
Chapter 5
Reliability Sensitivity Analysis
of Dynamical Systems

Abstract The reliability sensitivity analysis of systems subjected to stochastic
loading is considered in this chapter. In particular, the change that the probability
of failure undergoes due to changes in the distribution parameters of the uncertain
model parameters is utilized as a sensitivity measure. A simulation-based approach
that corresponds to a simple post-processing step of an advanced sampling-based
reliability analysis is used to perform the sensitivity analysis. In particular, subset
simulation, introduced in the previous chapter, is applied in the present formulation.
The analysis does not require any additional system response evaluations. The feasi-
bility and effectiveness of the approach is demonstrated on a finite element model of
a bridge under stochastic ground excitation. The sensitivity analysis is carried out in
a reduced space of generalized coordinates. The computational effort involved in the
reliability sensitivity analysis of the reduced-order model is significantly decreased
with respect to the corresponding analysis of the full finite elementmodel. The reduc-
tion is accomplished without compromising the accuracy of the reliability sensitivity
estimates.

5.1 Motivation

The level of safety of a structure can be measured in terms of its reliability. Even
though this information is essential, it is also important to analyze the sensitivity of the
reliability estimateswith respect to variations inmodel parameters [3, 8, 13, 18, 30].
In particular, the determination of the variation in the reliability (or equivalently in
the failure probability) due to changes in model parameters can provide useful infor-
mation. For example, it can be used to identify the most influential model parameters
and provide an important insight on system failure for risk-based decision mak-
ing, such as reliability-based characterization of system responses, robust control,
reliability-based design optimization, etc. [2, 6, 15, 24, 26, 34].

The subject of reliability sensitivity has been addressed in a large number of
contributions. In fact, many works based on standard approximate methods such as
first- and second-order reliability methods and simulation-based methods have been
studied in the literature. These methods are quite general, and they have proved to
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be very effective in a large number of problems, but their range of application is
somewhat limited in the context of complex dynamical systems. A representative
list of these works is included in the Refs. [1, 3–5, 13, 16, 18, 20, 22, 27, 29].

5.2 Reliability Sensitivity Analysis Formulation

As indicated in Sect. 4.1, the vector of uncertain parameters θ is characterized in a
probabilistic manner by means of a joint probability density function q(θ). For reli-
ability sensitivity purposes, this function depends on a certain number of parameters
τ , that is, q(θ|τ ). In practice, the distribution parameters τ can be considered, for
example, as the mean value or standard deviation of θ. In this context, the mean value
represents the nominal value, whereas the standard deviation models the uncertainty
associated with manufacturing and construction processes. Then, it is clear that the
probability of failure depends on several factors, among them, the distribution param-
eters τ of the probability density function of the uncertain model parameters. Thus,
the probability of failure explicitly depends on the distribution parameter vector, i.e.
PF (τ ). In this manner, changes in the distribution parameters will certainly alter the
response of the structure and, consequently, its probability of failure. The rate of
change that the probability of failure undergoes due to these changes is denoted as
reliability sensitivity analysis in the context of this chapter.

A simulation-based approach that is a simple post-processing of subset simulation
is considered for performing the corresponding reliability sensitivity analysis [11].
This approach has been validated and illustrated in a series of reliability problems,
including complex structural systems such as nonlinear dynamical systems under
stochastic excitation and problems involving relatively large finite element models
[7, 11, 20, 31]. As in the previous chapter, first excursion probabilities are used to
characterize the level of safety of a structure.

5.3 Sensitivity Measure

A classical measure for sensitivity is calculating the gradient of the quantity of
interest. In this context, reliability sensitivity is defined as the partial derivative of the
failure probability with respect to the distribution parameters of the basic uncertain
model parameters. From the definition of the probability of failure in Eq. (4.5), the
sensitivity of the failure probability with respect to a distribution parameter τ j can
be written in the form

∂PF (τ )

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

=
∫

z∈Ωz ,θ∈Ωθ

IF (z,θ) p(z)
∂q(θ|τ )

∂τ j
dz dθ (5.1)

where τ 0 is the value of the distribution parameter vector where the partial derivative
is evaluated, and all other terms have been previously defined. In Eq. (5.1), it has been
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assumed that q(θ|τ ) is differentiable with respect to τ j and that the integration range
does not depend on τ j . Recall that the previous probability integral represents a high-
dimensional problem in the context of dynamical systems under stochastic loading.

The sensitivity can also be defined in terms of the so-called elasticity, which is
another measure usually used in the context of sensitivity analysis [7, 19]. Within
this context, the elasticity eτ j of the failure probability with respect to a parameter
τ j , evaluated at τ 0, is defined as

eτ j = ∂PF

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

τ 0
j

PF
(5.2)

where τ 0
j is assumed to be non-zero. This dimensionless quantity represents a more

objective sensitivity measure when the uncertain model parameters are diverse in
dimension. Thus, this sensitivity measure can be used to rank the importance of the
model parameters on the system reliability. This measure is also less sensitive to
potential bias in the failure probability estimates [7, 19].

5.4 Failure Probability Function Representation

To compute the sensitivity measure, the probability of failure PF (τ ), referred to as
failure probability function, is first expressed as a function of the distribution param-
eter vector τ . The idea is to estimate the failure probability function by using sam-
ples and associated intermediate failure events generated by subset simulation under
q(θ|τ 0), that is, the probability density function of θ with distribution parameter
vector τ 0. Specifically, following the basic ideas of subset simulation (see Sect. 4.3),
the probability of the first failure event F1 can be computed as

PF1(τ ) =
∫

z∈Ωz ,θ∈Ωθ

IF1(z,θ) p(z) q(θ|τ ) dz dθ

=
∫

z∈Ωz ,θ∈Ωθ

IF1(z,θ)
q(θ|τ )

q(θ|τ 0)
p(z)q(θ|τ 0) dz dθ (5.3)

where q(θ|τ 0) and q(θ|τ ) are the probability density functions of θwith distribution
parameter vector τ 0 and τ , respectively. Similarly, the probability of the conditional
failure event Fk/Fk−1, k = 2, . . . ,m, can be written as

PFk/Fk−1(τ ) =
∫

z∈Ωz ,θ∈Ωθ

IFk (z,θ) p(z|Fk−1) q(θ|Fk−1, τ ) dz dθ

=
∫

z∈Ωz ,θ∈Ωθ

IFk (z,θ)
q(θ|Fk−1, τ )

q(θ|Fk−1, τ 0)
p(z|Fk−1)q(θ|Fk−1, τ

0) dz dθ

(5.4)
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where p(z|Fk−1) is the distribution of z conditional to the failure event Fk−1, and
q(θ|Fk−1, τ ) and q(θ|Fk−1, τ

0) are the conditional distributions of θ given that they
lie in Fk−1 under distribution parameter vectors τ and τ 0, respectively. By definition,
these conditional distributions are equal to

q(θ|Fk−1, τ ) = IFk−1(θ) q(θ|τ )

PFk−1(τ )
, q(θ|Fk−1, τ

0) = IFk−1(θ) q(θ|τ 0)

PFk−1(τ
0)

(5.5)

where PFk−1(τ ) and PFk−1(τ
0) are the probabilities of the failure event Fk−1 under

distribution parameter vectors τ and τ 0 of the probability density function q(·),
respectively. Then, the probability of the conditional failure event Fk/Fk−1 can be
given in the form

PFk/Fk−1 (τ ) = PFk−1 (τ
0)

PFk−1 (τ )

∫

z∈Ωz ,θ∈Ωθ

IFk (z,θ)
q(θ|τ )

q(θ|τ 0)
p(z|Fk−1)q(θ|Fk−1, τ

0) dz dθ

(5.6)

Moreover, by definition, the probability of failure can be expressed as

PF (τ ) = PFm (τ ) = PFm/Fm−1(τ ) PFm−1(τ ) (5.7)

Thus, from Eqs. (5.6) and (5.7) with k = m, it follows that

PF (τ ) = PFm−1(τ
0)

∫

z∈Ωz ,θ∈Ωθ

IFm (z,θ)
q(θ|τ )

q(θ|τ 0)
p(z|Fm−1)q(θ|Fm−1, τ

0) dz dθ

(5.8)

where from construction PFm−1(τ
0) = pm−1

0 . Then,

PF (τ ) = pm−1
0

∫

z∈Ωz ,θ∈Ωθ

IFm (z,θ)
q(θ|τ )

q(θ|τ 0)
p(z|Fm−1)q(θ|Fm−1, τ

0) dz dθ

(5.9)

The last equation represents an analytical characterization, in the framework of
subset simulation, of the failure probability function in terms of the distribution
parameter vector τ .

5.5 Sensitivity Estimation

Using the previous characterization of the failure probability function, the partial
derivative of PF (τ ) with respect to τ j , evaluated at τ 0, can be written as

∂PF

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

= pm−1
0

∫

z∈Ωz ,θ∈Ωθ

IFm (z,θ)

∂q
∂τ j

(θ|τ 0)

q(θ|τ 0)
p(z|Fm−1)q(θ|Fm−1, τ

0) dz dθ

(5.10)
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or in terms of the expectation operator

∂PF

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

= pm−1
0 Ep(z|Fm−1),q(θ|Fm−1,τ 0)

⎡

⎣IFm (z,θ)

∂q
∂τ j

(θ|τ 0)

q(θ|τ 0)

⎤

⎦ (5.11)

where Ep(z|Fm−1),q(θ|Fm−1,τ 0)[ · ] is the expectation operator with respect to the distri-
butions p(z|Fm−1) and q(θ|Fm−1, τ

0). From the last expression, the sensitivity can
be estimated as

∂PF

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

≈ pm−1
0

1

Nm

Nm
∑

i=1

IFm (zm−1,i ,θ
0
m−1,i )

∂q
∂τ j

(θ0
m−1,i |τ 0)

q(θ0
m−1,i |τ 0)

(5.12)

where {(zm−1,i ,θ
0
m−1,i ), i = 1, . . . , Nm} is the set of samples generated at the last

stage of subset simulation under distribution parameter vector τ 0 of the probability
density function q(·), and all other terms have been previously defined.

It is observed that a single subset simulation analysis is required for estimating
the sensitivity of the probability of failure with respect to the distribution parame-
ters. Therefore, the reliability sensitivity analysis is a simple post-processing of a
sampling-based reliability analysis. In other words, the approach does not require
any additional sampling of the indicator function (dynamic analysis). In summary,
it is seen that the estimation of the failure probability and its gradient can be done
with the same samples generated at the last stage of subset simulation. The previous
approach can be extended to higher-order derivatives provided that the distribution
q(θ|τ ) is sufficiently differentiable. It is noted that the characterization of the partial
derivative of the failure probability function with respect to the j th component of τ
(see Eq. (5.10)) can be also expressed in terms of the so-called score function, which
is the partial derivative of the logarithm of the distribution q(θ|τ 0) [25].

5.6 Sensitivity Versus Threshold

From the formulation of subset simulation (see Sect. 4.3.2), it is clear that the
demand function values δ1, . . . , δm at specified probability levels are the ones that
are estimated, rather than the conditional failure probabilities. Consequently, subset
simulation serves as a method to generate random samples whose response values
correspond to specified probability levels, rather than a technique to estimate failure
probabilities for specified failure events. As a result, it produces information about
the probability of failure versus the threshold and not only for a single value. Since
the proposed reliability sensitivity analysis is based on subset simulation, a similar
information can be obtained for the sensitivity measures.

For a demand function value δ̄ such that δk−1 < δ̄ ≤ δk, k = 1, . . . ,m, with
δ0 = 0, the partial derivative of PF (τ ) with respect to τ j , evaluated at τ 0, can be
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estimated as [11, 12]

∂PF

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

≈ pk−1
0

1

Nk

Nk
∑

i=1

IF̄ (zk−1,i ,θ
0
k−1,i )

∂q
∂τ j

(θ0
k−1,i |τ 0)

q(θ0
k−1,i |τ 0)

(5.13)

where F̄ is the failure event defined as

F̄ = {

d(z,θ) > δ̄
}

(5.14)

and {(zk−1,i ,θ
0
k−1,i ), i = 1, . . . , Nk} is the set of samples generated at level k − 1 of

subset simulation under distribution parameter vector τ 0 of the probability density
function q(·). In this manner, a single simulation run yields reliability sensitivity esti-
mates for all thresholds up to the largest one considered in the analysis. In otherwords,
the whole trend of the sensitivity measure versus the thresholds can be obtained in
a direct manner. This feature of the approach is quite desirable because it provides
much more information than a point estimate.

5.7 Particular Cases

The previous general formulation can be specialized for different probability dis-
tributions of the uncertain model parameters and different distribution parameters
as long as Eq. (5.1) holds. Of practical importance is the case when the distribu-
tion parameters are represented by the mean values and standard deviations of the
system parameters. These distribution parameters can be considered as a control
or design variables in a number of important applications such as reliability sensi-
tivity analysis, reliability-based characterization of structural responses, reliability-
based design optimization, robust solutions and predictions, robust design opti-
mization, etc. For illustration purposes, some sensitivity measures corresponding
to the case of normal and log-normal random variables are given in the following
equations.

The partial derivatives of the failure probability with respect to the mean value
μθ j and standard deviation σθ j of the model parameter θ j , evaluated at μ0

θ and σ0
θ for

the case of a normal random variable are estimated as [11, 12]

∂PF

∂μθ j

∣

∣

∣

∣

μ0
θ

≈ pm−1
0

1

Nm

Nm
∑

i=1

IF (zm−1,i ,θ
0
m−1,i ) ×

⎧

⎨

⎩

(θ0m−1,i j − μ0
θ j

)

σ0
θ j

2

⎫

⎬

⎭

(5.15)
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and

∂PF

∂σθ j

∣

∣

∣

∣

σ0
θ

≈ pm−1
0

1

Nm

Nm
∑

i=1

IF
(

zm−1,i ,θ
0
m−1,i

)×
⎧

⎨

⎩

(θ0m−1,i j − μ0
θ j

)2

σ0
θ j

2 − 1

⎫

⎬

⎭

1

σ0
θ j

(5.16)

where {(zm−1,i ,θ
0
m−1,i ), i = 1, . . . , Nm} is the set of samples generated at the last

stage of subset simulation under distributions p(z|Fm−1) and q(θ|Fm−1, τ
0), respec-

tively, and θ0
m−1,i j is the j th component of the sample vector θ0

m−1,i .
For the case of a log-normal randomvariable, the estimators arewritten as [11, 12]

∂PF

∂μθ j

∣

∣

∣

∣

μ0
θ

≈ pm−1
0

1

Nm

Nm
∑

i=1

IF (zm−1,i ,θ
0
m−1,i ) ×

{[

(ln(θ0m−1,i j ) − μ j )

σ j
2

]

α j +
[

(ln(θ0m−1,i j ) − μ j )
2

σ j
2

− 1

]

1

σ2
j

β j

}

(5.17)

and

∂PF

∂σθ j

∣

∣

∣

∣

σ0
θ

≈ pm−1
0

1

Nm

Nm
∑

i=1

IF
(

zm−1,i ,θ
0
m−1,i

)×
{[

(ln(θ0m−1,i j ) − μ j )

σ2
j

]

λ j −
[

(ln(θ0m−1,i j ) − μ j )
2

σ2
j

− 1

]

1

σ2
j

λ j

}

(5.18)

where

α j = [

2 − exp
(−σ j

2
)]

exp
(− (

μ j + σ j
2/2

))

(5.19)

β j = [

exp
(−σ j

2)− 1
]

exp
(− (

μ j + σ j
2/2

))

(5.20)

λ j = −[exp(σ2
j ) − 1]1/2 exp(−(μ j + 3σ2

j/2)) (5.21)

with

μ j = ln

(

(

μ0
θ j

)2
/

√

(

μ0
θ j

)2 +
(

σ0
θ j

)2
)

(5.22)

σ j =
√

ln

(

1 +
(

σ0
θ j

/μ0
θ j

)2
)

(5.23)
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and all other terms have been previously defined. Similar expressions can be derived
for higher order derivatives and for other types of probability distributions of the
uncertain model parameters provided that the distribution q(θ|τ ) is sufficiently dif-
ferentiable.

5.8 Application Problem

The objective of the application problem is to determine the feasibility and effective-
ness of the proposed reliability sensitivity analysis approach in an involved model.
Even though the proposed sensitivity analysis is a simple post-processing of the sub-
set simulation, it can be computationally very demanding due to the large number
of dynamic analyses required during the reliability sensitivity estimation (evaluation
of the indicator function). Therefore, the total computational demand may become
excessive when the computational time for performing a dynamic finite element
analysis is significant. To deal with this difficulty, the reliability sensitivity analysis
is carried out in a reduced-order model.

5.8.1 Model Description

A three-dimensional bridge finite element model of 10,068 degrees of freedom is
considered in the application problem. The bridge model, shown in Fig. 5.1, is
curved in plan and has a total length of 119m. It has five spans of lengths equal
to 24m, 20m, 23m, 25m, and 27m, respectively, and four piers of 8 m height that
monolithically support the girder. Each pier is founded on an array of four piles

Fig. 5.1 Finite element model of bridge structure
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of 35m height. The piers and piles are modeled as column elements of circular
cross-section with Dc = 1.6m and Dp = 0.6m diameter, respectively, while the
deck cross-section is a box girder. The deck girder is modeled by beam and shell
elements and rests on each abutment through two rubber bearings, which are used
as an isolation system.

The rubber bearings consist of layers of rubber and steel, with the rubber being
vulcanized to the steel plates. A schematic representation of a rubber bearing is also
shown in the figure, where Dr represents the external diameter, Di is the internal
diameter, and Hr = tr nr is the total height of rubber in the bearingwhere tr is the layer
thickness and nr is the number of rubber layers. The nominal values of the rubber
bearings parameters are set equal to Dr = 0.80m, Di = 0.10m, and Hr = 0.17m.
The interaction between the piles and the soil is modeled by a series of translational
springs in the x and y direction along the height of the piles, with stiffnesses varying
linearly from Ks = 11,200T/m at the base to 0 at the surface. The net effect of
these elements is to increase the translational stiffness of the column elements that
model the piles. Material properties of the structural model have been assumed as
follows: Young’s modulus E = 2.0 × 1010 N/m2; Poisson’s ratio ν = 0.2, and mass
density ρ = 2,500kg/m3. In addition, 3% of critical damping is added to the model.
It is assumed that the structural components, such as the piers, piles, and the deck
girder, remain linear during the analysis, while the nonlinearities are localized in the
rubber bearings response. In addition, the axial deformation of the piers and piles is
neglected with respect to their bending deformation.

The bridge structure is subjected to a ground acceleration applied in a direction
defined at 25◦ with respect to the x-axis. It is modeled as the non-stationary stochas-
tic process described in Sect. 4.5. The values of the various parameters involved
in the model are taken as the ones considered in the previous chapter. The dura-
tion of the excitation is taken equal to T = 30 s with a sampling interval equal to
ΔT = 0.01 s. Thus, the vector of uncertain parameters z involves more than 3,000
uncertain parameters, as zT =< z1, z2, . . . , z3001 >. Consequently, the correspond-
ing reliability problem and, therefore, the reliability sensitivity analysis problem is
high-dimensional.

5.8.2 Rubber Bearings

5.8.2.1 Description

Rubber bearings have been used over many years in a number of seismically isolated
structures worldwide [14, 21, 28]. They requireminimal initial cost andmaintenance
compared to other passive, semi-active, and active energy absorption devices. Rubber
bearing systems, in principle, are able to provide horizontal flexibility together with
the restoring force and supply the required hysteretic damping. An analytical model
that simulates measured restoring forces under bidirectional loadings is considered.
The model is based on a series of experimental tests conducted for real-size rubber
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Fig. 5.2 Decomposition of the restoring force

bearings [23, 32]. The loading tests of seven full-scale isolatorswere carried out using
the Caltrans Seismic ResponseModification Device Test Facility at the University of
California, SanDiego. The specimens used in the tests weremadewith high damping
rubber compounds. In particular, horizontal bidirectional loading tests for isolators
with a diameter of 0.7m and 1.3m were conducted. On the basis of the test results,
the model assumes that the restoring force on the rubber bearing is composed of a
force directed to the origin of the isolator and another force approximately opposite
to the direction of the movement of the isolator. This decomposition of the restoring
force is schematically shown in Fig. 5.2.

According to the model, a vector approximately in the direction of the motion
d(t), can be defined in terms of the isolator displacement vector ur (t) in the x and y
direction by means of the nonlinear differential equation [9, 10, 33]

ḋ(t) = 1

α
‖ u̇r (t) ‖

[ ˆ̇ur (t)− ‖ d(t) ‖β d̂(t)
]

, ur (0) = 0 , d(0) = 0 (5.24)

where u̇r (t) is the velocity vector, ˆ̇ur (t) and d̂(t) are the unit directional vectors of
u̇r (t) and d(t), respectively, and ‖ · ‖ indicates the Euclidean norm. The parameters
α and β are positive constants that relate to the yield displacement and smoothness of
yielding, respectively. Once the vector d(t) has been derived, the restoring force f(t)
on the isolator (in the x and y direction) is expressed in terms of the unit directional
vector ûr (t) and the vector d(t) as

f(t) = −ûr (t) fe(t) − d(t) fs(t) (5.25)

where fe(t) is the nonlinear elastic component and fs(t) is the elastoplastic com-
ponent. Based on the results reported in [33], it was concluded that the model is
able to accurately simulate the test results for both bidirectional and unidirectional
loading.
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5.8.2.2 Model Parameter Identification and Validation

The mathematical model for the description of the isolator behavior can be used to
calibrate the model parameters by using a specific set of loading tests carried out for
real-size bearings. First, the parameters α and β, which define the transition curve
from the elastic to inelastic regime, are calibrated. They are estimated as 0.2Hr and
0.7, respectively, where Hr is the total height of rubber, as indicated before [33].
Next, the stress-strain relationships for τe(t) = fe(t)/A, and τs(t) = fs(t)/A are
calibrated by means of quadratic and cubic curves as [17]

τe(t) =
{

0.35γ(t) if 0 ≤ γ(t) ≤ 1.8
0.35γ(t) + 0.2(γ(t) − 1.8)2 if γ(t) ≥ 1.8

(5.26)

and
τs(t) = 0.125 + 0.015γ(t) + 0.012γ(t)3 (5.27)

where A is the cross-sectional area of the rubber, and γ(t) =‖ ur (t) ‖ /Hr is the
average shear-strain. The test results show that the scatter of the experimental data
around these calibrated curves is relatively small for average shear strains of less than
200%. Test-restoring forces and those calculated by the model under unidirectional
loading are compared in Fig 5.3 for two specimens. They correspond to a medium-
and large-sized rubber bearing, respectively. The test results were conducted for a
maximum average shear strain of 150%. It is seen that the analytical model simulates
the test results very well. The extra loop shown in the figures is generated by the
analytical model to illustrate the predicted behavior of the rubber bearings for large
average shear strains (250%). Additional validation calculations have shown that the
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Fig. 5.3 Comparison of analytical and experimental hysteresis loops. Left figure: medium size
rubber bearing. Dr = 0.8m, Hr = 0.16m, Di = 0.15m. Right figure: large size rubber bearing.
Dr = 1.0m, Hr = 0.16m, Di = 0.15m
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analytical model is also able to accurately simulate the test results for bidirectional
loadings [9, 10, 33].

5.8.3 Reliability Sensitivity Analysis Formulation

The performance of the bridge structure is characterized in terms of the probability of
occurrence of three failure events. The events are related to the maximum absolute
acceleration at the middle of the deck girder, the maximum relative displacement
between the top of the piers and their connections with the pile foundation, and the
maximum relative displacement between the deck girder and the base of the rubber
bearings at each abutment. Mathematically, the failure events are defined as

F1(z,θ) =
{

max
t∈[0,T ]

(∣

∣

∣

∣

ẍabsolute(t, z,θ)

2.00m/s2

∣

∣

∣

∣

)

> 1

}

,

F2(z,θ) =
{

max
t∈[0,T ]

(∣

∣

∣

∣

δx(t, z,θ)

0.07m

∣

∣

∣

∣

)

> 1

}

,

F3(z,θ) =
{

max
t∈[0,T ]

(∣

∣

∣

∣

δr(t, z,θ)

0.10m

∣

∣

∣

∣

)

> 1

}

(5.28)

where ẍabsolute(t, z,θ) represents the absolute acceleration at the middle of the deck
girder (in the x or y direction), δx(t, z,θ) denotes the relative displacement between
the top of the piers and their connections with the pile foundation (in the x or y direc-
tion), and δr(t, z,θ) describes the relative displacement between the deck girder
and the base of the rubber bearings at each abutment (in the x or y direction). It
is expected that system parameters, such as the diameter of the pier elements, the
diameter of the pile elements, the external diameter of the rubber bearings, and
the total height of rubber in the bearing, may have important effects on the sys-
tem response. Thus, a reliability sensitivity analysis with respect to these parameters
may provide important information about the overall behavior of the bridge structure.
Based on the previous observations, the vector of the system parameters is defined
as θT =< Dc, Dp, Dr , Hr >. To study the behavior of the failure probability when
the system parameters vary in a certain region of the parameters space, the system
parameters are modeled as independent normal random variables with distribution
parameters given in Table5.1. Of course, alternative distributions can also be used.
Note that the uncertainty associated with the system parameters Dc, Dp, Dr and Hr

(geometrical parameters) may correspond to the inherent variability in the construc-
tion process of these elements (piers, piles, and rubber bearings), or they may be
considered as an instrumental variability in the context of this analysis.
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Table 5.1 Distribution of system parameters

System parameter Mean value C.O.V.

Dc(diameter of pier elements) μDc = 1.6m 0.10

Dp(diameter of pile elements) μDp = 0.6m 0.10

Dr (external diameter of rubber bearings) μDr = 0.8m 0.10

Hr (total height of rubber) μHr = 0.16m 0.10

5.8.4 Reduced-Order Model

To carry out the reliability sensitivity analysis in a reduced-order model, the bridge
model is divided into a number of substructures. In particular, the structural model is
subdivided into nine linear substructures and two nonlinear substructures, as shown
in Fig. 5.4.

Substructures S1, S2, S3, and S4 are composed of the different pile elements, sub-
structures S5, S6, S7 and S8 include the different pier elements, and substructure S9
corresponds to the deck girder. Finally, substructures S10 and S11 are the nonlinear
substructures composed of the rubber bearings located at the left and right abutment,
respectively. Based on the previous definition of substructures, it is clear that sub-
structures S1, S2, S3, and S4 depend on the system parameter Dp, substructures S5,
S6, S7 and S8 depend on the system parameter Dc, while substructure S9 is indepen-
dent of the system parameters. Furthermore, the nonlinear substructures depend on
the system parameters Dr and Hr . In connection with Chap.2, the corresponding
parametrization functions are given by h j (θ j ) = θ4j (parameter related to the inertia

Fig. 5.4 Linear and nonlinear substructures of the finite element model
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Table 5.2 Modal frequency difference between the modal frequencies of the full model and the
reduced-order model based on dominant fixed-interface modes

Frequency number Unreduced model Reduced-order model Error

ω (rad/s) ω (rad/s) | Difference |
1 4.214 4.216 2.0 ×10−3

2 4.282 4.284 2.0 ×10−3

3 4.569 4.572 3.0 ×10−3

4 12.197 12.249 5.2 ×10−2

5 15.424 15.462 3.8 ×10−2

6 23.419 23.421 2.0 ×10−3

term in the stiffness matrices) and g j (θ j ) = θ2j (parameter related to the area term
in the mass matrices), where the model parameter θ j is either Dc or Dp, normalized
by its mean value.

Validation calculations indicate that retaining three generalized coordinates (dom-
inant fixed-interface normal modes) for each one of substructures S1, S2, S3, and S4,
two for each one of substructures S5, S6, S7 and S8, and 10 for substructure S9 are ade-
quate in the context of this application. The absolute value of the difference between
the modal frequencies using the full nominal reference finite element model and
the modal frequencies computed using the reduced-order model based on dominant
fixed-interface normal modes is shown in Table5.2. The modal frequencies for both
models are computed by considering only the linear components of the structural
system. A small difference is observed with this number of generalized coordinates.
The corresponding matrix of MAC-values between the first six modal vectors com-

1
2

3
4

5
6

1
2

3
4

5
6

0

0.2

0.4

0.6

0.8

1

Fig. 5.5 MAC-values between themode shapes computed from the unreduced finite elementmodel
and from the reduced-order model based on dominant fixed-interface modes
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puted from the unreduced finite element model and from the reduced-order model is
shown in terms of a 3-D representation in Fig. 5.5.

It is observed that the values at the diagonal terms are close to one and almost
zero at the off-diagonal terms. Thus, the modal vectors of both models are consistent.
The comparison with the lowest six modes is based on the fact that the contribution
of the higher order modes (higher than the 6th mode) in the dynamic response of
the model is negligible. In fact, the dynamic response of the magnitudes associated
with the failure events, that is, ẍabsolute(t, z,θ), δx(t, z,θ), and δr(t, z,θ), obtained
from the reduced-order model, coincides with the response obtained from the unre-
duced finite element model. Note that residual normal modes and interface modes
are not involved in the construction of the reduced-order model. In summary, a total
of 30 generalized coordinates, corresponding to the fixed-interface normal modes
of the linear substructures, out of 10,008 internal degrees of freedom of the origi-
nal model, are retained for the nine linear substructures. Therefore, the number of
interface degrees of freedom is equal to 60 in this case. With this reduction, the
total number of generalized coordinates of the reduced-order model represents a
99% reduction with respect to the unreduced model. Thus, a drastic reduction in
the number of generalized coordinates is obtained with respect to the number of the
degrees of freedom of the original unreduced finite element model. Based on the
previous analysis, it is concluded that the reduced-order model and the full finite
element model are equivalent in the context of this application problem. Therefore,
the reliability sensitivity analysis of the bridge structural model is carried out by
using the reduced-order model. From the practical point of view, it is important to
note that the selection of the fixed-interface modes per substructure, necessary to
achieve a prescribed accuracy, can be done offline, before the reliability sensitivity
analysis takes place.

In the following, the reliability sensitivity analysis corresponding to the three
failure events is presented. The sensitivitymeasures with respect to a given parameter
are estimated by considering the other parameters fixed at their mean values. This is
done to isolate the effect of the parameter variation on the system reliability.

Table 5.3 Sensitivity measures in terms of partial derivatives. (·%) sample coefficient of variation.
Failure event F1
Average value (c.o.v.)
∂PF1
∂μDp

3.85 × 10−2 (27%)

∂PF1
∂μDc

5.37 × 10−3 (47%)

Table 5.4 Sensitivity measures in terms of elasticity coefficients. (·%) sample coefficient of vari-
ation. Failure event F1
Average value (c.o.v.)

eF1μDp
7.26 (21%)

eF1μDc
3.28 (47%)
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Fig. 5.6 Sensitivity of the
failure probability PF1 with
respect to the mean value of
the diameter of the pier and
pile elements: 20
independent estimations
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5.8.5 Results: Failure Event F1

The results of the reliability sensitivity analysis corresponding to the failure event
associated with the maximum absolute acceleration at the middle of the deck girder
are given in Tables5.3 and 5.4.

Table5.3 shows the sensitivity analysis in term of the partial derivatives of the
failure probability with respect to the mean value of the system parameters Dp

and Dc, while Table5.4 gives the corresponding sensitivity measures in terms of the
elasticity coefficients. Theproposed approach is implementedbyusing1,000 samples
at each conditional level of subset simulation with conditional failure probabilities
equal to p0 = 0.1. The estimates shown in the tables correspond to an average of
20 independent runs. The sensitivity information provided in Tables5.3 and 5.4 is
also showed in Fig. 5.6 in form of arrows indicating the magnitude and sign of the
sensitivity. Twenty representative estimations are considered in the figure.

It is observed that the sensitivity measures with respect to the mean value of the
parameters Dp and Dc are positive. Thus, an increase in the value of these parameters
increases the probability of failure. In fact, an increase in the diameter of the pier and
pile elements tends to increase the maximum absolute acceleration at the middle of
the deck girder, which is reasonable from a structural point of view. It is also seen that
failure appears to be most sensitive to the mean value of the diameter of the piles,
as expected. The estimates generated by the proposed simulation-based approach
present some level of dispersion, which can be observed from Fig. 5.6. However, on
average, the estimates converge to the reference value. This result is shown in Fig. 5.7
in terms of the elasticity coefficient estimates, where the reference result is obtained
directly by Monte Carlo simulation with a large number of samples (100,000 in this
case). The corresponding direct simulation is carried out by using the reduced-order
model. The actual variability of the sensitivity estimates is given in parentheses in
Tables5.3 and 5.4. That number corresponds to the sample coefficient of variation
of the estimates over 20 independent runs.
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Fig. 5.7 Average of the
elasticity coefficient
estimates generated by the
proposed approach from 20
simulation runs compared to
the reference estimate
(Monte Carlo). Failure event
F1. System parameters Dp
and Dc
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A similar reliability sensitivity analysis can be performed with respect to the
standard deviation of the system parameters Dp and Dc. It turns out that the elasticity
of the failure probability with respect to the standard deviation of these parameters is
positive. Therefore, the probability of failure increases, i.e., the structural reliability
reduces, with an increase in the standard deviation (variability) of the diameters of
the pier and pile elements. The information provided by the sensitivity analysis with
respect to the standard deviation of the system parameters can be used to identify the
parameters whose uncertainty plays a major role in affecting the failure probability.

As stated in Sect. 5.6, the proposed method yields with a single subset simulation
run reliability sensitivity estimates for all thresholds up to the largest one considered
in the analysis. In this context, Figs. 5.8 and 5.9 show the probability of failure and
the corresponding elasticity coefficients in terms of the threshold. The results with
respect to the mean value of the diameter of the pile elements are shown in Fig. 5.8,
while Fig. 5.9 shows the results related to the mean value of the diameter of the pier
elements. In these figures, an average of 20 independent runs is considered, where
the threshold is normalized by the acceptable acceleration response level equal to
2.0m/s2 (see Sect. 5.8.3). These figures illustrate the whole trend of the probability of
failure and sensitivity measure in terms of the threshold, not only for the normalized
target value equal to one. This feature of the proposed method is quite useful, since
the whole trend of the sensitivity measures versus the threshold is obtained. It is
observed from the figures that the elasticity coefficients increase as the threshold
level increases and, therefore, the failure probability becomes more sensitive as the
failure probability becomes smaller.

5.8.6 Results: Failure Event F2

The results of the reliability sensitivity analysis associated with the second failure
event are given in Tables5.5 and 5.6. Table5.5 shows the sensitivity analysis in terms
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Fig. 5.8 Upper figure:
Probability of failure event
F1 in terms of the
normalized threshold. Lower
figure: Elasticity coefficient
of failure probability PF1 in
terms of the normalized
threshold. System parameter
Dp (diameter of pile
elements)
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of the partial derivatives of the failure probability with respect to the mean value of
the system parameters Dp and Dc, while Table5.6 gives the corresponding sensitivity
measures in terms of the elasticity coefficients.

This information is also shown in Fig. 5.10 in form of arrows indicating the mag-
nitude and sign of the sensitivity. As in the previous case, the results are based on 20
independent runs. For this failure event, the sensitivity measures with respect to the
mean value of the parameters Dp and Dc are negative. Thus, an increase in the value
of these parameters decreases the probability of failure. In this case, an increase in
the diameter of the pier and pile elements tends to decrease the maximum relative
displacement between the piers and the piles, as expected. The results indicate that
both parameters, that is, the mean value of the diameter of the pile and pier elements,
have an important effect on PF2 .

A close examination of the results reveals that the probability of failure event
F2 is more sensitive to the diameter of the pier elements than to the diameter of
the pile elements, which makes sense from a physical point of view. The numerical
results also show that, on average, the estimates obtained from the proposed approach
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Fig. 5.9 Upper figure:
Probability of failure event
F1 in terms of the
normalized threshold. Lower
figure: Elasticity coefficient
of failure probability PF1 in
terms of the normalized
threshold. System parameter
Dc (diameter of pier
elements)
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converge to the reference result, as demonstrated in Fig. 5.11. In fact, the average
estimate coincides with the reference value, which was directly obtained by Monte
Carlo simulation with the same number of samples as used in the previous case.

The sample average of the failure probability elasticities in terms of the number
of independent simulation runs is shown in Fig. 5.12. For comparison, the results
obtained byMonte Carlo simulation are also shown in the figure (with a square sym-
bol). It is seen that the sample average of the elasticity coefficients stabilizes very
fast to the reference result. Thus, the estimate obtained by the proposed sensitivity
measure is practically unbiased. The corresponding sample coefficient of variation
of the estimates, based on 20 independent runs, is given in parentheses in Tables5.5
and 5.6. The trend of the probability of failure and the sensitivity measure in terms of
the threshold is shown in Figs. 5.13 and 5.14, respectively. The results correspond-
ing to the mean value of the diameter of the pile elements are shown in Fig. 5.13,
while Fig. 5.14 shows the results related to the mean value of the diameter of the pier
elements. An average of 20 independent runs is considered in the figures, where the
threshold level is normalized by the acceptable relative displacement response level
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Table 5.5 Sensitivity measures in terms of partial derivatives. (·%) sample coefficient of variation.
Failure event F2
Average value (c.o.v.)
∂PF2
∂μDp

−2.73 × 10−2 (33%)

∂PF2
∂μDc

−3.30 × 10−3 (37%)

Table 5.6 Sensitivity measures in terms of elasticity coefficients. (·%) sample coefficient of vari-
ation. Failure event F2
Average value (c.o.v.)

eF2μDp
−11.79 (18%)

eF2μDc
−18.64 (14%)

Fig. 5.10 Sensitivity of the
failure probability PF2 with
respect to the mean value of
the diameter of the pier and
pile elements: 20
independent estimations
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equal to 0.07m (see Sect. 5.8.3). Once again, it is clear from the figures that the elas-
ticity coefficients increase in magnitude as the threshold increases and, therefore,
the failure probability becomes more sensitive as the failure probability becomes
smaller.

5.8.7 Results: Failure Event F3

The results of the reliability sensitivity analysis associated with the failure event
related to the maximum relative displacement between the deck girder and the base
of the rubber bearings at each abutment are given in Tables5.7 and 5.8.

Table5.7 shows the sensitivity analysis in terms of the partial derivatives of the
failure probability with respect to the mean value of the system parameters Dr and
Hr , while Table5.8 gives the corresponding sensitivity measures in terms of the
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Fig. 5.11 Average of the
elasticity coefficient
estimates generated by the
proposed approach from 20
simulation runs compared to
the reference estimate
(Monte Carlo). Failure event
F2. System parameters Dp
and Dc

−28 −24 −20 −16 −12 −8 −4 0
−28

−24

−20

−16

−12

−8

−4

0

MonteCarlo
Proposedmethod

Fig. 5.12 Sample average of
elasticity coefficients
corresponding to the
probability of failure event
F2 in terms of the number of
independent simulation runs
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elasticity coefficients. The information is also shown in Fig. 5.15 in form of arrows
indicating the magnitude and sign of the sensitivity. As in the previous cases, the
results are based on 20 independent runs.

From the tables, it is seen that the sensitivity of the failure probability with respect
to the mean value of the external diameter Dr is negative. Thus, an increase in
the external diameter of the isolators decreases the probability of failure. This is
reasonable since the base isolation system becomes stiffer and, therefore, the relative
displacement between the deck girder and the base of the rubber bearings tends to
decrease. On the other hand, the sensitivity of the failure probability with respect to
the mean value of the total height of rubber Hr is positive. In this case, an increase
in the total height of rubber in the isolator increases the probability of failure. This
is consistent with the fact that the isolation system becomes more flexible increasing
in this manner the relative displacement between the deck girder and the rubber
bearings. The corresponding elasticity coefficients indicate that the external diameter
of the isolators plays a significant role in affecting the probability of failure. These
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Fig. 5.13 Upper figure:
Probability of failure event
F2 in terms of the
normalized threshold. Lower
figure: Elasticity coefficient
of failure probability PF2 in
terms of the normalized
threshold. Average of five
independent runs. System
parameter Dp

0 0.2 0.4 0.6 0.8 1 1.2
10−3

10−2

10−1

100

0 0.2 0.4 0.6 0.8 1
0

4

8

12

16

20

observations give a valuable insight into the interaction and effect of the isolator
parameters on the failure event associated with the maximum relative displacement
between the deck girder and the base of the rubber bearings.

As in the previous cases, the average estimates obtained by the proposed approach
coincidewith the referencevalues as shown inFig. 5.16. Information about the sample
behavior of the failure probability elasticities in terms of the number of independent
simulation runs is shown in Fig. 5.17. This figure shows the sample average of the
elasticity with respect to the mean value of the system parameters Dr and Hr .

It is seen that the average stabilizes extremely fast. For comparison, the results
obtained by Monte Carlo simulation are also shown in the figure (with a square
symbol). The average of the elasticity coefficients coincides with the Monte Carlo
results. This result indicates that the sensitivity estimation in terms of the elasticity
coefficients is practically unbiased, as in the previous cases. The corresponding sam-
ple coefficient of variation is shown in Fig. 5.18. The coefficient of variation of the
elasticity of the failure probability with respect to the external diameter Dr and the
total height of rubber Hr tends to 5% and 17%, respectively (number in parentheses
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Fig. 5.14 Upper figure: Probability corresponding to failure event F2 in terms of the normalized
threshold. Lower figure: Elasticity coefficient of failure probability PF2 in terms of the normalized
threshold. Average of five independent runs. System parameter Dc

Table 5.7 Sensitivity measures in terms of partial derivatives. (·%) sample coefficient of variation.
Failure event F3
Average value (c.o.v.)
∂PF3
∂μDr

−9.48 × 10−1 (16%)

∂PF3
∂μHr

3.67 × 10−1 (29%)

Table 5.8 Sensitivity measures in terms of elasticity coefficients. (·%) sample coefficient of vari-
ation. Failure event F3
Average value (c.o.v.)

eF3μDr
−16.75 (5%)

eF3μHr
9.06 (17%)
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Fig. 5.15 Sensitivity of the
failure probability PF3 with
respect to the mean value of
the external diameter of the
rubber bearings and the total
height of rubber in the
bearings: 20 independent
estimations
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Fig. 5.16 Average of the
estimates generated by the
proposed approach from 20
simulation runs compared to
the reference estimate
(Monte Carlo). Failure event
F3. System parameters Dr
and Hr
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in Table5.8). These small values correspond to the actual variability of the failure
probability elasticity estimates.

The trend of the probability of failure and the sensitivity measure in terms of the
threshold is shown in Figs. 5.19 and 5.20, respectively. The results corresponding to
the mean value of the external diameter of the rubber bearings are shown in Fig. 5.19,
while Fig. 5.20 shows the results related to themean value of the total height of rubber
in the bearings. An average of 20 independent runs is considered in the figures, where
the threshold is normalized by the acceptable relative displacement response level
equal to 0.10m (see Sect. 5.8.3).

As in the previous failure events, the elasticity coefficients increase in magnitude
as the threshold level increases and, therefore, the failure probability becomes more
sensitive as the failure probability becomes smaller. The importance of the external
diameter of the rubber bearings on failure event F3, compared to the total height
of rubber, can also be seen from the probability curves of the previous figures. In
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Fig. 5.17 Sample average of
elasticity coefficients
corresponding to the
probability of failure event
F3 in terms of the number of
independent simulation runs
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Fig. 5.18 Sample
coefficient of variation of
elasticity coefficients
corresponding to the
probability of failure event
F3 in terms of the number of
independent simulation runs
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fact, the probability of failure considering the external diameter of the bearings as
uncertain is estimated as PF3 = 4.5 × 10−2, for a normalized threshold equal to one,
while a probability of failure PF3 = 6.5 × 10−3 is obtained when the total height of
rubber in the bearings is considered as uncertain. Note that the difference is almost
one order of magnitude.

In summary, the previous results corresponding to the different failure events
represent valuable and practical information about the global performance of the
bridge model.
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Fig. 5.19 Upper figure:
Probability of failure event
F3 in terms of the
normalized threshold. Lower
figure: Elasticity coefficient
of failure probability PF3 in
terms of the normalized
threshold. Average of five
independent runs. System
parameter Dr
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5.8.8 Computational Cost

The number of finite element runs required during the reliability sensitivity analysis
mainly depends on the number of simulations needed by the proposed approach.
Such a number is related to the number of levels or stages carried out by subset
simulation. Thus, the computational effort for assembling the finite element model
and obtaining its nonlinear dynamic response for a given set of system parameters is
the fundamental factor for comparison purposes. In this regard, the proposed model
reduction technique is quite effective. In fact, the execution time for assembling the
reduced-ordermodel represents 0.03%of the time required for the original unreduced
finite element model. Overall, the use of the reduced-order model for estimating the
reliability sensitivity measures results in a drastic reduction of the computational
effort of almost two orders of magnitude. In other words, the ratio of the execution
time for obtaining the reliability sensitivity measures by using the full finite element
model and the execution time for obtaining the reliability sensitivity measures by
using the reduced-ordermodel is about 90 in this case. Thus, a significant reduction in
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Fig. 5.20 Upper figure:
Probability of failure event
F3 in terms of the
normalized threshold. Lower
figure: Elasticity coefficient
of failure probability PF3 in
terms of the normalized
threshold. Average of five
independent runs. System
parameter Hr
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computational effort is achievedwithout compromising the accuracy of the reliability
sensitivity estimates.
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