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Abstract. Whether due to economic pressure or environmental con-
cerns, the penetration rate of renewable energies has been increasing
over recent years. Uruguay is a leader country in the usage of renewable
energies, getting 98% of its electricity from such sources. Its lack of fossil
energy resources has historically pushed this country to rely on hydro-
energy. Recently, in a scenario where most natural hydro-resources have
been deployed, Uruguay has moved to non-conventional renewable ener-
gies, to biomass and wind power mostly, although nowadays solar sources
are rapidly increasing. As clean and financially stable as they are, non-
conventional energies have weaknesses. Unlike thermic and most hydro-
sources, wind and solar energies are not controllable, are intermittent
and uncertain some hours ahead, complicating the short-term operation
and maintenance of electrical systems. This work explores how to use
smart-grids capabilities to adjust electricity demand as a natural hedge
against novel short-position risks in the Uruguayan electricity market.

Keywords: Renewable energies · Smart-grids ·
Short-term power dispatch scheduling · Combinatorial optimization

1 Introduction

The absence of fossil energy sources, such as oil, coal or gas, spurred decades
ago to Uruguayan authorities to invest in hydroelectric dams as its main source
of electricity. Unlike fossil resources, the country accounted important hydraulic
assets. Hence, Uruguay historically figured among top countries regarding the
percentage of electricity coming from renewable sources. The national electric
power matrix was complemented with conventional oil-fired thermal generation
plants. Later on, the interconnection with its border neighbors (Argentina and
Brazil) supplied and additional level of resilience and robustness to the system.
As demand grew, the frequency at which thermal generation plants were used
increased as well, so did the energy costs. Similar conditions were taking place
in Argentina and Brazil, so importing electricity was as expensive as importing
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oil to keep thermal plants running. By 2007, the situation became critical and
the national authorities started a process of diversification of the power sources,
which aimed on biomass and wind power at early stages. Today, Uruguay is a
world leader in the usage of renewable energies, serving 98% of its own demand
of electricity from renewable sources (see [8]).

Table 1. Installed power plant by type of energy source [ADME: 2017]

Energy by
type of source

Number
of units

Installed
power plant
(MW)

Relative
subtotal

Produced
energy total
2017 (GWh)

Relative
subtotal

Biomass 12 200 4.4% 900 7.1%

Wind-power 37 1.437 31.5% 4.400 34.9%

Solar 17 230 5% 200 1.6%

Hydroelectric 4 1.534 33.7% 6.200 49.2%

Combined Cycle 1 550 12.1% 100 0.9%

Other Thermal Units 4 604 13.3% 800 6.3%

Table 1 presents the main details regarding the Uruguayan power plant by
late 2017. The source is ADME (Administración Del Mercado Eléctrico) and it
is available at http://adme.com.uy. The extremely low dependence upon fossil
energies isolates the Uruguayan electricity market from commodities volatility.
On the other hand, and as it counts in Table 1, over one third of the total energy
consumed comes from wind-power, which is highly volatile in the short-term.
Variable renewable energies (VRE) have a negative impact in the operation costs
of the system. Real-world examples (UK and Germany) of such problems are
described in [2]. Managing the electric grid of a country is a challenging task that
must be carried out carefully and optimally. In order to accomplish that, multiple
problems are to be solved, spanning different scales of time and components.
Main objects are: generating plants, the transmission and distribution networks.
Long-term planning usually applies to assess the return of investments over those
objects along many years ahead. Medium-term planning usually refers to the
valuation of intangible resources, such as the height of the lake in an electric
dam accounted as an economic asset. Short-term planning consists in crafting
optimal dispatch schedules some days ahead, in order to efficiently coordinate the
usage of available resources. Beyond that time scale, there are almost real-time
models to keep the physical variables of the system (e.g. frequency, active and
reactive power) under control. This work aims on the short-term power dispatch
of the grid, whose results set the prices of energy in the electricity market. Due to
its short scale of time (a few days ahead), such models can assume many sources
of uncertainty as deterministic. For instance, oil prices can be considered as fixed
along some days to follow, and although sudden/unexpected rains could arise,
they hardly change the level of water reservoirs to a significant point.

http://adme.com.uy
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The former premisses are actually quite realistic when applied to conventional
and some non-conventional energy sources (e.g. biomass). Regarding wind and
solar power however, those hypotheses become erroneous. The intrinsic stochas-
tic nature of wind and solar power turns out the short-term dispatch of the
grid into a much harder challenge, which is object of academic and industrial
interest (see [3,6]). In its economical dimension that volatility indicates that
wind-energy constitutes a risk position. Under steady conditions (energy prices,
weather conditions, date of a year) demand is highly predictable, so given a
particular date of the year and an accurate weather forecast, the demand over
the grid is among those variables that could be considered as known. This is
due to low deviations associated with a large number of users under a station-
ary behaviour. As a consequence, legacy short-term optimal schedules models
are deterministic, or deal with narrow variance in the variables. In addition,
traditional instruments to modulate demand with economic measures go by
setting different prices between hours on a day, intending to move a fraction
of energy consumption from the demand’s peak hour towards demand valleys
(night-valley filling). Such instruments are based on the premisse that energy is
scarce, while the truth is that non-conventional energies, especially wind-power,
can be either lower or higher than forecasted. Smart-grid technologies are a cor-
nerstone for Smart-cities paradigm. Smart-grids allow to coordinate important
portions of the demand, which could now be directed in opposite direction to
wind-power variations and accounted as a hedge instruments against generation
risks (demand response). There are many ways to get benefits from demand con-
trol. For instance, works [4,5,7] are inspired in a free-market environment, with
a kind of underlying stock exchange where energy offers are traded. Sometimes
this is not possible due to regulatory or scalability issues. Besides, wind and solar
power fluctuate so rapidly, that implementing classical financial contracts (e.g.
forwards or swaps) is not always optimal, even a-day-ahead. Using batteries is
another instrument to compensate power variations in the offer with demands.
This document explores the benefits of using smart-grid technologies and res-
idential energy storage, to coordinate part of the residential demand with the
uncertain offer of energy in the system. The application case is based on the
particulars of the Uruguayan market, where only large-scale energy consumers
are allowed to trade in the electricity market, while residential users only can get
electricity from the state-owned company. In this wholesale electricity market,
the price is not set by pairing bids and offers. Instead, their production parame-
ters of generators (e.g. minimum and maximum power, fixed and variable costs)
are public, and up from them, the authorities that operate the system dictate
when and how much energy is going to be produced by each unit. Production
decisions are driven by a short-term reference optimization model, whose objec-
tive function aims on minimizing the total cost of generation. Such premisses are
ideal for the approach presented in this work, which is stated from a short-term
point of view optimization. These results show how the existence of smart-grid
technologies allow to improve the efficiency of the system, not the return of the
investments necessary to achieve such smart-grid grade. Problem instances are
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based on real data of the Uruguayan market, chosen to be representative of dif-
ferent scenarios. The remaining of this document is organized as follows: Sect. 2
shows the shot-term volatility of wind power and the techniques used to master
it; Sect. 3 describes the main characteristics of the optimization models used to
estimate the benefits of counting with smart-grid technologies; Sect. 4 presents
the set of test scenarios used as instances of the previous models; while Sect. 5
summarizes the main conclusions of this work and lines of future work.

2 Dealing with Wind Power Uncertainty

This section shows how variable wind-power is, when described as a stochastic
process, and it briefly presents some of the techniques used to likely fence its
realizations. The historical of wind-power data in Uruguay has a few years, and
along this period the installed power plant was firmly growing, so instead of
expressing power in term of MW we use the Plant Load Factor (PLF), which
corresponds to the actual power generated at each time, divided by the sum of
the installed power capacity of each wind turbine in the system at each moment.
So, 0 ≤ PLF ≤ 1 for each hour. Hence, information is normalized, and we can
disregard of changes in the installed capacity during the period of analysis.

time window (days)
50 100 150

da
ily

 to
ta

l P
LF

 [0
-2

4]

6

7

8

9

10

11

12

13
Average daily energy (summer)

time window (days)
50 100 150

|r
ea

lti
ve

 d
ev

ia
tio

n|

0

0.1

0.2

0.3

0.4

0.5

0.6
Relative deviation from seasonal mean

Fig. 1. Time window average for daily wind energy on summer days

Figure 1 shows the daily cumulated PLF (the sum of hour PLFs, which then
ranges from 0 to 24) along two consecutive years of summer days. We have
selected days of one season to avoid deviations coming from seasonal behaviour.
The figure shows how after a week or two the process goes inside the 10% error
band, respect to the expected value for that season.

Therefore, wind-power is fairly regular when used in medium-term planning.
For shorter periods of the time, the situation is quite the opposite. The leftmost
of Fig. 2 sketches the distribution of daily cumulated PLFs, while the right-
most part plots actual daily realizations of the process (blue curves) along one
and a half years and the average PLF at each hour (black asterisks). Comple-
mentarily, there are approaches for short-term wind power forecasting based on
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Fig. 2. Histogram of daily wind energy samples [leftmost] and 30% most atypical real-
izations for Uruguayan wind-power [rightmost] (Color figure online)

numerical simulations of atmosphere’s wind flows. For a day ahead period, or
even larger time windows, numerical simulations are usually more accurate than
purely statistical models. Figure 3 presents 72 h ahead forecasts (blue curves) and
actual power series (red curve) for two samples within the actual data-set. These
and other historical series are available at: http://www.ute.com.uy/SgePublico/
ConsPrevGeneracioEolica.aspx.
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Fig. 3. Examples of 72 h forecasts (blue) and the actual power registered (red) (Color
figure online)

Although numerical simulations perform better than purely statistical meth-
ods to follow the process whereabouts at early stages, they are far from being
trustworthy in what respects to the construction of likely scenarios at larger
times. On the rightmost of Fig. 3 there is an example where the difference of
energy between forecast and actual processes (i.e. the grey area), accounts 57%
of the average PLF for the period.

Besides assessing potential savings coming from using smart-grids, this work
benchmarks the performance of deterministic and stochastic optimization mod-
els over the same test scenarios. Therefore, confidence bands were used to fence

http://www.ute.com.uy/SgePublico/ConsPrevGeneracioEolica.aspx
http://www.ute.com.uy/SgePublico/ConsPrevGeneracioEolica.aspx
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Fig. 4. A confidence band (grey) crafted after forecast and the actual process (red)
(Color figure online)

wind-power process with a high degree of certainty. Those bands were crafted
up from the combination of three independent sets of forecasts and the corre-
spondent actual power series. As an example, Fig. 4 shows the confidence band
for a particular day within the test-set. Bands were calibrated seeking for the
average off-band energy (i.e. green areas in the figure) to be below 10% of the
average PLF. Besides, bands are adjusted so less than 10% of the days violate
the previous condition. The calibration whose average band width is minimal
while fulfills the previous conditions, has an average width deviation respect to
the centroid (i.e. blue curve) slightly above 10% of the average energy demand
(the fact this final figure replicates the previous is just a coincide). The details
of the technique used to craft these bands are documented in [9].

3 Optimal Short-Term Optimization Model

This section describes the main entities of the Uruguayan electricity market and
examples about how some of them are modeled, and how their instances are
combined into a single optimization model.

Over the upmost part of Fig. 5 is represented the power offer of the system.
Renewable (green) energies comprise: wind and solar power (non-cumulative
renewable/NCR), Hydroelectricity (HYD) and the Biomass, whose units are
basically thermal generation plants (TER). The installed power plant is com-
pleted with fossil thermal generation units. Upon the rightmost-bottom of Fig. 5
non-manageable demands are represented. They are typically associated (though
not limited) to some residential appliances. Such inelastic appliances (IAP) are
considered hourly predictable demands over the time horizon to optimize, which
is 72 h ahead in this work (i.e. the time horizon of wind-power forecasts). In other
words, inelastic appliances impose a power requirement to the system. Variants
of the basic model introduce: elastic applications (EAP) or active applications
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Fig. 5. Entities of the wholesale electricity market

(AAP). Elastic applications are those where requirements are better expressed
in terms of energy rather than power. A fraction of what they need could be
expressed as a power constraint, but the idea is that substantial portions of
the required energy within certain time windows could be either deferred or
advanced into that window. Finally, in addition to being elastic, active applica-
tions can return power to the network when necessary. In all the models explored
in this work, elastic and active applications are at the service of the system (i.e.
social-welfare). We assume they can be remotely controlled, so as long as basic
power requirements are fulfilled, the gaps of energy to complete those demands
constitute control variables just as those of the installed power plant, and they
are also used to get the most of the optimization.

3.1 Thermal Units

Each entity has a reference mixed-integer optimization sub-model or block. All
these blocks combined and instantiated for a particular data-set define the whole
optimization problem for that instance and variant. For example, Eq. 1 is the
framework to model simple thermal plants, labeled as Other Thermal Units in
Table 1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x
g
t ,w

g
t

a
∑

t∈T

xg
t + b

∑

t∈T

wg
t + α

∑

t∈T

yg
t

mGT · xg
t ≤ wg

t , t ∈ T (i)
wg

t ≤ MGT · xg
t , t ∈ T (ii)

yg
t ≥ xg

t − xg
t−1, t ∈ T (iii)

2xg
t − 2xg

t+1 + xg
t+2 + xg

t+3 ≥ 0, t = 1, . . . , Tm − 3 (iv)
2xg

t − 2xg
t+1 + xg

t+2 + xg
t+3 ≤ 2, t = 1, . . . , Tm − 3 (v)

xg
t , y

g
t ∈ {0, 1}

(1)

Boolean variables xg
t indicate whether the unit g is active or not at the time

moment t. The period of activation of a small thermal unit is bellow 10 min, so
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it can be considered instantaneous for a time slot of one hour. Whenever active
(xg

t = 1) the power generated by each unit must be between technical minimum
(mGT ) and maximum (MGT ) values. This is imposed with constraints (i) and
(ii). Boolean variables yg

t identify the instants of time t at which a unit g is acti-
vated, which is forced by constraint (iii). The terms in the objective function
respectively correspond to: the hourly fixed cost of operation when the unit is
active; the variable cost incurred by the level of power generated; and the opera-
tional costs incurred in by activating the unit, i.e., fuel expenditures for warming
up the unit plus a maintenance share per operation cycles. Besides of being costly
in terms of maintenance, the process of frequently activating thermal units is not
operationally friendly. Therefore, we added constraints to guarantee that once
started, a unit should be active (for instance) at least 3 h (constraints (iv)), and
also to force it to be inactive for at least 3 h after stopped (constraints (v)). The
last sets of constraints should be complemented with boundary constraints when
the initial or final activity states are inherited as part of the instance. Table 2
shows a possible set of parameters for those simple thermal units, for a particular
oil price during 2016. We could not find public data to valuate parameters α.

Table 2. Parameters for simple thermal units

Name of each
thermal unit

Number of power
subunits

Power min (MW) max a USD b USD
MWh

Central Batlle (Motores) 6 6 60 0 82

Punta del Tigre: 1 to 6 6 90 288 7423 86

Punta del Tigre: 7 and 8 2 0.6 48 1619 88

Central Térmica Respaldo 2 40 208 6819 103

Unlike simple thermal units, the Combined Cycle Plant (or CCC) has slow
time commitments, of around four hours till full operation, so its start-up details
should be integrated into the model. To model such type of unit we used four
types of variables and over twenty types of constraints. Elaborating into those
details would deviate the focus of this document, so they were intentionally left
outside of the scope. Reference parameters are: mGT = 58 MW, MGT = 550 MW,
a = 5240 USD (hourly fixed cost), b = 63 USD/MW (variable cost) and α =
5500 USD. Along the four hours it takes the CCC to attain its full operation,
the plant gradually increases the output power following a predetermine ramp.
During that ramp-up, the efficiency is lower, so b is 35% higher. Once in full
operation condition, the CCC should not be stopped until four hours later (i.e.
eight hours since started), and once stopped there should be a period of at least
6 h until start it up again. The CCC is the most efficient among the thermal
units. However, it is not always chosen by the optimization process because of
its complex commitment times, which sometimes does not fit system needs.
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3.2 Hydroelectric

A third of the installed power plant and a half of the energy produced in
Uruguay still come from hydroelectricity. Hydroelectric dams are geographically
distributed over the mid-north of the country, as sketched in Fig. 6. Three of
them are in tandem over an internal river (Ŕıo Negro), while the fourth, placed
over the Uruguay River, is a binational joint project with Argentina. The main
state variable of a hydroelectric dam is the volume of water in its storage lake.
That volume determines the head (i.e., the height difference between the sur-
face of the reservoir and the turbines). Control variables regard with how much
water flows through the turbines, and how much is spilled. The higher the head,
the most energy obtained by volume of water turbinated. Actually, this also
depends on the level the river after the dam, which in Uruguayan low steep river
courses is highly dependent on the total flow itself (i.e. turbinated and spilled),
so the production function is far from being linear. Natural influxes into the
reservoir increase the volume of water in it, while turbinated water decreases it.
Intuition suggests that production efficiency passes by keeping the head as high
as possible, while waters flow turbines downwards. However, whenever the head
surpasses a security threshold, water must be spilled. Spilling not only wastes the
resource, but, as mentioned before, increases the level downstream, what reduces
the efficiency for the fraction of water really passing through the turbines.

Table 3. Parameters of the hydroelectric Uruguayan power plants

Hydroelectric
power plant

Power Empty Influxes

Rincón del Bonete 148MW 20 weeks Ŕıo Negro

Baygorria 108MW 1 day Bonete’s outflux 6 h earlier

Palmar 333MW 2 weeks Yı́ river and Baygorria 10 h earlier

Salto Grande 1/2 1890MW 2 weeks Uruguay river

As it counts in Table 3 and can be observed in Fig. 6, the sequence of dams
over the Ŕıo Negro binds influxes of some dams with the outflux of the previous.

Table 3 also shows the emptying time when the unit is used at its maximum
power. Within an optimization horizon of three days, control decisions hardly
affect the efficiency (head or spilling) in Bonete, Palmar or Salto. Baygorria on
the other hand must be finely tuned.
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Fig. 6. Geographical distribution of hydroelectric dams in Uruguay

3.3 Storage Batteries

Units of energy storage are modeled without an objective function, i.e., without
a direct profit. So they are at the service of the system.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

bt = b0 + δ
τ=t∑

τ=1

rc
τ −

τ=t∑

τ=1

rd
τ (i)

0 ≤ rc
t ≤ rc (ii)

0 ≤ rd
t ≤ rd (iii)

0 ≤ bt ≤ b (iv)

(2)

The state variable bt indicates the level of charge of the battery, i.e., the
energy cumulated in it at time t. Control variables rc

t and rd
t indicate how much

power is used at time t to respectively charge or discharge the battery. In the
first case the power is taken from the grid (as a demand), while in the second is
returned (as generation). There are upper limits for control and state variables.
The parameter δ<1 represents the inefficiency (loss of power) of charge/discharge
cycles. There are no storage units in the Uruguayan grid, so as a reference,
we used parameters as in a real-world project (“Neoen & Tesla Motors” in
Australia). They are: rc = 35 MW, rd = 100 MW, b = 140 MWh y δ = 0.9.

3.4 Demands

Demands are the entities that bind all sub-problems into one. When demands
are hourly determined, they form part of the data-set of the instance and are
integrated into problem as set of T constraints:

∑
g∈G wg

t ≥ dt, t ∈ T . Being
T the number of hours along which we are optimizing, dt the expected demand



142 C. Risso

at the hour t, G the set of generation units and wg
t the power produced by the

unit g at time t (plus storage’s uncharging). In more general terms, consider an
application j in a set of applications J , and Aj a set of cj disjoint time intervals
Aj = {Aj

1, . . . , A
j
cj} proper of that application. Let Dj

p be the energy requirement
of the application j along the pth interval (1 ≤ p ≤ cj), and consider the control
variable zj

t , the power supplied by the grid to fulfill demand j at hour t. Besides,
let zj

t and zj
t respectively be the lower and upper power bounds. Expressed so,

an elastic demand is satisfied whenever constraints in Eq. 3 are satisfied.
⎧
⎪⎨

⎪⎩

∑

t∈Aj
p

zj
t ≥ Dj

p, 1 ≤ p ≤ cj , j ∈ J (i)

zj
t ≤ zj

t ≤ zj
t ∀t

(3)

The new power balance condition is
∑

g∈G wg
t ≥ ∑

j∈J zj
t , for every t ∈ T .

Observe that traditional (hourly fixed) demands can be easily expressed using
A = {1, · · · , T} and setting Dt = dt. In this document we derive two flavors from
this general model for demands. One of them is the traditional, where there is
only one kind of demand, whose hourly requirements are known. In the other,
we assume that 30% of the residential demand is elastic within each day. Almost
52% of the total energy in Uruguay is dispatched for residential use. So, power
demand is first disaggregated between residential (dR

t ) and large scale energy
consumers (dL

t ). Next, we set zt = 0.7dR
t + dL

t , zt = ∞, A = {A1, A2, A3} where
A1 = {1, . . . , 24}, A2 = {25, . . . , 48} and A3 = {49, . . . , 72}. Finally, we assign
D1 =

∑24
t=1 0.3dR

t , D2 =
∑48

t=25 0.3dR
t and D3 =

∑72
t=49 0.3dR

t .

4 Experimental Results

In addition to opening models by demand elasticity, we branch them by using
deterministic or stochastic versions of the problem. So the number of versions
totalizes four. Since solar power was incipient by the time this work was being
developed, we only consider uncertainties coming from wind-power. In every case,
confidence bands (see Fig. 4) are used to bound process realizations. Determinis-
tic versions assume the wind power will be as the centroid of the band (blue curve
in Fig. 4). Stochastic versions use the classic stochastic programming framework
(see [6]) with four stages. Time intervals (in hours) for each stage are: [1, 6],
[7, 24], [25, 48] and [49, 72]. Assuming a power assimilation preprocessing, fore-
casts are proven accurate during the first six hours (see [1]), so we can model
stage-1 as deterministic. For the rest of the stages, trajectories are built to explore
the confidence bands in order to reproduce different realizations. For stochas-
tic programming versions of the problems we used 27 trajectories. In summary,
for each representative scenario four versions of the problem are solved. They
are defined by combining “inelastic” or “elastic+inelastic” demands, in their
deterministic or stochastic versions. Historical data about actual dispatch is
not available (they are considered confidential by authorities). However, since
the historical information for the actual wind-power is available, we tested the
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convenience of the optimal schedule crafted, by comparing it with results of sim-
ulations of the real cost the system would have incurred in by using that plan
as a guide. We remark that no algorithm was developed to tackle down these
problem instances, since all of them were solved using a generic comercial MIP
optimizer: IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.3.0, on an
HP ProLiant DL385 G7 server with 24 AMD Opteron(tm) 6172 processors,
72 GB of DDR3 RAM and running CentOS 6.10 Linux operating system.

4.1 Problem Instances

Instances were defined up from scenarios particularly interesting to analyze sen-
sibility against some key aspect the problem. Due to the importance of hydro-
electric energy for the country, the availability of hydraulic resources is one the
dimensions to explore. We defined five hydro-scenarios to test, they are as fol-
lows. HB1 is the historically typical scenario, with a good head of water in the
reservoirs and high expectations of new influxes the next weeks to come. SH1
assumes a drought condition, with medium resources in the reservoirs and poor
expectations about the new influxes. SH2 is a worse drought condition than in
SH1, since now the head level in reservoirs is critical. EHT1 is an intermedi-
ate situation to HB1 and SH1. Resources are good but important new influxes
are unlikely, so the valuation of the water (that comes from mid-term planning
models) pushes prices towards those of fossil fuels. The valuation gives lowest
prices for those reservoirs over Ŕıo Negro. EHT2 is similar to EHT1, but now
Salto Grande reservoir has lower prices than those of Ŕıo Negro. Although not
representative regarding the typical volume of rains in a year, SH1, SH2, EHT1
and EHT2 are important to stress the model. The second dimension for scenar-
ios is defined by the second power source by importance: the power-wind. We
selected four “forecasts+actual power” among the set of historical series.
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Fig. 7. Representative wind-power samples
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Days in Fig. 7 were chosen because they are typical, i.e., they are close to
the medians of: off-band error, effective wind-power produced, and width of
their confidence band. Days in Fig. 8 on the other hand were chosen to stress
the model. The leftmost sample for having the confidence band with the larger
width, and the rightmost one for being among the samples with the higher off-
band energy, i.e., for being among those bands with the poorest performance.
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Fig. 8. Stressing samples regarding forecast and wind-power series

In addition, the last sample has a particularity regarding power. Observe
that in the period between the hour 51 and 54 rises almost 70% of the PLF,
which rounds 1GW, close to the average power consumption of the country.

Therefore, 80 problems were solved to explore those scenarios over different
models (4 models × 5 hydro-scenarios × 4 wind-scenarios). In the first place, we
show the results for the deterministic models over all hydro and wind scenarios.

Table 4. Cost [USD] deterministic optimization 72 h ahead. [HB1]

4-dec 17-dec 10-apr 10-jul

Inelastic demand 348,930 334,760 241,230 359,730

Elastic demand 327,200 311,240 239,350 344,780

Complementing the information in Tables 4 and 5, we must add that after
simulating the system dispatch using actual wind-power values, the absolute
difference between the projected schedule and the simulation of the operation
was between 3% and 6%.

Instances for hydro-scenario HB1 do not require the usage of thermal gener-
ation. This fact explains the low production costs. Conversely, several thermal
units are to be activated in hydro-deficient scenarios EHT1, EHT2, SH1 and SH2,
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Table 5. Cost [thousands of USD] deterministic optimization 72 h ahead

EHT1 EHT2

4-dec 17-dec 10-apr 10-jul 4-dec 17-dec 10-apr 10-jul

Inelastic demand 5,389 5,120 3,737 5,448 4,091 3,869 2,850 4,126

Elastic demand 5,281 5,026 3,660 5,338 3,951 3,761 2,667 3,958

SH1 SH2

4-dec 17-dec 10-apr 10-jul 4-dec 17-dec 10-apr 10-jul

Inelastic demand 5,696 5,419 3,857 5,731 5,706 5,428 3,857 5,742

Elastic demand 5,602 5,316 3,735 5,630 5,621 5,337 3,735 5,646

Table 6. Relative deviation stochastic vs deterministic models [HB1]

4-dec 17-dec 10-apr 10-jul

Inelastic demand −0.01% −0.24% −0.12% −0.09%

Elastic demand 0.18% −0.01% −1.00% −0.21%

Table 7. Relative deviation stochastic vs deterministic models

EHT1 EHT2

4-dec 17-dec 10-apr 10-jul 4-dec 17-dec 10-apr 10-jul

Inelastic demand−0.28%−0.29%−0.19%−0.13%−0.45%−0.21%−1.41%−0.30%

Elastic demand −0.42%−0.41%−0.36%−0.10%−0.44%−0.34%−0.25%−0.14%

SH1 SH2

4-dec 17-dec 10-apr 10-jul 4-dec 17-dec 10-apr 10-jul

Inelastic demand−0.34%−0.33%−0.04%−0.09%−0.33%−0.34%0.00% −0.10%

Elastic demand −0.51%−0.45% 0.05%−0.02%−0.50%−0.47%0.09% −0.01%

then costs increase over the order of magnitude. Observe that although costs and
other conditions are similar, the system manages much more efficiently hydro-
scenarios ETH2 than their homologous in EHT1, whose figures are similar to
those of SH1 and SH2.

Regardless of the hydro-scenario or demand elasticity, Apr/10/2016 always
gets the lowest cost, with reductions in the order of 30%. That date corresponds
with three windy days in a row and evinces how sensible the system cost is to
the power coming from wind farms.

Focusing now on the expected cost for stochastic versions, the values are quite
similar to the corresponding deterministic instance, so Tables 6 and 7 present the
relative difference with respect to figures in Tables 4 and 5.

Observe that in 36 out of 40 instances, the stochastic version gets schedules
with lower expected values than those of the deterministic version. This fact
by itself is not relevant, however, a-posteriori simulations run to assess models’
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robustness, show that differences between projected schedules and simulations
are always under 3.5% for the stochastic version. Thus, the stochastic version is
not only better in quality but in confidence, so we use its figures as a reference
to valuate the benefits of having smart-grids capabilities to control up to 30% of
the residential demand of energy. Those figures show that having such control
allows to reduce costs in all the hydro-scenarios: 4.7% (HB1), 3% (EHT1,2) y
2.1% (SH1,2). Saving are relative higher in the hydro standard HB1 scenario,
but in absolute terms are much higher in those of drought. If all those savings
were transferred to elastic demands, reductions of price could round 25%.

5 Conclusions and Future Work

This document presents how classical optimization models were used to quan-
tify the benefits of having smart-grids technologies, a fundamental component
of smart-cities. Such benefits were computed upon a real-world scenario, the
Uruguayan electricity market, a world leader in the usage of renewable energies,
which is facing the challenge of getting over 35% of its electricity from wind-
power, a volatile source of energy. Experimentation was realized assuming that
30% of the residential demand can be controlled, showing that if billed differ-
entially, discounts could round 25%. Large scale energy consumers can trade
in the wholesale electricity market according on their needs. Residential users
however, must contract with the public owned company (UTE), so a centralized
mechanism as that described in this document is viable in Uruguay.

Regarding the particulars of the dispatch schedules, their results show that
smart-grids not only allow to reduce production costs, but also softness the stress
to operate the grid. A secondary but highly desirable consequence of controlling
demands to reduce costs, is that the set of components necessary to provide
power to the grid, is lower than in regular conditions. In addition, there are
fewer cycles of activation/deactivation of components. As a consequence, spot
prices are also more regular for smart-grid based dispatch schedules, turning the
wholesale market less volatile for all of the users.

Experiments realized so far are punctual, and simulate specific days taking
its parameters from historical data sets. A promising line of work consists in
expanding the software components developed so far, to run instances along
larger periods of time. Hence, historical information could be used to evaluate
results over months or years. The analysis of the solutions shows that most of the
savings are consequence of a better use of hydraulic resources. Therefore, it is
probable that the sustained application of such controls makes the system more
immune against falling in drought conditions, in which costs are much higher.
Another line of future work is the integration of solar-power among the sources
of uncertainty.
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(Uruguay), by the STIC-AMSUD project 15STIC-07 DAT (joint project Chile-France-
Uruguay), and by ANII (Agencia Nacional de Investigación e Innovación, Uruguay).



Smart-Grids Mitigating Volatility of Non-conventional Energies 147

References

1. de Mello, S., Cazes, G., Gutiérrez, A.: Operational wind energy forecast with power
assimilation. In: 14th International Conference on Wind Engineering (2014)

2. Joos, M., Staffell, I.: Short-term integration costs of variable renewable energy: wind
curtailment and balancing in britain and germany. Renew. Sustain. Energy Rev. 86,
45–65 (2018)

3. Karki, R., Billinton, R.: Cost-effective wind energy utilization for reliable power
supply. IEEE Trans. Energy Convers. 19(2), 435–440 (2004)

4. Li, N., Chen, L., Low, S.H.: Optimal demand response based on utility maximization
in power networks. In: 2011 IEEE Power and Energy Society General Meeting, pp.
1–8, July 2011

5. Mohsenian-Rad, A.H., Leon-Garcia, A.: Optimal residential load control with price
prediction in real-time electricity pricing environments. IEEE Trans. Smart Grid
1(2), 120–133 (2010)

6. Morales, J.M., Conejo, A.J., Madsen, H., Pinson, P., Zugno, M.: Integrating Renew-
ables in Electricity Markets, vol. 205, No. 1. Springer, Boston (2014). https://doi.
org/10.1007/978-1-4614-9411-9

7. Paganini, F., Belzarena, P., Monzón, P.: Decision making in forward power markets
with supply and demand uncertainty. In: 2014 48th Annual Conference on Informa-
tion Sciences and Systems (CISS), pp. 1–6, March 2014

8. REN21. Renewables 2018 global status report. Technical report, REN21 Secretariat,
Paris (2018)

9. Risso, C., Guerberoff, G.: Nonparametric optimization of short-term confidence
bands for wind power generation. ArXiv e-prints, May 2018

https://doi.org/10.1007/978-1-4614-9411-9
https://doi.org/10.1007/978-1-4614-9411-9

	Using Smart-Grids Capabilities as a Natural Hedge Against Novel Risks Coming from Non-conventional Renewable Electricity Generation
	1 Introduction
	2 Dealing with Wind Power Uncertainty
	3 Optimal Short-Term Optimization Model
	3.1 Thermal Units
	3.2 Hydroelectric
	3.3 Storage Batteries
	3.4 Demands

	4 Experimental Results
	4.1 Problem Instances

	5 Conclusions and Future Work
	References




