
Chapter 5

Vibrations of Laminated Structures Composed

of Smart Materials

Abstract In this chapter, we consider thin-walled laminated beams, plates and shells
containing layers made of viscoelastic smart materials (VSMs). Generally, from all
variety of these materials, the magnetorheological elastomer MRE-1 with properties
specified in Chapt. 2 will be used for damping layers or core. To compare the damping
capabilities of this material with others, we will study also vibrations of thin-walled
laminates assembled from other smart materials (MREs, MRFs and ERCs) described
in Chapt. 2.

The basic purpose of this chapter is to analyze free and forced vibrations of
thin-walled laminated structures with adaptive physical properties and to show that
the application of VSMs embedded between elastic layers allows changing not only
the total rigidity, as detected in Chapt. 3, but more the total damping capability of
the structure when subjected to the action of an external magnetic or electric field.
In particular, it will be shown that the application of a magnetic field may result in
significant enhance of the damping capacity of a MRE-based laminated structure
and as a consequence, in effective damping of both free and forced vibrations.

The chapter begins with a brief review of the state of the art of research on
vibration of MR/ER-based laminated structures (Sect. 5.1). In Sect. 5.2, free and
forced vibrations of sandwich beams with MRF or MRE cores are examined. In
Sect. 5.3, free and forced vibrations of MRE-based rectangular plates are shortly
discussed. Section 5.4 is the main one, it is devoted to free and forced vibrations of
laminated and sandwich MRE/ERC-based panels and shells affected by stationary
magnetic fields. The detailed analysis of damping capability of different VSMs
materials (MREs and ERCs with properties specified in Chapt. 2) incorporated with
sandwich panels is given. Finally, in Sects. 5.5 and 5.6, the impact of magnetic field
on localized modes and non-stationary vibrations in medium-length MRE-based
cylindrical shells is studied. In particular, the effect of soft suppression of travelling
localized waves under slowly varying magnetic field is demonstrated.
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5.1 Brief Review of the State of the Art

One of the main issues of any thin-walled structure are undesirable vibrations.
The control of structural vibrations may be implemented by passive, semi-active or
active manner. The passive damping of vibrations is provided by utilizing viscoelastic
materials with fixed physical properties. A passive damped thin-walled structure is
formed as a rule by placing viscoelastic damping material between elastic layers.
The problems of free and forced vibrations of similar laminated structures assembled
with traditional viscoelastic materials are well studied (we do not discuss here
investigations arising to the earliest papers of DiTaranto (1965); Mead and Markus
(1970) and refer only to the review article by Qatu et al, 2010).

The semi-active or active control of structural vibrations is attained as a rule
by modifying the total stiffness and damping ratio (viscosity). A number of ac-
tive materials such as piezoelectric, electromagnetotstrictive materials, electro- and
magnetorheological fluids and elastomers, etc., may be used to vary the total vis-
coelastic characteristics of thin-walled smart structures (Gandhi et al, 1989; Gandhi
and Thompson, 1992).

During the last two decades, electrorheological (ER) and magnetrheological (MR)
fluids as well as magnetorheological elastomers (MREs) became to attract a height-
ened attention of researchers studying controllable damping vibrations of thin-walled
laminated structures (Li et al, 2014). Gandhi et al (1989) reported on the first ex-
perimental investigation focussed on evaluating the electro-elastodynamic response
of cantilevered multi-layered beams containing ER fluids. The results of this pio-
neering paper have clearly demonstrated for the first time the feasibility of actively
controlling in real-time the dynamic characteristics (natural frequencies, amplitudes
and damping ratio) of laminated structures fabricated upon ultra-advanced smart
composite materials. Afterwards, numerous theoretical and experimental studies on
the behavior of a sandwich beam with ER fluid were carried out (among many
others, s. Choi et al, 1990; Lee, 1995; Berg et al, 1996; Oyadiji, 1996; Yalcintas
and Coulter, 1995, 1998; Yalcintas and Dai, 1999; Shaw, 2000; Kang et al, 2001;
Phani and Venkatraman, 2003; Allahverdizadeh et al, 2013). In particular, detailed
investigations of the influence of ER materials on the composite structural vibration
and damping have been carried out by Yalcintas and Coulter (1995, 1998); Yalcintas
and Dai (1999). They and afterwards Kang et al (2001) have discussed variations
of the modal loss factors with different designed parameters and showed that the
possible damping capacity of ER based sandwich beams can be maximized by the
proper choice of geometrical parameters and electric field. It has been also revealed
that the adaptive nature of sandwich beams with ER liquid core was achieved by
controlling the pre-yield rheology of ER smart materials in response to varying
applied electric field levels. An important outcome of all aforementioned theoretical
studies are analytical models of sandwich (three-layered) beams with a liquid ER
core. The principle assumptions of these models are the following:

• ER liquid core exhibits linear shear behavior at small strain levels, corresponding
to the pre-yield regime;
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• the shear modulus of a viscoelastic core is a complex magnitude dependent of the
electrical field level;

• no normal stresses in the ER layer;
• all three layers experience the same transverse displacement;
• no slipping between the elastic layers and ER layer.

All studies based on these models have reported that the definite increase in electric
field across ER fluid, corresponding to the pre-yield regime, results in the increase
of the loss factor of the ER layer and ultimately the equivalent damping ratio for a
smart beam.

As for MR materials, they have demonstrated very quick time response, in the
order of milliseconds, to an applied magnetic field (s. Chapt. 2), and thus become
potentially applicable to smart tunable laminated structures (Sun et al, 2003). The
available experimental studies (Yalcintas and Dai, 2004; Wei et al, 2008; Lara-Prieto
et al, 2010; Chikh et al, 2016; Kozlowska et al, 2016; Irazu and Elejabarrieta, 2017)
and numerous theoretical papers (Yalcintas and Dai, 1999; Sun et al, 2003; Zhou and
Wang, 2005, 2006a,b,c; Hu et al, 2006; Mikhasev et al, 2010; Nayak et al, 2011, 2012;
Korobko et al, 2012) have shown that the application of an external magnetic field
results in very quick increasing of the stiffness and damping properties of sandwich
beams containing MR fluids or elastomers. This effect may be efficiently used to
tune the dynamic characteristics such as natural frequencies, vibration amplitudes,
mode shapes and loss factors. As shown in Korobko et al (2012), for assumed
and fixed geometrical and physical parameters of a MRE based beam, there is an
optimal intensity of the magnetic field providing the maximum loss factor for a
smart beam. In contrast to earlier papers on the ER fluid based sandwich beams, the
theoretical investigations by Zhou and Wang (2006a,b,c); Choi et al (2010) containing
mathematical models were based on the higher-order shear deformation theory for
a soft MRE core, some of approaches (Zhou and Wang, 2006b,c) accounting the
normal stresses in the MRE layer. The effect of non-homogeneous magnetic field
on MRE sandwich beams fabricated from a MRE between two aluminum layers
was examined by Hu et al (2011, 2012); Long et al (2013). Whereas the majority
of investigations showed that the application of a uniform magnetic field results in
increasing the total stiffness of a MRE based sandwich beam and leads to right
shifting natural frequencies, the experimental tests performed by Hu et al (2011,
2012) have revealed unlooked-for result: the first natural frequency of the cantilever
MRE beam decreased as the magnetic field applied to the beam was moved from
the clamped edge to the free one. The left shift trend of the first natural frequency
has been also confirmed by finite element simulations performed by Megha et al
(2016). The nonlinear mechanical behavior of sandwich beams with a MRE core
subjected to a permanent magnetic field was recently analyzed by Zeerouni et al
(2018). They showed that MRE beams may exhibit a non-linear behavior even at
small deformations due to the rheological properties of a MRE.

The vibration analysis becomes very important when the applied load is not
constant and induces unstable modes or resonance. The advantages of using MR
liquids or elastomers to active control the forced vibration of sandwich beams were
illustrated in Dwivedy et al (2009); Rajamohan et al (2010); Nayak et al (2014);
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Aguib et al (2016); Megha et al (2016); Yildirim et al (2016). Using finite element
and Ritz’ methods, Rajamohan et al (2010) have demonstrated the efficiency of
utilizing MR fluid to suppress forced vibrations of a sandwich beam under harmonic
force excitation. Dwivedy et al (2009) have examined parametric instability of a
MRE based sandwich beam subjected to a periodic axial load. Aguib et al (2016)
have experimentally and numerically studied the vibrational response of a MRE
sandwich beam subjected to harmonic excitation by magnetic force applied at the
free end. The nonlinear dynamic response of a clamped-clamped geometrically
imperfect MRE sandwich beam with a concentrated mass at the centre under a point
excitation has been investigated by Yildirim et al (2016). The numerical calculations
and experimental tests on free and forced vibrations of sandwich beams and panels
with carbon/epoxy composite skins and a honeycomb core filled with MRE were
performed recently by de Souza Eloy et al (2018, 2019). Free and forced vibration
tests conducted under several magnetic field intensities were performed to evaluate
dynamic properties of the sandwich beams. The experiments showed the noticable
reduction of mechanical vibrations, especially on the fundamental mode of the
sandwich structure. It was also revealed shifting the natural frequencies to the right
due to the increase of an induced magnetic field.

Contrary to laminated smart beams, the dynamics of sandwich plates and shells
with embedded ER or MR cores remains less studied. The vibration analysis of
isotropic and orthotropic sandwich rectangular plates with MRE core has been
performed by Yeh (2013, 2014). In Aguib et al (2014) numerical and experimental
studies of the dynamic behavior of sandwich plates consisting of two aluminum skins
and a polarized MRE core (elaborated under the action of a magnetic field) have
been performed. Eshaghi et al (2015) considered two sandwich plates consisting of
polyethylene terephthalate face layers with two different magnetorheological fluids
as core layers. At first, the dynamic responses of the cantilever sandwich plate
were experimentally characterized; then, using a finite element model based on the
classical plate theory, they showed enhanced vibration suppression properties of
the magnetorheological sandwich plate over a wide frequency range. The dynamic
performance of tapered laminated MRE sandwich plates has been analyzed in recent
papers by Vemuluri and Rajamohan (2016); Vemuluri et al (2018). Applying FEM
and carrying out experiments on the various prototypes of tapered composite silicon
based MRE sandwich plates, they have investigated the effects of magnetic field,
taper angle of the top and bottom layers and various end conditions on the dynamic
properties of sandwich plates. Further, the transverse vibration responses of tapered
sandwich plates under harmonic force excitation have been also analyzed at various
levels of applied magnetic field. The nonlinear vibration analysis of a MRE sandwich
plate was conducted experimentally by Zhang et al (2018). They have constructed
the frequency-response curves in the vicinity of the fundamental natural frequency
of a MRE sandwich plate in either the absence or presence of a localized external
magnetic field at different geometrical locations. It was observed that all the MRE
plates displayed strong hardening-type nonlinear behaviour, however, this behaviour
transitioned to a weak hardening-type nonlinearity with increasing magnetic field.
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As concerns shells, there are only a few investigations on the dynamic analysis
of thin-walled structures containing ER or MR cores (Yeh, 2011; Mohammadi
and Sedaghati, 2012; Mikhasev et al, 2011, 2014, 2016; Mikhasev, 2018). In Yeh
(2011) vibrations of orthotropic cylindrical sandwich shells composed of ER core
and constraining layers have been studied by utilizing the discrete layer FEM. The
author has computed the natural frequencies and modal loss factors of an orthotropic
cylindrical sandwich shell and concluded that by applying different electric fields,
the natural frequencies and modal loss factors of the smart shell can be controlled
and changed immediately. In Mohammadi and Sedaghati (2012) a nonlinear finite
element model of a sandwich shell with an ER fluid in the core has been developed
to perform nonlinear vibration analysis and examine the effect of small and large
displacements, core thickness ratio and electric field intensity on the nonlinear
damping behavior of the shell. The equivalent single-layer model for multi-layered
cylindrical shells containing MRE cores has been proposed by Mikhasev et al (2011).
Later, this model has been used to study the effect of an external magnetic field on
the natural modes of a medium-length thin sandwich cylindrical shell containing a
highly polarized MR core (Mikhasev et al, 2014). It has been revealed that applying a
constant magnetic field may result in strong distortion of eigenmodes corresponding
to the lowest eigenfrequencies. In Mikhasev et al (2016) the response of the MRE-
based sandwich medium-length cylindrical shell to the initial localized perturbations
and an applied time-dependent magnetic field has been studied. It has been shown
that the time dependent magnetic field may result in soft suppression of running
localized bending waves. Finally, the analysis of different problems considered in
Mikhasev (2017, 2018) has clearly demonstrated that MREs may be successfully
used in designing smart thin-walled laminated structures of variable and predictable
mechanical properties. Some problems on free and forced vibrations of MRE based
cylindrical shells studied in Mikhasev et al (2011, 2014); Mikhasev (2017, 2018)
will be in detail considered in the subsequent sections of this chapter. Concluding
the section, we refer readers to the review by Eshaghi et al (2016).

5.2 Sandwich and Multi-layered Beams with Magnetorheological

Core

Consider a sandwich beam of the length L and the rectangular cross section with
the sides h and b as shown in Fig. 5.1. The face sheets of the thickness h1, h3

are made of an elastic material, and the viscoelastic core of the thickness h2 is
fabricated from a magnetorheological composite (MRC). From all variations of
smart composite materials, we consider here only the magnetorheological fluids
(MRFs) and the magnetorheological elastomer (MRE-1) with properties given in
Chapt. 2. Obviously, the choice of a mathematical model for the sandwich MR beam
depends on whether the core is a liquid or an elastomer.
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Fig. 5.1 Sandwich beam with MRC core.

5.2.1 Sandwich Beam with Magnetorheological Fluid Core

Let the core be a smart magnetorheological fluid, MRF. The ESL model for laminated
beams presented in Chapt. 2 and based on the generalized hypotheses of Timoshenko
can not be used here, because it presupposes the same order of stiffness for all layers
composing a beam. We shall take here the simplest model proposed by Yalcintas and
Dai (2004) and based on the assumptions stated in Sect. 5.1. According to this model
for a sandwich beam with the same thicknesses for all layers (h1 = h2 = h3 = a),
the governing equations accounting tranverse shear in the liquid MR core are the
following

ρ
∂2w

∂t2
+ 2EI

∂4w

∂x4
− 4Gvab

(
∂2w

∂x2
− ∂φ

∂x

)
= f,

J
∂2φ

∂t2
− 2Ea2b

∂2φ

∂x2
− 4Gvab

(
∂w

∂x
− φ

)
= 0,

(5.1)

where w is the normal deflection of the beam (the medium line of the core), φ is the
cross-sectional rotation, x is a coordinate at the core medium line, f is the external
force per unit length, t is time, E is the Young’s modulus of the surface layers, Gv

is the complex shear modulus for the one of MRFs with properties given in Tables
2.8-2.10, ρ is the reduced density of the sandwich per unit length, I is the geometric
moment of area 2nd order of the cross-section, and J is the moment of inertia per
unit length. The magnitudes ρ, I, J are introduced as

ρ = 2ρ1 + ρ2,

I =
9

4
ba3,

J = a2
(
13ρ1
6

+
ρ2
12

)
,

(5.2)

where ρ1 and ρ2 are densities per unit length of the face sheets and MRF, respectively.
Let the edges be simply supported. The appropriate boundary conditions read

w =
∂2w

∂x2
=

∂φ

∂x
= 0 at x = 0, L. (5.3)
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5.2.1.1 Free Vibrations

Let f = 0. Then the natural modes corresponding to conditions (5.3) are given by
functions

w = wn(x, t) = sinλnx e
iΩt, φ = φn(x, t) = Cn cosλnx e

iΩt, n = 1, 2, . . .
(5.4)

where

λn =
πn

L
, Cn =

2λnGv

λ2a2E + 2G
(5.5)

and

Ω = Ωn = λ2
n

√
E

ρ

[
2I +

4Gvab

Eλ2
n

(
1 +

2Gv

λ2
na

2E + 2Gv

)]
(5.6)

is the complex eigenvalue. Deriving Eq. (5.6), we neglected the rotation inertia of
the cross-section. Separating in (5.6) the real and imaginary parts, one obtains the
required natural frequency ω = 
Ω and the associated damping ratio α = �Ω > 0
of damped vibrations.

Remark 5.1. In addition to the complex eigenvalue Ω = ω + iα defined by (5.6),
the boundary-value problem (5.1), (5.3) has another eigenvalue Ω = −ω − iα. It
is obvious that the second one does not satisfy the condition of damped vibrations,
and so will not be taking into consideration in what follows.

To analyse the effect of magnetic field and the type of MRF chosen on damped
vibrations, we consider the following example.

Example 5.1. Let the sandwich beam of the length L = 390 mm with the sides
a = 0.7 mm, b = 25 mm in the cross-section be assembled from aluminum face
sheets and MRF placed between these sheets. We consider three types of MRFs:
MRF-1, MRF-2 and MRF-3, with properties given in Tables 2.8-2.10. Figures 5.2-
5.4 demonstrate the effect of magnetic field on the natural frequencies ω = 
Ω
corresponding to three modes with numbers of semi-wavesn = 1, 3, 5 for the beams
with different MRFs. As can be seen from the figures, the natural frequencies shift
right as the applied magnetic field increases from 0 to 350 mT, these variations
being observed more dominantly for the MRF-1, which contains iron particles of
large size.

An important parameter characterizing the rate of vibration damping is the loga-
rithmic decrement

Dl =
2πα√
ω2 − α2

. (5.7)

Figures 5.5-5.7 show the behavior of scaled logarithmic decrement dl = 50Dl/π
under varying the magnetic induction B for three types of MRFs. Calculations
have been performed for n = 1, 3, 5. It is seen that the effect of magnetic field on
the logarithmic decrement is very complicated due to complicated behavior of the
loss factor ηv for all the MR liquids (s. Tables 2.8-2.10). The general conclusion
related to all MRFs under consideration is that the logarithmic decrement decreases
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Fig. 5.2 First natural fre-
quency ω1 = �Ω1 for
sandwich beams with differ-
ent MRF cores vs. induction
B:
1 - MRF-1; 2 - MRF-2;
3 - MRF-3.

0 50 100 150 200 250 300 350

0.28

0.29

0.30

0.31

0 32.

1

2
3

0.27

ω
,
kH

z
B, mT

Fig. 5.3 Third natural fre-
quency ω3 = �Ω3 for
sandwich beams with differ-
ent MRF cores vs. induction
B:
1 - MRF-1; 2 - MRF-2;
3 - MRF-3.
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Fig. 5.4 Fifth natural fre-
quency ω5 = �Ω5 for
sandwich beams with differ-
ent MRF cores vs. induction
B:
1 - MRF-1; 2 - MRF-2;
3 - MRF-3.
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with growing the mode number. Thus, the mathematical model for a sandwich used
here shows that MRFs are most effective for damping low-frequency vibrations of
three-layered beams with the MRF core.

Figures 5.8 and 5.9 allow us to compare the damping capabilities of different
smart fluids on the first and third modes, respectively, at different levels of applied
magnetic field. It is seen that the MRF-2 and MRF-3 possess the best damping
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Fig. 5.5 Scaled logarithmic
decrement dl for the sandwich
beam with the MRF-1 core
corresponding to different
modes vs. induction B: solid
line - n = 1, dashed line -
n = 3, dotted line - n = 5.
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Fig. 5.6 Scaled logarithmic
decrement dl for the sandwich
beam with the MRF-2 core
corresponding to different
modes vs. induction B: solid
line - n = 1, dashed line -
n = 3, dotted line - n = 5.
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Fig. 5.7 Scaled logarithmic
decrement dl for the sandwich
beam with the MRF-3 core
corresponding to different
modes vs. induction B: solid
line - n = 1, dashed line -
n = 3, dotted line - n = 5. 0 4.
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capability at a weak magnetic field (B < 50 mT), while the MRF-1 demonstrates
the highest damping effect for B varying from 50 to 300 mT.

5.2.1.2 Forced Stationary Vibrations

Now we consider forced vibrations under the external normal harmonic force

f = ρF0(x) e
iωet, (5.8)

where ωe is the excitation frequency. The magnetic field, if applied, is constant and
homogeneous (independent of time t and coordinate x).

A solution of Eqs. (5.1) with the boundary conditions (5.3) may be found in the
form of series
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Fig. 5.8 Scaled logarithmic
decrement dl for the sandwich
beam with different MRFs
cores corresponding to the
first mode (n = 1) vs.
induction B: 1 - MRF-1;
2 - MRF-1; 3 - MRF-3.
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Fig. 5.9 Scaled logarithmic
decrement dl for the sandwich
beam with different MRFs
cores corresponding to the
third mode (n = 3) vs.
induction B: 1 - MRF-1;
2 - MRF-1; 3 - MRF-3.
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w(x, t) =

∞∑
n=1

sin(λnx) qn(t), φ(x, t) =

∞∑
n=1

Cn cos(λnx) qn(t), (5.9)

where qn(t) is the so-called generalized coordinates of the vibrating system. Substi-
tuting Eqs. (5.9) into (5.1), then multiplying them by sin(λnx) and integrating over
the beam length, we obtain the following equation

q̈n(t) +Ω2
nqn(t) = Fne

iωet, (5.10)

where

Fn =

∫ L

0

F0(x) sin(λnx)dx (5.11)

is the generalized force corresponding to qn(t). The partial solution of Eq. (5.10) is

qn(t) = Fn
eiωet

Ω2
n − ω2

e

. (5.12)

Then the amplitude of forced stationary vibrations at any point of the beam will be
defined by
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w(x, t) =
∞∑
n=1

Fn

Ω2
n − ω2

e

sin(λnx)e
iωet =

∞∑
n=1

Fn sin(λnx)e
iωet

ω2
n − α2

n − ω2
e + 2iωnαn

. (5.13)

Since the complex eigenfrequency Ωn depend on the complex shear modulus Gv

being the function of induction B, the amplitude of sustained forced vibrations
becomes to some extent a controllable quantity.

5.2.1.3 Equivalent Model with External Friction for Prediction of Unsteady

Vibrations

We note that the homogeneous equation corresponding to Eq. (5.10) has the two
partial solutions, e−α+iωt and eα−iωt, of which the second one does not satisfy the
damping condition (s. Remark 5.1). Thus, the general solution of Eq. (5.10) based
on the assumed above model for viscoelastic MRF with internal friction can not be
used to describe unsteady forced vibrations of the MRF-based sandwich beam.

In order to give an approximate analysis of unsteady vibrations, we shall replace
the initial model by an equivalent model with external friction. The idea of this
substitution is the following. The dynamic unsteady response of the beam to the
external harmonic excitation can be represented by the superposition of the damped
eigenmodes and undamped forced modes (5.13). Each of the damped eigenmodes is
characterized by the natural frequency ωn = 
Ωn and the associated damping ratio
αn = �Ωn. We consider the series of viscoelastic n-oscillators

ÿn + 2αnẏn + (ω2
n + α2

n)yn = 0 (5.14)

with the external friction and having the same natural frequencies ωn and damping
ratio αn. Then Eq. (5.10) may be replaced by the following equation

¨̃qn(t) + 2αn
˙̃qn + (ω2

n + α2
n)q̃n = Fne

iωet, (5.15)

where q̃n is the generalized coordinate of the equivalent viscoelastic system with
damping ratio depending on the wave number n.

The general solution of Eq. (5.15) is

q̃n =
Fne

iωet

ω2
n − ω2

e + α2
n + 2iαnωe

. (5.16)

Then the amplitude of forced unsteady vibrations for the equivalent smart beam will
be as follows

w(x, t) =

∞∑
n=1

[
e−αnt

(
c(s)n sinωnt+ c(c)n cosωnt

)

+
Fne

iωet

ω2
n − ω2

e + α2
n + 2iαnωe

]
sin(λnx).

(5.17)
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We note that the component in Eq. (5.17) corresponding to the amplitude of forced
unsteady vibrations does not coincide with the amplitude of forced stationary vibra-
tions (5.13). However, the real parts of these components become the same for the
resonance excitation, i.e. for ωe = ωn. Equation (5.17) derived for the equivalent

beam can be used only to estimate approximately unsteady vibrations of the smart
beam under consideration. To make that, we shall consider the following example.

Example 5.2. Let the motionless sandwich MR beam with parameters specified in
Example 5.1 be subjected to the periodic concentrated force

f = ρδ(x− x∗) sinωet

applied in the point x = x∗ ∈ (0, L) at t ≥ 0, where δ(x) is the delta function. Then
the generalized force

Fn =
2

L
sinλnx

∗.

We consider the case when the frequency of excitation is very close to the first
natural frequency ωe ≈ ω1 = 
Ω1 of the beam when a magnetic field is absent. In
Fig. 5.10, curve 1 shows the scaled amplitude A = wmax × 105 of the resonance

vibrations of the equivalent beam without magnetic field, and the curve marked by 2
corresponds to vibrations of the same beam when the magnetic field of the constant
induction B = 250 mT is applied. Here, wmax is the maximum amplitude. The
calculations were performed for x∗ = L/7 and ωe = 271 Hz. It is clearly seen,
that due to viscosity of the MRF-1 the small oscillations generated by the initial
conditions quickly decay with and without magnetic field, while the amplitude of
forced vibrations is the growing function which converges to some limited value at
t → ∞, if a magnetic field is absent. The application of magnetic field leads to slight
shifting all natural frequencies, including the first one (s. again Fig. 5.2), to right and
in that way prevents resonance vibrations.

Fig. 5.10 Scaled maximum
amplitude A of forced vibra-
tions of the sandwich beam
with the MRF-1 core vs. time t
without magnetic field (curve
1) and under magnetic field of
the induction B = 250 mT
(curve 2).
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5.2.1.4 Suppression of Forced Vibrations in Thin-walled Structures via

Magnetic/Electric Fields

The basic principles of damping forced vibrations of MR/ER-based beams, plates and
shells are to give a time signal of the magnetic/electric field and also to determine its
optimal intensity. The criteria of selecting the signal time of an external physical field
may be different. The simplest criterion is monitoring of the maximum amplitude
of vibrations: the magnetic/electric field signal is fed, if the maximum amplitude
(in some point) achieves a certain critical magnitude. Another criterion is based on
the estimation of the total mechanical energy of the structure. For instance, for the
sandwich beam considered in this section this energy is defined as

Es = T +Π1 +Π2 +Π3, (5.18)

where

T =
1

2

L∫
0

(
∂w

∂t

2)
ρ dx+

1

2

L∫
0

(
∂φ

∂t

2)
J dx,

Π1 = ba3E

L∫
0

(
∂φ

∂t

2)
dx, Π2 = EI

L∫
0

(
∂w

∂t

2)
dx,

Π3 =
1

2
G′

vab

L∫
0

γ2ρdx.

In Eq. (5.18), T is the kinetic energy of the beam, Π1, Π2 are the potential energy of
tangential and bending deformations, andΠ3 is the potential energyof the transversal
shears in the MR/ER core. We note that the energy (5.18) does not contain the work
that goes to the heating the whole system, including the work on heating the MR/ER
core, which depends on the loss modulus G′′

v of the smart viscoelastic material.
The problem is to minimize the maximum amplitude of excited vibrations, the

mechanical energyEs or the rate of its growth Ės (Lai and Wang, 1996). For instance,

if at t = tcr the energy achieves some critical value E
(cr)
s , a magnetic/electric field

signal is applied, leading to a sudden or gradual change in the physical characteristics
of a smart core.

Example 5.3. In this example, we study the response of the beam considered in the
previous example when the magnetic field of the intensity B = 270 mT is suddenly
applied at t = tcr = 0.1 s. Let w(1)(x, t) be the beam response to the resonance
excitation at the interval 0 < t ≤ tcr = 0.1 s (see the dotted line in Fig. 5.10).
Consider the following initial conditions

w(x, t)|tcr = w(1)(x, tcr), ẇ(x, t)|t=tcr = ẇ(1)(x, tcr) (5.19)

for Eqs. (5.1). Let w(2)(x, t) be a solution of the initial boundary-value problem
(5.1), (5.3), (5.19) for t ≥ tcr when the magnetic field signal is fed. We assume
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that after applying the magnetic field at t = tcr the viscoelastic properties of the
beam is changed in a moment. So, to use formulae (5.17) at t ≥ tcr, one needs
to recalculate at first all natural frequencies for the sandwich at B = 270 mT.
Figure 5.11 shows the response of the equivalent MRF-1 sandwich at two time gaps,
for 0 ≤ t < tcr (the dotted line) and t ≥ tcr (the solid line). It is seen that the
application of a magnetic field results in some high-frequency oscillations generated
by the initial displacements and velocities (5.19), these oscillations being rapidly
suppressed during the time. However, the basic effect of the applied magnetic field
is a quick withdrawal of the beam from a regime of the resonance vibrations and
stabilization of forced vibrations with more low amplitude.

Remark 5.2. It should be noted that the response of a smart material to a signal of
magnetic/electric field depends on the ratio of timescales of controlling signal and the
reaction of the very MR/ER medium (Korobkoet al, 2012). So, at sudden application
of a magnetic field, the time of reaction of MRF or MRE is about 10−3 − 10−2 s.
An abrupt impact of an external physical field is the kind of a parametric blow for
the adaptable mechanical system and can excite additional high-frequency modes.

Solution (5.17) found above for the equivalent smart beam as well as Examples 5.2,
5.3 relate to the case when the applied magnetic field is stationary. It is obvious that
these solutions do not take into account the aforementioned parametric impact. In
the next item, we shall construct high-frequency modes accounting for the real time
response of a smart MR material to a signal of an external magnetic field.
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Fig. 5.11 Response of the MRF-1 based sandwich beam to the resonance harmonic force and
magnetic field applied at t = tcr = 0.1 s.
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5.2.1.5 High-frequency Response of Magnetorheological Beam on the Rapid

Signal of a Magnetic Field

Let the complex shear modulus Gv = Gv(vrt) of the MRF be a function of time,
where vr = 1/tr is the speed of the liquid reaction on the signal of a magnetic field.
For a majority of MRFs, vr varies from 10−3 to 10−2 s−1. Let tr = 10−2 s be the
characteristic time.

We introduce the dimensionless magnitudes

w = LW ∗, t = trτ, g(τ) =
2Gv(trτ)L

2

ε1/2Ea2

ε =
tr
Tp

, Tp =
1

3

√
2ρa

Eb

L2

a2
,

(5.20)

where Tp is the period of low-frequency vibrations of the beam without the MRF
core. Furthermore, it is assumed that ε is a small parameter.

The dimensionless deflection and angle of rotation satisfying the boundary con-
ditions (5.3) are sought in the form

W ∗ = W (τ) sin
πnx

L
, φ = Φ(τ) cos

πnx

L
, n = ε−1/2p, p ∼ 1, (5.21)

where n is an integer. Then Eqs. (5.1) can be rewritten as

ε
d2W

dτ2
+ δ4W +

4

9
ε1/2δ2g(τ)W +

4

9
εδg(τ)Φ = 0,

ες2
d2Φ

dτ2
+ δ2Φ+ δg(τ)W − ε1/2g(τ)Φ = 0,

(5.22)

where

δ = πp, ς2 =
9ρJa

2

2ρL2
, ρJ =

13

6
ρ1 +

1

12
ρ2, g(τ) = g1(τ) + ig2(τ). (5.23)

Here, g1 and g2 are the real and imaginary parts of the complex function g(τ), g2
being positive.

To solve Eqs. (5.21), we apply to the multiple scale method. Let

τ0 = ε−1/2τ, τ1 = τ, τ2 = ε1/2τ, . . . (5.24)

be independent variables. The asymptotic solution of Eqs. (5.22) can be found in the
form of series

W = W0 + ε1/2W1 + εW2 + . . . , Φ = Φ0 + ε1/2Φ1 + εΦ2 + . . . (5.25)

where Wk and Φk are functions of independent arguments τj defined by (5.24).
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Substitution of (5.25) into Eqs. (5.22) results in the sequence of differential
equations with respect to required Wk, Φk. Consider these equations step-by-step.
In the zeroth-order approximation, one has the homogeneous equations

∂2W0

∂τ20
+ δ4W0 = 0,

∂2Φ0

∂τ20
+

δ2

ς2
Φ0 +

δ

ς2
g(τ1)W0 = 0. (5.26)

Their solution are

W0 = A0(τ1, . . .)e
iδ2τ0 + Ā0(τ1, . . .)e

−iδ2τ0 ,

Φ0 = B0(τ1, . . .)e
i δ
ς
τ0 + B̄0(τ1, . . .)e

−i δ
ς
τ0

+
g(τ1)

δ(1− δ2ς2)

[
A0e

iδ2τ0 + Ā0e
−iδ2τ0

]
,

(5.27)

where A0(τ1, τ2, . . .), B0(τ1, τ2, . . .) are required complex functions. In the first-
order approximation, one obtains the nonhomogeneous system of differential equa-
tions

∂2W1

∂τ20
+ δ4W1 = −2

∂2W0

∂τ0∂τ1
− 4

9
δ2g(τ1)W0,

∂2Φ1

∂τ20
+

δ2

ς2
Φ1 +

δ

ς2
g(τ1)W1 = −2

∂2Φ0

∂τ0∂τ1
− g(τ1)

ς2
Φ0.

(5.28)

In above equations, the right-hand members generate secular partial solutions. Elim-
inating these solutions, one arrives at the differential equations

i
∂A0

∂τ1
+

2

9
g(τ1)A0 = 0, 2iδς

∂B0

∂τ1
− g(τ1)B0 = 0. (5.29)

These equations have the solutions

A0(τ1, τ2, . . .) = A01(τ2, . . .) exp

⎧⎨
⎩2i

9

τ1∫
0

g(τ)dτ

⎫⎬
⎭ ,

B0(τ1, τ2, . . .) = B01(τ2, . . .) exp

⎧⎨
⎩ i

2δς

τ1∫
0

g(τ)dτ

⎫⎬
⎭ .

(5.30)

When taking into account (5.30), the general solution of the system (5.28) becomes
as follows

W1 = A1(τ1, . . .)e
iδ2τ0 + Ā1(τ1, . . .)e

−iδ2τ0 ,

Φ1 = B1(τ1, . . .)e
i δ
ς
τ0 + B̄1(τ1, . . .)e

−i δ
ς
τ0

+ C1(τ1, . . .)e
iδ2τ0 + C̃1(τ1, . . .)e

−iδ2τ0 ,

(5.31)
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where

C1 = − g

δ(1− δ2ς2)
A1 +

4ς2δ2g2 − 9iδ2g′ + 9g2

9δ(1− δ2ς2)2
A0,

C̃1 = − g

δ(1− δ2ς2)
Ā1 +

4ς2δ2g2 + 9iδ2g′ + 9g2

9δ(1− δ2ς2)2
Ā0.

(5.32)

The unknown functions A01, B01, A1, B1 are found from the next approximation.
We limit ourselves to the first two approximations.Then the approximate formulae

for the deflection and the angle of rotation become as follows

w = L sin
( πps
ε1/2

)
exp

⎡
⎣−2

9

τ∫
0

g2(τ)dτ

⎤
⎦
⎧⎨
⎩A01exp

⎡
⎣i
⎛
⎝ δ2τ

ε1/2
+

2

9

τ∫
0

g1(τ)dτ

⎞
⎠
⎤
⎦

+ Ā01 exp

⎡
⎣−i

⎛
⎝ δ2τ

ε1/2
+

2

9

τ∫
0

g1(τ)dτ

⎞
⎠
⎤
⎦
⎫⎬
⎭+O

(
ε1/2

)
,

(5.33)

φ = cos
( πps
ε1/2

)
exp

⎡
⎣− 1

2δς

τ∫
0

g2(τ)dτ

⎤
⎦
⎧⎨
⎩B01exp

⎡
⎣i
⎛
⎝ δτ

ςε1/2
+

1

2δς

τ∫
0

g1(τ)dτ

⎞
⎠
⎤
⎦

+ B̄01 exp

⎡
⎣−i

⎛
⎝ δτ

ςε1/2
+

1

2δς

τ∫
0

g1(τ)dτ

⎞
⎠
⎤
⎦
⎫⎬
⎭+O

(
ε1/2

)
,

(5.34)
where A01 and B01 are found from the initial conditions.

Equations (5.33) and (5.34) give the leading terms in the asymptotic series pre-
dicting high-frequency unsteady damping vibrations. It is seen that these terms are
asymptotically independent. Equation (5.33) describes bending vibrations with the
current frequency

ωb =
δ2τ

ε1/2
+

2

9

τ∫
0

g1(τ)dτ (5.35)

and the damping ratio

αb =
2

9

τ∫
0

g2(τ)dτ, (5.36)

and Eq. (5.34) predicts torsional vibrations with the frequency

ωr =
δτ

ςε1/2
+

1

2δς

τ∫
0

g1(τ)dτ (5.37)

and the damping ratio
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αr =
1

2δς

τ∫
0

g2(τ)dτ. (5.38)

Thus, high-frequency vibrations are asymptotically decomposed into bending and
torsional ones. The second terms in Eqs. (5.35) and (5.37) give nonstationary cor-
rections for frequencies, these corrections are induced by the rapid variation of the
storage modulus of the MRF under the impulse signal of the magnetic field. The
time-dependentdamping ratios (5.36) and (5.38) reflect the variation of the loss mod-
ulus of the smart viscoelastic core. If we take into account the next approximations, it
would be detected that the bendingvibrations defined by Eq. (5.33) generate torsional
vibrations with amplitudes of order O

(
ε1/2

)
and vice versa, the high-frequency ro-

tations of the beam cross-sections (5.34) cause small bending oscillations. Thus, the
bending and torsional vibrations are coupled.

The above mentioned methods of vibration damping belong to semi-active meth-
ods. Obviously, they have both advantages and disadvantages. One of the advantages
of these approaches, based on the application of MR/ER smart materials, is that
without the use of any special damping devices it is possible to change reversibly the
elastic and viscous properties of the entire mechanical system to withdraw it from
the regime of resonance vibrations. In addition, these methods allow suppressing
efficiently any free oscillations generated by the initial conditions. Their common
drawback is that their implementation results in partial suppression of the forced
vibrations only due to some increasing all natural frequencies.

5.2.2 Laminated Beams with Magnetorhelogical Elastomer Layers

In this subsection, we consider both sandwich and multi-layered beams with one ore
several layers made of a MRE. To predict the dynamic response of the MRE-based
laminated beams, we use the ESL theory stated in Chapt. 2. The differential equation
governing forced vibrations of the beam represented in Fig. 5.1 is the following
(2.153)

EIη3

(
1− θh2

β

∂2

∂x2

)
∂4χ

∂x4
+ ρl

(
1− h2

β

∂2

∂x2

)
∂2χ

∂t2
= ql, (5.39)

where ql(x, t) is the external normal force per unit length of the beam, ρl is the linear
mass introduced in Sect. 2.1, χ is the displacement function coupled with the normal
displacement w by

w =

(
1− h2

β

∂2

∂x2

)
χ. (5.40)

In contrast to the cases considered in Chapt. 4, the reduced Young’s modulus E and
parameters η3, θ, β are here complex magnitudes dependent on the induction B of
the external magnetic field. The complex values of these parameters are calculated
by Eqs. (2.18), (2.25), (2.84) and (2.89).
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Consider here only one variant of boundary conditions

χ =
d2χ

dx2
=

d4χ

dx4
= 0, (5.41)

corresponding to the simply supported edges α1 = 0, L. We remind that for a
laminated beam represented by the ESL model, boundary conditions for the simply
supported edges with and without diaphragm are identical (s. Subsect. 3.1.1).

5.2.2.1 Free Vibrations

At first, we consider free vibrations (ql = 0). The eigenmodes satisfying conditions
(5.40) are written down

χ = χ0 sin
πnx

L
eiΩt, (5.42)

where n is the number of semi-waves, and Ω is the complex natural frequency. Then
ω = 
Ω is the natural frequency and α = �Ω is the damping ratio.

The substitution of Eq. (5.42) in Eq. (5.39) gives the formula for the complex
eigenvalues

Ω = Ωn =
1√
ρl

√
EIη3π4n4(1 + θKn2)

L4(1 +Kn2)
, (5.43)

where K = π2h2/βL2 is the complex shear parameter. The variation of induction
B allows changing the complex parameters η3, θ,K and ultimately the natural fre-
quencies ω = 
Ω and corresponding damping ratios α = �Ω > 0. To estimated
this effect, we consider the following example.

Example 5.4. Let L = 0.3 m, b = 15 mm and h1 = h3 = 1 mm. The face sheets
are made of aluminum. The smart core is the MRE-1 (see its properties in Chapt.
2). Figure 5.12 shows the influence of the magnetic field on the lowest frequency
ω (n = 1) for different thicknesses h2 of the smart material. Figure 5.13 gives the
frequenciesω at n = 9 versus the inductionB when the core thickness h2 = 12 mm.
It is clearly seen that the eigenfrequencies increase at the interval of varying of the
inductionB from 0 to 210 mT, however this influence is very weak for the first modes
and thin core; it becomes noticeable with growing of the smart core layer thickness
h2 for a large number of mode (compare Figs. 5.12 and 5.13).

Figure 5.14 shows the scaled logarithmic decrement dl = 500 Dl/π, where Dl

is calculated by (5.7), as a function of the increasing magnetic field. For the first
and ninth modes and different thicknesses of the MRE core, the best damping takes
place at about 280 mT, this effect becoming stronger with growing the MRE layer.
Comparing outcomes presented on Fig. 5.14 with similar results for the sandwich
beam with MRF core (s. Figs. from 5.5 to 5.9), one can conclude: MR liquids display
the best damping capability at the lowest frequencies, while the MRE-1 does it for
modes with large number n of semi-waves.
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It is of interesting to study the effect of a MRE uniformly distributed between
different elastic layers on natural frequencies and decrement for multi-layered beams.

Example 5.5. We consider different beams of the same geometrical parameters as in
Example 5.4, but consisting of three, five, seven and nine layers. The total thickness
hAl of sheets made of aluminum is equal to 2 mm, and the total thickness hMRE of
the MRE-1 laminaes is 12 mm. It is assumed that the elastic material (aluminum)
and the MRE-1 are uniformly distributed between layers so that the thicknesses of
laminas with odd and even numbers are as follows:

• for the sandwich (N = 3),

h1 = h3 =
hAl

2
, h2 = hMRE;

• for the five-layer beam (N = 5),

h1 = h3 = h5 =
hAl

3
, h2 = h4 =

hMRE

2
;

• for the seven-layer beam (N = 7),

h1 = h3 = h5 = h7 =
hAl

4
, h2 = h4 = h6 =

hMRE

3
,

• for the nine-layer beam (N = 9)

h1 = h3 = h5 = h7 = h9 =
hAl

5
, h2 = h4 = h6 = h8 =

hMRE

4
.

Regardless of a number of layers, the quantity of elastic and smart viscoelastic
materials is fixed. The outcomes for the sandwich beam (N = 3) are presented in
Figs. 5.12 (b), 5.13 and 5.14.

The first and ninth frequencies and the corresponding logarithmic decrements
for multi-layered beams are displayed in Figs. 5.15 and 5.16. As seen, the impact
of magnetic field on eigenfrequencies and damping ratio becomes more weak with
increasing number of layers. However, at the fixed induction B, the number of layers
greatly influences on all the spectrum of natural frequencies and corresponding
damping ratios. When comparing Figs. 5.12 (b) and 5.15 (a), then one concludes that
increasing number of layers results in some decreasing the lowest natural frequency
at all range of varying B. As for modes with a large number of semi-waves (for
instance, compare Figs. 5.13 and 5.15 (b)), the corresponding natural frequencies
unevenly increase when the beam is subjected to the partition into five, seven and
more number of layers. So, for the ninth mode (n = 9) and B ≥ 200 mT, the natural
frequency jumps from 20.30 kHz (for the sandwich beam) up to about 63.60 kHz
(for the five-ply beam) and then slightly decreases when the number of layers is
increasing. The comparison of Figs. 5.14 and 5.16 shows that the increase of the
number of layers leads to a dramatic decreasing of the logarithmic decrement for
each mode at the fixed level of applied magnetic field, this reduction being more
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noticeable for the highest modes. It is of interest to note the behavior of the scaled
logarithmic decrement dl corresponding to the first mode versus the number of
layers: under increasing N from 3 to 5, the maximum value of dl (at B = 200 mT)
drops from about 1 to 0.046, and then it grows together with the numberN of layers.

This example allows us to conclude: splitting the sandwich beam with the MRE
core into a large number of layers under fixed quantity of elastic and viscoelastic
smart materials results in the reduction of damping properties of the beam, however
permits to change significantly the spectrum of natural frequencies (especially its
part corresponding to highest modes) removing it to right. Obviously, this property
may be used in designing smart laminated beam with adjustable elastic and damping
properties.
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5.2.2.2 Forced Stationary Vibrations and Their Suppression

Let the beam be under the external periodic force

ql = ρlF0(x) e
iωet, (5.44)

where ωe is the excitation frequency. A solution of Eq. (5.39) with the boundary
conditions (5.41) can be presented in the form of the series

χ(x, t) =

∞∑
n=1

sin(λnx)qn(t). (5.45)

Substituting (5.45) into Eq. (5.39), we obtain the series of equations

q̈n +Ω2
nqn =

2Fn

L(1 +Kn2)
eiωet, n = 1, 2, . . . , (5.46)

where the generalized forces Fn are defined by Eq. (5.11). The partial solution of
(5.46) is

qn(t) =
2Fn

L(1 +Kn2)(Ω2
n − ω2

e )
eiωet. (5.47)

Then the amplitude of forced stationary vibrations will be given by

χ =

∞∑
n=1

2Fn e
iωet

L(1 +Kn2)(Ω2
n − ω2

e )
sin(λnx). (5.48)

Example 5.6. Consider the sandwich beam with parameters specified in Exam-
ple 5.5. The thickness of the MRE core is equal to h2 = 12 mm. We assume the
following distribution of the normal periodic force

F0(x) = 4
x

L

(
1− x

L

)
. (5.49)

Figures 5.17 and 5.18 demonstrate the amplitude-frequency characteristics for the
sandwich beam subjected to the periodic force (5.44) with (5.49) in the frequency
interval ωe from 1.10 to 10.10 kHz, the dotted line showing the scaled amplitude
As versus ωe if the magnetic field is absent and the solid curve corresponds to
the case, when the beam is in the magnetic field of the induction B = 200 mT.
It is clearly seen that the applied magnetic field shifts the resonance regions to

right, this shifting being slight for the lowest resonance frequencies and growing
together with the mode number n. The relative reduction of the maximum amplitude
AB

s /A
0
s , where AB

s and A0
s are the scaled amplitude calculated at B = 200 mT and

B = 0 mT, respectively, depends also on n. So, it is equal to approximately 2, 16,
14 for n = 1, 2, 3, respectively. Thus, our conclusion made above on the basis of the
modal analysis (see the previous example) is confirmed: MREs used as smart cores
in sandwich beams reveal the best damping capability at the highest modes and so,
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Fig. 5.17 Amplitude-
frequency characteristics for
the MRE-1 sandwich beam
at the interval ωe from 1.10
to 4.00 kHz for two different
cases: dotted line - magnetic
field is absent, solid line -
magnetic field of the induc-
tion B = 200 mT is applied.
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Fig. 5.18 Amplitude-
frequency characteristics for
the MRE-1 sandwich beam at
the interval ωe from 5.80 to
10.10 kHz for two different
cases: dotted line - magnetic
field is absent, solid line -
magnetic field of the induc-
tion B = 200 mT is applied.
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their application turns out to be more effective for suppression of high-frequency
vibrations.

The next example illustrates the resonance response of the beam without magnetic
field and after its application.

Example 5.7. Let the beam considered in the previous example be subjected to the
resonance periodic force (5.44) applied in the point x = x∗ = L/7, where the
excitation frequency ωe = 3.46 kHz is close to the second natural frequency of the
beam. In Fig. 5.19, the scaled maximum amplitude for the so-called equivalent beam

with external friction is plotted at 0 ≤ t < tcr, when the magnetic field is absent, and
for t ≥ tcr as well, where tcr = 0.2 is the time of turning on the magnetic field of the
induction B = 300 mT. In the initial moment the beam is motionless. Computations
at t ≥ tcr were performed by the approach applied in Example 5.2 in accordance
to which the natural frequencies, damping ratio and modes were recalculated after
applying the magnetic field. The high-frequency excited oscillations due to the impact
action of magnetic field were disregarded. Figure 5.19 shows that the application
of magnetic field removed the beam from the regime of resonance vibrations and
resulted in about fourfold reduction of the amplitude of forced vibrations.
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Fig. 5.19 Response of the
equivalent MRE-1 based

sandwich beam to reso-
nance harmonic force and
the magnetic field of induc-
tion B = 300 mT applied at
t = tcr = 0.2 s.
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5.3 Magnetorheological Sandwich and Multi-Layered Plates

In this section, we consider laminated plates consisting of N transversally isotropic
laminas. The sides in the plate plane are equal to L1 and L2. Each layer with the
number k(k = 1, 2, . . . , N) is characterized by the thickness hk, Young’s modulus
Ek, shear modulus Gk and Poisson’s ratio νk. If a plate is three-layered (sandwich),
as shown in Fig. 5.1, then the face sheets are elastic and the core is a MRE. For
multi-layered plate, elastic and smart viscoelastic laminas alternate, odd laminas
being made of an elastic material, and even ones being MREs.

Assuming the ESL theory for laminated plate stated in Chapt. 2, we use here the
following equations

D

(
1− θh2

β
�
)
�2χ+ ρ0h

∂2w

∂t2
= qex, w =

(
1− h2

β
�
)
χ,

(1− ν)h2

2β
�φ = φ,

(5.50)

where� is the Laplace operator in a Cartesian coordinate system α1, α2, (0 ≤ α1 ≤
L1, 0 ≤ α2 ≤ L2), w is the deflection of the plate, φ is the shear function, s. its
introduction in Chapt. 2, Eq. (2.78), qex(α1, α2, t) is the normal load, t is time. All
other notations appearing in Eq. (5.50) are the same as in Chapt. 2. We only note that
the reduced bending stiffness D and the shear parameter β depend on the intensity
of the applied magnetic field.

We consider here only one variant of boundary conditions. Let all the edges be
simply supported and provided by diaphragm preventing edge shear

χ = �χ =
∂φ

∂αk
= 0 at αk = 0, Lk; k = 1, 2. (5.51)

Then, one can set φ = 0.
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5.3.1 Free Vibrations

At first, we analyse free vibrations (qex = 0). The solution of the boundary-value
problem (5.50), (5.51) can be found as

χ = χ0 sin
πnα1

L1
sin

πmα2

L2
eiΩt, (5.52)

where n,m are numbers of semi-waves in the α1− and α2− directions, respectively,
and Ω is the complex natural frequency.

Substituting Eq. (5.52) into Eqs. (5.50) gives a simple formula for the required
complex eigenvalue

Ω = Ωnm =

√
π2D

ρ0hL4
1

Λ1/2, (5.53)

where

Λ = Λnm =
δ2nm(1 + θKδnm)

1 +Kδnm
, K =

π2h2

βL2
2

, δnm = n2 + e2m2, e =
L1

L2
.

(5.54)
Equation (5.53) gives two complex eigenvalues. We need to chose only one value
with the positive imaginary part.

If some of the edges is free of a diaphragm, then a solution of Eqs. (5.50) with
corresponding boundary conditions (4.38) may be constructed by the asymptotic ap-
proach developed in Subsect. 4.2.2 for an elastic laminated plate. According to this
approach, the solution is constructed in the form of superposition of functions corre-
sponding to the main stress-strain state and edge effect integrals in the neighborhood
of an edge which is free of diaphragm.

In Eqs. (5.53), (5.54), parameters D,K depend on the induction B, the shear
parameter K being the principal one. Just as for a layered beam, a magnetic field
and, as consequence, a parameter K have a weak effect on the lowest frequencies
and the corresponding decrements. The effect of magnetic field and shears manifests
itself on modes for which the number of waves is large in at least one direction. This
conclusion is clearly confirmed by the following example.

Example 5.8. Let us consider a square sandwich plate with L1 = L2 = 1 m. The
outer layers (thicknessesh1 = h3 = 0.5mm) are made of ABS-plastic SD-0170 with
parameters E1 = E3 = 1.5 · 103 MPa, ν1 = ν3 = 0.4, ρ1 = ρ3 = 1.4 · 103 kg/m3.
The core of thickness h2 = 10 mm is MRE-1 with properties given in Chapt. 2 (s.
Fig. 2.9). Figures 5.20 and 5.21 show the influence of the magnetic field induction
on the natural frequenciesω = 
Ω and decrementsα = �Ω for modes with n = 10
waves in the α1-direction and different number of waves in the other direction. It is
seen, the larger the wave numbersm and/or n, the stronger the effect of the magnetic
field on the characteristics of eigenmodes for the sandwich plate.
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Fig. 5.20 Natural frequency
ω vs. induction B for modes
with n = 10 and different
values of m: 1 - m = 1,
2 - m = 5, 3 - m = 7,
4 - m = 10.

0 4.  0

0 68.

0 96.

1 24.

1 52.

200 400 600 8000

1 82.

1

2

3

4

ω
,k

H
z

B, mT

Fig. 5.21 Decrement α vs.
induction B for modes with
n = 10 and different values
of m: 1 - m = 1, 2 - m = 5,
3 - m = 7, 4 - m = 10.
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5.3.2 Forced Stationary Vibrations

Let the plate be under action of the periodic normal force

qex(α1, α2, t) = F0(α1, α2)e
iωet (5.55)

with the frequencyωe. Here, a solution of Eq. (5.50) with boundary conditions (5.51)
is found in the form of the double series
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χ(α1, α2, t) =
∞∑
n=1

∞∑
m=1

sin
πnα1

L1
sin

πmnα1

L2
qnm(t), (5.56)

where qnm(t) is generalized coordinates of the system. We substitute (5.56) into
Eq. (5.50) and expand function (5.56) into Fourier series. Then, we arrive at the
series of differential equations

q̈nm +Ω2
nm qnm =

Fnm

ρh(1 +Kδnm)
, n,m = 1, 2, . . . , (5.57)

where

Fnm =
4

L1L2

L1∫
0

L2∫
0

F0(α1, α2) sin
πnα1

L1
sin

πnα2

L2
(5.58)

are the generalized forces corresponding to the generalized coordinates qnm(t) and
the Ωnm are the complex eigenfrequencies defined by (5.54).

The partial solutions of Eqs. (5.58) are the functions

qnm(t) =
Fnmeiωet

ρh(1 +Kδnm)(Ω2
nm − ω2

e )
, n,m = 1, 2, . . . (5.59)

Then, the amplitude of forced steady-state vibrations will be as follows

χ(α1, α2, t) =

∞∑
n=1

∞∑
m=1

Fnmeiωet

ρh(1 +Kδnm)(Ω2
nm − ω2

e)
sin

πnα1

L1
sin

πnα2

L2
. (5.60)

Equation (5.60) serves to predict the dynamic stationary response of the plate
to the periodic force (5.55) arbitrary distributed along the surface. We note that
D,K, θ,Ωnm are complex magnitudes depending on the magnetic field induction.
Thus, applying a magnetic field one can affect the modes and the damping capability
of a MRE embedded in the plate and reduce the response of the plate to external
forces. We do not give here any examples because the mechanism of suppression
of forced vibrations in MRE-based laminated plates is the same as for smart beams
considered above.

5.4 Shells with Magneto- and Electrorhelogical Layers Affected

by Magnetic/Electric Fields

In this section, we study free and steady-state forced vibrations of laminated MRE-
and ERC-based cylindrical panels and shells affected by a constant magnetic or
electric field. The main attention will be paid to sandwich panels with a core made
of different smart materials whose elastic and rheological properties were given in
Chapt. 2.
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Let us consider a laminated cylindrical panel (cylinder not closed in the circum-
ferential direction) of the radius R. The length of the straight side is equal to L1 and
the panel width is L2 = Rϕ2, where [0, 2π) � ϕ2 is the apex angle of the panel. If
ϕ2 = 2π, one has a shell closed in the circumferential direction. The choice of the
governing equations depends on the geometric dimensions of the panel as well as
the expected vibration shape. So, to predict vibrations with formation of very long
waves, one has to use the full system of differential equations (2.61)-(2.63) written
in terms of displacements ûi, ψi, w, while for studying vibrations accompanied by
formation of a large number of short waves, equations of the technical shell theory
(2.85) and (2.90) can be used.

5.4.1 Governing Equations and Boundary Conditions

At first, we apply to the full system of differential equations (2.61)-(2.63) which are
universal and may be used to examine any type of vibrations for any geometrical
dimensions. Omitting non-linear terms, one obtains the system of linear differential
equations governing small vibrations of a laminated cylindrical shell

∂2û1

∂α2
1

+
1− ν

2

∂2û1

∂α2
2

+
1 + ν

2

∂2û2

∂α1∂α2
+

ν

R

∂w

∂α1
+

1− ν2

Eh

(
q1 − ρ0

∂2û1

∂t2

)
= 0,

1 + ν

2

∂2û1

∂α1∂α2
+

1− ν

2

∂2û2

∂α2
1

+
∂2û2

∂α2
2

+
∂

α2

(w
R

)
+

1− ν2

Eh

(
q2 − ρ0

∂2û2

∂t2

)
= 0,

η2
∂�w

∂α1
− η1

(
∂2ψ1

∂α2
1

+
1 + ν

2

∂2ψ2

∂α1∂α2
+

1− ν

2

∂2ψ1

∂α2
2

)

+
12(1− ν2)

Eh3

(
q44ψ1 +

1

2
hc12q1

)
= 0,

η2
∂�w

∂α2
− η1

(
∂2ψ2

∂α2
2

+
1 + ν

2

∂2ψ1

∂α1∂α2
+

1− ν

2

∂2ψ2

∂α2
1

)

+
12(1− ν2)

Eh3

(
q44ψ2 +

1

2
hc12q2

)
= 0,

h2

12(1− ν2)
�
[
η3�w − η2

(
∂ψ1

∂α1
+

∂ψ2

∂α2

)]
+

1

R(1− ν2)

(
ν
∂û1

∂α1
+

w

R

)

=
1

Eh

(
qn − 1

2
hc13

2∑
i=1

∂qi
∂αi

− ρ0
∂2w

∂t2

)
,

(5.61)
where ûi are the generalized tangential displacements coupled with the corre-
sponding tangential displacements ui, deflection w and shear displacements ψi

by Eq. (2.26), qi, qn(i = 1, 2) are components of the surface load, and parameters
c12, c13, q44 and ρ0 are calculated by Eqs. (2.25), (2.59) and (2.68), respectively.
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Let the straight and curvilinear edges α1 = 0, L1 and α2 = 0, L2 be simply
supported and provided by diaphragm. The appropriate boundary conditions are
written as

w = ûj = ψj = 0, (5.62)

M̂ii = Tii = L̂ii = 0 (5.63)

for αi = 0, Li, where i, j = 1, 2 and i �= j. Taking into account Eqs. (2.60), the
second set of boundary conditions (5.63) may be rewritten in terms of displacements

η3

(
∂2w

∂α2
i

+ ν
∂2w

∂α2
j

)
− η2

(
∂ψi

∂αi
+ ν

∂ψj

∂αj

)
= 0,

∂ûi

∂αi
+ ν

∂ûj

∂αj
+

νw

R
= 0,

η2

(
∂2w

∂α2
i

+ ν
∂2w

∂α2
j

)
− η1

(
∂ψi

∂αi
+ ν

∂ψj

∂αj

)
= 0.

(5.64)

The linearized dynamic equations (2.85) and (2.90) of the technical shell theory
are written as follows

D

(
1− θh2

β
�
)
�2χ+

1

R

∂2F

∂α2
1

+ ρ0h
∂2w

∂t2
= qn,

w =

(
1− h2

β
�
)
χ, �2F − Eh

R

∂2w

∂α2
1

= 0,

1− ν

2

h2

β
�φ = φ.

(5.65)

where χ, F are the displacement and the force functions, respectively, φ is the
additional shear functions, s. Eqs. (2.78) and (2.83), β and D are the shear parameter
and the reduced bending stiffness, respectively, introduced by Eqs. (2.84) and (2.88),
respectively. The appropriate boundary conditions in terms of displacement, stress
and shear functions for the straight and curvilinear edges are the following

χ = Δχ = Δ2χ =
∂φ

∂αi
= 0,

∂2F

∂α2
2

= 0,
∂2F

∂α2
1

= 0 at αi = 0, Li, (5.66)

where i = 1, 2. We note that all coefficients D,E, ν, β, ηk, c12, c13, q44, appearing
in the above equations and boundary conditions, are complex quantities depending
on the magnitude of the magnetic or electric field depending on whether the shell
contains MRE or ERE layers.
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5.4.2 Free Vibrations

Let qi = qn = 0. Then the natural modes for a shell governed by Eqs. (5.61) with the
boundary conditions (5.66) can be represented by the following functions

û1 = u◦
1 cos

πnα1

L1
sin

πmα2

L2
exp(iΩt),

û2 = u◦
2 sin

πnα1

L1
cos

πmα2

L2
exp(iΩt),

w = w◦ sin
πnα1

L1
sin

πmα2

L2
exp(iΩt),

ψ1 = ψ◦
1 cos

πnα1

L1
sin

πmα2

L2
exp(iΩt),

ψ2 = ψ◦
2 sin

πnα1

L1
cos

πmα2

L2
exp(iΩt),

(5.67)

where Ω = ω + iα, ω = 
Ω is the required natural frequency, α = �Ω > 0
is the associated damping ratio, n,m are numbers of semi-waves in the axial and
circumferential directions, respectively, and u◦

i , w
◦, ψ◦

i are constants. If the shell is
closed in the circumferential direction, then m is an even number.

Substituting (5.67) into Eqs. (5.61), we arrive at the linear system of five algebraic
equations

AXT = 0, (5.68)

where X = (u◦
1, u

◦
2, w

◦, ψ◦
1 , ψ

◦
2) is the amplitude vector and A is the matrix with

complex elements

a11 = −δ2n − 1− ν

2
δ2m +

ρ0R
2(1− ν2)

E
Ω2, a12 =

1 + ν

2
δnδm,

a13 = νδn, a14 = a15 = 0, a21 =
1 + ν

2
δnδm,

a22 = −1− ν

2
δ2n − δ2m +

ρ0R
2(1− ν2)

E
Ω2, a23 = −δm, a24 = a25 = 0,

a31 = a32 = 0, a33 = −η2δn(δ
2
n + δ2m), a34 = η1

(
δ2n +

1− ν

2
δ2m

)
+

q44R
2η3

D
,

a35 = −η1(1 + ν)

2
δnδm, a41 = a42 = 0, a43 = −η2δm(δ2n + δ2m),

a44 = −η1(1 + ν)

2
δnδm, a45 = η1

(
δ2m +

1− ν

2
δ2n

)
+

q44R
2η3

D
,

a51 = − ν

1− ν2
δn, a52 =

1

1− ν2
δm,

a53 =
h2η3

12(1− ν2)R2
(δ2n + δ2m)2 +

1

1− ν2
− ρ0R

2

E
Ω2,

a54 = − h2η2
12(1− ν2)R2

δn(δ
2
n + δ2m), a55 =

h2η2
12(1− ν2)R2

δm(δ2n + δ2m),

(5.69)
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where

δn =
πnR

L1
, δm =

πmR

L2
=

πm

ϕ2
. (5.70)

Although, the structure of the matrix A with elements (4.81) and (5.71) is the
same, but there are differences: all elements (4.81) are real, while the quantities
ηk, ν, E,D in (5.71) are complex magnitudes; in (4.81), m is the number of waves
in the circumferential direction for a cylinder closed in the circumferential direction
and m appearing in Eqs. (5.71) denotes the number of semi-waves in this direction
for a panel.

The condition for the existence of a nontrivial solution of Eqs. (5.70) leads to the
equation

detA = 0 (5.71)

which serves to find the complex eigenvalue Ω. For any fixed numbers n,m, this
equation gives six complex roots

Ω
(j)
nm = ω

(j)
nm + iα

(j)
nm, α

(j)
nm > 0,

Ω
(j+3)
nm = −(ω

(j)
nm + iα

(j)
nm), j = 1, 2, 3.

(5.72)

It is obvious that the eigenvalues Ω
(4)
nm, Ω

(5)
nm, Ω

(6)
nm do not satisfy to the damping

conditions and are not taken into consideration in what follows.
In the general case, the first three roots in (5.72) correspond to the coupled

bending (out-of-plane) and tangential (in-plane) vibrations accounting for shears
(we note that the inertia of shear deformations is here not taking into account). To
study predominately bending vibrations, the terms containing Ω in the elements
a11, a22 of the matrix A might be omitted. Then Eq. (5.71) will give only the one

root Ω
(1)
nm with the positive imaginary part α

(1)
nm > 0.

Regardless of the mode type, the amplitudes of tangential and shear displacements
are coupled with the normal displacement as follows

u◦
1 = b1(n,m)w◦, u◦

2 = b2(n,m)w◦,

ψ◦
1 = d1(n,m)w◦, ψ◦

2 = d2(n,m)w◦,

b1(n,m) =
a13a22 − a12a23
a12a21 − a22a11

, b2(n,m) =
a23a11 − a13a21
a12a21 − a22a11

,

d1(n,m) =
a33a45 − a35a43
a44a35 − a34a45

, d2(n,m) =
a43a34 − a44a33
a44a35 − a34a45

,

(5.73)

where bj , dj are the functions of the number of semi-waves n and m in the axial and
circumferential directions.

Consider a cylindrical shell closed in the circumferential direction. For axisym-
metric modes (m = 0), Eq. (5.71) results in four complex roots calculated by the
formula
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Ω = Ωn0 = ±
√

EΛ
(j)
n0

ρ0R2(1− ν2)
, j = 1, 2, (5.74)

where the complex Λ
(j)
n0 are found by (4.86)

Λ
(j)
n0 =

1

2

[
1 + δ2n + μ1δ

4
nrn − (−1)j

√
(1 − δ2n + μ1δ4nrn)

2 + 4ν2δ2n

]
. (5.75)

Here,

μ1 = (1− ν2)ε8, rn =
π2 + θKδ2n
π2 +Kδ2n

, K =
π2h2

βR2
, θ = 1− η22

η1η3
. (5.76)

Obviously, from four complex eigenmodes (5.74), one needs to choose only two

ones, Ω(j)
n0 = ω

(j)
n0 + iα

(j)
n0 , with α

(j)
n0 > 0 for j = 1, 2.

Now we consider Eqs. (5.65) corresponding to the technical shell theory. Their
solution satisfying to the boundary conditions (5.68) at all edges is readily written
down:

χ = χ◦ sin
πnα1

L1
sin

πmα2

L2
exp(iΩt)

F = F ◦ sin
πnα1

L1
sin

πmα2

L2
exp(iΩt),

(5.77)

where χ◦, F ◦ are constant amplitudes of flexural vibrations. The substitution of
(5.77) into Eqs. (5.67) results in the required complex eigenfrequency

Ω = Ωnm =

√
E

ρ0R2

[
ηh2

12R2

δ2nm(1 + θKδnm)

1 +Kδnm
+

n4

l41δ
2
nm

]1/2
, (5.78)

where

η =
π4η3
1− ν2

, δnm =
1

π2
(δ2n + δ2m) =

n2

l21
+

m2

ϕ2
2

, l1 =
L1

R
,

and the magnitudes β, θ are calculated by Eqs. (2.84) and (2.89), respectively.
The frequency equation (5.71) with (5.69) may be used to predict the frequency

and damping response of the smart viscoelastic laminated panel of arbitrary lengthL1

and apex angle ϕ2. If L2 ∼ R and the angle ϕ2 is large (close to 2π), then to predict
low-frequency vibrations with a large number of semi-waves in the circumferential
direction, one can apply to more simple formula (5.78).

5.4.2.1 Main Tunable Complex Parameters1

Coefficients of Eq. (5.71) depend on the following six complex parameters

1 This subsection is written in cooperation with S.S. Maevskaya (Vitebsk State University, Belarus,
Vitebsk, e-mail: svetlanamaevskaya@ya.ru).
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η1, η2, η3, E, q44 (or K), ν, (5.79)

which are functions of the magnitude of the applied magnetic/electric field. In
the framework of the ESL theory, they can be considered as independent integral
characteristics of variable viscoelastic properties regardless of the number of layers.
It is of interest to note that their number is equal to the number of independent
physical characteristics of the three-layer shell (sandwich) in the case when each
layer is isotropic. As can be seen from Eqs. (5.74) for the axially symmetric modes,
the quantity of these parameters may be reduced to five

η3, θ, E, K, ν. (5.80)

When assuming Eqs. (5.65) of the technical shell theory, the number of independent
variable parameters is reduced to four, s. Eqs. (5.78),

η, θ, E, K, (5.81)

where η is expressed in terms of η3 and ν.
Applying a magnetic or electric field (depending on whether a shell assembled

form MR or ER smart material), one can vary the parameters (5.80) or (5.81) and,
in such a way, to change the frequency characteristics and damping properties of
a smart structure. It is obvious that the influence of the magnetic/electric field on
the above tunable parameters is different. This effect depends on the correlation
between layer thicknesses and their viscoelastic properties. To analyse this effect in
detail, we consider several cylindrical sandwiches of the same radius R = 0.5 m
with the face sheets of the thickness h1 = h2 = 0.5 mm made of ABS-plastic
SD-0170 (see properties in Example 5.8). Other dimensions of the sandwiches are
not specified here. The viscoelastic cores of these sandwiches are made of different
smart materials (MRE-1, MRE-2, MRE-3, MRE-4, MRE-5, ERC) listed with their
properties in Chapt. 2. The core thickness is also varied. Figures 5.22-5.25 show the
behavior of the real and imaginary parts of parameters (5.81) versus the magnetic
field induction B for different thicknesses h2 of the viscoelastic smart core made
of the MRE-1. Here ηr = 
η, ηi = �η, θr = 
θ, θi = �θ, Er = 
E,Ei = �E,
Kr = 
K and Ki = �K .

As follows from equations given in Chapt. 2, parameters η, θ, E are expressed in
terms of Young’s moduli of all layers and independent of the shear moduliGk, while
the reduced shear parameter K is a function of Gk. However, if a smart viscoelastic
material is treated as an isotropic one, then η, θ, E should be considered as functions
of the variable shear modulus G2 for the smart core. We remind that MRE-1 was
assumed as the isotropic material (s. Chapt. 2). Therefore, ηr, ηi, θr, θi, Er and
Ei reveal some dependence on the magnetic field induction B, these dependencies
being linear. It is seen from Fig. 5.23 that parameters θr and θi are very small and
cannot be taken into account when calculating the eigenfrequencies. The real part
of the reduced Young’s modulus, Er may be considered as a constant magnitude
for the fixed value of h2, while Ei is a monotonically increasing function of B.
The shear parameters Kr and Ki are the main adaptive parameters affected by
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the applied magnetic field. Figure 5.25 demonstrates the nonlinear behavior of the
principal dissipative parameter Ki when the magnetic field induction is varying,
this nonlinearity is becoming more noticeable when increasing the thickness h2 in
comparison with the total thickness h. At a fixed value of h2, the function |Ki(B)|
has a maximum which increases together with h2 but it is reached at more low level
of the magnetic field.

The outcomes of calculations of parameters (5.81) for sandwich structures with
a core made of other VSMs (MRE-3, MRE-4, MRE-5 and ERC) treated as isotropic
materials are presented in Figs. 5.26-5.41. Their analysis allows concluding that the
qualitative behavior of all tunable parameters versus the magnetic field induction
(for the MRE-3, MRE-4 and MRE-5 based cores) or the electric field strength (for
the ERC based core) is the same as for the MRE-1 based sandwich: the influence
of the magnetic or electric field on ηr, ηi, θr, θi, Er and Ei turns out to be minor or
very small, while the shear parameters Kr and Ki reveal the nonlinear behavior and
strong dependence on the intensity of applied magnetic or electric field.

Let us compare parameters (5.78) calculated for sandwiches containing isotropic
smart cores with similar parameters for the MRE-2 based sandwich. MRE-2 is a
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isotropic material with the Young’s modulus independent of the magnetic field in-
duction B (Aguib et al, 2014). Table 5.1 shows that η, θ and the reduced Young’s
modulus E are real magnitudes depending only on the thickness h2 of the transver-
sally isotropic smart core made of MRE-2. Figure 5.42 demonstrates the strong
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influence of induction B on the shear parameters Kr and Ki. When comparing the
plots Kr(B) and Ki(B) for MRE-1 with the same curves for other smart materials
listed in Chapt. 2, s. Figs. 5.26-5.41,one can conclude that MRE-1 reveals the highest
sensitiveness to a signal of an external physical field.
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5.4.2.2 Free Low-frequency Vibrations of Medium-length Cylindrical

Sandwich Panels

To display the real damping capability of aforementioned VSMs, we study free
low-frequency vibrations of thin cylindrical sandwiches with different viscoelastic
cores.
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Example 5.9. The sandwich has the length L2 = 1 m, the radius of the reference
surface R = 0.5 m and the apex angle ϕ2 = π. The face sheets (thickness h1 =
h2 = 0.5 mm) are made of ABS-plastic SD-0170. The smart core of the thickness
h2 = 8 mm is MRE-1. The natural modes of low-frequency vibrations of a thin



238 5 Vibrations of Laminated Structures Composed of Smart Materials

100

160

220

280

340

400

160 320 480 640 8 000

1

2

3

4

E
r
,
M

P
a

B, mT

(a)

1.0

1.5

2.0

2.5

3.0

3.5

23

4

1

0 160 320 480 640 8 00

E
i,

M
P
a

B, mT

(b)

Fig. 5.36 Parameters Er (a) and Ei (b) for sandwich with MRE-5 core vs. induction B at different
values of thickness h2: 1 - h2 = 3 mm, 2 - h2 = 5 mm, 3 - h2 = 8 mm, 4 - h2 = 11 mm.

0.09

0.18

0.27

0.36

0.45

0.00 160 320 480 640 8 00

2

3

4

1

K
r
×

1
0

B, mT

(a)

-5.5

-4.4

-3.3

-2.2

-1.1

0.0
2

3

4

1

160 320 480 640 8 000

K
i
×

1
0
3

B, mT

(b)

Fig. 5.37 Parameters Kr (a) and Ki (b) for sandwich with MRE-5 core vs. induction B at different
values of thickness h2: 1 - h2 = 3 mm, 2 - h2 = 5 mm, 3 - h2 = 8 mm, 4 - h2 = 11 mm.

260

272

284

296

3 80

320

1

2

3

4

0.5 1.0 1.5 2.0 2.50.0

η
r

E , kV/mm

(a)

- .1 80

-1.44

-1.08

-0.72

-0.36

0.00
1

2

3

4

0.5 1 1.5 2.0 2.50.0

η
i
×

1
0
3

E , kV/mm

(b)

Fig. 5.38 Parameters ηr (a) and ηi (b) for sandwich with ERC core vs. electric field strength E at
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medium-length cylindrical shell are characterized by one semi-wave in the axial
direction and a large number of waves in the circumferential direction. To find the
lowest eigenfrequencies ω = 
Ω, we apply Eq. (5.78) for n = 1 and different
numbers m of semi-waves in the circumferential direction. Figure 5.43 shows that
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for anyB the lowest eigenfrequency refers to the mode with m = 4 semi-waves. The
effect of magnetic field on natural frequencies turns out to be minor for modes with
m = 1, 2, 3 semi-waves and becomes significant for a large number m beginning
from m = 5. This effect depends on the core thickness and the type of VSM.
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Fig. 5.43 Natural frequencies
of the MRE-1 based sandwich
corresponding to n = 1 semi-
waves in the axial direction
and different number m of
semi-waves in the circumfer-
ential direction vs. induction
B. The plot number corre-
sponds to a number m.
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The next series of calculations is aimed to examine the effect of a thickness h2

and available smart materials on the lowest natural frequencies and corresponding
damping ratios at different levels of applied magnetic or electric field.

Example 5.10. We consider six different sandwiches, S-1, S-2, S-3, S-4, S-5 and S-6,
with cores made of MRE-1, MRE-2, MRE-3, MRE-4, MRE-5 or ERC, respectively.
The viscoelastic properties of these smart composite materials are given in Chapt. 2.
The behavior of the principal complex parameters η, θ, E and K versus the magnetic
induction (or electric strength) was shown above. The geometrical dimensions of
all sandwiches are the same as in the previous example. In Figs. 5.44-5.49 the

Table 5.1 Parameters η, θ and reduced Young’s modulus E vs. the core thickness h2.

h2, mm η θ × 103 E, MPa

3 267 3.265 376
5 292 1.751 251
8 308 0.963 168
11 317 0.693 127
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Fig. 5.44 Natural frequency ω (a) and logarithmic decrement Dl (b) for sandwiches S-1 with
MRE-1 core and different values of thickness h2 vs. induction B: 1 - h2 = 3 mm, 2 - h2 = 5 mm,
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Fig. 5.45 Natural frequency ω (a) and logarithmic decrement Dl (b) for sandwiches S-2 with
MRE-2 core and different values of thickness h2 vs. induction B: 1 - h2 = 3 mm, 2 - h2 = 5 mm,
3 - h2 = 8 mm, 4 - h2 = 11 mm.

lowest natural frequencies ω = 
Ω and corresponding logarithmic decrements Dl

calculated by Eq. (5.7) are plotted as functions of the magnetic field inductionB (for
sandwiches with MRE-core) or the electric field strength E (for S-6 sandwich with
ERC-core) at different values of h2. For any fixed h2, the lowest eigenfrequencies
are monotonically increasing functions of the intensity of the external physical field,
the frequency gain being higher for sandwiches with more thick smart viscoelastic
core. However, the behavior of ω vs. h2 at a fixed B (or E) is very complicated and
strongly depends on the VSM embedded between elastic layers. For the sandwiches
S-2 and S-5 assembled from MRE-2 and MRE-5 smart materials, respectively, the
lowest eigenfrequencies increase together with the core thickness at any B, while for
other sandwiches the monotonic growth of ω(h2) is not detected. Note that MRE-2
is considered as a material with the Young’s modulus independent of B, and MRE-5
with the highest content of carbon black and treated here as a material possesses a
very large shear modulus. Interesting results are shown in Figs. 5.44 (a) and 5.49
(a) related to S-1 and S-6 sandwiches: if a magnetic (or electric) field is weak, then
increasing the thickness of soft MRE-1 or ERC cores leads to some softening of
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MRE-3 core and different values of thickness h2 vs. induction B: 1 - h2 = 3 mm, 2 - h2 = 5 mm,
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Fig. 5.47 Natural frequency ω (a) and logarithmic decrement Dl (b) for sandwiches S-4 with
MRE-4 core and different values of thickness h2 vs. induction B: 1 - h2 = 3 mm, 2 - h2 = 5 mm,
3 - h2 = 8 mm, 4 - h2 = 11 mm.

entire packet and, in such a way, to decreasing eigenfrequencies. The application
of a strong physical field violent increases the core stiffness and, finally, results in
growing natural frequencies.

As expected, the damping capabilities of all VSMs under consideration are dif-
ferent and strongly affected by the level of an applied physical field and thickness
of a smart core as well. For the S-5 sandwich with the MRE-5 core possessing
the highest shear modulus and lowest loss factor, the logarithmic decrement DL

monotonically increases at all range of varying the induction B, from 0 to 800 mT.
The same behavior of DL is observed for all other sandwiches (excluding S-2) with
medium and very thin viscoelastic cores. For the S-2 sandwich with the transversally
isotropic MRE-2 core as well as for other sandwiches but with thick viscoelastic
cores (at about h2 = 11 mm), there are value B = B∗ (or E = E∗ ) corresponding
to the yielding point for a rheological material and resulting in the maximum value
of the decrement DL. Finally, when comparing damping capabilities of all VSMs at
the same geometrical dimensions for sandwiches, the MRE-1 and MRE-3 reveal the
best damping properties.



5.4 Shells with Magneto- and Electrorhelogical Layers Affected by Magnetic/Electric Fields 243

132.0

134.8

137.6

140.4

143.2

146.0

0 160 320 480 640 8 00

2

3

4

1

ω
,
H

z

B, mT

(a)

2

4

6

8

10

1

2

3

4

0 160 320 480 640 8 00

D
l
×

1
0
3

B, mT

(b)

Fig. 5.48 Natural frequency ω (a) and logarithmic decrement Dl (b) for sandwiches S-5 with
MRE-5 core and different values of thickness h2 vs. induction B: 1 - h2 = 3 mm, 2 - h2 = 5 mm,
3 - h2 = 8 mm, 4 - h2 = 11 mm.
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Fig. 5.49 Natural frequency ω (a) and logarithmic decrement Dl (b) for sandwiches S-6 with ERC
core and different values of thickness h2 vs. the electric strength E : 1 - h2 = 3 mm, 2 -
h2 = 5 mm, 3 - h2 = 8 mm, 4 - h2 = 11 mm.

The example considered allows concluding:

• using VSMs and correctly choosing a thickness for smart core or layers, one can
assemble a smart thin-walled medium-length cylindrical laminated (in particular,
sandwich) panels with tunable viscoelastic properties;

• the application of an external physical field permits to shift right the spectrum
of natural frequencies of a panel and greatly improve damping capacity of smart
viscoelastic core or layers composing a laminated structure.

5.4.3 Steady-state Forced Vibrations and Their Suppression

Let us consider the nonhomogeneous coupled Eqs. (5.61) with the boundary condi-
tions (5.64) for

qn(α1, α2, t) = q3(α1, α2)e
iωet, (5.82)
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where ωe is the frequency of excitation and q3 is some complex dimensionless
amplitude function. Intending to study predominantly bending vibrations, we shall
omit the inertia terms in the first two equations from (5.61). To satisfy the boundary
conditions (5.64), we seek a solution of Eqs. (5.61) in the form of double series

û1 = R

∞∑
n=1

∞∑
m=1

U (1)
nm(t) cos

πnα1

L1
sin

πmα2

L2
,

û2 = R

∞∑
n=1

∞∑
m=1

U (2)
nm(t) sin

πnα1

L1
cos

πmα2

L2
,

w = R

∞∑
n=1

∞∑
m=1

Wnm(t) sin
πnα1

L1
sin

πmα2

L2
,

ψ1 =

∞∑
n=1

∞∑
m=1

Ψ (1)
nm(t) cos

πnα1

L1
sin

πmα2

L2
,

ψ2 =

∞∑
n=1

∞∑
m=1

Ψ (2)
nm(t) sin

πnα1

L1
cos

πmα2

L2
,

(5.83)

where U (j)
nm(t),Wnm(t), Ψ

(j)
nm(t)(j = 1, 2) are the required functions of t called the

generalized co-ordinates of the mechanical system.
The function q3(α1, α2) is also expended into the series

q3 =

∞∑
n=1

∞∑
m=1

qnm sin
πnα1

L1
sin

πmα1

L2
, (5.84)

where

qnm =
4

L1L2

L1∫
0

L2∫
0

q3(α1, α2) sin
πnα1

L1
sin

πmα1

L2
dα1dα2. (5.85)

We substitute Eqs. (5.83) and (5.84) into the governing equations (5.61), multiplying
the equations by the following terms

cos
πiα1

L1
sin

πjα2

L2
, sin

πiα1

L1
cos

πjα2

L2
, sin

πiα1

L1
sin

πjα2

L2
,

cos
πiα1

L1
sin

πjα2

L2
, sin

πiα1

L1
cos

πjα2

L2
,

respectively, where i, j are fixed natural numbers, and integrate them over the panel

surface. Then, eliminating U
(ς)
nm(t) and Ψ

(ς)
nm(t), ς = 1, 2, from the first four equa-

tions, we arrive at the differential equation

Ẅij +Ω2
ijWij =

qij
ρ0hR

eiωet, i, j = 1, 2, . . . , (5.86)
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with respect to the functions Wij(t), where Ωij = ±(ωij + iαij) are two complex
eigenvalues determined from Eq. (5.71). Note that the in-plane inertia forces in (5.61)
are neglected.

The partial solution of Eq. (5.86) is the function

Wij(t) =
qij

ρ0hR(Ω2
ij − ω2

e)
eiωet. (5.87)

Then the amplitude of forced steady-state vibrations at any point on the shell surface
will be defined by the formula

w = R

∞∑
n=1

∞∑
m=1

qnmeiωet

ρ0hR(Ω2
nm − ω2

e )
sin

πnα1

R
sin

πmα2

R
, (5.88)

and the associated displacements û(1), û(2), ψ(1), ψ(2) are calculated by Eqs. (5.73),
where

U (ς)
nm(t) = bς(n,m)W̃nm(t), Ψ (ς)

nm(t) = dς(n,m)W̃nm(t), ς = 1, 2.

Equation (5.88) determines the amplitude-frequency response which depends on the
distributionof harmonic force over the shell surface. Because the complex eigenvalue
Ωnm depends upon the effective complex shear modulus G being a function of the
induction B, the amplitude of sustained forced vibration becomes to some extent a
controlled quantity. To detect this effect, we consider the following example.

Example 5.11. Let two S-1 cylindrical sandwich panels (the notations of sandwiches
are the same as in Example 5.10) with the opening angles ϕ2 = π/3 and ϕ2 = π be
subjected to the concentrated harmonic force

F = F0 sinωet (5.89)

applied in the point α1 = α◦
1 = L1/2, α2 = α◦

2 = L2/2, where F0 is the amplitude
of concentrated force which is not specified in view of the linearity of the problem.
All other geometrical dimensions and physical characteristics are the same as in
Example 5.10.

The normal pressure qn per unit area can be expressed as follows

qn = lim
x1→0
x2→0

F0

4x1x2
[H0(α

◦
1 − x1 − α1)−H0(α

◦
1 + x1 − α1)]

× [H0(α
◦
2 − x2 − α2)−H0(α

◦
2 + x2 − α2)] sinωet,

(5.90)

where H0(x) is the Heaviside function. Then

qij = − 2iF0

L1L2
sin

δiα
◦
1

R
sin

δjα
◦
2

R
, (5.91)

where δi, δj are determined by Eqs. (5.70).
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We consider the real part of an amplitude of forced stationary vibrations calculated
by Eq. (5.88) in the point of the force application

w◦
r =

4F0

ρ0hL1L2

∞∑
n=1

∞∑
m=1

ω2
nm − α2

nm − ω2
e

(ω2
nm − α2

nm − ω2
e )

2 + 4α2
nmω2

nm

× sin2
δnL1

2R
sin2

δmL2

2R
.

(5.92)

Figures 5.50 and 5.51 show the scaled amplitude w◦
r , denoted by Am, versus the

frequency of excitation ωe varying from 0 to 400 Hz. The amplitude-frequency plots
for both sandwiches are displayed for three different cases, forB = 0 (magnetic field
is absent), B = 40 and 200 mT. It may be seen that the application of a magnetic
field results in significant reduction of the amplitude of resonance vibrations. So, for
the first sandwich cylindrical panel with the opening angle ϕ2 = π/3, one has about
two- and three-fold reductions at B = 40 and B = 200 mT, respectively.

It is also seen that in all cases, with and without magnetic field, for the panel
with the opening angle ϕ2 = π/3, more intensive resonance vibrations occur on the
lowest (first) eigenfrequency with one semi-wave in both the axial and circumferential

Fig. 5.50 Amplitude-
frequency characteristic for
the sandwich S-1 with the
opening angle ϕ2 = π/3
at different levels of applied
magnetic field:
1 -B = 0mT, 2 -B = 40mT,
3 - B = 200 mT.
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Fig. 5.51 Amplitude-
frequency characteristic for
the sandwich S-1 with the
opening angle ϕ2 = π at
different levels of applied
magnetic field:
1 -B = 0mT, 2 -B = 40mT,
3 - B = 200 mT.
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directions (n = 1,m = 1), while for the panel withϕ2 = π, the maximum amplitude
of resonance vibrations is observed due to superposition of the fifth and sixth modes
with the wave numbers n = 2,m = 5 and n = 2,m = 6, respectively, which have
very close natural frequencies. Our additional accurate calculations (their outcomes
are omitted here) detected that for cylindrical panels with a small opening angle as
well as for plates, the amplitude of resonance vibrations is a monotonically decreasing
function of the resonance frequency (at least at the low part of the spectrum), while
for panels with a largeϕ2 as well as for cylindrical shells closed in the circumferential
direction, the peak of maximum amplitude shifts to the right (at the frequency axis)
and corresponds to the superposition of two or more modes with very close associated
eigenfrequencies.

It should be noticed that the mechanisms of suppression of resonance vibrations
at the first eigenmode are different for sandwiches with small and large opening
angles. So, Fig. 5.50 shows that applying magnetic field results in slight shifting of
the first resonance frequency, and the suppression occurs mainly due to the increase
the damping capability of the smart material (here, MRE-1). As for panels with large
opening angle ϕ2 (s. Fig. 5.51) and cylindrical shells closed in the circumferential
direction, the action of magnetic field leads to very noticeable shifting the first
resonance region to the right and about two-fold decreasing the resonance peak.

It is obvious that different VSMs incorporated with a sandwich panel possess different
capability to suppress resonance vibrations. For instance, we choose here the MRE-3
because the logarithmic decrement corresponding to the lowest eigenfrequency for
the sandwich S-3 (here, the sandwich notation is the same as in Subsect. 5.4.2) is
larger (in the average for any induction B) than for other smart materials under
consideration (compare Figs. (b) of 5.44-5.49). To estimate the damping power of
MRE-3, we shall consider one more example.

Example 5.12. Let the sandwich cylindrical panel S-3 with MRE-3 based core (see
the property of this smart material in Subsect. 2.3.3) has the opening angleϕ = π and
all other geometrical and physical characteristics are the same as in Example 5.11.
The panel experiences the same periodic load (5.89) and (5.90) applied at the point
α1 = α◦

1 = L1/2, α2 = α◦
2 = L2/2. Figure 5.52 demonstrates the amplitude-

frequency response of the panel without magnetic field and under its action with
the induction B = 800 mT. The plots show that the application of very strong
magnetic field leads to only shifting the first and second resonance regions to the
right, while the reduction of amplitudes corresponding to these regions is very weak.
The noticeable lowering of the amplitude (about twofold reduction) is observed for
the resonance vibrations on the third natural frequency, however this reduction is
reached by the application of very strong magnetic field in comparison with the
sandwich S-2 (see the fifth resonance region in Fig. 5.51) subjected to more weak
magnetic field. Similar calculations for other sandwiches (S-3, S-4 and S-5) and
their comparisonwith outcomes for the S-1 sandwich revealed that the smart material
MRE-1 possesses the best damping capability to suppress resonance vibrations. This
suppression being provided by applying relatively weak magnetic field.
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Fig. 5.52 Amplitude-
frequency characteristic for
the sandwich S-3 with the
opening angle ϕ2 = π with-
out and with magnetic field: 1
-B = 0mT, 2 -B = 800mT.
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5.5 Influence of Stationary Magnetic Field on Localized Modes

of Free Vibrations

In this section, we shall study localized modes of free vibrations of medium-length
MRE-based laminated cylindrical shells. Using the asymptotic approach (Mikhasev
and Tovstik, 2009) displayed in Chapt. 4, the effect of magnetic field on the nat-
ural frequencies, damping ratios and associated localized modes will be analyzed
(Mikhasev et al, 2014). As an example, a sandwich cylinder with highly polarized
MRE-1 embedded between two elastic face layers will be examined.

5.5.1 Setting the Problem

Let a medium-length laminated cylindrical shell with at least one layer made of a
MRE be in a stationary magnetic field. The MRE is assumed to be inhomogeneous
so that its complex shear and Young’s moduli are functions of an angle ϕ. The
reasons resulting in nonhomogeneity of viscoelastic properties of MRE layer may be
different. The heterogeneous magnetic field may leads to not uniform distribution of
magneto-sensitive particles in a MRE. But even if the magnetic field is uniform, their
impact on various parts of a polarized MRE may be unequal because of different
angles between the magnetic force lines and the alignment of magnetic particles
(s. Fig. 5.53). This assumption is confirmed by experimental results presented in
Boczkowska et al (2012). Studying the urethane MRE consisting of carbonyl-iron
particles in a polyurethane matrix, it was found out that the maximum value of
the modulus G′ = 0.5 MPa was observed for samples with particles orientated at
30◦ with respect to the lines of magnetic field, whereas the minimum magnitude
G′ = 0.1 MPa corresponded to samples with angle 90◦ between the magnetic force
lines and the particle alignment.

In what follows, not specifying the reason causing inhomogeneity of viscoelastic
properties of a MRE, we assume that all magneto-sensitive complex magnitudes
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Fig. 5.53 Cross-section of sandwich cylindrical shell with the core made of polarized MRE in
magnetic field with parallel force lines (after Mikhasev et al, 2014).

ν, η3, E, θ, β and K appearing in Eq. (5.65) are functions of the circumferential
co-ordinate α2. We introduce a small parameter

ε8 =
h2
∗η

(0)
3r

12[1− (ν
(0)
r )2]

, (5.93)

and consider sufficiently thin shells for which parameter h∗ is a quantity of the order
∼ 0.01 or less. In Eq. (5.93) and below, the superscript (0)means that an appropriate

parameter is calculated at B = 0. Here, η3r = 
 η3, νr = 
 ν, ν
(0)
r ≈ 0.4. We

assume also the following asymptotic estimations for the basic tunable parameters

ν = ν
(0)
r [1 + ε4δν(ϕ)], θr ∼ ε3, θi ∼ ε4,

η3 = η
(0)
3r [1 + ε2δη3(ϕ)], η

(0)
3r = π−4η

(0)
r [1− (ν

(0)
r )2],

Er = E
(0)
r d(ϕ) = E

(0)
r [1 + εd1(ϕ)], Ei/E

(0)
r ∼ ε4,

π−2K = ε2κ(ϕ) = ε2[κ0(ϕ) + iεκ1(ϕ)] for ε → 0.

(5.94)

In Eqs. (5.94), δν, δη3 and d1, κ0, κ1 are complex and real functions of angle
ϕ = α2/R, respectively, so that their absolute magnitudes are quantities of the
order O(1) at ε → 0. Estimates (5.94) hold for laminated cylindrical panels and
shells containing any MRE specified in Chapt. 2 with the summary thickness of a
smart material not less then 70% from the total thickness h of a shell. In particular,
these conditions are valid for the considered above S-1 sandwiches with the MRE-1
based core. In the general case, the shell is non-circular with the radius of curvature
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R2 = Rk(ϕ). At the shell edges, the boundary conditions (5.66) are assumed. The
solution of Eqs. (5.65) describing free vibrations (at qn = 0) are assumed to be of
the form

χ = ε−4Rχ∗(s, ϕ) exp (iΩt), F = E(0)
r hR2Φ∗(s, ϕ) exp (iΩt), φ = 0,

(5.95)
where s = α1/R is a dimensionless axial co-ordinate, Ω is a required complex
eigenvalue, and χ∗, F ∗ are dimensionless displacement and stress functions.

The substitution of Eqs. (5.95) into Eqs. (5.65) results in the differential equations

ε4d(ϕ)Δ2χ∗ + k(ϕ)
∂2Φ∗

∂s2
− Λ[1− ε2κ(ϕ)Δ]χ∗ = 0,

ε4Δ2Φ∗ − k(ϕ)
∂2

∂s2
[1− ε2κ(ϕ)Δ]χ∗ = 0

(5.96)

written in the dimensionless form, where Λ = ρR2Ω2/(ε4E
(0)
r ) is the dimen-

sionless frequency parameter. When deriving Eqs. (5.96) from Eqs. (5.65), we
have omitted the operator Δ3χ because of smallness of the coefficient Kθ, s.
Eqs. (5.76) for K and (5.94), and disregarded by very small dimensionless param-

eters ε4δν, ε2δη3, Ei/E
(0)
r . It should be noticed that when studying low-frequency

eigenmodes this simplification leads to the error of the order h∗ which is comparable
with the error of Eqs. (5.65). In Eqs. (5.96),

κ = κ0(ϕ) + εiκ1(ϕ) (5.97)

is the principal complex shear parameter depending on both the co-ordinate ϕ and
the magnetic field induction B. The appropriate boundary conditions are as follows

χ∗ = Δχ∗ = Δ2χ∗ =
∂2Φ∗

∂s2
=

∂2Φ∗

∂ϕ2
= 0 at s = 0, l, (5.98)

where l = L/R.

5.5.2 Localized Natural Modes

The boundary-value problem (5.96), (5.98) is identical to the problem considered in
Sect. 4.4. The difference lies in the fact that now the coefficients d, κ are complex
functions those depend not only on the angle ϕ, but also on the induction of mag-
netic field. Varying the magnetic field, one can affect the localized natural modes.
Furthermore, applying a nonuniform magnetic field, it is possible to disturb the
uniform natural modes and result in localization of some modes corresponding to
low-frequency vibrations.

Let y be any of the foregoing parameters depending on ϕ. It is assumed that
dy/dϕ ∼ y at ε → 0. Then, under some additional conditions for the functions
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κ0(ϕ), k(ϕ) (which will be specified below), the boundary value problem (5.96),
(5.98) may have a solution localized in the neighborhood of some generator ϕ = ϕ0

called the weakest one (Mikhasev and Tovstik, 2009). The required solution is seeking
in the form identical to (4.111)

χ∗ = sin
πns

l

∞∑
j=0

εj/2χj(ζ) exp
{

i
(
ε−1/2pζ + 1/2bζ2

)}
,

Φ∗ = sin
πns

l

∞∑
j=0

εj/2Φj(ζ) exp
{

i
(
ε−1/2pζ + 1/2bζ2

)}
,

Λ = Λ0 + εΛ1 + . . . ,

(5.99)

where ζ = ε−1/2(ϕ− ϕ0), p is a real wave parameter, b is a complex parameter so
that � b > 0, and χj , Φj are polynomials in ζ.

The functions κ0(ϕ), κ1(ϕ), k(ϕ), d1(ϕ) are expanded into series in the neigh-
borhood of the generatrix ϕ = ϕ0. In particular,

κ0(ϕ) = κ0(ϕ0) + ε1/2κ′
0(ϕ0)ζ +

1

2
εκ′′

0(ϕ0)ζ
2 + . . . (5.100)

Because the procedure of seeking all required parameters and functions in series
(5.99) are the same as in Sect. 4.4, we omit it and give only the resulting formulas
and equations for two particular cases.

5.5.2.1 Non-circular Cylinder

Let only the dimensionless curvature k(ϕ) be a function of the angleϕ, and parame-
ters κ0(B), κ1(B), d1(B) dependent only on the inductionB. Here the weakest line
is the generatrix with the minimum curvature which can found from the conditions

k′(ϕ◦
0) = 0, k′′(ϕ◦

0) > 0, (5.101)

and the natural frequency and damping ratio are determined by equations

ω = 
Ω = ωcω
∗, α = �Ω = ωcα

∗,

ω∗ = (f◦)1/2 +
ε

2(f◦)1/2

[ (1 + 2m)π2n2
√
f◦
ppk

′′(ϕ◦
0)

2l2(p◦)2
+ d1(p

◦)4
]
,

α∗ = −ε(f◦)1/2κ1(p
◦)2

2[1 + κ0(p◦)2]
,

(5.102)

where ωc = ε2R−1(E
(0)
r /ρ)1/2 is the characteristic frequency, and ω∗, α∗ are

dimensionless parameters. The parameter b◦ is the same as for the elastic shell - to
compare s. Eq. (4.128)
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b◦ =
iπ2n2

l2(p◦)2

√
k′′(ϕ◦

0)

f◦
pp

. (5.103)

Here, f◦
pp is the second derivative of the function (s. Eq. (4.118))

f(p, ϕ0) =
π4n4k2(ϕ0)

l4p4
+

p4

1 + κ0(ϕ0)p2
(5.104)

with respect to p calculated at constant κ0 (not dependent of ϕ0) and p = p◦,
ϕ0 = ϕ◦

0, and the parameter p◦ is found from Eq. (4.121)

κ0p
10 + 2p8 − 2π4n4k2(ϕ◦

0)l
−4(κ2

0p
4 + 4κ0p

2 + 2) = 0. (5.105)

Equations (5.102), (5.103) show that increasing the parameter k′′(ϕ◦
0) results in

increasing the correction ω∗ − ω∗
0 for the natural frequency, where ω∗

0 = (f◦)1/2,
and leads to growing power of localization of eigenmodes. To analysis the effect of
a magnetic field on these modes we consider the following example.

Example 5.13. The sandwich cylindrical shell is assembled from the face sheets
made of the ABS-plastic SD-0170 and MRE-1 core. The cross-section of the shell
is an ellipse with semi-axes e1, e2(e1 ≤ e2). Here

k =
r2 + 2r′2 − rr′′

(r2 + r′2)3/2
, (5.106)

where

r(ϕ) =

√
e21

1− δ2 sin2 ϕ
, −π < ϕ ≤ π, δ =

√
1− e21

e22
. (5.107)

Then, one has two the weakest generatrix ϕ = ϕ◦
0 = 0 and ϕ = ϕ◦

0 = π. Table 5.2
shows the parameters p◦, ω∗

0 , ω∗, α∗,� b◦, Dl = 2πα∗/ω∗ versus the induction B
for the shells with the following geometrical parameters: R = 1 m, L = 1.5 m,
e1 = 1, e2 = 2, h1 = h3 = 0.5 mm, h2 = 11 mm. The calculations were performed
at n = 1,m = 0 in Eqs. (5.102), (5.103). The parameters κ0(ϕ

◦
0), κ1(ϕ

◦
0), d1(ϕ

◦
0)

were calculated by using Eqs. (5.94) and Figs. 5.24 and 5.25. To define the natural fre-
quency ω and damping ratio α, the corresponding dimensionless parameters ω∗, α∗

from Table 5.2 should be multiplied by the characteristic frequencyωc dependent on
the thickness h2 for the MR layer. Table 5.2 reveals a weak dependence of the wave
parameter p◦ on the inductionB. As for the behavior of residual parameters, one can
conclude that increasing the magnetic field induction results in some increase in the
natural frequency (up to 7%) and minor decrease of the parameter � b◦ specifying
the width of the area where intensive vibrations occur. The effect of a magnetic
field on the damping capability of the MRE-1 is found to be more appreciable. In
particular, in the presence of magnetic field with the induction from 25 to 75 mT, the
damping ratio α∗ is about three times than that at B = 0. Thus, the localized natural
modes of the non-circular sandwich cylindrical shell with MRE-1 core are insignif-
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Table 5.2 Parameters p◦, ω∗, α∗, � b◦, Dl for a thin sandwich cylinder with ellipse-type
cross-section vs. the magnetic induction B at h1 = h3 = 0.5 mm, h2 = 11 mm, ε = 0.248 and
ωc = 13.704 Hz (after Mikhasev et al, 2014).

B, mT p◦ ω∗ α∗ � b◦ Dl

0 1.054 2.749 0.0040 0.2903 0.0136
25 1.040 2.846 0.0123 0.2678 0.0272
50 1.035 2.886 0.0110 0.2592 0.0240
75 1.032 2.907 0.0095 0.2546 0.0205
100 1.031 2.921 0.0082 0.2518 0.0176
125 1.029 2.930 0.0072 0.2499 0.0154
150 1.029 2.937 0.0064 0.2486 0.0136

icantly influenced by the magnetic field, but the associated decrement demonstrates
the significant dependence on induction B for the MRE-1.

5.5.2.2 Circular Magnetorhelogical Elastomer-based Cylinder with

Nonuniform Physical Properties

Let all geometrical parameters of a cylindrical shell be constant. The viscoelastic
properties of a MRE composing layer(s) are nonuniform in the circumferential
direction. Here k ≡ 1, and κ0, κ1, d1 are functions of ϕ. Similar inhomogeneity
of elastic and shear parameters may be observed if a magnetic field is spatially
nonuniform or/and a MRE embedded between elastic layers is polarized and the
angle between the magnetic force lines and the alignment of magnetic particles
depends on a co-ordinate ϕ (Fig. 5.53).

Here, the weakest generatrix ϕ = ϕ◦
0 is the line at which the reduced shear

parameter Kr introduced by (5.94) approaches the maximum:

κ′
0(ϕ

◦
0) = 0, κ′′

0(ϕ
◦
0) < 0. (5.108)

In this case, the asymptotic approach stated in Sect. 4.4 results in the following new
equations for the dimensionless frequency ω∗, damping ratio α∗ and parameter b◦

ω∗ =
1

(f◦)1/2

⎧⎨
⎩f◦ +

ε

2

⎡
⎣ (1 + 2m)(p◦)3

√
−f◦

ppκ
′′
0(ϕ

◦
0)

2[1 + (p◦)2κ0(ϕ◦
0)]

+ d1(ϕ
◦
0)(p

◦)4

⎤
⎦
⎫⎬
⎭ ,

α∗ = −ε(f◦)1/2κ1(ϕ
◦
0)(p

◦)2

2[1 + κ0(ϕ◦
0)(p

◦)2]
, b◦ =

i (p◦)3

1 + (p◦)2κ0(ϕ◦
0)

√
−κ′′

0(ϕ
◦
0)

f◦
pp

.

Tables 5.3 and 5.4 reveal the effect of the applied magnetic field on parameters p◦,
ω∗, α∗,� b◦, Dl for two circular sandwich cylinders with nonuniform elastic and
shear moduli of the same radius R = 1 m and length L = 1.5 m but having different
thickness of the MRE-1 core (h2 = 8 mm and h2 = 11 mm, respectively). The face



254 5 Vibrations of Laminated Structures Composed of Smart Materials

sheets are the same as in the previous example. The calculations were performed
at n = 1,m = 0, h1 = h3 = 0.5 mm. The parameter κ′′

0(ϕ
◦
0) characterizing the

variability of the reduced shear modulus in the neighborhood of the weakest generator
ϕ = ϕ◦

0 has been taken as κ′′
0 = −1.5 for both cases. This is the approximate value

estimated proceeding from the experimental data from Boczkowska et al (2012). The
parametersκ0(ϕ

◦
0), κ1(ϕ

◦
0), d1(ϕ

◦
0)were found from Eqs. (5.94)and Figs. 5.24, 5.25.

Calculations shown that for both shells accounting inhomogeneity of the reduced
shear parameter K results in increasing the natural frequency up to 20 %. For the
second sandwich, increasing the level of magnetic field from B = 0 to B = 150
mT leads to increasing the natural frequency ω∗ up to 8.4 % (from 3.304ωc at
B = 0 mT to 3.582ωc at B = 150 mT) and minor decreasing the number of
waves in the circumferential direction (the parameter p◦). The effect of magnetic
field on the damping ratio α∗ and logarithmic decrement Dl is more complicated
and appreciable. It is also influenced by the thickness h2 of the MRE-1 core. For
h2 = 8 mm and h2 = 11 mm, the best passive suppression of the eigenmodes
takes place at B = 75 mT and B = 25 mT respectively. In particular, applying
the magnetic field of the intensity B = 75 mT (at h2 = 8 mm) gives three-fold
increase in the damping ratio. Decreasing the parameter � b◦ under increasing the
induction B indicates that applying strong magnetic field results in some spreading
of localized modes over the shell surface.

Table 5.3 Parameters p◦, ω∗, α∗, � b◦, Dl for a cylinder vs. induction B at h2 = 8 mm,
ε = 0.231, ωc = 13.828 Hz (after Mikhasev et al, 2014).

B, mT p◦ ω∗ α∗ � b◦ Dl

0 1.479 3.438 0.0025 0.498 0.0046
25 1.471 3.472 0.0091 0.487 0.0165
50 1.466 3.494 0.0107 0.480 0.0193
75 1.463 3.511 0.0108 0.475 0.0193
100 1.461 3.523 0.0104 0.472 0.0186
125 1.459 3.534 0.0098 0.470 0.0175
150 1.458 3.543 0.0093 0.468 0.0164

Table 5.4 Parameters p◦, ω∗, α∗, � b◦, Dl for a cylinder vs. induction B at h2 = 11 mm,
ε = 0.248, ωc = 13.704 Hz (after Mikhasev et al, 2014).

B, mT p◦ ω∗ α∗ � b◦ Dl

0 1.532 3.304 0.0133 0.573 0.0253
25 1.494 3.436 0.0291 0.519 0.0532
50 1.480 3.493 0.0266 0.499 0.0479
75 1.472 3.527 0.0231 0.488 0.0411
100 1.467 3.550 0.0201 0.481 0.0355
125 1.464 3.568 0.0177 0.477 0.0311
150 1.462 3.582 0.0157 0.474 0.0276
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5.6 Suppression of Travelling Vibrations in Magnetorhelogical

Elastomer-based Shells

Below we consider the special class of vibrations, localized bending waves running
in the circumferential direction in MRE-based cylindrical shells of medium length.
Localized non-stationary vibrations may be generated in a shell by some static
(Lukasiewicz, 1979) or transient forces (Skudrzyk, 1968) applied along a line or
point on the shell surface. Similar vibrations may also appear as a result of parametric
excitation of a shell with variable geometric parameters (e.g., curvature, thickness
or generatrix length) and/or experiencing non-uniform loading (Mikhasev, 1997;
Mikhasev and Kuntsevich, 1999) and/or situated in non-stationary temperature field
(Botogova and Mikhasev, 1996; Mikhasev and Kuntsevich, 1997).

If some natural modes of a shell are localized in the neighbourhood of so-
called weakest line or point, then dynamic loading may result in unsteady localized
vibrations running over the shell surface. In particular, growing axial force (Avdoshka
and Mikhasev, 2001) or external pressure (Mikhasev, 2002) leads to splitting natural
modes localized near the weakest generatrix and, as a result, generate a family
of bending waves (wave packets) travelling in the circumferential direction of an
isotropic elastic cylindrical shell. A similar problem on packets of bending, tangential
and torsional waves in an infinite thin elastic isotropic cylindrical pipe under non-
uniform internal pressure was studied in Mikhasev (1998). The above-mentioned
and other papers (e.g., s. Mikhasev, 1996a,b) have detected that unsteady localized
vibrations may be accompanied by such complicated effects as multiple reflection
of wave packets (WPs) from more stiffen regions, focusing WPs and growth of
amplitudes, which are extremely undesirable and destructive because they are the
cause of the noise radiation and results in concentration of dangerous stresses in a
thin-walled structure.

The main purpose of this section is to show that the application of a magnetic field
allows suppressing unsteady (running) localized vibrations in laminated shells con-
taining layers or core made of a MRE (Mikhasev et al, 2016). Using the asymptotic
approach (Mikhasev and Tovstik, 2009), a solution of equations governing motion of
a medium-length cylindrical MRE-based laminated shell will be constructed in the
form of travelling WPs with dynamic characteristics (current frequency, amplitude,
width of WPs) being tunable by means of an applied magnetic field.

5.6.1 Setting of the Initial Boundary Value Problem

We consider a medium-length cylindrical laminated MRE-based shell as was stated
in Sect. 5.5. The shell is sufficiently thin so that h∗ = h/R is a quantity of the order
∼ 0.01 or less.

Let ε be a small parameter introduced by Eq. (5.93), where all notations are the
same as were assumed in Sect. 5.5. Equations (5.65) are considered as the governing
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ones with the boundary conditions (5.66)at not plane edgesαj = L2(α2) (j = 1, 2).
We assume also that the geometrical dimensions and viscoelastic properties of the
layers composing the shell are such that the asymptotic estimations (5.94) hold. In
our case, δν(B), δη3(B), d1(B), κ0(B), κ1(B) are functions of induction B.

We introduce the dimensionless magnitudes χ∗, Φ∗ and time τ as follows

χ = ε−4Rχ∗(s, ϕ, t), F = E(0)
r hR2Φ∗(s, ϕ, t), t = ε−3tcτ, (5.109)

where tc =
√
ρR2/E

(0)
r is the characteristic time. Then Eqs. (5.65) may be rewritten

in the dimensionless form

ε4d(B)Δ2χ∗ + k(ϕ)
∂2Φ∗

∂s2
+ ε2

∂2

∂τ2
[1− ε2κ(B)Δ]χ∗ = 0,

ε4Δ2Φ∗ − d(B)k(ϕ)
∂2

∂s2
[1− ε2κ(B)Δ]χ∗ = 0,

(5.110)

and the corresponding boundary conditions are

χ∗ = Δχ∗ = Δ2χ∗ = Φ∗ = ΔΦ∗ = 0 at s = s1(ϕ), s2(ϕ), (5.111)

where sj(ϕ) = Lj(Rϕ)/R.
Let us consider the following initial conditions for the displacement function χ∗

χ∗|τ=0 = χ̂0 exp [iε−1S0(ε)],

χ̇∗|τ=0 = iε−1v̂0 exp [iε−1S0(ε)],

S0(ϕ) = a◦ϕ+
1

2
b◦ϕ2, a◦ > 0, �b◦ > 0,

(5.112)

a◦, |b◦|, |χ̂0|, |v̂0|,
∣∣∣∣∂χ̂0

∂s

∣∣∣∣ ,
∣∣∣∣∂v̂0∂s

∣∣∣∣ = O(1) when ε → 0, (5.113)

where χ̂0(s, ϕ, ε), v̂0(s, ϕ, ε) are complex-valued functions satisfying (5.111).
The real and imaginary parts of functions (5.112) define the two initial wave

packets localized near the generatrix ϕ = 0 on the shell surface. These functions
may be considered as approximations of the initial perturbations being the result
of some transient forces applied along the line ϕ = 0. It should be also noted that
under some conditions for parameters a0, b0, functions (5.112) coincide with the
eigenmodes (5.99) localized in a vicinity of the weakest generatrix. The problem is
to construct a solution of the initial-boundary-value problem (5.110)-(5.112) and to
analyze the effect of applied magnetic field on the dynamic characteristics of running
WPs, including amplitudes.
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5.6.2 Asymptotic Approach

Let

yj(s, ϕ) = sin
πj[s− s1(ϕ)]

l(ϕ)
and λj =

π4j4

l4(ϕ)
, j = 1, 2, 3, . . . (5.114)

be an infinite system of eigenfunctions and associated eigenvalues of the boundary-
value problem

d4y

ds4
− λy = 0, (5.115)

y = y′′ = 0 at s = s1(ϕ), s = s2(ϕ), (5.116)

where l(ϕ) = s2(ϕ)− s1(ϕ).
Because the functionsχ0(s, ϕ), v0(s, ϕ) appearing in (5.112)satisfy the boundary

conditions (5.111), they can be expanded in terms of the eigenfunctions yj(s, ϕ) into
uniformly convergent series in some section ϕ1 ≤ ϕ ≤ ϕ2

χ̂0 =
∞∑
j=1

χ◦
j (ϕ, ε)yj(s, ϕ), χ◦

j =

s2(ϕ)∫
s1(ϕ)

χ̂0(s, ϕ, ε)yj(s, ϕ)ds,

v̂0 =

∞∑
j=1

v◦j (ϕ, ε)yj(s, ϕ), v◦j =

s2(ϕ)∫
s1(ϕ)

v̂0(s, ϕ, ε)yj(s, ϕ)ds.

(5.117)

It is assumed that χ◦
j , v

◦
j are polynomials of ε−1/2 whose coefficients are regular

functions of ε. Then they may be represented by the series

χ◦
j =

∞∑
i=0

εi/2χ◦
ji(ζ), χ

◦
ji(ζ) =

Mji∑
ι=0

c◦jiιζ
ι, v◦j =

∞∑
i=0

εi/2v◦ji(ζ), v
◦
ji(ζ) =

Mji∑
ι=0

d◦jiιζ
ι

(5.118)
where ζ = ε−1/2ϕ, and c◦j i ι, d

◦
j i ι = O(1).

Due to linearity of the initial-boundary-value problem (5.110)-(5.112), its solution
may be presented in the form

χ∗ =

∞∑
j=1

χ∗
j (s, ϕ, τ, ε), Φ∗ =

∞∑
j=1

Φ∗
j (s, ϕ, τ, ε), (5.119)

where χ∗
j , Φ

∗
j are the required functions localized in a neighborhood of moving gen-

eratrix ϕ = qj(τ). Here qj(t) is a twice differentiable function such that qj(0) = 0.
The pair of functions χ∗

j , Φ
∗
j is called the jth wave packet (WP) with the center at

ϕ = qj(τ) (Mikhasev, 2002).
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5.6.2.1 Initial Boundary Value Problem for the jth Wave Packet

Let us hold any natural number j fixed and study the behavior of the jth WP. It is
convenient to go over to a local co-ordinate system ϕ = qj(τ) + ε1/2ξj associated
with the moving center ϕ = qj(τ). In the new co-ordinate system, equations (5.110)
read

d(B)

(
ε2

∂4χ∗
j

∂ξ4j
+ 2ε3

∂4χ∗
j

∂ξ2j ∂s
2
+ ε4

∂4χ∗
j

∂s4

)
+ k(ϕ)

∂2Φ∗
j

∂s2
+

(
ε2

∂2

∂τ2

−2ε3/2q̇j
∂2

∂ξj∂τ
+ εq̇2j

∂2

∂ξ2j
−ε3/2q̈j

∂

∂ξj

)[
χ∗
j − κ(B)

(
ε
∂2χ∗

j

∂ξ2j
+ ε2

∂2χ∗
j

∂s2j

)]
= 0,

ε2
∂4Φ∗

j

∂ξ4j
+ 2ε3

∂4Φ∗
j

∂ξ2j ∂s
2
+ ε4

∂4Φ∗
j

∂s4

−d(B)k(ϕ)
∂2

∂s2

[
χ∗
j − κ(B)

(
ε
∂2χ∗

j

∂ξ2j
+ ε2

∂2χ∗
j

∂s2j

)]
= 0,

(5.120)
where κ = κ0(B) + iκ1(B), and the function k(ϕ), s1(ϕ), s2(ϕ) are expanded into
a series in the neighborhood of the center ϕ = qj(τ). For instance,

k(ϕ) = k[q(t)] + ε1/2k′[q(t)]ξj +
1

2
εk′′[q(τ)]q2j + . . . (5.121)

Here and in what follows, the dot (·) and prime (′) denote differentiation with respect
to dimensionless time τ and angle ϕ, respectively.

The initial conditions for jth WP take the form

χ∗
j |τ=0 = χ◦

j (ϕ, ε)yj(s, ϕ) exp
[
iε−1S0(ϕ)

]
,

χ̇∗
j |τ=0 = iε−1v◦j (ϕ, ε)yj(s, ϕ) exp

[
iε−1S0(ϕ)

]
.

(5.122)

The dynamic stress state of the shell consists of the basic stress state and the dynamic
edge-effect integrals describing the shell behavior in a small neighborhood of each
edge. To study the basic state on each edge, we have to satisfy two basic conditions
only. Apart from terms of the order ε2, these conditions for the jth WP have the form

χ∗
j = Φ∗

j = 0 at s = s1(ϕ), s2(ϕ). (5.123)

We note that the functions yj(s, ϕ) should be also expended into series in a vicinity
of the center ϕ = qj(τ). In what follows, we omit the subscript j. For instance, the
notations χ∗

j , χ
◦
j , yj , χ◦

ji, ξj , c
◦
jiι are replaced by χ∗, χ◦, y, χ◦

i , ξ, c
◦
iι, respectively.

When following to the asymptotic approach developed in Mikhasev and Tovstik
(2009), the solution of the initial-boundary-value problem (5.120), (5.122), (5.123)
may be constructed in the form of complex WKB-approximations
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χ∗ =
∞∑
ς=0

ες/2χς exp
(
iε−1S

)
, Φ∗ =

∞∑
ς=0

ες/2Φς exp
(
iε−1S

)
,

S(ξ, τ) =

τ∫
0

ω(τ̃ )dτ̃ + ε1/2p(τ)ξ +
1

2
εb(τ)ξ2.

(5.124)

In anzatz (5.124), �b(τ) > 0 for any time τ > 0, χς(s, ξ, τ), Φς(s, ξ, τ) are poly-
nomials in ξ with complex coefficients depending on τ and s, |ω(τ)| is the current
frequency of vibrations in the neighborhood of the moving center ϕ = q(t), p(τ) is
the variable wave parameter, and b(τ) defines the width of the jth WP, the inequality
�b(τ) > 0 guaranteeing attenuation of wave amplitudes within the WP.

As seen, functions (5.124) approximate running unsteady localized vibrations in
the shell. In the case when q = 0, and ω, p, b, χς and Φς are independent of time τ ,
expansions (5.124) are degenerated into the stationary WP, like (5.99), describing
free localized vibrations in a vicinity of the fixed (weakest) generatrix.

5.6.2.2 Sequence of One-dimensional Boundary Value Problems on Moving

Generatrix

To define all required functions appearing in ansatz (5.124), one needs to substitute
them into governing equations and boundary conditions as well. The substitution of
expansions (5.124) into Eqs. (5.120) results in a sequence of 1D differential equations

ς∑
j=0

Ljχς−j = 0, ς = 0, 1, 2, . . . (5.125)

where

L0z =
k2(q)d(B)[1 + κ0(B)p2]

p4
∂4z

∂s4
+
{
p4 − [1 + κ0(B)p2](ω − q̇p)2

}
z,

L1 = (bLp + Lq + ṗLω) ξ − iLp
∂

∂ξ
,

L2 =
(
b2Lpp + 2bLpq + Lqq + ṗ2Lωω + 2ṗLωq

+ 2ṗbLωp + ḃLω

)
ξ2 − 1

2
Lpp

∂2

∂ξ2
− i (bLpp + Lpq + ṗLωp) ξ

∂

∂ξ

− iLω
∂

∂t
− i

(
1

2
bLpp +

1

2
ω̇Lωω + ṗLωp +

1

2
Lpq + q̈p+ N

)
, . . . ,

(5.126)

N =
iκ1(B)d(B)p6(τ)

1 + κ0(B)p2(τ)
.
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In Eqs. (5.126), the subscripts p, q, ω denote the differentiation with respect to the
corresponding variables p, q, ω. Operators Lς for ς ≥ 3 are not written out here
because of its awkwardness.

The functions Φς may be found step by step from a sequence of inhomogeneous
equations and expressed in terms of the functions χς . The substitution of (5.124)
into the basic boundary conditions lead to the sequence of boundary conditions at
the moving center of the jth WP

χ0 = 0,
d2χ0

ds2
= 0 at s = si[q(t)]; (5.127)

χ1 + ξs′i
∂χ0

∂s
= 0,

∂2χ1

∂s2
+ ξs′i

∂3χ0

∂s3
= 0 at s = si[q(t)]; . . . (5.128)

The sequence of the 1D boundary-value-problems (5.125)-(5.128) serves for deter-
mination of required functions appearing in (5.124). The procedure for their seeking
is given in Mikhasev and Tovstik (2009); Mikhasev (2002). Omitting its details, we
shall give here only the principal equations.

5.6.2.3 Zeroth-order Approximation

In the leading approximation (ς = 0), one has the homogeneous ordinary differential
equation (5.125) with the homogeneous boundary conditions (5.127). Its solution
may be presented in the form

χ0(s, ξ) = P0(ξ, τ)y[s, q(τ)], (5.129)

where P0(ξ, τ) is an unknown polynomial in ξ. Substituting Eq. (5.129) into Eq.
(5.125) at ς = 0 yields the relation

ω = q̇(τ)p(τ) ∓H [p(τ), q(τ), τ ] (5.130)

coupling the current frequency ω(τ) to the wave parameter p(τ) and the group
velocity v(τ) = q̇(τ) of the jth WP, where

H(p, q, τ) =

√
d[B(τ)]

{
p4

1 + κ0[B(τ)]p2
+

λ(q)k2(q)

p4

}
(5.131)

is the Hamilton function. In Eqs. (5.130), the signs ± indicate the availability of
positive and negative branches of the required solution.

5.6.2.4 First-order Approximation

In the first-order approximation (at ς = 1), we arrive at the non-homogeneous differ-
ential equation (5.125) with the non-homogeneousboundary conditions (5.128). The
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compatibility condition for this non-homogeneous boundary-value problem results
in the two Hamiltonian systems

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
and q̇ = −∂H

∂p
, ṗ =

∂H

∂q
(5.132)

corresponding to the positive and negative branches of the solution, respectively.
These solutions are associated with two WPs moving in the opposite directions. In
what follows, all calculations are given for the positive jth WP governed by Eqs.
(5.132)1. Comparing anzatz (5.124) with the initial condition (5.122) for the jth WP,
we readily obtain the initial conditions for the Hamiltonian system

p(0) = a◦, q(0) = 0. (5.133)

5.6.2.5 Second-order Approximation

The compatibility condition for the non-homogeneous boundary-value problem
(5.125), (5.128) arising in the second-order approximation (ς = 2) yields

(ξ2Db − 2Dξt)P0 = 0, (5.134)

where

Db = ḃ+Hppb
2 + 2Hpqb+Hqq, Dξt = ĥ0

∂2

∂ξ2
+ ĥ1ξ

∂

∂ξ
+ ĥ2

∂

∂t
+ ĥ3,

ĥ0(t) =
1

2
Hpp, ĥ1(t) = i(bHpp +Hpq), ĥ2 = i,

ĥ3(t) =
i

2H

⎧⎨
⎩bHHpp − ω̇ − 2HqHp + q̈p+

1

η

s2∫
s1

Lω ẏyds+ Γ

⎫⎬
⎭ ,

Γ (t) = −2k(τ)k′(τ)d(B)[2 + κ0(B)p2(τ)]λ[q(τ)]

p5(τ)
− d(B)κ1(B)p6(τ)

1 + κ0(B)p2(τ)
.

Equation (5.134) has a solution of polynomial form if and only if the function b(τ)
satisfies the Riccati equation

ḃ+Hppb
2 + 2Hpqb+Hqq = 0. (5.135)

The repeated comparison of Eqs. (5.124) and (5.122) gives the initial condition

b(0) = b◦ (5.136)

for the above equation.
Taking into account the Riccati equation, Eq. (5.134) is reduced to the following

equation
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DξtP0 ≡ ĥ0
∂2P0

∂ξ2
+ ĥ1ξ

∂P0

∂ξ
+ ĥ2

∂P0

∂τ
+ ĥ3P0 = 0 (5.137)

called the amplitude one. Its solution in two different forms has been given in
Mikhasev (2002). We adduce here the solution expressed in terms of the Hermite
polynomials. Such presentation will be suitable in two special cases:

1. to compare expansion (5.124) with the localized natural mode (5.99);
2. to study the effect of non-stationary magnetic field on eigenmode (5.99).

The required polynomialP0(ξ, τ) in ξ with coefficients depending on dimensionless
time τ may be represented in the form:

P0 = Θm(τ)Hm(x), (5.138)

where Hm(x) is the Hermite polynomials in x of the mth degree, and

x = %̂(τ)ξ, %̂(τ) =

exp

[
−
∫

ĥ1(τ)dτ

ĥ2(τ)

]
√√√√4

∫
ĥ0(τ)

ĥ2(τ)
exp

[
−2

∫
ĥ1(τ)dτ

ĥ2(τ)

]
dτ

,

Θm(τ) =

{
4

∫
(ĥ0/ĥ2) exp

[
−2

∫
(ĥ1/ĥ2)dτ

]
dτ

}m/2

exp

[∫
(ĥ3/ĥ2)dτ

] .

(5.139)

It is evident that the polynomial

P0(ξ, τ ; cm) =

M∑
m=0

cmΘm(τ)Hm[%̂(τ)ξ] (5.140)

of the M th degree is also the solution of the amplitude equation (5.137), where cm
are arbitrary constants found from the initial conditions.

5.6.2.6 Higher-order Approximations

To findχς, Φς for ς ≥ 1, one need to consider corresponding boundary-value problem
(5.125), (5.128) in the ς + 2nd approximation. The existence of a solution of this
problem results in the non-homogeneous differential equation

DξtPς = P ∗
ς (5.141)
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for a polynomialPς(χ, τ), whereP ∗
ς (χ, τ) is some polynomial expressed by means of

polynomials P0, . . . , , Pς−1. However, we interrupt the formal procedure of seeking
χ1, χ2, . . . because the accuracy of governing equations (5.110) is not sufficient.

5.6.3 Solution of the Initial Boundary Value Problem in the

Leading Approximation

We note that there exist two branches of solutions of the initial boundary-value prob-
lem. Let p+(τ), q+(τ) and p−(τ), q−(τ) be solutions of the Hamiltonian systems
(5.132)1 and (5.132)2, respectively. Here, ϕ = q+(τ) and ϕ = q−(τ) are centers of
the positive and negative WPs moving in the opposite directions. We introduce also
the local coordinates

ξ± = ε−1/2[ϕ− q±(τ)]. (5.142)

in the scaled coordinate systems with centers at the moving generatrix ϕ = q±(τ).
Then

ω±, b±, P±
0 , χ±

0 , Φ±
0 (5.143)

are found above functions corresponding to the positive and negative WPs, respec-
tively. Consider the following functions:

χ = χ+ + χ−, Φ = Φ+ + Φ−, (5.144)

where

χ± =
[
χ±
0 +O

(
ε1/2

)]
exp

(
iε−1S±

)
,

Φ± =
[
Φ±
0 +O

(
ε1/2

)]
exp

(
iε−1S±

)
,

χ±
0 = P±

0 (ξ±, τ ; c±m)y[s, q±(τ)], P±
0 =

M∑
m=0

c±mΘm(τ)Hm[%̂(τ)ξ±],

Φ±
0 =

d(B)k[q±(τ)]P±
0 (ξ±, τ ; c±m)

[p±(τ)]4

[
∂2y(s, ϕ)

∂s2
+κ(B)[p±(τ)]2y(s, ϕ)

]
ϕ=q±(τ)

,

S± =

τ∫
0

ω±(τ̃ )dτ̃ + ε1/2p±(τ)ξ± +
1

2
εb±(τ)(ξ±).

(5.145)
The composed functions (5.144) are the leading approximation of the required

solution of the initial-boundary-value problem (5.110)-(5.112) for the fixed j. They
contain undefined constants c±m which are found from the initial conditions for the
WPs with the fixed number j (we remind that a number j is associated with the
number of eigenvalue λ of the boundary-value problem (5.115), (5.116)). If the
polynomials P±

0 are expressed in terms of the Hermite polynomials, then as shown
in Mikhasev (2002), these constants calculated by the equation
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c±m =
1

2m+1m!
√
πΘm(0)

+∞∫
−∞

e−ζ2Hm[%̂(0)ζ]

[
χ◦
0(ζ)∓

v◦0(ζ)

H◦

]
dζ, (5.146)

where χ◦
0 ≡ χ◦

j0, v
◦
0 ≡ v◦j0 are polynomials evaluated by Eqs. (5.118), and

H◦ = H(a◦, 0, 0) is the initial value of the Hamiltonian function.

Remark 5.3. Let the parameters q = 0, p = a◦ satisfy equations

Hp = 0, Hq = 0, (5.147)

and b = b◦ is the solution of the quadratic equation

Hppb
2 + 2Hpqb+Hqq = 0 (5.148)

in the absence of magnetic field (B = 0). Then p±(τ) ≡ a◦, q±(τ) ≡ 0 and
b±(τ) ≡ b◦ are the solutions of the Hamiltonian systems and Riccati equations,
respectively, at B = 0. In this case, the constructed solution (5.144)-(5.146) gives
the stationary WP with the center ϕ = 0, which coincide with the localized natural
mode (5.99).

In what follows, we shall study the effect of growing magnetic field on the localized
eigenmodes (5.99) being characteristics of a shell without magnetic field.

5.6.4 Running Localized Vibrations in Magnetorhelogical

Elastomer-based Cylindrical Shells vs. Magnetic Field

The constructed asymptotic solution (5.144)-(5.146) may be used to predict the
response of a laminated MRE-based shell to the initial localized perturbations at
the shell surface taking into account an applied magnetic field. We note that the
principal tunable parameters d(B), κ(B) and κ1(B) appearing in the Hamiltonian
function and amplitude equation depend on the magnetic field induction B. Varying
the intensity of magnetic field, one can affect the behavior of running WPs and softly
suppress vibrations as well.

5.6.4.1 Wave Packets in Shells with Constant Parameters

At first, we consider the simplest case when all geometrical parameters, including
the curvature and the generatrix length, are constants, and the applied magnetic field
is non-stationary. Here k ≡ 1, s1 = 0, s2 = l and the induction B(τ) is a function
of the dimensionless time τ . In this case, the Hamilton function for the jth WP is
simplified

H(p, τ) =

√
d[B(t)]

{
p4

1 + κ0[B(t)]p2
+

π4j4

l4p4

}
, (5.149)
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Fig. 5.54 Dimensionless cur-
rent frequency ω = |ω±(τ)|
versus dimensionless time for
different c = 0, 5, 10 mT
(after Mikhasev et al, 2016).

ω

τ

c = 0 mT
c = 5 mT
c = 10 mT

and the Hamiltonian systems and Riccati equations admit solutions in the explicit
form

p± = a◦, q±(τ) = ±
τ∫

0

Hpdτ, ω±(τ) = ±a◦Hp ∓H,

b±(τ) =
b0

1 + b0

τ∫
0

Hppdτ

. (5.150)

If the magnetic field is constant, then the current frequencies |ω±| for both
WPs are constants; if not, then |ω±(τ)| are time-dependent. The functions �b±(τ)
characterize the size of the shell area spanned by vibrations and χ±

0 (τ) define the
amplitudes of these unsteady vibrations. To analyze the effect of magnetic field on
travelling WPs in detail, we consider the following example.

Example 5.14. A sandwich cylindrical shell is assembled from two face sheets
made of ABS-plastic SD-0170 and MRE-1 core. The geometrical parameters are
the following: R = 0.4 m, L = 1.5 m, h1 = h3 = 0.5 mm, h2 = 11 mm. The
numerical computations of magnitudesω = |ω±(τ)|,�b = �b±(τ), |χ0| = |χ±

0 (τ)|
versus dimensionless time were performed for two different cases: (a) B = 0; (b)
the magnetic induction B(τ) = cτ is the linear function of dimensionless time
at c = 5, 10 mT. The following parameters were considered as the initial ones:
a0 = 2.5, b0 = i, χ◦

1 = 1, v◦1 = 0 and χ◦
j = v◦j = 0 at j > 1. Figure 5.54

shows that for the accepted parameters and case (b) the current frequency ω(τ)|
is the decreasing function of time. As seen from Fig. 5.55, the width of the 1st

running WP increases in time for both cases, (a) and (b), that means that the WP
spreads in the circumferential direction. But the speed of this spreading depends
weakly on whether the magnetic field is stationary or time-dependent. As concerns
the wave amplitudes (s. Fig. 5.56), they demonstrate a very strong dependence on the
visco-elastic properties of MREs which are affected by the applied magnetic field.
The curve corresponding to c = 0 mT shows the capability of the MRE to damp
travelling vibrations in the sandwich without magnetic field. The other two curves
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Fig. 5.55 Parameter
�b = �b±(τ) vs. dimen-
sionless time for different
c = 0, 5, 10 mT (after Mikha-
sev et al, 2016).

�
b

τ

c = 0 mT
c = 5 mT
c = 10 mT

Fig. 5.56 Maximum am-
plitude |χ0| versus dimen-
sionless time for different
c = 0, 5, 10 mT (after Mikha-
sev et al, 2016).

|χ
0
|

τ

c = 0 mT
c = 5 mT
c = 10 mT

bring out clearly that this capability becomes stronger under the action of growing
magnetic field. So, when comparing amplitudes at the fixed moment τ = 2.4, one
can see that the maximum amplitude |χ0| for c = 5 mT and c = 10 mT are 3-and
6-times less, respectively, than that for c = 0 mT.

5.6.4.2 Wave Packets in Shells with Variable Geometrical Parameters

The numerical calculations performed by Mikhasev and Tovstik (1990) for single-
layer isotropic shells revealed that behavior of excited WPs in shells with variable
curvature or/and generatrix length may be very complicated and characterized by
reflection of WPs possessing a small initial energy from some generatrix. As a rule,
these reflections are accompanied by strong focusing of WPs and growing ampli-
tudes. Additionally, if a shell is subjected to an external dynamic load (Avdoshka
and Mikhasev, 2001; Mikhasev, 2002), then increasing amplitudes in running WPs
may be dramatic and lead to possible dynamic instability of a structure. To study
similar effects in MRE-based shell with variable geometrical parameters, we apply
to the next example

Example 5.15. Consider a circular sandwich cylindrical shell with an oblique edge
as shown in Fig. 5.57. Here

k = 1, s1 = 0, s2(ϕ) = l0 + (cosϕ− 1) tanα, (5.151)
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Fig. 5.57 Medium surface
of a circular cylindrical shell
with oblique edge. (after
Mikhasev et al, 2016).

α

l0

s2(ϕ) ϕ

s

whereRl0 is the longest generatrix length andα is the slope angle of the oblique edge.
The viscoelastic properties of two elastic layers and MRE core are the same as in
Example 5.14 and the geometrical parameters are the following:h1 = h3 = 0.5mm,
h2 = 11 mm, R = 0.4 m, l0 = 2.

For this shell, the longest generatrix ϕ = ϕ◦
0 = 0 is the weakest one. The

natural modes (5.99) localized in the neighbourhood of this line are characterized
by parameters p = a◦, b = b◦ which jointly with q = 0 are determined as the
solutions of Eqs. (5.138), (5.148) for j = 1 (s. Remark 5.3). As the initial conditions
for Hamiltonian systems (5.132)1, (5.132)2 and Riccati equation (5.135), we assume
the above parameters p = a◦, q = 0, b = b◦. In other words, up to amplitudes
χ◦
j , iε

−1v◦j , one of the localized eigenmodes (5.99) with j = 1 semi-waves in the
axial direction to be considered as the initial WP. It is of interest to study its behavior
when apply non-stationary magnetic field with the induction B = cτ .

Figures 5.58 to 5.62 show parameters p+, q+, ω+,�b+, |
χ+
0 |, |�χ+

0 | vs. dimen-
sionless time τ for different c = 0, 5 and 10 mT. The calculations were performed
for the 1st positive WP (at j = 1) with the initial amplitudes χ◦

1 = 1, v◦1 = 0
in (5.122). Due to the symmetry of the shell and the initial WP with regard to the
plane ϕ = 0, the curves for all functions corresponding to the negative WP are
the same as in Figs. 5.58-5.62. In all figures the straight dotted lines correspond
to the eigenform localized in the neighborhood of the longest generatrix ϕ = 0.
Thus, if a magnetic field is absent (c = 0 mT), the initial WP coinciding with one
of eigenmodes stays motionless, with the wave number p+, eigenfrequency ω+ and
parameter b+ being constants for any point of time. The maximum amplitude of free

Fig. 5.58 Center
ϕ = q+ = 0 of the initial WP
(at c = 0 mT) and the center
ϕ = q+ of the 1st positive WP
versus dimensionless time τ
at different rates of growing of
the magnetic field induction,
c = 5, 10 mT (after Mikhasev
et al, 2016).

q
+

τ

c = 0 mT
c = 5 mT

c = 10 mT
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Fig. 5.59 Wave parameter
p+ = a0 ≈ 1.41 of the
initial WP (at c = 0 mT) and
parameter p+ of the 1st posi-
tive WP versus dimensionless
time τ at different rates of
growing of the magnetic field
induction, c = 5, 10 mT
(after Mikhasev et al, 2016).

p
+

τ

c = 0 mT
c = 5 mT
c = 10 mT

Fig. 5.60 Natural frequency
|ω+| = ω0 ≈ 1.25 of the
initial WP (at c = 0 mT)
and the current frequency
|ω+| of the 1st positive WP
versus dimensionless time τ
at different rates of growing of
the magnetic field induction,
c = 5, 10 mT (after Mikhasev
et al, 2016).

|ω
+
|

τ

c = 0 mT
c = 5 mT
c = 10 mT

Fig. 5.61 Parameter �b+ =
�b0 ≈ 0.36 for the initial WP
and parameter �b+ for the
1st positive WP versus dimen-
sionless time at different rates
of growing of the magnetic
field induction, c = 5, 10 mT
(after Mikhasev et al, 2016).

�
b+

τ

c = 0 mT
c = 5 mT
c = 10 mT

vibrations (s. Fig. 5.62) is the decreasing function of the dimensionless time τ due
to viscoelastic properties of the MRE core regardless of whether the magnetic field
is applied or not.

Interesting effects are observed when the magnetic field is applied. After its
turning on, the eigenmode (initial WP) is spitted into two WPs, positive and negative
ones, travelling in the opposite directions (s. Fig. 5.58). Figure 5.58 shows also that
the increase of the magnetic field results in the multiple refections of the WP from
the certain generatrices ϕ = ϕr = q+(τr), these refections being accompanied by
slight focusing (s. Fig. 5.61). Herewith, the larger the growth rate of the induction
(parameter c, mT) is, the earlier the reflection occurs. So, for c = 5 mT the first
reflection occurs from the generatrix ϕ ≈ 0.13 at the point of time τ = τr ≈ 2.45,
and for c = 10 mT, one has ϕ ≈ 0.21, τr ≈ 2.1. At τ = τ0, the WP center goes back
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Fig. 5.62 |χ+
0 | for the 1st

positive WP versus dimen-
sionless time at c = 0 and
different rates of growing of
the magnetic field induction,
c = 5, 10 mT (after Mikhasev
et al, 2016).

|χ
+ 0
|

τ

c = 0 mT
c = 5 mT

c = 10 MT

to the initial position at the longest generatrix (ϕ = 0). Here, τ0 ≈ 4.0 and τ0 ≈ 3.58
for c = 5 mT and c = 10 mT, respectively. Figures 5.59 and 5.60 demonstrate how
the wave parameter p+ and the dimensionless current frequency |ω+| vary with time.
In the beginning, the frequency |ω+| drops slightly, but then it runs up together with
the induction B(τ). The strong growth of the frequency is explained by increasing
the total stiffness for the sandwich at high level of the applied magnetic field.

From the analysis of Fig. 5.62 follows that the increase of the magnetic field
induction leads to a soft suppression of running vibrations. For instance, at c =
10 mT, the damping decrement is about two times than that without magnetic field
(at c = 0 mT): the larger the growth rate of the magnetic field is, the faster the
damping of running vibrations occurs.

References

Aguib S, Noura A, Zahloul H, Bossis G, Chevalier Y, Lançon P (2014) Dynamic behavior analysis
of a magnetorheological elastomer sandwich plate. Int J Mech Sc 87:118–136

Aguib S, Nour A, Djedid T, Bossis G, Chikh N (2016) Forced transverse vibration of composite
sandwich beam with magnetorheological elastomer core. J Mech Sc Techn 30(1):15–24

Allahverdizadeh A, Mahjoob M, Eshraghi I, Nasrollahzadeh N (2013) On the vibration behavior
of functionally graded electrorheological sandwich beams. Int J Mech Sc 70:130–139

Avdoshka I, Mikhasev G (2001) Wave packets in a thin cylindrical shell under a non-uniform axial
load. J Appl Maths Mechs 65(2):301–309

Berg CD, Evans LF, Kermode PR (1996) Composite structure analysis of a hollow cantilever beam
filled with electro-rheological fluid. J Intell Mater Syst Struct 7(5):494–502

Boczkowska A, Awietjan SF, Pietrzko S, Kurzydlowski KJ (2012) Mechanical properties of mag-
netorheological elastomers under shear deformation. Comp: Part B 43:636–640

Botogova M, Mikhasev G (1996) Free vibrations of non-uniformly heated viscoelastic cylindrical
shell. Technische Mechanik 16(3):251–256

Chikh N, Nour A, Aguib S, Tawfiq I (2016) Dynamic analysis of the non-linear behavior of a
composite sandwich beam with a magnetorheological elastomer core. Acta Mechanica Solida
Sinica 29(3):271–283

Choi W, Xiong Y, Shenoi R (2010) Vibration characteristics of sandwich beams with steel skins
and magnetorheological elastomer cores. Advances in Structural Engineering 13(5):837–847

Choi Y, Sprecher AF, Conrad H (1990) Vibration characteristics of a composite beam containing
an electrorheological fluid. J Intell Mater Syst Struct 1(1):91–104



270 5 Vibrations of Laminated Structures Composed of Smart Materials

DiTaranto RA (1965) Theory of vibratory bending for elastic and viscoelastic layered finite-length
beams. Trans ASME J Appl Mech 32(4):881–886

Dwivedy SK, Mahendra N, Sahu KC (2009) Parametric instability regions of a soft and magne-
torheological elastomer cored sandwich beam. J Sound Vibr 325(4–5):686–704

Eshaghi M, Sedaghati R, Rakheja S (2015) The effect of magneto-rheological fluid on vibration
suppression capability of adaptive sandwich plates: experimental and finite element analysis.
Journal of Intelligent Material Systems and Structures 26(14):1920–1935

Eshaghi M, Sedaghati R, Rakheja S (2016) Dynamic characteristics and control of magnetorheo-
logical/electrorheological sandwich structures: a state-of-the-art review. Journal of Intelligent
Material Systems and Structures 27(15):2003–2037

Gandhi MV, Thompson BS (1992) Smart Materials and Structures. Chapman&Hall, London
Gandhi MV, Thompson BS, Choi SB (1989) A new generation of innovative ultraadvanced intel-

ligent composite materials featuring electro-rheological fluids: an experimental investigation. J
Comp Mater 23(12):1232–1255

Hu B, Wang D, Xia P, Shi Q (2006) Investigation on the vibration characteristics of a sandwich
beam with smart composites - MRF. World Journal of Modelling and Simulation 2(3):201–206

Hu G, Guo M, Li W, Du H, Alici G (2011) Experimental investigation of the vibration characteristics
of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic
fields. Smart Materials and Structures 20(12):127,001–1–127,001–7

Hu G, Guo M, Li W (2012) Analysis of vibration characteristics of magnetorheological elastomer
sandwich beam under non-homogeneous magnetic field. Appl Mech Mat 101–102:202–206

Irazu L, Elejabarrieta M (2017) Magneto-dynamic analysis of sandwiches composed of a thin
viscoelastic-magnetorheological layer. J Intel Mat Syst Struct 28(20):3106–3114

Kang Y, Kim J, Choi S (2001) Passive and active damping characteristics of smart electro-
rheological composite beams. Smart Materials and Structures 10:724–729

Korobko EV, Mikhasev GI, Novikova ZA, Zurauski MA (2012) On damping vibrations of three-
layered beam containing magnetorheological elastomer. J Intel Mat Syst Struct 23(9):1019–1023

Kozlowska J, Boczkowska A, Czulak A, Przybyszewski B, Holeczek K, Stanik R, Gude M (2016)
Novel MRE/CFRP sandwich structures for adaptive vibration control. Smart Mater Struct
25(3):035,025

Lai J, Wang K (1996) Parametric contral of structural vibrations via adaptable stiffness dynamic
absorbers. Journal of Vibration and Acoustics 118:41–47

Lara-Prieto V, Parkin R, Jackson M, Silberschmidt V, Kȩsy Z (2010) Vibration characteristics of
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