org/10.1109/VNC.2011.6117107
https://doi.org/10.1109/TITS.2014.2320133
https://doi.org/10.1109/TITS.2014.2320133
https://doi.org/10.1109/LAWP.2015.2478962
https://doi.org/10.1109/GLOCOM.2017.8253979
https://doi.org/10.1109/TITS.2013.2278494
https://doi.org/10.1109/IWSLS.2016.7801582
https://doi.org/10.1109/IWSLS.2016.7801582
https://doi.org/10.1109/ITSC.2011.6082981
https://doi.org/10.1109/87.852914
https://doi.org/10.1109/MTITS.2015.7223293
https://doi.org/10.1109/MTITS.2015.7223293
https://doi.org/10.1016/j.ifacol.2016.11.173
https://doi.org/10.1016/j.ifacol.2016.11.173
https://doi.org/10.1109/TVT.2016.2585018
https://doi.org/10.1109/TVT.2016.2585018
https://doi.org/10.1109/VNC.2014.7013309
https://doi.org/10.1109/TVT.2015.2489459

252 C. Sommer et al.

50. Segata, M., Dressler, F., Lo Cigno, R.: Jerk beaconing: a dynamic approach to platooning. In:
7th IEEE Vehicular Networking Conference (VNC 2015), pp. 135–142. IEEE, Kyoto (2015).
https://doi.org/10.1109/VNC.2015.7385560

51. Shladover, S.: PATH at 20 – history and major milestones. In: IEEE Intelligent Transportation
Systems Conference (ITSC 2006), pp. 22–29. Toronto (2006). https://doi.org/10.1109/ITSC.
2006.1706710

52. Sommer, C., Dressler, F.: Using the right two-ray model? A measurement based evaluation of
PHY models in VANETs. In: 17th ACM International Conference on Mobile Computing and
Networking (MobiCom 2011), Poster Session. ACM, Las Vegas (2011)

53. Sommer, C., Dressler, F.: Vehicular Networking. Cambridge University Press, Cambridge
(2014). https://doi.org/10.1017/CBO9781107110649

54. Sommer, C., Krul, R., German, R., Dressler, F.: Emissions vs. travel time: simulative
evaluation of the environmental impact of ITS. In: 71st IEEE Vehicular Technology Conference
(VTC2010-Spring), pp. 1–5. IEEE, Taipei (2010). https://doi.org/10.1109/VETECS.2010.
5493943

55. Sommer, C., Eckhoff, D., German, R., Dressler, F.: A computationally inexpensive empirical
model of IEEE 802.11p radio shadowing in urban environments. In: 8th IEEE/IFIP Conference
on Wireless on Demand Network Systems and Services (WONS 2011), pp. 84–90. IEEE,
Bardonecchia (2011). https://doi.org/10.1109/WONS.2011.5720204

56. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road traffic
simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1), 3–15 (2011). https://
doi.org/10.1109/TMC.2010.133

57. Sommer, C., Eckhoff, D., Dressler, F.: IVC in cities: signal attenuation by buildings and how
parked cars can improve the situation. IEEE Trans. Mob. Comput. 13(8), 1733–1745 (2014).
https://doi.org/10.1109/TMC.2013.80

58. Sommer, C., Joerer, S., Segata, M., Tonguz, O.K., Lo Cigno, R., Dressler, F.: How shadowing
hurts vehicular communications and how dynamic beaconing can help. IEEE Trans. Mob.
Comput. 14(7), 1411–1421 (2015). https://doi.org/10.1109/TMC.2014.2362752

59. Torrent-Moreno, M., Schmidt-Eisenlohr, F., Füßler, H., Hartenstein, H.: Effects of a realistic
channel model on packet forwarding in vehicular ad hoc networks. In: IEEE Wireless
Communications and Networking Conference (WCNC 2006), pp. 385–391. IEEE, Las Vegas
(2006). https://doi.org/10.1109/WCNC.2006.1683495

60. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and
microscopic simulations. Phys. Rev. E 62(2), 1805–1824 (2000)

61. Virdis, A., Stea, G., Nardini, G.: SimuLTE - a modular system-level simulator for LTE/LTE-A
networks based on OMNeT++. In: 4th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications (SIMULTECH 2014). Vienna (2014)

62. Virdis, A., Nardini, G., Stea, G.: Modeling unicast device-to-device communications with
SimuLTE. In: 2016 1st International Workshop on Link- and System Level Simulations
(IWSLS), pp. 1–8. IEEE, Vienna (2016)

63. Virdis, A., Stea, G., Nardini, G.: Simulating LTE/LTE-advanced networks with SimuLTE. In:
Obaidat, S.M., Ören, T., Kacprzyk, J., Filipe, J. (eds.) Simulation and Modeling Methodolo-
gies, No. 402. Advances in Intelligent Systems and Computing, pp. 83–105. Springer, Cham
(2016)

64. Wessel, K., Swigulski, M., Köpke, A., Willkomm, D.: MiXiM – the physical layer: an
architecture overview. In: 2nd ACM/ICST International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems (SIMUTools 2009): 2nd ACM/ICST
International Workshop on OMNeT++ (OMNeT++ 2009). ACM, Rome (2009)

65. Zardosht, B., Beauchemin, S.S., Bauer, M.A.: A predictive accident-duration based decision-
making module for rerouting in environments with V2V communication. Elsevier J. Traffic
and Transp. Eng. (2017). https://doi.org/10.1016/j.jtte.2017.07.007

https://doi.org/10.1109/VNC.2015.7385560
https://doi.org/10.1109/ITSC.2006.1706710
https://doi.org/10.1109/ITSC.2006.1706710
https://doi.org/10.1017/CBO9781107110649
https://doi.org/10.1109/VETECS.2010.5493943
https://doi.org/10.1109/VETECS.2010.5493943
https://doi.org/10.1109/WONS.2011.5720204
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/TMC.2013.80
https://doi.org/10.1109/TMC.2014.2362752
https://doi.org/10.1109/WCNC.2006.1683495
https://doi.org/10.1016/j.jtte.2017.07.007

Chapter 7
SEA++: A Framework for Evaluating
the Impact of Security Attacks
in OMNeT++/INET

Marco Tiloca, Gianluca Dini, Francesco Racciatti,
and Alexandra Stagkopoulou

7.1 Introduction

Computer networks are a fundamental component for a wide range of systems and
applications, including sensor networks, smart environments, and critical infrastruc-
tures. These networked (systems of) systems are also exposed to several cyber and
physical security attacks against their infrastructure and the communication between
their components. Conducting a risk assessment process is therefore vital to identify
potential threats and risks against the system, and to provide indications on how to
mitigate them to an acceptable level already at design time.

However, it is not viable to fully address all possible attacks to the maximum
possible extent, i.e., achieving “perfect” security, due to technical, performance,
and economical reasons. Therefore, it is especially important to clearly identify the
attacks with the most severe effects on the system and network infrastructure. In
particular, it is important to have a clear understanding on the expected effects of
successful attacks, in order to rank them based on their severity and then accordingly
prioritize security countermeasures to adopt.

One approach to achieve this goal is the use of software simulation tools such as
OMNeT++/INET. This is particularly convenient as it avoids the impractical alter-
native of conducting security experiments on real (large scale) systems, possibly
already operating. In addition, simulative analysis does not require the deployment

M. Tiloca (�) · A. Stagkopoulou
Security Lab – RISE SICS, Kista, Sweden
e-mail: marco.tiloca@ri.se

G. Dini · F. Racciatti
Department of Information Engineering, University of Pisa, Pisa, Italy
e-mail: gianluca.dini@unipi.it

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_7

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_7&domain=pdf
mailto:marco.tiloca@ri.se
mailto:gianluca.dini@unipi.it
https://doi.org/10.1007/978-3-030-12842-5_7

254 M. Tiloca et al.

of a real networked system at all, thus enabling a thorough assessment of attack
effects already at the design phase. Furthermore, simulation is much more feasible to
use for studying large-scale and real systems, with respect to alternative approaches
based on analytical models or testbeds.

But when it comes to evaluating security attacks in networked systems, available
simulation tools are often limited and inflexible. That is, the user is typically
provided with a limited set of pre-defined attacks to mount against the network
scenario, or instead one has to actually implement the desired attack execution and
the adversary behavior as additional/extended modules in the simulation tool. This
evidently undermines usability as well as flexibility and requires to rebuild the
simulation tool in order to evaluate different attacks or even just different attack
configurations.

This chapter presents SEA++, a simulation framework based on OMNeT++/
INET that quantitatively evaluates the effects of security attacks against communi-
cation network scenarios in a user-friendly and flexible way. To this end, SEA++
reproduces the final actual effects of successful attacks, regardless of how they
have been specifically carried out. That is, the specific way such attacks have been
mounted is out of the scope of SEA++ , as instead related to a separate earlier
assessment of attack feasibility and likelihood.

A considerable advantage of SEA++ is that the user describes the security
attacks to evaluate by using a high-level specification language. Thus, the user is not
required to implement the actual adversary behavior or the actual attack execution,
nor to extend or add software modules in OMNeT++/INET. Instead, the high-level
attack description is interpreted and translated into an XML attack configuration file,
which is finally provided as input to the SEA++ Attack Simulation Engine (ASE).
The latter reproduces the effects of the attacks under evaluation, by seamlessly
injecting events at simulation runtime according to the user’s high-level description.

SEA++ is particularly convenient to be adopted at the last stage of the risk
assessment process, in order to quantitatively evaluate the effects of successful
security attacks in networked systems, provided that they have been properly
modeled as simulation scenarios. This provides valuable insights on current attack
activities, i.e., a tangible and understandable impact on performance and outcome
of the target network, expressed through the same metric-based approach used in
OMNeT++/INET. This information helps to assess the overall effects of security
attacks on networks and applications. In particular, a quantitative evaluation of the
effects of security attacks makes it possible to rank them according to their severity,
and thus helps in selecting and tuning the most appropriate security controls to
address them.

The rest of this chapter is organized as follows. Section 7.2 discusses the security
risk assessment process, and briefly overviews existing supporting tools adopting
a simulative approach. Section 7.3 presents our SEA++ framework in terms of
its overall approach as well as its core components. Section 7.4 provides a walk-
through example showing how to set up SEA++ and how to use it in a simple
illustrative network scenario. Finally, Sect. 7.5 draws the conclusive remarks for
this chapter and discusses potential future research directions for this topic.

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 255

7.2 Evaluation of Attack Impact Through Simulation

There are a lot of possible security attacks against networked computing systems.
They can have different objectives, be performed at different communication layers
or directly against physical nodes, and result in different effects. However, providing
a security countermeasure for every possible attack is prohibitive in terms of impact
on performance and cost. It is therefore vital to properly evaluate attacks to decide
how to address them, and whether to mitigate, eliminate, transfer, or accept them.

This evaluation activity is referred to as risk assessment. It comprises the
identification and evaluation of risks and risk impacts, and the recommendation of
risk-reducing measures [14]. Risk assessment defines and separates the notions of
threat, vulnerability, and attack. A vulnerability is a flaw or weakness in system
security that could result in a security breach, while a threat represents the potential
for a threat-source (i.e., an attacker) to exercise a specific vulnerability. An attack is
defined as the entire process allowing a threat-source to realize a threat. Therefore,
the risk assessment process practically consists of identifying and evaluating the
risks to system security. In particular, a risk is defined as a function of (1) the
likelihood of a given threat-source’s exercising a particular potential vulnerability;
and (2) the resulting impact of that adverse event. Of course, in order to perform
attack impact analysis, a thorough threat model must have been previously defined.
As an example, let us consider a set of attacks S = {A1, A2, . . . , An}. Also, let
us assume that a given attack Ai is successfully performed with probability Pi and
results in an impact Ei . Then, the risk Ri related to that attack can be computed as
Ri = Pi × Ei .

Analysis of the impact of an attack can be conducted either qualitatively or
quantitatively. The qualitative approach makes it possible to easily prioritize the
considered risks, as well as to identify what areas deserve more attention in
addressing vulnerabilities. On the other hand, such a method fails to provide
specific quantifiable measurements of impact magnitude. This, in turn, complicates
the cost–benefit analysis of any possible security countermeasure. Conversely, the
quantitative approach provides an actual measurement of the impact magnitude,
and such an information can be effectively used during the cost–benefit analysis
of security solutions. However, such a method might make the actual meaning of
impact analysis unclear, which would force to interpret results in a qualitative way.
In any case, evaluating the impact magnitude should take additional factors into
account, such as attack frequency, cost associated to a single attack occurrence, as
well as a subjective analysis of specific attack impact.

The presented simulation framework SEA++ supports a quantitative analysis of
the impact of cyber-physical security attacks. That is, for any given attack Ai , it
focuses on Ei but does not take into account the feasibility likelihood Pi , which
is therefore out of the scope of this chapter. In particular, SEA++ considers a
worst-case scenario and it assumes that all the n attacks under evaluation have been
successfully performed, i.e., Pi = 1 ∀ i = {1, 2, . . . , n}. Therefore, a distinctive

256 M. Tiloca et al.

feature of SEA++ is that it simulates the effects of security attacks by reproducing
the events that such attacks generate.

SEA++ is not the only tool that strives to evaluate the impact of security attacks,
and a number of different approaches have been presented so far. For instance,
several alternative tools [1, 7, 19] strive to define analytical models aimed at
detecting and contrasting attacks, and only afterwards rely on simulation to validate
their own correctness and efficiency. Note that producing an effective analytical
model of complex systems can be a considerable challenge in the first place, unless
one recurs to practical simplifications that hence risk to misrepresent the network
scenario and are additionally hard to be reused. Genge et al. presented AMICI [6],
an assessment/analysis platform for multiple interdependent critical infrastructures.
In particular, AMICI relies on simulation for the physical system components and
an emulation testbed based on Emulab to recreate cyber components [13].

Wang and Bagrodia proposed SenSec [18], a framework that simulates the
occurrence of security attacks in Wireless Sensor Networks (WSNs) by injecting
events into real application simulators. The framework NETA [12] is based on
OMNeT++/INET and relies on implementing attacker nodes, which can strike
attacks when triggered at runtime through dedicated control messages. Queiroz
et al. presented SCADASim [11], a simulation tool to test the effect of attacks in
Supervisory Control and Data Acquisition (SCADA) systems.

Although it displays similarities with SenSec, NETA, and SCADASim, SEA++
is easier as well as more flexible to use and it displays a number of distinctive
features. First, it is based on an off-the-shelf network simulator that was extended,
but not modified, by integrating components for the processing of attack events.
Good simulator tools are always the result of a large effort, and therefore any
modification is preferably avoided. Furthermore, as also mentioned above, SEA++
actually focuses on the effects of security attacks rather than on their practical
execution. Finally, SEA++ does not require the user to implement or customize
any component of the simulation platform. As discussed in detail in Sect. 7.3, this
is particularly important because it allows us to simply use simulator components,
and it does not require to modify them or create new ones.

7.3 The SEA++ Framework

This section describes the SEA++ attack simulation framework. It provides a
functional overview of its core idea as well as of its main components. In particular,
Sect. 7.3.1 discusses the goals of SEA++ and the approach it adopts to achieve
them. Sections 7.3.2–7.3.4 describe the three framework components. SEA++ is
freely available1 as open-source software together with a user documentation [17].

1SEA++ Github repository: https://github.com/seapp/seapp_stable.

https://github.com/seapp/seapp_stable

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 257

7.3.1 Goals and Benefits

SEA++ is an attack simulation framework built on OMNeT++/INET. It enables
a flexible and user-friendly quantitative evaluation of cyber and physical security
attacks, as to their effects against networks and applications in terms of typical
and customizable network performance indicators, such as network delay and
throughput. SEA++ supports the design of secure network scenarios, as it facilitates
the ranking of security attacks according to the severity of their effects, hence
helping to wisely select proper security countermeasures to adopt. The framework
is especially intended to expert security and network architects as end users.

The SEA++ framework focuses on the effects of security attacks. That is, it does
not consider the likelihood of successfully mounted attacks, i.e., the likelihood of
a given threat to be exploited, which is expected to be covered as an early attack
feasibility assessment in the broader risk assessment process. As a consequence,
SEA++ assumes that attacks to be evaluated are successfully carried out, and thus
abstracts away from the specific way they are mounted. Consistently, the user is
required only to model security attacks in terms of their final and practical effects
against the network and application scenario.

As an example, let us consider a deception attack such as the injection of bogus
network messages. Then, it is not relevant for SEA++ how an adversary becomes
able to inject fake messages in the system, nor the way the actual message injection
occurs. SEA++ instead focuses on assessing and quantitatively evaluating what
the final effects of these messages are on the network and application after they
have been successfully injected, e.g., in terms of delay and throughput variations, or
unfulfilled deadlines and unreliable information gathering on the applications.

In order to achieve its goal, SEA++ relies on three fundamental steps which
are also summarized in the flowchart depicted in Fig. 7.1. As a first step, the
user produces a high-level description of the security attacks to evaluate. To this
end, SEA++ provides an Attack Specification Language (ASL), featuring a set of
statements and primitive functions to model security attacks (see Sect. 7.3.2). The

Fig. 7.1 Overview of the SEA++ framework flowchart

258 M. Tiloca et al.

attack description results in a single adl file, which can be possibly stored in a
separate attack database for future retrieval and reuse. As a second step, the user
provides the adl file to the Attack Specification Interpreter (ASI), i.e., a Python
script that converts the high-level ASL attack description into a structured XML
configuration file (see Sect. 7.3.3). In the final step, the user runs a simulation of
the network scenario of interest, which has been previously modeled as an attack-
free simulation scenario for OMNeT++/INET. The simulation results in a number
of (raw) metric indicators, defined as expected in OMNeT++/INET and to be
separately processed with analysis tools.

This third simulation step is driven by the ASE that SEA++ integrates in
the INET Framework (see Sect. 7.3.4). Intuitively, the ASE parses the XML
configuration file received as input, and accordingly injects additional simulation
events at runtime. Such additional events reproduce the effects of the security attacks
specified by the user in the original attack description. The ASE achieves this by
means of two fundamental modules. On the one hand, a Local Event Processor
(LEP) module is instantiated on each network node. Every LEP module is able to:
(1) intercept network messages flowing through the communication stack of the
related node, possibly altering their content; (2) inject new network messages or
duplicate existing ones; and (3) influence the physical behavior of the network node.
On the other hand, a single Global Event Processor (GEP) module is instantiated
in order to interconnect the different LEP modules and enable the evaluation of
complex distributed attacks.

Note that the user can indeed use vanilla versions of OMNeT++ and the
INET Framework as an alternative in order to quantitatively assess the impact
of security attacks. However, this would be much less flexible and convenient.
In fact, the user would have to implement ad-hoc the actual attack performance
and effects. Moreover, this would require to rebuild the whole framework before
running a simulation. Instead, SEA++ allows the user to conduct the very same
task, while more flexibly and easily describing events through the high-level ASL.
Consequently, the user is not required to write source code or to rebuild the
simulation framework. At the same time, the conducted simulations still produce
metric-based results, i.e., just like if vanilla OMNeT++/INET was used, the impact
of security attacks is measurable and processable with well-established means, and
hence usable for attack ranking based on severity.

To summarize, the SEA++ framework displays a number of benefits. First, the
user is not required to implement security attacks and their actual execution to any
extent, but rather he/she simply describes their final effects by using the high-level
ASL. Second, the user is not required to modify or extend the SEA++ framework
either, with particular reference to the ASE module, nor the application modules and
the communication modules composing the whole simulation framework. Third,
the user can simply take preexisting network and application scenarios as a starting
point, considering them as the attack-free baseline for the attack assessment process.
Fourth, attack descriptions in the ASL are portable and combinable, as well as
storable and retrievable for future reuse. Finally, the overall approach is in principle

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 259

portable to any simulation environment based on discrete events, at the cost of
porting the ASE to the specific target platform.

This approach for simulative attack assessment was initially introduced for an
alternative attack simulator built on Castalia [2] as described in [3, 4]. It was later
extended for OMNeT++/INET towards SEA++ as described in [15, 16].

As a final note, it is worth clarifying that SEA++ is not an omni-comprehensive
tool. That is, it should not be intended to fully cover all steps and aspects of the
risk assessment process. Instead, it provides a non-exhaustive set of indications
and highlights to support the final stages of the risk assessment. Such indications
come as metric-based results produced and collected through basic means available
in OMNeT++/INET, although, as discussed before, achievable in a more flexible
and convenient way. Consequently, SEA++ should not be intended to provide a full
connection with the overall full spectrum of security consequences on the networked
system, or with final measures of the handled damage. To this end, either specific
extensions to OMNeT++/INET or alternative tools are required, providing modules
that implement, among other things, physical and control processes, billing and
accounting processes, as well as specialized control and monitoring protocols. At
the time of writing, this kind of support and extensions are out of the scope of
SEA++, and the risk assessment process as a whole clearly requires to be supported
by additional complementary tools.

7.3.2 Attack Specification Language (ASL)

The high-level ASL allows the user to describe attacks to be evaluated in terms of
their final effects. That is, the user assumes that attacks are successfully performed,
regardless of how an adversary can specifically mount and execute them.

Consistently with the approach adopted by SEA++ and discussed in Sect. 7.3.1,
the user describes the successful attacks as a sequence of events that atomically
take place during the network simulation. In order to specify such events, the
ASL provides a collection of primitives organized into two different sets, namely
node primitives and message primitives, which account physical attacks and cyber
attacks, respectively. Node primitives are described in Sect. 7.3.2.1, while message
primitives are described in Sect. 7.3.2.2.

Besides, the ASL provides statements to specify the occurrence of a list of events
described by means of message primitives. Specifically, conditional attacks and
unconditional attacks define the execution of a list of message primitives, based on
either the evaluation of a condition or a periodic repetition of events, respectively.
Conditional attacks are described in Sect. 7.3.2.3, while unconditional attacks
are described in Sect. 7.3.2.4. Finally, Sect. 7.3.2.5 discusses syntax contentions
relevant for the attack description and the correct reproduction of their effects.

260 M. Tiloca et al.

7.3.2.1 Node Primitives

This set includes primitives used to describe physical attacks performed against
network nodes. The three primitives in this category are:

• move (nodeID, t, x, y, z)
Changes the position of node nodeID to the new position (x,y,z) at time t.

• destroy (nodeID, t)
Disconnects the node nodeID at time t. After that, the node discards all
incoming and outgoing network packets, and thus stops taking part in the network
communication. Unlike when using the disable() primitive, the node remains
part of the network scenario, i.e., it continues to run its application(s).

• disable (nodeID, t)
Removes the node nodeID from the simulation scenario at time t. After that,
the node cannot take part in the network communication any longer and becomes
totally inoperative, i.e., it stops running its application(s).

7.3.2.2 Message Primitives

This set includes primitives used to describe cyber attacks on network packets,
including eavesdropping, content altering, data injection, and packet dropping. The
seven primitives in this category are:

• create (packet, field, content . . .)
Creates a new packet packet and fills its field field with content content.
A single invocation makes it possible to specify the content of multiple fields.

• change (packet, field, newContent)
Changes the content of field field of packet packet with the newContent.
change() primitive always follows the create() action in order to initialize
the fields of the newly created packet.

• clone (srcPacket, dstPacket)
Clones the packet srcPacket into packet dstPacket.

• retrieve (packet, field, variable)
Retrieves the value of field field of packet packet and assigns it to the
variable variable.

• drop (packet)
Discards the packet packet.

• send (packet, forwardingDelay)
Schedules the transmission of a selected packet packet produced by clone()
or create() to the bottom layer after a delay of forwardingDelay.

• put (packet, recipientNodes, direction,
updateStats, forwardingDelay)

Puts the packet packet based on the direction argument either in the trans-
mission (TX) or the reception (RX) buffer of all nodes in the recipientNodes
list after a delay forwardingDelay, bypassing the communication channel.

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 261

7.3.2.3 Conditional Attacks

This class of statements enables the execution of the list of events described
through message primitives only if the specified filter condition is evaluated
as TRUE. The filter condition is applied on packets intercepted at every layer of the
communication stack of each node in the list of nodes argument. A conditional
attack is described according to the following syntax, with keywords highlighted in
bold.

from T nodes in <list of nodes> do {
filter(<condition>)

<list of events>
}

An example of a conditional attack is reported below in Listing 7.1.

Listing 7.1 Example of a conditional attack in the ASL

1 list targetList = {1,2,5}
2 from 200 nodes in targetList do {
3 filter("TRA.sourcePort" == "1025" and "TRA.destinationPort" == "2000")
4 drop(original)
5 }

At simulation time t = 200 s, the involved nodes in targetList start inter-
cepting packets traversing their communication stack. When a packet produces a
positive match against the filter conditions, namely a transport-layer packet
(TRA) with source port 1025 and destination port 2000, the attack simulation
engine discards that packet as specified by the message primitive drop. The
adopted “dot notation” is further discussed in Sect. 7.3.2.5.

7.3.2.4 Unconditional Attacks

This class of statements enables the periodical execution of the list of events
described through message primitives, performed starting from an initial occurrence
time ‘T’ and then repeated according to a period ‘P’. Unlike conditional attacks,
unconditional attacks are not related to the interception of packets by network nodes,
but rather enforce the creation or duplication of network packets and their injection
in the network. In particular, the user must specify the time ‘t’ starting from which
the attack takes place, and the occurrence period ‘P’ according to which the attack
has to be repeatedly reproduced over time. An unconditional attack is described
according to the following syntax, with keywords highlighted in bold.

from T every P do {
<list of events>

}

262 M. Tiloca et al.

An example of an unconditional attack is reported below in Listing 7.2.

Listing 7.2 Example of an unconditional attack in the ASL

1 list dstList = {1,2,5}
2 from 200 every 1 {
3 packet fakePacket
4 create(fakePacket, "APP.type", 1000)
5 change(fakePacket, "APP.name", "myFakePacket")
6 # Set TCP-related control info
7 change(fakePacket, "controlInfo.connId", 22)
8 change(fakePacket, "controlInfo.userId", 0)
9 # Set the layer where to inject the new packet

10 change(fakePacket, "sending.outputGate", "app_tcp_inf$o[0]")
11 put(fakePacket, dstList, TX, false, 0)
12 }

The attack starts at simulation time t = 200 s and is repeated every 1 s (line 2).
A packet fakePacket is first declared as variable (line 3) and its creation as
an application-layer packet (line 4). All packets have a specific type representing
a simulation-based message. In the example, created malicious packets have type
1000 and only one information element, i.e., the field name (line 5). Furthermore,
these newly created packets should be correctly filled in order to represent a
complete OMNeT++ message (see Sect. 7.3.2.5). When invoking the put()
primitive (line 11), the user specifies that the packet has to be injected in the
transmission buffer TX of the nodes in the dstList defined at line 1, without
any additional delay.

7.3.2.5 Syntax Conventions

SEA++ is intended to cover all the layers in the communication stack, except for
the physical layer. This means that the attack simulator can interact with and affect
the application, transport (TCP/UDP protocol), network, and data link layer. The
abbreviations used to refer the communication layers are listed in Table 7.1.

Additional reserved words used as keywords are: RANDOM_IP, RANDOM_MAC,
RANDOM_INT, RANDOM_SHORT. They are used with the primitive change() to
instruct the assignment of random values based on their type.

Regarding the examples in Sects. 7.3.2.3 and 7.3.2.4, note the use of the “dot
notation” packet.layer.field to specify the field of the packet in the
header of a layer (e.g., layer.field is translated as TRA.sourcePort).
This implies that the user must be aware of the actual specific network protocols

Table 7.1 ASL
abbreviations for different
communication layers

Layer Abbreviation

Application APP

Transport TRA

Network NET

Data link MAC

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 263

adopted at each communication layer. Also, for each of them, the user must be aware
of the packet header structure and fields, and the specific capabilities offered by the
simulation platform. In particular, SEA++ relies on the objects descriptors
provided by OMNeT++/INET in order to handle packets of a given communication
layer and conveniently access and possibly alter their header fields.

In OMNeT++/INET, communication between protocol layers requires to specify
additional information embedded into network packets, by means of control
info objects. Then, in accordance with the considered “dot notation”, the keyword
controlInfo.field is used as the argument field in the change()
primitive, in order to fill the field of control info objects. In particular,
controlInfo.payload can be used in order to change the size of the packet
specified as first argument in the change() primitive. With particular reference
to the unconditional attack provided as an example in Sect. 7.3.2.4, the user must
provide the specific information required by the Transmission Control Protocol
(TCP) to correctly handle application-layer packets. The keyword controlInfo
is used to provide such information (see lines 7–8).

Finally, there are two further keywords used with unconditional attacks,
namely sending.outputGate and attackInfo.fromGlobalFilter.
Both are used with the primitive change() for the argument field. The
value provided for sending.outputGate for the argument newContent
specifies in which layer the packet has to be injected. On the other hand, the
value for attackInfo.fromGlobalFilter provided with the argument
newContent is set to 1 for packets created specifically by the GEP (see
Sect. 7.3.4). With further reference to the unconditional attack provided as example
in Sect. 7.3.2.4, the value specified for sending.outputGate indicates that the
packet fakePacket is injected between the application and the transport layer as
an outgoing packet, i.e., the argument newContent is set to app_tcp_inf$o
(see line 10).

7.3.3 Attack Specification Interpreter (ASI)

The ASI is a Python script that converts an adl file including the high-level attack
description in ASL into an XML configuration file. The latter is then provided as
input to the attack simulator, to be ultimately processed by the ASL. To ensure a
successful translation of the adl file, the user must follow the syntax rules defined
by the ASL and adopted by the ASI, with particular reference to the “dot notation”
packet.layer.field discussed in Sect. 7.3.2.5.

The resulting XML configuration file is split into three distinct sections:

• The first section lists all the described physical attacks, each of which is
composed by a single node primitive. That is, each physical attack indicates the
involved node and the simulation time when the attack takes place.

• The second section lists all the cyber attacks described as conditional attacks.
Each conditional attack indicates:

264 M. Tiloca et al.

1. the set of involved nodes,
2. the simulation time when the attack starts,
3. the filter condition, and
4. the list of message primitives modeling the attack events.

• The third section lists all the cyber attacks described as unconditional attacks.
Each unconditional attack indicates:

1. the simulation time when the attack starts,
2. the time period according to which the attack is reproduced, and
3. the list of message primitives modeling the attack events.

Listing 7.3 shows an example of an XML configuration file, produced by the
ASI. It includes one attack for each of the three sections described above.

Listing 7.3 Example of an XML configuration file describing three attacks

1 <?xml version="1.0"?>
2 <configuration>
3 <Physical>
4 <Attack>
5 <start_time>20</start_time>
6 <node>5</node>
7 <action>
8 <name>Disable</name>
9 </action>

10 </Attack>
11 </Physical>
12 <Conditional>
13 <Attack>
14 <start_time>200</start_time>
15 <node>1:2:5</node>
16 <filter>
17 [:TRA.sourcePort:==:1025:]:[:TRA.destinationPort:==:2000:]:AND
18 </filter>
19 <action>
20 <name>Drop</name>
21 <parameters>packetName:original:threshold:0</parameters>
22 </action>
23 </Attack>
24 </Conditional>
25 <Unconditional>
26 <Attack>
27 <start_time>60</start_time>
28 <frequency>0.1</frequency>
29 <var>
30 <name>"myFakePacket"</name>
31 <value>myFakePacket</value>
32 <type>STRING</type>
33 </var>
34 <var>
35 <name>123</name>
36 <value>123</value>
37 <type>NUMBER</type>
38 </var>
39 <var>
40 <name>4</name>
41 <value>4</value>
42 <type>NUMBER</type>
43 </var>
44 <var>
45 <name>1250</name>

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 265

46 <value>1250</value>
47 <type>NUMBER</type>
48 </var>
49 <var>
50 <name>0</name>
51 <value>0</value>
52 <type>NUMBER</type>
53 </var>
54 <var>
55 <name>"10.0.0.3"</name>
56 <value>10.0.0.3</value>
57 <type>STRING</type>
58 </var>
59 <var>
60 <name>"app_udp_inf$o[0]"</name>
61 <value>app_udp_inf$o[0]</value>
62 <type>STRING</type>
63 </var>
64 <action>
65 <name>Create</name>
66 <parameters>packetName:fakePacket:APP.type:1001</parameters>
67 </action>
68 <action>
69 <name>Change</name>
70 <parameters>
71 packetName:fakePacket:field_name:APP.name:value:"myFakePacket"
72 </parameters>
73 </action>
74 <action>
75 <name>Change</name>
76 <parameters>
77 packetName:fakePacket:field_name:controlInfo.packetSize:value:1250
78 </parameters>
79 </action>
80 <action>
81 <name>Change</name>
82 <parameters>
83 packetName:fakePacket:field_name:controlInfo.destAddr:value:"10.0.0.3"
84 </parameters>
85 </action>
86 <action>
87 <name>Change</name>
88 <parameters>
89 packetName:fakePacket:field_name:controlInfo.destPort:value:123
90 </parameters>
91 </action>
92 <action>
93 <name>Change</name>
94 <parameters>
95 packetName:fakePacket:field_name:controlInfo.sockId:value:4
96 </parameters>
97 </action>
98 <action>
99 <name>Change</name>

100 <parameters>
101 packetName:fakePacket:field_name:controlInfo.interfaceId:value:0
102 </parameters>
103 </action>
104 <action>
105 <name>Change</name>
106 <parameters>
107 packetName:fakePacket:field_name:sending.outputGate:value:"app_udp_inf$o

[0]"
108 </parameters>
109 </action>
110 <action>
111 <name>Put</name>

266 M. Tiloca et al.

112 <parameters>
113 packetName:fakePacket:nodes:4:direction:TX:throughWC:false:delay:0
114 </parameters>
115 </action>
116 </Attack>
117 </Unconditional>
118 </configuration>

The XML configuration file from Listing 7.3 includes information for the ASE to
reproduce the effects of the three different attacks described below using the ASL,
namely a physical attack (see Listing 7.4), a conditional attack (see Listing 7.5), and
an unconditional attack (see Listing 7.6).

In particular, the considered physical attack is described using the ASL in
Listing 7.4, and results in lines 3–11 in the physical section of Listing 7.3. These
include: (1) the simulation time when the attack occurs (line 5); (2) the involved
node (line 6); and (3) the node primitive composing the attack (line 7).

Listing 7.4 Physical attack described using the ASL

1 disable (5, 20)

The considered conditional attack is described using the ASL in Listing 7.5, and
results in lines 12–24 in the conditional section of Listing 7.3. These include: (1) the
simulation time when the attack starts (line 14); (2) the involved nodes (line 15); (3)
the filter condition (line 16); and (4) the action composing the attack (line 19).

Listing 7.5 Conditional attack described using the ASL

1 list targetList = {1,2,5}
2 from 200 nodes in targetList do {
3 filter("TRA.sourcePort" == "1025" and "TRA.destinationPort" == "2000")
4 drop(original,0)
5 }

The considered unconditional attack is described using the ASL in Listing 7.6,
and results in lines 25–117 in the unconditional section of Listing 7.3. These
comprise the following:

1. the simulation time when the attack starts (line 27),
2. the frequency according to which the actions of the attack are reproduced

(line 28),
3. the declaration of the variables used in the attack description (lines 29–63),
4. and the actions composing the attack (lines 64–115).

Listing 7.6 Unconditional attack described using the ASL

1 list attackNodesList = {4}
2 from 60 every 0.1 do {
3
4 # declare a packet
5 packet fakePacket
6
7 # create a new packet
8 create(fakePacket, "APP.type", "1001")
9

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 267

10 # fill the new packet properly
11 change(fakePacket, "APP.name", "myFakePacket")
12
13 change(fakePacket, "controlInfo.packetSize", 1250)
14
15 change(fakePacket, "controlInfo.destAddr", "10.0.0.3")
16 change(fakePacket, "controlInfo.destPort", 123)
17 change(fakePacket, "controlInfo.sockId", 4)
18 change(fakePacket, "controlInfo.interfaceId", 0)
19
20 change(fakePacket, "sending.outputGate", "app_udp_inf$o[0]")
21
22 put(fakePacket, attackNodesList, TX, FALSE, 0)
23 }

7.3.4 Attack Simulation Engine (ASE)

The ASE considers every node in the simulation scenario as an Enhanced Network
Node module. The latter is in turn composed of: (1) an application module, that
possibly includes multiple sub-modules modeling the actual application(s) running
on the node; (2) an arbitrarily complex collection of communication protocols
composing the node’s stack; and, finally, (3) an LEP module. All sub-modules apart
from the LEP can be off-the-shelf.

The LEP module is responsible for managing events related to physical and
conditional attacks. In particular, the LEP module intercepts all application and net-
work packets traversing the communication stack of a network node, as interposed
between each pair of layers in the node’s stack. Based on the attack description, the
LEP can alter the packets’ content, generate and inject new packets, or even discard
them. Also, it can change the node’s behavior, i.e., change its position, neutralize
the node by making it inactive, or completely remove the node from the network,
according to the specific events in the attack description.

Furthermore, SEA++ enables the simulation of complex attacks by means of
a single GEP module. In particular, the GEP module takes care of unconditional
attacks, by repeatedly executing the list of events specified in their description. The
GEP module is connected to the LEP module of each Enhanced Network Node,
hence enabling the reproduction and evaluation of complex distributed security
attacks, for instance wormhole attacks.

Figure 7.2 shows the overall architecture of the ASE, with particular reference
to two interconnected network nodes. In each Enhanced Network Node, the LEP is
interposed between each pair of layers in the communication stack, hence acting as
gate-bypass between each pair of modules providing the respective layers. Finally,
the GEP is connected to the LEP modules of the two Enhanced Network Nodes.

SEA++ provides also support for Software-Defined Networking (SDN) envi-
ronments [5, 9]. In particular, it considers the de facto standard OpenFlow [10]
implemented in commercial SDN controllers and switches, and it builds on the
simulation model initially proposed in [8].

268 M. Tiloca et al.

Fig. 7.2 ASE architecture with two enhanced network nodes

Specifically, the LEP module has also been integrated into INET nodes modeling
OpenFlow switches to enable the simulation of SDN-related security attacks. The
separation of the Control Plane and Data Plane that is typical for SDN has also
been modeled in the INET Framework. That is, the LEP interposes itself between
the two planes, namely the data plane and the southbound OpenFlow interface. In
this architecture, the LEP is responsible for intercepting network packets traversing
the data plane, as well as OpenFlow messages which are exchanged between
the SDN controller and the switch through the southbound OpenFlow interface.
Figure 7.3 shows the overall architecture of an Enhanced OpenFlow Switch Node.
Like the Enhanced Network Nodes, the LEP of the Enhanced OpenFlow Switch
Node also communicates with the single GEP module. Note that SDN controllers
can instead be simply represented as an Enhanced Network Node including a full
communication stack. Further details on the SDN support in SEA++ are available
in [16].

7.3.4.1 Reproduction of Attack Effects

As discussed in Sect. 7.3.3, the ASI converts the high-level attack description in
ASL from an adl file to an XML configuration file, which consists of three distinct
sections covering physical attacks, conditional attacks, and unconditional attacks.

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 269

Fig. 7.3 ASE architecture with an enhanced OpenFlow switch

At simulation startup, the ASE takes the XML file as input, parses it, and initializes
three data structures separately for the three types of attack. In detail, the ASE
creates the subsequently described lists, whose list elements are all chronologically
ordered to reflect the respective attack’s occurrence time.

• ASE creates a list LPn for each network node n involved in a physical attack. In
every list, each element includes the description of a physical attack.

• ASE creates a list LCn for each network node n involved in a conditional attack.
Again, each element in every list includes the description of a conditional attack.

• ASE creates a list LUn for each network node n involved in an unconditional
attack. Just like before, each element in every list includes the description of an
unconditional attack.

After that, the ASE instantiates a set of timers for each network node n involved
in at least one of the lists defined above. In particular, each timer is associated to a
specific attack involving that node. Then, the ASE starts all the timers in order to
schedule the respective attack’s (first) occurrence. That is, upon the expiration of a
timer associated to a node n, the ASE retrieves the associated attack A from the list
where it is included, and performs the following actions:

• In case A is a physical attack, the ASE executes the associated node primitive,
by means of the LEP module of node n. Then, it removes A from the attack list
LPn.

270 M. Tiloca et al.

• In case A is a conditional attack, node n starts intercepting packets traversing
its communication stack by means of its own LEP. In particular, node n filters
the intercepted packets according to the filter condition specified in A. Then,
for each packet producing a positive match against the filter condition, node n

executes the message primitives listed in A. Note that the actual execution of
such primitives may involve the GEP module, as well as the LEP module of
other nodes than n.

• In case A is an unconditional attack, the ASE starts executing the message
primitives listed in A. Thereafter, the GEP repeatedly performs A, according
to the specified occurrence period. This is practically achieved by resetting the
timer associated to node n and attack A at the end of each repetition. Note that it
is the prerogative of the GEP module to start the reproduction of unconditional
attacks, then involving the LEP module of individual network nodes.

7.4 Explicative Example: Injection of Fake Packets

This section describes how to correctly set up the SEA++ framework. It also
presents a step-by-step example on how to use the framework to evaluate the attack
impact on a simple network scenario. The example presented in this section intends
to provide a basic usage tutorial. It has no ambition to show how a comprehensive
evaluation of attack impact can be conducted in a real-world networked system, nor
to produce an attack ranking as part of a full risk assessment process.

In the considered example, we refer to a network composed of two client nodes
and one server, and we specifically go through the steps to describe and reproduce
an unconditional attack, in order to quantitatively evaluate its impact.

7.4.1 Framework Setup

The current version of SEA++ relies on:

• a compiler for C++11,
• an interpreter for Python 2.7.6,
• the libxml library, and
• INET 2.6, which is based on OMNeT++ 4.x.

SEA++ has been developed and tested under Ubuntu Linux 14.04 LTS, while
it is usable in older or newer versions after applying basic configuration changes.
In the following, we assume that the installation and configuration of OMNeT++
4.6 and INET 2.6 has been previously completed, and we focus on the setup of the
actual SEA++ framework. The user installs and configures SEA++ according to the
following steps when he/she finished installing and configuring OMNeT++/INET.

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 271

Additional details on the framework setup and configuration are available in the
SEA++ user manual [17].

1. Obtain and install the libxml library, available at http://www.xmlsoft.org.
2. Download the SEA++ sources from the official Git repository at https://github.

com/seapp/seapp_stable.
3. Extract the source archive and rename the main folder to seapp_stable.
4. Move to the SEA++ main folder and build the framework by running make

makefile followed by make.

To build SEA++ on older Ubuntu versions, it is recommended to additionally:

1. upgrade the Python interpreter to version 2.7.6,
2. upgrade the C++compiler to version 4.7 and set it as default, and
3. change the SEA++ makefile to meet the requirements of the specific system’s

architecture.

After a successful build, the user can include additional network scenarios as a
subfolder of /examples/seapp.

7.4.2 Evaluation of Attack Impact

We refer to a simple network topology consisting of two clients and one UDP server
connected through an Ethernet switch. In particular, we assume that an adversary
has successfully compromised client1 and uses it to inject newly generated bogus
packets addressed to the server. This section describes how to: (1) describe the
attack using the ASL; (2) define the network scenario in the presence of SEA++
components; and (3) evaluate the attack impact through simulation.

7.4.2.1 Attack Description

As a first step, the user describes the attack mentioned above by using the ASL. As
shown in Listing 7.7, the attack is described as an unconditional attack, where new
bogus packets are injected in the transmission buffer of the compromised client1,
that then forwards them to the victim server node. Unlike with the direct injection in
the reception buffer of the victim server, this makes it also possible to reproduce the
actual transmission and reception of such packets in the network. Note that, as an
unconditional attack, it is the GEP module of the ASE that takes care of the single
attack events at simulation runtime (see Sect. 7.3.4.1).

Listing 7.7 Attack description using the ASL

1 list attackNodesList = {4}
2
3 from 60 every 0.1 do {
4 #declare a packet

http://www.xmlsoft.org
https://github.com/seapp/seapp_stable
https://github.com/seapp/seapp_stable

272 M. Tiloca et al.

5 packet fakePacket
6
7 #create a new packet
8 create(fakePacket, "APP.type", "1001")
9

10 #fill the new packet properly
11 change(fakePacket, "APP.name", "myFakePacket")
12 change(fakePacket, "controlInfo.packetSize", 1250)
13 change(fakePacket, "controlInfo.destAddr", "10.0.0.3")
14 change(fakePacket, "controlInfo.destPort", 123)
15 change(fakePacket, "controlInfo.sockId", 4)
16 change(fakePacket, "controlInfo.interfaceId", 0)
17
18 #instructions to Global Filter
19 change(fakePacket, "sending.outputGate", "app_udp_inf$o[0]")
20 put(fakePacket, attackNodesList, TX, FALSE, 0)
21 }

In detail, the considered attack is carried out through the node with ID 4, namely
client1 in the simulation scenario. To this end, the list attackNodesList in
line 1 includes the identifier of client1. Then, the attack starts at simulation time T

= 60 s, and the events listed in its body are periodically repeated every 0.1 s (lines 3–
21). In particular, at each loop repetition, the GEP performs the following actions.

First, the ‘fakePacket’ variable of type ‘packet’ is declared (line 5), and
then used as first argument of the change() primitive to actually initialize the
new packet (line 8). In particular, the new packet is specified as an application-
level packet, by setting its APP.type field to the predefined message type 1001.
This makes it possible to correctly create a cPacket message representing
fakePacket.

After that, the primitive change() is further invoked to fill (meta-)information
related to fakePacket and allow OMNeT++/INET to correctly handle the
associated cPacket message (lines 11–16). In particular, the application name
APP.name is set to myFakePacket, essentially to enable selective packet tracing
(line 11). Also, information required to correctly dispatch the packet are specified
as values of controlInfo subfields (lines 12–16). In particular, the packet size is
set to 1250 bytes (line 12), i.e., the same size of legitimate application packets in the
considered network scenario. Besides, the controlInfo subfields are filled with
information related to the UDP transport layer, as the one immediately traversed by
the outgoing (application-level) packet (lines 13–16).

Finally and consistent with the syntax conventions discussed in Sect. 7.3.2.5, a
further indication is provided to the GEP module through the change() primitive
(line 19). That is, the user specifies the stack layer in client1 where fakePacket
has to be injected. Then, the put() primitive instructs the GEP module to inject
fakePacket in the transmission buffer of client1 (line 20).

The described attack would continue for the whole simulation duration. This
results in client1 sending 10 additional bogus packets per second to the victim
server, the intended final effect of the described attack.

Before proceeding with the network simulation in the presence of the described
attack, the user has to convert the adl attack description in ASL into an XML file
providing a parsable collection of attack events. To this end, the user simply runs the

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 273

ASI as shown in Listing 7.8, i.e., providing the adl file as input. The resulting output
is the XML attack configuration file, which is provided as input to the ASE through
the description of the network scenario in the omnetpp.ini file (see Sect. 7.4.2.2).
The ASI is available as a Python script in the /seapp_stable/interpreter directory.

Listing 7.8 Usage of the ASI to convert the adl description file into the XML configuration file

../../../interpreter/interpreter/interpreter.py -i simple_attack.adl -o
simple_attack.xml

7.4.2.2 Description of the Network Scenario

The user is now requested to define the topology of the network scenario. This
is done by filling an OMNeT++/INET Network Topology Description (NED) file
and storing it in the /examples/seapp directory. A NED file example is shown in
Listing 7.9. Note that an already existing NED file can be considered as a starting
point from previous simulation scenarios and then be extended accordingly.

Listing 7.9 Network scenario as defined in the NED file

1 package inet.examples.seapp.simpleTopo;
2
3 import inet.nodes.inet.StandardHost;
4 import inet.nodes.ethernet.EtherSwitch;
5 import inet.networklayer.autorouting.ipv4.IPv4NetworkConfigurator;
6 import inet.util.ThruputMeteringChannel;
7 import inet.globalfilter.GlobalFilter;
8
9 network Scenario

10 {
11 parameters:
12 string attackConfigurationFile = default("none");
13 @display("bgb=600,300");
14
15 types:
16 channel ethernetline extends ThruputMeteringChannel
17 {
18 delay = 1us;
19 datarate = 100Mbps;
20 thruputDisplayFormat = "u";
21 }
22
23 submodules:
24 configurator: IPv4NetworkConfigurator
25 {
26 @display("p=40,40");
27 }
28 globalFilter: GlobalFilter
29 {
30 @display("p=350,50;");
31 }
32 client1: StandardHost
33 {
34 @display("p=200,100;i=device/laptop");
35 }
36 client2: StandardHost
37 {
38 @display("p=200,200;i=device/laptop");

274 M. Tiloca et al.

39 }
40 server: StandardHost
41 {
42 @display("p=500,150;i=device/server");
43 }
44 switch: EtherSwitch
45 {
46 @display("p=350,150");
47 }
48
49 connections allowunconnected:
50 switch.ethg++ <--> ethernetline <--> client1.ethg++;
51 switch.ethg++ <--> ethernetline <--> client2.ethg++;
52 switch.ethg++ <--> ethernetline <--> server.ethg++;
53
54 globalFilter.nodes++ <--> client1.global_filter;
55 globalFilter.nodes++ <--> client2.global_filter;
56 globalFilter.nodes++ <--> server.global_filter;
57 }

In particular, it is important to observe the following steps:

• Include the string parameter attackConfigurationFile to the network (line 12).
This is initialized to none, but it will be overwritten later on within the
omnetpp.ini file, when specifying the xml file including the attack description.

• Import the GlobalFilter class (line 7) providing the GEP module.
• Declare the actual GEP submodule (line 28).
• Connect the GEP module to every network node (lines 54–56).

The next step consists of defining the traffic model in the network scenario by
filling the OMNeT++ file omnetpp.ini. An example of such an omnetpp.ini file is
shown in Listing 7.10. During the simulation, each client node runs the application
UDPBasicApp available in INET and sends 5 packets per second to the server
node. The server node runs the application UDPSink available in INET, without
replying back to the clients. According to this traffic model, the server receives 10
packets per second overall.

Listing 7.10 Content of the omnetpp.ini file

1 [General]
2 debug-on-errors = true
3 sim-time-limit = 120s
4
5 network = Scenario
6
7 *.configurator.networkAddress = "192.168.2.0"
8
9 #Traffic Configuration

10 *.server.numUdpApps = 1
11 *.server.udpApp[0].typename = "UDPSink"
12 *.server.udpApp[0].localPort = 123
13
14 *.client*.numUdpApps = 1
15 *.client*.udpApp[0].typename = "UDPBasicApp"
16 *.client*.udpApp[0].localPort = 100
17 *.client*.udpApp[0].destPort = 123
18 *.client*.udpApp[0].messageLength = 1250 bytes
19 *.client*.udpApp[0].sendInterval = 0.2s
20 *.client*.udpApp[0].destAddresses = "server"
21

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 275

22 [Config Simple_attack]
23 extends = General
24 **.attackConfigurationFile = "simple_attack.xml"

In particular, it is important to include the configuration Simple_attack
(lines 22–24) to specify the XML file that includes the attack description (see
Sect. 7.4.2.1). This configuration extends the traffic behavior described in the
General section by including the attack description as a parsable XML file.

7.4.2.3 Simulation of Attack Effects

Once the attack and scenario description are completed, the user can finally run
the actual simulation in SEA++, just as it is usually done in OMNeT++/INET and
typically through the native Graphical User Interface (GUI).

Figure 7.4 shows the output during the simulation runtime. This also includes
the events related to the attack under evaluation, such as the injection of fake
packets myFakePacket from the GEP module to client1 through the wrapper
message PutReq, as well as the following transmission to the server node as the
final destination. The application UDPSink running on the server node additionally
measures the number of received packets per second. Once the simulation is
completed, the user can collect the statistics and perform post-analysis on simulation
results.

Fig. 7.4 Simulation output on the OMNeT++/INET GUI during the injection attack

276 M. Tiloca et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120

P
ac

ke
t r

ec
ep

tio
n

ra
te

 (
pk

t/s
)

Simulation time (s)

Injection rate 20 pkt/s
Injection rate 15 pkt/s
Injection rate 10 pkt/s

No attack

Fig. 7.5 Packet reception rate on the server node

For instance, Fig. 7.5 shows the packet reception rate on the server node both
in the baseline attack-free scenario (10 packets per second) and in the presence
of the described attack (20 packets per second after T = 60 s). The graph also
includes results produced by assessing the same attack, while considering higher
attack injections rates, for a total reception rate on the server node of 25 of 30
packets per second. The attack injection rate can be easily changed in the attack
description, by specifying a different time period in the from loop of the modeled
unconditional attack (see Sect. 7.4.2.1, Listing 7.7—line 3).

7.5 Conclusion

This chapter presented SEA++, a simulation framework for assessing the impact
of cyber-physical security attacks through simulative evaluation, in a way which
is flexible and user-friendly. The framework is designed and implemented over
OMNeT++/INET and allows network security architects to quantitatively evaluate
the effects of security attacks against networks and applications in Information and
Communications Technology (ICT) networked infrastructures, including support
for SDN architectures. Therefore, SEA++ is especially convenient at the last stage
of the security risk assessment process, as it makes it possible to clearly understand

7 SEA++: Evaluating the Impact of Security Attacks in OMNeT++/INET 277

the effects of successful attacks, rank them based on their severity, and accordingly
prioritize security countermeasures to adopt.

The key advantage offered by SEA++ is the ability to reproduce the final actual
effects of successful attacks, regardless of how they have been carried out. To
this end, attacks to be evaluated are described through a high-level specification
language. As a consequence, the user is not required to implement the actual
adversary behavior or the actual attack execution, nor to modify any other software
module. Besides, other than specific SEA++ modules seamlessly integrated into
OMNeT++/INET, all other software modules can be off-the-shelf. The SEA++
framework is available as open-source software, and its core approach makes it
portable to alternative simulation environments based on discrete events.

Finally, we foresee a number of potential interesting developments related to
the SEA++ framework. First, feedback and requirements from the OMNeT++
/INET community and use-case providers would be helpful to improve the
Attack Specification Language as well as the core Attack Simulation Engine of
SEA++. At the same time, it would be convenient to provide an end-user GUI,
as well as tools for attack assessment in batches and for automatic analysis of
simulation output.

Second, it would be good to harmoniously interconnect SEA++ with alternative
simulation tools focused on different environments, technologies, or assessments.
This would aim at a single and comprehensive simulation tool for the assessment of
security attacks in complex and heterogeneous network environments. Such a tool
would be composed of different synchronized sub-frameworks, and hence be able to
perform more complex assessments through a single composite simulation. A first
good candidate to consider is the ASF++ simulation framework, which is built on
OMNeT++ Castalia and is based on the same rationale and approach of SEA++ .

Third, SEA++ would greatly benefit from having security protocols available
in OMNeT++/INET as off-the-shelf software modules, which would be selectable
when composing communication stacks of network nodes. This includes implemen-
tations of protocols such as Transport Layer Security (TLS), Datagram Transport
Layer Security (DTLS), Object Security for Constrained RESTful Environments
(OSCORE), Internet Protocol security (IPsec), and Internet Key Exchange Version
2 (IKEv2). Similarly, SEA++ would greatly benefit from available software
modules in OMNeT++/INET providing application protocols typical of Internet of
Things (IoT) environments, such as Constrained Application Protocol (CoAP) and
Lightweight Machine-to-Machine (LWM2M).

Acknowledgements The authors sincerely thank the anonymous reviewers as well as the editors
Antonio Virdis and Michael Kirsche for their constructive feedback and comments.

278 M. Tiloca et al.

References

1. Bonaci, T., Bushnell, L., Poovendran, R.: Node capture attacks in wireless sensor networks:
a system theoretic approach. In: The 49th IEEE Conference on Decision and Control (CDC
2010), pp. 6765–6772 (2010)

2. Boulis, T.: Castalia. https://github.com/boulis/Castalia (2018)
3. Dini, G., Tiloca, M.: ASF: an attack simulation framework for wireless sensor networks. In:

The 8th IEEE International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob 2012), pp. 203–210. IEEE, Ahmedabad (2012)

4. Dini, G., Tiloca, M.: On simulative analysis of attack impact in wireless sensor networks. In:
2013 IEEE 18th Conference on Emerging Technologies and Factory Automation (ETFA), pp.
1–8. IEEE, Ahmedabad (2013)

5. Open Networking Foundation: Software-defined networking: the new norm for networks,
ONF White Paper (2012). https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf

6. Genge, B., Siaterlis, C., Hohenadel, M.: AMICI: an assessment platform for multi-domain
security experimentation on critical infrastructures. In: Critical Information Infrastructures
Security. Lecture Notes in Computer Science, vol. 7722, pp. 228–239. Springer, Berlin (2013)

7. Huang, Y.L., Cárdenas, A.A., Amin, S., Lin, Z.S., Tsai, H.Y., Sastry, S.: Understanding the
physical and economic consequences of attacks on control systems. Int. J. Crit. Infrastruct.
Prot. 2(3), 73–83 (2009)

8. Klein, D., Jarschel, M.: An OpenFlow extension for the OMNeT++ INET framework. In: 6th
International ICST Conference on Simulation Tools and Techniques (SimuTools ’13), pp. 322–
329 (2013)

9. Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.:
Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

10. Pitt, D.: Open Networking Foundation. http://opennetworking.org (2012)
11. Queiroz, C., Mahmood, A., Tari, Z.: SCADASim–a framework for building SCADA simula-

tions. IEEE Trans. Smart Grid 2(4), 589–597 (2011)
12. Sánchez-Casado, L., Rodríguez-Gómez, R.A., Magán-Carrión, R., Maciá-Fernández, G.:

NETA: evaluating the effects of NETwork attacks. MANETs as a case study. In: Advances
in Security of Information and Communication Networks. Communications in Computer and
Information Science, vol. 381, pp. 1–10. Springer, Berlin (2013)

13. Siaterlis, C., Garcia, A.P., Genge, B.: On the use of emulab testbeds for scientifically rigorous
experiments. IEEE Commun. Surv. Tutorials 15(2), 929–942 (2013)

14. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for information technology
systems - recommendations of the National Institute of Standards and Technology. Tech-
nology Report, National Institute of Standards and Technologies (2002). http://csrc.nist.gov/
publications/nistpubs/800-30/sp800-30.pdf

15. Tiloca, M., Racciatti, F., Dini, G.: Simulative evaluation of security attacks in networked
critical infrastructures. In: 2nd International Workshop on Reliability and Security Aspects
for Critical Infrastructure Protection (ReSA4CI 2015). Lecture Notes in Computer Science,
LNCS, vol. 9338, pp. 314–323. Springer, Berlin (2015)

16. Tiloca, M., Stagkopoulou, A., Dini, G.: Performance and security evaluation of SDN networks
in OMNeT++/INET. In: OMNeT++ Community Summit 2016, pp. 9–14 (2016)

17. Tiloca, M., Racciatti, F., Stagkopoulou, A., Dini, G.: SEA++, a tool for Simulative Evaluation
of Attacks. https://github.com/seapp/seapp_stable (2017)

18. Wang, Y.T., Bagrodia, R.: SenSec: a scalable and accurate framework for wireless sensor
network security evaluation. In: The 31st International Conference on Distributed Computing
Systems Workshops (ICDCSW 2011), pp. 230–239 (2011)

19. Xu, Y., Chen, G., Ford, J., Makedon, F.: Detecting wormhole attacks in wireless sensor
networks. In: Goetz, E., Shenoi, S. (eds.) Critical Infrastructure Protection, Post-Proceedings of
the First Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure
Protection, IFIP, vol. 253, pp. 267–279. Springer, Berlin (2007)

https://github.com/boulis/Castalia
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://opennetworking.org
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
https://github.com/seapp/seapp_stable

Part III
Recent Developments

Chapter 8
Simulation Reproducibility with Python
and Pweave

Kyeong Soo (Joseph) Kim

8.1 Introduction

Reproducible research is a key to a scientific method [14] and ensures repeating an
experiment and the results of its analysis with a high degree of agreement among
researchers. In a practical sense, we can say that a study is reproducible when it
satisfies the following minimum criteria [7]:

• All methods are fully reported.
• All data and files used for the analysis are (publicly) available.
• The process of analyzing raw data is well reported and preserved.

Therefore, reproducible research is to ensure that with the same data and analysis
scripts, one can generate the same results and thereby reach the same conclusions.
When the results of a study are not reproducible; however, its claims—no matter
what they are—cannot be accepted and used as a basis for further research.

Consider in this regard the Schön scandal [2], a notable example of unrepro-
ducible research related with data fraud. In 2001, Jan Hendrik Schön produced a
series of high-profile research papers at a peculiar pace of publishing one paper
every 8 days. In one of the papers published in Nature, which was withdrawn
later, he claimed that he had produced a transistor on the molecular scale, i.e.,
a single-molecule transistor, that was regarded by many in the field as the holy
grail of the molecular computer. Soon after Schön published the work, however,
several physicists alleged that there were anomalies (e.g., two experiments carried
out at very different temperatures had identical noise) and duplicates in his data,

K. S. (Joseph) Kim (�)
Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University,
Suzhou, Jiangsu, People’s Republic of China
e-mail: kyeongsoo.kim@xjtlu.edu.cn

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_8

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_8&domain=pdf
mailto:kyeongsoo.kim@xjtlu.edu.cn
https://doi.org/10.1007/978-3-030-12842-5_8

282 K. S. (Joseph) Kim

which triggered a formal investigation by a committee set up by Bell Labs in
2002. The committee found evidence of Schön’s scientific misconduct in at least
16 allegations out of 24 considered [13]. The problem is that Schön had kept no
laboratory notebooks and data for his groundbreaking experiments and he was
unable to reproduce the claimed results. This scandal clearly shows the importance
of handling experimental data and record keeping even after the publication and the
need of reproducible research in carrying out any scientific research.

The detection of cosmic gravitational waves reported by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) team, on the other hand, provides a good
example of reproducible research [1]. Together with the paper, they also published
online an IPython [10] notebook and datasets so that readers can better understand
their work, reproduce the results of their analysis, and lead into the same inferences
based on them [15].

In many fields of science and technology, computer simulation provides a viable
alternative to experiments based on a real system or its prototype in modeling and
analyzing the performance of the system, especially when the cost and complexity of
the full-scale implementation of the system is too high. Thanks to the rapid growth
of computing power and development of simulation techniques, the gap between
real experiments and computer simulations is being narrowed.

Because we can have more control of computer simulations compared to real
experiments, it is possible to reproduce results even identical to those of the
original research at different times and in different environments by different
researchers. Even with the same simulation code and configurations (including
random number seed values), however, results from computer simulations can vary
due to the underlying differences in computer hardware (e.g., 32/64-bit platforms
and CPU types) and software architectures (e.g., operating systems, compilers,
and libraries). To address the issue of computer simulations’ dependence on the
underlying hardware and software architectures, an image of a virtual machine (e.g.,
VirtualBox [17]) could be released, which includes not only simulation platforms
and actual code but also a complete operating system with supporting tools and
libraries on a virtualized computer.

It is important to note that reproducing identical simulation results is not
replacing the reliable processing of simulation results, where one repeats an exper-
iment many times with different random number seeds and carries out statistical
processing of the results for confidence intervals and other important measures
in order to take into account the innate randomness in any experiments. In this
chapter, we hence focus on how to guarantee the integrity of simulation code,
configurations, and analysis scripts and to automatically run new simulations and
update their analysis and presentation when detecting changes in any part of them
for reproducible research by providing a detailed tutorial for reproducible simulation
based on Python and Pweave; possible differences in results caused by computer
hardware and software architectures, if any, should be handled through reliable
statistical processing.

8 Simulation Reproducibility with Python and Pweave 283

8.2 Tools for Reproducible OMNeT++ Simulation

In this section, we briefly review tools for reproducible OMNeT++ simulations
before discussing the actual practices based on Python and Pweave in Sect. 8.3.

8.2.1 R and Sweave/knitr

R [12] has been the language of choice for statistical processing and data analysis
due to its huge code base and strong community of open-source developers as well
as engineers and scientists. Listing 8.1 shows snippets of R source code importing
OMNeT++ simulation results into a DataFrame object.

Listing 8.1 R source code for importing OMNeT++ simulation results into a DataFrame

1 .resp <- readline("Process data from mixed configurations? (hit y or n) ")
2 if (.resp == "y") {
3 .config <- readline("Type OMNeT++ configuration name: ")
4 .mixed.rdata <- paste(.config, "RData", sep=".")
5 if (file.exists(paste(.mixed.wd, .mixed.rdata, sep="/")) == FALSE) {
6 .df <- loadDataset(paste(.mixed.wd, paste(.config, "-0.vec", sep=""), sep

="/"))
7 .v <- loadVectors(.df, NULL)
8 .vv <- .v$vectors
9 .vd <- .v$vectordata

10 .rk <- subset(.vv, name=="thruput (bit/sec)")$resultkey
11 .df <- subset(.vd, is.element(resultkey, .rk))
12 .df$resultkey <- as.factor(.df$resultkey)
13 .df.name <- paste(.config, ".df", sep="")
14 assign(.df.name, .df)
15 save(list=c(.df.name), file=paste(.mixed.wd, .mixed.rdata, sep="/"))
16 } else {
17 load(paste(.mixed.wd, .mixed.rdata, sep="/"))
18 .df.name <- paste(.config, ".df", sep="")
19 }
20 .df <- get(.df.name)
21 .df$y <- .df$y / 1.0e6 # convert b/s -> Mb/s
22 is.na(.df) <- is.na(.df) # remove NaNs
23 .df <- .df[!is.infinite(.df$y),] # remove Infs

Still, R has the largest code base for a wide variety of statistical and graphical
techniques. R also provides a tool called Sweave [6] (now replaced by knitr
[5]) to weave documentation and the results of the execution of R code chunks
(i.e., those enclosed by “«echo = False, results = ’tex’»=” and “@”
in Listing 8.2) into a LATEX source file for integrated documentation.

Compared to general-purpose programming languages like Python, however,
R was created and has been developed as a specialized language for statistical
processing and data analysis, so it is a bit limited in interfacing with the operating
system, scraping the web, and other important programming tasks.

284 K. S. (Joseph) Kim

Listing 8.2 R source code chunk inside a Sweave file for LATEX

1 <<echo = False, results = ’tex’>>=
2 .df <- subset(.da_N1.df, select=c(1:8))
3 names(.df)[3:8] <- c(
4 "dly.mean", "dly.ci.width",
5 "thr.mean", "thr.ci.width",
6 "trf.mean", "trf.ci.width"
7)
8 .tabledf <- xtable(.df, caption="Performance measures of FTP traffic for

dedicated access with $N=1$.", label="tbl:da_N1_ftp")
9 digits(.tabledf)[2:9] <- c(0, 1, rep(-4, 6))

10 print(.tabledf,
11 tabular.environment="longtable", caption.placement="top",
12 include.rownames=FALSE, floating=FALSE, NA.string="NA")
13 @

8.2.2 Python and Pweave

Python is one of the most popular programming languages in scientific computing,
including artificial intelligence and machine learning, and recently takes over R in
statistical processing and data analysis as well. Thanks to pandas [9] and Pweave
[11] packages which provide a DataFrame object and Sweave functionalities,
respectively, Python can now replace R for most statistical and data analysis
tasks, while retaining its many advantages over R including being a fully featured
programming language with easy syntax and higher speed and a diverse ecosystem
for general scientific computing.

Figure 8.1 illustrates the integrated processing of document and Python code
based on Pweave, which provides two separate programs pweave1 and ptangle for
weaving and tangling procedures; from a common Pweave file, pweave and ptangle
generate a documentation source file (i.e., LATEX file in this example) and Python
source code, respectively. A detailed example of using Pweave for reproducible
OMNeT++ simulation is provided in Sect. 8.4.

8.2.3 Python and Jupyter

Project Jupyter [4] is an open-source project started in 2014 based on the IPython
project. While IPython was developed mainly for the Python programming
language to provide a powerful interactive shell and a web interface, Jupyter has
evolved to support interactive data science and scientific computing across various
other programming languages.

1pweave denotes an executable program, while Pweave denotes a Python package.

8 Simulation Reproducibility with Python and Pweave 285

(a)

(b)

(c)

Fig. 8.1 Integrated processing of document and Python code based on Pweave: (a) an overview
of procedures and examples for (b) weaving (with pweave) and (c) tangling (with ptangle)

286 K. S. (Joseph) Kim

Fig. 8.2 A Jupyter notebook example

Like Sweave and Pweave, Jupyter provides a notebook as an interactive
web interface integrating text and code, which are individually stored and run in
Markdown and code cells, respectively: texts stored in a Markdown cell can use
the popular Markdown markup language to display them in a richer format in
web browsers, thanks to MathJax. LATEX-formatted equations are also supported.
The code in a code cell, on the other hand, can be run interactively, and its
outputs—not only numerical and text outputs but also graphs and tables—are
immediately displayed below the cell as part of a notebook. In this way, the Jupyter
notebook captures the whole computation process, i.e., developing, documenting,
and executing code, as well as communicating the results. Figure 8.2 shows an
example Jupyter notebook with embedded graph and math equation.

8 Simulation Reproducibility with Python and Pweave 287

8.3 Reproducible OMNeT++ Simulations with Python
and Pweave

8.3.1 Handling Simulation Code and Supporting Files

Most of the problems in reproducing simulation results that have been published are
related with the separation of documentation and simulation code and supporting
files including simulation configuration files and analysis scripts. When the latter
have gone through many revisions during and after the publication, even authors
may find it difficult to identify the correct file versions.

In case of small-scale simulations, one solution is to include all OMNeT++
simulation code (i.e., C++ (.cc and .h), message (.msg), and NED (.ned) files)
with required configuration files (i.e., .ini) and analysis scripts in a Pweave file. As
we will see in Sect. 8.4, this solution works best for OMNeT++ simulations where
users use existing simulation models2 and the focus of reproducible research is on
the management of simulation configurations and results analysis.

If research is based on large-scale simulations and the simulation code as well
as configuration files and analysis scripts should be maintained, however, including
all the files in a document could not be a practical option due to their sheer size. In
such a case, we can use a unique Identifier (ID) for each version of a file or a group
of files (e.g., Git commit hashes and SVN release) [16]. Note that this option makes
sense when the code and relevant files are managed in a version control system.

8.3.2 Updating Simulation Results Based on Configuration
Files

Raw simulation result files (e.g., .sca and .vec in OMNeT++) are usually excluded
from the version control due to their possibly large size. This is more so when
simulation code is hosted on a public repository like GitHub for open-source
development with many collaborators, because usually there is more strict control
on the sizes of individual files as well as the size of a repository. Therefore, it is
a user’s responsibility to generate simulation results on a local machine and check
whether simulation results match with configuration files.

For small-scale simulations, we can adopt a make-like scheme based on
timestamps of configuration files and result files, i.e., invoking a simulation when
the timestamps of configuration files are newer than those of result files. Updating
simulation results can be integrated into the processing of the Pweave file with
embedded Python scripts as shown in Sect. 8.4.2.

2Or the development of the simulation models has already been finished and the resulting code will
not change.

288 K. S. (Joseph) Kim

For large-scale simulations, however, the integration of the aforementioned
automatic updating of simulation results as part of Pweave processing is not
practical because it may take a much longer time to execute simulations; running
large-scale simulations—often multiple simulation runs for parameter studies and/or
repeating with different seeds for statistical processing—is usually done in a batch
mode, which may last for hours, days, or even weeks. As already discussed in
Sect. 8.3.1, using a unique ID assigned to each version of a result file could therefore
be a solution to ensure a match between configuration and result files.

8.3.3 Analysis and Presentation of Simulation Results

With Pweave, we can use many packages of Python—especially NumPy, pandas,
and Matplotlib—for the analysis and presentation of simulation results within a
document. A key data structure in this regard is pandas DataFrame: once we
import simulation results into a DataFrame, we can apply advanced statistical
processing techniques to the DataFrame and visualize the results in a much
easier way through pandas’s high-level Application Programming Interface (API)
compared to directly using NumPy and Matplotlib.

Note that you can refer to many online and offline resources available for the
use of Python for data analysis and statistical processing with Pweave (e.g., [3] if
you are already familiar with R). As for the specific information on the analysis of
OMNeT++ simulation results with Python, the online tutorial by the OMNeT++
creator [8] can be a starting point, in addition to the general overview of OMNeT++
described in Chap. 1.

8.4 Example of a OMNeT++ FIFO Simulation

Having discussed the concept of reproducible research and the actual practices
tailored for reproducible OMNeT++ simulation based on Python and Pweave, we
now provide a specific example to demonstrate the concept and suggested practices.
A working version of this chapter—i.e., a Pweave source file—is available online,3

where the documentation part is prepared for LATEX and the Python code chunk
between “«...»=” and “@” is executed and its results are automatically embedded
in the resulting LATEX document. You can define various options for code chunks
to control code execution and formatting as described in [11].4 Figure 8.3 shows a

3Chapter GitHub repository: https://github.com/kyeongsoo/reproducible_research.
4The example provided in this section has been prepared and tested with OMNeT++ version 5.4
and Pweave version 0.30.2 running on Python version 3.6.6 (64-bit Anaconda distribution version
5.2 available online at https://www.anaconda.com/download/).

https://github.com/kyeongsoo/reproducible_research
https://www.anaconda.com/download/

8 Simulation Reproducibility with Python and Pweave 289

Fig. 8.3 A workflow for generating a final PDF output file from a Pweave source file

workflow for generating a PDF output file from a Pweave source file, where each
block of the flowchart shows a corresponding Python code chunk described later in
this section.

Note that the current chapter has been produced after some modifications of the
LATEX source file automatically generated by Pweave; Pweave supports Python’s
pygments and LATEX’s minted environment for code listing but not yet for the
LATEX lstlisting environment used within this book.

8.4.1 Simulation Configurations

Listing 8.3 shows a Python code chunk for setting up the simulation of the FIFO
sample model, which is part of the OMNeT++ simulation framework.

As described before, the lines 1 and 23 are not part of Python code but Pweave
commands demarcating the code chunk so that the Python code (i.e., lines 2–22)
can be processed by Python during the weaving procedure. Note that we set the
term code chunk option to False in line 1; otherwise, the code will be executed
one statement at a time and the output for each statement will be displayed. Also,
note that we import all Python packages in the beginning (i.e., lines 4–10), which
are needed not only for this code chunk but also for all other code chunks in this
example; this is to avoid any potential conflicts among packages when importing
Python packages in the middle of the program. Then, we set variables for paths and
files in lines 13–22, which will be used in the code chunks described in Sects. 8.4.2
and 8.4.3.

290 K. S. (Joseph) Kim

Listing 8.3 Python code chunk for setting up an OMNeT++ simulation

1 <<name = ’settings’, term = False, wrap = True>>=
2 # import all the necessary packages here to avoid any issues
3 # resulting from splitted imports
4 import os
5 import subprocess
6 import matplotlib.pyplot as plt
7 import numpy as np
8 import pandas as pd
9 import scipy as sp

10 import scipy.stats
11
12 # set path to run Fifo simulation in DOS command prompt
13 omnetpp_root = os.environ[’OMNETPP_ROOT’]
14 path1 = ’/’.join([omnetpp_root, ’bin’])
15 path2 = ’/’.join([omnetpp_root, ’tools’, ’win64’, ’mingw64’, ’bin’])
16 os.environ[’Path’] = ’;’.join([path1, path2, os.environ[’Path’]])
17
18 # set variables for input & output files and simulation program
19 ned = ’/’.join([’.’, ’fifo’, ’Fifo.ned’])
20 ini = ’/’.join([’.’, ’fifo’, ’omnetpp.ini’])
21 sca = ’/’.join([’.’, ’fifo’, ’results’, ’Fifo1-st=0.01-#0.sca’])
22 fifo = ’/’.join([’.’, ’fifo’, ’fifo.exe’])
23 @

Listings 8.4 and 8.5 show the FifoNet.ned and omnetpp.ini files for the FIFO
sample model, respectively.

Listing 8.4 Content of the FifoNet.ned file for the FIFO sample model

1 // This file is part of an OMNeT++/OMNEST simulation example.
2 // Copyright (C) 1992-2015 Andras Varga
3
4 //
5 // Simple queueing network: generator + FIFO + sink.
6 //
7 network FifoNet
8 {
9 submodules:

10 gen: Source {
11 parameters:
12 @display("p=89,100");
13 }
14 fifo: Fifo {
15 parameters:
16 @display("p=209,100");
17 }
18 sink: Sink {
19 parameters:
20 @display("p=329,100");
21 }
22 connections:
23 gen.out --> fifo.in;
24 fifo.out --> sink.in;
25 }

8 Simulation Reproducibility with Python and Pweave 291

Listing 8.5 Content of the omnetpp.ini file for the FIFO sample model

1 [General]
2 network = FifoNet
3 sim-time-limit = 5h
4 #cpu-time-limit = 300s
5 repeat = 5
6 **.vector-recording = false
7 #debug-on-errors = true
8 #record-eventlog = true
9

10 [Config Fifo1]
11 description = "low job arrival rate"
12 **.gen.sendIaTime = exponential(0.2s)
13 **.fifo.serviceTime = ${st=0.01..0.05 step 0.01}s
14
15 [Config Fifo2]
16 description = "high job arrival rate"
17 **.gen.sendIaTime = exponential(0.01s)
18 **.fifo.serviceTime = 0.01s

8.4.2 Running Simulations and Importing Results

Listing 8.6 shows a Python code chunk, which invokes the OMNeT++ FIFO
simulation only when omnetpp.ini is newer than one of the scalar files (i.e., lines 3–
7) and then exports simulation results from all the scalar files to a Comma-Separated
Values (CSV) file using the scavetool provided by OMNeT++ (i.e., lines 10–12).

Listing 8.6 Python code chunk to automatically check simulation input files and programmati-
cally run OMNeT++ simulation

1 <<name = ’update_results’, term = False, wrap = True>>=
2 # run the simulation only if input files are newer than results
3 if (not os.path.isfile(sca)) or (os.path.getmtime(ini) >
4 os.path.getmtime(sca)):
5 cwd = ’/’.join([’.’, ’fifo’])
6 subprocess.call([fifo, ’-u’, ’Cmdenv’, ’-f’, ’omnetpp.ini’, ’-c’, ’Fifo1’],
7 cwd=cwd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
8
9 # export simulation results from Fifo’s scalar files to a CSV file

10 cwd = ’/’.join([’.’, ’fifo’, ’results’])
11 subprocess.call([’scavetool’, ’export’, ’-T’, ’s’, ’-o’, ’fifo.csv’, ’*.sca’],
12 cwd=cwd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
13 @

Then, the simulation results can be imported into pandas DataFrame as shown
in Listing 8.7.

292 K. S. (Joseph) Kim

Listing 8.7 Python code chunk to import simulation results into pandas DataFrame

1 <<name = ’import_data’, term = False, wrap = True>>=
2 fifo_df = pd.read_csv(’/’.join([cwd, ’fifo.csv’]))
3 tmp_df = fifo_df.loc[(fifo_df[’type’] == ’scalar’) | (fifo_df[’type’] == ’

itervar’)]
4 df = tmp_df[[’run’, ’module’]].copy(deep=True)
5 df[’name’] = tmp_df.apply(lambda r: r[’name’] if pd.isnull(r[’attrname’]) else

r[’attrname’], axis=1)
6 df[’value’] = tmp_df.apply(lambda r: r[’value’] if pd.isnull(r[’attrvalue’])

else r[’attrvalue’], axis=1)
7 df[’value’] = pd.to_numeric(df[’value’])
8 @

Note that, due to the changes in the export process of the scavetool from
OMNeT++ v5.4, we need to merge “attrname” and “attrvalue” into “name” and
“value” columns, respectively. For details of pandas API, please refer to its
documentation.

The Python code chunk shown in Listing 8.8 automatically generates a long
table over multiple pages (included for reference in the subsequent pages) from a
pandas DataFrame, where we set the echo and results options to False
and ”raw,” respectively, in order to hide source code5 and replace it with the raw
output from the execution of the code chunk (i.e., LATEX source code for Table 8.1).

Listing 8.8 Python code chunk for generating a long table

1 <<echo = False, results = ’raw’>>=
2 print(df.to_latex(longtable=True))
3 @

This automatic generation of a table from a pandas DataFrame is quite handy
because we can quickly go through overall data and investigate important results in
detail (i.e., the actual numbers and not just a trend provided by plots). The suggested
solution of embedding a long table within a Pweave document, however, is not
perfect yet as there is no option in the pandas.DataFrame.to_latex API
providing a caption and a label within a generated longtable environment.

8.4.3 Data Analysis and Presentation

Listing 8.9 shows a Python code chunk that processes the DataFrame obtained
in Sect. 8.4.2 and creates a bar plot with error bars showing the mean queuing time
against the packet service time.

5Listing 8.8 is shown here for explanation using the LATEX lstlisting environment.

8 Simulation Reproducibility with Python and Pweave 293

Table 8.1 Long table generated by the Python code chunk from Listing 8.8

Run Module Name Value

14 Fifo1-1-20180709-00:35:25-43544 NaN st 0.010000

31 Fifo1-0-20180709-00:35:24-43544 NaN st 0.010000

48 Fifo1-10-20180709-00:35:27-43544 NaN st 0.030000

65 Fifo1-2-20180709-00:35:25-43544 NaN st 0.010000

82 Fifo1-4-20180709-00:35:26-43544 NaN st 0.010000

99 Fifo1-5-20180709-00:35:26-43544 NaN st 0.020000

116 Fifo1-3-20180709-00:35:25-43544 NaN st 0.010000

133 Fifo1-11-20180709-00:35:27-43544 NaN st 0.030000

150 Fifo1-6-20180709-00:35:26-43544 NaN st 0.020000

167 Fifo1-7-20180709-00:35:26-43544 NaN st 0.020000

184 Fifo1-8-20180709-00:35:27-43544 NaN st 0.020000

201 Fifo1-9-20180709-00:35:27-43544 NaN st 0.020000

218 Fifo1-12-20180709-00:35:28-43544 NaN st 0.030000

235 Fifo1-13-20180709-00:35:28-43544 NaN st 0.030000

252 Fifo1-14-20180709-00:35:28-43544 NaN st 0.030000

269 Fifo1-15-20180709-00:35:29-43544 NaN st 0.040000

286 Fifo1-17-20180709-00:35:29-43544 NaN st 0.040000

303 Fifo1-24-20180709-00:35:31-43544 NaN st 0.050000

320 Fifo1-18-20180709-00:35:29-43544 NaN st 0.040000

337 Fifo1-19-20180709-00:35:30-43544 NaN st 0.040000

354 Fifo1-22-20180709-00:35:30-43544 NaN st 0.050000

371 Fifo1-21-20180709-00:35:30-43544 NaN st 0.050000

388 Fifo1-20-20180709-00:35:30-43544 NaN st 0.050000

405 Fifo1-16-20180709-00:35:29-43544 NaN st 0.040000

422 Fifo1-23-20180709-00:35:31-43544 NaN st 0.050000

425 Fifo1-0-20180709-00:35:24-43544 FifoNet.fifo queueingTime:mean 0.000271

429 Fifo1-0-20180709-00:35:24-43544 FifoNet.fifo queueingTime:max 0.022790

433 Fifo1-0-20180709-00:35:24-43544 FifoNet.fifo busy:timeavg 0.050264

436 Fifo1-0-20180709-00:35:24-43544 FifoNet.fifo qlen:timeavg 0.001361

439 Fifo1-0-20180709-00:35:24-43544 FifoNet.fifo qlen:max 3.000000

442 Fifo1-0-20180709-00:35:24-43544 FifoNet.sink lifetime:mean 0.010271

446 Fifo1-0-20180709-00:35:24-43544 FifoNet.sink lifetime:max 0.032790

450 Fifo1-1-20180709-00:35:25-43544 FifoNet.fifo queueingTime:mean 0.000264

454 Fifo1-1-20180709-00:35:25-43544 FifoNet.fifo queueingTime:max 0.018800

458 Fifo1-1-20180709-00:35:25-43544 FifoNet.fifo busy:timeavg 0.050042

461 Fifo1-1-20180709-00:35:25-43544 FifoNet.fifo qlen:timeavg 0.001319

464 Fifo1-1-20180709-00:35:25-43544 FifoNet.fifo qlen:max 2.000000

467 Fifo1-1-20180709-00:35:25-43544 FifoNet.sink lifetime:mean 0.010264

471 Fifo1-1-20180709-00:35:25-43544 FifoNet.sink lifetime:max 0.028800

475 Fifo1-2-20180709-00:35:25-43544 FifoNet.fifo queueingTime:mean 0.000272

479 Fifo1-2-20180709-00:35:25-43544 FifoNet.fifo queueingTime:max 0.025558

(continued)

294 K. S. (Joseph) Kim

Table 8.1 (continued)

Run Module Name Value

483 Fifo1-2-20180709-00:35:25-43544 FifoNet.fifo busy:timeavg 0.050061

486 Fifo1-2-20180709-00:35:25-43544 FifoNet.fifo qlen:timeavg 0.001359

489 Fifo1-2-20180709-00:35:25-43544 FifoNet.fifo qlen:max 3.000000

492 Fifo1-2-20180709-00:35:25-43544 FifoNet.sink lifetime:mean 0.010272

496 Fifo1-2-20180709-00:35:25-43544 FifoNet.sink lifetime:max 0.035558

500 Fifo1-3-20180709-00:35:25-43544 FifoNet.fifo queueingTime:mean 0.000260

504 Fifo1-3-20180709-00:35:25-43544 FifoNet.fifo queueingTime:max 0.019135

508 Fifo1-3-20180709-00:35:25-43544 FifoNet.fifo busy:timeavg 0.049948

511 Fifo1-3-20180709-00:35:25-43544 FifoNet.fifo qlen:timeavg 0.001297

514 Fifo1-3-20180709-00:35:25-43544 FifoNet.fifo qlen:max 2.000000

517 Fifo1-3-20180709-00:35:25-43544 FifoNet.sink lifetime:mean 0.010260

521 Fifo1-3-20180709-00:35:25-43544 FifoNet.sink lifetime:max 0.029135

525 Fifo1-4-20180709-00:35:26-43544 FifoNet.fifo queueingTime:mean 0.000265

529 Fifo1-4-20180709-00:35:26-43544 FifoNet.fifo queueingTime:max 0.021754

533 Fifo1-4-20180709-00:35:26-43544 FifoNet.fifo busy:timeavg 0.049776

536 Fifo1-4-20180709-00:35:26-43544 FifoNet.fifo qlen:timeavg 0.001318

539 Fifo1-4-20180709-00:35:26-43544 FifoNet.fifo qlen:max 3.000000

542 Fifo1-4-20180709-00:35:26-43544 FifoNet.sink lifetime:mean 0.010265

546 Fifo1-4-20180709-00:35:26-43544 FifoNet.sink lifetime:max 0.031754

550 Fifo1-5-20180709-00:35:26-43544 FifoNet.fifo queueingTime:mean 0.001098

554 Fifo1-5-20180709-00:35:26-43544 FifoNet.fifo queueingTime:max 0.052863

558 Fifo1-5-20180709-00:35:26-43544 FifoNet.fifo busy:timeavg 0.099750

561 Fifo1-5-20180709-00:35:26-43544 FifoNet.fifo qlen:timeavg 0.005475

564 Fifo1-5-20180709-00:35:26-43544 FifoNet.fifo qlen:max 3.000000

567 Fifo1-5-20180709-00:35:26-43544 FifoNet.sink lifetime:mean 0.021098

571 Fifo1-5-20180709-00:35:26-43544 FifoNet.sink lifetime:max 0.072863

575 Fifo1-6-20180709-00:35:26-43544 FifoNet.fifo queueingTime:mean 0.001111

579 Fifo1-6-20180709-00:35:26-43544 FifoNet.fifo queueingTime:max 0.061320

583 Fifo1-6-20180709-00:35:26-43544 FifoNet.fifo busy:timeavg 0.100662

586 Fifo1-6-20180709-00:35:26-43544 FifoNet.fifo qlen:timeavg 0.005594

589 Fifo1-6-20180709-00:35:26-43544 FifoNet.fifo qlen:max 4.000000

592 Fifo1-6-20180709-00:35:26-43544 FifoNet.sink lifetime:mean 0.021111

596 Fifo1-6-20180709-00:35:26-43544 FifoNet.sink lifetime:max 0.081320

600 Fifo1-7-20180709-00:35:26-43544 FifoNet.fifo queueingTime:mean 0.001095

604 Fifo1-7-20180709-00:35:26-43544 FifoNet.fifo queueingTime:max 0.053629

608 Fifo1-7-20180709-00:35:26-43544 FifoNet.fifo busy:timeavg 0.100041

611 Fifo1-7-20180709-00:35:26-43544 FifoNet.fifo qlen:timeavg 0.005476

614 Fifo1-7-20180709-00:35:26-43544 FifoNet.fifo qlen:max 3.000000

617 Fifo1-7-20180709-00:35:26-43544 FifoNet.sink lifetime:mean 0.021095

621 Fifo1-7-20180709-00:35:26-43544 FifoNet.sink lifetime:max 0.073629

625 Fifo1-8-20180709-00:35:27-43544 FifoNet.fifo queueingTime:mean 0.001149

(continued)

8 Simulation Reproducibility with Python and Pweave 295

Table 8.1 (continued)

Run Module Name Value

629 Fifo1-8-20180709-00:35:27-43544 FifoNet.fifo queueingTime:max 0.060847

633 Fifo1-8-20180709-00:35:27-43544 FifoNet.fifo busy:timeavg 0.100764

636 Fifo1-8-20180709-00:35:27-43544 FifoNet.fifo qlen:timeavg 0.005787

639 Fifo1-8-20180709-00:35:27-43544 FifoNet.fifo qlen:max 4.000000

642 Fifo1-8-20180709-00:35:27-43544 FifoNet.sink lifetime:mean 0.021149

646 Fifo1-8-20180709-00:35:27-43544 FifoNet.sink lifetime:max 0.080847

650 Fifo1-9-20180709-00:35:27-43544 FifoNet.fifo queueingTime:mean 0.001126

654 Fifo1-9-20180709-00:35:27-43544 FifoNet.fifo queueingTime:max 0.054308

658 Fifo1-9-20180709-00:35:27-43544 FifoNet.fifo busy:timeavg 0.100372

661 Fifo1-9-20180709-00:35:27-43544 FifoNet.fifo qlen:timeavg 0.005653

664 Fifo1-9-20180709-00:35:27-43544 FifoNet.fifo qlen:max 3.000000

667 Fifo1-9-20180709-00:35:27-43544 FifoNet.sink lifetime:mean 0.021126

671 Fifo1-9-20180709-00:35:27-43544 FifoNet.sink lifetime:max 0.074308

675 Fifo1-10-20180709-00:35:27-43544 FifoNet.fifo queueingTime:mean 0.002684

679 Fifo1-10-20180709-00:35:27-43544 FifoNet.fifo queueingTime:max 0.101136

683 Fifo1-10-20180709-00:35:27-43544 FifoNet.fifo busy:timeavg 0.150412

686 Fifo1-10-20180709-00:35:27-43544 FifoNet.fifo qlen:timeavg 0.013455

689 Fifo1-10-20180709-00:35:27-43544 FifoNet.fifo qlen:max 4.000000

692 Fifo1-10-20180709-00:35:27-43544 FifoNet.sink lifetime:mean 0.032684

696 Fifo1-10-20180709-00:35:27-43544 FifoNet.sink lifetime:max 0.131136

700 Fifo1-11-20180709-00:35:27-43544 FifoNet.fifo queueingTime:mean 0.002658

704 Fifo1-11-20180709-00:35:27-43544 FifoNet.fifo queueingTime:max 0.112885

708 Fifo1-11-20180709-00:35:27-43544 FifoNet.fifo busy:timeavg 0.149972

711 Fifo1-11-20180709-00:35:27-43544 FifoNet.fifo qlen:timeavg 0.013286

714 Fifo1-11-20180709-00:35:27-43544 FifoNet.fifo qlen:max 4.000000

717 Fifo1-11-20180709-00:35:27-43544 FifoNet.sink lifetime:mean 0.032658

721 Fifo1-11-20180709-00:35:27-43544 FifoNet.sink lifetime:max 0.142885

725 Fifo1-12-20180709-00:35:28-43544 FifoNet.fifo queueingTime:mean 0.002623

729 Fifo1-12-20180709-00:35:28-43544 FifoNet.fifo queueingTime:max 0.100678

733 Fifo1-12-20180709-00:35:28-43544 FifoNet.fifo busy:timeavg 0.150370

736 Fifo1-12-20180709-00:35:28-43544 FifoNet.fifo qlen:timeavg 0.013148

739 Fifo1-12-20180709-00:35:28-43544 FifoNet.fifo qlen:max 4.000000

742 Fifo1-12-20180709-00:35:28-43544 FifoNet.sink lifetime:mean 0.032623

746 Fifo1-12-20180709-00:35:28-43544 FifoNet.sink lifetime:max 0.130678

750 Fifo1-13-20180709-00:35:28-43544 FifoNet.fifo queueingTime:mean 0.002661

754 Fifo1-13-20180709-00:35:28-43544 FifoNet.fifo queueingTime:max 0.091915

758 Fifo1-13-20180709-00:35:28-43544 FifoNet.fifo busy:timeavg 0.149858

761 Fifo1-13-20180709-00:35:28-43544 FifoNet.fifo qlen:timeavg 0.013292

764 Fifo1-13-20180709-00:35:28-43544 FifoNet.fifo qlen:max 4.000000

767 Fifo1-13-20180709-00:35:28-43544 FifoNet.sink lifetime:mean 0.032661

771 Fifo1-13-20180709-00:35:28-43544 FifoNet.sink lifetime:max 0.121915

(continued)

296 K. S. (Joseph) Kim

Table 8.1 (continued)

Run Module Name Value

775 Fifo1-14-20180709-00:35:28-43544 FifoNet.fifo queueingTime:mean 0.002642

779 Fifo1-14-20180709-00:35:28-43544 FifoNet.fifo queueingTime:max 0.094572

783 Fifo1-14-20180709-00:35:28-43544 FifoNet.fifo busy:timeavg 0.149782

786 Fifo1-14-20180709-00:35:28-43544 FifoNet.fifo qlen:timeavg 0.013189

789 Fifo1-14-20180709-00:35:28-43544 FifoNet.fifo qlen:max 4.000000

792 Fifo1-14-20180709-00:35:28-43544 FifoNet.sink lifetime:mean 0.032642

796 Fifo1-14-20180709-00:35:28-43544 FifoNet.sink lifetime:max 0.124572

800 Fifo1-15-20180709-00:35:29-43544 FifoNet.fifo queueingTime:mean 0.004932

804 Fifo1-15-20180709-00:35:29-43544 FifoNet.fifo queueingTime:max 0.180621

808 Fifo1-15-20180709-00:35:29-43544 FifoNet.fifo busy:timeavg 0.200379

811 Fifo1-15-20180709-00:35:29-43544 FifoNet.fifo qlen:timeavg 0.024708

814 Fifo1-15-20180709-00:35:29-43544 FifoNet.fifo qlen:max 5.000000

817 Fifo1-15-20180709-00:35:29-43544 FifoNet.sink lifetime:mean 0.044932

821 Fifo1-15-20180709-00:35:29-43544 FifoNet.sink lifetime:max 0.220621

825 Fifo1-16-20180709-00:35:29-43544 FifoNet.fifo queueingTime:mean 0.005037

829 Fifo1-16-20180709-00:35:29-43544 FifoNet.fifo queueingTime:max 0.157060

833 Fifo1-16-20180709-00:35:29-43544 FifoNet.fifo busy:timeavg 0.199642

836 Fifo1-16-20180709-00:35:29-43544 FifoNet.fifo qlen:timeavg 0.025139

839 Fifo1-16-20180709-00:35:29-43544 FifoNet.fifo qlen:max 4.000000

842 Fifo1-16-20180709-00:35:29-43544 FifoNet.sink lifetime:mean 0.045037

846 Fifo1-16-20180709-00:35:29-43544 FifoNet.sink lifetime:max 0.197060

850 Fifo1-17-20180709-00:35:29-43544 FifoNet.fifo queueingTime:mean 0.005067

854 Fifo1-17-20180709-00:35:29-43544 FifoNet.fifo queueingTime:max 0.159440

858 Fifo1-17-20180709-00:35:29-43544 FifoNet.fifo busy:timeavg 0.201280

861 Fifo1-17-20180709-00:35:29-43544 FifoNet.fifo qlen:timeavg 0.025498

864 Fifo1-17-20180709-00:35:29-43544 FifoNet.fifo qlen:max 4.000000

867 Fifo1-17-20180709-00:35:29-43544 FifoNet.sink lifetime:mean 0.045067

871 Fifo1-17-20180709-00:35:29-43544 FifoNet.sink lifetime:max 0.199440

875 Fifo1-18-20180709-00:35:29-43544 FifoNet.fifo queueingTime:mean 0.005031

879 Fifo1-18-20180709-00:35:29-43544 FifoNet.fifo queueingTime:max 0.153422

883 Fifo1-18-20180709-00:35:29-43544 FifoNet.fifo busy:timeavg 0.200771

886 Fifo1-18-20180709-00:35:29-43544 FifoNet.fifo qlen:timeavg 0.025251

889 Fifo1-18-20180709-00:35:29-43544 FifoNet.fifo qlen:max 4.000000

892 Fifo1-18-20180709-00:35:29-43544 FifoNet.sink lifetime:mean 0.045031

896 Fifo1-18-20180709-00:35:29-43544 FifoNet.sink lifetime:max 0.193422

900 Fifo1-19-20180709-00:35:30-43544 FifoNet.fifo queueingTime:mean 0.005061

904 Fifo1-19-20180709-00:35:30-43544 FifoNet.fifo queueingTime:max 0.191037

908 Fifo1-19-20180709-00:35:30-43544 FifoNet.fifo busy:timeavg 0.199784

911 Fifo1-19-20180709-00:35:30-43544 FifoNet.fifo qlen:timeavg 0.025279

914 Fifo1-19-20180709-00:35:30-43544 FifoNet.fifo qlen:max 5.000000

917 Fifo1-19-20180709-00:35:30-43544 FifoNet.sink lifetime:mean 0.045061

(continued)

8 Simulation Reproducibility with Python and Pweave 297

Table 8.1 (continued)

Run Module Name Value

921 Fifo1-19-20180709-00:35:30-43544 FifoNet.sink lifetime:max 0.231037

925 Fifo1-20-20180709-00:35:30-43544 FifoNet.fifo queueingTime:mean 0.008278

929 Fifo1-20-20180709-00:35:30-43544 FifoNet.fifo queueingTime:max 0.243179

933 Fifo1-20-20180709-00:35:30-43544 FifoNet.fifo busy:timeavg 0.249125

936 Fifo1-20-20180709-00:35:30-43544 FifoNet.fifo qlen:timeavg 0.041244

939 Fifo1-20-20180709-00:35:30-43544 FifoNet.fifo qlen:max 5.000000

942 Fifo1-20-20180709-00:35:30-43544 FifoNet.sink lifetime:mean 0.058278

946 Fifo1-20-20180709-00:35:30-43544 FifoNet.sink lifetime:max 0.293179

950 Fifo1-21-20180709-00:35:30-43544 FifoNet.fifo queueingTime:mean 0.008352

954 Fifo1-21-20180709-00:35:30-43544 FifoNet.fifo queueingTime:max 0.189506

958 Fifo1-21-20180709-00:35:30-43544 FifoNet.fifo busy:timeavg 0.249678

961 Fifo1-21-20180709-00:35:30-43544 FifoNet.fifo qlen:timeavg 0.041706

964 Fifo1-21-20180709-00:35:30-43544 FifoNet.fifo qlen:max 4.000000

967 Fifo1-21-20180709-00:35:30-43544 FifoNet.sink lifetime:mean 0.058352

971 Fifo1-21-20180709-00:35:30-43544 FifoNet.sink lifetime:max 0.239506

975 Fifo1-22-20180709-00:35:30-43544 FifoNet.fifo queueingTime:mean 0.008423

979 Fifo1-22-20180709-00:35:30-43544 FifoNet.fifo queueingTime:max 0.200534

983 Fifo1-22-20180709-00:35:30-43544 FifoNet.fifo busy:timeavg 0.250056

986 Fifo1-22-20180709-00:35:30-43544 FifoNet.fifo qlen:timeavg 0.042125

989 Fifo1-22-20180709-00:35:30-43544 FifoNet.fifo qlen:max 5.000000

992 Fifo1-22-20180709-00:35:30-43544 FifoNet.sink lifetime:mean 0.058423

996 Fifo1-22-20180709-00:35:30-43544 FifoNet.sink lifetime:max 0.250534

1000 Fifo1-23-20180709-00:35:31-43544 FifoNet.fifo queueingTime:mean 0.008356

1004 Fifo1-23-20180709-00:35:31-43544 FifoNet.fifo queueingTime:max 0.198530

1008 Fifo1-23-20180709-00:35:31-43544 FifoNet.fifo busy:timeavg 0.249261

1011 Fifo1-23-20180709-00:35:31-43544 FifoNet.fifo qlen:timeavg 0.041656

1014 Fifo1-23-20180709-00:35:31-43544 FifoNet.fifo qlen:max 4.000000

1017 Fifo1-23-20180709-00:35:31-43544 FifoNet.sink lifetime:mean 0.058356

1021 Fifo1-23-20180709-00:35:31-43544 FifoNet.sink lifetime:max 0.248530

1025 Fifo1-24-20180709-00:35:31-43544 FifoNet.fifo queueingTime:mean 0.008404

1029 Fifo1-24-20180709-00:35:31-43544 FifoNet.fifo queueingTime:max 0.209697

1033 Fifo1-24-20180709-00:35:31-43544 FifoNet.fifo busy:timeavg 0.249950

1036 Fifo1-24-20180709-00:35:31-43544 FifoNet.fifo qlen:timeavg 0.042009

1039 Fifo1-24-20180709-00:35:31-43544 FifoNet.fifo qlen:max 5.000000

1042 Fifo1-24-20180709-00:35:31-43544 FifoNet.sink lifetime:mean 0.058404

1046 Fifo1-24-20180709-00:35:31-43544 FifoNet.sink lifetime:max 0.259697

298 K. S. (Joseph) Kim

Listing 8.9 Python code chunk for creating a bar plot with error bars

1 <<Fig = True, f_pos = "htpb", caption = ’Mean queueing time vs. service time (
with 99 percent confidence intervals).’, wrap = True>>=

2 def ci(x): # 99% confidence interval
3 a = 1.0*np.array(x)
4 n = len(a)
5 m, se = np.mean(a), scipy.stats.sem(a)
6 return (se * sp.stats.t._ppf((1+0.99)/2., n-1))
7
8 pivoted = df.pivot(index=’run’, columns=’name’, values=’value’)
9 st_vs_qt = pivoted.pivot_table(index=’st’, values=’queueingTime:mean’)

10 errs = pivoted.pivot_table(index=’st’, values=’queueingTime:mean’, aggfunc=ci)
11 st_vs_qt.plot(kind=’bar’, rot=0, legend=None, yerr=errs, color=’lightgray’,
12 edgecolor=’black’, linewidth=0.5,
13 error_kw=dict(ecolor=’black’, elinewidth=1, capsize=5))
14 plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))
15 plt.xlabel(’Service Time’)
16 plt.ylabel(’Mean Queueing Time’)
17 plt.show()
18 @

In line 1, we set the Fig option to True to include a matplotlib plot
produced by the code chunk with setting f_pos and caption options to control
the position and the caption of LATEX figure environment.

Figure 8.4 shows the bar plot that is automatically included in the resulting LATEX
file after weaving the Pweave source file.

Fig. 8.4 Mean queuing time vs. service time (with 99% confidence intervals)

8 Simulation Reproducibility with Python and Pweave 299

8.5 Summary

This chapter discussed the concept of reproducible research and the actual practices
of using Python and Pweave in facilitating reproducible OMNeT++ simulations.
Taking the OMNeT++ FIFO sample model as an example, we have also demon-
strated how to embed simulation configuration files and Python analysis code,
import simulation data into Pweave DataFrame with automatic updating of
simulation results, and analyze data and present the results in a LATEX file. The
Pweave source file of the example described in Sect. 8.4 has been prepared as a
minimal template for future reproducible research based on OMNeT++ simulations.

Acknowledgements The author is grateful for the constructive comments and feedback from the
editors Antonio Virdis and Michael Kirsche, the anonymous reviewers, and the financial support
for this work from Xi’an Jiaotong-Liverpool University Research Development Fund (RDF) under
Grant RDF-14-01-25.

References

1. Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys.
Rev. Lett. 116, 061102 (2016). https://link.aps.org/doi/10.1103/PhysRevLett.116.061102

2. Chang, K.: Panel says Bell Labs scientist faked discoveries in physics. The New York Times
(2002)

3. Finkelstein, N.: Getting started with Python for R developers. http://n-s-f.github.io/2017/03/
25/r-to-python.html. Accessed 03 May 2018

4. Jupyter: http://jupyter.org/. Accessed 03 May 2018
5. knitr: https://yihui.name/knitr/. Accessed 03 May 2018
6. Leisch, F., R-core: Sweave user manual (2018). https://stat.ethz.ch/R-manual/R-devel/library/

utils/doc/Sweave.pdf
7. Marcelino, D.: Blog post: What is reproducible research? (2016). http://danielmarcelino.

github.io/blog/2016/reproducible-research.html. Accessed 13 Mar 2018
8. OMNeT++ tutorials: result analysis with Python. https://docs.omnetpp.org/tutorials/pandas/.

Accessed 03 May 2018
9. pandas: Python data analysis library. https://pandas.pydata.org/. Accessed 09 July 2018

10. Pérez, F., Granger, B.: IPython: a system for interactive scientific computing. Comput. Sci.
Eng. 9(3), 21–29 (2007)

11. Pweave: http://mpastell.com/pweave/. Accessed 03 May 2018
12. R Core Team: R: a language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna (2013). http://www.R-project.org/. ISBN 3-900051-07-0
13. Report of the investigation committee on the possibility of scientific misconduct in the work of

Hendrik Schön and coauthors. Bell Labs. (2002). https://media-bell-labs-com.s3.amazonaws.
com/pages/20170403_1709/misconduct-revew-report-lucent.pdf

14. Scientific method: Oxford Dictionaries: British and World English (2016). https://en.
oxforddictionaries.com/definition/scientific_method. Accessed 13 Mar 2018

15. Signal processing with GW150914 open data. LIGO open science center (2017). https://losc.
ligo.org/s/events/GW150914/GW150914_tutorial.html. Accessed 27 Mar 2018

16. The Yale Law School Roundtable on Data and Code Sharing: Reproducible research: address-
ing the need for data and code sharing in computational science. Comput. Sci. Eng. 12(5), 8–13
(2010). https://doi.org/10.1109/MCSE.2010.113

17. VirtualBox: https://www.virtualbox.org/. Accessed 03 May 2018

https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
http://n-s-f.github.io/2017/03/25/r-to-python.html
http://n-s-f.github.io/2017/03/25/r-to-python.html
http://jupyter.org/
https://yihui.name/knitr/
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
http://danielmarcelino.github.io/blog/2016/reproducible-research.html
http://danielmarcelino.github.io/blog/2016/reproducible-research.html
https://docs.omnetpp.org/tutorials/pandas/
https://pandas.pydata.org/
http://mpastell.com/pweave/
http://www.R-project.org/
https://media-bell-labs-com.s3.amazonaws.com/pages/20170403_1709/misconduct-revew-report-lucent.pdf
https://media-bell-labs-com.s3.amazonaws.com/pages/20170403_1709/misconduct-revew-report-lucent.pdf
https://en.oxforddictionaries.com/definition/scientific_method
https://en.oxforddictionaries.com/definition/scientific_method
https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html
https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html
https://doi.org/10.1109/MCSE.2010.113
https://www.virtualbox.org/

Chapter 9
Live Monitoring and Remote Control
of OMNeT++ Simulations

Janina Hellwege, Maximilian Köstler, and Florian Kauer

9.1 Introduction

The conventional approach for performing an OMNeT++ evaluation is based on
a three-phase process. First, the network is set up by adjusting parameters and,
if necessary, writing C++ source code. Second, the simulation is started and will
run for a predefined time span or until another predefined condition is fulfilled.
During the simulation, measurement data is recorded in vector and scalar files.
Finally, these files are analyzed to reach a conclusion. While being suitable for
many applications, this approach has some weaknesses, because influencing a
running simulation cannot be easily achieved. Especially for demonstrations and
for teaching, qualitative statements about the dynamic behavior are often of high
interest as well as the possibility to get immediate feedback, while in-depth
quantitative analysis is of secondary importance. Furthermore, the predefinition of
termination conditions is difficult in many scenarios. This is most relevant when
running large simulation campaigns on remote clusters where human monitoring
and intervention can shorten the simulation time significantly.

Conventionally, the various modules that build up an OMNeT++ simulation read
their parameters from configuration files during the initialization phase after starting
the simulation. This also enables the use of the same module implementation for
instances with different parameters. When the simulation is running, parameters
can be changed by using the method handleParameterChange that has to be
implemented by the respective modules and can be used for all modules inheriting
cSimpleModule. If a parameter changes but this change is not processed in a
handleParameterChange method, the change will not affect the simulation.

J. Hellwege · M. Köstler · F. Kauer (�)
Institute of Telematics, Hamburg University of Technology, Hamburg, Germany
e-mail: janina.hellwege@tuhh.de; maximilian.koestler@tuhh.de; florian.kauer@tuhh.de

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_9

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_9&domain=pdf
mailto:janina.hellwege@tuhh.de
mailto:maximilian.koestler@tuhh.de
mailto:florian.kauer@tuhh.de
https://doi.org/10.1007/978-3-030-12842-5_9

302 J. Hellwege et al.

This procedure is already implemented in OMNeT++, but issuing a parameter
change in the Qtenv is not convenient, especially when changing multiple modules
at once.

This motivates the proposed implementation of a remote interface based on web
technologies that was first presented in [3]. It extends the existing possibilities to
change parameters at runtime and allows for a convenient monitoring of live events.
The communication takes place via the Web Application Messaging Protocol
(WAMP) [4], which allows for flexible interfacing, including the possibility to build
a Graphical User Interface (GUI) as a web front-end with HTML and JavaScript.
This approach also allows to connect multiple simulations running on the same or
different machines to a common user interface. This is especially interesting for
comparing the behavior of different protocols side-by-side.

The rest of the chapter is structured as follows: Section 9.2 presents the
architecture and the features of the proposed remote interface. It is followed by
two tutorials. The first tutorial in Sect. 9.3 extends the well-known OMNeT++ Tic
Toc example with remote monitoring and control. In the second tutorial in Sect. 9.4,
the application for a complex wireless network scenario is presented.

9.2 Architecture

The basic architecture of our approach is shown in Fig. 9.1. The OMNeT++ project
is extended with classes provided by the WAMPInterfaceForOmnetpp. These
will communicate with the Crossbar.io router [2] by publishing events and provid-
ing the possibility to execute Remote Procedure Calls (RPCs). The router forwards
these to a GUI or a Command Line Interface (CLI).

WAMP [4] is used as the communication protocol between the components . It
provides a convenient publish/subscribe mechanism as well as a RPC service with
web applications being the primary target. It is, however, possible to use WAMP in
many other application scenarios since there are WAMP Application Programming
Interfaces (APIs) for a range of programming languages available. It is also possible
to couple clients written in different languages by using the WAMP protocol.

For message transport, any message-oriented, ordered, reliable, and bi-
directional transport protocol can be used. Websockets over TCP is a common
candidate for the connection between the router and a web interface. It is a routed
protocol, so all clients connect to one router. This router hence decouples the clients
from each other. In our architecture, the open-source Crossbar.io router is used.

For the publish/subscribe mechanism, clients subscribe to a topic on the router.
Any client can then publish events to the topic that are forwarded to all clients
subscribed to that topic. For the remote procedure call service, a client registers a
certain procedure at the router. The other clients are able to call the function via the
router. The router then invokes the function at the client that registered the function
and forwards the result back to the calling client.

9 Live Monitoring and Remote Control of OMNeT++ Simulations 303

Fig. 9.1 Architecture of the remote control approach

The WAMP protocol also provides security mechanisms, including the concept
of realms. The router has to set up one or several realms and the clients join a
realm to perform RPCs or to use the publish/subscribe mechanism. These realms
are defined in the router configuration and can restrict which client is allowed to
use which communication mechanism. Refer to [4] for details about the security
mechanisms.

9.2.1 LiveRecorder for Publish/Subscribe

The LiveRecorder is a class template that can be used to publish events to the
router. It is useful for generating live statistics for the user interface. For this, the
template is instantiated and registered as a ResultRecorder. This can be con-
nected to an OMNeT++ signal. When the signal is emitted, the LiveRecorder

304 J. Hellwege et al.

Fig. 9.2 Publish/subscribe with the WAMPInterfaceForOmnetpp

collects the signal, opens a session to the WAMP router, and sends an event to the
defined topic. Afterwards the session is closed again. In Fig. 9.2, the procedure is
depicted. The user interface subscribes to a topic, so when an event is published by
the simulation, it is forwarded to the user interface.

9.2.2 SimulationCallee for Remote Procedure Calls

The SimulationCallee class implements a module that can be added to the
simulation via a Network Topology Description (NED) definition. It is used to
implement RPCs. The procedures to be called are useful to get information about the
simulation modules and to change parameters of modules. This is done by spawning
a new thread that opens a session to the WAMP router. The RPC process is shown
in Fig. 9.3. The available procedures are registered at the WAMP router so that the
user interface can call them. The procedure is then invoked at the simulation and the
result is forwarded to the user interface via the router.

9 Live Monitoring and Remote Control of OMNeT++ Simulations 305

Fig. 9.3 Remote procedure call with the WAMPInterfaceForOmnetpp

In the following, the set of predefined RPCs is presented.

Exploring the Module and Parameter Tree This includes a set of RPCs to
get information about the modules of a simulation and their parameters. The
getSubmodules procedure is used to return all submodule names of a given
module, as well as their types. If no module name is given to the procedure, it returns
the name and type of the main simulation module. To get the list of parameters, the
getParameterNames procedure can be called. It returns the names, types, and
units of the parameters of the module with the name used as the procedure argument.

Read Parameters To read the value of a parameter from the running simulation,
the function getParameter of the SimulationCallee module is called
remotely. It receives the name of the module and the name of the parameter
as arguments and returns the result as tuple. In the module path, it is allowed
to reference arrays. This is done by adding [*] after the modules name. The
returned tuple will consist of one element per matching module. If the result of the
getParameter function is an expression (for instance, exponential(3s)),
it is returned with a preceding = to distinguish it from normal strings.

306 J. Hellwege et al.

Set Parameters The procedure setParameter is available to set parameters
of simulation modules. Compared to the get procedure, it has another argument
for the new value of the parameter. In the module path, it is allowed to replace a
module by an asterisk which means that the parameter is changed in all matching
modules. Currently, the use of two asterisks to match a longer path of modules is not
supported. Like with the getParameter function, it is possible to access arrays
by adding [*] after the module name.

Since the SimulationCallee runs in a separate thread and cannot directly
interact with the simulation, the information which parameter shall be changed is
placed in a queue. To read from the queue, the SimulationCallee schedules
an event periodically that then reads all entries from the queue and changes the
parameters in the simulation. The period in which this event is called is defined by
a parameter of the SimulationCallee. In order to apply the parameter changes
to a module, the method handleParameterChange is to be implemented and
has to handle all affected parameters.

Controlling the Simulation Run It is possible to end the simulation remotely
from the WAMP router. For this, the SimulationCallee module provides a
parameter stopSimulation that will end the simulation if it is set to true. It
can be toggled by a setParameter RPC. It is, however, not possible to start a
simulation remotely via this approach because no endpoint is available when the
simulation does not run. However, by using a shell script that repeatedly starts the
simulation after it has ended, a restart functionality can be implemented that is useful
for investigating the initialization phase of a simulation.

9.2.3 User Interface

For controlling the simulation remotely, a custom GUI or CLI has to be developed.
There are many WAMP APIs available for a range of programming languages.1

Since the presented implementation provides a simple interface to the simulation,
no OMNeT++-specific client-side libraries are required. Though, some JavaScript
abstractions are available for convenient development of own GUIs that can be
found in the scripts folder of the GUIs used below.2

This includes the file simulation_manager.js with three functions that make
subscriptions and parameter get and set operations easier. The function

1 setParameter(uri, mod, param, value)

can be used to set a parameter of the simulation. The arguments are the Uniform
Resource Identifier (URI) of the host of the WAMP router, the module, the
parameter that shall be changed, and the value this parameter shall get. The function

1Compare https://crossbar.io/autobahn/.
2For example, https://github.com/WAMPInterfaceForOmnetpp/AlohaGUI/tree/master/scripts.

https://crossbar.io/autobahn/
https://github.com/WAMPInterfaceForOmnetpp/AlohaGUI/tree/master/scripts

9 Live Monitoring and Remote Control of OMNeT++ Simulations 307

1 getParameter(uri, mod, param, func, args)

can be used to get the value of one parameter in the simulation. It is especially
useful while setting up the GUI. It also requires the URI, the module name, and
the parameter name as arguments. Furthermore, the result function is provided and
optional arguments are passed on to the result function in addition to the requested
parameter value. The function

1 subscribe(uri, event_name, func, param)

can be used to subscribe to a topic on the WAMP router and to define what shall
happen on an event. As arguments, it gets the URI of the WAMP router host, the
topic name it shall subscribe to, the function that shall be called if this event occurs,
and the parameters that are given to this function in addition to the event. The
function creates a connection to the WAMP router and subscribes for an event. The
connection stays open and waits for events. If an event occurs, the provided function
is called.

In the file parameter_slider.js, a generic slider for simple parameters is defined.
It creates a slider that can be used to change parameters in the simulation. The
module is created with the following list of additional parameters that are given to
the module constructor:

• the HTML container it is used for,
• the URI of the WAMP router host,
• the module which parameter shall be changed,
• the unit of the parameter value,
• the minimum value of the parameter,
• the maximum value of the parameter, and
• a correction factor that will be multiplied with the slider value before sending it

to the simulation.

After the setup, the getParameter function from simulation_manager.js is
called to get the initial value for the slider. Every time the slider position changes, the
corresponding parameter is set to the new value via the setParameter function.

9.3 TicToc Tutorial

The TicToc example is a simple network consisting of two nodes that exchange the
same message over and over again as shown in Fig. 9.4. It is also a default example
coming with OMNeT++. The goal of this tutorial is to integrate the WAMP interface
for OMNeT++ into the TicToc project. The interface will publish the information
when a Tic has occurred or how many tics have occurred and respond to function
calls that change a certain parameter in the simulation. With this functionality a GUI
can be used to observe the simulation and change the parameter.

308 J. Hellwege et al.

Fig. 9.4 Screenshot of the
running TicToc simulation Tictoc

(cMessage)tictocMsg
tic toc

callee

9.3.1 Installing the Prerequisites

As a first step, install the WAMPInterfaceForOmnetpp project and integrate
it into your OMNeT++ workspace. Installation instructions are available online.3

As a next step, create a TicToc example project as described in the first two
parts of the OMNeT++ TicToc tutorial website [5]. Furthermore, download the
JavaScript web GUI for this tutorial.4 If you open the index.html file in a web
browser, you see the GUI consisting of a diagram with the number of tics over
time and a slider which defines the time interval a node waits after a reception of a
message until it sends the next one. The GUI is already programmed to connect
to the WAMP server via the Autobahn JavaScript library. It subscribes to the
topic com.examples.subscriptions.topic1, where the receive events
will be published. Furthermore, if the slider is moved, it calls the remote procedure
setParameter to change the time interval one node waits. Now you need to add
the interface components to the TicToc example project to make the GUI responsive.
For this, you first need to adapt the settings of the TicToc project to reference the
WAMPInterfaceForOmnetpp. After that, you can start adding interface parts
to your project. It is also advised to enable the real-time scheduler to get a realistic
timing when observing the GUI by adding the following line to the omnetpp.ini :

1 scheduler-class = omnetpp::cRealTimeScheduler

3https://github.com/WAMPInterfaceForOmnetpp/WAMPInterfaceForOmnetpp.
4https://github.com/WAMPInterfaceForOmnetpp/TicTocGUI.

https://github.com/WAMPInterfaceForOmnetpp/WAMPInterfaceForOmnetpp
https://github.com/WAMPInterfaceForOmnetpp/TicTocGUI

9 Live Monitoring and Remote Control of OMNeT++ Simulations 309

9.3.2 Adding the Publisher

This subsection presents the parts of the simulation that are required for publishing
events. An event will be published every time a message is received at the Tic node
during the simulation. A publisher is added and the results that can be seen in the
GUI are explained.

First, we need a signal that is emitted every time a message reaches the Tic node.
So we define a signal of type long in the Txc.ned, add it to the Txc.h, and register
it in the Txc.cc. This signal shall be emitted when a message is received by the
Tic node, so we add this functionality to the handleMessage method. Finally, to
publish an event every time this signal is emitted, we need a recorder that publishes
the event to the WAMP router. To create this recorder, we first have to include
the file LiveRecorder.h into our Txc.cc file. Then, following the declarations and
the Define_Module command, we define a character array. This character array
holds the name of the topic we want to publish our events to. Because our GUI is
programmed to listen to the topic com.examples.subscriptions.topic1,
we have to use it here, too. Then we create a new result recorder and register it
with Register_ResultRecorder. As a first argument, we insert an arbitrary
recorder name; in this example, we take tictoc_live. For the second argument,
we initialize an object of the class LiveRecorder. It can be found under the
namespace wampinterfaceforomnetpp and takes the character array we
defined as a template parameter. As the last step, the result recorder has to be
connected to the signal in the Txc.ned. To send the total number of packets since
the start, use tictoc_live(sum) as the record parameter. The resulting file
contents are shown in the subsequent Listings 9.1–9.3.

Listing 9.1 Contents of the Txc.ned file

1 package tictoc;
2 simple Txc
3 {
4 parameters:
5 bool sendInitialMessage = default(false);
6 @signal[arrival](type=long);
7 @statistic[arrivalSignal](title="the arrivals"; source=arrival; record=

tictoc_live(sum); interpolationmode=none);
8 gates:
9 input in;

10 output out;
11 }

Listing 9.2 Contents of the Txc.h file

1 #include <omnetpp.h>
2 namespace tictoc {
3 class Txc : public omnetpp::cSimpleModule
4 {
5 protected:
6 virtual void initialize();
7 virtual void handleMessage(omnetpp::cMessage *msg);
8 static omnetpp::simsignal_t arrivalSignal;
9 };}

310 J. Hellwege et al.

Listing 9.3 Contents of the Txc.cc file

1 #include "Txc.h"
2 #include "LiveRecorder.h"
3 using namespace tictoc;
4
5 omnetpp::simsignal_t Txc::arrivalSignal = registerSignal("arrival");
6 Define_Module(Txc);
7
8 char topic[] = "com.examples.subscriptions.topic1";
9 Register_ResultRecorder("tictoc_live", wampinterfaceforomnetpp::LiveRecorder<

topic>());
10
11 void Txc::initialize() {
12 if (par("sendInitialMessage").boolValue()) {
13 omnetpp::cMessage *msg = new omnetpp::cMessage("tictocMsg");
14 send(msg, "out");
15 }
16 }
17
18 void Txc::handleMessage(omnetpp::cMessage *msg) {
19 send(msg, "out");
20 if (par("sendInitialMessage").boolValue()) {
21 emit(arrivalSignal, 1);
22 }
23 }

When running the simulation, the plot in the GUI will receive the events and plot
them as shown in Fig. 9.5. The bars have timestamps at their bottom which give the
time the receive event was send. Do not forget to start the Crossbar.io router first,
as shown in Fig. 9.6. The slider will not have any functionality yet.

18

16

14

12

10

8

6

4

2

0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Tics

Total Number of Tics

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Fig. 9.5 Tic plot in the graphical user interface

9 Live Monitoring and Remote Control of OMNeT++ Simulations 311

Fig. 9.6 Running the Crossbar.io router

9.3.3 Adding the Function Callee

This section shows how a function callee is added to the simulation. This is needed
to make it possible to call the remote procedures to read or change parameters.
Because the simulation does not yet have any parameters in it, a parameter is created
first. The following parameter defines the time a node waits before resending the
message.

1 parameters:
2 double sleepTime = default(1.0);

We also need a member variable of the Txc class that holds the value of the
sleepTime parameter for the simulation. In order to make the nodes sleep for
this time, we need to change the way the nodes resend the message. Instead of just
returning the message, a timer is scheduled when a message arrives. If the timer is
fired, the message is returned to the sender.

We furthermore have to implement the function handleParameterChange.
It is declared for all modules inheriting from cComponent and defines what
happens if a parameter is changed during the simulation run. In our case (and in
most cases where we use this) it is necessary to reread the parameter value into the
member variable.

With this modified version of the TicToc project, we only have to add
the SimulationCallee module from the WAMPInterfaceForOmnetpp
project to the Tictoc.ned as shown in the code snippet in Listing 9.4.

312 J. Hellwege et al.

Listing 9.4 Contents of the extended Tictoc.ned file

1 import wampinterfaceforomnetpp.SimulationCallee;
2 ...
3 submodules:
4 callee: SimulationCallee;

When running the final simulation code,5 the slider can be used to modify the
sleep interval. This will now have direct influence on the bar chart.

9.4 ALOHA Tutorial

The Aloha example is another one of the various sample projects that comes with
the OMNeT++ simulation framework. It consists of a base station and 20 nodes
trying to send data messages over a wireless medium to a base station via the Aloha
medium access control protocol. Figure 9.7 depicts the Aloha simulation scenario
during the simulation runtime.

The goal of this tutorial is to show how the WAMPInterfaceForOmnetpp
can easily be integrated into complex existing projects without changing much in the
simulation code. Obtain the Aloha example from the OMNeT++ sample directory
and prepare it to reference the WAMPInterfaceForOmnetpp.

9.4.1 Understanding the Network

We first have a look at the Aloha example to understand how it works. For this, first
build and run the Aloha network simulation with one of the available predefined
configurations. As you can see, there are possibilities to change the configuration
of the network to slotted or unslotted Aloha with different slot time lengths. In
the unslotted Aloha protocol, the nodes send to the base station when they have
something to send, meaning there is no synchronization between them. In slotted
Aloha, the time is slotted and nodes are only allowed to start sending at the
beginning of a slot. The length of a time slot is important here, because it defines
the throughput of the network. The slots should fit best to the length of a message
transmission. Too big slots result in a lot of wasted time. Too small slots result in
collisions of messages that are sent in successive slots, so that all these messages
are eventually lost. For more information on the Aloha protocol refer to [1].

5Available online at: https://github.com/WAMPInterfaceForOmnetpp/TicTocSimulation.

https://github.com/WAMPInterfaceForOmnetpp/TicTocSimulation

9 Live Monitoring and Remote Control of OMNeT++ Simulations 313

Fig. 9.7 Screenshot of an exemplary Aloha simulation run

9.4.2 Looking into the Simulation Remotely

Next, you will see how easy it is to get information about the internal structure
of a simulation setup with our interface. With the ModuleBrowser GUI6 it
is possible to see all modules and parameters of a simulation. For this, add the
SimulationCallee module to the Aloha.ned as described in Sect. 9.3.3. Start
the WAMP router in order to use the GUI to explore the simulation. Click on
connect and you are able to explore all modules and parameters of the simulation.

6https://github.com/WAMPInterfaceForOmnetpp/ModuleBrowser.

https://github.com/WAMPInterfaceForOmnetpp/ModuleBrowser

314 J. Hellwege et al.

Additionally, a Python command line interface7 is available to demonstrate an
interface that does not rely on a web browser.

9.4.3 Making Parameter Changes Possible

Yet, if you change a parameter in the Graphical User Interface, the change does not
effect the simulation. This is because the parameter is not reread by the simulation
modules and therefore the initial value of the parameter is used the whole time.
In this section we show how to apply the parameter changes in the simulation.
To do so we need to implement the handleParameterChange function in all
modules where it shall be possible to change parameters, for example, as shown in
Listing 9.5. If you then change the parameters in the GUI, the changes also apply in
the actual simulation.

Listing 9.5 Implementation of the handleParameterChange function

1 void Host::handleParameterChange(const char *parname) {
2 iaTime = &par("iaTime");
3 pkLenBits = &par("pkLenBits");
4 slotTime = par("slotTime");
5 isSlotted = slotTime > 0;
6 }

9.4.4 Publishing Events

Now we examine a GUI specifically designed for the Aloha example.8 In this
GUI, the parameter we made changeable in the last step can be set by a slider.
Furthermore, we want to publish events from the simulation so we can see the results
in the diagram. This diagram shows how many packets were successfully received at
the base station and how many packets are lost due to collisions. To publish events,
we need to register two result recorders in the Server.cc as shown in Listing 9.6.

Listing 9.6 Registration of result recorders in the Server.cc file

1 #include "LiveRecorder.h"
2 char collisions_topic[] = "com.examples.events.collisions";
3 Register_ResultRecorder("Collision_Recorder", wampinterfaceforomnetpp::

LiveRecorder<collisions_topic>());
4 char receive_topic[] = "com.examples.events.received";
5 Register_ResultRecorder("Receive_Recorder", wampinterfaceforomnetpp::

LiveRecorder<receive_topic>());

7https://github.com/WAMPInterfaceForOmnetpp/PythonInterface.
8Available online at: https://github.com/WAMPInterfaceForOmnetpp/AlohaGUI.

https://github.com/WAMPInterfaceForOmnetpp/PythonInterface
https://github.com/WAMPInterfaceForOmnetpp/AlohaGUI

9 Live Monitoring and Remote Control of OMNeT++ Simulations 315

Now we need to get the correct signals from the simulation and connect our
recorders to them. Open the Server.ned file. Here you can see that there is already a
statistic defined for the collisions signal. The collision signal is emitted every time
a collision occurs. The value that is sent with the signal says how many packets are
present in the collision. With the following lines from Listing 9.7, the statistics for
the Collision_Recorder and the Receive_Recorder are added.

Listing 9.7 Adding statistics to the Server.ned file

1 @statistic[collisionMultiplicity](source=collision; record=vector?,histogram,
Collision_Recorder; title="collision multiplicity");

2 @statistic[receivedPacks](source=receive; record=Receive_Recorder;
interpolationmode = none);

The receive signal is emitted every time a reception starts and ends. If the
reception starts, a 1 is given as a value with the signal. If it ends, a 0 is sent. The
given GUI processes the signal accordingly.

9.4.5 Examining the Simulation Results

The simulation code is now finished9 and we can start the router, the simulation, and
the GUI. The packets per 10 s are shown in the diagram. They are divided into the
successfully received ones and the ones lost in collisions by color. The green ones
are the successfully received packets and the red ones are those packets that are
lost in a collision. At the bottom of the GUI we see some sliders with the different
parameters in the simulation that are made changeable. First of all, the slot time
can be adjusted. A slot time of zero means there are no slots and every message
is sent immediately. The length of a message is also adjustable. A longer message
results in a longer transmission time. Furthermore, the mean value of the distribution
of the randomly chosen wait time can be changed. A bigger value means the time
between two send messages on one client gets longer. You can play around with
these parameters to see how they change the behavior of the simulation. Using this
GUI, for instance, in a teaching environment allows for an intuitive access to the
understanding of the Aloha protocol without requiring the students to write any
code.

9.5 Conclusion and Future Work

The presented architecture with the WAMPInterfaceForOmnetpp provides a
convenient possibility to monitor and control a running OMNeT++ simulation. It
is useful for demonstration, for usage in teaching environments, and for managing

9Available online at: https://github.com/WAMPInterfaceForOmnetpp/AlohaSimulation.

https://github.com/WAMPInterfaceForOmnetpp/AlohaSimulation

316 J. Hellwege et al.

large simulation campaigns. The use of the WAMP decouples the simulation from
the GUI and allows, for example, an implementation with web technologies.

Two tutorials are provided to guide future users and to demonstrate how easily
an existing simulation can be extended by remote monitoring and control. They
demonstrate the possibilities enabled by the publish/subscribe mechanism as well
as the RPC service. This includes, for instance, the collection of live statistics, the
examination of the module tree, and the modification of simulation parameters at
runtime. Thereby, the change of the statistics as the reaction to the live modification
of parameters is very useful to get insights about the behavior of the analyzed
protocols.

Possible extensions for our presented remote interface and the provided GUIs
elements include the development of a larger set of widgets and abstractions to
speed up the development of GUIs and to enrich the experience for the users. An
example would be the possibility to change node positions on the fly to analyze the
protocol behavior under dynamic modifications of the network topology.

References

1. Abramson, N.: THE ALOHA SYSTEM: another alternative for computer communications. In:
Proceedings of the AFIPS Fall Joint Computing Conference, pp. 281–285. ACM, New York
(1970). https://doi.org/10.1145/1478462.1478502

2. Crossbar.io: Crossbar.io documentation (2017). https://crossbar.io/docs
3. Köstler, M., Kauer, F.: A remote interface for live interaction with OMNeT++ simulations. In:

Proceedings of the 4th OMNeT++ Community Summit (2017). http://arxiv.org/abs/1709.02822
4. Oberstein, T.G., Goedde, A.: The web application messaging protocol (2017). http://wamp-

proto.org/static/rfc/draft-oberstet-hybi-crossbar-wamp.html
5. OMNeT++: TicToc Tutorial for OMNeT++ (2017). https://omnetpp.org/doc/omnetpp/tictoc-

tutorial/

https://doi.org/10.1145/1478462.1478502
https://crossbar.io/docs
http://arxiv.org/abs/1709.02822
http://wamp-proto.org/static/rfc/draft-oberstet-hybi-crossbar-wamp.html
http://wamp-proto.org/static/rfc/draft-oberstet-hybi-crossbar-wamp.html
https://omnetpp.org/doc/omnetpp/tictoc-tutorial/
https://omnetpp.org/doc/omnetpp/tictoc-tutorial/

Chapter 10
Simulation of Mixed Critical
In-Vehicular Networks

Philipp Meyer, Franz Korf, Till Steinbach, and Thomas C. Schmidt

10.1 Introduction

The automotive market is growing in demand for innovative driver assistance
systems, as well as highly automated or even autonomous driving units. In-vehicular
communication networks that connect sensors and actuators with Electronic Control
Units (ECUs) contribute the basis to these distributed, safety-critical, and highly
complex systems. Consequently, their architecture and design are playing an
increasingly important role. As of today, in-car communication concepts fall short
in meeting the emerging requirements of future driving systems.

High bandwidth demands from distributed visual sensors—e.g., a raw data fusion
of laser scanners and cameras—exceed the capacities of current data transmission
systems by more than an order of magnitude. For example, a low-resolution
camera stream of 7 Mbit/s already exceeds the Controller Area Network (CAN)
bandwidth of 0.5 Mbit/s around 14 times. An increasing number of vehicular safety
functions pose strict redundancy or Quality of Service (QoS) requirements like
latency and jitter. With respect to this growing heterogeneity, current automotive
communication architectures and technologies reach their limits. With timing and
bandwidth aspects in mind, communication techniques are needed that provide a
wide range of real-time communication services. Switched Ethernet is a promising
candidate to overcome the challenges of future in-car networks [15] due to its high

P. Meyer (�) · F. Korf · T. C. Schmidt
Department Informatik, HAW Hamburg, Hamburg, Germany
e-mail: philipp.meyer@haw-hamburg.de; franz.korf@haw-hamburg.de;
t.schmidt@haw-hamburg.de

T. Steinbach
Ibeo Automotive Systems GmbH, Hamburg, Germany
e-mail: till.steinbach@ibeo-as.com

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_10

317

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_10&domain=pdf
mailto:philipp.meyer@haw-hamburg.de
mailto:franz.korf@haw-hamburg.de
mailto:t.schmidt@haw-hamburg.de
mailto:till.steinbach@ibeo-as.com
https://doi.org/10.1007/978-3-030-12842-5_10

318 P. Meyer et al.

data capacities, its low cost of commodity components, and its flexibility in terms
of protocols and topologies [27].

Communication architectures of today’s vehicles are composed of different
domain-specific technologies such as CAN, FlexRay, Local Interconnect Network
(LIN), and Media Oriented Systems Transport (MOST) [19]. Cross-domain com-
munication is enabled via a central gateway that inter-connects a majority of these
buses. For premium cars, the simple structuring mechanism of a central gateway
reaches its limits in terms of complexity and ability to control. Future developments
of automotive services and communication require new concepts and solutions.

The One-Pair Ether-Net (OPEN) Alliance Special Interest Group, which is driven
by the automobile industry, focuses on the standardization of certified automotive
Ethernet that runs over one single pair of unshielded twisted wires, previously
offered as BroadR-Reach by Broadcom [12, 13]. It is very well suited for the
challenging Electromagnetic Compatibility (EMC) requirements compliant to the
harsh environment in cars. This standard lays the foundation of automotive Ethernet
variants. Since established automotive suppliers already offer this technology,
Ethernet is a candidate for a new common communication architecture in vehicles
[7, 22, 24].

When switching to Ethernet, the in-vehicle network will face a significant
paradigmatic change. However, sudden changes in the network architecture of mass-
produced cars are unfeasible due to costs and risks. That is why there will be a
gradual transition to a flat Ethernet topology. First steps involve the migration of
Ethernet into legacy bus topologies. A consolidation strategy with heterogeneous
networks formed of an Ethernet core and legacy buses at the edges will allow
to preserve investments in knowledge about legacy technologies. Such a mixed
architecture forms the beginning of this stepwise transition towards a flat network
topology consisting solely of Ethernet links [17].

The design of future vehicular networks requires new tools for experimentation,
optimization, and debugging. Several commercial tools exist to analyze in-car
networks. In the industry, CANoe (by Vector Informatik GmbH) is a popular tool
that enables real-time cluster simulations of fieldbuses. As of today, CANoe does
not provide functionality to simulate real-time Ethernet variants. SymTA/S is a
commercial timing analyzer (not a network simulator) by Symtavision GmbH that
supports Ethernet (standard and Audio Video Bridging (AVB) [10]) as well as
common fieldbus technologies. It provides analytical models to calculate load and
timing.

To evaluate future in-vehicle networks, suitable tools need to integrate the
distributed system components. While today’s tool chains focus on bit-correct
simulation of fieldbus communication, future environments must enable the devel-
oper to analyze effects of congestion and jitter on the car’s applications and
assistance functions on a system level. For example, it can easily be explored
how a third message source influences the traffic between two communication
partners. System level simulation increases the understanding of the behavior of
future automotive communication architectures and enables quantitative analysis at
a higher abstraction level.

10 Simulation of Mixed Critical In-Vehicular Networks 319

The OMNeT++ simulation framework (see Chap. 1) is a well-suited tool and a
perfect base to implement such kind of system level simulation based on real-time
Ethernet variants [23]. Besides its open-source simulation core, it allows to extend
its Eclipse-based Integrated Development Environment (IDE) with custom plug-
ins for specialized design and analysis tasks. In this chapter, we introduce both a
uniform workflow as well as the required models and tools to design and evaluate
future in-vehicle networks.

Experiences with the simulation during research on in-car network architectures
showed that the configuration of these large networks is complex and tedious. Thus
there was a demand to simplify the description of in-car network scenarios. This
demand led to the development of a Domain-Specific Language (DSL) that supports
the fast setup of simulations of in-car network architectures.

This DSL is called the Abstract Network Description Language (ANDL) and
is integrated as a plug-in for OMNeT++. It enables the design of networks on an
abstract layer. Additional benefits like autocompletion, syntax highlighting, valida-
tion, autoformatting, renaming, and scoping support the configuration process.

The remainder of this chapter is structured as follows. In Sect. 10.2, we discuss
the problem space of mixed critical networks in cars. Our simulation environment,
including tools and models, is introduced in Sect. 10.3. Section 10.4 shows an
example of our simulation workflow followed by a case study about backbones in
premium cars in Sect. 10.5. We conclude with an outlook in Sect. 10.6.

10.2 Mixed Critical In-Vehicle Networks

In a current premium car, there are up to 70 ECUs with more than 900 functions
interconnected over a heterogeneous in-car network. While control loop applica-
tions have strong real-time requirements, other applications such as navigation,
firmware updates, or multimedia streaming demand high bandwidth at relaxed
timing constraints. With the introduction of high-quality sensors such as high-
resolution driver assistance camera systems some functions require high date rates
and rigid timing. For safety critical functions like autonomous driving, timing and
data rates must be strictly guaranteed. This leads to a wide spectrum of soft and hard
time-constrained domains, some of which are covering the entire topology.

The inter- and intra-domain communication is growing and the amount of data
exchanged within the car is heavily increasing. In addition to on-board systems, a
car will receive off-board data by its backend or by other cars, and infrastructure
components such as traffic lights from the vicinity will use Car-to-Car (C2C) or
Car-to-Infrastructure (C2I) communication.

Ethernet is the key technology discussed by the major Original Equipment
Manufacturers (OEMs) to overcome the challenges of future in-car networking [15].
Consequently, the automobile industry is pushing standardization of a physical layer
for automotive applications within the OPEN Alliance Special Interest Group. The
100 Mbit/s automotive certified physical layer is already available (commercially

320 P. Meyer et al.

G

G

G

G

G

front

tailroof

engine compartment

infotainment

meter

Fig. 10.1 Domain decomposition of a traditional car network

available as BroadR-Reach, standardization by the IEEE under P802.3bw [12]),
1 Gbit/s automotive links are standardized under IEEE 802.3bp [13].

One possible direction for building future automotive communication is a homo-
geneous core network of switched Ethernet. Such a flat design reduces complexity
by purely switching without the need for gateways between different technological
domains in the car. On the other hand, OEMs need to protect their investments in
fully developed and proven ECUs as well as their software components. In most
cases, these components follow an integrated design that communicates via CAN.
Changing to Ethernet hardly justifies the redesign of these components. As part of
the migration to a pure Ethernet-based communication layer, gateways will connect
CAN buses to the Ethernet backbone (see Fig. 10.1). Corresponding gateways must
support a tunneling of CAN message over the Ethernet backbone to interconnect
CAN buses of different domains. In addition, CAN message priorities must be
preserved. Since CAN supports a maximum payload of 8 B and Ethernet offers a
minimum payload of 46 byte, these gateways will allow the aggregation of CAN
messages within an Ethernet frame.

Thinking these directions of design, it becomes evident that an in-car network
can no longer be considered a collection of closed domains with fixed, offline-
configured traffic. Instead, dynamic traffic and changing communication require-
ments must be foreseen in particular with the integration of new services entering
the car via an Internet uplink. Examples for such applications include online
software updates, car diagnoses, or updates of on-board information repositories
such as navigation maps or meta-data. Such networked applications are easy to
host on an Ethernet-based in-car backbone. Even an offloading to a cloud of
data or computationally expensive tasks are currently discussed in the context of
autonomous driving. Envisioned from these perspectives, future cars may even be
characterized as mobile constituents of the Internet of Things (IoT), requiring the
network to cope with ever arriving new challenges that include security and safety.

10 Simulation of Mixed Critical In-Vehicular Networks 321

10.2.1 Time-Sensitive Networking Technologies

Automotive communication consists of a collection of distinct services that strictly
differentiate in quality, and potentially interfere within a flat common network
[26]. Hence, standard switched Ethernet must be extended beyond simple traffic
prioritization to provide real-time guarantees. Typical techniques are bandwidth
limitation as in IEEE 802.1Qav [8], or rate-constraining as in TTEthernet or
Avionics Full-Duplex Switched Ethernet (AFDX) [1] traffic. Further time-triggering
techniques are the time-triggered traffic class of AS6802 [21] or the IEEE 802.1Qbv
(Enhancements for Scheduled Traffic) [11]. The Time-Sensitive Networking (TSN)
family of standards bundles all of these techniques.

The IEEE 802.1 AVB standard [10] is a core predecessor of TSN. It enables low
latency streaming services and guaranteed data transmission in switched Ethernet
networks. This real-time Ethernet extension originates from the multimedia domain
where synchronization, jitter, and latency constraints of the applications are high.
AVB Ethernet guarantees latencies under 2 ms over seven hops for its best traffic
class. IEEE 802.1 AVB consists of different sub-standards required to guarantee
the latency, synchronization performance, and compatibility with legacy Ethernet
nodes.

IEEE 802.1Qav [8] specifies queuing and forwarding rules to guarantee the
latency constraints for AVB and the support of legacy Ethernet frames. AVB defines
two service classes with different guarantees:

1. stream reservation class-A with a maximum latency of 2 ms, and
2. stream reservation class-B with 50 ms over seven hops.

An AVB network is also able to deal with non-AVB frames. These frames are
mapped to the best-effort class (see Fig. 10.2).

Prioritization, queuing, and scheduling mechanisms realize a guaranteed data
transmission of AVB frames within strict latency bounds. A transmission of an
AVB frame is controlled by using a Credit-Based Shaper (CBS). The AVB frame
transmission is allowed when the number of available credits is larger or equal
to 0. Implicitly, the CBS has a lower and upper bound to limit the data rate and

5AVB SR
Class A

4
AVB SR
Class B

3

Best-
effort

2

1

0

Priority
based

selection

Credit Based
Shaper
(CBS)

Best-effort
Egress

AVB Egress
5

Prio.

4

Prio.

3

Prio.

... 0

Prio.

Fig. 10.2 IEEE 802.1Qav transmission selection algorithms

322 P. Meyer et al.

burstiness of AVB data. The remaining bandwidth is available for non-AVB nodes.
To ensure that AVB traffic always has the highest priority, the priority of legacy
Ethernet frames by non-AVB nodes is re-mapped to the priorities of the best-effort
traffic class. Furthermore, there is a signaling protocol specified in IEEE 802.1Qat
[9] to reserve the required resources for AVB frames along the entire path between
source and sink. The standard recommends that at most 75% of the total bandwidth
shall be reserved for AVB data, while the remaining resources are freely available
to best-effort traffic.

Another option of traffic shaping and media access policy for real-time commu-
nication in switched networks is time-triggered Ethernet. The TTEthernet protocol
was standardized in 2011 by the Society of Automotive Engineers (SAE) [20] under
AS6802 [21]. It is a compatible extension of IEEE switched Ethernet and uses
topologies formed of full-duplex links. The TTEthernet media access strategies
are similar to the IEEE 802.1Qbv (Enhancements for Scheduled Traffic) Ethernet
amendment, developed by the IEEE TSN working group.

Time-triggered Ethernet variants are operating on an offline-configured schedule
with dedicated transmission slots for all real-time messages shared among all
network participants. This enables a coordinated Time Division Multiple Access
(TDMA) media access strategy with deterministic transmission and predictable
delays. TDMA prevents congestion on outgoing line cards and thereby enables
isochronous communication with bounded low latency and jitter. To enable this
access scheme, a fail-safe synchronization protocol has to provide a precise global
time among all participants.

In addition to time-triggered, TTEthernet defines two other event-triggered
message classes: rate-constrained is comparable to the link layer of the ARINC-
664 (AFDX) protocol [1]. Bandwidth limits for each stream and sender enable the
real-time guarantees. The so-called Bandwidth Allocation Gaps (BAGs) implement
the bandwidth limits. The BAGs define the minimum distance of two consecutive
frames of the same stream (called virtual link). The rate-constrained traffic is
comparable to Ethernet AVBs stream reservation classes A and B. Similarly, it uses
strict priorities for traffic with different real-time requirements.

The best effort traffic conforms to standard Ethernet messages transmitted with
the lowest priority. The best-effort class is used for the transmission of cross-traffic.
It allows the integration of hosts that are unaware of the time-triggered protocol and
remain unsynchronized.

10.3 Simulation Environment

The simulation models introduced in this section were developed for the simulation
of in-car networks but can be used for other systems as well. To simplify the
installation, an OMNeT++ plug-in is provided that offers an automated installation
process as well as an update procedure. Figure 10.3 gives an overview of the
contributed simulation models and their place in the software stack of the toolchain.

10 Simulation of Mixed Critical In-Vehicular Networks 323

Vehicle network model

Abstract Network Description Language (ANDL)

INET-Framework

Internet technologies

CoRE4INET

Real-time Ethernet

SignalsAndGateways

Signal sources, Gateways

FiCo4OMNeT

Fieldbusses (CAN und FlexRay)

oppResultManagers

Recording of results, Constraint checks

OMNeT++
IDE and Simulation kernel

Fig. 10.3 Overview of the contributed simulation environment

All simulation models use the IDE and the simulation kernel of OMNeT++.
The optional oppResultManagers module framework writes simulation results
directly to Packet Capture next generation (PCAPng) files or a database. Fieldbus
Communication for OMNeT++ (FiCo4OMNeT) contributes simulation models for
CAN and FlexRay fieldbuses. For both there are no dependencies to other simulation
models. Communication over Real-time Ethernet for INET (CoRE4INET) provides
simulation models for real-time Ethernet communication. It uses the Ethernet
layer implemented in the INET Framework. INET models from higher layers
can communicate via CoRE4INET models, too. The SignalsAndGateways model
collection implements gateways. They support different strategies for the translation
of communication between real-time Ethernet and fieldbuses. Thus, it depends on
CoRE4INET and FiCo4OMNeT.

As simulation input, a vehicle network must be described using *.ini and *.ned
files. It is time consuming to describe several variants of a vehicle network using
these files. Hence, such a network should be modeled in the ANDL DSL. A compiler
translates network designs given in ANDL to the corresponding *.ini and *.ned files
used by CoRE4INET, FiCo4OMNeT, and SignalsAndGateways models.

All simulation models and plug-ins are published as open-source software and
can be downloaded from our website [4].

324 P. Meyer et al.

10.3.1 Domain Specific Language for Automotive Networks

Configuring the simulation of large heterogeneous networks is complex and lengthy.
To reduce this effort and to let the developer focus on the design task, we developed a
Domain-Specific Language for the description of heterogeneous in-vehicle network
designs. It is called Abstract Network Description Language and provides an easy
and assisted way to design a network in an Eclipse environment. It is implemented
as an Eclipse plug-in and thus fits into the OMNeT++ IDE. The plug-in provides
syntax highlighting as well as context-aware code completion. For typical vehicle
networks that require few TDMA-based communications, a scheduling algorithm
generates a feasible schedule for TDMA traffic. It should be used as starting point
for improving the TDMA schedule [14].

ANDL is implemented as an OMNeT++ plug-in using Eclipse’s Xtext technology
[2, 5]. Xtext is a framework for development of programming- and domain-specific
languages. Using a grammar that has been extended by some specific elements, the
DSL will be described. Based on this input, Xtext generates a parser and a code
editor that will be plugged into the OMNeT++ IDE. Using a set of Java classes,
which have been generated by Xtext, the compilation from ANDL to *.ini and *.ned
of OMNeT++ will be defined.

10.3.2 CoRE4INET

CoRE4INET is a suite of real-time Ethernet simulation models. Currently, it
supports the AS6802 protocol suite, traffic shapers of AVB Ethernet, IEEE 802.1Q,
and models for mapping Internet Protocol (IP) traffic to real-time traffic classes.

The center of the CoRE4INET models is the implementation of media access
strategies for different traffic classes. By combining these strategies, new traffic
shapers can be designed that are able to forward real-time traffic of different
standards on the same physical link. For example, it is possible to combine time-
triggered traffic of AS6802 with credit-based shaping of Ethernet AVB to form a
new Time-Aware Shaper (TAS) that can handle both classes in parallel [16]. This
allows to evaluate new concepts that are currently under standardization or are even
not yet assessed.

For incoming traffic, the models contain traffic selection and constraint checks.
To simulate time-triggered behavior and time-synchronization, CoRE4INET pro-
vides models for oscillators, timers, and schedulers. Oscillators allow to implement
the behavior of inaccurate clocks with their unique influence on real-time communi-
cation. Finally, CoRE4INET contains application models for simple traffic patterns
and traffic bursts.

Selected simulation models were checked against analytical models of the
different specifications and evaluated in empirical tests using real-world hardware
[22].

10 Simulation of Mixed Critical In-Vehicular Networks 325

10.3.3 FiCo4OMNeT

CAN [28] is a fieldbus widely used in automobiles. Future vehicle networks require
mixed operation of Ethernet and CAN. FlexRay [6] is used in a few premium
vehicles. A migration from FlexRay to real-time Ethernet is expected for the next
generation of these vehicles. Hence, FiCo4OMNeT provides simulation models for
CAN and FlexRay.

Exploiting the fact that all FlexRay nodes are connected to the same bus, the
static segment of FlexRay provides a TDMA-based communication. FiCo4OMNeT
implements this behavior using a clock and an oscillator model, which are simpler
than the one of CoRE4INET. In order for the two models to remain indepen-
dent, FiCo4OMNeT provides a simple clock- and oscillator model. Similar to
CoRE4INET, it contains application models for CAN and FlexRay applications
with simple traffic patterns. The fieldbus models in FiCo4OMNeT were originally
checked against results of the CANoe simulation environment [3], an industry
standard software for the analysis of CAN bus communication.

10.3.4 SignalsAndGateways

Using gateways, the SignalsAndGateways simulation model interlinks between
real-time Ethernet and fieldbuses. These gateways are specific network nodes that
translate between legacy bus technologies and (real-time) Ethernet. To be as flexible
as possible, a gateway consists of the following three submodules.

Path Finding

The router module decides to which components an information is forwarded. It
receives messages in their original representation (CAN or Ethernet frame). Based
on forwarding rules, it selects the path that the message will take. Using the header
information of the message, a forwarding rule defines a CAN bus or an Ethernet
node that should receive the information of the message. A statically defined routing
table stores all forwarding rules. If there is no entry in the routing table for a
message, it is dropped. Otherwise it will be sent to all destinations given by the
forwarding rules that match to the message.

There is no limit of buses and links a gateway can be connected to. The gateway
can also translate between fieldbus technologies, thus it is also applicable to legacy
designs with multiple buses interconnected over a central gateway.

326 P. Meyer et al.

Buffering

Gateways support aggregation strategies to improve bandwidth utilization of differ-
ent technologies. CAN messages, for example, have a maximum payload of 8 B,
while Ethernet messages have a minimum payload of 46 B. If an Ethernet frame
encapsulates only one CAN message, the rest of the minimum payload would be
padded and bandwidth would be wasted. Aggregation strategies implemented in the
buffer modules allow to release frames in groups, according to different strategies.
These strategies are implemented in the buffer modules, too.

Aggregation strategies have a huge impact on the latency of messages passing a
gateway. All strategies delay frames to collect multiple messages before aggregating
them into a single frame. The most popular strategy implemented in the buffer is
the pooling strategy with holdup time. The holdup time of a message defines the
maximum acceptable delay for this message. Each message is assigned to a pool,
while multiple different messages share the same pool. To each message a holdup
time is assigned. On arrival of a frame in the pool, its holdup time is compared
with the holdup time of the pool. If the holdup time of the frame is shorter, the
holdup time of the pool is adjusted accordingly. When the holdup time of the pool
is expired, all messages in the pool are released together in one frame. The modular
architecture of the gateway allows to easily add more aggregation strategies.

Transformation

Transformation modules implement the translation between different communica-
tion technologies. The strategies transparently map information between fieldbuses
and Ethernet. Currently, there is a simple mapping between fieldbus frames and raw
(layer 2) Ethernet frames. The modular gateway architecture allows to easily add
sophisticated mappings, e.g., when higher layer application protocols shall be used.

Similar to real-world gateways, gateway nodes can host applications that are not
related to gateway functionality. Thus, gateways can be added to control units that
also host application software.

10.3.5 Result Manager

The OMNeT++ IDE already contains result analysis tools. We extended those built-
in tools to simplify the analysis in specialized use-cases and developed interfaces to
interconnect the OMNeT++ simulation with established industry products.

oppResultManagers is a set of modules for OMNeT++ simulations. Instead of
simulation models, it contains so-called ResultManagers, which are responsible
for writing out simulation results. The OMNeT++ vector and scalar files, as well
as the eventlog are built-in instances of ResultManagers. The oppResultManagers
project adds ResultManagers, for example, for PCAPng, SQLite, postgreSQL, and
Constrained Check. It is also possible to use several managers in parallel.

10 Simulation of Mixed Critical In-Vehicular Networks 327

10.4 Simulation Process

The simulation process (see Fig. 10.4) starts with the network design. ANDL is
used to describe the required nodes, as well as the desired network topology, and
the mapping of messages to different traffic classes. Afterwards, our toolchain
automatically generates an executable simulation configuration that is run using
the simulation models for real-time Ethernet and fieldbuses. After the simulation
run, the results are analyzed with various result analyzers that are built into the
OMNeT++ IDE, provided as additional plug-ins, or interconnected using databases
and specialized output formats such as PCAPng. This section presents an example
workflow of the simulation process—from network description to result analysis.

10.4.1 Network Modeling

The first step is the network description. This is done with the ANDL domain-
specific language. Listing 10.1 shows an example network consisting of two CAN
buses interconnected over a real-time Ethernet backbone described in the ANDL.

The definition of the scenario starts with the required devices of the network.
The connections section arranges previously defined devices into a network
topology. This section shows also an additional way to instantiate ethernetLink.
It can be created in the specific link definition without the need for defining a name.

The topology can be divided in several segments with different configurations
for messages. In the example, there is one segment for the Ethernet part called
backbone and one segment for the CAN bus part called canbus. A message
traversing the border of a segment will be translated from the representation of
the sending segment into the representation of the receiving one. The last part
of the definition is the actual communication taking place. There is one message
transmitted from cn1 to cn2 and one message transmitted from en1 to en2 in
the example. The mapping of each message defines how the message is represented
in the different segments. In the example, the message msg1 is a CAN frame with
Identifier (ID) 37 on the bus and a time-triggered message with the critical traffic
ID 102 on the real-time Ethernet backbone.

simula�onconfigura�ongenera�on

ANDLANDL INI
NED
XML

INET
CoRE4INET
FiCo4OMNeT
SignalsAndGateways

ELOG / SCA / VEC
CSV
GCTA
SQLite/postgreSQL
PCAPng

Network
Descrip�on

Simula�on
Configura�on

Simula�on
Model

Simula�on
Results

Fig. 10.4 Workflow of simulation projects—from network description to result analysis

328 P. Meyer et al.

Listing 10.1 ANDL code example with comments

1 types std { // Types can be defined and reused
2 ethernetLink ETH { // Definition for Ethernet link
3 bandwidth 100Mb/s; // Link has bandwidth of 100MBit/s
4 }
5 } //it is also possible to define types in a separate file
6
7 network smallNetwork { // Network name is smallNetwork
8 inline ini { // Inline ini for special parameters
9 ‘‘‘

10 record-eventlog = false
11 ‘‘‘
12 } // Parameters are inserted into .ini
13 devices { // Define all devices in the network
14 ethernetLink eth1 extends std.ETH; // First Ethernet cable
15 canLink cb1; // First CAN bus
16 canLink cb2; // Second CAN bus
17 node cn1; // First CAN node
18 node cn2; // Second CAN node
19 node en1; // First Ethernet node
20 node en2; // Second Ethernet node
21 gateway gw1 { // Gateway for first CAN bus
22 pool gw1_1; // Pool for Aggregation of CAN frames
23 }
24 gateway gw2; // Gateway for second CAN bus
25 switch s1; // Real-time Ethernet Switch
26 }
27 connections { // Physical connections (Segments = groups)
28 segment backbone { // Ethernet Backbone part
29 en1 <--> eth1 <--> s1; // Ethernet Link
30 en2 <--> {new std.ETH} <--> s1; // Ethernet Link
31 gw1 <--> {new std.ETH} <--> s1; // Ethernet Link
32 gw2 <--> {new std.ETH} <--> s1; // Ethernet Link
33 }
34 segment canbus { // CAN bus part (buses share config)
35 cn1 <--> cb1; // CAN node connected to first bus
36 gw1 <--> cb1; // Gateway connected to first bus
37 cn2 <--> cb2; // CAN node connected to second bus
38 gw2 <--> cb2; // Gateway connected to second bus
39 }
40 }
41 communication { // Communication in the network
42 message msg1 { // First message definition
43 sender cn1; // First CAN node is sender
44 receivers cn2; // Second CAN node is receiver
45 payload 6B; // Message payload is 6 Bytes
46 period 1ms; // 1ms cyclic transmission
47 mapping { // mapping to traffic class, id, gw strategy
48 canbus: can{id 37;}; // Message ID 37 on CAN
49 gw1: pool gw1_1{holdUp 2ms;}; // Aggregation time
50 gw2; // gw2 also responsible for the msg path
51 backbone: tt{ctID 102;}; // TT traffic on backbone
52 }
53 }
54 message msg2 { // Second message definition
55 sender en1; // First Ethernet node is sender
56 receivers en2; // Second Ethernet node is receiver
57 payload 500B; // Message payload is 500 Bytes
58 period 125us; // 125us cyclic transmission
59 mapping { // mapping to traffic class
60 backbone: avb{id 1;}; // AVB traffic on backbone
61 }
62 }
63 }
64 }

10 Simulation of Mixed Critical In-Vehicular Networks 329

Beside the features shown in this example, ANDL provides more parameters to
describe traffic flows or aggregation strategies. Commonly used components can be
defined in include files, e.g., an Ethernet link with 100 Mbit/s, and used in several
places. Furthermore, ANDL provides inheritance. It is hence possible to define
primitive stencils for components that are later refined during the instantiation.

Currently, ANDL supports only the most common simulation parameters. For
more sophisticated configurations inline ini code can be used. Parameters
defined in the inline ini sections are directly copied into the resulting .ini
files in an additional with_inline_ini configuration. Hence, inline ini
definitions override generated definitions, which are placed in the General
configuration.

10.4.2 Experimentation

In comparison to the compact description in ANDL, the size of the generated
OMNeT++ simulation configuration (.ini/.ned/.xml) has more than 250 lines.
Nevertheless, all relevant parameters for the in-car network designer are available
in ANDL. The resulting network is depicted in Fig. 10.5.

It is shown that the generation process has created the defined topology. Stimuli,
TDMA scheduling, and gateway strategies are generated, too. A simulation can be
run immediately. Furthermore, all OMNeT++ features like distribution functions
and configurations for concurrent simulations runs can be done in the inline
ini part of the ANDL description. Using ANDL in this way supports a fast
experimentation process. Changes on topology, stimuli, or gateway strategies

Fig. 10.5 ANDL generated network consisting of two CAN buses and a real-time Ethernet
backbone with two gateways, two Ethernet nodes, and one switch

330 P. Meyer et al.

are done in ANDL and simulated in OMNeT++ for an interactive analysis and
comparison of different in-car network settings.

10.4.3 Result Analysis

All known OMNeT++ tools to analyze and visualize result data can be used to
view in-car protocol specific results, too. To find the corresponding data for a device
defined in an ANDL description a user simply uses the defined name to filter the
result set. All user-defined ANDL names are adopted to the OMNeT++ simulation
configuration. An example for a protocol-specific result is the credit of the AVB
shaper. Figure 10.6 shows an extract of the credit vector for port 1 in switch s1.

The oppResultManagers models enable distributed analysis of simulation results.
It is realized using database ResultManagers. Listing 10.2 shows how to enable
database ResultManagers in a *.ini configuration file of the simulation.

Listing 10.2 Enabling database ResultManagers

1 outputscalarmanager-class="cPostgreSQLOutputScalarManager"
2 outputvectormanager-class="cPostgreSQLOutputVectorManager"
3 postgresqloutputmanager-connection="dbname=testdb user=testuser password=

testuser port=15432"

The exemplary postgreSQL manager allows to write simulation results to
a central database server in the network, while simulations are executed on a

smallNetwork.s1.avbABuffer[1] Credit, vector

0.0000

0.0000

0.00010

0.00010

0.00020

0.00020

0.00030

0.00030

0.00040

0.00040

0.00050

0.00050

0.00060

0.00060

0.00070

0.00070

0.00080

0.00080

0.00090

0.00090

0.00100

0.00100
-3000 -3000

-2000 -2000

-1000 -1000

0 0

1000 1000

2000 2000

Fig. 10.6 AVB credit vector (s1 port 1) as seen in OMNeT++

10 Simulation of Mixed Critical In-Vehicular Networks 331

distributed cluster of nodes. Several users can access the results concurrently
without the necessity to distribute the result files. This allows to transfer the load
of the simulation as well as result analysis from the user’s workstations towards
strong servers and large centralized storage systems. The drawback of this solution
is a slight performance decrease due to the overhead of sending results over
the network as well as delays due to the databases lock mechanisms when it is
accessed concurrently. Using a database system, OMNeT++ simulations can be
easily attached to a wide range of analysis tools such as R [18] using a database
driver. With this approach, a ResultManager can be selected to fit the specific result
analysis requirements.

10.5 Case Study: Automotive Backbone for Premium Cars

This section presents a system-level simulation case study based on an anonymized
communication matrix of the Volkswagen Golf 7 that supports the modular transver-
sal toolkit platform of Volkswagen. It is extended by high bandwidth commu-
nications that transport measurements of two cameras and two lidars to support
features like sensor fusion based on raw data. This case study demonstrates the
relevance of system-level simulation within the field of future in-car network
designs, gives an impression of how to use and handle the simulation tools, and
finally provides selected results obtained by this case study. All results are the
outcome of OMNeT++ simulations. The case study was supported by the German
Federal Ministry of Education and Research (BMBF) under the project RECBAR
[25].

10.5.1 Case Study and Metrics

To get results for a comparison, the first simulation analyzes the current CAN-
based communication structure of premium cars (see Fig. 10.7). It is based on a
central CAN gateway that connects the domain-specific CAN buses and realizes
the exchange of CAN frames between these buses. The design consists of seven
public and two private CAN buses. All ECUs connected to these buses and the
corresponding periodic CAN traffic will be simulated (cf. Tables 10.1 and 10.2).
CAN traffic based on acyclic messages will not be simulated. Even if the CAN
identifiers have been anonymized, the prioritization remains in accordance with the
original Volkswagen modular transversal toolkit communication matrix.

In the second simulation, the central CAN gateway is replaced by an Ethernet
switch and CAN-to-Ethernet gateways (see Fig. 10.8). The final simulation analyzes
a network that consists of a real-time Ethernet backbone using three real-time
switches and several additional nodes with high bandwidth applications such as

332 P. Meyer et al.

Fig. 10.7 Central CAN gateway design

Table 10.1 Number of
ECUs per CAN bus

CAN bus Number of ECUs CAN bus Number of ECUs

canbus0 3 canbus1 11

canbus2 6 canbus3 9

canbus4 4 canbus5 5

canbus6 1 canbus7 1

canbus9 2 canbus10 0

high definition cameras and laser scanners (see Fig. 10.12). They represent the first
steps of the gradual transition to a flat Ethernet topology.

The simulation records the following metrics:

• Utilized bandwidth: This is the bandwidth used on all Ethernet links and CAN
buses, including all protocol overheads. Results can be obtained from the
scalars bitsPerSec of the canBusLogic module and bits/sec sent
or bits/sec rcvd of the mac module.

10 Simulation of Mixed Critical In-Vehicular Networks 333

Table 10.2 Number of CAN messages per period

Period [ms] Number of messages Period [ms] Number of messages

10 23 20 38

25 1 30 1

40 33 50 17

60 2 80 10

100 69 150 10

160 1 200 50

450 2 500 49

1000 38 2000 3

Fig. 10.8 One Ethernet switch design

• Latency: The simulation records End-to-End (E2E) latency across the entire route
between the sending and the receiving ECU. It includes the time spent within
gateways. The time starts at the point in time when a data source provides a
package for sending. It ends at the time of arrival of the package at a data sink.

334 P. Meyer et al.

If applicable, the latency on the Ethernet network is investigated—without the
CAN bus transmission. This highlights the effects of Ethernet configurations.

The latency will be recorded for each ID at each receiver and each station on
the path from the sender to receiver. Since a large amount of data is generated in
the simulation, this section gives only the maximum and minimum latencies.
Many modules in our simulation models have the rxLatency vector results.
For E2E latency, we are looking at the consuming applications.

• Jitter: This metric is defined for periodic messages. It is the absolute value of
the maximum difference of the latency belonging to consecutive messages. The
jitter is ignored for messages sent from different points in the network to the same
sink.

• Queue Length: The simulation observes the length of all queues in the network.
Moreover, the packets lost due to buffer overflow will be monitored. This is also
important for the design of the target hardware.
For obtaining the queue length statistics we look at the QueueLength vectors.

10.5.2 Central CAN Gateway Design

This scenario depicts the series configuration of the vehicle and simulates the initial
situation without Ethernet backbone. This represents the actual communication
topology of many current cars. The recorded metrics serve as reference for
further architectural variants and configurations. Figure 10.7 shows the configured
OMNeT++ simulation. Each CAN bus is connected to the central CAN gateway
which routes inter-domain traffic. There are a total of 416 different messages on
the buses, of which 216 are transported via the gateway. The central CAN gateway
delays messages by 60 µs. This value corresponds to an average value measured in
the real vehicle.

For simulation model validation the utilized bandwidth was determined ana-
lytically based on the cycle times given in the communication matrix. Table 10.3
compares analytical and simulation results. Due to a different recording technique
the deviation is up to 2339%. The analytical approach is based on the cycle
times, solely. In contrast, the simulation takes only packages into account that are
transmitted over the bus. Packages that are still waiting for transmission in the
gateway queue or packages that are waiting for the access to the bus are not included
here. Simulated bandwidth therefore lies slightly below the analytically calculated.

E2E latencies for all CAN messages were determined with Table 10.4 depicting
the results. It shows the great influence of CAN message priority on latency. The
reason is the CAN bus arbitration, which always favors the message with the lowest
CAN ID. While the maximum latency of the highest prioritized message (lowest
CAN ID value) is less than 1 ms, it rises to almost 18 ms for the lowest prioritized
message (highest CAN ID value). This effect affects the average latency, too.

The same effect occurs for the jitter of CAN messages. Typically, the jitter of low
prioritized CAN messages is higher. For the analysis of the jitter, a distinction must

10 Simulation of Mixed Critical In-Vehicular Networks 335

Table 10.3 Utilized bandwidth: analytical vs. simulation results

Bus Analytical result [kbit/s] Simulation result [kbit/s] Deviation [%]

canbus0 97.919 97.918 0.001

canbus1 128.130 127.329 0.625

canbus2 237.788 232.225 2.339

canbus3 63.125 63.121 0.006

canbus4 113.238 113.232 0.005

canbus5 221.631 220.509 0.506

canbus6 5.215 5.214 0.019

canbus7 2.801 2.800 0.036

canbus9 184.602 184.589 0.007

Table 10.4 Exemplary end-to-end latencies

CAN-ID Maximum end-to-end latency [µs] Average end-to-end latency [µs]

17 946.707 572.445

331 8465.906 845.920

510 17,974.989 1168.952

Table 10.5 Comparison of
minimal and maximal jitter

Local Via gateway

Bus Min [ms] Max [ms] Min [ms] Max [ms]

canbus0 0.574 7.511 4.301 5.866

canbus1 1.910 30.629 0.983 16.295

canbus2 1.504 15.827 0.961 23.196

canbus3 1.702 9.430 0.935 23.995

canbus4 2.154 9.735 0.957 24.505

canbus5 0.564 19.383 1.868 20.044

canbus6 No local traffic 8.017 19.383

canbus7 No local traffic 5.278 15.920

canbus9 4.346 25.641 0.959 23.707

be made between messages that are transmitted locally on a CAN bus and messages
transmitted via the central gateway. For each CAN bus, Table 10.5 gives the jitter for
CAN messages consumed on this bus. As a result, messages that are forwarded via
the central gateway do not necessarily have a higher jitter. Rather, the jitter is a mix
of effects in the gateway, arbitration on multiple buses, and message prioritization.
For example, on canbus9 the minimum jitter of local messages is higher than
messages that traverse the gateway due to a higher prioritized CAN message.

For an architecture with a central CAN gateway these measurements show that
the arbitration of the CAN messages has a significantly higher impact on jitter and
latency than the delay caused by the gateway (60 µs). This is a good starting position
for architectures based on an Ethernet backbone.

336 P. Meyer et al.

10.5.3 One Ethernet Switch Design

This architecture is an intermediate step to an architecture with an Ethernet
backbone. The central CAN gateway is replaced by an Ethernet switch and CAN-
Ethernet gateways (see Fig. 10.8). This simulation uses the same stimuli (CAN
messages) as the previous simulation.

Each CAN bus is connected to its own CAN-Ethernet gateway. In accordance
with the behavior of the CAN central gateway, each CAN message, which flows
via the central CAN gateway in the original design, flows via the Ethernet switch
in this architecture. On the Ethernet side it is sent from the source gateway to the
destination gateway. A CAN message may be forwarded to several CAN buses. In
this case, the simulation implements this behavior by sending a separate frame for
each destination. Alternatively, it could be realized using multicast.

The Ethernet frames will be sent via the standard Ethernet protocol (best effort)
using 100 Mbit/s links. In the current simulation, the processing delay of a gateway
is 40 µs. This value is based on measurements of an ARM-9-based prototype
gateway.

The maximum payload of a CAN frame is 8 B. The minimal payload of an
Ethernet frame is 46 B. Without aggregation of multiple CAN messages within one
Ethernet frame, Ethernet bandwidth would be wasted.

10.5.3.1 One Ethernet Switch Design Without Aggregation

In general, the utilized bandwidth on CAN buses does not change compared to the
central Ethernet gateway design. The bandwidth used on the Ethernet links is always
below 1 Mbit/s, but above the utilized bandwidth on CAN buses. This is due to the
lack of aggregation of CAN messages. By padding and the larger size of the Ethernet
frames compared to CAN frames, the necessary bandwidth increases on the Ethernet
links. It should be noted that no multicast is used and therefore messages that are
transmitted to multiple buses are also sent multiple times.

The maximum E2E latency is 25.289 ms. The minimum E2E is 126 ms (local on
a CAN bus). The delay on the Ethernet network is always less than 10 % of the total
E2E latency. The latency on the Ethernet from transmitter to receiver via a switch
(8 µs hardware delay) is between 19.92 and 60.24 µs.

The queues in front of the output links of the switch store a maximum of two
frames. The queues of the gateways store frames that are waiting to be processed
by the CAN side of the gateway. These queues store a maximum of six Ethernet
frames.

In summary, this simulation shows that the use of an Ethernet switch has little
effect on the transmission of CAN messages. The latency and jitter metrics continue
to be significantly influenced by CAN bus arbitration.

10 Simulation of Mixed Critical In-Vehicular Networks 337

10.5.3.2 One Ethernet Switch Design with Aggregation

This section investigates the aggregation of CAN messages into one Ethernet frame.
It is based on the approach that incoming CAN messages will be buffered in
the gateway, so that ultimately several CAN messages will be transmitted in one
Ethernet frame to reduce the utilized bandwidth on the Ethernet link. On the other
hand, the delay in a gateway increases the CAN message latencies.

The gateway implements the aggregation of CAN messages as follows: to each
CAN message that arrives at a gateway a hold-up time is assigned. It defines how
long a message can be buffered in the gateway until it is sent to the Ethernet link.

CAN messages will be aggregated in buffers called pools. A pool stores all
messages that will be aggregated in the same Ethernet frame. As soon as the hold-up
time of one CAN message expires, all buffered CAN messages of the corresponding
pool will be passed to the transformation module of the gateway. For each target
gateway the transformation module sends an Ethernet frame that contains the CAN
messages stored in the pool. Figure 10.9 shows how such a pool works. At time
t3, the hold-up time of CAN message 2 expires. Therefore, all messages that have
arrived so far will be forwarded at this time. The pool aggregation can be configured
in two ways. One way is to use ANDL like in Listing 10.1 in Sect. 10.4.1. Another
way is to manipulate the generated .xml file. Both ways are demonstrated in the
SignalsAndGateways model examples folder.

Three different aggregation scenarios will be simulated.

1. Within this scenario hold-up times are based on the CAN-ID and period of
the CAN message. Each hold-up time is calculated from the period and the
percentage given in Table 10.6. All CAN messages are stored in the same pool.
Hence, high-priority CAN messages are delayed less than low-priority messages.

2. This scenario differs from the first one as messages with high priority CAN
messages (CAN-IDs < 101) get a hold-up time of 1 ms. This increases the

Fig. 10.9 Aggregation of CAN messages with an pool

338 P. Meyer et al.

Table 10.6 Initial pool
configuration

CAN-ID Hold-up time for scenario 1

< 101 0 ms

101–200 25% of the period of CAN-ID

201–300 50% of the period of CAN-ID

300< 75% of the period of CAN-ID

switch → canbus0 switch → canbus3 canbus2 → switch
0

200

400

600

800

Et
he

rn
et

lin
k

ut
ili

za
tio

n
[k

bp
s]

without aggregation configuration 1 configuration 2 configuration 3

Fig. 10.10 Utilized bandwidth on three Ethernet links

likelihood that high priority CAN messages are aggregated with other CAN
messages.

3. This scenario uses two pools. CAN messages with similar hold-up times belong
to the same pool.

Figure 10.10 represents the utilized bandwidth for three Ethernet links. As
expected, it shows that aggregation reduces the Ethernet bandwidth utilization.
Depending on the structure of the bus traffic, the utilization is reduced by more
than 50 %. The difference between the three configurations is small. It is worth
noting that no configuration provides the lowest utilized bandwidth for all links. In
contrast to the Ethernet links aggregation does not change the utilized bandwidth on
CAN buses.

10 Simulation of Mixed Critical In-Vehicular Networks 339

Table 10.7 Maximum end-to-end latency for some CAN-IDs on canbus1

Central Without With aggregation
CAN gateway aggregation Configuration 1 Configuration 2 Configuration 3

CAN-ID [us] [us] [us] [us] [us]

17 946.707 984.859 990.248 1984.378 1987.647

331 8465.906 8658.725 12,835.177 13,643.712 16,676.314

510 17,974.989 18,415.130 23,217.447 24,470.504 754,554.309

As expected, aggregation increases the E2E latency. Table 10.7 presents latencies
of aggregated messages. Configuration 1 provides the best performance. For CAN-
ID 17 the latency is similar to the one without aggregation. The cause is the hold-up
time value of 0 ms for CAN-IDs < 101. For configuration 2, this latency increases by
the configured hold-up time of 1 ms. In the third configuration, the latency of CAN-
ID 510 increases significantly. This is due to the subdivision into two different pools
depending on the hold-up time. The probability that the pool forwarding is triggered
by a CAN message with a faster expired hold-up time is much lower. This can be
verified by inspecting the HoldUpTime vector in the gateway buffer module.

Regarding jitter, CAN messages that are not transported via a gateway have little
difference between the configuration with and without aggregation. This difference
is based on bursts generated by gateways as follows. If an Ethernet frame containing
several CAN messages arrives at a gateway, it fills the message object buffers of the
CAN bus interface with CAN frames of different priority at the same time.

Figure 10.11 gives the min and max jitter for messages transported via gateways
for three CAN buses. Aggregation leads to a significant higher max jitter compared
to the configuration without aggregation. In particular, this concerns low prioritized
ID messages, due to the bursts on the destination bus and their long hold-up time.

In terms of aggregation performance, the number of messages that are aggregated
in an Ethernet frame is of special interest. Table 10.8 represents this metric. With
up to 23 aggregated CAN messages, some pools are very large. However, far fewer
CAN messages will be aggregated on average. Aggregation configurations hence
provide potential for further optimization. A general statement about an optimal
pool strategy cannot be given.

In summary, the results of this subsection show a trade-off between bandwidth
and latency/jitter. The respective aggregation strategy has a massive impact on
latency, jitter, and bandwidth. For some aggregation strategies, the gain in band-
width is particularly efficient in relation to the effects on latency and jitter.

10.5.4 Real-Time Ethernet Backbone Design

This scenario simulates the Ethernet backbone communication architecture of the
real RECBAR prototype car [25] (see Fig. 10.12). In addition to the previous

340 P. Meyer et al.

0 50 100 150 200 250 300 350 400 450 500 550

configuration 3

configuration 2

configuration 1

without aggregation

central CAN Gateway

Jitter [ms]

canbus0 min
canbus0 max
canbus2 min
canbus2 max
canbus3 min
canbus3 max

Fig. 10.11 Minimal and maximal jitter on three Ethernet links

Table 10.8 Number of CAN messages within a pool

Configuration 1 Configuration 2 Configuration 3

CAN bus Max Average Max Average Max Average

canbus0 5 1.44 5 1.44 3 1.41

canbus1 23 5.03 23 5.20 12 4.59

canbus2 14 1.23 16 2.81 16 2.80

canbus3 13 9.09 13 9.08 9 6.81

canbus4 17 2.49 19 5.15 19 5.16

canbus5 18 1.19 21 2.70 17 2.69

canbus6 Gateway does not send

canbus7 Gateway does not send

canbus9 Gateway does not send

communication matrix, additional network participants have been added. These
components are a front- and a rear-camera, two lidars in the front of the car, a
logging ECU, and an ECU for sensor fusion based on raw data. ECU1 periodically
sends synchronization frames for the global time synchronization. The backbone
contains three Ethernet switches. All links have a bandwidth of 100 Mbit/s.

We use the flexibility gained by the ANDL domain-specific language to add
these additional devices to the network configuration. Just the lines shown in

10 Simulation of Mixed Critical In-Vehicular Networks 341

Fig. 10.12 Ethernet backbone within the RECBAR car

Listing 10.3 are added to the existing ANDL model to extend the topology. In
addition, new message definitions must be added or extended with new receivers.
The generation of this extended ANDL results in a new target topology and new
message definitions.

Listing 10.3 ANDL code example with comments

1 ...
2 connections {
3 segment backbone {
4 lid1 <--> {new std.ETH100M} <--> switch0;
5 lid2 <--> {new std.ETH100M} <--> switch0;
6 cam1 <--> {new std.ETH100M} <--> switch0;
7 switch0 <--> {new std.ETH100M} <--> switch1;
8 ecu1 <--> {new std.ETH100M} <--> switch1;
9 gateway0 <--> {new std.ETH100M} <--> switch1;

10 gateway1 <--> {new std.ETH100M} <--> switch1;
11 gateway2 <--> {new std.ETH100M} <--> switch1;
12 gateway3 <--> {new std.ETH100M} <--> switch1;
13 gateway4 <--> {new std.ETH100M} <--> switch1;

342 P. Meyer et al.

14 gateway5 <--> {new std.ETH100M} <--> switch1;
15 gateway6 <--> {new std.ETH100M} <--> switch1;
16 gateway7 <--> {new std.ETH100M} <--> switch1;
17 gateway9 <--> {new std.ETH100M} <--> switch1;
18 gateway10 <--> {new std.ETH100M} <--> switch1;
19 switch1 <--> {new std.ETH100M} <--> switch2;
20 cam2 <--> {new std.ETH100M} <--> switch2;
21 log <--> {new std.ETH100M} <--> switch2;
22 fusi <--> {new std.ETH100M} <--> switch2;
23 }
24 segment canbus {
25 ecu3b0 <--> canbus0;
26 ...
27 }
28 }
29 ...

Table 10.9 End-to-end
latency for some CAN-IDs on
canbus1 of the RECBAR
car

CAN-ID Maximum latency [µs] Average latency [µs]

17 532.264 331.641

331 4191.718 380.729

510 8625.544 595.964

The CAN gateways are connected to the central switch. In addition to the
previous CAN communication, the CAN messages are also sent to a logging ECU
that is connected to switch2. Due to low camera resolution and compressed data
transmission each camera stream requires only 7 Mbit/s bandwidth. We use 2D four
layer laser scanners (lidar). A single lidar requires 2.5 Mbit/s bandwidth. These
streams are sent to the logging unit and a fusion calculator.

The communication is based on the rate-constrained traffic class (AFDX). This
traffic class uses multicast. The biggest link load occurs between switch2 and the
logging unit (about 20.2 Mbit/s).

In contrast to the previous simulations, rate constrained traffic will now be used.
Therefore, the utilized bandwidth decreases due to multicast forwarding. Again, this
can be investigated through the QueueSize vectors. When a frame is forwarded
to multiple destinations just one frame is queued inestead of one per target.

Comparing the numbers of Table 10.7 and Table 10.9 shows that this con-
figuration reduces the E2E latency of CAN messages. This is due to the use
of multicast. At the sending gateway no more frames, which different unicast
destination addresses and the same payload, appear at the same time.

In summary, the simulation results of this scenario show that latency and jitter are
more affected by CAN bus arbitration than by the Ethernet backbone architecture. It
can be seen that multicast addressing saves the bandwidth of corresponding Ethernet
links and reduces the latency, too.

10 Simulation of Mixed Critical In-Vehicular Networks 343

10.6 Conclusion and Outlook

The automotive industry is currently re-thinking the communication technologies
in cars, thereby developing a strong preference towards real-time Ethernet. The
design and evaluation of future Ethernet-centric architectures, but more delicately
the transition from current legacy buses and gateways to a distributed switching
layer, requires extensive experimentation and careful evaluation of every design
step. This work largely profits from available simulation tools and platforms that
allow for a rapid assessment of design choices with high accuracy.

We presented an environment for modeling and simulating of future in-car
networks based on the OMNeT++ simulator and the INET Framework. This suite
includes simulation models for various real-time extensions of Ethernet including
AVB and TSN, field-buses including CAN and FlexRay, gateways, as well as
tools for modeling vehicular networks. This rich environment enables researchers
from academia and developers from industry to thoroughly investigate network
concepts and designs that are composed of the current and the emerging link-layer
technologies.

As a special support for engineers during their design process, the domain-
specific language ANDL has been defined. It allows to describe design variant
on an abstract level and supports a fast exploration of different design variants.
We illustrated its utility with a case study based on realistic automotive data and
demonstrated the practicability of this approach.

In future work, we will proceed in three directions: (1) Within the automotive
industry, detailed support of layer 3 and 4 protocols (like IEEE 1722, Transmission
Control Protocol (TCP), and User Datagram Protocol (UDP)) on top of the QoS-
enhanced link layer is of growing interest. Therefore, an interface has to be
implemented into our models, so that existing models of higher layers are easily
adaptable. (2) The TSN working group investigates frame preemption, and we
plan to integrate different variants and investigate them with our models. (3)
Current applications allow stimuli generation based on random numbers. Domain-
specific reactive behavior could make the stimuli generation even more realistic.
Corresponding concepts, adapted to real-time protocols, need to be introduced.

References

1. Aeronautical Radio Incorporated: Aircraft Data Network. Standard 664. ARINC, Annapolis
(2002)

2. Bettini, L.: Implementing Domain Specific Languages with Xtext and Xtend, 2nd edn. Packt
Publishing, Birmingham (2016)

3. Buschmann, S., Steinbach, T., Korf, F., Schmidt, T.C.: Simulation based timing analysis
of FlexRay communication at system level. In: Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques, pp. 285–290. ACM-DL, New York (2013)

4. CoRE Working Group: CoRE Simulation Models for Real-Time Networks. https://sim.core-
rg.de/trac

https://sim.core-rg.de/trac
https://sim.core-rg.de/trac

344 P. Meyer et al.

5. Eclipse Foundation Inc.: Xtext. https://www.eclipse.org/Xtext/index.html
6. El Salloum, C., Bilic, K.: FlexRay, chap. 6, pp. 121–152. CRC Press, Boca Raton (2012)
7. Hillebrand, J., Rahmani, M., Bogenberger, R., Steinbach, E.: Coexistence of time-triggered and

event-triggered traffic in switched full-duplex Ethernet networks. In: International Symposium
on Industrial Embedded Systems, 2007. SIES ’07, pp. 217–224 (2007). https://doi.org/10.1109/
SIES.2007.4297338

8. Institute of Electrical and Electronics Engineers: 802.1Qav - forwarding and queuing enhance-
ments for time-sensitive streams. IEEE Standard for Information Technology. IEEE, New York
(2009)

9. Institute of Electrical and Electronics Engineers: IEEE 802.1Qat - IEEE standard for local
and metropolitan area networks - virtual bridged local area networks - amendment 14: Stream
Reservation Protocol (SRP). Standard IEEE 802.1Qat-2010. IEEE, Piscataway (2010)

10. Institute of Electrical and Electronics Engineers: IEEE 802.1BA - IEEE standard for local and
metropolitan area networks - Audio Video Bridging (AVB) Systems. Standard IEEE 802.1BA-
2011. IEEE, Piscataway (2011)

11. Institute of Electrical and Electronics Engineers: 802.1Qbv - bridges and bridged networks
- amendment: enhancements for scheduled traffic. Draft Standard P802.1Qbv/D1.0. IEEE,
Piscataway (2013)

12. Institute of Electrical and Electronics Engineers: Standard for Ethernet amendment 1: Physical
layer specifications and management parameters for 100 Mb/s operation over a single balanced
twisted pair cable (100BASE-T1). Standard IEEE Std 802.3bw-2015. IEEE, Piscataway (2015)

13. Institute of Electrical and Electronics Engineers: Standard for Ethernet amendment 4: physical
layer specifications and management parameters for 1 Gb/s operation over a single twisted-pair
copper cable. Standard IEEE Std 802.3bp-2016. IEEE, Piscataway (2016)

14. Kamieth, J., Steinbach, T., Korf, F., Schmidt, T.C.: Design of TDMA-based in-car networks:
applying multiprocessor scheduling strategies on time-triggered switched Ethernet commu-
nication. In: 19th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA 2014), pp. 1–9. IEEE Press, Piscataway (2014). https://doi.org/10.1109/
ETFA.2014.7005119

15. Matheus, K., Königseder, T.: Automotive Ethernet. Cambridge University Press, Cambridge
(2015)

16. Meyer, P., Steinbach, T., Korf, F., Schmidt, T.C.: Extending IEEE 802.1 AVB with time-
triggered scheduling: a simulation study of the coexistence of synchronous and asynchronous
traffic. In: 2013 IEEE Vehicular Networking Conference (VNC), pp. 47–54. IEEE Press,
Piscataway (2013). https://doi.org/10.1109/VNC.2013.6737589

17. Müller, K., Steinbach, T., Korf, F., Schmidt, T.C.: A real-time Ethernet prototype platform
for automotive applications. In: 1st IEEE International Conference on Consumer Electronics -
Berlin (ICCE-Berlin 2011), pp. 221–225. IEEE Press, Piscataway (2011)

18. Reimann, C., Filzmoser, P., Garrett, R., Dutter, R.: Statistical Data Analysis Explained -
Applied Environmental Statistics with R. Wiley, New York (2008)

19. Robert Bosch GmbH: Bosch Automotive Electrics and Automotive Electronics - Systems and
Components, Networking and Hybrid Drive. Springer, Berlin (2013)

20. SAE - AS-2D Time Triggered Systems and Architecture Committee: Time-Triggered Ethernet
(AS 6802) (2009). http://www.sae.org

21. Society of Automotive Engineers - AS-2D Time Triggered Systems and Architecture Com-
mittee: Time-Triggered Ethernet AS6802. SAE Aerospace (2011). http://standards.sae.org/
as6802/

22. Steinbach, T., Korf, F., Schmidt, T.C.: Comparing time-triggered Ethernet with FlexRay:
an evaluation of competing approaches to real-time for in-vehicle networks. In: 8th IEEE
International Workshop on Factory Communication Systems (WFCS 2010), pp. 199–202.
IEEE Press, Piscataway (2010)

23. Steinbach, T., Dieumo Kenfack, H., Korf, F., Schmidt, T.C.: An extension of the OMNeT++
INET framework for simulating real-time Ethernet with high accuracy. In: SIMUTools 2011 –
4th International OMNeT++ Workshop, pp. 375–382. ACM, New York (2011)

https://www.eclipse.org/Xtext/index.html
https://doi.org/10.1109/SIES.2007.4297338
https://doi.org/10.1109/SIES.2007.4297338
https://doi.org/10.1109/ETFA.2014.7005119
https://doi.org/10.1109/ETFA.2014.7005119
https://doi.org/10.1109/VNC.2013.6737589
http://www.sae.org
http://standards.sae.org/as6802/
http://standards.sae.org/as6802/

10 Simulation of Mixed Critical In-Vehicular Networks 345

24. Steinbach, T., Lim, H.T., Korf, F., Schmidt, T.C., Herrscher, D., Wolisz, A.: Tomorrow’s in-
car interconnect? A competitive evaluation of IEEE 802.1 AVB and time-triggered Ethernet
(AS6802). In: 76th IEEE Vehicular Technology Conference: VTC2012-Fall, pp. 1–5. IEEE
Press, Piscataway (2012)

25. Steinbach, T., Müller, K., Korf, F., Röllig, R.: Real-time Ethernet in-car backbones: first
insights into an automotive prototype. In: 2014 IEEE Vehicular Networking Conference
(VNC), pp. 137–138. IEEE Press, Piscataway (2014). https://doi.org/10.1109/VNC.2014.
7013331

26. Steinbach, T., Lim, H.T., Korf, F., Schmidt, T.C., Herrscher, D., Wolisz, A.: Beware of the
hidden! How cross-traffic affects quality assurances of competing real-time ethernet standards
for in-car communication. In: 2015 IEEE Conference on Local Computer Networks (LCN),
pp. 1–9. IEEE Press, Piscataway (2015)

27. Steinbach, T.: Ethernet-basierte Fahrzeugnetzwerkarchitekturen für zukünftige Echtzeitsys-
teme im Automobil, Springer Vieweg, Wiesbaden (2018). doi:10.1007/978-3-658-23500-0

28. Wolfhard, L. (ed.): CAN System Engineering From Theory to Practical Applications, 2nd edn.
Springer, London (2013)

https://doi.org/10.1109/VNC.2014.7013331
https://doi.org/10.1109/VNC.2014.7013331
http://dx.doi.org/10.1007/978-3-658-23500-0

Chapter 11
LIMoSim: A Framework for Lightweight
Simulation of Vehicular Mobility
in Intelligent Transportation Systems

Benjamin Sliwa and Christian Wietfeld

11.1 Introduction

Upcoming smart-city-based Intelligent Transportation Systems (ITS) will be dom-
inated by the convergence of mobility and communication with challenges arising
on both sides [20]. On the one hand, the deployment of safe autonomous driving
requires coordination among the traffic participants by means of Ultra-Reliable
Low-Latency Communication (URLLC). On the other hand, novel communication
systems need to operate in highly dynamic environments where different technolo-
gies coexist and compete for the available radio resources [4].

Therefore, instead of treating the two worlds separately, upcoming commu-
nication systems will have to become mobility-aware in order to integrate the
system-immanent dynamics of the network topology into the decision processes.
Figure 11.1 illustrates example use-cases of anticipatory mobile networking [2]
that exploit mobility knowledge for determining routing paths, performing han-
dover and resource reservation as well as predictive steering of pencil beams in
millimeter Wave (mmWave) systems [6]. In experimental evaluations [16, 17], we
have integrated channel information as well as mobility knowledge in a machine-
learning-based data rate prediction process that is used to schedule the transmission
times of sensor data transmissions with respect to the achievable throughput.

Similarly, in communication-aware mobility applications, vehicles adjust their
path planning according to the available connectivity. While this type of behavior
has already received great attention in the context of Unmanned Aerial Vehicle
(UAV) networks, it will also be of relevance for cars acting as mobile sensor nodes
for upcoming crowd sensing-based applications like distributed weather forecast [3].

B. Sliwa (�) · C. Wietfeld
Communication Networks Institute, TU Dortmund University, Dortmund, Germany
e-mail: benjamin.sliwa@tu-dortmund.de; christian.wietfeld@tu-dortmund.de

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_11

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_11&domain=pdf
mailto:benjamin.sliwa@tu-dortmund.de
mailto:christian.wietfeld@tu-dortmund.de
https://doi.org/10.1007/978-3-030-12842-5_11

348 B. Sliwa and C. Wietfeld

5G Direct
IEEE 802.11p

5G Cellular

Mobility-aware
Cellular Handover

Context-aware
Interface Selection

Predictive
Gateway Selection

Fig. 11.1 Example scenarios for anticipatory mobile networking. ©[2018] IEEE. Reprinted, with
permission, from [14]

In order to address these arising challenges, researchers and developers require
tools that are able to simulate both worlds in a unified manner. Furthermore, easy
access to data of both components is of tremendous importance in order to provide
the required information for developing mobility-aware communication models for
next-generation mobile networks.

While full-featured traffic simulators like Simulation of Urban MObility
(SUMO) [9] provide a multitude of highly accurate mobility models and evaluation
scenarios, they have a clear focus on the demands of the traffic physicists community
and are rather intended for static large-scale analysis and optimization of traffic
flow problems. Although approaches for joint simulation of vehicular mobility
and communication exist, they rely on Inter-Process Communication (IPC)-based
coupling where multiple specialized simulators running in separated processes are
synchronized using a dedicated communication protocol that involves additional
overhead.

Contrastingly, Lightweight Information and Communications Technology-
centric Mobility Simulation (LIMoSim) was developed to bring both worlds
together in a more natural way with a clear communications-oriented perspective
on ITS. In this context, the term lightweight refers to a reduced complexity about
the variety of the different models and parameters for vehicular motion, on the
one hand, and an integrated single-process simulation setup, on the other hand.
The main intent of the framework is to bring together vehicular motion and
anticipatory communication systems using a shared codebase approach. In addition,
the mobility behavior is simulated without any dependencies to the actually used
communication technology and can therefore be coupled with WiFi-based systems
as well as Long Term Evolution (LTE), IEEE 802.15.4, and Long Range Wide Area
Network (LoRaWAN) using the available OMNeT++ extension frameworks such
as INET, SimuLTE, or Framework for Long Range (FLoRa) [12].

11 LIMoSim: Lightweight ICT-Centric Mobility Simulation 349

From an application point of view, LIMoSim can be considered as a moving
platform that can be equipped with any desired communication technology. In
contrast to previous work, where we presented the architecture of LIMoSim and
evaluated its simulation performance [14] and described the embedding of the
framework into OMNeT++ [15], this chapter focuses on giving an overview about
LIMoSim and its possible applications using different case-studies with a tutorial-
like approach.

The remainder of this chapter is structured as follows. After giving an overview
about relevant state-of-the-art traffic simulators and principles, we present the
architecture of the proposed LIMoSim and provide details about its individual
components such as the mobility implementation, the map representation, and the
integration into OMNeT++. Afterwards, a reference scenario for the evaluation is
presented and different short tutorials are provided that address specialized aspects
like accessing mobility information and using mobility prediction.

11.2 Related Work

The simulation of vehicular traffic with the main goals of traffic forecast and
traffic flow optimization has been a research topic for a long time. A variety of
simulators have been proposed such as SUMO, Multi-Agent Transport Simulation
Toolkit (MATSim-T) [1], and PTV Vissim [5] that differ in the provided level
of detail, multi-modality, variety of models, and type of license. All of them
model vehicular mobility without considering communication technologies at all—
which has become an essential component of modern cars. However, some of the
established frameworks have recognized the need for Information and Communi-
cations Technology (ICT)-enabled vehicular traffic simulation and offer interfaces
for run-time data exchange with and external control through third-party tools. For
the communication networks community, the traffic simulator SUMO is the most
popular framework for simulating vehicular mobility as it can be coupled with most
network simulators through its Transmission Control Protocol (TCP)-based Traffic
Control Interface (TraCI).

Using IPC for coupling multiple specialized simulators as illustrated in Fig. 11.2
is a standard approach to bring highly specialized tools together. It is also widely
used in channel modeling. While this multi-scalar method guarantees a high level of
accuracy through usage of verified models that have been created by their respective
communities, it has a number of disadvantages that should be considered.

• Since multiple processes are executed in parallel, simulation setups become
quite complicated, especially if multiple simulation servers are used in parallel.
Moreover, often additional scripts need to be running in the background in order
to manage the life cycles of the processes.

• The need for runtime synchronization between the different processes reduces
the simulation performance and its applicability for large-scale evaluation [8].

350 B. Sliwa and C. Wietfeld

Mobility

Simulation Control
Event handling

Network Simulator

Interface Module
Vehicular Mobility

Protocol Stack

Simulation Control
Event handling

Traffic Simulator
Mobility

Event synchronization

Interface Module
Vehicular Mobility

Vehicle and
infrastructure control

Position and
state updates

Fig. 11.2 IPC-based coupling using a dedicated coupling protocol. ©[2018] IEEE. Reprinted,
with permission, from [14]

• Since the different frameworks are developed independently, their compatibility
requires constant attention with each published update on both sides.

• Data cannot be accessed on a codebase-level and needs to be requested through
the coupling interface. Moreover, the exchange is bound to the specification
of the coupling protocol and requires modifications on both sides if it is not
contained in the specification.

In conclusion, IPC-based coupling is a powerful mechanism for bringing together
different worlds, however it blows up the evaluation setup complexity and does not
provide methods for data exchange in a native (code-based) way. As always, there is
no tool that perfectly satisfies all requirements. Instead, the choice of the simulation
framework is highly depending on the requirements of the application scenario.

Contrastingly, LIMoSim is intended to provide system-level vehicular mobility
for medium-scale scenarios. Unlike other approaches that aim to provide a full
model of a connected car with a specific communication technology, it purely
focuses on providing the mobile platform that can be used in combination with any
communication technology using other extension frameworks.

11.3 Framework Architecture

This section explains the general architecture of LIMoSim as well as the hierarchical
mobility model for the simulation of the different components of vehicular mobility.
Likewise to OMNeT++, the simulation is performed in an event-based way and the
mobility is updated periodically as well as by external events. LIMoSim consists
of two main modules that can be executed separately from each other, depending
on the application requirements: the purely C++-based simulation kernel and the
LIMoSim User Interface (UI) written in Qt-C++ and OpenGL. Figure 11.3 shows
the general architecture of the simulation framework.

Using the standalone mode, the simulation kernel is controlled from the
LIMoSim UI and makes use of a dedicated event scheduler. This mode is intended
to be used for fast evaluations of mobility-only algorithms without the overhead

11 LIMoSim: Lightweight ICT-Centric Mobility Simulation 351

Mobility

Simulation Control
Event andlingH

External Network Simulator

Interface Module
Vehicular Mobility

Protocol Stack

Live Visualization

Simulation Control
Event andlingH

LIMoSim User Interface

KPI Statistics
Time Series, Boxplot

Vehicles
Position, Turn Intent

Editor

Mobility
Path / Destination Modelling

Map
Scenario Import & Export

Agents

Virtual Simulation Control
Interface for HEvent andling

LIMoSim Kernel

Infrastructure
Traffic Signal Control

Vehicles
Hierarchical Mobility Model

Scenario

Agent Settings
Model Parameters

Map
OSM Data Model

Standalone Mode

Managed Mode

Technology
IEEE 802.11, LTE

Application

Fig. 11.3 Architecture of the proposed simulation framework LIMoSim consisting of the two
main modules simulation kernel and UI. ©[2018] IEEE. Reprinted, with permission, from [14]

for the communication stack. In contrast to that, the managed mode does not
have any dependencies to the UI components and works without using an own
event scheduler. Instead, the source code of the simulation kernel is embedded into
the workspace of the INET Framework of OMNeT++ and the event handling
is performed directly by the OMNeT++ event queue (see Sect. 11.3.3). This
approach enables native interactions between the different OMNeT++ frameworks
and the mobility information provided by LIMoSim in a shared codebase manner
(see Sect. 11.4.2 for an example how this kind of coupling can be exploited for
data exchange). Moreover, the coupling is performed transparently for all other
extension frameworks without adding additional dependencies to LIMoSim. For

352 B. Sliwa and C. Wietfeld

integrating LIMoSim into simulation setups, the respective hosts simply assign
the LIMoSimCar.ned module as their mobility submodule in the omnetpp.ini
configuration file.

11.3.1 Agent-Based Mobility Modeling

In contrast to macroscopic mobility modeling, which describes the behavior of
vehicle groups, LIMoSim follows a microscopic approach and models the behavior
of individual entities in order to be compliant with the agent-based simulation
approach of OMNeT++. Since vehicular motion is a complex process with the
goal to fulfill multiple targets in parallel—reaching a destination, respecting the
traffic rules, and keeping a safety distance to the leading car—the overall mobility
behavior for each vehicle is modeled by a hierarchical approach as shown in
Fig. 11.4 which is represented by the LIMoSimCar.ned module that is derived from
MovingMobilityBase.ned. It is important to note that no changes are made to the
actual host module in order to avoid interference with further extension frameworks
like SimuLTE (see Chap. 5) that provide their own logical host module.

Path Planning

Adaptive Cruise
Control

Lane Selection

Destination
Determination

Position Update

Macro Routing

Follower Model
IDM

Micro Routing

Strategic Mobility
Trip, Random Direction

Next Gate

Path

Acceleration

Destination

IDM: Intelligent Driver Model

LIMoSim OMNeT++ / INET

FollowerModel.ned

StrategicMobility
Model.ned

LIMoSimCar.ned

Fig. 11.4 Hierarchical mobility model. Source: Adapted from [15]

11 LIMoSim: Lightweight ICT-Centric Mobility Simulation 353

The hierarchical mobility model consists of multiple layers similar to the
strategic, tactical, and operational levels proposed by Hoogendoorn [7]. On the
top layer, the strategic aspect of the mobility behavior is modeled, representing the
determination of the destination and the motivation for the motion itself. This can be
done with a purely random model or deterministically by defining a trip containing
multiple destinations to provide a closer model for actual human behavior like
driving to different grocery stores and back home afterwards.

Once the destination is determined, the routing path is computed using Dijkstra’s
algorithm and represented as a list of waypoints that the vehicle approaches
sequentially. This part represents the macro component of the routing processes
that is performed on the level of gates (see Sect. 11.3.2) with respect to the road
directionality. The micro routing part then handles how the actual gates can be
reached from a lane-level perspective. The whole routing process is repeated if
the vehicle deviates from the defined route, e.g., because of traffic obstructions.
For the on-lane behavior, the Intelligent Driver Model (IDM) is used to model the
adaptive cruise control with respect to the other traffic participants. The model has
been proven to provide a better representation of real-world driver behavior than
other state-of-the-art models in [11]. Furthermore, the Minimizing Overall Braking
Induced by Lane change (MOBIL) [19] decides about the vehicle’s lane change
decisions.

Figure 11.5 shows an example usage of the IDM and illustrates the concepts of
free flow and following behavior. In each simulation step, the acceleration aIDM is
determined with Eqs. (11.1) and (11.2) using the current distance s, the velocity
v, and the velocity difference to the leader car Δv. The goal of the model is to
approach the desired speed v0 that is derived from the allowed road speed and the

Distance

Desired gap

Following
Behavior

Free Flow
Behavior

A

B

LeaderFollower

C

Fig. 11.5 Example usage of the IDM. Car A is not influenced by other vehicles on the same lane
and determines its acceleration using the free flow part of the model. Contrastingly, car B adjusts
its acceleration to reach the desired gap to the leader car

354 B. Sliwa and C. Wietfeld

driver’s behavior. The exponent δ describes how fast acceleration decreases with
respect to the vehicle’s speed.

aIDM (s, v,Δv) = a

⎡

⎢
⎢
⎢
⎣

1 −
(

v

v0

)δ

︸ ︷︷ ︸

Free flow behavior

−
(

s∗ (v,Δv)

s

)2

︸ ︷︷ ︸

Following behavior

⎤

⎥
⎥
⎥
⎦

(11.1)

Different vehicle types are described by their respective system parameters:
maximum acceleration a, comfortable deceleration b, jam distance s0, and desired
time gap T . The desired gap s∗ (see Eq. (11.2)) represents the safety distance for the
current speed difference between the two vehicles and is derived from the minimum
vehicle distance, the speed dependent distance term, and the intelligent braking
strategy.

s∗ (v,Δv)
︸ ︷︷ ︸

Desired distance

= s0 + vT
︸ ︷︷ ︸

Safety distance

+ vΔv

2
√

ab
︸ ︷︷ ︸

Braking strategy

(11.2)

Within LIMoSim, IDM is also applied for modeling how a vehicle approaches
intersections. Traffic signals are treated as static vehicles as long as their state is
“red” or “yellow.” When the updated acceleration is available, the velocity of the
car is updated and, finally, a new position is computed based on the current position,
the direction, and the new velocity.

From the perspective of a communication simulator, not all entities having an
influence on the vehicular traffic need to be modeled with a surrogate. Instead, non-
communicating entities like regular traffic signals and interfering traffic vehicles
are only modeled within the simulation kernel of LIMoSim and are hidden to
OMNeT++ in order to reduce the complexity of the simulation setup.

11.3.2 Represent Map Data with the OpenStreetMap Data
Model

LIMoSim has a native integration for OpenStreetMap (OSM) data in order to allow
an easy setup. Unlike other mobility simulators, additional preprocessing steps
performed by the user are not required but can be applied in order to reduce the
file size by filtering out unnecessary information from the data which speeds up the
initial map import process.

Although OSM data uses the World Geodetic System 1984 (WGS84), LIMoSim
internally operates on Cartesian coordinates in order to avoid the need for run-
time coordinate transformations for being compliant with the Cartesian model of

11 LIMoSim: Lightweight ICT-Centric Mobility Simulation 355

optional loopback

IN gate
OUT gate
segment endpoint

Fig. 11.6 Example road excerpt using the OSM data model. Gates are owned by intersections and
end nodes and specify the direction of the traffic flow

OMNeT++. Each time, an OSM file map.osm is loaded for the first time, an opti-
mized representation of the map map.osm.limo is created that filters out unnecessary
meta-data and contains the geographical data in their Cartesian representation. In
addition to the real-world map data, LIMoSim supports generic maps that can be
created with an integrated editor inside the UI or via direct code editing.

The OSM data model is not only utilized for importing map information, it is also
used internally as a hierarchical structure that represents the different components
that form a street network (see Fig. 11.6). Nodes form the most basic elements of
the model and are used to represent meaningful locations within the map. They
consist of at least a coordinate and an Identifier (ID) variable and can be extended
with further, optional parameters. Lists of nodes are called Ways and are used to
model more complex structures. Within OSM, they are not only used to represent
street segments with the same properties (e.g., speed limitation and number of lanes)
but also for marking the outlines of parking lots and buildings. Multiple ways that
have common nodes in their node set form Intersections that enable transitions
from one way to the other with respect to the available lanes and according to
the traffic rules. Intersections do not need to be explicitly defined as they are
computed automatically. They can be attached with traffic signals for controlling
the directional traffic flow, otherwise the regular traffic rules are applied.

As Sect. 11.3.1 points out, the vehicle routing macro level is performed using
gates as reference points that derive the overall routing graph. Gates refer to a
segment endpoint and are either placed on unconnected segments or are part of
an intersection. Depending on the traffic direction, they are defined as either input
or output and can be connected to multiple other gates of the opposite type.
Unconnected endpoints can optionally be configured in loopback mode so that
vehicles are automatically inserted on the other side of the road after passing the
endpoint.

356 B. Sliwa and C. Wietfeld

2.31.20 2.7 3.1

1.200 1.4 2.3 3.12.72.4 3.3 3.5OMNeT++
Event Queue

Virtual LIMoSim
Event Queue

EventMapping<Event*,cMessage*>

schedule(Event*)

scheduleAt(cMessage*)

handle(Event*)

handleMessage(cMessage*)

Fig. 11.7 Synchronization of OMNeT++ and LIMoSim event queues. Source: Adapted from [15]

11.3.3 Embedding LIMoSim into OMNeT++

In order to facilitate the separation of the managed mode and the standalone
mode (see Sect. 11.3), the simulation kernel itself does not have any OMNeT++
dependencies. Consequently, the OMNeT++ event handling mechanisms cannot
be directly used as the C++ classes cannot be derived from cModule.
Instead, the event handling modules within LIMoSim are derived from the
LIMoSim::EventHandler class that implements the basic methods for the
event-based behavior.

For the standalone mode, LIMoSim uses its own event handling mechanism with
a dedicated event scheduler. Since the latter cannot be applied in managed mode,
the LIMoSim objects use a virtual event queue that maps the LIMoSim events to
OMNeT++ messages, as it is illustrated in Fig. 11.7.

Whenever a new event is created in the LIMoSim domain in managed mode, a
new cMessage is created in the OMNeT++ domain by the EventScheduler
interface and a mapping entry between these objects is stored. Upon calling the
handleMessage() method, the actual LIMoSim event is retrieved from the
mapping and its handler method is called within the owner object.

Since the LIMoSim::EventHandler singleton is the only module that is
actually using the cMessage-based event handling mechanism of OMNeT++,
non-communicating entities such as interference traffic or traffic lights do not need
to be explicitly modeled with an OMNeT++-representative to make use of event-
based behavior.

11.4 Use Cases and Tutorials

In this section, example use cases focusing on specific aspects of the mobility
simulator are discussed. We do not consider IEEE 802.11p here, as it is covered by
the frameworks Vehicles in Network Simulation (Veins) (see Chap. 6) and Artery
(see Chap. 12). Instead, we emphasize the mobility platform character of LIMoSim.

11 LIMoSim: Lightweight ICT-Centric Mobility Simulation 357

250 m

eNB 2

eNB 1

LTE Handover Location

eNB 3

Trip start

1

2

3

4

Handover from eNB2 to eNB3 that could
have been avoided as the device attaches

to eNB2 again shortly afterwards

Fig. 11.8 Map of the reference scenario illustrating the road network topology and the base
station locations. As cellular handovers decrease the QoS of active connections, unnecessary
handovers should be avoided leveraging navigation system knowledge and mobility prediction.
Source: Adapted from [15]

11.4.1 Integration of Real-World Map Data and Initial
Positioning

Figure 11.8 shows the map of a reference scenario that contains multiple road
intersections and traffic signals. It is located around the campus of the university
of Dortmund in Germany. As LTE-applications will be discussed in the following,
three evolved Node Bs (eNBs) are positioned with respect to their real-world
locations based on information provided from the federal network agency.

The extension for the omnetpp.ini file is shown in Listing 11.1 while Listing 11.2
gives an excerpt from the converted map data file that is based on OSM.

Listing 11.1 Initial positioning within the omnetpp.ini file

1 **.host.mobilityType = "LIMoSimCar"
2 **.host.mobility.map = "map.osm"
3 **.host[0].mobility.strategicModel = "Trip"
4 **.host[0].mobility.strategicModel.trip = "

677230875,275672221,3569208993,477807"
5 **.host[0].mobility.way = "337055293"
6 **.host[0].mobility.segment = 4
7 **.host[0].mobility.lane = 0
8 **.host[0].mobility.offset = 1m

358 B. Sliwa and C. Wietfeld

Listing 11.2 Excerpt of the TU Dortmund street map data

1 <osm generator="LIMoSim">
2 <node id="677231620" x="173.659" y="766.422"/>
3 <node id="677231627" x="176.378" y="766.378"/>
4 <node id="627846556" x="188.113" y="766.189"/>
5 <node id="677231621" x="202.428" y="765.933"/>
6 <node id="52919181" x="238.261" y="765.267"/>
7 <node id="477807" x="254.202" y="767.967"/>
8 <node id="3441521491" x="320.05" y="780.956"/>
9 <way id="337055293">

10 <nd ref="677231620"/>
11 <nd ref="677231627"/>
12 <nd ref="627846556"/>
13 <nd ref="677231621"/>
14 <nd ref="52919181"/>
15 <nd ref="477807"/>
16 <nd ref="3441521491"/>
17 <tag k="highway" v="primary"/>
18 <tag k="name" v="Emil-Figge-Straße"/>
19 <tag k="maxspeed" v="50"/>
20 </way>
21 </osm>

The scenario map itself is not represented as a dedicated OMNeT++ module
in order to avoid the necessity for requiring a LIMoSim dependency inside
the simulation network. Instead, the map creation is handled transparently by
the mobility module. The first LIMoSimCar that gets instantiated creates the
LIMoSim::Simulation singleton and loads the map according to the parameter
specified in the omnetpp.ini file.

The initial positioning procedure is based on the corresponding values for the
OSM data model. If no position parameters are defined or if they contain elements
that cannot be mapped to the actual street network, the car is positioned randomly.

11.4.2 Accessing Mobility Data from the Communication Side

As pointed out in Sect. 11.1, upcoming vehicular communication technologies will
integrate mobility information into their decision processes and therefore require
methods to access this kind of information. An example how LIMoSim provides its
mobility data for the communication side is shown in Listing 11.3.

Listing 11.3 Accessing mobility information from the communication side

1 cModule *host = getParentModule(); // depends on the layer of the module!
2 LIMoSimCar *mobility = dynamic_cast<LIMoSimCar*>
3 (host->getSubmodule("mobility"));
4
5 if (mobility)
6 {
7 LIMoSim::Car *car = mobility->getCar();
8 double velocity_mps = car->getVelocity();
9 double acceleration_mpss = car->getAcceleration();

10 }

11 LIMoSim: Lightweight ICT-Centric Mobility Simulation 359

0 500 1000 1500 2000 2500
0

20

40

60
]h/

mk[
yticoleV

0 500 1000 1500 2000 2500
-3

-2

-1

0

1

s/
m[

noitarelecc
A

2]

0 500 1000 1500 2000 2500
Travelled Distance [m]

-80

-60

-40

-20

]
m

Bd[I
S

S
R

1 2 3 4

LTE Handover

eNB 3eNB 2eNB 1 eNB 2

Fig. 11.9 Example temporal behavior of velocity, acceleration, and measured RSSI. The corre-
sponding handover locations are shown in Fig. 11.8. Source: Adapted from [15]

Since the LIMoSim::Car class is the hub for the whole hierarchical mobility
model within the simulation kernel of LIMoSim, it can be further used to get
pointers to the models that operate on the different layers to access or modify more
specific parameters like the current acceleration with IDM. Figure 11.9 shows an
example trace of the mobility behavior and measured signal strength for a single car.
Additionally, performed handovers are marked and can be set into relation to their
actual locations as shown in Fig. 11.8. It can be seen that the device is only attached
to eNB 3 for a short duration and reattached to eNB 2 shortly after the handover.
As handovers are cost-intense processes that decrease the QoS-capabilities of active
communication links, unnecessary handovers should be proactively avoided.

In the considered vehicular scenario, information from the navigation system can
be leveraged to move from context-aware to context-predictive communication and
elaborate, if performing a handover is reasonable with respect to the predicted tra-
jectory of the vehicle. Similarly, resource reservation and forwarder selection might
also benefit from integrating knowledge about the anticipated future behavior of
the mobility network participant. In [13], we leveraged application layer knowledge
about the anticipated trajectory to increase the robustness of mesh routing paths
in mobile robotic networks. LIMoSim provides two different approaches to access
predicted information, both mirroring an equivalent sensor module in the real world.

360 B. Sliwa and C. Wietfeld

The extrapolation-based scheme mirrors a simple prediction using the car’s
Global Positioning System (GPS) only. For a defined prediction horizon τ , the
future position P(t + τ) is computed based on the current position P(t), the current
velocity v, and the current angular direction λ using Eq. (11.3). While this method
can be implemented easily into real-world systems, it does not consider direction
changes. Therefore, its prediction accuracy is severely impacted by the turns a
vehicle performs on its route.

P(t + τ) = P(t) +
(

sin
(

Π
2

) · cos
(

λ·Π
180

)

sin
(

Π
2

) · sin
(

λ·Π
180

)

)

· v · τ (11.3)

In contrast to that, the trajectory-based scheme assumes access to the vehicle’s
navigation system and planned route. Within the prediction processes, the total
movement potential is computed and the vehicle is virtually moved on the different
street segments until the total movable distance is reached. Therefore, this scheme
is able to consider the direction changes on the path. However, both schemes remain
agnostic towards the acceleration dynamics of the vehicle which are affected by the
interaction with other traffic participants and traffic signals.

It should be noted that trajectory information may also be leveraged even if no
navigation system access is explicitly provided by exploiting the regularities of the
human behavior. In [18], the authors show that human trajectories can be predicted
with a high grade of accuracy as people usually use the same ways regularly while
following their daily routines. A simulative comparison of the achieved accuracy
with respect to the vehicle’s velocity is shown in Fig. 11.10. For τ = 10 s, both
schemes perform almost equally. With an increasing prediction horizon, the error
dimension of the extrapolation-based approach raises dramatically and becomes
even impractical at higher speeds.

These two approaches can be considered as a starting point for developing
more advanced prediction methods, e.g., based on machine learning processes that
consider knowledge about the anticipated traffic flow and the street capacity.

11.4.3 Collecting Statistical Information with LIMoSim

In order to enable the collection of statistical information in the standalone mode,
LIMoSim has its own statistics module that can also be used in the managed
mode as an alternative to the scalar and vector files of OMNeT++. Similar to
OMNeT++, the size of generated log files can be highly reduced by preselecting
only relevant performance indicators. Moreover, since the Comma-Separated Values
(CSV) format is used, the collected data can directly be processed by Python- or
MATLAB-based postprocessing scripts. In many cases, the analysis of the collected
data is not performed on all data points but with a time reference (for example once
per second). Therefore, the size of the log files can be further reduced by means

11 LIMoSim: Lightweight ICT-Centric Mobility Simulation 361

0 5 10 15 20 25 30 35 40 45 50

Velocity [km/h]

0

100

200

300

400

500

600

700

800
]

m[rorr
E

ecnatsi
D

etulosb
A

nae
M

Trajectory
Extrapolation

= 60 s

= 30 s

= 10 s

Velocity dependency is decoupled

Significant reduction of the prediction error
by integration of trajectory knowledge

Fig. 11.10 Accuracy evaluation of the mobility prediction schemes in the considered scenario
with different prediction horizons. While there is no significant difference for short-time forecasts
(τ = 10 s), the trajectory-based scheme performs much better for higher prediction horizons. The
curves show the 0.95 confidence interval of the mean value

of online data aggregation. LIMoSim offers multiple operators for this task that
aggregate data with a defined time reference (e.g., averaging and min/max).

Listing 11.4 shows an example how the statistics handling can be integrated into
simulations. During the initialization phase, the valid keys are registered according
to the statisticsKey parameter of the mobility module that also specifies how
the values will be arranged in the resulting CSV file.

Listing 11.4 Statistics with LIMoSim

1 // omnetpp.ini
2 **.host.mobility.statisticsKey = "x,y,distance,speed,acceleration"
3
4 // update
5 Statistics *statistics = StatisticsManager::getInstance()->getStatistics(id);
6 statistics->add(StatisticsEntry("x", position.x, Stats::LAST));
7 statistics->add(StatisticsEntry("y", position.y, Stats::LAST));
8 statistics->add(StatisticsEntry("distance", distance_m, Stats::SUM));
9 statistics->add(StatisticsEntry("speed", currentSpeed_mps, Stats::MEAN));

10 statistics->add(StatisticsEntry("acceleration", currentAccerleration_mpss,
Stats::MEAN));

362 B. Sliwa and C. Wietfeld

The getStatistics() method takes an identifier for the agent as a parame-
ter. If it is statically set to be equal for all agents, the statistic values are aggregated
globally instead of agent-based. All values that are not contained in the key
definition will be automatically discarded by the StatisticsManager module.

11.5 Conclusion and Further Research

In this chapter, we presented the vehicular-mobility simulation framework
LIMoSim and demonstrated its application for simulating LTE-enabled ITS. The
proposed mobility simulation framework focuses on selected well-known analytical
models and provides support for real-world map data from OSM. For bringing
together vehicular mobility and communication simulation, LIMoSim relies on a
shared codebase coupling approach that allows lean information exchange between
both sides in a native way without any IPC-related overhead and facilitates the
execution of the whole simulation setup within a single system process. LIMoSim
is intended to provide the moving vehicular platform for arbitrary communication
technologies and can therefore be transparently coupled with third party extensions
frameworks (e.g., SimuLTE for providing cellular connectivity) without requiring
additional changes to the latter. In future work, we want to extend LIMoSim with
multi-modal simulation models to enable the simulation of cooperative cars and
UAVs in future ITS scenarios as described in [10].

Acknowledgements Part of the work on this chapter has been supported by the German Research
Foundation (DFG) within the Collaborative Research Center SFB 876 “Providing Information by
Resource-Constrained Analysis,” project B4.

References

1. Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K.: MATSim-T:
architecture and simulation times. In: Multi-Agent Systems for Traffic and Transportation
Engineering, pp. 57–78. IGI Global, Hershey (2009)

2. Bui, N., Cesana, M., Hosseini, S.A., Liao, Q., Malanchini, I., Widmer, J.: A survey of
anticipatory mobile networking: context-based classification, prediction methodologies, and
optimization techniques. IEEE Commun. Surv. Tutorials 19(3), 1790–1821 (2017)

3. Calafate, C.T., Cicenia, K., Alvear, O., Cano, J.C., Manzoni, P.: Estimating rainfall intensity by
using vehicles as sensors. In: 2017 Wireless Days, pp. 21–26 (2017). https://doi.org/10.1109/
WD.2017.7918109

4. Djahel, S., Doolan, R., Muntean, G.M., Murphy, J.: A communications-oriented perspective
on traffic management systems for smart cities: challenges and innovative approaches.
IEEE Commun. Surv. Tutorials 17(1), 125–151 (2015). https://doi.org/10.1109/COMST.2014.
2339817

5. Fellendorf, M., Vortisch, P.: Microscopic traffic flow simulator VISSIM. In: Fundamentals of
Traffic Simulation, pp. 63–93. Springer, New York (2010)

https://doi.org/10.1109/WD.2017.7918109
https://doi.org/10.1109/WD.2017.7918109
https://doi.org/10.1109/COMST.2014.2339817
https://doi.org/10.1109/COMST.2014.2339817

11 LIMoSim: Lightweight ICT-Centric Mobility Simulation 363

6. Heimann, K., Tiemann, J., Boecker, S., Wietfeld, C.: On the potential of 5G mmWave pencil
beam antennas for UAV communications: an experimental evaluation. In: 22nd International
ITG Workshop on Smart Antennas (WSA 2018) (2018)

7. Hoogendoorn, S.P., Bovy, P.H., Daamen, W.: Microscopic pedestrian wayfinding and dynamics
modelling. Pedestrian Evacuation Dyn. 123, 154 (2002)

8. Hu, W., Feng, Z., Chen, Z., Harkes, J., Pillai, P., Satyanarayanan, M.: Live synthesis of vehicle-
sourced data over 4G LTE. In: Proceedings of the 20th ACM International Conference on
Modelling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’17, pp. 161–
170. ACM, New York (2017). https://doi.org/10.1145/3127540.3127543

9. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications
of SUMO - simulation of urban mobility. Int. J. Adv. Syst. Meas. 5(3&4), 128–138 (2012)

10. Menouar, H., Guvenc, I., Akkaya, K., Uluagac, A.S., Kadri, A., Tuncer, A.: UAV-enabled
intelligent transportation systems for the smart city: applications and challenges. IEEE
Commun. Mag. 55(3), 22–28 (2017). https://doi.org/10.1109/MCOM.2017.1600238CM

11. Pourabdollah, M., Bjärkvik, E., Fürer, F., Lindenberg, B., Burgdorf, K.: Calibration and
evaluation of car following models using real-world driving data. In: 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6 (2017). https://
doi.org/10.1109/ITSC.2017.8317836

12. Slabicki, M., Premsankar, G., Francesco, M.D.: Adaptive configuration of LoRa networks
for dense IoT deployments. In: IEEE/IFIP Network Operations and Management Symposium
(NOMS) (2018)

13. Sliwa, B., Behnke, D., Ide, C., Wietfeld, C.: B.A.T.Mobile: leveraging mobility control
knowledge for efficient routing in mobile robotic networks. In: IEEE GLOBECOM 2016
Workshop on Wireless Networking, Control and Positioning of Unmanned Autonomous
Vehicles (Wi-UAV) (2016)

14. Sliwa, B., Pillmann, J., Eckermann, F., Habel, L., Schreckenberg, M., Wietfeld, C.: Lightweight
joint simulation of vehicular mobility and communication with LIMoSim. In: IEEE Vehicular
Networking Conference (VNC) (2017)

15. Sliwa, B., Pillmann, J., Eckermann, F., Wietfeld, C.: LIMoSim: a lightweight and integrated
approach for simulating vehicular mobility with OMNeT++. In: 4th OMNeT++ Community
Summit (2017). Best Contribution Award

16. Sliwa, B., Liebig, T., Falkenberg, R., Pillmann, J., Wietfeld, C.: Efficient machine-type
communication using multi-metric context-awareness for cars used as mobile sensors in
upcoming 5G networks. In: 2018 IEEE 87th IEEE Vehicular Technology Conference (VTC-
Spring) (2018). Best Student Paper Award

17. Sliwa, B., Liebig, T., Falkenberg, R., Pillmann, J., Wietfeld, C.: Machine learning based
context-predictive car-to-cloud communication using multi-layer connectivity maps for
upcoming 5G networks. In: 2018 IEEE 88th IEEE Vehicular Technology Conference (VTC-
Fall), Chicago (2018)

18. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility.
Science 327(5968), 1018–1021 (2010). https://doi.org/10.1126/science.1177170

19. Treiber, M., Kesting, A.: Traffic flow dynamics. Traffic Flow Dynamics: Data, Models and
Simulation (2013). https://doi.org/10.1007/978-3-642-32460-4

20. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities.
IEEE Internet Things J. 1(1), 22–32 (2014). https://doi.org/10.1109/JIOT.2014.2306328

https://doi.org/10.1145/3127540.3127543
https://doi.org/10.1109/MCOM.2017.1600238CM
https://doi.org/10.1109/ITSC.2017.8317836
https://doi.org/10.1109/ITSC.2017.8317836
https://doi.org/10.1126/science.1177170
https://doi.org/10.1007/978-3-642-32460-4
https://doi.org/10.1109/JIOT.2014.2306328

Chapter 12
Artery: Large Scale Simulation
Environment for ITS Applications

Raphael Riebl, Christina Obermaier, and Hendrik-Jörn Günther

12.1 Introduction

The development of Artery has been initiated by the need for a simulation
environment supporting vehicular communication complying to European spec-
ifications. Back at that time, Vehicles in Network Simulation (Veins) has been
already the de facto standard for simulating Vehicular Ad Hoc Network (VANET)
communication with OMNeT++. However, Veins is focused on IEEE Wireless
Access in Vehicular Environments (WAVE) and supported only a single application
type per simulation setup. Artery originally addresses exactly these issues: running
multiple applications per vehicle and facilitating communication with the European
standard specifications.

While in the beginning the link between Artery and Veins has been very strong,
i.e., Artery was merely an extension of Veins, today one can run Artery without a
single line of code from Veins. Veins support has not been dropped entirely though,
as it is now one possibility for the radio model choice. The other option is to employ
the INET Framework for simulating the radio-related aspects such as the wireless
medium, the propagation process and its effects, and the actual transmitting and
receiving Network Interface Cards (NICs). In a nutshell, Artery’s relation to Veins
evolved from being an extension to a full-grown sibling.

Before digging deep into Artery and its various features, this section intro-
duces the peculiarities of European Vehicle-to-Everything (V2X) communication

R. Riebl (�) · C. Obermaier
Technische Hochschule Ingolstadt, Ingolstadt, Germany
e-mail: raphael.riebl@thi.de; christina.obermaier@thi.de

H.-J. Günther
Volkswagen Group of America, Auburn Hills, MI, USA
e-mail: hendrik-joern.guenther@vw.com

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_12

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_12&domain=pdf
mailto:raphael.riebl@thi.de
mailto:christina.obermaier@thi.de
mailto:hendrik-joern.guenther@vw.com
https://doi.org/10.1007/978-3-030-12842-5_12

366 R. Riebl et al.

standards. As a sideline, some commonalities and differences between Artery and
Veins (see Chap. 6) are highlighted, though both could be simply labeled as V2X
simulation frameworks.

12.1.1 Intelligent Transport Systems in Europe

Wireless communication between vehicles and other road participants, often
referred to as V2X communication, can be realized based on various technological
approaches. In Europe, this kind of communication is standardized by the ETSI
under supervision of its Technical Committee for Intelligent Transportation
Systems (ITS). The European Union even allocated a dedicated frequency spectrum
for the purpose of increasing safety, efficiency, and comfort in road traffic. This
frequency band is located at 5.9 GHz and hence the communication in this band
according to the ETSI standards is called ITS-G5.

At the lower layers, namely the physical and the link layer, ITS-G5 borrows a
lot from IEEE 802.11p. The 802.11 amendment with the “p” suffix introduced new
features to the well-known and omnipresent Wireless Local Area Network (WLAN)
standard enabling its use for V2X communication. The most significant change is
the Outside the Context of a Basic Service Set (OCB) mode enabling direct com-
munication between vehicles without requiring additional infrastructure. Hence,
vehicles are forming a completely decentralized network without being required
to ask for permission entering it and sending messages in it. This type of network
established by vehicles is summarized by the term VANET: all communication is
spontaneous and possible links can vanish as quickly as they emerged (“ad-hoc”).

One has to note, though, that there exist VANETs using different protocols
while sharing the ad-hoc principle. Although the European ITS-G5 and its U.S.
counterpart WAVE share the 802.11 layers, i.e., identical radio hardware can be
used in both regions, their upper layers differ significantly. In this context, Veins
belongs to the American world of standards with its models for IEEE 1609 (also
known as WAVE). Artery, in turn, puts its emphasis on the European communication
architecture [1].

12.1.2 Modeling ITS-G5

Let us take a closer look at the European communication stack and the respective
layers’ responsibilities. A basic understanding of these ITS layers will make it easier
to understand Artery’s architecture introduced in Sect. 12.2.

Physical and Medium Access As mentioned before, the radio-related layers
follow IEEE 802.11. The INET Framework includes an elaborated model for
802.11 which can be configured for VANET communication. Based on INET’s
Ieee80211Nic the following adoptions are required:

12 Artery: Large Scale Simulation Environment for ITS Applications 367

• Enable ad-hoc communication by enforcing the Ieee80211MgmtAdhoc link
management entity instead of infrastructure-based communication.

• Set operation mode to “p” so that the associated modulation schemes are used.
• Adjust radio channel bandwidth to 10 MHz and carrier frequency to 5.9 GHz.
• Radios with activated OCB show a slightly different backoff behavior with

respect to contention window sizes and prioritization as per [7, Table 9-138].

Those adjustments are already accomplished when Artery’s VanetNic is used.
Furthermore, it extends INET’s Medium Access Control (MAC) layer implementa-
tion by another feature: channel busy reports. As shown later on, nodes in a VANET
are expected to adapt their transmission behavior depending on the current channel
congestion. The level of congestion is announced by these channel busy reports,
which are issued every 100 ms. Artery implements this feature by an extended
radio receiver module VanetRx emitting a ChannelLoad OMNeT++ signal
containing the ratio of time the channel has been busy during the last 100 ms
interval.

Network and Transport The network and transport layers enhance the commu-
nication features and increase the developer’s comfort when crafting various appli-
cations over a single medium as provided by VanetNic. NICs like VanetNic
provide only the fundamental link-layer communication between stations, i.e.,
vehicles can only exchange data when in radio communication range. Those link-
layer packets can be addressed to one (MAC unicast) or all (MAC broadcast) nearby
stations.

The network layer’s main purpose is to route packets and send them to their
destination which may be farther away than the radio link distance. In ubiquitous
Internet traffic routing is dealt by the Internet Protocol Version 4 (IPv4) and Internet
Protocol Version 6 (IPv6) protocols, whereas in the context of ITS it is handled
by GeoNetworking (GN) [4]. Broadly speaking, Internet Protocol (IP) protocols
are optimized for routing packets over long distances to a specific remote host
identified by its IP address. Due to the nature of ITS use cases, we seldom want
to communicate with only one clearly identified vehicle (“The car with registration
number...”) but with a group of vehicles in a specific geographic area. Hence, GN
is used at the network layer instead of classical IP. A non-exclusive summary of
features provided by GN on top of a link layer’s capabilities comprises:

• extending the communication range by using other vehicles as intermediate
relaying nodes (multi-hop communication),

• dissemination of packets into geographically scoped destination areas, e.g., to all
vehicles within a given 400 × 400 m rectangle,

• delaying a transmission until another vehicle is within communication range via
GN’s Store-Carry-Forward (SCF), and

• cryptographically secured packet content to ensure integrity and authenticity.

Basic Transport Protocol (BTP) [5] introduces the concept of port numbers to the
ITS communication stack. Each application is assigned a unique port number which

368 R. Riebl et al.

enables the identification of a packet’s source and destination application. Thus,
each vehicle can run as many distinct applications as port numbers are available.
The ETSI [3] maintains a list of well-known BTP port numbers.

Artery leverages Vanetza to provide BTP and GN features, as well as Decentral-
ized Congestion Control (DCC) and security according to ETSI’s communication
architecture. Vanetza is not strictly bound to OMNeT++. It is merely an ordinary
C++ library published under an open-source license. Thus, Vanetza can be used
in simulations as well as in other software and even on embedded hardware.
Artery handles all the details of integrating Vanetza into OMNeT++. Please refer
to Sect. 12.2.1.4, [12], and Vanetza’s website1 for information about the internals of
Vanetza.

Facilities and Applications Facilities sit on top of the BTP transport layer
according to the ETSI ITS architecture. One can look upon facilities as a collection
of helper tools to provide contextual information for ITS applications. For example,
a facilities’ Local Dynamic Map (LDM) is a kind of knowledge database collecting
information received from other vehicles. Local vehicle data, on the other hand, is
provided by its Vehicle Data Provider (VDP). The primary source for VDP are the
vehicle parameters received from the SUMO mobility simulator but it can estimate
further data elements such as curvature too.

All those helpers of facilities are hosted by Artery’s middleware OMNeT++
module. This middleware is also in charge of establishing and running a config-
urable set of ITS services per vehicle. As of today, Artery includes the Day One
services Cooperative Awareness (CA) and Decentralized Environmental Notifica-
tion (DEN) out-of-the-box. In the context of Artery, ITS applications are realized as
Artery services (e.g., CaService).

Mobility There is one striking difference between classical computer networks and
VANETs: vehicles are moving much faster than a desktop computer, a laptop, or a
server. If we want to simulate a VANET sufficiently realistic, we cannot neglect
the inherent movement of its vehicular network nodes. While OMNeT++/INET
provides some mobility features out-of-the-box to move nodes randomly or on
predefined paths, the mobility of vehicles is another simulation domain on its own.
Fortunately, Simulation of Urban MObility (SUMO) is a comprehensive traffic
simulator, freely available and comparatively easy to couple with other tools such
as OMNeT++ via its Traffic Control Interface (TraCI) protocol. Artery—in contrast
to Veins—bundles SUMO’s official C++ Application Programming Interface (API)
and thus enables developers to make use of all TraCI features. Our integration of
SUMO into Artery emphasizes extensibility and avoids tight coupling of classes
by emitting several OMNeT++ signals. Any other OMNeT++ module can listen
on those signals to get notified about SUMO simulation steps and single vehicle
changes such as insertion, updates, and deletion of OMNeT++ modules associated
with SUMO vehicles. SUMO and TraCI are covered in detail in Sect. 12.2.1.7.

1Vanetza project website: http://www.vanetza.org.

http://www.vanetza.org

12 Artery: Large Scale Simulation Environment for ITS Applications 369

12.1.3 Setting up Artery

A significant difference of Artery compared to other well-known OMNeT++
frameworks is its CMake-based build process. Thus, setting up Artery and getting
it to run differs from the usual “Import Project” procedure. It is certainly not
complicated either but offers a lot of possibilities such as flexible integration of
third-party libraries (compare the dependency graph of Artery depicted in Fig. 12.1
for example). In fact, since we were reluctant to reinvent the wheel or to dully copy
code we wanted to make use of third-party libraries. From experience we can say
that this speeds up the development process significantly and allows to focus on the
actual simulation problem instead of “boilerplate code”.

One problem occurring when trying to integrate external components into any
C++ project, however, is the variance where those components are located on
individual systems. In particular, we need to know the path to include headers
and the location of the pre-compiled libraries to link them with our code. Using
Eclipse—i.e., the OMNeT++ Integrated Development Environment (IDE)—can be
quite frustrating because those paths need to be configured on each single system.
Since this is a common problem in C/C++ development, smart developers have
invented CMake which eases the exhausting task of finding and configuring build
dependencies.

Artery itself depends on the well-known Boost libraries, Vanetza, and
OMNeT++. A few dependencies are directly tracked in Artery’s extern directory,
i.e., this directory includes copies of external projects known to work with Artery
in their respective version. Thus, one must not worry about matching versions

Fig. 12.1 Dependency graph
of Artery incorporating other
OMNeT++ models as well as
ordinary C/C++ libraries.
SUMO is not part of Artery
itself but required during
runtime

370 R. Riebl et al.

between Artery, OMNeT++/INET, and Veins by default. Other dependencies, such
as Boost and OMNeT++, are expected to be installed on the system and are looked
up automatically.

An installation guide of Artery is included in its repository, we refer to it for
installation details. Some internals of integrating OMNeT++ and CMake are dis-
cussed in a previous publication [10]. Tips and tricks regarding build configurations
and available build options are presented in the appendix of this chapter.

12.2 Artery at the Core

In this section, we will take you through the process of actually working with the
Artery simulation environment. After finishing this section, you will be familiar
with all basic features of Artery and you should be able to start developing your
own applications and hence start your own simulations. To make things a bit more
interesting, we opted for building a small simulation scenario which can be observed
everyday throughout the world: a police vehicle needs to pass a section of a street
and requires that other vehicles clear the lane. This scenario is depicted in Fig. 12.2.

As depicted, the police vehicle’s path (vehicle 0) is blocked by a group of
vehicles on the highway. An attentive driver of vehicle 1 would have to recognize
the approaching police vehicle and is required to change to the adjacent lane as soon
as possible, as indicated by the arrow with the dashed line. This situation is usually
stressful for all involved parties. For the driver of vehicle 1, the situation is stressful
as he needs to figure out a safe way to get out of the police vehicle’s way as soon as
possible. For the police officers, the situation is stressful as they are approaching at
a high relative speed.

Since you are currently reading about V2X communications, we dare to ask
the question how we can relieve all parties of at least some of the stress. A
direct communication link between the vehicles provides the option of explicitly
warning the driver of vehicle 1 (and all other vehicles in the vicinity) of the
approaching police vehicle. Drivers on non-affected lanes can be issued a warning
and a recommendation to stay on the current lane. The driver of vehicle 1 is informed
about the approaching police vehicle 0 well in advance and is therefore given more

Fig. 12.2 Simulation scenario: an approaching police vehicle 0 requires right-of-way. The
depicted IDs refer to the vehicle identification used within the SUMO scenario

12 Artery: Large Scale Simulation Environment for ITS Applications 371

time to change to an adjacent lane. Simultaneously, the police officers can be assured
that other vehicles are warned about their presence as well.

In the following, we will now assume the role of an application developer who
has to specify, implement, and test the application. Obviously, there are two parts in
this application:

1. The transmitting part on the police vehicle 0 has to broadcast a message about
its approach and its current position.

2. The receiving part on all other vehicles 1–3 has to react to a received message
from the police vehicle 0 in order to issue a warning to the driver.

The next subsections provide details for all steps required to build the application.
It should be noted that since both parts are unique to the role of the vehicle within
the scenario, we will implement two separate applications (a transmitting and a
receiving application) to accomplish the task.

Artery thereby provides all required tools to focus on building user-defined
applications, including the development of new message formats which may
be exchanged between the vehicles. Note that although Artery focuses on the
development of applications, the focus of the simulations can also be on any other
aspect of the communication stack. Being an open-source framework, any layer can
be modified for specific research questions.

After completing this section, you will have knowledge about these topics:

• the basic architecture and components of the Artery simulation environment
including its basic triggering and timing mechanisms to be used by user-defined
algorithms [Sect. 12.2.1],

• create and parametrize a simulation scenario for Artery [Sect. 12.2.2],
• write and build your own application (called Services within the Artery nomen-

clature) [Sects. 12.2.3.1 and 12.2.3.2],
• run simulations with your own application [Sect. 12.2.4], and
• record and analyze user-defined application-specific data [Sect. 12.2.5].

12.2.1 Architecture of Artery

To concentrate on the development of V2X applications, Artery provides a frame-
work to simplify the interaction with the communication stack. Although we are
focusing on the European ETSI ITS G5 stack based on the IEEE 802.11p standard in
this section, note that the stack itself may be changed to support other technologies
as well (e.g., cellular V2X as outlined in Chap. 13). The various components that
we integrated to Artery are shown in Fig. 12.3.

The depicted stack is instantiated for every vehicle within the simulation. On
top of the two lower layers (namely, either Veins or INET and Vanetza) operates
Artery’s middleware that serves as an abstraction and data provisioning layer for the
applications which are called Services in the nomenclature of Artery [11].

372 R. Riebl et al.

Fig. 12.3 Artery architecture and multiple instantiation for every vehicle within the simulation

12.2.1.1 Middleware

The key element of Artery is the middleware which serves as the interaction hub
between the applications and the communication stack. The middleware provides
the only (and therefore easy to maintain) interface to the lower layers and is also
responsible for the life cycle and initialization of the ITS station’s services.

To assign applications to vehicles within the simulation, an XML configuration
is loaded by the middleware using the parameter middleware.services,
which is accessible via the global simulation initialization and configuration file
(usually named omnetpp.ini). The XML services file enables simulation-specific
parameterization of service-penetration rates and alike. This is particularly useful,
in case a specific application shall only be active for certain vehicle types. In
the scenario depicted in Fig. 12.2 for which we are developing an application in
this section, this becomes a handy feature as well, as it enables us to only equip
the police vehicle with the transmitting application while all other vehicles will
only have the receiving application. This approach also enables the development
of different versions of the same application in order to assess its interoperability
when operating on the same message set, e.g., for backward compatibility tests.

12 Artery: Large Scale Simulation Environment for ITS Applications 373

More information about the options provided by the external configuration file and
how to parametrize it for the scenario depicted in Fig. 12.2 are given in Sect. 12.2.2.

In accordance with stack specifications, each service listed in the external
configuration file can be linked with a single port number. This number is used
for multiplexing transmitted or received messages to the corresponding services. A
service generating the standardized CA Message (CAM), for example, is assigned
the port number 2001 [3]. It should be noted that the assignment of ports may be
arbitrary in case of non-standardized services or not required at all, e.g., in case
you are developing an application which does not rely on message reception or
transmission. The port number is used by a port-dispatcher within the middleware
to either provide transport information when transmitting a message to the lower
layer or to forward the message to the correct service upon message reception from
the lower layer.

As stated above, next to the message multiplexing between the lower layers and
the applications, the middleware is responsible for the life cycle management of
the applications. This is particularly important, when you think about how and
when vehicles are usually introduced to the simulation (e.g., by SUMO). Usually, a
traffic simulation like SUMO also operates on a discrete time line. Vehicle positions
and their dynamic states are all updated simultaneously within the simulator. This
behavior gets reflected in OMNeT++. Vehicles will enter and leave the simulation
at the same time stamp although in real life, we do not synchronize on specific
points in time to turn on our vehicle (even though you and your neighbor might
leave the house at the same time to drive to work). To avoid effects introduced
by synchronized vehicle behavior, the Artery middleware introduces a separate life
cycle management for every vehicle. Although the positions and dynamic states
of the vehicles within OMNeT++ get updated simultaneously (i.e., at the SUMO
update step which can be configured in the *.sumocfg of the scenario), Artery
ensures that individual (i.e., random offset but cyclic) update and triggering intervals
for vehicle applications are observed. Figure 12.4 depicts the behavior introduced
by Artery’s middleware.

Though both vehicles 1 and 2 are updated by SUMO simultaneously, the
applications are triggered by each vehicle’s Artery middleware at different points in
time. Hence, in case you need a cyclic triggering of your application algorithm, the
trigger() method of each service can be used. Note that each service can also
have its own triggers, using OMNeT++’s concept of self-messages. Upon removal
of vehicle 2 from the simulation, the applications of vehicle 1 are still updated at
their initial update offset from the main SUMO update interval, as indicated.

As stated above, the middleware is responsible for routing all application
messages from and to the lower layer. Whenever an application wishes to transmit
a message (e.g., after the service encoded the message), it can pass the payload
to the middleware, using the request method, as depicted in Fig. 12.3. Message
reception is indicated to a service by the indicate() callback which gets called
as soon as a message has been received by the Intelligent Transportation System-
Station (ITS-S). Note that both, the request() and indicate() methods are
not restricted to the service cycle-time introduced by the middleware. This means

374 R. Riebl et al.

Fig. 12.4 Life cycle management of Artery

that you do not have to wait until your service is triggered by the middleware in
order to react on a received message. Instead, the indicate() method may also
serve as an entrance-point to your algorithm’s state machine. It should be noted
that the middleware is capable of receiving two variants of messages: either you
can create messages based on the Abstract Syntax Notation One (ASN.1) or rely
straight on OMNeT++’s cPacket objects and its message compiler. Of course,
OMNeT++ packets are only suitable for rapid prototyping in a pure simulation
environment. If Artery is going to be coupled with external devices (e.g., Hardware-
in-the-Loop (HIL) testbeds), its packets’ binary representation must be compatible
to real “over-the-air” packets. Then it is beneficial to use standardized message
formats such as ASN.1’s packet encoding rules.

Last, the middleware also provides access to other Artery components such as the
Facilities, which are detailed in Sect. 12.2.1.3. You may even consider adding
your own objects to the middleware which should be accessible by your services.
The two extensions detailed in Sects. 12.3 and 12.4 make use of this feature.

12.2.1.2 Services

Application logic and ITS functions, e.g., connected Advanced Driver Assistance
System (ADAS) features, are realized as services in Artery. In essence, there are
three major variants to attach custom logic to a service:

1. triggered by timed events by overriding trigger() or scheduling dedicated
OMNeT++ messages,

2. reacting on packet receptions by overriding indicate(...), and
3. listening to signals emitted by sibling modules and services.

12 Artery: Large Scale Simulation Environment for ITS Applications 375

Of course, any subset or mix of aforementioned variants is possible. The most
suitable way to go depends on the particular type of applications that is going to
implemented.

Artery ships with implementations of the basic CA and DEN services known
from standardization. Those services emit unique signals on generation and recep-
tion of a corresponding message which can be used by other services. Each service
can easily make use of OMNeT++’s signaling mechanism by subscribing to a
particular signal through calling its subscribe method. Exemplary usage of this
feature is demonstrated in Listing 12.1. Using signals instead of direct method calls
has the major advantage of having only loose coupling between services, i.e., the
service emitting the signal does not need to know anything about services interested
in this signal and vice versa. Only the signal’s name and emitted type need to be
known.

Listing 12.1 Exemplary usage of service signals

1 // those lines may be in YourService.cc
2 using namespace omnetpp;
3
4 // this is only required if we want to cast received object type
5 #include "artery/application/CaObject.h"
6 // no need to include CaService.h at all!
7
8 // we know CA service emits "CamReceived" with cObject* (CaObject*)
9 static const simsignal_t camRxSignal =

10 cComponent::registerSignal("CamReceived");
11
12 // subscribe to signal at any time (in most cases at initialization)
13 void YourService::initialize()
14 {
15 ItsG5BaseService::initialize();
16 subscribe(camRxSignal);
17 }
18
19 // CamReceived signal emits a cObject*
20 void YourService::receiveSignal(cComponent* source, simsignal_t sig, cObject*

obj, cObject*)
21 {
22 if (sig == camRxSignal) {
23 // optionally cast emitted object to derived type (CaObject in this case)
24 CaObject* ca = check_and_cast<CaObject*>(obj);
25 // do some action
26 }
27 }

12.2.1.3 Facilities

In terms of the ITS architecture, the Facility layer is located just between the
transport layer and the ITS applications. The components of the Facility layer, the
Facilities, are intended to support the realization of applications by providing access
to information sources, easing usage of communication interfaces and exchanging
data between basic services. Hence, those Facilities can be seen as general purpose
supporting tools for ITS applications.

376 R. Riebl et al.

Artery implements Facilities as a generic object container, i.e., arbitrary C++
objects can be registered at its Facilities object. Those registered objects are
then available to all users of the Artery Middleware, e.g., any service can refer
to the respective station’s Facilities via getFacilities(). By default any
station, i.e., any OMNeT++ node equipped with Artery’s Middleware module,
exposes the following entities as Facilities:

• A Timer object to convert between ITS time and OMNeT++ simulation time.
The time base is configured by the middleware’s datetime parameter, i.e.,
simulation time zero corresponds to datetime and both are incremented
uniformly.

• An LDM that stores information received via V2X such as recent CAMs for a
predefined time.

• A DCC scheduler and state machine to control and react on channel congestion.

Vehicle stations, i.e., those equipped with a VehicleMiddleware, offer
VehicleDataProvider and VehicleController in addition. The former
grants read-access to vehicle data directly given by SUMO e.g., speed, position, and
heading/direction. Furthermore, VehicleDataProvider offers some “derived”
data that is not directly available otherwise, e.g., yaw rate and estimation of
curvature (inverse of curve radius). The latter, VehicleController grants
direct read and write access to the associated SUMO vehicle via TraCI. When you
need to change a vehicle’s behavior, e.g., its speed or route, this controller becomes
handy.

12.2.1.4 Vanetza

As already outlined in Sect. 12.1.2, the networking protocols above the link
layer and below the Facilities are not traditional simulation models but a real
implementation named Vanetza. Although Vanetza does not depend on OMNeT++,
it has been designed to fit into an OMNeT++ environment from the beginning.
Briefly speaking, the conglomerate of GN, BTP, Security, and DCC is covered
by Vanetza. Since Vanetza is a plain C++ library, it can be linked into the Artery
binary straightforwardly, i.e., all classes provided by Vanetza can be employed
by OMNeT++ modules then. Fortunately, the cumbersome integration of external
libraries with OMNeT++ is already dealt with by Artery’s build system. We can
therefore simply focus on the usage aspects of Vanetza for VANET simulations.

Artery’s Middleware does the code-wise lifting of the communication stack
by integrating the time-related protocol aspects as well as the packet data flow with
OMNeT++’s event processing.

Router and Runtime The GN router instance is a key object when using Vanetza.
This router is represented by the vanetza::geonet::Router class, which is
instantiated and configured by Artery’s Middleware. OMNeT++ configuration
parameters that are directly affecting Vanetza are prefixed with vanetza such
as vanetzaEnableSecurity which allows to control the presence of security

12 Artery: Large Scale Simulation Environment for ITS Applications 377

features, for instance. Another essential object is the vanetza::Runtime, which
is used by Vanetza to determine the current time and execute time-based actions,
e.g., cleaning expired entries from its GN location table. The interweaving of
Runtime and OMNeT++ is threefold:

1. Runtime is initialized with Timer’s base time so Vanetza and OMNeT++ have
a synchronized starting point.

2. Runtime is updated at each Middleware::handleMessage call to keep the
Middleware and Vanetza synchronized.

3. An OMNeT++ self-message is scheduled for the next scheduled Vanetza action
in Middleware::scheduleRuntime.

Data Request (Transmitting Packets) When an Artery service wants to transmit
a packet it passes its message (i.e., the BTP payload) to the request method
provided by the service’s base class. Behind the scenes, this message is passed on
to vanetza::btp::RequestInterface provided by Middleware, which
invokes Vanetza’s packet handling routines. Finally, Vanetza passes the processed
packet with attached network protocol headers and alike to the link layer. From
Vanetza’s point of view the link layer is represented by the vanetza::access::
Interface. This interface is registered at the router during initialization of
the middleware. The middleware’s implementation of this interface issues the
transmission by INET or Veins via the respective RadioDriverBase.

Data Indications (Receiving Packets) Packets received by the link layer are
passed to the middleware via its radioDriverIn gate. Messages arriving at this
gate are fed into Vanetza GN router in Middleware::handleLowerMsg for
processing network and transport protocol headers. As soon as Vanetza is done with
this processing and it is determined that the packet is relevant for the local station,
the extracted BTP payload is passed up. Vanetza knows the matching receiving
service because Middleware::initializeServices registers each listen-
ing service at its local vanetza::btp::PortDispatcher. Consequently, the
service with the matching BTP port number receives the original packet via its
indicate method.

As a rule of thumb, customizations concerning packet routing shall be done in
Vanetza directly using plain C++ with the additional benefit that those customiza-
tions could then be deployed to other environments as well, for instance, to real V2X
devices. Various internal actions by Vanetza can be observed by means of a so-called
hook mechanism. For example, you can assign custom C++ code to Hooks exposed
by the router, which are called when packets are dropped for one or another reason.

Listing 12.2 Example: Registering a custom hook at Vanetza router

1 // you may append these lines to Middleware::initializeMiddleware()
2 mGeoRouter.forwarding_stopped =
3 [this](vanetza::geonet::Router::ForwardingStopReason reason) {
4 if (reason == vanetza::geonet::Router::ForwardingStopReason::HOP_LIMIT) {
5 EV_INFO << "GN packet dropped, reached hop limit\n";
6 }
7 };

378 R. Riebl et al.

12.2.1.5 Physical Layer Modeling: Veins vs. INET

When work on Artery began back in 2014 it started as a collection of additional
modules for Veins. Consequently, the model of the wireless communication on the
physical level has been directly inherited from Veins. The Veins’ model, however,
is centered around WAVE including a fixed channel switching scheme between a
control and a service channel back and forth. Switching away from the control
channel is not used by ETSI ITS-G5 at all, however. The periodic reporting of
channel busy ratio measurements was missing, which is required as input for ITS-
G5’s congestion control. Hence, the lower radio layer (Physical Layer (PHY)) of
Veins has been combined with a customized upper radio layer (MAC), which can
be found in Artery’s src/artery/mac directory by the name MacItsG5.

Later on, the INET Framework has been adopted by Artery as an alternative
802.11 model. The necessary adaptation code to integrate INET into Artery is
located at src/artery/inet. Primarily, the original INET modules are configured
with sane defaults for VANET communication, e.g., the contention windows and
inter-frame spacings are overridden for OCB according to IEEE standardization
in VanetNic.ned. A customized inet::ieee8011::Rx class—VanetRx—
enhances INET’s model to report channel busy ratio.

Nowadays, our recommendation is to use the model based on INET if there is
no explicit reason to use the Veins radio model. Artery’s middleware itself does not
depend on neither Veins nor INET directly. The module interface artery.nic.
IRadioDriver abstracts from the actual radio model. Artery ships driver imple-
mentations for INET (InetRadioDriver) and Veins (VeinsRadioDriver).
This abstraction layer also allows to use an entirely distinct radio layer model.

12.2.1.6 Mobility

Moving network nodes are usually realized by some kind of OMNeT++ mobil-
ity module. Both, Veins and INET facilitate such a mobility concept inherited
from their common ancestor MiXiM.2 The particular interfaces, however, are not
entirely compatible to each other without further ado. Artery supports both—
INET’s IMobility and Veins’ BaseMobility—and couples them with its
artery.traci.Mobility. By this approach no code for coupling with SUMO
via TraCI needs to be duplicated while maintaining compatibility with the respective
frameworks. Whenever an update of a SUMO vehicle’s state is received the corre-
sponding mobility submodule—either Inet or VeinsMobility—is updated as
well. Each Artery car possesses such a mobility submodule that emits a common
update signal. The VehicleMiddleware receives those signals and refreshes,

2The MiXiM project has been discontinued, and its contents have been merged into the INET
Framework. New projects should be based on a recent version of INET instead of MiXiM.

12 Artery: Large Scale Simulation Environment for ITS Applications 379

for instance, the Facilities’ VDP. This also updates the position of the GN router
subsequently, which needs to know its own position for geographical routing.

12.2.1.7 SUMO and TraCI

As Artery evolved it switched from Veins’ re-implementation of the TraCI API to
the official C++ API by the SUMO project. Hence, every SUMO/TraCI feature
supported upstream is also available when using Artery. Artery ships with a copy of
SUMO’ original C++ API at src/traci/sumo.

The coupling on the OMNeT++ side is realized by the traci.Manager mod-
ule located in src/traci/. This manager module is composed of four submodules:

1. Core: essential TraCI life cycle incorporating initialization of the connec-
tion, timing update steps, and finally closing the connection. This module
emits corresponding OMNeT++ signals traci.init, traci.step, and
traci.close. Additionally, it checks if the remote SUMO instance provides
the required TraCI API version.

2. Launcher: helper for establishing Core’s TraCI connection either by connect-
ing to an already running SUMO instance (ConnectLauncher) or launching
a new SUMO process (PosixLauncher). By default, PosixLauncher
starts the SUMO command-line version, but by setting its sumo parameter to
sumo-gui the graphical version can be used as well.

3. Node Manager: controls the life cycle of individual vehicles by inserting,
updating, and removing OMNeT++ modules according to the respective
vehicle state in SUMO. These life cycle events are accompanied by the
OMNeT++ signals traci.node.add, traci.node.update, and
traci.node.remove.

4. Module Mapper: the node manager consults the module mapper which
module type shall be used for a particular vehicle, usually artery.inet.Car
or artery.veins.Car.

Access to the underlying TraCI API is possible either by fetching it directly from
Core::getLiteAPI()or each vehicle’s VehicleController. Extending
functionality is usually easily possible by either listening to one or more of the var-
ious emitted signals or by sub-classing the aforementioned submodules. Except for
traci.Core, the employed traci.Launcher, traci.NodeManager, and
traci.ModuleMapper can be configured by setting the respective typename
OMNeT++ attribute.

12.2.2 Driving Scenario

With this basic knowledge about the internal workings of Artery from the previous
section, we can start creating the scenario to experiment with our envisioned police

380 R. Riebl et al.

service. For this purpose, we create a new scenario directory scenarios/highway-
police along the already existing scenarios. We are going to fill this directory
gradually in the rest of this section.

12.2.2.1 SUMO Roads and Traffic

First of all, we need some streets where vehicles can drive along. Creating maps
and associated traffic demand is an art of its own and would burst this chapter. For
experimenting with our service giving a police car space for overtaking, we create
only a very simple highway segment. You can do this with the help of SUMO’s
netedit or even entirely by hand as shown in Listing 12.3 that creates a single-
direction highway with three lanes of 1 km length. Please note the custom map
projection (projParameter attribute) for converting Cartesian coordinates (x,
y) to geodetic coordinates (longitude, latitude).

Listing 12.3 Road network (highway.net.xml)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <net version="0.27" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/net_file.xsd">
3
4 <location netOffset="0.00,0.00" convBoundary="0.00,0.00,1000.00,0.00"

origBoundary="-10000000000,-10000000000,10000000000,10000000000"
projParameter="+proj=tmerc +ellps=WGS84 +datum=WGS84 +lat_0=49 +lon_0
=11 +units=m +no_defs"/>

5
6 <edge id="hw0" from="hwStart" to="hwEnd" priority="1" type="highway">
7 <lane id="hw0_0" index="0" speed="33.33" length="1000.00" width="3.00"

shape="1000.00,7.75 0.00,7.75"/>
8 <lane id="hw0_1" index="1" speed="33.33" length="1000.00" width="3.00"

shape="1000.00,4.65 0.00,4.65"/>
9 <lane id="hw0_2" index="2" speed="33.33" length="1000.00" width="3.00"

shape="1000.00,1.55 0.00,1.55"/>
10 </edge>
11
12 <junction id="hwEnd" type="dead_end" x="0.00" y="0.00" incLanes="hw0_0 hw0_1

hw0_2" intLanes="" shape="0.00,9.25 0.00,0.05"/>
13 <junction id="hwStart" type="dead_end" x="1000.00" y="0.00" incLanes=""

intLanes="" shape="1000.00,0.05 1000.00,9.25"/>
14 </net>

As a second step, vehicles are added to the scenario as shown in Listing 12.4.
All of them follow the same route route0, which is the only possible one on this
simple map. Three ordinary passenger cars start immediately with their maximum
speed, each on its own lane. The police car is inserted 3 s later on the left-most lane.
This police car is allowed to exceed speed limits by 50% (speedFactor). The
passenger cars are willing to keep right (lcKeepRight) if possible.3

3Correct lcKeepRight behavior requires SUMO 0.31 or newer, otherwise vehicles keep their
lanes.

12 Artery: Large Scale Simulation Environment for ITS Applications 381

Listing 12.4 Vehicle routes (highway.rou.xml)

1 <?xml version="1.0"?>
2 <routes>
3 <vType id="car" vClass="passenger" length="5" maxSpeed="50" lcKeepRight="10"

color="0,0.67,0"/>
4 <vType id="police" vClass="authority" length="5" maxSpeed="60" speedFactor="

1.5" minGap="0.5" color="0,0,1"/>
5 <route id="route0" edges="hw0"/>
6 <vehicle id="car0" type="car" route="route0" depart="0" departLane="free"

departSpeed="max"/>
7 <vehicle id="car1" type="car" route="route0" depart="0" departLane="free"

departSpeed="max"/>
8 <vehicle id="car2" type="car" route="route0" depart="0" departLane="free"

departSpeed="max"/>
9 <vehicle id="police0" type="police" route="route0" depart="3" departLane="2"

departSpeed="max"/>
10 </routes>

Both, the road network and traffic demand, are combined to a scenario via the
SUMO configuration file in Listing 12.5. This configuration references the files
highway.net.xml and highway.rou.xml and sets up SUMO’s timing. Simulations
using this configuration start at second zero and time will progress in 0.1 s steps.

Listing 12.5 SUMO configuration (highway.sumocfg)

1 <?xml version="1.0" encoding="utf-8"?>
2 <configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://sumo.sf.net/xsd/sumoConfiguration.
xsd">

3 <input>
4 <net-file value="highway.net.xml"/>
5 <route-files value="highway.rou.xml"/>
6 </input>
7 <time>
8 <begin value="0"/>
9 <step-length value="0.1"/>

10 </time>
11 </configuration>

You can run this scenario now standalone with SUMO via File→Open Simula-
tion and observe what happens. The passenger cars drive shoulder to shoulder and
thus block all three lanes. Since the police car is unable to pass them, it has to slow
down. Figure 12.5 shows the start of the standalone simulation.

12.2.2.2 Artery Parameters

V2X communication is now expected to solve this situation. Subsequently,
the police car (SUMO vehicle police0) will be equipped with a special
PoliceService as shown in lines 3–6 in Listing 12.6. All other vehicles except
the police car will be equipped with ClearLaneService, which is going to
react upon messages received from the police. Both services are listening to the
(arbitrarily chosen) port number 8001. The respective services are assigned to
vehicles based on their SUMO vehicle identifier using name pattern filters (lines
5 and 9). Only vehicles matching the given pattern are assigned the respective

382 R. Riebl et al.

Fig. 12.5 Screenshot of SUMO running the created highway scenario (standalone)

service. By adding the attribute match="inverse" the pattern is inverted, i.e.,
only vehicles not matching the pattern are equipped. While the exact vehicle name
is used as a pattern in this example, in fact any regular expression can be used.
For instance, pattern="police.*" would match any vehicle whose name is
starting with police, including police0 but also policeMotorcycle and
so on.

Listing 12.6 Service configuration (services.xml)

1 <?xml version="1.0" encoding="utf-8"?>
2 <services>
3 <service type="PoliceService">
4 <listener port="8001" />
5 <filters><name pattern="police0" /></filters>
6 </service>
7 <service type="ClearLaneService">
8 <listener port="8001" />
9 <filters><name pattern="police0" match="inverse" /></filters>

10 </service>
11 </services>

The configuration in Listing 12.7 is the last piece. With artery.inet.World,
we use a basic Artery network with radio modules derived from INET. Furthermore,
the network’s TraCI manager is advised to launch a separate SUMO process (line 5)
using our previously created SUMO configuration (line 6). By default, Artery only
accepts TraCI connections of the same version as its bundled SUMO API. Setting
*.traci.core.version from default 0 to −1 tells Artery to accept any TraCI
version. Assigning a positive number would enforce exactly this version.

The middleware’s time base is set to 19th March 2018 at 10 a.m., so time 0.0
in OMNeT++ and SUMO refers to this time point. Every 100 ms each middleware
schedules a self-message to call its Middleware::update() and trigger()
of all its services. Last but not least, the services.xml introduced in Listing 12.6 is
referenced.

12 Artery: Large Scale Simulation Environment for ITS Applications 383

Listing 12.7 OMNeT++ configuration (omnetpp.ini)

1 [General]
2 network = artery.inet.World
3
4 *.traci.core.version = -1
5 *.traci.launcher.typename = "PosixLauncher"
6 *.traci.launcher.sumocfg = "highway.sumocfg"
7
8 *.node[*].middleware.updateInterval = 0.1s
9 *.node[*].middleware.datetime = "2018-03-19 10:00:00"

10 *.node[*].middleware.services = xmldoc("services.xml")

12.2.3 Creating Services

The services.xml is already referring to the two new services, PoliceService and
ClearLaneService. Their implementation will now be outlined in this section.

12.2.3.1 Development of Police Vehicle’s Service

First, let us create the police car’s service demanding for a free lane to pass the
other vehicles. Strictly speaking, ETSI standardization of the CA service [2] already
covers this use case by appending an “Emergency Vehicle Container” to CAMs sent
by the police car. As we want to keep things simple in this example, we will instead
design our own OMNeT++ message for educational purposes.

For now, there is only one critical information necessary to be propagated by
the police car: Which lane shall be cleared by other vehicles? A lane can be
uniquely identified in SUMO by a pair of edge name and lane index, so these two
data fields are essential for our PoliceClearLane message. Put the message
definition given in Listing 12.8 in a file named PoliceClearLane.msg next to our
SUMO files, i.e., at scenarios/highway-police. Of course, you can place source
files wherever you find them fitting, e.g., also somewhere in src/artery. For this
tutorial section, however, it is a good idea to keep all custom files together for
the sake of simplicity. This PoliceClearLane message will be transmitted by our
PoliceService, which itself consists of three files: Network Topology Descrip-
tion (NED) module description and C++ source and header files (cf. Listings 12.11
and 12.10, respectively).

Listing 12.8 PoliceClearLane message definition

1 packet PoliceClearLane
2 {
3 string edgeName;
4 int laneIndex;
5 };

384 R. Riebl et al.

The NED module description (cf. Listing 12.9) is fairly short, it only tags the
PoliceServicemodule to be an artery.application.ItsG5Service.

Listing 12.9 Content of the PoliceService.ned file

1 import artery.application.ItsG5Service;
2
3 simple PoliceService like ItsG5Service {}

This relationship between PoliceService and ItsG5Service is also reflected in
C++, hence our PoliceService class inherits from Artery’s ItsG5Service
(see line 6 in Listing 12.10). Two methods of the ItsG5Service are going to
be overridden: trigger() will be used to periodically send out PoliceClear-
Lane messages and initialize() will initialize the mVehicleController
attribute. traci::VehicleController allows us to determine the edge and
lane a vehicle is currently driving on, the information to be included in the sent
messages.

Listing 12.10 Content of the PoliceService.h file

1 #ifndef POLICESERVICE_H_
2 #define POLICESERVICE_H_
3
4 #include "artery/application/ItsG5Service.h"
5
6 class PoliceService : public ItsG5Service
7 {
8 public:
9 void trigger() override;

10
11 protected:
12 void initialize() override;
13
14 private:
15 const traci::VehicleController* mVehicleController = nullptr;
16 };
17 #endif /* POLICESERVICE_H_ */

In line 16 of Listing 12.11, we make use of Facilities and fetch a read-
only reference to the VehicleController. As a general rule, every time
initialize of a service is overridden the original method from the base class has
to be called as well (line 15). In PoliceService::trigger, we first prepare
access to SUMO’s vehicle API (lines 22ff.) and use this vehicle_api to fill
a new PoliceClearLane message (lines 25–27). We make up an arbitrarily chosen
byte length for this message of 40 bytes. Note that those 40 bytes only refer to the
length on application layer, i.e., the total length of the packet will be considerably
longer since every layer adds further headers.

Listing 12.11 Content of the PoliceService.cc file

1 #include "PoliceService.h"
2 #include "police_msgs/PoliceClearLane_m.h"
3 #include "artery/traci/VehicleController.h"
4 #include <vanetza/btp/data_request.hpp>
5 #include <vanetza/dcc/profile.hpp>
6 #include <vanetza/geonet/interface.hpp>

12 Artery: Large Scale Simulation Environment for ITS Applications 385

7
8 using namespace omnetpp;
9 using namespace vanetza;

10
11 Define_Module(PoliceService)
12
13 void PoliceService::initialize()
14 {
15 ItsG5Service::initialize();
16 mVehicleController = &getFacilities().get_const<traci::VehicleController>();
17 }
18
19 void PoliceService::trigger()
20 {
21 Enter_Method("PoliceService trigger");
22 const std::string id = mVehicleController->getVehicleId();
23 auto& vehicle_api = mVehicleController->getLiteAPI().vehicle();
24
25 auto msg = new PoliceClearLane();
26 msg->setEdgeName(vehicle_api.getRoadID(id).c_str());
27 msg->setLaneIndex(vehicle_api.getLaneIndex(id));
28 msg->setByteLength(40);
29
30 btp::DataRequestB req;
31 req.destination_port = host_cast<PoliceService::port_type>(getPortNumber());
32 req.gn.transport_type = geonet::TransportType::SHB;
33 req.gn.traffic_class.tc_id(static_cast<unsigned>(dcc::Profile::DP1));
34 req.gn.communication_profile = geonet::CommunicationProfile::ITS_G5;
35 request(req, msg);
36 }

Lines 30–34 configure a btp::DataRequestB object that controls the
transmission, but is not part of the packet. The BTP destination port is set in line
31 by retrieving the port number defined in services.xml using getPortNumber
provided by Artery. The remaining transmission parameters are hard-coded: the
message is going to be sent via Single-Hop Broadcast (SHB) (like CAMs) and DCC
profile DP1 (like normal DEN Messages (DENMs)). Finally, the message and its
request parameters are passed to the next lower layer (BTP). Now the police car can
tell surrounding vehicles which lane to clear so it can reach its destination faster.

12.2.3.2 Development of Corresponding Reacting Vehicle Service

Though the police car can now express its intention, not much changed because
other vehicles do not react upon police messages yet. Hence, those other vehicles
are equipped with a ClearLaneService which is supposed to handle those messages.
Similar to PoliceService, this services comprises a NED module and C++ code. Its
header file printed in Listing 12.12 should already look quite familiar except for the
indicate(...) method. This method is going to be called whenever a packet is
received at the service’s listening port defined in services.xml.

Listing 12.12 Content of the ClearLaneService.h file

1 #ifndef CLEARLANESERVICE_H_
2 #define CLEARLANESERVICE_H_
3
4 #include "artery/application/ItsG5Service.h"
5

386 R. Riebl et al.

6 class ClearLaneService : public ItsG5Service
7 {
8 protected:
9 void indicate(const vanetza::btp::DataIndication&, omnetpp::cPacket*)

override;
10 void initialize() override;
11
12 private:
13 traci::VehicleController* mVehicleController = nullptr;
14 };
15 #endif /* CLEARLANESERVICE_H_ */

Initialization of the service is almost identical to PoliceService. However, in
ClearLaneService a modifiable VehicleController is retrieved from Facil-
ities because we want to change the vehicle’s behavior by reducing the vehicle
speed when necessary. Necessity to change behavior is checked on reception of
a message in ClearLaneService::indicate(...). This method is called
with two arguments: a btp::DataIndication conveying information about
lower layers’ processing concerning the packet passed as second argument. Initially,
the packet is a generic omnetpp::cPacket so we need to cast it down to the
specific PoliceClearLane message type in line 19. Then, we can read the
message’s content and check if the receiving vehicle is driving on the same edge as
the transmitting police car at all (line 23). If this is the case, those vehicles occupying
a different lane than the police car are going to reduce their speed to a maximum of
25 m/s. By taking this approach, vehicles on the police car’s lane can pass by other
vehicles and change to another lane as soon as there is a suitable gap. In order to
avoid memory leaks, the received message needs to be deleted at the end.

Listing 12.13 Content of the ClearLaneService.cc file

1 #include "ClearLaneService.h"
2 #include "police_msgs/PoliceClearLane_m.h"
3 #include "artery/traci/VehicleController.h"
4
5 using namespace omnetpp;
6 using namespace vanetza;
7
8 Define_Module(ClearLaneService)
9

10 void ClearLaneService::initialize()
11 {
12 ItsG5Service::initialize();
13 mVehicleController = &getFacilities().
14 get_mutable<traci::VehicleController>();
15 }
16
17 void ClearLaneService::indicate(const vanetza::btp::DataIndication& ind,

omnetpp::cPacket* packet)
18 {
19 Enter_Method("ClearLaneService indicate");
20 auto clearLaneMessage = check_and_cast<const PoliceClearLane*>(packet);
21
22 const std::string id = mVehicleController->getVehicleId();
23 auto& vehicle_api = mVehicleController->getLiteAPI().vehicle();
24 if (vehicle_api.getRoadID(id) == clearLaneMessage->getEdgeName()) {

12 Artery: Large Scale Simulation Environment for ITS Applications 387

25 if (vehicle_api.getLaneIndex(id) != clearLaneMessage->getLaneIndex()) {
26 mVehicleController->setMaxSpeed(25 * units::si::meter_per_second);
27 }
28 }
29 delete clearLaneMessage;
30 }

12.2.4 Run Simulation

With the code for our PoliceService and ClearLaneService readily
placed in scenarios/highway-police one thing is left before running the simulation:
we need to advise the build system to consider our files when building Artery. For
this purpose, we place a CMakeLists.txt next to our other files that contain the
instructions for Artery’s build system based on CMake.

In line 1 in Listing 12.14, a new feature named police is added to Artery
consisting of the two C++ source files of the previously created services. This
feature depends on the PoliceClearLane message, so we tell CMake to generate
C++ code from the message file. The generated code will be placed in a police_msgs
folder, identical to the #include in line 2 of Listings 12.13 and 12.11. The last
line adds so-called run targets for this exemplary scenario (named highway_police)
to the build system.

Listing 12.14 Content of CMakeLists.txt in the highway-police scenario

1 add_artery_feature(police ClearLaneService.cc PoliceService.cc)
2 generate_opp_message(PoliceClearLane.msg TARGET police DIRECTORY police_msgs)
3 add_opp_run(highway_police NED_FOLDERS ${CMAKE_CURRENT_SOURCE_DIR})

Let us run the scenario: go to the build directory of Artery (usually build in the
Artery root directory) and call make run_highway_police from there. The Makefile
generated by CMake will build Artery along with the added C++ sources. When
done, opp_run will be invoked to start OMNeT++ with the created highway_police
scenario. Since scenarios/highway-police includes NED files, we append this folder
to the run target’s NED folders. The build system will automatically determine the
NED folders of all dependencies (e.g., Artery core, INET, Veins, etc.) and pass them
to opp_run. You can find more details about run targets’ features in the chapter
appendix, including options for debugging and locating memory leaks.

Congratulations, you just ran your first custom Artery scenario! Now try to
make the SUMO Graphical User Interface (GUI) visible as well. Hint: look for
the *.traci.launcher.sumo parameter and set it in omnetpp.ini to sumo-
gui. Compared to running the highway.sumocfg scenario standalone in SUMO, you
should notice that the police car is able to pass the three vehicles in our OMNeT++
simulation effortlessly. Mission accomplished!

388 R. Riebl et al.

12.2.5 Data Analysis

While you can run and watch simulations already, usually one is interested in the
data generated by OMNeT++. In principle, Artery outputs data the same way as
other OMNeT++ models. Processing data after simulation, however, may require
specific steps due to VANET characteristics. We therefore present some ideas how
to analyze gathered data with a focus on filtering and aggregating data regarding
time and space.

Configuring Data Recording There are numerous tools available which have not
been designed for OMNeT++ specifically. Thus, it is often beneficial to record
OMNeT++ data in SQLite databases instead of OMNeT++’s custom file format.
Since OMNeT++ 5.1, you can advise OMNeT++ to record vectors and scalars using
SQLite by the omnetpp.ini settings given in Listing 12.15.

Listing 12.15 Activating SQLite-based recording

1 outputvectormanager-class="omnetpp::envir::SqliteOutputVectorManager"
2 outputscalarmanager-class="omnetpp::envir::SqliteOutputScalarManager"

Beside configuring how data is recorded, you can also control what is recorded.
Especially long-running simulations with hundreds of vehicles may generate several
gigabytes of data. Huge data files, however, can slow down any analysis signif-
icantly. Therefore, it is a good idea to think about the actually required data set
before running large simulations.

OMNeT++ vectors are time series of data so the temporal aspect is inherently
included in any recorded vector file. Often we also need to know the position of
vehicles for data evaluation, e.g., we may want to analyze only data of vehicles
while they are in certain region of interest. The module artery.inet.Car is
already prepared to record the position information from its mobility submodule: it
defines two @statistic vectors named posX and posY which only need to be
enabled in omnetpp.ini (cf. Listing 12.16).

Listing 12.16 Enable artery.inet.Car position recording

1 *.node[*].posX.result-recording-modes = vector
2 *.node[*].posY.result-recording-modes = vector

From previous sections you have learned that Artery makes heavy use of
OMNeT++ signals. For example, artery.application.CaService emits
a CaObject conveying the full CAM whenever one has been generated (signal
CamSent) or received (signal CamReceived). Recording of some CAM data
fields, such as the included station identifier or its differential timestamp, is already
prepared by accompanying @statistic parameters in CaService.ned. Please
refer to Artery’s NED files for a comprehensive overview of all available signals.
Furthermore, in the source file src/artery/application/CaObject.cc you can find
examples of OMNeT++ result filters that demonstrate how to extract information
from objects like CaObject.

12 Artery: Large Scale Simulation Environment for ITS Applications 389

Post-processing With simulation data stored in SQLite databases, you can process
this data with R dplyr4 or Python pandas,5 among others. A full post-processing
example based on R can be found at scenarios/car2car-grid/tools.R. Listing 12.17
highlights some essential fragments which may be useful for your post-processing
needs with a few adaptations.

Lines 1–6 load the vector database file (your_sim.vec in this example), enable
some additional SQL features, and tell SQLite to store temporary tables in memory
for maximum speed. The tables vector and vectordata written by OMNeT++ are
accessible via R variables vec and vecdata, respectively. Since dealing with
vector names in one table and actual recorded vector data in another table is
cumbersome, both tables are joined in a temporary table vt. Names and data
entries from each table are matched via the common vectorId table column in
line 9. Furthermore, the raw simulation time of column simtimeRaw is converted
to floating-point seconds (by default, OMNeT++ SimTime has a time resolution
of picoseconds, i.e., 10−12 s). The collect in line 12 instructs R to load the complete
table content into its memory. If you are not low on memory, you should do this for
best performance.

With all vector data at our hands in vt it is now possible to extract vehicles’
position data (lines 15–18). Having x- and y-coordinates of each vehicle at each
time step in the same row makes position-based filtering easy later on. Hence, we
select those coordinates (line 15 and 16) and join them for equal time and originating
module, i.e., vehicle’s mobility module, into pos.

Since Artery cars are composed of various modules, it also handy to have a
common attribute which distinguishes modules that belong to the same vehicle.
You can derive such an exemplary node attribute from the module path, for
instance: World.node[3].middleware and World.node[3].mobility
belong both to node 3. For each distinct module path we calculate this node attribute
in lines 21ff. and then have a lookup-up table nodes which can be used to quickly
determine the node number for each module. This is demonstrated in line 25 where
vt3 contains only vectors belonging to the vehicle node[3].

Listing 12.17 Post-processing with R dplyr

1 # open OMNeT++ database and its vector tables
2 db <- DBI::dbConnect(RSQLite::SQLite(), ’your_sim.vec’)
3 RSQLite::initExtension(db)
4 DBI::dbSenqQuery(db, ’PRAGMA temp_store = MEMORY;’)
5 vec <- tbl(db, ’vector’)
6 vecdata <- tbl(db, ’vectordata’)
7
8 # join vec and vecdata to a table containing vector names and its data
9 vt <- left_join(vec, vecdata, by = ’vectorId’) %>%

10 mutate(simtime = simtimeRaw / 10^12) %>%
11 select(name = vectorName, module = moduleName, simtime, value) %>%
12 collect(n = Inf)
13

4R dplyr package website: https://dplyr.tidyverse.org.
5Python data analysis library pandas website: https://pandas.pydata.org/.

https://dplyr.tidyverse.org
https://pandas.pydata.org/

390 R. Riebl et al.

14 # build position table of nodes, i.e. (x, y) in columns
15 posx <- vt %>% filter(name == ’posX:vector’)
16 posy <- vt %>% filter(name == ’posY:vector’)
17 pos <- inner_join(posx, posy, by = c(’simtime’, ’module’)) %>%
18 select(module, simtime, x = value.x, y = value.y)
19
20 # extract node number N from "*.node[N].*" strings as common vehicle identifier
21 nodes <- vt %>% distinct(module) %>% rowwise() %>%
22 mutate(node = as.integer(str_match(module, ".*node\\[([0-9]+)\\].*")[1,2]))
23
24 # all vectors belonging to "node[3]"
25 vt3 <- left_join(vt, nodes, by = ’module’) %>% filter(node == 3)
26
27 # all vectors of nodes within a rectangle
28 pos_roi <- left_join(pos, nodes, by = ’module’) %>%
29 filter(x > 20, x < 300, y > 100, y < 400) %>% select(-module)
30 vt_nodes <- left_join(vt, nodes, by = ’module’)
31 vt_roi <- inner_join(pos_roi, vt_nodes, by = c(’simtime’, ’node’))

The remaining lines of Listing 12.17 filter vector data from vt depending on
vehicle positions. vt_roi contains only data from vehicles while they are within
a defined Region of Interest (ROI), in this case the rectangle with corner points at
(20,100) and (300,400). Of course, there are many more nifty tools available with
R and dplyr not covered here, e.g., aggregating columns by some criteria using
group_by and summarize. You should have grasped some ideas how to process
your own simulation data, though.

12.3 Local Perception Sensors

Now that you know how to run a basic simulation using your own modules and
analyze the generated result files, you may start developing your own simulations.
Primarily, Artery focuses on the development and the analysis of applications lever-
aging inter-vehicle communications. However, many connected vehicle applications
incorporate further vehicle features such as sensor data. Typical examples of such
applications are Cooperative Adaptive Cruise Control (CACC) or platooning.

Assume that you would like to analyze various aspects of CACC in more detail—
quite soon, you would realize that a CACC system depends on two components:
the plain Adaptive Cruise Control (ACC) component as well as the connectivity
component. Integrating the communication aspects into your CACC application
should be simple enough with Artery, as we have just shown in Sect. 12.2. So far,
you do not know about the perception of other vehicles without communication yet,
a key aspect when implementing the ACC component. In today’s vehicles, this is
usually achieved by mounting some type of local perception sensor, such as a radar,
camera, or laser scanner on the vehicle. These sensors perceive the surrounding
environment and processing software extracts information about detected objects,
such as distance and speed of another vehicle.

Luckily, an extension to Artery provides a flexible architecture to equip vehicles
with one or multiple local perception sensors. Since CACC and platooning appli-
cations are research topics on their own, we will opt for a simplified example to

12 Artery: Large Scale Simulation Environment for ITS Applications 391

Fig. 12.6 Extended simulation scenario: the police car (0) is equipped with a radar sensor for
detecting vehicles ahead

demonstrate usage of perception sensors with Artery. We will hence introduce the
components of the local perception sensors’ architecture by adapting the police car’s
message rate depending on the presence of other vehicles in front of it.

Up to now, the PoliceService emits a warning message at each update
interval, i.e., each trigger occurrence. This is an obvious waste of channel
resources if no vehicle is in front of the police car. Hence, we can reduce resource
usage by sending only at every fifth trigger in this case. Otherwise, when vehicles are
detected in front, the police car still urgently demands for a clear lane like before.
Though we could rely on CA messages to check for other vehicles’ presence, we
want to use a radar sensor mounted at the police car’s front bumper as depicted in
Fig. 12.6.

In the following subsections, we will guide you through the required extension
to the PoliceService to make use of local perception sensors. Section 12.3.1
briefly provides an overview on the various components that Artery provides to
realize simulation of local perception sensors. We will then tie those components to
the previously introduced World and Car modules in Sect. 12.3.2. It is then time
to add a few more lines to the PoliceService, as explained in Sect. 12.2.3.1.

12.3.1 Perception Architecture

At the core of Artery’s Local Perception Sensor extension stands the idea of a so-
called Environment Model. This model can be interpreted as a database for each
vehicle, containing the actual information about detected objects. In the following,
we refer to other detected traffic participants as objects.

You need to know three types of components that constitute the foundation of
local perception for simulated vehicles:

1. Global Environment Model keeps track of all dynamic objects (vehicles) as well
as static obstacles (e.g., buildings) on the whole map.

2. Local Environment Model tracks a subset of objects visible to the respective
vehicle hosting this module.

392 R. Riebl et al.

Fig. 12.7 Interaction between Artery’s perception components

3. Sensor modules define a vehicle’s perception capabilities such as the observable
field-of-view. Sensors are closely linked to their sibling Local Environment
Model.

Figure 12.7 depicts the high-level interactions between those components. The
following paragraphs provide a condensed overview on the internal workings of
each. A detailed description is available in [6]. All sources of Artery’s Environment
Model are co-located in the src/artery/envmod directory. By setting the CMake
build variable WITH_ENVMOD to ON, this directory will be included in the build
process and thus enable the Environment Model extension.

12.3.1.1 Local Perception Sensor

As an application developer, the local perception sensors are probably the most
important modules that you need to be aware of. Depending on the configured
sensor set for a particular vehicle, objects may be detected or not. Configuring
the sensor sets is very similar to the configuration of services you already know
from Sect. 12.2.1.2 and Listing 12.6. This sensor configuration is often stored in
an XML file named sensors.xml along with services.xml. You can make use of
the same filters to equip only a subset of vehicles with particular sensors as we
have introduced in Listing 12.6. Additionally, each sensor’s visualization options
can be configured in this XML file. These options control if the sensor’s cone,
detected objects and obstacles, and corresponding line-of-sights shall be drawn
in the OMNeT++ GUI. We provide a detailed step-by-step tutorial including
configuration options in Sect. 12.3.2.

12 Artery: Large Scale Simulation Environment for ITS Applications 393

Each perception sensor is an OMNeT++ module derived from the C++ interface
class artery::Sensor. This interface exhibits only a single setter method
setVisualization which is called during initialization to pass the aforemen-
tioned visualization options. We recommend to use artery::BaseSensor as
base class for your custom sensor class relieving you from dealing with this aspect.
However, there are several getter methods you are required to implement defining
the sensor’s characteristics:

• FieldOfView defines the sensor’s cone in terms of range and opening angle.
• SensorPosition specifies the logical mounting position relative to the

vehicle’s body. The sensor’s field-of-view will be moved and rotated by the
Environment Model according to the host vehicle’s outline, position, and heading.

• A validity period determining the maximum time an object is still considered to
be detected even when it is currently shadowed by another object/obstacle or has
left the sensor’s field of view.

• A string categorizing the sensor type which may be used for grouping and
filtering sensors, e.g., all types of radar sensors return a common “Radar”
category.

While these getters describe a sensor’s properties, its behavior is realized by its
measurement method. When vehicles have moved a SUMO step onward, this
method gets called for each sensor (see Fig. 12.7 and Sect. 12.3.1.3). It is then this
method’s duty to check which objects this sensor can perceive currently. Each sensor
reports its list of perceived objects and obstacles to the vehicle’s Local Environment
Model (LEM) (see Sect. 12.3.1.2).

Artery comes with a set of predefined sensors. A RadarSensor class is used
as base of a front and rear-radar sensor, respectively. They differ only in their
SensorPosition. From a functional perspective, one may treat information
received via V2X communications also as objects. Hence, the CamSensor utilizes
received CA messages and adds the transmitting vehicles to the list of perceived
objects. For such purposes, the Environment Model manages several identifiers for
each object in a central IdentityRegistry module. While radar sensors use
the SUMO vehicle name to distinguish objects, this SUMO identifier is unknown
on reception of a CAM and vice versa. Still, an object’s unique Identity can be
looked up via this registry in an easy fashion.

12.3.1.2 Local Environment Model

The LEM is the single point of contact for your application with Artery’s perception
components. Whenever object information is available, the vehicle’s perception
sensors (see Sect. 12.3.1.1) report updated measurements which are stored and
fused in the LEM. Note that data fusion is performed by associating objects’
identifiers such as SUMO names, ITS station IDs, and network addresses. As
such, the LEM represents a database within each vehicle, tracking the currently
detected objects in so-called object lists. These object lists refer to the actual

394 R. Riebl et al.

EnvironmentModelObject via a std::weak_ptr, i.e., there is only one
common object representing a particular vehicle. All these objects are managed by
the Global Environment Model (GEM) and LEMs just use this pointer type to keep
resource usage low.

During initialization, the LEM looks up the GEM instance, registers it and itself
at the middleware’s Facilities. In a second step, it creates the local perception sen-
sors for this vehicle according to the sensor XML configuration, e.g., sensors.xml.
Due to the flexible Facilities there is no need to “hardwire” any Environment Model
components. Instead, an Artery Service can look these up via Facilities and access
them when required. We will make use of the object list provided by the LEM in
Sect. 12.2.3.1.

Though EnvironmentModelObjects and thus commonly observable
object properties (outline, position, etc.) are shared by GEM and LEMs, each
LEM maintains individual tracking information. These tracking data comprise the
first and last time point this object has been detected by a specific local perception
sensor. Thus, an application may, for example, only consider objects tracked by at
least two distinct sensors further on. An object is removed from LEM when it has
not been detected by any sensor for the respective sensor’s validity period.

Object detection is performed each time SUMO updates the vehicles’ state. For
this purpose, each LEM subscribes to the EnvironmentModel.refresh signal
emitted by the GEM. When this signal occurs, LEMs iterate over all their local
sensors and invoke the respective measurement method, as depicted in Fig. 12.7.
Consequently, the object states in each LEM are updated by the accompanying
sensors. Regardless of the vehicle and sensor type, the list of detected objects is
generated by consulting the GEM.

12.3.1.3 Global Environment Model

The backbone of Artery’s perception architecture is the GEM. What the LEM
is to an application developer, the GEM is to the LEM: the single-point of
contact of each vehicle’s environment model. Being a global component within
the simulation model, it reacts upon traci.step OMNeT++ signals which
are emitted whenever SUMO performs a simulation step. The rationale behind
monitoring SUMO updates is that vehicle (object) states only need to be updated
whenever the traffic simulation provides new data. Between two consecutive SUMO
steps the vehicle’s physical state does not change at all and the sensor’s environment
therefore does not change either.

The GEM maintains the global view on all (potentially moving) objects and static
obstacles such as buildings. These obstacles are retrieved once from the SUMO map
as soon as the TraCI connection is established. Though obstacles are never included
in object lists, they may obstruct line-of-sights between sensors and objects, e.g.,
vehicles at a closed intersection.

12 Artery: Large Scale Simulation Environment for ITS Applications 395

While obstacles are readily returned as polygons by SUMO, the position of each
vehicle corresponds just to the middle of its front bumper. Consequently, the GEM
has to create and maintain a geometric representation of each vehicle. This geomet-
ric representation is the vehicle’s outline depending on the vehicle’s length, width,
position, and orientation. Since positions and orientations may change after every
SUMO update, the objects need to get updated accordingly in GEM’s database.
An updated database is then signaled by EnvironmentModel.refresh. This
signal triggers all vehicle sensors to perform measurements again, as depicted in
Fig. 12.7.

Whenever a sensor mounted to a vehicle performs a measurement, it queries
the GEM for all objects within the sensors configured field-of-view. The GEM
then performs line-of-sight checks for these objects eliminating objects from the
result set shadowed by another vehicle or an obstacle between the sensor’s origin
and this object. It should be noted that the GEM is a construct that can only exist
in a simulation environment. However, it allows for a more efficient, centralized
representation of objects. In summary, the GEM maintains the physical state of the
whole map whereas LEMs add the local “perspective” on this state.

12.3.1.4 Ideas for Customizations

Before diving into the implementation of local perception sensors, let us take a
moment to review the concept. As stated above, local perception sensors in Artery
can be attached to each vehicle, specifying a mounting position and a sensor type.
Multiple sensors can be added to vehicles, serving applications relying on side
sensors such as blind spot detection and alike. Each sensor contributes information
to an LEM, a database representing an abstract enumeration of detected objects in
each vehicle’s vicinity. Even object information received via V2X communication
can be added to the environment model by special sensor types. Within the simula-
tion environment, the central information base is the GEM, acting as the backbone
of the perception system. The GEM maintains a database containing a geometric
representation of all vehicles currently in the simulation. At each simulation step, the
database is updated and provides current line-of-sight information for each sensor to
every vehicle. This speeds up the calculation process, as a central instance calculates
current visibility conditions, rather than every instance of an LEM.

Nevertheless, Artery’s perception system is based on several simplifying assump-
tions, leaving ample space for further extensions and customization.

Prediction Artery does currently not provide object prediction mechanisms.
Instead, object information are only updated at each SUMO simulation step. This
is, in most cases, a reasonable simplification facing a microscopic traffic simulation,
where vehicle states do not change between simulation steps. However, if messages
including sensor objects are going to be transmitted at a considerably higher rate
than SUMO updates occur, it may become necessary to predict intermediate object
changes.

396 R. Riebl et al.

Noise Positions in Artery (and SUMO) are always “perfect,” i.e., as accurate
as numerically representable. Hence, the current sensor implementations provide
exact actual object information, as all state variables can be computed from
simulation ground-truth data. In reality, every sensor is subjected to measurement
errors, leading to inaccuracies that have to be accounted for. Due to the modular
architecture of the environment model, sensor noise could be integrated into the
sensor model itself.

Fusion Combining several measurements and even sensors, the area of sensor
fusion becomes even more relevant [8, 9]. Artery provides a very simplified
fusion mechanism, associating measurements based on know vehicle IDs. In
reality, vehicles do not exhibit a unique ID that can be measured by a perception
sensor—opening the field of data fusion based on object features and predictions.
Intentionally ignoring those IDs in favor of physical properties such as vehicle
dimensions, one may investigate sensor fusion algorithms using Artery.

12.3.2 Extending the Model to Use Local Perception Sensors

Let us now use local perception sensors in our extended scenario depicted in
Fig. 12.6. We want to adapt the rate at which PoliceClearLane messages
are disseminated: the highest rate when the police car detects other vehicles
ahead, a reduced rate otherwise. Using Artery’s perception capabilities requires
a few changes to the existing scenario artery.inet.World which we used
before (see Listing 12.18). Inheriting the original scenario, we have to add the
GlobalEnvironmentModel as well as the IdentityRegistry which is
the central database behind the perception system. Vehicles register their identifiers,
i.e., their SUMO name, ETSI ITS station ID, and GeoNetworking address, so it
becomes easy to determine if you are dealing with the same vehicle though you
know only one of its identifiers.

Listing 12.18 Updated World.ned file for Artery’s perception components

1 package artery.envmod;
2
3 import artery.envmod.GlobalEnvironmentModel;
4 import artery.envmod.LocalEnvironmentModel;
5 import artery.inet.World;
6 import artery.utility.IdentityRegistry;
7
8 network World extends artery.inet.World
9 {

10 parameters:
11 **.globalEnvironmentModule = default("environmentModel");
12
13 submodules:
14 environmentModel: GlobalEnvironmentModel {
15 parameters: @display("p=140,20");
16 }
17
18 idRegistry: IdentityRegistry {

12 Artery: Large Scale Simulation Environment for ITS Applications 397

19 parameters: @display("p=180,20");
20 }
21 }

Gathering local sensor data is achieved by the LocalEnvironmentModel,
added to each vehicle node. You can either use the bundled artery.envmod.Car
or derive your own vehicle module type similar to Listing 12.19. Just make sure
your custom vehicle also possesses a middleware module, which is a prerequisite.

Listing 12.19 Updated Car.ned file for Artery’s perception components

1 package artery.envmod;
2
3 import artery.envmod.LocalEnvironmentModel;
4 import artery.inet.Car;
5
6 module Car extends artery.inet.Car
7 {
8 submodules:
9 environmentModel: LocalEnvironmentModel {

10 @display("p=214,57");
11 middlewareModule = default(".middleware");
12 }
13 }

In the next step, we need to define that only the police vehicle should be
equipped with a front-facing radar sensor. Create a sensors.xml file like the one in
Listing 12.20. Notice how we are using the same filter as used in services.xml. The
visualization parameters are optional and may be interesting in case you would like
to visualize the perception sensors which may be helpful for debugging. Figure 12.8
shows the drawn sensor cones, line-of-sights, and detected objects in the respective
cones influenced by these settings.

Listing 12.20 Sensor configuration (sensors.xml)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <sensors>
3 <sensor type="artery.envmod.sensor.FrontRadar">
4 <visualization>
5 <showObjectsInSensorRange value="true" />
6 <showObstaclesInSensorRange value="false" />
7 <showSensorCone value="true" />
8 <showLineOfSight value="true" />
9 </visualization>

10 </sensor>
11 </sensors>

Let us review the changes that we need to make to the simulation configuration.
We amend the original omnetpp.ini from Listing 12.7 by an additional configuration
section envmod as given by Listing 12.21. For the most part, we simply put the
previously created customizations into place. The last two lines configure the shape
of the police car’s radar sensor to approximate a long-range radar with a narrow
opening angle of 20◦. Since it is a front radar, any other vehicle within ±10◦ relative
to the police car’s longitudinal axis and not farther than 200 m can be detected.

398 R. Riebl et al.

Fig. 12.8 Canvas of GlobalEnvironmentModel with line-of-sight checks

Listing 12.21 OMNeT++ configuration (extension of Listing 12.7)

1 [Config envmod]
2 network = artery.envmod.World
3 *.traci.mapper.vehicleType = "artery.envmod.Car"
4 *.node[*].middleware.services = xmldoc("services-envmod.xml")
5 *.node[*].environmentModel.sensors = xmldoc("sensors.xml")
6 *.node[4].environmentModel.FrontRadar.fovRange = 200.0 m
7 *.node[4].environmentModel.FrontRadar.fovAngle = 20.0

We updated the simulation network to the updated artery.envmod.World
from Listing 12.18. Also notice that instead of using Artery’s default car, we
are now using the extended car type artery.envmod.Car which extends the
default car with the LEM. The sensor configuration sensors.xml is provided to the
environmentModel module and we also prepared our updated configuration to
load an alternative set of Artery services, listed in services-envmod.xml. This file is
identical to Listing 12.6 except it refers to PoliceServiceEnvmod instead of
the plain PoliceService.

12.3.3 Extending the PoliceService Application

Only a few minor changes to the original PoliceService are necessary to
emit ClearLaneMessages at a high message rate only if another vehicle
has been spotted. Obviously, we need to fetch a reference to the LEM during
initialization (line 11 in Listing 12.22). This reference is then used when evalu-
ating the service’s trigger invocation: If the police car’s environment model
knows about at least one object from its sensors, it will call the base class’
PoliceService::trigger. Otherwise, the base class’ trigger is only called
every fifth time. This is controlled by the skippedTrigger variable counting
how often our customized trigger did not invoke the base class.

12 Artery: Large Scale Simulation Environment for ITS Applications 399

Listing 12.22 PoliceServiceEnvmod implementation

1 #include "PoliceServiceEnvmod.h"
2 #include "artery/envmod/LocalEnvironmentModel.h"
3 using namespace omnetpp;
4 Define_Module(PoliceServiceEnvmod)
5
6 void PoliceServiceEnvmod::initialize()
7 {
8 PoliceService::initialize();
9 localEnvmod = &getFacilities().get_const<artery::LocalEnvironmentModel>();

10 skippedTrigger = 0;
11 }
12
13 void PoliceServiceEnvmod::trigger()
14 {
15 Enter_Method("PoliceServiceEnvmod trigger");
16 const auto& objects = localEnvmod->allObjects();
17 if (objects.size() > 0 || skippedTrigger >= 4) {
18 PoliceService::trigger();
19 skippedTrigger = 0;
20 } else {
21 ++skippedTrigger;
22 }
23 }

12.4 Scripting for Dynamically Evolving Scenarios

Besides the regular information exchange between vehicles, which is achieved by
sending CA messages and beacons, ITS aims for distributing information about
various incidents. Therefore, there is a specific message type called DEN Message
(DENM) that is generated when such an event was spotted by a vehicle.

Various types of incidents exist, like dangerous weather conditions or accidents,
which should be distributed upon detection. In a common traffic scenario simulated
by SUMO those events either do not exist or are not modeled easily. Modeling them
directly in C++ code is not favorable either as those DEN use cases tend to vary a lot
(comparable to SUMO scenarios). Hence, Artery provides a Python-based scripting
interface called Storyboard for modeling those traffic situations.

12.4.1 Storyboard Concept

To model a specific traffic situation (hereafter called Story) two main components
are involved as presented in Fig. 12.9. On the one hand, there are Triggering
Conditions. They define when and on which car a certain story becomes active. On
the other hand, there are Effects describing what happens after a story became active.
The Storyboard evaluates the conditions for the simulated vehicles periodically and

400 R. Riebl et al.

Fig. 12.9 Storyboard mechanism

Fig. 12.10 Condition tree with three layers

applies the effects accordingly. For example: if one wants to model an adverse bad
weather condition in a specific area, one could define an Area Condition for the
affected map region. In addition, a Speed Effect could be used as the associated
story effect forcing all vehicles to slow down while driving in this area.

Since not every story is as straightforward as the aforementioned one, various
triggering conditions as well as effects can be combined. Conditions can be linked
using And Conditions as well as Or Conditions resulting in an arbitrary deep
condition tree. Figure 12.10 shows an example of a condition tree created by
combining four conditions using And Conditions and an Or Condition.

In this particular example, effects are applied to a vehicle when it enters a
dedicated area (Area) within a defined time span (Time) but only if it has a certain
SUMO identifier (Name) or exceeds a specific velocity (Speed). After the condition
becomes true, various effects can be applied ranging from speed changes to emission
of OMNeT++ signals. A full list of bundled conditions and effects is presented in
Tables 12.1 and 12.2. Extending those is as easy as sub-classing the respective base
class and adding a small Python binding to storyboard/Binding.cc.

12 Artery: Large Scale Simulation Environment for ITS Applications 401

Table 12.1 List of available triggering conditions

Condition Description

AndCondition Combines two conditions using the logic operator AND

OrCondition Combines two conditions using the logic operator OR

CarSetCondition Selects a subset of all cars based on SUMO names

LimitCondition Evaluates to true only for the first N vehicles. Because of
lazy evaluation of condition trees, the first N-evaluated
vehicles are not the first N-simulated vehicles necessarily

PolygonCondition Checks if vehicle positions are inside a polygon

SpeedConditionGreater,
SpeedConditionLess

Becomes true if a vehicle drives faster or slower than the
defined velocity

SpeedDifferenceConditionFaster,
SpeedDifferenceConditionSlower

Triggers if a speed difference between vehicles is exceeded.
Effects can access the corresponding list of vehicles

TimeCondition Used to specify the time in which the story is active

TtcCondition Becomes true if the TTC between two vehicle undercuts a
limit (depends on speed and predicted path)

Table 12.2 List of available effects

Effect Description

SpeedEffect Changes the speed of affected vehicles while the story is active

StopEffect Stops the vehicle entirely while the story is active

SignalEffect Emits an OMNeT++ signal (StoryboardSignal) at the vehicle’s middleware.
StoryboardSignal transports the defined string

12.4.2 Dynamic Activation of Police Service

In Sect. 12.2, we have created a rather static scenario: while the vehicles are
changing lanes quite dynamically, the external circumstances are rather static
because the driver’s intentions are fixed. To put it straight, the police car is always
in hurry though even the most courageous policeman will not be on a mission all
the time. So, let us leverage the Storyboard to add some salt to this scenario: instead
of sending out PoliceClearLane messages right from the start, we assume the police
car receives a call during the simulation which requires it to move faster.

Like mentioned before, stories can be created using a Python script that is
loaded and executed by the OMNeT++ Storyboard module. Listing 12.23
is one proposal to virtually turn on the police car’s siren after 10 s. Two con-
ditions are combined via an AndCondition so only if both are true the
story’s signalEffect is applied. The former timeCondition limits the
story to the time window starting at OMNeT++ simulation time 10 s. The latter
carSetCondition selects one particular vehicle, the police0. Consequently,
the SignalEffect emits a StoryboardSignal at t = 10 s in police0’s
middleware to which a modified PoliceService can be subscribed.

402 R. Riebl et al.

Listing 12.23 Example storyboard script from the story.py file

1 import storyboard
2 import timeline
3
4 def createStories(board):
5 # condition triggering after 10 simulated seconds
6 timeCondition = storyboard.TimeCondition(timeline.seconds(10))
7 # select police car
8 carSetCondition = storyboard.CarSetCondition("police0")
9 # create signal effect

10 signalEffect = storyboard.SignalEffect("siren on")
11 # combine conditions
12 condition = storyboard.AndCondition(timeCondition, carSetCondition)
13 # create story by linking effect and conditions together
14 story = storyboard.Story(condition, [signalEffect])
15 # register story at storyboard
16 board.registerStory(story)

The modifications to PoliceService are minor and can be implemented
in the original source code. Just to keep the original code untouched, we
created a derived PoliceServiceStoryboard module which highlights
the changes related to the Storyboard. As Listing 12.24 shows, the original
initialize and trigger methods from the PoliceService base
class are reused. During initialization the extended service subscribes to the
StoryboardSignal and disables its siren as indicated by its member attribute
activatedSiren. Only if the activatedSiren attribute is true the
original PoliceService::trigger is invoked to transmit the recurring
PoliceClearLane message. This internal flag turns true as soon as the
matching Storyboard signal is received by the receiveSignal method (see
omnetpp::cListener). To ensure that we need to turn on the siren we check
that the received signal is (1) a signal named "StoryboardSignal", (2) of
type StoryboardSignal, and (3) contains the "siren on" string from
Listing 12.23.

Listing 12.24 Police Service prepared for Storyboard interaction

1 #include "PoliceServiceStoryboard.h"
2 #include <artery/application/StoryboardSignal.h>
3 using namespace omnetpp;
4
5 // register signal to receive signal from Storyboard
6 static const simsignal_t storyboardSignal = cComponent::registerSignal("

StoryboardSignal");
7
8 Define_Module(PoliceServiceStoryboard)
9

10 void PoliceServiceStoryboard::initialize()
11 {
12 PoliceService::initialize();
13 subscribe(storyboardSignal);
14 activatedSiren = false;
15 }

12 Artery: Large Scale Simulation Environment for ITS Applications 403

16
17 void PoliceServiceStoryboard::trigger()
18 {
19 Enter_Method("PoliceServiceStoryboard trigger");
20 if (activatedSiren) {
21 PoliceService::trigger();
22 }
23 }
24
25 void PoliceServiceStoryboard::receiveSignal(omnetpp::cComponent*, omnetpp::

simsignal_t sig, omnetpp::cObject* sigobj, omnetpp::cObject*)
26 {
27 // start the PoliceService after receiving Storyboard Signal
28 if (sig == storyboardSignal) {
29 auto storysig = dynamic_cast<StoryboardSignal*>(sigobj);
30 if (storysig && storysig->getCause() == "siren on") {
31 activatedSiren = true;
32 }
33 }
34 }

We are almost done with our accommodations. Do not forget to mention
your new source file PoliceServiceStoryboard.cc in CMakeLists.txt along with the
sources from Sect. 12.2.4. Furthermore, the CMake variable WITH_STORYBOARD
needs to be set to “ON” in your build directory so the optional Storyboard
feature is enabled. The omnetpp.ini also needs to be slightly adjusted by adding
a Config section, listed in Listing 12.25. Those changes boil down to acti-
vating the optional Storyboard module in artery.inet.World by setting its
withStoryboard parameter, telling this module the name of the desired Python
script (story.py without extension), and a changed services deployment. The referred
service-storyboard.xml differs from Listing 12.6’s services.xml only in the service
equipped on the police car—PoliceServiceStoryboard instead of plain
PoliceService.

Listing 12.25 Extended OMNeT++ configuration

1 [Config storyboard]
2 *.withStoryboard = true
3 *.storyboard.python = "story"
4 *.node[*].middleware.services = xmldoc("services-storyboard.xml")

When you run the simulation setup again using the Config storyboard, you will
notice that the simulation will take a few seconds longer because the passenger cars
will not immediately give way as soon as the police car is present.

It is also possible to overlap stories in time and place. The storyboard maintains
the order of all stories and takes care of successfully restoring all changed vehicle
parameters (like the speed of a vehicle). Also, the storyboard is very modular to
allow for an easy creation of new conditions and effects. For example, you can
create a new effect called FogLightEffect issuing a TraCI command to turn on the
fog light. Just derive a new class from Storyboard’s Effect class, implement its
abstract methods, and add two lines of binding to the Binding.cc file.

404 R. Riebl et al.

12.5 Outlook

Though there is much more to discover in Artery, a chapter like this cannot cover
all features. However, we want to refer to Chap. 13 that demonstrates how to
combine two OMNeT++ frameworks, SimuLTE and Artery, to a joint cellular V2X
simulation.

What we did not discuss is how to operate Artery in testbeds. In fact, Artery
in its present state already supports two distinct variants to link its simulation
environment with external components. On the one hand, ITS functions can be
attached to simulated vehicles’ middleware by means of the Transfusion Service.
V2X messages can be forwarded back and forth to remote software via TCP/IP
socket communication. If you are interested in this application layer coupling,
please have a look at artery.transfusion.TransfusionService. On
the other hand, you can also run a vehicle’s whole software stack remotely. Packets
can be intercepted at the link-layer and forwarded to another device, e.g., the device
under test in a HIL setup. In this case, Artery provides the simulated communicating
environment for a real V2X unit. In either case, a custom OMNeT++ scheduler
implementation realizes the real-time behavior and facilitates communicating to
external components.

We hope you enjoyed this introduction to Artery and we welcome your feedback
and contributions regarding Artery.

Appendix

Running, Debugging, and Finding Memory Leaks

Artery provides debug and memory check targets for every scenario integrated
via the add_opp_run macro. Those targets are prefixed by run_, debug_, and
memcheck_ before the target name is passed to the macro.

Debugging Debug targets (debug_*) are only available when Artery is built in
debug mode, i.e., CMAKE_BUILD_TYPE is set to Debug.

GDB_COMMAND Path to the GNU Debugger, usually found automatically if
installed system-wide.

RUN_FLAGS These flags are appended to the opp_run invocation and shared
by run_* and debug_* targets.

Valgrind Three CMake options influence the behavior of memory check runs
(memcheck_* targets):

VALGRIND_COMMAND Path of the Valgrind executable, usually found
automatically if installed system-wide.

12 Artery: Large Scale Simulation Environment for ITS Applications 405

VALGRIND_FLAGS Options passed to Valgrind itself, e.g., enabling
tracking down the source of a memory leak with
-track-origins=yes.

VALGRIND_EXEC_FLAGS Flags added to the opp_run invocation. This is use-
ful to run the simulation with the faster command-
line interface (-u Cmdenv) and to select a
specific configuration (-c my_opp_config).
These flags are in addition to the RUN_FLAGS for
ordinary simulation runs.

Common Pitfall: Wrong Longitude and Latitude

Artery uses TraCI to convert Cartesian coordinates to geodetic ones. SUMO needs
to be built with the enabled PROJ feature for this to work. You can query your
local SUMO executable by calling sumo with the option --version and check
the second line starting with “Build features:”. Alternatively, open the “About
SUMO” dialog in the Help→About menu using the SUMO GUI. Furthermore,
your SUMO map needs to define a map projection. When you are using a map
imported from OpenStreetMap there is already a proper map projection defined.
However, synthetic maps such as those generated by SUMO’s netgenerate define
no map projection. You can easily fix your map by editing the *.net.xml file:
look for the <location ...projParameter="!" /> tag and replace the
empty ! projection by a more suitable projection, for instance, +proj=tmerc
+ellps=WGS84 +datum=WGS84 +units=m +no_defs as a minimal
working projection. You can also shift the map origin with additional parameters
(e.g., +lat_0=49 +lon_0=11).

References

1. ETSI: Intelligent Transport Systems (ITS); Communications Architecture. European standard,
ETSI (2010). V1.1.1

2. ETSI: Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applica-
tions; Part 2: Specification of Cooperative Awareness Basic Service. European standard, ETSI
(2014). V1.3.2

3. ETSI: Intelligent Transport Systems (ITS); GeoNetworking; Port Numbers for the Basic
Transport Protocol (BTP). Technical specification, ETSI (2016). V1.1.1

4. ETSI: Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking;
Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint
communications; Sub-part 1: Media-Independent Functionality. European standard, ETSI
(2017). V1.3.1

5. ETSI: Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part
5: Transport Protocols; Sub-part 1: Basic Transport Protocol. European standard, ETSI (2017).
V2.1.1

406 R. Riebl et al.

6. Günther, H.J., Timpner, J., Wegner, M., Riebl, R., Wolf, L.: Extending a holistic microscopic
IVC simulation environment with local perception sensors and LTE capabilities. Vehic-
ular Communications (2017). http://dx.doi.org/10.1016/j.vehcom.2017.01.003. http://www.
sciencedirect.com/science/article/pii/S2214209616300638

7. IEEE Computer Society: Telecommunications and information exchange between systems;
Local and metropolitan area networks; Specific requirements; Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standard for Informa-
tion technology, IEEE Standards Association (2016)

8. Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of the
state-of-the-art. Inf. Fusion 14(1), 28–44 (2013)

9. Matzka, S., Altendorfer, R.: A comparison of track-to-track fusion algorithms for automotive
sensor fusion. In: Multisensor Fusion and Integration for Intelligent Systems, pp. 69–81.
Springer, Cham (2009)

10. Riebl, R., Facchi, C.: Regain control of growing dependencies in OMNeT++ simulations.
In: Proceedings of the 2nd OMNeT++ Community Summit (2015). http://arxiv.org/abs/1509.
03561

11. Riebl, R., Günther, H.J., Facchi, C., Wolf, L.: Artery - extendig Veins for VANET applications.
In: Models and Technologies for Intelligent Transportation Systems (MT-ITS) (2015)

12. Riebl, R., Obermaier, C., Neumeier, S., Facchi, C.: Vanetza: Boosting research on inter-
vehicle communication. In: Proceedings of the 5th GI/ITG KuVS Fachgespräch Inter-Vehicle
Communication, pp. 37–40 (2017). https://opus4.kobv.de/opus4-fau/files/8528/fg-ivc-2017-
report.pdf

http://dx.doi.org/10.1016/j.vehcom.2017.01.003
http://www.sciencedirect.com/science/article/pii/S2214209616300638
http://www.sciencedirect.com/science/article/pii/S2214209616300638
http://arxiv.org/abs/1509.03561
http://arxiv.org/abs/1509.03561
https://opus4.kobv.de/opus4-fau/files/8528/fg-ivc-2017-report.pdf
https://opus4.kobv.de/opus4-fau/files/8528/fg-ivc-2017-report.pdf

Chapter 13
Simulating LTE-Enabled Vehicular
Communications

Raphael Riebl, Giovanni Nardini, and Antonio Virdis

13.1 Introduction

Modern inter-vehicle communication systems are labeled with various names,
including Dedicated Short-Range Communication (DSRC), Vehicle-to-Everything
(V2X), Vehicle-to-Vehicle (V2V), and Vehicle-to-Infrastructure (V2I), just to list a
few of them. Terms like V2X and its siblings refer to the communicating parties,
e.g., vehicles with other vehicles or traffic infrastructure or something else, and
are principally independent of the underlying radio technology. Some communi-
cation standards have outlined such a heterogeneous radio approach for Intelligent
Transportation Systems (ITS) since many years [1]. DSRC, ITS G5, or Cellular
V2X (C-V2X) then represent a particular realization of V2X communication. Some
of them are using Wireless Local Area Network (WLAN) technology (e.g., DSRC
and ITS G5), others use cellular networks (e.g., Long Term Evolution (LTE) and
5G) or cellular communication modes not strictly requiring any base stations (e.g.,
C-V2X). On the one hand, simulation of WLAN-based vehicular communication
is covered in detail in Chaps. 6 and 12. On the other hand, simulation of cellular
communication in general is presented in Chap. 5. This section merges those topics
into a combined simulation model, exploiting cellular communication in the context
of vehicular communication, using both infrastructure (evolved Node B (eNB)-
relayed) and direct (UE-to-UE) communications, which exploit LTE’s Device-to-
Device (D2D) capabilities. Ideally, those wireless communications converge to a

R. Riebl (�)
Technische Hochschule Ingolstadt, Ingolstadt, Germany
e-mail: raphael.riebl@thi.de

G. Nardini · A. Virdis
University of Pisa, Pisa, Italy
e-mail: g.nardini@ing.unipi.it; antonio.virdis@unipi.it

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_13

407

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_13&domain=pdf
mailto:raphael.riebl@thi.de
mailto:g.nardini@ing.unipi.it
mailto:antonio.virdis@unipi.it
https://doi.org/10.1007/978-3-030-12842-5_13

408 R. Riebl et al.

hybrid system leveraging the specific benefits of both. For this purpose, we will
use Artery to model aspects related to vehicular communications and SimuLTE
for cellular ones. The simulation model presented in this chapter is distinct from
previous attempts combining V2X with cellular networks such as Veins LTE [3, 4]
or ArteryLTE [2, 5, 6].

The rest of this contribution is organized as follows: in Sect. 13.2, we provide
background on vehicular communication. Then, the subsequent sections describe
two variants of a V2X application warning other road users about black ice:
Sect. 13.3 describes LTE-enabled vehicular communication based on infrastruc-
tured transmissions and Sect. 13.4 introduces D2D communications in place of the
former = infrastructured transmissions.

13.2 General Aspects

As presented in Chaps. 6 and 12, dedicated protocol suites exist for the commu-
nication between vehicles. In the United States, the proposed Dedicated Short-
Range Communication (DSRC) system is based on Wireless Access in Vehicular
Environments (WAVE) and the European counterpart is based on ETSI specified
Intelligent Transportation System (ITS) protocols. The two have in common that
they are not using Internet Protocol (IP) communication as fundamental networking
technique in contrast to the Internet. Instead, both are stand-alone Vehicular Ad Hoc
Networks (VANETs) which require no supporting infrastructure. In contrast, users
of cellular networks want to access Internet-based services. Consequently most data
traffic in cellular networks is nowadays based on IP. Fortunately, nobody has to buy
into VANET or cellular communication exclusively. Both technologies have their
distinct advantages and disadvantages for particular application types.

With this in mind, we can have a closer look at the challenges when integrating
two distinct OMNeT++ frameworks—SimuLTE and Artery—into a combined
simulation setup. Section 13.2.1 highlights some considerations when simulating
vehicles with SimuLTE, whereas Sect. 13.2.2 deals with multi-radio vehicles.

13.2.1 Management of Vehicles in SimuLTE

Within the SimuLTE environment, vehicles are User Equipments (UEs) of the
cellular network, which can communicate with a back-end server located in
the Internet and with other vehicles via the cellular infrastructure or via D2D
transmissions. From a pure communication perspective, this means that no specific
operations are required to support V2X communications within the LTE protocol
stack implemented by SimuLTE. However, one has to take care of a few aspects
concerning node mobility and dynamic node creation/destruction. A well-known
system to simulate vehicles’ mobility is Simulation of Urban MObility (SUMO)

13 Simulating LTE-Enabled Vehicular Communications 409

(see Chap. 12). SUMO allows vehicles to enter and leave the simulation at runtime,
thus any framework exploiting it needs to handle the dynamic creation and deletion
of modules.

Within SimuLTE, this affects the behavior of the initialize and finish
functions of the UEs. In the former, UEs attach themselves to their serving eNB
and register with the Binder. As described in Chap. 5, the latter is used to keep
information about the nodes present in the whole cellular network. In order to
support mobility provided by SUMO, the initialize() functions within the
entire protocol stack of the LTE Network Interface Card (NIC) of the Ue module are
organized so that they can be invoked at any time rather than only at the beginning
of the simulation. Likewise, the finish() functions are implemented so as to
perform all the operations related to the de-registration of the UE from both the
Binder and the eNB (e.g., clearing all the buffers related to that UE).

As far as eNB-UE association is concerned, SimuLTE allows one to decide
whether to select the serving eNB statically (i.e., from the configuration file) or
dynamically (i.e., selecting the best eNB according to a given criterion during
the initialization of the Ue module). The latter mode is useful in a multicell
scenario where vehicles can appear at sparse locations on the simulation playground,
hence the best-serving eNB may not be known a priori. To enable dynamic
eNB selection, the dynamicCellAssociation parameter is provided in the
Network Topology Description (NED) files of both the eNodeB and Ue modules.
If this feature is enabled, UEs compute the Signal-to-Interference-plus-Noise-Ratio
(SINR) perceived from every eNB in the network during the initialization phase and
select the one with the highest value as serving eNB. Then, mobility across different
eNBs is handled by the existing handover mechanism provided by SimuLTE.

Moreover, vehicles entering the simulation need to obtain an IP address to
communicate via the LTE network. For this purpose, SimuLTE delegates the
assignment of IP addresses to INET’s IPv4NetworkConfigurator module.
The latter assigns IPs only at the beginning of the simulation and it does not
handle dynamically created modules. For this reason, the NED structure of a
module representing a vehicle in the LTE network has to be endowed with INET’s
HostAutoConfigurator module, which assigns a valid IP address during the
initialization stage of the newly created node.

When a vehicle leaves the simulation conversely, some packets in the network
may still be destined to that vehicle, e.g., those packets transmitted by a back-end
server just before the vehicle’s module has been destroyed. Such packets need to be
removed from the simulation to avoid abnormal behaviors or even faults. For this
reason, the existence of a vehicle’s LTE radio is checked as soon as a reference to
it is required (e.g., at the physical layer when transmitting the packet over the air
interface). This is accomplished by checking whether the vehicle is still registered
to the LteBinder. If not, the packet is deleted from the simulation.

410 R. Riebl et al.

13.2.2 Attaching an LTE Radio to Vehicles in Artery

Vehicles in Artery are defined by means of the artery.inet.Car module. They
are equipped only with WLAN NICs configured for operation in a VANET, i.e.
without an IP stack. To support LTE communication, we extend the car module
to include the LTE NIC card. Thus, a simple LTE-enabled vehicle is created as
artery.lte.Car, by adding the following functions:

• HostAutoConfigurator for the assignment of IP addresses,
• Internet Protocol Version 4 (IPv4) routing table and network layer from INET,
• Configurable number of User Datagram Protocol (UDP) and Transmission

Control Protocol (TCP) applications similar to other INET hosts,
• An LTE NIC from SimuLTE.

In order to support the concurrent existence of LTE and WLAN interfaces in
one network node, a slight SimuLTE modification is required. In fact, SimuLTE’s
physical layer looks for gates named radioIn at network nodes to deliver LTE
frames. However, nodes adhering to INET’s INetworkNode interface define
a gate vector for the same purpose. We modify the code so that gates named
lteRadioIn are searched for, hence enabling co-existence of both simulation
models.

Although not further discussed for the remainder of this chapter, one can keep
up deploying Artery services such as artery.application.CaService on
those vehicles just as described in Chap. 12. Since LTE and ITS-G5 are using
distinct frequency bands there is no mutual interference to be considered.

13.3 V2X Services Relying on a Centralized Back-End

Connected services are integrated in many of today’s cars. These services offer con-
venience features such as over-the-air map updates for the car’s navigation system
or finding available parking spaces. Since 2018, every new vehicle model sold in
the European Union needs to be equipped with eCall, an automatic emergency call
system activated after accidents. In either case those services leverage the existing
cellular network and work only when the respective vehicles are actually located
within network coverage. Hence, they do not belong to the category of V2X services
albeit they use wireless communication to be connected with remote entities.

Aforementioned connected services can usually tolerate temporary network
outages. Map updates can be completed later on and are not time critical because
the previous map version can still be used. Guidance to parking lots can continue
even if the information “123 of 400 parking bays free” is already a few minutes
old. Features like eCall are more critical due to safety aspect, however, only a
small amount of data is transmitted sporadically. A temporary unavailability of
connectivity in some areas is unfavorable for this use case but tolerated nowadays.

13 Simulating LTE-Enabled Vehicular Communications 411

The communication architecture is similar, if the service’s use case is intended to
increase either driver comfort or safety. The vehicle establishes a data connection to
a central entity via cellular communication. This central entity then serves required
data (e.g., up-to-date maps) or triggers actions like alarming rescue forces.

The OMNeT++ ecosystem provides the tools required to model aforementioned
use cases. First, SimuLTE enables one to create a cellular network to simulate
cellular-based communication among UEs and eNBs. Second, INET is up to the
task of modeling a subset of the Internet representing the wired communication
from base stations to central servers. Finally, Artery provides the means to integrate
a connected service within a simulated vehicle.

In this section we will extend Artery’s vehicle module introduced in Chap. 12
using an LTE modem. This enables users to realize V2X services using direct
communication based on 802.11 radios and Internet-based services using LTE
concurrently. As an exemplary use case we show how to develop a black ice warning
application: vehicles report loss of traction due to black ice to a central server
application. Other vehicles query the server periodically for any reported warnings
in the area they are driving. If the server application responds with at least two
warnings for the given area, the asking vehicle will cut its speed by half.

13.3.1 Network Definition

Extending Artery with LTE requires not only to include an artery.lte.Car,
as we showed in Sect. 13.2.2, but also to add the LTE infrastructure in its World
network, as we show in Fig. 13.1. On the right side we see the modules related to
SimuLTE: two eNBs are connected via a gateway pgw and a router to a central
server hosting the application’s back-end, e.g., aggregated information gathered on
the streets. The channelControl and binder modules are helper modules
required for running SimuLTE, as discussed in Chap. 5. On the left side we find
modules related to vehicles and vehicular communication: the traci module
adds vehicles to the simulation at runtime, thus no vehicles are included in the
World on its own (see Chap. 12 for more details). Furthermore, radioMedium
is a mandatory module for wireless communication based on OMNeT++/
INET and thus WLAN-based direct communication by Artery’s vehicles. The
configurator is also a global helper module provided by OMNeT++/INET
for managing IP networks. Plain Artery simulations do not require this module if
only V2X is considered, but our LTE-enabled vehicles will use IP for their data
connections to the server.

412 R. Riebl et al.

World

traci radioMedium

binderconfigurator

eNodeB[0]

eNodeB[1]

pgw

router

racirac radioMediumdioMediu

binderindeconfiguratornfigurato

eNodeBNodeB

pgwpgw

routertoutert

Fig. 13.1 LTE world network artery.lte.World

13.3.2 Parameters Configuration

Listing 13.1 highlights the main settings required to operate Artery with cellular
communication. First, the network artery.lte.World is used as a starting
point for a minimal working LTE network for use with Artery. This network is
derived from artery.inet.World, an OMNeT++/INET network for V2X
communication only. While artery.lte.World employs artery.lte.Car
modules as vehicles already by default, users can override it by manipulating the
parameter traci.mapper.vehicleType. For this example we stick with the
LTE-enabled cars bundled with Artery in its src/artery/lte folder.

Listing 13.1 Configuring Artery with SimuLTE extension (excerpt)

1 network = artery.lte.World
2
3 # This is also implicitly set by artery.lte.World
4 traci.mapper.vehicleType = "artery.lte.Car"
5
6 # LTE UEs (vehicles)
7 *.node[*].lteNic.dlFbGen.feedbackComputation = xmldoc("lte_channel.xml")
8 *.node[*].lteNic.phy.channelModel = xmldoc("lte_channel.xml")
9 *.node[*].lteNic.phy.dynamicCellAssociation = true

10 *.node[*].lteNic.phy.enableHandover = true
11 *.node[*].masterId = 1
12 *.node[*].macCellId = 1
13
14 # LTE base stations
15 *.eNodeB[*].lteNic.phy.feedbackComputation = xmldoc("lte_channel.xml")

13 Simulating LTE-Enabled Vehicular Communications 413

16 *.eNodeB[*].lteNic.phy.channelModel = xmldoc("lte_channel.xml")
17 *.eNodeB[*].lteNic.phy.dynamicCellAssociation = true
18 *.eNodeB[*].lteNic.phy.enableHandover = true
19 *.eNodeB[*].cellInfo.broadcastMessageInterval = 0.5 s
20
21 # LTE applications of vehicles
22 *.node[*].numUdpApps = 2
23 *.node[*].udpApp[0].typename = "BlackIceReporter"
24 *.node[*].udpApp[1].typename = "BlackIceWarner"
25 *.node[*].udpApp[*].centralAddress = "server"
26 *.node[*].udpApp[*].middlewareModule = "^.middleware"
27
28 # Central back-end
29 *.server.numUdpApps = 1
30 *.server.udpApp[0].typename = "BlackIceCentral"
31
32 # Storyboard (black ice region)
33 *.withStoryboard = true
34 *.storyboard.python = "blackice"

The configuration of the LTE NICs is the same as for the one described for
SimuLTE. As we anticipated in Sect. 13.2.1, the dynamicCellAssociation
parameter is used to associate vehicles entering the network with the best-serving
eNB, as shown in Listing 13.1 in lines 8–9 and 16–17. To manage the mobility
of vehicles, handover is enabled by setting the parameter enableHandover for
both the cars and the eNBs. The broadcastMessageInterval allows one to
specify the rate used by eNBs to broadcast a message to devices under their control,
and let them check whether a handover is due.

Regarding the application layer, any UdpApps can be instantiated on top of
a vehicle’s LTE NICs. In this use case, each vehicle is configured to run two
applications: BlackIceReporter sends a warning to the network’s central
server when traction loss occurred and BlackIceWarner will periodically check
if warnings apply to the vehicle’s position. Furthermore, to allow interaction with
Artery objects, which are accessible via its middleware, both applications are told
where to look for this module, which is a sibling module to these UDP apps.

The central server runs a single UDP application BlackIceCentral, which
stores black ice warnings reported by vehicles and respond to their queries. No direct
communication between the vehicles happens in this case: warnings and queries are
sent to the server via eNB in the Uplink (UL), whereas a response to a vehicle’s
query is sent down to a single receiver in the Downlink (DL).

To decide whether a vehicle is currently suffering from traction loss due to black
ice, Artery’s Storyboard feature is used, as we show in Listing 13.2. For each vehicle
driving within the given rectangle faster than 16.78 m/s a signal will be emitted in
its middleware. Applications like the BlackIceReporter can simply listen for
this traction loss signal.

Listing 13.2 Defining black ice region with storyboard

1 import storyboard as sb
2
3 def createStories(board):
4 region = sb.PolygonCondition([
5 sb.Coord(300, 300), sb.Coord(700, 300),
6 sb.Coord(700, 700), sb.Coord(300, 700)])

414 R. Riebl et al.

7 fast = sb.SpeedConditionGreater(16.67)
8 blackice = sb.AndCondition(region, fast)
9 story = sb.Story(blackice, [sb.SignalEffect("traction loss")])

10 board.registerStory(story)

13.3.3 Modifying the Code

Now that the basic configuration is in place, we will show how to implement a black
ice application. Communication between vehicles and the central back-end relies on
three packet types, which are listed in Listing 13.3. BlackIceReporter is going
to send a BlackIceReport as soon as it detects a traction loss. This message
contains the current position, speed and time, and is one-way only, i.e., the back-
end does not answer to it but silently adds the received information to its database.
BlackIceQuery and BlackIceResponse instead are used to build a simple
query-response communication: vehicles ask for active black ice warnings in their
region defined by the circle in BlackIceQuery. The back-end simply responds
with the number of applicable warnings for the received query.

Listing 13.3 BlackIce packet types

1 packet BlackIceReport
2 {
3 double positionX;
4 double positionY;
5 double speed;
6 simtime_t time;
7 }
8
9 packet BlackIceQuery

10 {
11 double positionX;
12 double positionY;
13 double radius;
14 }
15
16 packet BlackIceResponse
17 {
18 int warnings;
19 }

Listing 13.4 shows a snippet from the BlackIceReporter application.
During initialization, an inet::UDPSocket is connected to the address and port
of the central back-end. When the subscribed StoryboardSignal is received
containing “traction loss,” a BlackIceReport is created in sendReport().
This message is filled using data provided by Artery’s VehicleController
and finally sent over the previously established socket connection.

Listing 13.4 Excerpt from BlackIceReporter

1 static const simsignal_t storyboardSignal =
2 cComponent::registerSignal("StoryboardSignal");
3
4 void BlackIceReporter::initialize()
5 {

13 Simulating LTE-Enabled Vehicular Communications 415

6 socket.setOutputGate(gate("udpOut"));
7 auto centralAddress = inet::L3AddressResolver().resolve(
8 par("centralAddress"));
9 socket.connect(centralAddress, par("centralPort"));

10
11 auto mw = inet::getModuleFromPar<artery::Middleware>(
12 par("middlewareModule"), this);
13 mw->subscribe(storyboardSignal, this);
14 vehicleController = mw->getFacilities().
15 get_const_ptr<traci::VehicleController>();
16 }
17
18 void BlackIceReporter::receiveSignal(cComponent*, simsignal_t sig,
19 cObject* obj, cObject*)
20 {
21 if (sig == storyboardSignal) {
22 auto sigobj = check_and_cast<StoryboardSignal*>(obj);
23 if (sigobj->getCause() == "traction loss") {
24 sendReport();
25 }
26 }
27 }
28
29 void BlackIceReporter::sendReport()
30 {
31 Enter_Method_Silent();
32 using boost::units::si::meter;
33 using boost::units::si::meter_per_second;
34 auto report = new BlackIceReport("reporting black ice");
35 report->setPositionX(vehicleController->getPosition().x / meter);
36 report->setPositionY(vehicleController->getPosition().y / meter);
37 report->setSpeed(vehicleController->getSpeed() / meter_per_second);
38 report->setTime(simTime());
39 socket.send(report);
40 }

BlackIceCentral binds to two UDP sockets to the respective port numbers,
one for receiving reports and the other for receiving queries. The handleMessage
function hands received UDP packets over to processPacket of Listing 13.5.
This method dispatches the packets according to the port number either to the
processReport or to the processQuery functions. The former simply stores
a copy of the received BlackIceReport for future reference, e.g., when a query
needs to be answered. Consequently, processQuery iterates over all stored
reports and counts all known reports for the queried region. This number is then
filled into a BlackIceResponse and sent back to the querying vehicle.

Listing 13.5 Excerpt from BlackIceCentral

1 void BlackIceCentral::processPacket(cPacket* pkt)
2 {
3 auto ctrl = pkt->getControlInfo();
4 if (auto udp = dynamic_cast<inet::UDPDataIndication*>(ctrl)) {
5 if (udp->getDestPort() == reportPort) {
6 processReport(*check_and_cast<BlackIceReport*>(pkt));
7 } else if (udp->getDestPort() == queryPort) {
8 processQuery(*check_and_cast<BlackIceQuery*>(pkt),
9 udp->getSrcAddr(), udp->getSrcPort());

10 } else {
11 throw cRuntimeError("Unknown UDP destination port %d",
12 udp->getDestPort());
13 }
14 }

416 R. Riebl et al.

15 delete pkt;
16 }
17
18 void BlackIceCentral::processReport(BlackIceReport& report)
19 {
20 ++numReceivedWarnings;
21 reports.push_back(report);
22 }
23
24 void BlackIceCentral::processQuery(BlackIceQuery& query,
25 const inet::L3Address& addr, int port)
26 {
27 ++numReceivedQueries;
28 int warnings = 0;
29 for (auto& report : reports) {
30 double dx = query.getPositionX() - report.getPositionX();
31 double dy = query.getPositionY() - report.getPositionY();
32 if (dx * dx + dy * dy < query.getRadius() * query.getRadius()) {
33 ++warnings;
34 }
35 }
36
37 auto response = new BlackIceResponse("black ice response");
38 response->setWarnings(warnings);
39 querySocket.sendTo(response, addr, port);
40 }

As a last step, the BlackIceWarner periodically polls the server for black ice
hazards. The setup of the UDP socket and the fetching VehicleController
from the middleware are similar to Listing 13.4.

Listing 13.6 Excerpt from BlackIceWarner

1 void BlackIceWarner::initialize()
2 {
3 // setup UDP socket (similar to BlackIceReporter)
4 // ...
5
6 // fetch (mutable) traci::VehicleController from middleware
7 // ...
8
9 pollingRadius = par("pollingRadius");

10 pollingInterval = par("pollingInterval");
11 pollingTrigger = new cMessage("poll black ice central");
12 scheduleAt(simTime() + uniform(0.0, pollingInterval), pollingTrigger);
13
14 numWarningsCentral = 0;
15 WATCH(numWarningsCentral);
16 }
17
18 void BlackIceWarner::handleMessage(cMessage* msg)
19 {
20 if (msg->isSelfMessage()) {
21 pollCentral();
22 } else if (msg->getKind() == inet::UDP_I_DATA) {
23 processResponse(*check_and_cast<BlackIceResponse*>(msg));
24 delete msg;
25 } else {
26 throw cRuntimeError("Unrecognized message (%s)%s",
27 msg->getClassName(), msg->getName());
28 }
29 }
30
31 void BlackIceWarner::pollCentral()
32 {

13 Simulating LTE-Enabled Vehicular Communications 417

33 using boost::units::si::meter;
34 auto query = new BlackIceQuery("poll for black ice");
35 query->setPositionX(vehicleController->getPosition().x / meter);
36 query->setPositionY(vehicleController->getPosition().y / meter);
37 query->setRadius(pollingRadius);
38 socket.send(query);
39 scheduleAt(simTime() + pollingInterval, pollingTrigger);
40 }
41
42 void BlackIceWarner::processResponse(BlackIceResponse& response)
43 {
44 EV_INFO << "Black ice warnings: " << response.getWarnings() << "\n";
45 if (response.getWarnings() >= 2 && !reducedSpeed) {
46 vehicleController->setSpeedFactor(0.5);
47 reducedSpeed = true;
48 ++numWarningsCentral;
49 } else if (response.getWarnings() == 0 && reducedSpeed) {
50 vehicleController->setSpeedFactor(1.0);
51 reducedSpeed = false;
52 }
53 }

During initialization a local timer is scheduled (line 11) with a random offset.
Since vehicles are added by SUMO at fixed intervals, this offset scatters the
vehicles’ queries so they are not synchronized. After sending the query, the local
timer has to be re-scheduled according to the module’s pollingInterval. If the
server’s response includes at least two warnings and the vehicle is still driving at full
speed, BlackIceWarner reduces the vehicle’s speed behavior and increments
the local warning counter. As soon as the vehicle leaves the danger zone, i.e., no
warnings apply for the polled region anymore, the vehicle restores its previous
movement speed.

13.3.4 Results

When running the aforementioned simulation setup on a grid map of 1 × 1 km2

similar to Fig. 13.2, fast vehicles in the middle region will generate black
ice warnings. You can observe this by looking at BlackIceCentral
while running the OMNeT++ Qtenv GUI: numReceivedQueries and
numReceivedWarnings are incremented whenever World.server.udp
App[0] has received a corresponding message from the LTE network. Similarly,
the World.node[*].udpApp[1] of endangered vehicles is incremented when
the server responds with warnings in their area. You can add recordScalar calls
for these variables to optionally record them in your result files as well.

13.4 V2X Services Using LTE D2D

In the previous section we showed how to simulate vehicles communicating with a
back-end through infrastructure-based LTE communications. We now show how the
same black ice scenario can be realized endowing UEs with D2D capabilities, i.e.,

418 R. Riebl et al.

Fig. 13.2 Suggested SUMO
grid map for evaluating the
BlackIceWarner

allowing them to communicate directly without the eNB acting as a relay for every
communication. D2D mode in LTE is in fact gaining a wider attention recently, due
to benefits such as a reduced end-to-end latency and better frequency reuse within
the same cell. ETSI ITS protocols are not strictly bound to any radio technology.

To investigate how the black ice warning application from Sect. 13.3 could be
adopted for LTE D2D, we will remove the central server component and move its
logic towards the UEs, i.e., our connected vehicles.

13.4.1 Network Definition

In this example, we consider the network from Fig. 13.1. In fact, endowing vehicles
with LTE D2D capabilities does not require additions or modifications to the
network definition. We use the two eNBs from Sect. 13.3.1 and the scenario
comprising the SUMO map, the traffic demand, and the Storyboard script described
so far. We will instead configure the V2X application logic of the LTE network for
one-to-many D2D communications.

13.4.2 Parameters Configuration

To enable D2D, we extend the omnetpp.ini configuration file from Sect. 13.3.2
with a Config section labeled BlackIce-D2DMulticast, as shown in

13 Simulating LTE-Enabled Vehicular Communications 419

Listing 13.7. The first five lines enable D2D capabilities for both the eNBs and the
vehicles. Their LTE NICs are set to the D2D counterparts, i.e., LteNicEnbD2D
and LteNicUeD2D, respectively. As outlined in Chap. 5, SimuLTE requires a fixed
Modulation and Coding Scheme (MCS) for one-to-many D2D transmissions. With
reference to Listing 13.7, the D2D mode for the Adaptive Modulation and Coding
(AMC) module is selected and the parameter usePreconfiguredTxParams
is set. The parameter d2dCqi allows one to indicate the Channel Quality
Indicator (CQI) that will be used for transmissions (within a range of 1–15).

Listing 13.7 Configuration of D2D-enabled LTE NICs

1 [Config BlackIce-D2DMulticast]
2 *.eNodeB[*].nicType = "LteNicEnbD2D"
3 *.node[*].nicType = "LteNicUeD2D"
4 **.amcMode = "D2D"
5 **.d2dCqi = 7
6 **.usePreconfiguredTxParams = true
7
8 *.server.numUdpApps = 0
9 *.node[*].numUdpApps = 1

10 *.node[*].udpApp[0].typename = "BlackIceWarnerD2D"
11 *.node[*].udpApp[0].middlewareModule = "^.middleware"
12 *.node[*].udpApp[0].mcastAddress = "224.0.0.23"
13 *.node[*].configurator.mcastGroups = "224.0.0.23"

As all the application logic is distributed in the UEs, the server is not equipped
with any UDP application. Instead, each vehicle is equipped with a BlackIce-
WarnerD2D application, i.e., an UdpApp combining the functionality of all three
UDP applications from Sect. 13.3. Warnings are disseminated in the network via
multicast transmissions: a vehicle originating a black ice warning will transmit a
UDP packet using a multicast IP address as the destination via mcastAddress.
Multicast addresses are a predefined subset of the IPv4 address space ranging from
224.0.0.0 to 239.255.255.255.

To receive said warnings, other vehicles need to join the multicast group
identified by that IP address in advance. The HostAutoConfigurator
mcastGroups parameter includes a space-separated list of multicast IP addresses
for this purpose. Our black ice warning application uses the arbitrary address
224.0.0.23.

13.4.3 Modifying the Code

As already indicated in the previous section, the D2D black ice warning is a
melange of the three applications working hand-in-hand in the centralized setup.
Thus, BlackIceWarnerD2D shares several of their concepts:

• report warnings when traction loss occurs like BlackIceReporter,
• reduce speed when a warning is received like BlackIceWarner, and
• check if a warning applies to the own driving area like BlackIceCentral.

420 R. Riebl et al.

The main difference, though, resides in how warnings are “stored” in the
system. In the previous example, this was done by the central back-end, which
stored the received warnings and disseminated them among vehicles. Now this
has to be taken care of by each vehicle. In the following, we describe a simple
solution to this purpose, which can serve as a baseline for smarter and more
efficient communication patterns and algorithms for this use case. The application in
Listing 13.8 does the following: as soon as a vehicle receives a warning concerning
the area it is driving in, it will reduce its speed immediately and will restore
maximum speed after 20 s, if no further warning is received. Two parameters,
warningRadius and warningDuration, allow to configure the range of a
warning and how long it is considered valid, respectively.

Similarly to the case of BlackIceReporter, BlackIceReport will emit
a traction loss signal when the vehicle is driving too fast in the defined black ice
region. Thus, also BlackIceWarnerD2D has to subscribe to the Storyboard’s
signal during initialization. Instead of sending those reports to the back-end,
however, they will be sent to a multicast group, as specified in line 59.

Since direct communication is now employed, peering vehicles can receive
BlackIceReports directly and process them in processReport. First, a
vehicle checks if such a report applies to its own position by computing the
distance between itself and the sending vehicles. If this distance does not exceed
the warningRadius (line 67), it will reduce its speed (line 75) and schedule a
self-message to cancel this reduction after warningDuration (lines 77 and 39).
When receiving further reports in the meantime, the timer will be reset (line 73).

Listing 13.8 BlackIceWarner application tailored for direct communication

1 void BlackIceWarnerD2D::initialize(int stage)
2 {
3 cSimpleModule::initialize(stage);
4 if (stage != inet::INITSTAGE_APPLICATION_LAYER)
5 return;
6
7 mcastAddress = inet::L3AddressResolver().resolve(par("mcastAddress"));
8 mcastPort = par("mcastPort");
9 socket.setOutputGate(gate("udpOut"));

10 socket.bind(mcastPort);
11
12 // LTE multicast support
13 inet::IInterfaceTable *ift = inet::getModuleFromPar<inet::IInterfaceTable>(
14 par("interfaceTableModule"), this);
15 inet::InterfaceEntry *ie = ift->getInterfaceByName("wlan");
16 if (!ie)
17 throw cRuntimeError("No interface named wlan");
18 socket.setMulticastOutputInterface(ie->getInterfaceId());
19 socket.joinMulticastGroup(mcastAddress);
20
21 // application’s supporting code
22 auto mw = inet::getModuleFromPar<artery::Middleware>(
23 par("middlewareModule"), this);
24 mw->subscribe(storyboardSignal, this);
25 vehicleController = mw->getFacilities().
26 get_mutable_ptr<traci::VehicleController>();
27
28 // application logic
29 removeSpeedReduction = new omnetpp::cMessage("remove speed reduction");

13 Simulating LTE-Enabled Vehicular Communications 421

30 warningRadius = par("warningRadius");
31 warningDuration = par("warningDuration");
32 numWarningsPeer = 0;
33 WATCH(numWarningsPeer);
34 }
35
36 void BlackIceWarnerD2D::handleMessage(cMessage* msg)
37 {
38 if (msg->isSelfMessage()) {
39 vehicleController->setSpeedFactor(1.0);
40 } else if (msg->getKind() == inet::UDP_I_DATA) {
41 processReport(*check_and_cast<BlackIceReport*>(msg));
42 delete msg;
43 } else {
44 throw cRuntimeError("Unrecognized message (%s)%s",
45 msg->getClassName(), msg->getName());
46 }
47 }
48
49 void BlackIceWarnerD2D::sendReport()
50 {
51 Enter_Method_Silent();
52 using boost::units::si::meter;
53 using boost::units::si::meter_per_second;
54 auto report = new BlackIceReport("black ice warning");
55 report->setPositionX(vehicleController->getPosition().x / meter);
56 report->setPositionY(vehicleController->getPosition().y / meter);
57 report->setSpeed(vehicleController->getSpeed() / meter_per_second);
58 report->setTime(simTime());
59 socket.sendTo(report, mcastAddress, par("mcastPort"));
60 }
61
62 void BlackIceWarnerD2D::processReport(BlackIceReport& report)
63 {
64 using boost::units::si::meter;
65 double dx = report.getPositionX() - vehicleController->getPosition().x /

meter;
66 double dy = report.getPositionY() - vehicleController->getPosition().y /

meter;
67 if (dx * dx + dy * dy > warningRadius * warningRadius) {
68 return;
69 }
70
71 ++numWarningsPeer;
72 if (removeSpeedReduction->isScheduled()) {
73 cancelEvent(removeSpeedReduction);
74 } else {
75 vehicleController->setSpeedFactor(0.5);
76 }
77 scheduleAt(simTime() + warningDuration, removeSpeedReduction);
78 }

13.4.4 Results

Both, BlackIceWarner and BlackIceWarnerD2D, count the occurrence
of applicable warnings in numWarningsCentral and numWarningsPeer,
respectively. Comparing those numbers aggregated over all vehicles in the scenario,
however, is similar to comparing apples and oranges because of the entirely
different communication pattern. The performance of the two warning mechanisms
can instead be compared by counting the occurrence of traction losses. Traction

422 R. Riebl et al.

Table 13.1 Black ice warnings and traction losses

Centralized communication Direct communication

pollingRadius = 100 m warningRadius = 100 m

pollingInterval = 1.0 s warningDuration = 10.0 s

Σ numWarningsCentral= 45 Σ numWarningsPeer = 34

Σ traction loss signals = 11 Σ traction loss signals = 27

losses will still occur, otherwise no vehicle would generate a warning. Exemplary
numerical results from the presented setup are presented in Table 13.1.

As we anticipated, the proposed example can be used to experiment with the con-
sidered scenario, e.g., verifying how the performance is affected by the transmission
power used for D2D communication, how to efficiently set warningDuration
to harmonize between driving slow for too long and speeding up too early, or what
is the impact of the pollingRadius and warningRadius parameters.

13.5 Conclusions

This chapter described how to simulate vehicles equipped with LTE and WLAN
radios. Inter-vehicle communications are currently one of the most active research
topics and realistic simulations of both communications and V2X services are
important in order to evaluate the performance of driver-assistance systems and
self-driving cars, for instance. Among the several available frameworks, we chose
to integrate SimuLTE (see Chap. 5) and Artery (see Chap. 12) for simulating the
two aspects above within an integrated framework. We showed how applications
running on the LTE stack can make use of various features provided by Artery,
e.g., its Facilities layer and scripting dynamic scenarios using the Storyboard (cf.
Sect. 12.4).

We first described how to integrate Artery and SimuLTE together to obtain LTE-
enabled cars. Afterwards, we detailed a black ice scenario, where cars detect and
notify traction losses. We showed two possible approaches to the problem, the
first one with infrastructure-based LTE communication, where traction losses are
notified to a remote server through the serving eNB. A second approach exploited
D2D communication to let vehicles communicate directly the detected traction
losses. For each approach, we detailed how to configure the network and how to
configure the main system parameters.

References

1. ETSI: Intelligent Transport Systems (ITS); Communications Architecture (V1.1.1). European
Standard (Telecommunications series), ETSI (2010)

2. Günther, H.J., Timpner, J., Wegner, M., Riebl, R., Wolf, L.: Extending a holistic microscopic
IVC simulation environment with local perception sensors and LTE capabilities. Veh. Commun.
9, 211–221 (2017). https://doi.org/10.1016/j.vehcomm.2017.01.003

https://doi.org/10.1016/j.vehcomm.2017.01.003

13 Simulating LTE-Enabled Vehicular Communications 423

3. Hagenauer, F., Dressler, F., Sommer, C.: Poster: A simulator for heterogeneous vehicular
networks. In: Proceedings of the 6th IEEE Vehicular Networking Conference (VNC 2014), pp.
185–186. IEEE, Piscataway (2014)

4. Hagenauer, F., et al.: Veins LTE [online]. http://veins-lte.car2x.org
5. Timpner, J., Wegner, M., Günther, H.J., Wolf, L.: High-resolution vehicle telemetry via

heterogeneous IVC. In: Proceedings of the First International Workshop on Internet of Vehicles
and Vehicles of Internet, pp. 19–24. ACM, New York (2016)

6. Wegner, M., Timpner, J., et al.: ArteryLTE—An Inter-Vehicle Communication (IVC) simulation
framework [online]. https://github.com/ibr-cm/artery-lte

http://veins-lte.car2x.org
https://github.com/ibr-cm/artery-lte

Chapter 14
Simulating Opportunistic Networks
with OMNeT++

Asanga Udugama, Anna Förster, Jens Dede, and Vishnupriya Kuppusamy

14.1 Introduction and Motivation

Opportunistic Networks (OppNets) are defined as “the set of applications and
services running on end user devices (e.g., smartphones, tablets and similar digital
devices) that use direct communication opportunities to exchange information
with each other” [3]. They are generally motivated on one side from human
gossiping and on the other side from unavailability of traditional infrastructure-
based communications. In the next paragraphs, we present a short overview of what
OppNets are and describe how to simulate them with OMNeT++.

14.1.1 What are Opportunistic Networks?

OppNets are used in a number of application areas ranging from communications
during disasters to social networking. They operate on any device-to-device com-
munication technology such as Bluetooth and IEEE 802.15.4. A key component of
a node in OppNets is the forwarding (i.e., data dissemination) protocol used to prop-
agate information in networks. There are a number of such protocols developed by
researchers to efficiently disseminate information throughout a network [21, 23, 24].

Figure 14.1 shows an example use case of OppNets. A fire breaks out at a
shop in the middle of the city center. The visitors and shoppers who are present
at that location see this emergency and quickly move away. The smart devices of

A. Udugama · A. Förster · J. Dede (�) · V. Kuppusamy
Sustainable Communication Networks, University of Bremen, Bremen, Germany
e-mail: adu@comnets.uni-bremen.de; afoerster@comnets.uni-bremen.de;
jd@comnets.uni-bremen.de; vp@comnets.uni-bremen.de

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_14

425

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_14&domain=pdf
mailto:adu@comnets.uni-bremen.de
mailto:afoerster@comnets.uni-bremen.de
mailto:jd@comnets.uni-bremen.de
mailto:vp@comnets.uni-bremen.de
https://doi.org/10.1007/978-3-030-12842-5_14

426 A. Udugama et al.

City Center

Visitor Emergency service worker
Building

time

Direction of messagesIntensity of the fire

Fig. 14.1 Dissemination of information in an emergency using OppNets

these people propagate information related to this emergency over OppNets. This
information reaches the emergency service workers who are then able to respond to
the emergency.

14.1.2 OppNets Simulation Requirements

OppNets can be considered similar to Wireless Sensor Networks (WSNs), Mobile
Ad Hoc NETworks (MANETs), or Vehicular Ad Hoc Networks (VANETs). How-
ever, they have special requirements and properties, which hinders the use of
existing simulation platforms or frameworks. For example, they largely depend on
human mobility, which is not covered at all in WSNs and only partially in MANETs
or VANETs. Furthermore, the OppNets community has developed a large suite of
data forwarding protocols, which are not used nor implemented for other systems.
This makes it necessary to design a dedicated simulation framework for OppNets.

The main requirements towards simulation are the following:

• Human mobility models that realistically model the behavior of people in their
everyday lives, including their day-night and workday-weekend rhythm, usage
of different transport vehicles, repeatability in their mobility patterns, etc.

14 Simulating Opportunistic Networks with OMNeT++ 427

• A simple and efficient link technology model, which abstracts away the details
of bit-level wireless communications and physical channels. Optimally, both an
abstract and a precise model should be available to switch between them.

• Realistic application models, including non-dummy data exchange, reactions of
users on received data (e.g., liking, forwarding, etc.), and realistic traffic patterns.

• Very large simulation scenarios with up to thousands of nodes.
• Availability of data forwarding protocols for OppNets.

14.1.3 Opportunistic Networks and OMNeT++

The OMNeT++ simulator and its development languages (the Network Topology
Description (NED) language and C++) provide the building blocks to build the
layers of functionality of nodes in networks that operate using different wired
and wireless protocols. Such protocol implementations are usually made available
in OMNeT++ as frameworks. The INET Framework (see Chap. 2) is one such
framework that provides the implementations for the protocols associated with the
Internet Protocol (IP) suite. It is referenced by the official distribution of OMNeT++
and is recommended to be used when simulating IP-based networks.

When considering support for OppNets, the INET Framework lacks some of the
prominent protocols related to simulating nodes in OppNets. To compensate for
this deficiency, a number of research efforts have been concentrated on extending
the official frameworks and other third party frameworks for OMNeT++ to include
protocols and mechanisms specifically for OppNets simulation. These extensions
have stayed unofficial and some of the code developed have become obsolete
due to the changes that have been done in the architecture of OMNeT++ and its
official frameworks. In the following are some of the most relevant works related to
opportunistic networks in OMNeT++.

The authors of [9] proposed a set of mechanisms and methodologies to simulate
OppNets and Delay-Tolerant Networks (DTNs) in OMNeT++. Their main focus
was on mobility models. Their work extended the mobility related components of
the Mobility Framework (a discontinued framework for mobile ad hoc and sensor
networks, partially integrated in INET) to simulate trace-based mobility and node
interactions based on contact traces. The code developed by the authors includes a
toolbox to generate mobility traces based on a given mobility model. The work has
used a scenario focused on urban content distribution to evaluate the performance
of the proposed mechanisms.

In [10], the work on [9] has been extended to evaluate OppNets with nodes
which are equipped with multiple network interfaces (e.g., Bluetooth, IEEE 802.11,
cellular, etc.). These interfaces are turned on and off when required to communicate
depending on the context. The radios used in the multiple interfaces are realized

428 A. Udugama et al.

using the—now deprecated—MiXiM framework1 (the successor of the Mobility
Framework, which is also discontinued). The dissemination of data throughout
the network is done using a simple data exchange protocol that exchanges the
information when nodes actually meet. Mobility in this research work is based on
traces obtained from the Legion Studio pedestrian simulator [14].

The work presented in [13] focuses on caching and relaying strategies to improve
distribution of content in OppNets. The dissemination of data is based on a
publish/subscribe model where data exchange is performed only for the requested
data (i.e., subscribed) with unicast transmissions. The scenarios used for evaluating
the strategies are twofold: an outdoor mobile user scenario with high mobility and a
subway scenario with entering and leaving users.

The authors of [9, 10, 13] have made their implementation (called OppoNet)
available at GitHub. This code was developed with OMNeT++ version 4.1 (2010).

The authors of [26] have built a model framework in OMNeT++ to simulate
OppNets. This implementation is an extension of the OppoNet work of [9],
additionally using the INETMANET framework. The focus of the work is on the
forwarding layer of an opportunistic networking node, separating the operations
into multiple subprocesses. The work introduces the ExOR and MORE protocols
comparing the performance against Optimized Link State Routing (OLSR) used in
MANET based nodes. The code is based on OMNeT++ version 4.2 (2013).

The authors of [25] have built models in OMNeT++ to evaluate the performance
of physical layer protocols in OppNets. The work extends the discontinued frame-
work to perform broadcast and changes the fading model to have symmetric signal
receptions. The data dissemination protocol used in [25] selects a set of nodes to
send data based on a priority which is computed using a metric (e.g., the closeness
to a node). The source of this model (OppSim) is available at SourceForge. The code
is based on OMNeT++ version 4.2 (2013).

Furthermore, some research papers used OMNeT++ to evaluate OppNets, e.g.,
[2, 15, 18]. They did not introduce new or dedicated frameworks, but made use of
whatever framework or model already available. We discuss why OMNeT++ is a
good choice for OppNets in the next section.

14.2 Why Use OMNeT++ for OppNets

OMNeT++ has a very sophisticated user interface, with many possibilities to visual-
ize and inspect various scenarios. The latest version 5.4 also includes sophisticated
2D and 3D graphics support to visualize the simulation scenarios. OMNeT++ is also
highly modular and clearly separates between node behavior and node parameters,
which makes it very easy to run large parameter studies.

1The MiXiM project has been discontinued, and its contents have been merged into the INET
Framework. New projects should be based on a recent version of INET instead of MiXiM.

14 Simulating Opportunistic Networks with OMNeT++ 429

Table 14.1 High-level comparison between OppNets simulators

Tool Adyton ONE OMNeT++ ns-3

Platforms Linux Java (JDK 6+) Win, Linux, Mac Linux, Mac, FreeBSD

Programming language C++ Java C++, NED C++, Python

Parallelization - - + o

Documentation + + ++ +

Mailing lists and tutorials o ++ ++ +

User interface - + ++ -

Mobility models o + ++ (OPS) o

Link technologies - - + (OPS) +

OppNets data propagation ++ ++ + (OPS) o

User behavior models - - + (OPS) -

Traffic models ++ ++ ++ (OPS) ++

Scalability + - + o
OMNeT++ data including the described OPS framework
- no support, o partial support, + adequate support, ++ very good support

In an earlier work [3] we have compared the performance of four different
simulation platforms for OppNets and we have found that OMNeT++ clearly
outperforms the other three. The alternatives are:

• The Network Simulator 3 (ns-3)2 is a discrete event simulator mainly designed
for IP-based networks with an emphasis on the network layer (layer 3) and the
upper layers of the protocol stack. ns-3 has been used several times for evaluating
OppNets, but, in general, it does not offer a lot of models for them. It is also not
possible to switch off the link layer, which makes the simulation runs very long
and impractical for OppNets.

• The Opportunistic Network Environment (ONE)3 [12] is a simulation tool
designed specifically for OppNets. It is written in Java. ONE is designed
specifically for OppNets and therefore offers a wide variety of models that
continue to grow. Unfortunately, the ONE does not perform well for very large
simulations, as we have also shown earlier [3].

• Adyton4 [19] was released in 2015. It is written in C++ and is also dedicated to
simulating OppNets scenarios. It has quite a large range of mobility models and
data forwarding protocols, but unfortunately no graphical user interface. In terms
of performance, Adyton is comparable to OMNeT++.

Table 14.1 compares the above listed simulation platforms in terms of the OppNets
requirements, as identified in Sect. 14.1.2.

2https://www.nsnam.org.
3https://akeranen.github.io/the-one.
4https://npapanik.github.io/Adyton.

https://www.nsnam.org
https://akeranen.github.io/the-one
https://npapanik.github.io/Adyton

430 A. Udugama et al.

In the next sections, we will present our Opportunistic Protocol Simulator
(OPS) framework and the related information for simulating OppNets. Section 14.9
provides a tutorial on how some use cases are configured to run simulations with
the OPS framework and how results are interpreted. Section 14.10 is an outlook on
future plans for the OPS framework.

14.3 The OPS Framework

OPS is a set of simulation models in OMNeT++ to simulate opportunistic networks.
It has a modular architecture where different protocols relevant to opportunistic net-
works can be developed, plugged in, and configured to evaluate their performance.
The models of OPS are grouped into protocol layers of a protocol stack. Figure 14.2
shows the general architecture of OPS and its individual protocol layers.

One special feature of OPS and its design is the separation of the Application
Layer from the Notification Generator. The Notification Generator injects the data
traffic into the network, while the Application Layer mimics more the behavior of
an app on a user’s smartphone, where the user can delete messages, like them, etc.
The User Behavior Model simulates the user herself and her interactions with the
app. More details about these three models are provided in Sect. 14.4.

The Opportunistic Forwarding Layer is where any forwarding protocol related to
disseminating data in opportunistic networks is plugged in. In general, it handles the

Dissemination
Protocols

Link Adaptations

Link Technologies Mobility

User Behaviour Model
Application

Layer

Opportunistic
Forwarding

Layer

Link
Adaptation

Layer

Link Layer

 Applications

Node 1

Node 2 Node N

OPS

INET

Fig. 14.2 Generic OPS architecture, with its interactions with OMNeT++/INET

14 Simulating Opportunistic Networks with OMNeT++ 431

caching of data, the forwarding of tables or history, and the forwarding decisions.
More details about the already implemented protocols and how to implement new
ones are provided in Sect. 14.5.

The Link Adaptation Layer is a layer where mechanisms that convert messages
from one form to another are deployed. An example for such a mechanism is the
tunneling (and de-tunneling) of packets required when the OppNets is overlaid on
nodes that are not part of the OppNets but are still required as intermediate nodes to
carry packets. These nodes may only have the knowledge to forward other network
protocols (not OppNets protocols). Therefore, when OppNets packets traverse these
nodes, they are encapsulated by the underlying protocol. Currently, it is a place
holder (PassThru) for later implementations.

The Link Layer is where any link access technology is implemented. In OppNets,
it is highly important to be able to simulate large scenarios with hundreds or
even thousands of nodes and very often, the link technology is abstracted and
simplified as much as possible. We have implemented an INET-based module called
WirelessIfc, which uses the Unit Disk Graph (UDG) for channel propagation.
It can be parametrized with bandwidth, delays, and queuing strategies. Another
possibility is to use other existing INET models to achieve more realistic channel
propagation and link technology modeling. The interested reader should turn to the
documentation and current status of the INET Framework (see Chap. 2).

Mobility of nodes is handled using the mobility interface provided by the INET
Framework and any of its mobility models can also be used for OPS. Mobility is
probably the most important factor when simulating OppNets and we provide some
further discussion and some do’s and don’ts in Sect. 14.7.

One contribution of OPS to the mobility models from INET is the implementa-
tion of reactive mobility models, i.e., mobility models which can be controlled by
the User Behavior Model. More information is also provided in Sect. 14.7.

The interfaces between each layer of the protocol stack have a standard format
which has to be adhered to by all protocol implementations. Figure 14.3 shows an
example configuration of the protocol stack of a node in OPS using a configuration
with the user behavior modeled application injecting data into the network.

The OPS simulator generates a log containing information on activities of each of
the configured protocol layers during a simulation run. This information is parsed by
a set of parsers made available in OPS to generate statistics. These parser output files
are then used to plot the different graphs required to obtain the statistics. Currently,
OPS provides the parsers to generate statistics for a number of metrics, described in
greater detail in Sect. 14.8. These metrics are very specific to OppNets to evaluate
how well the data is disseminated in a network. New parsers are required to be built
or existing parsers must be extended to develop additional statistics.

The complete source code of OPS is available at Github.5

5OPS Github repository: https://github.com/ComNets-Bremen/OPS/.

https://github.com/ComNets-Bremen/OPS/

432 A. Udugama et al.

Fig. 14.3 An example node
configuration of an OPS node
in OMNeT++

OpsNetE.host[7]

UBMApp UserBehavior

Epidemic

PassThru

Wirelesslfc
ReactiveSWIM

app

forwarding

linkAdapt

link mobility

ubm

14.4 Application, User Behavior, and Notification Generator

The Application Layer consists of a set of models that emulates the use of applica-
tions when the influence of the users who use them is taken into consideration. All
the models at this layer have to be configured to enable the user behavior influenced
injection of data into a network, unlike the following layers of the protocols stack
where different alternative models can be configured. The models of the application
layer are described subsequently.

14.4.1 Notification Generator

The Notification Generator is a global object (i.e., only one exists per simulation)
that generates messages and delivers them to the UserBehavior model of each
node to inject them into the network. Each message is identified with a set of
keywords indicating the message type. While the keywords can be freely selected,
there is one special keyword, called emergency, which signals to all layers that
this is an emergency warning. It is mostly considered at the UserBehavior layer,
where it leads to user reactions (e.g., running away). When nodes decide their own
liking for any message, these keywords and their own preferences are taken into
consideration.

14 Simulating Opportunistic Networks with OMNeT++ 433

The Notification Generator has several parameters:

• notificationGenDistribution: sets the distribution at which the mes-
sages are generated. (1) stays for constant intervals (no distribution), (2) for an
exponential distribution, and (3) for uniform distribution. The mean value of all
distributions is the value of the next parameter, interEventTimeDuration.

• interEventTimeDuration: the generation intervals for the messages.
• radius: the radius in meters from the epicenter of an emergency. People move

out of this radius to get away from the emergency (e.g., a fire at a building). Used
only for emergency messages.

• locationsFilePath, eventsFilePath: the paths to the files holding the
locations where events occur and the events that occur at those locations. These
files are created using the ubm-data-gen.py script in the tools folder. Check the
sample configuration file used by this script.

• logging, appPrefix, appNameGenPrefix: parameter to control whether
activity logging is enabled and the two prefixes used to name an application and
the data. Leave the default in order to be able to use the provided parsers.

• dataSizeInBytes: payload size of the messages (events).

The Notification Generator always selects nodes randomly, providing those
nodes with messages to be injected into the network.

14.4.2 User Behavior

This model is tasked with handling the decisions related to comparing the keywords
of a message and the preferences of a node to decide how a given message is
classified by a user in terms of her/his fondness for that message. Once the decision
is made, the message is flagged with the appropriate fondness value and delivered to
the BasicUBMApp. As a result of the fondness assigned to a message, this model
may decide to control the mobility of the user accordingly (e.g., start moving in the
direction of a street performance in a city). Therefore, additionally, this model has a
direct connection to the mobility model used through the IReactiveMobility
interface. Details about the computation of fondness value are provided in [6].

The UserBehavior has several parameters:

• avoidLocationTimer: the time period that a location is avoided due to an
emergency that occurred at that location.

• react: Boolean indicating whether a user reacts to an emergency event. The
default value is true.

• keywordsFilePath, eventsFilePath: the paths to the files holding
the keywords used as preferences by users and the events that contain these
keywords. These files are created using the ubm-data-gen.py script in the tools
folder. Check the sample configuration file used by this script.

434 A. Udugama et al.

• reactToEventThreshold: a real value between 0 and 1 to decide randomly
whether there is a reaction to an event or not.

• logging, appPrefix, appNameGenPrefix: parameter to control whether
activity logging is enabled and the two prefixes used to name an application and
the data. Leave to the default in order to be able to use the provided parsers.

One special feature of the User Behavior Model is the so-called Angry Bit Signal.
This is set for individual messages, which were received by this node, but received
after the event had occurred (e.g., the concert was yesterday). This may happen
with some data dissemination protocols, which do not use Time To Live (TTL) for
messages (e.g., Keetchi, see Sect. 14.5) or when the TTL is set to the same value for
all messages, irrespective of their contents. The Angry Bit Signal can be used as a
quality of experience metric.

14.4.3 BasicUBMApp

This module is a placeholder for more sophisticated applications. BasicUBMApp
forwards all messages from the forwarding layer to UserBehavior and
vice versa. This module only has parameters for setting up the logging paths
(cf. Sect. 14.4.2 for UserBehavior and Sect. 14.4.1 for Notification-
Generator).

14.5 Forwarding Protocols

The generic operation of a forwarding protocol is separated into the following parts:

• Caching of data: Unlike in traditional networks, opportunistic networks are
characterized by intermittent connections. Therefore, every node must employ
a store-and-forward methodology when dealing with data.

• Communicating with neighbors: In opportunistic networks, the neighborhood
(i.e., nodes in the vicinity with which a given node can communicate) changes
constantly. Therefore, the forwarding protocol must employ mechanisms to pass-
on data to maximize the propagation of this data in the network.

The current implementation of OPS includes several forwarding protocols,
explained in the following subsections. In general, one can differentiate between
destination-oriented or unicast protocols and destination-free or broadcast protocols
[3]. The currently available forwarding protocols in OPS are capable of handling
one or the other.

14 Simulating Opportunistic Networks with OMNeT++ 435

14.5.1 Epidemic Routing

Epidemic Routing is one of the first and best-known OppNets forwarding protocols
[24]. It is inspired by epidemic dissemination of viruses and its principle says
that when two nodes meet, they will exchange all their information. Technically
speaking, when two nodes meet, one of them (usually the smaller Identifier (ID)
or just by random access and backoff) sends a Summary Vector (SV) to the other,
which lists all data items it currently holds. The second node will examine this list
and will send back a list of its missing items. The first node will now send that
missing data directly. The same is repeated for the same nodes vice versa. If there is
enough time, both nodes will part with exactly the same data in their caches.

Epidemic Routing has the following parameters:

• Re-synchronization period: after two nodes have synced with each other, they
wait for that period before they restart the procedure. This is done to avoid too
often re-synchronizations.

• TTL: this is the maximum time-to-live for the packets after their creation. After
that time, they get deleted from all caches around the network.

• Cache size: the size of the cache (in bytes) that holds data.
• Maximum number of hops: to limit the dissemination of packets, they can only

travel a limited number of hops from their originator.

Packets in Epidemic Routing can be destination-oriented or destination-less. In
fact, Epidemic Routing is a flooding protocol, which delivers all data to all nodes
(and thus also to the single destination, if destination-oriented).

14.5.2 Spray and Wait

Spray and Wait [21] is a replication-based multi-copy routing protocol, which
attempts to limit flooding. It consists of two phases: the Spray phase and the Wait
phase. In the Spray phase, the source sprays the message to L distinct relays. L is
effectively the number of copies of a message. The relays then forward the message
to other L distinct relays and so on. In the Wait phase, when the source and the
relays are left with only one copy, they keep this final copy in their cache until they
can directly deliver it to the destination. L is a configurable parameter, where larger
values result in an increased flooding of the network.

In Binary Spray and Wait, the source transmits L/2 copies to the first contact it
comes across in the Spray phase. It keeps doing the same until it is left with only
one copy which will be saved for direct delivery to the destination node, in case the
source and destination ever meet. Every relay node in this protocol behaves in the
same manner, transmitting L/2 copies of each message it has to the nodes it comes
across and updates its L for each message. The last copies of each message in every
node are reserved for direct delivery to the destination.

436 A. Udugama et al.

When the nodes meet, they exchange their SV and request messages they do not
have in their caches. The number of copies of each message is sent to the nodes
along with the messages. The number of copies of each message in the network is
limited by the protocol and no real flooding takes places as in Epidemic.

Spray and Wait has the following parameters:

• Re-synchronization period: after two nodes have synced with each other, they
wait for that period before they restart the procedure. This is done to avoid too
often re-synchronizations.

• TTL: this is the maximum time-to-live for the packets after their creation. After
that time, they get deleted from all caches around the network.

• Cache size: the size of the cache (in bytes) that holds data.
• Maximum number of hops: to limit the dissemination of packets, they can only

travel a limited number of hops from their originator.
• L: is the number of copies of data items to be created at the data sources.

14.5.3 Keetchi

Keetchi [23] is an implementation of the Organic Data Dissemination (ODD)
[5] concept. It is destination-less and it considers popularity of messages when
forwarding data. It gives preferences to data, which are considered good or
interesting by the users and it gives less priority or even drops messages, which are
uninteresting. This protocol was the original reason why we started implementing
the OPS framework. We needed a flexible environment, able to simulate individual
users and their reactions to individual messages, which resulted in the User Behavior
Model described in Sect. 14.4.

Keetchi is a machine-learning protocol. It assumes that the user evaluates each
data item he/she receives by marking it with a “fondness” value. For example, if
the messages are about jokes and are being disseminated to students on a campus,
then the user can rate the joke upon reception with a number of stars, but can also
ignore or even delete them. This reaction (simulated by the User Behavior Model
from Sect. 14.4) is being translated to a numerical value and passed back to Keetchi.
Keetchi itself has a list of all currently held data items (e.g., jokes in our example)
and a Goodness value associated with each of them. Upon first reception of a data
item, the Goodness value corresponds to the Goodness value for that data item of
the sender (the last hop, not the original source of the joke). After a user reaction,
this value gets combined in a Q-learning manner with the old Goodness value. The
cache of Keetchi is sorted by these Goodness values. Additionally, items “age” in the
cache by decreasing their Goodness values regularly. In this way, more preference
is given to newly arriving items as well as most interesting data. If data items arrive
and there is no space in the cache, the data with the least Goodness values get erased
to accommodate the new ones.

14 Simulating Opportunistic Networks with OMNeT++ 437

The following parameters control the cache of Keetchi:

• Aging interval: how often the aging process is applied (in seconds).
• Learning constant: a parameter of the Q-learning approach, which controls

whether more weight is given to the immediate reaction of the user or the
network-wide Goodness value.

Keetchi also observes its communication context: it evaluates whether its neigh-
borhood has changed or not. If the neighborhood is mostly new (as compared to
the last time), Keetchi sends out a random data item from the upper part of its
cache (the items with highest Goodness values) at regular intervals as a broadcast
message to all neighbors. In case there is no significant change in the neighborhood,
Keetchi starts sliding its sending window to less interesting data items and also slows
down its sending interval. After some time without any change in the neighborhood,
Keetchi stops sending data altogether to save energy.

The parameters which control the sending mechanism of Keetchi are:

• Neighborhood Change Threshold: how much percent difference is needed in the
list of neighbors to focus again on the most important data items and start sending
at the maximum sending frequency.

• Backoff Timer Factor: by how much to decrease the sending frequency in case
there is not enough neighborhood change.

The impact of the individual parameters can be seen in [23].
Keetchi is a good option to compare against in case a large-scale, destination-

less scenario is used, where data needs to reach many different parties and their
locations/IDs are not known a priori. This is the case, for instance, for disaster
relief operations or city-scale announcements about events, etc.

14.5.4 Deterministic Gossip Algorithm

The two basic requirements of gossip algorithms are that the nodes are unaware
of the whole topology and the nodes may initiate contact with only one of their
neighbors at a time for data exchange. Deterministic Gossip Algorithm (DGA) [8]
adds an additional requirement that nodes may choose only one new neighbor in
every round of the neighbor discovery phase. All the nodes maintain a list of their
established contacts and record the transaction of every data item sent or received
by them.

Nodes receive the neighbor list at regular time intervals in the neighbor discovery
phase. The neighbor list has all the neighbors that are in the wireless range of a node
at a given time. When a node receives its neighbor list, it selects a random neighbor
and checks through the established contacts list to find if the selected neighbor is an
old contact. If the selected neighbor is an old contact, the node repeats this procedure
through its neighbor list to identify new neighbors in its vicinity. When it finds a new

438 A. Udugama et al.

contact, the node sends the first data item in its cache to the new contact, records
this transaction, and updates its established contact list.

All nodes send new data to their previously contacted nodes at regular intervals.
Sending a new data item implies that the forwarding protocol selects an item from
its cache that it has never sent to, nor received from, the selected old contact before.
All these transactions are recorded by the sending and receiving nodes so that they
do not repeat sending the same data.

The parameter that controls the sending mechanism of DGA is:

• Contact neighbor interval: it is the regular interval at which each node contacts
all the previously contacted nodes (established contacts list) to send a new data
item from its data cache.

14.5.5 Randomized Rumor Spreading

In Randomized Rumor Spreading (RRS) [4], random data items are selected from
a node’s cache and sent out when neighbors are detected in the node’s vicinity. The
data transmission can be unicast or broadcast. In unicast, a node sends a random
data item from its cache to one of its neighbors whereas in broadcast, the selected
data item is received by all the neighbors of a node at the same time. Due to the
random selection of data, it is highly likely that a node sends the same data item
multiple times to the same neighbors and that all of the data items in the node’s
cache are not disseminated in the network.

RRS has the following parameter:

• Cache size: the size of the cache that holds data.

14.5.6 Further Protocols

Additional protocols are continuously implemented and added to the OPS frame-
work. Prophet and Direct Delivery are available as preliminary versions and planned
to be included in the next OPS release.

Prophet [16] is a well-known and widely used protocol, also available for other
OppNets simulators. It is strictly destination-oriented and many other protocols have
been compared to it. Direct Delivery is probably the simplest OppNets forwarding
protocol, where a node sends a data message only if it directly encounters its
destination. Direct Delivery can be very well used in comparative simulation studies
as the worst-case measure.

We encourage the reader to check the currently available forwarding protocols in
our Github6 repository.

6OPS Github repository: https://github.com/ComNets-Bremen/OPS/.

https://github.com/ComNets-Bremen/OPS/

14 Simulating Opportunistic Networks with OMNeT++ 439

14.6 Link Layer

The link layer is one of the major challenges for OppNets. Here, the contradicting
requirements by the OppNets protocol and the constraints of the used hardware, i.e.,
an end-user device like a smartphone, get together. This is where the forwarding
protocol hands out the messages to be sent over some wireless channel to the
neighbors.

On the one hand, most protocols for OppNets require flexible access to the
link layer. In an ideal case, a continuous data stream can be sent to all devices
in proximity using broadcast/multicast messages without the need of pairing the
devices or exchanging a common secret. Furthermore, a neighbor discovery (who is
around me?) handled by the link layer is an important feature.

On the other hand, encrypted and authenticated connections are preferred or
even enforced by the major operating systems on mobile devices—namely, iOS
and Android. Additionally, the systems limit background services to increase
the device lifetime when running on battery power. These constraints could be
overcome by rooting or jail-breaking the devices. Unfortunately, this drastically
reduces the number of possible users as it is only an option for more experienced
users. Additionally, the standards for direct data transmission between two devices
differ between iOS and Android. Even for transferring a picture from one device to
another requires in most cases an Internet connection.

Custom hardware or WSNs using, for example, IEEE 802.15.4, meet those
requirements but are generally not carried by normal users. However, this kind of
hardware could be used for a field test and a first evaluation of protocols.

Some existing implementations overcome these problems using various tech-
niques. FireChat and the underlying framework MeshKit7, for example, use a
combination of Bluetooth and WiFi to establish the connection between two devices.
However, this approach increases the energy consumption and thus decreases the
battery lifetime drastically. Using Bluetooth Low Energy (BLE) beacons is another
option. The disadvantage of the BLE technology is the very limited payload size of
approximately 20 bytes.

In contrast to the real world, the constraints regarding the link layer in simulations
are quite low. One can consider a very simplistic model which directly sends all
data to all nodes without any physical layer constraints. On the other hand, it is
also possible to perform highly sophisticated simulations using models close to the
real-world implementations including radio propagation models, obstacles, different
physical layers, etc. The choice depends on the requirements of the protocols,
availability of models, available processing power, and simulation time.

A compromise between simplistic/fast and highly sophisticated/slow models is
currently being evaluated by us. The idea is to replace the modeling of the data
transmission (International Organization for Standardization (ISO)/Open Systems

7https://www.opengarden.com/.

https://www.opengarden.com/

440 A. Udugama et al.

Interconnection (OSI) link layer and below) by generic statistical models describing
the behavior of the used protocols. Here, the main challenge is to integrate this kind
of model into the OMNeT++ environment.

The link layer currently implemented in OPS (KWirelessInterface)
belongs to the class of simple wireless interfaces. It uses the simplest radio
propagation model, UDG, which assumes perfect transmission in a predefined
radius and no transmission outside this radius. It does not simulate errors nor losses.
It has the following main parameters:

• Wireless range: represents the communication range using a UDG model. It
defaults to 30 m, which was experimentally identified in [20] for BLE.

• Bandwidth: The bandwidth of the wireless channel. It can be configured and
defaults to 100 kbit/s, experimentally identified for BLE in [17].

• Header size: The protocol-related information assumed in addition to the payload
for each packet. Here, a default value of 16 B is assumed.

• Neighbor scanning period: Determines how often a scan for neighboring nodes
is performed. It defaults to 1 s.

• Medium Access Control (MAC) address: To distinguish the nodes, the MAC
address is used and needs to be configured.

Currently, there is no simple option to use the more sophisticated models
available, for example, in INET. The focus of OPS is to simulate opportunistic
networks in a realistic scale and thus, large networks. In [3], we show that the used
radio model has only a minor effect on the packet reception and delay, but a high
influence on the simulation run time. Therefore, OPS uses the UDG model instead
of more sophisticated models. However, one could use the sophisticated models
offered by OMNeT++/INET by implementing a new adaptation layer (i.e., Link
Adaptation Layer) between the OppNets protocol and the link layer.

14.7 Mobility Models

Mobility models control the movement of individual nodes in a simulation. There
are three major types of models (cf. [3]), in particular:

• Synthetic models: These models use mathematical equations and other formal
methods to compute the next location of a node. Many of these models are purely
random, i.e., they select a random point or direction to follow and move the node
with a predefined speed there. Such models are fast, scalable, but very unrealistic
for simulating the mobility of real people.

• Trace-based models: These models rely on logs of real people and their mobility.
Researchers have acquired many of these logs all over the world in the last
two decades. Many of them are publicly available, such as the CRAWDAD8

8https://crawdad.org.

https://crawdad.org

14 Simulating Opportunistic Networks with OMNeT++ 441

database. In simulations, the real mobility is simply replayed. Traces are very
realistic, but slow and limited to the area and number of people who participated
in the original logging campaign.

• Hybrid models: They combine both the above mentioned families by extracting
some statistics or observations from real world traces and using them to
parametrize and sophisticate synthetic models. Such models are still scalable,
but achieve more realistic results than purely random models. Since they extract
statistical data from real traces, the simulation of outliers, special cases, etc., is
not possible.

14.7.1 Reactive Mobility Models

Additionally, in OPS we have introduced a new type of mobility model, i.e., reactive
mobility models [6]. In traditional mobility models (e.g., all INET mobility models),
the node is passive. The mobility model fully controls the movement of the node and
simply overwrites its current position. In reactive models, the node can also signal
to the mobility model that it wants to move to some particular location at some
predefined time. As a special case, the node can also tell the mobility to run away,
e.g., in a disaster scenario. This feature is very important and novel for simulating
OppNets. If you refer back to Fig. 14.1, it becomes obvious that the dissemination
of real messages (e.g., with a fire warning) will and should significantly impact
the mobility of the receivers—they will run away. This will result in completely
different network topologies, which were not possible to explore with passive
mobility models.

To enable reactive mobility, we introduced the IReactiveMobility inter-
face in OPS. It can be used to extend any non-trace-based mobility model to make
it reactive. More details about how to implement such models can be found in
the implementation of the reactive Small Worlds in Motion (SWIM) model [6].
Reactive mobility models need to be used together with our User Behavior Model
(cf. Sect. 14.4).

14.7.2 Other Mobility Models in OPS

The use of both the user behavior and the reactive mobility models is optional in
OPS. If they are not desired, any other INET mobility model can be used. However,
not all of them are well suited for evaluating OppNets. Here, we give a short
overview of available INET mobility models and whether they are a good choice
for OppNets.

Non-recommended Models These include all random and deterministic models,
i.e., random waypoint, random direction, rectangle mobility, circle mobility, tractor

442 A. Udugama et al.

mobility, Gauss Markov mobility, Mass mobility, Chiang mobility, and Const Speed
mobility. These models do not represent the mobility of people or vehicles at all.
They are, however, good for controlled experiments, i.e., where researchers would
like to compare results from simulation with the real world.

Recommended Models These include trace based models, in particular BonnMo-
tion [1]. BonnMotion is an external tool, which produces traces and has an INET
counterpart, which uses these traces. BonnMotion is a very powerful tool, which
can be used to either re-format real world traces for use in INET or can run various
sophisticated mobility models and produce traces. However, it also includes random
models (see above), which are nevertheless not recommended to use for OppNets.
From the currently available models in BonnMotion (as of version 3.0.1), the
map-based models, SLAW, SMOOTH, and TIMM are recommended and provide
some realism. Some special scenarios can be simulated using Pursue (policemen
chasing criminals), Nomadic, and RPGM (tourist groups roaming around). More
information on these models are provided in the documentation of BonnMotion,9

where also the original articles can be found.

Additionally, there are a few hybrid mobility models available, implemented
directly for INET, in particular: SWIM [22], reactive and passive versions, and
TRAILS [7]. These are all part of the OPS framework.

INET also includes some trace-based models for reading traces from ANSim.10

However, this tool only includes random models and real-world traces, which we
covered already with BonnMotion. Of course, ANSim can also be used for real
traces. The same holds for NS2Mobility in INET—it replays files created by the
Network Simulator 2.11

14.8 Metrics

OPS gathers all kinds of activity information (controlled by the logging parame-
ter of the individual modules), which are later parsed with one of our Python-based
parsers. Here, we offer a short overview for the different statistics that are computed
by the parsers currently available in OPS.

• Liked data receipts: shows the amount of liked data (i.e., messages) received,
compared to all the data received. Liked data are the data that were considered
as being useful (interesting) by the users, i.e., they provoked a reaction with the
maximum possible fondness. The statistics are computed per node as well as for
the whole network.

9BonnMotion website: http://sys.cs.uos.de/bonnmotion/.
10http://www.ansim.info.
11https://ns2simulator.com.

http://sys.cs.uos.de/bonnmotion/
http://www.ansim.info
https://ns2simulator.com

14 Simulating Opportunistic Networks with OMNeT++ 443

• Non-liked data receipts: shows the amount of non-liked (i.e., non-interesting)
data received, compared to all the data received. Non-liked are the data that were
not classified as being useful at the beginning of a simulation. The statistics are
computed per node as well as for the whole network.

• Data delivery ratio: shows the ratio of delivered data to all data that was
generated.

• Average delivery time: shows how long (at average) it takes for data to be
delivered to the intended recipient.

• Average contact time: shows the average time that nodes were in contact during
a simulation.

• Number of contacts: shows the times that nodes were in contact during a
simulation.

• Cache activities: shows the additions, removals, or updates performed on caches
of every node in a network during a simulation.

As mentioned earlier, applications in OPS are able to operate as destination-
oriented or destination-less data generators. For destination-oriented scenarios,
statistics are gathered only for destinations. For destination-less scenarios, it is
assumed that all nodes but the original sender is a destination and statistics are
gathered accordingly.

It is also possible to parse the log file with other tools and scripts. The codes used
in the log file and their meaning are described in the LOG_ENCODINGS.md file.

14.9 Tutorial

The OPS framework consists of a number of components which have to be built
and configured to run simulations for identified scenarios. In this section, we
provide a tutorial on using OPS in terms of use cases. The simulation of each
use case is detailed in the next subsections: use case, simulation setup, and results
interpretation.

OPS depends on a number of other software components for its successful
operation. These components and the setup procedure are regularly updated when
the OPS framework is extended with new functionality. The up-to-date setup
procedure and the complete code are available at the OPS Github12 repository.

Figure 14.4 shows the general procedure of running simulations and obtaining
results which consist of five basic steps.

• Step 1: Set up an ini file. Once the use case and its unique parameters are
identified, an omnetpp.ini file is configured with these parameters. There are
a few sample omnetpp.ini files available with different configurations to use as
examples. The parameters relevant to every model are listed in the ned file of the
corresponding model together with the default parameters.

12OPS Github repository: https://github.com/ComNets-Bremen/OPS/.

https://github.com/ComNets-Bremen/OPS/

444 A. Udugama et al.

Step 1: Setup .ini File

include the required
simulation parameters.

Step 2: Identify Parsers

Include the parsers to
be run after simulation is
completed.

Step 3: Command-line

D e t e r m i n e t h e
p a r a m e t e r s o f t h e
command-line

Step 4: Run Simulation

Run simulation in GUI
mode.

Step 5: Extract Results

Ex t rac t t he resu l t s
created by the parsers.

Step 4: Run Simulation

Run simulation in non-
GUI mode.

parsers.txtomnetpp.ini

Fig. 14.4 Procedure followed in running a simulation with the OPS framework

• Step 2: Identify parsers. The log that is created during Step 4 contains the raw
performance results of the simulated entities. To obtain statistical results, a set of
parsers are run on the log files. These parsers, which are included in OPS, create
scalar as well as vector statistics. They can be configured to run automatically
after a simulation completes or they can be run separately on the generated log
files. To run them automatically, the parsers.txt file is inserted with the required
parser scripts.

• Step 3: Configure the command-line. The simulations are run from a command-
line script, which automatically starts the OMNeT++ simulation and later, the
configured parsers. The script has different parameters:

– -m cmdenv | qtenv: non-graphical or graphical mode. In the graphical
mode, the user can fully interact with the simulation from the OMNeT++
Graphical User Interface (GUI) environment.

– -c <ini file>: path to the ini file created in Step 1.
– -p <parser file>: path of the text file created in Step 2 that includes the

parsers to run automatically.

14 Simulating Opportunistic Networks with OMNeT++ 445

– -b <backup dir>: after a simulation run, all files of the simulation are
compressed and placed in a tar file. This parameter gives the path where this
tar file is created.

• Step 4: Run the simulation. The simulation is run either in the GUI mode or non-
GUI mode. In the GUI mode, the user has more control over the simulation run
and can view the simulation graphically.

• Step 5: Extract the results. The results output by the parsers are held in a set of
text files. These text results can be used to plot graphs using tools such as Matlab
or Python scripts using the libraries matplotlib and numpy.

The OPS Github repository contains a README with additional details.

14.9.1 Use Case 1: Are Messages Propagated Well?

Use Case A group of students at a campus university is the basis of this use
case. These students are a subset of the whole university population and they are
part of an opportunistic network. They live at different locations at the university
(i.e., hostels distributed around the campus). The students meet during their daily
activities within the university at different times of the day (e.g., lecture rooms,
study rooms, canteen, gym, coffee shop). They have common as well as different
preferences and may meet individually or as groups at places of interest. When
they meet, they exchange information between themselves. In this use case, we
are interested in knowing how well the messages (events) are propagated in such
a network.

Simulation Setup The group consists of 50 students (i.e., 50 nodes). The modeling
of their mobility behavior is best represented by a mobility model that focuses on
locations. The SWIM [22] mobility model in its reactive version is such a model
where locations are classified as home locations, neighboring locations, and popular
locations. When people are notified of events which are of interest (i.e., has the
highest possible fondness or also referred to as liked data) to them, they may decide
to attend those events. The campus is located in a 5 km2 area. Table 14.2 shows the
important parameters of the models used in the simulations.

Since we are interested in how well the messages propagate, we check the
performance of the statistics average delivery delay and the average delivery ratio
of messages (events). A further considered statistic is the average contact time of
contacts made by the nodes.

Interpreting the Results Table 14.3 shows the collected statistics. The results show
that the delivery of messages (events) to the nodes is close to 90% irrespective of
whether the events were of interest to the students or not. This behavior is due to a
number of factors. The two most influential factors are the behavior of the Epidemic
Routing protocol and the sizes of the caches maintained at each node. In this use

446 A. Udugama et al.

Table 14.2 Simulation parameters for use case 1

Simulation control

Nodes 50

Simulation duration 7 days

User behavior model

Number of locations 20 locations

Mean event generation duration Every 30 min

Forwarding model

Forwarding protocol Epidemic routing

Cache size 5 MB

Mobility model

Model Reactive SWIM

Simulated area 5 km2

Average speed 1.2 m/s (walking speed)

Average pause time Uniformly distributed between 20 min and 8 h

α 0.5

Number of locations 20

Wireless model

Technology BLE

Communication range 30 m

Bandwidth 100 kbit/s

Table 14.3 Simulation results for use case 1

Statistic Interested events (liked) Un-interested events (non-liked)

Average delivery delay 9.19 h 9.32 h

Average delivery ratio 88.35% 89.36%

Average contact time 2.61 h

case, the caches are purposely kept low (5 MB) to check how the protocol behaves.
Since the protocol attempts to perform a complete synchronization of caches when
two nodes meet, together with the higher contact duration (2.61 h), the nodes are
still able to deliver a high percentage of the messages to all nodes.

But unfortunately, the Epidemic Routing protocol does not exploit the informa-
tion about the interests of students (presented by the user behavior). Therefore, it is
unable to provide a complete delivery of messages of interest to the students.

14.9.2 Use Case 2: Can WiFi Direct Help the Students?

Use Case The students in the Use Case 1 were using their BLE interfaces to
communicate in the opportunistic network. The practical communication radius of

14 Simulating Opportunistic Networks with OMNeT++ 447

Table 14.4 Simulation
parameters for use case 2

Wireless model

Technology WiFi direct

Communication range 60 m

Bandwidth 250 Mbit/s

Table 14.5 Simulation
results for use case 2

Statistic Bluetooth low energy WiFi direct

Average delivery ratio 88.86% 93.08%

Total packets sent 55,879 57,781

Average contact time 2.61 h 2.21 h

BLE interfaces is 30 m as shown in [20]. But if the students use their WiFi Direct
interfaces instead of BLE, would the propagation of information improve? We are
therefore interested in knowing how the delivery of information changes in such an
environment.

Simulation Setup The same simulation parameters are used as in the Use Case 1
but with the wireless interface now configured to the parameters of WiFi Direct.
Table 14.4 shows the changed parameters for the wireless communication. We will
compute the same metrics as before for comparison.

Interpreting the Results Table 14.5 shows the collected statistics for both use cases
for comparison, where we have taken the mean delivery rate and delay for all packets
(liked and non-liked). The results show that the delivery rate has improved. This
could be expected because of the higher bandwidth that WiFi Direct offers. But this
has a down side. Limited cache sizes mean that messages are erased from caches to
accommodate new messages. On the other hand, the availability of more bandwidth
means the possibility of initiating more cache synchronization attempts. Therefore,
due to these 2 actions, more and more packets are injected into the network as seen
from the Total Packets Sent. It is also interesting to observe that the mean contact
time has decreased with WiFi Direct, which is due to more but shorter contacts.

14.10 Ongoing and Future Works

In this chapter, we have explored the use of OMNeT++ for evaluating opportunistic
networks. Beside identifying the main challenges and the most important simulation
models, we also introduced our framework for opportunistic networks, OPS. OPS
offers some new models and concepts, for example reactive mobility models and
user behavior models. It is an ongoing effort and at this point we would like to
encourage the interested reader to join the development process.

448 A. Udugama et al.

In the future, we will focus mainly on the following issues and goals:

• Abstract link layer: we will extend our current link layer abstraction to enable
more pre-settings for various communication technologies with their specific
properties.

• Data dissemination protocols: we are currently in the process of implementing
Direct Delivery, Optimal Routing, Prophet [16], and BubbleRap [11], and we
will select further data dissemination protocols for integration into OPS.

• Destination-oriented data: although the forwarding protocols are capable of
handling data destined to specific nodes, the applications (specifically, the
Notification Generator) do not support this feature. We intend to include this
feature in the future where the destination is either selected randomly or to a
configurable destination.

• Link adaptations for different link technologies: OPS is able to use different
link technologies through the adaptations done at the Link Adaptation Layer.
We intend to develop different Link Adaptation Layer modules for the link
technologies that will be included in OPS.

Acknowledgements We would like to thank the students at the University of Bremen, who
contributed over the years to create the OPS framework: Anas bin Muslim, Karima Khandaker,
Mine Centinkaya, Kirishanth Chethuraja, and Jibin Pathapparambil John.

References

1. Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., Schwamborn, M.: Bonnmotion: a mobility
scenario generation and analysis tool. In: Proceedings of the 3rd International ICST Conference
on Simulation Tools and Techniques, SIMUTools ’10, pp. 51:1–51:10. ICST, Brussels (2010)

2. Boldrini, C., Conti, M., Jacopini, J., Passarella, A.: Hibop: a history based routing protocol
for opportunistic networks. In: 2007 IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks, pp. 1–12. IEEE, Piscataway (2007)

3. Dede, J., Förster, A., Hernández-Orallo, E., Herrera-Tapia, J., Kuladinithi, K., Kuppusamy, V.,
Manzoni, P., bin Muslim, A., Udugama, A., Vatandas, Z.: Simulating opportunistic networks:
survey and future directions. IEEE Commun. Surv. Tutorials 20(2), 1547–1573 (2018)

4. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart,
D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed Computing, pp. 1–12. ACM, New
York (1987)

5. Förster, A., Udugama, A., Görg, C., Kuladinithi, K., Timm-Giel, A., Cama-Pinto, A.: A novel
data dissemination model for organic data flows. In: 7th EAI International Conference on
Mobile Networks and Management (MONAMI), Santander. Springer, Cham (2015)

6. Förster, A., Muslim, A.B., Udugama, A.: Reactive user behavior and mobility models. In:
Proceedings of the 4th OMNeT++ Community Summit. University of Bremen, Bremen (2017).
http://arxiv.org/abs/1709.06395

7. Förster, A., Bin Muslim, A., Udugama, A.: Trails–a trace-based probabilistic mobility model.
In: Proceedings of the 21st ACM Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM). ACM, New York (2018)

8. Haeupler, B.: Simple, fast and deterministic gossip and rumor spreading. J. ACM 62(6), 47
(2015)

http://arxiv.org/abs/1709.06395

14 Simulating Opportunistic Networks with OMNeT++ 449

9. Helgason, O.R., Jónsson, K.V.: Opportunistic networking in OMNeT++. In: Proceedings of
the 1st International Conference on Simulation Tools and Techniques for Communications,
Networks and Systems and Workshops, Simutools 2008, Marseille, March 03–07. ICST,
Brussels (2008)

10. Helgason, O.R., Kouyoumdjieva, S.T.: Enabling multiple controllable radios in OMNeT++
nodes. In: Proceedings of the 4th International ICST Conference on Simulation Tools and
Techniques (SIMUTools) (2011)

11. Hui, P., Crowcroft, J., Yoneki, E.: Bubble rap: social-based forwarding in delay-tolerant
networks. IEEE Trans. Mob. Comput. 10(11), 1576–1589 (2011)

12. Keränen, A., Ott, J., Kärkkäinen, T.: The ONE simulator for DTN protocol evaluation.
In: Proceedings of the 2nd International Conference on Simulation Tools and Techniques,
Simutools ’09, pp. 55:1–55:10. ICST, Brussels (2009)

13. Kouyoumdjieva, S.T., Chupisanyarote, S., Helgason, O.R., Karlsson, G.: Caching strategies
in opportunistic networks. In: Proceedings of the IEEE International Symposium on World of
Wireless, Mobile and Multimedia Networks, WoWMoM 2012, San Francisco, CA (2012)

14. Legion: Legion studio [online]. http://www.legion.com. Accessed 03 April 2017
15. Leontiadis, I., Mascolo, C.: Geopps: geographical opportunistic routing for vehicular networks.

In: 2007 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Net-
works, pp. 1–6. IEEE, Piscataway (2007). https://doi.org/10.1109/WOWMOM.2007.4351688

16. Lindgren, A., Doria, A., Davies, E.B., Grasic, S.: Probabilistic Routing Protocol for Intermit-
tently Connected Networks. RFC 6693 (2012). https://doi.org/10.17487/rfc6693. https://rfc-
editor.org/rfc/rfc6693.txt

17. Mikhaylov, K., Plevritakis, N., Tervonen, J.: Performance analysis and comparison of bluetooth
low energy with IEEE 802.15.4 and simpliciTI. J. Sens. Actuator Netw. 2(3), 589–613 (2013)

18. Musolesi, M., Hailes, S., Mascolo, C.: Adaptive routing for intermittently connected mobile
ad hoc networks. In: Sixth IEEE International Symposium on a World of Wireless Mobile and
Multimedia Networks, pp. 183–189. IEEE, Piscataway (2005)

19. Papanikos, N., Akestoridis, D.G., Papapetrou, E.: Adyton: a network simulator for opportunis-
tic networks [online]. https://github.com/npapanik/Adyton (2015)

20. Sang, L., Kuppusamy, V., Förster, A., Udugama, A., Liu, J.: Validating contact times extracted
from mobility traces. In: Puliafito, A., Bruneo, D., Distefano, S., Longo, F. (eds.) Ad-hoc,
Mobile, and Wireless Networks, pp. 239–252. Springer International Publishing, Cham (2017)

21. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and Wait: An Efficient Routing
Scheme for Intermittently Connected Mobile Networks, pp. 252–259. ACM, New York (2005)

22. Stefa, J., Mei, A.: Swim: a simple model to generate small mobile worlds. In: Proceedings of
IEEE INFOCOM Conference. IEEE, Piscataway (2009)

23. Udugama, A., Förster, A., Kuladinithi, K., Dede, J., Kuppusamy, V., Vatandas, Z.: My
smartphone tattles: Considering popularity of messages in opportunistic data dissemination.
MDPI Future Internet 2019, 11(2), 29 (2019)

24. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Tech.
Rep. Technical report number CS-200006, Duke University (2000). ftp://ftp.cs.duke.edu/dist/
techreport/2000/2000-06.ps

25. Zhang, R., Chandran, A.R., Timmons, N., Morrison, J.: OppSim: a simulation framework
for opportunistic networks based on MiXiM. In: Proceedings of the IEEE 19th International
Workshop on Computer Aided Modeling and Design of Communication Links and Networks,
CAMAD 2014, Athens. IEEE, Piscataway (2014)

26. Zhao, Z., Mosler, B., Braun, T.: Performance evaluation of opportunistic routing protocols:
a framework-based approach using OMNeT++. In: Proceedings of the 7th Latin American
Networking Conference, pp. 28–35. ACM, Medellin (2012)

http://www.legion.com
https://doi.org/10.1109/WOWMOM.2007.4351688
https://doi.org/10.17487/rfc6693
https://rfc-editor.org/rfc/rfc6693.txt
https://rfc-editor.org/rfc/rfc6693.txt
https://github.com/npapanik/Adyton
ftp://ftp.cs.duke.edu/dist/techreport/2000/2000-06.ps
ftp://ftp.cs.duke.edu/dist/techreport/2000/2000-06.ps

Chapter 15
openDSME: Reliable Time-Slotted
Multi-Hop Communication for
IEEE 802.15.4

Florian Kauer, Maximilian Köstler, and Volker Turau

15.1 Medium Access in Wireless Multi-Hop Networks

Industrial applications of wireless networks call for high reliability, even under
the influence of high traffic load or external interference. This requirement is
hard to fulfill with conventional radio technology like IEEE 802.15.4 [7] which
is primarily used to build energy-efficient multi-hop networks to connect sensors
and actuators. One of the main causes is the use of contention-based medium access
such as Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). With
CSMA/CA, the medium is sensed for an ongoing transmission and a transmission
only takes place when no concurrent transmission is detected. Carrier sensing is,
however, unreliable in multi-hop networks, especially in hidden node situations as
depicted in Fig. 15.1 where a disturbing transmission cannot be sensed by another
transmitter. This leads to collision of transmissions and thereby to packet loss.
Several mechanisms, such as random backoff and retransmissions, are available to
lower the probability of packet loss, but they cannot solve the fundamental problem.
Also, slotted CSMA/CA is suggested to minimize overlapping transmissions, but
the expectations have not been met [18]. The influence of the hidden node problem
on the performance is analyzed, for instance, in [15]. A more in-depth analytical
analysis that also takes the simultaneous retransmission problem into account is
available in [14].

A different approach for medium access is Time Division Multiple Access
(TDMA). For this, the time domain is divided into slots and it is negotiated before-
hand which node shall be allowed to transmit when. If this is done correctly, no

F. Kauer (�) · M. Köstler · V. Turau
Institute of Telematics, Hamburg University of Technology, Hamburg, Germany
e-mail: florian.kauer@tuhh.de; maximilian.koestler@tuhh.de; turau@tuhh.de

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5_15

451

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12842-5_15&domain=pdf
mailto:florian.kauer@tuhh.de
mailto:maximilian.koestler@tuhh.de
mailto:turau@tuhh.de
https://doi.org/10.1007/978-3-030-12842-5_15

452 F. Kauer et al.

A B C
.

Fig. 15.1 Hidden node problem

collisions between node transmissions are possible in the network. However, even if
a properly constructed TDMA approach is safe against packet collisions within the
same network, transmissions by other transmitters, e.g., IEEE 802.11 access points,
could disturb the network. Therefore, it is also advised to utilize multiple frequency
channels to sidestep external interferences, which are called Frequency Division
Multiple Access (FDMA). Both approaches are the basis for two amendments of the
IEEE 802.15.4 standard described in [6], namely, Time-Slotted Channel Hopping
(TSCH) and the Deterministic and Synchronous Multi-Channel Extension (DSME),
which were later integrated into the 2015 revision of the standard [7]. Starting
from the 2011 standard edition [5], time synchronization via beacons was used
for slotted CSMA/CA and the scheduling of time slots, but only for single-hop
(star) topologies. It is also used in the Low Latency Deterministic Network (LLDN)
approach of IEEE 802.15.4e not included in the 2015 revision. In contrast to these
methods, TSCH and DSME can also be used in multi-hop networks. With this
step, a variety of problems must be solved, which will be presented in Sect. 15.3.
DSME already includes many procedures to build scalable multi-hop networks,
while TSCH only standardizes a basic set of primitives that can be assembled to
a functional data link layer. TSCH requires more standardization effort (ongoing
under the label Internet Protocol Version 6 over the Time-Slotted Channel Hopping
mode of IEEE 802.15.4e (6TiSCH)) to facilitate the features that DSME already
provides, but could be used more flexibly. A comprehensive description of both
approaches can be found in [3], while detailed performance evaluations of DSME
are available in [2, 8]. In [12], DSME is analyzed using both OMNeT++ and the
FIT/IoT-LAB testbed [1] with the implementation described in this chapter.

15 openDSME: Reliable Time-Slotted Multi-Hop Communication for IEEE 802.15.4 453

15.2 openDSME

To provide a research platform for experimenting with IEEE 802.15.4 DSME,
openDSME was developed as the first open-source implementation of DSME.1 It is
implemented in C++ and follows a multi-platform approach. It can be integrated in
OMNeT++ as the primary simulation and development environment of openDSME,
but also in a host operating system such as Contiki [4] or CometOS [17]. This
makes it possible to execute the same scenarios in the simulator as well as on
wireless hardware. Since it is very cost- and time-intensive to deploy a testbed,
using OMNeT++ is very useful for achieving short development cycles, convenient
debugging, and easy testing of new ideas without the need of specialized hardware.
Furthermore, the experiments can be accurately reproduced.

With this multi-platform approach, the same software that has already proven
to provide the anticipated functionality in the simulator can be used with wireless
hardware and the testing can then focus on the platform-specific peculiarities. Port-
ing is easily possible as long as the platform offers a basic task-scheduling service
and interfaces to an IEEE 802.15.4 transceiver (real or simulated). The Medium
Access Control (MAC) is implemented in software, including the generation of
acknowledgments. On the upside, this allows for a very flexible implementation.
Especially under consideration of inefficient hardware MAC layers [19], this is a
large bonus and furthermore allows for easy adaptation to other platforms. On the
downside, for hardware with little computational power, timing issues become very
relevant. DSME poses real time requirements for delays such as the maximum wait
time for an Acknowledgment (ACK). For OMNeT++, however, this is not an issue,
because the simulated time is decoupled from the wall clock time.

For OMNeT++, openDSME is a data link layer that communicates with the
network layer and the physical layer via messages, while the INET Framework
(see Chap. 2) is used to provide the upper and lower layers as shown in Fig. 15.2.
The implementation can transparently replace the existing IEEE 802.15.4 data link
layer of INET without any special handling by the other layers.

Fig. 15.2 Integration of
openDSME in the network
stack

Application Layer

Transport Layer

Network Layer Routing

DSME Platform
openDSME

Physical Layer

1Github repository of openDSME: https://github.com/opendsme.

https://github.com/opendsme

454 F. Kauer et al.

15.3 Deterministic and Synchronous Multi-Channel
Extension

This section explains the basics of DSME. The complexity of multi-hop TDMA is
considerably higher than for CSMA/CA due to the need for archiving distributed
consensus about the schedule. For example, while two nodes have to coordinate
their transmissions, they have to prevent other nodes in the neighborhood from
transmitting at the same time and frequency. Still, a reuse in other parts of the
network is possible to increase the throughput. The following list gives a short
overview of the features that are required to build a scalable TDMA-based data
link layer. The remainder of the section shortly explains how the most important
features are implemented in IEEE 802.15.4 DSME.

• Distributed synchronization of time with an accuracy in the range of milliseconds
(cf. Sect. 15.3.1).

• Flexible network formation to allow for joining and leaving of nodes.
• Slot allocation and deallocation (cf. Sect. 15.3.2):

– On-demand and parallel to normal network operation.
– Decentralized to avoid the overhead of a centralized slot assignment.
– Avoidance of slot collisions while maintaining spatial reuse.
– Adaption to changing channel conditions.

• Mitigation of external interferences.
• Flexible scheduling to adapt to a changing topology or fluctuating traffic (cf.

Sect. 15.3.3).

In DSME, time is split into slots of equal length. Figure 15.3 depicts the DSME
slot structure. The slot length can be modified with the Superframe Order (SO)
parameter. 16 time slots together form a superframe. The first one is reserved for
beacons that are used for time synchronization. It is followed by the Contention
Access Period (CAP) of 8 slots. In this phase, messages can be exchanged with
conventional CSMA/CA. The advantage is that no previous slot assignment has
to take place, but on the other hand, packet collisions are possible in the CAP.
Therefore, it is primarily used for management traffic, i.e., traffic to prepare the

B
ea
co
n

CAP CFP

B
ea
co
n

CAP CFP

B
ea
co
n

CAP CFP

B
ea
co
n

CAP CFP

Superframe

Multi-Superframe

Beacon Interval

Fig. 15.3 Basic structure of IEEE 802.15.4 DSME

15 openDSME: Reliable Time-Slotted Multi-Hop Communication for IEEE 802.15.4 455

communication in the Contention-Free Period (CFP). In the CFP phase, Guaranteed
Time Slots (GTSs) are assigned to at most one transmitter and receiver pair. This
assignment is permanent until the slot is deallocated again or an error causes a
timeout.

In principle, only seven distinct GTSs could be assigned within a neighborhood
to avoid concurrent transmissions. Since this might be too few, assigning parallel
GTSs on different frequency channels is possible. Furthermore, this approach allows
avoiding frequency channels with external disturbances, called channel adaption. A
second option available in DSME is channel hopping, where the used frequency
channel rotates over the available channels in a given channel hopping sequence.

Since this might still result in too few distinct GTSs, especially in dense
networks, multiple superframes can be combined to the so-called multi-superframe.
The only difference now is that the GTS in one superframe can be assigned to a
different transceiver/receiver pair than the one of another superframe. The number
of superframes per multi-superframe is always a power of two and can be specified
by the Multi-Superframe Order (MO) parameter. The multi-superframes also allow
a special CAP reduction mode. If this mode is activated, only the CAP in the first
superframe of a multi-superframe is active, and the other CAPs can be filled with
GTSs. This is mainly useful to increase the throughput because more GTSs are
available per time. The disadvantage is a lower amount of time that can be used for
management traffic. Depending on the network this could lead to problems such as
colliding management traffic [10] but is usually advised if the network is not of very
high density and high throughput is important.

Finally, there is the beacon interval that determines how many distinct beacon
slots are available. It is adjusted by the Beacon Order (BO) parameter and is
important for a functional time synchronization and network association.

15.3.1 Beacons for Time Synchronization and Network
Association

An essential requirement for TDMA is a common notion of time in the network.
For this, special messages, the beacons, are sent out at regular intervals at exactly
predefined points in time that indicate the beginning of a superframe. All other time
slots are relative to the beginning of the message so that all nodes have a common
notion of time. On hardware, it is of high importance to accurately determine
when the message reception has started and this is usually done by a timestamping
mechanism provided by the transceiver. This approach is different from TSCH,
where the time synchronization is performed at every message exchange using the
acknowledgment.

The beacons are also used for a second purpose, namely, the network association
process. In a real-world scenario, it is not necessarily known beforehand which
nodes are part of the network and how the network should be configured. Therefore,

456 F. Kauer et al.

a network association procedure is required. For this, one node, usually the one with
a connection to another network (the gateway node), is specified as the Personal
Area Network (PAN) coordinator. The beacon sent out by the PAN coordinator
contains all relevant information so that other nodes can join the network.

Thus, to join the network, a previously unassociated node starts to scan for bea-
cons. This can take place on a single, predefined frequency channel or successively
on all available channels. Once the node receives a beacon, it synchronizes its own
clock to this beacon. Now the node will wait for the next CAP and send out an
association message that will eventually be answered by the coordinator. Later
beacons are required for regular realignment in order to compensate clock drift.
This interval could be increased by regulating the clock frequency, too, as described
in [11].

One transceiver cannot reach all nodes directly in larger multi-hop networks.
Multiple nodes must hence send out beacons. For this, a node can become a
coordinator itself. There is always only one PAN coordinator in the network, but
there might be multiple coordinators. If the network is not very dense and the beacon
interval is long enough, i.e., enough distinct beacon slots are available, it might
be feasible that every node takes on the role of a coordinator. Otherwise, a more
complex selection algorithm is necessary.

Once a node decides to become a coordinator, it selects a beacon slot and sends
out a beacon allocation notification to inform the neighbors about the decision. To
avoid that this node selects an already allocated beacon slot, allocated beacon slots
are recorded in the beacon bitmap, and furthermore, a beacon collision notification
can be sent to signal that a beacon allocation should be withdrawn.

While a node might receive beacons from multiple transceivers, it should only
resynchronize with the beacons sent out by its synchronization parent. Otherwise,
loops of nodes could emerge that do not synchronize to the rest of the network and
thus drift out of the common notion of time.

15.3.2 GTS Management

After a node is associated and synchronized, it can communicate with other nodes in
the network. The openDSME implementation will automatically decide if an upper
layer message should be sent in the CAP or the CFP. Broadcast messages will be
sent in the CAP, while messages for a single node will trigger a GTS allocation to
enable communication in the CFP. In the beginning, the network layer will usually
receive and send broadcast messages in the CAP to build a routing table. Once
routing paths are known, application layer messages can be directed to single nodes.

Before communication can take place in the CFP, a GTS has to be reserved. This
is solved with a three-phase slot allocation handshake between the two involved
nodes of the later GTS communication. The second and third messages are sent

15 openDSME: Reliable Time-Slotted Multi-Hop Communication for IEEE 802.15.4 457

Fig. 15.4 GTS allocation
handshake

A B
1

2

3

2
2

2

233

3

as link-layer broadcasts and will therefore also be received by all nodes in the
neighborhood. The procedure, as depicted in Fig. 15.4, consists of the following
three steps:

1. The initiator of the handshake (A) sends a DSME GTS request to the other node
(B) indicating its preferred slot and all other free slots.

2. Node B selects a matching slot that is free for both nodes and responds with
a DSME GTS response. Since it is sent as a broadcast, all nodes in this
neighborhood of B are informed about the decision.

3. Node A again sends back a message, the DSME GTS Notify, and thus also
informs the neighborhood of A.

If the handshake was conducted successfully, A and B insert the allocated slot in
their Allocation Counter Table (ACT) and all nodes in the neighborhood of A and
B mark the allocated slot in their Slot Allocation Bitmap (SAB) as in use to avoid
that it is reused in later allocations. Unfortunately, errors could occur in this phase,
especially if messages are not received properly. To mitigate the problem, neighbors
can send a duplicated allocated notification (as a DSME GTS request) in case they
detect a conflict. Further details about this problem can be found in [10].

15.3.2.1 Slot Expiration

As long as a GTS is in use, it does not expire and does not have to be reallocated.
However, unused slots or slots with a lot of external interferences will eventually
expire. For this, the receiver maintains an idle counter in the ACT that counts
how many times in a row no message was received in a GTS. Furthermore,
the sender maintains a counter that is incremented if no acknowledgment was
received for a transmission. If either of these counters exceeds the value of
macDsmeGtsExpirationTime, the associated node will start a deallocation
that matches the GTS allocation handshake, but is flagged as deallocation.

458 F. Kauer et al.

15.3.3 Scheduling

An important aspect that determines the performance of the network is scheduling,
that is, which slots and how many of them should be assigned between which
nodes. A trivial approach would be to allocate a slot in both directions for every
pair of neighbors. This would, however, be a waste of resources because most
pairs will only exchange few or no traffic. Therefore, it is advised to take the
routing of messages into account and assign slots to links based on the traffic
volume. For example, in a data-collection scenario, a lot of traffic will emerge
near the PAN coordinator, so the neighbors of the PAN coordinator benefit from
having multiple slots towards the PAN coordinator. The scheduling is, however, not
specified in IEEE 802.15.4 DSME itself. However, it is still part of the openDSME
implementation to provide a seamless integration and is described in Sect. 15.4.1 in
detail.

15.4 Implementation

We now present the implementation of openDSME in more detail to enable an
efficient usage as well as to give a guide for future extensions. The architecture of
openDSME is introduced by explaining how a message is passed through the stack.
Important auxiliary modules are presented and finally the concept of the platform
abstraction in openDSME is introduced.

15.4.1 The openDSME Stack

Figure 15.5 shows the structure of the most important modules. It can be coarsely
separated in the DSMELayer that is the actual implementation of IEEE 802.15.4
DSME and the DSMEAdaptionLayer that provides helpers that are not specified
in the standard, but are important for a seamless integration in a network stack.
These layers are interconnected by the standardized Medium Access Control Com-
mon Part Sublayer (MCPS) and Medium Access Control Sublayer Management
Entity (MLME) Service Access Points (SAPs). The communication with the upper
and lower layers is done by means of the platform-specific DSMEPlatform as
presented in Sect. 15.4.3.

If the network layer wants to send a message, it forwards this message to the
MessageHelper that decides if any actions have to be performed before the
message can be sent. If the node is not even associated, a scan will be issued via
the ScanHelper and after a successful synchronization, an association will take
place via the AssociationHelper.

15 openDSME: Reliable Time-Slotted Multi-Hop Communication for IEEE 802.15.4 459

DSMEAdaptationLayer
(optional)

DSMELayer

MessageHelper

ScanHelper AssociationHelper GTSHelper

Scheduling

MCPS-SAP MLME-SAP

MessageDispatcher

AckLayer

BeaconManager AssociationManager GTSManager

CAPLayer

DSMEPlatform
.

Fig. 15.5 Software structure of the openDSME implementation

The GTSHelper is informed about the incoming message and will consult
the scheduling to find out if an allocation or deallocation is needed. A slot is
automatically allocated if a message arrives towards a node to which no GTS is
currently allocated. The current implementation does not try to optimize the delay
and thus randomly selects a slot out of the range of available slots. The number of
incoming messages during a multi-superframe is counted and this measure is used
to control the number of required GTS. An important goal at this point is to achieve
a stable system, so it must be avoided that high network jitter leads to ongoing
allocation and deallocation of slots. This would congest the CAP with severe
consequences. Up to now two approaches are implemented, a Proportional, Integral,
and Derivative (PID) controller and a moving average filter with hysteresis. Still,
this part leaves many questions unanswered and opens challenging opportunities
for future research.

The MessageHelper then forwards the data messages via the MCPS interface
to the MessageDispatcher. It also specifies if the message shall be sent in the
CAP or the CFP. Currently, all link-layer broadcasts of data packets are sent in the
CAP and all other data packets are sent in the CFP. The MessageDispatcher
is responsible for maintaining the DSME time structure and to send the correct
messages at the given point in time and the corresponding frequency channel.

460 F. Kauer et al.

Messages to be sent in the CAP are forwarded to the CAPLayer that is responsible
for the CSMA/CA mechanism of the CAP. As soon as a message shall be sent, it
is forwarded to the AckLayer that will send the message to the physical layer and
also manages the reception of the acknowledgment, if requested.

The AckLayer is also responsible for receiving messages from the physical
layer and sending out acknowledgments. The message is then forwarded to the
MessageDispatcher. Data messages will be sent to the upper layer via the
MCPS interface and the MessageHelper. DSME specific packets, such as
beacons, association messages, or GTS commands, are dispatched to the respective
manager modules.

15.4.2 Auxiliary Modules

In openDSME, several auxiliary modules are included that are not part of the stack.
The most important ones are now presented subsequently.

The NeighborQueue is responsible for maintaining a list of the neighbors as
well as to queue the messages to be sent. The neighbor list itself is implemented
as red–black tree to allow for an efficient retrieval by the MAC address. Instead
of using the map implementation included in the C++ Standard Template Library
(STL), an own implementation is provided to allow the usage of openDSME on
hardware platforms without default STL support such as Atmel microcontrollers. A
neighbor is added to this list when the first message is issued by an upper layer to
be sent to this neighbor. The queue itself is implemented as a set of linked lists, one
for every neighbor and one for maintaining a set of free slots. This allows to operate
on a fixed amount of message slots and thus avoids the need of dynamic memory.
Still, it provides the oldest message pending for a given neighbor in O(1) (after
getting the neighbor iterator in O(logn), where n is the number of neighbors). This
is especially important for DSME, because the message to be sent in a slot does not
only depend on the age, but also on the neighbor that listens in a given slot.

The DSMEAllocationCounterTable stores the currently allocated slots
and is also implemented as a red–black tree. This allows for efficient access to the
state of every slot without the need to store the state of the idle slots explicitly. This
would waste a lot of memory, because, especially when using a large MO, usually
a fraction of the slots per multi-superframe are actually active for a given node.
Related is the DSMESlotAllocationBitmap that stores the slots occupied by
all neighbors and the BeaconBitmap that stores the occupied beacon slots in the
neighborhood.

The operation of the modules in the stack itself, such as the GTSManager,
is specified in the form of finite state machines. For this, the
DSMEBufferedMultiFSM class is provided that allows to spawn multiple
parallel transactions (for example, if multiple GTS transactions run in parallel) and
can buffer pending events. Other modules such as the AckLayer do not require
parallel transactions and thus only use a subset of the provided functionality.

15 openDSME: Reliable Time-Slotted Multi-Hop Communication for IEEE 802.15.4 461

The TimerMultiplexer multiplexes single timer to the different timers that
are used in the DSMEEventDispatcher to dispatch the various events required
for the operation of openDSME. This includes the slot event that fires at every slot
(in use) and a pre-slot event that is fired shortly before the slot event to prepare
the transceiver (e.g., tune it to the correct channel). Furthermore, a Carrier Sense
Multiple Access (CSMA) timer is used for controlling the backoffs in the CAP and
an ACK timer is used to notify a lost acknowledgment. All these events are derived
from a single 62.5 kHz timer that has to be provided by the platform. This frequency
corresponds to the duration of a IEEE 802.15.4 symbol duration of 16 µs and all
other relevant times can be specified as multiples of the symbol duration.

15.4.3 openDSME Platform Abstraction

A platform has to specify the following three interfaces (marked with a leading I).
For OMNeT++ these are already provided, but for porting openDSME to a new
(simulation or hardware) platform, these are most relevant.

The IDSMERadio interface provides the access to the (simulated or actual)
transceiver. This includes setting the channel or starting a Clear Channel Assessment
(CCA), but also the handover of messages in both directions. Because DSME
requires an accurate timing, especially for the beacons, the transmission of messages
is a two phase process where the message is first prepared, i.e., written to the
transceiver, and at the correct point in time, a sendNow instruction is issued.

The second interface is the IDSMEMessage that is a container for the message
content. This approach allows the platform to use its own representation of
messages. For hardware, one usually wants to implement a fixed pool of fixed sized
messages to avoid the use of dynamic memory, while for OMNeT++, it is possible
to wrap an INET packet so there is no need to repack the message content of upper
layers.

All other relevant interfaces are provided by IDSMEPlatform. This includes,
for example, an interface to the timer used by the TimerMultiplexer or the
generation of random numbers.

In inet-dsme, the DSMEPlatform provides most of the platform-specific
code that also includes the interface to the upper layers and the initialization.
From the point of view of OMNeT++, this class is a monolithic module that
implements the inet::IMACProtocol interface. Since it is implemented as
a single OMNeT++ module the message exchange between the different parts of
openDSME is not traceable as OMNeT++ messages as it is the case, for instance,
in [13], but it enables a much easier transition to hardware implementations.

462 F. Kauer et al.

15.5 Tutorial

The following tutorial explains the usage of openDSME using a multi-hop data-
collection scenario. The example demonstrates how to compare the performance
of CSMA/CA and DSME. In the given example, 18 nodes are statically arranged
in concentric circles around a sink node. This topology resembles an exemplary
application of a wireless multi-hop network in a solar tower power plant [16] and is
challenging due to the high number of hidden node situations. Every node, except
the sink, sends data packets with exponentially distributed sending intervals with
mean 500 ms. For the network layer, Greedy Perimeter Stateless Routing (GPSR)
is used, to provide a maximum scalability also for larger networks [9]. This tutorial
demonstrates how to specify a scenario, how to run it, and, finally, how to analyze
the obtained results.

In order to have a go at the discussed application, OMNeT++ 5.3 and the
openDSME framework source code are required. Installation instructions are
available online.2 After the installation, the scenario is set up with the configuration
file shown in Listing 15.1. It can also be found at inet-dsme/simulations/example.ini.

Listing 15.1 The example.ini configuration file used in this tutorial

1 [General]
2 network = Net802154
3
4 # Speed up
5 **.radioMedium.rangeFilter = "interferenceRange"
6 **.host[*].wlan[*].radio.*.result-recording-modes = -histogram,-vector
7
8 # Mobility
9 **.numHosts = 19

10 **.host[*].mobilityType = "StaticConcentricMobility"
11
12 # Traffic generator
13 **.host[*].trafficgen.packetLength = ${packetLength = 75B}
14 **.host[*].trafficgen.sendInterval = exponential(0.5s)
15 **.host[*].trafficgen.startTime = 30s
16 **.host[*].trafficgen.warmUpDuration = 190s
17 **.host[*].trafficgen.coolDownDuration = 15s
18 **.host[*].trafficgen.continueSendingDummyPackets = true
19 **.host[*].trafficgen.destAddresses = "host[0](modulepath)"
20
21 **.host[0].trafficgen.numPackets = 0
22 **.host[1..].trafficgen.numPackets = 100
23
24 # Link-Layer
25 [Config CSMA]
26 **.host[*].wlan[*].macType = "Ieee802154NarrowbandMac"
27 **.host[*].wlan[*].mac.queueLength = 30
28 **.host[*].wlan[*].mac.macMaxFrameRetries = 7 # max. value for IEEE 802.15.4
29
30 [Config DSME]
31 **.host[*].wlan[*].macType = "DSME"
32 **.host[0].wlan[*].mac.isPANCoordinator = true

2openDSME Github repository: https://github.com/openDSME/inet-dsme.

https://github.com/openDSME/inet-dsme

15 openDSME: Reliable Time-Slotted Multi-Hop Communication for IEEE 802.15.4 463

Fig. 15.6 Static topology of concentric circles

Fig. 15.7 Adding wildcards for result files

Now the simulation can be started in OMNeT++ Qtenv that visualizes the
topology as shown in Fig. 15.6. When running the simulation, we see how messages
are exchanged, in the figure, for example, a GPSR beacon.

Increase the simulation speed by switching to the express mode. After a warm-up
phase, every node sends 100 messages and then the simulation stops automatically
after a short cool-down phase. When both configurations (for CSMA and DSME) were
executed successfully, the collected data can be analyzed by creating a new analysis
file. To do that, right-click on the inet-dsme project and select New→Analysis
File (anf). Afterwards, use Add Wildcard. . . as shown in Fig. 15.7.

464 F. Kauer et al.

Fig. 15.8 Filter result file for sinkRcvdPk:count

80 80

82 82

84 84

86 86

88 88

90 90

92 92

94 94

96 96

98 98

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

stekcaP
deviece

R

Fig. 15.9 Number of received packets from every node for CSMA

80 80

82 82

84 84

86 86

88 88

90 90

92 92

94 94

96 96

98 98

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

stekcaP
deviece

R

Fig. 15.10 Number of received packets from every node for DSME

Since we are interested in the reliability of the message transmission, we filter
for the sinkRcvdPk:count scalar in the trafficgen module as shown in
Fig. 15.8. It gives the number of packets successfully received from the given node.
The value will be close to 100 since this is the total amount of packets sent by every
node. Plotting this value for CSMA and DSME via the context menu of the entries
and choosing the range 80–100 for the y-axis will yield Figs. 15.9 and 15.10.

While some packets are lost in the CSMA/CA scenario, no packets are lost for
DSME, demonstrating the ability of DSME to avoid collisions. Of course, when
lowering the **.host[*].trafficgen.sendInterval parameter (line 14
in Listing 15.1) or increasing the network size with the **.numHosts parameter

15 openDSME: Reliable Time-Slotted Multi-Hop Communication for IEEE 802.15.4 465

(line 9), the amount of traffic will increase and eventually the DSME nodes will no
longer be able to process all messages and queue drops will occur.

The reader is invited to test the influence of the parameters on the respective
packet delivery ratios. It is, for instance, insightful to conduct a parameter study
to plot the packet delivery ratio over the send interval for different setups of
the DSME superframe structure as it is done in [12]. Also, the development of
different scheduling techniques3 and their impact on communication reliability and
timeliness will lead to interesting research to improve the applicability of DSME.

15.6 Conclusion and Future Work

In this chapter, openDSME, an open-source implementation of IEEE 802.15.4
DSME, was presented. By using DSME, packet collisions can be avoided, leading
to a higher reliability suitable for industrial applications. The presented implemen-
tation supports the OMNeT++ simulator and can be used for extensive simulative
evaluations, but can be equally used for deploying real-world sensor networks, for
example, by using the Contiki operating system.

Promising directions for future research include algorithms to assign time slots
to nodes, for instance, in a way that minimizes the End-to-End (E2E) delay. Also, an
intelligent channel adaption that explicitly takes external interferences into account
would be beneficial to improve the resilience in a congested frequency spectrum.

Acknowledgements The authors would like to thank everyone who has contributed to the
development of openDSME, starting with Tobias Lübkert for the first functional OMNeT++DSME
implementation, Sandrina Backhauß (now Köstler) for mastering the complex data structures,
Axel Neuser for the Contiki port, and Florian Meyer for the channel hopping and CAP reduction
functionality.

References

1. Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton, N., Noel, T., Pissard-Gibollet, R.,
Saint-Marcel, F., Schreiner, G., Vandaele, J., Watteyne, T.: FIT IoT-LAB: a large scale open
experimental IoT testbed. In: IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE,
Piscataway (2015). https://doi.org/10.1109/WF-IoT.2015.7389098

2. Alderisi, G., Patti, G., Mirabella, O., Bello, L.L.: Simulative assessments of the IEEE 802.15.
4e DSME and TSCH in realistic process automation scenarios. In: Proceedings of the 13th
International Conference on Industrial Informatics (INDIN), pp. 948–955. IEEE, Piscataway
(2015). https://doi.org/10.1109/INDIN.2015.7281863

3For adding new scheduling techniques, a generic interface and some examples are provided in the
dsmeAdaptionLayer/scheduling folder of openDSME.

https://doi.org/10.1109/WF-IoT.2015.7389098
https://doi.org/10.1109/INDIN.2015.7281863

466 F. Kauer et al.

3. De Guglielmo, D., Brienza, S., Anastasi, G.: IEEE 802.15.4e: a survey. Comput. Commun. 88,
1–24 (2016). https://doi.org/10.1016/j.comcom.2016.05.004

4. Dunkels, A., Grönvall, B., Voigt, T.: Contiki—a lightweight and flexible operating system
for tiny networked sensors. In: Proceedings of the 29th International Conference on Local
Computer Networks, pp. 455–462. IEEE Computer Society, Los Alamitos (2004). https://doi.
org/10.1109/LCN.2004.38

5. IEEE Standards Association: IEEE standard for local and metropolitan area networks–part
15.4: low-rate wireless personal area networks (LR-WPANs). IEEE Std 802.15.4–2011–
Revision of IEEE Std. 802.15.4TM-2006. The Institute of Electrical and Electronics Engineers,
Inc., Piscataway (2011). https://doi.org/10.1109/IEEESTD.2011.6012487

6. IEEE Standards Association: IEEE standard for local and metropolitan area networks–part
15.4: low-rate wireless personal area networks (LR-WPANs) amendment 1: MAC sublayer.
IEEE Std 802.15.4e-2012–Amendment to IEEE Std 802.15.4TM-2011. The Institute of Elec-
trical and Electronics Engineers, Inc., Piscataway (2012). https://doi.org/10.1109/IEEESTD.
2012.6185525

7. IEEE Standards Association: IEEE standard for low-rate wireless networks. IEEE Std
802.15.4-2015–Revision of IEEE Std. 802.15.4TM-2011. The Institute of Electrical and Elec-
tronics Engineers, Inc., Piscataway (2016). https://doi.org/10.1109/IEEESTD.2016.7460875

8. Jeong, W.C., Lee, J.: Performance evaluation of IEEE 802.15.4e DSME MAC protocol for
wireless sensor networks. In: Proceedings of the 1st IEEE Workshop on Enabling Technologies
for Smartphone and Internet of Things (ETSIoT), pp. 7–12. IEEE, Piscataway (2012). https://
doi.org/10.1109/ETSIoT.2012.6311258

9. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks.
In: Proceedings of the 6th Annual International Conference on Mobile Computing and
Networking, MobiCom ’00, pp. 243–254. ACM, New York (2000). https://doi.org/10.1145/
345910.345953

10. Kauer, F., Köstler, M., Lübkert, T., Turau, V.: Formal analysis and verification of the IEEE
802.15.4 DSME slot allocation. In: Proceedings of the 19th ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM). ACM, New
York (2016). https://doi.org/10.1145/2988287.2989148

11. Kauer, F., Kallias, E., Turau, V.: A dual-radio approach for reliable emergency signaling in
critical infrastructure assets with large wireless networks. Int. J. Crit. Infrastruct. Prot. 21, 33–
46 (2018). https://doi.org/10.1016/j.ijcip.2018.02.002

12. Kauer, F., Köstler, M., Turau, V.: Reliable wireless multi-hop networks with decentralized slot
management: an analysis of IEEE 802.15.4 DSME (2018). http://arxiv.org/abs/1806.10521.
Preprint

13. Kirsche, M., Schnurbusch, M.: A new IEEE 802.15.4 simulation model for OMNeT++/INET.
In: Proceedings of the 1st OMNeT++ Community Summit (2014). http://arxiv.org/abs/1409.
1177

14. Meier, F., Turau, V.: An analytical model for fast and verifiable assessment of large scale
wireless mesh networks. In: Proceedings of the 11th International Conference on the Design
of Reliable Communication Networks (DRCN). IEEE, Piscataway (2015). https://doi.org/10.
1109/DRCN.2015.7149011

15. Pešović, U., Mohorko, J., Benkič, K., Čučej, Ž.: Effect of hidden nodes in IEEE 802.15.4/Zig-
Bee wireless sensor networks. In: Proceedings of the 17th Telecommunications Forum
(TELFOR), pp. 161–164 (2009)

16. Pfahl, A., Randt, M., Meier, F., Zaschke, M., Geurts, C.P.W., Buselmeier, M.: A holistic
approach for low cost heliostat fields. In: Proceedings of the 20th International Conference on
Concentrated Solar Power and Chemical Energy Technologies (SolarPACES). Peking, China
(2014). https://doi.org/10.1016/j.egypro.2015.03.021

17. Unterschütz, S., Weigel, A., Turau, V.: Cross-platform protocol development based on
OMNeT++. In: Proceedings of the 5th International ICST Conference on Simulation Tools and
Techniques (SIMUTOOLS), pp. 278–282. ICST, Brussels (2012). https://dl.acm.org/citation.
cfm?id=2263063

https://doi.org/10.1016/j.comcom.2016.05.004
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1109/IEEESTD.2011.6012487
https://doi.org/10.1109/IEEESTD.2012.6185525
https://doi.org/10.1109/IEEESTD.2012.6185525
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/ETSIoT.2012.6311258
https://doi.org/10.1109/ETSIoT.2012.6311258
https://doi.org/10.1145/345910.345953
https://doi.org/10.1145/345910.345953
https://doi.org/10.1145/2988287.2989148
https://doi.org/10.1016/j.ijcip.2018.02.002
http://arxiv.org/abs/1806.10521
http://arxiv.org/abs/1409.1177
http://arxiv.org/abs/1409.1177
https://doi.org/10.1109/DRCN.2015.7149011
https://doi.org/10.1109/DRCN.2015.7149011
https://doi.org/10.1016/j.egypro.2015.03.021
https://dl.acm.org/citation.cfm?id=2263063
https://dl.acm.org/citation.cfm?id=2263063

15 openDSME: Reliable Time-Slotted Multi-Hop Communication for IEEE 802.15.4 467

18. Wang, F., Li, D., Zhao, Y.: Analysis and compare of slotted and unslotted CSMA in IEEE
802.15.4. In: Proceedings of the 5th International Conference on Wireless Communications,
Networking and Mobile Computing, pp. 1–5. IEEE, Piscataway (2009). https://doi.org/10.
1109/WICOM.2009.5303580

19. Weigel, A., Turau, V.: Hardware-assisted IEEE 802.15.4 transmissions and why to avoid them.
In: Proceedings of the 8th International Conference on Internet and Distributed Computing
Systems (IDCS 2015), pp. 223–234. Springer International Publishing, Cham (2015). https://
doi.org/10.1007/978-3-319-23237-9_20

https://doi.org/10.1109/WICOM.2009.5303580
https://doi.org/10.1109/WICOM.2009.5303580
https://doi.org/10.1007/978-3-319-23237-9_20
https://doi.org/10.1007/978-3-319-23237-9_20

Index

A
Abstract Network Description Language, see

ANDL
Abstract Syntax Notation One, 373
ADAS, see Advanced Driver Assistance

System
Advanced Driver Assistance System,

374
ALOHA, 312
Analysis editor, 7, 19
ANDL, 323
Antenna models, 122
Antenna patterns, 226
ARIB T-109, 215
Artery, 365, 369, 410

architecture, 371
core, 370
middleware, 372
services, 374

ASI, see Attack Specification Interpreter
ASL, see Attack Specification Language
ASN.1, see Abstract Syntax Notation One
Attack simulation, 255, 275

attack description, 271
attack effects, 268
evaluation, 255, 271
goals, 257

Attack Simulation Engine, 267, 268
Attack Specification Interpreter, 257, 263,

266
Attack Specification Language, 257, 259
Audio Video Bridging, 321
AVB, see Audio Video Bridging

B
Bidirectionally-Coupled Simulation, see Veins
Bikes, see Road vehicles

C
CACC, see Platooning
CAN, 318, 334
CANoe, 318
Cars, see Road vehicles
Catch2, see Unit Testing
Cellular Networks, see Heterogeneous

Vehicular Networks
Classroom Deployment, see Instant Veins
Cloud services, see Veins_INET
Cmdenv, 4, 15
Collisions, see Intersection Safety
CONVINCE, see Veins
Convoying, see Platooning
Cooperative Adaptive Cruise Control, see

Platooning
CoRE4INET, 323
Coupled Simulators, see Veins
Coupling, 217
Crashes, see Intersection Safety
Crossings, see Intersection Safety

D
D2D, see Device-to-Device
Deterministic and Synchronous Multi-Channel

Extension, 453, 454
Device-to-Device, 202, 209, 418

© Springer Nature Switzerland AG 2019
A. Virdis, M. Kirsche (eds.), Recent Advances in Network Simulation,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-12842-5

469

https://doi.org/10.1007/978-3-030-12842-5

470 Index

Directional Antennas, see Antenna patterns
Discrete event simulation, 27
Discrete event system, 28
Dispatcher, 60
Domain-specific Language, 319
DSL, see Domain-specific Language
DSME, see Deterministic and Synchronous

Multi-Channel Extension
DSRC, see IEEE 802.11p

E
Electric vehicles, see Road vehicles
Emulation, 88
Ethernet, 68, 336
Eventlog, 8, 20

F
FiCo4OMNeT, 323
4G/5G, see Heterogeneous Vehicular Networks
Forwarding Protocols, 434

Deterministic Gossip Algorithm, 437
Epidemic Routing, 435
Keetchi, 436
Randomized Rumor Spreading, 438
Spray and Wait, 435

G
GDB, 23, 404

H
Heterogeneous Vehicular Networks, 243

I
IDE, see Integrated Development Environment
IEEE 802.1, 321
IEEE 802.11, 105
IEEE 802.11p, 215
IEEE 802.15.4, 451

Beacons, 455
GTS, 456
Network Association, 455

IEEE 802.1ac, 132
IEEE 802.3, 320
IEEE 1609, 215, 366
IEEE WAVE, see IEEE 1609
INET, 55

DiffServ, 66
Energy Modeling, 84
Environment modeling, 76

IPv4, 63
IPv6, 63
MANETs, 102
Mobile IPv6, 64
MPLS, 67
Packets, 96
packet tags, 98
PHY, 79
radio modeling, 73
RTP, 64
Scripting, 87
SCTP, 64
Signal representation, 71
TCP, 64
UDP, 64
Visualizers, 91

INETMANET, 107
application models, 127
link layer models, 130
mobility models, 125
signals, 113
timers, 114

Installation at Scale, see Instant Veins
Instant Veins, 246
Integrated Development Environment, 4, 50
Intelligent Transportation System, 216, 347,

366
Inter-Process Communication, 349
Intersection Safety, 239
In-Vehicle Network, 319
IPC, see Inter-Process Communication
ITS, see Intelligent Transportation System
ITS-G5, 366

J
Junctions, see Intersection Safety
Jupyter, 284

L
LIMoSim, 348
Link layer, 439
Long Term Evolution, 183, 185, 348, 409
LTE, see Heterogeneous Vehicular Networks;

Long Term Evolution

M
MAC, see Medium Access
MANET, see Mobile Ad hoc Networks
Medium Access, 220, 221, 453
Mersenne Twister, see Random numbers
Mobile Ad hoc Networks, 102, 107

Index 471

Mobile networks, see Heterogeneous Vehicular
Networks

Mobility, 352
Mobility model, 440

N
NED, see Network Topology Description
Network interfaces, 61
Network Topology Description, 12

O
Omidirectional Antennas, see Antenna patterns
OMNeT++

channels, 10
compound modules, 10
connections, 10
parameters, 11, 31
result recording, 40
scalars, 39
signals, 37
simple modules, 10
vectors, 39

One-Click Installation, see Instant Veins
OPEN Alliance Special Interest Group, 318
OpenStreetMap, 354
Open Virtual Appliance, see Instant Veins
OppNet, see Opportunistic Network
Opportunistic Network, 425
Opportunistic Protocol Simulator, 430
OPS, see Opportunistic Protocol Simulator

P
Pandas, 284
PCAP, 88
PHY, see Physical Layer
Physical Layer, 119, 220, 223, 378
Platooning, 236
Plexe, see Platooning
Prext, 216
Publish-subscribe, 303
Pweave, 284
pWLAN, see IEEE 802.11p
Python, 284

Q
Qtenv, 4, 15, 16, 59, 90

R
R, 283
Random numbers, 33

Real-time Ethernet, 339
Recursive InterNetwork Architecture, 139, 142
Remote Procedure Call, 302, 304
RINA, see Recursive InterNetwork

Architecture
RINASim, 139

Application Entity, 141, 148
Application Process, 141, 148
components, 154

Road Traffic, see Road vehicles
Road vehicles, 215
Routing, 66
RPC, see Remote Procedure Call

S
SEA++, 254, 270
Security attacks, 255, 275

conditional attacks, 261, 266
unconditional attacks, 261, 266

Self-messages, see Timers
Simple modules, 29
SimuCRV, see Veins
Simulation of Urban Mobility, see Road

vehicles
SimuLTE, 183, 348, 408

Binder, 190
evolved Node B, 190, 200
Medium Access Control Layer, 194
Network Interface Card, 191
nodes, 189
physical layer, 192
structure, 188
User Equipment, 190

Smart City, see Road vehicles
SUMO, 217, 218, 349, 379, 409
Sweave, 283
Switched Ethernet, 318

T
TDMA, see Time Division Multiple Access
Testing, see Unit Testing
Time Division Multiple Access, 325
Timers, 234
Time Slotted Channel Hopping, 453
TraCI, 125, 217, 379
Traffic generators, 60
Trucks, see Road vehicles
TSCH, see Time Slotted Channel Hopping

U
UMTS, see Heterogeneous Vehicular Networks
Unit testing, 230

472 Index

V
Valgrind, 24, 25, 404
VANETs, 215, 366, 426
Vanetza, 365, 376
Vehicles, see Road vehicles
Vehicle-to-Everything, 408
Vehicular Networking, see Road vehicles
Veins, 215, 217, 365
Veins_catch, see Unit Testing
Veins_INET, 246
Veins LTE, 243
VENTOS, see Veins
Verification, see Unit Testing

Virtual machine, see Instant Veins
Visible Light Communication, 215
VLC, see Visible Light Communication
V2X, see Vehicle-to-Everything

W
WAMP, see Web Application Messaging

Protocol
WAVE (Wireless Access in Vehicular

Environments), see IEEE 1609,
408

Web Application Messaging Protocol, 302

	Foreword
	Preface
	Typographic and Stylistic Conventions
	Support Material
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Part I The OMNeT++ Simulation Environment
	1 A Practical Introduction to the OMNeT++ SimulationFramework
	1.1 Introduction
	1.2 Getting Started
	1.2.1 Starting the IDE
	1.2.2 Installing INET
	1.2.3 Exploring an Example Simulation
	1.2.4 Running the Simulation
	1.2.5 Looking at the Simulation Results
	1.2.6 Visualizing a Sequence Chart

	1.3 Assembling and Running Simulations
	1.3.1 The Component Model
	1.3.1.1 Simple Modules and Compound Modules
	1.3.1.2 Connections
	1.3.1.3 Parameters

	1.3.2 Setting Up a New Project
	1.3.3 The NED Language
	1.3.3.1 Editing NED

	1.3.4 Configuring Simulations
	1.3.4.1 Editing INI Files

	1.3.5 Launching Simulations
	1.3.5.1 Running Simulations from the Command Line

	1.3.6 Interactive Execution Using Qtenv
	1.3.7 Parameter Studies
	1.3.7.1 Defining a Parameter Study
	1.3.7.2 Running Parameter Studies
	1.3.7.3 Using the IDE
	1.3.7.4 Using opp_runall

	1.3.8 Analyzing the Results
	1.3.9 Eventlog and Sequence Charts

	1.4 Model Development
	1.4.1 Editing C++ Source Files
	1.4.2 Version Control
	1.4.3 C++ Build
	1.4.3.1 Debug vs Release Build
	1.4.3.2 Project Features
	1.4.3.3 Command-Line Usage

	1.4.4 Debugging
	1.4.4.1 Debugging in the IDE
	1.4.4.2 Just-in-Time Debugging

	1.4.5 Sanitizing
	1.4.6 Profiling
	1.4.7 Validation and Verification
	1.4.8 Fingerprints
	1.4.9 Documenting

	1.5 Writing Components
	1.5.1 Discrete Event Simulation
	1.5.1.1 Discrete Event Systems
	1.5.1.2 The Discrete Event-Based Simulation Algorithm
	1.5.1.3 Simulation Time

	1.5.2 Modules, Messages, and Events
	1.5.3 Accessing Parameters
	1.5.4 Random Numbers
	1.5.5 The Simulation Library
	1.5.5.1 Classes
	1.5.5.2 Ownership Tracking

	1.5.6 Representing Network Packets
	1.5.6.1 The Message Compiler
	1.5.6.2 Control Info

	1.5.7 Wired Packet Transmission
	1.5.8 Wireless Packet Transmission
	1.5.9 Dynamic Module Instantiation
	1.5.10 Signals
	1.5.11 Statistical Result Collection
	1.5.11.1 Scalar and Vector Results
	1.5.11.2 Declarative Result Recording
	1.5.11.3 Programmatic Result Recording

	1.5.12 Graphics and Animation
	1.5.12.1 Display Strings
	1.5.12.2 The Canvas
	1.5.12.3 Refreshing
	1.5.12.4 Smooth Animations
	1.5.12.5 3D Graphics

	1.6 Advanced Usage
	1.6.1 Swarms and Cloud Computing
	1.6.2 Checkpointing
	1.6.3 Running Multiple Replications in Parallel
	1.6.4 Emulation, Real-Time, and Hardware-in-the-Loop Support
	1.6.5 Co-simulation Support: HLA, SystemC, and TraCI
	1.6.6 Parallel Simulation Support
	1.6.7 Custom Result Recording
	1.6.8 Embedding the Simulation Kernel
	1.6.9 IDE Extensibility

	1.7 Conclusion
	References

	Part II The OMNeT++Ecosystem
	2 INET Framework
	2.1 Introduction
	2.2 Assembling Simulations
	2.2.1 Network Definition
	2.2.2 Network Participants

	2.3 Simulating TCP/IP Networks
	2.4 Simulating MPLS Networks
	2.5 Simulating Ethernet Networks
	2.6 Simulating Wireless Networks
	2.6.1 Signal Representation
	2.6.2 Modeling the Radio
	2.6.3 Transmission Medium
	2.6.4 Modeling the Physical Environment

	2.7 Simulating IEEE 802.11 Networks
	2.7.1 WSN MAC Protocols
	2.7.2 Alternative Network Layer Protocols
	2.7.3 Energy Modeling

	2.8 Scripting
	2.9 Recording PCAP Files
	2.10 Network Emulation
	2.11 Exploring Simulations
	2.12 Visualization
	2.13 Developing New Protocol Models and Other Components
	2.13.1 Initialization
	2.13.2 Life Cycle and Failure Modeling
	2.13.3 Working with Packets
	2.13.4 Tagging Packets and Cross-Layer Communication
	2.13.5 Using Sockets

	2.14 Experimenting with New Protocols and Algorithms
	2.14.1 TCP Congestion Algorithm Experiments
	2.14.2 Mobile Ad Hoc Network Routing
	2.14.3 IEEE 802.11 Rate Control

	2.15 Conclusion
	References

	3 INETMANET Framework
	3.1 Introduction
	3.2 Routing Protocols
	3.2.1 ManetRoutingBase Class
	3.2.1.1 Signals
	3.2.1.2 Timer Handling
	3.2.1.3 Position Access
	3.2.1.4 Encapsulation
	3.2.1.5 Access to the Routing Table

	3.2.2 Simulating MANET Routing Protocols
	3.2.2.1 Simulating Time
	3.2.2.2 Landscape Area and Coverage Area
	3.2.2.3 Mobility Models
	3.2.2.4 Statistic Errors
	3.2.2.5 Traffic Sources

	3.3 Physical Layer Models
	3.3.1 Antenna Models

	3.4 Mobility Models
	3.4.1 The TraCI Model
	3.4.2 The LaptopModelManager Module

	3.5 Application Models
	3.5.1 UDPBasicBurstNotification
	3.5.2 The UDPVideoStreamSvr2 and UDPVideoStreamCli2 Models

	3.6 Link Layer Models
	3.6.1 Routing and Forwarding in the Link Layer
	3.6.2 VHT and the IEEE 802.11ac Standard

	3.7 Miscellaneous Tools
	3.7.1 The WirelessNumHops Class
	3.7.2 The WirelessGetNeig Class
	3.7.3 The DijkstraKshortest Module
	3.7.4 The GlobalWirelessLinkInspector Module
	3.7.5 NETA Framework Integration

	References

	4 RINASim
	4.1 Introduction
	4.2 Installation
	4.3 High-Level Design
	4.3.1 Overview
	4.3.1.1 Nature of Applications and Application Protocols
	4.3.1.2 Core Terms
	4.3.1.3 Connection-Oriented vs. Connectionless
	4.3.1.4 Delta-t Synchronization
	4.3.1.5 Separation of Mechanism and Policy
	4.3.1.6 Naming and Addressing

	4.3.2 Nodes
	4.3.3 DAF Design
	4.3.3.1 DIF Allocator Interface
	4.3.3.2 IPC Resource Manager
	4.3.3.3 Application Process
	4.3.3.4 Application Entity
	4.3.3.5 Instances of Application Processes and Application Entities
	4.3.3.6 Common Distributed Application Protocol
	4.3.3.7 Enrollment
	4.3.3.8 Resource Information Base
	4.3.3.9 Objects
	4.3.3.10 RIB Daemon

	4.3.4 DIF Design
	4.3.4.1 Delimiting
	4.3.4.2 Data Transfer with Error and Flow Control
	4.3.4.3 Relaying and Multiplexing Task
	4.3.4.4 SDU Protection
	4.3.4.5 Flow Allocator
	4.3.4.6 Resource Allocator

	4.4 Components and Policies
	4.4.1 Nodes
	4.4.2 DAF Modules
	4.4.2.1 DIF Allocator
	4.4.2.2 IPC Resource Manager
	4.4.2.3 Enrollment
	4.4.2.4 Application Process
	4.4.2.5 AE Monitor Instance
	4.4.2.6 AE Management Instance
	4.4.2.7 RIB Daemon
	4.4.2.8 RIB
	4.4.2.9 Common Distributed Application Protocol

	4.4.3 DIF Modules
	4.4.3.1 Delimiting
	4.4.3.2 EFCP Compound Module
	4.4.3.3 EFCPinstance
	4.4.3.4 RMT
	4.4.3.5 Routing
	4.4.3.6 Flow Allocator
	4.4.3.7 Resource Allocator

	4.5 Demonstrations
	4.5.1 Demonstration Network
	4.5.2 Simple Application
	4.5.3 Reliable Data Transfer

	4.6 Conclusion
	Appendix
	CDAP Messages
	RINA Adoption

	References

	5 Cellular-Networks Simulation Using SimuLTE
	5.1 Introduction
	5.2 Background
	5.3 Structure of the SimuLTE Simulator
	5.3.1 Nodes
	5.3.1.1 Evolved Node B
	5.3.1.2 User Equipment
	5.3.1.3 Binder

	5.3.2 LTE NIC
	5.3.2.1 PHY
	5.3.2.2 MAC
	5.3.2.3 RLC
	5.3.2.4 PDCP-RRC
	5.3.2.5 IP2LTE

	5.3.3 Main Functions
	5.3.3.1 Scheduling
	5.3.3.2 Inter-eNB Communications
	5.3.3.3 D2D Operations

	5.4 Tutorials
	5.4.1 Tutorial 1: Interference Coordination
	5.4.1.1 Network Definition
	5.4.1.2 Parameters Configuration
	5.4.1.3 Modifying the Code
	5.4.1.4 Results

	5.4.2 Tutorial 2: Device-to-Device Communication
	5.4.2.1 Network Definition
	5.4.2.2 Parameters Configuration
	5.4.2.3 Modifying the Code
	5.4.2.4 Results

	References

	6 Veins: The Open Source Vehicular Network SimulationFramework
	6.1 Introduction
	6.2 Internals
	6.2.1 Architecture and Bidirectional Coupling
	6.2.2 The MAC and PHY Layer
	6.2.2.1 Medium Access Control and Upper Layers
	6.2.2.2 The Physical Layer and the Wireless Channel

	6.2.3 Modeling Antenna Patterns
	6.2.4 Unit Testing in Veins
	6.2.5 Simple Timer Management

	6.3 Use Cases
	6.3.1 Simulation of Platoons
	6.3.2 Communication on Intersections

	6.4 Extensions
	6.4.1 Using LTE Models in Veins (Veins LTE)
	6.4.2 Using INET Framework Models in Veins (Veins_INET)
	6.4.3 Instant Veins

	References

	7 SEA++ : A Framework for Evaluating the Impact of Security Attacks in OMNeT++/INET
	7.1 Introduction
	7.2 Evaluation of Attack Impact Through Simulation
	7.3 The SEA++ Framework
	7.3.1 Goals and Benefits
	7.3.2 Attack Specification Language
	7.3.2.1 Node Primitives
	7.3.2.2 Message Primitives
	7.3.2.3 Conditional Attacks
	7.3.2.4 Unconditional Attacks
	7.3.2.5 Syntax Conventions

	7.3.3 Attack Specification Interpreter
	7.3.4 Attack Simulation Engine
	7.3.4.1 Reproduction of Attack Effects

	7.4 Explicative Example: Injection of Fake Packets
	7.4.1 Framework Setup
	7.4.2 Evaluation of Attack Impact
	7.4.2.1 Attack Description
	7.4.2.2 Description of the Network Scenario
	7.4.2.3 Simulation of Attack Effects

	7.5 Conclusion
	References

	Part III Recent Developments
	8 Simulation Reproducibility with Python and Pweave
	8.1 Introduction
	8.2 Tools for Reproducible OMNeT++ Simulation
	8.2.1 R and Sweave/knitr
	8.2.2 Python and Pweave
	8.2.3 Python and Jupyter

	8.3 Reproducible OMNeT++ Simulations with Python and Pweave
	8.3.1 Handling Simulation Code and Supporting Files
	8.3.2 Updating Simulation Results Based on Configuration Files
	8.3.3 Analysis and Presentation of Simulation Results

	8.4 Example of a OMNeT++ FIFO Simulation
	8.4.1 Simulation Configurations
	8.4.2 Running Simulations and Importing Results
	8.4.3 Data Analysis and Presentation

	8.5 Summary
	References

	9 Live Monitoring and Remote Control of OMNeT++ Simulations
	9.1 Introduction
	9.2 Architecture
	9.2.1 LiveRecorder for Publish/Subscribe
	9.2.2 SimulationCallee for Remote Procedure Calls
	9.2.3 User Interface

	9.3 TicToc Tutorial
	9.3.1 Installing the Prerequisites
	9.3.2 Adding the Publisher
	9.3.3 Adding the Function Callee

	9.4 ALOHA Tutorial
	9.4.1 Understanding the Network
	9.4.2 Looking into the Simulation Remotely
	9.4.3 Making Parameter Changes Possible
	9.4.4 Publishing Events
	9.4.5 Examining the Simulation Results

	9.5 Conclusion and Future Work
	References

	10 Simulation of Mixed Critical In-Vehicular Networks
	10.1 Introduction
	10.2 Mixed Critical In-Vehicle Networks
	10.2.1 Time-Sensitive Networking Technologies

	10.3 Simulation Environment
	10.3.1 Domain Specific Language for Automotive Networks
	10.3.2 Communication over Real-time Ethernet for INET
	10.3.3 Fieldbus Communication for OMNeT++
	10.3.4 SignalsAndGateways
	

	10.3.5 Result Manager

	10.4 Simulation Process
	10.4.1 Network Modeling
	10.4.2 Experimentation
	10.4.3 Result Analysis

	10.5 Case Study: Automotive Backbone for Premium Cars
	10.5.1 Case Study and Metrics
	10.5.2 Central CAN Gateway Design
	10.5.3 One Ethernet Switch Design
	10.5.3.1 One Ethernet Switch Design Without Aggregation
	10.5.3.2 One Ethernet Switch Design with Aggregation

	10.5.4 Real-Time Ethernet Backbone Design

	10.6 Conclusion and Outlook
	References

	11 LIMoSim: A Framework for Lightweight Simulation of Vehicular Mobility in Intelligent Transportation Systems
	11.1 Introduction
	11.2 Related Work
	11.3 Framework Architecture
	11.3.1 Agent-Based Mobility Modeling
	11.3.2 Represent Map Data with the OpenStreetMap Data Model
	11.3.3 Embedding LIMoSim into OMNeT++

	11.4 Use Cases and Tutorials
	11.4.1 Integration of Real-World Map Data and Initial Positioning
	11.4.2 Accessing Mobility Data from the Communication Side
	11.4.3 Collecting Statistical Information with LIMoSim

	11.5 Conclusion and Further Research
	References

	12 Artery: Large Scale Simulation Environment for ITS Applications
	12.1 Introduction
	12.1.1 Intelligent Transport Systems in Europe
	12.1.2 Modeling ITS-G5
	12.1.3 Setting up Artery

	12.2 Artery at the Core
	12.2.1 Architecture of Artery
	12.2.1.1 Middleware
	12.2.1.2 Services
	12.2.1.3 Facilities
	12.2.1.4 Vanetza
	12.2.1.5 Physical Layer Modeling: Veins vs. INET
	12.2.1.6 Mobility
	12.2.1.7 SUMO and TraCI

	12.2.2 Driving Scenario
	12.2.2.1 SUMO Roads and Traffic
	12.2.2.2 Artery Parameters

	12.2.3 Creating Services
	12.2.3.1 Development of Police Vehicle's Service
	12.2.3.2 Development of Corresponding Reacting Vehicle Service

	12.2.4 Run Simulation
	12.2.5 Data Analysis

	12.3 Local Perception Sensors
	12.3.1 Perception Architecture
	12.3.1.1 Local Perception Sensor
	12.3.1.2 Local Environment Model
	12.3.1.3 Global Environment Model
	12.3.1.4 Ideas for Customizations

	12.3.2 Extending the Model to Use Local Perception Sensors
	12.3.3 Extending the PoliceService Application

	12.4 Scripting for Dynamically Evolving Scenarios
	12.4.1 Storyboard Concept
	12.4.2 Dynamic Activation of Police Service

	12.5 Outlook
	Appendix
	Running, Debugging, and Finding Memory Leaks
	Common Pitfall: Wrong Longitude and Latitude

	References

	13 Simulating LTE-Enabled Vehicular Communications
	13.1 Introduction
	13.2 General Aspects
	13.2.1 Management of Vehicles in SimuLTE
	13.2.2 Attaching an LTE Radio to Vehicles in Artery

	13.3 V2X Services Relying on a Centralized Back-End
	13.3.1 Network Definition
	13.3.2 Parameters Configuration
	13.3.3 Modifying the Code
	13.3.4 Results

	13.4 V2X Services Using LTE D2D
	13.4.1 Network Definition
	13.4.2 Parameters Configuration
	13.4.3 Modifying the Code
	13.4.4 Results

	13.5 Conclusions
	References

	14 Simulating Opportunistic Networks with OMNeT++
	14.1 Introduction and Motivation
	14.1.1 What are Opportunistic Networks?
	14.1.2 OppNets Simulation Requirements
	14.1.3 Opportunistic Networks and OMNeT++

	14.2 Why Use OMNeT++ for OppNets
	14.3 The OPS Framework
	14.4 Application, User Behavior, and Notification Generator
	14.4.1 Notification Generator
	14.4.2 User Behavior
	14.4.3 BasicUBMApp

	14.5 Forwarding Protocols
	14.5.1 Epidemic Routing
	14.5.2 Spray and Wait
	14.5.3 Keetchi
	14.5.4 Deterministic Gossip Algorithm
	14.5.5 Randomized Rumor Spreading
	14.5.6 Further Protocols

	14.6 Link Layer
	14.7 Mobility Models
	14.7.1 Reactive Mobility Models
	14.7.2 Other Mobility Models in OPS

	14.8 Metrics
	14.9 Tutorial
	14.9.1 Use Case 1: Are Messages Propagated Well?
	14.9.2 Use Case 2: Can WiFi Direct Help the Students?

	14.10 Ongoing and Future Works
	References

	15 openDSME: Reliable Time-Slotted Multi-Hop Communication for IEEE 802.15.4
	15.1 Medium Access in Wireless Multi-Hop Networks
	15.2 openDSME
	15.3 Deterministic and Synchronous Multi-Channel Extension
	15.3.1 Beacons for Time Synchronization and Network Association
	15.3.2 Guaranteed Time Slot Management
	15.3.2.1 Slot Expiration

	15.3.3 Scheduling

	15.4 Implementation
	15.4.1 The openDSME Stack
	15.4.2 Auxiliary Modules
	15.4.3 openDSME Platform Abstraction

	15.5 Tutorial
	15.6 Conclusion and Future Work
	References

	Index

