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Abstract

The ability to model carbonic anhydrase (CA) receptor and its inhibitors in silico
is important because it can save valuable resources and help to rationalize the
mode of binding, and to design better inhibitors. In this chapter, we briefly
review the existing literature on molecular modeling of CA and its binders, with
a particular emphasis on molecular docking and quantitative structure–activity
relationship (QSAR) methods. We also demonstrate some of the difficulties
encountered when trying to model CAs.

15.1 Introduction

Carbonic anhydrases (CAs) (E.C. number 4.2.1.1) comprise an important class of
enzymes catalyzing reversible hydration of carbon dioxide to bicarbonate [1]. In
this chapter, our focus will be on selected aspects of computational modeling of
CAs. First, we will overview applications of molecular docking to study CA and
its inhibitors. Some issues encountered when docking into the CAs will also be
touched upon, such as the presence of the metal ion and the ligand rotamer problem.
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We will briefly overview the existing literature on molecular dynamics (MD) and
quantum mechanics (QM) calculations with CA as a target. Finally, the successes
and shortcomings of quantitative structure–activity relationship (QSAR) method
will be discussed.

15.2 Molecular Docking

Molecular docking, or simply docking, is a popular method of determination of the
optimal geometry of the ligand/protein complex. The idea of docking is based on
the intuitively simple “lock and key” theory suggested by Emil Fischer more than
120 years ago [2]. “Virtual screening” is a selection of compounds, active against
a certain receptor, from a large compound database, commonly by means of the
molecular docking. Docking and/or virtual screening are often used to analyze the
CA inhibitor interactions within the binding site, and to predict new and hopefully
better binders.

A search in Scopus database (https://www.scopus.com/) for articles containing
“carbonic anhydrase” together with “docking” or “virtual screening” in their title,
abstract, or keywords leads to 245 hits (end of March 2018). After a manual
examination of the list, it was reduced to about 200 papers directly dealing with
the molecular docking of the small molecules (ligands) into CA. It should be noted
that this list does not include papers in which CA is a part of a wide selection of
docking targets, and therefore not specifically listed in the abstract of keywords, for
example, when testing performance of docking programs and/or scoring functions
(e.g., GOLD [3], FlexX [4], and Glide [5]), or as a part of specially designed
ligand/receptor sets, such as Astex diverse test set [6].

Further analysis of the list of the 200 papers shows that docking into CA
receptor is becoming progressively more widely used in research: 11, 23, and
38 papers were published in 2011, 2014, and 2017, correspondingly. The first
relevant paper related to the development of the first molecular docking program
DOCK goes back to 1988 [7]. Probably the most usual application for the docking
procedure is the rationalization of the observed inhibition results. The examples
are too numerous so we will just mention several. Docking was used to investigate
binding to CA of 5-aryl-1H-pyrazole-3-carboxylic acids [8], bisindolylmethanes
[9], isatin analogs [10], indolin-2-one-based sulfonamides [11], carbohydrazones
[12], coumarin derivatives [13], and so on.

It would be interesting to analyze which docking programs were used the most.
In about 195 papers to which we had access and where the used docking program
was explicitly named, about 20 docking programs have been employed. AutoDock
[14] or its variants were used in 54 papers, followed by GOLD [3]—48 papers,
Glide [5]—46, MOE-Dock [15]—18, FlexX [4]—7, CDOCKER [16]—5, and
DOCK [17]—5 papers. It should be noted that some papers employ several docking
programs. Here we did not analyze the use of the scoring functions used to evaluate
docking quality, because the scoring functions usually have multitude of variants,
and they tend to develop much more dynamically than the docking engines. The

https://www.scopus.com/
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frequencies of the use of the first three abovementioned programs are consistent with
the trends observed in the general docking literature [18]. Interestingly, MOE-Dock
[15] was used about three times more often when docking to the CAs compared to
the general use [18].

Comparing performances of the docking programs when dealing with CAs
is especially interesting, but the performance seems to be inhibitor dependent.
Tuccinardi et al. found that GOLD yielded better docked conformations compared
to AutoDock for a series of CA II sulfonamide inhibitors [19]. Mori et al. tested
four programs to dock to CA II a non-sulfonamide inhibitor, and found AutoDock to
perform best [20]. Kontoyianni et al. tested the performance of 5 docking programs
on many targets, including CA, and out of 25 CA dockings, only in 2 cases, one
using Glide, and the other using GOLD, the top ranked conformation (pose) was
characterized as being “close” to the experimental structure [21]. This shows that
the success of docking to CA is not guaranteed. Below, we will briefly analyze
some of the issues which are encountered during docking.

The most important CA isoforms contain a metal ion, usually zinc. Zinc ion
requires a special care in order to be able to use the receptor for any meaningful
computer simulations, including docking. For example, in the AutoDock program
the proper handling of Zn, named AutoDock4Zn force field, was implemented only
relatively recently [22]. This is especially important for sulfonamide inhibitors since
only the sulfonamide nitrogen is being ligated to the metal, but the sulfonamide
oxygens are similar to the nitrogen from the viewpoint of simple electrostatics and
therefore could confuse the docking algorithm. In Vdock docking program [23]
the proper coordination with zinc can be most easily ensured by fixing the ligating
atom in space by setting the dimensions of the translational box to zeros [24]. Other
docking programs deal with the metal ion issue in their own way, for example,
in GOLD program metal coordination is modeled by “pseudohydrogen bonding,”
and metals bind to H-bond acceptors. In addition, the ion can be set to a particular
coordination geometry, e.g., tetrahedral [25]. At any rate, some caution and a bit of
a common sense is required when docking, and probably some sort of validation of
the program using known structures as well. For example, in a paper by Suthar et
al., docking using AutoDock, apparently the version without the patch to treat the
zinc, missed sulfonamide ligation to zinc, which seems to be not likely [26].

It is important to use the correct structures when doing docking simulations (in
fact, any kind of simulations), and especially when validating simulation results.
For example, Hartshorn et al. pointed out that in the Protein Data Bank (PDB)
entry 1jd0, the ligand rotamer is probably incorrect (cis amide instead of trans) [6].
This makes this particular ligand/protein complex slightly tainted when used for
validating the program or comparing docking program results. The rotamers in the
experimental structures could also be incorrect not only in the ligand but also in the
protein [27]. However, most often simulation errors arise not from the experimental
data but from the theoretical framework, e.g., force fields.

Sulfonamide derivatives are by far the most common inhibitors of the carbonic
anhydrases. The importance of the correct energy profile of the S−C dihedral angle
in the substituted sulfonamides to interpret the experimental results has been shown
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Fig. 15.1 Newman
projection of the aryl
sulfonamide S−C torsion
angle. Conformation a
corresponds to the average
dihedral angle for ortho
unsubstituted sulfonamides in
CA; angle b is most often
found in unbound
sulfonamides; and angles b
and c are found in 2,3,5,6-
tetrafluorobenzenesulfonamides
bound to CAs in the Protein
Data Bank
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[28, 29]. A survey by Morkūnaitė et al. showed that in the PDB the majority of
carbonic anhydrases bound sulfonamides, where the sulfonamide is connected to
phenyl ring with H at ortho positions, the phenyl ring plane forms average 14.7◦
angle with one of the S−−O bonds, i.e., it is slightly off from being aligned with
S−−O (position a in Fig. 15.1) [30]. Interestingly, in most molecular (i.e., not bound
to receptor) sulfonamide X-ray crystal structures the phenyl plane is rotated in such
way so that p-orbital of the ipso carbon divides O−−S−−O angle in half (position
b in Fig. 15.1) [31, 32]. However, docking of the ligands parameterized using
CHARMm force field [33] had a strong tendency of aligning phenyl ring with S−N
bond which was clearly incorrect [30]. To overcome this, a constraint on the S−C
torsion was imposed during the docking. A more proper way to handle the problem
should involve the improvement of the force field parameters. Indeed, CGenFF force
field [34], which similarly to CHARMm is also compatible with CHARMM [35],
contains improved arylsulfonamide torsional angle parameters.

Another example of CA inhibitor rotamer problem is related to 4-substituted
2,3,5,6-tetrafluorobenzenesulfonamides. A quick PDB survey finds 14 structures
containing compounds belonging to this series, complexed with various CA iso-
forms. Some of the PDB entries have several chains; moreover, ligands in several
PDB chains have two alternative positions. Within these 14 structures there are 33
instances of tetrafluorobenzenesulfonamides bound to Zn. This includes molecules
bound to different chains, as well as their alternative conformations.

Seven conformations out of 33 are bound to Zn in the CA II isoform. In the 4ww6
PDB entry one of the conformers is bound outside of the binding site; therefore,
this conformation is not included into this analysis. While the non-fluorinated
benzylsulfonamides tend to have the phenyl plane nearly aligned with S−−O as
illustrated vide supra, in 3 cases out of 7 the fluorinated phenyl ring is aligned
with S−N, and in the rest of 4 cases it is aligned with S−−O (conformations c
and d in Fig. 15.1, correspondingly). Notably, probably due to the bulkiness of the
fluorines, S−N and S−−O rotamers are somewhat tilted with respect to each other
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Fig. 15.2 Two superposed
CA II structures with different
tetrafluorobenzenesulfon-
amide rotamers (4ht0: pink
protein and purple ligand and
5lle: salmon protein and
orange ligand). Zinc is shown
as a grayish sphere. Possibly
important water molecule in
4ht0 (small red sphere) is
also shown

(Fig. 15.2). This is most likely due to the bulkiness of the fluorines, and this tilt
could be important for the drug design.

Examination of Fig. 15.2 shows that the conformations of protein sidechains
near the ligand are quite similar in both cases; therefore, answering a question
of why one rotamer is preferred over the other one is not trivial. Interestingly,
preliminary exploration of rotamer interaction energies with the protein using
CHARMM/CHARMm force fields for the S−N and S−−O rotamers of 4ht0 ligand
shows a high energetic preference (by at least 10 kcal/mol, and mostly due to van
der Waals clashes) for the S−N rotamer. This raises a question of the reason of
the existence of the S−−O aligned rotamer in 4ht0. The most rational explanation
would be the presence of the water molecule near the S−−O rotamer, almost at the
same position where one of the fluorines of the S−N rotamer is situated. Probably
this water molecule, which makes a hydrogen bond with the sulfonamide nitrogen,
is forcing the phenyl plane into the S−−O rotamer. Modeling of the S−−O rotamer
in 4ht0 without the relevant explicit water molecule or without constraining of the
dihedral angle would be quite challenging. An even bigger challenge is predicting
which rotamer, S−−O or S−N, will be prevalent for a particular ligand. Because
of the apparent role of the water influencing the rotamer choice, it comes as no
surprise then that the rotamer preference can be directly correlated with the enthalpy
or entropy being the driving force for binding [36].

Interestingly, different CA isoforms show different rotamer preferences for this
series of ligands. Three ligand instances in CA I exhibit only the S−−O rotamer, and
in five instances in CA XIII the ligand adopts exclusively the S−N rotamer. In the
case of CA XII, the situation is mixed: out of 17 instances, 10 and 7 belong to the
S−N and S−−O rotamers, respectively. Moreover, different rotamers happen to be in
the same PDB (4ht2, 5msa, and 5msb). This behavior is puzzling especially since
hydrogenated analogs of these compounds (benzenesulfonamides) essentially have



220 V. Kairys et al.

a preference for the S−−O rotamer (Fig. 15.1). Incidentally, in 4ww6 the ligand of
this series bound off-site (i.e., not bound to Zn) has the S−−O rotamer.

This analysis shows the importance of rotamers when targeting different CA
isozymes. It might well be that the rotamer preferences for the ligands could be
solved only when entropy and enthalpy interplay for a given ligand/receptor is fully
understood; therefore, these inhibitor/receptor complexes are good systems to test
proposed thermodynamic energy component calculation algorithms. At the very
least, when performing docking validation tests, one should also be aware of how
well the key torsional angles are reproduced.

The flexibility of the protein often needs to be taken into account. Fortunately,
CA does not undergo gross conformational changes upon inhibitor binding [37].
However, one should always watch out for the rotamers of some sidechains such as
Gln, Asn, and His, in which the X-ray crystallography cannot distinguish between
C, N, and O atoms [27], so there could always be ambiguity in atom assignment.

To further illustrate the problems arising during docking into CA, we performed
a docking of 3sbi ligand into the CA II receptor from the same PDB id [24]. The
pyrimidine tail of the ligand is partly hydrophobic, partly hydrophilic (structure
shown in Fig. 15.3) yet it is bound to an extremely hydrophobic site lined by
residues Phe131, Val135, Leu198, Pro202, and Leu204. A majority of CA inhibitors
of sufficient length present in the Protein Data Bank are bound to that site,
hence we consider this as an exemplary test. The docking used CHARMM [35]
and CHARMm [33] force fields for proteins and the ligand, correspondingly.
The solvent effects were modeled using a simplistic distance-dependent dielectric
approximation ε = 4rij [38], in which the electrostatic force between two charges
is divided by the distance between the charges (with the additional scaling factor).
This essentially mimics electrostatic shielding of water molecules between two
remote charges, but does not include other effects such as desolvation, or entropy

Fig. 15.3 120 docked
conformations of 3sbi ligand
(structure depicted on the
left), docked with the genetic
algorithm switched off to
enhance sampling of the
binding pocket. The
conformations are colored by
the rank according to the
docked energy: from blue (the
best) to red (the worst). The
X-ray conformation is shown
in green. Note the self-folded
conformations in the lower
right of the picture. See text
for more explanations
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of the solvent. Also, due to reasons which were already discussed, the sulfonamide
atom was fixed in space at the correct position, and the torsional angle of the bond
connecting the phenyl ring with the sulfonamide group was constrained to ±15◦
around the experimental value. Since we wanted to explore the conformational
space within the whole binding site, the genetic algorithm was switched off. One
hundred conformations were generated using this setup. In addition, to explore the
conformations near the X-ray conformation, additional 20 docked minima were
generated where all torsional angles had ±15◦ constraints around the experimental
values.

The 120 docked conformations (sometimes also called “poses”) are shown in
Fig. 15.3. Each conformation is colored according to the docked score, blue being
the best and red being the worst. Perhaps strikingly, the poses close to the native
X-ray conformation, pictured green, have a relatively poor score. The best scores
belong to the self-folded conformations of the ligand (Fig. 15.3, lower right) in
which the pyrimidine ring is stacked against the phenyl ring. While the feasibility of
the self-folded conformations will not be discussed here, we will note in passing that
these conformations probably would be penalized because they would have to push
out one or two water molecules out of the binding site. Nevertheless, ligands have
been found to bind to CA in a self-stacked binding mode, but only for fluorinated
compounds [36, 39].

For the other, presumably more realistic, non-self-folded conformations, the
scoring function seems to underestimate the hydrophobic effect of the attraction
of the ligand tail into the hydrophobic pocket. The funnel-like binding site of
CA is hydrophobic only in one part of the packet, and mostly hydrophilic in the
rest; therefore, the docking program tends to bind ligand pyrimidine nitrogens to
the opposite, hydrophilic part of the binding pocket. The hydrophobic effect of
the ligand bound into its proper location is therefore underestimated by the force
field (including the apparently insufficiently adequate distance-dependent dielectric
approximation for the estimation of the solvent effects).

The hydrophobicity and hydrophilicity of the CA II binding site is illustrated
in Fig. 15.4. The picture was generated using Voronota program [40] by drawing
Voronoi cell faces between the receptor and the conformations of the ligand in
Fig. 15.3. Voronoi cells are cells taken by an individual atom in space, and are
enclosed by planes (or spheres because of the different radii of the atoms, to be
exact) which divide the distance between the atoms exactly in half. Alternatively,
Voronoi cell of an atom can be comprehended as a zone in the space consisting of
points that are closest to that atom but not to the others. The yellow and blue colors
signify hydrophobic and hydrophilic surfaces. The hydrophobicity of the subpocket
which is holding the tail of the ligand is very obvious, and the mismatch between the
hydrophobicity of the pocket and the hydrophilic nitrogen atom pointing downwards
is also apparent.
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Fig. 15.4 The binding site of CA II, shown as Voronoi cell faces drawn between the CA II receptor
and the ligand conformations from Fig. 15.3. The faces are colored based on the hydrophobicity
(yellow) or hydrophilicity (cyan) of the receptor atoms. Two views are shown (a and b). The X-ray
conformation of the 3sbi ligand is shown as colored sticks

Fig. 15.5 Voronoi cell faces between the X-ray structure of the 3sbi ligand (shown as sticks)
and the CA II receptor. The faces are colored based on the hydrophilicity of the ligand and
receptor atoms. Red color signifies that both atoms (ligand and receptor) are hydrophobic (i.e.,
carbons), blue—both are hydrophilic (heteroatoms), and yellow denotes a “mismatch”: one atom
is hydrophilic, and the other atom is hydrophobic. Two views are shown (a and b)

The concept of mismatching hydrophobicities and hydrophilicities between the
receptor and the ligand is further explored in Fig. 15.5 using Voronoi cells. This
time, only the X-ray conformation is analyzed. The Voronoi cell faces are colored
based on the hydrophobicity/hydrophilicity of the atoms which are separated by
that face. The red and blue colors signify a match between the atom types (both
receptor and ligand atoms are hydrophobic and hydrophilic, correspondingly), and
the yellow color represents a mismatch: one atom is hydrophobic, and the other atom
is hydrophilic, or vice versa. Note that the pyrimidine ring nitrogens are causing a
surface mismatch inside the hydrophobic pocket (cf. Fig. 15.4). Perhaps it is then not
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surprising that the docking tries to place the ligand tail in the more hydrophilic parts
of the binding site. A “perfect match” between the ligand and the protein formally
would have to contain no “mismatching” atom types, with an important caveat: this
scheme does not show interactions with the bulk solvent.

First of all, in the “open” surface area on the top of the ligand in Fig. 15.5 the
ligand is interacting not with the protein but with the bulk solvent (water). Since by
definition water solvent is hydrophilic, for the formation of good hydrogen bonding
network with water it is advantageous that at least some of ligand atoms which are
exposed to the solvent are hydrophilic, such is one of the pyrimidine nitrogens in
the 3sbi ligand. If the free (unbound) ligand in the water makes hydrogen bonds,
it is important that these hydrogen bonds are not lost when the ligand is bound to
the protein [41], i.e., the hydrogen bonds should also be formed between the ligand
and the protein upon desolvation of the ligand and/or protein. Also, the hydrophobic
surfaces of both unbound ligand and the protein (they bind poorly to the water) will
improve the binding energy if they match when they are bound. Many sophisticated
scoring functions are trying to address desolvation and other ligand binding to
protein issues [42, 43].

It should be kept in mind that the whole framework of interactions valid for one
receptor could change, sometimes dramatically, if the ligand is modified, or if one
CA isoform is replaced by another isoform. A simple change of the rotamer or a
change of the overall binding mode can have far reaching enthalpic and entropic
effects on the binding affinities [36].

Several papers by our group, for example [36,44–46], are using intrinsic binding
affinities for their analysis of inhibitor binding, which are very important for
ionizable inhibitors such as sulfonamides because they lose a proton when binding
to zinc. In short, because of the involvement of protons in the enzymatic reaction, the
observed binding affinities are dependent on the pH of the reaction environment. The
intrinsic binding constants Kb,int are pH- and buffer-independent and are calculated
as the observed binding constant Kb,obs divided by the fractions of the deprotonated
inhibitor fSA− and the protonated Zn-bound water form of CA fCAZnH2O [36]:

Kb,int = Kb,obs(
fSA−

) (
fCAZnH2O

) (15.1)

One of the consequences of this is that the deprotonated form of inhibitor is
the active form. Hence, more acidic sulfonamides will tend to be better inhibitors,
because a larger fraction of them will be in the anionic form in the solution.
Moreover, because of the independence from the pH, the thermodynamic analysis
of the binding, especially when considering reaction enthalpy and entropy, is
more robust and more meaningful. Therefore it would be advantageous to use
intrinsic thermodynamic parameters by the computational approaches covered in
this chapter.
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15.3 Molecular Dynamics

Molecular dynamics (MD) method, along with some related methods such as Monte
Carlo approach, offers a detailed picture of the development of molecular systems in
time. While being able to give very useful insights, it is also much more computer-
demanding compared to docking. A quick Scopus search showed up to 200 papers
in which MD was applied to study carbonic anhydrases. Without going into too
much detail, we will briefly mention some of the MD applications.

In many papers, MD was used after the molecular docking to further improve
(refine) the predicted pose of the ligand, and to allow for the more thorough
relaxation of the protein. For example, Özgeriş et al. used MD to further explore
docking results of 2-aminotetralins and tacrine into CA I and acetylcholinesterase
(AChE): MD was employed to investigate the effect of the ligand on the protein
rigidity, and the interactions within the binding site of both receptors [47]. Similarly,
Costa et al. used MD to examine interactions between the CA VA binding site
residues and docked compounds from essential oils and acetazolamide [48].

An important application of molecular dynamics is exploration of the dynamics
of the protein. For example, Prakash et al. investigated unfolding of CA IX in urea
solutions of various concentrations [49]. Maupin and Voth explored variability of
orientations of His64 sidechain in CA II [50]. MD was also used to explore ligand
tail conformations [51].

To perform successful MD simulations, a reasonable set of force field parameters
for zinc (as well as for other with components of the protein/ligand complex) is
necessary. CA has been used to derive force field parameters for zinc bound to
the protein, and the parameters were further validated using molecular dynamics
simulations [52]. The obtained improved parameters are used to perform simulations
not only on CA but also on other zinc proteins. Often parameter derivation also
requires use of ab initio (quantum mechanical) calculations as well as validation
using MD calculations, so these two methods are employed together, e.g., in a paper
by Bernadat et al. [53].

A large number of papers investigate the catalytic reaction occurring in the CA
binding site, or to better understand the nature of the ligand–protein binding. For
example, Chen et al. investigated CO2 diffusion in the CA active site using Markov-
state model and coarse-grained MD simulations [54]. Maupin et al. used multistate
empirical valence bond (MS-EVB) method combined with MD to investigate proton
transfer in CA [55, 56]. MD was used to deeper understand the hydrophobic
effect [57] or the enthalpy/entropy compensation in protein–ligand binding [58].
Ganguly et al. combined molecular dynamics (MD) simulations, quantum mechan-
ics/molecular mechanics (QM/MM) geometry optimizations, and QM/MM free
energy simulations on a small protein which mimics CA to investigate hydrolysis
of the p-nitrophenylacetate substrate [59]. Paul et al. used molecular dynamics and
QM/MM calculations to explore intramolecular proton transfer reaction parameters
in human CA II [60]. Koziol et al. used MD and ab initio density functional theory
(DFT) calculations to investigate CO2 hydration using Zn-bound tris(imidazolyl)



15 In SilicoModeling of Inhibitor Binding to Carbonic Anhydrases 225

calix[6]arene aqua complex as a CA binding site mimetic [61]. This far from
exhaustive list of applications shows that MD is a powerful tool for exploration
of CA properties, as are quantum mechanics based calculations, which are briefly
covered in the next section.

15.4 QuantumMechanics

Similar in number to MD-related papers, Scopus showed up to 200 hits which
combine “quantum” or “ab initio” calculations and “Carbonic Anhydrase” as the
search terms. Quantum mechanical (QM) calculations have already been mentioned
above, as they often were used in combination with other methods. In contrast with
the methods based on force fields, QM calculations include the actual electronic
structure of the molecules which are being investigated, and generally are very CPU
and/or memory demanding. A variation of QM calculations where a smaller part of
the system is represented by quantum theory governed nuclei/electrons, and the rest
of the system described using empirical force fields is called QM/MM (quantum
mechanics/molecular mechanics). Because QM allows for a relatively accurate
representation of atoms, it is used to explore the reaction mechanisms at a great
detail. Below we very briefly will mention some representative QM applications.

Jiao and Rempe used density functional theory (DFT) calculations coupled
with a continuum model of the surrounding environment to understand the factors
determining the pKa of zinc-bound water in CA [62]. In several papers QM
calculations were used to design and explore the behavior of biomimetics—
compounds which mimic the active site of CA. Ma et al. used DFT calculations
to study the mechanism of CO2 hydrolysis by Co-(1,4,7,10-tetrazacyclododecane)
in order to model the activity of cobalt containing CA [63]. QM was also used to
derive force field parameters for zinc-containing systems, for example, for AMBER
[64] and OPLS-AA [53] force fields. It can be used to clarify details of binding
of inhibitors. For example, Pecina et al. used QM/MM calculations to understand
the differences between the binding of two carborane sulfonamide inhibitors [65].
Ghiasi et al. used QM approach to investigate the thermodynamic properties of
fullerene based inhibitor bound to CA binding site [66]. As the computer resources
are becoming cheaper, and the QM methods are improving, we will be seeing more
of this type of simulations in the future.

15.5 Quantitative Structure–Activity Relationship (QSAR)

The methods mentioned above have a common feature: they are structure-based
approaches. They employ a known or a modeled structure of the receptor, and also
they use the experimental or calculated structure of the ligand bound inside the
receptor. In contrast, quantitative structure–activity relationship (QSAR) method
usually (with some exceptions) does not require the receptor structure to be known,
and is based on the ligand structure. For this reason, it is sometimes described as a
ligand-based approach.
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QSAR is an area of computational research that builds virtual models to
predict quantities such as the binding affinity or the toxic potential of existing or
hypothetical molecules [67]. QSAR finds the parameters of the compounds that
govern their biological activities and elucidate their mechanism of action [68]. Both
these aspects of QSAR greatly help in modifying the structures of the compounds
leading to compounds of high therapeutic value [69]. The determination of binding
energies in QSAR studies is by no means simple. Free energies of binding depend
on the ligand–protein interactions as well as on the loss of energy associated with
stripping solvent molecules off the small-molecule ligand while moving from the
aqueous environment of a cell or a body fluid to a protein binding pocket during the
binding process [67]. The first stage of QSAR modeling is descriptor calculation.
A molecular descriptor “is the final result of a logic and mathematical procedure
which transforms chemical information encoded within a symbolic representation
of a molecule into a useful number or the result of some standardized experiment”
[70]. Molecular descriptors are calculated for chemical compounds and used to
develop QSAR models for predicting the biological activities of novel compounds
[71]. Feature selection is an important but still poorly solved problem in QSAR
modeling [72]. In the second stage the most relevant descriptors for model must be
elected, and finally fitting between selected features/descriptors must be carried out
to have the QSAR model with optimum prediction ability.

Some papers are dealing with descriptors and their fitness for CA. It was
found that quantum descriptors are critical of the pyrazolo[4,3-e][1,2,4]triazine
sulfonamides antiproliferative activity against human MCF-7 cells [73]. This can
indicate a more complex mechanism of cytotoxicity than the inhibition of CA IX
and CA XII isozymes [73]. A new ad hoc descriptor T(OH..Cl) was designed to
improve the quality of the CA XII QSAR affinity model which was defined as the
sum of the topological distances between the hydroxyl groups and chlorine atoms
in the molecule [74].

A series of QSAR papers deal with the analysis of the inhibitor binding to CA
and propose modifications of the compounds. All compounds more active than
acetazolamide have hydrophobic groups in phenyl substituted part and because of
this reason have a higher activity than acetazolamide towards CA II [75]. If there
are hydrogen bond acceptors on one side of acetazolamide pyrazole ring, then the
activity of compounds towards CA II can be increased [75]. The sum of the topo-
logical distances between the hydroxyl groups and chlorine atoms in the molecule
is important in benzensulfonamide affinity towards CA XII. Through 3D-QSAR it
was shown that most of the benzensulfonamide selectivity against CA isoforms is
caused by the benzene ring substituents [74]. It was suggested that locating of a dual
moiety with hydrophobic/hydrogen bond acceptors properties on compounds, at a
13.6 Å distance, can result in higher selectivity of the compounds for isoforms CA II
and CA IX and that locating of a dual moiety with hydrophobic/hydrogen bond
acceptors or hydrophobic/hydrogen bond donor properties on compounds, at a 9.6 Å
distance, can improve the selectivity of the compounds towards isoform CA IX [76].
Investigated molecules with a larger number of oxo groups show better interactions
with enzymes and receptors, which could be the consequence of their stronger
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hydrophilicity [77]. Compounds lacking halide group to fulfill the hydrophobic
feature in the designed pharmacophore model were seen as the main reason behind
their imperfect CA inhibitor activity [9]. It was suggested that very close and very
distant hydrophobic moieties are not in favor of ligand–receptor binding [78]. In a
calibration set, the bond order and molecular orbital bonding have greater influence
on aromatic/heterocyclic sulfonamide inhibitor activity value on β-CA [79]. The
presence of the methyl, sulfur atom, and amino thiadiazole groups is not favorable
to inhibitor activity on β-carbonic anhydrase [79].

Clinically important Plasmodium falciparum CA (PfCA) is a popular QSAR
target, because its X-ray structure is not available. On the other hand, homology
modeling was feasible. The QSAR model developed by the author concludes that the
average free valence of H atoms and polarizabilities are favorable to P. falciparum
CA inhibitory activity [80]. The large percentage in weight of CHNS, C, and F
atom fragments seems to be favorable for the P. falciparum CA inhibitory activity,
in contrast to C8H5O fragment [80]. In the absence of 3D-protein structure and
the lack of sufficient experimental data using the PfCA target, QSAR models were
developed for inhibitors of P. falciparumCA [81]. The 2D-QSAR modeling analysis
suggested the importance of electro-topological, electronic, extended topochemical
atom, and spatial (Jurs) indices for modeling the inhibitory activity against PfCA
[81].

It was found that formal (negative) charge and molecular polar surface area
on benzoic acid analogs overwhelm the other correlations with CA III affinity
constants [82]. The QSAR model concluded that the maximum charge of H in
H−C bonds is not favorable to CA IX inhibitory activity on ureido-substituted
benzene sulfonamides, low percentage of atoms in aromatic circuits are favorable
for inhibitory activity, polarity also influences the activity, and the number of
aromatic carbon–nitrogen bonds play a dominant role for inhibitory activity [83].

QSAR was also used to propose novel inhibitors. ZINC database of purchasable
compounds [84] was screened for possible new CA II inhibitors and three com-
pounds were suggested as possible candidates, but the experimental assay on them
was not performed [75]. QSAR was also performed on decorated nanotubes as CA
inhibitors. It is possible that the entire CA enzyme interacts with the nanotube
causing the enzyme to denature or prevent access to the active site. Another
possibility is that the substituents on nanotube bind in the active site or at a
secondary binding site on the CAs surface [85].

In some cases the analysis also used CA structural features to help explain
the observed trends. It seems that compounds interact with the isoforms CA I
and CA VII in a much less selective way than the remaining isoforms [78]. The
highly potent cliff partner, dorzolamide (used as an antiglaucoma agent), shared
the critically important sulfonamide group with its less potent partner, but formed
two additional hydrogen bonds with residues Gln92 and Thr200 (PDB ID: 1kwr,
1cil), resulting in a 670-fold difference in potency [86]. Gln92 and Thr200 were
identified as potency-modulating hot spots in CA II [86]. It was concluded that the
entry of compounds with different sizes into the cavity of CA can be influenced by
the bulkiness of the residue in position 131 [76].
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CA inhibition data sets quite widely served as model data for QSAR method
comparison and improvement. Compared to other methods, QSAR most effectively
helped to quantify the subtle empirical relationship between the structure and the
activity towards the CA II target [87]. Without filtration to remove all values from
discordant sources/assays (with affinity differences greater than 2.0), no model
whatsoever could be obtained for CA II [88]. Template CoMFA (comparative
molecular field analysis), which was successfully applied to CA II, also has ease of
use and versatility (having been developed with different applications in mind) that
are superior to those of most other computer-aided molecular design methodologies
[88]. The results show that for certain purposes genetic algorithm–multiple linear
regressions are better than stepwise multiple linear regressions and for others,
artificial neural network overcomes multiple linear regressions models [89]. Two
six descriptor models were created for 22 benzenesulfonamides data set leading
to R2 as high as 0.99, and the leave-one-out (LOO) technique was used to
establish the validity of the models [90]. The mathematical models revealed a
poor relationship between the anticonvulsant activity related to CA inhibition and
molecular descriptors obtained from DFT and docking calculations, so a QSAR
model was developed using Dragon software [91] descriptors [92].

15.6 Concluding Remarks

In this chapter we described some highlights from the computational modeling of
CA and its inhibitors. The computer simulations allowed to better understand the
reasons for the observed binding affinities, help to reveal the reaction mechanisms,
and to propose new and improved CA binders. CA is a challenging receptor
due to difficulties in computational treatment of metals, sulfonamide compound
rotamer problems, and the influence of the water solvent, among other issues.
Nevertheless, the volume of theoretical calculations involving CA is increasing each
year, witnessing a constant progress in designing better models for biomolecules.
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