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Preface

The solution to many complex simulation-based problems involving finite element
models requires a large number of dynamic re-analyses. This class of problems
includes Bayesian uncertainty quantification, structural dynamic simulation, model
updating, reliability analysis, sensitivity analysis, uncertainty management in
structural dynamics, reliability-based design optimization, global optimization, and
so on. These problems have a wide range of important applications in several
engineering fields. The corresponding computational demand depends on the
number of finite element analyses and on the time taken to perform an individual
analysis. For problems involving finite element models with a medium/large
number of degrees of freedom, the computational effort may be excessive. To cope
with this difficulty, model reduction techniques are used to generate reduced-order
models in order to carry out the different analyses in a significantly reduced space of
generalized coordinates. In particular, a method based on a type of model reduction
techniques, known as substructure coupling for dynamic analysis, is used in the
context of this monograph. The method involves dividing the structure into a
number of substructures, obtaining reduced-order models of the substructures and
then assembling a reduced-order model of the entire structure. While the use of
reduced-order models alleviates part of the computational effort, their repetitive
generation during simulation processes can be computationally expensive, due to
the substantial computational overhead that arises at the substructure level. In this
regard, an efficient finite element model parametrization scheme is implemented.
When the division of the structural model is guided by such a parametrization
scheme, a drastic reduction in computational effort is achieved without compro-
mising the accuracy of the results. The capabilities of the developed procedures are
demonstrated in a number of simulation-based problems involving uncertainty.
These include reliability analysis, reliability sensitivity analysis, reliability-based
design optimization, and Bayesian model updating.
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Chapter 1
Model Reduction Techniques
for Structural Dynamic Analyses

Abstract This chapter presents a model reduction technique based on substruc-
ture coupling for dynamic analysis. The dynamic behavior of the substructures is
described by a set of dominant fixed-interface normal modes along with a set of
interface constraint modes that account for the coupling at each interface where
the substructures are connected. Based on these modes, the corresponding reduced-
order matrices are derived. The internal dynamic behavior of the substructures is
then enhanced by consideration of the contribution of residual fixed-interface nor-
mal modes. Next, the interface degrees of freedom are reduced by consideration of a
small number of characteristic constraint modes. Pseudo-codes are provided in order
to illustrate how the reduced-order matrices are constructed, by including dominant
and residual fixed-interface normal modes as well as interface reduction. Finally, the
dynamic response of reduced-order models is discussed.

1.1 Structural Model

Attention is focused on a general class of structural dynamical systems,with localized
nonlinearities characterized by multi-degrees of freedom models that satisfy the
equation of motion

Mü(t) + Cu̇(t) + Ku(t) = fNL(u(t), u̇(t), y(t)) + f(t) (1.1)

where u(t) denotes the displacement vector of dimension n, u̇(t) the velocity vector,
ü(t) the acceleration vector, fNL(u(t), u̇(t), y(t)) the vector of nonlinear restoring
forces, y(t) the vector of a set of variables that describes the state of the nonlinear
components, and f(t) the external force vector. The matricesM,C, andK, which are
assumed to be symmetric, describe the mass, damping, and stiffness, respectively.
The evolution of the set of variables y(t) is described through an appropriate nonlinear
model that depends on the nature of the nonlinearity. The equation of motion for the

© Springer Nature Switzerland AG 2019
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4 1 Model Reduction Techniques for Structural Dynamic Analyses

displacement vector u(t) and the equation for the evolution of the set of variables
y(t) constitute a system of coupled nonlinear equations. This characterization of the
dynamical system allows the description of different types of models commonly
used for nonlinearities, such as hysteresis, degradation, plasticity, and other types of
nonlinearities [2, 3, 27].

In the dynamic characterization of this class of structural dynamical systems, it
is often inefficient to carry out a finite element analysis of the entire model. In fact,
in many dynamic analysis problems, the lower frequencies and the corresponding
modes tend to dominate the dynamic behavior of the structure. It is also common
for component structures to be analyzed independently in complex systems, which
makes it more convenient to perform a dynamic analysis at the substructure level.
In this framework, model reduction techniques have been developed as practical and
efficient tools tomodel and analyze the dynamics of complex structural systems [13].
The objective of model reduction techniques is to obtain reduced-order models that
can be solved significantly faster than the original high-fidelity model, incorporating
the important dynamics of the analyzed system so that the results from the reduced-
order models are sufficiently accurate. A class of model reduction techniques known
as component mode synthesis (CMS), or substructure coupling for dynamic analysis
[5, 14, 15, 24, 26], is briefly reviewed in this chapter.

1.2 Substructure Modes

Substructure coupling involves dividing the structure into a number of linear and
nonlinear substructures (or components), obtaining reduced-order models of the lin-
ear substructures, and then assembling a reduced-order model of the entire structure.
Specifically, after dividing the structure into substructures, the model reduction tech-
nique involves two basic steps: defining sets of substructure modes, and coupling
the substructure mode models to form a reduced-order system model. Substructure
modes include normal, constraint, rigid-body, and attachment modes [12, 15].

Depending on the substructure modes under consideration, substructuring can
be grouped into fixed-interface, free-interface, and loaded-interface methods [7, 12,
13, 16, 18, 25, 28]. Among these, the Craig-Bampton method [12, 15], a fixed-
interface technique, is widely used for its simplicity and computational stability. In
this approach, which is used in the present work, the substructure modes correspond
to fixed-interface normal modes and interface constraint modes. In this manner, the
dynamic behavior of the linear components of the structural system is described by a
set of normal modes of individual substructures along with a set of constraint modes
that account for the coupling at each interface where the substructures are connected.
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1.2.1 Fixed-Interface Normal Modes

To introduce the substructure modes, the following partitioned form of the mass
matrix Ms ∈ Rns×ns and the stiffness matrix Ks ∈ Rns×ns of the substructure s, s =
1, . . . ,Ns, are considered

Ms =
[
Ms

ii Ms
ib

Ms
bi M

s
bb

]
(1.2)

Ks =
[
Ks

ii Ks
ib

Ks
bi K

s
bb

]
(1.3)

where ns is the number of degrees of freedom of substructure s,Ns is the total number
of linear substructures, and the indices i and b are sets containing the internal and
boundary degrees of freedom, respectively, of substructure s. The internal degrees of
freedom, which are not shared with any adjacent substructures, are kept in the vector
usi (t) ∈ Rnsi , while all boundary degrees of freedom are kept in the vector usb(t) ∈ Rnsb .
The boundary degrees of freedom include only those that are in common with the
interface degrees of freedom of adjacent substructures. Note that ns = nsi + nsb. The
fixed-interface normal modes are obtained by restraining all boundary degrees of
freedom and solving the eigenvalue problem [15]

Ks
iiΦ

s
ii − Ms

iiΦ
s
iiΛ

s
ii = 0 , s = 1, . . . ,Ns (1.4)

where the matrix Φs
ii contains the complete set of nsi fixed-interface normal modes

and Λs
ii is the corresponding diagonal matrix containing the eigenvalues. The fixed-

interface normal modes are normalized with respect to the mass matrix Ms
ii, that

is,
Φs

ii
TMs

iiΦ
s
ii = Isii (1.5)

and
Φs

ii
TKs

iiΦ
s
ii = Λs

ii (1.6)

where Isii ∈ Rnsi×nsi is the identity matrix.

1.2.2 Interface Constraint Modes

The interface constraint modes are defined as the static deformation of the sub-
structure when a unit displacement is applied at one coordinate of vector usb(t) and
zero displacement at the remaining interface degrees of freedom, while the internal
degrees of freedom are force free [15]. Then, the interface constraint modes matrix is
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Ψ s =
[

Ψ s
ib

Isbb

]
∈ Rns×nsb (1.7)

where Ψ s
ib ∈ Rnsi×nsb is the interior partition of the interface constraint modes matrix

and Isbb ∈ Rnsb×nsb is the identity matrix, which satisfy [15]

[
Ks

ii Ks
ib

Ks
bi K

s
bb

] [
Ψ s

ib
Isbb

]
=

[
0sib
Rs

bb

]
(1.8)

where 0sib ∈ Rnsi×nsb is the null matrix, and Rs
bb ∈ Rnsb×nsb is the corresponding matrix

of interface forces. Solving the first block of Eq. (1.8), the interior partition of the
interface constraint modes matrix takes the form

Ψ s
ib = −Ks

ii
−1Ks

ib (1.9)

and therefore, the interface constraint modes matrix is given by

Ψ s =
[

Ψ s
ib

Isbb

]
=

[−Ks
ii
−1Ks

ib
Isbb

]
(1.10)

For illustration purposes, Figs. 1.1 and 1.2 show the fixed-interface normal modes
and the interface constraintmodes, respectively, for the substructure in Fig. 1.3,which
is composed of three beam elements. The variables ui(t), i = 1, . . . , 4, correspond
to the internal degrees of freedom, while ui(t), i = 5, . . . , 8, are the interface degrees
of freedom.

Fig. 1.1 Substructure
fixed-interface normal modes
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Fig. 1.2 Substructure interface constraint modes

Fig. 1.3 Eight degrees of freedom beam substructure

1.3 Reduced-Order Model: Standard Formulation

As mentioned above, the objective of model reduction techniques is to characterize
the dynamic behavior of the system by a reduced number of generalized coordinates.
In the standard formulation of component mode synthesis, the dynamic of the system
is described by a number of generalized coordinates, which includes a fraction of
the fixed-interface modal coordinates of each substructure and the physical interface
coordinates. The derivation of the corresponding reduced-order model is presented
in this section.

1.3.1 Transformation Matrix

The fixed-interface normal modes and the interior partition of the interface constraint
modes are used to define a transformationmatrixTD (Craig-Bampton transformation
matrix), which relates the vector of physical coordinates of all substructures ū(t) to
the vector of generalized coordinates q(t) as

ū(t) = TDq(t) (1.11)
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where

ū(t) =
{
ui(t)
uI (t)

}
∈ Rn (1.12)

in which

ui(t) =

⎧⎪⎨
⎪⎩

u1i (t)
...

uNs
i (t)

⎫⎪⎬
⎪⎭ ∈ Rni , ni =

Ns∑
s=1

nsi (1.13)

is the vector of physical coordinates at the internal degrees of freedom of all sub-
structures,

uI (t) =

⎧⎪⎨
⎪⎩

u1I (t)
...

uNI
I (t)

⎫⎪⎬
⎪⎭ ∈ RnI , nI =

NI∑
l=1

nlI (1.14)

is the vector of physical coordinates at the NI independent interfaces, where nlI is the
number of degrees of freedom at the interface l,

TD =
[ [Φ1

id , . . . ,Φ
Ns
id ] [Ψ 1

ib, . . . ,Ψ
Ns
ib ]T̃

0 I

]
∈ Rn×nD (1.15)

is the Craig-Bampton transformation matrix, where Φs
id ∈ Rnsi×nsid , nsid � nsi , are the

kept fixed-interface normal modes of each substructure, nD = nid + nI , in which
nid = ∑Ns

s=1 n
s
id , 0 ∈ RnI×nid is the null matrix, I ∈ RnI×nI is the identity matrix,

[·, . . . , ·] is a block diagonal matrix that has the matrices inside the square brackets
as diagonal blocks, T̃ ∈ Rnb×nI is a transformation matrix consisting of zeros and
ones that maps the vector uI (t) of independent interface coordinates to the vector of
boundary coordinates of all substructures ub(t), that is

ub(t) = T̃uI (t) (1.16)

where

ub(t) =

⎧⎪⎨
⎪⎩

u1b(t)
...

uNs
b (t)

⎫⎪⎬
⎪⎭ ∈ Rnb , nb =

Ns∑
s=1

nsb (1.17)

and where the vector of generalized coordinates is defined as

q(t) =
{

η(t)
uI (t)

}
∈ RnD (1.18)
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(a) (b)

(c) (d)

Fig. 1.4 Schematic illustration of notation used for physical coordinates

η(t) being the vector of kept fixed-interface modal coordinates of all substructures.
The kept fixed-interface normal modes of each substructure Φs

id are referred to as
dominant fixed-interface normal modes. General guidelines on how to choose the
number nsid for each substructure are left for subsequent chapters with applications.

Figure1.4 illustrates the different previously-defined vectors that group the phys-
ical coordinates of a particular problem. In Fig. 1.4a, an arbitrary structural system is
depicted,which is analyzed using the discretizedmodel shown in Fig. 1.4b. The nodes
are designated with dots, and the different elements are delimited with thin lines. To
analyze the discretized model, three substructures are considered, which are termed
s1, s2, and s3 in Fig. 1.4c. In addition, Fig. 1.4c also indicates the different nodes
that are associated with the physical coordinates of the independent interfaces of the
model u1

I and u
2
I , respectively. The nodes associated with each independent interface

can be selected arbitrarily, as long as a node is associated with a single independent
interface. Finally, Fig. 1.4d indicates the nodes associated with the boundary and the
internal degrees of freedom of each substructure. The nodes associated with vectors
us
i , s = 1, 2, 3, do not contain repeated entries between themselves; in contrast, the

nodes associated with vectors us
b, s = 1, 2, 3, do contain repeated entries between

themselves. The boundary coordinates of a substructure s, usb(t), may contain one or
more independent interface coordinates ulI (t) (l = 1, . . . ,NI ). The particular struc-
ture of the transformation matrix T̃ depends on the definition of the independent
interface coordinates ulI (t), l = 1, . . . ,NI .
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1.3.2 Reduced-Order Matrices

Given the structure of the vector of physical coordinates of all substructures ū(t)given
in Eq. (1.12); the partitioned form of the mass matrixMs and the stiffness matrixKs

of the substructure s, s = 1, . . . ,Ns, defined in Eqs. (1.2) and (1.3), respectively; and
the relationship between the vector uI (t) of independent interface coordinates and
the vector of boundary coordinates of all substructures ub(t) in (1.16); the mass and
stiffness matrices of the model referred to the vector ū(t) are given by

M̂ =
[

[M1
ii, . . . ,M

Ns
ii ] [M1

ib, . . . ,M
Ns
ib ]T̃

T̃
T [M1T

ib , . . . ,M
NT
s

ib ] T̃
T [M1

bb, . . . ,M
Ns
bb]T̃

]
, (1.19)

and

K̂ =
[

[K1
ii, . . . ,K

Ns
ii ] [K1

ib, . . . ,K
Ns
ib ]T̃

T̃
T [K1T

ib , . . . ,K
NT
s

ib ] T̃
T [K1

bb, . . . ,K
Ns
bb]T̃

]
(1.20)

The corresponding mass and stiffness matrices of the model referred to the gen-
eralized coordinates q(t) take the form

M̂D = TT
D M̂ TD (1.21)

and
K̂D = TT

D K̂ TD (1.22)

where the dimension of these matrices is equal to nD × nD. Carrying out the previous
products yields

M̂D =
[

I [M̂1
ib, . . . , M̂

Ns

ib ]T̃
T̃
T [M̂1T

ib , . . . , M̂
NT
s

ib ] T̃
T [M̂1

bb, . . . , M̂
Ns

bb]T̃

]
(1.23)

and

K̂D =
[

[Λ1
id , . . . ,Λ

Ns
id ] 0

0 T̃
T [K̂1

bb, . . . , K̂
Ns

bb]T̃

]
(1.24)

with

M̂
s

ib = ΦsT
idM

s
iiΨ

s
ib + ΦsT

idM
s
ib , (1.25)

K̂
s

bb = KsT
ib Ψ s

ib + Ks
bb = −KsT

ibK
s
ii
−1Ks

ib + Ks
bb (1.26)
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and

M̂
s

bb = (Ψ sT
ibM

s
ii + MsT

ib )Ψ
s
ib + Ψ sT

ibM
s
ib + Ms

bb , s = 1, . . . ,Ns (1.27)

The identity matrix I is of dimension equal to nid × nid , and the diagonal matrices
Λs

id , s = 1, . . . ,Ns, contain the eigenvalues of the dominant fixed-interface normal
modes for each substructure. It can be seen that the reduced-order matrices M̂D and
K̂D are symmetric. The dimension of the reduced-order matrices can be substantially
smaller than the dimension of the unreduced matrices, that is, nD � n. In a similar
manner, the damping matrix ĈD can be defined directly in terms of the damping
matrix Ĉ of the unreduced model referred to the vector of physical coordinates of
all substructures ū(t). In general, however, damping is treated as modal damping,
imposed on the modes of the reduced-order system model [15].

1.4 Reduced-Order Model: Improved Formulation

According to the transformation matrix TD, introduced in Eq. (1.15), the vector of
physical coordinates at the internal degrees of freedom of all substructures ui(t) is
approximated as

ui(t) = [Φ1
id , . . . ,Φ

Ns
id ]η(t) + [Ψ 1

ib, . . . ,Ψ
Ns
ib ]T̃uI (t) (1.28)

where Φs
id contains the nsid dominant fixed-interface normal modes of substructure

s. Thus, the nsi − nsid residual normal modes are not considered in the approximation
of ui(t). To improve the accuracy of this approximation, the static contribution of
the residual normal modes of each substructure can be considered explicitly in the
analysis [8, 20, 21], as shown below.

1.4.1 Static Correction

To consider the static contribution of the residual normal modes, the undamped free
vibration of the linear components of Eq. (1.1), referred to the set of generalized
coordinates q(t), is first considered. The equation of motion reads

M̂D

{
η̈(t)
üI (t)

}
+ K̂D

{
η(t)
uI (t)

}
= 0 (1.29)
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From the first block of this equation and the characterization of the matrices M̂D

and K̂D, given in (1.23) and (1.24), respectively, the vector of fixed-interface modal
coordinates of all substructures η(t) satisfies the equation

η̈(t) + [Λ1
id , . . . ,Λ

Ns
id ] η(t) = −[M̂1

ib, . . . , M̂
Ns

ib ]T̃ üI (t) (1.30)

In view of the definition of M̂
s

ib, s = 1, . . . ,Ns, given in Eq. (1.25) and the defi-
nition of the interior partition of the interface constraint modes Ψ s

ib, s = 1, . . . ,Ns,
given in Eq. (1.9), (1.30) can be rewritten as

η̈(t) + [Λ1
id , . . . ,Λ

Ns
id ] η(t) = −[Φ1T

id , . . . ,Φ
NT
s

id ]M̃ibT̃ üI (t) (1.31)

where
M̃ib = [M1

ib − M1
iiK

1−1

ii K1
ib, . . . ,M

Ns
ib − MNs

ii K
N−1
s

ii KNs
ib ] (1.32)

Using the relationship between the vector uI (t) and the vector of boundary coor-
dinates of all substructures ub(t) given in Eq. (1.16), the equation of motion (1.31)
at the substructure level becomes

η̈s(t) + Λs
id ηs(t) = −ΦsT

id M̃
s
ibü

s
b(t) , s = 1, . . . ,Ns (1.33)

where

M̃
s
ib = Ms

ib − Ms
iiK

s−1

ii Ks
ib (1.34)

The static contributionof the residual fixed-interface normalmodes to the response
of the physical coordinates at the internal degrees of freedom usi (t), due to the inter-
face load M̃

s
ibü

s
b(t), is approximated by using static correction [6, 19, 20, 29]. Due

to the structure of the equation of motion (1.33), the static correction usi,static(t) takes
the form

usi,static(t) = −F̄
s
M̃

s
ibü

s
b(t) (1.35)

where F̄
s
is the residual flexibility matrix corresponding to the fixed-interface normal

modes problem of substructure s, given by

F̄
s = Ks−1

ii − Φs
idΛ

s−1

id ΦsT
id (1.36)

The previous approximation is reasonable, since high-frequency modes (resid-
ual fixed-interface normal modes) react essentially in a static manner when excited
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by low frequencies. Then, following Eqs. (1.16) and (1.28), the vector of physical
coordinates at the internal degrees of freedom of substructure s can be expressed as

usi (t) = Φs
id ηs(t) + Ψ s

ibu
s
b(t) + usi,static(t) (1.37)

= Φs
id ηs(t) + Ψ s

ibu
s
b(t) − F̄

s
M̃

s
ibü

s
b(t) , s = 1, . . . ,Ns

If the relationship between the vectorsuI (t) andub(t) is once again considered, the
vector of physical coordinates at the internal degrees of freedom of all substructures
ui(t) can be written in the form

ui(t) = [Φ1
id , . . . ,Φ

Ns
id ]η(t) + [Ψ 1

ib, . . . ,Ψ
Ns
ib ]T̃uI (t) − F̄M̃ibT̃ üI (t) (1.38)

where F̄ is a block diagonal matrix containing the residual flexibility matrix of all
substructures, that is,

F̄ = [F̄1
, . . . , F̄

Ns ] (1.39)

1.4.2 Improved Transformation Matrix

If the approximation of ui(t) given in Eq. (1.38) and the definition of the vector of
physical coordinates of all substructures ū(t) in Eq. (1.12) are used, it follows that

ū(t) =
[ [Φ1

id , . . . ,Φ
Ns
id ] [Ψ 1

ib, . . . ,Ψ
Ns
ib ]T̃

0 I

] {
η(t)
uI (t)

}
+

[
0 −F̄M̃ibT̃
0 0

]{
η̈(t)
üI (t)

}
(1.40)

The relationship between the vector of generalized coordinates q(t) and its second
derivative is obtained directly from Eq. (1.29), that is,

{
η̈(t)
üI (t)

}
= −M̂

−1
D K̂D

{
η(t)
uI (t)

}
(1.41)

and therefore, Eq. (1.40) can be rewritten in the form

ū(t) = {TD + TR}
{

η(t)
uI (t)

}
(1.42)
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where TD is the transformation matrix defined in Eq. (1.15) that includes the contri-
bution of dominant fixed-interface normal modes, and

TR =
[
0 F̄M̃ibT̃
0 0

]
M̂

−1
D K̂D (1.43)

is the transformation matrix that accounts for the contribution of the residual fixed-
interface normal modes. Given the structure of the reduced-order mass matrix M̂D,
it follows that its inverse takes the form [17, 22]

M̂
−1
D =

[
I + MiI (MI − MT

iIMiI )
−1MT

iI −MiI (MI − MT
iIMiI )

−1

−(MI − MT
iIMiI )

−1MT
iI (MI − MT

iIMiI )
−1

]
(1.44)

where
MI = T̃

T [M̂1
bb, . . . , M̂

Ns

bb]T̃ (1.45)

and
MiI = [M̂1

ib, . . . , M̂
Ns

ib ]T̃ (1.46)

If the definitions of M̂
−1
D and K̂D are considered, and if the product between

the 2 × 2 partition matrix in Eq. (1.43) and the matrix M̂
−1
D K̂D is performed, the

transformation matrix TR is expressed as

TR =
[−F̄M̃ibT̃(MI − MT

iIMiI )
−1MT

iIΛ F̄M̃ibT̃(MI − MT
iIMiI )

−1KI

0 0

]
(1.47)

where

Λ = [Λ1
id , . . . ,Λ

Ns
id ] (1.48)

and

KI = T̃
T [K̂1

bb, . . . , K̂
Ns

bb]T̃ (1.49)

The matrixTD + TR represents an improved transformation matrix that explicitly
incorporates the contribution of the substructures’ residual modes into the analysis.
All the basic matrices involved in the definition of TR are already available from the
formulation based on dominant fixed-interface normal modes.
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1.4.3 Enhanced Reduced-Order Matrices

Based on the improved transformation matrix TD + TR, the enhanced reduced-order
mass matrix M̂R ∈ RnD×nD and the reduced-order stiffness matrix K̂R ∈ RnD×nD are
defined as

M̂R = (TD + TR)
TM̂(TD + TR)

= TT
DM̂TD + TT

RM̂TD + TT
DM̂TR + TT

RM̂TR

= M̂D + TT
RM̂TD + TT

DM̂TR + TT
RM̂TR (1.50)

and

K̂R = (TD + TR)
T K̂(TD + TR)

= TT
DK̂TD + TT

RK̂TD + TT
DK̂TR + TT

RK̂TR

= K̂D + TT
RK̂TD + TT

DK̂TR + TT
RK̂TR (1.51)

It is expected that the reduced-order matrices M̂R and K̂R are more precisely
constructed than the reduced-order matrices obtained from the formulation based on
dominant fixed-interface normal modes because of the explicit contribution of the
residual modes of the substructures in the transformation matrix TR. Thus, the effect
of considering residual normal modes is to enhance the dynamic behavior of the
internal degrees of freedom at the substructure level and, consequently, at the global
level.

1.4.4 Remarks on the Use of Residual Modes

As previouslymentioned, if the residual fixed-interface normalmodes are considered
explicitly in the analysis, the approximation of the response at the substructure level
is expected to improve. In this context, it is noted that reduced-order models based
only on dominant fixed-interface normal modes can also be used if the level of
accuracy is appropriate. Note, however, that the number of fixed-interface normal
modes included in the analysis should be increased if the same level of accuracy is
required as the one obtained using residual normal modes [20]. The use or non-use of
the contribution of the residual normal modes in the analysis is problem-dependent.
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1.5 Numerical Implementation: Pseudo-Code No. 1

Based on the formulation presented, the following pseudo-code illustrates how the
reduced mass and stiffness matrices are evaluated.
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1.6 Global Interface Reduction

The formulations presented in Sects. 1.3 and 1.4 do not consider order reduction for
the interface degrees of freedom. The number of interface degrees of freedom in the
original finite element model is determined by the finite element mesh. If the mesh is
fine in the interface regions, for example, in applications involving line and surface
coupling, or if there are many substructures, then the interface matrices involved in
the reduced-order model may be relatively large. As a result, it might be desirable
to reduce the number of interface degrees of freedom. Note that the pertinence of
using interface reduction is problem-dependent. A number of approaches have been
proposed in the literature to reduce the number of interface degrees of freedom [1, 4,
9, 11, 30, 31, 33]. In particular, a method based on characteristic constraint modes
has proven to be quite conceptually and computationally attractive [11].

1.6.1 Interface Modes

If the definition of thematricesMI ,MiI ,Λ, andKI given in Eqs. (1.45), (1.46), (1.48),
and (1.49) is used, the reduced-order matrices M̂D and K̂D in (1.23) and (1.24) can
be rewritten as

M̂D =
[

I MiI

MT
iI MI

]
(1.52)

and

K̂D =
[

Λ 0
0 KI

]
(1.53)

The approach based on characteristic constraint modes corresponds to an eigen-
value problem of the matrices MI and KI , that is,

KIΥ I − MIΥ IΩ I = 0 (1.54)

where the matrixΥ I contains the selected nIR interface modes andΩ I is the diagonal
matrix that contains the corresponding eigenvalues. The kept interface modes are
normalized with respect toMI , satisfying

Υ T
I MIΥ I = II (1.55)
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and
Υ T

I KIΥ I = Ω I (1.56)

where II denotes the identity matrix. The number of selected interface modes can be
relatively small compared with the number of interface degrees of freedom, that is,
nIR � nI .

1.6.2 Reduced-Order Matrices Based on Dominant
Fixed-Interface Modes

The kept set of interface modes is used to represent the vector of physical coordinates
at the NI independent interfaces uI (t), expressed as

uI (t) = Υ Iγ(t) (1.57)

where γ(t) are the interface modal coordinates. With this representation, the vector
of physical coordinates of all substructures ū(t) can be expressed as

ū(t) = TD

[
I 0
0 Υ I

]
qI (t) = TDIqI (t) (1.58)

where qI (t) is the vector of generalized coordinates

qI (t) =
{

η(t)
γ(t)

}
(1.59)

and

TDI =
[ [Φ1

id , . . . ,Φ
Ns
id ] [Ψ 1

ib, . . . ,Ψ
Ns
ib ]T̃Υ I

0 Υ I

]
(1.60)

is the transformation matrix that considers the effect of the dominant fixed-interface
normalmodes and interface reduction. The correspondingmass and stiffnessmatrices
of the model, referred to the fixed-interface modal coordinates of all substructures
η(t) and the interface modal coordinates γ(t), are defined as

M̂DI = TT
DI M̂ TDI (1.61)
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and

K̂DI = TT
DI K̂ TDI (1.62)

which yield

M̂DI =
[

I [M̂1
ib, . . . , M̂

Ns

ib ]T̃Υ I

Υ T
I T̃

T [M̂1T

ib , . . . , M̂
NT
s

ib ] II

]
(1.63)

and

K̂DI =
[ [Λ1

id , . . . ,Λ
Ns
id ] 0

0 Ω I

]
(1.64)

where the dimension of these matrices is equal to nDI × nDI , nDI = ∑Ns
s=1 n

s
id + nIR.

It can be seen that the reduced stiffness matrix is diagonal, while the reduced mass
matrix contains off-diagonal terms. The matrix

Υ II = [Ψ 1
ib, . . . ,Ψ

Ns
ib ]T̃Υ I ∈ Rni×nIR (1.65)

involved in defining the transformation matrix TDI represents an eigenvector-based
linear combination of the interior partition of the interface constraint modesΨ s

ib, s =
1, . . . ,Ns, referred to the physical coordinates of the internal degrees of freedom of
all substructures ui(t). The columns of the augmented matrix Υ CC ∈ Rn×nIR , defined
in terms of Υ II and Υ I as

Υ CC =
[

Υ II

Υ I

]
(1.66)

correspond to the characteristic constraint modes [10, 11]. These modes provide
a significant physical insight into the motion of the interface and the transmission
of vibration between the substructures, since they contain in an approximate sense
the principal modes of deformation for the interface [11, 31]. The dominant fixed-
interface normalmodes and the characteristic constraintmodesmay define a reduced-
order model with a greatly-reduced number of degrees of freedom, that is, nDI � n.
Therefore, the effect of interface reduction is the reduction of the dimension of the
model even further.
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1.6.3 Reduced-Order Matrices Based on Residual
Fixed-Interface Modes

If the relationship between the vector of physical coordinates at the independent inter-
faces uI (t) and the interfacemodal coordinates γ(t) given in Eq. (1.57) is considered,
Eq. (1.40) can be rewritten as

ū(t) = TD

[
I 0
0 Υ I

] {
η(t)
γ(t)

}
+

[
0 −F̄M̃ibT̃
0 0

] [
I 0
0 Υ I

] {
η̈(t)
γ̈(t)

}
(1.67)

On the other hand, the relationship between the vector qI (t), given in Eq. (1.59),
and its second derivative can be obtained directly from the equation corresponding
to the undamped free vibration of the linear components of Eq. (1.1) referred to the
set of generalized coordinates qI (t). Similar to Eq. (1.41), the second derivative of
qI (t) is given by

{
η̈(t)
γ̈(t)

}
= −M̂

−1
DI K̂DI

{
η(t)
γ(t)

}
(1.68)

Based on the previous relationships and applying the derivation presented in
Sect. 1.4.2, it follows that the transformation matrix TR in Eq. (1.43), that includes
the contribution of the residual fixed-interface normal modes, becomes

TRI =
[
0 F̄M̃ibT̃
0 0

] [
I 0
0 Υ I

]
M̂

−1
DI K̂DI =

[
0 F̄M̃ibT̃Υ I

0 0

]
M̂

−1
DI K̂DI

(1.69)

where the inverse of the reduced-order mass matrix M̂DI is given by [17, 22]

M̂
−1
DI =

[
I + MiIR(II − MT

iIRMiIR)
−1MT

iIR −MiIR(II − MT
iIRMiIR)

−1

−(II − MT
iIRMiIR)

−1MT
iIR (II − MT

iIRMiIR)
−1

]
(1.70)

where
MiIR = [M̂1

ib, . . . , M̂
Ns

ib ]T̃Υ I (1.71)

Taking into account the definition of M̂
−1
DI and K̂DI and carrying out the corre-

sponding products between the matrices in (1.69), the transformation matrix TRI is
written as

TRI =
[ −F̄M̃ibT̃Υ I (II − MT

iIRMiIR)
−1MT

iIRΛ F̄M̃ibT̃Υ I (II − MT
iIRMiIR)

−1Ω I

0 0

]
(1.72)
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Then, the relationship between the vector of physical coordinates of all substructures
and the vector of generalized coordinates given in Eq. (1.58) is redefined as

ū(t) = (TDI + TRI ) qI (t) (1.73)

Consequently, the enhanced reduced-order mass matrix M̂RI ∈ RnDI×nDI and
reduced-order stiffness matrix K̂RI ∈ RnDI×nDI that consider interface reduction and
the contribution of residual fixed-interface normal modes, take the form

M̂RI = (TDI + TRI )
TM̂(TDI + TRI ) (1.74)

= TT
DIM̂TDI + TT

RIM̂TDI + TT
DIM̂TRI + TT

RIM̂TRI

= M̂DI + TT
RIM̂TDI + TT

DIM̂TRI + TT
RIM̂TRI

and

K̂RI = (TDI + TRI )
T K̂(TDI + TRI ) (1.75)

= TT
DI K̂TDI + TT

RI K̂TDI + TT
DI K̂TRI + TT

RI K̂TRI

= K̂DI + TT
RI K̂TDI + TT

DI K̂TRI + TT
RI K̂TRI

The term II − MT
iIRMiIR, that appears in the transformation matrix TRI and has

to be inverted, is a matrix of dimension nIR × nIR, being nIR the selected number
of interface modal coordinates as previously pointed out. Thus, if the number of
selected interface modes is small the computational cost of inverting this matrix is
not high.

1.7 Numerical Implementation: Pseudo-Code No. 2

Based on the formulation presented, the following pseudo-code illustrates how the
reduced mass and stiffness matrices are evaluated by including global interface
reduction.
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1.8 Local Interface Reduction

The previous treatment of interface reduction is based on global interface modes.
Alternatively, the interface modes can be considered at the local level. To this end, let
KIll ∈ RnlI×nlI andMIll ∈ RnlI×nlI be the partitions of the interface matricesKI andMI ,
respectively, associated with the physical coordinates at interface l, l = 1, . . . ,Nl ,
i.e. ulI (t). The interface modes corresponding to interface l satisfy the eigenvalue
problem

KIllΥ Ill − MIllΥ IllΩ Ill = 0 (1.76)

where Υ Ill contains the selected nlIR local interface modes and Ω Ill is the diagonal
matrix that contains the corresponding eigenvalues. The local interface modes are
normalized with respect toMIll in the form

Υ T
IllMIllΥ Ill = IIll (1.77)

and

Υ T
IllKIllΥ Ill = Ω Ill (1.78)

where IIll denotes the identity matrix. The previous modes are used to represent the
vector of physical coordinates ulI (t) at interface l in terms of the local interfacemodal
coordinates γ l(t) in the form

ulI (t) = Υ Illγ l(t) (1.79)

Similarly to Eq. (1.58) the vector of physical coordinates of all substructures ū(t)
can be written as

ū(t) = TD

[
I 0
0 [Υ I11, . . . ,Υ INlNl ]

]
qIL(t) = TDILqIL(t) (1.80)

where qIL(t) is the vector of generalized coordinates
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qIL(t) =
{

η(t)
γL(t)

}
, (1.81)

γL(t) =< γ1(t)
T , . . . ,γNl

(t) >T is the vector of local interface modal coordinates
of all independent interfaces, and

TDIL =
[ [Φ1

id , . . . ,Φ
Ns
id ] [Ψ 1

ib, . . . ,Ψ
Ns
ib ]T̃[Υ I11, . . . ,Υ INlNl ]

0 [Υ I11, . . . ,Υ INlNl ]
]

(1.82)

is the transformation matrix that accounts for the effect of the dominant fixed-
interface normal modes and the local interface normal modes. The related reduced-
order mass and stiffness matrices are defined as

M̂DIL = TT
DIL M̂ TDIL (1.83)

and
K̂DIL = TT

DIL K̂ TDIL (1.84)

which give

M̂DIL =
⎡
⎣ I [M̂1

ib, . . . , M̂
Ns

ib ]T̃[Υ I11, . . . ,Υ INlNl ]
[Υ T

I11, . . . ,Υ
T
INlNl

]T̃T [M̂1T

ib , . . . , M̂
NT
s

ib ] [Υ T
I11, . . . ,Υ

T
INlNl

]MI [Υ I11, . . . ,Υ INlNl ]

⎤
⎦ (1.85)

and

K̂DIL =
[ [Λ1

id , . . . ,Λ
Ns
id ] 0

0 [Υ T
I11, . . . ,Υ

T
INlNl

]KI [Υ I11, . . . ,Υ INlNl ]
]

(1.86)

where these matrices are of dimension equal to nDIL × nDIL, nDIL = ∑Ns
s=1 n

s
id +∑Nl

l=1 n
l
IR.

On the other hand, the transformation matrix that includes the contribution of the
residual fixed-interface normal modes changes to

TRIL =
[
TRIL1 TRIL2

0 0

]
(1.87)

where

TRIL1 = −F̄M̄ibT̃[Υ I11, . . . ,Υ INlNl ] (1.88)

×
(
[Υ T

I11, . . . ,Υ
T
INlNl

]MI [Υ I11, . . . ,Υ INlNl ] − MT
iIRLMiIRL

)−1
MT

iIRLΛ

and
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TRIL2 = F̄M̄ibT̃[Υ I11, . . . ,Υ INlNl ] (1.89)

× ([Υ T
I11, . . . ,Υ

T
INlNl

]MI [Υ I11, . . . ,Υ INlNl ] − MT
iIRLMiIRL

)−1

× [Υ T
I11, . . . ,Υ

T
INlNl

]KI [Υ I11, . . . ,Υ INlNl ]

with
MiIRL = [M̂1

ib, . . . , M̂
Ns

ib ]T̃[Υ I11, . . . ,Υ INlNl ] (1.90)

Due to the normalization of the local interface modes, the diagonal blocks
of the matrices [Υ T

I11, . . . ,Υ
T
INlNl

]MI [Υ I11, . . . ,Υ INlNl ] and [Υ T
I11, . . . ,Υ

T
INlNl

]
KI [Υ I11, . . . ,Υ INlNl ] are given by IIll and Ω Ill, l = 1, . . . ,Nl , respectively. The
matrix

[Υ T
I11, . . . ,Υ

T
INlNl

]MI [Υ I11, . . . ,Υ INlNl ] − MT
iIRLMiIRL (1.91)

which has to be inverted in the transformation matrix TRIL, has a dimension equal to
nIRL × nIRL, where nIRL = ∑Nl

l=1 n
l
IR. If the contribution of the residual fixed-interface

normal modes is considered, Eq. (1.80) changes to

ū(t) = (TDIL + TRIL)qIL(t) (1.92)

from which the associated enhanced reduced-order mass and stiffness matrices are
given by

M̂RIL = (TDIL + TRIL)
TM̂(TDIL + TRIL) (1.93)

= TT
DILM̂TDIL + TT

RILM̂TDIL + TT
DILM̂TRIL + TT

RILM̂TRIL

= M̂DIL + TT
RILM̂TDIL + TT

DILM̂TRIL + TT
RILM̂TRIL

and

K̂RIL = (TDIL + TRIL)
T K̂(TDIL + TRIL) (1.94)

= TT
DILK̂TDIL + TT

RILK̂TDIL + TT
DILK̂TRIL + TT

RILK̂TRIL

= K̂DIL + TT
RILK̂TDIL + TT

DILK̂TRIL + TT
RILK̂TRIL

The choice of using global or local interface modes depends on the problem at
hand. In other words, one particular approach is not necessarily better than the other.

1.9 Numerical Implementation: Pseudo-Code No. 3

Based on the formulation presented, the following pseudo-code illustrates how
the reduced mass and stiffness matrices are evaluated by including local interface
reduction.
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1.10 Reduced-Order Model Response

In order to write the equation of motion of the structural system in terms of a reduced
set of generalized coordinates, one must first observe that the displacement vector of
the original model u(t) can be expressed directly, in terms of the vector of physical
coordinates of all substructures ū(t), as

u(t) = TG ū(t) (1.95)

whereTG ∈ Rn×n is a constant transformation matrix consisting of zeros and ones. If
T̄ represents one of the transformation matrices considered in the previous sections,
that is, TD, TD + TR, TDI , TDI + TRI , or TDIL + TRIL and q̄(t) one of the vectors of
generalized coordinates, i.e., q(t), qI (t), or qIL(t), then u(t) can be written in terms
of q̄(t) as

u(t) = TGT̄q̄(t) (1.96)

Based on this relationship, the equation of motion of the reduced-order model can
be written as

M̄ ¨̄q(t) + C̄ ˙̄q(t) + K̄q̄(t) = T̄
T
TT
G f̄NL(q̄(t), ˙̄q(t), y(t)) + T̄

T
TT
Gf(t)

(1.97)

where M̄, C̄, and K̄ are the corresponding reduced-order matrices, and

f̄NL(q̄(t), ˙̄q(t), y(t)) = fNL(TGT̄q̄(t),TGT̄ ˙̄q(t), y(t)) (1.98)

is the vector of nonlinear restoring forces written with respect to the generalized
coordinates q̄(t), its derivative, and the set of variables y(t). Specifically, if T̄ is
the transformation matrix TD + TR, then the matrices M̄ and K̄ are given by M̂R
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and K̂R in Eqs. (1.50) and (1.51), respectively. The matrix C̄ is the damping matrix
referred to the generalized coordinates q̄(t), which can be defined in terms of the
damping matrices at the substructure level. The damping matrix Ĉ related to the
vector of physical coordinates ū(t) has a similar structure to M̂ and K̂. The equation
(1.97), together with the equation for the evolution of the set of variables y(t), can
be integrated efficiently by an appropriate step-by-step integration scheme [6] or by
modal analysis. If modal analysis is used, the response is represented by a linear
combination of the mode shapes as

u(t) = TGT̄
m∑
r=1

ϕrυr(t) (1.99)

where m is the number of modes considered in the reduced-order model, υr(t), r =
1, . . . ,m, are the modal response functions, and ϕr, r = 1, . . . ,m, are the mode
shapes of the reduced-order model, which are obtained by solving the eigenvalue
problem

(K̄ − ω2
r M̄)ϕr = 0 , r = 1, . . . ,m (1.100)

where ωr, r = 1, . . . ,m, are the modal frequencies of the reduced-order model. If a
classically-dampedmodel is assumed for the linear components of the reduced-order
model, the modal response functions satisfy the nonlinear differential equations

ϋr(t) + 2ξrωr υ̇r(t) + ω2
r υr(t) = ϕT

r T̄
T
TT
G f̃NL (υ(t), υ̇(t), y(t)) + ϕT

r T̄
T
TT
Gf(t)

r = 1, . . . ,m (1.101)

where ξr, r = 1, . . . ,m, are the assigned damping ratios, and

f̃NL(υ(t), υ̇(t), y(t)) = fNL

(
TGT̄

m∑
r=1

ϕrυr(t),TGT̄
m∑
r=1

ϕr υ̇r(t), y(t)

)
(1.102)

is the vector of nonlinear restoring forces written with respect to the modal response
vector υ(t) =< υT

1 (t), . . . , υ
T
m(t) >

T , its derivative, and the set of variables y(t). In
the previous equations, it was assumed that the mode shapes of the reduced-order
model have been normalizedwith respect to M̄. The solution for themodal responses,
togetherwith the equation for the evolution of the set of variables y(t), can be obtained
by any suitable integration scheme [6]. The previous representation of the solution
can be extended to the case of non-classically damped systems either by recasting the
equation of motion of the reduced-order system into a first-order state-space form or
by solving a quadratic eigenvalue problem [23, 32].
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Chapter 2
Parametrization of Reduced-Order
Models Based on Normal Modes

Abstract This chapter dealswith the parametrizationof reduced-ordermodels based
on dominant and residual fixed-interface normal modes, in terms of model param-
eters. The division of the original structure is guided by a parametrization scheme,
which assumes that the substructure matrices for each of the introduced linear sub-
structures depend on only one of the model parameters. Based on this assumption,
a global parametrization of the reduced-order matrices is provided. Invariant issues
are discussed that are related to the matrices that account for the contribution of
residual normal modes. A pseudo-code is then provided in order to illustrate how the
parametrization of the reduced-order matrices is constructed.

2.1 Motivation

The solution of complex simulation-based problems involving uncertainty such
as, Bayesian finite element model updating, reliability and sensitivity analysis of
dynamic systems, reliability-based design optimization, uncertainty quantification,
propagation analysis, etc., is computationally very demanding, due to the large num-
ber of dynamic analyses required during the corresponding simulation processes [1,
3–5, 7, 8, 10, 12, 15–17, 21, 25–31]. In fact, the solution of these types of prob-
lems requires evaluating the system response at a large number of samples in the
uncertain parameter space (of the order of hundreds or thousands) [2, 9, 13, 14,
23]. Consequently, the computational cost may become excessive when the com-
putational time for performing a dynamic analysis is substantial. Certainly, part of
the computational effort is alleviated by dividing the original model into substruc-
tures and reducing the number of physical coordinates to a much-smaller number
of generalized coordinates. However, the construction of reduced-order models at
each sample implies re-computing the fixed-interface normalmodes and the interface
constraint modes for each substructure as well as for the interface modes. This pro-
cedure can be very expensive computationally, due to the substantial computational
overhead that arises at the substructure level [11, 22]. To cope with this difficulty,
an efficient finite element model parametrization scheme can be considered. When
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dividing the structure into substructures is guided by such a parametrization scheme,
dramatic computational savings can be achieved.

In the framework of this chapter, it is assumed that the finite element model is
parametrized by a set of parameters θ ∈ Ωθ ⊂ Rnθ , which are considered uncertain.
These parameters aremodeled using a probability density functionq(θ) that indicates
the relative plausibility of the possible values of the parameters θ ∈ Ωθ. The specific
characterization of the probability density function is problem-dependent and is
further discussed in subsequent chapters with applications.

It should be noted that the set of parameters θ could also be associated with design
variables, not only with uncertain parameters. Thus, in deterministic and reliability-
based design optimization one can take advantage of the formulation presented in
this chapter and Chap.3 and drastically reduce the computational effort that comes
from the large number of re-analyses required to reach the final design.

2.2 Parametrization Scheme

2.2.1 Substructure Matrices

The division of the original structure is guided by a parametrization scheme that
assumes that the substructure matrices for each of the introduced linear substructures
depend on only one of the model parameters. In this setting, the stiffness and the
mass matrices of a substructure s, s = 1, . . . , Ns , depend on only one of the model
parameters. The case in which the stiffness and mass matrices of a substructure s do
not depend on the model parameters is also included in this parametrization scheme.
Specifically, let S0 be the set of substructures that do not depend on the vector of
model parameters θ. In this case, the substructure mass and stiffness matrices are
written as

Ms = M̄
s

(2.1)

and
Ks = K̄

s
(2.2)

It is noted that the substructure fixed-interface normal modes and interface con-
straintmodes are independent of the systemparameters’ value for these substructures.
Thus, only a single analysis is required to estimate the normal and interfacemodes for
the substructure s ∈ S0. This implies that the solution of the eigenvalue problem to
compute the fixed-interface normal modes Φs

ii , and the solution of the linear system
to compute the interface constraint modes Ψ s

ib for a component s ∈ S0, are carried
out once.

On the other hand, let Sj be the set of substructures that depend on the model
parameter θ j . For substructure s ∈ Sj , it is assumed that the mass and stiffness
matrices take the general form
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Ms = M̄
s
g j (θ j ) (2.3)

and
Ks = K̄

s
h j (θ j ) (2.4)

where the matrices M̄
s
and K̄

s
are independent of θ j , and g j (θ j ) and h j (θ j ) are

linear or nonlinear functions of the model parameter θ j . These matrices are obtained
from the reference model by setting g j (θ j ) = 1 and h j (θ j ) = 1. It is clear that the
partitions of the mass matrixMs and of the stiffness matrixKs in Eqs. (1.2) and (1.3)
admit the same parametrization, that is,

Ms
ii = M̄

s
ii g

j (θ j )

Ms
ib = M̄

s
ib g j (θ j )

Ms
bi = M̄

s
bi g

j (θ j )

Ms
bb = M̄

s
bb g j (θ j ) (2.5)

and

Ks
ii = K̄

s
ii h

j (θ j )

Ks
ib = K̄

s
ib h

j (θ j )

Ks
bi = K̄

s
bi h

j (θ j )

Ks
bb = K̄

s
bb h

j (θ j ) (2.6)

where the matrices M̄
s
ii , M̄

s
ib, M̄

s
bi , M̄

s
bb, K̄

s
ii , K̄

s
ib, K̄

s
bi , and K̄

s
bb are independent of

θ j . The previous expressions correspond to parametrization of the mass and stiff-
ness matrices in terms of model parameters. This type of parametrization is often
encountered in structural systems modeled by standard finite elements. For example,
parameters such as the modulus of elasticity, dimension of cross sections, thick-
nesses, etc. may correspond to coefficients associated with finite elements, such as
trusses, bending beams, certain class of plates and shells, solids, etc. [6, 15, 17, 19,
20, 23, 24].

Some guidelines are provided in Chap.3 on how to proceed in cases when the
mass or stiffness matrices of a substructure depend on more than one parameter.

2.2.2 Normal Modes and Interface Constraint Modes

With the use of the parametrization of Ms
ii in Eq. (2.5), and of the normalization of

the fixed-interface normal modes Φs
ii with respect to the mass matrix Ms

ii , given in
Eq. (1.5), it follows that the normal modes Φs

ii , s ∈ Sj , can be expressed as [15, 23]
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Φs
ii = Φ̄

s
ii

1
√
g j (θ j )

(2.7)

where the matrix Φ̄
s
ii is independent of the model parameter θ j . Next, if the previous

parametrization of the matrices Ms
ii , K

s
ii and Φs

ii in the eigenvalue problem (1.4) is
considered, the matrix Λs

ii , s ∈ Sj , containing the corresponding eigenvalues allows
the parametrization [15, 23]

Λs
ii = Λ̄

s
ii

h j (θ j )

g j (θ j )
(2.8)

where the matrix Λ̄
s
ii is independent of θ j . From the above parametrization of Φs

ii

and Λs
ii , it follows that the matrices Λ̄

s
ii and Φ̄

s
ii are the solution of the eigenvalue

problem
K̄

s
ii Φ̄

s
ii − M̄

s
ii Φ̄

s
ii Λ̄

s
ii = 0 (2.9)

where the mode shapes Φ̄
s
ii satisfy the orthogonal conditions

Φ̄
sT

ii M̄
s
ii Φ̄

s
ii = Isii (2.10)

and
Φ̄

sT

ii K̄
s
ii Φ̄

s
ii = Λ̄

s
ii (2.11)

Furthermore, the interface constraint modes Ψ s
ib, s ∈ Sj , given in (1.9), are also

independent of θ j , since

Ψ s
ib = −Ks

ii
−1Ks

ib = −K̄
s
ii

−1 h j−1
(θ j )K̄

s
ib h

j (θ j ) = −K̄
s
ii

−1K̄
s
ib = Ψ̄

s
ib (2.12)

It is clear from the previous equations that a single eigen-analysis (given in (2.9))
for each substructure is required to provide the exact estimate of the fixed-interface
normal modes (in (2.7) and (2.8)) for any value of the model parameter θ. In other
words, the computationally-intensive re-analyses that estimate the normal and con-
straint modes of each substructure for different values of θ, required during the
corresponding simulation processes, can be completely avoided.

2.3 Parametrization of Reduced-Order Matrices

In what follows, the parametrization of the different matrices involved in the charac-
terization of reduced-order models based on dominant and residual fixed-interface
normal modes is derived.
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2.3.1 Unreduced Matrices

If the parametrization of the partitions of the mass matrix Ms and stiffness matrix
Ks are used, the mass matrix M̂ and the stiffness matrix K̂ of the unreduced model
referred to the vector of physical coordinates of all substructures ū(t), given in
Eqs. (1.19) and (1.20), respectively, take the form

M̂(θ) =
⎡

⎣
[M̄1

i iδ10, . . . , M̄
Ns

ii δNs0] [M̄1
ibδ10, . . . , M̄

Ns

ib δNs0]T̃
T̃
T [M̄1T

ib δ10, . . . , M̄
NT
s

ib δNs0] T̃
T [M̄1

bbδ10, . . . , M̄
Ns

bb δNs0]T̃

⎤

⎦

+
nθ∑

j=1

⎡

⎣
[M̄1

i iδ1 j , . . . , M̄
Ns

ii δNs j ] [M̄1
ibδ1 j , . . . , M̄

Ns

ib δNs j ]T̃
T̃
T [M̄1T

ib δ1 j , . . . , M̄
NT
s

ib δNs j ] T̃
T [M̄1

bbδ10, . . . , M̄
Ns

bb δNs j ]T̃

⎤

⎦ g j (θ j )

(2.13)

and

K̂(θ) =
⎡

⎣
[K̄1

i iδ10, . . . , K̄
Ns

ii δNs0] [K̄1
ibδ10, . . . , K̄

Ns

ib δNs0]T̃
T̃
T [K̄1T

ib δ10, . . . , K̄
NT
s

ib δNs0] T̃
T [K̄1

bbδ1 j , . . . , K̄
Ns

bb δNs0]T̃

⎤

⎦

+
nθ∑

j=1

⎡

⎣
[K̄1

i iδ1 j , . . . , K̄
Ns

ii δNs j ] [K̄1
ibδ1 j , . . . , K̄

Ns

ib δNs j ]T̃
T̃
T [K̄1T

ib δ1 j , . . . , K̄
NT
s

ib δNs j ] T̃
T [K̄1

bbδ1 j , . . . , K̄
Ns

bb δNs j ]T̃

⎤

⎦ h j (θ j )

(2.14)

where

δs0 =
{
1 if s ∈ S0
0 otherwise

, s = 1, . . . , Ns (2.15)

and

δs j =
{
1 if s ∈ Sj

0 otherwise
, s = 1, . . . , Ns (2.16)

2.3.2 Transformation Matrix TD

Following the parametrization of the fixed-interface normal modes Φs
ii , given in

Eq. (2.7), and the independence of the interface constraint modes Ψ̄
s
ib on the model

parameters, the transformation matrix TD defined in Eq. (1.15) can be expressed as
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TD(θ) =
[

[Φ̄1
idδ10, . . . , Φ̄

Ns

id δNs0] [Ψ̄ 1
ibδ10, . . . , Ψ̄

Ns

ib δNs0]T̃
0 I

]

+
nθ∑

j=1

{[
[Φ̄1

idδ1 j , . . . , Φ̄
Ns

id δNs j ] 0
0 0

]
1

√
g j (θ j )

(2.17)

+
[
0 [Ψ̄ 1

ibδ1 j , . . . , Ψ̄
Ns

ib δNs j ]T̃
0 0

]}

where all terms have been previously defined.

2.3.3 Reduced-Order Matrices M̂D and K̂D

The mass matrix M̂D and the stiffness matrix K̂D of the reduced-order model based
on dominant fixed-interface normal modes and interface coordinates are defined in
Eqs. (1.23) and (1.24), respectively.

If the parametrization of the partitions of the mass matrix Ms and the stiffness
matrix Ks , the parametrization of the dominant fixed-interface normal modes Φs

id ,
and the independence of the interface constraint modes Ψ̄

s
ib on the model parameters

are considered, then the matrices M̂
s

ib, M̂
s

bb, and K̂
s

bb, which are involved in the
definition of M̂D and K̂D and are given in Eqs. (1.25), (1.26), and (1.27), respectively,
can be expressed as

M̂
s

ib = ˆ̄Ms
ib

√
g j (θ j ) (2.18)

K̂
s

bb = ˆ̄Ks
bb h

j (θ j )

M̂
s

bb = ˆ̄Ms
bb g j (θ j ) , s ∈ Sj

where

ˆ̄Ms
ib = Φ̄

sT

id M̄
s
ii Ψ̄

s
ib + Φ̄

sT

id M̄
s
ib (2.19)

ˆ̄Ks
bb = K̄

sT

ib Ψ̄
s
ib + K̄

s
bb

ˆ̄Ms
bb = (Ψ̄

sT

ib M̄
s
ii + M̄

sT

ib )Ψ̄
s
ib + Ψ̄

sT

ib M̄
s
ib + M̄

s
bb

If the above expansions and the parametrization of the matrices of eigenvalues
Λs

id , s = 1, . . . , Ns , in (2.8) are considered, the matrices M̂D and K̂D can be written
explicitly in terms of the model parameters θ. In fact, the mass and stiffness matrices
of the reduced-order model can be expressed as [14, 15, 17, 23]
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M̂D(θ) =
[

[Iδ10, . . . , IδNs0] [ ˆ̄M1
ibδ10, . . . ,

ˆ̄MNs
ib δNs0]T̃

T̃
T [ ˆ̄M1T

ib δ10, . . . ,
ˆ̄MNT

s
ib δNs0] T̃

T [ ˆ̄M1
bbδ10, . . . ,

ˆ̄MNs
bb δNs0]T̃

]

+
nθ∑

j=1

{[
[Iδ1 j , . . . , IδNs j ] 0

0 0

]

+
[

0 [ ˆ̄M1
ibδ1 j , . . . ,

ˆ̄MNs
ib δNs j ]T̃

T̃
T [ ˆ̄M1T

ib δ1 j , . . . ,
ˆ̄MNT

s
ib δNs j ] 0

] √
g j (θ j )

+
[
0 0

0 T̃
T [ ˆ̄M1

bbδ1 j , . . . ,
ˆ̄MNs
bb δNs j ]T̃

]

g j (θ j )

}

(2.20)

and

K̂D(θ) =
[

[Λ̄1
idδ10, . . . , Λ̄

Ns

id δNs0] 0

0 T̃
T [ ˆ̄K1

bbδ10, . . . ,
ˆ̄KNs
bb δNs0]T̃

]

+
nθ∑

j=1

{[
[Λ̄1

idδ1 j , . . . , Λ̄
Ns

id δNs j ] 0
0 0

]
h j (θ j )

g j (θ j )

+
[
0 0

0 T̃
T [ ˆ̄K1

bbδ1 j , . . . ,
ˆ̄KNs
bb δNs j ]T̃

]

h j (θ j )

}

(2.21)

where all terms have been previously defined. The matrix (I) that appears in Eq.
(2.20) represents a generic identity matrix of dimension equal to nsid × nsid , s =
1, ..., Ns . It should be noted that all the matrices involved in defining the reduced-
order matrices M̂D and K̂D are computed and assembled one time from the reference
model, and it is therefore unnecessary to re-compute these matrices for different
values of θ encountered during the corresponding simulation processes. Thus, the
expansions (2.17), (2.20), and (2.21) provide very efficient expressions for computing
the transformation matrix and the reduced mass and stiffness matrices, required in
model reduction for different values of the model parameters θ. Such computation
is carried out without a need to re-assemble these matrices from the fixed-interface
normal modes and the interface constraint modes. Moreover, the above formulation
guarantees that the reduced-order model is based on the exact substructure modes
for all values of the model parameters.

2.3.4 Transformation Matrix TR

The transformationmatrixTR that accounts for the contribution of the residual fixed-
interface normal modes is given in Eq. (1.47). This matrix is defined in terms of
the transformation matrix T̃ and the matrices F̄, M̃ib, MI , Mi I , Λ, and KI . If the
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definitions of the previous matrices given in Eqs. (1.39), (1.32), (1.45), (1.46), (1.48),
and (1.49) are considered, along with the parametrization of the matrices Ms , Ks ,
Φs

id , Λs
id , M̂

s

ib, K̂
s

bb, and M̂
s

bb (given in Eqs. (2.3), (2.4), (2.7), (2.8), and (2.18),
respectively), it follows that each of the matrices involved in the definition of TR can
be written explicitly in term of the system parameters θ. In fact, they can be written
as [15]

F̄(θ) = [(K̄1−1

i i − Φ̄
1
idΛ̄

1−1

id Φ̄
1T

id )δ10, . . . , (K̄
N−1
s

i i − Φ̄
Ns

id Λ̄
N−1
s

id Φ̄
NT
s

id )δNs0] (2.22)

+
nθ∑

j=1

[(K̄1−1

i i − Φ̄
1
idΛ̄

1−1

id Φ̄
1T

id )δ1 j , . . . , (K̄
N−1
s

i i − Φ̄
Ns

id Λ̄
N−1
s

id Φ̄
NT
s

id )δNs j ]
1

h j (θ j )

M̃ib(θ) = [(M̄1
ib − M̄

1
i i K̄

1−1

i i K̄
1
ib)δ10, . . . , (M̄

Ns

ib − M̄
Ns

ii K̄
N−1
s

i i K̄
Ns

ib )δNs0] (2.23)

+
nθ∑

j=1

[(M̄1
ib − M̄

1
i i K̄

1−1

i i K̄
1
ib)δ1 j , . . . , (M̄

Ns

ib − M̄
Ns

ii K̄
N−1
s

i i K̄
Ns

ib )δNs j ]g j (θ j )

MI (θ) = T̃
T [ ˆ̄M1

bbδ10, . . . ,
ˆ̄MNs
bb δNs0]T̃ +

nθ∑

j=1

T̃
T [ ˆ̄M1

bbδ1 j , . . . ,
ˆ̄MNs
bb δNs j ]T̃g j (θ j )

(2.24)

Mi I (θ) = [ ˆ̄M1
ibδ10, . . . ,

ˆ̄MNs
ib δNs0]T̃ +

nθ∑

j=1

[ ˆ̄M1
ibδ1 j , . . . ,

ˆ̄MNs
ib δNs j ]T̃

√
g j (θ j )

(2.25)

Λ(θ) = [Λ̄1
idδ10, . . . , Λ̄

Ns

id δNs0] +
nθ∑

j=1

[Λ̄1
idδ1 j , . . . , Λ̄

Ns

id δNs j ]
h j (θ j )

g j (θ j )
(2.26)

KI (θ) = T̃
T [ ˆ̄K1

bbδ10, . . . ,
ˆ̄KNs
bb δNs0]T̃ +

nθ∑

j=1

T̃
T [ ˆ̄K1

bbδ1 j , . . . ,
ˆ̄KNs
bb δNs j ]T̃h j (θ j )

(2.27)

The result of the above parametrization is that all the matrices involved in expand-
ing the different matrices that define the transformation matrix TR are independent
of the values of the vector of model parameters θ. Thus, these matrices are computed
and assembled once from the reference model.
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2.3.5 Reduced-Order Matrices M̂R and K̂R

The improved reduced-order mass matrix M̂R and stiffness matrix K̂R are given in
Eqs. (1.50) and (1.51). In view of the parametrization of matrices M̂, K̂, and TD

in Eqs. (2.13), (2.14), and (2.17), respectively, together with the parametrization of
the different matrices involved in the definition of TR , it is clear that M̂R and K̂R

can be expressed in terms of a set of matrices independent of the vector of system
parametersθ. This set ofmatrices is computed and assembled once from the reference
model, thus avoiding the re-assembly of the various matrices involved in defining
the reduced-order matrices for different values of the vector of model parameters θ,
required by the corresponding simulation processes. The explicit expansion of the
enhanced reduced-order mass matrix M̂R and stiffness matrix K̂R in terms of the
model parameters θ (similar to Eqs. (2.20) and (2.21)) is quite involved, and is not
shown here for the sake of simplicity in notation. In what follows, such an expansion
is derived for one particular case, for illustration purposes.

2.3.6 Expansion of M̂R and K̂R Under Partial Invariant
Conditions of TR

In what follows, it is assumed that the mass matrix is constant and independent of
the model parameters θ. As indicated in the previous chapter, the contribution of the
residual normal modes is enhancing the dynamic behavior of the internal degrees
of freedom at the substructure level. Thus, the use of higher order modes can be
considered a secondary type of effect with respect to the internal coordinates. Based
on this observation, all the matrices involved in the definition of the transformation
matrix TR are treated as invariant, that is, independent of the model parameters θ,
except for the matrices associated with the interface coordinates,MI andKI . This is
clearly an approximation, since some of thematrices included in the definition ofTR ,
such as F̄ and Λ (see Eqs. (2.22) and (2.26)), depend on the model parameters. Note
that the matricesMI , M̃ib, andMi I are already independent of θ, due to the invariant
assumption of the mass matrix with respect to the model parameters. It is anticipated
that the previous approximation will give sufficiently accurate results. The actual
validation and applicability of this assumption is left for subsequent chapters with
applications. From Eqs. (1.50) and (1.51), it is clear that the parametrizations of M̂R

and K̂R depend on the parametrization of the matrices

M̂D , TT
RM̂TD , TT

RM̂TR , K̂D , TT
RK̂TD , TT

RK̂TR (2.28)

The expansions of the matrices M̂D and K̂D are given in Eqs. (2.20) and (2.21),
respectively, with g j (·) = 1 in this case. If the previous invariant assumptions of TR

are considered, the matrices TT
RM̂TR and TT

RK̂TR allow the parametrization [18]
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TT
RM̂TR(θ) =

[
T

T

R1[M̄1
i i , . . . , M̄

Ns

ii ]TR1 T
T

R1[M̄1
i i , . . . , M̄

Ns

ii ]TR2(θ)

T
T

R2(θ)[M̄1T

ii , . . . , M̄
NT
s

ii ]TR1 T
T

R2(θ)[M̄1
i i , . . . , M̄

Ns

ii ]TR2(θ)

]

(2.29)

and

TT
RK̂TR(θ) =

[
T

T

R1[K̄1
i i δ10, . . . , K̄

Ns
ii δNs0]TR1 T

T

R1[K̄1
i i δ10, . . . , K̄

Ns
ii δNs0]TR2(θ)

T
T

R2(θ)[K̄1T

ii δ10, . . . , K̄
NT
s

ii δNs0]TR1 T
T

R2(θ)[K̄1
i i δ10, . . . , K̄

Ns
ii δNs0]TR2(θ)

]

(2.30)

+
nθ∑

j=1

[
T

T

R1[K̄1
i i δ1 j , . . . , K̄

Ns
ii δNs j ]TR1 T

T

R1[K̄1
i i δ1 j , . . . , K̄

Ns
ii δNs j ]TR2(θ)

T
T

R2(θ)[K̄1T

ii δ1 j , . . . , K̄
NT
s

ii δNs j ]TR1 T
T

R2(θ)[K̄1
i i δ1 j , . . . , K̄

Ns
ii δNs j ]TR2(θ)

]

h j (θ j )

where TR1 and TR2(θ) are the nonzero components of the 2 × 2 partitioned trans-
formation matrix TR , defined in Eq. (1.47), and given by

TR1 = −F̄M̃ibT̃(MI − MT
i IMi I )

−1MT
i IΛ (2.31)

TR2(θ) = F̄M̃ibT̃(MI − MT
i IMi I )

−1KI (θ)

where the matrices F̄ and Λ are evaluated at some nominal value of the model
parameters. For example, the nominal value may correspond to the most probable
value of the model parameters, however, it is noted that such selection is problem-
dependent. The expansion of KI (θ) in terms of the model parameters is given in
Eq. (2.27).

Similarly, the matrices TT
RM̂TD and TT

RK̂TD can be expanded as [18]

TT
RM̂TD(θ) =

[
T

T

R1[M̄1
i i Φ̄

1
id , . . . , M̄

Ns

ii Φ̄
Ns

id ] 0

T
T

R2(θ)[M̄1
i i Φ̄

1
id , . . . , M̄

Ns

ii Φ̄
Ns

id ] 0

]

(2.32)

+
[
0 T

T

R1[(M̄1
i i Ψ̄

1
ib + M̄

1
ib), . . . , (M̄

Ns

ii Ψ̄
Ns

ib + M̄
Ns

ib )]T̃
0 T

T

R2(θ)[(M̄1
i i Ψ̄

1
ib + M̄

1
ib), . . . , (M̄

Ns

ii Ψ̄
Ns

ib + M̄
Ns

ib )]T̃

]

and

TT
RK̂TD(θ) =

[
T

T

R1[K̄1
i i Φ̄

1
idδ10, . . . , K̄

Ns

ii Φ̄
Ns

id δNs0] 0

T
T

R2(θ)[K̄1
i i Φ̄

1
idδ10, . . . , K̄

Ns

ii Φ̄
Ns

id δNs0] 0

]

(2.33)

+
nθ∑

j=1

[
T

T

R1[K̄1
i i Φ̄

1
idδ1 j , . . . , K̄

Ns

ii Φ̄
Ns

id δNs j ] 0

T
T

R2(θ)[K̄1
i i Φ̄

1
ιdδ1 j , . . . , K̄

Ns

ii Φ̄
Ns

id δNs j ] 0

]

h j (θ j )

It can be seen that, for the particular case considered in this section, all the basic
matrices involved in the expansion of the reduced-order matrices M̂R and K̂R are
independent of the model parameters, except for the matrixKI (θ), whose expansion
is defined in Eq. (2.27).
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2.4 Numerical Implementation: Pseudo-Code No. 4

Based on the formulation presented, the following pseudo-code illustrates how the
parametrization of reduced-order matrices is constructed. For the enhanced reduced-
order matrices case, the invariant assumption of the mass matrix and the transforma-
tion matrix TR is considered.
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Chapter 3
Parametrization of Reduced-Order
Models Based on Global Interface
Reduction

Abstract An interpolation scheme for approximating the interface modes in terms
of the model parameters is presented in this chapter. The approximation scheme
involves a set of support points in the model parameters space and a number of
interpolation coefficients that are determined by the singular value decomposition
technique. The approximate interface modes are combined with the parametrization
scheme introduced in Chap.2 to derive the corresponding reduced-order matrices.
Pseudo-codes are provided to illustrate how the interface modes are approximated
and how the parametrization of the reduced-order matrices is constructed based on
interface reduction.

3.1 Meta-Model for Global Interface Modes

The assumption that the substructure matrices depend on only one model parameter
is no longer valid for the interface matrices MI and KI , defined in Eqs. (1.45) and
(1.49), respectively. In general, these matrices depend on the entire set of model
parameters θ [12, 15]. Therefore, the parametrization scheme presented in the previ-
ous chapter can no longer be applied to the interface modes. In other words, a direct
interface analysis must be performed for each new sample during the corresponding
simulation processes. In this context, different strategies can be considered in order
to avoid direct evaluation of the interface quantities for different samples of θ . For
example, the interface modes can be considered constant and can be updated every
few iterations during the analyses. Another possibility considered in this chapter is
to use an interpolation scheme to approximate the interface modes in terms of the
model parameters.
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3.1.1 Baseline Information

It is assumed that the interface matricesMI andKI , defined in Eqs. (1.45) and (1.49),
respectively, have been assembled at L support points in the model parameters space,
or θ l , l = 1, . . . , L , and the associated eigenvalue problems

KI (θ
l)Υ I (θ

l) − MI (θ
l)Υ I (θ

l)Ω I (θ
l) = 0 , l = 1, . . . , L (3.1)

have been solved. In addition, the nominal solution for θ0 has also been computed.
The support points θ l , l = 1, . . . , L are distributed around the nominal point θ0. If
the definition of the interface matrices and the parametrization of the matrices M̂

s

bb

and K̂
s

bb, given in Eq. (2.18), are considered, MI and KI evaluated at the support
point θ l can be expressed as

MI (θ
l) = T̃

T [ ˆ̄M1
bbδ10, . . . ,

ˆ̄MNs
bb δNs0]T̃ +

nθ∑

j=1

T̃
T [ ˆ̄M1

bbδ1 j , . . . ,
ˆ̄MNs
bb δNs j ]T̃g j (θ l

j )

(3.2)

KI (θ
l) = T̃

T [ ˆ̄K1
bbδ10, . . . ,

ˆ̄KNs
bb δNs0]T̃ +

nθ∑

j=1

T̃
T [ ˆ̄K1

bbδ1 j , . . . ,
ˆ̄KNs
bb δNs j ]T̃h j (θ l

j )

(3.3)
where θ l

j is the j th component of the support point θ l .

3.1.2 Approximation of Interface Modes

To derive an approximation for the nI R kept interface modes, the matrix Υ I evalu-
ated at a point θ∗ = (1 − ξl)θ

0 + ξlθ
l , 0 ≤ ξl ≤ 1 is first approximated by a linear

interpolation as [7]

Υ̂ I (θ
∗) = (1 − ξl)Υ I (θ

0) + ξlΥ I (θ
l) (3.4)

If the previous expansion is generalized for the case where a set of L support
points θ l , l = 1, . . . , L is available, the matrixΥ I evaluated at a sample point θ k can
be approximated by

Υ̂ I (θ
k) = (1 −

L∑

l=1

ξ k
l )Υ I (θ

0) +
L∑

l=1

ξ k
l Υ I (θ

l) (3.5)
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where the coefficient ξ k
l represents the contribution of the support point θ l to the

simulation point θ k . In order to consider only interpolations, the simulation point θ k

should belong to the nθ -dimensional convex hull of the support points [1, 3, 17, 18].
The previous expression is not used directly, since the approximated interface modes
are not obtained directly from the solution of an eigenvalue problem; instead, they
are used as the subspace to span the interface modes. In other words, the approximate
eigenvectors Υ I (θ

k) are defined as a linear combination of the vectors composing
the matrix Υ̂ I (θ

k), that is,

Υ I (θ
k) = Υ̂ I (θ

k)Q(θ k) (3.6)

whereQ(θ k) ∈ RnI R×nI R is an auxiliary transformationmatrix. Based on the previous
transformation and the definition of the interface eigenvalue problem in (1.54), it can
be seen that the auxiliary matrix Q(θ k) can be obtained from the solution of the
reduced eigenvalue problem

[
Υ̂

T

I (θ k)KI (θ
k)Υ̂ I (θ

k)
]
Q(θ k) =

[
Υ̂

T

I (θ k)MI (θ
k)Υ̂ I (θ

k)
]
Q(θ k)Ω I (θ

k) (3.7)

where the matrices
Υ̂

T

I (θ k)KI (θ
k)Υ̂ I (θ

k) (3.8)

and
Υ̂

T

I (θ k)MI (θ
k)Υ̂ I (θ

k) (3.9)

are of dimension equal to nI R × nI R . Note that the interface matrices evaluated at
the sample point θ k can be written as in Eqs. (3.2) and (3.3), that is,

MI (θ
k) = T̃

T [ ˆ̄M1
bbδ10, . . . ,

ˆ̄MNs
bb δNs0]T̃ +

nθ∑

j=1

T̃
T [ ˆ̄M1

bbδ1 j , . . . ,
ˆ̄MNs
bb δNs j ]T̃g j (θ k

j )

(3.10)

KI (θ
k) = T̃

T [ ˆ̄K1
bbδ10, . . . ,

ˆ̄KNs
bb δNs0]T̃ +

nθ∑

j=1

T̃
T [ ˆ̄K1

bbδ1 j , . . . ,
ˆ̄KNs
bb δNs j ]T̃h j (θ k

j )

(3.11)
where θ k

j is the j component of the sample point θ k . The solution of the previ-
ous reduced eigenvalue problem, together with Eq. (3.6), provides an approximation
for the interface modes at the sample point θ k . In addition, the reduced eigenvalue
problem (3.7) gives an approximation of the eigenvalues Ω I (θ

k).
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3.1.3 Determination of Interpolation Coefficients

As indicated before, the interpolation coefficients represent the contribution of the
support points to the new simulation point. In order to obtain the interpolation coef-
ficients, the norm of the difference between the support points θ l , l = 1, . . . , L and
the simulation point θ k is first minimized, that is,

Minl=1,...,L ‖ θ l − θ k ‖ (3.12)

If the nearest point to θ k is denoted by θq , q ∈ {1, . . . , L}, the corresponding
interpolation coefficient ξ k

q is obtained by projecting θ k − θ0 onto θq − θ0, which
yields

ξ k
q = (θ k − θ0)T · (θq − θ0)

‖ (θq − θ0) ‖2 (3.13)

The remaining part of the vector, or the component perpendicular to θq − θ0, is
given by

vk = (θ k − θ0) − ξ k
q (θq − θ0) (3.14)

This vector is then represented as a linear combination of the remaining support
points θ l, l = 1, . . . , L , l �= q through

vk = [θ1 − θ0, . . . , θq−1 − θ0, θq+1 − θ0, . . . , θ L − θ0] τ k (3.15)

where the components of the vector τ k are given by

τ k =< τ k
1 , . . . , τ k

q−1, τ
k
q+1, . . . , τ

k
L >T (3.16)

The coefficients are obtained as the solution to Eq. (3.15), which is solved by
using the singular value decomposition (SVD) technique [6, 13, 16]. This technique
has the advantage of being applicable to cases of under- and over-determined system
of equations. The solution for the coefficients ξ k, ξ k

l , l = 1, . . . , L is then obtained
by considering the two parts. This gives

ξ k =< τ k
1 , . . . , τ k

q−1, ξ
k
q , τ k

q+1, . . . , τ
k
L >T (3.17)

The interpolation scheme above guarantees that the approximation is exact in each
support point. In fact, if θ k = θ l , where θ l is one of the support points, then ξ k

l = 1
and vk = 0, and therefore τ k = 0. This result guarantees that Υ̂ I (θ

k) = Υ I (θ
l) and

Q(θ k) = I, and therefore
Υ I (θ

k) = Υ I (θ
l) (3.18)
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It can be seen from the previous formulation that the potential time-consuming
step of computing the interface modes for different values of the model parameters
only has to be performed for the support points. The accuracy of this global surrogate
model can be increased by densifying the region of interest in the model parameter
space with additional support points. Alternatively, higher-order schemes, such as
the one considered in the next section, can also be used.

3.1.4 Higher-Order Approximations

If the dependence of the interfacemodes is nonlinearwith respect to themodel param-
eters, a linear interpolation scheme may be insufficient for accuracy. To improve the
accuracy of the approximations, higher-order interpolation schemes can be used.
For a linear interpolation, the approximation is based on the eigensolution of L
support points θ l , l = 1, . . . , L , and at the nominal value θ0. For example, in the
case of a quadratic interpolation scheme the eigensolutions for the support points
θ (−l), l = 1, . . . , L are also needed. These points are defined as the symmetric points
with respect to θ0, that is, θ (−l) = θ0 − (θ l − θ0), l = 1, . . . , L . Analogous to the
linear interpolation, the quadratic approximation of the interface modes evaluated at
point θ∗ = ξl (ξl−1)

2 (θ (−l)) + (1 − ξ 2
l )θ0 + ξl (ξl+1)

2 (θ l), 1 ≤ ξl ≤ 1 is given by [7]

Υ̂ I (θ
∗) = 1

2
ξl(ξl − 1)Υ I (θ

(−l)) + (1 − ξ 2
l )Υ I (θ

0) + 1

2
ξl(ξl + 1)Υ I (θ

l) (3.19)

If these results are generalized to the case where the set of support points
{θ l , θ (−l), l = 1, . . . , L} is available, the interface modes evaluated at the simula-
tion point θ k can be written in the form

Υ̂ I (θ
k) =

L∑

l=1

1

2
ξkl (ξkl − 1)Υ I (θ

(−l)) + (1 −
L∑

l=1

ξkl
2
)Υ I (θ

0) +
L∑

l=1

1

2
ξkl (ξkl + 1)Υ I (θ

l )

(3.20)

where the coefficient ξ k
l represents the contribution of the support point θ l to the

simulation point θ k . The coefficients ξ k
l , l = 1, . . . , L are obtained as described in

Sect. 3.1.3, except for the computation of the nearest point to θ k . In this case, the
minimum distance between the simulation point θ k and the 2L support points, or
{θ l , θ (−l), l = 1, . . . , L}, is determined by

Minl=±1,...,±L ‖ θ l − θ k ‖ (3.21)
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If the nearest point θq corresponds to one of the support points in the set {θ (−l), l =
1, . . . , L}, the corresponding interpolation coefficient ξ k

q is obtained as

ξ k
q = − (θ k − θ0)T · (θq − θ0)

‖ (θq − θ0) ‖2 (3.22)

The remaining coefficients ξ k
l , l = 1 . . . , L , l �= q are obtained as in Eq. (3.15).

As discussed in Sect. 3.1.2, the vectors composing the matrix Υ̂ I (θ
k) are used as the

subspace to span the approximated interface modes Υ I (θ
k) (Eq. (3.6)).

3.1.5 Support Points

As previously mentioned, the support points are distributed around the nominal point
θ0. The number of support points is problem-dependent and based on several factors,
such as the level of accuracy to be reached, the dimension of the uncertain parameter
space, and the range of the uncertain model parameters. Different approaches can be
considered for choosing the nominal point and the corresponding support points. For
example, the nominal point may correspond to the reference model of the structure,
or it can be chosen as the mean value of the uncertain model parameters. Then, the
support points can be generated by a number of sampling methods, such as random
sampling, Latin Hypercube sampling, orthogonal sampling, etc. [2, 4, 8–10, 14,
16]. Alternatively, adaptive schemes can also be devised, in which the nominal and
support points are updated during the corresponding simulation processes in order to
improve convergence andmaintain accuracy [1, 5, 11]. The computational efficiency
and accuracy of different schemes for choosing the nominal and support points is
left to subsequent chapters with applications.

3.2 Numerical Implementation: Pseudo-Code No. 5

Based on the formulation presented, the following pseudo-code illustrates how the
global interface modes are approximated at a sample point θ k .
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3.3 Reduced-Order Matrices Based on Global Interface
Reduction

3.3.1 Transformation Matrix TDI

The transformation matrix TDI considers the effect of the dominant fixed-interface
normal modes and interface reduction, and it is defined in Eq. (1.60). If the
parametrization of the fixed-interface normal modes Φs

ii given in Eq. (2.7) is con-
sidered along with the independence of the interface constraint modes Ψ̄

s
ib on the

model parameters, the transformation matrix TDI can be expanded in the form [12]
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TDI (θ) =
[

[Φ̄1
idδ10, . . . , Φ̄

Ns

id δNs0] [Ψ̄ 1
ibδ10, . . . , Ψ̄

Ns

ib δNs0]T̃Υ I (θ)

0 Υ I (θ)

]

+
nθ∑

j=1

{[
[Φ̄1

idδ1 j , . . . , Φ̄
Ns

id δNs j ] 0
0 0

]
1√

g j (θ j )
(3.23)

+
[
0 [Ψ̄ 1

ibδ1 j , . . . , Ψ̄
Ns

ib δNs j ]T̃Υ I (θ)

0 0

]}

It can be observed that some of the matrices involved in the preceding expansion
depend on the model parameters θ . This dependence is due to the matrix of interface
modes Υ I . The value of this matrix at the vector of model parameters θ can be
computed directly by performing an interface analysis, or it can be approximated
using the meta-model introduced in previous sections.

3.3.2 Reduced-Order Matrices M̂DI and K̂DI

Equations (1.63) and (1.64) give the reduced-ordermatrices obtained from the formu-
lation based on dominant fixed-interface normal modes and on interface reduction,
respectively. Based on the expansion of thematrices M̂

s

ib, s = 1, . . . , Ns in Eq. (2.18)
and the matrices Λs

id , s = 1, . . . , Ns in Eq. (2.8), the reduced-order matrices M̂DI

and K̂DI can be written as [12]

M̂DI (θ) =
⎡

⎣ I [ ˆ̄M1
ibδ10, . . . ,

ˆ̄MNs
ib δNs0]T̃Υ I (θ)

Υ I (θ)T T̃
T [ ˆ̄M1T

ib δ10, . . . ,
ˆ̄MNT

s
ib δNs0] I

⎤

⎦ (3.24)

+
nθ∑

j=1

⎡

⎣ 0 [ ˆ̄M1
ibδ1 j , . . . ,

ˆ̄MNs
ib δNs j ]T̃Υ I (θ)

Υ I
T (θ)T̃

T [ ˆ̄M1T
ib δ1 j , . . . ,

ˆ̄MNT
s

ib δNs j ] 0

⎤

⎦
√
g j (θ j )

and

K̂DI (θ) =
[

[Λ̄1
idδ10, . . . , Λ̄

Ns

id δNs0] 0
0 0

]
(3.25)

+
nθ∑

j=1

[
[Λ̄1

idδ1 j , . . . , Λ̄
Ns

id δNs j ] 0
0 0

]
h j (θ j )

g j (θ j )

+
[
0 0
0 Ω I (θ)

]

As in Eq. (3.23), some of the matrices involved in characterizing M̂DI and K̂DI

depend on themodel parameters θ . In this case, the dependence is due to thematrix of
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interface modes Υ I and the corresponding matrix of eigenvalues Ω I . As previously
pointed out, these can be either directly computed or approximated using the meta-
model introduced in preceding sections.

3.3.3 Transformation Matrix TRI

The transformationmatrix that considers the effect of residual fixed-interface normal
modes and interface reduction is shown in Eq. (1.72). In terms of the model param-
eters, the expansion of some of the matrices involved in the definition of TRI , that is,
F̄, M̃ib, andΛ are given in Eqs. (2.22), (2.23), and (2.26), respectively. Furthermore,
based on the parametrization of the matrices M̂

s

ib, s = 1, . . . , Ns in Eq. (2.18), the
matrixMi I R in Eq. (1.71) can be written as

Mi I R(θ) = [ ˆ̄M1
ibδ10, . . . ,

ˆ̄MNs
ib δNs0]T̃Υ I (θ) +

nθ∑

j=1

[ ˆ̄M1
ibδ1 j , . . . ,

ˆ̄MNs
ib δNs j ]T̃Υ I (θ)

√
g j (θ j )

(3.26)

Thus, the basic matrices included in the transformation matrix TRI can be
expressed in terms of a set of matrices that are independent of the values of the
vector of model parameters θ , together with the matrices corresponding to the inter-
face modes and eigenvalues, or Υ I (θ) and Ω I (θ).

3.3.4 Reduced-Order Matrices M̂RI and K̂RI

The enhanced reduced-order mass matrix M̂RI and reduced-order stiffness matrix
K̂RI are defined in Eqs. (1.74) and (1.75), respectively. These matrices consider
interface reduction and the contribution of residual fixed-interface normal modes.
If the expansion of the matrices M̂, K̂, and TDI in Eqs. (2.13), (2.14) and (3.23),
respectively, are considered along with the characterization of the different matrices
involved in the definition of TRI , M̂RI and K̂RI can be written in terms of a set of
matrices that are independent of the values of the vector of model parameters θ , the
parametrization functions h j (θ j ) and g j (θ j ), and the interface matrices Υ I (θ) and
Ω I (θ). The specific expansion of these matrices in terms of the model parameters
is somewhat complex, and is thus not presented here for the sake of simplicity in
notation. For illustration purposes, the expansion of the enhanced reduced-order
matrices M̂RI and K̂RI is provided in the next section for one specific case.
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3.3.5 Expansion of M̂RI and K̂RI Under Global Invariant
Conditions of TRI

In the following, it is assumed that the mass matrix is independent of the model
parameters θ . In addition, all the matrices involved in the definition of the transfor-
mationmatrixTRI are treated as invariant and are evaluated at some nominal value of
the model parameters. Note that in Sect. 2.3.6, the matrices involved in the definition
of TR that are associated with the interface coordinates were considered dependent
on the model parameters in the analysis. However, in this case, the dependence of the
interface matrices on the model parameters is taken into account in the transforma-
tion matrix TDI , not in the components of TRI . The actual validation of the global
invariant assumption of TRI is left for subsequent chapters with applications. It can
be observed from the definition of the enhanced reduced-ordermatrices in Eqs. (1.74)
and (1.75) that the parametrization of these matrices depends on the expansion of
the matrices

M̂DI , TT
RI M̂TDI , TT

RI M̂TRI , K̂DI , TT
RI K̂TDI , TT

RI K̂TRI (3.27)

The parametrization of M̂DI and K̂DI is given in Eqs. (3.24) and (3.25), respec-
tively, with g j (·) = 1. Based on the previous invariant assumptions, the matrices
TT

RI M̂TRI and TT
RI K̂TRI can be expanded as [12]

TT
RI M̂TRI =

⎡

⎣
T

T

RI1[M̄1
i i , . . . , M̄

Ns

ii ]TRI1 T
T

RI1[M̄1
i i , . . . , M̄

Ns

ii ]TRI2

T
T

RI2[M̄1T

ii , . . . , M̄
NT
s

ii ]TRI1 T
T

RI2[M̄1
i i , . . . , M̄

Ns

ii ]TRI2

⎤

⎦ (3.28)

and

TT
RI K̂TRI (θ) =

⎡

⎣
T

T

RI1[K̄1
i i δ10, . . . , K̄

Ns
ii δNs0]TRI1 T

T

RI1[K̄1
i i δ10, . . . , K̄

Ns
ii δNs0]TRI2

T
T

RI2[K̄1T

ii δ10, . . . , K̄
NT
s

ii δNs0]TRI1 T
T

RI2[K̄1
i i δ10, . . . , K̄

Ns
ii δNs0]TRI2

⎤

⎦ (3.29)

+
nθ∑

j=1

⎡

⎣
T

T

RI1[K̄1
i i δ1 j , . . . , K̄

Ns
ii δNs j ]TRI1 T

T

RI1[K̄1
i i δ1 j , . . . , K̄

Ns
ii δNs j ]TRI2

T
T

RI2[K̄1T

ii δ1 j , . . . , K̄
NT
s

ii δNs j ]TRI1 T
T

RI2[K̄1
i i δ1 j , . . . , K̄

Ns
ii δNs j ]TRI2

⎤

⎦ h j (θ j )

where TRI1 and TRI2 are the nonzero components of the 2 × 2 partitioned transfor-
mation matrix TRI defined in Eq. (1.72), given by

TRI1 = −F̄M̃ibT̃Υ I (II − MT
i I RMi I R)−1MT

i I RΛ (3.30)

TRI2 = F̄M̃ibT̃Υ I (II − MT
i I RMi I R)−1Ω I
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As previously mentioned, these matrices are evaluated at some nominal value of
the model parameters.

Likewise, the matrices TT
RI M̂TDI and TT

RI K̂TDI can be written as [12]

TT
RI M̂TDI (θ) =

⎡

⎣T
T

RI1[M̄1
i i Φ̄

1
id , . . . , M̄

Ns

ii Φ̄
Ns

id ] 0

T
T

RI2[M̄1
i i Φ̄

1
id , . . . , M̄

Ns

ii Φ̄
Ns

id ] 0

⎤

⎦ (3.31)

+
[
0 T

T

RI1[(M̄1
i i Ψ̄

1
ib + M̄

1
ib), . . . , (M̄

Ns

ii Ψ̄
Ns

ib + M̄
Ns

ib )]T̃Υ I (θ)

0 T
T

RI2[(M̄1
i i Ψ̄

1
ib + M̄

1
ib), . . . , (M̄

Ns

ii Ψ̄
Ns

ib + M̄
Ns

ib )]T̃Υ I (θ)

]

and

TT
RI K̂TDI (θ) =

⎡

⎣T
T

RI1[K̄1
i i Φ̄

1
idδ10, . . . , K̄

Ns

ii Φ̄
Ns

id δNs0] 0
T

T

RI2[K̄1
i i Φ̄

1
idδ10, . . . , K̄

Ns

ii Φ̄
Ns

id δNs0] 0

⎤

⎦ (3.32)

+
nθ∑

j=1

⎡

⎣T
T

RI1[K̄1
i i Φ̄

1
idδ1 j , . . . , K̄

Ns

ii Φ̄
Ns

id δNs j ] 0
T

T

RI2[K̄1
i i Φ̄

1
ιdδ1 j , . . . , K̄

Ns

ii Φ̄
Ns

id δNs j ] 0

⎤

⎦ h j (θ j )

It should be noted that most of the matrices involved in the expansion of the
reduced-order mass matrix M̂RI and the reduced-order stiffness matrix K̂RI are
independent of themodel parameters, except thematrix of interfacemodesΥ I (θ). As
previouslymentioned, thismatrix can be directly computed, or it can be approximated
by using the proposed meta-model introduced in previous sections.

3.4 Numerical Implementation: Pseudo-Code No. 6

Based on the formulation presented, the following pseudo-code illustrates how the
parametrization of the reduced-order matrices based on interface reduction is con-
structed. For the enhanced reduced-order matrices case, the invariant assumption of
the mass matrix and the transformation matrix TRI is considered.
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3.5 Treatment of Local Interface Modes

The treatment of local interfacemodes is similar to that considered for global interface
modes; that is, the same interpolation scheme introduced in previous sections can be
used for local interface modes. In fact, according to Eq. (1.76), the partition matrices
KI ll and MI ll of the interface matrices KI and MI , associated with the physical
coordinates at the interface l, or ulI (t), satisfy the eigenvalue problem

KI llΥ I ll − MI llΥ I llΩ I ll = 0 , l = 1, . . . , Nl (3.33)

where Υ I ll contains the selected local interface modes and Ω I ll is the diagonal
matrix that contains the corresponding eigenvalues. The interpolation schemes pre-
sented in the previous sections can be applied directly to the local interface modes
Υ I ll, l = 1, . . . , Nl . Note that, in this case, the support points θ l, l = 1, . . . , L and
the simulation point θ k involve only the model parameters associated with the cor-
responding interface. The number of model parameters related to a given interface
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is generally much smaller than the total number of model parameters nθ . Following
the procedure outlined above, the corresponding transformation matrices TDI L(θ)

and TRI L(θ) in Eqs. (1.82) and (1.87), respectively, and the reduced-order matrices
M̂DI L(θ), K̂DI L(θ), M̂RI L(θ), and K̂RI L(θ) in Eqs. (1.85), (1.86), (1.93), and (1.94),
respectively, can be defined accordingly.

As indicated in Sect. 3.1, alternative strategies can be considered in order to avoid
the direct evaluation of the interface quantities for different samples of the model
parameters θ . For example, the local interface modes Υ I ll, l = 1, . . . , Nl can be
considered constant, independent of the model parameters. Clearly, this choice is
critical to getting accurate results with the least number of interface modes over
the region of variation of the model parameters associated with the interface l. In
this regard, in order to improve convergence and to maintain accuracy, the local
interface modes can be updated every few iterations during the simulation processes.
The computational efficiency and accuracy of these simple alternative strategies is
problem-dependent.

3.6 Final Remarks

The efficiency of the parametrization scheme presented in Chap.2 is based on the
assumption that the substructure matrices depend only on one model parameter. In
general, the fixed-interface normal modes and interface constraint modes must be
recomputed in each new sample point θ k . When the substructure matrices depend
on two or more parameters, a representation similar to Eqs. (2.20) and (2.21) is no
longer applicable, and the reduced substructure matrices of the reduced-order model
should be re-assembled from the substructure stiffness and mass matrices for new
values of the vector of model parameters. If the repeated computation is confined to
a small number of substructures, significant amounts of time, effort, and cost may
still be saved, since the estimation of the fixed-interface modes and the interface
constraint modes for most of the substructures do not need to be repeated during the
corresponding simulation processes.

In general, interpolation schemes like the ones considered in this chapter can
also be used to approximate the fixed-interface normal modes and the interface
constraint modes. In other words, normal and constraint modes can be approximated
at different values of the model parameters, in terms of the corresponding modes of
a family of models defined at a number of support points. Similarly, the proposed
interpolation scheme can also be used to approximate other quantities involved in
the construction of reduced-order models, such as the transformation matrices that
account for the contribution of the residual fixed-interface normal modes. However,
the use of approximation schemes for the above quantities is not pursued in this
monograph.
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Part II
Application to Reliability Problems



Chapter 4
Reliability Analysis of Dynamical
Systems

Abstract The use of reduced-order models in the context of reliability analysis of
dynamical systems under stochastic excitation is explored in this chapter. A stochas-
tic excitation model based on a point-source model is introduced, and it is used for
the generation of ground motions. The corresponding reliability analysis represents
a high-dimensional reliability problem whose solution is carried out by an advanced
simulation technique. Two application problems are considered in order to evaluate
the effectiveness of the proposed model reduction technique. The first example con-
sists of a two-dimensional frame structure, while the second example considers an
involved nonlinear finite element building model. The results show that an impor-
tant reduction in computational effort can be achieved without compromising the
accuracy of the reliability estimates.

4.1 Motivation

Reliability analysis allows the possibility of accounting for the unavoidable effects of
uncertainty over the performance of a structure. In this context, the level of safety of a
structure can be measured in terms of the reliability, which is a metric of plausibility
that the structure fulfills certain performance requirements during its lifetime. The
complement of the reliability is the probability of failure, that is, the probability that
a structure violates prescribed performance criteria. Thus, reliability can be incor-
porated as one of the performance criteria in the analysis and design of structures
to explicitly address the effects of uncertainty [24, 25, 29, 33, 42, 49, 58]. In this
framework, it is assumed that the external force vector f(t) (see Eq. (1.1)) is modeled
as a non-stationary stochastic process and characterized by a random variable vector
z ∈ Ωz ⊂ Rnz . This vector is defined in terms of a probability density function p(z).
Furthermore, consider a vector θ ∈ Ωθ ⊂ Rnθ of uncertain model parameters. These
parameters are characterized in a probabilistic manner by means of a joint prob-
ability density function q(θ). It is noted that alternative approaches for modeling
uncertainties do exist, as well. For example, methodologies based on non-traditional
uncertainty models can be very useful in a number of cases [8, 12, 27, 47, 48]. How-
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ever, the focus here is on probabilistic approaches. The performance of the structural
system due to the excitation is characterized by means of nr responses of interest

ri (t, z, θ) , i = 1, . . . , nr , t ∈ [0, T ] (4.1)

where T is the duration of the excitation. Clearly, the aforementioned responses ri
are functions of time t (due to the dynamic nature of the loading), and functions of
the system parameter vector θ and random variable vector z. The response functions
ri (t, z, θ), i = 1, . . . , nr , are obtained from the solution of the equation of motion
that characterizes the structural model, i.e., Eq. (1.1).

4.2 Reliability Problem Formulation

For structural systems under stochastic excitation, the probability that design con-
ditions are satisfied within a particular reference period provides a useful reliability
measure. Such ameasure is referred to as the first excursion probability and quantifies
the plausibility of the occurrence of unacceptable behavior (failure) of the structural
system [63, 68]. Then, first excursion probabilities are used to characterize the level
of safety of a structure. Specifically, this probability measures the chances that the
uncertain responses exceed prescribed thresholds in magnitude within a specified
time interval. Then, a failure event F(z, θ) can be defined in terms of the so-called
normalized demand function d(z, θ) as [5]

F(z, θ) = {d(z, θ) > 1} (4.2)

where this function is defined as the maximum of the quotient between the structural
responses of interest and their corresponding threshold levels, that is,

d(z, θ) = max
i=1,...,nr

(
max
t∈[0,T ]

(∣∣∣∣ri (t, z, θ)

r∗
i

∣∣∣∣
))

(4.3)

where r∗
i , i = 1, . . . , nr , are the acceptable threshold levels of the corresponding

responses of interest ri , i = 1, . . . , nr . Note that the quotient ri (t, z, θ , )/r∗
i can be

interpreted as a demand to capacity ratio, as it compares the value of the response
ri (t, z, θ)with its maximum allowable value r∗

i . It is noted that the concept of failure
event does not necessarily imply collapse. In fact, the failure event may refer to, for
example, partial damage states or unacceptable system performance.

The probability of occurrence of the failure event F , PF , can be expressed in
terms of the probability integral in the form

PF =
∫
d(z,θ)>1

p(z) q(θ) dz dθ (4.4)
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or in terms of the indicator function IF (z, θ) as

PF =
∫
z∈Ωz,θ∈Ωθ

IF (z, θ) p(z) q(θ) dz dθ (4.5)

where the indicator function is equal to 1, in the case that the normalized demand
function is equal or larger than 1 and 0 otherwise. In general, the probability integral
involves a large number of randomvariables (hundreds or thousands) in the context of
dynamical systems under stochastic excitation [5, 38, 40, 56] (see Sect. 4.5). There-
fore, this integral represents a high-dimensional reliability problemwhose numerical
evaluation is extremely demanding from a numerical point of view [17, 21, 50].

4.3 Reliability Estimation

4.3.1 General Remarks

As previously pointed out, the probability integral represents a high-dimensional
reliability problem. In addition, the normalized demand function that characterizes
the failure event F is usually not explicitly known but must be computed point-
wise by applying suitable deterministic numerical techniques, such as finite element
analyses. Then, it is essential to minimize the number of such function evaluations.
Finally, the probability of failure of a system properly designed is, in general, very
small (PF ∼ 10−6−10−2). In other words, failure is a rare event. It is also appar-
ent that methods based on numerical integration or standard reliability methods are
not suitable for estimating the high-dimensional probability integral. This difficulty
favors the application of simulation techniques in order to estimate the probability
of failure. In this regard, it is well known that direct Monte Carlo is theoretically
applicable for evaluating PF , but it is inefficient in estimating small probabilities
because it requires a very large number of samples (dynamic analyses) to achieve an
acceptable level of accuracy [28, 59]. Based on the above conditions, it is clear that
the reliability problem is computationally very challenging. Therefore, the estima-
tion of the system reliability has to rely on advanced simulation techniques to limit,
to the greatest extent possible, the number of dynamic analyses. Several advanced
stochastic simulation methods have been recently developed to cope with this type
of problems. Examples of these algorithms include subset simulation [5, 6, 70],
line sampling [40], auxiliary domain method [39], horseracing simulation [69], and
subset simulation based on hidden variables [7]. Among these algorithms, subset
simulation is used in the present implementation due to its generality and flexibility.
The generality of the method is due to the fact that it is not based on any geometrical
assumption about the topology of the failure domain. Moreover, validation calcula-
tions have shown that subset simulation can be applied efficiently to a wide range
of complex reliability problems [6, 18, 19, 34, 37, 62]. Even though this is a well
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known technique in the reliability engineering research community, some of the key
aspects of subset simulation are reviewed in this section for completeness.

Based on the above conditions, it is clear that the reliability problem is computa-
tionally very challenging.

4.3.2 Basic Ideas

The conceptual idea of subset simulation is to decompose the failure event F into a
sequence of nested failure events

F = Fm ⊂ Fm−1 ⊂ · · · ⊂ F1 (4.6)

so that
F = ∩m

k=1Fk (4.7)

By definition of conditional probability, the probability of failure can be written
as

P(F) = P(Fm) = P(∩m
k=1Fk) = P(F1)

m−1∏
k=1

P(Fk+1/Fk) (4.8)

In other words, the probability of failure is expressed as a product of P(F1) and
the conditional probabilities {P(Fk+1/Fk), k = 1, . . . ,m − 1}. It is seen that, even
if P(F) is small, by choosing m and Fk, k = 1, . . . ,m − 1, appropriately, the con-
ditional probabilities can still be made sufficiently large, and, therefore, can be effi-
ciently evaluated by direct simulation because the failure events are more frequent.
The subsets F1, F2, . . . , Fm−1 are called intermediate failure events. For actual imple-
mentation, the intermediate failure events are adaptively chosen using information
from simulated samples in order to correspond to some specific values of conditional
failure probabilities. To be more specific, the sequence of intermediate failure events
is defined as

Fk = {d(z, θ) > δk} , k = 1, . . . ,m (4.9)

where 0 < δ1 < · · · < δm−1 < 1 = δm is a sequence of intermediate threshold val-
ues. Note that the failure event Fm = F is defined as {Fm = d(z, θ) > δm = 1}.
During subset simulation, the threshold values δ1, . . . , δm−1 are adaptively selected,
so that the conditional failure probabilities are set equal to a pre-established value,
for example, p0. This parameter is called the conditional failure probability. Vali-
dation calculations have shown that choosing any value of p0 between 0.1 and 0.3
will lead to similar efficiency as long as subset simulation is properly implemented
[70]. Then, it is seen that the demand function values δ1, . . . , δm−1 at the specified
probability levels are estimated during the subset simulation. In this manner, subset
simulation generates samples whose demand function values correspond to specific
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(pre-established) probability levels. Therefore, the unconditional as well as all con-
ditional failure probabilities are automatically equal to p0, except for the conditional
failure probability in the last step of subset simulation, that is, P(Fm/Fm−1).

4.3.3 Failure Probability Estimator

The previous result implies that the probability of failure can be expressed in the
form

PF = pm−1
0

∫
z∈Ωz,θ∈Ωθ

IF (z, θ)p(z|Fm−1) q(θ |Fm−1) dz dθ (4.10)

where p(z|Fm−1) and q(θ |Fm−1) are the conditional distributions of the random
variable vector z and uncertain system parameters θ conditional to the failure event
Fm−1, respectively. Note that the integral in the above equation corresponds to the
expected value of the indicator function with respect to the conditional distributions
p(z|Fm−1) and q(θ |Fm−1). Thus, the probability of failure can also be written as

PF = pm−1
0 Ep(z|Fm−1),q(θ |Fm−1) [IF (z, θ)] (4.11)

where Ep(z|Fm−1),q(θ |Fm−1)[ · ] is the expectation operator. The probability of failure is
then estimated as

PF ≈ pm−1
0

1

Nm

Nm∑
i=1

IF (zm−1,i , θm−1,i ) (4.12)

where {(zm−1,i , θm−1,i ), i = 1, . . . , Nm} is the set of samples generated at the last
stage of subset simulation (conditional level m − 1).

For actual implementation of subset simulation, it is assumed without much loss
of generality that the components of z are independent, that is,

p(z) = Π
nz
j=1 p j (z j ) (4.13)

where for every j , p j (·) is a one-dimensional probability density function for z j .
Similarly, the uncertain system parameters θ are also assumed to be independent
and, therefore, the joint probability density function q(θ) takes the form

q(θ) = Π
nθ

j=1q j (θ j ) (4.14)

where q j (θ j ) represents the probability density function of the basic system param-
eter θ j . It is noted that this assumption is not a limitation for a number of cases
of interest. However, the estimation of posterior robust failure probability integrals
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is not covered by the assumption of independence (see Sect. 7.3.4 to address this
situation).

4.4 Numerical Implementation

4.4.1 Basic Implementation

Based on the previous conceptual ideas, the basic implementation of subset simula-
tion is as follows.

(1) Generate N1 samples {(z0,i , θ0,i ), i = 1, . . . , N1} by direct Monte Carlo accord-
ing to the probability density functions p(z) and q(θ), respectively (the subscript
0 denotes that the samples correspond to the unconditional level (level 0)). Set
k = 1.

(2) Evaluate the normalized demand function to obtain {d(zk−1,i , θ k−1,i ), i = 1,
. . . , Nk}. Arrange these values in an increasing order.

(3) Identify the [(1 − p0)Nk + 1]th largest value of the set {d(zk−1,i , θ k−1,i ), i =
1, . . . , Nk}. In the case that this value is equal or larger than 1, set m = k,
δm = 1 and go to step 7. Otherwise, set the intermediate threshold value
δk equal to the aforementioned [(1 − p0)Nk + 1]th largest value of the set
{d(zk−1,i , θ k−1,i ), i = 1, . . . , Nk}.

(4) The kth intermediate failure event is defined as Fk = {d(z, θ) ≥ δk}.
(5) The sampling estimate for P(Fk) if (k = 1) or P(Fk/Fk−1) if (k > 1) is equal

to p0 by construction, where p0 and Nk are chosen such that p0Nk is an integer
number.

(6) By construction, there are p0Nk samples among {(zk−1,i , θ k−1,i ), i = 1, . . . , Nk}
whose demand function value is equal or greater than δk . Starting from each
of these conditional samples, Markov chain Monte Carlo simulation is used to
generate an additional (Nk+1 − p0Nk) conditional samples that lie in Fk , making
a total of Nk+1 conditional samples {(zk,i , θ k,i ), i = 1, . . . , Nk+1} at level k. The
Markov chain samples are drawn by using the modified Metropolis algorithm
[5, 45]. Return to step 2 with k = k + 1.

(7) The conditional failure probability P(Fm/Fm−1) is estimated directly by P(Fm/

Fm−1) = NF/Nm where NF is the number of samples that lie in the target failure
event Fm . The failure probability is estimated as

PF ≈ pm−1
0

1

Nm

Nm∑
i=1

IFm (zm−1,i , θm−1,i ) (4.15)

where {(zm−1,i , θm−1,i ), i = 1, . . . , Nm} is the set of samples generated at the
last stage of subset simulation (conditional level m − 1).

For a more detailed implementation of the approach, the reader is referred to [5, 70].
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4.4.2 Implementation Issues

The numerical implementation of subset simulation can be improved by considering
the parallelization of some independent parts of the algorithm. The highest computa-
tional efforts are associated with the dynamic analysis of the structural system. Then,
parallelization strategies that exploit the parallelism of those parts of the code where
the dynamic analysis is performed can be implemented [2, 55]. The unconditional
level of subset simulation (level 0) can be scheduled completely in parallel, since
the samples are independent. At higher conditional levels, Markov chains need to
be generated. Samples forming a Markov chain depend on the previous samples,
which implies inherent dependence and then excludes parallelization. However, the
chains themselves are independent from each other, which means that the generation
of different chains can be concurrently performed. Thus, a number of chains can be
simultaneously run, taking advantage of available parallelization techniques. Addi-
tionally, low-level parallelism can also be considered to accelerate the individual
model runs (dynamic analysis), improving the numerical implementation even more
[13, 66].

4.5 Stochastic Model for Excitation

4.5.1 General Description

Depending on the particular application and the available information, different
stochastic excitationmodels canbeused. For example, in the area of seismic engineer-
ing, filtered Gaussian white noise-based processes, models based on power spectra,
record-based models, point source-based models, multiple point source-based mod-
els, and models based on large or small sub-events are usually used [4, 14, 20, 22,
46, 51–53, 57, 60, 67]. In particular, a stochastic point source-based model is used in
the present formulation to simulate ground motions. The model is characterized by a
series of seismicity parameters, such as the moment magnitude M and the epicentral
distance r [4, 14]. The methodology, which was initially developed for generating
synthetic ground motions, has been reinterpreted to form a stochastic model for
earthquake excitation [36, 65]. According to this approach, high-frequency and low-
frequency (pulse) components of the groundmotion are independently generated and
then combined to form an acceleration time history. The stochastic model represents
a practical tool for the description of far and near-field ground motions. It establishes
a direct link between the knowledge about the characteristics of the seismic hazard
in the structural site and future ground motions. For completeness, some of the basic
aspects of the model are presented in this section.
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4.5.2 High-Frequency Components

The time history for a specific event of magnitude M and epicentral distance r with
high-frequency components of the groundmotion is obtained by several steps. First, a
discretewhite noise sequence is generated aswT =<

√
1/Δt w j > , j = 1, . . . , nT ,

wherewj , j = 1, . . . , nT , are independent, identically distributed standard Gaussian
random variables, Δt is the sampling interval, and nT is the number of time instants
equal to the duration of the excitation T divided by the sampling interval. The white
noise sequence is then modulated by an envelope function e(t, M, r), such as the
one suggested in [61], at the discrete time instants (see Sect. 4.6.5). Discrete Fourier
transform is applied to the modulated white noise sequence. The resulting spectrum
is multiplied by a ground motion spectrum (or radiation spectrum) A( f, M, r), after
which discrete inverse Fourier transform is applied to transform the sequence back to
the time domain to yield the desired ground acceleration time history. The envelope
function is the major factor affecting the duration of simulated ground motions for
a given moment magnitude M and epicentral distance r . Furthermore, the ground
motion spectrum contains information on the physics of the earthquake process as
well as other geophysical parameters, such as radiation pattern, density, shear wave
velocity in the vicinity of the source, corner frequencies, local site conditions, etc.
Details of the procedure as well as the characterization of the envelope function and
the ground acceleration spectrum can be found in [1, 4, 14, 15, 61, 65].

4.5.3 Pulse Components

The description of the time history with low-frequency components is based on
a simple analytical model developed in [44]. According to the model, the pulse
component related to near-field motions is described through a velocity pulse v(t) as

v(t) = Ap

2
[1 + cos(

2π f p
γp

(t − tp))] cos(2π f p(t − tp) + νp) , t ∈ (tp − γp

2 f p
, tp + γp

2 f p
)

(4.16)

where Ap, f p, νp, γp, and tp describe the amplitude, prevailing frequency, phase
angle, number of half cycles, and time shift, respectively. Outside the time interval,
the velocity pulse is equal to zero. Someof the pulse parameters, such as the amplitude
and frequency, can be linked to themomentmagnitudeM and epicentral distance r of
the seismic event [16]. The rest of the pulse parameters are considered as independent
model parameters, and they have been calibrated by tuning the analytical expression
of the velocity pulse to a wide range of recorded near-field ground motions [44].
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4.5.4 Synthesis of Near-Field Ground Motions

The synthesis of near-field ground motions is obtained by combining the high- and
low-frequency components through the following steps. First, an acceleration time
history with high-frequency components and a pulse ground acceleration are gener-
ated. The Fourier transforms of these synthetic acceleration time histories are then
calculated. Next, the Fourier amplitude spectrum of the synthetic time history with
low-frequency components is subtracted from the Fourier amplitude spectrum of
the synthetic time history with high-frequency components. A synthetic acceleration
time history is constructed, so that its Fourier amplitude spectrum is equal to the
difference of the Fourier amplitude spectra calculated before, and its phase coincides
with the phase of the Fourier transform of the synthetic time history with high-
frequency components. Finally, the time history generated in the previous steps is
superimposed to the acceleration time history corresponding to the velocity pulse
[44]. For illustration purposes, Fig. 4.1 shows a synthetic near-field ground motion
sample corresponding to the envelope function and radiation spectrum presented in
Fig. 4.2 and with near-field pulse parameters Ap = 27.11 (cm/s), f p = 0.53 (Hz),
νp = 0.0 (rad), and γp = 1.8. The existence of the near-field pulse is evident when
looking at the velocity time history of the ground motion. It is noted that considering
a sampling interval equal toΔt = 0.01s, the discrete white noise sequence has more
than 1,500 components. In other words, the vector of uncertain parameters w has
more than 1,500 elements in this case.

Fig. 4.1 Acceleration time history sample. aHigh-frequency components. bNear-field pulse accel-
eration. c Final ground motion (acceleration time history). d Final ground motion (velocity time
history)
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Fig. 4.2 Envelope function e(t, M, r) and radiation spectrum A( f, M, r) for M = 7.0 and r = 20
km

4.5.5 Seismicity Model

The probabilistic model for the seismic hazard at the structural site is finally comple-
mented by assigning a probability density function to some of the model parameters.
In the context of this formulation, the epicentral distance r for the earthquake events
is assumed to follow a log-normal distribution. With respect to the moment magni-
tudeM , several deterministic and probabilistic characterizations have been suggested
[41]. For the near-field pulsemodel, the parameters are defined according to the prob-
ability models suggested in [44]. For example, the prevailing frequency f p and the
peak ground velocity Ap are characterized by log-normal distributions. Furthermore,
the probability model for the number of half cycles γp and the phase angle νp are
chosen, respectively, as normal and uniform.

In summary, the input to the stochastic model for ground motions is the white
noise sequence w, the seismological parameters M and r , and the parameters for the
near-field pulse f p, Ap, νp, and γp. Thus, in connection with Sects. 4.1 and 4.2, the
random variable vector z is defined as z =< wT , M, r, f p, Ap, νp, γp >T . Note that
the dimension of z is of the order of thousands for the excitation stochastic model
under consideration. For illustration purposes, the schematic representation of the
uncertain parameters of the excitation model is presented in Fig. 4.3. Finally, it is
emphasized that the reliability analysis presented in this chapter is not restricted to
this particular stochastic excitation model. In this regard, other excitation models can
be used as well [20, 22, 51, 52, 57].
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Fig. 4.3 Uncertain seismological and near-fault pulse parameters

4.6 Application Problem No. 1

The objective of this application problem is to evaluate the performance and effec-
tiveness of the proposed model reduction technique for the reliability analysis of
a two-dimensional frame structure. Different reduced-order models are considered,
including models based on fixed-interface normal modes with and without interface
reduction.

4.6.1 Model Description and Substructures Characterization

The model, shown in Fig. 4.4, consists of a three-span two-dimensional eight-story
frame structure, and it can be considered as one of the moment-resisting frames of a
building model.

The structural model has a total length of 30m and a constant floor height of
5m, leading to a total height of 40m. The finite element model comprises 160 two-
dimensional beam elements of square cross section with 140 nodes and a total of 408
degrees of freedom. The dimension of the square cross section of the beam elements
is equal to 0.4m. The axial deformation of these elements is neglected with respect
to their bending deformation. The basic material properties of the beam and column
elements are given by the Young’s modulus E = 2.0 × 1010 N/m2 and mass density
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Fig. 4.4 Three-span two-dimensional eight-story frame structure. Application problem No. 1

ρ = 2,500kg/m3. The structural model is subdivided into 16 substructures as shown
in Fig. 4.5. Substructures Si , i = 1, . . . , 8, are composed of the column elements of
the different floors, while substructures Si , i = 9, . . . , 16, correspond to the beam
elements of the different floors. With this subdivision, there are eight interfaces in
the model. The total number of internal degrees of freedom is equal to 312, while 96
degrees of freedom are present at the interfaces.

4.6.2 Reduced-Order Model Based on Dominant
Fixed-Interface Normal Modes

Two models with a reduced number of fixed-interface normal modes are considered
to evaluate the effect of dominant normal modes on the accuracy of the reduced-order
model spectral properties. The first model (Model-1) considers the minimum num-
ber of fixed-interface normal modes at each substructure, while the second model
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Fig. 4.5 Substructures of the finite element model. Application problem No. 1

(Model-2) includes all fixed-interface normal modes with frequencies inside a tar-
get frequency bandwidth. More specifically, Model-1 is characterized by the first
fixed-interface normal mode of each substructure (with the lowest frequency). For
each substructure of Model-2, all fixed-interface normal modes that have frequency
ω such thatω ≤ αωc are retained, with α being a multiplication factor andωc being a
cut-off frequency that is taken equal to 87.66 rad/s (10thmodal frequency of the unre-
duced referencemodel). Themultiplication factor is selected to be 5 for substructures
Si , i = 1, . . . , 8, and 2 for substructures Si , i = 9, . . . , 16. The difference between
the multiplication factors is due to the fact that spectral properties of substructures
Si , i = 1, . . . , 8 are quite different from substructures Si , i = 9, . . . , 16, as the low-
est frequencies corresponding to substructures 1 to 8 are substantially higher than
the lowest frequencies of substructures 9 to 16. The selected multiplication factors
define a frequency bandwidth that contains the most important frequencies of each
substructure.

With this selection ofmultiplication factors, four fixed-interface normalmodes are
kept for each substructure Si , i = 1, . . . , 8, and three fixed-interface normal modes
for each substructure Si , i = 9, . . . , 16. Table4.1 characterizes the two models in
terms of the number of fixed-interface normal modes of each substructure, total
number of interface degrees of freedom, and total number of degrees of freedom.
In summary, only 16 generalized coordinates corresponding to the dominant fixed-
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Table 4.1 Characterization of models with reduced number of fixed-interface normal modes

Fixed interface normal modes Interface DOFs Total number of
DOFs

Si , i = 1, . . . , 8 Si , i = 9, . . . , 16

Model-1 1 1 96 112

Model-2 4 3 96 152

Table 4.2 Modal frequency error: unreduced reference model and reduced-order models generated
from Model-1 and Model-2. Models based on dominant fixed-interface normal modes

Frequency number Unreduced model Reduced-order model

ω (rad/s) Model-1(error) (%) Model-2(error) (%)

1 5.03 1.07 ×10−3 5.14 ×10−6

2 15.57 8.69 ×10−3 2.32 ×10−4

3 27.37 2.52 ×10−2 1.77 ×10−3

4 40.90 6.87 ×10−2 6.97 ×10−3

5 56.17 1.25 ×10−1 1.85 ×10−2

6 72.60 2.26 ×10−1 3.45 ×10−2

7 77.26 9.20 ×100 1.28 ×10−2

8 82.57 6.08 ×100 1.31 ×10−2

9 86.15 3.32 ×100 1.32 ×10−2

10 87.66 3.85 ×100 3.78 ×10−2

interface normal modes are retained for all substructures in Model-1, while 56 gen-
eralized coordinates are considered in Model-2. The dimension of the corresponding
reduced-order models represents a 72% and 62% reduction with respect to the unre-
duced model, respectively.

Table4.2 shows the errors between themodal frequencies using the unreduced ref-
erence finite element model and the modal frequencies computed using the reduced-
order models generated from Model-1 and Model-2. The reduced-order models are
based on dominant fixed-interface normal modes. It is seen that the errors are quite
small for the reduced-order model generated fromModel-2. The errors for the lowest
10 modes fall below 0.05%. For Model-1, an increase in the errors is observed for
modes 7–10, with a range of relative errors between 3% and 10%.

The corresponding matrices of MAC-values between the first 10 modal vectors
computed from the unreduced finite element model and from the reduced-order
models are shown in terms of a 3-D representation in Figs. 4.6 and 4.7, respectively.
It is seen that, for Model-2, the values at the diagonal terms are practically one
and zero at the off-diagonal terms. Thus, the modal vectors are consistent for both
models. Contrarily, some of the diagonal terms are less than one, while some of the
off-diagonal terms exhibit values greater than zero for Model-1. Thus, the reduced-
order model generated fromModel-1 is not able to accurately characterize the higher
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Table 4.3 Modal frequency error: unreduced reference model and reduced-order models generated
from Model-1 and Model-2. Models based on dominant and residual normal modes

Frequency number Unreduced model
ω (rad/s)

Reduced-order model

Model-1(error) (%) Model-2(error) (%)

1 5.03 4.44 ×10−8 4.40 ×10−8

2 15.57 2.56 ×10−8 7.24 ×10−9

3 27.37 1.64 ×10−6 1.07 ×10−6

4 40.90 5.10 ×10−5 3.41 ×10−5

5 56.17 2.49 ×10−4 1.63 ×10−4

6 72.60 1.23 ×10−3 5.37 ×10−4

7 77.26 3.68 ×10−2 1.91 ×10−4

8 82.57 5.67 ×10−2 9.27 ×10−5

9 86.15 5.34 ×10−2 1.65 ×10−4

10 87.66 5.32 ×10−2 5.32 ×10−3

order modes of the unreduced model. Note that this model is an extreme case, since it
includes the minimum number of fixed-interface normal modes at each substructure.

4.6.3 Reduced-Order Model Based on Dominant
and Residual Fixed-Interface Normal Modes

The objective of this section is to evaluate the effect of residual normal modes on
the accuracy of the spectral properties of the reduced-order models considered in the
previous section. Table4.3 shows the relative errors between the modal frequencies
of the unreduced model and the modal frequencies of the reduced-order models
related to Model-1 and Model-2.

Comparing Tables4.2 and 4.3, it is first observed that the consideration of residual
normal modes gives much better solution accuracy than the formulation based on
dominant modes only. In fact, for the first modal frequencies, the difference in the
errors is about three orders of magnitude for both models. It is also observed that the
errors for modes 7–10 related to Model-1 decrease in about two orders of magnitude
by considering the effect of residual modes. The errors for these higher order modes
are less than 0.06%.

The related matrices of MAC-values between the first 10 modal vectors com-
puted from the unreduced finite element model and from the reduced-order models
are shown in Figs. 4.8 and 4.9. It is seen that the MAC-values are practically one
at the diagonal terms and zero at the off-diagonal terms for both models. Thus,
the reduced-order model generated from Model-1 is consistent with the unreduced
model if the residual normal modes are considered in the formulation. Recall that
Model-1 is an utmost case where the minimum number of fixed-interface modes is
considered. As previously pointed out, this reduced-order model is not consistent
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when only the dominant modes are taken into account. Also, note that the reduced-
order model generated fromModel-2 is already consistent with the unreduced model
by considering only the dominant normal modes. The effect of the residual normal
modes on this reduced-order model is to reduce the errors of the spectral properties
even further. In conclusion, the formulation based on residual normal modes greatly
outperforms the formulation based on dominant modes in terms of its accuracy.

4.6.4 Reduced-Order Model Based on Interface Reduction

The effect of interface reduction is analyzed in this section. To this end, 20 interface
modes out of the 96 interface degrees of freedomare retained in the analysis.Note that
the interface region corresponds to thenodeswhere thebeamandcolumnelements are
connected at each floor. As a result the reduced-ordermodel corresponding toModel-
1 includes a total of 36 modal coordinates, while 76 modal coordinates characterize
Model-2. The dimension of these reduced-order models represents a 91% and 81%
reduction with respect to the unreduced model, respectively. The predicted natural
frequencies resulting from both reduced-order models are presented in Table4.4,
and they are compared with the frequencies computed from the unreduced model
as a reference. The reduced-order models are based on dominant normal modes and
interface reduction.

It is seen that the errors reported in this table are similar to the ones shown in
Table4.2. In fact, the errors are very small for the reduced-ordermodel generated from
Model-2, while relative errors between 3%and 10%are observed for the higher-order
modes corresponding to the reduced-order model generated from Model-1. Similar
conclusions are obtained for the mode shapes. In other words, the contribution of

Table 4.4 Modal frequency error: unreduced reference model and reduced-order models generated
from Model-1 and Model-2. Models based on dominant normal modes and interface reduction

Frequency number Unreduced model
ω (rad/s)

Reduced-order model

Model-1(error) (%) Model-2(error) (%)

1 5.03 1.07 ×10−3 5.14 ×10−6

2 15.57 8.69 ×10−3 2.32 ×10−4

3 27.37 2.52 ×10−2 1.77 ×10−3

4 40.90 6.88 ×10−2 7.00 ×10−3

5 56.17 1.25 ×10−1 1.86 ×10−2

6 72.60 2.27 ×10−1 3.48 ×10−2

7 77.26 9.45 ×100 1.30 ×10−2

8 82.57 6.15 ×100 1.32 ×10−2

9 86.15 3.34 ×100 1.34 ×10−2

10 87.66 4.10 ×100 4.26 ×10−2



4.6 Application Problem No. 1 87

Table 4.5 Modal frequency error: unreduced reference model and reduced-order models generated
fromModel-1 andModel-2. Models based on dominant and residual modes, and interface reduction

Frequency number Unreduced model
ω (rad/s)

Reduced-order model

Model-1(error) (%) Model-2(error) (%)

1 5.03 4.44 ×10−8 4.40 ×10−8

2 15.57 2.56 ×10−8 7.24 ×10−9

3 27.37 1.64 ×10−6 1.07 ×10−6

4 40.90 5.10 ×10−5 3.41 ×10−5

5 56.17 2.49 ×10−4 1.63 ×10−4

6 72.60 1.23 ×10−3 5.36 ×10−4

7 77.26 3.67 ×10−2 1.90 ×10−4

8 82.57 5.65 ×10−2 9.27 ×10−5

9 86.15 5.33 ×10−2 1.64 ×10−4

10 87.66 5.30 ×10−2 5.30 ×10−3

the first 20 interface modes seems to be adequate in the sense that the accuracy of
the reduced-order models remains invariant with this number of interface modes,
as the selected interface modes are able to capture the relevant deformation at the
interfaces. Validation calculations show that lower interface modes (lower than the
20th interface mode) cannot be neglected for this model. Note that a small number of
interface degrees of freedom are present at the interfaces, and, therefore, the number
of retained interface modes cannot be too small.

The effect of residual normal modes on the reduced-order models that consider
interface reduction is similar to the one observed in the previous section. That is, the
errors of the spectral properties are significantly reduced. This effect can be seen in
Table4.5. Note that the errors are virtually the same to the ones reported in Table4.3.

The matrices of MAC-values between the first 10 modal vectors computed from
the unreduced finite element model and from the reduced-order models based on
dominant and residual normal modes and interface reduction are shown in Figs. 4.10
and 4.11. Clearly, the reduced-ordermodels are consistent with the unreducedmodel.

To get more insight into the interface modes, the first two characteristic constraint
modes are shown in Figs. 4.12 and 4.13. Recall that these modes are obtained by
transforming the interface modes Υ I into finite element coordinates as indicated in
Sect. 1.6.2. The characteristic constraint modes Υ CC provide the principal modes of
deformation for the interface, since they capture some characteristic physical motion
in the interface region. It is seen that the first characteristic constraint mode captures
much of the interface-induced motion seen in the first global mode, whereas the
second characteristic constraint mode resembles the second global mode. Thus, the
importance of considering an adequate number of interface modes in constructing
the reduced-order model is evident.
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Fig. 4.12 First characteristic
constraint mode

Fig. 4.13 Second
characteristic constraint
mode

4.6.5 Reliability Problem

To control serviceability, the performance of the structure is characterized in terms
of the probability of occurrence of a failure event related to the maximum relative
displacement between the top of the model and the ground, or δ(t, z, θ). Mathe-
matically, the failure event F(z, θ) is defined as F(z, θ) = {d(z, θ) ≥ 1} where the
demand function is given by

d(z, θ) = max
t∈[0,T ]

(∣∣∣∣δ(t, z, θ)

δ∗

∣∣∣∣
)

(4.17)

where δ∗ is the acceptable threshold of the maximum relative displacement of the
eighth floor with respect to the ground. Of course, additional responses can be con-
sidered in the definition of the failure event. Recall that in the previous expressions,
θ represents the vector of uncertain system parameters. In this regard, it is assumed
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that the stiffness properties of the column elements, represented by the modulus
of elasticity, are uncertain. Specifically, the modulus of elasticity of the column
elements of the different floors is modeled as a discrete homogeneous isotropic log-
normal random field rE with components Ei , i = 1, . . . , 8, mean value μE1 where
1 =< 1, . . . , 1 >T , standard deviation σE , and correlation function

R(Δ) = exp(−αΔ2) (4.18)

where the variable Δ represents a distance and the parameter α is related to the
correlation length of the random field. The corresponding covariance matrix of the
random field is given by

Σ E = σ 2
ER (4.19)

in whichR is the correlation matrix with coefficients Ri j = R(Δi j ), i, j = 1, . . . , 8,
where Δi j is the distance between the centroid of the i and j floors. Then, the log-
normal random field can be expressed as [23, 30, 32, 64]

rE = exp(μN1 + ΦNΛ
1/2
N y) (4.20)

where μN1 represents the mean value of the underlying Gaussian random field with

μN = ln(μE ) − 1

2
ln

(
1 + σ 2

E

μ2
E

)
, (4.21)

while ΦN and Λ
1/2
N are obtained from the spectral decomposition of the covariance

matrix of the underlying Gaussian random field ΣN , with coefficients

ΣNi j = ln

(
1 + σ 2

ERi j

μ2
E

)
, i, j = 1, . . . , 8 , (4.22)

and y is a vector of independent standard normal random variables. The mean
value and standard deviation of the log-normal random field are set equal to
μE = 2.0 × 1010 N/m2 and σE = 3.0 × 109 N/m2, respectively. Thus, the corre-
sponding coefficient of variation of the random field is equal to 15%. A mildly
correlated random field is considered by selecting an appropriate value of α. The
corresponding correlation function is shown in Fig. 4.14.

The model is excited horizontally by a ground acceleration modeled as indicated
in Sect. 4.5. Themomentmagnitude and epicentral distance are taken asM = 7.0 and
r = 25km, respectively. The near-field pulse parameters are fixed at their nominal
values as suggested in [44], i.e., Ap = 27.11 (cm/s), f p = 0.53 (Hz), νp = 0.0 (rad),
and γp = 1.8. The envelope function to be used is given by [61]

e(t, M, r) = a1

(
t

2T

)a2

· exp
(

−a3 · t

2T

)
(4.23)
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Fig. 4.14 Correlation
function of the random field.
First application problem
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where T corresponds to the duration of the ground motion and the parameters a1, a2
and a3 are defined as

a1 =
( e
λ

)a2
, a2 = −λ ln(η)

1 + λ · (ln(λ) − 1)
, a3 = a2

λ
(4.24)

with parameter values equal to λ = 0.2 and η = 0.05. The sampling interval and
the duration of the excitation are taken equal to Δt = 0.01 s and T = 30 s, respec-
tively. Thus, the characterization of the stochastic excitation involvesmore than 3,000
uncertain parameters in this case (white noise sequence). Clearly, the corresponding
reliability problem is a high-dimensional problem.

4.6.6 Remarks on the Use of Reduced-Order Models

It is noted that even though subset simulation is an effective advanced simulation
technique, the reliability analysis can be computationally very demanding due to
the large number of dynamic analyses required during the simulation process (eval-
uation of the indicator function). Thus, the repetitive generation of reduced-order
models for different values of the uncertain model parameters θ can be computa-
tionally expensive due to the substantial computational overhead that arises at the
substructure level. To cope with this difficulty, reduced-order models together with
the parametrization schemes introduced inChaps. 2 and 3 are used to estimate the sys-
tem reliability. With respect to Chap. 2 and based on the previous characterization
of the uncertain parameter, it is clear that substructures Sj , j = 1, . . . , 8, depend
on the model parameters related to the modulus of elasticity, while substructures
Sj , j = 9, . . . , 16, are independent of the model parameters. For implementation
purposes, the model parameters associated with substructures Sj , j = 1, . . . , 8, are
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defined as θ j = E j/μE . The corresponding parametrization functions are given by
h j (θ j ) = θ j and g j (θ j ) = 1. The different values that the model parameters may
take during the simulation process, i.e., subset simulation, correspond to different
realizations of the discrete log-normal random field.

4.6.7 Support Points

When reduced-order models based on interface reduction are considered, interface
modes need to be evaluated. The approximation of these modes involves a set of
support points in the model parameter space. These points can be generated by a
number of sampling methods as indicated in Sect. 3.1.5. In this section, an adaptive
scheme where the nominal and support points are updated during the different stages
of subset simulation is introduced. The basic idea is to use support points lying in
the vicinity of the intermediate failure domains in order to increase the accuracy of
the approximate interface modes.

The selected support points at a given stage of subset simulation are Latin Hyper-
cube samples from a normal distribution whose definition is based on samples from
the previous stage. Specifically, at stage k of subset simulation, Ns = p0N condi-
tional samples that lie in Fk ({θ k−1,i , i = 1, . . . , Ns}) are obtained. Based on these
samples, the sample mean θ̄ k and the sample covariance matrix Σk are computed as

θ̄ k = 1

Ns

Ns∑
i=1

θ k−1,i (4.25)

and

Σk = 1

Ns

Ns∑
i=1

[(θ k−1,i − θ̄ k)(θ k−1,i − θ̄ k)
T ] (4.26)

Then, the support points to be used during stage k of subset simulation are gener-
ated from the normal distribution N (θ̄ k, βkΣk), whereβk is a user-selected parameter
scaling the covariance matrix Σk . Such a parameter is problem-dependent. Addi-
tional conditional samples can also be used for the purpose of defining the sample
mean and covariance matrix. In this case, conditional samples can be simulated from
the available Ns samples by the Modified Metropolis algorithm [5]. The complete
set of conditional samples is then used to characterize the normal distribution from
which the support points are generated. The support points generated by the pro-
posed adaptive scheme spread over the important region of failure in the uncertain
parameter space for the examples that are considered in this section. To control the
accuracy of the global surrogate model, the support points correspond to direct eval-
uation of the interface modes. In this manner, the propagation of error that occurs
in previous stages is avoided. In addition, to consider only interpolations, the point
at which the reduced-order model needs to be recomputed, θ∗, should belong to
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the nθ -dimensional convex hull of the support points [3, 11]. If this condition is
not satisfied, a direct evaluation of the interface modes is required for updating the
reduced-order model. In the case of complex failure domains, i.e., when the failure
samples are distributed in disjoint sets, a cluster analysis can be performed in each
stage of subset simulation, to order the samples into clusters [26]. In this way, support
points can be generated for each cluster. The choice concerning which of the set of
support points are used for a given sample is based on its distance with respect to
the center of each cluster [43]. The use of cluster analyses is not necessary for the
numerical examples considered in this chapter.

Alternatively, the support points can be defined in terms of theMarkov chains gen-
erated from the conditional samples at each stage of subset simulation. As previously
pointed out, at each stage of subset simulation, a number of conditional samples that
lie in Fk are already available. Starting from these samples, additional samples are
simulated through Markov chain Monte Carlo simulation using an adaptive condi-
tional sampling algorithm [31]. In each adaptation step, a number of seeds are chosen
at random from the available conditional samples. After running the algorithm for
a number of adaptation steps, a set of support points, to be used during the current
stage of subset simulation, can be obtained.

4.6.8 Reliability Results

Figure4.15 shows the probability of failure in terms of the threshold by using the
unreduced model and several reduced-order models generated from Model-2. Three
reduced-order models are considered in the figure, namely: reduced-order model
based on dominant fixed-interface normal modes; model based on dominant and

Fig. 4.15 Probability of failure in terms of the threshold level. 1: unreduced model. 2: reduced-
order model based on dominant fixed-interface normal modes. 3: reduced-order model based on
dominant and residual fixed-interface normal modes. 4: reduced-order model based on dominant
and residual fixed-interface normal modes and interface reduction
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Fig. 4.16 Probability of
failure in terms of the
threshold level. 1: unreduced
model. 2: reduced-order
model based on dominant
fixed-interface normal modes
and approximate interface
modes. 3: reduced-order
model based on dominant
and residual fixed-interface
normal modes and
approximate interface modes

residual fixed-interface normal modes; and model based on dominant and resid-
ual fixed-interface normal modes and interface reduction. In the case of interface
reduction, no approximations are considered for the interface modes. In other words,
they are directly evaluated during the simulation process. However, partial invariant
conditions are assumed for the transformation matrix, which accounts for the con-
tribution of the residual fixed-interface normal modes (see Sects. 2.3.6 and 3.3.5).
The curves in the figure correspond to an average of five independent runs of subset
simulation. The figure illustrates the whole trend of the probability of failure in terms
of different thresholds, not only for one target value. It is observed that the system
reliability obtained from the unreduced model coincides with the one obtained from
the reduced-order models for all range of thresholds, even for low failure probabil-
ities, i.e. 10−4. Note that in this case, the reduced-order model based on dominant
fixed-interface normal modes is adequate in the context of the reliability problem
under consideration.

The effect of approximate interfacemodes on the accuracy of the reliability results
is shown in Fig. 4.16. This figure depicts the probability of failure in terms of the
threshold by using different reduced-ordermodels. The reduced-ordermodels, which
are generated fromModel-2, are the following: reduced-order model based on dom-
inant normal modes and interface reduction with approximate interface modes; and
reduced-order model based on dominant and residual normal modes and interface
reduction with approximate interface modes. For comparison purposes, the results
corresponding to the unreduced model are also included in the figure. An average
of five independent runs of subset simulation is considered. The number of support
points considered in the adaptive scheme for approximating the interface modes is
36, where a linear interpolation scheme is used (see Sect. 3.1). The comparison of
the reliability estimates obtained by the unreduced model and reduced-order models
shows an excellent correspondence. Thus, the approximate interface modes are able
to accurately predict the response of the system and, consequently, its reliability.



4.6 Application Problem No. 1 95

Table 4.6 Speedup attained for different models. First application problem

Model Speedup

Unreduced 1

Reduced-order-model-1 4

Reduced-order-model-2 2

Reduced-order-model-3 2

Reduced-order-model-4 3

Reduced-order-model-5 3

Table 4.7 Description of reduced-order models. First application problem

Model Description

Reduced-order-model-1 Reduced-order model based on dominant
normal modes

Reduced-order-model-2 Reduced-order model based on dominant
normal modes and interface modes

Reduced-order-model-3 Reduced-order model based on dominant and
residual normal modes and interface modes

Reduced-order-model-4 Reduced-order model based on dominant
normal modes and approximate interface
modes

Reduced-order-model-5 Reduced-order model based on dominant and
residual normal modes and approximate
interface modes

4.6.9 Computational Cost

The computational effort involved in the reliability analysis is shown in Table4.6.
Specifically, this table shows the speedup (round to the nearest integer) achieved by
different reduced-order models, which are described in Table4.7. In this context, the
speedup is the ratio of the execution time by using the unreduced model and the
execution time by using a reduced-order model.

The speedups reported in the table are based on the implementation of the reli-
ability analysis in a four-core computer unit (Intel Core i7 processor). The actual
procedure is carried out by using a homemade code based on a Matlab C++ plat-
form. First, it is noted that a speedup equal to 4 is obtained by using the reduced-order
model based on dominant normal modes. This value reduces to 2 when interface and
residual normal modes are considered. This is mainly due to the update process of
the interface modes and the consideration of the residual normal modes during the
simulation process. However, when approximate interface modes are considered, the
corresponding speedups increase to 3. Thus, the effect of considering approximate
interface modes is also positive in terms of the numerical implementation of the
reliability analysis.
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Based on the previous results, it is seen that the use of reduced-order models for
estimating the reliability of the system is rather effective. In fact, a reduction in com-
putational effort by a factor between 2 and 4 is achieved without compromising the
accuracy of the reliability estimates. It is expected that a more significant effect will
be obtained for more involved finite element models (see next Application Problem).

4.7 Application Problem No. 2

The objective of this example is to explore the effectiveness of reduced-order mod-
els based on interface reduction. In particular, an involved nonlinear finite element
building model is considered.

4.7.1 Structural Model

The three-dimensional finite element building model shown in Fig. 4.17 is consid-
ered as the second application problem. The application involves a 55-story building
model with a total height of 190m. The plan view and the dimensions of a typical
floor are shown in Fig. 4.18. The building has a reinforced concrete core of shearwalls
and a reinforced concrete perimeter moment-resisting frame as shown in Fig. 4.18.
The columns of the perimeter have a circular cross section. The floors and walls are
modeled by shell elements of different thicknesses. Additionally, beam and column
elements are used in the finite element model, which has 89,000 degrees of free-
dom. Material properties are given by the Young’s modulus E = 2.45 × 1010 N/m2,
mass density ρ = 2,500kg/m3, and Poisson’s ratio μ = 0.3. Finally, 5% of critical
damping is added to the model.

For an improved performance, the structural system is reinforced with a total
of 45 nonlinear vibration control devices placed in two different configurations, i.e.,
longitudinal (x) and transverse (y) directions. A typical configuration of the vibration
control devices, at the floors where they are located, is shown in Fig. 4.19. Each
longitudinal device consists of brace and plate elements where a series of metallic
U-shaped flexural plates (UFP’s) are located between the plates, as shown in Fig. 4.20
[35]. On the other hand, each transverse device consists of concrete walls where the
UFP’s are located between them, as illustrated in Fig. 4.20.

Each UFP exhibits a one-dimensional hysteretic type of nonlinearity modeled by
the restoring force law

fN L(t) = α ke δ(t) + (1 − α) keU
y z(t) (4.27)

where ke is the pre-yield stiffness, U y is the yield displacement, α is the factor
that defines the extent to which the restoring force is linear, z(t) is a dimensionless
hysteretic variable, and δ(t) is the relative displacement between the upper and lower
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Fig. 4.17 Three-dimensional finite element building model. Example No. 2

Fig. 4.18 Typical floor plan of the 55-story building model
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Fig. 4.19 Typical configuration of vibration control devices

surfaces of the flexural plates. The hysteretic variable z(t) satisfies the first-order
nonlinear differential equation

ż(t) = δ̇(t)
[
β1 − z(t)2[β2 + β3sgn(z(t)δ̇(t))]

]
/U y (4.28)

where β1, β2 and β3 are dimensionless quantities that characterize the properties
of the hysteretic behavior, sgn(·) is the sign function, and all other terms have been
previously defined. The quantitiesβ1,β2, andβ3 correspond to scale, loop fatness and
loop pinching parameters, respectively. The above characterization of the hysteretic
behavior corresponds to the Bouc–Wen type model [9, 10, 54]. The following values
for the dissipationmodel parameters are used in this case: ke = 2.5 × 106 N/m;U y =
5 × 10−3m; α = 0.1; β1 = 1.0; β2 = 0.5; and β3 = 0.5. A typical displacement-
restoring force curve of one of the U-shaped flexural plates under seismic load is
shown in Fig. 4.21. The nonlinear restoring force of each device acts between the
floors where it is placed along the same orientation of the device.

4.7.2 Definition of Substructures

The model is subdivided into 81 linear substructures Si , i = 1, . . . , 81, as shown
in Fig. 4.22. They are composed of three types of substructures, namely: core of
shear walls located between two floors (Si , i = 1, . . . , 27); slabs of different floors
(Si , i = 28, . . . , 54); and circular columns of the perimeter frame located between
two floors and the corresponding slab of the intermediate floor (Si , i = 55, . . . , 81).
Figure4.23 depicts a typical substructure of each type. In addition, there are 45
nonlinear substructures comprised by the nonlinear vibration control devices defined
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Fig. 4.20 Upper figure:
Model of vibration control
device in the longitudinal
direction. Lower figure:
Model of vibration control
device in the transverse
direction

in the previous section. With this subdivision, the total number of internal degrees
of freedom is equal to 65,300, while 23,700 degrees of freedom are present at the
interfaces. A small number of fixed-interface normalmodes is selected for themodel.
In particular, a model characterized by only 252 fixed-interface normal modes is
considered. In addition, 100 interface modes, which represent about 0.5% of the
total number of interface degrees of freedom, are used in the model. Thus, the total
number of generalized coordinates of the reduced-order model represents more than
99% reduction with respect to the unreduced finite element model.
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Fig. 4.21 Typical displacement-restoring force curve of one of the U-shaped flexural plates

Fig. 4.22 Substructures of the finite element model. Application problem No. 2
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Fig. 4.23 Typical
substructure of each type
(shear wall, slab, perimeter
moment frame and slab)

Fig. 4.24 Relative
frequency errors between the
modal frequencies of the full
finite element model and of
the reduced-order model
based on dominant normal
modes and interface
reduction

Figure4.24 shows the relative errors between the modal frequencies of the unre-
duced finite element model and the modal frequencies of the reduced-order model
based on dominant modes and interface reduction. The first 10 modes are considered
for reference purposes. The corresponding MAC-values between the first 10 modal
vectors computed from the unreduced finite element model and from the reduced-
order model are shown in Fig. 4.25. It is seen that the errors for the modal frequencies
are quite small. The accuracy of the results is also seen for the modal vectors. In fact,
the values at the diagonal terms of the matrix of MAC-values are one, while the
off-diagonal terms are zero. Consequently, the mode shapes of the reduced-order
model are consistent with the mode shapes from the unreduced model. Thus, the
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Fig. 4.25 MAC-values between the mode shapes computed from the unreduced finite element
model and from the reduced-order model based on dominant normal modes and interface reduction

reduced-order model is able to accurately characterize the important modes of the
unreduced finite element model.

The effect of considering the contribution of the residual normal modes in the
generation of the reduced-order model is shown in the following figures. The rela-
tive errors between the modal frequencies of the unreduced finite element model and
the modal frequencies of the reduced-order model are shown in Fig. 4.26. The corre-
sponding matrix of MAC-values between the first 10 modal vectors computed from
the unreduced finite element model and from the reduced-order model is shown in
Fig. 4.27. The effect of considering the residual normal modes in the analysis is evi-
dent. The difference in the errors for the modal frequencies is more than four orders
of magnitude with respect to the ones obtained from the reduced-order model based
on dominant modes only. Thus, the contribution of the residual normal modes signif-
icantly enhances the accuracy of the reduced-order model. In addition, the matrix of
MAC-values indicates that both models are consistent. It is important to stress that
the construction of the reduced-order model is carried out offline, that is, before the
reliability analysis takes place. Thus, this process is independent of the reliability
analysis, which can be computationally quite demanding.
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Fig. 4.26 Relative frequency errors between the modal frequencies of the full finite element model
and of the reduced-order model. Reduced-order model based on dominant and residual normal
modes and interface reduction

Fig. 4.27 MAC-values between the mode shapes computed from the unreduced finite element
model and from the reduced-order model. Reduced-order model based on dominant and residual
normal modes and interface reduction

4.7.3 System Reliability

The failure event is formulated as a first excursion problem during the time of anal-
ysis as indicated in Sect. 4.2. For illustration purposes, the structural response to be
controlled is the displacement at the top of the building. Thus, the corresponding
demand function is characterized as
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Fig. 4.28 Correlation
function of the random field.
Second application problem

d(z, θ) = max
t∈[0,T ]

(∣∣∣∣δ(t, z, θ)

δ∗

∣∣∣∣
)

(4.29)

where δ∗ is the acceptable threshold of the maximum relative displacement of the
top of the building with respect to the ground. It is expected that for the model under
consideration, the stiffness of the core of shear walls may have an important effect on
the system response. Thus, the variability of such stiffness may affect the reliability
of the model. Consequently, for reliability considerations, the modulus of elasticity
of the shell elements that model the core of shear walls is treated as uncertain. The
corresponding stiffness of the core of shear walls, represented by the modulus of
elasticity, is modeled as a discrete homogeneous isotropic log-normal random field
along the height of the building. The discretization of the random field is carried
out every two floors, resulting in a discrete field of 27 components, i.e. rE , (Ei , i =
1, . . . , 27). The mean value and standard deviation of the log-normal random field
are set equal to μE = 2.0 × 1010 N/m2 and σE = 3.0 × 109 N/m2, respectively. The
corresponding correlation function, which models a mildly correlated random field,
is shown in Fig. 4.28.

The characterization of the log-normal random field is similar to the one con-
sidered in Sect. 4.6.5. Based on the previous definition of the substructures and the
characterization of the uncertainty, it is clear that the substructures related to the
core of shear walls (Sj , j = 1, . . . , 27) depend on the model parameters associated
with the modulus of elasticity. For implementation purposes, the model parameters
related to substructures Sj , j = 1, . . . , 27, are defined as θ j = E j/μE . The related
parametrization functions are given by h j (θ j ) = θ j and g j (θ j ) = 1. The other sub-
structures are independent of the model parameters. The different values that the
model parameters may assume during the simulation process correspond to different
realizations of the discrete log-normal random field. The same excitation used in the
previous example is considered in the present application. Note that the characteri-
zation of the stochastic excitation involves more than 3,000 random variables. This
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number of random variables plus the 27 model parameters indicate that the relia-
bility estimation constitutes a high reliability problem. Due to the dimension and
complexity of the finite element model at hand, it is expected that the use of model
reduction techniques and parametrization schemes will have an important effect on
the computational cost of the reliability analysis. Such an effect is illustrated in
Sect. 4.7.5.

4.7.4 Results

The probability of failure in terms of the threshold by using two reduced-order mod-
els is shown in Fig. 4.29. They consist of models based on dominant fixed-interface
normal modes and interface modes, and models based on dominant fixed-interface
normalmodes and approximate interfacemodes.When approximate interfacemodes
are considered, two approaches are used: linear and quadratic interpolation schemes
(see Sect. 3.1). In the case of linear interpolation, 81 support points are used in the
adaptive scheme proposed in Sect. 4.6.7, while 162 are employed in the quadratic
case. An average of five independent runs is considered in the figure. First, it is
observed that the results of the models based on exact and approximate interface
modes are coincident. Thus, the approximation schemes for approximating the inter-
face modes are adequate. Based on the results of the previous section, regarding the
accuracy of the reduced-order models, it is expected that the reduced-order model
based on dominant fixed-interface normal modes and exact interface modes will
produce reliability estimates with sufficient accuracy. Therefore, this case can be
considered as the exact one for comparison purposes. From Fig. 4.29, it is also seen
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Fig. 4.29 Probability of failure in terms of the threshold level. 1: reduced-order model based on
dominant fixed-interface normal modes and exact interface modes. 2: reduced-order model based
on dominant fixed-interface normal modes and approximate interface modes (linear interpolation
scheme). 3: reduced-order model based on dominant fixed-interface normal modes and approximate
interface modes (quadratic interpolation scheme)
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Fig. 4.30 Probability of failure in terms of the threshold level. 1: reduced-order model based on
dominant and residual fixed-interface normal modes and exact interface modes. 2: reduced-order
model based on dominant and residual fixed-interface normal modes and approximate interface
modes (linear interpolation scheme). 3: reduced-order model based on dominant and residual fixed-
interface normal modes and approximate interface modes (quadratic interpolation scheme)

that the reliability estimates of both models that use approximate interface modes
agree very well. Then, the use of a linear interpolation scheme is sufficient in the
context of this application.

The effect of considering the contribution of the residual normal modes on the
reliability estimates is shown in Fig. 4.30. This figure presents the probability of
failure in terms of the threshold by using the following reduced-order models: a
reduced-order model based on dominant and residual fixed-interface normal modes
and exact interface modes; a reduced-order model based on dominant and residual
fixed-interface normal modes and approximate interface modes by using a linear
interpolation scheme; and a reduced-order model based on dominant and residual
fixed-interface normal modes and approximate interface modes by using a quadratic
interpolation scheme. Conclusions similar to the ones obtained in the previous case
regarding the effectiveness of the reduced-order models in estimating the probability
of failure are obtained in this case. In the previous analyses, global invariant condi-
tionswere assumed for the transformationmatrix that accounts for the contribution of
the residual fixed-interface normal modes (see Sect. 3.3.5). By comparing Figs. 4.29
and 4.30, it is noticed that all reduced-order models give similar reliability estimates
for the thresholds considered in the analysis. Validation calculations indicate that the
effect of the residual normal modes is to further enhance the accuracy of reliability
estimates obtained by the reduced-order model based on dominant normal modes
only. However, the difference in this case is almost negligible.
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4.7.5 Computational Effort

Table4.8 shows the speedup (round to the nearest integer) achieved by the different
implementations considered in the previous figures. The corresponding characteriza-
tion of the reduced-order models is indicated in Table4.9. Recall that the speedup is
the ratio of the execution time by using the full finite elementmodel and the execution
time by using a reduced-order model. In this regard, the execution time in perform-
ing the reliability analysis by using the full finite element model is approximated
as follows. The total number of dynamic analyses involved in the results shown in
Figs. 4.29 and 4.30 is approximately 3,700 (four stages of subset simulation). The
time for performing one dynamic analysis of the full model is about 4.3min. Multi-
plying this time by the total number of dynamic analyses required by the simulation
process, the computational effort is expected to be of the order of 265h (more than 11
days). As in the previous example, the procedure is carried out by using a homemade
code based on a Matlab C++ platform.

It is seen that a speedup of six is obtained by the reduced-order model based
on dominant fixed-interface normal modes and exact interface modes. This value
increases to a speedup of more than 20 when approximate interface modes are con-
sidered. Thus, the effect of using approximate interface modes is significant in terms
of the computational effort. This reduction in computational time does not compro-
mise the accuracy of the reliability estimates. Furthermore, a speedup value of the
order of 10 is achieved when the residual normal modes are explicitly considered
in the analysis. For the same number of fixed-interface normal modes per substruc-
ture, the computational burden for using residual normal modes is increased by a
factor of two for this example. This increase is compensated by the significantly
higher accuracy provided by the reduced-order model with residual normal modes
(see Figs. 4.24 and 4.26). Based on the previous results, it is noted that for practi-
cal purposes, the results obtained from the reduced-order model based on dominant
fixed-interface normal modes and approximate interface modes can be used to com-
pute the reliability estimates. Thus, an important reduction in computational efforts
is obtained by using the reduced-order model instead of the full finite element model.
The gain in computational savings for this structural model is significant considering
the complexity associated with the distributed nonlinearities along the height of the
building arising from the installation of the vibration control devices.

Table 4.8 Speedup attained
for different models. Second
application problem

Model Speedup

Reduced-order-model-1 6

Reduced-order-model-2 23

Reduced-order-model-3 21

Reduced-order-model-4 12

Reduced-order-model-5 9
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Table 4.9 Description of reduced-order models. Second application problem

Model Description

Reduced-order-model-1 Reduced-order model based on dominant
normal modes and exact interface modes

Reduced-order-model-2 Reduced-order model based on dominant
normal modes and approximate interface
modes (linear interpolation)

Reduced-order-model-3 Reduced-order model based on dominant
normal modes and approximate interface
modes (quadratic interpolation)

Reduced-order-model-4 Reduced-order model based on dominant
and residual normal modes and approximate
interface modes (linear interpolation)

Reduced-order-model-5 Reduced-order model based on dominant
and residual normal modes and approximate
interface modes (quadratic interpolation)

Finally, it is noted that once a reduced-order model has been defined, several
scenarios in terms of different failure events and system responses can be explored
and considered for reliability purposes in an efficient manner. Therefore, even higher
speedup values can be obtained for the reliability analysis process as a whole.

References

1. J.G. Anderson, S.E. Hough, A model for the shape of the Fourier amplitude spectrum of
acceleration at high frequencies. Bull. Seism. Soc. Am. 74(5), 1969–1993 (1984)

2. P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, Bayesian uncertainty quantification
andpropagation inmolecular dynamics simulations: a high performance computing framework.
J. Chem. Phys. 137, 1441103-1–144103-19 (2012)

3. P. Angelikopoulus, C. Papadimitriou, P. Koumoutsakos, X-TMCMC: adaptive kriging for
Bayesian inverse modeling. Comput. Methods Appl. Mech. Eng. 289, 409–428 (2015)

4. G.M. Atkinson, W. Silva, Stochastic modeling of California ground motions. Bull. Seism. Soc.
Am. 90(2), 255–274 (2000)

5. S.-K. Au, J.L. Beck, Estimation of small failure probabilities in high dimensions by subset
simulation. Probabilistic Eng. Mech. 16(4), 263–277 (2001)

6. S.-K. Au, Y. Wang, Engineering Risk Assessment with Subset Simulation (Wiley, New York,
2014)

7. S.-K. Au, E. Patelli, Rare event simulation in finite-infinite dimensional space. Reliab. Eng.
Syst. Saf. 148, 67–77 (2016)

8. B.M. Ayyub, M.M. Gupta, L.N. Kanal, Analysis and Management of Uncertainty: Theory and
Applications (Elsevier Scientific Publisher, North-Holland, 1992)

9. T.T. Baber, Y.Wen, Randomvibration hysteretic, degrading systems. J. Eng.Mech.Div. 107(6),
1069–1087 (1981)

10. T.T. Baber, M.N. Noori, Modeling general hysteresis behavior and random vibration applica-
tions. J. Vib. Acoust. Stress. Reliab. Des. (ASCE) 108, 411–420 (1986)



References 109

11. C.B. Barber, D.P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls. ACM
Trans. Math. Softw. 22, 469–483 (1996)

12. M. Beer, M. Liebscher, Designing robust structures - a nonlinear simulation based approach.
Comput. Struct. 86, 1102–1122 (2008)

13. S. Bitzarakis, M. Papadrakakis, A. Kotsopulos, Parallel solutions techniques in computational
structural mechanics. Comput. Methods Appl. Mech. Eng. 148, 75–104 (1997)

14. D.M. Boore, Simulation of ground motion using the stochastic method. Pure Appl. Geophys.
160(3–4), 635–676 (2003)

15. D.M. Boore, W.B. Joyner, T.E. Fumal, Equations for estimating horizontal response spectra
and peak acceleration from western north american earthquakes: a summary of recent work.
Seism. Res. Lett. 68(1), 128–153 (1997)

16. J.D. Bray, A. Rodrigues-Marek, Characterization of forward-directivity ground motions in the
near-fault region. Soil Dyn. Earthq. Eng. 24, 815–828 (2004)

17. F. Cérou, P. DelMoral, T. Furon, A. Guyader, SequentialMonte Carlo for rare event estimation.
Stat. Comput. 22(3), 795–808 (2012)

18. J. Ching, S.-K. Au, J.L. Beck, Reliability estimation of dynamical systems subject to stochastic
excitation using subset simulation with splitting. Comput. Methods Appl. Mech. Eng. 194(12–
16), 1557–1579 (2005)

19. J. Ching, J.L. Beck, S.K. Au, Hybrid subset simulation method for reliability estimation of
dynamical systems subject to stochastic excitation. Probabilistic Eng. Mech. 20(3), 199–214
(2005)

20. J.P. Conte, B.F. Peng, Full nonstationary analytical earthquake ground-motion model. J.
Enginering Mech. 12, 15–34 (1997)

21. P. Del Moral, A. Doucet, A. Jasra, Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B
(Statistical Methodology) 68(3), 411–436 (2006)

22. G. Deodatis, Non-stationary stochastic vector processes: seismic ground motion applications.
Probabilistic Eng. Mech. 11, 149–167 (1996)

23. A. Der Kiureghian, Enginering Design Reliability Handbook (CRC Press, New York, 2004)
24. O. Ditlevsen, O.H. Madsen, Structural Reliability Methods (Wiley, New York, 1996)
25. B. Ellingwood, T.V. Galambos, Probability-based criteria for structural design. Struct. Saf.

1(1), 15–26 (1982)
26. M. Ester, H.P. Kriegel, J. Sanders, X. Xu, A Density-Based Algorithm for Discovering Clusters

in Large Spatial Databases with Noise (AAAI Press, Cambridge, 1996), pp. 226–231
27. W. Fellin, H. Lessmann, M. Oberguggenberger, R. Vieider (eds.), in Analyzing Uncertainty in

Civil Engineering (Springer, Berlin, 2005)
28. G.S. Fishman, Monte Carlo: Concepts, Algorithms and Applications (Springer, New York,

1996)
29. D.M. Frangopol, K. Maute, Life-cycle reliability-based optimization of civil and aerospace

structures. Comput. Struct. 81(7), 397–410 (2003)
30. R. Ghanem, The nonlinear Gaussian spectrum of lognormal stochastic processes and variables.

ASME J. Appl. Mech. 66(4), 964–973 (1999)
31. D.G. Giovanis, I. Papaioannou, D. Straub, V. Papadopoulos, Bayesian updating with subset

simulation using artificial neural netwoks. Comput. Methods Appl. Mech. Eng. 319, 124–145
(2017)

32. D.V. Griffiths, J. Paiboon, J. Huang, G.A. Fenton, Reliability analysis of beams on random
elastic foundations. Gotechnique 63(2), 180–188 (2013)

33. J.E. Hurtado, A.H. Barbat, Monte Carlo techniques in computational stochastic mechanics.
Arch. Comput. Methods Eng. 5(1), 3–29 (1998)

34. H.A. Jensen,M.A.Catalan,On the effects of non-linear elements in the reliability-based optimal
design of stochastic dynamical systems. Int. J. Non Linear Mech. 42(5), 802–816 (2007)

35. H.A. Jensen, J.G. Sepulveda, On the reliability-based design of structures including passive
energy dissipation systems. Struct. Saf. 34, 390–400 (2011)

36. H.A. Jensen, J. Sepulveda, L. Becerra, Robust stochastic design of base-isolated structural
systems. Int. J. Uncertain. Quantif. 2(2), 95–110 (2012)



110 4 Reliability Analysis of Dynamical Systems

37. H.A. Jensen, F. Mayorga, M.A. Valdebenito, Reliability sensitivity estimation of nonlinear
structural systems under stochastic excitation: a simulation-based approach. Comput. Methods
Appl. Mech. Eng. 289, 1–23 (2015)

38. H.A. Jensen, D.S. Kusanovic, M.A. Valdebenito, G.I. Schuëller, Reliability-based design opti-
mization of uncertain stochastic systems: a gradient-based scheme. J. Eng.Mech. 138(1), 60–70
(2012)

39. L.S. Katafygiotis, T. Moand, S.H. Cheung, Auxiliary domain method for solving multi-
objective dynamic reliability problems for nonlinear structures. Struct. Eng. Mech. 25(3),
347–363 (2007)

40. P.S. Koutsourelakis, H.J. Pradlwarter, G.I. Schuëller, Reliability of structures in high dimen-
sions, part I: Algorithms and applications. Probabilistic Eng. Mech. 19(4), 409–417 (2004)

41. S.L. Kramer, Geotechnical Earthquake Engineering (Prentice Hall, Englewood Cliffs, 2003)
42. N.Kuschel, R.Rackwitz, Twobasic problems in reliability-based structural optimization.Math.

Methods Oper. Res. 46(3), 309–333 (1997)
43. P.C. Mahalanobis, On the generalised distance in statistics, in Proceedings of the National

Institute of Sciences of India (1936), pp. 49–55
44. G.P. Mavroeidis, A.S. Papageorgiou, A mathematical representation of near-field ground

motions. Bull. Seism. Soc. Am. 93(3), 1099–1131 (2003)
45. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state

calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)
46. H. Miyake, T. Iwata, K. Irikura, Source characterization for broadband ground-motion simu-

lation: kinematic heterogeneous model and strong motion generation area. Bull. Seism. Soc.
Am. 93, 2531–2545 (2003)

47. D. Moens, D. Vandepitte, A survey of non-probabilistic uncertainty treatment in finite element
analysis. Comput. Methods Appl. Mech. Eng. 194, 1527–1555 (2005)

48. B.Möller,M. Beer, Engineering computation under uncertainty - capabilities of non-traditional
models. Comput. Struct. 86, 1024–1041 (2008)

49. O. Möller, R.O. Foschi, L.M. Quiroz, M. Rubinstein, Structural optimization for performance-
based design in earthquake engineering: applications of neural networks. Struct. Saf. 31(6),
490–499 (2009)

50. R.M. Neal, Annealed importance sampling. Stat. Comput. 11(2), 125–139 (2001)
51. A. Nozu, A super asperity model for the 2011 off Pacific coast of Tohoku earthquake. J. Jpn.

Assoc. Earthq. Eng. 14(6), 36–55 (2014)
52. A. Nozu, M. Yamada, T. Nagao, K. Irikura, Generation of strong motion pulses during huge

subduction earthquakes and scaling of their generation areas. J. Jpn. Assoc. Earthq. Eng. 14(6),
96–117 (2014)

53. C. Papadimitriou, Stochastic Characterization of Strong Ground Motions and Application
to Structure Response. Rep. No. EERL 90-03 (California Institute of Technology, Pasadena,
California, USA, 1990)

54. Y.J. Park, Y.K. Wen, A.H. Ang, Random vibration of hysteretic systems under bi-directional
ground motions. Earthq. Eng. Struct. Dyn. 14(4), 543–557 (1986)

55. M.F. Pellissetti, Parallel processing in structural reliability. J. Struct. Eng. Mech. 32(1), 95–126
(2009)

56. H.J. Pradlwarter, G.I. Schuëller, P.S. Koutsourelakis, D.C. Champris, Application of line sam-
pling simulation method to reliability benchmark problems. Struct. Saf. 29(3), 208–221 (1998)

57. S. Rezaeian, A. Der Kiureghian, A stochastic ground motion model with separable temporal
and spectral nonstationarities. Earthq. Eng. Struct. Dyn. 37, 1565–1584 (2008)

58. J.O. Royset, A. Der Kiureghian, E. Polak, Reliability-based optimal structural design by the
decoupling approach. Reliab. Eng. Syst. Saf. 73(3), 213–221 (2001)

59. R.Y. Rubinstein, D.P. Kroese, Simulation and Monte Carlo Method (Wiley, New York, 2007)
60. F. Sabetta, A. Plugliese, Estimation of response spectra and simulation of nonstationary earth-

quake ground motions. Bull. Seism. Soc. Am. 86, 337–352 (1996)
61. G.R. Saragoni, G.C. Hart, Simulation of artificial earthquakes. Earthq. Eng. Struct. Dyn. 2(3),

249–267 (1974)



References 111

62. G.I. Schuëller,H.J. Pradlwarter,Benchmark studyon reliability estimation in higher dimensions
of structural systems - an overview. Struct. Saf. 29, 167–182 (2007)

63. T. Soong, M. Grigoriu, Random Vibration of Mechanical and Structural Systems (Prentice
Hall, Englewood Cliffs, 1993)

64. B. Sudret, Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report (Uni-
versity of California, Berkeley, 2000)

65. A. Taflanidis, Robust stochastic design of viscous dampers for base isolation applications,
in ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and
Earthquake Engineering, Rhodes, Greece, 22–24 June 2009

66. P.K. Umesha, M.T. Venuraju, D. Hartmann, K.R. Leimbach, Optimal design of truss structures
using parallel computing. Struct. Multidiscip. Optim. 29, 285–297 (2005)

67. A. Zerva, Spatial Variation of SeismicGroundMotionsModeling andEngineeringApplications
(CRC Press, Boca Raton, 2003)

68. Y. Zhang, A. Der Kiureghian, First-excursion probability of uncertain structures. Probabilistic
Eng. Mech. 9(1–2), 135–143 (1994)

69. K.M. Zuev, L.S. Katafygiotis, The Horseracing simulation algorithm for evaluation of small
failure probabilities. Probabilistic Eng. Mech. 26(2), 157–164 (2011)

70. K.M. Zuev, J.L. Beck, S.-K. Au, L.S. Katafygiotis, Bayesian post-processor and other enhance-
ments of subset simulation for estimating failure probabilities in high dimensions. Comput.
Struct. 92, 283–296 (2012)



Chapter 5
Reliability Sensitivity Analysis
of Dynamical Systems

Abstract The reliability sensitivity analysis of systems subjected to stochastic
loading is considered in this chapter. In particular, the change that the probability
of failure undergoes due to changes in the distribution parameters of the uncertain
model parameters is utilized as a sensitivity measure. A simulation-based approach
that corresponds to a simple post-processing step of an advanced sampling-based
reliability analysis is used to perform the sensitivity analysis. In particular, subset
simulation, introduced in the previous chapter, is applied in the present formulation.
The analysis does not require any additional system response evaluations. The feasi-
bility and effectiveness of the approach is demonstrated on a finite element model of
a bridge under stochastic ground excitation. The sensitivity analysis is carried out in
a reduced space of generalized coordinates. The computational effort involved in the
reliability sensitivity analysis of the reduced-order model is significantly decreased
with respect to the corresponding analysis of the full finite elementmodel. The reduc-
tion is accomplished without compromising the accuracy of the reliability sensitivity
estimates.

5.1 Motivation

The level of safety of a structure can be measured in terms of its reliability. Even
though this information is essential, it is also important to analyze the sensitivity of the
reliability estimateswith respect to variations inmodel parameters [3, 8, 13, 18, 30].
In particular, the determination of the variation in the reliability (or equivalently in
the failure probability) due to changes in model parameters can provide useful infor-
mation. For example, it can be used to identify the most influential model parameters
and provide an important insight on system failure for risk-based decision mak-
ing, such as reliability-based characterization of system responses, robust control,
reliability-based design optimization, etc. [2, 6, 15, 24, 26, 34].

The subject of reliability sensitivity has been addressed in a large number of
contributions. In fact, many works based on standard approximate methods such as
first- and second-order reliability methods and simulation-based methods have been
studied in the literature. These methods are quite general, and they have proved to
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be very effective in a large number of problems, but their range of application is
somewhat limited in the context of complex dynamical systems. A representative
list of these works is included in the Refs. [1, 3–5, 13, 16, 18, 20, 22, 27, 29].

5.2 Reliability Sensitivity Analysis Formulation

As indicated in Sect. 4.1, the vector of uncertain parameters θ is characterized in a
probabilistic manner by means of a joint probability density function q(θ). For reli-
ability sensitivity purposes, this function depends on a certain number of parameters
τ , that is, q(θ|τ ). In practice, the distribution parameters τ can be considered, for
example, as the mean value or standard deviation of θ. In this context, the mean value
represents the nominal value, whereas the standard deviation models the uncertainty
associated with manufacturing and construction processes. Then, it is clear that the
probability of failure depends on several factors, among them, the distribution param-
eters τ of the probability density function of the uncertain model parameters. Thus,
the probability of failure explicitly depends on the distribution parameter vector, i.e.
PF (τ ). In this manner, changes in the distribution parameters will certainly alter the
response of the structure and, consequently, its probability of failure. The rate of
change that the probability of failure undergoes due to these changes is denoted as
reliability sensitivity analysis in the context of this chapter.

A simulation-based approach that is a simple post-processing of subset simulation
is considered for performing the corresponding reliability sensitivity analysis [11].
This approach has been validated and illustrated in a series of reliability problems,
including complex structural systems such as nonlinear dynamical systems under
stochastic excitation and problems involving relatively large finite element models
[7, 11, 20, 31]. As in the previous chapter, first excursion probabilities are used to
characterize the level of safety of a structure.

5.3 Sensitivity Measure

A classical measure for sensitivity is calculating the gradient of the quantity of
interest. In this context, reliability sensitivity is defined as the partial derivative of the
failure probability with respect to the distribution parameters of the basic uncertain
model parameters. From the definition of the probability of failure in Eq. (4.5), the
sensitivity of the failure probability with respect to a distribution parameter τ j can
be written in the form

∂PF (τ )

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

=
∫

z∈Ωz ,θ∈Ωθ

IF (z,θ) p(z)
∂q(θ|τ )

∂τ j
dz dθ (5.1)

where τ 0 is the value of the distribution parameter vector where the partial derivative
is evaluated, and all other terms have been previously defined. In Eq. (5.1), it has been
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assumed that q(θ|τ ) is differentiable with respect to τ j and that the integration range
does not depend on τ j . Recall that the previous probability integral represents a high-
dimensional problem in the context of dynamical systems under stochastic loading.

The sensitivity can also be defined in terms of the so-called elasticity, which is
another measure usually used in the context of sensitivity analysis [7, 19]. Within
this context, the elasticity eτ j of the failure probability with respect to a parameter
τ j , evaluated at τ 0, is defined as

eτ j = ∂PF

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

τ 0
j

PF
(5.2)

where τ 0
j is assumed to be non-zero. This dimensionless quantity represents a more

objective sensitivity measure when the uncertain model parameters are diverse in
dimension. Thus, this sensitivity measure can be used to rank the importance of the
model parameters on the system reliability. This measure is also less sensitive to
potential bias in the failure probability estimates [7, 19].

5.4 Failure Probability Function Representation

To compute the sensitivity measure, the probability of failure PF (τ ), referred to as
failure probability function, is first expressed as a function of the distribution param-
eter vector τ . The idea is to estimate the failure probability function by using sam-
ples and associated intermediate failure events generated by subset simulation under
q(θ|τ 0), that is, the probability density function of θ with distribution parameter
vector τ 0. Specifically, following the basic ideas of subset simulation (see Sect. 4.3),
the probability of the first failure event F1 can be computed as

PF1(τ ) =
∫

z∈Ωz ,θ∈Ωθ

IF1(z,θ) p(z) q(θ|τ ) dz dθ

=
∫

z∈Ωz ,θ∈Ωθ

IF1(z,θ)
q(θ|τ )

q(θ|τ 0)
p(z)q(θ|τ 0) dz dθ (5.3)

where q(θ|τ 0) and q(θ|τ ) are the probability density functions of θwith distribution
parameter vector τ 0 and τ , respectively. Similarly, the probability of the conditional
failure event Fk/Fk−1, k = 2, . . . ,m, can be written as

PFk/Fk−1(τ ) =
∫

z∈Ωz ,θ∈Ωθ

IFk (z,θ) p(z|Fk−1) q(θ|Fk−1, τ ) dz dθ

=
∫

z∈Ωz ,θ∈Ωθ

IFk (z,θ)
q(θ|Fk−1, τ )

q(θ|Fk−1, τ 0)
p(z|Fk−1)q(θ|Fk−1, τ

0) dz dθ

(5.4)
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where p(z|Fk−1) is the distribution of z conditional to the failure event Fk−1, and
q(θ|Fk−1, τ ) and q(θ|Fk−1, τ

0) are the conditional distributions of θ given that they
lie in Fk−1 under distribution parameter vectors τ and τ 0, respectively. By definition,
these conditional distributions are equal to

q(θ|Fk−1, τ ) = IFk−1(θ) q(θ|τ )

PFk−1(τ )
, q(θ|Fk−1, τ

0) = IFk−1(θ) q(θ|τ 0)

PFk−1(τ
0)

(5.5)

where PFk−1(τ ) and PFk−1(τ
0) are the probabilities of the failure event Fk−1 under

distribution parameter vectors τ and τ 0 of the probability density function q(·),
respectively. Then, the probability of the conditional failure event Fk/Fk−1 can be
given in the form

PFk/Fk−1 (τ ) = PFk−1 (τ
0)

PFk−1 (τ )

∫

z∈Ωz ,θ∈Ωθ

IFk (z,θ)
q(θ|τ )

q(θ|τ 0)
p(z|Fk−1)q(θ|Fk−1, τ

0) dz dθ

(5.6)

Moreover, by definition, the probability of failure can be expressed as

PF (τ ) = PFm (τ ) = PFm/Fm−1(τ ) PFm−1(τ ) (5.7)

Thus, from Eqs. (5.6) and (5.7) with k = m, it follows that

PF (τ ) = PFm−1(τ
0)

∫

z∈Ωz ,θ∈Ωθ

IFm (z,θ)
q(θ|τ )

q(θ|τ 0)
p(z|Fm−1)q(θ|Fm−1, τ

0) dz dθ

(5.8)

where from construction PFm−1(τ
0) = pm−1

0 . Then,

PF (τ ) = pm−1
0

∫

z∈Ωz ,θ∈Ωθ

IFm (z,θ)
q(θ|τ )

q(θ|τ 0)
p(z|Fm−1)q(θ|Fm−1, τ

0) dz dθ

(5.9)

The last equation represents an analytical characterization, in the framework of
subset simulation, of the failure probability function in terms of the distribution
parameter vector τ .

5.5 Sensitivity Estimation

Using the previous characterization of the failure probability function, the partial
derivative of PF (τ ) with respect to τ j , evaluated at τ 0, can be written as

∂PF

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

= pm−1
0

∫

z∈Ωz ,θ∈Ωθ

IFm (z,θ)

∂q
∂τ j

(θ|τ 0)

q(θ|τ 0)
p(z|Fm−1)q(θ|Fm−1, τ

0) dz dθ

(5.10)
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or in terms of the expectation operator

∂PF

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

= pm−1
0 Ep(z|Fm−1),q(θ|Fm−1,τ 0)

⎡

⎣IFm (z,θ)

∂q
∂τ j

(θ|τ 0)

q(θ|τ 0)

⎤

⎦ (5.11)

where Ep(z|Fm−1),q(θ|Fm−1,τ 0)[ · ] is the expectation operator with respect to the distri-
butions p(z|Fm−1) and q(θ|Fm−1, τ

0). From the last expression, the sensitivity can
be estimated as

∂PF

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

≈ pm−1
0

1

Nm

Nm
∑

i=1

IFm (zm−1,i ,θ
0
m−1,i )

∂q
∂τ j

(θ0
m−1,i |τ 0)

q(θ0
m−1,i |τ 0)

(5.12)

where {(zm−1,i ,θ
0
m−1,i ), i = 1, . . . , Nm} is the set of samples generated at the last

stage of subset simulation under distribution parameter vector τ 0 of the probability
density function q(·), and all other terms have been previously defined.

It is observed that a single subset simulation analysis is required for estimating
the sensitivity of the probability of failure with respect to the distribution parame-
ters. Therefore, the reliability sensitivity analysis is a simple post-processing of a
sampling-based reliability analysis. In other words, the approach does not require
any additional sampling of the indicator function (dynamic analysis). In summary,
it is seen that the estimation of the failure probability and its gradient can be done
with the same samples generated at the last stage of subset simulation. The previous
approach can be extended to higher-order derivatives provided that the distribution
q(θ|τ ) is sufficiently differentiable. It is noted that the characterization of the partial
derivative of the failure probability function with respect to the j th component of τ
(see Eq. (5.10)) can be also expressed in terms of the so-called score function, which
is the partial derivative of the logarithm of the distribution q(θ|τ 0) [25].

5.6 Sensitivity Versus Threshold

From the formulation of subset simulation (see Sect. 4.3.2), it is clear that the
demand function values δ1, . . . , δm at specified probability levels are the ones that
are estimated, rather than the conditional failure probabilities. Consequently, subset
simulation serves as a method to generate random samples whose response values
correspond to specified probability levels, rather than a technique to estimate failure
probabilities for specified failure events. As a result, it produces information about
the probability of failure versus the threshold and not only for a single value. Since
the proposed reliability sensitivity analysis is based on subset simulation, a similar
information can be obtained for the sensitivity measures.

For a demand function value δ̄ such that δk−1 < δ̄ ≤ δk, k = 1, . . . ,m, with
δ0 = 0, the partial derivative of PF (τ ) with respect to τ j , evaluated at τ 0, can be
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estimated as [11, 12]

∂PF

∂τ j

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

τ 0

≈ pk−1
0

1

Nk

Nk
∑

i=1

IF̄ (zk−1,i ,θ
0
k−1,i )

∂q
∂τ j

(θ0
k−1,i |τ 0)

q(θ0
k−1,i |τ 0)

(5.13)

where F̄ is the failure event defined as

F̄ = {

d(z,θ) > δ̄
}

(5.14)

and {(zk−1,i ,θ
0
k−1,i ), i = 1, . . . , Nk} is the set of samples generated at level k − 1 of

subset simulation under distribution parameter vector τ 0 of the probability density
function q(·). In this manner, a single simulation run yields reliability sensitivity esti-
mates for all thresholds up to the largest one considered in the analysis. In otherwords,
the whole trend of the sensitivity measure versus the thresholds can be obtained in
a direct manner. This feature of the approach is quite desirable because it provides
much more information than a point estimate.

5.7 Particular Cases

The previous general formulation can be specialized for different probability dis-
tributions of the uncertain model parameters and different distribution parameters
as long as Eq. (5.1) holds. Of practical importance is the case when the distribu-
tion parameters are represented by the mean values and standard deviations of the
system parameters. These distribution parameters can be considered as a control
or design variables in a number of important applications such as reliability sensi-
tivity analysis, reliability-based characterization of structural responses, reliability-
based design optimization, robust solutions and predictions, robust design opti-
mization, etc. For illustration purposes, some sensitivity measures corresponding
to the case of normal and log-normal random variables are given in the following
equations.

The partial derivatives of the failure probability with respect to the mean value
μθ j and standard deviation σθ j of the model parameter θ j , evaluated at μ0

θ and σ0
θ for

the case of a normal random variable are estimated as [11, 12]

∂PF

∂μθ j

∣

∣

∣

∣

μ0
θ

≈ pm−1
0

1

Nm

Nm
∑

i=1

IF (zm−1,i ,θ
0
m−1,i ) ×

⎧

⎨

⎩

(θ0m−1,i j − μ0
θ j

)

σ0
θ j

2

⎫

⎬

⎭

(5.15)
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and

∂PF

∂σθ j

∣

∣

∣

∣

σ0
θ

≈ pm−1
0

1

Nm

Nm
∑

i=1

IF
(

zm−1,i ,θ
0
m−1,i

)×
⎧

⎨

⎩

(θ0m−1,i j − μ0
θ j

)2

σ0
θ j

2 − 1

⎫

⎬

⎭

1

σ0
θ j

(5.16)

where {(zm−1,i ,θ
0
m−1,i ), i = 1, . . . , Nm} is the set of samples generated at the last

stage of subset simulation under distributions p(z|Fm−1) and q(θ|Fm−1, τ
0), respec-

tively, and θ0
m−1,i j is the j th component of the sample vector θ0

m−1,i .
For the case of a log-normal randomvariable, the estimators arewritten as [11, 12]

∂PF

∂μθ j

∣

∣

∣

∣

μ0
θ

≈ pm−1
0

1

Nm

Nm
∑

i=1

IF (zm−1,i ,θ
0
m−1,i ) ×

{[

(ln(θ0m−1,i j ) − μ j )

σ j
2

]

α j +
[

(ln(θ0m−1,i j ) − μ j )
2

σ j
2

− 1

]

1

σ2
j

β j

}

(5.17)

and

∂PF

∂σθ j

∣

∣

∣

∣

σ0
θ

≈ pm−1
0

1

Nm

Nm
∑

i=1

IF
(

zm−1,i ,θ
0
m−1,i

)×
{[

(ln(θ0m−1,i j ) − μ j )

σ2
j

]

λ j −
[

(ln(θ0m−1,i j ) − μ j )
2

σ2
j

− 1

]

1

σ2
j

λ j

}

(5.18)

where

α j = [

2 − exp
(−σ j

2
)]

exp
(− (

μ j + σ j
2/2

))

(5.19)

β j = [

exp
(−σ j

2)− 1
]

exp
(− (

μ j + σ j
2/2

))

(5.20)

λ j = −[exp(σ2
j ) − 1]1/2 exp(−(μ j + 3σ2

j/2)) (5.21)

with

μ j = ln

(

(

μ0
θ j

)2
/

√

(

μ0
θ j

)2 +
(

σ0
θ j

)2
)

(5.22)

σ j =
√

ln

(

1 +
(

σ0
θ j

/μ0
θ j

)2
)

(5.23)
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and all other terms have been previously defined. Similar expressions can be derived
for higher order derivatives and for other types of probability distributions of the
uncertain model parameters provided that the distribution q(θ|τ ) is sufficiently dif-
ferentiable.

5.8 Application Problem

The objective of the application problem is to determine the feasibility and effective-
ness of the proposed reliability sensitivity analysis approach in an involved model.
Even though the proposed sensitivity analysis is a simple post-processing of the sub-
set simulation, it can be computationally very demanding due to the large number
of dynamic analyses required during the reliability sensitivity estimation (evaluation
of the indicator function). Therefore, the total computational demand may become
excessive when the computational time for performing a dynamic finite element
analysis is significant. To deal with this difficulty, the reliability sensitivity analysis
is carried out in a reduced-order model.

5.8.1 Model Description

A three-dimensional bridge finite element model of 10,068 degrees of freedom is
considered in the application problem. The bridge model, shown in Fig. 5.1, is
curved in plan and has a total length of 119m. It has five spans of lengths equal
to 24m, 20m, 23m, 25m, and 27m, respectively, and four piers of 8 m height that
monolithically support the girder. Each pier is founded on an array of four piles

Fig. 5.1 Finite element model of bridge structure
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of 35m height. The piers and piles are modeled as column elements of circular
cross-section with Dc = 1.6m and Dp = 0.6m diameter, respectively, while the
deck cross-section is a box girder. The deck girder is modeled by beam and shell
elements and rests on each abutment through two rubber bearings, which are used
as an isolation system.

The rubber bearings consist of layers of rubber and steel, with the rubber being
vulcanized to the steel plates. A schematic representation of a rubber bearing is also
shown in the figure, where Dr represents the external diameter, Di is the internal
diameter, and Hr = tr nr is the total height of rubber in the bearingwhere tr is the layer
thickness and nr is the number of rubber layers. The nominal values of the rubber
bearings parameters are set equal to Dr = 0.80m, Di = 0.10m, and Hr = 0.17m.
The interaction between the piles and the soil is modeled by a series of translational
springs in the x and y direction along the height of the piles, with stiffnesses varying
linearly from Ks = 11,200T/m at the base to 0 at the surface. The net effect of
these elements is to increase the translational stiffness of the column elements that
model the piles. Material properties of the structural model have been assumed as
follows: Young’s modulus E = 2.0 × 1010 N/m2; Poisson’s ratio ν = 0.2, and mass
density ρ = 2,500kg/m3. In addition, 3% of critical damping is added to the model.
It is assumed that the structural components, such as the piers, piles, and the deck
girder, remain linear during the analysis, while the nonlinearities are localized in the
rubber bearings response. In addition, the axial deformation of the piers and piles is
neglected with respect to their bending deformation.

The bridge structure is subjected to a ground acceleration applied in a direction
defined at 25◦ with respect to the x-axis. It is modeled as the non-stationary stochas-
tic process described in Sect. 4.5. The values of the various parameters involved
in the model are taken as the ones considered in the previous chapter. The dura-
tion of the excitation is taken equal to T = 30 s with a sampling interval equal to
ΔT = 0.01 s. Thus, the vector of uncertain parameters z involves more than 3,000
uncertain parameters, as zT =< z1, z2, . . . , z3001 >. Consequently, the correspond-
ing reliability problem and, therefore, the reliability sensitivity analysis problem is
high-dimensional.

5.8.2 Rubber Bearings

5.8.2.1 Description

Rubber bearings have been used over many years in a number of seismically isolated
structures worldwide [14, 21, 28]. They requireminimal initial cost andmaintenance
compared to other passive, semi-active, and active energy absorption devices. Rubber
bearing systems, in principle, are able to provide horizontal flexibility together with
the restoring force and supply the required hysteretic damping. An analytical model
that simulates measured restoring forces under bidirectional loadings is considered.
The model is based on a series of experimental tests conducted for real-size rubber
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Fig. 5.2 Decomposition of the restoring force

bearings [23, 32]. The loading tests of seven full-scale isolatorswere carried out using
the Caltrans Seismic ResponseModification Device Test Facility at the University of
California, SanDiego. The specimens used in the tests weremadewith high damping
rubber compounds. In particular, horizontal bidirectional loading tests for isolators
with a diameter of 0.7m and 1.3m were conducted. On the basis of the test results,
the model assumes that the restoring force on the rubber bearing is composed of a
force directed to the origin of the isolator and another force approximately opposite
to the direction of the movement of the isolator. This decomposition of the restoring
force is schematically shown in Fig. 5.2.

According to the model, a vector approximately in the direction of the motion
d(t), can be defined in terms of the isolator displacement vector ur (t) in the x and y
direction by means of the nonlinear differential equation [9, 10, 33]

ḋ(t) = 1

α
‖ u̇r (t) ‖

[ ˆ̇ur (t)− ‖ d(t) ‖β d̂(t)
]

, ur (0) = 0 , d(0) = 0 (5.24)

where u̇r (t) is the velocity vector, ˆ̇ur (t) and d̂(t) are the unit directional vectors of
u̇r (t) and d(t), respectively, and ‖ · ‖ indicates the Euclidean norm. The parameters
α and β are positive constants that relate to the yield displacement and smoothness of
yielding, respectively. Once the vector d(t) has been derived, the restoring force f(t)
on the isolator (in the x and y direction) is expressed in terms of the unit directional
vector ûr (t) and the vector d(t) as

f(t) = −ûr (t) fe(t) − d(t) fs(t) (5.25)

where fe(t) is the nonlinear elastic component and fs(t) is the elastoplastic com-
ponent. Based on the results reported in [33], it was concluded that the model is
able to accurately simulate the test results for both bidirectional and unidirectional
loading.
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5.8.2.2 Model Parameter Identification and Validation

The mathematical model for the description of the isolator behavior can be used to
calibrate the model parameters by using a specific set of loading tests carried out for
real-size bearings. First, the parameters α and β, which define the transition curve
from the elastic to inelastic regime, are calibrated. They are estimated as 0.2Hr and
0.7, respectively, where Hr is the total height of rubber, as indicated before [33].
Next, the stress-strain relationships for τe(t) = fe(t)/A, and τs(t) = fs(t)/A are
calibrated by means of quadratic and cubic curves as [17]

τe(t) =
{

0.35γ(t) if 0 ≤ γ(t) ≤ 1.8
0.35γ(t) + 0.2(γ(t) − 1.8)2 if γ(t) ≥ 1.8

(5.26)

and
τs(t) = 0.125 + 0.015γ(t) + 0.012γ(t)3 (5.27)

where A is the cross-sectional area of the rubber, and γ(t) =‖ ur (t) ‖ /Hr is the
average shear-strain. The test results show that the scatter of the experimental data
around these calibrated curves is relatively small for average shear strains of less than
200%. Test-restoring forces and those calculated by the model under unidirectional
loading are compared in Fig 5.3 for two specimens. They correspond to a medium-
and large-sized rubber bearing, respectively. The test results were conducted for a
maximum average shear strain of 150%. It is seen that the analytical model simulates
the test results very well. The extra loop shown in the figures is generated by the
analytical model to illustrate the predicted behavior of the rubber bearings for large
average shear strains (250%). Additional validation calculations have shown that the
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Fig. 5.3 Comparison of analytical and experimental hysteresis loops. Left figure: medium size
rubber bearing. Dr = 0.8m, Hr = 0.16m, Di = 0.15m. Right figure: large size rubber bearing.
Dr = 1.0m, Hr = 0.16m, Di = 0.15m
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analytical model is also able to accurately simulate the test results for bidirectional
loadings [9, 10, 33].

5.8.3 Reliability Sensitivity Analysis Formulation

The performance of the bridge structure is characterized in terms of the probability of
occurrence of three failure events. The events are related to the maximum absolute
acceleration at the middle of the deck girder, the maximum relative displacement
between the top of the piers and their connections with the pile foundation, and the
maximum relative displacement between the deck girder and the base of the rubber
bearings at each abutment. Mathematically, the failure events are defined as

F1(z,θ) =
{

max
t∈[0,T ]

(∣

∣

∣

∣

ẍabsolute(t, z,θ)

2.00m/s2

∣

∣

∣

∣

)

> 1

}

,

F2(z,θ) =
{

max
t∈[0,T ]

(∣

∣

∣

∣

δx(t, z,θ)

0.07m

∣

∣

∣

∣

)

> 1

}

,

F3(z,θ) =
{

max
t∈[0,T ]

(∣

∣

∣

∣

δr(t, z,θ)

0.10m

∣

∣

∣

∣

)

> 1

}

(5.28)

where ẍabsolute(t, z,θ) represents the absolute acceleration at the middle of the deck
girder (in the x or y direction), δx(t, z,θ) denotes the relative displacement between
the top of the piers and their connections with the pile foundation (in the x or y direc-
tion), and δr(t, z,θ) describes the relative displacement between the deck girder
and the base of the rubber bearings at each abutment (in the x or y direction). It
is expected that system parameters, such as the diameter of the pier elements, the
diameter of the pile elements, the external diameter of the rubber bearings, and
the total height of rubber in the bearing, may have important effects on the sys-
tem response. Thus, a reliability sensitivity analysis with respect to these parameters
may provide important information about the overall behavior of the bridge structure.
Based on the previous observations, the vector of the system parameters is defined
as θT =< Dc, Dp, Dr , Hr >. To study the behavior of the failure probability when
the system parameters vary in a certain region of the parameters space, the system
parameters are modeled as independent normal random variables with distribution
parameters given in Table5.1. Of course, alternative distributions can also be used.
Note that the uncertainty associated with the system parameters Dc, Dp, Dr and Hr

(geometrical parameters) may correspond to the inherent variability in the construc-
tion process of these elements (piers, piles, and rubber bearings), or they may be
considered as an instrumental variability in the context of this analysis.
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Table 5.1 Distribution of system parameters

System parameter Mean value C.O.V.

Dc(diameter of pier elements) μDc = 1.6m 0.10

Dp(diameter of pile elements) μDp = 0.6m 0.10

Dr (external diameter of rubber bearings) μDr = 0.8m 0.10

Hr (total height of rubber) μHr = 0.16m 0.10

5.8.4 Reduced-Order Model

To carry out the reliability sensitivity analysis in a reduced-order model, the bridge
model is divided into a number of substructures. In particular, the structural model is
subdivided into nine linear substructures and two nonlinear substructures, as shown
in Fig. 5.4.

Substructures S1, S2, S3, and S4 are composed of the different pile elements, sub-
structures S5, S6, S7 and S8 include the different pier elements, and substructure S9
corresponds to the deck girder. Finally, substructures S10 and S11 are the nonlinear
substructures composed of the rubber bearings located at the left and right abutment,
respectively. Based on the previous definition of substructures, it is clear that sub-
structures S1, S2, S3, and S4 depend on the system parameter Dp, substructures S5,
S6, S7 and S8 depend on the system parameter Dc, while substructure S9 is indepen-
dent of the system parameters. Furthermore, the nonlinear substructures depend on
the system parameters Dr and Hr . In connection with Chap.2, the corresponding
parametrization functions are given by h j (θ j ) = θ4j (parameter related to the inertia

Fig. 5.4 Linear and nonlinear substructures of the finite element model
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Table 5.2 Modal frequency difference between the modal frequencies of the full model and the
reduced-order model based on dominant fixed-interface modes

Frequency number Unreduced model Reduced-order model Error

ω (rad/s) ω (rad/s) | Difference |
1 4.214 4.216 2.0 ×10−3

2 4.282 4.284 2.0 ×10−3

3 4.569 4.572 3.0 ×10−3

4 12.197 12.249 5.2 ×10−2

5 15.424 15.462 3.8 ×10−2

6 23.419 23.421 2.0 ×10−3

term in the stiffness matrices) and g j (θ j ) = θ2j (parameter related to the area term
in the mass matrices), where the model parameter θ j is either Dc or Dp, normalized
by its mean value.

Validation calculations indicate that retaining three generalized coordinates (dom-
inant fixed-interface normal modes) for each one of substructures S1, S2, S3, and S4,
two for each one of substructures S5, S6, S7 and S8, and 10 for substructure S9 are ade-
quate in the context of this application. The absolute value of the difference between
the modal frequencies using the full nominal reference finite element model and
the modal frequencies computed using the reduced-order model based on dominant
fixed-interface normal modes is shown in Table5.2. The modal frequencies for both
models are computed by considering only the linear components of the structural
system. A small difference is observed with this number of generalized coordinates.
The corresponding matrix of MAC-values between the first six modal vectors com-
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Fig. 5.5 MAC-values between themode shapes computed from the unreduced finite elementmodel
and from the reduced-order model based on dominant fixed-interface modes
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puted from the unreduced finite element model and from the reduced-order model is
shown in terms of a 3-D representation in Fig. 5.5.

It is observed that the values at the diagonal terms are close to one and almost
zero at the off-diagonal terms. Thus, the modal vectors of both models are consistent.
The comparison with the lowest six modes is based on the fact that the contribution
of the higher order modes (higher than the 6th mode) in the dynamic response of
the model is negligible. In fact, the dynamic response of the magnitudes associated
with the failure events, that is, ẍabsolute(t, z,θ), δx(t, z,θ), and δr(t, z,θ), obtained
from the reduced-order model, coincides with the response obtained from the unre-
duced finite element model. Note that residual normal modes and interface modes
are not involved in the construction of the reduced-order model. In summary, a total
of 30 generalized coordinates, corresponding to the fixed-interface normal modes
of the linear substructures, out of 10,008 internal degrees of freedom of the origi-
nal model, are retained for the nine linear substructures. Therefore, the number of
interface degrees of freedom is equal to 60 in this case. With this reduction, the
total number of generalized coordinates of the reduced-order model represents a
99% reduction with respect to the unreduced model. Thus, a drastic reduction in
the number of generalized coordinates is obtained with respect to the number of the
degrees of freedom of the original unreduced finite element model. Based on the
previous analysis, it is concluded that the reduced-order model and the full finite
element model are equivalent in the context of this application problem. Therefore,
the reliability sensitivity analysis of the bridge structural model is carried out by
using the reduced-order model. From the practical point of view, it is important to
note that the selection of the fixed-interface modes per substructure, necessary to
achieve a prescribed accuracy, can be done offline, before the reliability sensitivity
analysis takes place.

In the following, the reliability sensitivity analysis corresponding to the three
failure events is presented. The sensitivitymeasures with respect to a given parameter
are estimated by considering the other parameters fixed at their mean values. This is
done to isolate the effect of the parameter variation on the system reliability.

Table 5.3 Sensitivity measures in terms of partial derivatives. (·%) sample coefficient of variation.
Failure event F1
Average value (c.o.v.)
∂PF1
∂μDp

3.85 × 10−2 (27%)

∂PF1
∂μDc

5.37 × 10−3 (47%)

Table 5.4 Sensitivity measures in terms of elasticity coefficients. (·%) sample coefficient of vari-
ation. Failure event F1
Average value (c.o.v.)

eF1μDp
7.26 (21%)

eF1μDc
3.28 (47%)
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Fig. 5.6 Sensitivity of the
failure probability PF1 with
respect to the mean value of
the diameter of the pier and
pile elements: 20
independent estimations
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5.8.5 Results: Failure Event F1

The results of the reliability sensitivity analysis corresponding to the failure event
associated with the maximum absolute acceleration at the middle of the deck girder
are given in Tables5.3 and 5.4.

Table5.3 shows the sensitivity analysis in term of the partial derivatives of the
failure probability with respect to the mean value of the system parameters Dp

and Dc, while Table5.4 gives the corresponding sensitivity measures in terms of the
elasticity coefficients. Theproposed approach is implementedbyusing1,000 samples
at each conditional level of subset simulation with conditional failure probabilities
equal to p0 = 0.1. The estimates shown in the tables correspond to an average of
20 independent runs. The sensitivity information provided in Tables5.3 and 5.4 is
also showed in Fig. 5.6 in form of arrows indicating the magnitude and sign of the
sensitivity. Twenty representative estimations are considered in the figure.

It is observed that the sensitivity measures with respect to the mean value of the
parameters Dp and Dc are positive. Thus, an increase in the value of these parameters
increases the probability of failure. In fact, an increase in the diameter of the pier and
pile elements tends to increase the maximum absolute acceleration at the middle of
the deck girder, which is reasonable from a structural point of view. It is also seen that
failure appears to be most sensitive to the mean value of the diameter of the piles,
as expected. The estimates generated by the proposed simulation-based approach
present some level of dispersion, which can be observed from Fig. 5.6. However, on
average, the estimates converge to the reference value. This result is shown in Fig. 5.7
in terms of the elasticity coefficient estimates, where the reference result is obtained
directly by Monte Carlo simulation with a large number of samples (100,000 in this
case). The corresponding direct simulation is carried out by using the reduced-order
model. The actual variability of the sensitivity estimates is given in parentheses in
Tables5.3 and 5.4. That number corresponds to the sample coefficient of variation
of the estimates over 20 independent runs.
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Fig. 5.7 Average of the
elasticity coefficient
estimates generated by the
proposed approach from 20
simulation runs compared to
the reference estimate
(Monte Carlo). Failure event
F1. System parameters Dp
and Dc
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A similar reliability sensitivity analysis can be performed with respect to the
standard deviation of the system parameters Dp and Dc. It turns out that the elasticity
of the failure probability with respect to the standard deviation of these parameters is
positive. Therefore, the probability of failure increases, i.e., the structural reliability
reduces, with an increase in the standard deviation (variability) of the diameters of
the pier and pile elements. The information provided by the sensitivity analysis with
respect to the standard deviation of the system parameters can be used to identify the
parameters whose uncertainty plays a major role in affecting the failure probability.

As stated in Sect. 5.6, the proposed method yields with a single subset simulation
run reliability sensitivity estimates for all thresholds up to the largest one considered
in the analysis. In this context, Figs. 5.8 and 5.9 show the probability of failure and
the corresponding elasticity coefficients in terms of the threshold. The results with
respect to the mean value of the diameter of the pile elements are shown in Fig. 5.8,
while Fig. 5.9 shows the results related to the mean value of the diameter of the pier
elements. In these figures, an average of 20 independent runs is considered, where
the threshold is normalized by the acceptable acceleration response level equal to
2.0m/s2 (see Sect. 5.8.3). These figures illustrate the whole trend of the probability of
failure and sensitivity measure in terms of the threshold, not only for the normalized
target value equal to one. This feature of the proposed method is quite useful, since
the whole trend of the sensitivity measures versus the threshold is obtained. It is
observed from the figures that the elasticity coefficients increase as the threshold
level increases and, therefore, the failure probability becomes more sensitive as the
failure probability becomes smaller.

5.8.6 Results: Failure Event F2

The results of the reliability sensitivity analysis associated with the second failure
event are given in Tables5.5 and 5.6. Table5.5 shows the sensitivity analysis in terms
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Fig. 5.8 Upper figure:
Probability of failure event
F1 in terms of the
normalized threshold. Lower
figure: Elasticity coefficient
of failure probability PF1 in
terms of the normalized
threshold. System parameter
Dp (diameter of pile
elements)
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of the partial derivatives of the failure probability with respect to the mean value of
the system parameters Dp and Dc, while Table5.6 gives the corresponding sensitivity
measures in terms of the elasticity coefficients.

This information is also shown in Fig. 5.10 in form of arrows indicating the mag-
nitude and sign of the sensitivity. As in the previous case, the results are based on 20
independent runs. For this failure event, the sensitivity measures with respect to the
mean value of the parameters Dp and Dc are negative. Thus, an increase in the value
of these parameters decreases the probability of failure. In this case, an increase in
the diameter of the pier and pile elements tends to decrease the maximum relative
displacement between the piers and the piles, as expected. The results indicate that
both parameters, that is, the mean value of the diameter of the pile and pier elements,
have an important effect on PF2 .

A close examination of the results reveals that the probability of failure event
F2 is more sensitive to the diameter of the pier elements than to the diameter of
the pile elements, which makes sense from a physical point of view. The numerical
results also show that, on average, the estimates obtained from the proposed approach
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Fig. 5.9 Upper figure:
Probability of failure event
F1 in terms of the
normalized threshold. Lower
figure: Elasticity coefficient
of failure probability PF1 in
terms of the normalized
threshold. System parameter
Dc (diameter of pier
elements)
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converge to the reference result, as demonstrated in Fig. 5.11. In fact, the average
estimate coincides with the reference value, which was directly obtained by Monte
Carlo simulation with the same number of samples as used in the previous case.

The sample average of the failure probability elasticities in terms of the number
of independent simulation runs is shown in Fig. 5.12. For comparison, the results
obtained byMonte Carlo simulation are also shown in the figure (with a square sym-
bol). It is seen that the sample average of the elasticity coefficients stabilizes very
fast to the reference result. Thus, the estimate obtained by the proposed sensitivity
measure is practically unbiased. The corresponding sample coefficient of variation
of the estimates, based on 20 independent runs, is given in parentheses in Tables5.5
and 5.6. The trend of the probability of failure and the sensitivity measure in terms of
the threshold is shown in Figs. 5.13 and 5.14, respectively. The results correspond-
ing to the mean value of the diameter of the pile elements are shown in Fig. 5.13,
while Fig. 5.14 shows the results related to the mean value of the diameter of the pier
elements. An average of 20 independent runs is considered in the figures, where the
threshold level is normalized by the acceptable relative displacement response level
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Table 5.5 Sensitivity measures in terms of partial derivatives. (·%) sample coefficient of variation.
Failure event F2
Average value (c.o.v.)
∂PF2
∂μDp

−2.73 × 10−2 (33%)

∂PF2
∂μDc

−3.30 × 10−3 (37%)

Table 5.6 Sensitivity measures in terms of elasticity coefficients. (·%) sample coefficient of vari-
ation. Failure event F2
Average value (c.o.v.)

eF2μDp
−11.79 (18%)

eF2μDc
−18.64 (14%)

Fig. 5.10 Sensitivity of the
failure probability PF2 with
respect to the mean value of
the diameter of the pier and
pile elements: 20
independent estimations
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equal to 0.07m (see Sect. 5.8.3). Once again, it is clear from the figures that the elas-
ticity coefficients increase in magnitude as the threshold increases and, therefore,
the failure probability becomes more sensitive as the failure probability becomes
smaller.

5.8.7 Results: Failure Event F3

The results of the reliability sensitivity analysis associated with the failure event
related to the maximum relative displacement between the deck girder and the base
of the rubber bearings at each abutment are given in Tables5.7 and 5.8.

Table5.7 shows the sensitivity analysis in terms of the partial derivatives of the
failure probability with respect to the mean value of the system parameters Dr and
Hr , while Table5.8 gives the corresponding sensitivity measures in terms of the
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Fig. 5.11 Average of the
elasticity coefficient
estimates generated by the
proposed approach from 20
simulation runs compared to
the reference estimate
(Monte Carlo). Failure event
F2. System parameters Dp
and Dc
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Fig. 5.12 Sample average of
elasticity coefficients
corresponding to the
probability of failure event
F2 in terms of the number of
independent simulation runs
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elasticity coefficients. The information is also shown in Fig. 5.15 in form of arrows
indicating the magnitude and sign of the sensitivity. As in the previous cases, the
results are based on 20 independent runs.

From the tables, it is seen that the sensitivity of the failure probability with respect
to the mean value of the external diameter Dr is negative. Thus, an increase in
the external diameter of the isolators decreases the probability of failure. This is
reasonable since the base isolation system becomes stiffer and, therefore, the relative
displacement between the deck girder and the base of the rubber bearings tends to
decrease. On the other hand, the sensitivity of the failure probability with respect to
the mean value of the total height of rubber Hr is positive. In this case, an increase
in the total height of rubber in the isolator increases the probability of failure. This
is consistent with the fact that the isolation system becomes more flexible increasing
in this manner the relative displacement between the deck girder and the rubber
bearings. The corresponding elasticity coefficients indicate that the external diameter
of the isolators plays a significant role in affecting the probability of failure. These
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Fig. 5.13 Upper figure:
Probability of failure event
F2 in terms of the
normalized threshold. Lower
figure: Elasticity coefficient
of failure probability PF2 in
terms of the normalized
threshold. Average of five
independent runs. System
parameter Dp
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observations give a valuable insight into the interaction and effect of the isolator
parameters on the failure event associated with the maximum relative displacement
between the deck girder and the base of the rubber bearings.

As in the previous cases, the average estimates obtained by the proposed approach
coincidewith the referencevalues as shown inFig. 5.16. Information about the sample
behavior of the failure probability elasticities in terms of the number of independent
simulation runs is shown in Fig. 5.17. This figure shows the sample average of the
elasticity with respect to the mean value of the system parameters Dr and Hr .

It is seen that the average stabilizes extremely fast. For comparison, the results
obtained by Monte Carlo simulation are also shown in the figure (with a square
symbol). The average of the elasticity coefficients coincides with the Monte Carlo
results. This result indicates that the sensitivity estimation in terms of the elasticity
coefficients is practically unbiased, as in the previous cases. The corresponding sam-
ple coefficient of variation is shown in Fig. 5.18. The coefficient of variation of the
elasticity of the failure probability with respect to the external diameter Dr and the
total height of rubber Hr tends to 5% and 17%, respectively (number in parentheses
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Fig. 5.14 Upper figure: Probability corresponding to failure event F2 in terms of the normalized
threshold. Lower figure: Elasticity coefficient of failure probability PF2 in terms of the normalized
threshold. Average of five independent runs. System parameter Dc

Table 5.7 Sensitivity measures in terms of partial derivatives. (·%) sample coefficient of variation.
Failure event F3
Average value (c.o.v.)
∂PF3
∂μDr

−9.48 × 10−1 (16%)

∂PF3
∂μHr

3.67 × 10−1 (29%)

Table 5.8 Sensitivity measures in terms of elasticity coefficients. (·%) sample coefficient of vari-
ation. Failure event F3
Average value (c.o.v.)

eF3μDr
−16.75 (5%)

eF3μHr
9.06 (17%)
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Fig. 5.15 Sensitivity of the
failure probability PF3 with
respect to the mean value of
the external diameter of the
rubber bearings and the total
height of rubber in the
bearings: 20 independent
estimations

−14 −12 −10 −8 −6 −4 −2 0 2
−2

0

2

4

6

8

10

12

14 x 10−1

x 10−1

Fig. 5.16 Average of the
estimates generated by the
proposed approach from 20
simulation runs compared to
the reference estimate
(Monte Carlo). Failure event
F3. System parameters Dr
and Hr
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in Table5.8). These small values correspond to the actual variability of the failure
probability elasticity estimates.

The trend of the probability of failure and the sensitivity measure in terms of the
threshold is shown in Figs. 5.19 and 5.20, respectively. The results corresponding to
the mean value of the external diameter of the rubber bearings are shown in Fig. 5.19,
while Fig. 5.20 shows the results related to themean value of the total height of rubber
in the bearings. An average of 20 independent runs is considered in the figures, where
the threshold is normalized by the acceptable relative displacement response level
equal to 0.10m (see Sect. 5.8.3).

As in the previous failure events, the elasticity coefficients increase in magnitude
as the threshold level increases and, therefore, the failure probability becomes more
sensitive as the failure probability becomes smaller. The importance of the external
diameter of the rubber bearings on failure event F3, compared to the total height
of rubber, can also be seen from the probability curves of the previous figures. In
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Fig. 5.17 Sample average of
elasticity coefficients
corresponding to the
probability of failure event
F3 in terms of the number of
independent simulation runs
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Fig. 5.18 Sample
coefficient of variation of
elasticity coefficients
corresponding to the
probability of failure event
F3 in terms of the number of
independent simulation runs
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fact, the probability of failure considering the external diameter of the bearings as
uncertain is estimated as PF3 = 4.5 × 10−2, for a normalized threshold equal to one,
while a probability of failure PF3 = 6.5 × 10−3 is obtained when the total height of
rubber in the bearings is considered as uncertain. Note that the difference is almost
one order of magnitude.

In summary, the previous results corresponding to the different failure events
represent valuable and practical information about the global performance of the
bridge model.
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Fig. 5.19 Upper figure:
Probability of failure event
F3 in terms of the
normalized threshold. Lower
figure: Elasticity coefficient
of failure probability PF3 in
terms of the normalized
threshold. Average of five
independent runs. System
parameter Dr
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5.8.8 Computational Cost

The number of finite element runs required during the reliability sensitivity analysis
mainly depends on the number of simulations needed by the proposed approach.
Such a number is related to the number of levels or stages carried out by subset
simulation. Thus, the computational effort for assembling the finite element model
and obtaining its nonlinear dynamic response for a given set of system parameters is
the fundamental factor for comparison purposes. In this regard, the proposed model
reduction technique is quite effective. In fact, the execution time for assembling the
reduced-ordermodel represents 0.03%of the time required for the original unreduced
finite element model. Overall, the use of the reduced-order model for estimating the
reliability sensitivity measures results in a drastic reduction of the computational
effort of almost two orders of magnitude. In other words, the ratio of the execution
time for obtaining the reliability sensitivity measures by using the full finite element
model and the execution time for obtaining the reliability sensitivity measures by
using the reduced-ordermodel is about 90 in this case. Thus, a significant reduction in
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Fig. 5.20 Upper figure:
Probability of failure event
F3 in terms of the
normalized threshold. Lower
figure: Elasticity coefficient
of failure probability PF3 in
terms of the normalized
threshold. Average of five
independent runs. System
parameter Hr
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computational effort is achievedwithout compromising the accuracy of the reliability
sensitivity estimates.
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Chapter 6
Reliability-Based Design Optimization

Abstract The solution of reliability-based design optimization problems by using
reduced-order models is considered in this chapter. Specifically, problems involving
high-dimensional stochastic dynamical systems are analyzed. The design process is
formulated in terms of a constrained nonlinear optimization problem, which is solved
by a class of interior point algorithms based on feasible directions. Search directions
are estimated in an efficient manner as a by-product of reliability analyses. The
design process generates a sequence of steadily-improved feasible designs. Three
numerical examples are presented to evaluate the performance of the interior point
algorithm and the effectiveness of reduced-order models in the context of complex
reliability-based optimization problems. High speedup values can be obtained for
the design process without changing the accuracy of the final designs.

6.1 Motivation

Structural optimization by means of deterministic mathematical programming tech-
niques has been widely accepted as a viable tool for engineering design [2, 17].
However, in many structural engineering applications response predictions are based
on models whose parameters are uncertain. This is due to a lack of information about
the value of system parameters either external to the structure, such as environmen-
tal loads, or internal, such as system behavior. Although traditional approaches have
been used successfully in many practical applications, a proper design procedure
must explicitly consider the effects of uncertainties as they may cause significant
changes in the global performance of final designs [12, 15, 31]. Under uncertain
conditions, probabilistic approaches such as reliability-based formulations provide a
realistic and rational framework for structural optimization,which explicitly accounts
for the uncertainties [13, 28, 32, 41]. In this chapter, a reliability-based formulation
characterized in terms of the minimization of an objective function subject to multi-
ple design requirements, including standard deterministic constraints and reliability
constraints, is considered.
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6.2 Optimization Problem Formulation

Areliability-based design optimization problemcan be characterized as a constrained
nonlinear optimization problem of the form

Minx c(x)

s.t. gi (x) ≤ 0 i = 1, . . . , nc
si (x) ≤ 0 i = 1, . . . , n f

(6.1)

where x(xi , i = 1, . . . , nd) is the vector of deterministic design variables, c(x) is the
objective function, gi (x) ≤ 0, i = 1, . . . , nc, are standard constraints, and si (x) ≤
0 , i = 1, . . . , n f , are reliability constraints. The side constraints are defined as

x ∈ X , xi ∈ Xi = {xi |xli ≤ xi ≤ xui } , i = 1, . . . , nd (6.2)

where xli and x
u
i are the lower and upper limits of the design variable xi , respectively.

It is assumed that the objective and constraint functions are smooth and differen-
tiable functions of the design variables. The objective function c can be defined in
terms of initial, construction, repair or downtime costs, structural weight, structural
performance, or general cost functions. Standard constraints are related to general
design requirements such as geometric conditions, material cost components, avail-
ability of materials, etc. Finally, reliability constraints are associated with design
specifications characterized by means of reliability measures. Reliability measures
given in terms of failure probabilities with respect to specific failure criteria, such
as serviceability and partial or total collapse failure, are considered in the present
formulation. Then, the reliability constraint functions are written in terms of failure
probability functions as

si (x) = PFi (x) − P∗
Fi , i = 1, . . . , n f (6.3)

where PFi (x) is the probability function for the failure event Fi evaluated at the design
x, and P∗

Fi
is the target failure probability for the i th failure event. As indicated

in previous chapters, the probability that design conditions are satisfied within a
particular reference period T provides a useful reliability measure for structural
systems under stochastic excitation. Within this context, the probability of failure
evaluated at the design x is formally defined as

PFi (x) = P

[
max j=1,...,nrmaxt∈[0,T ]

| r ij (t, z, θ , x) |
r i

∗
j

> 1

]
(6.4)
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where r ij (t, z, θ , x), j = 1, . . . , nr , are the response functions associated with the
failure event Fi , r i

∗
j is the acceptable response level for the response r ij , P[·] is

the probability that the expression in parentheses is true, and all other terms have
been previously defined (see Chap.4). Equivalently, the failure probability function
evaluated at the design x can be written in terms of the multidimensional probability
integral

PFi (x) =
∫
di (z,θ ,x)>1

p(z)q(θ)dzdθ (6.5)

where di is the normalized demand function corresponding to failure event Fi , that
is,

di (z, θ , x) = max j=1,...,nrmaxt∈[0,T ]
| r ij (t, z, θ , x) |

r i
∗
j

(6.6)

The above formulation can be extended in a direct manner if the cost of partial or
total failure consequences is also included in the definition of the objective function.
In the samemanner, constraints related to statistics of structural responses (i.e., mean
value and/or higher-order statistical moments) can be included in the formulation as
well. Finally, design variables defined as distribution parameters of uncertain model
parameters can also be considered. Thus, the formulation is quite general in the sense
that different reliability-based optimization formulations can be considered, such as
life-cycle cost optimal design, robust design optimization, risk-based design opti-
mization, multi-objective or compromise optimization, etc. Finally, it is noted that
the multidimensional probability integral given in Eq. (6.5) involves a large number
of uncertain parameters (hundreds or thousands) in the context of dynamical systems
under stochastic excitation, as previously pointed out [3, 23, 27, 39]. Therefore, the
reliability estimation for a given design constitutes a high-dimensional problem,
which is extremely demanding from a numerical point of view [7, 11, 33].

6.3 Method of Solution

The solution of the reliability-based optimization problem defined in Eq. (6.1) can
be obtained in principle by a number of techniques such as standard deterministic
optimization schemes based on zero- or first-order algorithms [1, 2, 8, 9, 15–17, 21,
22, 26, 27, 35, 40, 41, 44, 49] or stochastic search algorithms [29, 42, 45–47, 51,
54]. The algorithms based on standard optimization techniques are usually combined
with approximation concepts in order to construct approximate representations of
the different reliability quantities involved in the problem as explicit functions of
the design variables. This strategy has been adopted since the numerical efforts
associated with the solution of reliability-based optimization problems is dominated

https://doi.org/10.1007/978-3-030-12819-7_4
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by the reliability assessment step. On the other hand, stochastic search algorithms
are usually based on direct search schemes, where only the values of the functions
involved in the optimization problem are used directly as inputs to the optimization
algorithm.

The use of the above optimization approaches has been found useful in a num-
ber of structural optimization applications. However, the application of reliability-
based design optimization to stochastic dynamical systems involving medium/large
finite element models remains to some extent limited [43, 44]. In fact, the solution
of reliability-based design problems of stochastic finite element models requires a
large number of analyses to be performed during the design process. These anal-
yses correspond to finite element re-analyses over the design space (required by
the optimizer) and system responses over the uncertain parameter space (required by
the simulation technique for reliability estimation). Consequently, the computational
demands depend highly on the number of finite element analyses and the time taken
for performing an individual analysis. Thus, the computational demands in solving
reliability-based design problems may be large or even excessive. In addition, most
of the proposed methodologies for solving this class of problems do not possess
proven convergence properties.

To deal with the previous difficulties, an interior point scheme based on feasible
directions combined with reduced-order models is selected for solving the aforemen-
tioned optimization problem.

6.4 Interior Point Algorithm

A class of feasible direction algorithms based on the solution of the Karush–Kuhn–
Tucker (KKT) first-order optimality conditions is considered for the solution of the
optimization problem given in Eq. (6.1) [18, 30, 34]. At each iteration, the search
direction is a descent feasible direction of the objective function. A one-dimensional
line search is then carried out in order to obtain a new feasible design better than the
previous one. The process continues until convergence is achieved. By construction,
the method generates a sequence of steadily-improved feasible designs. This class of
algorithms has proved to be quite effective in deterministic optimization problems
[4, 18]. In fact, a large number of test problems [20] have been solved very efficiently
where the number of iterations remains comparable when the size of the problem is
increased. Additionally, the above scheme has also been useful for solving a certain
class of stochastic optimization problems [24].

6.4.1 Search Direction

The KKT first-order optimality conditions corresponding to the inequality con-
strained optimization problem (6.1) can be expressed as [34]
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∇c(x) + ∇g(x)λg + ∇s(x)λs = 0

G(x)λg = 0 , S(x)λs = 0

gi (x) ≤ 0 , i = 1, . . . , nc , si (x) ≤ 0 , i = 1, . . . , n f

λg ≥ 0 , λs ≥ 0 (6.7)

where λg ∈ Rnc and λs ∈ Rn f are the vectors of dual variables, ∇g(x) ∈ Rnd×nc

and ∇s(x) ∈ Rnd×n f are the matrices of derivatives of the standard and reliability
constraint functions, respectively, given by

∇g(x) = [∇g1(x),∇g2(x), . . . ,∇gnc(x)]
∇s(x) = [∇s1(x),∇s2(x), . . . ,∇sn f (x))] (6.8)

and G(x) and S(x) are diagonal matrices such that Gii (x) = gi (x), i = 1, . . . , nc,
and Sii (x) = si (x), i = 1, . . . , n f . Under certain regularity conditions, theKKT con-
ditions are necessary for optimality [5, 30]. In order to solve the nonlinear system
of equations (6.7) for (x,λg,λs), a Newton-like iteration is considered [6, 36]. The
iteration is written as⎡

⎣Bk ∇g(xk) ∇s(xk)
Λk

g∇g(xk)T G(xk) 0
Λk

s∇s(xk)T 0 S(xk)

⎤
⎦

⎧⎨
⎩
vk1
λk+1
g

λk+1
s

⎫⎬
⎭ = −

⎧⎨
⎩

∇c(xk)
0
0

⎫⎬
⎭ k = 0, 1, 2, . . .

(6.9)
where (xk,λk

g,λ
k
s ) is the starting point at the kth iteration, vk1 is a direction in the

design space, Λk
g and Λk

s are diagonal matrices with Λk
gii = λk

gi , i = 1, . . . , nc, and

Λk
sii = λk

si , i = 1, . . . , n f , and Bk is a symmetric matrix that represents an approx-
imation of the Hessian matrix of the Lagrangian function associated with the con-
strained nonlinear optimization problem. Depending on the choice of Bk , the system
of equations (6.9) may represent a second-order, a quasi-Newton, or a first-order
iteration. This matrix is updated during the iterations by employing a BFGS-type
updating rule [30, 37]. From Eq. (6.9), it can be proved that the vector vk1 is a descent
direction of the objective function c(x) [18, 24]. However, this direction is not neces-
sarily feasible since it is tangent to the active constraints and, therefore, is not useful
as a search direction in the context of interior point algorithms. In order to obtain a
feasible direction, an auxiliary linear system is considered, namely

⎡
⎣Bk ∇g(xk) ∇s(xk)

Λk
g∇g(xk)T G(xk) 0

Λk
s∇s(xk)T 0 S(xk)

⎤
⎦

⎧⎪⎨
⎪⎩
vk2
λ̄
k
g

λ̄
k
s

⎫⎪⎬
⎪⎭ = −

⎧⎨
⎩
0
λk
g

λk
s

⎫⎬
⎭ k = 0, 1, 2, . . . (6.10)

wherevk2 is an auxiliary direction that points to the interior of the feasible domain [18],

and λ̄
k
g and λ̄

k
s are auxiliary dual variables. Based on the solution of equations (6.9)

and (6.10), a descent feasible direction vk can be defined as vk = vk1 + ρkvk2, whereρk
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Fig. 6.1 Search direction
finding problem concept

is a positive number given by ρk = (α − 1)vk1
T∇c(xk)/(vk2

T∇c(xk)), with α ∈ (0, 1)
[18, 24]. The search direction vk is then obtained by solving two linear systems with
the same coefficient matrix (Eqs. (6.9) and (6.10)). Thus, the factorization phase
for solving the primal-dual systems is done once per iteration only. The reader is
referred to [18, 24, 30, 37] for a detailed numerical implementation of the search
direction-finding problem.

6.4.2 Descent Feasible Direction Concept

For illustration purposes, Fig. 6.1 shows the concept of the search direction-finding
problem for an optimization problemwith two design variables and one constraint. At
xk , the descent direction vk1 is tangent to the active constraint. As previously pointed
out, it can be shown that the direction vk2 points to the interior of the feasible domain,
improving the feasibility of the search direction vk = vk1 + ρkvk2. It can be seen that
the rate of descent of the objective function c along vk is smaller than along vk1. This
is the cost that the algorithm imposes for obtaining a feasible descent direction.

Once the search direction has been established, a new point is determined by a
line search strategy along vk with a satisfactory decrease of the objective function.
Such a strategy is discussed in the following section.

6.4.3 Line Search

A search scheme based on Armijo’s andWolfe’s criteria for unconstrained optimiza-
tion is considered in the present formulation [19]. Such criteria require the evaluation
of standard and reliability constraint functions at a number of points along the search
direction. As indicated before, the evaluation of the reliability constraint functions
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is in general quite involved. Then, an inexact line-search procedure, where approx-
imate failure probability functions are used, is implemented. The approximation of
the failure probability function PFi in terms of the design variables along the search
direction v is taken as [15, 25]

PFi (x + τv) ≈ P̄Fi (τ ) = exp
[
αi0 + αi1τ + αi2τ

2
]
, τ ≥ 0 (6.11)

where the coefficients αi j , j = 0, 1, 2 are computed by solving a least squares prob-
lem that involves the estimates of the failure probability PFi (x) and its directional
derivative along v, that is, ∇PT

Fi
(x)v, at np different points defined in terms of the

coefficients τl , l = 1, . . . , np, where the first point corresponds to the current design
x, i.e. τ1 = 0 [24]. With the information on probabilities and directional sensitivities,
the coefficients αi j , l = 0, 1, 2, are determined by minimizing the residual

J (αi ) =
∑np

l=1

[
pFi (τl) − (

αi0 + αi1τl + αi2τ
2
l

)]2[
maxl=1,...,np

(
pFi (τl)

) − minl=1,...,np

(
pFi (τl)

)]2
+ 4

∑np

l=1

[
p′
Fi

(τl) − (αl1 + 2αi2τl)
]2

[|maxl=1,...,np

(
p′
Fi

(τl)
)| + |minl=1,...,np

(
p′
Fi

(τl)
)|]2 (6.12)

where αi =< αi0, αi1, αi2 >T , pFi (·) is equal to Ln(PFi (·)), and p′
Fi

(·) denotes the
derivative of pFi (·). This approximation strategy corresponds to a particular case
of a general approach proposed in [50] for constructing multidimensional response
surfaces using information on both function values and sensitivities. Once the failure
probability functions have been approximated, the implementation of Armijo’s and
Wolfe’s criteria to determine whether a step length is adequate or not can be carried
out in an efficient manner [24].

The above strategy for approximating the failure probability functions along the
search directions has proved to be adequate for coping with the variability of the
reliability estimates computed during the optimization process. As information on
failure probabilities and directional sensitivities, collected at several points, is used
simultaneously, the resulting approximation has been found of sufficient accuracy
for a number of applications, including the numerical examples presented in this
chapter. A detailed implementation of the proposed inexact line-search procedure,
including the implementation of Armijo’s and Wolfe’s criteria and the selection of
the different points along the search direction v, can be found in [18, 24].

6.5 Gradient Estimation

The determination of the search direction (see Eqs. (6.9) and (6.10)) requires the
gradient of the functions associated with the optimization problem with respect to
the design variables. In the framework of this formulation, it is assumed that the
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gradient of the functions related to the objective and standard constraint functions is
readily available, either analytically or numerically. Contrarily, the estimation of the
gradient of failure probability functions is not direct. In what follows, an approach
to estimate the required gradients is presented.

6.5.1 Approximate Gradient of Failure Probability Function

By definition, the gradient of the i th failure probability function at the design xk can
be estimated by means of the limit

∂PFi (x)
∂xl

⎪⎪⎪⎪⎪⎪⎪
x=xk

= lim
Δxl→0

PFi (x
k + i(l)Δxl) − PFi (x

k)

Δxl
,

l = 1, . . . , nd

(6.13)

where i(l) is a vector of length nd with all entries equal to zero except for the lth
entry, which is equal to one. The calculation of this limit is a challenging task,
as failure probabilities must be evaluated using simulation techniques. In addition,
failure probability functions are in general non-smooth in terms of design variables
due to the variability of the reliability estimates. Even though some approaches have
been proposed for evaluating the gradient of failure probability functions for some
particular cases [41], a more general approach is considered here [49]. Note that
the reliability sensitivity analysis approach introduced in Chap.5 is not applicable
within the scope of this formulation, as the focus is on sensitivity with respect to
deterministic design variables and not on probability distribution parameters.

The idea of the approach is to generate approximations of the failure probability
functions with respect to the design variables. In other words, non-smooth failure
probability functions are approximated by differentiable representations, which are
the quantities used for computing the gradients [22, 48, 49]. Specifically, for estimat-
ing the limit in Eq. (6.13), two approximate representations of different quantities
are introduced.

The first of these approximations involves the performance function κi , which is
given in terms of the normalized demand function as κi (z, θ , x) = 1 − di (z, θ , x). If
xk is the current design, the performance function κi is approximated in the vicinity
of xk as

κ̄i (z, θ , x) = κi (z, θ , xk) + δi
TΔx (6.14)

where x = xk + Δx, and δi is a set of coefficients. The determination of such coef-
ficients is discussed in the next section.

Next, the failure probability function is expressed in terms of a threshold d∗
i of

the normalized demand function in the vicinity of one as

https://doi.org/10.1007/978-3-030-12819-7_5


6.5 Gradient Estimation 151

P
[
di (z, θ , x) > d∗

i

] ≈ eψ0+ψ1(d∗
i −1), (6.15)

whereψ0 andψ1 are real constants and d∗
i ∈ [1 − ε, 1 + ε], being ε a small number.

By replacing the approximations introduced in Eqs. (6.14) and (6.15) in (6.13), it
can be shown that the limit associated with the gradient of the probability function
can be approximated by [48]

∂PFi (x)
∂xl

⎪⎪⎪⎪⎪⎪⎪
x=xk

≈ ψ1δil PFi (x
k), l = 1, . . . , nd (6.16)

where δil is the lth element of the vector δi . It is noted that the information gener-
ated by subset simulation allows to estimate the failure probability PFi (x

k) and the
coefficient ψ1 [22]. It should be noted that the previous approach can also be used
for estimating the directional derivative of failure probability functions. Actually, the
derivative along a direction v of the failure probability function PFi , at the design x

k ,
can be estimated as

∇vPFi (x
k) = ∇PFi (x)

T v
⎪⎪⎪⎪x=xk ≈ ψ1δ

T
i v PFi (x

k) (6.17)

6.5.2 Coefficient Estimation

The estimation of the coefficients δi , in Eq. (6.14), is carried out by the following
two steps.

First, for samples {(z j , θ j ), j = 1, . . . , M} near the limit state surface, that is,
κi (z j , θ j , x) ≈ 0, or in terms of the normalized demand function di (z j , θ j , x) ≈ 1,
the performance function is evaluated at a number of points in the neighborhood of
xk . These points are generated as

xkp − xk = ξ p

‖ ξ p ‖ R , p = 1, . . . , N = Q × M (6.18)

where the components of the vector ξ p are independent, identically distributed
standard Gaussian random variables, N and Q positive integers and R is a user-
defined small positive number. This number defines the radius of the hypersphere
ξ p/‖ ξ p ‖R, centered at the current design xk .

Second, the coefficients δi of the approximation (6.14) are computed by least
squares. To this end, the following set of equations is generated

κi (z j , θ j , xkp) = κi (z j , θ j , xk) + δi
T ξ p

‖ ξ p ‖ R

p = j + (q − 1) × M , q = 1, . . . , Q , j = 1, . . . , M

(6.19)
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Since the samples {(z j , θ j ), j = 1, . . . , M} are chosen near the limit state surface,
the approximate performance function κ̄i is representative of the behavior of the
actual limit state surface in the vicinity of the design xk . Numerical experience has
shown that the approximation introduced in Eq. (6.16) is adequate in the context of
the proposed optimization scheme [22, 49].

In summary, a single reliability analysis plus the evaluation of the demand func-
tion in the vicinity of a given design suffices for estimating the gradient of failure
probability functions. The reader is referred to [48] for issues such as the number of
points required for performing least squares (Q and M), and the generation of design
points in the vicinity of the current design (calibration of the radius R).

6.6 Final Remarks

The current optimization strategy is based on a local optimization algorithm. There-
fore, the optimization process can converge to a local optimum. This situation may
occur in structural optimization problems with, for example, non-convex objective
functions, or non-convex or disjoint design spaces. Thus, the solution of the opti-
mization process does not ensure the identification of the global optimum. However,
as previously pointed out, all iterations given by the algorithm strictly verify the
constraints and, therefore, the iterations can be stopped at any time still leading to
better feasible designs than the initial design. This property is particularly important
and useful when dealing with involved problems such as reliability-based optimiza-
tion of high-dimensional stochastic dynamical systems. In addition, the information
obtained during the design process gives a valuable insight into the complex interac-
tion of the design variables on the performance and reliability of complex systems.
Therefore, the usefulness of the proposed optimization strategy is evident. Attempts
to find the global optimum can be based on physical considerations of the prob-
lem or the use of global optimization algorithms based on, for example, state space
search, evolutionary algorithms, genetic algorithms, simulated annealing, random
optimization, etc. [14, 52]. In this last case, a large number of function evaluations
(i.e., reliability estimations) is expected to be required. In this regard, the exploitation
of all the parallelization features of the optimization scheme should be considered
as a remedy for the large computational effort associated with finding the global
optimum.

As indicated before, the solution of the reliability-based optimization problem
(6.1) is computationally very demanding due to the large number of dynamic analyses
required during the design process. This is due to the reliability estimation and
the iterative nature of the optimization strategy. Consequently, the computational
cost may become excessive when the computational time for performing a dynamic
analysis is significant. To cope with this difficulty, the design process is carried out
on reduced-order models as previously pointed out.
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6.7 Numerical Examples

Three numerical examples are presented in this section. The objective of the first
two examples is to demonstrate that although the proposed optimization scheme is
quite effective (in terms of the number of reliability evaluations to be performed),
the computational cost for solving this class of problems may be significant, even for
relatively simple structural models. On the other hand, the goal of the third example
problem is to evaluate the effectiveness and efficiency of using reduced-order models
in the reliability-based design optimization of an involved structural model.

6.7.1 Example 1: Model Description

One of the moment-resisting frames of a six-story building under ground motion is
considered as the first example problem. The isometric view of the six-story building
is shown in Fig. 6.2, while the details of the moment-resisting frame are shown in
Fig. 6.3. The frame has a total length of 6.0m and floor thicknesses ei , i = 1, . . . , 6.
The active masses are 5.0 × 104 kg for all floors. The floor height of 2.5m is constant
for all floors, leading to a total height of 15m. Young’s modulus E and the damping
ratios are treated as uncertain system parameters.

Young’s modulus is modeled by a log-normal random variable (θE ) with most
probable value θ̄E = 2.45 × 1010 N/m2 and coefficient of variation of 10%. For
simplicity, it is assumed that the modulus of elasticity is a homogeneous and
fully correlated random field. On the other hand, the damping ratios, which are
assumed to be identical, are modeled by independent log-normal random variables
(θζi , i = 1, . . . , 6) with mean value θ̄ζ = 0.05 and coefficient of variation of 40%.
Due to the simplicity of the structural model, it is used directly during the design
process. In other words, a reduced-order model is not considered in this example.

The building is excited horizontally by a ground acceleration, which is modeled as
a nonstationary filteredwhite noise process. In particular, theClough–Penzienmodel,
which is based on a filtered white noise process, is considered [10]. According to
this model the ground acceleration is defined as

a(t) =< ω2
1g , 2ζ1gω1g ,−ω2

2g ,−2ζ2gω2g > a(t) (6.20)

where ω1g , ζ1g , ω2g and ζ2g are model parameters related to soil conditions [53], and
a(t) represents the state-space variables of the filter, which satisfies the first-order
differential equation

ȧ(t) = A a(t) + ag e(t) w(t) (6.21)

where the matrix A specifies the filter and it is given by
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Fig. 6.2 Isometric view of the six-story shear building model

A =

⎡
⎢⎢⎣

0 1 0 0
−ω2

1g −2ζ1gω1g 0 0
0 0 0 1

ω2
1g 2ζ1gω1g −ω2

2g −2ζ2gω2g

⎤
⎥⎥⎦ , (6.22)

the vector ag =< 0, 1, 0, 0 > relates the white noise process w(t) with the filter
excitation, and e(t) is an envelope function of time. The driven white noise process
w(t) is characterized by its autocorrelation function as E(w(t)w(t + τ)) = I δ(τ ),
where I denotes the white noise intensity and δ(τ ) the Dirac delta function. In prac-
tice, the white noise process is evaluated at discrete time steps and specified by a
set of independent, identically distributed Gaussian random variables. The above
representation of the random load allows describing a wide range of Gaussian pro-
cesses, including band-limited white noise processes, colored excitations, and non-
stationary excitations. The values ω1g = 15.0 rad/s, ζ1g = 0.6, ω2g = 1.0 rad/s,
ζ2g = 0.9, I = 1.26 × 10−1 m2/s3 and the envelope function equal to
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Fig. 6.3 Details of the
moment-resisting frame

e(t) = e−0.5t − e−t

maxt (e−0.5t − e−t )
, 0 < t < 10 s (6.23)

are used in this example. As previously pointed out, the white noise process is evalu-
ated at discrete time steps.The sampling interval is assumed tobeΔt = 0.01s, and the
duration of the excitation is T = 10 s. Then, the discrete-time white noise sequence
ω(t j ) = √

I/Δt z j , where z j , j = 1, . . . , 1001, are independent, identically dis-
tributed standardGaussian randomvariables, is considered in this case. Thus, the total
number of uncertain parameters involved in the problem is more than one thousand.
In fact, the random variable vectors z and θ are given by zT =< z1, z2, . . . , z1001 >

and θT =< θE , θζ1 , . . . , θζ6 >, respectively.
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6.7.2 Example 1: Design Problem

The initial construction cost represented by the total volume of the columns of the
moment-resisting frame is chosen as the objective function for the optimization
problem. The design variables comprise the column thicknesses of the different floors
(xi = ei ) of the moment-resisting frame. First, the column thicknesses are linked
into two design variables (xi , i = 1, 2). Design variable number one represents the
thickness of floors 1 to 3, while the second design variable controls the thickness
of floors 4 to 6. To control serviceability and minor damage, the design criteria are
defined in terms of the interstory drifts over all stories of the moment-resisting frame
and the relative displacement of the top floor with respect to the ground. The failure
events are defined as

Fi =
{
maxtk ,k=1,...,1001

|ri (tk, z, θ , x)|
r∗
i

> 1

}
, i = 1, . . . , 7 (6.24)

where ri (tk, z, θ , x) is the relative displacement between the (i − 1, i)th floors (i =
1, . . . , 6) evaluated at the design x, r7(tk, z, θ , x) is the relative displacement of the
roof with respect to the ground, and r∗

i , i = 1, . . . , 7, are the corresponding critical
thresholds. The threshold associated with the interstory drift failure events is equal
to 0.2% of the story height, while a 0.1% of the moment-resisting frame height
is considered for the threshold corresponding to the top floor displacement failure
event. The design problem is formulated as

Minx c(x)

s.t. PFi (x) ≤ 10−3 i = 1, . . . , 7

x2 ≤ x1
0.2m ≤ xi ≤ 0.8m i = 1, 2 (6.25)

where c(x1, x2) = 5.625(3.0x1 + 3.0x2) is the volumeof the columnsof themoment-
resisting frame. There are seven reliability constraints, one geometric constraint,
and two side constraints. For the dynamic analysis, it is assumed that the moment-
resisting frame remains linear throughout the duration of the excitation. It is noted
that the estimation of the probability of failure for a given design represents a high-
dimensional reliability problem. In fact, as previously indicated,more than a thousand
random variables are involved in the corresponding multidimensional probability
integrals.
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Fig. 6.4 Iteration history of the optimization process in terms of the objective function for different
initial designs. Example 1 (linked design variables)

6.7.3 Example 1: Results - Linked Design Variables Case

In terms of the numerical implementation, the optimization problem is solved using
an exterior sampling approximation [42]. That is, the same streamof randomnumbers
is used throughout all iterations in the optimization process. In this way, the relative
importance of failure probability estimation errors, when comparing similar designs
in the design space, can be reduced. The iteration history of the design process
in terms of the objective function is shown in Fig. 6.4 for different initial feasible
designs. The initial design A is set equal to xTA =< 0.7, 0.6 >, design B equal to
xTB =< 0.7, 0.45 >, design C equal to xTC =< 0.6, 0.45 >, designD equal to xTD =<

0.52, 0.47 >, and design E equal to xTE =< 0.6, 0.3 >, where the units are in meters.
It is seen that the process converges in few iterations for all cases. In fact, most of the
improvements of the objective function take place in the first optimization cycles.
The trajectory of the optimizer as well as some objective contours and iso-probability
curves are shown in Fig. 6.5.

It is observed that the iso-probability curves associated with the interstory drift of
the first floor (PF1 ) are almost independent of the column thicknesses of the upper
floors (x2). On the other hand, the iso-probability curves related to the interstory
drift of the fourth floor (PF4 ) are almost independent of the column thicknesses of
the lower floors (x1). Finally, the iso-probability curves associated with the roof
displacement (PF7 ) show a strong interaction between the column thicknesses of all
floors, as expected. These results give a valuable insight into the interaction and effect
of the design variables on the reliability of the moment-resisting frame. From the
optimization point of view, it is observed that the trajectory of the optimizer to the
optimum is quite direct for all cases. The geometric and side constraints are inactive
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Fig. 6.5 Trajectory of the optimizer, some objective contours (V (e1, e2) = constant) and some
iso-probability curves. Example 1 (linked design variables case)

at the final design. Among the reliability constraints, the one related to the relative
displacement of the top floor with respect to the ground is active at the final design.

6.7.4 Example 1: Results - Independent Design Variables
Case

Next, the column thicknesses of all floors of themoment-resisting frame are assumed
to be independent with side constraints 0.20 m ≤ xi ≤ 0.80 m, i = 1, . . . , 6, and
geometric constraints xi+1 ≤ xi , i = 1, . . . , 5. Then, the optimization problem has
seven reliability constraints and five standard (geometric) constraints. The itera-
tion history of the design process in terms of the objective function is shown in
Fig. 6.6 for five different initial feasible designs. These initial designs are defined as:
P1 = (0.70, 0.70, 0.70, 0.60, 0.60, 0.60), P2 = (0.65, 0.65, 0.60, 0.60, 0.55, 0.55),
P3 = (0.70, 0.65, 0.65, 0.50, 0.50, 0.40), P4 = (0.60, 0.60, 0.60, 0.45, 0.45, 0.45),
and P5 = (0.70, 0.60, 0.50, 0.45, 0.40, 0.35), where the units of the column thick-
nesses are in meters. It is seen that the design process converges in few iterations
for all cases. As previously pointed out, all the iterations verified the constraints. In
consequence, the iterations can be stopped at any time still leading to feasible designs
that are better than the initial estimate.

The corresponding final volume for different initial designs is given in Table 6.1.
For comparison, this table also shows the final design of the systemwith deterministic
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Fig. 6.6 Iteration history of the optimization process in terms of the objective function for different
initial designs. Example 1 (independent design variables case)

Table 6.1 Final volume for five different initial designs (Pi , i = 1, . . . , 5). Example 1 (independent
design variables case)

Initial design Final design

Uncertain model Deterministic model

Point Volume (m 3)

P1 10.93 8.66

P2 10.91 8.72

P3 10.75 8.74

P4 10.80 8.68

P5 10.77 8.71

structural parameters (deterministic model). In this case, Young’s modulus and the
damping ratios are equal to their most probable values. It is observed that the volume
of the moment-resisting frame at the final design of the system with uncertain struc-
tural parameters is greater than the corresponding volumeof themodelwith determin-
istic parameters, as expected. The volume of the uncertain model increases by more
than 20% with respect to the volume of the deterministic model. This result stresses
the fact that uncertainty in the structural parameters may cause important changes in
the performance and reliability of final designs. The small differences observed in the
final volumes for different initial designs are due to the use of approximate quantities
and the variability of the reliability and sensitivity estimates computed during the
optimization process. However, the differences are negligible from a practical point
of view.
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Table 6.2 Summary of numerical efforts required to solve Example 1 (independent design variables
case)

Type of
analysis

Number of analyses Simulations
per analysis
(on average)

Initial design

P1 P2 P3 P4 P5

Reliability
estimate

13 15 12 10 13 4,000

Sensitivity
estimate

13 15 12 10 13 1,200

6.7.5 Example 1: Numerical Effort

Information about the numerical effort involved in the solution of the optimization
problem is provided in Table6.2. The numerical effort is due to the estimation of the
reliability (by means of subset simulation) and its sensitivity during the optimization
process.

The table summarizes the numerical effort as follows. The first column indicates
the type of analysis performed, while the next five columns show the number of times
the aforementioned analysis was repeated throughout the optimization procedure for
different initial designs. Finally, the seventh column indicates the average number
of simulations required for performing one particular type of analysis. For example,
a total of 13 reliability analyses are required for solving the problem corresponding
to initial design P1; each of these analyses involves (on average) 4,000 simulations
(dynamic analyses). These results stress the fact that even though the optimization
scheme is quite effective (in terms of the number of reliability evaluations), the
computational cost for solving the problem may be important.

6.7.6 Example 2: Structural Model

A finite element model consisting of a nonlinear 52-story building under stochastic
earthquake excitation is analyzed in the second example. Two isometric views of the
structural system are shown in Fig. 6.7. The plan view and the dimensions of each
floor are shown in Fig. 6.8. The interstory height is 3.6m for all floors except the first
one, which has a height of 14m.

The building has a reinforced concrete core of shear walls and a reinforced con-
crete perimeter moment frame as shown in Fig. 6.8. The columns in the perimeter
have a circular cross section. Properties of the reinforced concrete have been assumed
as follows: Young’s modulus E = 2.45 × 1010 N/m2, Poisson’s ratio μ = 0.3, and
mass density ρ = 2,500kg/m3. For the dynamic analysis, it is assumed that each
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Fig. 6.7 Isometric views of the 52-story building model

Fig. 6.8 Floor plan of the 52-story building model
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floor may be represented as rigid within the plane when compared with the flexi-
bility of the other structural components. Then, the degrees of freedom of the finite
element model are linked to three degrees of freedom per floor (two translational
displacements and one rotational displacement) by using condensation techniques.
A 5% of critical damping for the modal damping ratios is introduced in the model.
Because of the relative simplicity of the model, the unreduced finite element model
is used directly during the optimization process.

The building is excited horizontally by a ground accelerationa(t) in the y direction
as shown in Fig. 6.8. The excitation is modeled as a nonstationary filtered white noise
process as in the previous examplewith filter parametersω1g = 15.0 rad/s, ξ1g = 0.6,
ω2g = 1.0 rad/s, ξ2g = 0.9, and white noise intensity I = 1.26 × 10−1 m2/s3. The
sampling interval is assumed to be Δt = 0.01s and the duration of the excitation is
T = 15s. Thus, the random variable vector z is given by zT =< z1, z2, . . . , z1501 >.

For seismic design purposes, the model is reinforced with nonlinear hysteretic
devices. On each floor, four devices are implemented as shown on the floor plan of the
structure (axes 4,7,8, and 11). These elements provide additional resistance against
relative displacements between floors. Each nonlinear device follows the interstory
restoring force law fN L(t) = ke(δu(t) − q1(t) + q2(t)), where ke denotes the initial
stiffness of the nonlinear device, δu(t) is the relative displacement between floors at
the position of the device in the y direction, and q1(t) and q2(t) denote the plastic
deformations of the device. The restoring force fN L(t) acts between adjacent floors
with the same orientation as the relative displacement δu(t). Using the auxiliary
variable v(t) = δu(t) − q1(t) + q2(t), the plastic elongations are specified by the
first-order nonlinear differential equations [38].

q̇i (t) = (−1)i+1δ̇u(t)H
(
(−1)i+1δ̇u(t)

)[
H

(
(−1)i+1v(t) − vy

) (−1)i+1v(t) − vy
vp − vy

H
(
vp − (−1)i+1v(t)

)
+ H

(
(−1)i+1v(t) − vp

)]
, i = 1, 2 (6.26)

where H(·) denotes the Heaviside step function, vy is a parameter specifying the
onset of yielding, and kevp is the maximum restoring force of the device. All devices
have initial stiffness ke = 2.8 × 1010 N/m, and model parameters vp = 0.006m and
vy = 0.0042m. From the previous characterization of the nonlinear devices, it is clear
that the vector of nonlinear restoring forces depends on the set of variables which
describes the state of all nonlinear components. A typical displacement-restoring
force curve of one of the hysteretic devices is shown in Fig. 6.9.

6.7.7 Example 2: Design Problem Formulation

The variables to be controlled are the thicknesses of the shear walls (tw) and the diam-
eters of the exterior columns (dc). The dimensions of these structural components at
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Fig. 6.9 Typical
displacement-restoring force
curve of the hysteretic
devices (shear panels)

each floor are linked to one intermediate optimization variable (x inter) as tw = x inter t̂w
and dc = x interd̂c, where t̂w and d̂c are the nominal values of the thickness of the shear
walls and the diameter of the exterior columns at each floor, respectively. The inter-
mediate parameters are grouped into six optimization variables. The definition of
these variables over the height of the building is given in Table6.3. The weight of
the resisting elements (shear walls and exterior columns) is chosen as the objective
function for the design problem. The reliability constraints are given in terms of the
interstory drifts and the roof displacement. The failure events associated with the
interstory displacements are given by

Fi = {
maxtk ,k=1,...,1501|δui (tk, xinter, z)| > δu∗

i

}
, i = 1, . . . , 52 (6.27)

where δui (tk, xinter, z) is the relative displacement between the (i − 1, i)th floors
evaluated at the intermediate design variable xinter, z is the vector of random variables
that describes the earthquake excitation, and δu∗

i is the critical threshold level equal
to 0.1% of the story height. On the other hand, the failure event related to the roof
displacement is given by

Fr = {
maxtk ,k=1,...,1501|u52(tk, xinter, z)| > u∗

52

}
(6.28)

where u52(tk, xinter, z) is the displacement of the roof with respect to the base, and u∗
52

is the critical threshold level equal to 0.1% of the building height. The target failure
probabilities are taken equal to 10−4 for all events. The reliability-based optimal
design problem is written in terms of the objective function c(xinter) = ∑6

i=1 x
inter
i as
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Table 6.3 Intermediate optimization variables and linking detail

Design elements (floors)

Intermediate optimization
variables

Initial floor Final floor

x inter1 1 8

x inter2 9 16

x inter3 17 24

x inter4 25 32

x inter5 33 42

x inter6 43 52

Minxinter c(xinter)

s.t. PFi (x
inter) ≤ 10−4 i = 1, . . . , 52

PFr (x
inter) ≤ 10−4

x interi > x interi+1 , i = 1, . . . , 5

x interi ≥ 0.20 , i = 1, . . . , 6 (6.29)

where reliability, geometric and side constraints have been considered. Note that
there are six optimization variables and 53 reliability constraints. The size of the
above optimization problem can be considered quite involved, even in the context
of deterministic optimization. As in the first application problem, the estimation of
the probability of failure for a given design represents a high-dimensional reliability
problem.

6.7.8 Example 2: Results

The final design obtained by the proposed scheme, which has been solved using an
exterior sampling approximation, is presented in Table 6.4. For comparison, the final
design of the model without the hysteretic devices (linear model) is also indicated.
It is seen that the dimensions of the structural components (shear walls and exterior
columns) at the final design of the linear model are greater than the corresponding
components of the nonlinear model. The nonlinear behavior of the hysteretic devices
has a positive impact on the overall performance of the system. In fact, the hysteresis
of the devices increases the energy dissipation reducing in this manner the response
of the structural system. The total weight of the linear model increases more than
15% with respect to the weight of the nonlinear model at the final design.

Figure 6.10 shows the iteration history of the optimization process in terms of the
objective function for three different initial points. It is observed that the optimization
process converges in about five iterations. The fast convergence implies that the
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Table 6.4 Final Design. Example problem 2

Optimization variable Initial point Final point

Linear model Nonlinear model

x inter1 1.10 1.06 0.93

x inter2 1.00 0.67 0.63

x inter3 0.80 0.56 0.42

x inter4 0.70 0.49 0.40

x inter5 0.60 0.45 0.38

x inter6 0.50 0.38 0.29

Resisting elements
total weight (kg)

3.65 × 107 2.85 × 107 2.45 × 107

Fig. 6.10 Iteration history of the optimization process in terms of the objective function. Initial
point P1 = (1.2, 1.0, 1.0, 1.0, 0.9, 0.7). Initial point P2 = (1.1, 1.0, 0.8, 0.7, 0.6, 0.5). Initial point
P3 = (1.1, 1.0, 1.0, 0.8, 0.8, 0.7)

optimization process takes few excursion probability and sensitivity estimations for
all cases. It is also seen that the different initial points lead to basically the same final
design in this case. Of course, the selection of a particular initial point may lead to
different final designs in the general case. In such cases, engineering criteria and the
background knowledge of the problem at hand should be applied in order to select
an appropriate initial design and assess the properties of the final design.

The results of the optimization process indicate that the active constraints at the
final design are the reliability constraints related to the events associated with the
relative displacement of the roof with respect to the ground (PFr ) and the interstory
drift of the first floor (PF1 ). Therefore, the relative displacement of the first floor
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Fig. 6.11 Iteration history of the optimization process in terms of the active reliability constraints.
Initial point P2 = (1.1, 1.0, 0.8, 0.7, 0.6, 0.5). PF : probability of failure event associated with the
roof displacement. PF1 : probability of failure event related to the interstory drift of the first floor.
Example problem 2

Table 6.5 Summary of numerical efforts required to solve Example 2

Type of analysis Number of analyses Simulations per
analysis (on average)

Initial point

P1 P2 P3

Reliability estimate 16 17 13 5,000

Sensitivity estimate 16 17 13 1,200

and the roof displacement with respect to the ground control the final design for
the building model under consideration. The corresponding iteration history of the
optimization process in terms of the active reliability constraints is shown in Fig. 6.11
for the initial design corresponding to initial point P2.

6.7.9 Example 2: Numerical Considerations

The numerical efforts associated with the solution of the optimization problem for
the different initial points are summarized in Table6.5. As in the previous example,
the first column of this table indicates the type of analysis performed, while the next
three columns show the number of times the aforementioned analysis was repeated
throughout the optimization procedure for different initial points. Finally, the fifth
column indicates the average number of simulations required for performing one
particular type of analysis. Once again, these results emphasize the fact that although
the optimization scheme is quite effective, the cost for solving the problem may be
substantial, especially for involved finite element models. Such a case is explored in
the next example.
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Fig. 6.12 Bridge structural model

6.7.10 Example 3: Reliability-Based Design Formulation

Thebridge structuralmodel shown inFig. 6.12 is considered as the third example. The
model has been borrowed from Sect. 5.8 of Chap.5. The corresponding description
of the nonlinear model as well as the characterization of the excitation can be found
in the aforementioned section. The ground acceleration is applied at 25◦ with respect
to the x-axis as shown in the figure. Material properties are assumed to be known
in the context of this example. Thus, the vector of uncertain parameters involved in
the problem is only related to the characterization of the ground acceleration, that is,
zT =< z1, z2, . . . , z3001 >.

The reliability-based design problem is defined in terms of the following con-
strained nonlinear optimization problem as

Minx c(x)

s.t. PFi (x) ≤ P∗
Fi , i = 1, 2

x ∈ X (6.30)

where x(xi , i = 1, . . . , 8), is the vector of design variables, c(x) is the objective
function, PFi (x), i = 1, 2, are the failure probability functions, and P∗

Fi
, i = 1, 2,

are the corresponding target failure probabilities, which are taken equal to P∗
Fi

=
10−4, i = 1, 2. The design variables include the diameter of the piers circular cross
section, and the external diameter and total height of rubber in the bearings. Design

https://doi.org/10.1007/978-3-030-12819-7_5
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variables x1, x2, x3 and x4 are related to the diameter of the circular cross section of
the four piers, design variables x5 and x7 are associated with the external diameter of
the bearings located at the abutments, and design variables x6 and x8 are related to
the total height of rubber of the bearings located at the abutments. The relationship
between the design variables and the actual structural parameters is given by Dpi =
xi , i = 1, 2, 3, 4, DLr = x5, HLr = x6, DRr = x7, and HRr = x8, where Dpi , i =
1, 2, 3, 4, are the diameters of the circular cross section of the piers, DLr and DRr

are the external diameters of the bearings located at the left and right abutments,
respectively, and HLr and HRr are the total heights of rubber of the bearings located
at the left and right abutments, respectively. The side constraints for the design
variables are given by 1.2 ≤ xi ≤ 2.0, i = 1, 2, 3, 4; 0.6 ≤ xi ≤ 1.0, i = 5, 7, and
0.15 ≤ xi ≤ 0.25, i = 6, 8. The objective function c(x) represents a cost function,
which is assumed to be proportional to the total volume of rubber in the bearings and
to the total volume of the piers.

Failure, that is, unacceptable performance, is defined in terms of the relative
displacement of the rubber bearings and the relative displacement of piers. Thus, the
corresponding failure probability functions are given by

PF1(x) = P
[
maxt∈[0,T ]

| ubmax(t, z, x) |
0.10m

> 1
]

(6.31)

PF2(x) = P
[
maxt∈[0,T ]

| δmax(t, z, x) |
0.07m

> 1
]

(6.32)

where ubmax(t, z, x) represents the relative displacement between the deck girder and
the base of the four rubber bearings located at the abutments (in the x or y direction),
and δmax(t, z, x) denotes the relative displacement between the top of the four piers
and their connection with the pile foundation (in the x or y direction). Note that
the estimation of the failure probability functions for a given design x represents a
high-dimensional reliability problem, as in the previous example problem.

6.7.11 Example 3: Substructures Characterization

Considering the previous design formulation, the bridge structure is divided into a
number of substructures. The division is guided by a parametrization scheme so that
the substructure matrices for each one of the introduced substructures depend at most
on only one of the design variables. In particular, the structural model is subdivided
into six linear substructures and two nonlinear substructures, as shown in Fig. 6.13.
Substructure S1 is composed of the pile elements; substructures S2, S3, S4 and S5
include the different pier elements; and substructure S6 corresponds to the deckgirder.
Finally, substructures S7 and S8 are the nonlinear substructures comprising the rubber
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Fig. 6.13 Substructures of the finite element model used for design purposes

bearings located at the left and right abutment, respectively. With this subdivision,
substructures S1 and S6 do not depend on the design variables, while substructures
S2, S3, S4 and S5 depend on the design variables x1, x2, x3, and x4, respectively, and
design variables x5, x6, x7, and x8 are associated with the nonlinear substructures
S7 and S8. The nonlinear parametrization functions of the design variables x j , j =
1, 2, 3, 4, corresponding to the linear substructures, can be defined as h j (x j ) = x4j
(variable associated with the inertia term in the stiffness matrices), and g j (x j ) = x2j
(variable associated with the area term in the mass matrices), respectively. Note that
the parametrization of the reduced-order matrices is considered with respect to the
design variables, instead of uncertain model parameters, in this example problem.

Validation calculations similar to the ones performed in Sect. 5.8.4 indicate that
retaining ten generalized coordinates for substructure S1, two for each one of sub-
structures S2, S3, S4 and S5, and ten for substructure S6 is adequate in the context
of this application. In fact, the absolute value of the difference between the modal
frequencies using the full nominal-reference finite element model and the modal fre-
quencies computed using the reduced-ordermodel based on dominant fixed-interface
normal modes is very small. In addition, the corresponding matrix of MAC-values
between the first six modal vectors computed from the unreduced finite element
model and from the reduced-order model shows that the values at the diagonal terms
are close to one and almost zero at the off-diagonal terms. Thus, both models are
consistent.

In summary, a total of 28 generalized coordinates, corresponding to the dominant
fixed-interface normalmodes of the linear substructures, out of 10,008 internal DOFs
of the original model, are retained for the six linear substructures. On the other hand,
the number of interface degrees of freedom is equal to 60 in this case. With this
reduction, the total number of generalized coordinates of the reduced-order model
represents a 99% reduction with respect to the unreduced model. Thus, a drastic

https://doi.org/10.1007/978-3-030-12819-7_5
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reduction in the number of generalized coordinates is obtained with respect to the
number of degrees of freedom of the original unreduced finite element model. Based
on the previous analysis, it is concluded that the reduced-order model and the full
unreducedmodel are equivalent in the context of this application problem. Therefore,
the design process of the bridge structural model is carried out by using the reduced-
order model previously defined. It is emphasized that such a reduced-order model
is based on dominant fixed-interface normal modes only. As indicated before, the
calibration of the reduced-order model can be done offline, before the optimization
takes place.

6.7.12 Example 3: Design Scenario No. 1

Taking advantage of the reduced-order model, a couple of design scenarios are inves-
tigated in detail to get insight into the reliability and general performance of the
bridge structure under consideration. First, the design of the rubber bearings (isola-
tors) located on the abutments is considered. In particular, the effect of the external
diameter and the total height of rubber in the bearings on the design of such elements
are studied. To this end, the design variables x1, x2, x3, and x4, which control the
diameters of the circular cross sections of the piers, are kept constant and equal to
their upper bound values xi = 2.0, i = 1, 2, 3, 4. This is done in order to isolate the
effect of the design variables associated with the rubber bearings. Moreover, these
variables are linked into two design variables, one related to the external diameter
(Dr = x5 = x7) and the other related to the total height of rubber (Hr = x6 = x8). In
other words, all rubber bearings are assumed to have the same geometrical properties.
With the previous setting, Fig. 6.14 shows some iso-probability curves and objective
function contours as well as the final design.

The objective contours are normalized by a cost factor and the iso-probability
curves are constructed by using a set of failure estimates distributed over the design
space. These curves have been smoothed for presentation purposes. It is important
to note that these curves were constructed by using the reduced-order model in a
reasonable computational time. The construction of these curves from the full finite
element model is not practical due to the excessive computational time required to
estimate the failure probabilities over the design space. The figure indicates that the
probability of failure event F1 decreases as the external diameter of the isolators
increases. This is reasonable since the isolation system becomes stiffer with rubber
bearings having larger external diameters and thus the relative displacements between
the deck girder and the base of the rubber bearings at each abutment, which control
the failure event F1, are expected to decrease. On the contrary, the failure probability
increases as the height of rubber increases. In this case, the isolation system becomes
more flexible and, therefore, the relative displacements between the deck girder and
the base of the rubber bearings increase. A similar effect is observed with respect to
the failure event related to the relative displacement between the top of the piers and
their connection with the pile foundation (F2). That is, an increase of the external
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Fig. 6.14 Design space in terms of the design variables associated with the rubber bearings
(Dr , Hr ). PF1 : iso-probability curves of failure event F1. PF2 : iso-probability curves of failure
event F2. C : normalized objective function contours

diameter of the isolators decreases the probability of failure event F2, since the overall
system becomes stiffer. On the other hand, an increase of the total height of rubber
in the isolators increases the probability of failure event F2, since in this case the
structural system becomes more flexible. The corresponding final design is given
by Dr = 0.75m and Hr = 0.15m. The side constraint associated with the height of
rubber and the reliability constraint related to the maximum relative displacement
between the deck girder and the base of the rubber bearings at each abutment are
active in the final design. Contrarily, the reliability constraint associated with the
maximum relative displacement between the top of the piers and their connection
with the pile foundation is inactive.

6.7.13 Example 3: Design Scenario No. 2

The interaction between bridge structural components and rubber bearing parameters
is considered in this scenario. Specifically, the design space in terms of the diameter
of the circular cross sections of the piers and the external diameter of the rubber
bearings is constructed. For illustration purposes, the design variables associated
with the diameters of the circular cross sections of the piers are linked to one design
variable Dp = x1 = x2 = x3 = x4, while the design variables x5 and x7 associated
with the external diameters of the rubber bearings are linked to one design variable
Dr = x5 = x7. Design variables related to the total heights of rubber in the bearings
are kept constant and equal to their lower bound values, namely, x6 = x8 = 0.15.
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Fig. 6.15 Design space in terms of the diameter of the circular cross sections of the piers (Dp) and
the external diameter of the rubber bearings (Dr ). PF1 : iso-probability curves of failure event F1.
PF2 : iso-probability curves of failure event F2. C : normalized objective function contours

Figure6.15 shows some objective contours and iso-probability curves as well as
the final design. The figure demonstrates that the probability of failure event F2

decreases as the diameter of the circular cross sections of the piers increases. In this
case, the piers become stiffer and, therefore, the relative displacements between the
top of the piers and their connection with the piles foundations decrease. Moreover,
the failure event F2 is controlled by the diameter of the circular cross sections of the
piers for values of this quantity close to its lower bound, that is, Dp ≤ 1.45m. In this
range of values, the iso-probability curves are almost perpendicular. So the effect
of the external diameter of the isolator is negligible. In other words, the flexibility
of the pier elements controls the relative displacements between the top of the piers
and their connection with the piles foundations, as expected. Contrarily, for values of
this quantity close to its upper bound, Dp ≥ 1.70m, a strong interaction between the
diameter of the circular cross sections of the piers and the external diameter of the
rubber bearings is observed. Thus, for rigid pier elements the relative displacements
between the top of the piers and their connectionwith the pile foundation is controlled
byboth design variables, that is, Dp and Dr . In fact, the iso-probability curves indicate
that, for example, an increase in the diameter of the circular cross sections of the
piers is compensated by a decrease in the external diameter of the bearings. In other
words, for such combinations of the design variables Dp and Dr the probability of
failure remains invariant. On the other hand, the failure event F1 is mainly controlled
by the external diameter of the rubber bearings. Actually, the iso-probability curves
associated with failure event F1 show a relatively weak interaction between the
diameter of the circular cross sections of the piers and the external diameter of the
rubber bearings. The probability of failure of this event decreases as the external
diameter of the isolators increases, which is the same behavior observed in Fig. 6.14.
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The final design for this scenario is given by Dp = 1.64m and Dr = 0.67m (point
B in the figure) where both reliability constraints are active.

The results shown in Fig. 6.15 can also be used to demonstrate the benefits of
designing the isolators and the bridge structure simultaneously. For example, if the
design process involves only the isolators and the diameter of the circular cross
sections of the piers are kept constant at their upper bound values (Dp = 2.0m), the
optimal design is given by Dr = 0.75m (point A in the figure) with a corresponding
normalized cost equal to C = 1.4. On the other hand, if the diameter of the circular
cross sections of the piers is also considered as a design variable, the final design
moves from point A to point B, with a decrease of the normalized cost by about 30%.
Thus, taking into account the interaction between the design variables associatedwith
the bridge structure and the isolators during the design process is quite beneficial in
terms of the cost of the final design.

From the optimization point of view, the corresponding design process converges
in less than eight iterations starting from the initial feasible design given by Dp =
2.0m, Dr = 1.0m and Hr = 0.25m. Of course, the design process can be carried out
by considering all design variables as independent during the design process as well.
In this case, the corresponding iteration history of the optimization process in terms
of the objective function indicates that the cost decreases by about 5%with respect to
the final design shown in Fig. 6.15. Finally, it is noted that the above observations and
remarks give a valuable insight into the complex interaction of the design variables
on the performance and reliability of the bridge structural system.

6.7.14 Example 3: Computational Cost

Table6.6 shows the online computational costs involved in the assemblage of the
finite element model and the computation of the dynamic response for a given design
considering the full finite element model and the reduced-order model. These oper-
ations and procedures are performed at each iteration of the design process. The last
column of the table indicates the speedup (rounded to the nearest integer) achieved
by the reduced-order model for the different tasks. As previously pointed out, the
speedup is the ratio of the execution time by using the unreduced model and the
execution time by using the reduced-order model. It is seen that the difference is
quite significant. In fact, the overall speedup for the online calculations is more than
90 in this case.

The offline computational cost, that is, the cost of calculations related to the defini-
tion of the reduced-order model and the characterization of the transformationmatrix
that maps the generalized coordinates to the physical coordinates of the unreduced
model, which are performed once during the design process, corresponds to approx-
imately two full analyses (finite element model generation and dynamic response) of
the unreduced model in this case. Considering this cost an overall speedup value of
about 10 is obtained by the proposed methodology in solving this particular design
problem. However, once the reduced-order model has been defined, several design
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Table 6.6 Online computational cost of different tasks for a given design

Full finite element model Reduced-order model

Tasks Time (s) Time (s) Speedup

Finite element
generation and
dynamic response

55.34 0.58 95

scenarios, that is, in terms of different objective functions and reliability constraints,
can be explored and solved efficiently. So high speedup values can be obtained for the
design process as a whole. As previously pointed out, this reduction in computational
effort is achieved without compromising the accuracy of the final design.
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Part III
Application to Identification Problems



Chapter 7
Bayesian Finite Element Model Updating

Abstract In this chapter, the implementation of the reduced-order models within
Bayesian finite element model updating is explored. The Bayesian framework for
model parameter estimation, model selection, and robust predictions of output quan-
tities of interest is first presented. Bayesian asymptotic approximations and sampling
algorithms are then outlined. The framework is implemented for updating linear and
nonlinear finite element models in structural dynamics using vibration measure-
ments consisting of either identified modal frequencies or measured response time
histories. For asymptotic approximations based on modal properties, the formula-
tion for the posterior distribution is presented with respect to the modal properties of
the reduced-order model. In addition, analytical expressions for the required gradi-
ents with respect to the model parameters are provided using adjoint methods. Two
applications demonstrate that drastic reductions in computational demands can be
achieved without compromising the accuracy of the model updating results. In the
first application, a high-fidelity linear finite element model of a full-scale bridge with
hundreds of thousands of degrees-of-freedom (DOFs) is updated using experimen-
tally identified modal properties. In the second application, a nonlinear model of a
base-isolated building is updated using acceleration response time histories.

7.1 Motivation

Probability distributions are often used to quantify uncertainties, and probability cal-
culus is employed to propagate these uncertainties through the computational model
of a structure in order to make prior robust predictions of output quantities of interest
(QoI). To improve the mathematical models and the probability models of uncertain-
ties of both the system and loads, one can exploit the valuable information contained
inmeasured data collected from system component tests or system operation through
monitoring. The resulting data-driven updated model, when used for simulations,
yields updated or posterior robust predictions, constituting improved and more reli-
able estimates of the system performance. However, the computational science tools
for handling uncertainties in simulations based on test/monitoring data are conceptu-
ally and computationally much more challenging than conventional computing tools
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[48]. This chapter presents a comprehensive Bayesian probabilistic framework for
uncertainty quantification and propagation (UQ+P) in complex structural dynamics
simulations based on test data.

Bayesian analysis [13, 15, 64] is used as the logical and computational frame-
work for combining knowledge from test/monitoring data and models in a consistent
way. The Bayesian framework exploits the available measured data and any prior
information based on engineering experience to (a) select the most probable math-
ematical models among a competitive family of mathematical models (linear vs
nonlinear models; elastic vs hysteretic models; friction/impact models) introduced
to represent the behavior of mechanical components; (b) calibrate the parametric
uncertainties involved in structural and mechanical models; (c) propagate uncertain-
ties in simulations for updating robust predictions, taking into account the validated
models and calibrated uncertainties.

Bayesian finite element model updating is a demanding computational procedure
due to the large number of forward dynamic analyses required. The solution for these
types of problems requires the evaluation of the system responses at a large number
of points in the uncertain parameter space [1, 27, 33, 35, 49]. Consequently, the com-
putational cost may become excessive when the computational time for performing
a dynamic analysis is significant. The model reduction techniques discussed in this
book can be used to alleviate the computational effort by reducing the number of
physical coordinates to a much smaller number of generalized coordinates. How-
ever, the construction of reduced-order models at each point in the parameter space
implies a recalculation of the fixed-interface normal modes and the interface con-
straint modes for each substructure. This procedure is computationally expensive
due to the substantial computational overhead that arises at the substructure level
[49]. An efficient finite element model parametrization scheme was considered in
Chaps. 2 and 3 to cope with this difficulty. When the division of the structure into
substructures is guided by such a parametrization scheme, dramatic computational
savings are achieved.

This chapter is organized as follows. ABayesian probabilistic framework is devel-
oped in Sect. 7.2 for parameter estimation and model selection in structural dynam-
ics using vibration measurements collected during system operation. The Bayesian
tools used to carry out the computations are presented in Sect. 7.3. Such tools include
asymptotic approximations and sampling algorithms. In Sect. 7.4, the implementa-
tion of the Bayesian framework in structural dynamics is presented. The formulation
for linear models based onmodal frequencies andmode shapes is given in Sect. 7.4.1.
For nonlinear models, the Bayesian formulation is presented in Sect. 7.4.2, based on
full response time histories (accelerations, displacements, and strains). The applica-
bility, effectiveness, and accuracy of the proposed techniques are demonstrated using
high-fidelity linear FEmodels and fieldmeasurements for amotor-way bridge aswell
as nonlinear models and simulated measurements for a base-isolated structure.

https://doi.org/10.1007/978-3-030-12819-7_2
https://doi.org/10.1007/978-3-030-12819-7_3
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7.2 Bayesian Inference Framework

7.2.1 Finite Element Model and Uncertainty

Consider a finite element model class of a structure, denoted by M , a set of model
parameters θ ∈ Rnθ , and let r(θ |M ) be the model predictions of output QoI, given
a value of the parameter set θ . Probability distribution functions (PDF) are used to
quantify the uncertainty in the parameters θ . A prior probability distribution π(θ |M )

is assigned to the model parameters to incorporate prior information on the plau-
sibility of each possible value of the model parameters θ . Uncertainty propagation
algorithms (e.g., efficient Monte Carlo variants) can be used to propagate the uncer-
tainties through the structural model to predict output QoI. However, the prior prob-
ability distribution π(θ |M ) is subjective, based on previous knowledge and user
experience. In Bayesian finite element model updating, experimental data are used
to update the uncertainty in themodel parameters θ , and then uncertainty propagation
techniques are used to update the uncertainty in the predictions of important QoI.
These predictions are referred to as data-informed robust predictions.

A family of competitive finite element model classes Mi, i = 1, . . . ,mi, is often
introduced to represent the structure. A prior probability Pr(Mi) is assigned to the
model class Mi to reflect our preference to this model class in relation to the rest of
the model classes in the family. Experimental data can also be used to update our
preference, select the most appropriate model class that best explains the data, and
rank the rest of the model classes based on the data. The ranking can then be used to
update the uncertainties in the predictions, taking into account all competitive model
classes. Such predictions are referred to as data-informed hyper robust predictions,
a terminology introduced in [14].

7.2.2 Bayesian Model Parameter Estimation

Let D ≡ {ŷ ∈ RN0} be a set of observations available from experiments, where N0

is the number of observations. In light of the information contained on these data,
the interest lies in updating the probability distribution of the model parameters
θ , selecting the best model class, and then propagating uncertainties through the
structural dynamics model to quantify the uncertainty in the output QoI. The updated
PDF p(θ |D,M ) of the parameters θ , given the dataD and the model classM , results
from the application of the Bayes’ theorem

p(θ |D,M ) = p(D|θ ,M ) π(θ |M )

p(D|M )
(7.1)

where p(D|θ ,M ) is the likelihood of observing the data from the model classM and
p(D|M ) is the evidence of the model class, given by the multi-dimensional integral
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p(D|M ) =
∫

Θ

p(D|θ ,M ) π(θ |M ) dθ (7.2)

over the space of the uncertain model parameters.
The structure of the likelihood is derived by building a probabilistic model for

the discrepancy between the model predictions r(θ |M ) obtained from a particular
value of the model parameters θ and the corresponding data ŷ. This discrepancy is
the result of measurement, model, and computational errors. Introducing an error
term e to quantify this discrepancy, the observation data and the model predictions
satisfy the prediction error equation

ŷ = r(θ |M ) + e (7.3)

A normal distribution e ∼ N (μ,Σ), where μ is the mean and Σ is the covari-
ance matrix, is chosen for the prediction error term. Using the maximum entropy
principle, this choice is justifiable, as it is the least informative distribution among
all distributions with the lowest two moments specified. A zero mean model error
μ = 0 is assumed in this work. A non-zero mean μ �= 0 could also be used to shift
the model predictions r(θ |M ) to account for the bias in these predictions and attempt
to reconcile conflicting predictions. The structure of the covariance matrix Σ may
depend on prediction error parameters with unknown values to be inferred using the
Bayesian identification framework. For this, it is common to augment the structural
model parameter set θ , so that it also includes these prediction error parameters.

Using the prediction error equation (7.3), the measured quantities conditioned on
the value of the parameter set θ follow a normal distribution with mean r(θ |M ) and
covariance matrix Σ(θ). Consequently, the likelihood p(D|θ ,M ) of observing the
data follows the multi-variable normal distribution given by

p(D|θ ,M ) = |Σ(θ)|−1/2

(2π)N0/2
exp

[
−1

2
J (θ,M )

]
(7.4)

where

J (θ ,M ) = [ŷ − r(θ |M )]TΣ−1(θ)[ŷ − r(θ |M )] (7.5)

is a weighted measure of fit between the measured data and the prediction of the
model, and | · | denotes the determinant.

The selection of the prior distribution π(θ |M ) affects the posterior distribution
of the model parameters for the case of a relatively small number of data. Usually, a
non-informative prior can be used. For example a uniform distribution of the model
parameters does not give any preference to the values of the model parameters prior
to the data. For cases of large numbers of model parameters where problems of ill-
conditioning may arise, a non-uniform distribution, such as a Gaussian prior, can
avoid unidentifiability issues and enable the estimation of the most probable value of
the model parameters, avoiding convergence problems that may arise from gradient
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and stochastic optimization techniques used in Bayesian asymptotic approximations
(see Sect. 7.3.1).

7.2.3 Bayesian Model Selection

Bayesian model class selection is used to compare alternative model classes within
a family MFam = {Mi, i = 1, . . . ,mc} and select the best model class in light of the
experimental data [16, 45]. Let θ (i) ∈ Rnθi be the parameters of the model class Mi,
including prediction error model parameters. The posterior probability Pr(Mi|D) of
the ith model class given the data D is [16, 64]

Pr(Mi|D) = p(D|Mi) Pr(Mi)∑mc
i=1 p(D|Mi) Pr(Mi)

(7.6)

where Pr(Mi) is the prior probability of the model class Mi and p(D|Mi) is the
evidence of the model class Mi given by (7.2) with θ and M replaced by θ (i) and
Mi, respectively. The optimal model classMbest is selected as the one that maximizes
Pr(Mi|D), based on (7.6). The probability Pr(Mi|D) ranks the rest of the model
classes in terms of their suitability in modeling the structure. This rank can be used
for posterior hyper robust predictions [14] of output QoI that take into account all
model classes with a significant probability of explaining the available data.

7.2.4 Data-Driven Robust Posterior Predictions

7.2.4.1 PDF of Output QoI

Letqbe a scalar outputQoI of the system.Before themeasureddata becomeavailable,
prior robust predictions are carried out by propagating the prior uncertainties in the
model parameters, quantified by the prior PDF π(θ |M ). Posterior robust predictions
are obtained by taking into account the updated uncertainties in themodel parameters,
given the measurementsD. Let p(q|θ ,M ) be the conditional probability distribution
of q, given the values of the parameters. Using the total probability theorem, the
prior and posterior robust probability distribution p(q|M ) of q, taking into account
the model M , is given by [14, 53]

p(q|M ) =
∫

p(q|θ ,M ) p(θ |M ) dθ (7.7)

as an average of the conditional probability distribution p(q|θ ,M ) weighed by
the PDF p(θ |M ) of the model parameters, where p(θ |M ) ≡ π(θ |M ) for the prior
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estimate in the absence of data or p(θ |M ) ≡ p(θ |D,M ) for the posterior estimate
given the data D.

7.2.4.2 Simplified Measures of Uncertainty in Output QoI

The mean m1 = Eθ [q(θ)] and the variance σ 2
q = Eθ [q2(θ)] − m2

1 = m2 − m2
1 with

respect to θ are often used as simplified measures of uncertainty in the output QoI
q. These are derived from the first two moments mk of q(θ), k = 1,2, given by the
multi-dimensional integrals

mk(D,M ) =
∫

[q(θ)]k p(θ |M ) dθ (7.8)

over the uncertain parameter space. Computational tools for estimating the multi-
dimensional integrals are presented in Sect. 7.3.

7.2.4.3 Prior and Posterior Robust Reliability

A more challenging problem in uncertainty propagation is the estimation of rare
events. This is important in analyzing probability of failure or unacceptable perfor-
mance of a system. The probability of failure is the probability that at least one output
QoI exceeds certain threshold levels or, more generally, as the probability that the
system performance falls within a failure domain F , usually defined by one or more
inequality equations.

Let Pr(F |θ ,M ) be the probability of failure of the system conditioned on the
value of the parameter set θ . The robust prior or robust posterior failure probability
[14, 53] is given by the multi-dimensional probability integral

PF(M ) =
∫

Pr(F |θ ,M ) p(θ |M ) dθ (7.9)

where p(θ |M ) ≡ π(θ |M ) for prior probability of failure estimate or p(θ |M ) ≡
p(θ |D,M ) for posterior estimate given the data D. Assuming that a set of inde-
pendent random variables z is used to quantify input and system uncertainties that
are not associated with the ones involved in θ , the failure probability can also be
written in the form

PF(M ) = Pr(ζ ∈ F |M ) =
∫

IF(ζ ) p(ζ |M ) dζ (7.10)

where ζ = (z, θ) is the augmented set of uncertain parameters, F is a failure region
in the augmented parameter space, and IF is an indicator function that is 1 if ζ ∈ F
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and 0 elsewhere over the space of feasible system parameters ζ . The estimation of the
failure probability integrals (7.9) and (7.10) can be done using sampling techniques.
For further details, the reader is referred to Sect. 7.3.4 and Ref. [34].

7.3 Bayesian Computational Tools

7.3.1 Asymptotic Approximations

For a large enough number of measured data, the posterior distribution of the model
parameters in (7.1) can be asymptotically approximated by a Gaussian distribution
[13]

p(θ |D,M ) ≈ |C(θ̂)|−1/2

(2π)nθ /2
exp

[
−1

2
(θ − θ̂)

T
C−1(θ̂)(θ − θ̂)

]
(7.11)

centered at the most probable value θ̂ of the model parameters obtained by maxi-
mizing the posterior PDF p(θ |D,M ) or, equivalently, minimizing the negative of the
log posterior PDF function

g(θ,M ) = − ln p(θ |D,M )

= 1

2
J (θ,M ) + 1

2
ln |Σ(θ)| − ln π(θ |M ) + N0

2
ln(2π) (7.12)

with a covariance matrix C(θ̂) = H−1(θ̂) equal to the inverse of the Hessian
H(θ) = ∇∇T g(θ,M ) of the function g(θ,M ) in (7.12) evaluated at the most prob-
able value θ̂ . This approximation, known as the Bayesian central limit theorem,
is asymptotically correct for a large number of data. The asymptotic result (7.11),
although approximate, provides a good representation of the posterior PDF for a
number of applications involving even a relatively small number of data.

The asymptotic approximation (7.11) provides an adequate representation of the
posterior probability distribution in the case of unimodal distributions. For multi-
modal distributions, the asymptotic approximation can be improved by considering
a weighted contribution of each mode with weights based on the probability vol-
ume of the PDF in the neighborhood of each mode [13]. The weighted estimate is
reasonable, provided that the modes are separable. For interacting modes or closely
spacedmodes, this estimate is inaccurate due to the overlapping of the regions of high
probability volume involved in the interaction. However, implementation problems
exist in multi-modal cases, due to the inconvenience in estimating all modes of the
multimodal distribution [40]. Asymptotic approximations have also been introduced
to handle the unidentifiable cases [38, 39] manifested for a relatively large number
of model parameters in relation to the information contained in the data.
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For model selection, an asymptotic approximation [16, 52, 64] based on the
Laplace method provides an estimate of the evidence integral in (7.2) that appears in
the model selection equation (7.6). The asymptotic estimate for Pr(Mi|D) is given
in the form [16, 50]

Pr(Mi|D) =
(√

2π
)nθi p(D|θ̂ (i)

,Mi) π(θ̂
(i)|Mi)√

|Hi(θ̂
(i)

)|
Pr(Mi)∑mc

i=1 p(D|Mi) Pr(Mi)
(7.13)

where θ̂
(i)

is the most probable value of the parameters of the model class Mi and
Hi(θ) = ∇ ∇T gi(θ,M ) is the Hessian of the function gi(θ

(i),Mi) given in (7.12)
for the model class M ≡ Mi. It should be noted that the asymptotic estimate for the
probability of a model classMi can readily be obtained with the most probable value
and the Hessian of the particular mode. For the multi-modal case, the expression
(7.13) can be generalized by adding the contributions from all modes.

For the posterior robust prediction integrals (7.7) or (7.8), similar asymptotic
approximations are available to simplify the integrals. Details are presented in [18]
using the asymptotic approximations developed in [59]. However, for each quantity
of interest, an extra optimization problem needs to be solved along with evaluat-
ing the Hessian of an objective function at the new optimum. The approximations
require the solution of as many optimization problems and Hessian evaluations as
the number of output quantities of interest. For several output QoI, these approxima-
tions can be computationally costly. In light of the high computational cost and the
lack of accuracy of the asymptotic approximations, alternative sampling techniques,
discussed in Sect. 7.3.4, are used to estimate the multi-dimensional integrals.

7.3.2 Gradient-Based Optimization Algorithms

The optimization problems that arise in the asymptotic approximations are solved
using available single objective optimization algorithms.Theoptimizationof g(θ ,M )

given in (7.12) with respect to θ can readily be carried out numerically using any
available algorithm for optimizing a nonlinear function of several variables.Gradient-
based optimization algorithms can be conveniently used to achieve fast convergence
to the optimum. However, to guarantee the convergence of the gradient-based algo-
rithms for models involving a relatively large number of DOFs, analytical equations
for the gradients of the response QoI involved in the objective function g(θ,M ) are
required. The computational effort scales with the number of parameters in θ .

Adjointmethods provide a computationally effectiveway to estimate the gradients
of the objective function with respect to all parameters by solving a single adjoint
problem, making the computational effort independent of the number of variables in
the set θ . A review of a model non-intrusive adjoint method for the case of Bayesian
parameter estimation based on modal frequencies and mode shapes is given in [47].
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For nonlinear models of structures, the techniques for computing gradients of the
objectives with respect to the parameters are model intrusive, requiring tedious algo-
rithmic and software developments that, inmost cases, are not easily integratedwithin
the commercial software packages. Selected examples ofmodel intrusiveness include
the sensitivity formulation for hysteretic-type nonlinearities in structural dynamics
and earthquake engineering [11, 12]. Gradient and adjoint formulations require con-
siderable algorithmic development overhead associated with developing analytical
expressions and implementing them in software. Finally, it should be noted that there
are systems and types of nonlinearities (e.g., contact, sliding, and impact) where the
development of an adjoint formulation or analytical equations for the sensitivity of
objective functions to parameters is not possible. Derivative-free local optimization
techniques are more appropriate to use in such cases.

7.3.3 Stochastic Optimization Algorithms

Stochastic optimization algorithms, such as evolutionary algorithms, are random
search algorithms that better explore the parameter space for detecting the neighbor-
hood of the global optimum, avoiding premature convergence to a local optimum. In
addition, stochastic optimization algorithms do not require the evaluation of the gra-
dient of the objective function with respect to the parameters. Thus, they are model
non-intrusive, since there is no need to formulate the equations for the derivatives
either by direct or adjoint techniques. Despite their slow convergence, evolutionary
algorithms are highly parallelizable, so the time-to-solution in an HPC environment
is often comparable to conventional gradient-based optimization methods [30].

Stochastic optimization algorithms can be used with parallel computing environ-
ments to find the optimum for non-smooth functions or for models for which an
adjoint formulation cannot be developed. In the absence of an HPC environment,
the disadvantage of the stochastic optimization algorithms arises from the high num-
ber of system re-analyses, which may make the computational effort excessive for
real-world problems for which a simulation may take minutes, hours, or even days
to complete.

A parallelized version of the covariance matrix adaptation evolutionary strategy
(CMA-ES) [31] can be used to solve the single-objective optimization problems aris-
ing in the Bayesian asymptotic approximations. TheCMA-ES algorithm exhibits fast
convergence properties among several classes of evolutionary algorithms, especially
when searching for a single global optimum. The Hessian estimation required in
Bayesian asymptotic approximations can be computed using the Romberg method
[41]. This procedure is based on a number of system re-analyses at the neighborhood
of the optimum, which can all be independently performed for problems involving
either calibration or propagation and are, thus, highly parallelizable. Details can be
found in [30].
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7.3.4 Sampling Algorithms

Sampling algorithms are non-local methods capable of providing accurate represen-
tations for the posterior PDF and accurate robust predictions of output QoI. Sampling
algorithms refermostly toMarkovChainMonteCarlo (MCMC) [20, 32, 44] variants.
They are used to generate samples θ i, i = 1, . . . ,N , for populating the posterior PDF
in (7.1), estimating the model evidence and computing the uncertainties in output
QoI. Among the sampling algorithms available, the transitional MCMC algorithm
(TMCMC) [21] is one of the most promising algorithms for finding and populating
the important region of interestwith samples, even in challenging unidentifiable cases
and multi-modal posterior distributions. The TMCMC algorithm is well suited for
parallel implementation in a computer cluster. HPC techniques are used to reduce the
time-to-solution of the TMCMC algorithm. Details of the parallel implementation
are given in [1, 30]. The parallelized version of the TMCMC algorithm for Bayesian
UQ has been implemented in software and is available at https://github.com/cselab/
pi4u, while an improved version of the TMCMC algorithm, termed BASIS [60],
is available in Matlab at https://gitlab.ethz.ch/mavt-cse/BASIS_1.1. Approximate
methods based on kernels are used to estimate marginal distributions of the param-
eters from the samples θ i, i = 1, . . . ,N . An advantage of the TMCMC algorithm is
that it yields an estimate of the evidence in (7.2) of the model classMi based on the
samples already generated by the algorithm.

Sampling methods can be conveniently used to estimate the multi-dimensional
integrals (7.7) and (7.8) from the samples θ i, i = 1, . . . ,N , generated from the pos-
terior probability distribution p(θ |D,M ). Specifically, the integrals (7.7) and (7.8),
respectively, can be approximated by the sample estimates

p(q|M ) ≈ 1

N

N∑
i=1

p(q|θ i,M ) (7.14)

mk(D,M ) ≈ 1

N

N∑
i=1

[q(θ i)]k (7.15)

The sample estimates (7.14) and (7.15) require independent forward system simula-
tions that can be executed in a perfectly parallel fashion.

For rare events, the subset simulation [4] is computationally the most efficient
sampling algorithm to provide an accurate estimate of the multi-dimensional failure
probability integral (7.10) with the lowest number of samples. The subset simula-
tion was first introduced to handle the conditional probability of failure integrals
PF(M ) formulated by (7.10) with ζ = z and then the robust prior reliability integral
(7.10) with ζ = (z, θ) and p(ζ |M ) = p(z|M )π(θ |M ). Certain improvements on the
MCMC sampling within subset simulation have recently been proposed by
Papaioannou et al. [55]. In Jensen et al. [34], subset simulation was extended to

https://github.com/cselab/pi4u
https://github.com/cselab/pi4u
https://gitlab.ethz.ch/mavt-cse/BASIS_1.1
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treat the robust posterior reliability integrals of the form (7.10) with ζ = (z, θ) and
p(ζ |M ) = p(ζ |D,M ), the posterior PDF. It should be noted that, usually, due to
independence between z and θ , the PDF of ζ is p(ζ |M ) = p(z|M )p(θ |D,M ), which
simplifies the evaluation of the integral with subset simulation [34]. Subset sim-
ulation is highly parallelizable, as indicated in previous chapters, and its parallel
implementation for heterogeneous computer architectures is discussed in [30].

7.4 Implementation in Structural Dynamics

The implementation of the Bayesian inference framework in structural dynamics has
been outlined separately for linear and nonlinear finite element models. For linear
models, the inference can be based on experimentally identified modal frequencies
and mode shape components at sensor locations. Usually, it is convenient to measure
the vibration of the structure under operational conditions by placing sensors at
various locations to measure only output response time histories. There are a number
of techniques for estimating the modal frequencies and mode shapes. Notably, the
Bayesian modal parameter estimation methods proposed in [6, 7] are intended for
output-only vibration measurements. In addition to the most probable values of the
modal characteristics, the uncertainty in these characteristics is also estimated and
asymptotically approximated by Gaussian distributions. For nonlinear models, the
inference cannot be based onmodal properties.The formulation can be based directly
on measured response time histories. Details in the implementation of the Bayesian
framework for each case will be next presented. In all cases, one needs to develop the
equation for the prediction error, which is used to formulate the likelihood function
involved in the Bayes’ theorem (7.3).

7.4.1 Likelihood Formulation for Linear Models Based on
Modal Properties

The data D consist of the square of the modal frequencies, λ̂r = ω̂2
r , and the mode

shapes, φ̂r ∈ RN0,r , r = 1, . . . ,m, experimentally estimated using vibration measure-
ments, wherem is the number of identifiedmodes andN0,r is the number of measured
components for mode r. Let ωr(θ) and φr(θ) ∈ RN0,r be the rth modal frequency and
mode shape at N0,r DOFs, respectively, predicted by the linear finite element model
for a given value of the model parameter set θ .

The formulation of the likelihood p(D|θ ,M ) in (7.1) can be found in a number of
published papers (e.g., [19, 26, 56, 57, 61, 65]). Without loss of generality and for
demonstration purposes, two formulations are discussed here. Alternative formula-
tions can easily be incorporated by noting that the whole framework depends on the
model parameters through the modal properties involved in the likelihood function
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and not on the detailed form of the likelihood function that arises from alternative
formulations.

7.4.1.1 Formulation 1

The prediction error equation for the rth modal frequency is introduced as

ω̂2
r = ω̃2

r (θ) + ελr (7.16)

with

ω̃2
r (θ) = ω2

r (θ) (7.17)

where ελr is the modal frequency error taken to be Gaussian with zero mean and
standard deviation σωr ω̂r , and σωr is a prediction error parameter. The prediction
error equation for the rth mode shape is

φ̂r = φ̃r(θ) + εφr
(7.18)

with

φ̃r(θ) = βr(θ)φr(θ) (7.19)

where εφr
is themode shape error taken to beGaussianwith zeromean and covariance

matrix diag(σ 2
φr

||φ̂r||2), σ 2
φr

is a prediction error parameter,

βr(θ) = φ̂
T

r φr(θ)/
∥∥φr(θ)

∥∥2
(7.20)

is a normalization constant that guarantees that the measured mode shape φ̂r at the
measured DOFs is closest to the model mode shape φ̃r(θ) predicted by the particular
value of θ , and || · ||2 represents the usual Euclidian norm. The structural model
parameter set θ is augmented to include the unknown prediction error parameters
σωr and σφr

.
The squares of the modal frequencies ω2

r (θ) = λr(θ) and the mode shape compo-
nents φr(θ) = Lrψ r(θ) ∈ RN0,r at the N0,r measured DOFs are computed from the
full mode shapes ψ r(θ) ∈ Rn that satisfy the eigenvalue problem

[K(θ) − λr(θ)M(θ)]ψ r(θ) = 0 (7.21)

where K(θ) ∈ Rn×n and M(θ) ∈ Rn×n are the stiffness and mass matrices, respec-
tively, of the FE model of the structure, n is the number of model DOFs, and
Lr ∈ RN0,r×n is an observation matrix, usually comprised of zeros and ones, that
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maps the n model DOFs to the N0,r observed DOFs for mode r. For a model with a
large number of DOFs, N0,r � n.

Assuming equal variances σ 2
ω2
r
= σ 2 for themodel prediction error ελr of all modal

frequencies and equal variances σ 2
φr

= σ 2/w for the model prediction error εφr
of all

mode shapes, the likelihood function can then be readily obtained in the form

p(D|θ ,M ) = 1(√
2πσ

)N0
exp

[
− 1

2σ 2
J (θ ,w)

]
(7.22)

where N0 = m + ∑m
r=1 N0,r , w is a weighting factor and

J (θ,w) = J1(θ) + wJ2(θ) (7.23)

In (7.23) the following modal frequency residuals

J1(θ) =
m∑
r=1

ε2λr
(θ) =

m∑
r=1

[λr(θ) − λ̂r]
2

λ̂2
r

(7.24)

and mode shape residuals

J2(θ) =
m∑
r=1

ε2φr
(θ) =

m∑
r=1

∥∥∥φ̃r(θ) − φ̂r

∥∥∥2

∥∥∥φ̂r

∥∥∥2 (7.25)

measure the discrepancies for the modal frequencies and mode shape components,
respectively, between the identified modal data and the model-predicted modal data.
Using (7.19) and the fact that φr(θ) = Lrψ r(θ), the mode shape vector φ̃r(θ) in
(7.25) takes the form

φ̃r(θ) = Lrψ r(θ)βr(θ) (7.26)

where, using (7.20), βr(θ) is given by

βr(θ) = [Lrψ r(θ)]T φ̂r∥∥Lrψ r(θ)
∥∥2 (7.27)

It can be shown that the square of the mode shape residuals in (7.25) is related to the
modal assurance criterion (MAC) value of the mode r by [54]
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ε2φr
(θ) = 1 − MAC2

r (θ) = 1 −
⎡
⎣

[
Lrψ r

]T
φ̂r∥∥Lrψ r

∥∥ ∥∥∥φ̂r

∥∥∥

⎤
⎦

2

≥ 0 (7.28)

since 0 ≤ MACr ≤ 1. Thus, ε2φr
(θ) in (7.25) is also a measure of the distance of the

square MAC-value from one, or equivalently, a measure of the correlation of the
model-predicted mode shape and the measured mode shape for mode r.

One issue to keep in mind is that, to apply the formulation, one needs to estimate
the correspondence between the experimental and model-predicted modes. This cor-
respondence accounts for the fact that some modes of the system are not identified
experimentally and also for the fact that the model-predicted modes may switch
order for different values of the model parameters. Although this correspondence
can be predicted in a number of cases using the MAC-values between experimen-
tally identified and model-predicted mode shapes, there are a number of cases where
the procedure may completely fail. For example, for modal frequencies with an
algebraic multiplicity of greater than one, the mode shapes span a higher than one-
dimensional subspace. In this case, an experimentally identified mode shape may be
a linear combination of model-predicted mode shapes. This situation arises in prac-
tice when the modes are very closely spaced. In this case, the experimental mode
shape is not close to one of the closely spaced mode shapes. To properly account for
the prediction error in this case, an experimental mode shape has to be compared to
the best linear combination of the closely spaced mode shapes of the FE model. The
prediction error equation (7.18) can be modified to account for this case as described
in the next section.

7.4.1.2 Formulation 2

The formulation presented in the current subsection generalizes the prediction error
equation (7.18) to avoid the need for mode correspondence, as well accounts for the
case of closely spaced modes. This is achieved by letting φ̃r(θ) in Eq. (7.26) be a
linear combination of the FE model mode shapes

φ̃r(θ) =
m∑

k=1

βkr(θ)φk(θ) = LrΨ r(θ)βr(θ) (7.29)

whereΨ r(θ) = {ψ1(θ), . . . ,ψm(θ)}, and selecting the vector of coefficientsβr(θ) =
[β1r(θ), . . . , βmr(θ)]T , so that the distance

∥∥∥φ̂r − φ̃r(θ)

∥∥∥ is minimal, guaranteeing

that themeasuredmode shape φ̂r is closest to themodel-predictedmode shape φ̃r(θ).
This minimum is achieved by selecting

βr(θ) = [
Ψ T

r (θ)LT
r LrΨ r(θ)

]−1 [LrΨ r(θ)]T φ̂r (7.30)
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Also, the square of themodal frequencies, λ̃r , is evaluated from the Rayleigh quotient

λ̃r(θ) = ω̃2
r (θ) = ψ̃

T
r (θ)K(θ)ψ̃ r(θ)

ψ̃
T
r (θ)M(θ)ψ̃ r(θ)

= βT
r (θ)Λ(θ)βr(θ)

βT
r (θ)βr(θ)

(7.31)

where ψ̃ r is defined similarly to (7.29) as ψ̃ r = [
ψ1(θ), . . . ,ψm(θ)

]
βr(θ).

A similar version of this formulation was originally presented in [61]. Formula-
tion 2 coincides with Formulation 1 for the case βkr = βrδkr , where δkr is the Kro-
necker delta. This occurs for a sufficiently large number of sensors where the model
mode shapes are obtained to be approximately orthogonal, resulting in a MAC-value
between non-corresponding mode shapes closer to zero and, thus, coefficients that
follow the aforementioned condition. For a small number of sensors, there might be
more than one mode shape that significantly contributes to the model mode shape
φ̃r(θ), resulting in discrepancies between Formulations 1 and 2. As a special case,
one can use (7.29) to associate an experimentally identified mode shape of closely
spaced modes as a linear combination of the corresponding closely spaced modes
predicted by the FE model. This, however, requires the identification of the corre-
sponding closely spaced modes using the MAC-value. Further discussion on this
issue falls outside the scope of this monograph.

Extensions of Formulation 2 can be found in [63]. Although these extensions
seem to suggest that there is no need to compute the modal properties, there are a
number of issues that may deteriorate the performance of the extended formulations.
One such issue is the multi-modality of the posterior distribution when the number
of sensors is not sufficiently large. This multi-modality significantly deteriorates the
effectiveness of the FE model updating method.

7.4.1.3 Formulations Using Model Reduction

Bayesian tools for estimating the parameters of FEmodels based onmodal properties
require repeated eigenvalue analyses to be performed for a moderate to very large
number of θ values. Thus, the computational demands highly depend on the time
required to build the FE model and perform the eigenvalue analysis. For FE models
with a large number of DOFs, this can substantially increase the computational
effort to excessive levels. The fast, accurate, and parameterization-consistent model
reduction techniques that have been developed in this book can be integrated with
the Bayesian techniques to substantially reduce the model. In such schemes, the
computationally expensive repeated solutions of the component eigenvalue problems
are completely avoided. By solving substantially reduced eigenvalue problems and
avoiding the construction of the reducedmatrices, drastic reductions in computational
demands are achieved without compromising the solution accuracy [33, 49].
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The model reduction methods are applicable to both asymptotic and stochastic
simulation tools used in the Bayesian framework. The formulation for integrating
model reduction techniques into the Bayesian algorithm will be next described.

Using the transformation u(t) = TGT̄(θ)q̄(t) in (1.96), the physical mode shapes
ψ r(θ) of the unreducedmodel can bewritten in terms of the generalizedmode shapes
ϕr(θ) of the reduced model through the equation (1.99) as follows

ψ r(θ) = TGT̄(θ)ϕr(θ) (7.32)

where the matrices TG and T̄(θ) are defined in Chap.1. The eigenvectors ϕr(θ) and
the eigenvalues ω̄2

r (θ) of the reduced finite element model are given by solving the
reduced eigenvalue problem

[K̄(θ) − ω̄2
r (θ)M̄(θ)]ϕr(θ) = 0 (7.33)

where M̄(θ) and K̄(θ) are the reduced mass and stiffness matrices. Equation (7.33)
is exactly the same as Eq. (1.100). The dependence of the matrices M̄(θ) and K̄(θ)

on θ is fully specified in the formulation presented in Chaps. 2 and 3 for the different
model reduction cases. The advantage of the model reduction is that the evaluation
of the reduced matrices M̄(θ), K̄(θ) and T̄(θ) does not require repeating online
the reduction procedure that was outlined in Chaps. 1 and 2 for different values of
the parameter set θ . These matrices are given by efficient expansions at the space
of reduced generalized coordinates, which are exact for the parameterized schemes
examined in Chap.2.

Substituting the form of ψ r(θ) given in Eq. (7.32) into φr(θ) = Lrψ r(θ), the
mode shape components of mode r at the measured DOFs are finally obtained in the
form

φr(θ) = L̄r(θ)ϕr(θ) (7.34)

where

L̄r(θ) = LrTGT̄(θ) (7.35)

Thus, in the case where model reduction is used in Formulation 1, the square of the
modal frequencies and the mode shapes involved in the objective functions (7.24)
and (7.25) have exactly the same form as in (7.17), (7.26), and (7.27) defined for the
unreducedmodels,withω2

r (θ) in (7.17),ψ r(θ) in (7.26), and the constantmatrixLr in
(7.26) being replaced by ω̄2

r (θ), ϕr(θ) and the parameter-dependent matrix L̄r(θ) =
LrTGT̄(θ), respectively. Available model updating formulations and software can,
thus, be used to handle the Bayesian parameter estimation by merely replacing the
eigenvalue problem (7.21) of the original unreducedmass and stiffness matrices with
the eigenvalue problem (7.33) of the reduced mass and stiffness matrices, as well
as replacing the constant matrices Lr of zeros and ones by the parameter-dependent
matrices L̄r(θ) = LrTGT̄(θ).
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https://doi.org/10.1007/978-3-030-12819-7_1
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https://doi.org/10.1007/978-3-030-12819-7_2
https://doi.org/10.1007/978-3-030-12819-7_3
https://doi.org/10.1007/978-3-030-12819-7_1
https://doi.org/10.1007/978-3-030-12819-7_2
https://doi.org/10.1007/978-3-030-12819-7_2
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Using model reduction, a similar simplification holds for Formulation 2. Specifi-
cally, using ψ r(θ) from (7.32), the matrix of eigenvectors takes the form

Ψ r(θ) = {ψ1(θ), . . . ,ψm(θ)} = TGT̄(θ)Ψ̄ r(θ) (7.36)

where
Ψ̄ r(θ) = {ϕ1(θ), . . . ,ϕm(θ)} (7.37)

is the matrix of the mode shapes corresponding to the reduced model. Substituting
(7.36) into (7.29) and (7.30), one readily derives that

φ̃r(θ) = L̄r(θ)Ψ̄ r(θ)βr(θ) (7.38)

where

βr(θ) =
[
Ψ̄

T
r (θ)L̄

T
r (θ)L̄r(θ)Ψ̄ r(θ)

]−1 [L̄r(θ)Ψ̄ r(θ)]T φ̂r (7.39)

Similarly, using ψ r(θ) from (7.32), the vector ψ̃ r(θ) defined in (7.31) has the form

ψ̃ r(θ) = TGT̄(θ)Ψ̄ r(θ)βr(θ) (7.40)

Taking into account the reduced eigenvalue problem (7.33) and the fact that

ψ̃
T
r (θ)K(θ)ψ̃ r(θ) = βT

r (θ)Ψ̄
T
r (θ)[TGT̄(θ)]TK(θ)[TGT̄(θ)]Ψ̄ r(θ)βr(θ)

= βT
r (θ)Ψ̄

T
r (θ)K̄(θ)Ψ̄ r(θ)βr(θ)

= βT
r (θ)Λ̄r(θ)βr(θ) (7.41)

and similarly

ψ̃
T
r (θ)M(θ)ψ̃ r(θ) = βT

r (θ)Ψ̄
T
r (θ)[TGT̄(θ)]TM(θ)[TGT̄(θ)]Ψ̄ r(θ)βr(θ)

= βT
r (θ)Ψ̄

T
r (θ)M̄(θ)Ψ̄ r(θ)βr(θ)

= βT
r (θ)βr(θ) (7.42)

the eigenvalues λ̃r(θ) = ω̃2
r (θ) are provided by the last expression in Eq. (7.31),

with the matrix of eigenvalues Λr(θ) replaced by the matrix of eigenvalues Λ̄r(θ),
computed by solving the eigenvalue problem (7.33) for the reduced finite element
model.

It should be noted that, in the special case of reducing only the internal DOFs
for each component and assuming that the mass matrix of each substructure is inde-
pendent of θ , the transformation matrix T̄(θ) takes the form T̄(θ) = TD, which is
independent of θ and, thus, the matrix L̄r(θ) in (7.35) simplifies to a constant matrix
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L̄r = LrTGT̄D (7.43)

independent of the parameter set θ (see Chap.2).

7.4.1.4 Gradient Estimation Using Adjoint Techniques

For Bayesian asymptotic approximations, first-order and second-order adjoint tech-
niques are available [47] using the Nelson’s method [46] to efficiently compute the
required first- and second-order sensitivities in the optimization problems and the
Hessian. In contrast to the Fox and Kapoor [23] method for estimating sensitivities,
in Nelson’s method, the gradients of the modal frequencies and the mode shape vec-
tor of a specific mode are computed only from the value of the modal frequency
and the mode shape vector of the same mode, independently of the values of the
modal frequencies and mode shape vectors of the rest of the modes. For structural
model classes with a large number of degrees of freedom and very few contributing
modes, this representation of the gradients clearly presents significant computational
advantages over methods that represent mode shape gradients as a weighted, usually
arbitrarily truncated, sum of all system mode shape vectors [23].

Following [47] and using the formulation for the unreduced system matrices, the
gradient of the square error ε2λr

(θ) in (7.24) (Formulation 1) is given by

∂ε2λr
(θ)

∂θj
= ∂ε2λr

(θ)

∂λr

∂λr

∂θj

=
[

∂ε2λr
(θ)

∂λr
ψT

r (θ)

] [
Kj(θ) − ω2

rMj(θ)
]
ψ r(θ) (7.44)

and the gradient of the square error ε2φr
(θ) in (7.25) (Formulation 1) is given by

∂ε2φr
(θ)

∂θj
= ∇T

φr
ε2φr

(θ)
∂φr

∂θj
= ∇T

φr
ε2φr

(θ)
∂

(
Lrψ r(θ)

)
∂θj

= ∇T
φr

ε2φr
(θ)Lr

∂ψ r

∂θj

= − [
xTr (θ)(I − Mψ r(θ)ψT

r (θ))
] [
Kj(θ) − ω2

rMj(θ)
]
ψ r(θ) (7.45)

where xr(θ) is given by the solution of the linear system of equations

A∗
r (θ)xr(θ) = LT

r ∇φr
ε2φr

(θ) (7.46)

https://doi.org/10.1007/978-3-030-12819-7_2
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with

∂ε2ωr
(θ)

∂ω2
r

= 2εωr (θ)

ω̂2
r

(7.47)

∇T
φr

ε2φr
(θ) = 2βr(θ)∥∥∥φ̂r

∥∥∥2

[
βr(θ)φr(θ) − φ̂r

]
(7.48)

while Kj(θ) ≡ ∂K(θ)/∂θj andMj ≡ ∂M/∂θj. In (7.46), the matrix A∗
r (θ) is used to

denote the modified matrix derived from Ar(θ) = K(θ) − ω2
rM(θ) by replacing the

elements of the kth column and the kth row by zeroes and the (k, k) element ofAr by
one, where k denotes the element of the mode shape vector ψ r(θ) with the highest
absolute value [46].

Specifically, applying the formulation for the reduced model, the gradient of the
square error ε2λr

(θ) is simplified to

∂ε2λr
(θ)

∂θj
= ∂ε2λr

(θ)

∂λr

∂λr

∂θj

=
[

∂ε2λr
(θ)

∂λr
ϕT
r (θ)

] [
K̄j(θ) − ω2

r M̄j(θ)
]
ϕr(θ) (7.49)

while the gradient of the square error ε2φr
(θ) in (7.25) is simplified to

∂ε2φr
(θ)

∂θj
= ∇T

φr
ε2φr

(θ)
∂φr

∂θj
= ∇T

φr
ε2φr

(θ)
∂

(
L̄r(θ)ϕr(θ)

)
∂θj

= ∇T
φr

ε2φr
(θ)

∂L̄r(θ)

∂θj
ϕr(θ) + ∇T

φr
ε2φr

(θ)L̄r(θ)
∂ϕr(θ)

∂θj

=
{
∇T

φr
ε2φr

(θ)LrTG

} ∂T̄(θ)

∂θj
ϕr(θ) −

[
x̄Tr (θ)(Ī − M̄ϕr(θ)ϕT

r (θ))
] [
K̄j(θ) − ω̄2

r M̄j(θ̄)
]
ϕr(θ) (7.50)

where x̄r(θ) is given by the solution of the reduced linear system of equations

Ā
∗
r (θ)x̄r(θ) = L̄

T
r (θ)∇φr

ε2φr
(θ) (7.51)

while K̄j(θ) ≡ ∂K̄(θ)/∂θj and M̄j(θ) ≡ ∂M̄(θ)/∂θj. In (7.51), the matrix Ā
∗
r (θ) is

used to denote themodifiedmatrix derived from Ār(θ) = K̄(θ) − ω̄2
r M̄(θ) by replac-

ing the elements of the kth column and the kth row by zeroes and the (k, k) element
of Ār(θ) by one, where k denotes the element of the mode shape vector ϕr with the
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highest absolute value [46]. Significant computational savings are obtained from the
fact that the linear system (7.46) is reduced to the linear system (7.51).

The computation of the derivatives of the square errors for the modal properties
of the rth mode with respect to the parameters in θ requires only one solution of the
reduced linear system (7.51), independent of the number of parameters in θ . For a
large number of parameters in the set θ , the above formulation for the gradient of the
mean error in modal frequencies given in (7.44) and the gradient of the mean error of
the mode shape components in (7.45) are computationally efficient and informative.
The dependence on θj comes through the term Kj and the term Mj. For the case
where the mass matrix is independent of θ , Mj = 0, and the formulation is further
simplified. The end result of the proposed adjoint method is the solution of as many
linear systems of equations as the number of model-predicted modes. The size of the
linear systems equals the number of DOFs of the structural model, which adds to the
computational burden. However, the linear systems are independent of each other
and can be carried out in parallel, significantly accelerating the time-to-solution. The
integration of model reduction techniques with the adjoint methods can significantly
reduce the size of the linear system (7.46) to the reduced size defined in (7.51) and,
thus, substantially reduce the computational effort.

It should be noted that a similar analysis is available to obtain the Hessian of the
objective functions ε2ωr

(θ) and ε2ϕr
(θ) from the second derivatives of the eigenvalues

and the eigenvectors, respectively. Details can be found in [47] and fall outside the
scope of this monograph.

7.4.2 Likelihood Formulation Based on Response Time
Histories

For nonlinear FE models, one can formulate the likelihood directly using response
time histories. Modeling nonlinearities arises from various sources, such as material
constitutive laws, contact, sliding, and impact between structural components, non-
linear isolation devices (e.g., nonlinear dampers) in civil infrastructure and nonlinear
suspensionmodels in vehicles. Often, the nonlinearities are localized in isolated parts
of a structure, while the rest of the structure manifests a linear behavior. For example,
in vehicles, localized nonlinearities are activated at the suspension mainly due to the
nonlinear dampers, while the frame usually behaves linearly. In civil engineering
applications, the nonlinearities are often localized at the joints and connections with
isolation damper devices (e.g., bridges) designed to resist the dynamic loads through
nonlinear dissipation, leaving the rest of the structure at its linear elastic range during
system operation.

Consider the measured response time histories D = {
x̂j(k) ∈ R, j = 1, . . . ,N0 ,

k = 1, . . . ,ND} at time instances t = kΔt, ofN0 response quantities (displacements,
velocities, accelerations, and strains) at different points in the structure, where ND

is the number of the samples data using a sampling period Δt. The response time
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history predictions from the nonlinear model corresponding to a particular value of
the parameter set θ of the same quantities and points in the structure are denoted
by

{
xj (k, θ) ∈ R , j = 1, . . . ,N0, k = 1, . . . ,ND}. The likelihood is formulated by

introducing the error ej(k) between the measured and the model-predicted response
time histories, associated with the jth DOF and the time instant k, to satisfy the
prediction error equation

x̂j(k) = xj(k, θ) + ej(k) (7.52)

j = 1, . . . ,N0 and k = 1, . . . ,ND. The difference between the measured and model-
predicted response is attributed to both experimental and modeling errors.

The prediction errors ej(k),measuring the fit between themeasured and themodel-
predicted response time histories are modeled by zero-mean Gaussian distributions.
In this work, it is assumed that the model prediction errors are uncorrelated in time
and that the variances at different time instants are equal for all sampling data of
the jth response time history, i.e., ej(k) ∼ N (0, σ 2

j ), k = 1, . . . ,ND. Each measured
time history is generally obtained from a different sensor (displacement, velocity,
acceleration, or strain sensor) with a different accuracy and noise level, giving rise
to as many prediction error variances σ 2

j as the number of measured time histories.
The prediction error parameters σj, j = 1, . . . ,N0, are considered unknown and are
included in the parameter set θ to be estimated along with the structural model
parameters.

The likelihood function p (D|θ ,M ), which quantifies the probability of obtaining
the data given a specific set of structural parameters and prediction error parameters,
is derived by noting that the measured time histories x̂j (k) are independent Gaussian
variables with mean xj (k, θ) and variance σ 2

j . Taking advantage of the independence
of the measured quantities both at different time instants of the same time history as
well as between different time histories, the likelihood takes the form

p (D|θ) =
N0∏
j=1

ND∏
k=1

p
(
x̂j (k) |θ)

(7.53)

Substituting p
(
x̂j (k) |θ)

by a Gaussian PDF and rearranging terms, one obtains that

p (D|θ) = 1(√
2π

)NDN0 N0∏
j=1

σ
ND
j

exp

{
−N0ND

2
J (θ)

}
(7.54)

where

J (θ) = 1

N0

N0∑
j=1

1

σ 2
j

Jj (θ) (7.55)
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The quantity

Jj (θ) = 1

ND

ND∑
k=1

[
x̂j (k) − xj (k, θ)

]2
(7.56)

represents themeasure of fit between themeasured and themodel-predicted response
time history at the jth measured DOF.

Formulations of the likelihood for the case where full measured response time
histories are available can be found in [13] for linearmodels and in [24, 25, 29, 33, 42,
43] for nonlinear models. The likelihood and the posterior of the parameters of a FE
model are functions of the response time histories predicted by the FE model. Thus,
each posterior evaluation requires a model simulation run involving the numerical
integration of nonlinear equations of motion for the structure.

7.5 Numerical Examples

Two example problems are considered in this chapter. The objective of the first
example is to evaluate the effectiveness of the proposed model reduction technique
in a linear model identification problem using modal characteristics. The goal of the
second application is to evaluate the performance of the proposed technique in a
nonlinear model updating problem by employing dynamic response data.

7.5.1 Example 1: Updating of Linear Model

A high fidelity linear finite element model of the Metsovo bridge is used to demon-
strate the accuracy and computational effectiveness of the proposed model reduction
techniques when applied within the Bayesian parameter inference framework. The
parameter estimation is based onmodal characteristics identified from ambient vibra-
tion measurements. The derived updated model is considered as representative of
the initial structural condition of the bridge, which can be further used for structural
health monitoring purposes and for updating structural reliability and safety.

The description of the bridge, its instrumentation, and the procedure for experi-
mentally estimating the modal frequencies and mode shapes are outlined in
Sect. 7.5.1.1. Details for the high fidelity linear FE model of the bridge are pre-
sented in Sect. 7.5.1.2. The model components, the model parameterization, and the
model reduction results are presented in Sect. 7.5.1.3, while the model parameter
estimation results are outlined and discussed in Sects. 7.5.1.4, 7.5.1.5, and 7.5.1.6.
Finally, computational issues are discussed in Sect. 7.5.1.7.
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Fig. 7.1 Metsovo bridge

7.5.1.1 Bridge Description, Instrumentation, and Modal Identification

The Metsovo bridge, shown in Fig. 7.1, is made of reinforced concrete. The total
length of the bridge deck is 537 m. The bridge has 4 spans of lengths 44.78m,
117.87m, 235m, and 140m, and 3 piers through which the left pier (45 m) supports
the box beam superstructure through pot bearings (movable in both horizontal direc-
tions), while the central pier (110m) and the right pier (35 m)monolithically connect
to the structure. The total width of the deck is 13.95 m, for each carriageway. The
superstructure is composed of a single box beam section of height varying from 4 m
to 13.5 m. The central and the right piers are founded on huge circular 12 m-rock
sockets at a depth of 25 and 15 m, respectively.

Acceleration measurements collected under normal operating conditions of the
bridge were used to identify its modal properties (natural frequencies, mode shapes,
damping ratios). The excitation of the bridge during the measurements was primarily
due to road traffic, which ranged frommotorcycles to heavy trucks, and environmen-
tal excitation, such as wind loading and ground micro-tremor. The measured data
were collected using 5 triaxial and 3 uniaxial accelerometers paired with a 24-bit
data logging system and an internal SD flash drive for data storage. The synchro-
nization of the sensors was achieved by using a GPS module in each of the sensors.
Thirteen different sensor configurations are used to cover the entire length of the
deck, with the available limited number of sensor units and assemble mode shapes in
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Fig. 7.2 Locations of moving and reference triaxial and uniaxial sensors along the bridge deck

as many as 159 vertical, transverse, and longitudinal directions using reference and
moving sensors. The sensors are located approximately 20 m apart, so that the types
of as many of the lowest modes as possible are correctly identified. All 159 sensor
locations and measurement directions are shown in Fig. 7.2.

Details of the instrumentation and the identification of modal properties are given
in [3]. For each sensor configuration, the measurements lasted 20min with a sam-
pling rate of 200 Hz. The modal properties are identified using a Bayesian modal
identification methodology [6, 7]. The type and the mean values of the modal fre-
quencies are shown in Table 7.1 for the lowest 20 modes. The full mode shapes of
the bridge at all 105 sensor locations along the transverse and vertical directions of
the bridge deck were assembled by combining the partial mode shapes identified for
all 13 sensor configurations. Measurements along the longitudinal direction of the
bridge deck are ignored since theywill not be included in themodel updating process.
A mode shape assembling algorithm similar to [5, 62] was used. The mode shapes
of the lowest 12 modes were successfully identified, except the 10th mode shape
which was very poorly identified and excluded from the modal data. Representative
assembled mode shapes are shown in Figs. 7.3 and 7.4, and compared with the mode
shapes predicted by the nominal FE model of the bridge.
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Table 7.1 Experimentally identified and nominal model predicted modal frequencies, and MAC-
values (T: deck bending in transverse direction, V: deck bending in vertical direction)

Mode Type Experimental
mean (Hz)

Nominal model
(Hz)

MAC-values

1 T 0.306 0.293 0.998

2 T 0.603 0.574 0.922

3 V 0.623 0.619 0.953

4 T 0.965 0.849 0.986

5 V 1.047 1.050 0.919

6 T 1.139 1.070 0.997

7 V 1.428 1.388 0.983

8 T 1.697 1.578 0.985

9 V 2.005 1.690 0.061

10 V 2.303 1.966 –

11 T 2.367 2.156 0.891

12 T 2.590 2.316 0.858

13 – 2.723 2.500 –

14 – 3.086 2.745 –

15 – 3.127 2.815 –

16 – 3.480 2.876 –

17 – 3.861 2.950 –

18 – 4.059 3.320 –

19 – 4.210 3.381 –

20 – 4.410 3.520 –

Fig. 7.3 Model-predicted and experimentally identified mode shapes for first bending - vertical
(left) and third bending - vertical (right)
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Fig. 7.4 Model-predicted and experimentally identified mode shapes for third transverse (left) and
fifth transverse (right)

7.5.1.2 Linear Finite Element Model

A detailed FE model of the bridge is created using three-dimensional tetrahedron
quadratic Lagrange finite elements. The nominal values of the modulus of elasticity
of the deck and the three piers are selected to be the design values. To take the
soil-structure interaction into account, large blocks of material are used to model
the soil and embed the piers and abutments into these blocks. The nominal values
of the soil stiffness are selected based on soil tests where a large uncertainty in soil
stiffness is reported. The largest size of the elements in the mesh is of the order of the
thickness of the deck cross-section. Several mesh sizes in the deck, piers, and soil
blocks were explored, and an accuracy analysis was performed to find a reasonable
trade-off between the number of degrees of freedom of the model and the accuracy
in predicting the lowest 20 modal properties. A mesh of 830,115 DOFs was kept for
the bridge-foundation-soil model of the structure. This mesh provides sufficiently
accurate results for the lowest 20 modal frequencies, with errors of the order of
0.1–0.5% compared to the smallest possible mesh sizes involving approximately 3
million DOFs.

The lowest twentymodal frequencies of theMetsovo bridge predicted by the nom-
inal model are reported in Table 7.1, and they are compared to the modal frequencies
estimated using the ambient vibration measurements. The Modal Assurance Crite-
rion (MAC) values between the model-predicted and the experimentally identified
mode shapes are also reported in Table 7.1 for the eleven experimentally identi-
fied mode shapes. MAC-values close to one indicate a very good match between
identified and predicted mode shapes. The results in Table 7.1 indicate that there is
a significant difference between the experimentally identified and model-predicted
modal frequencies. Although the MAC-values for modes 1, 3, 4 and 6 to 8 are higher
than 0.95, indicating a good match between model-predicted and identified mode
shapes, the MAC-values for the rest of the modes are significantly different from
one. In particular, the MAC-value for mode 9 is very low indicating a lack of cor-
respondence between the model-predicted and identified mode shape. The observed
discrepancies between the experimentally identified modal properties and the ones
predicted by the nominal FE model necessitate the use of FE model updating to
calibrate the FE model parameters. In this manner, the predictive capabilities of the
finite element model can be improved.
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Fig. 7.5 Substructures and interfaces of FE model of the bridge

7.5.1.3 Reduction of the Finite Element Model

The nominal finite element model is used to check in detail the model reduction tech-
nique and its effectiveness in terms of size reduction and accuracy. To demonstrate
the model reduction technique and its effectiveness, the bridge is divided into 16
physical substructures or components, as shown in Fig. 7.5. This partition results in
15 interfaces between the physical components. All components and interfaces are
numbered, so that for each component and interface, the corresponding neighbor-
hood components/interfaces are clearly defined. A linear finite element model of the
bridge is considered. For a component-consistent parameterization, one parameter
per component is assumed. This parameter is selected to be the modulus of elasticity
for each component, so that the stiffness matrix of each component linearly depends
on the component parameter, while the mass matrix is constant, independent of the
parameters.
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Model reduction is used to reduce the model and, thus, the computational
effort for performing Bayesian inference to manageable levels. Specifically, the
parameterization-consistent component mode synthesis (CMS) technique, intro-
duced in Chap.2, is applied. The accuracy of the model reduction technique depends
on the number of fixed-interface normal modes kept for each component, as well
as the number of interface modes kept. The optimal number of the modes to be
retained is always problem-dependent. In the following, some guidance will be used
and exploited to reduce the original FE model (see Sect. 4.6.2).

Let ωc be the cut-off frequency that represents the highest modal frequency that
is of interest in FE model updating. Herein, the cut-off frequency is selected to be
equal to the 20th modal frequency of the nominal model. Based on the unreduced
finite element model, the cut-off frequency is found to be ωc = ω20 = 3.51 Hz. For
each component s, it is selected to retain all fixed-interface modes with a frequency
of less than ωs,max = ρsωc, a multiple of the cut-off frequency ωc, where the values
of the multiplication factors ρs, selected herein to be component dependent, affect
the computational efficiency and accuracy of the model reduction technique. The
effectiveness of the CMS technique depends on the number of modes retained for
each component. Representative values of ρs usually range from 1 to 10. One can
select the values of ρs offline by comparing the modal properties (modal frequencies
and mode shapes) estimated by a reduced model for different values of ρs and the
modal properties of the original FE model. Such an offline analysis is carried out
as an effort to minimize the number of modes kept, maintaining the accuracy of the
reduced model.

The total number of internal and boundary DOFs per component of the unreduced
model, as well as the number of retained modes per component, are reported in
Fig. 7.6. In most structural components, the value of ρs = 5 is used. For the five
soil components, the value of ρs = 1 is found to be sufficient to maintain a high
accuracy in the values of the modal frequencies predicted by the reduced-order
model. As a result, fewer modes were retained for the soil components, without
compromising the accuracy of the predicted modal frequencies. It is clear from
these results that more than three orders of a magnitude reduction in the number
of DOFs per component is achieved using model reduction. A total of 170 fixed-
interface modes (dominant fixed-interface normal modes) out of the 830,115 DOFs
are retained for all 16 components. The total number of DOFs of the reduced model
is 16,205, which includes 16,035 interface DOFs for all components (see Table 7.2).

Figure 7.7 shows the fractional error between the modal frequencies computed
using the complete FE model and the ones computed using the reduced-order model
based on dominant fixed-interface normalmodes and the entire set of interfaceDOFs.
It is seen that the error for the modal frequencies falls below 0.18%, which ensures
high levels of accuracy for the ρs values selected for each component.

From the information provided in Table 7.2, it is evident that a large number
of generalized coordinates for the reduced system arises from the interface DOFs.
The large number of interface DOFs can be reduced by retaining only a frac-
tion of the interface modes [49]. The approach based on constant local interface
modes is considered in the present application (see Sects. 1.8 and 3.5). Following a

https://doi.org/10.1007/978-3-030-12819-7_2
https://doi.org/10.1007/978-3-030-12819-7_4
https://doi.org/10.1007/978-3-030-12819-7_1
https://doi.org/10.1007/978-3-030-12819-7_3
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Fig. 7.6 Number of internal and boundary DOFs, retained fixed-interface modes and retained
interface modes for each substructure and interface

Table 7.2 Number of generalized DOFs and percentage modal frequency error for the full (unre-
duced) and reduced models

DOF Full model ρs = 5 ρs = 5, νs = 200

Internal 814,080 170 170

Interface 16,035 16,035 1,721

Total 830,115 16,205 1,891

Highest percentage
error (%)

0.00 0.18 0.23

procedure similar to the fixed-interfacemodes, for each interface, the interfacemodes
that have a frequency of less than ωs

max = νsωc, a multiple of the cut-off frequency,
are retained, where themultiplication factor νs is problem-dependent. For most inter-
faces, the value of νs = 200 is used. Much higher values of νs = 5,000 are used for
the four interfaces that connect the physical components 6 and 10 of the right and
left abutments (see Fig. 7.5) to the bridge deck (Interfaces 6 and 10) and the soil
blocks (Interfaces 1 and 5). Results for the values of νs used and the modes kept
per interface are given in Fig. 7.6. With the exception of interfaces 6, 10, 1, and 5,
the number of retained interface modes is a fraction of the interface DOFs for each
interface.
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Fig. 7.7 Fractional error in the modal frequencies computed using the complete and reduced finite
element model

Figure 7.7 presents the results for the fractional error in the modal frequencies
as a function of the mode number, computed using the finite element model with
fixed-interface normal modes and interface modes. It can be seen that the fractional
error for the lowest 20 modes of the structure falls below 0.23%. Thus, sufficiently
accurate results are obtained for the case of reducing the fixed-interface normal
modes and interface modes. The reduced system has 1,891 DOFs, from which 170
generalized coordinates are fixed-interface modes for all components and the other
1,721 generalized coordinates are interface modes (see Table 7.2). The number of
generalized coordinates is drastically reduced by almost three orders of magnitude
compared to the number ofDOFs of the original unreduced FEmodel. The significant
reduction in the number of generalized coordinates of the reduced system and the
increased accuracy of the results are promising to use the proposed model reduction
method in Bayesian FE model updating, which requires a large number of finite
element model runs.

In conclusion, usingmodel reduction techniques, a drastic reduction in the number
of generalized coordinates is obtained, which can exceed three orders of magnitude,
without sacrificing the accuracy with which the lowest model frequencies are com-
puted. The time-to-solution for one run of the reduced model is of the order of a few
seconds, which should be compared to approximately two minutes required for solv-
ing the unreduced FE model. Further reductions are expected to result by retaining
a lower number of modes per component and employing the formulation based on
static correction [36].
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7.5.1.4 Finite Element Model Updating

The FE model of the bridge-foundation-soil system is updated next, based on the
experimentally identifiedmodal frequencies andmode shapes. The updating is based
on the formulation presented in Sect. 7.4.1.1 for w = 1. The FE model is parameter-
ized using three parameters associated with the modulus of elasticity of one or more
structural components. Specifically, the first parameter, θ1, accounts for the modulus
of elasticity of the deck (Components 11–16) of the bridge, as shown in Fig. 7.5. A
perfect correlation of the modulus of elasticity of the deck components is assumed.
The second parameter, θ2, accounts for the modulus of elasticity of the three piers
(Components 7–9), assumed to be perfectly correlated, while the third parameter,
θ3, accounts for the modulus of elasticity of the soil (Components 1–5), assumed
to be the same at all bridge supports. The model parameters in the set θ scale the
nominal values of the properties that they model. The corresponding parametrization
functions are similar to the ones used in Chap. 4.

The prior distribution is assumed to be uniform with bounds in the domain
[0.1,10] × [0.1,10] × [0.1,200] for the deck, pier, and soil model parameters, and in
the domain [0.001,1] for the prediction error parameter σ . The larger size of the soil
parameter was chosen to account for the higher uncertainty reported in the values of
the soil stiffness from soil tests. In addition, the effect of soil stiffness on the model
behavior for the low amplitude vibrations recorded during the ambient vibration tests
is investigated.

The model updating is performed using a subset of the experimentally identified
modes. The rest of the identified modes are used to validate the performance of the
updated model. Specifically, the lowest 15 modal frequencies are used for param-
eter inference, while the remaining 5 modal frequencies of modes 16–20 are used
to validate the updated model. Two model updating cases are considered. Model
updating Case 1 is based on using the lowest 15 experimentally identified modal
frequencies, while model updating Case 2 is based on using the 11 available mode
shapes, in addition to the lowest 15 modal frequencies. Approximately 105 observed
degrees of freedom are used, corresponding to measurements along the transverse
and vertical directions of the bridge deck. The measurements along the longitudinal
directions of the bridge deck are ignored.

Results are obtained using the parallelized TMCMC algorithm [21] to generate
samples from the posterior PDF of the structural model and prediction error model
parameters. One thousand samples per TMCMC stage are used, resulting in a total
runtime of approximately 30min using the reduced 1,891 DOFs model in a 4-core
computer. In the final TMCMC stage, the 1,000 samples populate the support of the
posterior PDF and quantify the uncertainty in the parameters given the experimental
data.

The projections of the TMCMC samples in the two-dimensional parameter space,
along with the marginal posterior distribution of the model parameters, are shown
in Figs. 7.8 and 7.9 for the model updating Cases 1 and 2, respectively. Table 7.3
reports the statistics of the model parameters summarized in the mean, and the 5%
and 95% quantile values of the model parameters. For the model updating Case 1,

https://doi.org/10.1007/978-3-030-12819-7_4
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Fig. 7.8 Two-dimensional sample projections andmarginal posterior distributions ofmodel param-
eters (model updating Case 1). θ1: Deck, θ2: Piers, θ3: Soil, σ : Prediction error

the updated mean values for the deck and pier stiffness parameters are approximately
0.96 and 0.97 times their nominal values, with spread of uncertainty about the mean
values of the order of 5% and 12%, respectively. The marginal posterior distribution
of the soil stiffness parameter in Fig. 7.8 and Table 7.3 indicates that any value of the
soil higher than approximately 35 times the nominal soil stiffness value is equally
likely. Specifically, values of the soil parameter θ3 from 35 to 200 (the higher bound
of the prior PDF for the soil parameter θ3) provide an equally good fit between
the experimentally identified and the model-predicted modal frequencies. Results
suggest that the soil is very stiff, since its stiffness values higher than 35 times
the nominal stiffness value do not substantially affect the modal properties. The
physical implication of this is that the bridge can be considered as fixed at the base
for the low vibration levels considered in the finite element model updating. From the
(θ1, θ2) projection of the samples shown in Fig. 7.8, a negative correlation is observed
between the deck and pier stiffnesses, which can be justified since an increase in the
deck stiffness is counterbalanced by a decrease in the stiffness of the piers tomaintain
the fit between themodel-predicted and experimentally identifiedmodal frequencies.

For the model updating Case 2, the uncertainties in the model parameters are
significantly reduced compared to the uncertainty estimated for the model updating
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Fig. 7.9 Two-dimensional sample projections andmarginal posterior distributions ofmodel param-
eters (model updating Case 2). θ1: Deck, θ2: Piers, θ3: Soil, σ : Prediction error

Case 1. This is due to the large number of data associated with the mode shape
components. The updated mean values for the deck and pier stiffness parameters
are approximately 0.97 and 1.00 times their nominal values with uncertainties of
the order of 1.5% and 2%, respectively. Results suggest that the pier stiffness values
are exactly the same as the design values, while the deck appears to be slightly less
stiff that the one used for design. From the results in Fig. 7.9 and Table 7.3 it can be
concluded that the uncertainty in the soil stiffness parameter, ranging from approxi-
mately 20 to 60 times its nominal value with spread of uncertainty of approximately
40% the mean value, is relatively much larger than the uncertainty in the deck and
pier stiffness parameters. This signifies that, for the low amplitude vibration levels
considered, the soil appears to be significantly stiffer than the soil tests suggest.
From the (θ1, θ2), (θ1, θ3), and (θ2, θ3) projections of the samples shown in Fig. 7.9,
a negative correlation is observed between the soil and pier stiffnesses, which can be
justified since an increase in the soil stiffness is counterbalanced by a decrease in the
pier stiffnesses to maintain the fit between the model-predicted and experimentally
identified modal properties. For comparison purposes, note that the scales used in
Figs. 7.8 and 7.9 are different.
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Table 7.3 Mean value and 5% and 95% quantiles of the marginal posterior PDF of the structural
model parameters for model updating Cases 1 and 2

Case 1 Case 2

θ1 θ2 θ3 θ1 θ2 θ3

Mean 0.966 0.968 116.5 0.971 1.008 35.7

5% Quantile 0.914 0.842 37.9 0.958 0.987 21.8

95%
Quantile

1.023 1.096 186.6 0.983 1.027 58.4

Fig. 7.10 Uncertainty
propagation: Modal
frequency fits for model
updating Case 1

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Mode Number

M
od

al
 F

re
qu

en
cy

 (H
Z)

mean
5% quantile
95% quantile
experimental
nominal

7.5.1.5 Uncertainty Propagation

The posterior parameter uncertainty is propagated next through themodel to estimate
the uncertainties predicted by the updated-model for the lowest 20modal frequencies.
The mean values of the modal frequencies and the uncertainty in the values of the
modal frequencies in terms of the 5% and 95% quantiles are shown in Figs. 7.10 and
7.11 for themodel updatingCases 1 and 2, respectively. For comparison purposes, the
predictions from thenominal FEmodel and the experimentally identifiedvalues of the
modal frequencies are also shown in these figures. The improvement of the updated
model compared to the nominal model is evident. The updated model significantly
improves, compared to the nominal model, the fit between the model-predicted and
the experimentally identified modal frequencies. In particular, the higher the mode,
the larger the discrepancy between the nominal model and experimentally identified
modal frequencies. In addition, the uncertainty in the predictions of the updated
model increases as the mode number increases, indicating that higher modes are
more sensitive to variations in the values of the model parameters compared to lower
ones.
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Fig. 7.11 Uncertainty
propagation: Modal
frequency fits for model
updating Case 2
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For the model updating Case 1, it is observed that most of the experimental
modal frequency values for the lowest 20 modes fall well within the 90% uncertainty
interval of the model predictions. This is a strong indication of the accuracy of
the updated model and its predictive capability, as far as the modal frequencies
are concerned. For the model updating Case 2, the size of the uncertainty interval
for the modal frequencies decreases substantially due to the significantly smaller
uncertainty identified for themodel parameters. The relatively large uncertainty in the
soil stiffness observed in Fig. 7.9, and the small uncertainty in the modal frequency
predictions indicate that the modal frequencies are insensitive to changes in the
soil stiffness values over the support of the posterior distribution. It is also worth
noting that the updated model inferred from the lowest 15 modal frequencies and 11
mode shapes provides significantly better predictions of the last 5 modal frequencies
(modes 16 to 20), which were not included in the model updating process.

Similar results for the MAC-values, between the experimentally identified mode
shapes and the mode shapes predicted by the updated finite element models, along
with the 5% and 95% percentiles, are presented in Figs. 7.12 and 7.13 for the model
updating Cases 1 and 2, respectively. For the model updating Case 2, it can be seen
that most of the MAC-values are greater than 0.95 for almost all modes, confirming
the adequacy of the selected model class. Although for mode 9 a lower MAC-value
in the range of 0.82 to 0.87 is obtained, the updating models resulted in a substantial
improvement in the MAC-values for mode 9 as compared to the low MAC-value
of 0.061 (see Table 7.1) predicted by the nominal finite element model. Also, the
uncertainty in the MAC-values is very small, signifying that the MAC-values are
insensitive to changes in the values of the model parameters over the support of
the posterior distribution. In contrast, the model updating Case 1 resulted in MAC-
values lower than 0.95 and large uncertainties in the MAC-values for modes 11 and
12. Comparing Cases 1 and 2, a clear improvement in the MAC-values is observed
when the mode shapes of the 11 modes are used for updating the model classes. This
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Fig. 7.12 MAC-values
between measured and
model-predicted mode
shapes for model updating
Case 1
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Fig. 7.13 MAC-values
between measured and
model-predicted mode
shapes for model updating
Case 2
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indicates that predictions of output QoI from the updated FE model based on modal
frequencies may be less reliable.

Furthermore, the two Cases 1 and 2, which differ by the measurement data used in
model updating, provide conflicting values of the soil stiffness uncertainties, although
both cases give qualitatively similar results suggesting a much higher soil stiffness
value than the nominal one estimated by soil tests. It is believed that Case 2 reflects
better the uncertainties in the values of the soil stiffness in light of the data available
for both modal frequencies and mode shapes.
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7.5.1.6 Alternative Parameterized Model Classes

In the following, alternative model classes are introduced in order to perform a
model class selection. They correspond to the same finite element model but with
different parameterization schemes involving higher number of parameters. In partic-
ular, three parameterization schemes are investigated: a five-parameter model class
obtained from the existing three-parameter model class by introducing one inde-
pendent stiffness parameter per pier; a seven-parameter model class obtained from
the existing three-parameter model class by introducing one independent parameter
per soil block; and a nine-parameter model class obtained from the existing three-
parameter model class by introducing one independent parameter per pier and soil
block. Results show that the alternative model classes do not improve the fit between
measured and model-predicted modal properties. Bayesian model selection is used
to rank the 3 to 9 parameter model classes based on the measured data. The highest
evidence is obtained for the three-parameter model class. In particular, based on the
TMCMC estimates, a positive difference Δ = lnPr(M3|D) − lnPr(M5|D) between
the log-evidence values of the three- and the five-parameter model classes M3 and
M5 of magnitude 1.41 and 4.00 is estimated for the Cases 1 and 2, respectively. Thus,
between the three-parameter model classM3 and the five-parameter model classM5,
the Bayesian model selection method rewards the three-parameter model class with
final ranking probabilities Pr(M3|D)/Pr(M5|D) = exp(Δ) = 4.1 and 54.4 for the
Cases 1 and 2, respectively, provided that the priors for the two model classes are
equal. These aforementioned results are consistent with our expectations, since the
fit that the alternative model classes provide to the data is almost the same as the
three-parameter model class, and so the more complex model classes, in terms of
their number of parameters, are penalized [16].

7.5.1.7 Computational Issues

The TMCMC algorithm used for parameter estimation based on the reduced 1,891
DOFs model involves 1,000 samples per TMCMC stage and results in 14 TMCMC
stages for the model updating Case 2. As a result, the number of finite element
analyses and eigenvalue analyses for computing the lowest 20modal frequencies and
mode shapes is 14,000. It should be noted that the computing time scales linearlywith
the number of available cores when the parallelized TMCMC algorithm is activated.
Herein, the analysis was performed in a 4-core double-threaded computer. The total
time-to-solution is approximately 30min using the reduced 1,891 DOFs model. For
the large-order FE model developed for the Metsovo bridge with more than 800,000
DOFs, the computational demands involved are excessive due to the approximately
two minutes required to complete one model simulation run to estimate the lowest
20 modal frequencies and mode shapes. Using the fact that the number of eigenvalue
analyses are approximately 14,000, the total time-to-solution in the same 4-core
double-threaded computer is expected to be of the order of three days. Overall,
more than two orders of a magnitude reduction in computational time is achieved to
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perform the model updating using the reduced 1,892 DOFs model. Thus, it is clear
that a drastic reduction in computational effort is obtained.

7.5.2 Example 2: Updating of Nonlinear Model

7.5.2.1 Structural Model

The base-isolated structural system shown in Fig. 7.14 is considered in the second
example. The superstructure consists of a 10-floor, three-dimensional reinforced
concrete building model. Material properties of the reinforced concrete structure
have been assumed as follows: Young’s modulus E = 2.34 × 1010 N/m2; Poisson’s
ratio ν = 0.3; and mass density ρ = 2,500 kg/m3. The height of each floor is 3.5 m,
leading to a total height of 35.0 m for the structure. The floors are modeled with
shell elements with a thickness of 0.3 m and beam elements of a rectangular cross
section of dimension 0.3 m × 0.6 m from floors 1 to 5 and 0.25 m × 0.5 m from
floors 6 to 10. Each floor is supported by 48 columns of rectangular cross section of

Fig. 7.14 Building model with base isolation system
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dimension 0.8m× 0.9m. The corresponding finite elementmodel has approximately
40,000 degrees of freedom. A 2% of critical damping for the modal damping ratios
is introduced in the model. The isolation system is composed of a platform and 48
rubber bearings. The total mass of the platform is equal to 6.0 ×105 kg. As stated in
Chap.5, the isolation devices (rubber bearings) consist of layers of rubber and steel,
with the rubber being vulcanized to the steel plates. A detailed description of the
analytical model that characterizes the structural behavior of the rubber bearings is
given in Sect. 5.8.2.

7.5.2.2 Response of the Combined System

In general, base-isolated buildings are designed such that the superstructure remains
elastic. Hence, the superstructure is modeled as a three-dimensional linear elastic
system, while the base is assumed to be rigid in plane, and it is modeled using three
degrees of freedom. Let ue(t) be the nth dimensional vector of relative displacements
of the superstructure with respect to the base and Me, Ce, Ke be the corresponding
mass, damping, and stiffness matrices, respectively. Also, let ub(t) be the vector of
base displacements with three components andGe be the matrix of earthquake influ-
ence coefficients of dimension n × 3, that is, the matrix that couples the excitation
components of the vector üg(t) to the degrees of freedom of the superstructure. The
equation of motion of the superstructure is expressed in the form

Meüe(t) + Ceu̇e(t) + Keue(t) = −MeGe[üb(t) + üg(t)] (7.57)

where üb(t) is the vector of base accelerations relative to the ground. The equation
of motion for the base platform is written as

(GT
e MeGe + Mb)(üb(t) + üg(t)) + GT

e Meüe(t)

+Cbu̇b(t) + Kbub(t) + frb(t) = 0 (7.58)

where Mb is the mass matrix of the rigid base, Cb is the resultant damping matrix
of viscous isolation components, Kb is the resultant stiffness matrix of linear elastic
isolation components, and frb(t) is the vector containing the nonlinear forces activated
on the isolators. It is noted that the set of equations (7.57) and (7.58) can be written
in a compact form as in Eq. (1.1) (see Sect. 1 of Chap.1).

If the dynamic response of the superstructure is represented by a linear combi-
nation of its mode shapes, that is, ue(t) = ϕeυe(t), where ϕe is the matrix of mode
shapes of the superstructure and υe(t) is the corresponding vector of modal response
functions, the combined equation of motion of the base-isolated structural system
can be written as

[
I ϕT

e MeGe

Ge
TMeϕe Mb + Ge

TMeGe

]{
ϋe(t)
üb(t)

}
+

[
Ceυ 0
0 Cb

] {
υ̇e(t)
u̇b(t)

}
+

https://doi.org/10.1007/978-3-030-12819-7_5
https://doi.org/10.1007/978-3-030-12819-7_5
https://doi.org/10.1007/978-3-030-12819-7_1
https://doi.org/10.1007/978-3-030-12819-7_1
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[
Keυ 0
0 Kb

] {
υe(t)
ub(t)

}
= −

[
ϕe

TMeGe

Mb + Ge
TMeGe

]
üg(t) −

{
0

frb(t)

}
(7.59)

where the matrices Ceυ and Keυ are given by

Ceυ =

⎡
⎢⎢⎢⎢⎣

2ξe1ωe1

.

2ξerωer

.

2ξemωem

⎤
⎥⎥⎥⎥⎦ , Keυ =

⎡
⎢⎢⎢⎢⎣

ω2
e1

.

ω2
er

.

ω2
em

⎤
⎥⎥⎥⎥⎦

in which ωer, r = 1, ...,m, are the natural frequencies of the original system, ξer,r =
1, ...,m, are the corresponding damping ratios and m � n is the number of modes
considered.Note that the natural frequencies andmode shapes of theoriginalmodel of
the superstructure are obtained from the reduced-order system model (see Sect. 1.10
of Chap.1). The combined equation of motion (superstructure and base-isolation
system) constitutes a nonlinear system of equations due to the nonlinearity of the
isolation forces. The solution of the equation of motion (7.59) is obtained in an
iterative manner by using any suitable step-by-step nonlinear integration scheme
[10].

7.5.2.3 Model Updating Problem

The structural system previously described is used for model updating using simu-
lated response data. In particular, the external diameter of the isolators De and the
total height of rubber in the devices Hr are estimated. These parameters are param-
eterized as De = θ1D̄e and Hr = θ2H̄r , where D̄e = 0.85m and H̄r = 0.14m are the
corresponding nominal values. These parameters control the value of the parameters
α and A of the hysteretic model affecting the nonlinear behavior of the isolators (see
Sect. 5.8.2). In addition, the stiffness of the columns of the first floor of the super-
structure in the x direction is also estimated. This property is parameterized by the
dimensionless parameter θ3.

The superstructure is divided into two linear substructures as shown in Fig. 7.15.
Substructure 1 is composed of the column elements of the first floor, while Substruc-
ture 2 contains the rest of the superstructure components. In this context the base iso-
lation system, that is, the isolation devices and the base platform can be considered as
a nonlinear substructure. It is assumed that the base-isolated structural system is built
and the response data are available to update the isolator parameters and the stiffness
of the columns of the first floor. The model updating is based on the measurements
of the ground acceleration at the support of the isolation system, the acceleration
response in the x direction at the base platform, and the acceleration response in the
x direction on the first and second floors. To this end, the original unreduced finite
element model of the combined system (superstructure and base-isolation system) is
excited horizontally (in the x direction) with the Santa Lucia ground-motion record

https://doi.org/10.1007/978-3-030-12819-7_1
https://doi.org/10.1007/978-3-030-12819-7_5
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Fig. 7.15 Linear substructures of the superstructure finite element model used for model updating
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Fig. 7.16 Santa Lucia ground-motion record (2010 Chilean earthquake)

recorded during the 2010 Chilean earthquake. The input ground acceleration time
history is shown in Fig. 7.16. It corresponds to a groundmotion ofmoderate intensity.

The actual base-isolated system used to generate the simulated data is character-
ized as follows. The isolator parameters are set equal to De = 0.78m, Hr = 0.17m,
and Di = 0.10m, and the stiffness of the superstructure columns of the first floor in
the x direction is either kept fixed to its nominal value or is reduced by 20% with
respect to its nominal stiffness value, depending on the model updating case consid-
ered (see Sect. 7.5.2.4). It is noted that this model is more flexible than the nominal
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Fig. 7.17 Simulated acceleration time histories at the base platform, first floor, and second floor

system, since the isolators have smaller external diameters and larger heights. Once
the acceleration responses at the various locations are computed, a Gaussian discrete
white noise is added with a standard deviation equal to 10% of the root-mean square
value of the corresponding acceleration time histories. One hundred seconds of data
with a sampling interval of Δt = 0.05 s are used, giving a total of ND = 2,000 data
points. Simulated accelerations are plotted in Fig. 7.17 for the base platform and for
the first and second floors.

The simulated response data shown in Fig. 7.17 provides the data for the model
updating process. The actual implementation of this process is carried out by using a
reduced-order system model based on dominant fixed-interface normal modes. The
reduced model is defined as follows. For each linear substructure of the superstruc-
ture, all fixed-interface normal modes that have a frequency less than a given cut-off
frequency are selected to be retained. The cut-off frequency is set to be proportional
to the 12th modal frequency of the original unreduced superstructure finite element
model. Validation calculations show that retaining 48 generalized coordinates for
Substructure 1 and 174 generalized coordinates for Substructure 2 is adequate in the
context of this application. In fact, with this number of generalized coordinates, the
fractional error (in percentage) between the modal frequencies using the complete
finite element model and the modal frequencies computed using the reduced-order
model falls below 0.1% for the lowest 12 modes. Then, a total of 222 generalized
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coordinates, corresponding to the fixed-interface normal modes, out of 39,712 DOFs
of the original model, are retained for the two linear substructures in this application.
The number of interface degrees of freedom is equal to 288 in this case. Note that
no interface reduction is considered. The total number of degrees of freedom of the
reduced model represents more than 98% reduction with respect to the unreduced
model in this case.

7.5.2.4 Model Updating Results

Two cases are considered for the model updating problem. In the first case, only the
isolator parameters are identified with the provided data. To this end, the dimension-
less parameter θ3 is set equal to one, that is, there is no reduction in the stiffness of the
first floor superstructure columns. Simulated data are generated for θ3 = 1. To test
the capabilities of the updating process in the framework of the combined system,
the identification of the isolator parameters as well as the stiffness properties of the
superstructure are simultaneously considered in the second case. In the first case,
independent uniform prior distributions are assumed for parameters θ1 and θ2 that
are over the range [0.5, 1.4]. As previously pointed out, these parameters affect the
nonlinear behavior of the isolators. The number of samples at the different iteration
steps of the transitional Markov chain Monte Carlo method is taken as 1,000. The
updating process converges in six stages (steps) in this case. The samples from the
posterior probability density function are displayed in terms of parameters θ1 and θ2
in Fig. 7.18.

The value of the nominal model parameters is also indicated in the figure. The
large prior uncertainty about parameters θ1 and θ2 (uniformly distributed over the
range [0.5, 1.4]) is significantly reduced, which is visible from the decreased range
of the posterior samples. In fact, the samples of the external diameter are distributed

Fig. 7.18 Samples of the
posterior probability density
function in the (θ1 − θ2)
space generated at the last
step of the transitional
Markov chain Monte Carlo
method
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Fig. 7.19 Posterior histograms of model parameters θ1 and θ2. Mean estimates: θ̄1 = 0.92, θ̄2 =
1.20

around the actual value of 0.78 m (θ1 = 0.92), while the samples of the total height
of rubber are spread around the actual value of 0.17 m (θ2 = 1.20) as shown in the
corresponding histograms of these parameters (Figs. 7.19). The results of Fig. 7.18
also suggest that the data for the updated isolation model result in uncertainties that
are correlated along a certain direction. The correlation structure is consistentwith the
fact that the base isolation system becomes stiffer as the rubber diameter is increased.
Contrarily, the isolation system becomes more flexible as the height of the rubber
is increased [37]. Therefore, an increase in the rubber diameter is compensated by
an increase in the height of the rubber during the updating process, and all points
along that direction correspond to isolation system models that have similar base
drift responses.

In the second case, the stiffness of the superstructure columns of the first floor
in the x direction is identified together with the isolator parameters. Simulated data
for this case are produced for θ3 = 0.8 (actual value). An independent uniform prior
distribution defined over the interval [0.5, 1.5] is assumed for θ3. Figures 7.20 and
7.21 show the samples of the parameters θ1, θ2, and θ3 converging during the updating
process in terms of their histograms. After seven steps of the transitional Markov
chain Monte Carlo method, the parameters associated with the isolation system and
the superstructure are distributed around their actual values θ1 = 0.92, θ2 = 1.20, and
θ3 = 0.80. Themean estimates of these parameters are equal to θ̄1 = 0.92, θ̄2 = 1.22,
and θ̄3 = 0.79. From the different steps of the identification process, it is clear that
the posterior marginal distribution of the parameter related to the external diameter
of the isolators is very peaked. Thus, this parameter is identifiable to almost a unique
value. This result is reasonable since this parameter has a significant effect on the
global behavior of the combined system (isolation system and superstructure) [37].
However, the posterior marginal distributions of the parameters associated with the
total height of rubber in the isolators and the stiffness of the first floor columns of the
superstructure show some degree of dispersion around their mean estimates. These
results are also observed in Fig. 7.22, where the projection of the samples in the
(θ2 − θ3) space is shown. From this figure, the support of the unidentifiable domain
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Fig. 7.20 Histograms of model parameters θ1, θ2 and θ3 during the first stages of the identification
process (steps 1 and 3)

Fig. 7.21 Histograms of model parameters θ1, θ2 and θ3 during the last stages of the identification
process (steps 5 and 7)

is quite clear. Furthermore, there is no clear interaction between these twoparameters.
This result is reasonable from a structural point of view, since numerical validations
have shown that the response of the base platform is not very sensitive to the total
height of rubber in the isolators over the range considered here. Similarly, numerical
simulations have demonstrated that the overall response of the combined system
is not very sensitive to the 20% stiffness reduction of the first floor superstructure
columns. The previous results illustrate some important advantages of Bayesian
updating procedures over traditional techniques that attempt to identify one best
model when there is a limited number of data available. In this case, the identification
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Fig. 7.22 Samples of the posterior probability density function in the (θ2 − θ3) space generated at
the last step of the transitional Markov chain Monte Carlo method

problem emerges as ill-conditioned without a unique solution for some parameters,
which can be tackled efficiently with Bayesian model updating.

7.5.2.5 Computational Cost

The number of finite element model runs required during the identification process
depends, among other things, on the number of transitional Markov chain Monte
Carlo stages (steps), which, in this case, is equal to seven. For comparison purposes,
the computational effort for obtaining one dynamic response of the original unre-
duced finite element model is approximately 1.20min. Multiplying this time by the
total number of dynamic analyses required by the transitional Markov chain Monte
Carlo method, the total time is expected to be of the order of 143 h (almost six
days). In contrast, the updating process of the reduced-order combined system (iso-
lation system and superstructure) takes approximately 20 h. Thus, a drastic reduction
in computational efforts is achieved without compromising the predictive capabil-
ity of the proposed identification methodology. The previous computational efforts
are based on the consideration of some parallelization features of the identifica-
tion process. In particular eight transitional Markov Chain Monte Carlo samples are
simultaneously run in the present implementation.
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