
Chapter 4
Reliability Analysis of Dynamical
Systems

Abstract The use of reduced-order models in the context of reliability analysis of
dynamical systems under stochastic excitation is explored in this chapter. A stochas-
tic excitation model based on a point-source model is introduced, and it is used for
the generation of ground motions. The corresponding reliability analysis represents
a high-dimensional reliability problem whose solution is carried out by an advanced
simulation technique. Two application problems are considered in order to evaluate
the effectiveness of the proposed model reduction technique. The first example con-
sists of a two-dimensional frame structure, while the second example considers an
involved nonlinear finite element building model. The results show that an impor-
tant reduction in computational effort can be achieved without compromising the
accuracy of the reliability estimates.

4.1 Motivation

Reliability analysis allows the possibility of accounting for the unavoidable effects of
uncertainty over the performance of a structure. In this context, the level of safety of a
structure can be measured in terms of the reliability, which is a metric of plausibility
that the structure fulfills certain performance requirements during its lifetime. The
complement of the reliability is the probability of failure, that is, the probability that
a structure violates prescribed performance criteria. Thus, reliability can be incor-
porated as one of the performance criteria in the analysis and design of structures
to explicitly address the effects of uncertainty [24, 25, 29, 33, 42, 49, 58]. In this
framework, it is assumed that the external force vector f(t) (see Eq. (1.1)) is modeled
as a non-stationary stochastic process and characterized by a random variable vector
z ∈ Ωz ⊂ Rnz . This vector is defined in terms of a probability density function p(z).
Furthermore, consider a vector θ ∈ Ωθ ⊂ Rnθ of uncertain model parameters. These
parameters are characterized in a probabilistic manner by means of a joint prob-
ability density function q(θ). It is noted that alternative approaches for modeling
uncertainties do exist, as well. For example, methodologies based on non-traditional
uncertainty models can be very useful in a number of cases [8, 12, 27, 47, 48]. How-
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ever, the focus here is on probabilistic approaches. The performance of the structural
system due to the excitation is characterized by means of nr responses of interest

ri (t, z, θ) , i = 1, . . . , nr , t ∈ [0, T ] (4.1)

where T is the duration of the excitation. Clearly, the aforementioned responses ri
are functions of time t (due to the dynamic nature of the loading), and functions of
the system parameter vector θ and random variable vector z. The response functions
ri (t, z, θ), i = 1, . . . , nr , are obtained from the solution of the equation of motion
that characterizes the structural model, i.e., Eq. (1.1).

4.2 Reliability Problem Formulation

For structural systems under stochastic excitation, the probability that design con-
ditions are satisfied within a particular reference period provides a useful reliability
measure. Such ameasure is referred to as the first excursion probability and quantifies
the plausibility of the occurrence of unacceptable behavior (failure) of the structural
system [63, 68]. Then, first excursion probabilities are used to characterize the level
of safety of a structure. Specifically, this probability measures the chances that the
uncertain responses exceed prescribed thresholds in magnitude within a specified
time interval. Then, a failure event F(z, θ) can be defined in terms of the so-called
normalized demand function d(z, θ) as [5]

F(z, θ) = {d(z, θ) > 1} (4.2)

where this function is defined as the maximum of the quotient between the structural
responses of interest and their corresponding threshold levels, that is,

d(z, θ) = max
i=1,...,nr

(
max
t∈[0,T ]

(∣∣∣∣ri (t, z, θ)

r∗
i

∣∣∣∣
))

(4.3)

where r∗
i , i = 1, . . . , nr , are the acceptable threshold levels of the corresponding

responses of interest ri , i = 1, . . . , nr . Note that the quotient ri (t, z, θ , )/r∗
i can be

interpreted as a demand to capacity ratio, as it compares the value of the response
ri (t, z, θ)with its maximum allowable value r∗

i . It is noted that the concept of failure
event does not necessarily imply collapse. In fact, the failure event may refer to, for
example, partial damage states or unacceptable system performance.

The probability of occurrence of the failure event F , PF , can be expressed in
terms of the probability integral in the form

PF =
∫
d(z,θ)>1

p(z) q(θ) dz dθ (4.4)



4.2 Reliability Problem Formulation 71

or in terms of the indicator function IF (z, θ) as

PF =
∫
z∈Ωz,θ∈Ωθ

IF (z, θ) p(z) q(θ) dz dθ (4.5)

where the indicator function is equal to 1, in the case that the normalized demand
function is equal or larger than 1 and 0 otherwise. In general, the probability integral
involves a large number of randomvariables (hundreds or thousands) in the context of
dynamical systems under stochastic excitation [5, 38, 40, 56] (see Sect. 4.5). There-
fore, this integral represents a high-dimensional reliability problemwhose numerical
evaluation is extremely demanding from a numerical point of view [17, 21, 50].

4.3 Reliability Estimation

4.3.1 General Remarks

As previously pointed out, the probability integral represents a high-dimensional
reliability problem. In addition, the normalized demand function that characterizes
the failure event F is usually not explicitly known but must be computed point-
wise by applying suitable deterministic numerical techniques, such as finite element
analyses. Then, it is essential to minimize the number of such function evaluations.
Finally, the probability of failure of a system properly designed is, in general, very
small (PF ∼ 10−6−10−2). In other words, failure is a rare event. It is also appar-
ent that methods based on numerical integration or standard reliability methods are
not suitable for estimating the high-dimensional probability integral. This difficulty
favors the application of simulation techniques in order to estimate the probability
of failure. In this regard, it is well known that direct Monte Carlo is theoretically
applicable for evaluating PF , but it is inefficient in estimating small probabilities
because it requires a very large number of samples (dynamic analyses) to achieve an
acceptable level of accuracy [28, 59]. Based on the above conditions, it is clear that
the reliability problem is computationally very challenging. Therefore, the estima-
tion of the system reliability has to rely on advanced simulation techniques to limit,
to the greatest extent possible, the number of dynamic analyses. Several advanced
stochastic simulation methods have been recently developed to cope with this type
of problems. Examples of these algorithms include subset simulation [5, 6, 70],
line sampling [40], auxiliary domain method [39], horseracing simulation [69], and
subset simulation based on hidden variables [7]. Among these algorithms, subset
simulation is used in the present implementation due to its generality and flexibility.
The generality of the method is due to the fact that it is not based on any geometrical
assumption about the topology of the failure domain. Moreover, validation calcula-
tions have shown that subset simulation can be applied efficiently to a wide range
of complex reliability problems [6, 18, 19, 34, 37, 62]. Even though this is a well
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known technique in the reliability engineering research community, some of the key
aspects of subset simulation are reviewed in this section for completeness.

Based on the above conditions, it is clear that the reliability problem is computa-
tionally very challenging.

4.3.2 Basic Ideas

The conceptual idea of subset simulation is to decompose the failure event F into a
sequence of nested failure events

F = Fm ⊂ Fm−1 ⊂ · · · ⊂ F1 (4.6)

so that
F = ∩m

k=1Fk (4.7)

By definition of conditional probability, the probability of failure can be written
as

P(F) = P(Fm) = P(∩m
k=1Fk) = P(F1)

m−1∏
k=1

P(Fk+1/Fk) (4.8)

In other words, the probability of failure is expressed as a product of P(F1) and
the conditional probabilities {P(Fk+1/Fk), k = 1, . . . ,m − 1}. It is seen that, even
if P(F) is small, by choosing m and Fk, k = 1, . . . ,m − 1, appropriately, the con-
ditional probabilities can still be made sufficiently large, and, therefore, can be effi-
ciently evaluated by direct simulation because the failure events are more frequent.
The subsets F1, F2, . . . , Fm−1 are called intermediate failure events. For actual imple-
mentation, the intermediate failure events are adaptively chosen using information
from simulated samples in order to correspond to some specific values of conditional
failure probabilities. To be more specific, the sequence of intermediate failure events
is defined as

Fk = {d(z, θ) > δk} , k = 1, . . . ,m (4.9)

where 0 < δ1 < · · · < δm−1 < 1 = δm is a sequence of intermediate threshold val-
ues. Note that the failure event Fm = F is defined as {Fm = d(z, θ) > δm = 1}.
During subset simulation, the threshold values δ1, . . . , δm−1 are adaptively selected,
so that the conditional failure probabilities are set equal to a pre-established value,
for example, p0. This parameter is called the conditional failure probability. Vali-
dation calculations have shown that choosing any value of p0 between 0.1 and 0.3
will lead to similar efficiency as long as subset simulation is properly implemented
[70]. Then, it is seen that the demand function values δ1, . . . , δm−1 at the specified
probability levels are estimated during the subset simulation. In this manner, subset
simulation generates samples whose demand function values correspond to specific
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(pre-established) probability levels. Therefore, the unconditional as well as all con-
ditional failure probabilities are automatically equal to p0, except for the conditional
failure probability in the last step of subset simulation, that is, P(Fm/Fm−1).

4.3.3 Failure Probability Estimator

The previous result implies that the probability of failure can be expressed in the
form

PF = pm−1
0

∫
z∈Ωz,θ∈Ωθ

IF (z, θ)p(z|Fm−1) q(θ |Fm−1) dz dθ (4.10)

where p(z|Fm−1) and q(θ |Fm−1) are the conditional distributions of the random
variable vector z and uncertain system parameters θ conditional to the failure event
Fm−1, respectively. Note that the integral in the above equation corresponds to the
expected value of the indicator function with respect to the conditional distributions
p(z|Fm−1) and q(θ |Fm−1). Thus, the probability of failure can also be written as

PF = pm−1
0 Ep(z|Fm−1),q(θ |Fm−1) [IF (z, θ)] (4.11)

where Ep(z|Fm−1),q(θ |Fm−1)[ · ] is the expectation operator. The probability of failure is
then estimated as

PF ≈ pm−1
0

1

Nm

Nm∑
i=1

IF (zm−1,i , θm−1,i ) (4.12)

where {(zm−1,i , θm−1,i ), i = 1, . . . , Nm} is the set of samples generated at the last
stage of subset simulation (conditional level m − 1).

For actual implementation of subset simulation, it is assumed without much loss
of generality that the components of z are independent, that is,

p(z) = Π
nz
j=1 p j (z j ) (4.13)

where for every j , p j (·) is a one-dimensional probability density function for z j .
Similarly, the uncertain system parameters θ are also assumed to be independent
and, therefore, the joint probability density function q(θ) takes the form

q(θ) = Π
nθ

j=1q j (θ j ) (4.14)

where q j (θ j ) represents the probability density function of the basic system param-
eter θ j . It is noted that this assumption is not a limitation for a number of cases
of interest. However, the estimation of posterior robust failure probability integrals
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is not covered by the assumption of independence (see Sect. 7.3.4 to address this
situation).

4.4 Numerical Implementation

4.4.1 Basic Implementation

Based on the previous conceptual ideas, the basic implementation of subset simula-
tion is as follows.

(1) Generate N1 samples {(z0,i , θ0,i ), i = 1, . . . , N1} by direct Monte Carlo accord-
ing to the probability density functions p(z) and q(θ), respectively (the subscript
0 denotes that the samples correspond to the unconditional level (level 0)). Set
k = 1.

(2) Evaluate the normalized demand function to obtain {d(zk−1,i , θ k−1,i ), i = 1,
. . . , Nk}. Arrange these values in an increasing order.

(3) Identify the [(1 − p0)Nk + 1]th largest value of the set {d(zk−1,i , θ k−1,i ), i =
1, . . . , Nk}. In the case that this value is equal or larger than 1, set m = k,
δm = 1 and go to step 7. Otherwise, set the intermediate threshold value
δk equal to the aforementioned [(1 − p0)Nk + 1]th largest value of the set
{d(zk−1,i , θ k−1,i ), i = 1, . . . , Nk}.

(4) The kth intermediate failure event is defined as Fk = {d(z, θ) ≥ δk}.
(5) The sampling estimate for P(Fk) if (k = 1) or P(Fk/Fk−1) if (k > 1) is equal

to p0 by construction, where p0 and Nk are chosen such that p0Nk is an integer
number.

(6) By construction, there are p0Nk samples among {(zk−1,i , θ k−1,i ), i = 1, . . . , Nk}
whose demand function value is equal or greater than δk . Starting from each
of these conditional samples, Markov chain Monte Carlo simulation is used to
generate an additional (Nk+1 − p0Nk) conditional samples that lie in Fk , making
a total of Nk+1 conditional samples {(zk,i , θ k,i ), i = 1, . . . , Nk+1} at level k. The
Markov chain samples are drawn by using the modified Metropolis algorithm
[5, 45]. Return to step 2 with k = k + 1.

(7) The conditional failure probability P(Fm/Fm−1) is estimated directly by P(Fm/

Fm−1) = NF/Nm where NF is the number of samples that lie in the target failure
event Fm . The failure probability is estimated as

PF ≈ pm−1
0

1

Nm

Nm∑
i=1

IFm (zm−1,i , θm−1,i ) (4.15)

where {(zm−1,i , θm−1,i ), i = 1, . . . , Nm} is the set of samples generated at the
last stage of subset simulation (conditional level m − 1).

For a more detailed implementation of the approach, the reader is referred to [5, 70].
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4.4.2 Implementation Issues

The numerical implementation of subset simulation can be improved by considering
the parallelization of some independent parts of the algorithm. The highest computa-
tional efforts are associated with the dynamic analysis of the structural system. Then,
parallelization strategies that exploit the parallelism of those parts of the code where
the dynamic analysis is performed can be implemented [2, 55]. The unconditional
level of subset simulation (level 0) can be scheduled completely in parallel, since
the samples are independent. At higher conditional levels, Markov chains need to
be generated. Samples forming a Markov chain depend on the previous samples,
which implies inherent dependence and then excludes parallelization. However, the
chains themselves are independent from each other, which means that the generation
of different chains can be concurrently performed. Thus, a number of chains can be
simultaneously run, taking advantage of available parallelization techniques. Addi-
tionally, low-level parallelism can also be considered to accelerate the individual
model runs (dynamic analysis), improving the numerical implementation even more
[13, 66].

4.5 Stochastic Model for Excitation

4.5.1 General Description

Depending on the particular application and the available information, different
stochastic excitationmodels canbeused. For example, in the area of seismic engineer-
ing, filtered Gaussian white noise-based processes, models based on power spectra,
record-based models, point source-based models, multiple point source-based mod-
els, and models based on large or small sub-events are usually used [4, 14, 20, 22,
46, 51–53, 57, 60, 67]. In particular, a stochastic point source-based model is used in
the present formulation to simulate ground motions. The model is characterized by a
series of seismicity parameters, such as the moment magnitude M and the epicentral
distance r [4, 14]. The methodology, which was initially developed for generating
synthetic ground motions, has been reinterpreted to form a stochastic model for
earthquake excitation [36, 65]. According to this approach, high-frequency and low-
frequency (pulse) components of the groundmotion are independently generated and
then combined to form an acceleration time history. The stochastic model represents
a practical tool for the description of far and near-field ground motions. It establishes
a direct link between the knowledge about the characteristics of the seismic hazard
in the structural site and future ground motions. For completeness, some of the basic
aspects of the model are presented in this section.
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4.5.2 High-Frequency Components

The time history for a specific event of magnitude M and epicentral distance r with
high-frequency components of the groundmotion is obtained by several steps. First, a
discretewhite noise sequence is generated aswT =<

√
1/Δt w j > , j = 1, . . . , nT ,

wherewj , j = 1, . . . , nT , are independent, identically distributed standard Gaussian
random variables, Δt is the sampling interval, and nT is the number of time instants
equal to the duration of the excitation T divided by the sampling interval. The white
noise sequence is then modulated by an envelope function e(t, M, r), such as the
one suggested in [61], at the discrete time instants (see Sect. 4.6.5). Discrete Fourier
transform is applied to the modulated white noise sequence. The resulting spectrum
is multiplied by a ground motion spectrum (or radiation spectrum) A( f, M, r), after
which discrete inverse Fourier transform is applied to transform the sequence back to
the time domain to yield the desired ground acceleration time history. The envelope
function is the major factor affecting the duration of simulated ground motions for
a given moment magnitude M and epicentral distance r . Furthermore, the ground
motion spectrum contains information on the physics of the earthquake process as
well as other geophysical parameters, such as radiation pattern, density, shear wave
velocity in the vicinity of the source, corner frequencies, local site conditions, etc.
Details of the procedure as well as the characterization of the envelope function and
the ground acceleration spectrum can be found in [1, 4, 14, 15, 61, 65].

4.5.3 Pulse Components

The description of the time history with low-frequency components is based on
a simple analytical model developed in [44]. According to the model, the pulse
component related to near-field motions is described through a velocity pulse v(t) as

v(t) = Ap

2
[1 + cos(

2π f p
γp

(t − tp))] cos(2π f p(t − tp) + νp) , t ∈ (tp − γp

2 f p
, tp + γp

2 f p
)

(4.16)

where Ap, f p, νp, γp, and tp describe the amplitude, prevailing frequency, phase
angle, number of half cycles, and time shift, respectively. Outside the time interval,
the velocity pulse is equal to zero. Someof the pulse parameters, such as the amplitude
and frequency, can be linked to themomentmagnitudeM and epicentral distance r of
the seismic event [16]. The rest of the pulse parameters are considered as independent
model parameters, and they have been calibrated by tuning the analytical expression
of the velocity pulse to a wide range of recorded near-field ground motions [44].
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4.5.4 Synthesis of Near-Field Ground Motions

The synthesis of near-field ground motions is obtained by combining the high- and
low-frequency components through the following steps. First, an acceleration time
history with high-frequency components and a pulse ground acceleration are gener-
ated. The Fourier transforms of these synthetic acceleration time histories are then
calculated. Next, the Fourier amplitude spectrum of the synthetic time history with
low-frequency components is subtracted from the Fourier amplitude spectrum of
the synthetic time history with high-frequency components. A synthetic acceleration
time history is constructed, so that its Fourier amplitude spectrum is equal to the
difference of the Fourier amplitude spectra calculated before, and its phase coincides
with the phase of the Fourier transform of the synthetic time history with high-
frequency components. Finally, the time history generated in the previous steps is
superimposed to the acceleration time history corresponding to the velocity pulse
[44]. For illustration purposes, Fig. 4.1 shows a synthetic near-field ground motion
sample corresponding to the envelope function and radiation spectrum presented in
Fig. 4.2 and with near-field pulse parameters Ap = 27.11 (cm/s), f p = 0.53 (Hz),
νp = 0.0 (rad), and γp = 1.8. The existence of the near-field pulse is evident when
looking at the velocity time history of the ground motion. It is noted that considering
a sampling interval equal toΔt = 0.01s, the discrete white noise sequence has more
than 1,500 components. In other words, the vector of uncertain parameters w has
more than 1,500 elements in this case.

Fig. 4.1 Acceleration time history sample. aHigh-frequency components. bNear-field pulse accel-
eration. c Final ground motion (acceleration time history). d Final ground motion (velocity time
history)
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Fig. 4.2 Envelope function e(t, M, r) and radiation spectrum A( f, M, r) for M = 7.0 and r = 20
km

4.5.5 Seismicity Model

The probabilistic model for the seismic hazard at the structural site is finally comple-
mented by assigning a probability density function to some of the model parameters.
In the context of this formulation, the epicentral distance r for the earthquake events
is assumed to follow a log-normal distribution. With respect to the moment magni-
tudeM , several deterministic and probabilistic characterizations have been suggested
[41]. For the near-field pulsemodel, the parameters are defined according to the prob-
ability models suggested in [44]. For example, the prevailing frequency f p and the
peak ground velocity Ap are characterized by log-normal distributions. Furthermore,
the probability model for the number of half cycles γp and the phase angle νp are
chosen, respectively, as normal and uniform.

In summary, the input to the stochastic model for ground motions is the white
noise sequence w, the seismological parameters M and r , and the parameters for the
near-field pulse f p, Ap, νp, and γp. Thus, in connection with Sects. 4.1 and 4.2, the
random variable vector z is defined as z =< wT , M, r, f p, Ap, νp, γp >T . Note that
the dimension of z is of the order of thousands for the excitation stochastic model
under consideration. For illustration purposes, the schematic representation of the
uncertain parameters of the excitation model is presented in Fig. 4.3. Finally, it is
emphasized that the reliability analysis presented in this chapter is not restricted to
this particular stochastic excitation model. In this regard, other excitation models can
be used as well [20, 22, 51, 52, 57].
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Fig. 4.3 Uncertain seismological and near-fault pulse parameters

4.6 Application Problem No. 1

The objective of this application problem is to evaluate the performance and effec-
tiveness of the proposed model reduction technique for the reliability analysis of
a two-dimensional frame structure. Different reduced-order models are considered,
including models based on fixed-interface normal modes with and without interface
reduction.

4.6.1 Model Description and Substructures Characterization

The model, shown in Fig. 4.4, consists of a three-span two-dimensional eight-story
frame structure, and it can be considered as one of the moment-resisting frames of a
building model.

The structural model has a total length of 30m and a constant floor height of
5m, leading to a total height of 40m. The finite element model comprises 160 two-
dimensional beam elements of square cross section with 140 nodes and a total of 408
degrees of freedom. The dimension of the square cross section of the beam elements
is equal to 0.4m. The axial deformation of these elements is neglected with respect
to their bending deformation. The basic material properties of the beam and column
elements are given by the Young’s modulus E = 2.0 × 1010 N/m2 and mass density
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Fig. 4.4 Three-span two-dimensional eight-story frame structure. Application problem No. 1

ρ = 2,500kg/m3. The structural model is subdivided into 16 substructures as shown
in Fig. 4.5. Substructures Si , i = 1, . . . , 8, are composed of the column elements of
the different floors, while substructures Si , i = 9, . . . , 16, correspond to the beam
elements of the different floors. With this subdivision, there are eight interfaces in
the model. The total number of internal degrees of freedom is equal to 312, while 96
degrees of freedom are present at the interfaces.

4.6.2 Reduced-Order Model Based on Dominant
Fixed-Interface Normal Modes

Two models with a reduced number of fixed-interface normal modes are considered
to evaluate the effect of dominant normal modes on the accuracy of the reduced-order
model spectral properties. The first model (Model-1) considers the minimum num-
ber of fixed-interface normal modes at each substructure, while the second model
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Fig. 4.5 Substructures of the finite element model. Application problem No. 1

(Model-2) includes all fixed-interface normal modes with frequencies inside a tar-
get frequency bandwidth. More specifically, Model-1 is characterized by the first
fixed-interface normal mode of each substructure (with the lowest frequency). For
each substructure of Model-2, all fixed-interface normal modes that have frequency
ω such thatω ≤ αωc are retained, with α being a multiplication factor andωc being a
cut-off frequency that is taken equal to 87.66 rad/s (10thmodal frequency of the unre-
duced referencemodel). Themultiplication factor is selected to be 5 for substructures
Si , i = 1, . . . , 8, and 2 for substructures Si , i = 9, . . . , 16. The difference between
the multiplication factors is due to the fact that spectral properties of substructures
Si , i = 1, . . . , 8 are quite different from substructures Si , i = 9, . . . , 16, as the low-
est frequencies corresponding to substructures 1 to 8 are substantially higher than
the lowest frequencies of substructures 9 to 16. The selected multiplication factors
define a frequency bandwidth that contains the most important frequencies of each
substructure.

With this selection ofmultiplication factors, four fixed-interface normalmodes are
kept for each substructure Si , i = 1, . . . , 8, and three fixed-interface normal modes
for each substructure Si , i = 9, . . . , 16. Table4.1 characterizes the two models in
terms of the number of fixed-interface normal modes of each substructure, total
number of interface degrees of freedom, and total number of degrees of freedom.
In summary, only 16 generalized coordinates corresponding to the dominant fixed-



82 4 Reliability Analysis of Dynamical Systems

Table 4.1 Characterization of models with reduced number of fixed-interface normal modes

Fixed interface normal modes Interface DOFs Total number of
DOFs

Si , i = 1, . . . , 8 Si , i = 9, . . . , 16

Model-1 1 1 96 112

Model-2 4 3 96 152

Table 4.2 Modal frequency error: unreduced reference model and reduced-order models generated
from Model-1 and Model-2. Models based on dominant fixed-interface normal modes

Frequency number Unreduced model Reduced-order model

ω (rad/s) Model-1(error) (%) Model-2(error) (%)

1 5.03 1.07 ×10−3 5.14 ×10−6

2 15.57 8.69 ×10−3 2.32 ×10−4

3 27.37 2.52 ×10−2 1.77 ×10−3

4 40.90 6.87 ×10−2 6.97 ×10−3

5 56.17 1.25 ×10−1 1.85 ×10−2

6 72.60 2.26 ×10−1 3.45 ×10−2

7 77.26 9.20 ×100 1.28 ×10−2

8 82.57 6.08 ×100 1.31 ×10−2

9 86.15 3.32 ×100 1.32 ×10−2

10 87.66 3.85 ×100 3.78 ×10−2

interface normal modes are retained for all substructures in Model-1, while 56 gen-
eralized coordinates are considered in Model-2. The dimension of the corresponding
reduced-order models represents a 72% and 62% reduction with respect to the unre-
duced model, respectively.

Table4.2 shows the errors between themodal frequencies using the unreduced ref-
erence finite element model and the modal frequencies computed using the reduced-
order models generated from Model-1 and Model-2. The reduced-order models are
based on dominant fixed-interface normal modes. It is seen that the errors are quite
small for the reduced-order model generated fromModel-2. The errors for the lowest
10 modes fall below 0.05%. For Model-1, an increase in the errors is observed for
modes 7–10, with a range of relative errors between 3% and 10%.

The corresponding matrices of MAC-values between the first 10 modal vectors
computed from the unreduced finite element model and from the reduced-order
models are shown in terms of a 3-D representation in Figs. 4.6 and 4.7, respectively.
It is seen that, for Model-2, the values at the diagonal terms are practically one
and zero at the off-diagonal terms. Thus, the modal vectors are consistent for both
models. Contrarily, some of the diagonal terms are less than one, while some of the
off-diagonal terms exhibit values greater than zero for Model-1. Thus, the reduced-
order model generated fromModel-1 is not able to accurately characterize the higher
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Table 4.3 Modal frequency error: unreduced reference model and reduced-order models generated
from Model-1 and Model-2. Models based on dominant and residual normal modes

Frequency number Unreduced model
ω (rad/s)

Reduced-order model

Model-1(error) (%) Model-2(error) (%)

1 5.03 4.44 ×10−8 4.40 ×10−8

2 15.57 2.56 ×10−8 7.24 ×10−9

3 27.37 1.64 ×10−6 1.07 ×10−6

4 40.90 5.10 ×10−5 3.41 ×10−5

5 56.17 2.49 ×10−4 1.63 ×10−4

6 72.60 1.23 ×10−3 5.37 ×10−4

7 77.26 3.68 ×10−2 1.91 ×10−4

8 82.57 5.67 ×10−2 9.27 ×10−5

9 86.15 5.34 ×10−2 1.65 ×10−4

10 87.66 5.32 ×10−2 5.32 ×10−3

order modes of the unreduced model. Note that this model is an extreme case, since it
includes the minimum number of fixed-interface normal modes at each substructure.

4.6.3 Reduced-Order Model Based on Dominant
and Residual Fixed-Interface Normal Modes

The objective of this section is to evaluate the effect of residual normal modes on
the accuracy of the spectral properties of the reduced-order models considered in the
previous section. Table4.3 shows the relative errors between the modal frequencies
of the unreduced model and the modal frequencies of the reduced-order models
related to Model-1 and Model-2.

Comparing Tables4.2 and 4.3, it is first observed that the consideration of residual
normal modes gives much better solution accuracy than the formulation based on
dominant modes only. In fact, for the first modal frequencies, the difference in the
errors is about three orders of magnitude for both models. It is also observed that the
errors for modes 7–10 related to Model-1 decrease in about two orders of magnitude
by considering the effect of residual modes. The errors for these higher order modes
are less than 0.06%.

The related matrices of MAC-values between the first 10 modal vectors com-
puted from the unreduced finite element model and from the reduced-order models
are shown in Figs. 4.8 and 4.9. It is seen that the MAC-values are practically one
at the diagonal terms and zero at the off-diagonal terms for both models. Thus,
the reduced-order model generated from Model-1 is consistent with the unreduced
model if the residual normal modes are considered in the formulation. Recall that
Model-1 is an utmost case where the minimum number of fixed-interface modes is
considered. As previously pointed out, this reduced-order model is not consistent
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when only the dominant modes are taken into account. Also, note that the reduced-
order model generated fromModel-2 is already consistent with the unreduced model
by considering only the dominant normal modes. The effect of the residual normal
modes on this reduced-order model is to reduce the errors of the spectral properties
even further. In conclusion, the formulation based on residual normal modes greatly
outperforms the formulation based on dominant modes in terms of its accuracy.

4.6.4 Reduced-Order Model Based on Interface Reduction

The effect of interface reduction is analyzed in this section. To this end, 20 interface
modes out of the 96 interface degrees of freedomare retained in the analysis.Note that
the interface region corresponds to thenodeswhere thebeamandcolumnelements are
connected at each floor. As a result the reduced-ordermodel corresponding toModel-
1 includes a total of 36 modal coordinates, while 76 modal coordinates characterize
Model-2. The dimension of these reduced-order models represents a 91% and 81%
reduction with respect to the unreduced model, respectively. The predicted natural
frequencies resulting from both reduced-order models are presented in Table4.4,
and they are compared with the frequencies computed from the unreduced model
as a reference. The reduced-order models are based on dominant normal modes and
interface reduction.

It is seen that the errors reported in this table are similar to the ones shown in
Table4.2. In fact, the errors are very small for the reduced-ordermodel generated from
Model-2, while relative errors between 3%and 10%are observed for the higher-order
modes corresponding to the reduced-order model generated from Model-1. Similar
conclusions are obtained for the mode shapes. In other words, the contribution of

Table 4.4 Modal frequency error: unreduced reference model and reduced-order models generated
from Model-1 and Model-2. Models based on dominant normal modes and interface reduction

Frequency number Unreduced model
ω (rad/s)

Reduced-order model

Model-1(error) (%) Model-2(error) (%)

1 5.03 1.07 ×10−3 5.14 ×10−6

2 15.57 8.69 ×10−3 2.32 ×10−4

3 27.37 2.52 ×10−2 1.77 ×10−3

4 40.90 6.88 ×10−2 7.00 ×10−3

5 56.17 1.25 ×10−1 1.86 ×10−2

6 72.60 2.27 ×10−1 3.48 ×10−2

7 77.26 9.45 ×100 1.30 ×10−2

8 82.57 6.15 ×100 1.32 ×10−2

9 86.15 3.34 ×100 1.34 ×10−2

10 87.66 4.10 ×100 4.26 ×10−2
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Table 4.5 Modal frequency error: unreduced reference model and reduced-order models generated
fromModel-1 andModel-2. Models based on dominant and residual modes, and interface reduction

Frequency number Unreduced model
ω (rad/s)

Reduced-order model

Model-1(error) (%) Model-2(error) (%)

1 5.03 4.44 ×10−8 4.40 ×10−8

2 15.57 2.56 ×10−8 7.24 ×10−9

3 27.37 1.64 ×10−6 1.07 ×10−6

4 40.90 5.10 ×10−5 3.41 ×10−5

5 56.17 2.49 ×10−4 1.63 ×10−4

6 72.60 1.23 ×10−3 5.36 ×10−4

7 77.26 3.67 ×10−2 1.90 ×10−4

8 82.57 5.65 ×10−2 9.27 ×10−5

9 86.15 5.33 ×10−2 1.64 ×10−4

10 87.66 5.30 ×10−2 5.30 ×10−3

the first 20 interface modes seems to be adequate in the sense that the accuracy of
the reduced-order models remains invariant with this number of interface modes,
as the selected interface modes are able to capture the relevant deformation at the
interfaces. Validation calculations show that lower interface modes (lower than the
20th interface mode) cannot be neglected for this model. Note that a small number of
interface degrees of freedom are present at the interfaces, and, therefore, the number
of retained interface modes cannot be too small.

The effect of residual normal modes on the reduced-order models that consider
interface reduction is similar to the one observed in the previous section. That is, the
errors of the spectral properties are significantly reduced. This effect can be seen in
Table4.5. Note that the errors are virtually the same to the ones reported in Table4.3.

The matrices of MAC-values between the first 10 modal vectors computed from
the unreduced finite element model and from the reduced-order models based on
dominant and residual normal modes and interface reduction are shown in Figs. 4.10
and 4.11. Clearly, the reduced-ordermodels are consistent with the unreducedmodel.

To get more insight into the interface modes, the first two characteristic constraint
modes are shown in Figs. 4.12 and 4.13. Recall that these modes are obtained by
transforming the interface modes Υ I into finite element coordinates as indicated in
Sect. 1.6.2. The characteristic constraint modes Υ CC provide the principal modes of
deformation for the interface, since they capture some characteristic physical motion
in the interface region. It is seen that the first characteristic constraint mode captures
much of the interface-induced motion seen in the first global mode, whereas the
second characteristic constraint mode resembles the second global mode. Thus, the
importance of considering an adequate number of interface modes in constructing
the reduced-order model is evident.
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Fig. 4.12 First characteristic
constraint mode

Fig. 4.13 Second
characteristic constraint
mode

4.6.5 Reliability Problem

To control serviceability, the performance of the structure is characterized in terms
of the probability of occurrence of a failure event related to the maximum relative
displacement between the top of the model and the ground, or δ(t, z, θ). Mathe-
matically, the failure event F(z, θ) is defined as F(z, θ) = {d(z, θ) ≥ 1} where the
demand function is given by

d(z, θ) = max
t∈[0,T ]

(∣∣∣∣δ(t, z, θ)

δ∗

∣∣∣∣
)

(4.17)

where δ∗ is the acceptable threshold of the maximum relative displacement of the
eighth floor with respect to the ground. Of course, additional responses can be con-
sidered in the definition of the failure event. Recall that in the previous expressions,
θ represents the vector of uncertain system parameters. In this regard, it is assumed
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that the stiffness properties of the column elements, represented by the modulus
of elasticity, are uncertain. Specifically, the modulus of elasticity of the column
elements of the different floors is modeled as a discrete homogeneous isotropic log-
normal random field rE with components Ei , i = 1, . . . , 8, mean value μE1 where
1 =< 1, . . . , 1 >T , standard deviation σE , and correlation function

R(Δ) = exp(−αΔ2) (4.18)

where the variable Δ represents a distance and the parameter α is related to the
correlation length of the random field. The corresponding covariance matrix of the
random field is given by

Σ E = σ 2
ER (4.19)

in whichR is the correlation matrix with coefficients Ri j = R(Δi j ), i, j = 1, . . . , 8,
where Δi j is the distance between the centroid of the i and j floors. Then, the log-
normal random field can be expressed as [23, 30, 32, 64]

rE = exp(μN1 + ΦNΛ
1/2
N y) (4.20)

where μN1 represents the mean value of the underlying Gaussian random field with

μN = ln(μE ) − 1

2
ln

(
1 + σ 2

E

μ2
E

)
, (4.21)

while ΦN and Λ
1/2
N are obtained from the spectral decomposition of the covariance

matrix of the underlying Gaussian random field ΣN , with coefficients

ΣNi j = ln

(
1 + σ 2

ERi j

μ2
E

)
, i, j = 1, . . . , 8 , (4.22)

and y is a vector of independent standard normal random variables. The mean
value and standard deviation of the log-normal random field are set equal to
μE = 2.0 × 1010 N/m2 and σE = 3.0 × 109 N/m2, respectively. Thus, the corre-
sponding coefficient of variation of the random field is equal to 15%. A mildly
correlated random field is considered by selecting an appropriate value of α. The
corresponding correlation function is shown in Fig. 4.14.

The model is excited horizontally by a ground acceleration modeled as indicated
in Sect. 4.5. Themomentmagnitude and epicentral distance are taken asM = 7.0 and
r = 25km, respectively. The near-field pulse parameters are fixed at their nominal
values as suggested in [44], i.e., Ap = 27.11 (cm/s), f p = 0.53 (Hz), νp = 0.0 (rad),
and γp = 1.8. The envelope function to be used is given by [61]

e(t, M, r) = a1

(
t

2T

)a2

· exp
(

−a3 · t

2T

)
(4.23)
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Fig. 4.14 Correlation
function of the random field.
First application problem
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where T corresponds to the duration of the ground motion and the parameters a1, a2
and a3 are defined as

a1 =
( e
λ

)a2
, a2 = −λ ln(η)

1 + λ · (ln(λ) − 1)
, a3 = a2

λ
(4.24)

with parameter values equal to λ = 0.2 and η = 0.05. The sampling interval and
the duration of the excitation are taken equal to Δt = 0.01 s and T = 30 s, respec-
tively. Thus, the characterization of the stochastic excitation involvesmore than 3,000
uncertain parameters in this case (white noise sequence). Clearly, the corresponding
reliability problem is a high-dimensional problem.

4.6.6 Remarks on the Use of Reduced-Order Models

It is noted that even though subset simulation is an effective advanced simulation
technique, the reliability analysis can be computationally very demanding due to
the large number of dynamic analyses required during the simulation process (eval-
uation of the indicator function). Thus, the repetitive generation of reduced-order
models for different values of the uncertain model parameters θ can be computa-
tionally expensive due to the substantial computational overhead that arises at the
substructure level. To cope with this difficulty, reduced-order models together with
the parametrization schemes introduced inChaps. 2 and 3 are used to estimate the sys-
tem reliability. With respect to Chap. 2 and based on the previous characterization
of the uncertain parameter, it is clear that substructures Sj , j = 1, . . . , 8, depend
on the model parameters related to the modulus of elasticity, while substructures
Sj , j = 9, . . . , 16, are independent of the model parameters. For implementation
purposes, the model parameters associated with substructures Sj , j = 1, . . . , 8, are
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defined as θ j = E j/μE . The corresponding parametrization functions are given by
h j (θ j ) = θ j and g j (θ j ) = 1. The different values that the model parameters may
take during the simulation process, i.e., subset simulation, correspond to different
realizations of the discrete log-normal random field.

4.6.7 Support Points

When reduced-order models based on interface reduction are considered, interface
modes need to be evaluated. The approximation of these modes involves a set of
support points in the model parameter space. These points can be generated by a
number of sampling methods as indicated in Sect. 3.1.5. In this section, an adaptive
scheme where the nominal and support points are updated during the different stages
of subset simulation is introduced. The basic idea is to use support points lying in
the vicinity of the intermediate failure domains in order to increase the accuracy of
the approximate interface modes.

The selected support points at a given stage of subset simulation are Latin Hyper-
cube samples from a normal distribution whose definition is based on samples from
the previous stage. Specifically, at stage k of subset simulation, Ns = p0N condi-
tional samples that lie in Fk ({θ k−1,i , i = 1, . . . , Ns}) are obtained. Based on these
samples, the sample mean θ̄ k and the sample covariance matrix Σk are computed as

θ̄ k = 1

Ns

Ns∑
i=1

θ k−1,i (4.25)

and

Σk = 1

Ns

Ns∑
i=1

[(θ k−1,i − θ̄ k)(θ k−1,i − θ̄ k)
T ] (4.26)

Then, the support points to be used during stage k of subset simulation are gener-
ated from the normal distribution N (θ̄ k, βkΣk), whereβk is a user-selected parameter
scaling the covariance matrix Σk . Such a parameter is problem-dependent. Addi-
tional conditional samples can also be used for the purpose of defining the sample
mean and covariance matrix. In this case, conditional samples can be simulated from
the available Ns samples by the Modified Metropolis algorithm [5]. The complete
set of conditional samples is then used to characterize the normal distribution from
which the support points are generated. The support points generated by the pro-
posed adaptive scheme spread over the important region of failure in the uncertain
parameter space for the examples that are considered in this section. To control the
accuracy of the global surrogate model, the support points correspond to direct eval-
uation of the interface modes. In this manner, the propagation of error that occurs
in previous stages is avoided. In addition, to consider only interpolations, the point
at which the reduced-order model needs to be recomputed, θ∗, should belong to
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the nθ -dimensional convex hull of the support points [3, 11]. If this condition is
not satisfied, a direct evaluation of the interface modes is required for updating the
reduced-order model. In the case of complex failure domains, i.e., when the failure
samples are distributed in disjoint sets, a cluster analysis can be performed in each
stage of subset simulation, to order the samples into clusters [26]. In this way, support
points can be generated for each cluster. The choice concerning which of the set of
support points are used for a given sample is based on its distance with respect to
the center of each cluster [43]. The use of cluster analyses is not necessary for the
numerical examples considered in this chapter.

Alternatively, the support points can be defined in terms of theMarkov chains gen-
erated from the conditional samples at each stage of subset simulation. As previously
pointed out, at each stage of subset simulation, a number of conditional samples that
lie in Fk are already available. Starting from these samples, additional samples are
simulated through Markov chain Monte Carlo simulation using an adaptive condi-
tional sampling algorithm [31]. In each adaptation step, a number of seeds are chosen
at random from the available conditional samples. After running the algorithm for
a number of adaptation steps, a set of support points, to be used during the current
stage of subset simulation, can be obtained.

4.6.8 Reliability Results

Figure4.15 shows the probability of failure in terms of the threshold by using the
unreduced model and several reduced-order models generated from Model-2. Three
reduced-order models are considered in the figure, namely: reduced-order model
based on dominant fixed-interface normal modes; model based on dominant and

Fig. 4.15 Probability of failure in terms of the threshold level. 1: unreduced model. 2: reduced-
order model based on dominant fixed-interface normal modes. 3: reduced-order model based on
dominant and residual fixed-interface normal modes. 4: reduced-order model based on dominant
and residual fixed-interface normal modes and interface reduction
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Fig. 4.16 Probability of
failure in terms of the
threshold level. 1: unreduced
model. 2: reduced-order
model based on dominant
fixed-interface normal modes
and approximate interface
modes. 3: reduced-order
model based on dominant
and residual fixed-interface
normal modes and
approximate interface modes

residual fixed-interface normal modes; and model based on dominant and resid-
ual fixed-interface normal modes and interface reduction. In the case of interface
reduction, no approximations are considered for the interface modes. In other words,
they are directly evaluated during the simulation process. However, partial invariant
conditions are assumed for the transformation matrix, which accounts for the con-
tribution of the residual fixed-interface normal modes (see Sects. 2.3.6 and 3.3.5).
The curves in the figure correspond to an average of five independent runs of subset
simulation. The figure illustrates the whole trend of the probability of failure in terms
of different thresholds, not only for one target value. It is observed that the system
reliability obtained from the unreduced model coincides with the one obtained from
the reduced-order models for all range of thresholds, even for low failure probabil-
ities, i.e. 10−4. Note that in this case, the reduced-order model based on dominant
fixed-interface normal modes is adequate in the context of the reliability problem
under consideration.

The effect of approximate interfacemodes on the accuracy of the reliability results
is shown in Fig. 4.16. This figure depicts the probability of failure in terms of the
threshold by using different reduced-ordermodels. The reduced-ordermodels, which
are generated fromModel-2, are the following: reduced-order model based on dom-
inant normal modes and interface reduction with approximate interface modes; and
reduced-order model based on dominant and residual normal modes and interface
reduction with approximate interface modes. For comparison purposes, the results
corresponding to the unreduced model are also included in the figure. An average
of five independent runs of subset simulation is considered. The number of support
points considered in the adaptive scheme for approximating the interface modes is
36, where a linear interpolation scheme is used (see Sect. 3.1). The comparison of
the reliability estimates obtained by the unreduced model and reduced-order models
shows an excellent correspondence. Thus, the approximate interface modes are able
to accurately predict the response of the system and, consequently, its reliability.
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Table 4.6 Speedup attained for different models. First application problem

Model Speedup

Unreduced 1

Reduced-order-model-1 4

Reduced-order-model-2 2

Reduced-order-model-3 2

Reduced-order-model-4 3

Reduced-order-model-5 3

Table 4.7 Description of reduced-order models. First application problem

Model Description

Reduced-order-model-1 Reduced-order model based on dominant
normal modes

Reduced-order-model-2 Reduced-order model based on dominant
normal modes and interface modes

Reduced-order-model-3 Reduced-order model based on dominant and
residual normal modes and interface modes

Reduced-order-model-4 Reduced-order model based on dominant
normal modes and approximate interface
modes

Reduced-order-model-5 Reduced-order model based on dominant and
residual normal modes and approximate
interface modes

4.6.9 Computational Cost

The computational effort involved in the reliability analysis is shown in Table4.6.
Specifically, this table shows the speedup (round to the nearest integer) achieved by
different reduced-order models, which are described in Table4.7. In this context, the
speedup is the ratio of the execution time by using the unreduced model and the
execution time by using a reduced-order model.

The speedups reported in the table are based on the implementation of the reli-
ability analysis in a four-core computer unit (Intel Core i7 processor). The actual
procedure is carried out by using a homemade code based on a Matlab C++ plat-
form. First, it is noted that a speedup equal to 4 is obtained by using the reduced-order
model based on dominant normal modes. This value reduces to 2 when interface and
residual normal modes are considered. This is mainly due to the update process of
the interface modes and the consideration of the residual normal modes during the
simulation process. However, when approximate interface modes are considered, the
corresponding speedups increase to 3. Thus, the effect of considering approximate
interface modes is also positive in terms of the numerical implementation of the
reliability analysis.
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Based on the previous results, it is seen that the use of reduced-order models for
estimating the reliability of the system is rather effective. In fact, a reduction in com-
putational effort by a factor between 2 and 4 is achieved without compromising the
accuracy of the reliability estimates. It is expected that a more significant effect will
be obtained for more involved finite element models (see next Application Problem).

4.7 Application Problem No. 2

The objective of this example is to explore the effectiveness of reduced-order mod-
els based on interface reduction. In particular, an involved nonlinear finite element
building model is considered.

4.7.1 Structural Model

The three-dimensional finite element building model shown in Fig. 4.17 is consid-
ered as the second application problem. The application involves a 55-story building
model with a total height of 190m. The plan view and the dimensions of a typical
floor are shown in Fig. 4.18. The building has a reinforced concrete core of shearwalls
and a reinforced concrete perimeter moment-resisting frame as shown in Fig. 4.18.
The columns of the perimeter have a circular cross section. The floors and walls are
modeled by shell elements of different thicknesses. Additionally, beam and column
elements are used in the finite element model, which has 89,000 degrees of free-
dom. Material properties are given by the Young’s modulus E = 2.45 × 1010 N/m2,
mass density ρ = 2,500kg/m3, and Poisson’s ratio μ = 0.3. Finally, 5% of critical
damping is added to the model.

For an improved performance, the structural system is reinforced with a total
of 45 nonlinear vibration control devices placed in two different configurations, i.e.,
longitudinal (x) and transverse (y) directions. A typical configuration of the vibration
control devices, at the floors where they are located, is shown in Fig. 4.19. Each
longitudinal device consists of brace and plate elements where a series of metallic
U-shaped flexural plates (UFP’s) are located between the plates, as shown in Fig. 4.20
[35]. On the other hand, each transverse device consists of concrete walls where the
UFP’s are located between them, as illustrated in Fig. 4.20.

Each UFP exhibits a one-dimensional hysteretic type of nonlinearity modeled by
the restoring force law

fN L(t) = α ke δ(t) + (1 − α) keU
y z(t) (4.27)

where ke is the pre-yield stiffness, U y is the yield displacement, α is the factor
that defines the extent to which the restoring force is linear, z(t) is a dimensionless
hysteretic variable, and δ(t) is the relative displacement between the upper and lower
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Fig. 4.17 Three-dimensional finite element building model. Example No. 2

Fig. 4.18 Typical floor plan of the 55-story building model
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Fig. 4.19 Typical configuration of vibration control devices

surfaces of the flexural plates. The hysteretic variable z(t) satisfies the first-order
nonlinear differential equation

ż(t) = δ̇(t)
[
β1 − z(t)2[β2 + β3sgn(z(t)δ̇(t))]

]
/U y (4.28)

where β1, β2 and β3 are dimensionless quantities that characterize the properties
of the hysteretic behavior, sgn(·) is the sign function, and all other terms have been
previously defined. The quantitiesβ1,β2, andβ3 correspond to scale, loop fatness and
loop pinching parameters, respectively. The above characterization of the hysteretic
behavior corresponds to the Bouc–Wen type model [9, 10, 54]. The following values
for the dissipationmodel parameters are used in this case: ke = 2.5 × 106 N/m;U y =
5 × 10−3m; α = 0.1; β1 = 1.0; β2 = 0.5; and β3 = 0.5. A typical displacement-
restoring force curve of one of the U-shaped flexural plates under seismic load is
shown in Fig. 4.21. The nonlinear restoring force of each device acts between the
floors where it is placed along the same orientation of the device.

4.7.2 Definition of Substructures

The model is subdivided into 81 linear substructures Si , i = 1, . . . , 81, as shown
in Fig. 4.22. They are composed of three types of substructures, namely: core of
shear walls located between two floors (Si , i = 1, . . . , 27); slabs of different floors
(Si , i = 28, . . . , 54); and circular columns of the perimeter frame located between
two floors and the corresponding slab of the intermediate floor (Si , i = 55, . . . , 81).
Figure4.23 depicts a typical substructure of each type. In addition, there are 45
nonlinear substructures comprised by the nonlinear vibration control devices defined
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Fig. 4.20 Upper figure:
Model of vibration control
device in the longitudinal
direction. Lower figure:
Model of vibration control
device in the transverse
direction

in the previous section. With this subdivision, the total number of internal degrees
of freedom is equal to 65,300, while 23,700 degrees of freedom are present at the
interfaces. A small number of fixed-interface normalmodes is selected for themodel.
In particular, a model characterized by only 252 fixed-interface normal modes is
considered. In addition, 100 interface modes, which represent about 0.5% of the
total number of interface degrees of freedom, are used in the model. Thus, the total
number of generalized coordinates of the reduced-order model represents more than
99% reduction with respect to the unreduced finite element model.
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Fig. 4.21 Typical displacement-restoring force curve of one of the U-shaped flexural plates

Fig. 4.22 Substructures of the finite element model. Application problem No. 2
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Fig. 4.23 Typical
substructure of each type
(shear wall, slab, perimeter
moment frame and slab)

Fig. 4.24 Relative
frequency errors between the
modal frequencies of the full
finite element model and of
the reduced-order model
based on dominant normal
modes and interface
reduction

Figure4.24 shows the relative errors between the modal frequencies of the unre-
duced finite element model and the modal frequencies of the reduced-order model
based on dominant modes and interface reduction. The first 10 modes are considered
for reference purposes. The corresponding MAC-values between the first 10 modal
vectors computed from the unreduced finite element model and from the reduced-
order model are shown in Fig. 4.25. It is seen that the errors for the modal frequencies
are quite small. The accuracy of the results is also seen for the modal vectors. In fact,
the values at the diagonal terms of the matrix of MAC-values are one, while the
off-diagonal terms are zero. Consequently, the mode shapes of the reduced-order
model are consistent with the mode shapes from the unreduced model. Thus, the
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Fig. 4.25 MAC-values between the mode shapes computed from the unreduced finite element
model and from the reduced-order model based on dominant normal modes and interface reduction

reduced-order model is able to accurately characterize the important modes of the
unreduced finite element model.

The effect of considering the contribution of the residual normal modes in the
generation of the reduced-order model is shown in the following figures. The rela-
tive errors between the modal frequencies of the unreduced finite element model and
the modal frequencies of the reduced-order model are shown in Fig. 4.26. The corre-
sponding matrix of MAC-values between the first 10 modal vectors computed from
the unreduced finite element model and from the reduced-order model is shown in
Fig. 4.27. The effect of considering the residual normal modes in the analysis is evi-
dent. The difference in the errors for the modal frequencies is more than four orders
of magnitude with respect to the ones obtained from the reduced-order model based
on dominant modes only. Thus, the contribution of the residual normal modes signif-
icantly enhances the accuracy of the reduced-order model. In addition, the matrix of
MAC-values indicates that both models are consistent. It is important to stress that
the construction of the reduced-order model is carried out offline, that is, before the
reliability analysis takes place. Thus, this process is independent of the reliability
analysis, which can be computationally quite demanding.
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Fig. 4.26 Relative frequency errors between the modal frequencies of the full finite element model
and of the reduced-order model. Reduced-order model based on dominant and residual normal
modes and interface reduction

Fig. 4.27 MAC-values between the mode shapes computed from the unreduced finite element
model and from the reduced-order model. Reduced-order model based on dominant and residual
normal modes and interface reduction

4.7.3 System Reliability

The failure event is formulated as a first excursion problem during the time of anal-
ysis as indicated in Sect. 4.2. For illustration purposes, the structural response to be
controlled is the displacement at the top of the building. Thus, the corresponding
demand function is characterized as
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Fig. 4.28 Correlation
function of the random field.
Second application problem

d(z, θ) = max
t∈[0,T ]

(∣∣∣∣δ(t, z, θ)

δ∗

∣∣∣∣
)

(4.29)

where δ∗ is the acceptable threshold of the maximum relative displacement of the
top of the building with respect to the ground. It is expected that for the model under
consideration, the stiffness of the core of shear walls may have an important effect on
the system response. Thus, the variability of such stiffness may affect the reliability
of the model. Consequently, for reliability considerations, the modulus of elasticity
of the shell elements that model the core of shear walls is treated as uncertain. The
corresponding stiffness of the core of shear walls, represented by the modulus of
elasticity, is modeled as a discrete homogeneous isotropic log-normal random field
along the height of the building. The discretization of the random field is carried
out every two floors, resulting in a discrete field of 27 components, i.e. rE , (Ei , i =
1, . . . , 27). The mean value and standard deviation of the log-normal random field
are set equal to μE = 2.0 × 1010 N/m2 and σE = 3.0 × 109 N/m2, respectively. The
corresponding correlation function, which models a mildly correlated random field,
is shown in Fig. 4.28.

The characterization of the log-normal random field is similar to the one con-
sidered in Sect. 4.6.5. Based on the previous definition of the substructures and the
characterization of the uncertainty, it is clear that the substructures related to the
core of shear walls (Sj , j = 1, . . . , 27) depend on the model parameters associated
with the modulus of elasticity. For implementation purposes, the model parameters
related to substructures Sj , j = 1, . . . , 27, are defined as θ j = E j/μE . The related
parametrization functions are given by h j (θ j ) = θ j and g j (θ j ) = 1. The other sub-
structures are independent of the model parameters. The different values that the
model parameters may assume during the simulation process correspond to different
realizations of the discrete log-normal random field. The same excitation used in the
previous example is considered in the present application. Note that the characteri-
zation of the stochastic excitation involves more than 3,000 random variables. This
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number of random variables plus the 27 model parameters indicate that the relia-
bility estimation constitutes a high reliability problem. Due to the dimension and
complexity of the finite element model at hand, it is expected that the use of model
reduction techniques and parametrization schemes will have an important effect on
the computational cost of the reliability analysis. Such an effect is illustrated in
Sect. 4.7.5.

4.7.4 Results

The probability of failure in terms of the threshold by using two reduced-order mod-
els is shown in Fig. 4.29. They consist of models based on dominant fixed-interface
normal modes and interface modes, and models based on dominant fixed-interface
normalmodes and approximate interfacemodes.When approximate interfacemodes
are considered, two approaches are used: linear and quadratic interpolation schemes
(see Sect. 3.1). In the case of linear interpolation, 81 support points are used in the
adaptive scheme proposed in Sect. 4.6.7, while 162 are employed in the quadratic
case. An average of five independent runs is considered in the figure. First, it is
observed that the results of the models based on exact and approximate interface
modes are coincident. Thus, the approximation schemes for approximating the inter-
face modes are adequate. Based on the results of the previous section, regarding the
accuracy of the reduced-order models, it is expected that the reduced-order model
based on dominant fixed-interface normal modes and exact interface modes will
produce reliability estimates with sufficient accuracy. Therefore, this case can be
considered as the exact one for comparison purposes. From Fig. 4.29, it is also seen
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Fig. 4.29 Probability of failure in terms of the threshold level. 1: reduced-order model based on
dominant fixed-interface normal modes and exact interface modes. 2: reduced-order model based
on dominant fixed-interface normal modes and approximate interface modes (linear interpolation
scheme). 3: reduced-order model based on dominant fixed-interface normal modes and approximate
interface modes (quadratic interpolation scheme)
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Fig. 4.30 Probability of failure in terms of the threshold level. 1: reduced-order model based on
dominant and residual fixed-interface normal modes and exact interface modes. 2: reduced-order
model based on dominant and residual fixed-interface normal modes and approximate interface
modes (linear interpolation scheme). 3: reduced-order model based on dominant and residual fixed-
interface normal modes and approximate interface modes (quadratic interpolation scheme)

that the reliability estimates of both models that use approximate interface modes
agree very well. Then, the use of a linear interpolation scheme is sufficient in the
context of this application.

The effect of considering the contribution of the residual normal modes on the
reliability estimates is shown in Fig. 4.30. This figure presents the probability of
failure in terms of the threshold by using the following reduced-order models: a
reduced-order model based on dominant and residual fixed-interface normal modes
and exact interface modes; a reduced-order model based on dominant and residual
fixed-interface normal modes and approximate interface modes by using a linear
interpolation scheme; and a reduced-order model based on dominant and residual
fixed-interface normal modes and approximate interface modes by using a quadratic
interpolation scheme. Conclusions similar to the ones obtained in the previous case
regarding the effectiveness of the reduced-order models in estimating the probability
of failure are obtained in this case. In the previous analyses, global invariant condi-
tionswere assumed for the transformationmatrix that accounts for the contribution of
the residual fixed-interface normal modes (see Sect. 3.3.5). By comparing Figs. 4.29
and 4.30, it is noticed that all reduced-order models give similar reliability estimates
for the thresholds considered in the analysis. Validation calculations indicate that the
effect of the residual normal modes is to further enhance the accuracy of reliability
estimates obtained by the reduced-order model based on dominant normal modes
only. However, the difference in this case is almost negligible.
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4.7.5 Computational Effort

Table4.8 shows the speedup (round to the nearest integer) achieved by the different
implementations considered in the previous figures. The corresponding characteriza-
tion of the reduced-order models is indicated in Table4.9. Recall that the speedup is
the ratio of the execution time by using the full finite elementmodel and the execution
time by using a reduced-order model. In this regard, the execution time in perform-
ing the reliability analysis by using the full finite element model is approximated
as follows. The total number of dynamic analyses involved in the results shown in
Figs. 4.29 and 4.30 is approximately 3,700 (four stages of subset simulation). The
time for performing one dynamic analysis of the full model is about 4.3min. Multi-
plying this time by the total number of dynamic analyses required by the simulation
process, the computational effort is expected to be of the order of 265h (more than 11
days). As in the previous example, the procedure is carried out by using a homemade
code based on a Matlab C++ platform.

It is seen that a speedup of six is obtained by the reduced-order model based
on dominant fixed-interface normal modes and exact interface modes. This value
increases to a speedup of more than 20 when approximate interface modes are con-
sidered. Thus, the effect of using approximate interface modes is significant in terms
of the computational effort. This reduction in computational time does not compro-
mise the accuracy of the reliability estimates. Furthermore, a speedup value of the
order of 10 is achieved when the residual normal modes are explicitly considered
in the analysis. For the same number of fixed-interface normal modes per substruc-
ture, the computational burden for using residual normal modes is increased by a
factor of two for this example. This increase is compensated by the significantly
higher accuracy provided by the reduced-order model with residual normal modes
(see Figs. 4.24 and 4.26). Based on the previous results, it is noted that for practi-
cal purposes, the results obtained from the reduced-order model based on dominant
fixed-interface normal modes and approximate interface modes can be used to com-
pute the reliability estimates. Thus, an important reduction in computational efforts
is obtained by using the reduced-order model instead of the full finite element model.
The gain in computational savings for this structural model is significant considering
the complexity associated with the distributed nonlinearities along the height of the
building arising from the installation of the vibration control devices.

Table 4.8 Speedup attained
for different models. Second
application problem

Model Speedup

Reduced-order-model-1 6

Reduced-order-model-2 23

Reduced-order-model-3 21

Reduced-order-model-4 12

Reduced-order-model-5 9
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Table 4.9 Description of reduced-order models. Second application problem

Model Description

Reduced-order-model-1 Reduced-order model based on dominant
normal modes and exact interface modes

Reduced-order-model-2 Reduced-order model based on dominant
normal modes and approximate interface
modes (linear interpolation)

Reduced-order-model-3 Reduced-order model based on dominant
normal modes and approximate interface
modes (quadratic interpolation)

Reduced-order-model-4 Reduced-order model based on dominant
and residual normal modes and approximate
interface modes (linear interpolation)

Reduced-order-model-5 Reduced-order model based on dominant
and residual normal modes and approximate
interface modes (quadratic interpolation)

Finally, it is noted that once a reduced-order model has been defined, several
scenarios in terms of different failure events and system responses can be explored
and considered for reliability purposes in an efficient manner. Therefore, even higher
speedup values can be obtained for the reliability analysis process as a whole.
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