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Abstract The best uniform rational approximation of the sign function on two
intervals was explicitly found by Russian mathematician E.I. Zolotarëv in 1877.
The progress in math eventually led to the progress in technology: half a century
later German electrical engineer and physicist W. Cauer on the basis of this solution
has invented low- and high-pass electrical filters known today as elliptic or Cauer-
Zolotarëv filters and possessing the unbeatable quality. We discuss a recently
developed approach for the solution of optimization problem naturally arising in
the synthesis of multi-band (analogue, digital or microwave) electrical filters. The
approach is based on techniques from algebraic geometry and generalizes the
effective representation of Zolotarëv fraction.

1 History and Background

Sometimes the progress in mathematics brings us to the progress in technology.
One of such examples is the invention of low- and high-pass electrical filters widely
used nowadays is electronic appliances. The story started in year 1877 when E.I.
Zolotarëv (1847–1878)—the pupil of P.L. Chebyshëv—has solved a problem of best
uniform rational approximation of the function sign(x) on two segments of real
axis separated by zero. His solution now called Zolotarëv fraction is the analogy
of Chebyshëv polynomials in the realm of rational functions and inherits many
nice properties of the latter. This work of Zolotarëv who also attended lectures
of K. Weierstrass and corresponded to him was highly appreciated by the German
scholar. More than 50 years later German electrical engineer, physicist and guru of
network synthesis Wilhelm Cauer (1900–1945) has invented electrical filters with
the transfer function based on Zolotarëv fraction.
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Further development of technologies brings us to more sophisticated optimiza-
tion problems [13, 14, 20, 21, 23]. In particular, modern gadgets may use several
standards of wireless communication like IEEE 806.16, GSM, LTE, GPS and
therefore a problem of filtering on several frequency bands arises. Roughly, the
problem is this: given the mask of a filter, that is the boundaries of its stop and
pass bands, the levels of attenuation at the stopbands and the permissible ripple
magnitude at the passbands, to find minimum degree real rational function fitting
this mask. The problem reduces to a solution of a series of somewhat more simple
minimal deviation problems on several segments similar to the one considered by
Zolotarëv. Several equivalent formulations will appear in Section 2.1.

Those problems turned out to be very difficult from the practical viewpoint
because of intrinsic instability of most numerical methods of rational approxi-
mation. However, we know how the ‘certificate’ of the solution (see contribution
from Panos Pardalos in this volume) for this particular case looks like: the solution
possesses the so-called equiripple property, that is behaves like a wave of constant
amplitude on each stop or passband. The total number of ripples is bounded from
below. In a sense the solution for this problem is rather simple—you just manifest
function with a suitable equiripple property. Such behaviour is very unusual for
generic rational functions; therefore, functions with equiripple property fill in a
variety of relatively small dimension in the set of rational functions of bounded
degree. The natural idea is to look for the solution in the ‘small’ set of the
distinguished functions instead of the ‘large’ set of generic functions. Ansatz is an
explicit formula with few parameters which allows to parametrize the ‘small’ set.
This Ansatz ideology had been already used to calculate the so-called Chebyshëv
polynomials on several segments [4], optimal stability polynomials for explicit
multistage Runge-Kutta methods [5, 6] and solve some other problems [7]. Recall,
e.g., Bethe Ansatz for finding exact solutions for Heisenberg antiferromagnetic
model. Ansatz for optimal electrical filters is discussed in Section 7.

2 Optimization Problem for Multiband Filter

Suppose we have a finite collection E of disjoint closed segments of real axis R.
The set has a meaning of frequency bands and is decomposed into two subsets: E =
E+ ∪ E− which are, respectively, called the passbands E+ and the stopbands E−.
Both subsets are nonempty. Optimization problem for electrical filter has several
equivalent settings [1, 3, 12, 22, 26].

2.1 Four Settings

In each of the listed below cases we minimize certain quantity among real rational
functions R(x) of bounded degree degR ≤ n being the maximum of the degrees of
numerator and denominator of the fraction. The goal function may be the following.
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2.1.1 Minimal Deviation
maxx∈E+ |R(x)|
minx∈E− |R(x)| −→ min =: θ2 ≤ 1

2.1.2 Minimal Modified Deviation

max{max
x∈E+ |R(x)|, max

x∈E− 1/|R(x)|} −→ min =: θ

2.1.3 Third Zolotarëv Problem

Minimize θ under the condition that there exist real rational function R(x), degR ≤
n, with the restrictions

min
x∈E−

|R(x)| ≥ θ−1, max
x∈E+

|R(x)| ≤ θ

2.1.4 Fourth Zolotarëv Problem

Define the indicator function S(x) = ±1 when x ∈ E±. Find the best uniform
rational approximation R(x) of S(x) of the given degree:

||R − S||C(E) := max
x∈E

|R(x) − S(x)| → min =: μ.

It is a good exercise to show that all four settings are equivalent and in particular
the value of θ is the same for the first three settings and 1/μ = (θ + 1/θ)/2 for the
fourth one.

2.2 Study of Optimization Problem

Setting 2.1.1 appears in the paper [3] by R.A.-R. Amer, H.R. Schwarz (1964). It
was transformed to problem of Section 2.1.2 by V.N. Malozemov [22]. Setting 2.1.3
appears after suitable normalization of the rational function in Section 2.1.1 and
essentially coincides with the third Zolotarëv problem [26]. Setting 2.1.4 coincides
with the fourth Zolotarëv problem [26] and was studied by N.I. Akhiezer [1]. The
latter noticed that already in the classical Zolotarëv case when the set E contains
just two components, the minimizing function is not unique. This phenomenon
was fully explained in the dissertation of R.-A.R. Amer [3] who decomposed the
space of rational functions of bounded deviation (defined in the left-hand side of
formula in Section 2.1.1) into classes. Namely, it is possible to fix the sign of the
polynomial in the numerator of the fraction on each stopband and fix the sign of
denominator polynomial on each passband. Then in the closure of each nonempty
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class there is a unique minimum. All mentioned authors established that (local)
minimizing functions are characterized by alternation (or equiripple in terms of
electrical engineers) property. For instance, in the fourth Zolotarëv problem the
approximation error δ(x) := R(x) − S(x) of degree n minimizer has 2n + 2
alternation points as ∈ E where δ(as) = ±||δ||C(E) with consecutive change of
sign.

3 Zolotarëv Fraction

E.I. Zolotarëv has solved the problem 2.1.4 for the simplest case: E± = ±[1, 1/k],
0 < k < 1 when S(x) = sign(x). His solution is given parametrically in terms
of elliptic functions and its graph (distorted by a pre- composition with a linear
fractional map) is shown in Figure 1.

To give an explicit representation for this rational function, we consider a
rectangle of size 2 × |τ |:

Πτ = {u ∈ C : |Re u| ≤ 1, 0 < Im u < |τ |}, τ ∈ iR+

which may be conformally mapped to the upper half plane with the normalization
xτ (u) : Πτ ,−1, 0, 1 −→ H,−1, 0, 1. The latter mapping has a closed appearance
xτ (u) = sn(K(τ)u|τ) in terms of elliptic sine and complete elliptic integral K(τ) =
π
2 θ2

3 (τ ), both of modulus τ [2]. Zolotarëv fraction has a parametric representation
resembling the definition of a classical Chebyshëv polynomial:

Fig. 1 Graph of Zolotarëv fraction adapted to two segments E± of different lengths
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Fig. 2 Large rectangle Πnτ

composed of n copies of
small one Πτ

-1 10

τ

nτ

Zn(xnτ (u)) = xτ (u).

Of course, it takes some effort to prove that Zn is the rational function of its
argument (we face the same difficulty with classical Chebyshev polynomial defined
parametrically as Tn(cos(u)) := cos(nu)). The qualitative graph of Zolotarëv
fraction completely follows from Figure 2, for instance its 2n − 2 critical points
correspond to the interior intersection points of the vertical boundaries of the large
rectangle Πnτ and horizontal boundaries of smaller rectangles. Alternation points
different from critical points of the fraction correspond to four corners of the large
rectangle. Zeros/poles of the fraction correspond to u = lτ with even/odd l.

Remark 1 Zolotarëv fractions share many interesting properties with Chebyshëv
polynomials as the latter are the special limit case of the former [9, 10]. For instance,
the superposition of suitably chosen Zolotarëv fractions is again a Zolotarëv
fraction. They also appear as the solutions to many other extremal problems
[15, 16, 18].

4 Projective View

Here we discuss the optimization problem setting which embraces all the formu-
lations we met before in Section 2.1. We do not treat the infinity point both in
the domain of definition and the range of rational function as exceptional. Real
line extended by a point at infinity becomes a real projective line RP 1 := R̂ =
R∪{∞} which is a topological circle. We consider two collections of disjoint closed
segments on the extended real line: E consisting of m ≥ 2 segments and F of just
two segments. The segments of both E and F are of two types: E := E+ ∪ E−;
F := F+ ∪ F−.

Definition 1 We introduce the class Rn(E, F ) of real rational functions R(x) of a
fixed degree degR = n such that R(E+) ⊂ F+ and R(E−) ⊂ F−.
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� RP 1

∂−F− ∂+F− ∂−F+ ∂+F+

F− F+

Fig. 3 The ordering of four endpoints ∂F and their colors

The set of values F modulo projective (=linear-fractional) transformations
depends on a single value—cross ratio of its endpoints. Suppose the endpoints ∂F

are cyclically ordered as follows: ∂−F−, ∂+F−, ∂−F+, ∂+F+—see Figure 3 then
the cross ratio of four endpoints we define as follows:

Definition 2

κ(F ) := ∂+F+ − ∂+F−

∂+F+ − ∂−F+ : ∂−F− − ∂+F−

∂−F− − ∂−F+ > 1.

The classes Rn(E, F ) (possibly empty) and the value of the cross ratio have
several easily checked properties:

Lemma 1

1. Monotonicity.

Rn(E, F ′) ⊂ Rn(E, F ) once F ′ ⊂ F.

2. Projective invariance. For any projective transformations α, β ∈ PGL2(R),

Rn(αE, βF) = β ◦ Rn(E, F ) ◦ α−1.

3. The value κ(F ) is decreasing with the growth of its argument: if F ′ ⊂ F then
κ(F ′) > κ(F ).

4.1 Projective Problem Setting

Fix degree n > 0 and set E ⊂ RP 1, find

�(n,E) := inf{κ(F ) : Rn(E, F ) = ∅}.
The idea behind this optimization is the following: we squeeze the set of values
F , the functional class Rn(E, F ) diminishes and we have to catch the moment—
quantitatively described by the cross ratio κ(F )—when the class disappears.
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Remark 2

1) In problem formulation 2.1.3 the set F+ = [−θ, θ ] and the set F− =
[1/θ,−1/θ ]; κ(F ) =

(
1
2 (θ + 1/θ)

)2
. In setting 2.1.4 the sets F± = ±[1 −

μ, 1 + μ] and κ(F ) = μ−2.
2) Notice that the cross ratio depends on the order of four participating endpoints

and may take six values interchanged by the elements of the so-called unhar-
monic group.

4.2 Decomposition into Subclasses

Now we decompose each set Rn(E, F ) into subclasses which were first introduced
for the problem setting 2.1.1 by R.A.-R. Amer in his PhD thesis [3] in 1964. The
construction of these subclasses is purely topological: suppose we identify opposite
points of a circle S1, we get a double cover of a circle identified with real projective
line RP 1 by another circle S1. Now we try to lift the mapping R(x) : RP 1 →
RP 1 to the double cover of the target space: R̃(x) : RP 1 → S1. There is a
topological obstruction to the existence of R̃: the mapping degree or the winding
number of R(x) modulo 2. A simple calculation shows that this value is equal to
algebraic degree degR mod 2. However this lift exists on any simply connected
piece of RP 1. Suppose the segment E(j) is made up of two consecutive segments
Ej , Ej+1 of the set of bands E = ∪m

j=1Ej and the gap between them. The set

F ⊂ RP 1 lifted to the circle S1 consists of four components cyclically ordered as
F−

0 , F+
0 , F−

1 , F+
1 ⊂ S1. The mapping R(x) : E(j) → RP 1 has two lifts to the

covering circle S1 and exactly one of them has values R̃(x) ∈ F0 := F−
0 ∪ F+

0
when x ∈ Ej . On the opposite side Ej+1 of the segment the same function R̃(x)

takes values in the set Fσ(j) with well-defined σ(j) ∈ {0, 1}. Totally, the function
R(x) defines an element of Z2 for any two consecutive segments of the set E with
the only constraint

m∑
j=1

σ(j) = deg R mod 2.

which defines the element Σ := (σ1, σ2, . . . , σm−1) ∈ Z
m−1
2 . All elements R(x) ∈

Rn(E, F ) with the same value of Σ ∈ Z
m−1
2 make up a subclass Rn(E, F,Σ).

Again, one readily checks the properties of the new classes:

Lemma 2

1. Monotonicity:

Rn(E, F ′,Σ) ⊂ Rn(E, F,Σ) once F ′ ⊂ F.



142 A. Bogatyrëv

2. Projective invariance

β ◦ Rn(E, F,Σ) = Rn(E, βF, βΣ), β ∈ PGL2(R).

here projective transformation β acts on Σ component wise: σ(j) reverses
exactly when β changes the orientation of projective line and the bands Ej ,Ej+1
are of different ±-type. Otherwise—iff β ∈ PSL2(R) or bands Ej ,Ej+1 are
both pass- or stopbands—σ(j) is kept intact.

Remark 3 R.-A.R. Amer [3] combines classes Rn(E, F,Σ) and Rn(E, F, βΣ) for
β reversing the orientation of projective line and conserving the components F±.
This is why he gets twice less number 2m−2 of classes.

4.3 Extremal Problem for Classes

Given degree n, set of bands E, and the class Σ—find

�(n,E,Σ) := inf{κ(F ) : Rn(E, F,Σ) = ∅}. (1)

4.4 Equiripple Property

Definition 3 We say that cyclically ordered (on projective line) points
a1, a2, . . . as ⊂ E make up an alternation set for the function R(x) ∈ Rn(E, F )

iff R(x) maps each of those points to the boundary ∂F = ∂+F ∪ ∂−F , and any
two consecutive points—to different sets ∂+F , ∂−F colored black and white in
Figure 3.

Theorem 1 If the value �(n,E,Σ) > 1, then the closure of the extremal class
Rn(E, F,Σ) contains a unique function R(x) which is characterized by the
property of having at least 2n + 2 alternation points when R(x) is not at the
boundary of the class.

Proof of this theorem and other statements of the current section will be given
elsewhere.

5 Problem Genesis: Signal Processing

There are many parallels between analogue and digital electronics, this is why many
engineering solutions of the past have moved to the new digital era. In particular,
the same optimization problem for rational functions discussed in Section 2.1 arises
in the synthesis of both analogue and digital electronic devices.
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From the mathematical viewpoint electronic device is merely a linear operator
which transforms input signals x(·) to output signals y(·). By signals they mean
functions of one continuous or discrete argument: x(t), t ∈ R or x(k), k ∈ Z.
For technical simplicity they assume that signals vanish in the ‘far past’. Another
natural assumption that a device processing a delayed signal gives the same but
(equally) delayed output which mathematically means that operator commutes with
the time shifts. As a consequence, the operator consists in a (discrete) convolution
of the input signal with the certain fixed signal—the response h(·) to (discrete) delta
function input:

y(t) =
∫

R

h(t ′)x(t − t ′)dt ′; y(k) =
∑
k′∈Z

h(k′)x(k − k′).

The causality property means that the output cannot appear before the input
and implies that impulse response h(·) vanishes for negative arguments. Further
restrictions on the impulse response follow from the physical construction of the
device.

Analogue device is an electric scheme assembled of elements like resistors,
capacitors, (mutual) inductances, etc. which is governed by Kirchhoff laws. Digital
device is governed by the recurrence relation:

y(m) :=
n∑

j=0

pjx(m − j) +
n∑

j=1

qjy(m − j), m ∈ Z. (2)

To compute the impulse response, we use the Fourier transform of continuous
signals and Z-transform of digital ones (here we do not discuss any convergence):

x̂(ω) :=
∫

R

x(t) exp(iωt)dt; ω ∈ H x̂(z) :=
∑
k∈Z

x(k)zk, z ∈ C. (3)

Using the explicit relation (2) for digital device and its Kirchhoff counterpart for
analogue ones we observe that the images of input signals are merely multiplied by
rational functions ĥ(·) of appropriate argument. Since the impulse response is real
valued, its image—also called the transfer function—has the symmetry

ĥ(−ω̄) = ĥ(ω), ĥ(z̄) = ĥ(z), ω, z ∈ C.

In practice we can physically observe the absolute value of the transfer function: if
we ‘switch on’ a harmonic signal of a given frequency as the input one, then after
certain transition process the output signal will also become harmonic, however with
a different amplitude and phase. The magnification of the amplitude as a function
of frequency is called the magnitude response function and it is exactly equal to the
absolute value of transfer function of the device.
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Multiband filtering consists in constructing a device which almost keeps the
magnitude of a harmonic signal with the frequency in the passbands and almost
eliminates signals with the frequency in the stopbands. We use the word ‘almost’
since the square of the magnitude response is a rational function on the real line (for
analogue case):

|ĥ(ω)|2 = ĥ(ω)ĥ(−ω) = R(ω2), ω ∈ R. (4)

At best we can talk of approximation of an indicator function which is equal 0 at the
stopbands and 1 at the passbands. For certain reasons discussed, e.g., by W. Cauer,
uniform (or Chebyshev) approximation is preferable for this practical problem.
So we immediately arrive at the fourth Zolotarev problem taking the square of
frequency as a new variable. For the digital case we get a similar problem set on
the segments of the unit circle which can be transformed to the problem on a real
line.

Note that the reconstruction of the transfer function ĥ(·) from the magnitude
response is not unique: we have to solve Equation (4) given its right-hand side,
which has some freedom. This freedom is used to meet another important restriction
on the image of impulse response which is prescribed by the causality: ĥ(·) can only
have poles in the lower half plane −H of complex variable ω for the analogue case
or strictly outside the unit circle of variable z for the digital case.

Minimal deviation problem in any of the given above settings is just an intermedi-
ate step to the following problem of great practical importance. Find minimal degree
filter meeting given filter specifications like the boundaries of the pass- and stop-
bands attenuation at the stopbands and allowable ripple amplitude at the passbands.
The degree of the rational function ĥ is directly related to the complexity of device
structure, its size, weight, cost of production, energy consumption, cooling, etc.

6 Approaches to Optimization

There are several major approaches for the practical solution of optimization
problem of multiband electrical filter. Three of those are discussed below. Along
with them we would single out a computationally efficient Caratheodory-Fejer
method (known also as AAK-approximation) solving the problem in the class of
quasirational functions which may be further truncated to rational at a cost of extra
error [19].

6.1 Remez-Type Methods

Direct numerical optimization is usually based on Remez-type methods. This
is a group of algorithms specially designed for uniform rational approximation
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[17, 21, 24, 25]. They iteratively build the necessary alternation set for the error
function of approximation. Unfortunately the intrinsic instability of Remez algo-
rithms does not allow to get high degree solutions and therefore sophisticated filter
specifications. For instance, standard double precision accuracy 10−15 used, e.g., in
MATLAB does not allow to get solutions of degree n greater than 15–20. We know
an example when approximation of degree n ≈ 2000 required mantissa of 150,000
decimal signs for stability of intermediate computations. Writing just one number of
this precision requires 75 standard pages—this is the volume of a typical PhD thesis.
Another problem of this group of algorithms is the choice of initial approximation.
The set of suitable starting points may have infinitesimal volume.

6.2 Composite Filters

Practical approach of engineers is to decompose complicated problem into many
simple ones and solve them one by one. In case of filter synthesis they use a
battery of single passband (say, Cauer) filters. This approach is very reliable: it
always gives working solutions which however are far from being optimal. We get
a substantial rise in the order of filter, and therefore complexity of its structure and
the downgrading of many consumer properties.

6.3 Ansatz Method

Is based on an explicit analytical formula for the solution generalizing formula
for Zolotarëv fractions. However this formula contains unknown parameters, both
continuous and discrete which have to be evaluated given the input data of the
problem. Of all approaches this one is the least studied from the algorithmic
viewpoint and its usage is restrained by involved mathematical apparatus [8].
Nonetheless it copes with very involved filter specifications: narrow transition
bands, large number of working bands, their different proportions, high degree of
solution.

A detailed comparison of three approaches has been made in [11].

7 Novel Analytical Approach

The idea behind this approach utilizes the following observation: Almost all—with
very few exceptions—critical points of the extremal function have values in some
4-element set Q. Indeed, the equiripple property claims that a degree n solution has
2n + 2 alternation points, those in the interior of E inevitably being critical. Their
values belong to the set Q := ±θ,±1/θ in the settings (1), (2), (3) or ±1 ± μ in



146 A. Bogatyrëv

setting (4) or ∂F for the projective setting. This number is roughly equal to the total
number 2n − 2 of critical points of a degree n rational function. The number g − 1
of exceptional critical points is counted as

g − 1 =
∑

x:R(x) ∈Q

B(R, x) +
∑

x:R(x)∈Q

[
1

2
B(R, x)

]
, (5)

here the summation is taken over points of the Riemann sphere; [·] is the integer
part of a number and B(R, x) is the branching number of the holomorphic map R

at the point x. The latter value equals zero in all regular points x including simple
poles of R(x), or the multiplicity of the critical point of R(x) otherwise.

Mentioned above exceptional property of extremal rational functions may be
rewritten in a form of a generalized Pell-Abel functional equation and eventually
gives the desired few-parametric representation of the solution [8] for the normal-
ized Q = {±1,±1/k(τ)}

R(x) = sn

(∫ x

e

dζ + A(e)

∣∣∣∣ τ
)

. (6)

Here sn(·|τ) is the elliptic sine of the modulus τ related to the value of the deviation
(depending on the setting it is μ, θ or κ(F )); dζ is a holomorphic differential on the
unknown beforehand hyperelliptic curve

M = M(e) = {(w, x) ∈ C
2 : w2 =

2g+2∏
s=1

(x − es)}, e = {es}2g+2
s=1 . (7)

This curve has branching at the points e ∈ e where R(x) takes values from the
exceptional set Q with odd multiplicity. One can show that the genus g of the curve
(7) equals to the above defined number (5) of exceptional critical points plus 1. The
arising surface is not arbitrary: it bears a holomorphic differential dζ whose periods
lie in the rank 2 periods lattice of elliptic sine. The phase shift A(e) is some quarter
period of sn(·|·).

Algebraic curves of this type are not new to mathematicians: they are so-called
Calogero-Moser curves and describe the dynamics of points on a torus interacting
with the Weierstrass potential ℘(u).

8 Examples of Filter Design

We give several examples of optimal magnitude response functions from different
classes, all of them are computed by Sergei Lyamaev. Figure 4 shows the solution
of fourth Zolotarëv problem with the set E consisting of 30 bands. The solution
contains no poles in the transition bands and may be transformed to the transfer
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Fig. 4 Optimal magnitude response function with 30 work bands

Fig. 5 The minimizer for the fourth Zolotarëv problem on 7 bands with class Σ admitting poles
in some transition bands

function of the multiband filter. Figure 5 shows the solution of the problem with
seven working bands. Its class Σ admits poles in the transitions and the function
cannot be used for the filter synthesis, which does not exclude other possible
applications.

Figures 6 and 7 represents a magnitude response function of the so-called double
notch filter which eliminates input signal in the narrow vicinities of two given
frequencies. Shown here optimal filter has degree n = 16 while same specification
composite filter has degree n = 62.
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Fig. 6 Optimal double notch filter eliminating noise at two given frequencies. Log scale on the
vertical axis (amplification)

Fig. 7 Magnification of the previous figure at two cutoff frequencies
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