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Preface

This volume contains most of the invited papers that were presented at the
Conference on Approximation and Optimization, held in Athens, Greece, on 29–
30 June 2017.

The occasion being the 180 years celebration of the National and Kapodistrian
University of Athens, the conference covered research issues in approximation and
optimization by focusing on the development of algorithms, the study of their
complexity, and relevant applications.

The individual papers have been written by leading experts and active researchers
in their subjects. They are a mix of expository articles, surveys of new work, and
applications. The topics have been drawn from approximation to discrete noisy data,
data-dependent approximation, evolutionary optimization, machine learning, non-
linearly constrained optimization, optimal design of smart composites, optimization
of multiband electric filters, portfolio selection, tax evasion as an optimal control
problem, and the no-free-lunch theorem.

The book by content, expertise, and application areas will be useful to academics,
researchers, industry experts, data science practitioners, business analysts, social
sciences investigators, and graduate students.

Support for this conference came from the M.Sc. Program in Business Adminis-
tration, Analytics, and Information Systems of the University of Athens and the
Bank of Greece. We are grateful to our colleague Professor Yannis Stournaras,
Governor of the Bank of Greece. Their support was crucial to the academic
excellence of the program, to the participation from a wide range of countries, to
the social activities, and to the publication of these proceedings. The conference
received valuable assistance from the National and Kapodistrian University of
Athens through Mrs. Katerina Skoura (Head of Administration) in the organization
of the conference and staff in the Department of Economics. To all, we express our
sincere thanks.

The authors of the papers deserve our editorial thanks for producing the papers
so well and so promptly. Thanks are also due to the referees who were generous
with their time and effort. And thanks also to Razia Amzad and the staff of Springer
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for their help with publishing this book. It is a pleasure to acknowledge all of these
contributions.

Athens, Greece Ioannis C. Demetriou
Gainesville, FL, USA Panos M. Pardalos
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Introduction

Ioannis C. Demetriou and Panos M. Pardalos

Abstract A brief survey is given to the papers of this volume that explore various
aspects of approximation and optimization.

1 Survey

Approximation and optimization form important disciplines within mathematics
that have a significant contribution to knowledge, applied knowledge, and com-
puting. Many optimization problems occur naturally and many problems require
approximation techniques to be solved. There is an explosion of methods and
applications of these disciplines in recent times throughout science, engineering,
technology, medicine, and social sciences.

The papers of this volume explore various aspects of approximation and opti-
mization. Some present summaries of the state of the art in a particular subject
and some others present new research results. A brief survey of the papers is given
below.

Coralia Cartis, Nicholas Gould, and Philippe L. Toint in their paper Evalu-
ation Complexity Bounds for Smooth Constrained Nonlinear Optimization using
Scaled KKT Conditions and High-order Models consider evaluation complexity for
solving convexly constrained optimization. They show that the complexity bound
of O(ε−3/2) of their previous work for computing an ε-approximate first-order
critical point can be obtained under significantly weaker assumptions. Further, they
generalize this result to the case where high-order derivatives are available, the
order being p say, resulting in a bound ofO(ε−(p+1)/p) evaluations. Then, defining
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2 I. C. Demetriou and P. M. Pardalos

εP and εD to be the primal and dual accuracy thresholds, they also show that
the bound of O(ε−1/2

P ε
−3/2
D ) evaluations for the general nonconvex case involving

both equality and inequality constraints can be generalized to yield a bound of
O(ε

−1/p
P ε

−(p+1)/p
D ) evaluations under similarly weaker assumptions.

Data-dependent approximation is a new approach for the study of nonsubmod-
ular optimization problems. It has attracted a lot of research especially in the area
of social computing, where nonsubmodular combinatorial optimization problems
have been recently formulated. Weili Wu, Yi Li, Panos Pardalos, and Ding-Zhu Du
in their paper Data-Dependent Approximation in Social Computing present some
theoretical results and discuss on related problems open to research.

Machine learning algorithms build efficient descriptive or predictive models to
uncover relationships in the data. Multi-objective evolutionary optimization assists
machine learning algorithms to optimize their hyperparameters, usually under
conflicting performance objectives, and selects the best model for a prescribed
task. Stamatios-Aggelos Alexandropoulos, Christos Aridas, Sotiris Kotsiantis, and
Michael Vrahatis in their paper Multi-Objective Evolutionary Optimization Algo-
rithms for Machine Learning, a Recent Survey consider relevant approaches for
four major data mining and machine learning tasks, namely data preprocessing,
classification, clustering, and association rules.

Optimization search and supervised learning are the areas that have benefited
more from the concept of the no free lunch (NFL) theorem. In its rapid growth,
NFL has provided new research results, which are also important in other scientific
areas where the successful exploration of a search space is an essential task. Stavros
Adam, Stamatios-Aggelos Alexandropoulos, Panos Pardalos, and Michael Vrahatis
in their paper No Free Lunch Theorem, a Review survey research results in this field,
reveal main issues, and expose particular points that are helpful in understanding the
hypotheses, the restrictions, or even the inability of applying NFLs.

Revd. Michael Cullinan in his paper Piecewise Convex-Concave Approximation
in the Minimax Norm presents an efficient algorithm for constructing an approxi-
mant to noisy data in order to obtain piecewise convexity/concavity with respect to
the least uniform change to n data. Specifically, if q sign changes are allowed in the
second order consecutive divided differences of the components of the approximant,
then, own to the fact that the set of optimal vectors is connected, the least maximum
change to the data is computed in only O(qn log n) operations, a remarkable result
indeed. The author develops optimization techniques which obtain the solution by
adjustments that depend on local information, so they avoid the disadvantage of the
existence of purely local minima.

Ioannis Demetriou in his paper A Decomposition Theorem for the Least Squares
Piecewise Monotonic Data Approximation Problem considers the least squares
change to n univariate data subject to the condition that the first differences of
the estimated values have at most q sign changes. The situation compared to the
one in the previous paragraph where the objective function is the minimax norm
is quite different, because in the least squares case the set of local minima is
composed of discrete points. Hence any algorithm that uses local information will
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stop at a local minimum. Here difficulties are caused by the enormous number of
isolated local solutions of the optimization calculation that can occur in practice,
namely O(nq). A theorem is stated that decomposes the problem into least squares
monotonic approximation (case q = 0) problems to disjoint sets of adjacent data.
The decomposition allows the development of a dynamic programming procedure
that provides a highly efficient calculation of the solution in only O(n2 + qn log n)
operations. The solution to the problem is known by previous work of the author,
but a proof is presented that provides necessary and sufficient conditions in a unified
theorem.

The best uniform rational approximation of the sign function on two intervals
was explicitly found by Zolotarëv in 1877, while half a century later this idea
entered technology by Cauer’s invention of low- and high-pass electrical filters.
Andrei Bogatyrëv in his paper Recent Progress in Optimization of Multiband
Electrical Filters discusses on a recently developed approach for the solution of the
optimization problem that arises in the synthesis of multi-band, analogue, digital
or microwave, electrical filters, based on techniques from algebraic geometry and
generalizations of the Zolotarëv fraction.

Valery Kalyagin and Sergey Slashchinin in their paper Impact of Error in Param-
eter Estimations on Large Scale Portfolio Optimization examine how estimation
error for means and covariance matrix of stock returns may affect the results of
selected portfolios. They conducted different experiments using both real data from
different stock markets and generated samples in order to compare the out-of-sample
performance of the estimators and the influence of the estimation error on the
portfolio selection. A new surprising phenomenon observed for large-scale portfolio
optimization is that the efficiency of the obtained optimal portfolio is biased with
respect to the true optimal portfolio.

The main concept of the paper Optimal Design of Smart Composites by Georgios
Tairidis, Georgia Foutsitzi, and Georgios Stavroulakis stimulates research on the
design, optimization, and control issues on smart structures. Optimal design prob-
lems related to smart composites are investigated. First, the mechanical properties of
a smart composite can be tailored to meet required specifications. Beyond classical
shape and layout optimization related to the layers of a composite, pointwise opti-
mization leading to functionally graded composites or even topology optimization
can be applied. Furthermore, some basic techniques regarding soft control based on
fuzzy and neuro-fuzzy strategies are presented, along with optimization options and
methods which can be used for the fine-tuning of the parameters of the system.

Motivated by the persistent phenomenon of tax evasion and the challenge
of tax collection during economic crises, Paraskevi Papadopoulou and Dimitri
Hristu-Varsakelis in their paper Tax Evasion as an Optimal Solution to a Partially
Observable Markov Decision Process explore the behavior of a risk-neutral self-
interested firm that may engage in tax evasion to maximize its profits. The firm
evolves in a tax system which includes many of standard features such as audits,
penalties, and occasional tax amnesties, and may be uncertain as to its tax status.
They show that the dynamics of the firm can be expressed via a partially observable
Markov decision process, use this model to compute the optimal behavior of the
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firm, and investigate the effect of “leaks” or “pre-announcements” of any tax
amnesties on tax revenues. They also compute the effect on firm behavior of any
extensions of the statute of limitations within which the firm’s tax filings can be
audited, and show that such extensions can be a significant deterrent against tax
evasion.



Evaluation Complexity Bounds
for Smooth Constrained Nonlinear
Optimization Using Scaled KKT
Conditions and High-Order Models

Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint

Abstract Evaluation complexity for convexly constrained optimization is consid-
ered and it is shown first that the complexity bound of O(ε−3/2) proved by Cartis
et al. (IMA J Numer Anal 32:1662–1695, 2012) for computing an ε-approximate
first-order critical point can be obtained under significantly weaker assumptions.
Moreover, the result is generalized to the case where high-order derivatives are
used, resulting in a bound of O(ε−(p+1)/p) evaluations whenever derivatives of
order p are available. It is also shown that the bound of O(ε−1/2

P ε
−3/2
D ) evaluations

(εP and εD being primal and dual accuracy thresholds) suggested by Cartis et al.
(SIAM J. Numer. Anal. 53:836–851, 2015) for the general nonconvex case involving
both equality and inequality constraints can be generalized to yield a bound of
O(ε

−1/p
P ε

−(p+1)/p
D ) evaluations under similarly weakened assumptions.

1 Introduction

In [4] and [7], we examined the worst-case evaluation complexity of finding an
ε-approximate first-order critical point for smooth nonlinear (possibly nonconvex)
optimization problems for methods using both first and second derivatives of the
objective function. The case where constraints are defined by a convex set was
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considered in the first of these references, while the general case (with equality
and inequality constraints) was discussed in the second.

It was shown in [4] that at most O(ε−3/2) evaluations of the objective function
and its derivatives are needed to compute such an approximate critical point. This
result, which is identical in order to the best known result for the unconstrained
case, comes at the price of potentially restrictive technical assumptions: it was
assumed that an approximate first-order critical point of a cubic model subject
to the problem’s constraints can be obtained for the subproblem solution in a
uniformly bounded number of descent steps that is independent of ε, that all
iterates remain in a bounded set and that the gradient of the objective function
is also Lipschitz continuous (see [4] for details). The analysis of [7] then built
on the result of the convex case by first specializing it to convexly constrained
nonlinear least-squares and then using the resulting complexity bound in the
context of a two-phase algorithm for the problem involving general constraints.
If εP and εD are the primal and the dual criticality thresholds, respectively, it
was suggested that at most O(ε−1/2

P ε
−3/2
D ) evaluations of the objective function

and its derivatives are needed to compute an approximate critical point in that
case, where the Karush–Kuhn–Tucker (KKT) conditions are scaled to take the
size of the Lagrange multipliers into account. Because the proof of this result
is based on the bound obtained for the convex case, it suffers from the same
limitations (not to mention an additional constraint on the relative sizes of εP and εD,
see [7]).

More recently, Birgin et al. [3] provided a new regularization algorithm for the
unconstrained problem with two interesting features. The first is that the model
decrease condition used for the subproblem solution is weaker than that used
previously, and the second is that the use of problem derivatives of order higher than
two is allowed, resulting in corresponding reductions in worst-case complexity. In
addition, the same authors also analyzed the worst-case evaluation complexity of
the general constrained optimization problem in [2] also allowing for high-order
derivatives and models in a framework inspired by that of [6, 7]. At variance with
the analysis of these latter references, their analysis considers unscaled approximate
first-order critical points in the sense that such points satisfy the standard unscaled
KKT conditions with accuracy εP and εD.

The first purpose of this paper is to explore the potential of the proposals made
in [3] to overcome the limitations of [4] and to extend its scope by considering
the use of high-order derivatives and models. A second objective is to use the
resulting worst-case bounds to establish strengthened evaluation complexity bounds
for the general nonlinearly constrained optimization problem in the framework of
scaled KKT conditions, thereby improving [7]. The paper is thus organized in two
main sections: Section 2 covering the convexly constrained case and Section 3
allowing general nonlinear constraints. The results obtained are finally discussed in
Section 4.
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2 Convex Constraints

The first problem we wish to solve is formally described as

min
x∈F

f (x), (1)

where we assume that f : Rn −→ R is p-times continuously differentiable,
bounded from below, and has Lipschitz continuous p-th derivatives. For the q-th
derivative of a function h : Rn→ R to be Lipschitz continuous on the set S ⊆ Rn,
we require that there exists a constant Lh,q ≥ 0 such that, for all x, y ∈ S ,

‖∇qx h(x)−∇qx h(y)‖T ≤ (q − 1)!Lh,q‖x − y‖,

where ‖ · ‖T is the recursively induced Euclidean norm on the space of q-th
order tensors. We also assume that the feasible set F is closed, convex and non-
empty. Note that this formulation covers standard inequality (and linear equality)
constrained optimization in its different forms: the set F may be defined by simple
bounds, and both polyhedral and more general convex constraints. We remark
though that we are tacitly assuming here that the cost of evaluating constraint
functions and their derivatives is negligible.

The algorithm considered in this paper is iterative. Let Tp(xk, s) be the p-th order
Taylor-series approximation to f (xk + s) at some iterate xk ∈ Rn, and define the
local regularized model at xk by

mk(xk + s) def= Tp(xk, s)+ σk

p + 1
‖s‖p+1, (2)

where σk > 0 is the regularization parameter. Note that mk(xk) = Tp(xk, 0) =
f (xk). The approach used in [4] (when p = 2) seeks to define a new iterate xk+1
from the preceding one by computing an approximate solution of the subproblem

min
x∈F

mk(xk + s) (3)

using a modified version of the Adaptive Regularization with Cubics (ARC) method
for unconstrained minimization. By contrast, we now examine the possibility of
modifying the ARp algorithm of [3] with the aim of inheriting its interesting
features. As in [4], the modification involves a suitable continuous first-order
criticality measure for the constrained problem of minimizing a given function
h : Rn→ R on F . For an arbitrary x ∈ F , this criticality measure is given by

πh(x)
def= ‖PF [x −∇xh(x)] − x‖, (4)
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where PF denotes the orthogonal projection onto F and ‖·‖ the Euclidean norm. It
is known that x is a first-order critical point of problem (1) if and only if πf (x) = 0.
Also note that πf (x) = ‖∇xh(x)‖ whenever F = Rn.

Next we describe our algorithm as the ARpCC algorithm (ARp for Convex
Constraints).

Algorithm 2.1: Adaptive Regularization using p-th order models for convex constraints
(ARpCC)

A starting point x−1, an initial and a minimal regularization parameter σ0 ≥ σmin > 0,
algorithmic parameters θ > 0, γ3 ≥ γ2 > 1 > γ1 > 0 and 1 > η2 ≥ η1 > 0, are given,
as well as an accuracy threshold ε ∈ (0, 1). Compute x0 = PF [x−1] and evaluate f (x0) and
∇xf (x0).
For k = 0, 1, . . ., until termination, do:

1. Evaluate ∇xf (xk). If

πf (xk) ≤ ε, (5)

terminate. Otherwise compute derivatives of f of order 2 to p at xk .
2. Compute a step sk by approximately minimizing mk(xk + s) over s ∈ F so that

xk + sk ∈ F , (6)

mk(xk + sk) < mk(xk) (7)

and

πmk (xk + sk) ≤ θ ‖sk‖p. (8)

3. Compute f (xk + sk) and

ρk = f (xk)− f (xk + sk)
Tp(xk, 0)− Tp(xk, sk) . (9)

If ρk ≥ η1, set xk+1 = xk + sk . Otherwise set xk+1 = xk .
4. Set

σk+1 ∈
⎧
⎨

⎩

[max(σmin, γ1σk)σk] if ρk > η2 [very successful iteration]
[σk, γ2σk] if η1 ≤ ρk ≤ η2 [successful iteration]
[γ2σk, γ3σk] otherwise. [unsuccessful iteration],

(10)

and go to step 2 if ρk < η1.

We first state a useful property of the ARpCC algorithm, which ensures that
a fixed fraction of the iterations 1, 2, . . . , k must be either successful or very
successful.
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Lemma 1 ([3, Lem 2.4], [6, Thm 2.2]) Assume that, for some σmax > 0, σj ≤
σmax for all 0 ≤ j ≤ k. Then the ARpCC algorithm ensures that

k ≤ κu|Sk|, where κu
def=

(

1+ | log γ1|
log γ2

)

+ 1

log γ2
log

(
σmax

σ0

)

, (11)

where Sk is the number of successful and very successful iterations, in the sense
of (10), up to iteration k.

We start our worst-case analysis by formalizing our assumptions

AS.1 The objective function f is p times continuously differentiable on
an open set containing F .

AS.2 The p-th derivative of f is Lipschitz continuous on F .

AS.3 The feasible set F is closed, convex and non-empty.

The ARpCC algorithm is required to start from a feasible x0 ∈ F , which,
together with the fact that the subproblem solution in Step 2 involves minimization
over F , leads to AS.3.

We now recall some simple results whose proof can be found in [3] in the context
of the original ARp algorithm.

Lemma 2 Suppose that AS.1–AS.3 hold. Then, for each k ≥ 0,

(i)

f (xk + sk) ≤ Tp(xk, sk)+ Lf,p
p
‖sk‖p+1 (12)

and

‖∇xf (xk + sk)−∇sT (xk, sk)‖ ≤ Lf,p‖sk‖p; (13)

(ii)

Tp(xk, 0)− Tp(xk, sk) ≥ σk

p + 1
‖sk‖p+1; (14)

(iii)

σk ≤ σmax
def= max

[

σ0,
γ3Lf,p(p + 1)

p (1− η2)

]

. (15)
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Proof See [3] for the proofs of (12) and (13), which crucially depend on AS.1 and
AS.2 being valid on the segmentc [xk, xk + sk], i.e.,

‖∇px f (xk + ξsk)−∇px f (xk)‖p ≤ Lf,pξ‖sk‖ for all ξ ∈ [0, 1]. (16)

Observe also that (2) and (7) ensure (14). Assume now that

σk ≥ Lf,p(p + 1)

p (1− η2)
. (17)

Using (12) and (14), we may then deduce that

|ρk − 1| ≤ |f (xk + sk)− Tp(xk, sk)||Tp(xk, 0)− Tp(xk, sk)| ≤
Lf,p(p + 1)

p σk
≤ 1− η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and
σk+1 ≤ σk . As a consequence, the mechanism of the algorithm ensures that (15)
holds. 	

We now prove that, at successful iterations, the step at iteration k must be
bounded below by a multiple of the p-th root of the criticality measure at iteration
k + 1.

Lemma 3 Suppose that AS.1–AS.3 hold. Then

‖sk‖ ≥
[

πf (xk+1)

Lf,p + θ + σmax

] 1
p

for all k ∈ S . (18)

Proof Since k ∈ S and by definition of the trial point, we have that xk+1 = xk+sk .
Observe now that (13) and (15) imply that

‖∇f (xk+1)− ∇xmk(xk+1)‖ ≤ Lf,p‖sk‖p + σk‖sk‖p ≤ (Lf,p + σmax)‖sk‖p.
(19)

Combing this bound with the triangle inequality, the contractive nature of the
projection and (8), we deduce that

πf (xk+1) = ‖PF [xk+1 −∇xf (xk+1)] − PF [xk+1 −∇xmk(xk+1)]
+ PF [xk+1 −∇xmk(xk+1)] − xk+1‖

≤ ‖PF [xk+1 −∇xf (xk+1)] − PF [xk+1 −∇xmk(xk+1)]‖ + πmk (xk+1)

≤ ‖∇xf (xk+1)] − ∇xmk(xk+1)‖ + πmk (xk+1)

≤ (Lf,p + θ + σmax)‖sk‖p

and (18) follows. 	



Cartis, Gould, Toint: Evaluation Complexity of Constrained Optimization 11

We now consolidate the previous results by deriving a lower bound on the
objective function decrease at successful iterations.

Lemma 4 Suppose that AS.1–AS.3 hold. Then, if iteration k is successful,

f (xk)− f (xk+1) ≥ 1

κ
f
s

πf (xk+1)
p+1
p ,

where

κ
f
s

def= max

[

1,
p + 1

η1σmin

(
Lf,p + θ + σmax

) p+1
p

]

. (20)

Proof If iteration k is successful, we have, using (9), (14), (10), (18) and (15)
successively, that

f (xk)− f (xk+1) ≥ η1[ Tp(xk, 0)− Tp(xk, sk) ]

≥ η1σmin

p + 1
‖sk‖p+1

≥ η1σmin

(p + 1)[Lf,p + θ + σmax]
p+1
p

πf (xk+1)
p+1
p . 	

It is important to note that the validity of this lemma does not depend on the
history of the algorithm, but is only conditional to the smoothness assumption on
the objective function holding along the step from xk to xk+1. We will make use of
that observation in Section 3.

Our worst-case evaluation complexity results can now be proved by combining
this last result with the fact that πf (xk) cannot be smaller than ε before termination.

Theorem 1 Suppose that AS.1–AS.3 hold and let flow be a lower bound on f on
F . Then, given ε > 0, the ARpCC algorithm applied to problem (1) needs at most

⌊

κ
f
s

f (x0)− flow

ε
p+1
p

⌋

successful iterations (each involving one evaluation of f and its p first derivatives)
and at most

κu

⌊

κ
f
s

f (x0)− flow

ε
p+1
p

⌋

iterations in total to produce an iterate xε such that πf (xε) ≤ ε, where κu is given
by (11) with σmax defined by (15).
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Proof At each successful iteration, we have, using Lemma 4, that

f (xk)− f (xk+1) ≥ (κfs )−1πf (xk+1)
p+1
p ≥ (κfs )−1ε

p+1
p ,

where we used the fact that πf (xk+1) ≥ ε before termination to deduce the last
inequality. Thus we deduce that, as long as termination does not occur,

f (x0)− f (xk+1) =
∑

j∈Sk
[f (xj )− f (xj + sj )] ≥ |Sk|

κ
f
s

ε
p+1
p ,

from which the desired bound on the number of successful iterations follows.
Lemma 1 is then invoked to compute the upper bound on the total number of
iterations. 	

For what follows, it is very important to note that the Lipschitz continuity of∇qx f
was only used (in Lemma 2) to ensure that (16) holds for all k ≥ 0.

3 The General Constrained Case

We now consider the general smooth constrained problem in the form

min
x∈F

f (x) subject to c(x) = 0, (21)

where c : Rn → Rm is sufficiently smooth and f and F are as above. Note that
this formulation covers the general problem involving both equality and inequality
constraints, the latter being handled using slack variables and the inclusion of the
associated simple bounds in the definition of F .

Our idea is now to first apply the ARpCC algorithm to the problem

min
x∈F

ν(x)
def= 1

2‖c(x)‖2. (22)

If an approximately feasible point is found, then we may follow the spirit of [5–7]
and [2] and apply the same ARpCC to approximately solve the problem

min
x∈F

μ(x, tk)
def= 1

2‖r(x, tk)‖2 def= 1
2

∥
∥
∥
∥

(
c(x)

f (x)− tk
)∥
∥
∥
∥

2

(23)

in the set for some monotonically decreasing sequence of “targets” tk (k = 1, . . .).
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Algorithm 3.1: Adaptive Regularization using p-th order models for general constraints
(ARpGC)

A constant β defining Cβ , a starting point x−1, a minimum regularization parameter σmin > 0,
an initial regularization parameter σ0 ≥ σmin are given, as well as a constant δ ∈ (0, 1). The
primal and dual tolerances 0 < εP < 1 and 0 < εD < 1 are also given.

Phase 1:
Starting from x0 = PF (x−1), apply the ARpCC algorithm to minimize 1

2‖c(x)‖2 subject
to x ∈ F until a point x1 ∈ F is found such that

‖c(x1)‖ < δεP or π 1
2 ‖c‖2 (x1) ≤ εD‖c(x1)‖. (24)

If ‖c(x1)‖ ≥ δεP, terminate with xε = x1.
Phase 2:

1. Set t1 = f (x1)−
√

ε2
P − ‖c(x1)‖2.

2. For k = 1, 2, . . ., do:

a. Starting from xk , apply the ARpCC algorithm to minimize μ(x, tk) as a function of
x ∈ F until an iterate xk+1 ∈ F is found such that

‖r(xk+1, tk)‖ < δεP or f (xk+1) < tk or πμ(xk+1, tk) ≤ εD‖r(xk+1, tk)‖
(25)

b. i. If ‖r(xk+1, tk)‖ < δεP, define tk+1 according to

tk+1 = f (xk+1)−
√

ε2
P − ‖c(xk+1)‖2. (26)

and terminate with (xε, tε)= (xk+1, tk+1) if πμ(xk+1, tk+1)≤ εD‖r(xk+1, tk+1)‖.

ii. If ‖r(xk+1, tk)‖ ≥ δεP and f (xk+1) < tk , define tk+1 according to

tk+1 = 2f (xk+1)− tk (27)

and terminate with (xε, tε)= (xk+1, tk+1) if πμ(xk+1, tk+1)≤ εD‖r(xk+1, tk+1)‖.

iii. If ‖r(xk+1, tk)‖ ≥ δεP and f (xk+1) ≥ tk , terminate with (xε, tε) = (xk+1, tk)

Observe that the recomputations of πμ(xk+1, tk+1) in Step 2.(b) do not require
re-evaluating f (xk+1) or c(xk+1) or any of their derivatives.

We now complete our assumptions.

AS.4 All derivatives of f of order 0 to p are Lipschitz continuous in F .

AS.5 For each i = 1, . . . , m, the constraint function ci is p times
continuously differentiable on an open set containing F .
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AS.6 All derivatives of order 0 to p of each ci (i = 1, . . . , m) are
Lipschitz continuous in F .

AS.7 There exists constants β ≥ εP and flow ∈ R such that f (x) ≥ flow

for all x ∈ Cβ
def= {x ∈ F | ‖c(x)‖ ≤ β}.

Assume, without loss of generality, that all Lipschitz constants implied by AS.4 and
AS.6 are bounded above by L ≥ 1. Also note the problem of finding an εP-feasible
minimizer of f (x) is only meaningful if AS.7 holds.

We first verify that our assumptions are sufficient to imply that ν(x) and μ(x, t)
have Lipschitz p-th derivative on all segments [xk, xk + sk] generated by the
algorithm, allowing us to exploit the results of Section 2.

Lemma 5 Assume that AS.3, AS.5 and AS.6 hold. Let the iteration of the ARpCC
algorithm applied to problem (22) be indexed by j . Then the “segment” Lipschitz
condition (16) holds for ∇qx ν(x) holds on every segment [xj , xj + sj ] (j ≥ 0)
generated by the ARpCC algorithm during Phase 1 and any q ∈ {1, . . . , p}. If, in
addition, AS.1 and AS.4 also hold, then the same conclusion holds for ∇qx μ(x, t)
on every segment [xj , xj + sj ] (j ≥ 0) generated by the ARpCC algorithm during
Step 2.(a) of Phase 2 and any q ∈ {1, . . . , p}, the Lipschitz constant in this latter
case being independent of t .

Proof Since

∇qx ν(x) =
m∑

i=1

⎡

⎣
∑

�,j>0, �+j=q
α�,j∇�xci(x)∇jx ci(x)+ ci(x)∇qx ci(x)

⎤

⎦

(where {α�,j } are suitable positive and finite coefficients), condition (16) is satisfied

on the segment [xj , xj + sj ] if (i) the derivatives {∇min[�,j ]
x ci(x)}mi=1 are Lipschitz

continuous on [xj , xj + sj ], (ii) {∇max[�,j ]
x ci(x)}mi=1 are uniformly bounded on

[xj , xj + sj ], and (iii) we have that

m∑

i=1

‖ci(xj + ξsj )∇qx ci(xj + ξsj )− ci(xj )∇qx ci(xj )‖q ≤ L1ξ‖sj‖ (28)

for some constant L1 > 0. The first of these conditions is ensured by AS.6, and
the second by the observation that AS.6 again implies that ‖∇�xci(x)‖ ≤ L for
� ∈ {1, . . . , q} (see [11, Lem. 1.2.2, p. 21]). Moreover,

‖ci(xj + ξsj )∇qx ci(xj + ξsj )− ci(xj )∇qx ci(xj )‖
≤ |ci(xj + ξsj )− ci(xj )| · ‖∇qx ci(xj + ξsj )‖q
+|ci(xj )| · ‖∇qx ci(xj + ξsj )− ∇qx ci(xj )‖q,
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and the first term on the right-hand side is bounded above by L2ξ‖sj‖ and the
second by |ci(xj )|Lξ‖sj‖. Hence (28) holds with

L1 =
m∑

i=1

(
L2 + |ci(xj )|L

)
≤ mL2 +m‖c(xj )‖L ≤ mL2 +m‖c(x0)‖L

because the ARpCC algorithm ensures that ‖c(xj )‖ ≤ ‖c(x0)‖ for all j ≥ 0. As
a consequence, AS.3, AS.5 and AS.6 guarantee that (16) holds with the Lipschitz
constant

m

[(

max
i=1,...,m

αi

)

L2 + L2 + ‖c(x0)‖L
]

.

If we now assume that AS.1 and AS.4 also hold, we may repeat, for μ(x, t) (with
fixed t) the same reasoning as above and obtain that condition (16) holds for each
segment [xj , xj + sj ] generated by the ARpCC algorithm applied in Step 2.(a) of
Phase 2, with Lipschitz constant

m

[(

max
i=1,...,m

αi

)

L2 + L2 + ‖c(xj,0)‖L
]

+
(

max
i=1,...,m

αi

)

L2 + L2 + |f (xj,0)− tj |L

≤(m+ 1)L2
[

1+
(

max
i=1,...,m

αi

)]

+ 2mL
def= Lμ,p,

where we have used (34) and εP ≤ 1 to deduce the inequality. Note that this constant
is independent of tj , as requested. 	

We now start our complexity analysis as such by examining the complexity of
Phase 1.

Lemma 6 Suppose that AS.3, AS.5 and AS.6 hold. Then Phase 1 of the ARpGC
algorithm terminates after at most

⌊

κcCC‖c(x0)‖ max

[

ε−1
P , ε

− 1
p

P ε
− p+1

p
D

]⌋

+ 1

evaluations of c and its derivatives, where κcCC

def= 1
2κuκ

1
2 ‖c‖2

s δ
1
p with κ

1
2 ‖c‖2

s

being the problem-dependent constant defined in (20) for the function 1
2‖c(x)‖2

corresponding to (22).

Proof Let us index the iteration of the ARpCC algorithm applied to problem (22)
by j and assume that iteration j is successful and that

‖c(xj )‖ ≥ δεP. (29)
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If ‖c(xj+1)‖ ≤ 1
2‖c(xj )‖, then

‖c(xj )‖ − ‖c(xj+1)‖ ≥ 1
2‖c(xj )‖ ≥ 1

2δ εP. (30)

By contrast, if ‖c(xj+1)‖ > 1
2‖c(xj )‖, then, using the decreasing nature of the

sequence {‖c(xj )‖}, Lemma 4 (which is applicable because of Lemma 5) and the
second part of (24), we obtain that

(‖c(xj )‖ − ‖c(xj+1)‖) ‖c(xj )‖ ≥ 1
2‖c(xj )‖2 − 1

2‖c(xj+1)‖2

≥
(

κ
1
2 ‖c‖2

s

)−1

(εD‖c(xj+1)‖)
p+1
p

≥
(

κ
1
2 ‖c‖2

s

)−1

( 1
2εD‖c(xj )‖)

p+1
p

and thus that

‖c(xj )‖−‖c(xj+1)‖ ≥
(

κ
1
2 ‖c‖2

s

)−1
2−

p+1
p ‖c(xj )‖

1
p ε

p+1
p

D ≥ 1
2

(

κ
1
2 ‖c‖2

s

)−1
δ

1
p ε

1
p

P ε

p+1
p

D ,

where we have used (29) to derive the last inequality. Because of (20), we thus
obtain from this last bound and (30) that, for all j ,

‖c(xj )‖ − ‖c(xj+1)‖ ≥ 1
2

(

κ
1
2 ‖c‖2

s

)−1

δ
1
p min

[

εP, ε
1
p

P ε

p+1
p

D

]

.

As in Theorem 1, we then deduce that the number of successful iterations required
for the ARpCC algorithm to produce a point x1 satisfying (24) is bounded above by

1
2κ

1
2 ‖c‖2

s δ
1
p ‖c(x0)‖ max

[

ε−1
P , ε

− 1
p

P ε
− p+1

p
D

]

.

The desired conclusion then follows by using Lemma 1 and adding one for the final
evaluation at termination. 	
Note that an improved complexity bound for convexly constrained least-squares
problems, and hence for Phase 1, was given in [8]. In particular, the bound in
Lemma 6 improves to

⌊

κcCC-1‖c(x0)‖
1
p max

[

ε
− 1
p

P , ε
− p+1

p
D

]⌋

+ 1

whenever p is a power of 2. However, we are not aware of how to use the better
Phase 1 result to improve the complexity of Phase 2, so we omit including it here in
full.
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We now partition the Phase 2 outer iterations (before that where termination
occurs) into two subsets whose indexes are given by

K+
def= {k ≥ 0 | ‖r(xk+1, tk)‖ < δεP and (26) is applied } (31)

and

K−
def= {k ≥ 0 | ‖r(xk+1, tk)‖ ≥ δεP and (27) is applied }. (32)

This partition allows us to prove the following technical results.

Lemma 7 The sequence {tk} is monotonically decreasing. Moreover, in every
Phase 2 iteration of the ARpGC algorithm of index k ≥ 1, we have that

f (xk)− tk ≥ 0, (33)

‖r(xk+1, tk+1)‖ = εP for k ∈ K+, (34)

‖r(xk+1, tk+1)‖ = ‖r(xk+1, tk)‖ ≤ εP for k ∈ K−, (35)

‖c(xk)‖ ≤ εP and f (xk)− tk ≤ εP, (36)

tk − tk+1 ≥ (1− δ)εP for k ∈ K+. (37)

Finally, at termination of the ARpGC algorithm,

‖r(xε, tε)‖ ≥ δεP and f (xε) ≥ tε and πμ(xε, tε) ≤ εD‖r(xε, tε)‖. (38)

Proof The inequality (33) follows from (26) for k − 1 ∈ K+ and from (27) for
k−1 ∈ K−. Equation (34) is also deduced from (26), while (27) implies the equality
in (35), the inequality in that statement resulting from the monotonically decreasing
nature of ‖r(x, tk)‖ during inner iterations in Step 2.(a) of the ARpGC algorithm.
The inequalities (36) then follow from (33), (34) and (35). We now prove (37),
which only occurs when ‖r(xk+1, tk)‖ ≤ δεP, that is when

(f (xk+1)− tk)2 + ‖c(xk+1)‖2 ≤ δ2ε2
P . (39)

From (26), we then have that

tk − tk+1 = −(f (xk+1)− tk)+
√

‖r(xk, tk)‖2 − ‖c(xk+1)‖2. (40)

Now taking into account that the global minimum of the problem

min
(f,c)∈R2

ψ(f, c)
def= −f +

√

ε2
P − c2 subject to f 2 + c2 ≤ ω2
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for ω ∈ [0, εP] is attained at (f∗, c∗) = (ω, 0) and it is given by ψ(f∗, c∗) = εP −ω
(see [7, Lemma 5.2]), we obtain from (39) and (40) (setting ω = δεP) that

tk − tk+1 ≥ εP − ω = (1− δ)εP for k ∈ K+

for k ∈ K+, which is (37). Note that, if k ∈ K−, then we must have that tk >
f (xk+1) and thus (27) ensures that tk+1 < tk . This observation and (37) then allow
us to conclude that the sequence {tk} is monotonically decreasing.

In order to prove (38), we need to consider, in turn, each of the three possible
cases where termination occurs in Step 2.(b). In the first case (i), ‖r(xk+1, tk)‖ is
small (in the sense that the first inequality in (25) holds) and (26) is then used,
implying that (34) holds and that f (xk+1) > tk+1. If termination occurs because
π(xk+1, tk+1) ≤ εD‖r(xk+1, tk+1)‖, then (38) clearly holds at (xk+1, tk+1). In
the second case (ii), ‖r(xk+1, tk)‖ is large (the first inequality in (25) fails), but
f (xk+1) < tk , and tk+1 is then defined by (27), ensuring that f (xk+1) > tk+1
and, because of (35), that ‖r(xk+1, tk+1)‖ is also large. As before (38) holds at
(xk+1, tk+1) if termination occurs because π(xk+1, tk+1) ≤ εD‖r(xk+1, tk+1)‖. The
third case (iii) is when ‖r(xk+1, tk)‖ is sufficiently large and f (xk+1) ≥ tk . But (25)
then guarantees that π(xk+1, tk) ≤ εD‖r(xk+1, tk)‖, and the inequalities (38) are
again satisfied at (xk+1, tk). 	
Using the results of this lemma allows us to bound the number of outer iterations
in K+.

Lemma 8 Suppose that AS.7 holds. Then

|K+| ≤ f (x1)− flow + 1

1− δ ε−1
P .

Proof We first note that (34) and (35) and AS.7 ensure that xk ∈ Cβ for all k ≥
0. The result then immediately follows from AS.7 again and the observation that,
from (37), tk decreases monotonically with a decrease of at least (1 − δ)εP for k ∈
K+. 	
We now state a very useful consequence of Lemmas 5 and 7.

Lemma 9 Suppose that AS.1 and AS3–AS.6 hold. Then there exists a constant
σμ,max > σmin such that all regularization parameters arising in the ARpCC
algorithm within Step 2.(a) of the ARpGC algorithm are bounded above by σμ,max.

Proof AS.1, AS.4–AS.6 and Lemma 5 guarantee the existence of a Lipchitz
constant independent of t such that the “segment-wise” Lipschitz condition (16)
holds for each segment [xj,�, xj,� + sj,�]. The result is then derived by introducing
Lμ,p in (15) to obtain σμ,max. 	
The main consequence of this result is that we may apply the ARpCC algorithm to
the minimization of μ(x, tk) in Step 2.(a) of the ARpGC algorithm and use all the
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properties of the former (as derived in the previous section) using problem constants
valid for every possible tk .

Consider now xk for k ∈ K+ and denote by xk+�(k) the next iterate such that
k+ �(k) ∈ K+ or the algorithm terminates at k+ �(k). Two cases are then possible:
either a single pass in Step 2.(a) of the ARpGC algorithm is sufficient to obtain
xk+�(k) (�(k) = 1) or two or more passes are necessary, with iterations k+1, . . . , k+
�(k) − 1 belonging to K−. Assume that the iterations of the ARpCC algorithm
at Step 2.(a) of the outer iteration j are numbered (j, 0), (j, 1), . . . , (j, ej ) and
note that the mechanism of the ARpGC algorithm ensures that iteration (j, ej ) is
successful for all j . Now define, for k ∈ K+, the index set of all inner iterations
necessary to deduce xk+�(k) from xk , that is

Ik
def= {(k, 0), . . . , (k, ek), . . . , (j, 0), . . . , (j, ej ),

. . . , (k + �(k)− 1, 0), . . . (k + �(k)− 1, ek+�(k)−1)},
(41)

where k < j < k+�(k)−1. Observe that, by definitions (31) and (41), the index set
of all inner iterations before termination is given by ∪k∈K+Ik , and therefore that
the number of evaluations of problem’s functions required to terminate in Phase 2
is bounded above by

|
⋃

k∈K+

Ik| + 1 ≤
(
f (x1)− flow + 1

1− δ ε−1
P × max

k∈K+
|Ik|

)

+ 1, (42)

where we added 1 to take the final evaluation into account and where we used
Lemma 8 to deduce the inequality. We now invoke the complexity properties of
the ARpCC algorithm applied to problem (23) to obtain an upper bound on the
cardinality of each Ik .

Lemma 10 Suppose that AS.1 and AS.3–AS.6 hold. Then, for each k ∈ K+ before
termination,

|Ik| ≤ (1− δ)κμCC max

[

1, ε
p−1
p

P ε
− p+1

p
D

]

,

where κμCC is independent of εP and εD and captures the problem-dependent constants
associated with problem (23) for all values of tk generated by the algorithm.

Proof Observe first that, because of Lemma 9, we may apply the ARpCC algorithm
for the minimization of μ(x, tj ) for each j such that k ≤ j < k + �(k). Observe
that (35) and the mechanism of this algorithm guarantee the decreasing nature of the
sequence {‖r(xj , tj )‖}k+�(k)−1

j=k and hence of the sequence {‖r(xj,s, tj )‖}(j,s)∈Ik .
This reduction starts from the initial value ‖r(xk,0, tk)‖ = εP and is carried out for
all iterations with index in Ik at worst until it is smaller than δεP (see the first part
of (25)). We may then invoke Lemmas 9 and 4 to deduce that, if (j, s) ∈ Ik is the
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index of a successful inner iteration and as long as the third part of (25) does not
hold,

(‖r(xj,s , tj )‖ − ‖r(xj,s+1, tj )‖)‖r(xj,s , tj )‖ ≥ 1
2‖r(xj,s , tj )‖2 − 1

2‖r(xj,s+1, tj )‖2

≥ [
κ
μ,s
CC

]−1
(εD‖r(xj,s+1, tj )‖)

p+1
p ,

(43)

for 0 ≤ s < ej and for some constant κμ,sCC > 0 independent of εP, εD, s and j , while

1
2‖r(xj,ej , tj )‖ − 1

2‖r(xj+1,0, tj+1)‖ = 0.

As above, suppose first that ‖r(xj,s+1, tj )‖ ≤ 1
2‖r(xj,s , tj )‖. Then

‖r(xj,s , tj )‖ − ‖r(xj,s+1, tj )‖ ≥ 1
2‖r(xj,s , tj )‖ ≥ 1

2δεP (44)

because of the first part of (25). If ‖r(xj,s+1, tj )‖ > 1
2‖r(xj,s, tj )‖ instead, then (43)

implies that

‖r(xj,s , tj )‖−‖r(xj,s+1, tj )‖ ≥
[
κ
μ,s
CC

]−1
2−

p+1
p ‖r(xj,s , tj )‖

1
p ε

p+1
p

D ≥ [
κ
μ,s
CC

]−1
2−

p+1
p δ

1
p ε

1
p

P ε

p+1
p

D .

Combining this bound with (44) gives that

‖r(xj,s, tj )‖ − ‖r(xj,s+1, tj )‖ ≥
[
κμ,sCC

]−1 2−
p+1
p δ

1
p min

[

εP, ε
1
p

P ε

p+1
p

D

]

.

As a consequence, the number of successful iterations of the ARpCC algorithm
needed to compute xk+�(k) from xk cannot exceed

κμ,sCC 2
p+1
p δ

− 1
p

⎡

⎢
⎢
⎣

εP − δεP

min

[

εP, ε
1
p

P ε

p+1
p

D

]

⎤

⎥
⎥
⎦ = (1− δ) κμ,sCC 2

p+1
p δ

− 1
p max

[

1, ε
p−1
p

P ε
− p+1

p
D

]

.

We now use Lemma 9 again and invoke Lemma 1 to account for possible
unsuccessful inner iterations, yielding that the total number of successful and
unsuccessful iterations of the ARpCC algorithm necessary to deduce xk+�(k) from
xk is bounded above by

κu(1−δ) 2
p+1
p δ

− 1
p κμ,sCC max

[

1, ε
p−1
p

P ε
− p+1

p
D

]
def= (1−δ)κμCC max

[

1, ε
p−1
p

P ε
− p+1

p
D

]

. 	

We now state a useful property of the set F .
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Lemma 11 For arbitrary x ∈ F , v ∈ Rn and τ ∈ R with τ ≥ 1,

‖PF [x + τv] − x‖ ≤ τ ‖PF [x + v] − x‖.

Proof The result follows immediately from [1, Lem.2.3.1] which states that
‖PF [x + τv] − x‖/τ is a monotonically non-increasing function of τ > 0 for
any x in a given convex set F . 	

We finally combine our results in a final theorem stating our evaluation complex-
ity bound for the ARpGC algorithm.

Theorem 2 Suppose that AS.1 and AS.3–AS.7 hold. Then, for some constants κcCC

and κμCC independent of εP and εD, the ARpGC algorithm applied to problem (21)
needs at most

⌊(

κcCC‖c(x0)‖ + κμCC[f (x1)− flow + 1]
)

max

[

ε−1
P , ε

− 1
p

P ε
− p+1

p
D

]

+ 1

⌋

(45)

evaluations of f , c and their derivatives up to order p to compute a point xε such
that either

‖c(xε)‖ > δεP and π 1
2 ‖c‖2(xε) ≤ εD‖c(xε)‖ (46)

or

‖c(xε)‖ ≤ εP and πΛ(xε, yε) ≤ εD‖(yε, 1)‖, (47)

where Λ(x, y)
def= f (x) + yT c(x) is the Lagrangian with respect to the equality

constraints and yε is a vector of Lagrange multipliers associated with the equality
constraints.

Proof If the ARpGC algorithm terminates in Phase 1, we immediately obtain
that (46) holds, and Lemma 6 then ensures that the number of evaluations of c and
its derivatives cannot exceed

⌊

κcCC‖c(x0)‖ max

[

ε−1
P , ε

− 1
p

P ε
− p+1

p
D

]⌋

+ 1. (48)

The conclusions of the theorem therefore hold in this case.
Let us now assume that termination does not occur in Phase 1. Then the

ARpGC algorithm must terminate after a number of evaluations of f and c and
their derivatives which is bounded above by the upper bound on the number of
evaluations in Phase 1 given by (48) plus the bound on the number of evaluations of
μ given by (42) and Lemma 10. Using the fact that �a
+�b
 ≤ �a+b
 for a, b ≥ 0
and �a + i
 = �a
 + i for a ≥ 0 and i ∈ N, this yields the combined upper bound
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⌊

κcCC‖c(x0)‖ max

[

ε−1
P , ε

− 1
p

P ε
− p+1

p
D

]

+
[

(1− δ)κμCCε

p−1
p

P max

[

1, ε
p−1
p

P ε
− p+1

p
D

]]

×
[
f (x1)− flow + 1

1− δ ε−1
P

]⌋

+ 2,

and (45) follows.
Remember now that (38) holds at termination of Phase 2, and therefore that

εP ≥ ‖r(xε, tε)‖ ≥ δεP. (49)

Moreover, we also obtain from (38) that

|PF [xε − J (xε)T c(xε)− (f (xε)− tk)∇xf (xε)] − xε‖ = πμ(xε, tε) ≤ εD‖r(xε, tε)‖.
(50)

Assume first that f (xε) = tε . Then, using the definition of r(x, t), we deduce that

π 1
2 ‖c‖2(xε) = ‖PF [xε − J (xε)T c(xε)] − xε‖ ≤ εD‖c(xε)‖,

and (46) is again satisfied because (49) gives that ‖c(xε)‖ = ‖r(xε, tε)‖ ≥ δεP.
Assume now that f (xε) > tε (the case where f (xε) < tε is excluded by (38))

and note that

0 < f (xε)− tε ≤ εP ≤ 1

because of the second bound in (36) and the decreasing nature of ‖r(x, tk)‖ during
inner iterations. Defining now

yε
def= c(xε)

f (xε)− tε ,

and successively using Lemma 11 with x = xε , v = −(J (xε)T c(xε) + (f (xε) −
tε)∇xf (xε)) and τ = 1/(f (xε) − tε) ≥ 1, the third part of (25), (49) and the
definition of r(x, t), we deduce that

πΛ(xε, yε) = ‖PF [xε − J (xε)T c(xε)

f (xε)− tε −∇xf (xε)] − xε‖

≤ 1

f (xε)− tε ‖PF [xε − J (xε)
T c(xε)− (f (xε)− tε)∇xf (xε)] − xε‖

= 1

f (xε)− tε πμ(xε, tε)

≤ εD

‖r(xε, tε)‖
f (xε)− tε

= εD‖(yε, 1)‖.
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This implies (47) since ‖c(xε)‖ ≤ ‖r(xε, tε)‖ ≤ ε. 	
Note that the bound (45) is O(ε−

p+2
p ) whenever εP = εD = ε.

It is important to note that the complexity bound given by Theorem 2 depends
on f (x1), the value of the objective function at the end of Phase 1. Giving an
upper bound on this quantity is in general impossible, but can be done in some
case. A trivial bound can of course be obtained if f (x) is bounded above in Cβ .
This has the advantage of providing a complexity result which is self-contained (in
that it only involves problem-dependent quantities), but it is quite restrictive as it
excludes, for instance, problems only involving equality constraints (F = Rn)
and coercive objective functions. A bound is also readily obtained if the set F
is itself bounded (for instance, when the variables are subject to finite lower and
upper bounds) or if one assumes that the iterates generated by Phase 1 remain
bounded. This may, for example, be the case if the set {x ∈ Rn | c(x) = 0} is
bounded. An εP-dependent bound can finally be obtained if one is ready to assume
that all derivatives of order 1 to p of c(x) (and thus of ν(x)) are bounded by a

constant in the level set C0
def= {x ∈ F | ‖c(x)‖ ≤ ‖c(x0)‖} because it can

then be shown that ‖sk‖ is uniformly bounded above and hence that ‖x1 − x0‖
is itself bounded above by a constant times the (εP-dependent) number of iterations
in Phase 1 given by Lemma 6. Using the boundedness of the gradient of ν(x) on
the path of iterates then ensures the (extremely pessimistic) upper bound f (x1) =
f (x0) + O

(

max

[

ε−1
P , ε

− 1
p

P ε
− p+1
p+1−q

D

])

. Substituting this bound in (45) in effect

squares the complexity of obtaining (xε, tε).

4 Discussion

We have first shown in Section 2 that, if derivatives of the objective function up
to order p can be evaluated and if the p-th one is Lipschitz continuous, then the
ARpCC algorithm applied to the convexly constrained problem (1) needs at most

O(ε
p+1
p ) evaluations of f and its derivatives to compute an ε-approximate first-

order critical point. This worst-case bound corresponds to that obtained in [4] when
p = 2, but with significantly weaker assumptions. Indeed, the present proposal
no longer needs any assumption on the number of descent steps in the subproblem
solution, the iterates are no longer assumed to remain in a bounded set and the
Lipschitz continuity of the gradient is no longer necessary. That these stronger
results are obtained as the result of a considerably simpler analysis is an added
bonus. While we have not developed here the case (covered for p = 2 in [4]),
where the p-th derivative is only known approximately (in the sense that ∇px f (xk)
is replaced in the model’s expression by some tensor Bk such that the norm of
(∇px f (xk)−Bk) applied p− 1 times to sk must beO(‖sk‖p)), the generalization of
the present proposal to cover this situation is easy.
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The proposed worst-case evaluation bound also generalizes that of [3] for
unconstrained optimization to the case of set-constrained problems, under very
weak assumptions on the feasible set. As was already the case for p ≤ 2, it is
remarkable that the complexity bound for the considered class of problems (which
includes the standard bound constrained case) is, for all p ≥ 1, identical in order to
that of unconstrained problems.

The present framework for handling convex constraints is however not free of
limitations, resulting from the choice to transfer difficulties associated with the
original problem to the subproblem solution, thereby sparing precious evaluations
of f and its derivatives. The first is that we need to compute projections onto
the feasible set to obtain values of πf and πmk . While this is straightforward
and computationally inexpensive for simple convex sets such boxes, spheres,
cylinders or the order-simplex, the process might be more intensive for the general
case. The second limitation is that, even if the projections can be computed, the
approximate solution of the subproblem may also be very expensive in terms of
internal calculations (we do not consider here suitable algorithms for this purpose).
Observe nevertheless that, crucially, neither the computation of the projections nor
the subproblem solution involves evaluating the objective function or its derivatives:
despite their potential computational drawbacks, they have therefore no impact on
the evaluation complexity of the original problem. However, as the cost of evaluating
any constraint function/derivative possibly necessary for computing projections is
neglected by the present approach, it must therefore be seen as a suitable framework
to handle “cheap inequality constraint” such as simple bounds.

We have also shown in Section 3 that the evaluation complexity of finding
an approximate first-order scaled critical point for the general smooth nonlinear
optimization problem involving both equality and inequality constraints is at most
O(ε

−1/p
P ε

−(p+1)/p
D ) evaluations of the objective function, constraints and their

derivatives up to order p. We refer here to an “approximate scaled critical point”
in that such a point is required to satisfy (46) or (47), where the accuracy is scaled
by the size of the constraint violation or that of the Lagrange multipliers. Because
this bound now only depends on the assumptions necessary to prove the evaluation
complexity bound for the ARpCC algorithm in Section 2, it therefore strengthens
and generalizes that of [7] since the latter directly hinges on [4]. Moreover, it also
corrects an unfortunate error1 in [7] that allows a vector of Lagrange multipliers
whose sign is arbitrary (in line with a purely first-order setting where minimization
and maximization are not distinguished). The present analysis now yields the
multiplier with the sign associated with minimization.

Interestingly, an O(εPε
−(p+1)/p
D min[εD, εP]−(p+1)/p) evaluation complexity

bound was also proved by Birgin et al. in [2] for unscaled, standard KKT conditions
and in the least expensive of three cases depending on the degree of degeneracy

1The second equality in the first equation of Lemma 3.4 in [7] only holds if one is ready to flip the
gradient’s sign if necessary.
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identifiable by the algorithm.2 Even if the bounds for the scaled and unscaled
cases coincide in order when εP ≤ εD, comparing the two results is however not
straightforward. On one hand the scaled conditions take into account the possibly
different scaling of the objective function and constraints. On the other hand the
same scaled conditions may result in earlier termination with (47) if the Lagrange
multipliers are very large, as (47) is then consistent with the weaker requirement of
finding a John’s point. But the framework discussed in the present paper also differs
from that of [2] in two additional significant ways. The first is that the present
one provides a potentially stronger version of the termination of the algorithm at
infeasible points (in Phase 1): indeed the second part of (46) can be interpreted
as requiring that the size of the feasible gradient of ‖c(x)‖ is below εD, while
[2] considers the gradient of ‖c(x)‖2 instead. The second is that, if termination
occurs in Phase 2 for an xε such that π 1

2 ‖c‖2(xε) = ‖J (xε)T c(xε)‖ is itself of order

εPεD (thereby covering the case, where f (xε) = tk discussed in Theorem 2), then
Birgin et al. show that the Łojasiewicz inequality [10] must fail for c in the limit
for εP and εD tending to zero (see [2] for details). This observation is interesting
because smooth functions satisfy the Łojasiewicz inequality under relatively weak
conditions, implying that termination in these circumstances is unlikely. The same
information is also obtained in [2], albeit at the price of worsening the evaluation
complexity bound mentioned above by an order of magnitude in εD. We also note
that the approach of [2] requires the minimization, at each iteration, of a residual
whose second derivatives are discontinuous, while all functions used in the present
paper are p times continuously differentiable. A final difference between the two
approaches is obviously our introduction of πΛ and π 1

2 ‖c‖2 in the expression of the
criticality condition in Theorem 2 for taking the inequality constraints into account.

We conclude our discussion by a remark about criticality measures. At variance
with [4] and [7], we have preferred, in this paper, to use the first-order criticality
measure πf (x) rather than χf (x), the decrease in the linearized function in the
intersection of the feasible set and the ball of radius one. While a similar result can
indeed be obtained for this latter measure (in this case for general closed non-empty
convex sets even in Section 3), our choice is motivated by the observation made by
Gratton, Mouffe and Toint [9] that πf is backward stable as a criticality measure
(in the sense that an approximate solution of problem (1) yielding a small value of
πf can be interpreted as the exact solution of a neighbouring problem), while this
is not the case for χf even when F is described by simple bounds on the problem’s
variables.
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2This result also assumes boundedness of f (x1).
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Data-Dependent Approximation in Social
Computing

Weili Wu, Yi Li, Panos M. Pardalos , and Ding-Zhu Du

Abstract Data-dependent approximation is a new approach for the study of
nonsubmodular optimization problems. This approach has attracted a lot of research
especially in the area of social computing, where nonsubmodular combinatorial
optimization problems have been recently formulated. In this chapter, we present
some theoretical results on the data-dependent approximation approach. In addition,
some related open problems are discussed.

1 Introduction

Online social networks (including sites like FaceBook, LinkedIn, ResearchGate, and
messengers like Skype) are among the most popular sites and communication tools
on the Internet. The users of these sites and tools form huge social networks. Their
activities provide a huge platform for research of social computing, especially the
study on social influence [1, 2, 7, 9, 13, 23, 25–27] which have many applications,
including in marketing [11, 17] and presidential election, which received a lot of
attentions.

There are many combinatorial optimization problems raised from those activities.
A lot of them have nonlinear objective functions with discrete structure, which
give a lot of motivations for studying monotone submodular optimization [15, 18],
nonmonotone submodular optimization [5, 6, 10], and nonsubmodular optimization
[8, 14, 24]. In particular, the nonsubmodular optimization is a recent hot research
direction since no algorithm has been found to produce a solution with a theoretical
guaranteed performance in traditional standard [4].
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How to give a solution with reasonable analysis? Recently, Lu et al. [12]
proposed a new approach, called data-dependent approximation which attracts a
lot of attentions. In this article, we try to give some theoretical foundation for this
approach and identify some theoretical open problems.

To start our study, let us first recall some basic concepts and terminologies.
Consider a set function f : 2X → R. f is called a submodular function if for
any two sets A ⊂ B and any element x ∈ X \ B,

Δxf (A) ≥ Δxf (B)

where Δxf (A) = f (A ∪ {x}) − f (A). f is called a monotone nondecreasing
function if for any two sets A ⊂ B, f (A) ≤ f (B), i.e., for any element x ∈ B \ A,

Δxf (A) ≥ Δxf (B).

2 Example

Let us first introduce the data-dependent approximation through an example.

Example (Activity Maximization [3]) Consider a social network represented by a
directed graph G = (V ,E), together with an information diffusion model m. In
this model, each node has two states, active and inactive. Initially, all nodes are in
inactive state. The influence diffusion consists of discrete steps. At the beginning,
a set of nodes are activated. Nodes in this set are called seeds. At each subsequent
step, every inactive node v evaluates its status and decides whether it should be
activated or not, based on the rule in the model m. The process ends at a step in
which no more inactive node becomes active.

Let S denote the set of seeds and Im(S) the set of active nodes at the end of
diffusion process. Suppose that for each par of active nodes u, v ∈ Im(S), if (u, v) is
an edge ofG, i.e., (u, v) ∈ E, then an activity profitA(u, v)will be generated where
A : E → R+ is a nonnegative activity profit function. The activity maximization is
the following problem:

(α) max α(S) =
∑

(u,v)∈E:u,v∈Im(S)
A(u, v)

subject to |S| ≤ k,
S ⊆ V.

This problem has been proved to be NP-hard in [3]. There are also counterexamples
in [3], which show that α(S) is neither submodular nor supermodular. However,
Lu et al. [3] introduced two monotone nondecreasing submodular set functions β :
2V → R+ and γ : 2V → R+ such that for any S ∈ 2V , β(S) ≥ α(S) ≥ γ (S).
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These two set functions are defined as follows:

β(S) =
∑

(u,v)∈E:u∈Im(S)
A(u, v)

and

γ (S) =
∑

s∈S

∑

(u,v)∈E:u,v∈Im({s})
A(u, v).

By a theorem of Nemhauser and Wolsey [15], there is a greedy algorithm which is
able to find (1− e−1)-approximation solutions for the following two problems.

(β) max β(S)

subject to |S| ≤ k,
S ⊆ V ;

(γ ) max γ (S)

subject to |S| ≤ k,
S ⊆ V.

Let Sβ and Sγ be (1 − e−1)-approximation solutions for problem (β) and (γ ),
respectively. Let Sα be a feasible solution for problem (α). Choosing the best one
from Sα , Sβ , and Sγ , we would obtain a data-dependent approximation solution for
problem (α), i.e., the data-dependent approximation solution is

Sdata = argmaxS∈{Sα,Sβ ,Sγ }α(S).

For this solution, we have the following theoretical guaranteed performance.

Theorem 1

α(Sdata) ≥ (1− e−1) ·max

(
α(Sβ)

β(Sβ)
,
optγ

optα

)

· optα

where optα (optγ ) is the objective function value of an optimal solution for problem
(α) (problem (γ )).

Proof First, we have

α(Sβ) = α(Sβ)

β(Sβ)
· β(Sβ)

≥ α(Sβ)

β(Sβ)
· (1− e−1) · optβ



30 W. Wu et al.

≥ α(Sβ)

β(Sβ)
· (1− e−1) · β(OPTβ)

≥ α(Sβ)

β(Sβ)
· (1− e−1) · optα,

where OPTα is an optimal solution for problem (α) and optβ is the objective
function value of an optimal solution for problem (β). Secondly, we have

α(Sγ ) ≥ γ (Sγ )
≥ (1− e−1) · optγ
= (1− e−1) · optγ

optα
· optα.

Therefore, the theorem holds. ��
In general, suppose we study an optimization problem max{α(x) | x ∈ Ω} where
α(·) is a set function. Then we may find a submodular upper bound β(x) and a
submodular lower bound γ (x) for α(x). Suppose we can find an η-approximation
solution for max{β(x) | x ∈ Ω} and a τ -approximation solution for max{γ (x) | x ∈
Ω}. Then we may find a data-dependent approximation solution in the following
way.

Data-Dependent Approximation
Compute η-approximation xβ for max{β(x) | x ∈ Ω}.
Compute τ -approximation xγ for max{γ (x) | x ∈ Ω}.
Compute a feasible solution xα for max{α(x) | x ∈ Ω}.
Choose xdata = argmax(α(xα), α(xβ), α(xγ )).

This solution xdata has the following performance.

Theorem 2

α(xdata) ≥ max

(

η · α(xβ)
β(xβ)

, τ · optγ
optα

)

· optα

where optα (optγ ) is the objective function value of an optimal solution for problem
max{α(x) | x ∈ Ω} (problem max{γ (x) | x ∈ Ω}).

To end this section, let us make two remarks. First, note that the feasible
solution Sα or xα does not play any role in the establishment of the approximation
performance of the data-approximation. Why do we need it? Actually, Sα may
improve the performance in computer simulation. Since it can be arbitrarily selected,
we may choose any selection method. For example, in the activity maximization,
the set function α(S) is monotone nondecreasing, we may use the following greedy
algorithm to select Sα .
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Greedy Algorithm
S0 ← ∅;
for i = 1 to k do
x = argmaxx∈V \Si−1

(α(Si−1 ∪ {x})− α(Si−1)) and
Si ← Si−1 ∪ {x};

output Sα = Sk .
The second remark is about the objective function α(·). In many problems raised

from social computing, since the information diffusion model is probabilistic, such
as the linear threshold model and the independent cascade model, the function α(·)
is the expectation of profit. For example, in the activity maximization, α(·) would
become

α(S) = E[
∑

(u,v)∈E:u,v∈Im(S)
A(u, v)].

Correspondingly, the upper bound β(S) and the lower bound γ (S) have to be
modified into expectations as follows:

β(S) = E[
∑

(u,v)∈E:u∈Im(S)
A(u, v)]

and

γ (S) = E[
∑

s∈S

∑

(u,v)∈E:u,v∈Im({s})
A(u, v)].

In this case, it may be hard to compute β(S) and γ (S) for a given S. For example,
with the linear threshold model or the independent cascade model, computing β(S)
and γ (S) for given S are #P-hard problems. This would make the greedy algorithm
in [15] unable to be implemented in polynomial-time. Instead, we have to employ
randomized approximation algorithm in [16, 19, 20, 22]. Since β(S) and γ (S) are
still monotone nondecreasing and submodular, for any constants ε > 0 and ρ > 0,
there exists a polynomial-time randomized algorithm which with probability at least
1 − ρ produces a solution with approximation performance ratio 1 − e−1 − ε for
problem (β) (or problem (γ )). Then the approximation performance of the data-
dependent approximation has to be modified correspondingly.

3 Theoretical Notes

For any set function α : 2X → R, is it always able to find a pair of monotone
nondecreasing submodular functions β : 2X → R and γ : 2X → R which
are an upper bound and a lower bound for α(·), respectively? The answer for this
theoretical question is yes.

Following result can be found in [8].
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Lemma 1 Any set function α : 2X → R can be expressed as a difference of two
monotone nondecreasing submodular functions, i.e., there exists a pair of monotone
nondecreasing submodular set functions β : 2X → R and ζ : 2X → R such that
α(S) = β(S)− ζ(S),∀S ∈ 2X.

With this result, we can prove the following.

Theorem 3 For any set function α : 2X → R, there exists a pair of monotone
nondecreasing submodular functions β : 2X → R and γ : 2X → R such that
β(S) ≥ α(S) ≥ γ (S) ∀S ⊆ X.

Proof First, we remark that the functions β(·) and ζ(·) in Lemma 1 can further be
required to be nonnegative. In fact, since they are monotone nondecreasing, we have

β(∅) = min
S⊆X β(S) and ζ(∅) = min

S⊆X ζ(S).

Set c = max(|β(∅)|, |γ (∅)|) and define β ′(S) = β(S)+ c and ζ ′(S) = ζ(S)+ c for
any S ⊆ X. Then c is a constant and moreover, β ′(·) and ζ ′(·) are nonnegative,
monotone nondecreasing, and submodular functions such that for any S ⊆ X,
α(S) = β ′(S)− ζ ′(S).

Clearly, β ′(·) is an upper bound for function α(·). To obtain a lower bound, we
set γ (S) = β ′(S)− ζ ′(X). It is easy to see that α(S) ≥ γ (S) for any S ⊆ X. Since
ζ ′(X) is a constant, γ (·) is monotone nondecreasing and submodular. ��

For this theorem, we may note the following:

1. The proof of Lemma 1 in [8] is not constructive. Therefore, our proof of
Theorem 3 is not constructive, neither.

2. There are infinitely many pair of an upper bound and a lower bound meeting
requirement in Theorem 3. In fact, simply choose any constant c′ > c and replace
c by c′. We would get a new pair.

From fact 2, we may feel that it is necessary to set up a measure and the quality of
such a pair. A naive measure is

Q(β, γ ) = max
S⊆X(β(S)− γ (S)).

Motivated from this measure and fact 1, we propose the following open problems.

Open Problem 2 For any set function α : 2X → R and a constant q > 0, is
there a pair of monotone nondecreasing submodular functions β : 2X → R and
γ : 2X → R such that β(S) ≥ α(S) ≥ γ (S) for any S ⊆ X andQ(β, γ ) ≤ q?

Open Problem 3 If Open Problem 2 receives No-answer, then is there an efficient
method to tell whether such a pair of upper and lower bounds exists or not?
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4 Conclusion

Our theoretical notes indicate that the data-dependent approximation exists for any
nonsubmodular maximization problem. A similar study can show the existence
of data-dependent approximation for any nonsubmodular minimization problem.
However, to improve the quality of the data-dependent approximation, we may need
a lot of efforts on the DS function maximization where a DS function is a difference
of two submodular functions. Some fundamental theoretical problems are still open.
For more information on social networks, please refer to [21].
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Multi-Objective Evolutionary
Optimization Algorithms for Machine
Learning: A Recent Survey

Stamatios-Aggelos N. Alexandropoulos, Christos K. Aridas,
Sotiris B. Kotsiantis, and Michael N. Vrahatis

Abstract The machine learning algorithms exploit a given dataset in order to
build an efficient predictive or descriptive model. Multi-objective evolutionary opti-
mization assists machine learning algorithms to optimize their hyper-parameters,
usually under conflicting performance objectives and selects the best model for a
given task. In this paper, recent multi-objective evolutionary approaches for four
major data mining and machine learning tasks, namely: (a) data preprocessing, (b)
classification, (c) clustering, and (d) association rules, are surveyed.

1 Introduction

For a given optimization task, in general, optimization consists of the following
main issues [35]:

(a) Objective function: the quantity to be optimized (maximized or minimized).
(b) Variables: the inputs to the objective function.
(c) Constraints: the restrictions assigned to the inputs of the objective function.

Therefore, the purpose of an optimizer is to determine properly the values to the
inputs of the objective function, in such a way to attain the optimal solution for the
given function and fulfilling all the required constraints.

Various real-world optimization tasks often suffer from the following difficul-
ties [112]:

1. In many cases, it is difficult to discern the global optimal minimizers from the
local optimal ones.
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2. The evaluation of the solutions may be difficult in the presence of noise.
3. The search space may be large, so the dimensionality of the problem grows

similarly. This causes the so-called curse of dimensionality problem.
4. Difficulties associated with the given limitations assigned to the inputs of the

objective function.
5. Necessity for problem-specific optimization techniques.

In the case where the quantity to be optimized is expressed by only one objective
function, the problem is referred to as a uni-objective or single-objective problem.
While, a multi-objective problem identifies more than one individual targets (sub-
objectives) that should be optimized at the same time.

Various applications [44, 62, 85, 119] of machine learning and other types of
problems [55, 63, 91] have been handled by techniques [6, 47, 108, 113] that
belong to the field of machine learning, require the fulfillment of various conditions.
The simultaneous fulfillment of such conditions, as well as the optimization of
the parameters incorporated in machine learning methods, constitutes a difficult
optimization problem. Indeed, the majority of these algorithms [20, 21, 132] require
the optimization of multiple objectives, so that the outcome result to be reliable and
competitive. For instance, in feature selection task, the desired feature set has to be
the minimum set that maximizes the performance of the classifier. Therefore, two
conditions are required:

(a) A minimum subset of features, and
(b) These features should maximize the performance of the algorithm.

Hence, the majority of learning problems are multi-objective in nature and thus, it is
evident to consider learning problems as multi-objective ones. Freitas [37] presented
the above-described purpose, that should be simultaneously optimized by certain
conditions, so that the performance of the building model to be eventually high. As
for the most part, the optimization of a number of parameters is required, in order
for the accuracy of the model to be maximized. To achieve this goal, there are three
different approaches, namely:

1. The conversion of the initial multi-objective problem into single-objective one by
using properly a weighted approach.

2. The lexicographical approach, where the objectives are prioritized.
3. The well-known and widely used Pareto approach, which gives a whole set of

non-dominated solutions.

An important issue provided by a multi-objective optimization algorithm
[92, 118, 130] is that, instead of one solution, to return a set of good “candidate”
solutions, the so-called non-dominated solutions, which the user can compare with
one another in order to select the most appropriate one for the given purpose [22].
The set of solutions that the algorithm returns represents the best possible trade-offs
among the objectives. However, the Pareto principle [90] indicates that the relation-
ship between inputs and outputs is not balanced. Thus, the Pareto rule (or 80/20
rule) [82] “obeys” to a distribution, known as Pareto distribution, which reveals that
20% of the invested inputs are responsible for 80% of the obtained results.
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In many cases, the decision of an expert, the so-called decision maker [56], plays
a key role. Thus, the opinion of the decision maker may be requested initially before
the beginning of the solution process. According to the information provided by the
expert, the most appropriate solution is required to meet the conditions that have
been set. However, the opinion of an expert can be requested after finding a number
of appropriate solutions. In this case, the expert selects the best among them. In
addition, the expert’s opinion may take place during the process. Specifically, the
model iteratively asks for the expert’s opinion in order to improve the solutions and
eventually returns the required optimal set of solutions.

Despite the fact that most of the real-world problems require the optimization of
multiple objectives [15], there is always an effort to reduce the number of objectives
to a minimum [17]. This occurs due to the fact that the more objectives are required
to be optimized, the more solutions will be. Consequently, the dimensionality and
the complexity of the problem are increased and therefore the problem becomes
more difficult to be solved. For an analysis of the different types of multi-objective
techniques, the reader can reach more details in [58].

In this paper, the references are focused on recent published refereed journals,
books, and conference proceedings. In addition, various references regarding the
original work that has emanated for tackling the particular line of research under
discussion are incorporated. According to this purpose, the first major attempts
that have surveyed a various multi-objective evolutionary approach are appeared in
[77, 78].

As it is expected, it is not possible for a single work to cover extensively all the
aspects of the multi-objective evolutionary optimization algorithms. However, we
hope through this recent review work and the most recent references that the reader
will be informed on the latest interests of the scientific community on these subjects.

The following section provides the necessary background material and basic
concepts of multi-objective optimization. Section 3 covers a very important aspect
of machine learning, which is the data preprocessing. To this end, various multi-
objective evolutionary algorithms that tackled the most common and widely used
data cleaning steps are presented. The classification task and the basic models
used to handle this in accordance with multi-objective optimization algorithms are
described in Sect. 4. Next, in Sect. 5, cluster analysis and association rules are
presented. In Sect. 6 a few of the most recent applications regarding the multi-
objective evolutionary optimization algorithms are given. The paper ends in Sect. 7
with a synopsis and a short discussion.

2 Basic Concepts of Multi-Objective Optimization

The multi-objective optimization (MO) also named multiple criteria optimization
handles problems where different objectives must be optimized simultaneously. For
this kind of problems, Pareto optimality replaces the optimality notion of single-
objective optimization and each Pareto optimal solution represents a trade-off of the
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objective functions. Hence, two solutions may obtain the same fitness value and it
is desirable to obtain the largest possible count of solutions with different inherent
properties.

Suppose that S ⊂ R
n is an n-dimensional search space and assume that

fi(x) : S → R, i = 1, 2, . . . , k,

are k objective functions defined over S . Let us assume that,

gj (x) � 0, j = 1, 2, . . . , m,

are m inequality constraints, then the MO problem can be stated as follows: Detect
the point:

x∗ = (x∗1 , x∗2 , . . . , x∗n) ∈ S ,

that fulfills the constraints and optimizes the following function:

Fnk(x) =
(
f1(x), f2(x), . . . , fk(x)

) : Rn→ R
k.

The objective functions may be conflicting with each other, thus, it is usually
impossible to find the global minimum for all the objectives at the same point. The
aim of MO is to provide a set of Pareto optimal solutions (points) to the above-
mentioned problem.

Specifically, assume that u = (u1, u2, . . . , uk) and v = (v1, v2, . . . , vk) are two
vectors. Then, u dominates v if and only if ui � vi , for i = 1, 2, . . . , k, and ui < vi
for at least one component. This condition is known as Pareto dominance and it is
used to determine the Pareto optimal solutions. Therefore, a solution x of the MO
problem is called Pareto optimal if and only if there is not another solution y, such
that Fnk(y) dominates Fnk(x).

The set of all Pareto optimal solutions of an MO problem, denoted by P∗, is
called Pareto optimal set while the set:

PF ∗ = {(
f1(x), f1(x), . . . , fk(x)

) | x ∈P∗},

is called Pareto front. A Pareto front PF ∗ is said to be convex if and only if there
exists a w ∈PF ∗, such that:

λ‖u‖ + (1− λ)‖v‖ ≥ ‖w‖, ∀ u, v ∈PF ∗, ∀ λ ∈ (0, 1),

while it is called concave if and only if there exists a w ∈PF ∗, such that:

λ‖u‖ + (1− λ)‖v‖ � ‖w‖, ∀ u, v ∈PF ∗, ∀ λ ∈ (0, 1).

A Pareto front can be convex, concave, or partially convex and/or concave and/or
discontinuous. The last three cases exhibit the greatest difficulty for the majority of
MO techniques.
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Using the MO approach is desirable to detect all the Pareto optimal solutions.
On the other hand, the Pareto optimal set may be infinite and since the computation
is usually restricted within strict time and space limitations, the main aim of MO
is the detection of the largest possible number of Pareto optimal solutions, with the
smallest possible deviation from the Pareto front and suitable spread [93].

The evolutionary algorithms have the ability to evolve multiple Pareto optimal
solutions simultaneously and thus, they are particularly efficient and effective in
tackling MO problems. The detected Pareto optimal solutions are stored in memory
structures, called external archives which, in general, increase the performance of
MO approaches. A plethora of well-known and widely applied MO evolutionary
approaches have been proposed that are based on different approaches including
niching fitness sharing and elitism, among others [23, 30, 36, 52, 93, 114, 131].

3 Data Preprocessing

The machine learning (ML) algorithms aim to automate the process of knowledge
extraction from formats that can be easily processed by computer systems. In
general, the “quality of the data” could decrease the performance of a learning
algorithm. Thus, data preprocessing [40] is an important task in the machine
learning pipeline that usually is executed by removing objects and features that
contain extraneous and irrelevant information.

Feature Selection The task of detecting and eliminating irrelevant and redundant
features also known as attributes is called feature selection (FS) [110]. This task
tries to compact the cardinality of the data attributes and to assist the learning
algorithms in order to function faster and more efficiently. In general, features can
be distinguished as follows:

(a) Relevant: Features that contribute an important role for the class and they cannot
be assumed by the remaining ones.

(b) Irrelevant: Features that do not have any influence on the target class.
(c) Redundant: Features that can be replaced by other features.

By eliminating the irrelevant and redundant features, the FS process could assist
towards decreasing the training time as well as to simplify the learned models
and/or to improve the performance measure of the problem. In general, FS could
be considered as a multi-objective task. The main objectives are two: the first
one is the maximization of the model’s performance while the second one is the
minimization of the number of features that will be fed in the learning algorithm.
The aforementioned objectives are conflicted and the optimal choice has to be made
by considering a balance between the two objectives. Multi-objective FS can acquire
a set of non-dominated feature splits in order to meet diverse requirements in real-
world applications.
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Next, we briefly present various approaches for FS. The efficient and effective
particle swarm optimization (PSO) method [59, 93] is considered as a metaheuristic
approach that attempts to solve an optimization task by maintaining a population
of candidate solutions (which are called particles). The members of the swarm are
moving around the search space according to a mathematical model that tackles
two parameters: the particles’ position and velocity. Xue et al. [125] conducted
a study on different types of multi-objective PSO for FS. The main objective
of their work was to create a PSO-based multi-objective FS scheme in order to
tackle classification problems. Their approach tries to achieve a Pareto front of non-
dominated solutions, which will contain a subset of the initial feature space, by
simultaneously achieving a more accurate classification performance without using
all the available attributes.

Han and Ren [48] proposed a multi-objective technique to improve the perfor-
mance of FS. They believe that their method could meet different requirements as
well as to achieve a trade-off between different conflicting objectives.

Paul and Das [96] proposed an FS and the weighting method supported by an
evolutionary multi-objective algorithm on decomposition. The instance attributes
are selected and weighted, or scaled and at the same time the data points are
displayed to a specific hyper-space. Furthermore, the distances between the data
points of the non-identical classes are increased in such a way to facilitate their
classification.

Wang et al. [121] presented an algorithm called MECY-SF by using class-
dependent redundancy for the FS procedure. Their algorithm exploits genetic
search and multi-objective optimization to overcome the limitations of greedy
FS algorithms. Furthermore, the fast and elitist multi-objective genetic algorithm
named NSGA-II [23] was adopted to solve the multi-objective feature selection
problem. Xue et al. [126] gave recently an up-to-date review of the most promising
works on evolutionary computation for FS, which provides the contributions of
these algorithms.

Cano et al. [11] through their new multi-objective method have succeeded feature
extraction and data visualization. Their algorithm is based on Pareto optimal set
and is combined with genetic programming. Various classification and visualization
measures were assumed as objectives to be optimized by their algorithm.

Das and Das [19] formulated the FS as a bi-objective optimization problem of
some real-valued weights that correspond to each attribute in the feature space.
Therefore, a subset of the weighted attributes is selected as the best subset for
subsequent classification of the dataset. The relevancy and redundancy measures
were selected for creating the objective functions.

The FS problem was handled by Hancer et al. [49] through a new multi-
objective artificial bee colony (ABC) algorithm. Specifically, the authors developed
an FS method that will search for a Pareto optimal set of features. They proposed
two versions, namely the binary multi-objective artificial bee colony named Bin-
MOABC version and the corresponding continuous version Num-MOABC. Their
algorithm approaches the multi-objective problem through the minimum selection
of features that provides the lower classification error in accordance to the original
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set of features. They tested the proposed algorithm in twelve benchmark datasets
and their experimental results show that the Bin-MOABC algorithm exhibits a better
classification accuracy and outperforms the other considered methods regarding the
dimensionality reduction.

Last but not least, Zheng and Wang [129] proposed an FS method that combines
the joint maximal information entropy (JMIE), as a measurement metric of a feature
subset, and a binary particle swarm optimization (BPSO) algorithm for searching
the optimal set of features. The authors conducted experiments on five UCI datasets
and their experimental results show that the provided technique exhibits a better
performance in FS with multiple classes. In addition, their method is more consistent
and achieves a better time-efficiency than the BPSO-SVM algorithm.

Instance Selection The instance selection or prototype selection [25] can be
considered as an optimization problem since required the maintenance of mining
quality, at first, and secondary the minimization of the sample size. The complexity
of the induced solution tends to be increased by the number of the training examples.
On the other hand, this may decrease the interpretability of the results. Thus,
instance selection is highly recommended in the case of big datasets. Fernández
et al. [33] used a multi-objective evolutionary algorithm for searching to obtain the
best joint set of both features and instances.

Acampora et al. [1] proposed a multi-objective optimization scheme for the
training set selection (TSS) problem. The main difference between the provided
technique and the evolutionary approaches that had already been developed is
the multi-objective a priori technique. This means that their method maintains
two objectives, namely the classification accuracy and the rate reduction, unlike
all the other evolutionary methods for TSS problem in support vector machines
(SVM). The authors tested their method using the UCI datasets and the conducted
experiments show that the provided algorithm exhibits a better performance on well-
known TSS techniques and reinforces the efficiency of SVMs.

Missing Data Imputation The incomplete or corrupted data values is a common
problem [69] in many of the real-life databases. There are many considerations
that have to be keep in view in accordance with processing unknown attributes.
Determining the origin of the unknownness is a major issue. Thus, we lead to the
following reasons:

1. The feature is omitted because somehow it was forgotten or for some reason it
got lost.

2. For a given object a specific feature value is not applicable.
3. The training dataset collector may not interested in a specific feature value for a

given instance.

Lobato et al. [70] presented a multi-objective genetic algorithm for data imputa-
tion, based on the fast and elitist multi-objective genetic algorithm called NSGA-II
[23], which is suitable for mixed (categorical and continuous) attribute datasets
and it considers information from incomplete instances and the modelling task. In
order to compute the objective function, the following two most common evaluation
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measures were chosen: (a) the root mean square error and (b) the classification
accuracy.

Discretization The discretization assists to the transformation of the space of real-
valued attributes to a fixed number of distinct discrete values. A large number of
possible feature values could lead to time-consuming machine learning learners.
The choice of the number of bins in the discretization process remains an open
problem.

Tahan and Asadi [116] proposed an evolutionary approach for the discretization
process by using two objectives. The first objective function minimizes the classifi-
cation error, while the second one minimizes the number of cut points.

Imbalanced Datasets The ideal situation for a supervised predictor is to generalize
over unknown objects of any class with the same accuracy. In real-life tasks, learners
deal with imbalanced datasets [13]. This phenomenon leads the learner to be
“subjective” towards one class. This can happen when one class is greatly under-
represented in the training set in relation to the others. It is associated with training
of learning algorithms.

Algorithms in the inductive machine learning usually are designed to minimize
a predefined metric over a training dataset. Moreover, if any class contains a small
amount of examples, in the most of the cases, it can be ignored by the learning
algorithms. This is because the cost of performing well on the over-represented class
outweighs the cost of doing poorly on the smaller class. Recently, a convex-hull-
based multi-objective genetic programming algorithm was proposed [128]. This
algorithm was applied to binary classification cases and achieved to maximize the
convex hull area by minimizing the false positive rate and maximizing the true
positive rate simultaneously. The area under the receiver operating characteristic
(ROC) curve was used as a performance assessment and for the guidance of the
search.

Zhao et al. [128] in their attempt to improve the 2D ROC space incorporated
the complexity to the objectives. This led to the creation of a 3D objective space (in
contrast with the previous 2D ROC space). Li et al. [67] applied swarm optimization
on two aspects for re-balancing the imbalanced datasets. One aspect is the search for
the appropriate amount of majority instances, while the other one is the estimation
of the best control parameters, namely the intensity and the distance of the neighbors
of the minority samples in order to be synthesized.

4 Supervised Learning

In machine learning, the classification [61] is the paradigm where an algorithm is
trained using a training set of correctly identified instances in such a way to produce
a model that will be able to correctly identify unseen objects.
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Decision Trees The decision trees [99, 102] classify examples starting from the
root node and afterwards they sort them based on their feature values. In a decision
tree each node represents a feature of an instance to be classified, while each branch
represents a value that the node can have.

Zhao [127] proposed a multi-objective genetic programming approach in order
to develop a Pareto optimal decision tree. This implementation allows the user to
select priorities for the conflicting objectives, such as false negative versus false
positive, sensitivity versus specificity , and recall versus precision.

Fieldsend [34] used the particle swarm optimization (PSO) method [59, 93] in
order to train near optimal decision tree using the multi-objective formulation for
trading off error rates in each class.

Basgalupp et al. [7] proposed a genetic algorithm for inducing decision trees
called LEGAL-Tree. Specifically, they proposed a lexicographic approach, where
multiple objectives are evaluated in the order of their priority.

Barros et al. [6] provided a taxonomy which groups works that evolve decision
trees using evolutionary algorithms. Chikalov et al. [14] created bi-criteria optimiza-
tion problems for decision trees. The authors considered different cost functions
such as number of nodes, depth, and average depth. They design algorithms that are
able to determine Pareto optimal points for a given decision table.

Rule Learners The classification rules [38, 123] represent each class by the
disjunctive normal form. The aim is to find the smallest rule-set that is consistent
with the training set. Many produced rules are usually a sign that the learning
algorithm over-fits the training data.

Dehuri et al. [24] gave an elitist multi-objective genetic algorithm (EMOGA) for
producing classification rules. They proposed a multi-objective genetic algorithm
with a hybrid crossover operator for simultaneously optimizing the objectives of the
comprehensibility , the accuracy, and the interestingness of rules.

Pappa and Freitas [87] also successfully produced accurate as well as compact
rule models using a multi-objective grammar-based genetic programming algo-
rithm.

Srinivasan and Ramakrishnan [115] tackled the problem of discovering rules as a
multi-objective optimization problem. They used an approach with three objectives
to be optimized. These were metrics such as accuracy, comprehensibility , and
novelty.

Rudzinski [104] presented a multi-objective genetic approach in order to produce
interpretability-oriented fuzzy rules from data. Their proposed approach allows the
user to obtain systems with various levels of compromise between accuracy and
interpretability.

Bayesian Classifiers A Bayesian network (BN) [51, 124] is a graphical model
for probabilistic relationships among the variables. The structure S of a BN is a
directed acyclic graph. The nodes in S are in one-to-one correspondence with the
variables and the arcs represent casual influences among the variables. The lack of
possible arcs in S represents conditional independency, while a node (variable) is
conditionally independent from its non-descendants given its parents.
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Rodriguez and Lozano [101] introduced a structural learning approach of a multi-
dimensional Bayesian learner based on the fast and elitist multi-objective genetic
algorithm NSGA-II [23].

Panda [86] used the so-called ENORA algorithm which is an FS multi-objective
evolutionary algorithm for multi-class classification problems. Specifically, the
author estimated the averaged 1-dependence estimators of naive Bayes, through
the aforesaid algorithm. The proposed scheme was tested on twenty one real-world
datasets and the experimental results show that the implementation of the method is
promising in terms of time and accuracy.

Support Vector Machines The support vector machine (SVM) [50, 109] is a
classification model that is based on the structured risk minimization theory.
Selecting C, kernel, and γ parameters of SVM is crucial for producing an efficient
SVM model. The parameter C of the radial basis function (RBF) kernel SVM
compromises misclassification of the training examples contrary to simplicity of
the decision surface. A low value of the parameter C causes the decision surface
smooth, while a high value of C attempts at classifying all the training examples
correctly by providing the model freedom to select more samples as support vectors.
The γ parameters can be considered as the inverse of the radius of influence of
samples selected by the model as support vectors.

Aydin et al. [5] used a multi-objective artificial immune algorithm in order
to optimize the kernel as well as the parameters of SVM. Miranda et al. [76]
proposed a hybrid multi-objective architecture which combines meta-learning with
multi-objective particle swarm optimization algorithms in order to tackle the SVM
parameter selection problem.

Gu et al. [45] proposed a bi-parameter space partition algorithm for SVMs,
which is able to fit all the solutions for every parameter pair. Based on the bi-
parameter space partition, they proposed a K-fold cross-validation algorithm for
computing the global optimum parameter pairs.

Rosales-Perez et al. [103] used an evolutionary multi-objective model and
instance selection for SVMs for producing Pareto-based ensemble. Their aims were
to minimize the size of the training data and maximize the classification accuracy
by the selecting instances.

Neural Networks It is well known that the perceptrons [106, 107] are only able
to classify linearly separable sets of instances. If the instances are not linearly
separable, learning will never find a hyperplane for which all examples are correctly
classified. To this end, the multilayered perceptrons (artificial neural networks) have
been proposed in order to tackle this problem.

Tan et al. [117] used a modified micro-genetic algorithm optimizer for twofold,
i.e., to select a small number of input features for classification and to improve the
accuracy of the neural network model.

Ojha et al. [84] proposed a multi-objective genetic program (MOGP) in order to
create a heterogeneous flexible neural tree, which is a tree-like flexible feed-forward
neural network model.
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Lazy Learners The K-nearest neighbor (k-NN) [18, 72] is based on the principle
that the instances within a dataset will generally share similar properties. The k-
NN finds the k nearest instances to the testing instance and predicts its class by
identifying the most frequent class. Prototype generation is the generation of a
small set of instances to replace the initial data, in order to be used by k-NN
for classification. The main aspects to consider when implementing a prototype
generation method are:

(a) the accuracy of a k-NN classifier using the prototypes and
(b) the percentage of dataset reduction.

Both factors are in conflict and thus this problem can be naturally handled with
multi-objective optimization techniques.

Escalante et al. [31] proposed a multi-objective evolutionary algorithm for
prototype generation, named MOPG. In addition, Hu and Tan [54] presented a
prototype generation using a multi-objective particle swarm optimization for k-NN
classifier.

Ensembles The selection of a single algorithm in order to produce a reliable
classification model is not an easy task. A simple approach could be the estimation
of the accuracy of the candidate algorithms on a problem and then the selection
of the best performer. The idea of combining classifiers [26, 27] is proposed as
a direction for increasing the classification accuracy in real-world problems. In
this case, the objective is to use the strengths of one model to complement the
weaknesses of the other. In general, the multi-objective evolutionary algorithms for
the construction of classifier ensembles is an interesting area of study and research.

Chandra and Yao [12] presented an ensemble learning algorithm, which is named
DIVACE (DIVerse and ACcurate Ensemble learning algorithm). This algorithm tries
to find a trade-off between diversity and accuracy by treating these two objectives
explicitly separately. Three other approaches for the Pareto-based multi-objective
ensemble generation approach are compared and discussed in [57].

Bhowan et al. [9] proposed a multi-objective genetic programming method in
order to evolve accurate and diverse classifiers with acceptable accuracy both on the
minority and majority of class. Furthermore, Bhowan et al. [10] presented another
similar approach in order to evolve ensembles by using genetic programming for
imbalanced data.

Nguyen et al. [83] used a genetic algorithm approach that focuses on the
following three objectives:

1. The count of correct classified instances,
2. The count of selected attributes, and
3. The count of selected classifiers.

Gu et al. [46] presented a survey on multi-objective ensemble generation
methods, including the diversity measures, member generation, as well as the
selection and integration techniques.
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Nag and Pal [80] presented an integrated algorithm for simultaneous attribute
selection and inducing diverse learners using a steady state multi-objective genetic
programming, which minimizes the following three objectives:

(a) False positives predictions,
(b) False negatives predictions, and
(c) The count of leaf nodes in the decision tree.

Albukhanajer et al. [3] propose classifier ensembles that use multiple Pareto
image features for invariant image identification.

Last but not least, very recently, Pourtaheri et al. [98] developed two multi-
objective heuristic ensemble classifiers by combining the multi-objective inclined
planes optimization algorithm and the multi-objective particle swarm optimization
(MOPSO) algorithm.

5 Unsupervised Learning

Clustering The cluster analysis [88] is a process that is very useful for the
exploration of a collection of data. As it is implied by the term “cluster,” through
this process, elements or features with an inter-relationship are detected, which
can lead to the homogeneous clustering of data. It can be either supervised or
unsupervised and the major difference between this process and the classification
process is that the first one does not use labels to assist in the categorization of the
data in order to create a cluster structure. Furthermore, whether an item belongs
to a particular cluster is determined through an intra-connectivity measurement.
If this measure is high, it means that the clusters are “compact” and the data of
the same group are highly dependent on each other. On the other hand, the inter-
connectivity measurement is a criterion that declares the independence between
the clusters. Thus, if the inter-connectivity is low, it means that the individual
clusters are largely independent to each other. More details about multi-objective
evolutionary clustering algorithms, the reader can reach in [29, 79].

The mathematical programming [32] has an important contribution to the issue
of cluster analysis. The direct connection of the two areas can be easily understood,
since it is required the minimum number of clusters to which the original dataset can
be grouped. Thus, this approach can be considered as an optimization problem, with
specific features and constraints. An important issue is also the appropriate selection
of solutions, since from a set of feasible, “good” solutions, the best solutions are
those of interest [89].

Luo et al. [71] proposed a method for modelling spectral clustering and through
specific operators they selected a set of good individuals at the optimization process.
Furthermore, the authors through the ratio cut criterion selected a trade-off solution
from the Pareto set. Finally, the various problems that have been analyzed for
supervised and unsupervised classification tasks contributed to the creation of semi-
supervised clustering techniques. With a small amount of labelled data and the data



Survey of Multi-Objective Evolutionary Optimization Algorithms for Machine Learning 47

distribution, Alok et al. [4] proposed a semi-supervised clustering method by using
the multi-objective optimization framework.

Wang et al. [122], recently, through an evolutionary multi-objective (EMO)
algorithm tackled a very difficult and timeless challenge for a clustering method
problem, namely the “determination of the number of clusters.” To this end, the
authors proposed a scheme that uses an EMO algorithm, specifically the rapid
elitist multi-objective genetic algorithm named NSGA-II, in order to select the non-
dominated solutions. The process that follows includes a validity index for selecting
the optimal clustering result. The authors tested their model on three datasets and
their experimental results show that the EMO-k-clustering method is effective and
by executing only a single run it is able to obtain all the clustering results for
different values of the parameter k.

Last but not least, very recently, Nayak et al. [81] proposed the elitism-based
multi-objective differential evolution (EMODE) algorithm for automatic clustering.
Their work handles complex datasets using three objectives. The authors conducted
experiments on ten datasets and the results show that their approach provides an
alternative solution for data clustering in many different areas.

Association Rules The association rule mining (ARM) [111] has as a primary goal
the discovery of associations rules between data of a given database. The first goal
of this procedure is to come up with the data that have the greatest appearance in the
database. Then, the appropriate association rules are created for the whole dataset
by using the feature values that their appearance exceed a certain predetermined
threshold.

Minaei-Bidgoli et al. [75] proposed a multi-objective genetic algorithm for
mining association rules from numerical variables. It is known that well-known
and widely used models that handle the association rule mining process cannot be
applied to datasets which consist of numerical data. For this reason, it is necessary
the preprocessing of the data and in particular the discretization process. Minaei-
Bidgoli et al. [75], using three measures, namely: confidence, interestingness, and
comprehensibility, defined three different objective functions for their approach and
extracted the best association rules through Pareto optimality.

Beiranvand et al. [8] proposed a multi-objective particle swarm optimization
model named MOPAR for mining numerical association rules in only one single
step without a priori discretization. The authors conducted experiments and the
results show that their approach extracts reliable, comprehensible, and interesting
numerical association rules.

Martin et al. [73] proposed a multi-objective evolutionary model named QAR-
CIP-NSGA-II which extents the well-known elitist multi-objective genetic algo-
rithm named NSGA-II [23]. Their method performs an evolutionary learning
and a selection condition for each association rule. Furthermore, their approach
maximizes two of the three objective functions that Minaei-Bidgoli et al. considered.
In addition, their approach maximizes the performance of the objective functions for
mining a set of quantitative association rules with enough interpretability as well as
accurate results.
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6 A Few of the Most Recent Applications

The various applications that have been provided over the last years show the
importance of the multi-objective evolutionary optimization algorithms (MOEOA).
A few of the most recent and very interesting applications regarding MOEOA are
the following ones.

Mason et al. [74] developed an artificial neural network that has been trained
through a differential evolution (DE) algorithm. Their proposed neural network
has the ability to handle multi-objective optimization problems using properly an
approximation function. Specifically, the proposed approach uses a single objective
global optimizer (the DE algorithm) in order to evolve the neural network. In
other words, the so-called MONNDE algorithm is capable to provide further Pareto
fronts without any further optimization effort. The authors applied the MONNDE
algorithm to the well-known dynamic economic emission dispatch problem and
through the experiments that they conducted, they show that the performance of their
algorithm is equally optimal in comparison with other well-known and widely used
algorithms. Furthermore, they show that it is more efficient to optimize the topology
of the neural network dynamically with an online way, instead of to optimize the
weights of the neural network.

Rao et al. [100] proposed an alternative classifier for disease diagnosis. Specif-
ically, the proposed scheme includes a sequential minimal optimization, the SVM
classifier, and three evolutionary algorithms for the evolution of the parameters.
Moreover, the authors presented a new technique, which is named cuboids elephant
herding optimization (CEHO). Their approach is applied to seventeen medical
datasets and the experimental results show that the proposed technique exhibits a
very good performance for all the tested datasets.

Sabar et al. [105] considered the configuration of a SVM as a bi-objective
optimization problem. The accuracy of the model was the first objective while the
other one was the complexity of the model. The authors proposed a novel hyper-
heuristic framework for the optimization of the above-mentioned two conflicting
objectives. The developed approach tested on two cyber security problems and the
experimental results show that their proposed scheme is very effective and efficient.

7 Synopsis and Discussion

In general, the subject of the multi-objective evolutionary optimization algorithms
(MOEOA) is related to an interesting concept with many different aspects and
a crucial role, not only in machine learning, but also in many other scientific
fields. This is evident, since in nowadays, the necessity of handling conflicting
performance objectives appears in many scientific fields. The plethora of papers
written regarding MOEOA show in an emphatic way that the scientific community
has a great concern about this subject.
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The very first evolutionary approaches to solve multi-objective optimization
problems and especially the particle swarm optimization and differential evolution
algorithms appeared very promising [91–95]. It is worth mentioning that the vector
evaluated particle swarm optimization and the vector evaluated differential evolution
[91, 95] remain the basis of current research in multi-objective optimization, many-
objective optimization, and dynamic multi-objective optimization. Furthermore, the
multi-objective optimization has led to better performing machine learning models
in contrast to the traditional single objective ones.

The importance of multi-objective evolutionary algorithms is apparent not only
from the plethora of papers that have been presented by the scientific community,
but also from a huge amount of various applications that have been presented over
the last decades such as engineering [43], industry [64], economy [16, 66], and many
others [2, 28, 39, 41, 42, 53, 65, 68, 97]. The reader could also reach more details
about the variety of the problems and the amount of applications in [60] and [120].

This paper describes how multi-objective evolutionary optimization algorithms
have been used in the field of machine learning, in relative detail. It should be noted
that the list of the references in the current work does not provide a complete list of
the papers corresponding to this subject. The main aim was to provide a survey of
the basic ideas, rather than a simple list, of all the research papers that have been
discussed or have been used these ideas. Nevertheless, it is hoped that the mentioned
references will cover the most important theoretical issues and will give guidelines
to the main branches of literature regarding such techniques and schemes, guiding
the interested reader to up-to-date research directions.
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No Free Lunch Theorem: A Review

Stavros P. Adam, Stamatios-Aggelos N. Alexandropoulos,
Panos M. Pardalos , and Michael N. Vrahatis

Abstract The “No Free Lunch” theorem states that, averaged over all optimization
problems, without re-sampling, all optimization algorithms perform equally well.
Optimization, search, and supervised learning are the areas that have benefited more
from this important theoretical concept. Formulation of the initial No Free Lunch
theorem, very soon, gave rise to a number of research works which resulted in
a suite of theorems that define an entire research field with significant results in
other scientific areas where successfully exploring a search space is an essential and
critical task. The objective of this paper is to go through the main research efforts
that contributed to this research field, reveal the main issues, and disclose those
points that are helpful in understanding the hypotheses, the restrictions, or even the
inability of applying No Free Lunch theorems.

1 Introduction

Optimization problems occurring in various fields of science, computing, and
engineering depend on the number of parameters, the size of the solution space and,
mainly, on the objective function whose definition is critical as it largely determines
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the level of difficulty of the problem. Hence, defining and solving an optimization
problem is sometimes an extremely difficult and demanding task. Researchers from
various fields have been involved in solving optimization problems either as this
constitutes part of their main research or because the problem they face can be
tackled by an optimization one. The research efforts on this matter have permitted
the elaboration of numerous methods and techniques, built on solid mathematical
concepts, whose application produced significantly good results.

However, contrary to any opposite claim, none of these methods has proven
to be successful to all types of the problems it was applied. This argument has
been the objective of important theoretical work carried out by David Wolpert
which gave rise to the well-known No Free Lunch (NFL) theorem. Briefly, the NFL
theorem states that: “averaged over all optimization problems, without re-sampling
all optimization algorithms perform equally well.” Besides optimization, the NFL
theorem has been successfully used to tackle important theoretical issues pertaining
supervised learning in machine learning systems. Actually, the NFL theorem has
become a suite of theorems which has given significant results in various scientific
fields where searching for some optimal solution is an important issue.

The NFL theorems constitute an important theoretic development which marked
the limits of the range of successful application for a number of search, optimization,
and supervised learning algorithms. At the same time the formulation of these
theorems has provoked controversial discussions [4, 36, 44, 45] regarding the
possibility to invent and effectively use general purpose algorithms in various fields
where only a limited view of the real-world problem exists.

In this paper we aim at presenting a review on the most sound research work
published by several researchers on this matter including its impact on the most
important fields, that is, optimization and supervised learning. Other existing fields
of interest such as user interface design [24], network calculus [8] are worth of merit
but they are out of the scope of this review. The emphasis of this review will be,
mainly, on the critical questions which promoted the development of NFL theorems
as well as on the issues that proved to be important: namely for (a) optimization,
(b) searching, and (c) supervised learning.

The rest of this paper is structured as follows. Section 2 provides a review
of the early concepts and constructs that underpinned the definition of the NFL
theorems. Section 3 covers the main research efforts of Wolpert establishing NFL
for optimization and search. In Section 4 we survey the more recent work of Wolpert
which clarifies older concepts while offering some new results on this field. Next,
Section 5 is dedicated to the main research carried out by several researchers on
NFL for optimization and evolutionary algorithms. Part of the research surveyed
concerns the cases where NFL theorems do not apply and researchers have proved
the existence of “Free Lunches.” In Section 6 we describe the main research efforts
on NFL theorems for supervised learning. The paper ends in Section 7 with a
synopsis and some concluding remarks.
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2 Early Developments

As noted by David Wolpert [56], the first attempt to underline the limits of inductive
inference was made by the Scottish philosopher David Hume in 1740 in his seminal
work “A treatise of human nature” [26, 27]. Hume wrote that:

Even after the observation of the frequent conjunction of objects, we have no reason to draw
any inference concerning any object beyond those of which we have had experience.

In the machine learning context this can be stated as follows:

It is not reasonable to believe that the generalization error of a classifier-generalizer on test
data drawn off the training set correlates with its performance on the training set itself by
simply considering a priori information on the real world.

Wolpert based his theoretical work on earlier developments elaborated in his
paper “On the connection between in-sample testing and generalization error” [55].
In this paper the generalization error is taken as the off-training set (OTS) error
and the question addressed concerns its correlation with the error produced using
in-sample testing. Moreover, Wolpert tackles the question of how “. . . to take into
account the probability distribution of target functions in the real world” as any
theory of generalization is irrelevant concerning its applicability on real- world
problems if it does not tackle the previous problem. Some, but not all, of the
important issues arising in this paper are:

(a) “Can one prove inductive inference from first principles?” In other words, given
the performance of a learning algorithm on the training data set is it possible to
obtain information on its ability to provide an exact representation of the target
function for examples outside the data set?

(b) If one cannot answer the previous question then, what are the assumptions
on the distribution of real-world data (the target function) can help with the
generalization for training algorithms, such as back-propagation, which aim to
minimize the error on the training data?

(c) Is there a mathematical basis of estimating when over-training occurs and
proceed in modifying the learning algorithm in order to bound the effects of
such over-training?

(d) Is it possible to express in mathematical terms the ability of a training set to
faithfully represent the distribution over the entire data space?

(e) What are the hypotheses under which non-parametric statistics techniques, such
as cross-validations, which are designed to choose between learning algorithms,
succeed to diminish the generalization error?

In addressing these matters, the formalism proposed seems to extend the classical
Bayesian formalism using the hypothesis function, i.e., the distribution of the data
set as learned by the generalizer. The mathematical formalism adopted proposes a
way to match the degree to which the distribution derived by the learning algorithm
matches the distribution of the training data and it can be used to tackle various
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generalization issues such as over-training and minimum number of parameters for
the model. From another point of view this formalism is proposed with the aim
to express in mathematical terms the assumptions made by a generalizer so that
the used model best fits the training set representing the real world. As a result the
elaboration of important theoretical proofs proposes a solid basis for tackling several
issues in machine learning and gives rise to the development of concepts such as the
NFL theorems.

The first and foremost contributions of Wolpert concerning NFL theorems were
presented in the papers [56, 57]. In this set of two papers, namely:

(i) “The lack of a priori distinctions between learning algorithms” and
(ii) “The existence of a priori distinctions between learning algorithms,”

Wolpert develops his theory and formulates the NFL theorems. In the former,
he discusses the hypothesis that given any two learning algorithms one cannot
claim having any prior information that these algorithms are distinct as far as the
performance of these algorithms on specific class of problems is concerned. In the
latter paper, Wolpert unfolds the arguments concerning the inverse assumption, i.e.,
there are prior distinctions regarding the performance of any two algorithms. These
two papers deal with supervised learning but the theoretical constructs were applied
to multiple domains where two different algorithms compete as for which performs
better for a class of problems and associated error functions.

Focusing on supervised learning, in the first of the previously mentioned papers
the concept of “off-training set” (OTS) is defined and the associated performance
measure of the supervised learning algorithm is proposed. The mathematical
formalism used is based on the so-called extended Bayesian formalism and is refined
in order to take into account the generalization error, the cost function, and their
relation to the learning algorithm while providing the necessary hypotheses for the
training sets and the targets. In the sequel the probability of some cost “c” of the
learning algorithm associated with the loss function is proposed as follows:

P (c|d) =
∫

df dhP (h|d) P (f |d) Mc,d (f, h) ,

which is considered to be the inner product between the infinite dimensional
vectors P(f |d) and P(h|d) representing the target and the hypothesis functions,
respectively. This inner product quantity is maximized if the target function f
and the hypothesis function h given the training data d are close enough to each
other, i.e., they are aligned. Given two learning algorithms (generalizers) A and
B, an important question to be answered deals with the comparison of these two
algorithms in terms of how the set F1 of target functions f for which A beats
B compares with the corresponding set F2 of the target functions f for which
algorithm B outperforms A. As it is stated in [56]: “in order to analyze this issue it is
proposed to compare the average over f of f -conditioned probability distributions
for algorithm A to the same average for algorithm B. Then the relationship between
these two averages is used to compare the sets F1 and F2 .”
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In the second paper: “The existence of a priori distinctions between learning
algorithms” [57] Wolpert, besides revisiting the theorems and some examples
of the first paper, examines the NFL theorems with respect to cross-validation
and the so-called head-to-head minimax behavior that is the case where for an
algorithm A there exist comparatively few target functions for which A is slightly
worse than algorithm B and comparatively few target functions in which algorithm
A is superior to algorithm B. Moreover, he develops an extension of his theory
by considering averaging over generalizers rather than targets. This means that
instead of characterizing two algorithms by averaging over targets, namely f , φ,
P(f ), or P(φ), holding the hypothesis, P(h|d), fixed it is tentative to consider
alternative results where one holds one of the entities concerning the targets, fix
and average over the hypothesis entities. For this case, Wolpert formulates some
additional theorems and finally he examines the case when the loss function L(·|·)
is non-homogenous and thus the NFL theorems do not apply as one can make a
priori distinctions between algorithms.

As a conclusion it is stated in [57] that these two papers investigate some of the
behavior of OTS error. In particular, they formalize and investigate the concept that
“if you make no assumptions concerning the target, then you have no assurances
about how well you generalize.”

3 No Free Lunch for Optimization and Search

Another direction of research for applying the ideas of the NFL theorems, as
presented above, concerns the domain of optimization. The work “No free lunch
theorems for optimization” [62] published by Wolpert and McReedy deals with
this matter based on two technical reports produced by the authors at the Santa
Fe Institute. The first technical report published in [35] with the title “What
makes an optimization problem hard?” raises the question: “Are some classes
of combinatorial optimization problems intrinsically harder than others, without
regard to the algorithm one uses, or can difficulty be assessed only relative to a
particular algorithm?” The second technical report [61], entitled: “No free lunch
theorems for search” focuses on proving that all algorithms searching for an
optimum of an optimization problem, i.e., an extremum of an objective function,
performs exactly the same, no matter the performance measure used, when taking
the average over all possible objective functions.

The work of Wolpert and McReedy “No free lunch theorems for optimiza-
tion” [62], sets up a formalism for investigating the relation of the effectiveness
of optimization algorithms and the problems they are solving. The NFL theorems
developed in the paper establish that the successful performance of any optimization
algorithm on one class of problems is counterbalanced by its degraded performance
on another class of problems. A geometric interpretation is provided concerning the
meaning of the fitness of an algorithm to cope with some optimization problem.
Moreover, as mentioned in the previous technical reports the authors examine
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applications of NFL theorems to information-theoretic aspects of optimization as
well as to defining measures of performance for optimization benchmarks.

Given the multitude of black-box optimization techniques available, the authors
try to provide the formalism for tackling the following problem: “is there a
relationship between how well an algorithm performs and the optimization problem
on which it is run?” This problem can be cast in several other such as:

(a) What are the mathematical constituents of optimization theory one needs to
know before deciding on the necessary probability distributions to be applied?

(b) Are information theory and Bayesian analysis suitable for understanding the
previous issues?

(c) Given the performance results of a certain algorithm on a certain class of
problems can one provide a priori generalization of these results on other classes
of problems?

(d) Is there a suitable measure of such generalization? Can one evaluate the
performance of algorithms on problems so that he is able to compare those
algorithms?

The formalism developed by the authors is articulated around the following
concepts:

(i) A sample of size m is a set of m distinct points visited by the algorithm and is
denoted by

dm =
{(
dxm(1), d

y
m(1)

)
,
(
dxm(2), d

y
m(2)

)
, . . . ,

(
dxm(m), d

y
m(m)

)}
,

where dxm(i) denotes the X value of the i th element of the sample and dym(m)
is the associated cost, i.e., the Y value.

(ii) An optimization algorithm α is a mapping from previously visited sets of
points to a single new point in X , i.e.,

α : d ∈ D → {
x | x /∈ dx},

where D denotes the space of all (m-sized) samples and α is deterministic in
the sense that every sample maps to a unique new point.

(iii) The performance of an algorithm after m iterations is a function Φ(dym) of the
sample.

(iv) Given the space of all cost functions, i.e., optimization problems F the
distribution:

P(f ) = P (f (x1), f (x2), . . . , f (x|X |)
)
,

defined over F gives the probability that each f ∈ F is the actual
optimization problem at hand.

(v) The performance of an optimization algorithm α on a cost function f after m
iterations is measured with P(dym | f,m, α).
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Let us consider the problem:

Suppose that F1 ⊆ F is the set of problems for which an algorithm α 1 performs better than
algorithm α 2 and F2 ⊆ F denotes the set for which α 2 performs better than α 1. How can
one compare these two sets?

The answer provided by the authors relies on the sum of P(dym | f,m, α 1) and the
sum of P(dym | f,m, α 2) over all f , i.e., over all problems. The following theorem
as formulated in this paper addresses the previous problem.

Theorem 1 For any pair of algorithms α 1 and α 2,

∑

f

P
(
d
y
m | f,m, α 1

) =
∑

f

P
(
d
y
m | f,m, α 2

)
.

In the theorem the problem is considered to be fixed over time. If the cost function is
time-dependent in the sense that, while the problem is initially expressed with some
cost function f1 which is present when sampling the first value in X , then this
function is deformed before any subsequent iteration of the optimization algorithm.
If deformation is represented with the mapping T : F ×N → F , and T = Ti ,
then fi+1 = Ti(f ) and the following theorem can be formulated:

Theorem 2 For all dym, D
y
m, m > 1, algorithms α 1 and α 2, and initial cost

functions f1

∑

T

P (d
y
m | f1, T ,m, α 1) =

∑

T

P (d
y
m | f1, T ,m, α 2),

and

∑

T

P (D
y
m | f1, T ,m, α 1) =

∑

T

P (D
y
m | f1, T ,m, α 2).

One of the implications of the NFL theorems discussed by the authors deals with
the geometric perspective of NFL. In this perspective consider the space F of all
cost functions and the probability of obtaining a certain dym defined by the relation:

P(d
y
m |m,α) =

∑

f

P (d
y
m |m,α, f ) P (f ),

with P(f ) being the prior probability that the optimization problem at hand has
cost function f . As noted by the authors the previous sum can be considered as an
inner product in F . Hence, if we define the vectors −→v dym,α,m and −→p by their f
components, respectively:

−→v dym,α,m(f ) ≡ P(d
y
m |m,α, f ), and −→

p ≡ P(f ),
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then it holds that:

P(d
y
m |m,α) = −→v dym,α,m · −→p .

The authors note that this equation provides a geometric interpretation of the
optimization process. Hence, dym represents the desired sample and m is taken as
a measure of the computational effort needed for the algorithm. Moreover, if the
vector−→p represents the prior which includes all knowledge about the cost functions,
then the last equation formulates in mathematical terms that: “the performance of an
algorithm is determined by the magnitude of its projection on −→p or in other words
by how aligned −→v dym,α,m is with the problem’s vector −→p .” With respect to the

geometric view the NFL result that
∑
f P (d

y
m | f,m, α) is independent of α means

that for any particular dym and m, all algorithms have the same projection onto the

uniform P(f ) represented by the diagonal vector
−→
1 .

Moreover, the authors investigate the relationship of the above results with
information-theoretic aspects of optimization and provide measures of performance
for assessing the efficacy of a certain optimization algorithm. Finally, minimax dis-
tinctions between search algorithms are discussed and some performance measures
for search algorithms are provided.

4 More Recent Work of Wolpert

The work of Köppen, Wolpert, and McReedy “Remarks on a recent paper on the No
Free Lunch Theorems” [33] is a letter reconsidering a previous work of Köppen [32]
with the title “Some technical remarks on the proof of the No Free Lunch theorem.”
In this letter the authors, following suggestions made in [32], provide a short proof
of the NFL theorems while correcting a wrong claim made in [32] about circular
reasoning of the original proof of the NFL theorems in [61, 62].

Hereafter, let us give some details on this theorem, as presented in [61, 62]; its
proof is important for many papers on NFL theorems. First, consider two finite sets
X and Y together with the set of all cost functions f : X → Y . Moreover, for a
positive integer m such that m < |X| let dm = {(dxm(i), dym(i) = f (dxm(i)))} i.e.,
the points sampled by the algorithm in m steps, with i = 1, 2, . . . , m dxm(i) ∈ X ∀x
and for any i, j it holds that dxm(i) �= dxm(j). Let a denote the search algorithm of
interest, which is a deterministic “blind” algorithm assigning to every possible dm
an element of X which is not already in the dxm. This means that,

dxm+1(m+ 1) = a[dm] /∈ {dxm}.

Let Y (f, a,m) denote the sequence of the m values of Y produced by the algorithm
a to f afterm successive steps and δ(·, ·) is the Kronecker delta function giving 1 if
its arguments are identical and 0 otherwise. Then the following lemma holds:
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Lemma 1 For any algorithm a and any dym,

∑

f

δ
(
d
y
m, Y (f,m, a)

) = |Y ||X|−m.

Thus, if c(·) is some performance measure assigning a real value to any set dym and
k ∈ R is a performance value, then the theorem in question is:

Theorem 3 For any two deterministic algorithms a and b, any value k ∈ R, and
any performance measure c(·),

∑

f

δ
(
k, c

(
Y (f,m, a)

)) =
∑

f

δ
(
k, c

(
Y (f,m, b)

))
.

Besides considering the proof of this theorem, in this letter, the authors take
the chance to defend NFL theorems against what they call a rather nihilistic view
that algorithms of universal applicability would not exist. NFL theorems should be
considered as a research topic and not as simply some convenient or inconvenient
result. Hence, they propose that a more open minded view should prevail in order
to investigate the limits of NFL theorems as well as the potential issues arising by
their application in various domains.

It is worth noting, here, a relatively more recent work of Wolpert [60] entitled:
“What the No Free Lunch Theorems Really Mean? How to Improve Search
Algorithms?” In this research report the author reconsiders the main ideas of his
work on NFL as far as search algorithms are concerned. Wolpert insists on analyzing
the issue that while the NFL theorems have strong implications whenever a uniform
distribution of the cost function over the optimization problems is adopted, this is not
meant to support the use of such a distribution when one has to solve an optimization
problem. Trying to clarify what the NFL really mean in order to improve search
algorithms, Wolpert analyzes some kind of “deep formal relationship between
supervised learning and searching.” As a result of the analysis of this relationship
there are NFL theorems for both search and supervised learning and so there are
various ways of reusing techniques first developed in supervised learning for guiding
search. A number of experiments are presented which confirm the effectiveness of
search algorithms built upon these concepts.

5 NFL for Optimization and Evolutionary Algorithms

5.1 No Free Lunches and Evolutionary Algorithms

The NFL theorems have attracted the interest of the scientific community and keep
this interest unchanged. On the other hand, there has been occasionally the bone
of contention between some researchers. Such conflicting positions are listed in
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Perakh’s essay [42]. In particular, one may note the position of Orr [37] regarding
the NFL theorems, which was presented on the occasion of the publication of
William Dembski’s book [10]. Orr stated that:

. . . NFL theorems compare the effectiveness of evolutionary algorithms and look at how
often such an algorithm can detect the target, within a certain number of steps. . .

Orr underlined some very useful observations regarding NFL theorems in rela-
tion with Darwinian theory and this has been the essence of the difference
between Orr and Dembski. More precisely, Orr claims that evolution accord-
ing to Darwin’s theory cannot be seen as a search process and therefore, con-
trary to Dembski, one cannot claim that Darwinism constitutes a search algo-
rithm. It is evident that NFL theorems do not exclude evolutionary process
defined according to the Darwinian theory. Hence, evolutionary algorithms can be
appropriate used for search and they are capable to overcome a random search
algorithm.

In [42] Perakh gave a popularized interpretation of NFL theorems. This inter-
pretation is presented hereafter along with some useful comments and remarks as
given by the author. Suppose that A and B are two search algorithms, exploring the
same search space. The algorithms explore the search space by moving from one
point to another, selecting points either randomly or following a specific order. Each
algorithm performs a certain number of moves. At any point visited the algorithm
computes the value of the fitness function and so after, say, k steps the algorithm
provides k measurements, which constitute what is called a sample.

In essence, this sample is nothing more than a table in which the values of the
fitness function are recorded for each search point. However, an important question
arises: “could two algorithms return the same sample, given that they have selected
the same number of points?” Obviously, the samples computed by two arbitrarily
chosen algorithms are not expected to be the same. This argument can be easily
understood if one considers it in terms of probabilities.

Specifically, Perakh notes that:

The probability of a sample (i.e., a table), of size k, produced by an algorithm, sayA, differs
from the probability that the same sample is produced by another algorithm B, for the same
number of steps of the algorithms.

However, the first NFL theorem states that if the search results of the two algorithms
are not compared for a particular fitness space but averaged over all possible search
spaces, then the above probabilities of obtaining the same sample are equal for any
pair of algorithms.

It is worth to underline that the NFL theorems are valid regardless how many
times the algorithms are used to complete a search of the underlying problem space
or which fitness function values are returned by the different search points. Another
point that is worth paying attention is that NFL theorems make no claim about the
relative performance of the algorithms, as defined in [42], for a particular search
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space. As a result, in terms of performance, any algorithm could be much better
than any other “competitor.”

Despite the fact that NFL theorems are valid for evolutionary algorithms, in [58]
it is argued that this may not stand for the case of co-evolutionary algorithms and so
“Free Lunches” are possible. The NFL framework for the case of co-evolutionary
algorithms as described in [49] is given next.

The statement relative to “the average performance of the algorithms,” men-
tioned in the previous paragraphs and references therein, is meaningless without the
definition of how this performance is measured. In other words, a very important
issue is to define the metrics that one should use in order to effectively measure and
compare the performance of the algorithms.

In addition, some other important questions may arise, such as:

(a) Are there any classes of co-evolution for which there exist NFL theorems?
(b) For which co-evolution classes there can be Free Lunches?

According to the literature [63] these questions are difficult to be answered and they
still remain open problems.

Some recent research efforts regarding NFL theorems and black-box optimiza-
tion have shown that there are co-evolutionary problems with No Free Lunches
while Free Lunches are present in the context of other co-evolutionary problems.
More precisely, in their work [49], Service and Tauritz present a NFL framework
for classes of co-evolutionary algorithms. What is important in this work is the
classification of co-evolutionary algorithms based on the solutions they seek.
In the co-evolutionary algorithms framework defined in this work, the type of
the solutions, or the corresponding individuals, that are effectively considered as
solutions to the problem, depend, exclusively, on the type of the problem for which
the co-evolutionary algorithm is designed. Note that the different solution concepts
are related to the cooperative co-evolution case, the Nash equilibrium case, the
maxmin case, etc.

The authors define the so-called weak preference relation which is a relatively
simple way of measuring the performance of co-evolutionary algorithms and so
it constitutes a metric. This metric is different than the one originally defined by
Wolpert and Macready in their work “Co-evolutionary Free Lunches” [63].

The framework developed by Service and Tauritz can be considered as a combi-
nation of concepts and definitions originating from two theoretical frameworks. The
first framework deals with the original NFL theorems [62] for search algorithms
and the other for concerns co-evolutionary algorithms [18]. This fusion is done with
respect to the consistency of both frameworks. Moreover, in [49] the authors showed
that in co-evolution there are Free Lunches. In consequence, the important question
that remains to be answered is: “in which classes of co-evolutionary algorithms
there are Free Lunches?” and further studies are needed to explore additional
classes of co-evolution.
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5.2 No Free Lunches and Meta-Heuristic Techniques

It is well known that particle swarm optimization methods [41] have greatly
contributed to the field of mathematical optimization. These swarm- based methods
consist of a number of individuals who guide the optimization process through
their collective behavior in order to attain an optimal solution. A great advantage of
these methods is that, under suitable conditions and assumptions, they are capable
to avoid local minima and ensure convergence of the algorithm to some globally
optimal solution. However, convergence analysis of swarm optimization algorithms
still remains an active research areas. The most important schemes that have been
define and used include: “Particle Swarm Optimization” (PSO) [14], “Ant Colony
Optimization” (ACO) [11], “Firefly Algorithm” (FA) [64], “Artificial Bee Colony
algorithm” (ABC) [28], “Bat Algorithm” (BA) [65], “Cuckoo Search” (CS) [67],
among others.

These methods, also called meta-heuristic techniques, involve exploration and
exploitation; two specific search processes which under appropriate conditions
“control” the swarm in order to avoid local minima of the fitness function.
The applications of the above swarm-based schemes are many and belong to
different scientific fields. More details on these can be found in [19], especially
concerning engineering and industrial applications. In recent years, application of
meta-heuristic techniques has constantly increased and has entered the field of art
[1, 2, 12, 47, 52]. More specifically, meta-heuristic techniques have been applied in
the tasks of Crowd simulation, Human swarming, and Swarmic art.

Meta-heuristic techniques or meta-models, such as those proposed in [38–
41, 43, 50], are used in many cases of evolutionary computing techniques [15–17,
20, 34], in order to create faster optimization algorithms. Especially, in cases where
data sets are incomplete or imbalanced or the objective function is computational
costly, the meta-heuristic procedures provide alternative, effective, and efficient
solution to the optimization problem. Specifically, these techniques are high-
level heuristic processes that aim at choosing or creating meta-heuristic search
models to resolve more efficiently optimization problems. As noted in [4], under
some mild conditions with respect to objective functions, the surrogate algorithms
achieve global convergence [5]. In addition, these meta-models are not plagued
by damaging features of classic optimization methods, such as the calculation of
derivatives. As a consequence, meta-models outperform classic methods, enabling
them to be effectively and efficiently deployed in a variety of applications, such as
[25, 30, 53].

An important discussion concerning NFL for meta-heuristics is proposed by
Yang [66]. In this work the author notes that NFL theorems deal with the average
performance of optimization algorithms on all existing problems. Nevertheless, in
many real problems this does not hold, as the theoretical requirements are strict
and they cannot be applied, in practice. As a consequence, this situation results
in getting Free Lunches, and what needs to be determined is the performance of
specific algorithms in particular classes of problems. Hence, in such cases there
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may exist algorithms that are significantly better than others for a particular class of
problems. This phenomenon, i.e., the non-validity of NFL theorems, often occurs
when applying meta-heuristic approaches, as the primary NFL theorems concern
algorithms searching for individual solutions while population-based meta-heuristic
approaches explore simultaneously different parts of the search space and, in this
sense, they are considered dealing with sets of solutions. As an example one may
consider the cases of genetic algorithms or PSO. A similar situation is encountered
in multi-objective optimization, where some algorithms are found to outperform
others on specific problems, thus, giving rise to Free Lunches [9].

The theoretical results of NFL theorems while being very important for mathe-
matical optimization with significant theoretical impact, however, incite a number
of questions related with practical applications such as: “What is the position and
the opinion of optimization algorithm designers on the practical validity and the
applicability of NFL theorems?”

Yang [66] provides an answer to this question and classifies developers of
optimization algorithms in three groups:

(a) A large part of researchers believe that the conditions set by NFL theorems
cannot be applied in practice and therefore they do not accept them.

(b) Researchers in the second category accept the validity of NFL theorems but
they believe that for specific types of problems there exist optimal algorithms.
So, they focus on finding such algorithms for particular classes of problems.

(c) The last group claims that NFL theorems do not hold for continuous problems
or for problems belonging to the NP-hard class. Therefore, they focus on
discovering problems for which NFL theorems do not apply and hence on
defining Free Lunches.

The appeal and the controversies caused by NFL theorems led a large part of
the scientific community to re-examine these theorems and restate them in several
equivalent forms. The studies resulting from this trend have led to the creation
of many frameworks for black-box search algorithms such as the framework
proposed by Schumacher et al. [48]. These authors studied the length of the problem
description and they concluded that the NFL results as initially formulated by
Wolpert are valid not only for the set of all functions but even for smaller sets.
Hence, NFL results are independent of whether the set of functions is compressible
or not. Finally, the authors conclude that the results of NFL theorems are best
maintained in the case of the permutation closure of a single function.

The variety of scientific fields where NFL theorems have been applied made
more and more researchers study and apply these theorems which led to the
proposition of various extensions of NFL theorems. It is worth mentioning that
Auger and Teytaud [4] proposed extensions of NFL theorems related to infinite
spaces both countable and uncountable. In addition, they studied the design of
optimal heuristic optimization models. According to the original work of Wolpert
and Macready [62], the NFL theorems for optimization concern finite search spaces.
So, in order to extend the theorems to infinite search spaces, stochastic terms and
procedures are introduced. The authors demonstrated that in the case of infinite
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countable spaces, the physical extension of the NFL theorems does not hold. In
addition, for their proof they defined some distributions of the fitness functions,
which lead to equal performance for all heuristic search techniques.

The above proof resulted in Free Lunch theorems based on a random fitness
function and involves random search spaces. An additional contribution made in [4]
deals with designing optimal algorithms for random fitness functions regarding a
black-box optimization framework. In particular, the authors presented an optimal
algorithm based on the Bellman’s decomposition principle [6], for a certain number
of algorithm iterations and a given distribution of fitness. Moreover, for the
design procedure and the experiments conducted, the “Monte-Carlo planning”
algorithm [31] and the “Upper Confidence Tree” algorithm [51] were used.
Following these research results one may, reasonably, put forward the question: “Is
the improvement proposed by Auger and Teytaud just of theoretical importance or it
can be applied in practical situations in acceptable computational time?”

Hereafter, in order to present some of the results of Auger and Teytaud [4],
more formally, we recall the necessary notation adopted in [4]. Let X denote
the search space and Y its codomain for a given objective function f . For any
integer m ∈ {1, 2, . . . , |X |} let (x1, x2, . . . , xm) be the vector of the first m
iterates of a search algorithm and let (f (x1), f (x2), . . . , f (xm)) be the vector
of the associated objective values. The performance of an algorithm a after m
iterations is given by measuring the vector of cost values denoted by Y (f,m, a) =
〈f (x1), f (x2), . . . , f (xm)〉.

Using the previous notation, NFL theorems imply the following results for X
any finite domain, Y its codomain, two search algorithms a and b, any number of
iterations m and, finally, any objective function f and p any random permutation
uniformly distributed (among all permutations) over X : the random vectors:

Y (f ◦ p, m, a) = 〈f ◦ p(x1), f ◦ p(x2), . . . , f ◦ p(xm)〉,

and

Y (f ◦ p, m, b) = 〈f ◦ p(x1), f ◦ p(x2), . . . , f ◦ p(xm)〉,

follow the same distribution.
Moreover, let X be a countably infinite space and without loss of generality let

X = N. If one is able to provide a non-trivial measurable objective function f ,
then the following proposition holds:

Proposition 1 Assume that NFL (N, p, f ) is a No Free Lunch, and

f (i) = (−1)i+1 i , ∀ i ∈ N.

Then there is no random permutation p such that NFL (N, p, f ) holds. Conse-
quently, the NFL (N, f ) does not hold.
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Table 1 Number of citations of the references related to the NFL theorems for Optimization and
Evolutionary Algorithms issues presented in Section 5

Contribution Total citations Citations per year

Schumacher et al. [48] 190 11.18

Droste et al. [13] 150 9.38

Perakh [42] 6 0.40

Griffiths and Orponen [23] 9 0.69

Service and Tauritz [49] 4 0.40

Poli and Graff [44] 35 3.18

Auger and Teytand [4] 70 8.75

Yang [66] 34 5.67

Among different theoretical results, one may stick to the following Continuous
Free Lunch theorem which is considered to be the main result of Auger and Teytaud
in [4].

Theorem 4 (Continuous Free Lunch) Assume that f is a random fitness function
with values in R

[0,1]. Then GNFL ([0, 1], f ) does not hold.

In the above theorem X is considered to be a continuous domain and without loss
of generality X = [0, 1] and Y = R. Moreover, the notation GNFL is used for a
weaker NFL which does not restrict the fitness function to the compositional form
f ◦ p.

Remark 1 Let f be a random fitness. Then GNFL (X , f ) holds if and only if
for any m ∈ N (smaller than |X | when X is finite) and any two optimization
algorithms a and b, Y (f,m, a) and Y (f,m, b) follow the same distribution.

In Table 1, we provide information about the number of citations1 received by
the most significant contributions concerning the field of the NFL theorems for
Optimization and Evolutionary Algorithms. This citation analysis can be considered
as an additional information about the importance and contribution of these works
in the field of the NFL theorems.

Designing an optimization algorithm that will be more effective than other
optimization schemes is a very difficult process and requires a number of conditions.
“Multidisciplinary Design Optimization” is a problem that is based on the best
architecture selection. In such a context, it can be easily understood that obtaining
the most efficient design scheme requires testing and may lead to errors. However,
the trial-and-error procedure is not appropriate as it is a costly computational
process. Vanaret et al. [54] proposed a general design process that avoids the above
problem, as well as the inherent complexity that exists in such applications.

1Source: Google Scholar.
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In most cases of Multidisciplinary Design Optimization, having efficient opti-
mization algorithms is seriously restricted by the complexity of the objective
function which is due to the fact that several different architectures are used for
the design task. So, it is of primary importance to dispose a methodology that
can be applied in all design cases and alleviate this disadvantage. In [54] this is
accomplished through a replacement function that can be calculated much more
easily than the original one. The authors propose a scalable replacement model
through which the architectures can be evaluated easier and thus the choice made
more appropriate. Through their experimental results it is clear that the performance
of an architecture model depends significantly on the dimension of the original
problem. Therefore, as stated by the NFL theorems, there is no architecture that
is significantly more efficient than all the others, when dealing with problems of
the same dimension. The authors adopt the “Multidisciplinary Feasible” and the
“Individual Disciplinary Feasible” architecture models as the more representative
among different architecture models for Multidisciplinary Design Optimization
problems. Nevertheless, more architecture models need to be explored in the
future.

Kimbrough et al. [29] studied several cases of optimization with constraints using
population-based optimization algorithms. In particular, in their research they used
genetic algorithms regarding two populations, those of feasible solutions and those
of non-feasible ones. Theoretically, in a simple, typical scheme of genetic evolution,
the individuals evaluated as feasible solutions would be the only ones that would
take part in the evolution of the population and so, in the final formulation of the
solution. However, this theoretical provision is not valid in [29] as in this case
Kimbrough et al. use feasible solutions in improving the values of the objective
function, while non-feasible solutions are used to correct the penalties caused by
their constrains.

In order to ensure the smoothness of the optimization process, namely the
evolution of the populations, the authors defined a metric distance between the
two populations, both among the individuals and the populations’ centroids. An
important detail that has to be underlined is that the centroids of the two populations
are approaching each other during the evolution.

At first sight, it might seem strange to maintain a whole population of infeasible
solutions. However, a closer look reveals the usefulness of this position as this
population is free to move to space areas, where the feasible solutions cannot,
and thus to explore the limited search areas. The authors studied specific problems
and spaces and showed that the conclusions of the NFL theorems regarding the
equivalence of the black-box search algorithms do not hold. Furthermore, they
shown that the NFL theorems do not hold for problems with constraints and
specifically in many practical problems where the restrictions are fixed.

The evolutionary computing scheme adopted by Kimbrough et al. [29] is an
elegant mechanism which permits to show that there exist constraint optimization
problems for which NFL results do not hold. The interested reader is invited to refer
to the work [29].



No Free Lunch Theorem: A Review 73

As a supplement of the above research works along with both the theoretical
arguments and the conclusions of the specific problem classes mentioned above,
Droste et al. in [13] provide some realistic remarks based on the computational
complexity of heuristic optimization algorithms. The authors claim that NFL
theorems are not possible in the case of heuristic optimization. However, an
“(Almost) No Free Lunch” ((A)NFL) theorem shows that for each function that can
be efficiently optimized by a heuristic search, many other related functions can be
constructed where the same heuristic is bad. Consequently, heuristic search methods
use some a priori known information, a kind of “ideas,” of how to search for good
solutions and so they can be successful only for functions that give the appropriate
“help.”

Theorem 5 Assume that S is a randomized search strategy and let f be a function,
f ∈ {0, 1}n and the output range is {0, 1, 2, . . . , N − 1}. Then there are at least
N2n/3−1 number of functions, let g, g : {0, 1} → {0, 1, 2, . . . , N} in agreement with
f on all but at most 2n/3 inputs such that S does find the optimum of g within 2n/3

steps with a probability bounded above by 2−n/3.

This theorem suggests that heuristic methods cannot succeed in all existing
problems. This is because the effectiveness of these techniques is largely based on a
good “guess.” If this guess is correct, these methods can be very efficient. If not, the
search time can reach exponential levels and this constitutes a serious disadvantage
of this family of methods.

In [23] Griffiths and Orponen studied optimization strategies for a given finite set
of functions. Specifically, they investigated the conditions that need to be satisfied
for the functions under consideration in order to have the same performance for a
uniform distribution of functions. The result of this research is related to some non-
trivial Boolean functions and bounded search algorithms. An important conclusion
of this research is that the relationship of NFL theorems and the closed under
permutation conditions does not always hold. This happens when we consider
functions used to maximize the performance of bounded length searches.

Closing this section, it is worth to mention the contribution of Poli and Graff [44]
concerning the NFL theorems and hyper-heuristic techniques. Their conclusions
further support the previously referenced works as far as the non-validity of the
NFL theorems and the existence of Free Lunches are concerned. The NFL theorems
guarantee that this phenomenon happens to hyper-heuristic techniques and high-
level hyper-heuristics, if all the problems of interest are closed under permutation.
For many real applications the corresponding optimization problems do not satisfy
this condition and so, in these cases, there is a Free Lunch for hyper-heuristic
techniques. Note that this happens provided that at each level of the search hierarchy
the heuristics are evaluated using performance measures that reveal the differences
in immediately lower level. The fact that the results of NFL theorems may not
hold over heuristic searching techniques does not mean that the existing hyper-
heuristic methods are good enough. This may need to be proven and so it requires
to be further investigated. Finally, whenever implementation of the NFL theorems
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is not possible, one should see the opportunity to try finding some new and more
powerful, effective, and efficient hyper-heuristic algorithms, including techniques
that are based on genetic programming and genetic algorithms.

6 NFL for Supervised Learning

Revisiting his initial work on supervised learning Wolpert in his work entitled:
“The supervised learning no-free-lunch theorems” [59] analyzes the main issues
underlying his theory on NFL. Wolpert criticizes conventional testing methods for
supervised learning as they do not account for out-of-sample testing which is more
important for the behavior of supervised learning algorithms. Actually, despite any
opposite claim it is common practice in established supervised learning approaches
to perform testing with test set that overlap training sets. Thus, conventional
frameworks are bound with specific application fields of supervised learning and
not with the very problems of the domain.

To cope with this inability of conventional frameworks and deal with the off-
training-set error he proposes the so-called Extended Bayesian Framework (EBF)
which besides offering an extension to classical Bayesian analysis it, also, has
the major advantage that it encompasses the conventional frameworks. Based on
the EBF, Wolpert develops the set of No Free Lunch theorems which “bound
how much one can infer concerning the (off-training-set) generalization error
probability distribution without making relatively strong assumptions concerning
the real world. They serve as a broad context in which one should view the claims
of any supervised learning framework.”

All aspects of supervised learning are modeled by means of probability distri-
butions. Wolpert provides definitions for those points that are ill defined and they
are assumed to constitute defaults for conventional approaches which deal with
generalization. Hence, according to Wolpert’s notation, if

d = {dX(i), dY (i)}, ∀ 1 � i � m,

denotes the training data, “f ” is the function giving the probability P(y | x, f ) =
fx,y and “h” is the x-conditioned probability distribution over values y which is
produced by the learning algorithm in response to training data d, P(y|x, h) = hx,y
then the generalization error function typically used in supervised learning can be
expressed by the expectation value E(C |h, f, d) for some cost “C” induced by the
learning algorithm. So, for the “average misclassification rate error,” one may set:

E(C |h, f, d) = E(C |h, f ) =
∑

x

π(x)
[
1− δ(f (x), h(x))].

This is the average number of times across all x ∈ X that h and f differ relatively
to the sampling distribution π(x) which produced the training data.
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In the sequel, the following two theorems are formulated. These theorems are
known as “No Free Lunch theorems for supervised learning.”

Theorem 6 E(C | d) can be written as a (non-Euclidean) inner product between
the distributions P(h | d) and P(f | d):

E(C | d) =
∑

h,f

Er(h, f, d) P (h|d) P (f |d),

where Er(h, f, d) denotes the error function.

The following meanings are given by Wolpert to this theorem:

(a) An answer to how well a learning algorithm does on some problem is deter-
mined by how “aligned” the algorithm P(h|d) is with the posterior P(f | d).

(b) One cannot prove anything regarding how well a particular learning algorithm
generalizes as one is, generally, unable to prove that P(h|d) is aligned with
P(f | d) unless P(f | d) has a certain form.

The impossibility to prove that P(f | d) has a certain form is formalized by the
following theorem.

Theorem 7 Consider the off-training-set error function. Let “Ei(·)” indicate an
expectation value evaluated using learning algorithm “i.” Then for any two learning
algorithms P 1(h | d) and P 2(h | d), independent of the sampling distribution

(i) Uniformly averaged over all f ,
E1(C | f,m)− E2(C | f,m) = 0;

(ii) Uniformly averaged over all f , for any training set d,
E1(C | f, d)− E2(C | f, d) = 0;

(iii) Uniformly averaged over all P(f ),
E1(C |m)− E2(C |m) = 0;

(iv) Uniformly averaged over all P(f ), for any training set d,
E1(C | d)− E2(C | d) = 0.

Remark 2 Given that the quantities E(C | d), E(C |m), E(C | f, d), or E(C | f,m)
denote different measures of risks, the theorem states that for any of these measures
any two algorithms on average perform equally well. Actually, Algorithm 1 is
superior to Algorithm 2 for as many problems as Algorithm 2 is superior to
Algorithm 1.

The examples given by Wolpert are about cross-validation and Bayesian infer-
ence. Moreover, some variants of Theorem 7 are presented and the intuitive ideas of
Theorem 7 are analyzed. These ideas gave rise to the following important research
efforts concerning two critical issues of supervised learning, namely early stopping
and cross-validation.
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6.1 No Free Lunch for Early Stopping

Iterative methods, such as gradient descent, train a learner by updating its free
parameters in order to make it better fit the training data and improve the perfor-
mance of the learner on data outside the training set. Up to some point this is a
successful task but beyond that point further training leads to over-fitting the training
data while failing to deal with out-of-sample data, thus, increasing the generalization
error of the learner. Regularization techniques including early stopping are used to
avoid over-fitting.

The “early stopping” provides rules on how to conduct training and when to
stop iterations in order to avoid over-fitting. In machine learning the early stopping
has been used in many contexts and has been supported with various mathematical
tools. A well-known and widely used technique is to guide validation of a training
procedure with early stopping by monitoring the increase of the generalization error
on validation data.

In [7] Cataltepe et al. aim at bringing the idea of NFL into the framework of early
stopping. The method of choosing a model using the early stopping approach relies
on a uniform selection of the model among the models giving the same training
error. This approach is claimed to be similar to the “Gibbs algorithm.” The uniform
probability of selection around the training error minimum is equivalent to the
isotropic distributions of Amari et al. [3], while it differs from this work as it does
not assume a very large number of training examples. In addition to general linear
models in [7] it is presumed that the probability of selection of models is symmetric
only around the training error minimum.

This symmetry hypothesis is a weaker requirement than uniformity. The authors
analyze early stopping for some training error minimum. If the training set consti-
tutes all the information that one has about the target, then one should minimize the
training error as much as possible to achieve lower generalization error. Moreover,
the authors demonstrate that when additional information is available, early stopping
can help.

6.2 No Free Lunch for Cross-Validation

In machine learning and, generally, in statistical learning theory, “cross-validation”
is a model evaluation method used when a predictive modeling procedure or any
learner is asked to make new predictions for data it has not already seen. This
data constitutes the model validation set. Therefore, instead of using mathematical
analysis cross-validation is a generally applicable method used to assess the
performance of a model. Specific methods of cross-validation can be either of
“exhaustive” (such as leave p-out, leave-one-out) or “non-exhaustive” type (such
as k-fold, hold out, repeated random sub-sampling) and they are able to give
meaningful results provided that the training set and the validation set are drawn
from the same population, i.e., the same distribution.
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Cross-validation is a statistical technique which constitutes an objective approach
to compare different learning procedures as it does not rely on in-sample error
rates. Thus, it was long widely believed that it can be successful, despite of the
prior knowledge available on the problem at hand. Zhu and Rohwer [68] provide
a numerical counter-example which, despite the fact that it is an artificial one,
constitutes a minimal proof that cross-validation is not a “universally beneficial
method.” The problem consists in selecting the unbiased estimator of the expectation
of a Gaussian distribution between two estimators, namely: (a) an unbiased and
(b) a highly biased one. The authors apply the leave-one-out scheme and make
an attempt to show that this method is inefficient even in small problems. Hence,
cross-validation cannot defy the theoretical result of the NFL theorem, that is, “no
algorithm can be good for any arbitrary prior.”

Moreover, the authors carry out further experiments and give a detailed analysis
with the aim to provide answers to any criticism against the main issue tackled by
the paper which is “as with any other algorithm, cross-validation and, in this sense,
a number of other approaches such as bootstrap cannot solve equally good any
kind of problem.” Hence, if some prior knowledge is used for an algorithm, then this
should be communicated to any interested user so that he can decide whether to use
it or not.

Goutte published a more elaborated approach on this matter in his work [22] enti-
tled “Note on free lunches and cross-validation.” In this paper the aforementioned
approach of Zhu and Rohwer on cross-validation and NFL theorem is revisited by
further elaborating on the numerical example. The author, also, applies the leave-
one-out and the m-fold cross-validation schemes on the numerical result used by
Zhu and Rohwer and performs a more detailed mathematical description. Analysis
of the results obtained supports the argument that there is “No Free Lunch for
cross-validation” and though the method is not the best approach for evaluating
performance of learners, however, it is capable to give very good results in a number
of practical situations.

Further to the above research, Rivals and Personnaz [46] took over the work
of Goutte and by using probabilistic analysis they applied leave-one-out cross-
validation on measures of model quality. The leave-one-out scores obtained show
that the conclusions of Goutte are optimistic as they deal with a trivial problem for
which any reasonable method is not prone to make a wrong choice. In addition,
a comparison between leave-one-out cross-validation and statistical tests for the
selection of linear models is performed. The numerical results obtained by a specific
illustrative example show that for linear estimators with large number of samples,
leave-one-out cross-validation does not perform well as compared to statistical tests.
This leads to the conclusion that it is unlikely that this method is able to perform well
in the case of nonlinear estimators such as neural networks. Hence, an important
result is stressed, that is, statistical tests should be preferred to leave-one-out cross-
validation “provided that the (linear or nonlinear) model has the properties required
for the statistical tests to be valid.”
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6.3 Real-World Machine Learning Classification and No Free
Lunch Theorems: An Experimental Approach

The majority of the research concerning NFL and supervised learning seems to be
more or less theoretical. Unlike the previously reported work Gómez and Rojas
published in [21] the results of a number of machine learning experiments with
the aim to help understanding the impact of NFL on real-world problems. At the
same time the authors attempted to provide sufficient experimental evidence on the
validity of NFL.

The set of machine learning algorithms used in these experiments comprise:

(a) Naive Bayes classifiers,
(b) C4.5 decision trees,
(c) Neural networks,
(d) k-nearest neighbors classifiers,
(e) Random C4.5 forest,
(f) AdaBoost.M1,
(g) Stacking.

The performance of these approaches was examined in terms of average accuracy
over six data sets taken from the UCI machine learning repository. These data
sets are: “Audiology,” “Column,” “Breast cancer,” “Multiple features (Fourier),”
“German credit,” and “Nursery.” To a great extent, the results obtained are consistent
with previous research. On the other hand, according to the NFL theorem the tested
algorithms should expose the same degree of accuracy. However, this is valid when a
sufficiently large number of data sets are available. The authors underline that some
common assumptions pertain the data sets. These common assumptions concern
the Occam’s razor and the independent identical distribution of the samples as well
as, mainly, the data-dependent structural properties found in the data sets, that is,
determinism and the Pareto principle. Based on these last properties they explain
the peculiarities of the data sets and the results concerning the accuracy. Then, it is
clear that not all the algorithms perform equally well on all problems.

In addition to the above, the authors perform a number of experiments using
kernel machines and especially support vector machines (SVM) as well as deep
learning networks. The results obtained show that SVM outperform the other
learning algorithms while the performance of deep learning on these small and
relatively simple problems is disappointing. In fact while these architectures are
designed to handle complex data sets which have inherent abstraction layers they
seem to be incapable to cope with simpler data sets with possibly lower data
abstraction. This shows that NFL applies even in the case of deep learning which is
also subject to limitations as other machine learning algorithms.

In terms of conclusion the authors state that: “While evaluating the average
accuracy ranking for the six data sets, they noticed the effect of the NFL theorem
and how assumptions are key to performance.” Comparing with similar research
work they conclude that: “the data and its pre-processing are as important as, if
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not more so than, the algorithm itself in determining the quality of the model. Data
visualization or statistical techniques such as feature selection can be crucial to
provide a better fit and obtain simpler and better models.”

7 Synopsis and Concluding Remarks

In this paper we surveyed some of the most sound research works concerning No
Free Lunch (NFL) theorems and their results in search, optimization, and supervised
learning. Starting from the earlier work of David H. Wolpert, where the essential
concepts underpinning NFL theorems were defined, we went through the research
efforts that contributed to the formulation of the most relevant frameworks for
applying NFL theorems. Moreover, we presented those research works which show
when NFL theorems do not hold and so there are Free Lunches, i.e., algorithms that
significantly outperform other algorithms on specific classes of problems. One of the
objectives set for this survey was to make clear which are the hypotheses and the
restrictions for applying NFL results, or on the contrary, to pinpoint the conditions
under which there are Free Lunches, as defined by researchers in their respective
papers.

One of the most relevant conclusion is that important research needs to be carried
out in order to delineate those classes of problems for which NFL theorems apply
and those for which they don’t. NFL theorems do not put any obstacle on continuing
research for developing more efficient algorithms which apply to even larger classes
of problems. They just seem to make clear that there are limits for these algorithms.
Finally, this does not mean that for some specific problems one is not able to design
an algorithm performing better than its competitors.

Closing this review we hope that this work will assist all those who are interested
in NFL theorems.
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Piecewise Convex–Concave
Approximation in the Minimax Norm

Michael P. Cullinan

Abstract Suppose that f ∈ R
n is a vector of n error-contaminated measurements

of n smooth function values measured at distinct, strictly ascending abscissæ.
The following projective technique is proposed for obtaining a vector of smooth
approximations to these values. Find y minimizing ‖y − f‖∞ subject to the
constraints that the consecutive second-order divided differences of the components
of y change sign at most q times. This optimization problem (which is also of
general geometrical interest) does not suffer from the disadvantage of the existence
of purely local minima and allows a solution to be constructed in only O(nq log n)
operations. A new algorithm for doing this is developed and its effectiveness is
proved. Some results of applying it to undulating and peaky data are presented,
showing that it is fast and can give very good results, particularly for large densely
packed data, even when the errors are quite large.

1 Introduction

This paper proposes a new fast one-dimensional data-smoothing algorithm which
gives particularly good results for large densely packed data with small errors, for
which there are no very satisfactory methods currently available, and which is also
of geometrical interest.

Suppose a set of one-dimensional observations are known to be measurements of
smooth quantities contaminated by errors. A method is then needed to get a smooth
set of points while respecting the observations as much as possible. One method is
to make the least change to the observations, measured by a suitable norm, in order
to achieve a prescribed definition of smoothness. The data smoothing method of
Cullinan and Powell [3] proposes defining smoothness as the consecutive divided
differences of the points of a prescribed order r having at most a prescribed number
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q of sign changes. This is an economical and sensitive test for smoothness because
normally data values of a smooth function will have very few sign changes, whereas
if even one error is introduced, it will typically cause k sign changes in the kth order
divided differences of the contaminated data (see, for example, Hildebrand [7]).

If the observations fj , at strictly ascending abscissæ xj , for 1 ≤ j ≤ n,
are regarded as the components of a vector f ∈ R

n and the function F :
R
n → R is defined through the chosen norm by F(v) = ‖v− f‖, then the data

smoothing problem becomes the constrained minimization of F . This approach has
several advantages. There is no need to choose (more or less arbitrarily) a set of
approximating functions, indeed the data are treated simply as the set of finite points
which they are rather than as coming from any underlying function. The method
is projective or invariant in the sense that it leaves smoothed points unaltered. It
depends on two integer parameters which will usually take only a small range of
possible values, rather than requiring too arbitrary a choice of parameters. It may be
possible to choose likely values of q and r by inspection of the data. The choice of
norm can sometimes be suggested by the kind of errors expected, if this is known.
For example, the �1 norm is a good choice if a few very large errors are expected,
whereas the �∞ norm might be expected to deal well with a large number of small
errors. There is also the possibility that the algorithms to implement the method may
be very fast.

The main difficulty in implementing this method is that when q ≥ 1, the
possible existence of purely local minima of F makes the construction of an efficient
algorithm very difficult. This has been done for the �2 norm for r ≤ 2—see, for
example, Demetriou and Powell [5] and Demetriou [4]. The author has dealt with
the case q = 0 and arbitrary r for the �2 norm (Cullinan [2]).

It was claimed in Cullinan and Powell [3] that when the �∞ norm is chosen
and r = 2, all the local minima of F are global and a best approximation can be
constructed in O(nq) operations—rather than nq operations as might be expected.
An algorithm for doing this was outlined. These claims were proved by Cullinan [1]
which also considered the case r = 1. It was shown that in these cases the minimum
value of F is determined by q + r + 1 of the data, and a modified algorithm for
the case r = 2 was developed which is believed to be better than that outlined in
Cullinan and Powell [3].

A refined version of this new algorithm will now be presented in Section 2 and
its effectiveness will be proved. Section 3 will then describe the results of some tests
of this method which show that it is a very cheap and efficient way of filtering noise
but can be prone to end errors.

2 The Algorithm

This section will construct a best �∞ approximation to a vector f ∈ R
n with not more

than q sign changes in its second divided differences. More precisely let v ∈ R
n with

x1 < x2 < . . . < xn and
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F(v) = ‖v− f‖∞ (1)

cijk(v) = 1

xk − xi
(
vk − vj
xk − xj −

vj − vi
xj − xi

)

, (2)

ci(v) = ci,i+1,i+2(v). (3)

The set of feasible points Yq ⊂ R
n is defined as the set of all vectors v ∈ R

n for
which the signs of the successive elements of the sequence 1, c1(v), . . . , cn−2(v)
change at most q times, and the problem is then to develop an algorithm to minimize
F over Yq .

Define hq to be the value of the best approximation to F over Yq . The solution
depends on the fact that hq is determined by q + 3 of the data. Since a best �∞
approximation is not unique, there is some choice of which one to construct. The
one chosen, y, has the following property: y1 = f1 + hq , yn = fn + (−1)qhq , and
for any j with 2 ≤ j ≤ n− 1,

if ± cj−1(y) > 0 then yj = fj ± hq.

The vector y is then determined from hq , from the set of indices i where ci−1(y) �=
0, and from the ranges where the divided differences do not change sign.

The method by which the best approximation is constructed and the proof of
the effectiveness of the algorithm that constructs it are best understood by first
considering the cases q = 0, 1, and 2 in detail and giving algorithms for the
construction of a best approximation in each case. Once this has been done it is
much easier to understand the somewhat complicated bookkeeping required for the
general algorithm.

When q = 0, this best approximation is formed from the ordinates of the points
on the lower part of the boundary of the convex hull of the points (xj , fj ), for
1 ≤ j ≤ n, (the graph of the data in the plane) by increasing these ordinates by an
amount h.

When q = 1, there exist integers s and t such that 1 ≤ s ≤ t ≤ n, and y1, . . . , ys
are the ordinates on the lower part of the boundary of the convex hull of the data
f1, . . . , fs increased an amount h; yt , . . . , yn are the ordinates on the upper part
of the boundary of the concave hull of the data ft , . . . , fn decreased an amount
h; and if s < j < t , yj lies on the straight line joining (xs, ys) to (xt , yt ). The
best approximation therefore consists of a convex piece and a concave piece joined
where necessary by a straight line.

The best approximation over Yq consists of q + 1 alternately raised pieces of
lower boundaries of convex hulls and lowered pieces of upper boundaries of concave
hulls joined where necessary by straight lines. These pieces are built up recursively
from those of the best approximation over Yq−2.

The points on the upper or lower part of the boundary of the convex hull of the
graph of a range of the data each lie on a convex polygon and are determined from
its vertices. The algorithms to be described construct sets of the indices of these
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vertices and the value of a best approximation. The best approximation vector is
then constructed by linear interpolation.

Before considering the cases q = 0, 1, and 2, an important preliminary result
will be established. It is a tool that helps to show that the vectors constructed by
the algorithms are optimal. The value hq of the best approximation over Yq will be
found by the algorithm, together with a vector y ∈ Yq such that F(y) = hq . To show
that y is optimal, a set K of q + 3 indices will be constructed such that if v is any
vector in R

n such that F(v) < hq , then the consecutive second divided differences
of the components vk , for k ∈ K , change sign q times starting with a negative one.
It will then be inferred that v �∈ Yq . In order to make this inference it must be shown
that the consecutive divided differences of all the components of v have at least as
many sign changes as those of the components with indices in K . This result will
now be proved.

Theorem 1 LetK ⊆ { 1, . . . , n } and let v ∈ R
n be any vector such that the second

divided differences of the vk , for k ∈ K , change sign q times. Then the divided
differences of all the components of v change sign at least q times.

Proof Firstly, suppose that K is formed by deleting one element j from { 1, . . . , n }
and that 3 ≤ j ≤ n − 2. Let cj−2, cj−1, cj be defined from v by (2) and (3), and
let c′j−2 = cj−2,j−1,j+1(v) and c′j−1 = cj−1,j+1,j+2(v) denote the new divided
differences that result from deleting j . Manipulation of (2) yields the equations

c′j−2 =
xj − xj−2

xj+1 − xj−2
cj−2 + xj+1 − xj

xj+1 − xj−2
cj−1

and

c′j−1 =
xj+2 − xj
xj+2 − xj−1

cj + xj − xj−1

xj+2 − xj−1
cj−1,

so that c′j−2 lies between cj−2 and cj−1 and c′j−1 lies between cj−1 and cj . It
follows that the number of sign changes in the sequence

. . . , cj−3, cj−2, c
′
j−2, cj−1, c

′
j−1, cj , cj+1, . . . , (4)

is the same as that in the sequence

. . . , cj−3, cj−2, cj−1, cj , cj+1 . . . ,

and hence that deleting cj−2, cj−1, cj from (4) cannot increase the number of sign
changes. The same argument covers the cases j = 2 and j = n−1, and when j = 1
or j = n this result is immediate.

Repeated application of this result as elements j of the set { 1, . . . , n }\K are
successively deleted from { 1, . . . , n } then proves the theorem. ��



Piecewise Convex–Concave Approximation in the Minimax Norm 87

This theorem has a corollary that is important in showing that the approximations
to be produced are optimal.

Corollary 1 If i ≤ k − 2 and all the divided differences cj (v), i < j < k, are
non-negative (or non-positive), and if i ≤ r < s < t ≤ k, then crst (v) is also
non-negative (or non-positive).

Theorem 1 is crucial to the effectiveness of the algorithm because it allows the
explicit construction of global minima determined by q + 3 of the data. One reason
that this is possible is that, as mentioned above, the set of best approximations is
connected. This was proved in Cullinan [1], where it was also shown that there
is no analogous result for higher order divided differences, and so no immediate
generalization of the methods of this paper to such cases.

2.1 The Case q = 0

When q = 0, the required solution minimizes (2) over Y0 and is called a best convex
approximation to f. The particular one, y0, that will be constructed here was first
produced by Ubhaya [11]. It will also be convenient to construct a best concave
approximation to data.

The best convex approximation is determined from the vertices of the lower part
of the boundary of the convex hull of the graph of the points in the plane, and
the best concave approximation from the vertices of the upper part. These vertices
are each specified by sets of indices that can be constructed in O(n) operations by
Algorithm 1 below. Much use will be made of this algorithm in the cases where
q ≥ 1 and so it is convenient to apply the construction to a general range of the data
and to describe it in terms of sets of indices. Accordingly, define a range [r, s] =
{j : r ≤ j ≤ s}, and a vertex set of [r, s] to be any set I such that {r, s} ⊆ I ⊆ [r, s].
Given a vertex set I of a range [r, s] and also quantities vi , i ∈ I , define the gradients

gik(v) = vk − vi
xk − xi for i �= k.

A vertex set naturally generates a complete interpolating vector by ‘joining the
dots’ according to the following procedure. Given any integer j : 1 ≤ j ≤ n, define
the neighbours of j in I by

j+(I ) = min
i∈I {i > j} when j < s

j−(I ) = max
i∈I {i < j} when j > r,

and, for extrapolation,

j+(I ) = s−(I ) when j ≥ s
j−(I ) = r+(I ) when j ≤ r.
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The interpolant v(I ) can now be defined by

vj (I ) = vj for j ∈ I (5)

vj (I ) = vj−(I ) + gj−(I ) j+(I )(f)(xj − xj−(I )) for all j /∈ I. (6)

When I = {p, q} it is convenient to write vj (I ) as vj (p, q), etc.
The two cases of convex and concave approximations are handled using the sign

variable σ , where σ = + for the convex case and σ = − for the concave case. The
convex and concave optimal vertex sets I+(r, s) and I−(r, s) are then constructed
by systematic deletion as follows.

Algorithm 1 To find Iσ (r, s) when r ≤ s − 2.

Step 1. Set I := [r, s] and i := r , j := r + 1, k := r + 2.
Step 2. Evaluate c := cijk(f). If σc > 0: go to Step 5.
Step 3. Delete j from I . If i = r: go to Step 5.
Step 4. Set j := i, and i := i−(I ). Go to Step 2.
Step 5. If k = s: set Iσ (r, s) = I and stop.

Otherwise: set i := j , j := k, and k := k+(I ). Go to Step 2.

The price of making a convex/concave approximation in the range [r, s] is given
from the optimal vertex sets by

hσ (r, s) = 1
2 max
j∈[r,s] σ(fj − fj (I

σ (r, s)). (7)

The required best approximation y0 to all the data is then given by

y0
j = fj (I )+ h, (8)

where I = I+(1, n) and h = h+(1, n). Some elements of the construction of y0

are illustrated in Figure 1. Note that the deletion of indices is such that if k is an
intermediate element of Iσ (r, s) then ck−,k,k+(f) is strictly non-zero. For example,
if the data are collinear, then Iσ (r, s) = {r, s}.

It is also worth noting here that the prices and constraints are linearly related.
Given indices i, j, k and quantities vi, vj , vk then a simple calculation shows that

vj − vj (i, k) = −1

(xj − xi)(xk − xj )cijk(v). (9)

Theorem 2 Let n ≥ 3, and let h0 = h+(1, n) and y0 be defined from (7) and (8)
using Algorithm 1, (5) and (6). Then y0 ∈ Y0 and F(y0) = h0 = infF(Y0).

Proof All the proofs of effectiveness of the Algorithms in this paper will follow the
same lines. First it will be shown that a well-defined solution vector is produced,
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Fig. 1 Consecutive elements k−, k, k+ of I = I+(1, n) and the construction of fj (I )

then that the solution vector is feasible, and then that it is optimal because no vector
with a lower value of F can be feasible.

Thus the first remark is that Algorithm 1 does produce a well-defined vertex set
I of [r, s] from which the quantities fj (I ) are also well defined for all j , so that h0
and y0 are also well defined.

The proof that the points (xj , fj (I )), 1 ≤ j ≤ n, lie on the lower part of the
convex hull of the data is in Ubhaya [11]. The components fj (I ) can be defined as
those that are maximal subject to the inequalities

fj (I ) ≤ fj , for 1 ≤ j ≤ n, (10)

and

ci(f(I )) ≥ 0, for 1 ≤ i ≤ n− 2, (11)

i.e., f(I ) ∈ Y0. It follows that y0 ∈ Y0 and from (7) and (10) that F(y0) = h.
It remains to prove that y0 is optimal. If h = 0, y0 must be optimal. If h > 0,

there will be a lowest integer j� �∈ I such that equality is attained in (7), and since
1 and n can never be deleted from I , it must be the case that 2 ≤ j� ≤ n− 1. Then

y0
j� = fj� − h0,

and k = j−(I ) and k+ = j+(I ) are consecutive elements of I such that k < j < k+
and

y0
k = fk + h0,

y0
k+ = fk+ + h0.
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Since j� �∈ I , ck,j�,k+(y0 ) = ck,j�,k+(f(I )) = 0. Now if v ∈ R
n and F(v) < h,

then

vk < fk + h = y0
k ,

vj� > fj� − h = y0
j� ,

vk+ < fk+ + h = y0
k+ .

It follows that ck,j�,k+(v) < ck,j�,k+(y0) = 0. It now follows from Theorem 1
that v �∈ Y0. Therefore h = h0 and y0 is optimal. ��

The concave case follows easily.

Corollary 2 The components of a best concave approximation to data fj , r ≤ j ≤
s, are given from Algorithm 1 with σ = − by yj = fj (I ) − h, where in this case
I = I−(r, s) and h = h−(r, s).

The algorithms in the next subsections will join optimal vertex sets produced by
Algorithm 1 of consecutive ranges of the data, and they will also split such optimal
vertex sets in two. It is convenient to prove here that the resulting sets remain optimal
vertex sets. The proof requires one further important property of the optimal vertex
sets produced by Ubhaya’s algorithm.

Let k be the second element of I+(1, n). It is easy to show from the definition
of the lower convex hull, as embodied in (10) and (11), that the gradient g1k is
minimal, namely that g1k = min{g1j : 2 ≤ j ≤ n}. This principle can be applied
recursively to all the elements of I+(1, n). It also applies backwards starting with
the penultimate element of I+(1, n). Applying this to a general range of the data
produces the result (which will be much used later) that if i and k are consecutive
elements of Iσ (r, s) then

σgik(f(I )) = min{ σgij (f(I )) : i ≤ j ≤ s } and (12)

σgik(f(I )) = min{ σgjk(f(I )) : r ≤ j ≤ i }. (13)

This minimality principle will be used immediately below. It can be seen as
defining the optimal vertex sets recursively and could be applied to construct them,
but such a method would not be as efficient as the systematic deletion algorithm of
Ubhaya.

The results for the joining and splitting of optimal vertex sets require the
definition of trivial optimal vertex sets by

Iσ (r, s) = [r, s], for r ≥ s − 1. (14)

It is also convenient to define hσ (r, s) = 0, for r ≥ s − 1. The following lemmas
then hold.
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Lemma 1 A subset of one or more consecutive elements of an optimal vertex set is
itself an optimal vertex set.

Proof The proof is trivial when the subset has fewer than three elements. Otherwise
it follows from the nature of extreme points of convex sets. The elements are
recursively specified by (12) and (13) and the minima are the same when taken
over a more restricted range. For example, if I+(1, n) = {1, k, s, . . . , n}, then g1k
minimizes g1j over the range 2 ≤ j ≤ n and so also over the range 2 ≤ j ≤ s. ��

The second lemma gives conditions for the amalgamation of optimal vertex sets.

Lemma 2 Given vertex sets Iσ (r, s) and Iσ (s, t) necessary and sufficient condi-
tions for

Iσ (r, t) = Iσ (r, s) ∪ Iσ (s, t) (15)

are that there exist r ′ ≤ r , r ′ ∈ Iσ (r, s), and t ′ ≥ t , t ′ ∈ Iσ (s, t), such that

s ∈ Iσ (r ′, t ′). (16)

Proof Necessity follows directly in all cases by letting r ′ = r and t ′ = t ,
immediately giving (16). Sufficiency is trivial except when r < s < t . Let s−
be the left neighbour of s in Iσ (r, s) and s+ its right neighbour in Iσ (s, t). Then
r ′ ≤ s− and t ′ ≥ s+. It follows from the minima in (12) and (13) that (15) holds
provided that

σcs−,s,s+(f) > 0.

However, it follows from (16) that σcisj (f) > 0 for all i and j in the range r ′ ≤ i <
s < j ≤ t ′, and this range contains s− and s+. ��

All the results required for the next subsections have now been established.
There is, however, an interesting theoretical consequence of the minimality principle
expressed in (12) and (13). It turns out that there is a remarkable equivalence
between the problem of this subsection—an �∞ minimization subject to convexity
constraints—and quite a different constrained optimization problem. The convexity
constraints are equivalent to the gradients of the smoothed data being monotonically
increasing and it turns out that the optimal vertex set constructed above is also
defined by the solution of a weighted �2 optimization problem subject to mono-
tonicity constraints. Consider the problem of minimizing the function

G(z) =
n−1∑

j=1

wj(zj − gj )2,

for given values gj and non-negative weights wj , subject to the constraints z1 ≤
. . . ≤ zn−1. Such problems were considered earlier in Cullinan [1]. When the



92 M. P. Cullinan

material for this paper was being produced, it was recalled that Ubhaya’s algorithm
was a specialization of an algorithm by Graham [6] for finding the convex hull
of an unordered set of points in the plane. Ubhaya’s algorithm has the same
logical structure as the algorithm of Kruskal [8] for monotonic rather than convex
approximation. Kruskal’s algorithm is more efficient than the algorithm of Miles [9]
for monotonic approximation, but produces the same results. Graham’s algorithm
constructs the solution through blocks of equal values. The value in each block is
the best �2 approximation by a constant to the data in the range of that block, i.e.
a weighted mean of the data in that block. The solution can therefore be expressed
in terms of a set of indices at which the constraints are unequal. If i and k are two
consecutive unequal constraint indices, or end indices, then the zj , i ≤ j ≤ k are
given by zj = aik where

aik =
∑k
j=i wjgj

∑k
j=i wj

.

Now let the gj be defined by gj = gj j+1(f) and the weights by wj = xj+1 −
xj . A short calculation shows that aik = gik , and so Graham’s algorithm will
actually calculate the optimal vertex set for the main problem of this subsection.
The proof of this interesting equivalence is a straightforward consequence of the
logically equivalent structures of Kruskal’s and Miles’s algorithms for monotonic
approximation. It is given in Cullinan [1]. Thus you can actually do an �∞
optimization subject to convexity by doing a weighted �2 monotonic optimization
on the gradients of the data!

The convex–concave case can now be discussed.

2.2 The Case q = 1

The algorithm to be presented constructs data ranges [1, s] and [t, n], where s ≤ t ,
a price h ≥ 0, and a vertex set I of [1, n] such that

I = I+(1, s) ∪ I−(t, n).
The best approximation y1 is then given as the final value of the vector y defined
from these quantities by

yi = fi + h when i ∈ I+(1, s) (17)

yi = fi − h when i ∈ I−(t, n) (18)

yj = yj (I ) 1 ≤ j ≤ n. (19)

It will be shown that s = t only if h = 0, so that y1 is well defined. This
construction is illustrated in Figure 2. Note that when s = t = n, y = y0.
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Fig. 2 Construction of best convex–concave approximation

The algorithm to be given is believed to be more efficient than that in Cullinan
and Powell [3]. For example, if the data are in Y0, the new algorithm will require
only one iteration, whereas the former algorithm only has this property if the data
lie on a straight line.

The algorithm builds up I by looking alternately at the left and right ranges
and joining segments of the convex hulls when it is best to do so. Beginning with
I = {1, n}, s = 1, and t = n, it adds an index k of I+(s, t) to I if the least possible
final value of F consistent with doing this is not greater than the least possible
value of F consistent with ending the calculation with the existing value of s. After
adding one index in I+(s, t) to I and increasing s to the value of this index, it then
examines the next. When it is not worth adding any more indices from I+(s, t) to
I , it tries to add indices in I−(s, t) to I working backwards from t , adding k to
I if it is not necessarily more expensive to finish with t reduced to k than with t
as it is and decreasing t . After indices have been added to I from I−(s, t) it may
then be possible to add more to I from the new I+(s, t), so the process alternates
between I+(s, t) and I−(s, t) until s equals t or t − 1 or until the algorithm fails
twice running to add any indices.

Algorithm 2 To find the optimal vertex set, ranges, and price of a best convex–
concave approximation.

Step 1. Set s := 1, t := n, h := 0, and I := { 1, n }.
Step 2. If s ≥ t−1: stop. Otherwise: set u = t− s and use Algorithm 1

to calculate I ′ := I+(s, t).
Step 3. Let s+ = s+(I ′). Calculate h+(s, s+) from (7) and set h′ :=

max(h, h+(s, s+)).
Calculate ft (s, s+) from (6). If ft (s, s+) > ft − 2h′: go to
Step 5.



94 M. P. Cullinan

Step 4. Add s+ to I and delete s from I ′. Set h := h′ and s := s+.
If s < t : go back to Step 3.

Step 5. If s ≥ t − 1: stop. Otherwise: use Corollary 2 to calculate
I−(s, t) and set I ′ := I−(s, t).

Step 6. Let t− = t−(I ′). Calculate h−(t−, t) from (7) and set h′ :=
max(h, h−(t−, t)).
Calculate fs(t−, t) from (6). If fs(t−, t) < fs + 2h′: go to
Step 8.

Step 7. Add t− to I and delete t from I ′. Set h := h′ and t := t−.
If s < t : go back to Step 6.

Step 8. If t − s = u: stop. Otherwise: go back to Step 2.

The complexity of this algorithm is n log n. The proof of its effectiveness will
follow the same course as that of the last theorem. Thus the first remark is that s is
non-decreasing, t is non-increasing, and s ≤ t with s = t only when h = 0. The
vector y1 is therefore always well defined by (17)–(19).

The possibility that Algorithm 2 can end with s = t will create slightly more
complexity when this algorithm is used later on when q ≥ 3. It might be prevented
by relaxing either of the inequalities in Steps 3 and 6. However, if both these
inequalities are relaxed, then the algorithm will fail. For example, with data at
equally spaced abscissæ and f = ( 0, 1, 0, 1), relaxing both inequalities yields s = 1,
t = 4, and F(y) = 2

3 , whereas the Algorithm as it stands correctly calculates h = 1
2

and y = ( 1
2 ,

1
2 ,

1
2 , 1). It seemed best to let both inequalities be strict for reasons

of symmetry. This feature does, however, raise the possibility that when the data
contain a parallelogram rounding errors may cause the algorithm to fail.

The next result is a lemma concerning the conditions under which Algorithm 2
increases s and decreases t . It will be used to show that the final value of h is not
determined by data in the join. Its somewhat cumbersome statement is needed to
include the case where h = 0.

Lemma 3 At any entry to Step 2 of Algorithm 2, let the vector y be defined by (17)–
(19). Then the algorithm strictly decreases t − s if and only if

there exists j : s < j < t and |fj − yj | ≥ h. (20)

Since the points (xj , yj ), s ≤ j ≤ t , are collinear, (20) is equivalent to the
statement that there exists a point of the graph of the data between xs and xt lying
on or outside the parallelogram Π(h) with vertices (xs, fs), (xs, fs + 2h), (xt , ft ),
and (xt , ft − 2h). This parallelogram Π(h) is illustrated in Figure 3.

Proof In the trivial case when s ≥ t−1, (20) is false and Algorithm 2 stops without
altering s or t .

Otherwise, there are one or more data points fj with s < j < t . Suppose first
that (20) does not hold. Then h > 0. (If h = 0, then (20) holds trivially!) It will
be shown that in this case both s and t are left unchanged. Step 3 will calculate an
index s+ : s < s+ ≤ t .
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Fig. 3 The parallelogram
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If s+ = t , then because h′ ≥ h > 0, it immediately follows that ft (s, s+) =
ft > ft − 2h′, so that Step 3 will lead immediately to Step 5 and s will not be
increased.

If s+ < t , let ys+ be defined by (17)–(19) and let g = gst (y). Then by hypothesis,
fs+ > ys+ − h, which implies that gs s+(f) > g. Thus,

ft (s, s
+) = fs + gs s+(f)(xt − xs)
> fs + g(xt − xs) = yt − h = ft − 2h

≥ ft − 2h′.

Therefore Step 3 will again lead immediately to Step 5.
The same arguments applied to t− calculated by Step 6 show that Step 6 will

branch immediately to Step 8 and so t will also be left unchanged.
Now suppose conversely that (20) does hold, so that there is an index j with data

point lying on or outside Π(h). It will be shown that in this case if the algorithm
does not increase s, it must then decrease t .

It suffices to consider in detail only the case where fj ≤ yj − h (which is
illustrated in Figure 4) because the case where fj ≥ yj + h is exactly similar.
Step 3 will calculate an index s+ in the range s < s+ ≤ t , and, in view of (12), with
gs s+(f) ≤ gsj (f). Then

ft (s, s
+) = fs + gs s+(f)(xt − xs)
≤ fs + gsj (f)(xt − xs)
= fs + ((fj − fs)/(xj − xs))(xt − xs)
≤ fs + ((yj − h− fs)/(xj − xs))(xt − xs) by hypothesis

= ys − h+ ((yj − ys)/(xj − xs))(xt − xs)
= yt − h, by the definition of yj .
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Fig. 4 When s does not
increase, t must decrease
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There are two alternatives to consider depending on whether h′ = h or h′ > h. In
the former case when h′ = h it now follows immediately that Step 4 will be entered
and s increased to s+, as required.

Now suppose that h′ = h+(s, s+) > h and that s is not increased, i.e. that the
test in Step 3 leads to Step 5. Then ft (s, s+) > ft − 2h′ = ft − 2h+(s, s+). Let
h+ = h+(s, s+). By definition of h+, there must be an index i such that fi −
fi(s, s

+) = 2h+. This case as illustrated in Figure 4 demonstrates the heart of the
principle behind the algorithm and the essence of this lemma because the four data
points with indices s, i, s+, and t determine a lower bound on infF(Y1) and this
lower bound is never determined by data left in the join between the final values of
fs and ft . Define

2d = ft − ft (s, s+). (21)

Then by the assumption that Step 3 led to Step 5,

h+ > d. (22)

Step 5 will be entered with h < h+ and will calculate I−(s, t). Step 6 will then find
an index t− such that s ≤ t− < t . It follows from (12) that fi ≤ fi(t−, t), and so

2h+ = fi − fi(s, s+) ≤ fi(t−, t)− fi(s, s+).

This inequality along with (21) and (22) then shows that the function l �→
fl(t

−, t) − fl(s, s+) is strictly decreasing. Therefore in particular, fs(t−, t) −
fs(s, s

+) > 2h+.
If h does not increase in Step 7, it follows immediately, from the assumption that

h < h+ and the last inequality, that fs(t−, t)−fs = fs(t−, t)−fs(s, s+) > 2h+ >
2h, so that t will be reduced to t− by the test in Step 6.
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If, on the other hand, h does increase in Step 7, its new value h′ is given by
2h′ = fk(t

−, t) − fk for some k in the range s < k < t . Since the definition
of s+ implies that fk ≥ fk(s, s

+) it follows that 2h′ ≤ fk(t
−, t) − fk(s, s+) <

fs(t
−, t)−fs(s, s+), so that again t must be reduced to t− by Step 7. In fact it is easy

to show that in this case, t− ≥ i, h′ < h+, and that infF(Y1) ≥ 1
2 (fs+(i, t)− fs+).

Thus t will be reduced to t− in all cases.
In the case where there exists j such that fj ≥ yj + h, if s is not increased

immediately after the next entry to Step 3, the same argument shows that either
t must be reduced in the next operation of Steps 6 and 7 or s must be increased
immediately thereafter. ��

The next lemma is needed to establish the feasibility of y1 by establishing that
the join constraints do not bend the wrong way.

Lemma 4 At any exit from Step 4 or Step 7, let y be defined by (17)–(19). Then

when s > 1, cs−1(y) ≥ 0, (23)

and

when t < n, ct−1(y) ≤ 0. (24)

Proof The proof will be by induction. There is nothing to prove unless Step 3 is
entered at least once. Suppose first that Step 3 is entered and leads to Step 4. Then
(23) at exit from Step 4 is equivalent to

cs+−1(y) ≥ 0,

which is in turn equivalent to the identity

ft − ft (s, s+) ≥ 2h′. (25)

But this is simply the test leading from Step 3 to Step 4.
Repeated application of this argument shows that whenever Step 5 first branches

to Step 6 then (23) remains true. This result will be useful in the cases q > 1.
The next stage is to establish (24) when Step 3 leads to Step 4. If t < n, there

will exist an index t+ = t+(I ), and (24) will be equivalent to the inequality

fs+(t, t
+)− fs+ ≥ 2h′. (26)

Now define the monotonic function φ : l �→ fl(t, t
+) − fl(s, s+). Then (26) is

equivalent to φ(s+) ≥ 2h′.
Suppose firstly that h′ > h, so that there exists i such that s < i < s+ and

fi − fi(s, s+) = 2h′. (27)
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The earlier definition of t from t+ as an index in the set specifying the upper convex
hull of data to the left of t+ implies that fi ≤ fi(t, t

+), so it follows from (27)
and (25) that the monotonic function φ satisfies φ(i) ≥ 2h′ and φ(t) ≥ 2h′.
Therefore φ(s+) ≥ 2h′ as required to establish (26).

The inductive assumption was not needed in this case. It follows that whenever
h increases, both the join constraints cs−1 and ct−1 (when defined) point the right
way for feasibility. This point will also be important in the general case when q > 1.

When Step 4 is entered and h does not increase, it is necessary to assume
inductively that ct−1 is non-positive initially, before s is increased. This is equivalent
to the inequality

fs(t, t
+)− fs ≥ 2h (28)

or φ(s+) ≥ 2h. It follows from this and (25) with h′ = h that φ(t) ≥ 2h, so that
again φ(s+) ≥ 2h as required.

The same argument shows that when Step 7 is entered and h does not increase,
if cs−1 is initially non-negative, it will remain so when s is increased.

The result then follows by induction. ��
When q > 1 the algorithms proposed below will carry out the procedure of

Steps 2 to 8 of Algorithm 2 but possibly starting with a positive value of h. The
proof of Lemma 4 shows that once h is increased feasibility continues to hold, thus
establishing the following corollary.

Corollary 3 If steps 2 to 8 of Algorithm 2 are executed with h initially set to any
positive number, then (23) and (24) remain satisfied.

The effectiveness of Algorithm 2 can now be established.

Theorem 3 Algorithm 2 produces integers s and t with s ≤ t , a vertex set I such
that

I = I+(1, s) ∪ I−(t, n), (29)

and a real number h such that h = 0 if and only if s = t . If y1 is then defined by
(17)–(19), then y1 ∈ Y1 and F(y1) = h = infF(Y1).

Proof The proof proceeds as in the case of Theorem 2. First it is shown that a well-
defined vector y1 is produced, then that this vector is feasible, and finally that it is
optimal because no vector with a lower value of the objective function F can be
feasible.

The first stage in showing that y1 is well defined is to establish (29). Assume
inductively that it holds before a series of sections is added, and without loss of
generality that a series of convex sections with indices { s, s1, . . . , sα } are added
by successive entries to Step 4 for the same value of t . Each time an index is
deleted from I ′ it follows immediately from Lemma 1 that the new value of I ′
is also an optimal vertex set, so it always holds that I ′ = I+(s, t). It also follows
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from Lemma 1 that { s, s1, . . . , sα } = I+(s, sα). Let I1 = {i ∈ I : i ≤ s}.
After all the sections are added, I1 = I+(1, s) ∪ I+(s, sα). If s = 1, it follows at
once from Lemma 2 that I1 = I+(1, sα) as required. Otherwise, let t ′ be the value
that t had when s was increased from s−. Then sα ≤ t ≤ t ′. Immediately after s
was increased from s−, s ∈ I+(s−, t ′). The conditions of Lemma 2 are therefore
satisfied and I1 = I+(1, sα). The same argument applied to concave sections then
establishes (29).

Algorithm 2 clearly produces a number h such that s = t only if h = 0. It is a
consequence of Lemma 3 that if s < t−1 and h = 0, then the algorithm will reduce
t − s. If s = t − 1 and h = 0, Step 4 will increase s to t . Thus h = 0 if and only if
s = t . Thus y1 is well defined by (17)–(19).

The number h is given by h = max(h(1), h(2)) where

h(1) = h+(1, s),

h(2) = h−(t, n).

It follows from (29) and Lemma 3 that when the algorithm terminates,

F(y1) = h. (30)

It then follows directly from (29), (17)–(19) and Lemma 4 that y1 ∈ Y1.
It remains to prove that y1 is optimal. The method of proof chosen to do this

can be simplified in this case, but generalizes more directly to the case of q > 1. If
h = 0, optimality follows immediately from (30). Otherwise suppose that there is
a vector v such that F(v) < h. The price h will be defined from (7) with particular
values of σ , r , and s. Let j� be the lowest value of j in this equation that defines the
final value of h. Then j� lies strictly between two neighbouring elements k and k+
of I . Assume firstly that j� < s. Define the set K = { k, j�, k+, s, t }. Since h > 0,
s < t , so K has at least four elements (it is possible that k+ = s). Now

y1
k = fk + h,

y1
j� = fj� − h,
y1
k+ = fk+ + h,
y1
s = fs + h,
y1
t = ft − h.

Since F(v) < h,

vk < fk + h,
vj� > fj� − h,
vk+ < fk+ + h,
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vs < fs + h,
vt > ft − h.

By definition of y1
j� ,

ckj�k+(y1) = 0,

while from the above inequalities ckj�k+(v) < ckj�k+(y1) = 0. From Lemma 4,
ci−1(y1) ≥ 0 for all i in the range j� ≤ i ≤ t − 1. It follows from the corollary to
Theorem 1 that

cj�st (y1) ≥ 0.

Then cj�st (v) > cj�st (y1) ≥ 0. If k+ = s, Theorem 1 can be immediately applied
to K to show that v �∈ Y1. If k+ < s, it follows from the corollary to Theorem 1 that
because cj�st (v) > 0, at least one of the consecutive divided differences cj�k+s(v)
and ck+st (v) must be positive, so that again v �∈ Y1.

If j� > s, letK = { s, t, k, j�, k+ }. Then the same argument shows that v cannot
be feasible. Therefore y1 is optimal. ��
It is clear that Algorithm 2 can easily be altered to calculate a best concave-convex
approximation instead of a convex–concave one.

It is also worth noting here that a global minimum solution to the q = 1
optimization problem has been constructed.

2.3 The Case q = 2

The best Y1 approximation constructed in Section 2.2 was defined by Equa-
tions (17)–(19) from the two pieces of the data in the ranges [1, s] and [t, n],
the vertex set I , and the price h. The best Y2 approximation will in general be
constructed from three pieces of the data in the ranges P1 = [1, s1], P2 = [t1, s2],
P3 = [t2, n], a price h ≥ 0 with h > 0 only when s1 < t1 and s2 < t2, and a vertex
set I of [1, n] such that

I = I+(P1) ∪ I−(P2) ∪ I+(P3), (31)

as the ultimate value y2 of the vector y defined by the equations

yi = fi + (−)α−1h when i ∈ I ∩ Pα, 1 ≤ α ≤ 3, (32)

yj = yj (I ) 1 ≤ j ≤ n. (33)

The construction of y is illustrated in Figure 5.
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Fig. 5 Construction of Y2 approximation

The Algorithm will construct this best Y2 approximation from the quantities h0 =
h+(1, n) and the index set I+(1, n) provided by Algorithm 1. If the value h0 of this
approximation is zero, the best approximation over Y0 is also a best approximation
over Y2. Otherwise, h0 > 0 is determined by three data fk , fj� , and fk+ such that
k and k+ are consecutive elements of I+(1, n) and k < j� < k+. The discussion
in Section 2.1 shows that unless the divided differences of y change sign at least
once in the range [ xk, xk+ ], then F(y) ≥ h0. The set I−(t1, s2) is therefore put
in this range. The algorithm begins with s1 = k, t1 = s2 = j�, and t2 = k+.
It then sets h = max(h+(1, s1), h+(t2, n)). Next, it uses Algorithm 2 modified to
calculate a best convex–concave approximation to the data with indices in the range
[1, j�] consistent with paying this minimum price h. It is an important feature of the
problem that this can be done by starting Algorithm 2 with s = k and t = j�, i.e.
the existing elements of I+(1, j�) below k can be kept in place.

This process can increase s1 beyond k, reduce t1 below j� , and increase h. Let
h(1) be its new value. A best concave-convex approximation to fj�, . . . , fn starting
with h = h(1) is next identified by applying a modified version of Algorithm 2 with
s = j� and t = k+, in general increasing s2 beyond j� and reducing t2 below k+.
If this second calculation does not increase h above h(1), the best approximation y
can be constructed immediately from (32)–(33). If, however, h > h(1), there is the
complication that the lower value of h when the first calculation took place may
have joined too many sections for the first join constraints cs1−1(y) and ct1−1(y)
determined by the new higher value of h to have the right signs. In this case the
remedy proposed is to repeat the first calculation starting with the new value of h.

The following algorithms will therefore require a modified version of Algo-
rithm 2 to carry out a best convex–concave approximation or a best concave-convex
approximation on a range of data, starting with a prescribed value of h. This task is
best carried out by modifying Algorithm 2 in detail, but the following description is
equivalent and simpler. The following procedure calculates a best approximation to
the data in the range [sα, tα] compatible with an existing price h, the approximation
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being over Y1 or Y−1 according as α is odd or even. It can be seen as trying to close
the join range [sα, tα] as much as possible by constructing the best approximation
to this range of data compatible with the given starting value of h.

The notation for the pieces of the data is based on the observation that when
h > 0, tα = s+α (I ) and when h = 0, tα = sα , so that the location of each of the
two join ranges [s1, t1] and [s2, t2] can be specified simply by consecutive elements
of I . Thus the location of the pieces and joins can be specified simply through the
quantities sα , 1 ≤ α ≤ 2. It is convenient to regard these as members of an ordered
subset S of I , and to include n in S. Given a vertex set I , define a piece set S of I
to be an ordered subset of I such that n ∈ S. Then sα will denote the αth element
of S.

Algorithm 3 closejoin(α): modifying h, I , and S.

Step 1. If α is even: replace f by −f.
Set s = sα and t = s+α (I ).

Step 2. Carry out Steps 2 to 8 of Algorithm 2.
Step 3. Set sα = s.

If α is even: replace f by −f.

The following algorithm constructs y2 by calculating the appropriate pieces and
a price h(S) from which y2 is constructed. The notation used for keeping track of
the pieces needs to cover the case of pieces that consist of only one point, and to
generalize easily when q > 2. It also has to cope with the trivial cases where f ∈ Y0
or f ∈ Y1 and there are, therefore, only one or two pieces instead of three.

Given a piece set S, define its price h(S) as follows. Let q ′ = |S| − 1, t0 = 1,
and when q ′ ≥ 1 define tα = s+α (I ) when 1 ≤ α ≤ q ′. Then

h(S) = max{ h(−)α−1
(tα−1, sα) : 1 ≤ α ≤ q ′ + 1 }. (34)

Recall that hσ (t, s) = 0 whenever t ≥ s − 1.
It is also worth recording the location of the data points determining the optimal

value of h. Given a piece set S, when h(S) > 0 it follows from (34) and (7) that
there exists a lowest index j�(S) such that

h(S) = 1
2σ(fj� − fj�(k, k+)), (35)

where σ = (−)β−1 for some β in the range 1 ≤ β ≤ q ′ + 1, and

tβ−1 ≤ k < j� < k+ ≤ sβ. (36)

Once j� is known, the quantities k, k+,and β are uniquely determined by (35)
and (36).

The following algorithm then constructs h, I and S determining y2.
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Algorithm 4 To find the vertex set, price, and piece set of a best approximation
over Y2.

Step 1. Set S = {n}. Use Algorithm 1 to calculate I = I+(1, n) and
h = h+(1, n).
If h = 0: stop.
Otherwise: find j�, k, k+ determined from S by (35) and pro-
ceed to Step 2.

Step 2. Insert j� into I and k, j� into S. Calculate h = h(S).
Step 3. Apply closejoin(1). Set h(1) = h.
Step 4. Apply closejoin(2). If h = h(1): stop.

Otherwise proceed to Step 5.
Step 5. If h(1) = 0: go to Step 6.

If s1 = k and s+1 (I ) = j�: stop.
Otherwise set s = s1 and t = s+1 and calculate g(1) = (ft −
fs − 2h)/(xt − xs).
If s > k and gs−(I ) s > g

(1): go to Step 6.
If t < j� and gt t+(I ) > g

(1): go to Step 6.
Otherwise: stop.

Step 6. Set s1 = k. Delete all elements of I lying strictly between k and
j� and then apply closejoin(1).

It will be seen that, as described above, Step 2 begins the new approximation,
Steps 3 and 4 carry out the convex–concave and concave-convex approximations,
Step 5 tests whether feasibility has been violated and, if it has, Step 6 repeats the
convex–concave approximation with the new value of h. Since Algorithm 4 calls
Algorithm 1 once and closejoin up to three times, its complexity is that of closejoin,
which is the same as Algorithm 2, namely n log n.

Now define the vector y(S) from S and h as follows. Let q ′ = |S|−1 and t0 = 1.
When q ′ ≥ 1 define tα = s+α (I ) when h > 0 and tα = sα when h = 0, for
1 ≤ α ≤ q ′. Then let

Pα = [tα−1, sα], when 1 ≤ α ≤ q ′ + 1, (37)

and define y(S) by (32)–(33). Set y2 to the value of y(S) on exit from Algorithm 4.
Step 5 is designed to avoid calculating gradients unnecessarily. The following

lemma will be used to justify this economy and also to show that y2 is feasible.
Recall the parallelogramΠ(h) defined in the proof of Lemma 3, and given I and S,
let s = sα and t = s+α (I ) and define ΠSα (h) as the closed solid parallelogram with
vertices (xs, fs), (xs, fs + 2(−1)α−1h), (xt , ft ), and (xt , ft − 2(−1)α−1h). Each
such parallelogram then defines a join gradient

g(α)(S, h) = ft − fs − 2(−1)α−1h

xt − xs . (38)
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Lemma 5 Let closejoin (α) be called, modifying h′, I ′, and S′ to h, I , and S,
respectively. Suppose that there exists h ≥ 0 such that

(xj , fj ) ∈ ΠS′α (h) for s′α ≤ j ≤ s′+α (I ′). (39)

and that

h′ ≤ h. (40)

Then

h ≤ h. (41)

Further, if g = g(α)(S′, h), g+ = gs′α (y(S)) and g− = gs′+α (I ′)−1(y(S)), then

(−1)α−1 min(g+, g−) ≥ (−1)α−1g. (42)

Proof Note that g+ and g− are the new gradients at the old join points, for example,
k and j�.

Assume for simplicity that α is odd and write s′ = s′α and t ′ = s′α+(I ′).
First consider (41). The proof is trivial unless closejoin increases h. In this case,

h > 0 and so there exist j� , k, k+ ∈ I such that

2h = fj� − fj�(k, k+), (43)

where s′ ≤ k < j� < k+ ≤ t ′. Let tα = s+α (I ). It follows from Lemma 3 that either
j� ≤ sα or j� ≥ tα . The two cases are entirely similar: it suffices to consider the
first. Define yj , s

′ ≤ j ≤ t ′, by ys′ = fs′ + h, yt ′ = ft ′ − h, and yj = yj (s′, t ′),
s′ < j < t ′. Then the yj , s

′ ≤ j ≤ t ′, are collinear and it follows from (39) that
fk ≥ yk − h and fk+ ≥ yk+ − h. Therefore, since yk , yj� , and yk+ are collinear,

yj� − h ≤ fj�(k, k+). (44)

It also follows from (39) that

fj� ≤ yj� + h. (45)

Addition of (44) and (45) and use of (43) then gives (41).
Now consider (42). The easiest case is when s′ < sα . Then g+ = gs′i , where

i = s′+(I ). Let the yj , s
′ ≤ j ≤ t ′, be defined as above. Then fs′ = ys′ − h and

it follows from (39) that fi ≥ yi − h. Then gs′i ≥ gs′i (y) = g. Similarly, when
tα < t

′, then g ≤ g−.
The next easiest case is when s′ = sα and t ′ = tα . In this case,

g+ = g− = ft ′ − fs′ − 2h

xt ′ − xs′ ,
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and it follows from (41) that this quantity is not less than g, as required to
establish (42).

It remains to resolve the two similar cases where s′ < sα and tα = t ′, and where
s′ = sα and tα < t ′. It suffices to consider the former case and establish that g ≤ g−.
The procedure closejoin will add one or more indices s′+, . . . ,i, s to I . It has already
been shown that because s′ < sα , g ≤ g+. The gradients defined by the successive
elements of I from s′+ to s will be monotonically increasing from gs′ = g+, and so
gis ≥ g+ ≥ g. The gradient g− is in this case the new join gradient. The remark in
the paragraph after (25) then shows that cs−1(y) ≥ 0, i.e. g− ≥ gis as required to
establish (42). ��

The proof of the effectiveness of Algorithm 4 and also of its generalization in the
next section will require an important corollary of Lemma 5. When new sections
are added on either side of an existing section, the convexity at the point where they
are joined increases away from zero. Thus when Steps 2 to 6 of Algorithm 4 are
applied, the constraints ck−1, cj�−1, and ck+−1 increase away from zero, so that no
more than two sign changes can be created in the second divided differences.

Corollary 4 When defined, the constraints ck−1, cj�−1, and ck+−1 satisfy the
inequalities

ck−1(y2) ≥ ck−1(y0) ≥ 0,

cj�−1(y2) ≤ cj�−1(y0) ≤ 0,

ck+−1(y
2) ≥ ck+−1(y

0) ≥ 0.

The effectiveness of Algorithm 4 can now be established.

Theorem 4 Algorithm 4 produces a real number h ≥ 0, a vertex set I , a piece set
S of I , and a vector y2 = y(S) well defined by (37), (32) and (33) such that y2 ∈ Y2
and h = h(S) = F(y2) = infF(Y2).

Proof If Algorithm 4 stops in Step 1, then h = h+(1, n) = 0, I = I+(1, n),
and S = {n}. Then h(S) = 0. It follows from Theorem 2 that f ∈ Y+0 ⊂ Y2.
Equation (37) will set P1 = [1, n] and (32) and (33) will set y2 = f. The theorem is
then immediately established.

Otherwise the quantities j�, k, and k+ are well defined and satisfy the inequalities
1 ≤ k < j� < k+ ≤ n. (Each equality is possible, for example when f ∈ Y±1 .) It
follows from Lemma 1 that at this point at the end of Step 1,

I = I+(1, k) ∪ I+(k+, n). (46)

Step 2 is then entered. It inserts j� into I , increases S to Ŝ = {k, j�, n}, and
calculates ĥ = max(h+(1, k), h+(k+, n)). Note that j�, k, and k+ are now
consecutive elements of I .
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Steps 3 and 4 are then executed, calling closejoin in the ranges [k, j�] and
[j�, k+], in general increasing s1, s2, and h, and adding new elements to I . The
new elements of S always satisfy the inequalities k ≤ s1 ≤ j� ≤ s2 ≤ k+, and h
cannot decrease, so ĥ ≤ h. Note that s2 can be increased to n, for example when
f ∈ Y+1 .

Now consider the situation when the algorithm stops. If h(1) = 0, the algorithm
either stops in Step 4 when h = 0, or alternatively jumps straight from Step 5
to Step 6 re-calling closejoin(1) with h > 0. It follows from the properties of
Algorithm 3 that when closejoin is called with h > 0, it cannot increase s to t .
Therefore when the algorithm stops, if h > 0 then s1 < j� and s2 < k+. Now
define t1 and t2 as for (37). Then y2 is well defined in all cases.

It must now be shown that y2 is feasible and optimal. The first main step is to
establish (31), i.e.

I = I+(1, s1) ∪ I−(t1, s2) ∪ I+(t2, n). (47)

First consider the range [1, s1]. Since k ≤ s1, [1, s1] = [1, k] ∪ [k, s1]. Let I1 =
I ∩ [1, s1]. It follows from (46) and Theorem 3 that I1 = I+(1, k) ∪ I+(k, s1).
It is trivial that I1 = I+(1, s1) unless 1 < k < s1. In this case there will exist
neighbouring indices k− and i of k in I such that 1 ≤ k− < k < i ≤ s1 ≤ j�.
Let h0 = h+(1, n) and g0 = g(1)(Ŝ, h0). Since k−, k, and k+ are neighbours in
I+(1, n), then gk−k ≤ gkk+ = g0. Note that g(2)(Ŝ, h0) = g0. It is now possible
to apply Lemma 5 successively with h = h0. The definition of j� allows a first
application of the lemma with h′ = ĥ and S′ = Ŝ in the range [k, j�] (i.e. with
α = 1) to infer that at entry to Step 4, h(1) ≤ h0. This inequality and the definition
of j� then allow a second application of the lemma in the range [j�, k+], where
also g = g0, to infer that h ≤ h0. If Step 6 is not entered, it follows from the first
application of the lemma that gki ≥ g0. If closejoin is called again in Step 6, a third
application of the lemma may be made, in the range [k, j�], to yield that in this
case also, gki ≥ g0. Then gk−k ≤ gki . Lemma 2 can now be applied to prove that
I+(1, k) ∪ I+(k, s1) = I+(1, s1). Thus in all cases

I1 = I+(1, s1).

In the same way, if I3 = I ∩ [t2, n], then I3 = I+(t2, n), trivially when t2 = n and
otherwise by a single application of Lemma 5.

Now consider the range [t1, s2]. Let I2 = I ∩ [t1, s2]. Since j� ∈ I , t1 can
never exceed j� and so [t1, s2] = [t1, j�] ∪ [j�, s2]. In all cases I2 = I−(t1, j�) ∪
I−(j�, s2), and it is trivial that I2 = I−(t1, s2) unless t1 < j� < s2. In this case
there will exist left and right neighbours of j� in I. Denote them by j− and j+.
Then the successive applications of Lemma 5 made above establish that gj−j� ≥ g0
and that gj�j+ ≤ g0 so that Lemma 2 again applies to give that I2 = I−(t1, s2).
Equation (47) is then established.
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The feasibility of y2 can now be proved. It is only necessary to examine the four
(or possibly fewer) join constraints cs1−1, ct1−1, cs2−1, and ct2−1 when s1 < t1 and
s2 < t2. First consider the last two constraints. Since s2 < k+, Lemma 4 shows that
cs2−1(y2) ≤ 0 whenever s2 exceeds j�. When s2 = j�, the corollary to Lemma 5
applies to show that cs2−1(y2) ≤ 0. Similarly, Lemma 4 when t2 < k+ and the
corollary to Lemma 5 when t2 = k+ show that ct2−1(y2) ≥ 0 whenever t2 < n.
When t2 = n the feasibility of y2 will follow automatically from the signs of the
other constraints. Now consider the constraints cs1−1, ct1−1. When Step 6 is entered
or h(1) = h, the same reasoning applies to show that cs1−1(y2) ≥ 0 when s1 > 1
and ct1−1(y2) ≥ 0 when t1 > 1. (If f ∈ Y−0 , the algorithm will reduce t1 to 1.) When
Step 6 is not entered and h > h(1), Lemma 4 cannot be applied, but Lemma 5 and
its corollary then show that feasibility is assured unless s1 > k or s+1 < j�. In these
cases all the gradients calculated are well defined and the test in Step 5 allows the
algorithm to stop only when y2 is feasible.

It is now necessary to show that F(y2) = h. The construction of ĥ and h, the
inequality ĥ ≤ h, and (47) show that h = h(S) and |yj − fj | ≤ h when j ∈
[1, s1] ∪ [t1, s2] ∪ [t2, n], with equality when j ∈ I . For any other value of j in the
range [1, n], Lemma 3 and the inequality h(1) ≤ h show that |yj − fj | < h whether
or not Step 6 is entered. Then F(y2) = h.

If h = 0, optimality is trivial. Otherwise sα < tα , for α = 1, 2. Then it is
possible to redefine j� = j�(S) and to let k, k+, and β be uniquely redefined from
j� . Then j� ∈ Pβ . Let K = {k, j�, k+, s1, t1, s2, t2}. Then K cannot have fewer
than five elements, even if t1 = s2. Assume first that β = 1. It follows by the same
argument used in the proof of Theorem 3 that ckj�k+(y2) = 0, cj�s1t1(y

2) ≥ 0, and
cs1t1t2(y

2) ≤ 0. Then if F(v) ≤ h, ckj�k+(v) < 0, cj�s1t1(v) > 0, and cs1t1t2(v) < 0,
and therefore the consecutive divided differences of v with indices in the subset K
must change sign twice starting with a negative sign, so that by Theorem 1, v �∈ Y2.
If β = 2 or β = 3, the argument is similar. ��

Clearly Algorithm 4 could easily be modified to calculate a best concave–
convex–concave approximation, but it is easier to cover this case in the next
subsection.

2.4 The General Case

The algorithm to be described constructs a best approximation to f over Yq from
q + 1 alternately convex and concave pieces joined where necessary by up to q
straight line joins. These pieces are built up recursively from the pieces of a similar
best approximation over Yq−2 by essentially the same method used in the previous
section when q = 2. All the sections of the Yq−2 approximation remain in place
except one determining the value of infF(Yq−2) which is deleted and replaced with
a new piece of opposite convexity to the piece previously containing this section, and
two new joins. The minimum value h of a best approximation over Yq determined
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Fig. 6 Construction of Y5 approximation

by the remaining sections is first calculated, then the procedure closejoin is called
in each join. After this has been done, if h has increased then the resulting join
constraints are checked and if necessary the calculation in each join is repeated with
the new value of h. The construction of y is illustrated in Figure 6.

This method has the disadvantage that calculations sometimes have to be
performed twice in each join, but each of the two sets of q join calculations can be
performed in parallel. The procedure closejoin is a generalization of Algorithm 2,
which is a modification of the method presented in Cullinan and Powell [3] which
gave no proofs. That method avoids having to repeat itself by having an upper bound
on h available throughout, but because of this does not admit of as much of its
calculations being performed in parallel. It is therefore believed that the algorithm
to be presented will often be more efficient.

Most of the notation needed for this case has already been developed. In
particular, given a piece set S, (34) defines the corresponding price h(S) and when
this price is non-zero, (35) and (36) define the index j� giving rise to it and the index
β of the piece within which it lies. For any h the piece Pα is defined as [tα−1, sα],
where t0 = 1, and for α ≥ 1 tα = s+α (I ) when h > 0 and tα = sα when h = 0.
Since every element of I lies in Pα , for some α, the vector y(S) can be defined by

yi = fi + (−)α−1h when i ∈ I ∩ Pα, 1 ≤ α ≤ q ′ + 1, (48)

yj = yj (I ) 1 ≤ j ≤ n, (49)

where q ′ = |S| − 1 as before.
The following algorithm then calculates S, I , and h from which yq is defined by

these equations as the final value of y(S). When h > 0, the join gradients g(α)(S, h)
are defined by (38).

Algorithm 5 To find a best Yq approximation.

Step 1. Set q = q modulo 2.
If q = 0: set S := {n} and use Algorithm 1 to calculate I :=
I+(1, n) and h = h+(1, n).
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Otherwise set S := {1, n}, I := {1, n}, h := 0 and call
closejoin(1).

Step 2. If q = q or h = 0: stop.
Otherwise: set j := j�(S), k := j−(I ), insert j into I , and
insert j and k into S, increase q by 2 and calculate h := h(S).
Set h′ := h, I ′ := I , S′ := S and γ := 1.

Step 3. For α = 1 to q: apply closejoin(α), and if h has increased set
α := α, and if h = 0 set γ := α + 1.
If h = h′: return to Step 2.
Otherwise: set α = 1 and go on to Step 4.

Step 4. If α < γ go to Step 5.
If α = α return to Step 2.
Calculate g = g(α)(S, h).
If sα > s′α and (−1)α−1gs−α (I ) sα > (−1)α−1g: go to Step 5.
Set t := s+α (I ′) and t+ := t+(I ).
If t < s′α

+
(I ′) and (−1)α−1gt t+ > (−1)α−1g: go to Step 5.

Increase α by 1 and repeat this step.
Step 5. Set sα := s′α , delete all elements of I lying strictly between sα

and s+α (I ′), and apply closejoin(α). Increase α by 1 and return
to Step 4.

Step 1 initializes the two alternative first calculations when q is even and odd.
Step 2 tests whether the calculation has come to an end, and if it has not the new
values of j� and β are calculated and recorded, as are the locations of the new pieces
and the initial price. One final piece of bookkeeping is also prepared. To identify
joins where a second call of closejoin will always be needed when h increases from
zero, the index γ will be set by Step 3 to the lowest index for which h > 0 after
the first call of closejoin(γ ). Step 3 then performs the first q calls of closejoin,
sets γ , and sets α to the index of the call of closejoin in which h achieved its
final value. If h has increased during this step, then Step 4 is entered. Tests are
made to determine whether Step 5 will have to be entered to repeat the calculation
in the join with index α, calculating a join gradient g only when necessary and
possible. In particular it is never necessary to test once α ≥ α. In practice, in
order to anticipate rounding errors, the tests whether h = 0 should be whether
h ≤ 0.

The applications of closejoin in each step could be performed simultaneously. In
this case the largest of the ensuing values of the parameter h in Step 3 should be the
value of h at entry to Step 4 and α should be set to n. It will be shown in the proof
of the following theorem that h is constant during Step 4.

The complexity of Algorithm 5 will be qn log n.

Theorem 5 Algorithm 5 produces a real number h ≥ 0, an index set I , a piece set
S of I , and a vector yq = y(S) well defined by (48) and (49) such that yq ∈ Yq and
h = F(yq) = infF(Yq).
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Proof The proof that y ∈ Yq and F(y) = h is by induction on q. Assume that at
any entry to Step 2 leading to Step 3, i.e. with q < q and h > 0, that

I =
q+1⋃

α=1

I (−)α−1
(tα−1, sα), (50)

where t0 = 1 and tα = s+α (I ) for α ≥ 2, and that

h = h(S). (51)

The vector y(S) is then well defined. Assume that

F(y(S)) = h (52)

and that

y(S) ∈ Yq. (53)

It will be deduced from these equations that when the algorithm terminates
y(S) ∈ Yq and h = infYq .

It has been shown in Sections 2.1 and 2.2 that (50)–(52) hold at first entry to
Step 2.

Most of the work needed for the proof has already been done in Lemmas 3–5.
The main task is to examine the way h changes, so as to be able to apply these
lemmas. Suppose that Step 2 begins with h = h, I = I and S = S, and that it
increases q to q ′. Step 2 also modifies S from S to S′ = S ∪ {j, k} and I from I

to I ′ = I ∪ {j}, and recalculates h as h′ = h(S′) using (34). Now by (51) and the
definition of j in Step 2, h = hσ (tβ−1, sβ), where β is defined in Step 2 by (36),
σ = (−)β−1, and tβ−1 = 1 when β = 1 and tβ−1 = s+β−1(I ) when β ≥ 2. By

Lemma 1, Iσ (tβ−1, sβ) = Iσ (tβ−1, k) ∪ Iσ (k+, sβ), where k+ = k+(I ), and by
definition, hσ (tβ−1, sβ) ≥ max(hσ (tβ−1, k), h

σ (k+, sβ)). It follows that

h′ ≤ h. (54)

Furthermore, it follows from the definitions of h and β when α = β, β + 1 and
otherwise from (50)–(52) that

(xj , fj ) ∈ ΠS′α (h) for s′α ≤ j ≤ s′+α (I ′).

Step 3 then applies closejoin(α) in each join. Let h(α) be the value of h after
closejoin(α) is called. Clearly the h(α) are monotonically non-decreasing. Lemma 5
can now be applied successively beginning with (54) to show that

h(α) ≤ h for 1 ≤ α ≤ q ′.
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Let t ′0 = 1 and t ′α−1 = s+α−1(I
′) when α ≥ 2. Then Lemma 5 and its corollary

also show that whenever t ′α−1 < s
′
α < sα , the gradients on either side of fs′α have

the correct monotonicity for Lemma 2 to yield that Iσ (t ′α−1, s
′
α) ∪ Iσ (s′α, sα) =

Iσ (t ′α−1, sα), and that when tα−1 < t
′
α−1 < s

′
α that Iσ (tα−1, t

′
α−1)∪ Iσ (t ′α−1, s

′
α) =

Iσ (tα−1, s
′
α), where σ = (−)α−1. It follows either from this or otherwise trivially

that in all cases after closejoin(α) is called, if Pα is defined from S then

I ∩ Pα = Iσ (tα−1, sα).

Because h cannot increase further after Step 3, this holds true whether closejoin(α)
is called once only or again in Step 5, so that when Step 2 is next entered,

I =
q ′+1⋃

α=1

I (−)α−1
(tα−1, sα). (55)

The next step is to establish that when Step 2 is next entered with h > 0 then
h = h(S). Since h > 0 and k < j < k+ in Step 2, the quantity h(S) to which h is
set by Step 2 is well defined by (34) with tα = s+α (I ). Thus

h′ = h(S′).
If Step 5 recalls closejoin(α) for any α, it will not increase h further, so h always
attains its final value by the end of Step 3. It must be shown that the quantity h(S)
is always well defined when Step 2 is next entered. This can only fail to be the
case if there is an α for which h(α) = 0. In such a case it must hold that h′ = 0
and that h increased during Step 3. Then α will be set to the index of the call of
closejoin in which h achieved its final positive value, and the parameter γ will be
set to the lowest index for which h(γ ) > 0. Clearly, then, γ ≤ α and α < γ ≤ α,
so that Step 4 will branch to Step 5, recalling closejoin(α) with a positive h so that
afterwards tα = s+α (I ). The quantity h(S) will then be well defined when Step 2 is
entered. It follows from the form of Algorithm 2 and (55) that whether h increases
from h′ or not, then when Step 2 is next entered,

h = h(S). (56)

The vector y = y(S) will then be well defined at the next entry to Step 2. The
next argument will establish that (52) then holds. It follows from (55) and (56) that it
is sufficient to show that for any indices j such that sα < j < tα , |yj (S)− fj | < h.
This is equivalent to the statement that the graph points (xj , yj (S)) lie inside the
parallelogramΠSα (h). It follows from Lemma 3 that immediately after closejoin(α)
is last applied, (xj , yj (S)) lies strictly within ΠSα (h). If this call of closejoin comes
in Step 5, h has already attained its value at next entry to Step 2 and the result is
immediately established. If, on the other hand, this call of closejoin comes in Step 3,
then (xj , yj (S)) lies insideΠSα (h

(α)), and h(α) ≤ h. A simple calculation shows that
if a < b thenΠSα (a) ⊂ ΠSα (b). The result then follows. Thus at next entry to Step 2,
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F(y(S)) = h.
The next argument will re-establish (53) at that point. It follows from (50) that it

is only necessary to establish that the join constraints csα−1 and ctα−1 of y have the
correct signs when 2 ≤ sα < tα ≤ n− 1, i.e. when h > 0.

When 1 < sα = s′α , (53) and the corollary to Lemma 5 imply that cs′α−1(y)
had the correct sign at the last exit from Step 2 and has not now moved closer to
zero. The same is true of ctα−1 when tα = t ′α < n. When sα > s′α , Lemma 4
applies provided that h has not increased after the last call of closejoin(α) to yield
that (−1)α−1csα−1 ≥ 0 and that when 1 < tα < t ′α that (−1)α−1ctα−1 ≤ 0. If
closejoin(α) is only called once and h increases subsequently, it must be shown that
the test in Step 4 is adequate to ensure feasibility. In this case Step 4 will certainly
be entered (because h > h′) and Step 3 will set α and γ so that γ ≤ α < α, so that
h(α) > 0. It follows that sα < tα and so g is well defined and the correct sign of
csα−1 is assured by the test in Step 5. The case tα < t ′α is similar. Thus at next entry
to Step 2, even when h = 0,

y ∈ Yq ′ .

Thus (50)–(53) are established by induction. It follows that when the algorithm
terminates with a number h and the pieces from which the vector y is constructed,
y ∈ Yq ⊂ Yq and F(y) = h.

The proof of optimality is similar to that in Theorem 4. If h = 0, there is nothing
to prove. Otherwise, once again a set K is constructed containing q + 3 indices of
data points on alternating sides of the components of y and all the same distance h
from them, and such that the consecutive divided differences with indices in K of
any vector v ∈ R

n giving a lower value of F than h change sign q times starting
with a negative sign, so that by Theorem 1, v �∈ Yq . As in the case q = 2 there
seems no straightforward way of constructing an appropriate set with exactly q + 3
elements. Therefore, after Algorithm 5 has terminated, let sα , tα , 1 ≤ α ≤ q + 2,
be defined as the join points that would next have been constructed in Step 2 if the
algorithm had not terminated (i.e. by adding k, j�, and k+ to the existing set of join
points and reindexing, but without increasing q.) Then sβ = k, tβ = sβ+1 = j�, and
tβ+1 = k+. It follows as in the proof of Theorem 3 that because h > 0, sα < tα for
all α. Now define K = { sα, tα : 1 ≤ α ≤ q + 2 }. Because the piece [tβ, sβ+1] has
only one element and any of the other pieces can have only one element, this set K
can have from q + 3 to 2q + 3 elements.

It follows from the construction of y and (53) that (−1)α−1ci(y) ≤ 0 for sα ≤
i ≤ tα+1−2 and so, from the corollary to Theorem 1, that for any α in the range 1 ≤
α ≤ q + 2, (−1)α−1cs(α),t (α),t (α+1)(y) ≤ 0 and (−1)α−1cs(α),s(α+1),t (α+1)(y) ≤ 0.
From (48),

ysα = fsα + (−1)α−1h

ytα = ftα − (−1)α−1h.
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If tα = sα+1, it follows immediately from these equations that if F(v) < h

(−1)α−1cs(α),t (α),t (α+1)(v) < 0.

Otherwise when tα < sα+1, it follows from these equations that if F(v) < h,
then (−1)α−1cs(α),t (α),t (α+1)(v) < 0 and (−1)α−1cs(α),s(α+1),t (α+1)(v) < 0 and
hence, from the corollary to Theorem 1, that the consecutive divided differences
with indices in K satisfy

(−1)α−1cs(α),t (α),s(α+1)(v) < 0 or (−1)α−1ct(α),s(α+1),t (α+1)(v) < 0.

Therefore in all cases the divided differences of v with indices in K have at least
q sign changes starting with a negative sign, and so if v is any vector for which
F(v) < h, then v �∈ Yq . ��

Thus a global solution to the optimization problem of this section has been
constructed in all cases.

3 Numerical Results and Conclusions

This section will describe the results of some tests of the data smoothing method
developed in the previous section. Algorithm 5 was trivially extended to find a best
approximation over Y±q . It was coded in PASCAL and run using Lazarus Pascal
Version 1.0.8 on a desktop PC.

3.1 Synthetic Test Data

The tests were almost all conducted by contaminating sets of values of a known
function with errors, applying the method, and then comparing the results with
the exact function values. The errors added to exact function values were either
truncation or rounding errors, or uniformly distributed random errors in the interval
[−ε, ε].

If g is the vector of exact function values, one simple measure of the effectiveness
of the method can be obtained from the quantity

Pp =
(

1− ‖y− g‖p
‖| − g‖p

)

,

obtained from the �p norm. For each set of data the values of P∞ and P2 were
calculated.
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Table 1 The zero function n P∞ P2

5001 −19.37 94.51

501 −68.97 76.25

As a preliminary test, equally spaced values of the zero function on [−5, 5] were
contaminated with uniformly distributed errors with ε = 0.1. The results are shown
in Table 1.

The difference between yj and zero was of the order of 10−4 for most of the
range, but near the ends it rose to 10−1, accounting for the relatively high value
‖y − g‖2 = 0.3098 when n = 501. High end errors were frequent and so the
value of P∞ was not usually a reliable indicator of the efficiency of the method.
These errors can occur because if, for example, σ = +, then y1 = f1 + h and if
f1 = g1 + ε then ‖y− g‖∞ ≥ h+ ε = ‖y− f‖∞ + ε.

Two types of data were considered next: undulating data and peaky data,
because these types of data can be hard to smooth using divided differences
unless sign changes are allowed. The first category of data were obtained from
equally spaced values of the function sinπx on the interval [−2, 2], and the
second from equally spaced values of the normal distribution function Ns(x) =
(2πx)−

1
2 exp(−x2/(2s2)) with s = 0.8, on the interval [−5, 5]. These same

functions were previously used to test the �2 data smoothing method in Cullinan [2]
which did not allow sign changes, and it was shown there that the sine data were
possible to treat well but the peaked data did not give very good results.

Many of the results obtained using Algorithm 5 looked very acceptable when
graphed, even when P2 was only moderate. The results of Table 1 show why it
can be quite difficult for P2 to approach 100 even when the results are very good,
partly because of end errors, but also because of another phenomenon that can move
smoothed points further away from the underlying function values. The method
raises convex pieces and lowers concave pieces, and this often results in points near
an extremum of the underlying function being pulled away from it, for example if
there is a large error on the low side of a maximum.

Different sets of random errors with the same ε can give very different values
of P2, particularly when the spacing between points is not very small, and in fact
it was found that reducing the spacing beyond a certain amount can make a great
difference to the consistency of the results.

The method coped quite well with sine data. For example, with fj = sin 2πxj +
ε sin 1000xj and equally spaced data on the interval [−2, 0], when ε = 0.02 and
n = 101, P2 = 10.2, when n = 1001, P2 = 80.42, when n = 10001, P2 =
93.01, and when n = 100001, P2 = 93.34. With ε = 0.1 the respective figures
for P2 were 56, 87.82, 93.05, and 93.38. The method was also run with these sine
data but at variable abscissæ defined by replacing the equally spaced ones xj with
xj + 0.25h sin 100000xj . The timings did not increase even with n = 100001 and
the values of P2 were comparable. The method was also very good with the peaked
data, and an improvement on the method in Cullinan [2], managing to model both
the peak and the flat tail well. The results of one run are shown in Figure 7.
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Fig. 7 Peaked data with n = 101, q = 2, ε = 0.01, P2 = 45.8

In all the above cases the best choice of q was obvious. The next trials examined
two functions where it was not. The first was the first three terms of the Fourier
series for a square wave and the last was a wiggly function requiring a high value
of q.

A good strategy when the choice of q is not obvious and when there is some
bound on the expected errors is to run the algorithm with increasing values of q
until the value of h decreases to a value of the same order as the expected errors.
This is because of the following result. Suppose that σ = +, the Algorithm finishes
with h > 0, and that ‖g − f‖∞ = ε. Let k, j�, k+ be determined by the Algorithm
and suppose that ckj�k+(g) ≥ 0. Then

h ≤ ε. (57)

The proof is straightforward. Since ‖g− f‖∞ = ε, then fk ≥ gk − ε, fj� ≤ gj� + ε,
fk+ ≥ gk+ − ε, and ckj�k+(g) ≥ 0. Define quantities zk = −1, zj� = 0, zk+ = −1
and note that zj� − zj�(k, k+) = 2. The proof then relies on (9), the construction
of h from fk , fj� , and fk+ , and ckj�k+ being an increasing linear function of its
first and last arguments and a decreasing linear function of its middle one. Then
ckj�k+(f) = −2(xj� − xk)(xk+ − xj�)h ≥ ckj�k+(g) + εckj�k+(z) = ckj�k+(g) −
2(xj� − xk)(xk+ − xj�)ε and so h ≤ ε.

It follows from this result that once q is large enough for the points k, j�, k+ that
partly determine h to lie in the same piece of g then there is an upper bound on h.
Thus a suitable value for q can be found by running the algorithm with a high value
of q outputting h just before the algorithm increases q each time until h decreases
to within the expected error. If this is not economic because of the size of n then the
algorithm could perhaps be applied with high q to a uniformly distributed subset of
the data until a suitable value is found.
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Table 2 The wiggly function
for increasing n

n h P2 Time (ms)

1001 0.001700 72.82 6

10,001 0.001976 85.35 14

100,001 0.001978 85.53 129

1,000,001 0.001979 85.54 1940

2,000,001 0.001979 85.54 2881

5,000,001 0.001979 85.54 10,279

10,000,001 0.001979 85.54 21,183

In the case of the square wave approximation function g(x) = 4
π
(sin 1

2πx +
1
3 sin 3

2πx + 1
5 sin 5

2πx) it is hard to see from the graph whether the first piece is
convex or concave when q = 4. The algorithm was run with fj = gj+ε sin 1000xj ,
ε = 0.02 and 1001 equally spaced data on [−1, 1]. When q = 4, h = 0.151 but
when q = 5 then h = 0.0197. Increasing q further to 5 and 9 did not reduce h any
more.

The last constructed data to be tested came from the ‘wiggly’ function g(x) =
cosπx − 0.3 cos 5πx − 0.2 sin 20πx and fj = gj + ε sin(1000(xj + 1)), which
has many local maxima (illustrated below). The original choice of perturbation used
the function sin 1000x as above but when the algorithm was run with equally spaced
data on the interval [−2, 0] on the unperturbed data with n = 101 and q = 2 it failed
for the reason given after the description of Algorithm 2. This happened because the
four unperturbed data points with abscissæ −0.78,−0.62, −0.38, −0.224 formed a
parallelogram. Both g(x) and the perturbing function were antisymmetric and so the
perturbed data would also cause the algorithm to fail. Therefore a non-symmetric
perturbation function was used instead and no further failures were encountered.
The kind of symmetry that leads to this failure seems unlikely in practice but should
it occur the remedy proposed is to perturb one of the data causing the problem
by a tiny amount. In the above case perturbing the datum with abscissa −0.62 by
0.5× 10−11 cured the problem.

The data defined in the last paragraph were next used to test the Algorithm for
large n. With small n it was found that the value of h reduced acceptably for q = 40.
The algorithm was then run with equally spaced data on the interval [−1, 1] with
ε = 0.02, q = 40 and n increasing from 1001 to 10,000,001. Some of the results
are shown in Table 2.

These timings are not claimed to be optimal but they do seem consistent with the
Algorithm being o(n log n).

The ability of the Algorithm to cope with large errors is illustrated in Figure 8.

3.2 Real Test Data

In addition to the test data got from a known underlying function, one case of real
empirical data was examined. This was a set of 579 measurements of deuterium
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Fig. 9 Vostok ice data with q = 1

content in Vostok ice cores over a very long period. The set was kindly provided by
I. Demetriou from a much larger set used to test his data-smoothing algorithms and
originally provided by Petit et al. [10]. These data are not ideally suited to minimax
approximation because they appear to have large errors and quite a few outliers. It
was not clear from the graph of the data whether to run the method with q = 1 or
with q = 3. The results of a run with q = 1 are illustrated in Figure 9. The method
did not model the left-hand part of the range very well and exhibits an end error
at the right-hand end. One strategy that can be adopted in cases with large outliers
is to delete or re-weight them. This strategy has in fact been used by Demetriou.
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Deleting a few obvious outliers was tried and applying the method to the resulting
dataset did model the left-hand part better, but neither weighting nor deletion seems
an ideal choice with respect to minimax approximation.

3.3 Conclusion

It can be said that this method is very economical, and can give very good results,
particularly when the data are close together. Therefore it seems a particularly good
candidate for smoothing large densely packed data with uniform errors, even when
the errors are relatively large.
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A Decomposition Theorem for the Least
Squares Piecewise Monotonic Data
Approximation Problem

Ioannis C. Demetriou

Abstract We consider the problem of calculating the least squares approximation
to n measurements that contain random errors of function values subject to the
condition that the first differences of the approximated values have at most k − 1
sign changes, where k is a given positive integer. The positions of the sign changes
are integer variables whose optimal values are to be determined automatically.
Since the number of trials of all possible combinations of positions in order to
find an optimal one is of magnitude nk−1, it would not be practicable to consider
each one separately. We give a characterization theorem which shows that the
problem reduces to partitioning the data into at most k disjoint sets of adjacent
data and solving a k = 1 problem for each set (monotonic approximation case).
The important computational consequence of this theorem is that it allows dynamic
programming to be applied for obtaining the partition and solving the whole
problem in only a quadratic number of operations. However, shorter computation
times in practice are confirmed by our numerical results. Further, an example is
given, which shows that the time required by the dynamic programming method
to locate optimally peaks when k = 50 in a NMR spectrum that consists of about
110,000 data points is less than a minute, but the number of trials of all possible
combinations would be of magnitude 10250.

1 Introduction

A characterization theorem is presented for the following data approximation
problem, which has been introduced by Demetriou and Powell [10]. The solution to
the problem is known, but the theorem provides necessary and sufficient conditions
in a unified form. Let {φi : i = 1, 2, . . . , n} be measurements of the real function
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values {f (xi) : i = 1, 2, . . . , n}, where the abscissae {xi : i = 1, 2, . . . , n} are
in strictly ascending order. If the measurements are contaminated by random errors,
then it is likely that the sequence of first differences {φi+1−φi : i = 1, 2, . . . , n−1}
contains far more sign changes than the sequence {f (xi+1) − f (xi) : i =
1, 2, . . . , n− 1}. Therefore, for some integer k that is much smaller than n, we seek
numbers {yi : i = 1, 2, . . . , n} that make the least sum of squares change to the
measurements so that the sequence {yi+1−yi : i = 1, 2, . . . , n−1} changes sign at
most k − 1 times. We regard the original measurements and the approximated data
as n-vectors φφφ and yyy. The constraints on yyy allow at most k sections of monotonic
components, alternately increasing and decreasing. Without loss of generality we
suppose that the first monotonic section is increasing.

Hence we denote by Y (k, n) the set of n-vectors yyy whose components satisfy the
piecewise monotonicity constraints

ytj−1 ≤ ytj−1+1 ≤ · · · ≤ ytj , j is odd
ytj−1 ≥ ytj−1+1 ≥ · · · ≥ ytj , j is even

}

, (1)

where the integers {tj : j = 1, 2, . . . , k − 1} satisfy the conditions

1 = t0 ≤ t1 ≤ · · · ≤ tk = n, (2)

and the optimization calculation seeks a vector yyy∗ in Y (k, n) that minimizes the sum
of squares of residuals

||yyy − φφφ||22 =
n∑

i=1

(yi − φi)2. (3)

Such a vector yyy∗ is called an optimal piecewise monotonic approximation to φφφ.
Since {tj : j = 1, 2, . . . , k − 1} are also variables of the optimization problem,
there areO(nk−1) combinations of these integers in order to find a combination that
gives an optimal approximation, which can make an exhaustive search prohibitively
expensive.

In Section 2 we present a theorem that proves a decomposition property of
the problem. The important consequence of this decomposition is that an optimal
approximation can be generated by a dynamic programming procedure. Some
algorithms of this kind are given by Demetriou [6, 9] and Demetriou and Powell
[10]. Depending on the implementation, they obtain a solution in at mostO(kn2) or
O(n2 + kn log2 n) computer operations. Next the typical amount of computation
times in practice is demonstrated by some numerical results. In Section 3, the
efficacy of the technique is illustrated by an application for locating peaks in an
NMR spectrum that consists of 110,403 pairs of data. This problem arises in the
practice of spectroscopy calculations and is of intrinsic interest. In Section 4 we
give a brief summary.
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Two related calculations are studied by Demetriou [5, 8] and Cullinan and Powell
[3], which instead of (3) minimize the sum of moduli ||yyy − φφφ||1 = ∑n

i=1 |yi − φi |
and the supremum norm ||yyy − φφφ||∞ = max1≤i≤n |yi − φi |, respectively, subject to
the same constraints on yyy.

2 The Theorem

By taking advantage of some properties that depend on the approximation problem
and are not obtained generally when one seeks values of the integer variables {tj :
j = 1, 2, . . . , k−1}, the optimization calculation that is stated in Section 1 reduces

to partitioning the data into at most k disjoint sets of adjacent data and solving a
k = 1 problem for each set. These properties are given by Demetriou and Powell
[10] and in brief they are as follows.

I. If both yyy and the integer variables {tj : j = 0, 1, . . . , k} are optimal, then,
provided that φφφ is not in Y (k, n), these integer variables are all different.

II. The component ytj , 1 ≤ j ≤ k − 1 of an optimal yyy is independent of {yi : i �=
tj }, which implies the interpolation equations

ytj = φtj , j = 1, 2, . . . , k − 1. (4)

III. If yyy is optimal and if this approximation has a monotonic increasing section on
[tj−1, tj ], then the components yi , i = tj−1, tj−1 + 1, . . . , tj have the values

that minimize the sum of squares
∑tj
i=tj−1

(yi − φi)2 subject to the constraints
yi − yi+1 ≤ 0, i = tj−1, tj−1 + 1, . . . , tj − 1. Similarly, if yyy has a monotonic
decreasing section on [tj−1, tj ], then the components yi , i = tj−1, tj−1 +
1, . . . , tj have the values that minimize the sum of squares

∑tj
i=tj−1

(yi − φi)2
subject to the constraints yi−yi+1 ≥ 0, i = tj−1, tj−1+1, . . . , tj−1. Therefore
if one knows the optimal integer variables {tj : j = 1, 2, . . . , k − 1}, then the
components of yyy are obtained by solving these particular problems separately
between adjacent optimal integer variables. Hence it helps our analysis to
introduce the notation

α(tj−1, tj ) = min
ytj−1≤ytj−1+1≤···≤ytj

tj∑

i=tj−1

(yi − φi)2, if j is odd, (5)

and

β(tj−1, tj ) = min
ytj−1≥ytj−1+1≥···≥ytj

tj∑

i=tj−1

(yi − φi)2, if j is even. (6)
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We note that the constraints that occur in (5) on the components {yi : i =
tj−1, tj−1 + 1, . . . , tj } are linear with linearly independent normals. Further, the

second derivative matrix of the objective function
∑tj
i=tj−1

(yi − φi)2 is twice the
(tj − tj−1) × (tj − tj−1) unit matrix. Therefore (5) is a strictly convex quadratic
programming problem that has a unique solution, which we call best monotonic
increasing approximation to {φi : i = tj−1, tj−1 + 1, . . . , tj }. The solution can
be calculated by the special algorithms of Cullinan and Powell [3] and Demetriou
and Powell [10] that are based on van Eeden’s method [13]. These algorithms are
far more efficient than general quadratic programming algorithms (for a general
reference see Fletcher [11]). Moreover, Algorithm 1 of [10] computes {yi : i =
tj−1, tj−1+1, . . . , tj } and all the numbers α(tj−1, i), for i = tj−1, tj−1+1, . . . , tj )
in only O(tj − tj−1) computer operations, which is highly suitable for the needs of
our computation.

In order to present the theorem that is mentioned in Section 1, we need some
extra notation. Let k > 1, let T = {t0, t1, . . . , tk} be a set of integers that satisfy
the conditions (2) and let yyy(T ) be the n-vector yyy that minimizes the objective
function (3) subject to the constraints that, for j = 1, 2, . . . , k the sequence
{y(T )i : i = tj−1, tj−1 + 1, . . . , tj } is monotonic increasing if j is odd and
monotonic decreasing if j is even. Thus, yyy(T ) is the unique solution of a strictly
convex quadratic programming calculation.

Theorem 1 The vector yyy(T ) minimizes the objective function (3) subject to the
constraints yyy ∈ Y (k, n) if and only if the equation

k∑

j=1, j odd

α(tj−1, tj )+
k∑

j=1, j even

β(tj−1, tj ) =

min
1=s0≤s1≤···≤sk=n

⎧
⎨

⎩

k∑

j=1, j odd

α(sj−1, sj )+
k∑

j=1, j even

β(sj−1, sj )

⎫
⎬

⎭
(7)

holds.

Proof We consider first the necessary conditions. We prove that if yyy(T ) mini-
mizes (3) subject to yyy ∈ Y (k, n), then Equation (7) is obtained. In view of property
II, the sequence {y(T )i : i = tj−1, tj−1 + 1, . . . , tj } is the best monotonic
increasing approximation to the data {φi : i = tj−1, tj−1+1, . . . , tj } if j is odd and
it is the best monotonic decreasing approximation if j is even, because otherwise
we can reduce ||yyy(T ) − φφφ||2 by replacing {y(T )i : i = tj−1, tj−1 + 1, . . . , tj } by
the best monotonic approximation to the data {φi : i = tj−1, tj−1 + 1, . . . , tj },
which preserves yyy(T ) ∈ Y (k, n). Hence we have

tj∑

i=tj−1

(yi − φi)2 =
{
α(tj−1, tj ), j odd
β(tj−1, tj ), j even.

(8)
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We add (8) for j = 1, 2, . . . , k, we take into account (4) and we see that the left-
hand side of the expression (7) has the value ||yyy(T )− φφφ||22, namely

k∑

j=1, j odd

α(tj−1, tj )+
k∑

j=1, j even

β(tj−1, tj ) = ||yyy(T )− φφφ||22. (9)

Consequently the value ||yyy(T )−φφφ||22 implies the bound on the right-hand side of (7),

min
1=s0≤s1≤···≤sk=n

⎧
⎨

⎩

k∑

j=1, j odd

α(sj−1, sj )+
k∑

j=1, j even

β(sj−1, sj )

⎫
⎬

⎭
≤ ||yyy(T )− φφφ||22.

(10)

It follows that the Equation (7) is satisfied, provided that we can establish the
inequality

||zzz∗ − φφφ||22 ≤ min
1=s0≤s1≤···≤sk=n

⎧
⎨

⎩

k∑

j=1, j odd

α(sj−1, sj )+
k∑

j=1, j even

β(sj−1, sj )

⎫
⎬

⎭
,

(11)

where zzz∗ is any solution of the problem that minimizes (3) subject to yyy ∈ Y (k, n).
Let {sj : j = 0, 1, . . . , k} be any integers that satisfy the conditions

1 = s0 ≤ s1 ≤ · · · ≤ sk = n
and let yyy− be the n-vector that gives the terms of the expression

||yyy− − φφφ||22 = α(s0, s1)+
k∑

j=2, j odd

α(sj−1 + 1, sj )+
k∑

j=2, j even

β(sj−1 + 1, sj ),

(12)

where we define α(i, j) and β(i, j) to be zero if j < i. Hence, we obtain the
inequality

α(s0, s1)+
k∑

j=2, j odd

α(sj−1 + 1, sj )+
k∑

j=2, j even

β(sj−1 + 1, sj ) ≤

k∑

j=1, j odd

α(sj−1, sj )+
k∑

j=1, j even

β(sj−1, sj ). (13)
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As yyy− is in Y (k, n) and zzz∗ is optimal, we have ||zzz∗ − φφφ||22 ≤ ||yyy− − φφφ||22. This
inequality, (12) and (13) imply inequality (11). We deduce from (9), (10) and (11)
that Equation (7) is true.

In order to complete the proof of the theorem, we consider next the sufficient
conditions. We let the integers {tj : j = 0, 1, . . . , k} satisfy the conditions (2) and
the Equation (7) and we show that yyy(T ) minimizes (3) subject to yyy ∈ Y (k, n).
It suffices to construct a vector with integer variables {tj : j = 0, 1, . . . , k}
that satisfies the constraints satisfied by yyy(T ), minimizes (3) and provides the
interpolation equations (4). The remaining proof is rather long and falls into two
parts.

In the first part, we construct a vector that gives the least value of (3). As a
consequence of the necessary conditions, if the values {tj : j = 1, 2, . . . , k − 1}
are optimal, then the least value of the objective function (3) for yyy in Y (k, n) is
achieved and it is equal to

||zzz∗ − φφφ||2 =
k∑

j=1, j odd

α(tj−1, tj )+
k∑

j=1, j even

β(tj−1, tj ), (14)

where zzz∗ is any solution of the calculation.
Letψψψ be the n-vector whose components occur in the definition of α(tj−1, tj−1)

when j is odd in [1, k] and in the definition of β(tj−1, tj − 1) when j is even in
[1, k]. It follows that either ψtj−1 ≥ ψtj or ψtj−1 < ψtj when j is odd, where
ψtj−1 occurs at α(tj−1, tj − 1) and ψtj occurs at β(tj , tj+1 − 1). By changing tj
if necessary to tj − 1 we can restore the feasibility of the constraints (1). The case
when j is even is treated analogously. Thereforeψψψ ∈ Y (k, n) and

||zzz∗ − φφφ||2 ≤ ||ψψψ − φφφ||2. (15)

Since

||ψψψ − φφφ||22 =
k−1∑

j=1, j odd

α(tj−1, tj − 1)+
k−1∑

j=1, j even

β(tj−1, tj − 1)+ δ(tk−1, tk),

(16)

where δ stands for α if k is odd and for β if k is even, we obtain the bound

||ψψψ − φφφ||2 ≤
k∑

j=1, j odd

α(tj−1, tj )+
k∑

j=1, j even

β(tj−1, tj ). (17)
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In view of (14), (15), (16) and (17) we obtain the equality

k−1∑

j=1, j odd

α(tj−1, tj − 1)+
k−1∑

j=1, j even

β(tj−1, tj − 1)+ δ(tk−1, tk) =

k∑

j=1, j odd

α(tj−1, tj )+
k∑

j=1, j even

β(tj−1, tj ). (18)

If we remove the condition ytj−1 ≤ ytj from the calculation of α(tj−1, tj ), the

minimum value of
∑tj
i=tj−1

(yi − φi)2 subject to ytj−1 ≤ ytj−1+1 ≤ · · · ≤ ytj is not
greater than before and it is equal to α(tj−1, tj − 1). Hence we have the inequalities

α(tj−1, tj − 1) ≤ α(tj−1, tj ), for j = 1, 2, . . . , k.

Since any strict inequality in these relations will rule out (18), α(tj−1, tj − 1) =
α(tj−1, tj ) should occur, and similarly β(tj−1, tj − 1) = β(tj−1, tj ). Therefore, we
have obtained the relations

α(tj−1, tj − 1) = α(tj−1, tj ), j odd
β(tj−1, tj − 1) = β(tj−1, tj ), j even

}

, (19)

where, for notational purpose, we let tk − 1 = tk . This concludes the first part of the
proof with respect to the sufficiency conditions.

In the second part, we show that vector ψψψ satisfies the constraints (1) and the
interpolation equations (4). Remembering the monotonicity of the components ofψψψ
on the interval [tj−1, tj − 1], when j ∈ [1, k− 1] is odd, we let p be an integer such
that tj−1 ≤ p ≤ tj − 1 and ψp−1 < ψp = ψp+1 = · · · = ψtj−1 = η∗, except that
we ignore the inequality ψp−1 < ψp if p = tj−1, where η∗ is the unique number

that minimizes the sum of squares
∑tj−1
i=p (η − φi)2. Note that η∗ is the average of

the data {φp, φp+1, . . . , φtj−1}. Further, we let {ψ(α)i : i = tj−1, tj−1 + 1, . . . , tj }
be the components that occur in the definition of α(tj−1, tj ). In order to calculate
α(tj−1, tj ) from α(tj−1, tj − 1), whenever tj − tj−1 ≥ 1, we find that η∗ > φtj
would give α(tj−1, tj ) > α(tj−1, tj − 1), which contradicts the first line of (19).

Hence η∗ ≤ φtj and it is optimal to let ψ(α)tj = φtj . Besides that we have derived

this equation, the monotonicity condition ψtj−1 ≤ ψ(α)tj is also satisfied. Hence and

since the components {ψ(α)i = ψi : i = tj−1, tj−1 + 1, . . . , tj − 1} are allowed
by conditions ytj−1 ≤ ytj−1+1 ≤ · · · ≤ ytj−1 and are unique, it follows that the
components

ψ
(α)
i =

{
ψi, i = tj−1, tj−1 + 1, . . . , tj − 1
φtj , i = tj

(20)
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must occur in α(tj−1, tj ) while the first line of (19) is being preserved. Thus, we
have found that

ψ
(α)
tj−1 ≤ ψ(α)tj = φtj , j odd (21)

and similarly we deduce from the second line of the Equation (19) that

ψ
(β)
tj−1 ≥ ψ(β)tj = φtj , j even, (22)

where we let {ψ(β)i : i = tj−1, tj−1 + 1, . . . , tj } be the components that occur in
the definition of β(tj−1, tj ).

Next, we continue the proof by establishing the relations

φtj = ψ(β)tj ≥ ψ(β)tj+1, j odd

φtj = ψ(α)tj ≤ ψ(α)tj+1, j even

}

. (23)

To this end, we will first show that

β(tj , tj+1) = β(tj + 1, tj+1), j odd.

If we remove the condition ytj ≥ ytj+1 from the calculation of β(tj , tj+1), the

minimum value of
∑tj+1
i=tj (yi − φi)2 subject to ytj+1 ≥ ytj+2 ≥ · · · ≥ ytj+1 is

not greater than before and it is equal to β(tj + 1, tj+1). It follows that we have
the inequality β(tj , tj+1) ≥ β(tj + 1, tj+1). Strict inequality here would imply

φtj < ψ
(β)
tj

. Hence we let q be an integer such that tj < q ≤ tj+1 and ψ(β)tj =
ψ
(β)
tj+1 = · · · = ψ(β)q > ψ

(β)
q+1, except that we ignore the inequality ψ(β)q > ψ

(β)
q+1

if q = tj+1. As ψ(β)tj is equal to the average of the data {φtj , φtj+1, . . . , φq} it

follows that either there exists an integer κ such that tj < κ ≤ q and ψ(β)κ < φκ or

ψ
(β)
tj
= φtj+1 = φtj+2 = · · · = φq . We consider these two cases.

(1) If ψ(β)κ < φκ we can increase ψ(β)κ to φκ , which reduces the value of ||zzz∗ −φφφ||2
and yet, remembering the monotonicity of {ψ(α)i : i = tj−1, tj−1 + 1, . . . , tj },
the relations (21) and the inequality φtj < ψ

(β)
tj

, we obtain the inequalities

ψ
(α)
tj−1

≤ · · · ≤ ψ(α)tj = φtj < ψ(β)tj = · · · = ψ(β)κ−1 < ψ
(β)
κ = φκ. (24)

Hence by changing tj to the integer κ we can restore the conditions (1), preserve
the relations (21) and reduce the optimal value of (3), which is a contradiction.

(2) A similar contradiction is derived if ψ(β)tj = φtj+1 = φtj+2 = · · · = φq upon
replacing tj by tj + 1.

We conclude from these two cases that the assumption β(tj , tj+1) > β(tj +
1, tj+1) is contradicted and the equation β(tj , tj+1) = β(tj + 1, tj+1) follows.
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Next, by an argument similar to that given just above (20), it is optimal to let
ψ
(β)
tj
= φtj which gives the first line of (23) and similarly we can establish the

second line of (23).
We deduce from (21), (22) and (23) that the equations

ψ
(α)
tj
= φtj = ψ(β)tj , j ∈ [1, k − 1] (25)

hold. Therefore by letting the components of the vectorψψψ be

ψtj = φtj , j = 1, 2, . . . , k − 1 (26)

and

ψi =
{
ψ
(α)
i , i = tj−1 + 1, tj−1 + 2, . . . , tj − 1, j odd

ψ
(β)
i , i = tj−1 + 1, tj−1 + 2, . . . , tj − 1, j even,

(27)

in view of (25), (26) and the monotonicity properties of ψψψ(α) and ψψψ(β) on the
intervals [tj−1, tj ], we have the bounds

ψtj−1 ≤ ψtj ≥ ψtj+1, j odd
ψtj−1 ≥ ψtj ≤ ψtj+1, j even

}

, (28)

for all integers j in [1, k − 1].
Thus, given the integer values {tj : j = 1, 2, . . . , k − 1}, the conditions (2) and

the Equations (7), we have constructed a vectorψψψ that satisfies the same constraints
as yyy(T ), provides the least value of the function (3) and allows the interpolation
equations (26). Since yyy(T ) is the unique solution of the strictly convex quadratic
programming problem that minimizes (3) subject to the constraints (1) we have
yyy(T ) = ψψψ . The proof of the theorem is complete. ��

The important consequence of Theorem 1 is that it reduces the combinatorial
problem that defines the least squares piecewise monotonic approximation to the
equivalent formulation (7), which partitions the data into disjoint sets of adjacent
data and solves a monotonic problem on each set. The partitioning is achieved
by dynamic programming (for a general reference on dynamic programming see
Bellman [2]) and the procedure of Demetriou and Powell [10] is quite efficient for
this calculation. Subsequently we give a brief description.

If the values {tj : j = 0, 1, . . . , k} are optimal and k is odd, say, then the least
value of (3) is the expression

k∑

j=1, j odd

α(tj−1, tj )+
k∑

j=1, j even

β(tj−1, tj ) =

α(t0, t1)+ β(t1, t2)+ α(t2, t3)+ · · · + α(tk−1, tk). (29)
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Now for any t2, the value of t1 from [t0, t2] that minimizes α(t0, t1) + β(t1, t2) is
independent of the integers {tj : 3 ≤ j ≤ k}. If we let

γ (2, t2) = min
t0≤t1≤t2

{α(t0, t1)+ β(t1, t2)}

for 1 ≤ t2 ≤ n, the right-hand side of Equation (29) becomes equal to

γ (2, t2)+ α(t2, t3)+ · · · + α(tk−1, tk). (30)

Proceeding in this way, we obtain

γ (3, t3) = min
t0≤t2≤t3

min
t0≤t1≤t2

{α(t0, t1)+ β(t1, t2)+ α(t2, t3)}

and we generalize by defining

γ (m, t) =
t∑

i=1

(zi − φi)2,

where for any integers m ∈ [1, k] and t ∈ [1, n], we let Y (m, t) be the set of
t-vectors zzz with m monotonic sections. Therefore in order to calculate γ (k, n),
which is the least value of (3), we begin with the values γ (1, t) = α(1, t), for
t = 1, 2, . . . , n and proceed by applying the formulae

γ (m, t) =
⎧
⎨

⎩

min
1≤s≤t [γ (m− 1, s)+ α(s, t)] , m odd

min
1≤s≤t [γ (m− 1, s)+ β(s, t)] , m even,

(31)

and storing τ(m, t), which is the value of s that minimizes the right-hand term of
expression (31), for t = 1, 2, . . . , n, as m = 2, 3, . . . , k. Then γ (k, n) can be found
inO(kn2) computer operations. At the end of the calculation,m = k occurs and the
value τ(k, n) is the integer tk−1 that is required in equation

γ (k − 1, tk−1)+ α(tk−1, n) = min
1≤s≤n [γ (k − 1, s)+ α(s, n)] , k odd, (32)

if k is odd and analogously if k is even. Hence, we set t0 = 1 and tk = n, and we
obtain the sequence of optimal values {tj : j = 1, 2, . . . , k − 1} by the backward
formula

tj−1 = τ(j, tj ), for j = k, k − 1, . . . , 2. (33)

Finally, the components of an optimal approximation are obtained by independent
monotonic approximation calculations between adjacent {tj }.
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Further considerations on improved versions of this calculation are given in
[6] and the relevant Fortran software package [7], which is available through
the Collected Algorithms in the Transactions on Mathematical Software (http://
calgo.acm.org/). Recent work of the author [9], which takes advantage of some
ordering relations of the integers τ(m, t), implements the dynamic programming
formulae (31) in terms of a tree structure, which reduces the computational
complexity to O(n2 + kn log2 n). Both algorithms give the same solution, but it
is the utilization of an algorithm that may assist the choice.

The mentioned calculations include also techniques that reduce operations count
in theory and achieve far greater reductions of the computation times in practice.
With no further details, we quote some timings from such algorithms, when they
calculate an approximation as follows. We let the number of data take the values
n = 100, 1000, 5000, 10,000, 20,000 and 30,000, we let εi be a random number
from the distribution that is uniform on the interval [−0.1, 0.1] and we generated the
data φi = sin(πxi)+ εi on the equally spaced grids 0 = x1 < x2 < · · · < xn = u,
for u = 9, 24, 49. We required best approximations with k = 10, 25, 50 monotonic
sections on the first, second and third grid, respectively. The experiments were
run on a HP 8770w portable workstation with an Intel Core i7-3610QM, 2.3 GHz
processor, which was used with the standard Fortran compiler of the Intel Visual
Fortran Composer XE2013 in single precision arithmetic operating on Windows
7 with 64 bits word length. We present the required CPU times in seconds in
Tables 1 and 2 by using versions from two algorithms. The times of Table 1
seem to be weakly proportional to n2 and the times of Table 2 proportional to
n. Recalling the number of combinations required in order to obtain the optimal
integers tj , j = 1, 2, . . . , k − 1, we see that, indeed, the algorithms are very
efficient.

Table 1 Tabulation of CPU
time to apply the software
package of [7]

n k = 10 k = 25 k = 50

100 0.02 0.01 0.00

1000 0.05 0.03 0.03

5000 0.50 0.66 0.53

10,000 2.09 1.73 1.72

20,000 4.93 7.72 10.65

30,000 3.81 15.79 25.18

Table 2 As in Table 1, but
the O(n2 + kn log2 n)

algorithm is applied

n k = 10 k = 25 k = 50

100 0.00 0.00 0.01

1000 0.00 0.02 0.01

5000 0.02 0.06 0.09

10,000 0.03 0.14 0.23

20,000 0.14 0.30 0.55

30,000 0.23 0.55 0.95

http://calgo.acm.org/
http://calgo.acm.org/
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3 Estimation of Peaks of an NMR Spectrum

In this section we present an example of our method intended to illustrate the
estimation of peaks in an NMR spectrum sample from chemical shifts of CE-584.1,
which is the morphoagronomic characteristic of a cowpea seed (vigna unguiculata).
In general, the location of peaks and their intensities for a spectrum are the signature
of a sample. The complexity of the underlying physical laws makes this a good test
of the power of the piecewise monotonic approximation method in peak finding.

To be specific, we downloaded the datafile of a spectrum, which accompanies
the article of Alves Filho et al. [1] and is available on the Elsevier website [12].
The spectrum was sampled on an NMR spectrometer Agilent 600-MHz, 5mmH (H-
F/15N-31P) One ProbeTM. The raw data is provided in file ‘Complimentary Table
3.xls’ of [1]. The leftist two columns, where the first column keeps the chemical shift
(ppm) and the second column (CE584.1) keeps the intensity, provide the values {xi :
i = 1, 2, . . . , n} and {φi : i = 1, 2, . . . , n}, respectively for our calculation. The
abscissae {xi : i = 1, 2, . . . , n} are irrelevant to our calculation, except that they are
used in our plots. The file contains 110,403 pairs of data far too many to be presented
as raw numbers in these pages. Although the details cannot be seen due to page
resolution, we may capture the main features of this data set by looking at Figure 1.
Indeed, we can see, for instance, very small deviations, many distinguishable peaks,
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Fig. 1 1H NMR spectrum dataset of Vigna unguiculata 584.1 (See Table 3 in [1]). The solid line
joins 110,403 data points
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Fig. 2 Best piecewise monotonic fit with k = 50 to the data (crosses) of Figure 1. The solid line
illustrates the fit
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Fig. 3 A portion of the plot of Figure 2

sharp increases and several peaks with lower intensity. However, it is not possible
to delve into details.
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We seek major turning points (peaks and troughs) of this spectrum. We fed the
data to our computer program with k = 50 without any preliminary analysis. The
resultant fit has 49 turning points, so there are 25 peaks and 24 troughs, and is
displayed in Figure 2. The computation time required for obtaining the solution was
less than a minute. We see that the fit to the data is much smoother than are the data
values themselves, but still it is difficult to distinguish many details on a printed
page. Therefore, in Figure 3 we display a portion of Figure 2, which includes 4089
data points or about 4% of the amount of data, in order to see local details of the fit.

It is important to note that the piecewise monotonic approximation has revealed
the most important turning points (peaks and troughs), while it interpolates the data
at these points due to the Equation (4). In view of this property of the approximation,
we present in Table 3 the positions of the turning points of the fit together with the
corresponding intensities. Two points are worth emphasizing with respect to this
example. Firstly, the method effectively captured the trends of the data and detected

Table 3 Positions (xtj ) and intensities (φtj ) of the turning points in the NMR spectrum of Vigna
unguiculata 584.1 (see Figure 1) by the best fit with k = 50 monotonic sections (see Figure 2)

j tj xtj φtj j tj xtj φtj

0 1 –1.499966e+0 –3.090880e+5 26 43440 3.811764e+0 1.837607e+8

1 12268 4.540000e–5 2.700000e+9 27 43566 3.827171e+0 1.952043e+9

2 12914 7.903843e–2 1.709395e+7 28 43742 3.848692e+0 5.128544e+8

3 19909 9.343884e–1 1.734959e+8 29 43818 3.857985e+0 1.268841e+9

4 21242 1.097388e+0 7.505543e+7 30 44068 3.888556e+0 2.796269e+8

5 29753 2.138115e+0 6.962561e+8 31 44259 3.911911e+0 8.618427e+8

7 32950 2.529044e+0 9.596586e+8 33 44974 3.999341e+0 7.619820e+8

8 33049 2.541150e+0 9.292265e+7 34 45230 4.030645e+0 1.102941e+8

9 33158 2.554479e+0 1.304342e+9 35 45472 4.060237e+0 1.349148e+9

10 33672 2.617331e+0 5.020448e+7 36 45922 4.115263e+0 7.794741e+7

11 34024 2.660373e+0 1.140659e+9 37 46246 4.154882e+0 3.639329e+8

12 34146 2.675292e+0 1.006428e+8 38 46598 4.197925e+0 9.973205e+7

13 34232 2.685808e+0 8.102999e+8 39 46765 4.218345e+0 8.292408e+8

14 35320 2.818848e+0 4.478114e+7 40 46808 4.223603e+0 1.653756e+8

15 38513 3.209289e+0 1.762919e+9 41 46851 4.228861e+0 8.764532e+8

16 39442 3.322887e+0 3.736386e+7 42 48387 4.416684e+0 6.837490e+7

17 40733 3.480751e+0 5.216682e+8 43 48634 4.446887e+0 5.032446e+8

18 40935 3.505452e+0 6.344673e+7 44 51113 4.750020e+0 0.000000e+0

19 41487 3.572950e+0 5.599327e+8 45 53194 5.004485e+0 9.085181e+8

20 41857 3.618194e+0 6.247412e+7 46 54734 5.192796e+0 1.524049e+7

21 42414 3.686304e+0 2.244380e+9 47 56613 5.422561e+0 5.838891e+8

22 42678 3.718586e+0 1.204448e+8 48 56664 5.428797e+0 7.275355e+7

23 43036 3.762362e+0 1.240367e+9 49 56726 5.436378e+0 5.660183e+8

24 43094 3.769455e+0 4.398070e+8 50 110403 1.200001e+1 –4.437627e+5

25 43133 3.774224e+0 1.202403e+9 – – – –
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appropriate peaks subject to the requirement that k = 50 in the constraints (1)
and the conditions (2). Secondly, the method is so efficient that we can run it for a
sequence of integers k if a suitable value is not known in advance.

4 Summary

We considered the problem that makes least the sum of squares of residuals by an
approximation to n noisy data subject to the condition that the approximated values
have at most k monotonic sections, where the joints of the monotonic sections are
also unknowns of the calculation. It is a combinatorial optimization calculation that
can have an enormous number of local minima.

We stated a characterization theorem, which provides a decomposition of the
problem into at most k best monotonic approximation problems to disjoint subsets
of adjacent data. Decomposition is achieved by a dynamic programming procedure,
which allows some highly efficient calculations of the solution. We quoted some
timings from numerical experiments which confirmed these efficiencies.

Piecewise monotonic approximation may have many useful applications in
various fields. For example, one may require to calculate the peaks of a spectrum,
when the spectrum is represented by a number of noisy measurements, which
is a problem at the heart of spectroscopy and chromatography. Also, medical
applications of this method arise from image restoration in magnetic resonance
imaging and computed tomography, such as in the treatment of malignant tumors
by radiation, when dose reduction techniques reduce the diagnostic quality of the
image due to noise contamination. We demonstrated the efficacy of our method on
peak finding of a large dataset of NMR data and some further results for this case
will be published separately.

It is straightforward to generalize Theorem 1 to the case when one requires a best
piecewise monotonic approximation that minimizes an error function that instead of
(yi − φi)2 the function hi(yi − φi) is considered, where hi is a strictly convex and
continuous function from R to R whose least value is hi(0) = 0 and hi(θ)→∞ as
|θ | → ∞.

Acknowledgement I want to express my deep gratitude to late Professor M.J.D. Powell of
Cambridge University for his invaluable advice, guidance and discussions on this problem since
when I was his PhD student [4].
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Recent Progress in Optimization
of Multiband Electrical Filters

Andrei Bogatyrëv

Abstract The best uniform rational approximation of the sign function on two
intervals was explicitly found by Russian mathematician E.I. Zolotarëv in 1877.
The progress in math eventually led to the progress in technology: half a century
later German electrical engineer and physicist W. Cauer on the basis of this solution
has invented low- and high-pass electrical filters known today as elliptic or Cauer-
Zolotarëv filters and possessing the unbeatable quality. We discuss a recently
developed approach for the solution of optimization problem naturally arising in
the synthesis of multi-band (analogue, digital or microwave) electrical filters. The
approach is based on techniques from algebraic geometry and generalizes the
effective representation of Zolotarëv fraction.

1 History and Background

Sometimes the progress in mathematics brings us to the progress in technology.
One of such examples is the invention of low- and high-pass electrical filters widely
used nowadays is electronic appliances. The story started in year 1877 when E.I.
Zolotarëv (1847–1878)—the pupil of P.L. Chebyshëv—has solved a problem of best
uniform rational approximation of the function sign(x) on two segments of real
axis separated by zero. His solution now called Zolotarëv fraction is the analogy
of Chebyshëv polynomials in the realm of rational functions and inherits many
nice properties of the latter. This work of Zolotarëv who also attended lectures
of K. Weierstrass and corresponded to him was highly appreciated by the German
scholar. More than 50 years later German electrical engineer, physicist and guru of
network synthesis Wilhelm Cauer (1900–1945) has invented electrical filters with
the transfer function based on Zolotarëv fraction.
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Further development of technologies brings us to more sophisticated optimiza-
tion problems [13, 14, 20, 21, 23]. In particular, modern gadgets may use several
standards of wireless communication like IEEE 806.16, GSM, LTE, GPS and
therefore a problem of filtering on several frequency bands arises. Roughly, the
problem is this: given the mask of a filter, that is the boundaries of its stop and
pass bands, the levels of attenuation at the stopbands and the permissible ripple
magnitude at the passbands, to find minimum degree real rational function fitting
this mask. The problem reduces to a solution of a series of somewhat more simple
minimal deviation problems on several segments similar to the one considered by
Zolotarëv. Several equivalent formulations will appear in Section 2.1.

Those problems turned out to be very difficult from the practical viewpoint
because of intrinsic instability of most numerical methods of rational approxi-
mation. However, we know how the ‘certificate’ of the solution (see contribution
from Panos Pardalos in this volume) for this particular case looks like: the solution
possesses the so-called equiripple property, that is behaves like a wave of constant
amplitude on each stop or passband. The total number of ripples is bounded from
below. In a sense the solution for this problem is rather simple—you just manifest
function with a suitable equiripple property. Such behaviour is very unusual for
generic rational functions; therefore, functions with equiripple property fill in a
variety of relatively small dimension in the set of rational functions of bounded
degree. The natural idea is to look for the solution in the ‘small’ set of the
distinguished functions instead of the ‘large’ set of generic functions. Ansatz is an
explicit formula with few parameters which allows to parametrize the ‘small’ set.
This Ansatz ideology had been already used to calculate the so-called Chebyshëv
polynomials on several segments [4], optimal stability polynomials for explicit
multistage Runge-Kutta methods [5, 6] and solve some other problems [7]. Recall,
e.g., Bethe Ansatz for finding exact solutions for Heisenberg antiferromagnetic
model. Ansatz for optimal electrical filters is discussed in Section 7.

2 Optimization Problem for Multiband Filter

Suppose we have a finite collection E of disjoint closed segments of real axis R.
The set has a meaning of frequency bands and is decomposed into two subsets: E =
E+ ∪ E− which are, respectively, called the passbands E+ and the stopbands E−.
Both subsets are nonempty. Optimization problem for electrical filter has several
equivalent settings [1, 3, 12, 22, 26].

2.1 Four Settings

In each of the listed below cases we minimize certain quantity among real rational
functions R(x) of bounded degree degR ≤ n being the maximum of the degrees of
numerator and denominator of the fraction. The goal function may be the following.
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2.1.1 Minimal Deviation
maxx∈E+ |R(x)|
minx∈E− |R(x)| −→ min =: θ2 ≤ 1

2.1.2 Minimal Modified Deviation

max{max
x∈E+

|R(x)|, max
x∈E−

1/|R(x)|} −→ min =: θ

2.1.3 Third Zolotarëv Problem

Minimize θ under the condition that there exist real rational function R(x), degR ≤
n, with the restrictions

min
x∈E−

|R(x)| ≥ θ−1, max
x∈E+

|R(x)| ≤ θ

2.1.4 Fourth Zolotarëv Problem

Define the indicator function S(x) = ±1 when x ∈ E±. Find the best uniform
rational approximation R(x) of S(x) of the given degree:

||R − S||C(E) := max
x∈E |R(x)− S(x)| → min =: μ.

It is a good exercise to show that all four settings are equivalent and in particular
the value of θ is the same for the first three settings and 1/μ = (θ + 1/θ)/2 for the
fourth one.

2.2 Study of Optimization Problem

Setting 2.1.1 appears in the paper [3] by R.A.-R. Amer, H.R. Schwarz (1964). It
was transformed to problem of Section 2.1.2 by V.N. Malozemov [22]. Setting 2.1.3
appears after suitable normalization of the rational function in Section 2.1.1 and
essentially coincides with the third Zolotarëv problem [26]. Setting 2.1.4 coincides
with the fourth Zolotarëv problem [26] and was studied by N.I. Akhiezer [1]. The
latter noticed that already in the classical Zolotarëv case when the set E contains
just two components, the minimizing function is not unique. This phenomenon
was fully explained in the dissertation of R.-A.R. Amer [3] who decomposed the
space of rational functions of bounded deviation (defined in the left-hand side of
formula in Section 2.1.1) into classes. Namely, it is possible to fix the sign of the
polynomial in the numerator of the fraction on each stopband and fix the sign of
denominator polynomial on each passband. Then in the closure of each nonempty
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class there is a unique minimum. All mentioned authors established that (local)
minimizing functions are characterized by alternation (or equiripple in terms of
electrical engineers) property. For instance, in the fourth Zolotarëv problem the
approximation error δ(x) := R(x) − S(x) of degree n minimizer has 2n + 2
alternation points as ∈ E where δ(as) = ±||δ||C(E) with consecutive change of
sign.

3 Zolotarëv Fraction

E.I. Zolotarëv has solved the problem 2.1.4 for the simplest case: E± = ±[1, 1/k],
0 < k < 1 when S(x) = sign(x). His solution is given parametrically in terms
of elliptic functions and its graph (distorted by a pre- composition with a linear
fractional map) is shown in Figure 1.

To give an explicit representation for this rational function, we consider a
rectangle of size 2× |τ |:

Πτ = {u ∈ C : |Re u| ≤ 1, 0 < Im u < |τ |}, τ ∈ iR+

which may be conformally mapped to the upper half plane with the normalization
xτ (u) : Πτ ,−1, 0, 1 −→ H,−1, 0, 1. The latter mapping has a closed appearance
xτ (u) = sn(K(τ)u|τ) in terms of elliptic sine and complete elliptic integralK(τ) =
π
2 θ

2
3 (τ ), both of modulus τ [2]. Zolotarëv fraction has a parametric representation

resembling the definition of a classical Chebyshëv polynomial:

Fig. 1 Graph of Zolotarëv fraction adapted to two segments E± of different lengths
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Fig. 2 Large rectangle Πnτ
composed of n copies of
small one Πτ

-1 10

τ

nτ

Zn(xnτ (u)) = xτ (u).
Of course, it takes some effort to prove that Zn is the rational function of its
argument (we face the same difficulty with classical Chebyshev polynomial defined
parametrically as Tn(cos(u)) := cos(nu)). The qualitative graph of Zolotarëv
fraction completely follows from Figure 2, for instance its 2n − 2 critical points
correspond to the interior intersection points of the vertical boundaries of the large
rectangle Πnτ and horizontal boundaries of smaller rectangles. Alternation points
different from critical points of the fraction correspond to four corners of the large
rectangle. Zeros/poles of the fraction correspond to u = lτ with even/odd l.

Remark 1 Zolotarëv fractions share many interesting properties with Chebyshëv
polynomials as the latter are the special limit case of the former [9, 10]. For instance,
the superposition of suitably chosen Zolotarëv fractions is again a Zolotarëv
fraction. They also appear as the solutions to many other extremal problems
[15, 16, 18].

4 Projective View

Here we discuss the optimization problem setting which embraces all the formu-
lations we met before in Section 2.1. We do not treat the infinity point both in
the domain of definition and the range of rational function as exceptional. Real
line extended by a point at infinity becomes a real projective line RP 1 := R̂ =
R∪{∞}which is a topological circle. We consider two collections of disjoint closed
segments on the extended real line: E consisting of m ≥ 2 segments and F of just
two segments. The segments of both E and F are of two types: E := E+ ∪ E−;
F := F+ ∪ F−.

Definition 1 We introduce the class Rn(E, F ) of real rational functions R(x) of a
fixed degree degR = n such that R(E+) ⊂ F+ and R(E−) ⊂ F−.
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� RP 1

∂−F− ∂+F− ∂−F+ ∂+F+

F− F+

Fig. 3 The ordering of four endpoints ∂F and their colors

The set of values F modulo projective (=linear-fractional) transformations
depends on a single value—cross ratio of its endpoints. Suppose the endpoints ∂F
are cyclically ordered as follows: ∂−F−, ∂+F−, ∂−F+, ∂+F+—see Figure 3 then
the cross ratio of four endpoints we define as follows:

Definition 2

κ(F ) := ∂
+F+ − ∂+F−
∂+F+ − ∂−F+ :

∂−F− − ∂+F−
∂−F− − ∂−F+ > 1.

The classes Rn(E, F ) (possibly empty) and the value of the cross ratio have
several easily checked properties:

Lemma 1

1. Monotonicity.

Rn(E, F ′) ⊂ Rn(E, F ) once F ′ ⊂ F.
2. Projective invariance. For any projective transformations α, β ∈ PGL2(R),

Rn(αE, βF) = β ◦Rn(E, F ) ◦ α−1.

3. The value κ(F ) is decreasing with the growth of its argument: if F ′ ⊂ F then
κ(F ′) > κ(F ).

4.1 Projective Problem Setting

Fix degree n > 0 and set E ⊂ RP 1, find

�(n,E) := inf{κ(F ) : Rn(E, F ) = ∅}.
The idea behind this optimization is the following: we squeeze the set of values
F , the functional class Rn(E, F ) diminishes and we have to catch the moment—
quantitatively described by the cross ratio κ(F )—when the class disappears.
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Remark 2

1) In problem formulation 2.1.3 the set F+ = [−θ, θ ] and the set F− =
[1/θ,−1/θ ]; κ(F ) =

(
1
2 (θ + 1/θ)

)2
. In setting 2.1.4 the sets F± = ±[1 −

μ, 1+ μ] and κ(F ) = μ−2.
2) Notice that the cross ratio depends on the order of four participating endpoints

and may take six values interchanged by the elements of the so-called unhar-
monic group.

4.2 Decomposition into Subclasses

Now we decompose each set Rn(E, F ) into subclasses which were first introduced
for the problem setting 2.1.1 by R.A.-R. Amer in his PhD thesis [3] in 1964. The
construction of these subclasses is purely topological: suppose we identify opposite
points of a circle S1, we get a double cover of a circle identified with real projective
line RP 1 by another circle S1. Now we try to lift the mapping R(x) : RP 1 →
RP 1 to the double cover of the target space: R̃(x) : RP 1 → S1. There is a
topological obstruction to the existence of R̃: the mapping degree or the winding
number of R(x) modulo 2. A simple calculation shows that this value is equal to
algebraic degree degR mod 2. However this lift exists on any simply connected
piece of RP 1. Suppose the segment E(j) is made up of two consecutive segments
Ej , Ej+1 of the set of bands E = ∪mj=1Ej and the gap between them. The set

F ⊂ RP 1 lifted to the circle S1 consists of four components cyclically ordered as
F−0 , F

+
0 , F

−
1 , F

+
1 ⊂ S1. The mapping R(x) : E(j) → RP 1 has two lifts to the

covering circle S1 and exactly one of them has values R̃(x) ∈ F0 := F−0 ∪ F+0
when x ∈ Ej . On the opposite side Ej+1 of the segment the same function R̃(x)
takes values in the set Fσ(j) with well-defined σ(j) ∈ {0, 1}. Totally, the function
R(x) defines an element of Z2 for any two consecutive segments of the set E with
the only constraint

m∑

j=1

σ(j) = deg R mod 2.

which defines the element Σ := (σ1, σ2, . . . , σm−1) ∈ Z
m−1
2 . All elements R(x) ∈

Rn(E, F ) with the same value of Σ ∈ Z
m−1
2 make up a subclass Rn(E, F,Σ).

Again, one readily checks the properties of the new classes:

Lemma 2

1. Monotonicity:

Rn(E, F ′,Σ) ⊂ Rn(E, F,Σ) once F ′ ⊂ F.
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2. Projective invariance

β ◦Rn(E, F,Σ) = Rn(E, βF, βΣ), β ∈ PGL2(R).

here projective transformation β acts on Σ component wise: σ(j) reverses
exactly when β changes the orientation of projective line and the bandsEj ,Ej+1
are of different ±-type. Otherwise—iff β ∈ PSL2(R) or bands Ej ,Ej+1 are
both pass- or stopbands—σ(j) is kept intact.

Remark 3 R.-A.R. Amer [3] combines classes Rn(E, F,Σ) and Rn(E, F, βΣ) for
β reversing the orientation of projective line and conserving the components F±.
This is why he gets twice less number 2m−2 of classes.

4.3 Extremal Problem for Classes

Given degree n, set of bands E, and the class Σ—find

�(n,E,Σ) := inf{κ(F ) : Rn(E, F,Σ) = ∅}. (1)

4.4 Equiripple Property

Definition 3 We say that cyclically ordered (on projective line) points
a1, a2, . . . as ⊂ E make up an alternation set for the function R(x) ∈ Rn(E, F )
iff R(x) maps each of those points to the boundary ∂F = ∂+F ∪ ∂−F , and any
two consecutive points—to different sets ∂+F , ∂−F colored black and white in
Figure 3.

Theorem 1 If the value �(n,E,Σ) > 1, then the closure of the extremal class
Rn(E, F,Σ) contains a unique function R(x) which is characterized by the
property of having at least 2n + 2 alternation points when R(x) is not at the
boundary of the class.

Proof of this theorem and other statements of the current section will be given
elsewhere.

5 Problem Genesis: Signal Processing

There are many parallels between analogue and digital electronics, this is why many
engineering solutions of the past have moved to the new digital era. In particular,
the same optimization problem for rational functions discussed in Section 2.1 arises
in the synthesis of both analogue and digital electronic devices.
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From the mathematical viewpoint electronic device is merely a linear operator
which transforms input signals x(·) to output signals y(·). By signals they mean
functions of one continuous or discrete argument: x(t), t ∈ R or x(k), k ∈ Z.
For technical simplicity they assume that signals vanish in the ‘far past’. Another
natural assumption that a device processing a delayed signal gives the same but
(equally) delayed output which mathematically means that operator commutes with
the time shifts. As a consequence, the operator consists in a (discrete) convolution
of the input signal with the certain fixed signal—the response h(·) to (discrete) delta
function input:

y(t) =
∫

R

h(t ′)x(t − t ′)dt ′; y(k) =
∑

k′∈Z
h(k′)x(k − k′).

The causality property means that the output cannot appear before the input
and implies that impulse response h(·) vanishes for negative arguments. Further
restrictions on the impulse response follow from the physical construction of the
device.

Analogue device is an electric scheme assembled of elements like resistors,
capacitors, (mutual) inductances, etc. which is governed by Kirchhoff laws. Digital
device is governed by the recurrence relation:

y(m) :=
n∑

j=0

pjx(m− j)+
n∑

j=1

qjy(m− j), m ∈ Z. (2)

To compute the impulse response, we use the Fourier transform of continuous
signals and Z-transform of digital ones (here we do not discuss any convergence):

x̂(ω) :=
∫

R

x(t) exp(iωt)dt; ω ∈ H x̂(z) :=
∑

k∈Z
x(k)zk, z ∈ C. (3)

Using the explicit relation (2) for digital device and its Kirchhoff counterpart for
analogue ones we observe that the images of input signals are merely multiplied by
rational functions ĥ(·) of appropriate argument. Since the impulse response is real
valued, its image—also called the transfer function—has the symmetry

ĥ(−ω̄) = ĥ(ω), ĥ(z̄) = ĥ(z), ω, z ∈ C.

In practice we can physically observe the absolute value of the transfer function: if
we ‘switch on’ a harmonic signal of a given frequency as the input one, then after
certain transition process the output signal will also become harmonic, however with
a different amplitude and phase. The magnification of the amplitude as a function
of frequency is called the magnitude response function and it is exactly equal to the
absolute value of transfer function of the device.
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Multiband filtering consists in constructing a device which almost keeps the
magnitude of a harmonic signal with the frequency in the passbands and almost
eliminates signals with the frequency in the stopbands. We use the word ‘almost’
since the square of the magnitude response is a rational function on the real line (for
analogue case):

|ĥ(ω)|2 = ĥ(ω)ĥ(−ω) = R(ω2), ω ∈ R. (4)

At best we can talk of approximation of an indicator function which is equal 0 at the
stopbands and 1 at the passbands. For certain reasons discussed, e.g., by W. Cauer,
uniform (or Chebyshev) approximation is preferable for this practical problem.
So we immediately arrive at the fourth Zolotarev problem taking the square of
frequency as a new variable. For the digital case we get a similar problem set on
the segments of the unit circle which can be transformed to the problem on a real
line.

Note that the reconstruction of the transfer function ĥ(·) from the magnitude
response is not unique: we have to solve Equation (4) given its right-hand side,
which has some freedom. This freedom is used to meet another important restriction
on the image of impulse response which is prescribed by the causality: ĥ(·) can only
have poles in the lower half plane −H of complex variable ω for the analogue case
or strictly outside the unit circle of variable z for the digital case.

Minimal deviation problem in any of the given above settings is just an intermedi-
ate step to the following problem of great practical importance. Find minimal degree
filter meeting given filter specifications like the boundaries of the pass- and stop-
bands attenuation at the stopbands and allowable ripple amplitude at the passbands.
The degree of the rational function ĥ is directly related to the complexity of device
structure, its size, weight, cost of production, energy consumption, cooling, etc.

6 Approaches to Optimization

There are several major approaches for the practical solution of optimization
problem of multiband electrical filter. Three of those are discussed below. Along
with them we would single out a computationally efficient Caratheodory-Fejer
method (known also as AAK-approximation) solving the problem in the class of
quasirational functions which may be further truncated to rational at a cost of extra
error [19].

6.1 Remez-Type Methods

Direct numerical optimization is usually based on Remez-type methods. This
is a group of algorithms specially designed for uniform rational approximation



Multiband Filters 145

[17, 21, 24, 25]. They iteratively build the necessary alternation set for the error
function of approximation. Unfortunately the intrinsic instability of Remez algo-
rithms does not allow to get high degree solutions and therefore sophisticated filter
specifications. For instance, standard double precision accuracy 10−15 used, e.g., in
MATLAB does not allow to get solutions of degree n greater than 15–20. We know
an example when approximation of degree n ≈ 2000 required mantissa of 150,000
decimal signs for stability of intermediate computations. Writing just one number of
this precision requires 75 standard pages—this is the volume of a typical PhD thesis.
Another problem of this group of algorithms is the choice of initial approximation.
The set of suitable starting points may have infinitesimal volume.

6.2 Composite Filters

Practical approach of engineers is to decompose complicated problem into many
simple ones and solve them one by one. In case of filter synthesis they use a
battery of single passband (say, Cauer) filters. This approach is very reliable: it
always gives working solutions which however are far from being optimal. We get
a substantial rise in the order of filter, and therefore complexity of its structure and
the downgrading of many consumer properties.

6.3 Ansatz Method

Is based on an explicit analytical formula for the solution generalizing formula
for Zolotarëv fractions. However this formula contains unknown parameters, both
continuous and discrete which have to be evaluated given the input data of the
problem. Of all approaches this one is the least studied from the algorithmic
viewpoint and its usage is restrained by involved mathematical apparatus [8].
Nonetheless it copes with very involved filter specifications: narrow transition
bands, large number of working bands, their different proportions, high degree of
solution.

A detailed comparison of three approaches has been made in [11].

7 Novel Analytical Approach

The idea behind this approach utilizes the following observation: Almost all—with
very few exceptions—critical points of the extremal function have values in some
4-element set Q. Indeed, the equiripple property claims that a degree n solution has
2n + 2 alternation points, those in the interior of E inevitably being critical. Their
values belong to the set Q := ±θ,±1/θ in the settings (1), (2), (3) or ±1 ± μ in
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setting (4) or ∂F for the projective setting. This number is roughly equal to the total
number 2n− 2 of critical points of a degree n rational function. The number g − 1
of exceptional critical points is counted as

g − 1 =
∑

x:R(x) �∈Q

B(R, x)+
∑

x:R(x)∈Q

[
1

2
B(R, x)

]

, (5)

here the summation is taken over points of the Riemann sphere; [·] is the integer
part of a number and B(R, x) is the branching number of the holomorphic map R
at the point x. The latter value equals zero in all regular points x including simple
poles of R(x), or the multiplicity of the critical point of R(x) otherwise.

Mentioned above exceptional property of extremal rational functions may be
rewritten in a form of a generalized Pell-Abel functional equation and eventually
gives the desired few-parametric representation of the solution [8] for the normal-
ized Q = {±1,±1/k(τ)}

R(x) = sn

(∫ x

e

dζ + A(e)
∣
∣
∣
∣ τ

)

. (6)

Here sn(·|τ) is the elliptic sine of the modulus τ related to the value of the deviation
(depending on the setting it is μ, θ or κ(F )); dζ is a holomorphic differential on the
unknown beforehand hyperelliptic curve

M = M(e) = {(w, x) ∈ C
2 : w2 =

2g+2∏

s=1

(x − es)}, e = {es}2g+2
s=1 . (7)

This curve has branching at the points e ∈ e where R(x) takes values from the
exceptional set Q with odd multiplicity. One can show that the genus g of the curve
(7) equals to the above defined number (5) of exceptional critical points plus 1. The
arising surface is not arbitrary: it bears a holomorphic differential dζ whose periods
lie in the rank 2 periods lattice of elliptic sine. The phase shift A(e) is some quarter
period of sn(·|·).

Algebraic curves of this type are not new to mathematicians: they are so-called
Calogero-Moser curves and describe the dynamics of points on a torus interacting
with the Weierstrass potential ℘(u).

8 Examples of Filter Design

We give several examples of optimal magnitude response functions from different
classes, all of them are computed by Sergei Lyamaev. Figure 4 shows the solution
of fourth Zolotarëv problem with the set E consisting of 30 bands. The solution
contains no poles in the transition bands and may be transformed to the transfer
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Fig. 4 Optimal magnitude response function with 30 work bands

Fig. 5 The minimizer for the fourth Zolotarëv problem on 7 bands with class Σ admitting poles
in some transition bands

function of the multiband filter. Figure 5 shows the solution of the problem with
seven working bands. Its class Σ admits poles in the transitions and the function
cannot be used for the filter synthesis, which does not exclude other possible
applications.

Figures 6 and 7 represents a magnitude response function of the so-called double
notch filter which eliminates input signal in the narrow vicinities of two given
frequencies. Shown here optimal filter has degree n = 16 while same specification
composite filter has degree n = 62.
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Fig. 6 Optimal double notch filter eliminating noise at two given frequencies. Log scale on the
vertical axis (amplification)

Fig. 7 Magnification of the previous figure at two cutoff frequencies
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Impact of Error in Parameter
Estimations on Large Scale Portfolio
Optimization

Valery A. Kalyagin and Sergey V. Slashchinin

1 Introduction

Mathematical programming is often concerned with determining the optimum of
some real-world objective. One of the main questions in this field is the way of
addressing uncertainty. Whereas deterministic optimization models are formulated
with known parameters, real life issues almost invariably include uncertain parame-
ters which are unknown at the time when a decision should be made.

An example of this is the area of financial optimization, since there are various
uncertainties, such as prices of goods, economic factors, asset returns, turnover con-
straints, etc. One of the most known problems in the field is portfolio optimization
(PO). The objective is to distribute capital between available investment instruments
in the financial market. Examples of these instruments are stocks, bonds, options,
and bank deposits. The aim is to maximize or keep at the desired level the wealth
resulting from the investment, but at the same time minimize the involved risks. The
major progress started after publication of Harry Markowitz’s seminal work [14].
Since the late 1950s, PO has been an active field in finance. An extensive overview
of modern portfolio theory, concepts, and mathematical models for financial markets
can be found in the work of Lyuu [13]. The author presents a variety of algorithms
for computational techniques in pricing, risk management, and portfolio selection,
analyzes their efficiency, and offers thorough theoretical grounding for the proposed
models.

One of the ways to deal with uncertainty is to estimate the unknown parameters.
Since some optimization models require statistical estimators of parameters, an
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adequate choice of estimator can substantially improve optimization performance.
On the other hand, many estimators contain estimation error or bias that most likely
to perturb an optimizer. Consequently, it is not enough to wisely choose a model
for the considered problem. Another crucial aspect of success is to determine a
proper way to estimate model parameters. Use of improper estimation technique
and insufficiency of information may lead to that selected portfolios will have poor
out-of-sample performance.

The effect of misspecification and estimation errors on optimal portfolio selec-
tion has been a point of interest in the scientific community for many years. For
a comprehensive overview of the topic and the modern trends in mean–variance
portfolio optimization the reader may refer to the paper of Kolm et al. [9]. The main
purpose of this study is to investigate how estimators of uncertain parameters can
affect the portfolio optimization results in the case of large scale portfolio.

The remainder of this paper is structured as follows. The first chapter includes
some basic principles and theoretical background on mean–variance portfolio
optimization and also describes different estimators that might be used within
portfolio optimization models, and their statistical properties. Special attention
is paid to so-called shrinkage estimators, which are claimed to be one of the
most effective in some scenarios. The second chapter presents the experiments
conducted on out-of-sample performance of selected optimal portfolios. There will
be considered different unusual facts, discovered during the study. At the end some
future research directions are discussed.

2 Theoretical Background

2.1 Portfolio Optimization

The basics of portfolio selection were presented in the pioneering work of
Markowitz [14]. Usually, the problem of portfolio optimization is formulated
as follows. Suppose we have capital W0 that we need to invest. There are
N risky assets on the market with returns R = (R1, R2, . . . , RN) over some
period of time (e.g., week, month, and year). R is a random vector with means
E (R) = [E (R1) ,E (R2) , . . . ,E (RN)] and covariance matrix " with elements
σij . We decide on the amount (share) wi that should be invested in ith asset,
i = 1, . . . , N , such that

∑N
i=1wi = W0. Thus we select an investment portfolio

w = (w1, w2, . . . , wN) with return Rp = w R over period of time. The expected
rate of portfolio return is Rp = w E(R). Without loss of generality, we can assume
thatW0 = 1, then w is the vector of relative amounts, invested in each asset.

2.1.1 Markowitz Model and Its Variations

Every investor is supposed to be rational and risk averse. Since that, from two
different portfolios with the same return he chooses the portfolio with lower risk
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and from the portfolios that have the same level of risk he will prefer the one with
higher expected outcome.

The main assumption of the model is that E(R) and " are known (or can be
estimated).

Markowitz formulated two criteria for portfolio optimality:

1. Effectiveness of portfolio—expected returns Rp = w E(R)→ max

2. Risk—variance of portfolio return σ 2
p = E

(
(Rp − Rp)2

)
= w "w→ min

Since both criteria can’t be optimized simultaneously, two alternative problems
emerge:

minimize
w

1

2
w "w

subject to
N∑

i=1

wi = 1,

w E (R) = τ

(1)

and

maximize
w

w E (R)

subject to
N∑

i=1

wi = 1,

w "w = ν,

(2)

where ν and τ are the predetermined by investor maximum level of risk and the
minimum rate of return.

Extra constraint can be used to forbid short selling:

wi ≥ 0, i = 1, . . . , N. (3)

The Markowitz problem in the form (1) can be efficiently solved using Lagrange
multipliers. The weights wi and the two Lagrange multipliers λ1 and λ2 for an
optimal portfolio should hold:

N∑

j=1

σijwi − λ1E (Ri)− λ2 = 0, i = 1, . . . , N

N∑

i=1

wiE (Ri) = τ

N∑

i=1

wi= 1.

(4)
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The optimal solution for this system of N + 2 equations is

w = C − τB
AC − B2"

−1
E (R)+ τA− B

AC − B2"
−11N , (5)

where 1N denotes a N -dimensional vector of ones, A = E
(
RT

)
"−1

E (R), B =
1T
N"

−1
E (R) , C = 1T

N"
−1

1N .
In the case of the form (2), when the goal is to achieve the highest return for a

given level of risk, sophisticated quadratic programming techniques are needed to
find the optimal portfolio.

Since solutions of these optimization problems cannot be dominated (surpassed
by two criteria simultaneously by any other portfolio), they are Pareto-efficient and
form the efficient frontier, which is also called the efficient set. All other portfolios
are termed inefficient.

It should be noted that variance is not a very good risk measure, because it
penalizes both positive and negative deviations, i.e., profits and losses, since it is
a measure of the dispersion of the random variable around the mean. In reality,
investors are only interested in minimizing the possibility of insufficient portfolio
returns. Consequently, other ways to evaluate risks were proposed (see [2]):

1. Semivariance

SV = E

(

(
{
Rp − Rp

}−
)
2
)

,

where {•}− denotes negative part or 0, if expression inside the brackets is non-
negative.

2. Probability of falling below some level
Pd = Prob(Rp < d).

3. The level of return, value-at-risk (V aR), such that Prob(Rp < V aR) is equal
to the given level α
V aRα = inf{Rp ∈ (−∞, +∞) : Prob

(
Rp < V aR

) = α}.
4. Conditional value-at-risk (CVaR) for level α

Let R∗p =
{
Rp, if Rp ≤ V aRα

0, if V aR < Rp

Then CV aRα = E(R∗p) = E
(
Rp | Rp ≤ V aRα

)
.

Thus, other portfolio optimization problems can be formulated:

1. Chance constrained:

maximize
w

w E (R)

subject to
N∑

i=1

wi = 1,

P rob
(
Rp < d

) ≤ α.
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2. With use of VaR or CVaR:

maximize
w

w E (R)

subject to
N∑

i=1

wi = 1,

CVaRα ≤ d,

where α and d are predetermined constants. Solutions of these portfolio optimiza-
tion problems also form efficient frontiers.

Markowitz theory provides a simple yet powerful framework for controlling the
risk–return trade-off of the portfolios. The significant problem for mean–variance
model is that too much parameters need to be estimated: N for expected return rates
of the assets and N(N + 1)/2 for their covariances. Asset returns may be often
explained by much less random variables called factors, and different models were
developed to exploit this fact.

2.1.2 Single-Factor Model

The first factor model was formulated by Sharpe [17]. It uses only one factor f, which
is a random quantity similar to the return on a stock index for the given period. All
asset returns depend on this factor in the following way:

Ri = αi + βif + εi, (6)

where αi and βi are constants, ε = (ε1, ε2, . . . , and εN )—residuals, which are also
random. The model assumes that residuals have zero means and are uncorrelated
with factor returns and with each other:

Cov (f, εi) = 0, i = 1, . . . , N

Cov
(
εi, εj

) = 0, i �= j.
(7)

There is a total of 3N + 2 parameters to estimate: αi , βi , and σ 2
i , i = 1, . . . , N,

E(f ), and σ 2
f , where σ 2

i denotes the variance of ith residual and σ 2
f is that of factor

return. By σif we denote the covariance of asset i with market index (factor) returns.
The means of asset returns are E(Ri) = αi + βiE(f ), and the covariance matrix is

Φ =
(
ββT σ 2

f

)
+Δ, where Δ is the diagonal covariance matrix of residuals.



156 V. A. Kalyagin and S. V. Slashchinin

2.1.3 Multi-Factor Model

Unfortunately, single-index model is too simple to distinguish all significant market
features and trends, while even a small error may lead to negative consequences,
even heavy losses of an investor. To partially deal with this problem multi-index
models were proposed. It uses 1 < K < N random variables (factors) to explain
uncertainty of asset returns:

Ri = αi +
K∑

j=1

βijfj + εi . (8)

The assumptions there are similar to the ones in the single-index model.
The means of asset returns are E(Ri) =αi+

∑K
j=1 βijE(fj ), and the covariance

matrix is Φ= (
β"f β

T
) + Δ, where "f is the K x K covariance matrix of the

factors.
One of the main disadvantages of this model is that there is no consensus on the

number of factorsK that should be used [6]. Also it is hard to understand the nature
of these factors, except for the first one, which corresponds to a market index and
since that we cannot find theoretical economic interpretation for them.

2.2 Parameters Estimation

2.2.1 Estimation of Means

To solve portfolio optimization problems described in the previous section, model
parameters—mean vector and covariance matrix—must be estimated.

Suppose we have some historical data on N stock returns. By X we denote
an N × T matrix of T observations on a system of N random variables
R= R1, R2, . . . , RN representing T returns on N assets, where element Xij
is the outcome of ith asset over time period j. We assume that stock returns
are independent and identically distributed (IID). This means that each vector
Xj = (X1j , X2j ,. . . , XNj ), j = 1..T , has the same vector of means E(R) and
covariance matrix ". Although this assumption almost never holds for the real
stocks, most of the estimators for portfolio optimization models use it.

To estimate mean vector E(R) sample mean is usually used:

X = 1

T
X1T = 1

T

T∑

j=1

Xj , (9)
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where 1T is a T x1 vector of ones. It is unbiased estimator of the true mean:

E
(
X
) = 1

T

T∑

j=1

E
(
Xj

) = 1

T
(E (X1)+ E (X2)+ · · · + E (XT )) =

= 1

T
(E (R)+ E (R)+ · · · + E (R))=E(R).

Also, it is consistent, i.e., converges in probability to the true mean as number T
grows

limn→∞Pr (
∣
∣X − E (R)

∣
∣ ≥ ε) = 0, for all ε> 0

or

X
P−→E (R) .

This follows directly from the law of large numbers in the Khinchin’s formulation.
However, despite all the advantages of sample mean, it can be shown that this

estimator is inadmissible relative to a quadratic loss function for multivariate normal
distribution [18]. Instead of it, several different estimators were proposed, which are
based on a statistical technique called shrinkage. It was proven that the so-called
James–Stein estimator [7] has uniformly lower risk than the sample mean. This
estimator is defined as

μ̂ = (1− a)X + aX0, (10)

where "̂ is some estimator of covariance matrix,X0—shrinkage target (for example,
market average—average of sample means), and a—shrinkage coefficient, which is
equal to

a1 = (N − 2)/T

(μ− μ0)
T "̂−1 (μ− μ0)

. (11)

Using the Bayesian approach, Jorion proposed another form of shrinkage
coefficient, which can substantially outperform classical sample mean [8]:

a2 = (N + 2)/T

N + 2+ (μ− μ0)
T "̂−1 (μ− μ0)

. (12)

2.2.2 Estimation of Covariances

To estimate the true covariance matrix " sample covariance matrix can be used:

"̂ = 1

T

T∑

j=1

(
Xj −X

) (
Xj −X

)T = 1

T
X

(

IT xT − 1

T
1T 1T

T

)

XT, (13)
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where IT xT is T xT identity matrix. This estimator is biased, but it can be easily
corrected by multiplication on term T /(T − 1). The main advantages of (13) is
that it is maximum likelihood estimator under the assumption of normality of stock
returns, and that it is a consistent estimator. But at the same time it has significant
drawbacks. One of them is seen from the matrix form: the rank of "̂ is at most equal
to the rank of the matrix IT xT − 1

T
1T 1T

T , which is T −1. This means that the sample
covariance matrix is rank-deficient and is not invertible when N ≥ T . This means,
for example, that this estimator cannot be used in (5) to find the exact solution for
the portfolio selection problem. Another disadvantage is that estimation error (mean
squared error) for the sample covariance matrix is too big and of order N/T ; thus,
it can considerably perturb mean–variance estimator [10]. For this reasons sample
covariance matrix is seldom used in practice.

One of the solutions is to use the single-index model (6) to estimate the true
covariance matrix. Suppose that besides historical data on asset returns X we have
vector Xf = (Xf 1, Xf 2, . . . , XfT ) of T observations on some market index (for
example, S&P 500). Now we can use it for estimation:

Φ̂ =
(

bbT σ̂ 2
f

)
+ Δ̂, (14)

where σ̂ 2
f is the sample variance of market returns equal to 1

T

∑T
j=1

(
Xfj −Xf

)2
,

Xf is the sample market mean 1
T

∑T
j=1Xfj , Δ̂ is the sample diagonal covariance

matrix of residuals, and b = (b1, b2, . . . , bN) is a vector of OLS (ordinary least
squares) estimates:

bi =
∑T
j=1

(
Xij −Xi

) (
Xfj −Xf

)

∑T
j=1

(
Xfj −Xf

)2 .

Actually, the form of market index is not as important as for CAPM [16].X0 should
explain a significant part of the variance of stock returns. For this fact, an equal-
weighted portfolio can be used to represent market index.

The matrix Φ̂ is non-singular, hence, invertible and can be used in (5). Also, it
has lower mean squared error compared to the sample covariance matrix [11].

The main disadvantage is that Φ̂ contains significant bias, which comes from
model assumptions (7). For example, if residuals are correlated with each other,
then the corresponding covariances will be underestimated or overestimated. Thus,
imposing too much structure on the model leads to another significant issue. Multi-
factor models can partially solve the problem, since they have less strict structural
assumptions. However, as it was noted, it is not clear how much factors should be
used.
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2.2.3 Ledoit and Wolf Shrinkage Estimator for Covariance Matrix

Another way of finding an optimal trade-off between bias and estimation error was
proposed by Ledoit and Wolf [11]. The idea is to take a properly weighted average
of the biased estimator (the estimator for singe-index model) and unbiased estimator
(the sample covariance matrix), which has greater mean squared error:

αΦ̂ + (1−α) "̂,

where α is a shrinkage intensity constant.
Their approach is supported by the following assumptions:

1. Observations of stock returns are independent and identically distributed (iid)
through time. This assumption is similar to the one noted above.

2. The number of assets N is fixed and N < +∞, while T tends to infinity.
3. Asset returns have finite fourth moments.
4. Φ �= ".
5. σ 2

f > 0.

To derive the optimal shrinkage intensity, they considered the loss function based on
the Frobenius norm of the difference between the estimator and the true covariance
matrix:

L (α) = ∥
∥αΦ̂ + (1−α) "̂ −"∥

∥2 =
N∑

i=1

N∑

j=1

(
αφ̂ij + (1−α) σ̂ij − σij

)2
.

By φ̂ij we denote i,jth element of the estimator Φ̂ , σ̂ij is i,jth element of "̂, and σij
is the true covariance between assets i and j. From this arises risk function:

Risk (α) = E [L (α)] =
N∑

i=1

N∑

j=1

E

[(
αφ̂ij + (1−α) σ̂ij − σij

)2
]

=
N∑

i=1

N∑

j=1

E

[(
αφ̂ij + (1−α) σ̂ij

)2 − 2
(
αφ̂ij + (1−α) σ̂ij

)
σij + σ 2

ij

]

=
N∑

i=1

N∑

j=1

(

E

[(
αφ̂ij + (1−α) σ̂ij

)2
]
− (

E
[
αφ̂ij + (1−α) σ̂ij

])2

+ (
E
[
αφ̂ij + (1−α) σ̂ij

])2 − E
[
2
(
αφ̂ij + (1−α) σ̂ij

)
σij

]+ E

[
σ 2
ij

])

=
N∑

i=1

N∑

j=1

(

Var
[
αφ̂ij + (1−α) σ̂ij

]+ (
E
[
αφ̂ij + (1−α) σ̂ij − σij

])2
)
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=
N∑

i=1

N∑

j=1

(

α2Var
[
φ̂ij

]+ (1−α)2Var
[
σ̂ij

]+ 2α (1−α)Cov
(
φ̂ij , σ̂ij

)

+ α2(φij − σij )2
)

.

We want to minimize the risk with respect to α. By calculating the first two
derivatives of Risk (α) we get:

Risk
′
(α) = 2

N∑

i=1

N∑

j=1

(
αVar

[
φ̂ij

]− (1−α)Var
[
σ̂ij

]+ (1− 2α)Cov
(
φ̂ij , σ̂ij

)

+ α(φij − σij )2
)
,

Risk
′′
(α) = 2

N∑

i=1

N∑

j=1

(
Var

[
φ̂ij − σ̂ij

]+ (φij − σij )2
)
.

By setting the first derivative to 0 and solving this equation for α∗ we obtain the
formula for optimal shrinkage intensity:

α∗ =
∑N
i=1

∑N
j=1

(
Var

[
φ̂ij

]−Cov
(
φ̂ij , σ̂ij

))

∑N
i=1

∑N
j=1

(
Var

[
φ̂ij − σ̂ij

]+ (
φij − σij

)2
) .

Note that because Risk
′′
(α) is positive everywhere, this intensity minimizes the

risk function.
Let θ̂ denote an estimator for a parameter vector θ , and

√
T (θ̂ − θ) converges to

some distribution with zero mean and covariance matrix V as T tends to infinity.
Then θ̂ has asymptotic distribution with parameters θ, 1

T
V . The term 1

T
V denotes

asymptotic covariance matrix of θ̂ .
The following theorem shows the asymptotically optimal choice of shrinkage

constant.

Theorem 1 (Ledoit and Wolf [11])

α∗ = 1

T

π − ρ
γ

+O
(

1

T 2

)

By π we denote the sum of asymptotic variances of the elements of the matrix "̂,
multiplied by the term

√
T : π =∑N

i=1
∑N
j=1 AsyVar

(
σ̂ij

)
. By ρ we denote the sum

of asymptotic covariances of the elements of the matrix "̂ and with the elements
of the matrix Φ̂ multiplied by the term

√
T : ρ = ∑N

i=1
∑N
j=1 AsyCov

(
φ̂ij , σ̂ij

)
.



Impact of Error in Parameter Estimations on Large Scale Portfolio Optimization 161

Finally γ is the measure of the misspecification of the single-index model: γ =
∑N
i=1

∑N
j=1

(
φij − σij

)2
. Thus, asymptotically optimal shrinkage intensity is

α∗ = k

T
,

where k = π−ρ
γ

. The next theorem helps to find a consistent estimator for k

Theorem 2 (Ledoit and Wolf [11]) k̂ = p−r
c

is a consistent estimator for k.

By p we denote
∑N
i=1

∑N
j=1 pij , where a consistent estimator of AsyVar

(
σ̂ij

)

is denoted by pij = 1
T

∑T
t=1

{(
Xit −Xi

) (
Xjt −Xj

)− σ̂ij
}2

. By r we denote
∑N
i=1

∑N
j=1 rij , where rij is a consistent estimator for AsyCov

(
φ̂ij , σ̂ij

)
and

rij = 1
T

∑T
t=1 rij t with

rij t =
σ̂jf

√
σ̂ 2
f

(
Xit −Xi

)+ σ̂if
√
σ̂ 2
f

(
Xjt −Xj

)+ σ̂if σ̂jf
(
Xf t −Xf

)

σ̂ 2
f

(
Xf t −Xf

) (
Xit −Xi

) (
Xjt −Xj

)− φ̂ij σ̂ij .

Finally, c = ∑N
i=1

∑N
j=1 cij , where cij is a consistent estimator of

(
φij − σij

)2

equal to
(
φ̂ij − σ̂ij

)2
.

The corresponding optimal estimator for the true covariance matrix is

S = k̂

T
Φ̂ +

(

1− k̂

T

)

"̂. (15)

Detailed proofs for Theorems 1 and 2 are given in Ledoit and Wolf [11]. The authors
claim that “nobody should be using the sample covariance matrix for the purpose
of portfolio optimization” [12]. They show empirical evidence of their estimator
performance. This estimator became industry-standard benchmark for estimating
the covariance matrix of stock returns and was implemented inside many software
packages for Python, Matlab, and R.

This and other estimators will be used in the next chapter for numerical
experiments.

3 Properties of Selected Portfolios

This part consists of empirical analysis of selected portfolios resulting from solving
optimization problems and how estimators (which were described above) can
affect their out-of-sample performance. To show this more explicitly, Markowitz’s
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minimal risk model (1) has been chosen, because its effectiveness directly depends
on how good uncertain parameters (vector of means and covariance matrix of stock
returns) are estimated. So, we solve portfolio optimization problem in the form of (1)
both with and without constraint of short sales (3). Desired level of annual portfolio
return τ chosen to be at 0.2.

To solve the problem, we use the following:

1. When we have no constraints on short sales, we find exact solution in the form
of (5).

2. With constraints on short sales we use sequential quadratic programming
algorithm [15] and interior point algorithm for quadratic programming [1],
implemented in Matlab Optimization Toolbox package.

The framework for experiments and optimization problem solver were imple-
mented using Matlab 2016a. All computations were done on a machine with Intel
Core i7 2.20 GHz processor and 8 Gb RAM running Windows 10 operating system.

In this section we will use sample mean to estimate E(R) and the following
estimators for " during the experiments:

1. Shrinkage to single-index matrix (15), denoted as “Ledoit1.”
2. Shrinkage to constant correlation matrix, denoted as “Ledoit2.”
3. The sample covariance matrix (13), denoted as “Sample.”
4. The single-index model estimator (14), denoted as “Single ind.”
5. The estimator for the multi-index model estimator, denoted as “Multi.”
6. The sample covariance matrix with constant correlations, denoted as “Const

corr.”

3.1 Risk of Selected Portfolios

3.1.1 Real Data

The first experiment is aimed to measure effectiveness of selected optimal portfolios
in conditions of real market. The methodology is very similar to the one used in
the work of Ledoit and Wolf [11]. We collected data on monthly stock returns
from January 1984 to December 2016 of 228 assets from NYSE (New York Stock
Exchange) using Yahoo Finance service. Then the following procedure was repeated
for every year t = 1994, 1995. . . 2016. Using historical data on the previous ten years
(t-10, t-9. . . t-1, 120 observations) we estimate parameters for optimization problem,
find optimal portfolios, and measure their performance (in terms of annual return
and standard deviation) during 12 months of year t. Thus, the experiment is repeated
23 times. The results are presented in Table 1 for optimization with no constraints
on short selling and in Table 2 for the situation, when short sales are forbidden.

Annual return is calculated as the sum of monthly returns during the testing
period of 12 months (when the performance of portfolios is measured).
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Table 1 Real data from NYSE, short sales are allowed

Estimator

Year Ledoit1 Ledoit2 Sample Single ind Multi Const corr

(a) Annualized standard deviation

1994 0.1181 0.1240 0.1123 0.1360 0.1228 0.1505

1995 0.0651 0.0832 0.1167 0.1075 0.0589 0.1315

1996 0.1034 0.0970 0.1212 0.1384 0.1141 0.1449

1997 0.1163 0.1343 0.1122 0.1465 0.1402 0.1721

1998 0.1253 0.1127 0.1938 0.1189 0.1099 0.1196

1999 0.1355 0.1584 0.1634 0.1575 0.1259 0.1793

2000 0.0937 0.1070 0.1469 0.1665 0.1021 0.2137

2001 0.1056 0.1099 0.1818 0.1405 0.1164 0.1686

2002 0.1457 0.1367 0.2181 0.1369 0.1464 0.1447

2003 0.0525 0.0744 0.0851 0.0724 0.0546 0.0990

2004 0.0862 0.0937 0.1422 0.0938 0.0856 0.1016

2005 0.0967 0.1061 0.1256 0.0790 0.0767 0.1001

2006 0.0685 0.0582 0.1073 0.0666 0.0689 0.0545

2007 0.1034 0.1075 0.1336 0.1083 0.1110 0.1065

2008 0.1320 0.1235 0.2061 0.1225 0.1443 0.1214

2009 0.1739 0.1861 0.2347 0.2117 0.1763 0.2354

2010 0.0994 0.1028 0.1258 0.0836 0.0819 0.0917

2011 0.0758 0.0825 0.0969 0.0720 0.0760 0.0896

2012 0.0821 0.0985 0.1242 0.0972 0.0874 0.1379

2013 0.1094 0.1190 0.1055 0.1378 0.1334 0.1698

2014 0.0781 0.0817 0.0851 0.0927 0.0827 0.1084

2015 0.1141 0.1192 0.1288 0.1328 0.1237 0.1677

2016 0.1296 0.1333 0.0985 0.1530 0.1425 0.1947

Average 0.1048 0.1109 0.1377 0.1205 0.1079 0.1393

(b) Mean annual return

1994 −0.0461 −0.0795 0.0560 −0.0656 −0.0375 −0.0986

1995 0.2375 0.2529 0.2802 0.2974 0.2218 0.3226

1996 0.1380 0.1386 0.1538 0.0538 0.0831 0.0200

1997 0.1851 0.1870 0.1854 0.2191 0.1668 0.2431

1998 0.2204 0.2674 0.2350 0.2062 0.1946 0.3037

1999 −0.1526 −0.1768 −0.1104 −0.1508 −0.1030 −0.1519

2000 0.1002 0.0638 0.1460 0.2963 0.1410 0.2725

2001 −0.0245 0.0143 −0.0129 −0.0720 −0.0567 −0.0640

2002 −0.0911 −0.0874 −0.1861 −0.1276 −0.1187 −0.1240

2003 0.1591 0.1204 0.2573 0.0921 0.1352 0.0270

2004 0.0954 0.0967 0.1537 0.0852 0.0954 0.0704

2005 0.0344 0.0040 0.1377 0.0430 0.0392 −0.0249

2006 0.1802 0.2069 0.2414 0.1766 0.1656 0.1826

2007 0.0307 0.0103 0.0195 0.0434 −0.0209 0.0397

(continued)
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Table 1 (continued)

Estimator

Year Ledoit1 Ledoit2 Sample Single ind Multi Const corr

2008 −0.0501 −0.0030 −0.2762 0.0204 −0.0749 0.0509

2009 −0.0786 −0.0679 −0.0519 −0.1569 −0.1211 −0.1910

2010 0.1400 0.1163 0.1717 0.1255 0.1498 0.0922

2011 0.2080 0.2523 0.1083 0.2242 0.2160 0.3006

2012 0.0931 0.0684 0.0558 0.0363 0.0586 −0.0079

2013 0.1689 0.1902 0.1749 0.1418 0.1456 0.1400

2014 0.1855 0.2171 0.1960 0.1996 0.2239 0.2605

2015 0.1829 0.2294 0.2718 0.1109 0.1253 0.1598

2016 0.0289 0.0220 0.1227 0.0380 0.0436 0.0270

Average 0.0846 0.0888 0.1013 0.0799 0.0727 0.0804

Deviation D is measured as

D =
√
√
√
√

12∑

i=1

(
rpi − τ

12

)2
,

where rpi denotes return of the selected portfolio over testing month i.
As it seen from Table 1a, portfolios selected with use of shrinkage estimators

have considerably lower deviation compared to the others. So, in this case,
experiment shows results which are similar to the results in the work of Ledoit and
Wolf [11]. At the same time, Table 1b demonstrates that when we have constraints
on short sales this advantage of shrinkage estimators of covariance matrix almost
disappears.

It also worth noting that both with and without constraints annual returns of
selected portfolios do not reach the desired level of 0.2 on average. It might be
due to nonstationarity of the market, while our model assumes that parameters do
not change over time.

3.1.2 Generated Data

This time to evaluate how good selected portfolios perform out-of-sample we
generate data from multivariate normal distribution with mean vector and covariance
matrix equal to the sample means and the sample covariance matrix estimated
over whole period of 33 years from 1984 to 2016. The number of observations
in generated sample for parameter estimation is still 120 and to test effectiveness
of portfolios we generate 12 observations. For more accurate results, which are
presented in Table 3, experiment is repeated 500 times, then average over repetitions
is taken. These results demonstrate the same features that were seen in the previous
experiment—the significant advantage of shrinkage estimators in terms of standard
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Table 2 Real data from NYSE, short sales are forbidden

Estimator

Year Ledoit1 Ledoit2 Sample Single ind Multi Const corr

(a) Annualized standard deviation

1994 0.1247 0.1273 0.1208 0.1413 0.1156 0.1318

1995 0.0652 0.0706 0.0717 0.0703 0.0590 0.0925

1996 0.1078 0.1034 0.0987 0.1187 0.1119 0.1126

1997 0.1472 0.1613 0.1403 0.1524 0.1408 0.1750

1998 0.1617 0.1588 0.1753 0.1533 0.1651 0.1394

1999 0.1335 0.1237 0.1181 0.1551 0.1364 0.1252

2000 0.1327 0.1299 0.1376 0.1405 0.1294 0.1330

2001 0.1127 0.1049 0.1124 0.1250 0.1235 0.1350

2002 0.1522 0.1507 0.1730 0.1523 0.1455 0.1684

2003 0.1044 0.0960 0.1115 0.0991 0.1059 0.1000

2004 0.0952 0.0917 0.0967 0.0957 0.0944 0.0815

2005 0.0893 0.0944 0.0854 0.0948 0.0922 0.0911

2006 0.0745 0.0702 0.0718 0.0831 0.0845 0.0816

2007 0.1427 0.1393 0.1459 0.1478 0.1441 0.1358

2008 0.2688 0.2903 0.2712 0.2727 0.2727 0.3233

2009 0.1994 0.2002 0.2190 0.1877 0.2041 0.1900

2010 0.1486 0.1600 0.1531 0.1469 0.1484 0.1667

2011 0.1683 0.1750 0.1733 0.1677 0.1670 0.1780

2012 0.1276 0.1228 0.1200 0.1343 0.1246 0.1276

2013 0.1362 0.1381 0.1317 0.1394 0.1355 0.1417

2014 0.1026 0.1064 0.1025 0.1036 0.0973 0.1112

2015 0.1300 0.1342 0.1346 0.1281 0.1289 0.1326

2016 0.1528 0.1570 0.1565 0.1549 0.1518 0.1633

Average 0.1338 0.1351 0.1357 0.1376 0.1339 0.1408

(b) Mean annual return

1994 −0.0354 −0.0214 −0.0291 −0.0683 −0.0144 −0.0291

1995 0.2914 0.3306 0.2544 0.3112 0.2634 0.3441

1996 0.1576 0.1345 0.1781 0.1246 0.1730 0.1181

1997 0.2570 0.2950 0.2374 0.2689 0.2353 0.3054

1998 0.1819 0.2396 0.1730 0.1901 0.1740 0.2278

1999 −0.1312 −0.0741 −0.0855 −0.1883 −0.1302 −0.0329

2000 0.1675 0.1109 0.1265 0.2047 0.1463 0.0569

2001 −0.0443 −0.0043 −0.0537 −0.0565 −0.0596 −0.0713

2002 −0.0938 −0.1076 −0.1255 −0.1038 −0.0994 −0.1411

2003 0.2995 0.2673 0.2990 0.2901 0.3149 0.2290

2004 0.1281 0.1273 0.1177 0.1245 0.1161 0.1492

2005 0.0683 0.0672 0.0668 0.0693 0.0776 0.0601

2006 0.1623 0.1783 0.1514 0.1618 0.1716 0.2097

2007 −0.0502 −0.0207 −0.0667 −0.0550 −0.0478 0.0216

(continued)
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Table 2 (continued)

Estimator

Year Ledoit1 Ledoit2 Sample Single ind Multi Const corr

2008 −0.3462 −0.3607 −0.3440 −0.3459 −0.3647 −0.4043

2009 0.2001 0.2132 0.1916 0.2139 0.1818 0.2240

2010 0.2506 0.2084 0.2856 0.2363 0.2391 0.1924

2011 0.0632 0.0933 0.0766 0.0536 0.0769 0.0778

2012 0.1770 0.1314 0.1975 0.1726 0.1691 0.0908

2013 0.1795 0.1691 0.1657 0.1803 0.1831 0.1502

2014 0.1035 0.1101 0.0980 0.1024 0.1253 0.0988

2015 0.1442 0.1187 0.1495 0.1398 0.1515 0.1080

2016 −0.1054 −0.1085 −0.1073 −0.1085 −0.0996 −0.1162

Average 0.0880 0.0912 0.0851 0.0834 0.0862 0.0813

Table 3 Generated samples

Estimator Ledoit1 Ledoit2 Sample Single ind Multi Const corr True

(a) Short sales are allowed

STD Deviation 0.0873 0.0925 0.1088 0.1154 0.0978 0.1410 0.0556

Annual mean return 0.1304 0.1324 0.1437 0.1341 0.1382 0.1350 0.2004

(b) Short sales are forbidden

STD Deviation 0.1124 0.1160 0.1163 0.1185 0.1159 0.1481 0.1911

Annual mean return 0.1139 0.1170 0.1141 0.1134 0.1193 0.1148 0.2003

deviation, which vanishes when we impose short selling constraints. But a much
more curious and unexpected fact is that even with generated data, when true
parameters do not change, portfolios still do not reach the needed level of return
on average. Returns of selected portfolios have significant bias towards zero related
to the true optimal portfolio. So, this phenomenon doesn’t disappear on generated
data and cannot be explained by nonstationarity of the market. Thus, it demands
further research to understand its nature.

3.2 Bias of Portfolio Returns

Asymptotic Behavior The first experiment in this section is intended to study how
the phenomenon of bias depends on number of observations in the sample that we
use for estimation and how it changes as this number grows. Now we consistently
increase the size T of sample from 120 to 540 (we still test performance of portfolios
on 12 observations) with a step of 60 observations. The results are shown in Table 4.
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Table 4 Dependence on
sample size T

Estimator

T Ledoit1 Sample Single ind

(a) Annualized standard deviation, short sales are allowed

120 0.0918 0.1132 0.1255

180 0.0873 0.1432 0.1292

240 0.0812 0.2289 0.1301

300 0.0793 0.1103 0.1311

360 0.0758 0.0891 0.1356

420 0.0740 0.0806 0.1344

480 0.0733 0.0769 0.1357

540 0.0711 0.0725 0.1369

(b) Annualized standard deviation, short sales are forbidden

120 0.1194 0.1216 0.1248

180 0.1246 0.1256 0.1308

240 0.1271 0.1277 0.1315

300 0.1356 0.1360 0.1399

360 0.1382 0.1384 0.1420

420 0.1403 0.1405 0.1440

480 0.1460 0.1461 0.1496

540 0.1517 0.1518 0.1542

(c) Mean annual return, short sales are allowed

120 0.1333 0.1388 0.1406

180 0.1387 0.1390 0.1483

240 0.1426 0.1443 0.1441

300 0.1441 0.1586 0.1591

360 0.1517 0.1653 0.1531

420 0.1568 0.1654 0.1660

480 0.1560 0.1696 0.1663

540 0.1602 0.1723 0.1629

(d) Mean annual return, short sales are forbidden

120 0.1283 0.1260 0.1321

180 0.1384 0.1379 0.1378

240 0.1281 0.1285 0.1271

300 0.1286 0.1282 0.1283

360 0.1465 0.1468 0.1452

420 0.1451 0.1444 0.1479

480 0.1558 0.1560 0.1557

540 0.1610 0.1606 0.1628
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It is evident that the larger the sample size grows, the less noticeable the bias
of portfolio returns becomes. Also, if we generate a large sample of size 2000
and more, the phenomenon will almost disappear (average returns will be at level
of 0.198 in case of use of the sample covariance matrix). The better we estimate
parameters, the closer we get to the desired level of return. This fact leaves us with
another question—Is it error in estimation of means or covariance matrix that affects
the bias the most?

To answer this question, two similar procedures were carried out (Tables 5a,b,c,d).
In the first one, the number of observations to estimate covariance matrix was 120,
while for estimation of means the sample size differed from 120 to 540, plus one
stage, where the real market data (on returns over 396 months) were used. In the
other, the size of sample for estimation of means was constantly 120, while for
covariance matrix this number has consistently changed.

The results demonstrate two important facts:

1. The bias depends mostly on accuracy of estimation of the true mean vector
(accuracy of covariance matrix estimation almost doesn’t affect bias in case of
constraints on short sales). This result reproduces the findings of Best and Grauer
[4] and Chopra and Ziemba [5], which show that effect from the estimation error
in the expected returns usually has more influence than in covariance matrix for
mean–variance optimization.

2. The increase from 120 in sample size for covariance matrix entails considerable
decrease of portfolios standard deviation when short selling is allowed and has
almost insignificant effect in situation with the constraint.

Consequently, for better understanding of the phenomenon it is essential to study
how it depends on vector of means.

Dependence on the Mean Vector Figure 1 shows the histogram of mean returns of
all assets. It is seen that only few assets have mean returns around desired level of
0.2. The first experiment in this section is focused on how bias changes with change
of desired level τ from 0.12 to 0.2 (Tables 6a,b).

So, the bias becomes noticeable for τ = 0.14 and above. We get the similar
results when we conduct analogical experiment. This time, instead of changing
desired level of returns, we just increase all elements of mean vector of annual
returns by 0.03. The results are presented in Table 6c.

The true nature of bias can be seen in Figure 2a and b. These graphs show how the
average annual returns of selected portfolios change with change of target level τ the
US market (Figure 2a) and German market (Figure 2b, Frankfurt Stock Exchange,
number of assets N=150, all assets that were presented on the market during the
180 months period of 2002–2016) for different estimators of covariances (sample
covariance matrix, single-index estimator, Ledoit and Wolf estimator, constant
correlation matrix, and performance of the true optimal portfolio). It should be
noted that the experiments show similar results for the different markets (Euronext
Paris Stock Exchange and London Stock Exchange), which indicates that the
phenomenon of bias is not due to features of a certain stock market.
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Table 5 Dependence on estimation accuracy for different parameters

Estimator

T Ledoit1 Sample Single ind

(a) Dependence on sample size T for means, mean annual return, short sales are allowed

120 0.1321 0.1304 0.1332

180 0.1338 0.1334 0.1371

240 0.1413 0.1510 0.1489

300 0.1542 0.1513 0.1501

360 0.1513 0.1587 0.1593

420 0.1534 0.1628 0.1636

480 0.1577 0.1666 0.1573

540 0.1650 0.1689 0.1711

Real market data 0.1926 0.1953 0.1842

(b) Dependence on sample size T for means, mean annual return, short sales are forbidden

120 0.1271 0.1269 0.1292

180 0.1285 0.1254 0.1302

240 0.1291 0.1297 0.1284

300 0.1313 0.1311 0.1323

360 0.1408 0.1403 0.1402

420 0.1445 0.1464 0.1427

480 0.1504 0.1499 0.1504

540 0.1529 0.1553 0.1520

Real market data 0.1929 0.1933 0.1924

(c) Dependence on sample size T for covariance matrix, mean annual return, short sales are allowed

120 0.1282 0.1338 0.1370

180 0.1329 0.1428 0.1360

240 0.1321 0.1483 0.1408

300 0.1451 0.1496 0.1492

360 0.1373 0.1497 0.1436

420 0.1473 0.1494 0.1496

480 0.1390 0.1544 0.1501

540 0.1472 0.1494 0.1489

Real market data 0.1496 0.1554 0.1472

(d) Dependence on sample size T for covariance matrix, mean annual return, short sales are forbidden

120 0.1198 0.1185 0.1196

180 0.1300 0.1295 0.1275

240 0.1283 0.1278 0.1252

300 0.1286 0.1270 0.1359

360 0.1276 0.1269 0.1267

420 0.1317 0.1308 0.1369

480 0.1289 0.1289 0.1283

540 0.1229 0.1236 0.1220

Real market data 0.1345 0.1339 0.1382
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Fig. 1 Histogram of means of asset returns (US market)

The effect of bias is determined by the distribution of expected returns. The
further the target level τ from mean (0.12 for the US market, see Figure 1), the
more the out-of-sample performance (average annual return) of selected portfolios
deviates from what we expect. The figures demonstrate that average returns of
selected portfolios are located inside some narrow interval, which is far smaller than
[min τ , max τ ]. Moreover, it is evident that the form of the chosen estimator only
affects where the bounds of this interval are located, not its size. But at the same
time, the estimator of covariance matrix controls standard deviation of portfolio
returns, thus, its robustness. Figure 2c illustrates how standard deviation of selected
portfolio returns from τ depends on target desired level of returns. Ledoit and Wolf
estimator has significant advantage compared to the others in terms of robustness,
but it is still far from the results for true optimal portfolios due to presence of
estimation error for the mean vector.

When there is a lack of assets with desired mean returns, the negative role of
estimation error becomes more dramatic and the phenomenon of bias appears. To
support this statement, 2 experiments with different distribution of the true mean
vector were conducted. In the first one the true mean vector in the generators was
replaced by the vector from “2-peaks” distribution (see Figure 3a), which is formed
by 2 Normal distributions with means −0.2 and 0.2, and std deviation equal to half
of that for the original mean vector. In the second experiment the true means of
assets were distributed uniformly from minimum to maximum of the elements of
the original vector.
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Table 6 Dependence on desired level τ of mean annual return

Estimator

Tau Ledoit1 Sample Single ind

(a) Short sales are allowed

0.12 0.1215 0.1282 0.1329

0.13 0.1234 0.1232 0.1353

0.14 0.1274 0.1315 0.1352

0.15 0.1218 0.1225 0.1462

0.16 0.1316 0.1269 0.1487

0.17 0.1334 0.1380 0.1374

0.18 0.1368 0.1363 0.1395

0.19 0.1311 0.1392 0.1328

0.20 0.1345 0.1444 0.1417

(b) Short sales are forbidden

0.12 0.1036 0.1034 0.1071

0,13 0.1175 0.1224 0.1167

0,14 0.1208 0.1196 0.1178

0.15 0.1215 0.1151 0.1310

0.16 0.1229 0.1227 0.1231

0.17 0.1244 0.1249 0.1240

0.18 0.1188 0.1173 0.1249

0.19 0.1193 0.1141 0.1223

0.20 0.1340 0.1325 0.1347

(c) Average portfolio returns with the “true” mean vector with elements increased by 0.03

Ledoit1 Sample Single index True

Short sales are allowed

0.1702 0.1687 0.1792 0.2080

Short sales are forbidden

0.1662 0.1645 0.1724 0.2005

As it is seen from the graphs, the effect of bias disappears when there are enough
assets with desired level of returns.

From all the results presented in Figures 2, 3, 4, 5 we can conclude that the
effect of bias may appear in situations, when there are only few assets, that reach
needed level of annual return, and when the size of sample is considerably small, so
estimator of mean return has large variance. When we have a sufficient number of
assets with desired level of return or when the sample size is big enough, then the
phenomenon fades away.
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Fig. 2 Dependence of annual returns of selected optimal portfolios on the desired level τ . (a)
US market, N=228. (b) German market, N=150. Dependence of deviation D of selected optimal
portfolios on the desired level τ : (c) US market, N=228
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Fig. 3 “Two-peaks” distribution. (a) Histogram of the mean vector. (b) Dependence of annual
returns of selected optimal portfolios on the desired level τ (US market, N=228). (c) Dependence
of annual returns of selected optimal portfolios on the desired level τ (German market, N=150)
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Fig. 4 Uniform distribution. (a) Dependence of annual returns of selected optimal portfolios on
the desired level τ (US market, N=228). (b) Dependence of annual returns of selected optimal
portfolios on the desired level τ (German market, N=150)

3.3 Shrinkage Estimators for Mean Vectors

In an attempt to deal with the problem of bias, we tried to use shrinkage estimators
for mean vectors [8] instead of traditional sample means.

We measure the performance of the estimators in the same framework with
generated samples from multivariate Normal distribution. To generate samples,
distribution parameters (sample means and covariance matrix) were estimated on
the data (180 monthly observations, i.e., 15 years) from French and German markets
(Euronext Paris Stock Exchange and Frankfurt Stock Exchange). To estimate the
parameters, we generate a sample set of size T = 120, then solve the optimization
problem and evaluate the performance of selected portfolios on a new generated test
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Fig. 5 Dependence of annual returns of selected optimal portfolios on the desired level τ . (a)
French market, N=108. (b) German market, N=150

set with 12 elements (control year). This procedure is repeated for every desired
level τ , which changes from the minimum element of the market’s true mean vector
to the maximum element.

The following notation will be used to specify combinations of estimators for
E(R) and " in figures:

1. a1 Sample denotes the combination of shrinkage estimator for means with
coefficient a1 (11) and sample covariance matrix (13).

2. a2 Sample is similar to the previous, but uses shrinkage coefficient a2 (12).
3. a1 Ledoit denotes the combination of shrinkage estimator for means with

coefficient a1 (11) and Wolf–Ledoit covariance matrix (15), which is also used
for estimation of a1.

4. a2 Ledoit is similar to the previous, but uses shrinkage coefficient a2 (12).
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Fig. 6 Dependence of standard deviation σ of selected optimal portfolios on the desired level τ .
(a) French market, N=108. (b) German market, N=150

5. Traditional sample estimators denoted as Sample.
6. The combination of sample means (9) and Wolf–Ledoit covariance matrix

denoted as Ledoit.
7. Label True is used for the true parameters, the performance of true optimal

portfolios.

3.3.1 Improvements from Shrinkage Estimators for Means (a1)

The first experiment in this section is aimed to compare the performance of selected
portfolios at different desired levels τ of annual returns. The results are presented in
Figures 5 and 6.
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Fig. 7 Dependence of annual returns of selected optimal portfolios on the desired level τ (a2). (a)
French market, N=108. (b) German market, N=150

The results show considerable improvements in terms of average annual returns
of selected portfolios (see Figure 5). For both markets a1 equal Ledoit shows
annual returns which are very close to those of the true optimal portfolios, so
the phenomenon of bias fades away. However, without Wolf–Ledoit estimator for
covariance matrix, the improvement might be not so significant (see Figure 5a).

3.3.2 Improvements from Shrinkage Estimators for Means(a2)

The cost of this improvement is evident from Figures 7 and 8. With the average
returns shrinkage estimators for mean tend to increase the average level of risk of
selected portfolios (Figure 7). Although it helps to achieve the desired level τ , the
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Fig. 8 Dependence of standard deviation σ of selected optimal portfolios on the desired level τ
(a2). (a) French market, N=108. (b) German market, N=150

selected portfolios can still be far from the true optimal portfolios in terms of risks.
But the advantages of Wolf–Ledoit are still present, so the level of risks with this
estimator is significantly lower than with sample covariance matrix (Figure 8).

To investigate the reasons of this problem, one might consider the weights
of portfolios (Figure 9). The higher norm of vector of weights may lead to
higher fluctuations of w E(R), and consequently higher levels of risk. The figure
demonstrates that portfolios selected with Wolf–Ledoit estimator usually have lower
norm of weights, but may not reach the desired level of annual returns because of it.
Also, if we consider the form of the top lines (a1 equal Sample) in Figures 6b and
9b, it is obvious from where this dramatic increase of risk (deviation D) levels did
come from.
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Fig. 9 Dependence of L1 norm of weights ‖w‖ of selected optimal portfolios on the desired level
τ . (a) French market, N=108. (b) German market, N=150

More information can be obtained from the portfolio trajectories, formed by each
point

(
ŵ E(R),D

)
for every level τ . The trajectories are shown in Figure 10. An

unexpected discovery here is that shrinkage estimator for means enables to achieve
with higher expected returns portfolios from nearly the same frontier. Without
these estimators, expected returns of selected portfolios were overrated because
of estimation error in the mean vector, and thus the high desired levels τ were
unattainable out-of-sample. This is the essence of the phenomenon of bias. Also,
the figure demonstrates another evidence of advantages of Wolf–Ledoit matrix. It
allows to reach portfolios from the frontier, which is significantly closer to the true
efficient frontier.



180 V. A. Kalyagin and S. V. Slashchinin

Fig. 10 Portfolio trajectories. (a) French market, N=108. (b) German market, N=150

To make the essence of the phenomenon more evident, we compare the results of
selected portfolios with and without shrinkage estimator for means (see Figure 11)
for different desired levels of annual return τ = 0.1, 0.15, and 0.2. Quadrangles
denote true optimal portfolios, triangles denote points on the portfolio trajectory
for Ledoit, and circles for a1 Ledoit. The figure demonstrates that due to poor
estimation of means without shrinkage estimators, selected portfolios tend to have
annual lower annual returns. This feature appears for both markets, but for German
it is more apparent.
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Fig. 11 Portfolio trajectories with compared results for different τ levels. (a) French market,
N=108. (b) German market, N=150

3.4 Student t Distribution

Although shrinkage estimators might help to partially deal with estimation error in
mean vectors, the results presented in the previous section show the performance
of selected portfolios with generated normal data. So, it is necessary to test the
estimators with samples generated from the other distributions. In this section,
the same experiments were conducted, but the data were drawn from multinomial
Student t distribution with 3 degrees of freedom and the same parameters in the
generator. The empirical results are displayed in Figures 12 and 13.
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Fig. 12 French market. (a) Dependence of annual returns of selected optimal portfolios on the
desired level τ with shrinkage means. (b) Portfolio trajectories

As it can be seen from the figures, the results with Students t distribution in
the generator are roughly the same. This distribution has heavier tails than Normal
distribution, but results did not change.

4 Future Research

Data driven approach became more and more popular in practical optimization
problems [3]. It is interesting to continue the present research on the large scale
portfolio optimization using this approach.
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Fig. 13 German market. (a) Dependence of annual returns of selected optimal portfolios on the
desired level τ with shrinkage means. (b) Portfolio trajectories
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Optimal Design of Smart Composites

Georgios K. Tairidis, Georgia Foutsitzi, and Georgios E. Stavroulakis

Abstract In the present chapter, optimal design problems related to smart com-
posites are investigated. First, the mechanical properties of a smart composite
can be tailored to meet required specifications. Beyond classical shape and layout
optimization related to the layers of a composite, pointwise optimization leading
to functionally graded composites or even topology optimization can be applied. A
cantilever beam with two materials is briefly presented. Furthermore, the control
subsystem has several parameters to be optimized: number and position of sensors
and actuators, as well as the parameters of the controller. Here, some basic
techniques regarding soft control based on fuzzy and neuro-fuzzy strategies are
presented, along with optimization options and methods which can be used for the
fine-tuning of the parameters of the system. The main concept of the present chapter
is to provide stimuli to those who deal with design, optimization, and control issues
on smart structures.

1 Introduction

The optimal design of smart composite materials and structures has attracted a lot
of scientific interest during the last years, as the availability of technological tools
has increased dramatically. The optimization process usually deals with the shape
or the thickness of the material, the direction of fibers, etc., see among others [1–4].

Besides the high availability of the design tools, the availability of the control
tools has increased as well. Modern control schemes based on fuzzy and adaptive
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neuro-fuzzy methods are capable of solving hard problems with less or even without
any information about the examined model. In this direction, several optimization
techniques (e.g., ANFIS, genetic algorithms, etc.) can be used for the improvement
of the characteristics of the control as well [5, 6]. These tools can be easily
programmed and used within commercial simulation packages and/or programming
languages like Simulink and MATLAB.

Another option, which attracts a lot of interest, on the optimal design of smart
materials and structures, lies on the use of topology optimization tools [7]. These
techniques lead to the design of optimal microstructures or simply give useful
information for material, sensor, or actuator placement. An important aspect here
is that topology optimization results can be now applied to real life problems, due
to the availability of 3D printing and additive manufacturing technology. A simple
example of gradually changing two-material composite beam is presented here.

Moreover, the basic concept of soft control based on fuzzy and neuro-fuzzy
methods is presented as a stimulus for those who are interested in the optimal design
of materials and structures. It is shown that the available tools for the optimal tuning
of the control mechanisms exist, in order to achieve the maximum potential from
every method. These tools include among others the use of artificial neural networks,
genetic algorithms [5], particle swarm optimization [6, 8], etc.

In the present investigation, several numerical examples from these fields are
presented and discussed. Firstly, a smart beam model with two different materials
(aluminum and polypropylene) is studied. The need for this investigation occurs
from the rapid development of 3D printing processes with two materials, focusing
on the accurate construction of models with complicated geometry. More specif-
ically, the dynamical characteristics of the proposed model are calculated using
modal analysis techniques, in order to find the influence of these two materials
in the structural modes. The analysis was carried out using the finite element
method through the Comsol Multiphysics software. The results of the analysis were
compared with a simple homogeneous aluminum beam.

Moreover, an example from a composite plate with adhesive layers is considered.
In this case a coupled electromechanical model of a piezoelectric plate under the
layerwise theory is considered. The presence of adhesive material enables the study
of delamination phenomena. Besides the capabilities of static or dynamic analysis,
several control tools can be used for vibration suppression. In the examples which
are given herein, firstly a simple fuzzy controller, and subsequently an optimized one
are presented. The optimization is based on genetic algorithms. Such algorithms are
nature-inspired global optimization tools which simulate the evolution process of
species, including humankind.

Finally, numerical examples from the control field are discussed in order to show
not only the capabilities of control in structural design, but also the availability of
optimization techniques and their synergy with the whole system in order to build a
robust and efficient control procedure.
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2 Numerical Solution of Multiphysics Problems

One of the most common and powerful methods for the discretization and the anal-
ysis of smart structures is the finite element method (FEM). After the discretization
of the structure, modal analysis tools and time-stepping techniques can be used for
the determination of the dynamic behavior of the system and its response to various
excitations. Mechanical, electrical, thermal, or other continuum mechanics layers
can be solved together, interacting between them, by using the same framework.

The need for solving difficult and/or large-scale problems has led to the
development of approximation methods. This is due to the fact that various technical
problems are described by equations which are hard to be solved, except if it comes
for very simple, small-scale problems defined on simple areas. The finite element
method is an important tool for the numerical analysis and solution of several
problems in mechanics. It is a very reliable approximation method and with major
advantage the application on a very wide range of different problems, which are
described by differential equations, as are the equations of motion in dynamical
systems. The major drawback of this method lies to the fact that it is very costly,
in terms of computational cost, especially in complex problems with complicated
geometry and in non-linear problems. However, this disadvantage is overcome from
the rapid development of computers.

The first thing that is required for the application of the finite element method is
the geometry of the structure, which is usually inserted by using a computer aided
design (CAD) program in order to develop the final structural model in two or three
dimensions. Once the model is constructed, it is discretized in small elements (see
Figure 1) which are called finite elements and a grid or mesh is created.

For the development of a mesh of adequate quality, the designer should be able
to consider the main parameters of the model [9]. First of all, one should know
approximately the optimal number of elements. However, besides the total number
of elements, the geometry of the elements plays significant role as well to the mesh
quality. The main criteria which are taken into account for the development of high
quality elements are the element skewness and the element aspect ratio.

With the term skewness is denoted the error between the optimal and the real size
of each element. The desired value of element skewness should not exceed 0.25. The
element skewness is given by the formula:

Skewness = (Optimal Cell Size− Cell Size)/Optimal Size.

Fig. 1 Different types of finite elements



188 G. K. Tairidis et al.

Fig. 2 Aspect ratio for
different element geometries

The element aspect ratio is the ratio between the larger and the smaller side of
the element (triangle, quad, etc.) as seen in Figure 2. Ideally, this ratio should be
equal or near 1. In this case the shape of the element is uniform (e.g., an isosceles
triangle, a square, etc.). When designing a mesh of a structure, values of aspect ratio
should be above the critical limit (e.g., above 0.7).

Then the designer should insert all the required data (e.g., loadings, boundary
conditions, etc.) for the description of the considered boundary value problem and
choose or program an appropriate solver. The commercial packages which are used
for this purpose are usually called pre-processors. Once the data for solving are
ready, they are usually inserted in the program or package which will go through
the analysis. These programs are called solvers and they use numerical methods
for the solving of the arising system of equations. Finally, once the solving step is
fulfilled, a post-processor, i.e., a suitable program for the evaluation of the results,
should be used. However, the designer may use only one software package (all-in-
one) for every single step of the method. In the results which are presented in the
present chapter, Solidworks is used for the design of model (CAD) and COMSOL
Multiphysics is used for analysis, i.e., the application of the finite element method.
It is worth mentioning that COMSOL software provides an integrated designing
system; thus, it can be used as an all-in-one software for both the design and the
analysis.

Furthermore, in order to avoid the complexity of a general three-dimensional
finite element model and have flexibility to apply size-reduction techniques and
coupling with various controllers, the authors have developed in-house finite
element codes based on simplified mechanical bending theories for multilayered
beams and structures. These techniques are outlined in the next section.

3 Structural Mathematical Model for Composites

A laminated composite plate with integrated piezoelectric sensors and actuators
and adhesive layers between them is considered (Figure 3). The mid-plane of the
first layer is set to coincide with the origin of the z-axis. For simplicity of the
notation, all the non-adhesive layers will be considered piezoelectric. Elastic layers
are obtained by setting their piezoelectric coefficients to zero. In order to be able to
model delamination between the layers, a composite discrete-layer (layerwise) plate
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Fig. 3 Geometry of the smart piezocomposite plate

theory is employed. The formulation results in a coupled finite element model with
mechanical (displacement) and electrical (potentials of piezoelectric layer) degrees
of freedom. In addition the investigation is restricted to orthotropic layers, while
extension to more general models is straightforward. Specially orthotropic layers
are considered.

3.1 Displacement and Strains of the Non-adhesive Layers

The displacement field is defined according to a partial layerwise theory where the
in-plane displacements u(i)1 and u(i)2 of the i-th layer are assumed linear through

thickness, whereas transverse ones u(i)3 are supposed constant

u
(i)
1 (x, y, z, t) = u(i)(x, y, t)+ (z− z̃(i))θ (i)x (x, y, t)
u
(i)
2 (x, y, z, t) = v(i)(x, y, t)+ (z− z̃(i))θ (i)y (x, y, t)
u
(i)
3 (x, y, z, t) = w(i)(x, y, t), (1)

where u(i), v(i), and w(i) are the mid-plane deformations of the i-th layer, θ(i)x and
θ
(i)
y are rotation angles of the normal to the mid-plane about the y and x axes,

respectively, and z̃(i) is the thickness of the mid-plane of the i-th layer.
The in-plane strain of the i-th layer can be expressed by the

{ε(i)b } = {ε(i)xx , ε(i)yy , γ (i)xy }T = {ε(i)b0 } + (z− z̃(i)){k(i)}, (2)

where
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{ε(i)0b } =
{
∂u(i)
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,
∂v(i)

∂y
,

(
∂u(i)

∂y
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(i)

∂x

)}T

,

{k(i)} =
{
∂θ
(i)
x

∂x
,
∂θ
(i)
y

∂y
,

(
∂θ
(i)
x

∂y
+ ∂θ

(i)
y

∂x

)}T

.

The transverse shear strains of the i-th layer are given by

{ε(i)s } = {γ (i)yz , γ (i)xy }T = {ε(i)0s }, (3)

where

{ε0s} =
{
∂w(i)

∂y
+ θ(i)y ,

∂w(i)

∂x
+ θ(i)x

}T

.

In the above equations, a superscript T denotes the transpose of a matrix.

3.2 Constitutive Equations of Piezoelectric Layer

The linear constitutive equations for the i-th piezoelectric layer with reference to its
principal axes are given by

{σ̂ (i)} = [Q̄(i)]{ε(i)} − [ē(i)]T {E(i)}
{D̂(i)} = [ē(i)]{ε(i)} + [ξ̄ (i)]{E(i)}, (4)

where {σ̂ (i)},{ε̂(i)}, {D̂(i)}, and {E} are stress, strain, electric displacement, and
electric field vector of the i-th layer, respectively. [Q̄(i)], [ē(i)], and [ξ̄ (i)] are
plane-stress reduced stiffness coefficients, the piezoelectric coefficients, and the
permittivity constant matrices of the i-th layer, respectively. The first part of
Equation (4) describes the inverse piezoelectric effect, while the second part
accounts the direct effect.

Next, we assume that the piezoelectric material exhibits orthorhombic 2 mm
symmetry. After transforming Equation (4) to the global coordinate system (x, y, z)
and separating the bending and shear related variables, the constitutive Equation (4)
become

{σ (i)b } = [Q(i)b ]{ε(i)b } − [e(i)b ]T {E(i)}
{σ (i)s } = [Q(i)s ]{ε(i)s } − [e(i)s ]T {E(i)}
{D(i)} = [eb]{ε(i)b } + [e(i)s ]{ε(i)s } + [ξ (i)]{E(i)}, (5)



Optimal Design of Smart Composites 191

where {σ (i)b } = {σ (i)xx , σ (i)yy , τ (i)xy }T , {σ (i)s } = {τ (i)yz , τ (i)xz }T , and

[Q(i)b ] =
⎡

⎢
⎣

Q
(i)
11 Q

(i)
12 Q

(i)
16

Q
(i)
21 Q

(i)
22 Q

(i)
26

Q
(i)
16 Q

(i)
26 Q

(i)
66

⎤

⎥
⎦ , [Q(i)s ] =
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Q
(i)
44 Q

(i)
45

Q
(i)
45 Q

(i)
55

]

[e(i)b ] =
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⎣
0 0 0
0 0 0
e
(i)
31 e

(i)
32 e

(i)
36

⎤

⎦ , [e(i)s ]=

⎡
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e
(i)
14 e

(i)
15

e
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25 e
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25

0 0

⎤
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⎦ , [ξ (i)] =

⎡

⎢
⎣

ξ
(i)
11 ξ

(i)
12 0

ξ
(i)
21 ξ

(i)
22 0

0 0 ξ
(i)
33

⎤

⎥
⎦ . (6)

In Equation (6),Q(i)kl , e(i)kl and ξ (i)kk are the transformed reduced elastic, piezoelectric,
and permittivity constants of the i-th layer, respectively. The detailed expressions
for transformed material constants can be obtained from [10]. For non-piezoelectric
layer the material constants e(i)kl and ξ (i)kk should be zero.

3.3 Electric Field

A constant transverse electrical field is assumed for the piezoelectric layers and
the remaining in-plane components are supposed to vanish. For most of the typical
piezoelectric laminate structures with relatively small thickness of the piezoelectric
layers in comparison to the overall structure’s thickness, the electric field inside the
i-th piezoelectric layer can be expressed as

{E(i)} =
[
0 0 − 1

h(i)

]
φ(i) = [B(i)φ ]φ(i), (7)

where h(i) and φ(i) are the thickness and the difference of electric potential of the
i-th piezoelectric layer.

3.4 The Adhesive Layer

The adhesive layers between the host plate and the piezoelectrics are assumed to be
very thin, and their deformation is linear. Only transverse normal stress σ (ai)z and
strains ε(ai )zz , and in-plane shear stress τ (ai )xz , τ (ai )yz and strains γ (ai)xz , γ (ai)yz are taken
into account. The in-plane stretching of the adhesive layer is neglected, since its
stiffness in that direction is quite small. Also the adhesive layer is treated as an
isotropic material. The linear deformation of the adhesive layers can be written in
terms of the deformations of the adjacent structural layers [11, 12]
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u
(ai)
1 = Z[u(i+1) + h

(i+1)

2
θ(i+1)
x ] + [1− Z][u(i) − h

(i)

2
θ(i)x ]

u
(ai)
2 = Z[v(i+1) + h

(i+1)

2
θ(i+1)
y ] + [1− Z][v(i) − h

(i)

2
θ(i)y ]

u
(ai)
3 = Zw(i+1) + [1− Z]w(i), (8)

where Z = 1
h(ai )

(z− z̃(i) − h(i)

2 ).

The above equations can be written in more compact form as follows:

{
ū(i)

}
=

{
u(i), v(i), w(i), θ (i)x , θ

(i)
y

}T = [R(ai)t (z)]
{
ū(i+1)

}
+ [R(ai)b (z)]

{
ū(i)

}
,

(9)
where

[R(ai)t (z)] =
⎡

⎢
⎣

Z 0 0 h(i+1)

2 Z 0

0 Z 0 0 h(i+1)

2 Z

0 0 Z 0 0

⎤

⎥
⎦ ,

[R(ai)b (z)] = 1

h(ai)

⎡

⎢
⎣

1− Z 0 0 −h(i)2 Z 0

0 1− Z 0 0 −h(i)2 Z

0 0 1− Z 0 0

⎤

⎥
⎦ .

Using the above relations and taking into account that the adherends are much
thicker than the adhesive layers, the shear and peel strains of the adhesive layers can
be written as (see [11, 12] for more details)

ε(ai )zz = w(i+1) − w(i)
h(ai )

γ (ai )yz = 1

h(ai)
[v(i+1) − v(i) + h

(i)

2
θ(i)y + h

(i+1)

2
θ(i+1)
y ]

γ (ai)xz = 1

h(ai)
[u(i+1) − u(i) + h

(i)

2
θ(i)x + h

(i+1)

2
θ(i+1)
x ]. (10)

Substituting the relations (8) into Equation (10) gives

{
ε(ai )

}
=

{
ε(ai )zz , γ

(ai )
xz , γ

(ai )
xz

}T = [L(ai)t ]
{
ū(i+1)

}
+ [L(ai)b ]

{
ū(i)

}
, (11)
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where

[L(ai)t ] = 1

h(ai)

⎡

⎢
⎣

0 0 1 0 0

0 1 0 0 h(i+1)

2

1 0 0 h(i+1)

2 0

⎤

⎥
⎦ , [L(ai)

b
] = 1

h(ai)

⎡

⎢
⎣

0 0 −1 0 0

0 −1 0 0 h(i)

2

−1 0 0 h(i)

2 0

⎤

⎥
⎦ .

The bending and shear stress in the adhesive layer can be written as

{σ (ai)} = [Q(ai)]{ε(ai )} or

⎧
⎪⎨

⎪⎩

σ
(ai)
zz

τ
(ai )
xz

τ
(ai )
xz

⎫
⎪⎬

⎪⎭
=

⎡

⎣
E(ai) 0 0

0 G(ai) 0
0 0 G(ai)

⎤

⎦

⎧
⎪⎨

⎪⎩

ε
(ai )
zz

γ
(ai )
xz

γ
(ai )
xz

⎫
⎪⎬

⎪⎭
.

(12)

3.5 Finite Element Formulation

In this present study, the three-layered plate model has been discretized using a
twelve-nodded isoparametric quadrilateral Lagrangian element with five degrees of
freedom (DOF) per node (see Figure 4).

The element is developed to include the adhesive layer flexibility. The general-
ized displacement vector is interpolated as

{ū(i)(x, y, t)} ≡ {u(i), v(i), w(i), θ(i)x , θ(i)y }T = [Nu]{d(i)}e =
4∑

j=1

(Nj [I ]5×5{dj }),

(13)

where {d(i)}e = {{d(i)1 }T , {d(i)2 }T , {d(i)3 }T , {d(i)4 }T }T and {d(i)j } = {u(i)j , v(i)j , w(i)j ,
θ
(i)
xj , θ

(i)
yj }T , j = 1, 2, 3, 4, corresponding to the j -th node of the element,

Nj , j = 1, 2, 3, 4, are bilinear isoparametric shape functions, and [I ]5×5 is the
unit matrix.

Fig. 4 Twelve-nodded
isoparametric element with
five degrees of freedom per
node
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Substituting (13) into Equations (2) and (3) gives

{ε̄(i)(x, y, t)} = [B]{d(i)} =
4∑

j=1

([Bj ]{d(i)j }) (14)

or equivalent

{ε̄(i)} =

⎧
⎪⎨

⎪⎩

{ε(i)b0 }
{k(i)}
{ε(i)s0 }

⎫
⎪⎬

⎪⎭
=

⎡

⎣
[Bb]
[Bk]
[Bs]

⎤

⎦ {d(i)} =
4∑

j=1

⎛

⎝

⎡

⎣
[Bb]j
[Bk]j
[Bs]j

⎤

⎦ {d(i)j }
⎞

⎠ ,

where

[Bb]j =
⎡

⎢
⎣

∂x 0 0 0 0

0 ∂y 0 0 0

∂y ∂x 0 0 0

⎤

⎥
⎦Nj , [Bk]j =

⎡

⎢
⎣

0 0 0 ∂x 0

0 0 0 0 ∂y

0 0 0 ∂y ∂x

⎤

⎥
⎦Nj , [Bs ]i =

[
0 0 ∂x 1 0

0 0 ∂y 0 1

]

Nj ,

and ∂x = ∂
∂x

, ∂y = ∂
∂y

.

3.6 Variational Principle

This formulation will be based on the Hamilton variational principle in which
the strain potential energy, kinetic energy, and work are considered for the entire
structure. Since we are dealing with the piezoelectric continuum with adhesive
interfaces, the Lagrangian and the virtual work are properly adapted to include the
electrical and mechanical contributions as well as the contribution of the adhesive.
The most general form of this variational principle is stated as

T∫

0

(δT − δU + δW) dt, (15)

where T is the total kinetic energy, U is the total strain energy, and W is the work
done by the loads.

The total kinetic energy of the system is the sum of the corresponding energies
of individual layers and can be given by

T =
3∑

i=1

T (i) +
2∑

i=1

T (ai). (16)
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The kinetic energy of the i-th layer is given by

T (i) = 1

2

∫

V (i)

ρ(i)
[
{u̇1

(i)}2 + {u̇2
(i)}2 + {u̇3

(i)}2
]

dV, (17)

where ρ(i) is the density of the i-th layer. Substituting the displacements rela-
tions (1), Equation (17) becomes

T (i) = 1

2

∫

V (i)

ρ(i)[(u̇(i))2 + 2(z− z̃(i))u̇(i)θ̇ (i)x + (v̇(i))2 + 2(z− z̃(i))v̇(i)θ̇ (i)y + (ẇ(i))2

+(z− z̃(i))2(θ̇ (i)x )2 + (z− z̃(i))2(θ̇ (i)y )2]dV

= 1

2

∫

V (i)

ρ(i)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u

v

w

θx

θy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

T ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 (z− z̃(i)) 0

0 1 0 0 (z− z̃(i))
0 0 1 0 0

(z− z̃(i)) 0 0 (z− z̃(i))2 0

0 (z− z̃(i)) 0 0 (z− z̃(i))2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u

v

w

θx

θy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

dV

= 1

2

∫

V (i)

{ ˙̄u(i)}T [I (i)(z)]{ ˙̄u(i)}dV. (18)

Substituting Equation (13) in the relation (18), one obtains

T (i) = 1

2
{ḋ(i)}T

∫

V (i)

[N ]T [I (i)(z)][N ]dV { ˙d(i)} ≡ 1

2
{ḋ(i)}T [M(i)]{ ˙d(i)}. (19)

The kinetic energy of the ai-th adhesive layer is given by

T (ai) = 1

2

∫

V (ai )

ρ(ai )
[
{u̇1

(ai )}2 + {u̇2
(ai )}2 + {u̇3

(ai )}2
]

dV

= 1

2

∫

V (ai )

{u̇(ai )}T [I (ai )(z)]{u̇(ai )}dV, (20)

where [I (ai )(z)] = ρ(ai )[I ]3×3 and V (ai) is the volume of the ai-th adhesive layer.
Using the relations (9) and (13), the above relation takes the form

T (ai) = 1

2
{ḋ(i+1)}T

∫

V (ai )

[N ]T [R(ai)t ]T [I (ai )(z)][R(ai)t ][N ]dV {ḋ(i+1)}

+1

2
{ḋ(i+1)}T

∫

V (ai )

[N ]T [R(ai)t ]T [I (ai )(z)][R(ai)b ][N ]dV {ḋ(i)}
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+1

2
{ḋ(i)}T

∫

V (ai )

[N ]T [R(ai)b ]T [I (ai )(z)][R(ai)t ][N ]dV {ḋ(i+1)}

+1

2
{ḋ(i)}T

∫

V (ai )

[N ]T [R(ai)b ]T [I (ai )(z)][R(ai)b ][N ]dV {ḋ(i)}

≡ 1

2
{ḋ(i+1)}T [M(ai)

tt ]e{ḋ(i+1)} + 1

2
{ḋ(i+1)}T [M(ai)

tb ]e{ḋ(i)}

+1

2
{ḋ(i)}T [M(ai)

bt ]e{ḋ(i+1)} + 1

2
{ḋ(i)}T [M(ai)

bb ]e{ḋ(i)}. (21)

The total strain energy of the system is represented as

U =
3∑

i=1

U(i) +
2∑

i=1

U(ai). (22)

The strain energy of the i-th piezoelectric layer is given by

U(i) = 1

2

∫

V (i)

({ε(i)b }T {σ (i)b } + {ε(i)s }T {σ (i)s }) dV

= 1

2

∫

V (i)

({ε(i)b0 }T [Q(i)b ]{ε(i)b0 } + {ε(i)b0 }T (z− z̃(i))[Q(i)b ]

+{k(i)}T (z− z̃(i)){ε(i)b0 } + {k(i)}T (z− z̃(i))2[Q(i)b ]{k(i)}
+{ε(i)s0 }T [Q(i)s ]{ε(i)s0 } + {k(i)s }T (z− z̃(i))2[Q(i)s ]{ε(i)s0 }
−{ε(i)b0 }T [e(i)b ]T {E(i)} − {k(i)}T (z− z̃(i))[e(i)b ]T {E(i)}
−{ε(i)s0 }T [e(i)s ]T {E(i)}) dV

= 1

2

∫

V (i)

⎡

⎢
⎣

{ε(i)b0 }
{k(i)}
{ε(i)s0 }

⎤

⎥
⎦

T ⎡

⎢
⎣

[Q(i)b ] (z− z̃(i))[Q(i)b ] 0
(z− z̃(i))[Q(i)b ] (z− z̃(i))2[Q(i)b ] 0

0 0 [Q(i)s ]]

⎤

⎥
⎦

⎡

⎢
⎣

{ε(i)b0 }
{k(i)}
{ε(i)s0 }

⎤

⎥
⎦ dV

−1

2

∫

V (i)

⎡

⎢
⎣

{ε(i)b0 }
{k(i)}
{ε(i)s0 }

⎤

⎥
⎦

T ⎡

⎢
⎣

[e(i)b ]T
(z− z̃(i))[e(i)b ]T

[e(i)s ]T

⎤

⎥
⎦ {E(i)}dV

= 1

2

∫

V (i)

({ε̄(i)}T [D(i)((z− z̃(i)))]{ε̄(i)} − {ε̄(i)}T [E (i)(z)]{E(i)})dV. (23)
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Substituting for {ε(i)b0 }, {k(i)}, {ε(i)s0 }, and {E(i)} in Equation (23), U(i) can be written
as

U(i) = 1

2
{d(i)}Te [K(i)uu ]e{d(i)}e −

1

2
{d}Te [K(i)uφ ]e{φ(i)}e, (24)

where

[K(i)uu ]e =
⎡

⎢
⎣

∫

V (i)

([B]T [D(i)(z)][B]dV
⎤

⎥
⎦ , [K(i)uφ ]e =

⎡

⎢
⎣

∫

V (i)

[B]T [E(i)(z)][Bφ](i)dV
⎤

⎥
⎦ .

The strain energy of the ai-th adhesive layer is given by

U(ai) = 1

2

∫

V (ai )

{ε(ai )}T {σ (ai)}dV = 1

2

∫

V (ai )

{ε(ai )}T {[Q(ai)]}{ε(ai)}dV. (25)

With the aid of Equations (11) and (13), the above equation takes the form

U(ai) = 1

2
{d(i+1)}T

∫

V (ai )

[N ]T [L(ai)t ]T [Q(ai)][L(ai)t ][N ]dV {d(i+1)}

+1

2
{d(i+1)}T

∫

V (ai )

[N ]T [L(ai)t ]T [Q(ai)][L(ai)b ][N ]dV {d(i)}

+1

2
{d(i)}T

∫

V (ai )

[N ]T [L(ai)b ]T [Q(ai)][L(ai)t ][N ]dV {d(i+1)}

+1

2
{d(i)}T

∫

V (ai )

[N ]T [L(ai)b ]T [Q(ai)][L(ai)b ][N ]dV {d(i)}

≡ 1

2
{d(i+1)}T [K(ai)tt ]e{d(i+1)} + 1

2
{d(i+1)}T [K(ai)tb ]e{d(i)}

+1

2
{d(i)}T [K(ai)bt ]e{d(i+1)} + 1

2
{d(i)}T [K(ai)bb ]e{d(i)}. (26)

The total work W is the sum of the work done by the electrical forces WE and
the work done by the mechanical forces Wm. Using constitutive relations, strain
displacement, and electric field–electric potential relations, the element electrical
energy can be written as
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W
(i)
E = 1

2

∫

V (i)

{E(i)}T {D(i)}dV

= 1

2

∫

V (i)

{E(i)}T ([e(i)b ]{ε(i)b } + [e(i)s ]{ε(i)s } + [ξ (i)]{E(i)})dV

= 1

2
{φ(i)}T

∫

V (i)

[B(i)φ ]T [ξ ][B]dV {d(i)} +
1

2
{φ(i)}T

∫

V (i)

[B(i)φ ]T [ξ (i)][B(i)φ ]dV {φ(i)}e

= 1

2
{φ(i)}T [K(i)φu]{d(i)} +

1

2
{φ(i)}T [K(i)φφ]{φ(i)}. (27)

The work done by the mechanical forces is given by

W(i)
m = {ū(i)}T {f (i)c } +

∫

S
(i)
1

{ū(i)}T {f (i)s }dS +
∫

V

{ū(i)}T {f (i)v }dV (i)

−
∫

S
(i)
2

{E(i)}T {fφ}dS

= {d(i)}Te [N ]T {f (i)c } + {d(i)}Te
∫

S1

[N ]T {f (i)s }dS + {d(i)}Te
∫

V

[N ]T {f (i)v }dV

−{φ(i)}Te
∫

S2

[B(i)φ ]T {f (i)φ }dS

= {d(i)}Te {F (i)m }e + {φ(i)}Te {F (i)φ }e. (28)

In Equation (28), {f (i)c } denotes the concentrated forces intensity, {f (i)s } and {f (i)v }
denote the surface and volume force intensity, respectively, and {f (i)φ } denotes the

surface charge density. S(i)1 and S(i)2 are the surface areas where the mechanical

forces and electrical charge are applied, respectively. {F (i)m }e are the applied
mechanical forces of the layer i in an element and {F (i)φ }e are the applied electrical
charges of the layer i in an element.

3.7 Equations of Motion

Using Hamilton’s principle (15) the resultant global finite element spatial model,
governing the motion and electric charge equilibrium of each element, is given by
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[M]e
{
d̈
}

e
+ [Kuu]e {d}e +

[
Kuφ

]

e
{φ}e = {Fm}e

[
Kφu

]

e
{d}e +

[
Kφφ

]

e
{φ}e =

{
Fφ

}

e
, (29)

where {d}e = {{d(1)}Te , {d(2)}Te , {d(3)}Te }, {φ}e = {φ(1)e , φ(2)e , φ(3)e },

[M]e =
⎡

⎢
⎣

[M(1)]e + [M(a1)
bb ]e [M(a1)

bt ]e 0
[M(a1)

tb ]e [M(2)]e + [M(a1)
tt ]e + [M(a2)

bb ]e [M(a2)
bt ]e

0 [M(a2)
tb ]e [M(3)]e + [M(a2)

tt ]e

⎤

⎥
⎦

[K]e =
⎡

⎢
⎣

[K(1)]e + [K(a1)
bb ]e [K(a1)

bt ]e 0
[K(a1)
tb ]e [K(2)]e + [K(a1)

tt ]e + [K(a2)
bb ]e [K(a2)

bt ]e
0 [K(a2)

tb ]e [K(3)]e + [K(a2)
tt ]e

⎤

⎥
⎦

[K(uφ)]e =
⎡

⎢
⎣

K
(1)
(uφ) 0 0

0 K
(2)
(uφ) 0

0 0 K
(3)
(uφ)

⎤

⎥
⎦ , [K(φφ)]e =

⎡

⎢
⎣

K
(1)
(φφ) 0 0

0 K
(2)
(φφ) 0

0 0 K
(3)
(φφ)

⎤

⎥
⎦

{Fm}e =
{
{F (1)m }Te , {F (2)m }Te , {F (3)m }Te

}T
, {Fφ}e =

{
{F (1)φ }Te , {F (2)φ }Te , {F (3)φ }Te

}T
.

Following the routine of the assembly procedure, the global equations for the
smart composite plate can be obtained.

The formulation is general in the sense that it can model laminated composite
structures with arbitrary boundary conditions. The robustness of this formulation is
that each element of each layer can be made of any material and if it is piezoelectric,
then setting the appropriate (electrical) boundary conditions will allow it to act as a
sensor or actuator.

4 Modal and Dynamic Analysis

For the calculation of the dynamical properties of the structure, modal analysis tools
were used. For a linear elastic system with given mass and stiffness, its dynamic
identity is quantified by the eigenfrequencies and the corresponding eigenmodes.
The eigenvalues are calculated from the mass and stiffness matrices according to

det(K− λM) = 0. (30)

For every value which is calculated by Equation (15), corresponds a displacement
vector ai,j .

This vector is called eigenvector of the eigenvalue problem, and provides the
eigenvectors φi of the structures after normalization:
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φi = ciαi,j , (31)

where ci is an arbitrary constant.
The eigenvectors are very important when designing a dynamic system, because

they can help the designer of the system to monitor the several modes (ways)
of vibration. Through these vectors, one can obtain useful information for the
deformation and the displacement of the examined system. In technological appli-
cations, usually a small number of only the first eigenvectors are necessary in the
sense that they capture the most of the kinetic energy of the system, and thus
these eigenfrequencies together with the corresponding modes are calculated and
considered for the design. This is due to the fact that, on the one hand, the excitation
forces in nature excite only the first (low) eigenfrequencies of a structural system,
and on the other hand, the inertial forces have smaller influence on the dynamic
behavior of the system, as the excitation frequency increases. Hence, the modes
with lower contribution to the response of the system, according to engineering
experience, i.e., those with minor energy participation, are usually not taken into
account. This assumption is important in order to simplify the examined problem.

The alteration to the eigenmodes and/or the eigenvalues of a structural system
can be used as an accurate alert for the modification of the structural characteristics,
in order to decide which is the best geometry and/or material and/or combination
of materials for a specified criterion which is set during the designing process.
Moreover, the modification of the eigen characteristics of a structure can provide
useful information for failures or damages in the context of structural health
monitoring (SHM).

For the dynamic analysis, i.e., for the integration of the equations of motion,
several numerical methods have been proposed in the literature. In general, these
algorithms can be used for the calculation of the numerical values approximating
the response of the dynamical system within a definite interval of time and are
very common in numerical analysis. In structural dynamics, ordinary differential
equations are involved for the description of motion. The methods which are used
in order to find the solutions of these equations are called ODE solvers. In this
direction, several algorithms are available. The most common methods include
among other the Euler method, the Runge–Kutta method, the Newmark-β method,
the Houbolt method, etc.

The Houbolt numerical integration method which is very popular in engineering
applications involving low frequencies is applied as follows. At first, one needs
to choose properly the two Houbolt factors. For constant acceleration assumption
within every time step, which is usually sufficient in structural dynamics, these
parameters are set to

β = 0.25, γ = 0.5. (32)

Also, the integration time t and the time stepΔt need to be chosen by the designer
of the system.

Integration constants are given as
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c1 = 1

βΔt2
, c2 = 1

βΔt
, c3 = 1

2β
, c4 = γ

βΔt
, c5 = γ

β
, c6 = Δt γ

2β
− 1. (33)

The Houbolt integration algorithm pseudocode can be written as follows:

Step 1: Initialization of variables
u, u̇, ü, Fm,M,C, β, γ, c1, c2, c3, c4, c5, c6

Step 2: Calculation of intermediate matrix F∗ : ∗ = +c1M + c4C

Inversion of matrix ∗ : F∗ = (K∗)T
Start of loop for t0 to tf

Step 3: Calculation of intermediate matrix P∗
Calculation of difference of loadings: dFm = Fm(t + 1)− Fm(t)
Calculation of difference of control force z
Aggregation to the quantity dFm: dFm = dFm + z
Calculation of matrixP∗ using mass matrix M and damping matrix C of the
system:
P∗ = dFm +M[c2u̇(t)+ c3ü(t)] + C[c5u̇(t)+ c6ü(t)]

Step 4: Calculation of response step du
du = F ∗ P∗

Step 5: Solution for the next step (t + t)
Calculation of acceleration: ü(t + 1) = ü(t)+ c1du− c2u̇(t)− c3ü(t)

Calculation of velocity: u̇(t + 1) = u̇(t)+ c4du− c5u̇(t)− c6ü(t)

Calculation of displacement: u(t + 1) = u(t)+ du

end for

5 Structural Control

5.1 Fuzzy Control in General

The classical fuzzy control systems, known also as fuzzy rule-based systems, are
based on the fuzzy inference techniques, which in turn are based on fuzzy sets.
Fuzzy inference provides a framework for quantitative usage of linguistic rules
involving vague (fuzzy) parameters, a task which characterizes logical creatures like
humans. A fuzzy inference system consists of a database of IF–THEN rules, a set
of membership functions, a decision-making unit (inference process), a fuzzification
interface, and a defuzzification interface. The operation of the inference system goes
as follows. The explicit inputs are converted into fuzzy via fuzzification. Then the
set of rules is drafted, which together with the data forms the knowledge database.
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Subsequently, the decision is made by implication, and the fuzzy output arises.
Finally, this value is defuzzified.

The systematic process which utilizes the verbal rules for the decision making
is called aggregation. The verbal rules describe the relation between the fuzzy
variables, i.e., the inputs and outputs, using logical operators. The aggregation
takes into account the intersection of the involved sets when the AND operator
is used, while in the case of the OR operator it uses the union of the fuzzy sets.
These methods are also known as minimum (min) and maximum (max) method,
respectively.

Fuzzification is an important process in fuzzy theory, as it converts an explicit
numerical quantity into a fuzzy one, which is represented by the membership
functions. The process is based on the recognition of the uncertainty which exists
in explicit quantities. On practical applications it is possible for errors to occur
with a consequent reduction of data accuracy. This reduction of precision can also
be represented by the membership functions. The definition or fine-tuning of the
membership functions can be done either intuitively or by using algorithms and
logical processes. The most popular methods include intuition, inference, rank
ordering, angular fuzzy sets, neural networks (in adaptive neuro-fuzzy systems),
genetic algorithms (in optimized fuzzy systems), inductive reasoning, etc.

On the other hand, defuzzification is the conversion of fuzzy outputs into explicit
values. This process is necessary as the value of outputs must be accurate, especially
when the fuzzy system is used as a controller, where the fuzzy outputs are not useful
for further processing. For the defuzzification of fuzzy output functions, one can
consider several methods (see Figure 5).

The most commonly used methods include the maximum membership principle,
the centroid, the bisector, the middle or mean of maximum (MOM), the smallest of
maximum (SOM), the largest of maximum (LOM), the center of sums, the center of
largest area, the weighted average, etc. The choice of the appropriate defuzzification

Fig. 5 An example of
defuzzification methods
(http://www.mathworks.com/
help/examples/fuzzy_
featured/defuzzdm_04.png)

http://www.mathworks.com/help/examples/fuzzy_featured/defuzzdm_04.png
http://www.mathworks.com/help/examples/fuzzy_featured/defuzzdm_04.png
http://www.mathworks.com/help/examples/fuzzy_featured/defuzzdm_04.png
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method is often a subjective process and depends on the data and/or the requirements
of each problem. It is noteworthy that two different methods can give completely
different results. It is also possible for the results of two or more methods to be
identical. For example, if the final surface is triangular, the result of methods SOM,
MOM, and LOM will be identical (the top of the triangle).

The two main methods of fuzzy inference are the Mamdani method and
the Sugeno method. Other known methods are the Inference of Larsen and the
Tsukamoto method. For the investigations considered in the present dissertation,
two Mamdani-type fuzzy controllers and one Sugeno-type neuro-fuzzy controller
were developed. The first method, which is the most widespread and will be
considered herein, was introduced by Mamdani and Assilian in 1975 [13]. The
main advantages of the Mamdani method include the fact that it is an intuitive
method, it is widely accepted, and it adapts well to real problems. Moreover, it
is a relatively simple method which works well even in complex models, without
sacrificing accuracy.

The basic steps of the implementation process of the Mamdani method are:

1. Fuzzification of inputs using the membership functions,
2. Fuzzification of output using the membership functions,
3. Definition of verbal rules of fuzzy system,
4. Evaluation of the rules,
5. Calculation of system outputs, and
6. Defuzzification.

5.2 Development of a Simple Fuzzy Controller

In this section, a fuzzy controller is designed for vibration suppression of smart
structures, taking into account the electromechanical formulation of a structure
with piezoelectrics. The Mamdani inference is considered for the controller which
consists of two inputs, the electric potential and the electric current, and one output,
an electric signal which can be used for control. The membership functions of the
variables of the controller are of triangular and trapezoidal form, for both inputs and
the output (see Figures 6, 7, and 8).

It is worth mentioning that the range of the output, i.e., of the control signal of
the actuator, is set to [−200, 200] as the piezoelectric materials used for the analysis
can produce voltage which is up to 200 V.

The set of rules is written based on the pendulum logic and is shown in Table 1
and in Figure 9. All rules have weights equal to unity and are connected using the
AND operator.
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Fig. 6 Membership function of the electric potential (input 1)

Fig. 7 Membership function of the electric current (input 2)
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Fig. 8 Membership function of the electric control signal (output)

Table 1 Fuzzy inference rules for the electrical system (e.g., if electric potential is far positive
and electric current is positive, then the electric control signal is max)

Electric potential

Electric current Far positive Close positive Equilibrium Close negative Far negative

Positive Max Med+ Low+ Nul Low−
Nul Med+ Low+ Null Low− Med−
Negative High+ Null Low− Med− Min

Fig. 9 Graphic representation of the fuzzy rules
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6 Numerical Examples

In order to reinforce the acquaintance of the above contexts of the discrete scientific
fields of structural dynamics, system modelling, and control, a set of representative
numerical examples will be presented below.

6.1 An Example of a Structural Model with Two Materials

The Geometry of the Structure
The beam model which is considered here consists of three different parts, which
however, act as a single piece. The contact surface is considered as a curve which
converges to the symmetry axis of the beam from the left to the right, as seen in
Figures 10 and 11. The dimensions are 70 mm× 5 mm× 6 mm.

For the specific problem which is presented here, two different materials were
used. More specifically, for the upper and lower surface an aluminum (6061 T6)
was used, while for the core of the beam a propylene material (3120 MU 5) was

Fig. 10 Dimensions of the composite beam

Fig. 11 The mid-plane surface of the beam
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Table 2 Material properties

Material Young’s modulus Poisson’s ratio Density

Aluminum 68.9 GPa 0.33 2.70 g/cc

Polypropylene 1.18 GPa 0.42 0.902 g/cc

Fig. 12 The final mesh of the structure

Table 3 Eigenfrequencies for the different formulations

Eigenfreq. (Hz) L = 0.8 L = 1.6 L = 2.4 L = 3.2 L = 4.0

1 0.58048 0.60188 0.62662 0.65562 0.69026

2 0.69221 0.71884 0.74977 0.78617 0.82978

3 3.5875 3.6166 3.676 3.7831 3.9667

4 4.1417 4.1537 4.1846 4.2093 4.1863

5 4.4462 4.4082 4.358 4.2887 4.2172

considered. The selection of these materials was based on the desired properties of
the structure in terms of elasticity, and more specifically due to their much different
Young’s modulus, which will provide the desired behavior. The properties for the
selected aluminum and propylene materials are shown in Table 2. The mesh of the
structure is done by using tetrahedral elements as shown in Figure 12.

The total number of elements in the mesh is 10158 elements with average quality
above 0.7.

For the analysis, five different sweep parameters were considered. Namely, the
parameters L = 0.8, L = 1.6, L = 2.4, L = 3.2, and L = 4.0 were used. The
results for the first five eigenfrequencies are given in Table 3.

The maximum displacement at each eigenmode for the several models is shown
in Figure 13. Note that only the translational displacements along the y and z axis
are taken into account. The case of a common aluminum rod is also presented for
comparison.

In this example, the modal analysis has shown that the eigenfrequencies in the
case of the simple aluminum rod are almost two-times bigger, compared with the
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Fig. 13 Graphical comparison of the displacements for the simple and the composite beams

respective frequencies of the composite structures with two materials, both the
elastic and the propylene material.

Moreover, it is shown that the insertion of the second material (propylene) the
dynamic characteristics of the structure were improved, i.e., the eigenfrequencies
were severely reduced. Such a composite structure would be suitable in several
applications, and especially when high values of frequency occur (wind loadings,
acoustics, etc.). In low frequency problems (e.g., seismic analysis problems) the
simple elastic beam presents better behavior.

6.2 Fuzzy Control of Smart Plates in the Presence
of Delamination

In this example, the capabilities of fuzzy control on smart composite plates
under delamination conditions are examined [11, 14–16]. To be able to describe
delamination phenomena, one may consider a layerwise model with adhesive
material, as the one described in Section 2. The plate model considered for this
investigation is shown in Figure 14.

The material properties of the composite structure are given in Table 4. Further
information can be obtained from [17].

The stacking sequence of the plate is [0/±45/90]. The dimensions of the
structure are 100 mm × 100 mm × 1.3 mm. 10 × 10 isoparametric elements are
used for the analysis and realistic boundary conditions (RBC) are chosen, yielding
to a system of 100 elements. Each finite element consists of 12 nodes and every
node has 5 degrees of freedom (three translational and two rotational). Therefore,
the structure has 363 nodes and 1815 degrees of freedom. Note that the upper
layer is used as actuator, the middle layer represents the elastic core of the beam
(graphite/epoxy), while the lower layer is used as sensor. One can observe that the
numbering of nodes starts from the lower layer and is continuing to the other two.
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Fig. 14 A three-layered composite plate with adhesive materials

Table 4 Material properties of the composite plate with piezoelectrics and adhesive material

Property Graphite/epoxy Adhesive Density

E1 (GPa) 130 1.78 59

E2 (GPa) 9.6 1.78 59

G12 (GPa) 4.8 – –

G23 (GPa) 3.2 – –

ν12 0.31 0.3 0.34

ρ (kg/m3) 1570 1050 7400

d31 = d32 (m/V) – – −260× 10−12

Ply thickness (mm) 0.1 0.05 0.2

It is also worth mentioning that the use of RBC is fundamental for the accurate
prediction of the parameters of the closed loop system. This is due to the fact that
piezoelectric components are able to actuate more effectively. In this context, fuzzy
control is used for the vibration suppression of the multilayered plate both before
and after the appearance of delamination. The delamination of the piezoelectric
patch may occur either to the upper or the lower layer, which means that either
the sensor or the actuator can peel off. The objective is the construction of robust
controllers, which could be able to keep functioning under failure conditions, even
if they are initially set without considering such phenomena.

6.2.1 Fuzzy Control on the Non-delaminated Coupled Electromechanical
Model

In this paragraph, a structure without delamination of piezoelectric layers is
investigated. In contrast to the results of the mechanical model, one can observe that
the oscillation reduction in this case is not so satisfactory. This comes as a result of
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Fig. 15 Displacement, velocity, acceleration, and forces for the system without delamination
(coupled electromechanical model)

the conversion of the displacement and velocity, in electrical potential and electric
current, respectively, and the indirect transfer of the information on the mechanical
model through the sensor and actuator. With blue color is denoted the vibration prior
the application of fuzzy control, while the red color is used for the response after
the application of the control. As for the forces, with blue and red color are denoted
the external loading and the control force, respectively.

From the results shown in Figure 15, a satisfactory decrease of the oscillations in
terms of displacement and velocity is achieved. One disadvantage is that the form
of the acceleration is little rough, which makes the control quite unsatisfactory.
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Fig. 16 Discretization of
membership functions for
optimization of categories

µA(x)

x
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0.5

0

min maxx(i) x(i+1) x(i+n)...

6.2.2 Optimization of Fuzzy Control with Genetic Algorithms

To improve the results obtained from the simple fuzzy controller, a fine-tuning
of its parameters is made. The main purpose of the optimization process is the
reduction of the displacement field and the improvement of the rough character of
the acceleration diagram. For this purpose, a genetic algorithm is implemented and
used to fine-tune the membership functions of the fuzzy variables.

The genetic algorithm which is used here is based on the algorithm proposed by
Mihalewicz [18] and is programmed in the MATLAB environment. The member-
ship functions of the electric potential and the electric current were discretized in i,
j , or k points for each variable as shown in Figure 16. Due to symmetry reasons,
the zero point has been kept constant at the center of the functions.

The optimization problem consists of the maximization of the objective function
which is the percentage of oscillation reduction not only in terms of displacement,
but in terms of acceleration as well, as given in Equation (34). The problem is subject
to linear inequality constraints which are given in Equation (35). It is noted that the
maximum reduction is translated in minimum oscillations of the structure.

Maximize:

percentage = 0.4 · percentage(u)+ 0.6 · percentage(ü) (34)

Subject to:

x(i) < x(i + 1) if el.potential ≥ 0
x(i) > x(i + 1) if el.potential < 0
x(j) < x(j + 1) if el.current ≤ 0
x(j) > x(j + 1) if el.current < 0,

(35)
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where

percentage(u) = (max_displ_before_control)−(max_displ_after_control)
(max_displ_before_control)

percentage(ü) = (max_acc_before_control)−(max_acc_after_control)
(max_acc_before_control)

max_displ_before_control = max(u_before)+ |min(u_before)|
max_displ_after_control = max(u_after)+ |min(u_after)|
max_acc_before_control = max(ü_before)+ |min(ü_before)|
max_acc_after_control = max(ü_after)+ |min(ü_after)|
0 < x(i) < 1, i = 1, 4
0 < x(j) < 1, j = 1, 2.

(36)

At this investigation, the population size was set to 50 members, that is,
50 different possible solutions. The maximum number of generations was set
to 100. The initial population was chosen by a stochastic process with respect
to the design variable’s bounds. Regarding the selection, the Tournament
Selection method was used, with the parameter q for the selection set to
2 members of the population. For the genetic operators of crossover and
mutation, the random crossover B and the random non-uniform
mutation were chosen with probabilities of 0.8 and 0.1, respectively. The results
of the optimization process for the fuzzy inputs, that is, the electric potential and the
electric current, are presented in Figures 17 and 18, respectively.

The results of the application of the optimized controller to the system without
delamination are shown in Figure 19. The blue color denotes the vibration before
the application of control, while with red color is denoted the response after the

Fig. 17 Optimized membership function of the electric potential
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Fig. 18 Optimized membership function of the electric current

application of the fuzzy control. As for the forces, with blue color is denoted the
external loading, while the control force is shown with red color.

From the results above, a slight improvement of the suppression in terms of
displacement, velocity, and acceleration is noticed. In addition, the vibrations are
smoother. This optimized controller is used for the reduction of the oscillations of
the structure (considering the coupled electromechanical model) in the presence of
delamination as shown in the following paragraph.

6.2.3 Fuzzy Control on the Delaminated, Coupled Electromechanical
Model

A relatively significant partial delamination of 50% of the actuator is presented in
this paragraph. The results are shown in Figure 20. The vibration prior and after the
application of fuzzy control is denoted with blue and red color, respectively.

In this case, one can observe that the response of the control in terms of
displacement, velocity, and acceleration is noticeably worse compared to the ones
of the non-delaminated case; however, the reduction achieved remains satisfactory.
This fact is very important for the robustness of control, as it proves that the fuzzy
controller remains quite efficient, even under quite large amounts of delamination.

In Table 5, the percentage of the reduction of displacement, velocity, and
acceleration for the investigations of the electrical model are presented in detail.

More information and investigations about different delamination cases can be
found in [11].
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Fig. 19 Displacement, velocity, acceleration, and forces for the system without delamination and
optimized membership functions (coupled electromechanical model)

7 Conclusions

From the numerical examples, which were presented in detail in this chapter,
one may exclude some useful conclusions. First of all, flexible tools exist for the
design of composite structures, that is, the piezoelectric materials and/or other smart
materials (e.g., polypropylene plastics) for the alteration of the characteristics of the
smart structure in order to achieve the desired properties, as, for example, the passive
damping. The second, let say, step includes the optimization tools for the design,
such as shape optimization as described above, or even the tools and principles of
topology optimization.

The insertion of an external control mechanism, based, for example, on the
principles of fuzzy logic, can be considered as the next step of the total designing
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Fig. 20 Displacement, velocity, acceleration, and forces for the system with 50% delamination
and optimized MF of fuzzy variables (coupled electromechanical model)

Table 5 Percentages of reduction of displacement, velocity, and acceleration

0% delamination 50% delamination

Percentage of No Memb. Fcn. Memb. Fcn.
reduction optimization optimization optimization

Displacement 62.97% 69.9% 39.88%

Velocity 62.94% 64.62% 40.61%

Acceleration 53.77% 60.10% 33.71%

process. The results of fuzzy control can be evaluated as very satisfactory in terms
of displacement; however, the suppression in terms of velocity and acceleration was
below expectations. Thus, the characteristics of control are optimized in order to
achieve optimum performance. From the investigations presented, it is clear that a
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genetic algorithm is a very powerful optimization tool which can be used to optimize
and fine-tune fuzzy controllers. The oscillations of the smart plate were significantly
reduced, not only in terms of displacement and velocity, but in terms of acceleration
as well, which is a very important achievement. Moreover, the results were not only
successful in terms of oscillations reduction, but smooth as well.
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Tax Evasion as an Optimal Solution
to a Partially Observable Markov
Decision Process

Paraskevi Papadopoulou and Dimitrios Hristu-Varsakelis

Abstract Motivated by the persistent phenomenon of tax evasion and the challenge
of tax collection during economic crises, we explore the behavior of a risk-neutral
self-interested firm that may engage in tax evasion to maximize its profits. The
firm evolves in a tax system which includes many of “standard” features such as
audits, penalties and occasional tax amnesties, and may be uncertain as to its tax
status (not knowing, for example, whether a tax amnesty may be imminent). We
show that the firm’s dynamics can be expressed via a partially observable Markov
decision process and use that model to compute the firm’s optimal behavior and
expected long-term discounted rewards in a variety of scenarios of practical interest.
Going beyond previous work, we are able to investigate the effect of “leaks” or
“pre-announcements” of any tax amnesties on the firm’s behavior (and thus on tax
revenues). We also compute the effect on firm behavior of any extensions of the
statute of limitations within which the firm’s tax filings can be audited, and show
that such extensions can be a significant deterrent against tax evasion.

1 Introduction

In recent years, there has been increasing interest in the study of optimization and
optimal control problems in the area of taxation and tax policy [5, 6, 11, 19, 20]. This
activity is motivated in part by the recent global financial crisis which brought the
problem of tax revenue collection squarely into the fore, but also by the availability
of computational power which allows researchers to delve in areas where analytical
results are scarce. This work explores an optimization problem related to tax
evasion, a persistent phenomenon with which most countries grapple to some extent.
In particular, we seek to determine the actions of a self-interested, risk-neutral tax
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entity (we will use the term “firm”) which may engage in tax evasion in order to
maximize its long-term profits. The firm will be allowed to evolve dynamically in a
tax system which includes many of the features commonly used, including a tax rate,
penalties for concealing profits, random audits (where the firm’s past tax statements
can be checked for a number of years into the past), and occasional optional tax
amnesties which the government may offer but which the firm has no advance
knowledge of. In this context, which we will make precise shortly, we are interested
in (i) determining the firm’s optimal behavior and expected long-term discounted
rewards, (ii) finding out whether the firm can profit by reducing its uncertainty with
respect to upcoming amnesties (e.g., from government announcements or “leaks”
to the press), and (iii) quantifying the effect on maximal firm revenues (and thus
on government revenues) of possible increases to the statute of limitations within
which the firm’s past actions can be audited.

Prior work related to optimal taxation and tax-evasion modeling includes early
approaches, such as [1] which examined tax evasion as a portfolio allocation
problem, and subsequent improvements (e.g., [4, 18, 33]). One disadvantage of these
and later analytical approaches was that, in order to remain tractable, they often took
on a macroscopic viewpoint, and could not express taxpayer heterogeneity nor could
they fully capture the dynamics of tax evasion [21]. In recent years, there has been
interest in modeling taxpayer entities at a finer-grained level in order to study their
year-to-year evolution through the tax system [11]. These dynamics may include the
random transitions in a firm’s tax status (e.g., being subject to a surprise audit, or
being included in an amnesty program) or the changing preferences of firms, viewed
as interacting agents. In some cases, however, the richness of these models comes
at a price in terms of complexity and requires a computational, rather than analytic,
approach [9, 10].

The work in [11], on which this paper builds, examined a Markov-based model
of the firm’s evolution whose state corresponded to its yearly tax status (i.e., being
audited or not, being able to expunge previous tax records through amnesty, etc.).
That work showed that if the firm is risk-neutral, then its optimal policy can
be computed via dynamic programming, and produced maps of the space of tax
parameters identifying those that would remove the incentive for the firm to evade
taxation. One limitation of [11] was the fact that the firm knew each year whether the
government intended to activate a tax amnesty, and therefore could take advantage
of that knowledge as it decided its future course. In practical settings (e.g., Greece,
which [11] and the present work use as a case study) this may occur when the
government creates expectations either through official announcements or press
leaks. Under normal circumstances, however, the firm cannot be assumed to have
information on upcoming amnesties. It is thus crucial to develop models that take
into account the resulting uncertainty from the point of view of the firm as to its
true tax status. Doing so will allow us to explore the effects of that uncertainty on
the firm’s actions with respect to tax evasion. At the same time, it is important for
policy makers to know what are the consequences, if any (in terms of revenue), of
information leaks.
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This paper’s contribution is twofold. With respect to describing the firm’s
behavior vis-a-vis tax evasion, we propose a model which is structurally more
parsimonious and yet more realistic than its predecessors, taking into account the
fact that the firm has incomplete knowledge of its tax status. Our model, in the
form of a POMDP, will allow us to approximate the firm’s optimal policy given
the parameters of the tax environment, to investigate whether it is important for
the government to be careful about the information it releases on possible tax
amnesties, and to quantify the effect (in terms of revenue) of keeping taxpayers “in
the dark” regarding upcoming amnesties. The proposed model is used to identify the
combinations of tax penalties and audit probabilities that lead to honest behavior,
and to quantify the impact that an increase in the statute of limitations on tax audits
would have on tax evasion, an aspect which—to our knowledge—has not been
sufficiently explored in the context of relevant dynamical models.

The remainder of this paper is structured as follows: In Section 2 we propose a
POMDP model that captures the firm’s evolution in the tax system. The firm seeks
to maximize its discounted long-term expected profit, taking into account the rules
imposed by the tax system and its awareness (or lack thereof) of any imminent
opportunity for amnesty that the government may provide. Section 3 discusses the
solutions obtained from our model and examines the impact of uncertainty on the
firm’s decisions and the circumstances under which it is useful for the firm to know
the government’s intentions in advance. In the same section we explore the effect of
extending the statute of limitations on auditing and how it affects tax evasion.

2 A POMDP Model of Tax Evasion

We proceed to construct a mathematical description of the firm’s time evolution
in the tax system. We will consider a generic tax system similar to that in [11]
(see that work for a fuller description), which includes a fixed tax rate on profits,
random audits by the tax authorities, and tax penalties for underreporting income.
For the sake of concreteness, we will use Greece as a case study [30] when it comes
to selecting specific values for the various tax parameters, although the discussion
applies to a much broader setting. During an audit, a firm’s tax statements can be
scrutinized for up to 5 years in the past, meaning that any tax evasion beyond that
horizon goes unpunished. Audits tend to focus on firms that have not been audited
for three or 4 years running, and thus have tax records which are about to pass
beyond the statute of limitations. Finally, the Greek tax system occasionally offers
a kind of optional tax amnesty [2], termed “closure,” in which a firm may pay a
one-time fee for excluding past tax statements from a possible audit. The use of tax
amnesties is not unusual, with hundreds of cases documented across many countries,
including the USA [25], India [7], and Russia [3]. In Greece, the closure option
mentioned above was used during 1998–2006 [13, 14] and was again considered
more recently [15]. The availability of the closure option gives an incentive for
firms who evade taxation to pay some amount in taxes where they might otherwise



222 P. Papadopoulou and D. Hristu-Varsakelis

pay none, as it increases the chance of an audit for those who do not participate.
However, it has been shown [11] to encourage tax evasion.

Operationally, at the end of each fiscal year the firm declares its net profit to the
government, and also its intent to use the closure option (and pay the associated fees)
if it becomes available. In an important—and realistic—departure from previous
models [11] the firm does not know in advance whether the option is to be made
available or not for the current year; that information is released only after the tax
filing deadline. Thus the firm must decide on its tax-evasion policy without knowing,
for example, whether it will be able to expunge any imminent tax misdeeds by
availing itself of the option. This introduces uncertainty as to the firm’s tax status
and gives rise to a POMDP [8, 17] which we describe next.

2.1 The Firm’s State and Action Sets

Using the notation from [11], we will let sk ∈ S be the tax status of representative
firm in year k = 0, 1, 2, . . . with

S = {V1, . . . , V5,O1, . . . , O5, N1, . . . , N5}, (1)

where

• Vi : the firm is being audited for the last i = 1, . . . , 5 tax filings,
• Oi : the government is making the closure option available to the firm, whose last

audit or closure option usage occurred i = 1, . . . , 5 years ago, and
• Ni : the firm is not being audited nor has a closure option available, and its last

audit or closure option usage happened i = 1, . . . , 5 years ago.

For the sake of notational convenience, we will sometimes refer to the elements
of S by integer, in their order of their appearance, i.e., V1 → 1, V2 → 2, . . . ,
N5 → 15. We note that S contains five “copies” of each type of tax status (V ,O,N )
corresponding to the 5-year statute of limitations on tax evasion. Of course, S
(and the discussion that follows) could be appropriately generalized to model a
longer, length L time-window on which the government has the chance to detect
tax evasion:

S = {V1, . . . , VL,O1, . . . , OL,N1, . . . , NL}.

We will have more to say about this in Section 3.
We will let A = {1, 2} × [0, 1] be the firm’s action set, where at year k the firm

selects ak ∈ A, ak = [vk, uk]T , with v ∈ {1, 2} denoting the firm’s decision to apply
for usage of the closure option (vk = 1) or to forgo the closure option (vk = 2), and
uk ∈ [0, 1] being the fraction of profits that the firm decides to conceal. Based on
the above, the firm’s state at time k will be the vector

xk = [sk, hTk ]T , (2)
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where sk ∈ S , and hk ∈ [0, 1]5 will contain a history of the firm’s latest five
decisions with respect to tax evasion.

We note that our model differs from that of [11] in one important and practical
point. In [11], the state vector included one additional element, corresponding to
whether or not the closure option is available to the firm or not. In our case, the
firm has no such knowledge; it can declare its wish (vk) to avail itself of the option
(should the government make it available after the tax filing deadline) but is forced
to commit to a decision on tax evasion (uk) in advance. Put in other words, without
any information as to the government’s intent to offer the closure option, the states
Oi are indistinguishable to the firm from their Ni counterparts at the time the firm
makes its decisions.

2.2 State Evolution

Based on the above discussion (see also [11]), the firm will evolve in S × [0, 1]5
according to

xk+1 = Axk + Bak + nk, x(0) given, (3)

where

A =
[

0
H

]

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎣

0 0
...
...

0 0
0 1

⎤

⎥
⎥
⎥
⎦
, nk =

[
wk

05×1

]

, (4)

and the term wk ∈ S is a random process whose transition probabilities depend
on whether the firm applies for use the closure option or not, and whether the
government ultimately decides to grant it at that particular year. Based on our earlier
description of the tax system, we can represent the process driving wk in graphical
form using two transition diagrams, one for the case where vk = 1 (the firm decides
to use the closure option, Figure 1) and another when vk = 2 when the firm declines
the use of the option (Figure 2).

For example, let us assume that in Figure 1 the firm has the tax status O2. This
means that the firm will pay to exclude its last two tax statements from any audits,
thus “cleaning its slate,” and will now file its next tax statement—the only one
subject to a possible audit next year. The firm’s possible transitions are to O1 (if
the government does grant the option again) where the just-filed tax statement will
be expunged; to V1 where it will be audited; or to N1, where the firm will avoid
an audit but its tax statement will be kept in waiting, for possible future audits or
closures. The transition diagram in Figure 2 (where the firm has declined the closure
option) operates in a similar manner, with the firm never transitioning to anOi state.
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Fig. 1 Transition diagram when the firm asks to use the closure option. The values of the various
transition probabilities are discussed in the text and in the Appendix

However, the transition probabilities from Oi states to audit states Vi will be higher
compared to the previous case (see below and the Appendix for numerical values)
to reflect the fact that once the government offers the closure option, any firm that
opted out has a higher chance of being audited because its peers that opted in have
now removed themselves from the audit pool.

2.2.1 Transition Probabilities

Based on the transition diagrams of Figures 1and 2, the transition probabilities of
the process wk (and thus the firm’s evolution from one tax status to another) are
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Fig. 2 Transition diagram when the firm decides not to use the closure option. The values of the
various transition probabilities are discussed in the text and in the Appendix

Pr (sk+1 = i|sk = j, ak = (vk, uk)) = Tij (vk) , i, j ∈ {1, . . . 15}, (5)

where Tij is the (i, j)-th element of the transition matrix T given by

T (vk) =
{
T1 if vk = 1 (apply for closure)
T2 if vk = 2 (decline closure)

(6)

and the T1 and T2 are shown in the Appendix.
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2.3 Firm Rewards

Let Π denote the firm’s annual profit (assumed to be constant), r the tax rate, β the
annual penalty rate for any unpaid taxes applied in the event of an audit, and � the
cost of closure as a fraction of the firm’s profits. Then the firm’s reward is as per
[11] (given here again for completeness):

g(x, a) = g
(
[s, hT ]T , a

)
= Π ·

⎧
⎪⎪⎨

⎪⎪⎩

1− r + ru s ∈ {11, . . . , 15}
1− r + ru− �(s − 5) s ∈ {6, . . . , 10}
1− r + ru− r∑s

i=1[h]6−i
− 3

5βr
∑s
i=1 i[h]6−i s ∈ {1, . . . , 5}

,

(7)
where we have labeled elements of S by integer, and [h]i denotes the i-th element
of the vector h. The top term on the right-hand side of (7) corresponds to the reward
obtained if the firm is neither audited nor using the closure option and conceals an
amount of Πu. The second term applies when the firm uses the option and thus
pays � per year since its last audit or closure. The last term is the firm’s reward in
the event of an audit, where its past history of tax evasion is used to calculate the
back taxes and penalty owed.

2.4 Firm Observations, Belief, and Value Function

As we have already stated, the firm does not know if the government is to offer the
closure option until after it has filed its taxes for the year. This means that—unless
it is being audited—the firm is uncertain of its tax status (the first element of its
state vector) which may be Ni (no option available) or Oi (option available if the
firm is willing to pay for it). In practice, the firm may have some information from
the press, government, or market sources, as to whether a new round of closure may
be imminent. Of course, the information may not always be correct. Also, it is in
the government’s interest to know what effect any such “leaks” would have on firm
behavior (and thus on tax revenues).

We will let Ŝ denote the set of observations that the firm makes of its tax status,
with

Ŝ = {V̂1, . . . , V̂5, Ô1, . . . , Ô5, N̂1, . . . , N̂5}. (8)

Thus, at time k, the firm observes ŝk ∈ Ŝ , based on which it must decide on its
course of action ak . When the firm is in an audit state, it is of course aware of that
situation and thus

P
(
ŝk = V̂i |sk = Vi

)
= 1, (9)
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while in the case when the firm has an Oi or Ni status,

P
(
ŝk = Ôi |sk = Oi

)
= zO, P

(
ŝk = N̂i |sk = Oi

)
= 1− zO, (10)

P
(
ŝk = N̂i |sk = Ni

)
= zN, P

(
ŝk = Ôi |sk = Ni

)
= 1− zN, (11)

where zO is the probability of correctly distinguishing an Oi state from its Ni
counterpart, while zN is the probability of correctly observing Ni versus Oi .

Given the state evolution equation (3) and observations ŝk we can construct the
firm’s belief as a probability distribution over its states, which is to be updated
with every new observation made by the firm [17]. It is important to note that the
uncertainty in the firm’s observations has to do solely with its tax status, i.e., the first
element sk of the state vector xk = [sk, hTk ]T . The rest of the state vector, hk , is the
firm’s tax history which is of course always known to the firm. In light of this, we
may define the observations in the entire state space to be

x̂k = [ŝk, hTk ]T ,

and Equations (9)–(11) determine the observation probabilities of all states, so that
it is sufficient to consider the belief b(s) as a probability distribution on S , instead
of b(x) on the entire state space. The firm’s belief bk(sk) after taking action ak and
observing ŝk+1 will then be updated to

bk+1(sk+1) = c P (ŝk+1|sk+1)
∑

sk∈S
Pr(sk+1|sk, ak)bk(sk), (12)

where c is a normalizing constant, and in (12) we have used the fact that observations
depend only on the state the firm is in and not on its actions.

Given the firm’s current belief, bk(sk), as to its tax status, known tax history
hk , and action ak , we can calculate its expected reward over the belief distribution,
based on Equation (7):

R(bk, hk, ak) =
∑

sk∈S
g
(
[sk, hTk ]T , ak

)
bk(sk). (13)

Assuming an infinite time horizon, the firm is then faced with the problem choosing
its closure and tax-evasion decisions ak = π(bk, hk) = (vk, uk), so as to maximize,
over the policy π , its discounted expected reward:

Jπ(b0, h0) =
∞∑

k=0

γ k E
wk

{
g
(
[sk, hTk ]T , ak

)
|b0, h0, π

}
(14)
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subject to the dynamics (3) and observations (12), where γ ∈ (0, 1] is a discount
factor. The optimal value function J ∗ in Equation (14) obeys the well-known [8, 17]
Bellman equation

J ∗(bk, hk) = max
ak

⎡

⎢
⎣R(bk, hk, ak)+ γ

∑

ŝk+1∈Ŝ
P(ŝk+1|bk, ak)J ∗(bk+1, hk+1)

⎤

⎥
⎦

(15)

with

P(ŝ|bk, ak) =
∑

s,sk∈S
P(ŝ|s)P r(s|sk, ak)bk(sk).

2.5 Solving for the Firm’S Optimal Policy

Solving Equation (15) for the firm’s optimal policy is generally difficult given (i) the
fact that the number of states that the firm can occupy is not countable (recall that
the firm’s state includes its history of tax-evasion decisions, which are real numbers
in the unit interval), and (ii) the difficulties associated with partial observability of
the state. As is often the case when it comes to optimizing POMDPs, we will be
able to make progress only by approximating the optimal value function, by means
of an iterative process [24, 27].

Because we have assumed that the firm is risk-neutral, the reward function (7) is
linear in the fraction of the profits to be concealed, u, making J ∗ linear as well. This
implies that J ∗ will be maximized at the boundary of u’s feasible region, meaning
that we only need to consider the two extreme values u = 0 or u = 1 each year
(i.e., be completely honest or conceal as much profit as possible—see [11] for a
fuller discussion on this point). This yields a significant reduction in computational
complexity, because it will be sufficient to consider hk ∈ {0, 1}5 and solve the
Bellman equation only for a finite set of |S| ·25 = 480 states. This is to be compared
to the 869 states in [11]. Of course, our model is more challenging computationally,
because of the uncertainty in state observations.

To solve for the firm’s optimal policy, we used the PERSEUS point-based value
iteration algorithm [28]. Point-based algorithms became popular as methods of
approximating POMDP policies [22, 23]. They rely on the fact that performing
many fast approximate updates to a set of policy/value samples often results in
a more useful value function than performing a few exact updates [16, 26]. The
algorithm in [29] differs from other point-based algorithms in that at each iteration it
“backs up” only a random subset of points in the firm’s belief space. Doing so leads
to computational savings so that the method can afford to use a larger number of
samples compared to other point-based methods, and obtain better accuracy [29, 32].
In the next section we present a series of numerical experiments, where we optimize
the firm’s policy using [28], and discuss the results.
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3 Results and Discussion

To begin with, we would like to determine the optimal policy and expected firm
revenue depending on the availability of closure and the probability of the firm
correctly observing its own state. We considered three cases with respect to the
closure option: (i) available every fiscal year, (ii) never available, and (iii) given
randomly, with a fixed probability of q = 0.2. With respect to the firm’s observation
probabilities, we considered the cases when the firm is (i) fully aware of the
government’s decision with respect to closure (i.e., it can correctly observe whether
it is in a N state or an O state; this will allow us to validate our model against
known solutions), or (ii) has no information on the government’s intentions and
must guess as to its state (i.e., zO = zN = 0.5). The remaining tax parameters
were set as in [11] using Greece as a case study for the sake of being specific
and to facilitate comparisons with previous work, namely, a tax rate of r = 0.24,
penalty rate β = 0.24, cost of closure � = 0.023, and discount factor γ = 0.971
corresponding to a 3% annual rate of inflation.

3.1 Model Validation: The Case of “Perfect” Observations

In the case where the closure option is given randomly but the firm can make
perfect observations of its state, the probability of a “correct” tax status observation
in Equations (11)–(10) is zO = zN = 1. Then, the firm’s optimization problem
reduces to a Markov decision process (MDP) similar to that in [11] which can be
solved easily via value iteration. Furthermore, the cases where the closure option
is either always or never available also imply perfect observations because then the
firm (who is not being audited) can safely conclude that it is in an Oi or Ni state,
respectively. Table 1 shows the firm’s optimal discounted expected reward in each
case. As we can see, the reward is highest when the government offers the closure
option with probability 1. In that case, the optimal policy was a constant a = (1, 1),
i.e., for the firm to always use the closure option every single year and to conceal
all profit. In fact, from the point of view of government revenue, it is best to never
offer the closure option. The firm’s optimal policies agreed with the exact solutions
obtained by [11], as did the firm’s expected rewards (to within 0.11%).

Table 1 Comparison of the firm’s discounted expected reward, under perfect state observation,
with r = 0.24, β = 0.24, � = 0.023, and a 5% overall audit probability. Numbers are in % of the
firm’s annual profit Π , with a discount factor γ corresponding to a 3% annual rate of inflation

Closure option Always available Available with 20% Never available

Exp. reward 3354.3 3307.1 3254.5
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3.2 The Role of Uncertain Observations

Next, we investigate whether the firm’s uncertainty as to its tax status may affect
its tax-evasion behavior and, ultimately, its expected revenue. To this end, we must
choose a specific probability for the closure option being offered at any year. We
set q = 1/5, which is in some agreement with empirical data from Greece [11];
this rate corresponds to the government attempting to collect some revenue—in the
form of closure fees—from firms which it does not have the resources to audit and
whose tax filings are about to pass beyond the five year statute of limitations.

We solved for the firm’s optimal policy and computed its expected revenue under:
(i) perfect observations, where the firm always knows its tax status (equivalently,
the government’s decision to offer closure or not, zO = zN = 1), (ii) observations
which are 50% correct, i.e., the firm knows nothing about the government’s decision
and is merely guessing (zO = zN = 0.5), and (iii) observations which are 90%
correct because, for example, the government may have hinted at its intentions
regarding closure (zO = zN = 0.9). Table 2 shows the firm’s discounted expected
revenues for these three cases. We observe that the firm’s revenues are unchanged
when the probability of a correct tax status observation changes from 50% to 90%,
with a slight difference compared to the 100% (prefect observations) case. This
seems counterintuitive, because one would expect the firm to be able to use any
information on its true state to its advantage. The explanation, however, can be
found in the firm’s optimal policy which is constant and identical for all cases in
Table 2, namely, that the firm’s best action in the beginning of each fiscal year is to
apply for the closure option (v= 1) and declare to the government as little profit as
possible (u= 1) regardless of its belief of being in an Oi vs an Ni state.

Previous work [11] has shown that the tax parameters in the range used in Greece
in recent years are such that they encourage tax evasion. What we find here is
that the incentive they create for tax evasion is such that the firm’s uncertainty
as to its state is unimportant because the optimal policy—even in the face of that
uncertainty—is to always “cheat.” However, this might change—and should, from a
policy viewpoint—for other combinations of tax parameters (e.g., higher penalties).
Numerical experimentation shows that there is a range of values for r , β, and �
where state observation probabilities do become important with regard to the firm’s
optimal reward and policy. For example, for a tax penalty of β = 9 (that is, 9 times
any tax that went unpaid due to tax evasion) and closure cost � = 0.04 (or 4% of the
firm’s profit) we notice a difference in expected rewards between the cases of 50%

Table 2 Comparison of the
firm’s expected reward when
the closure option is offered
with a probability of q = 0.2

Prob. of correct observation 100% 50% 90%

Exp. reward 3307.1 3309.7 3309.7

The experiments were run with r = 0.24, β = 0.24,
� = 0.023, and a 5% overall audit probability. Numbers
are expressed in % of the firm’s annual profit, discounted at
a 3% annual rate of inflation
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Table 3 Comparison of the
firm’s expected rewards with
50% vs. 90% probability of
correctly observing its tax
status when the closure
option is available with
probability q = 0.2

Prob. of correct observation 50% 90%

Exp. reward 2630.6 2648

The tax parameters were set to r = 0.24,
β = 9, � = 0.04, and a 5% overall audit
probability. Rewards are expressed in % of the
firm’s annual profit, discounted at a 3% annual
rate of inflation

and 90% probability of correct tax status observation, as shown in Table 3 where the
firm obtains higher rewards through tax evasion when more certain of its tax status.

The difference in discounted expected rewards for the two cases of Table 3 varies
for other combinations of tax parameters, and—although it is beyond the scope of
this paper—it would be of interest to “map” the (r, β, �) space in order to quantify
the increase in expected reward that the firm could obtain as a function of the
“amount of uncertainty” in its state observations.

With respect to the closure option (and other such amnesties), our results suggest
that unless the “surrounding” tax environment is sufficiently strict in terms of
penalties and cost of the option, the latter should not be offered because it helps the
firm achieve a higher expected reward through tax evasion (which means that tax
revenues are reduced). If the tax parameters are appropriately set, then the closure
option could be useful if taxpayers can be kept from knowing about it in advance.

3.3 The Role of Statute of Limitations

Our prototypical tax system has thus far included a 5 year “window” within which
the government is allowed to audit the firm’s tax statements. This has been the legal
window in Greece, for example. However, the effect of extending this statute of
limitations has not been investigated. To quantify the effect of such an extension,
we considered the set of audit probability p and tax penalty β combinations,
and determined those values for which the firm’s optimal policy is to behave
honestly (i.e., use u= 0 in every state). As a result of the firm’s risk-neutrality (and
consequent linearity of the reward function) there exists an “honesty boundary” in
the form of a curve in the (p, β) space, above which (high penalties) the firm’s
decision is to never conceal any profit, and below which (lower penalties) the firm
conceals its profits in at least one state.

Any point on the boundary can be computed relatively easily by fixing p and
using bisection on β, each time calculating the firm’s optimal policy and checking
whether it is completely “honest.” For the case where there is no uncertainty in state
observations this can be done via simple value iteration. We thus modified our model
to increase the statute of limitations, from the nominal L = 5 to L = 6, . . . , 10
years, and computed the corresponding honesty boundaries for comparison with
the 5-year case. The various boundaries are shown in Figure 3 for the case where
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Fig. 3 Firm’s “honesty boundaries” in the p-β space when the closure option is never available,
as the statute of limitations on tax audits increases from 5 to 10 years. Above each curve the firm’s
optimal policy is uk = 0, i.e., to always declare all profit
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Fig. 4 Firm’s “honesty boundaries” in the p-β space when the closure option is available with
probability 1/L each year, as the statute of limitations L on tax audits increases from 5 to 10 years.
Above each curve the firm’s optimal policy is uk = 0, i.e., to always declare all profit
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Table 4 Average percentage
reduction in the tax penalty β
which is necessary to
eliminate tax evasion, as the
statute of limitations on
audits, L, increases

Year-to-year/closure prob q=0 q=1/L

5–6 15.67% 15.10%

6–7 12.87% 12.88%

7–8 10.61% 11.7%

8–9 8.91% 10.28%

9–10 7.63% 8.85%

Overall 5–10 44.74% 46.6%

the closure option is never available, and in Figure 4 for closure available with a
fixed nonzero probability. As the time horizon on audits increased, we adjusted the
probability of the closure option being offered to q = 1/L so that the firm has, on
average, one chance at closure within the statute of limitations period, regardless
of that period’s length. The first thing to note is that as the audit probability
increases there is a lower tax penalty required to enforce complete honesty, and
that the marginal effect is most pronounced for low p. Furthermore, as the statute of
limitations increases, the entire honesty boundary moves downward, so that again
lower penalties are required to remove the incentive for tax evasion. This is to be
expected, because the government is given more opportunities to catch the firm at
cheating and thus the firm behaves more honestly. Thus, from a technical point of
view, the government could extend the auditing period and be able to use more
reasonable penalties to deter tax evasion, although unless the audit rates are also
increased, those penalties will still have to be very high (a factor of almost 10 for a
5% audit probability even for L = 10). In Figure 3, where there is no probability of
amnesty, the honesty “threshold” is always lower—and involves less exorbitant tax
penalties—than that in Figure 4.

To quantify the reduction of the honesty threshold for β as L varies, we
calculated the threshold’s year-to-year average percent variation, and also the total
variation between the 5- and 10-year cases. The results are shown in Table 4. We
note that each yearly extension of the statute of limitations reduces the average
tax penalty coefficient required to make tax evasion unprofitable by a significant
margin. Combined with our previous results, this points towards (i) a long statute of
limitations, (ii) an increased audit probability, and (iii) avoidance of tax amnesties,
as useful policy tools.

4 Conclusions

Motivated by the problem of tax evasion and the need for computational tools
that may be used to elucidate the behavior of tax entities, we have described a
POMDP which models the behavior of a self-interested risk-neutral firm in a tax
system which includes random audits, penalties, and occasional amnesties. Using
our model, together with a point-based approximation technique, we were able to
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compute the firm’s optimal decisions regarding whether or not to apply for amnesty
(in case it is given) and how much of its profit to conceal from authorities.

Our model is more realistic than previously proposed Markov-based models of
firm behavior [11, 12] in that the firm is uncertain as to its tax status and must file its
taxes before it knows whether its latest filing will be subject to amnesty or not. Using
the Greek tax system as a case study, we confirmed previous results suggesting that
for range of tax parameters commonly in use there, the firm’s optimal policy is
to always opt for amnesty and conceal as much of its profit as possible. This is a
consequence of the firm’s risk neutrality, and the fact that the audit probability and
tax penalty coefficients are too low to be effective.

With respect to the role of the firm’s conditional observations, we saw that if
the tax parameters do not have sufficient deterrent value, the firm’s uncertainty
as to its true tax status is unimportant. Among other things, this means that the
government need not worry about information “leaks” regarding the tax amnesty
which, however, is rendered less effective. If tax revenues are to increase (in part
by keeping firms in the dark about an upcoming amnesty), some combination of the
tax penalties, audit rates, and cost of amnesty must rise significantly from the levels
studied here.

Finally, we identified the set of tax rates and tax penalties which eliminate tax
evasion in our model. The resulting curves in the tax rate—tax penalty space, show,
among other things, how frequent tax audits must be in order for the government to
be able to discourage tax evasion using realistic tax penalties. We also found that
the “border” between tax evasion and honest behavior shifts significantly towards
lower penalties as the statute of limitations on tax audits is extended.

Opportunities for future work include a computational study to explore the space
of tax rates, penalty coefficients [31], and audit rates in order to find the settings
in which the firm’s uncertainty as to its true state has the greatest impact on its
optimal long-term revenues. From a policy viewpoint, this would suggest parameter
values for which government revenues increase as long as the government can keep
any upcoming amnesty a surprise. Finally, it would be interesting to extend the
model presented here by considering a risk-averse firm and explore ways of solving
resulting POMDP in the presence of the nonlinearity that risk-aversion introduces
in the reward function, in the spirit of [12].

Appendix

Transition Matrix when Firm Applies for Closure

Markov transition matrix for the case where the firm asks to use the closure option.
The statute of limitations is assumed to be L = 5 years
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T1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pV pV pV pV pV pO pO pO pO pO 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 pN 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 pN 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 pN 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 pNf pNf

q q q q q q q q q q 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 q 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 q 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 q 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 q q

plV plV plV plV plV plO plO plO plO plO 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 plN 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 plN 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 plN 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 plNf plNf

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, p is the fraction of tax filings which the government can audit each year
regardless of firm status. For our purposes p is nominally set to 0.05 (5%). A 20%
of those audits (1%) are spread over firms that have been unaudited for up to 3
years, and the remaining 80% of audits (nominally 4%) are for those that have gone
unaudited for 4 or more years; q is the probability of the government offering the
closure option; pV = (p − 0.8p)/4 is the probability of a repeat audit (i.e., for the
second year in a row); pO = (p/5)/4 is the probability of being audited after using
closure; pN = (p/5)/4 is the probability of an audit if the firm has been unaudited
for 1–3 years; pNf = (p/5)4 is the probability of being audited if the firm has been
unaudited for 4 or more years (and thus some of its tax statements are about to pass
beyond the statute of limitations); and plV = 1 − q − pV , plO = 1 − q − pO ,
plN = 1− q − pN , and plNf = 1− q − pNf .

Transition Matrix when Firm Declines Closure

Markov transition matrix for the case where the firm forgoes the closure option. The
statute of limitations is assumed to be L = 5 years
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T2 =

⎡
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⎢
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⎢
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⎢
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⎢
⎣
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0 0 0 0 0 0 0 0 0 0 0 0 pN 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 pNf pNf

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
plV plV plV plV plV plO plO plO plO plO 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 plN 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 plN 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 plN 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 plNf plNf
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⎥
⎥
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⎥
⎥
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⎥
⎥
⎥
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.

Again, p is the fraction of tax filings which the government can audit each year
regardless of firm status; pV = (p−0.8p)/4 is the probability of a repeat audit (i.e.,
for the second year in a row); pO = 3[(p/5)/4] is the probability of being audited
after using closure; pN = (p/5)/4 is the probability of an audit if the firm has been
unaudited for 1–3 years; pNf = (p/5)4 is the probability of being audited if the
firm has been unaudited for 4 or more years (and thus some of its tax statements are
about to pass beyond the statute of limitations); and plV = 1− pV , plO = 1− pO ,
plN = 1− pN , and plNf = 1− pNf .
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