
Chapter 4

Free Vibrations of Elastic Laminated Beams,

Plates and Cylindrical Shells

Abstract In this chapter, based on the equivalent single layer model for thin laminated
members, natural modes and corresponding eigenfrequencies for laminated elastic
beams plates and cylindrical shells are studied taking into account shears. At first,
elastic vibrations of laminated beams are analyzed in Sect. 4.1, the emphasis being
made on non-uniformly stressed beams contacting with an elastic inhomogeneous
medium. Then, in Sect. 4.2, the eigenmodes and frequencies of elastic rectangular
plates are analyzed for two variants of boundary conditions: if all edges are simply
supported and have diaphragms preventing shears, the boundary-value problem is
solved in the explicit form; and if one of edges is free of a diaphragm, the solution
of a corresponding boundary-value problem is constructed in the form of the su-
perposition of the main stress-strain state and the edge effect integrals accounting
for the edge shears. Section 4.3 is devoted to vibrations of a circular cylindrical
shell of an arbitrary length with constant geometrical and physical parameters. In
Sect. 4.4, the localized natural modes for a medium-length laminated cylinder is
investigated. And finally, Sect. 4.5 contains the problem on free localized vibrations
of a laminated cylindrical shell under axial forces no-uniformly distributed in the
circumferential direction. In the last two sections, natural modes are constructed by
using the asymptotic method. In all problems, the effect of shears on the natural
frequencies is analyzed. Examples on free vibrations of laminated cylinders and
panels assembled from different materials are considered.

4.1 Laminated Beams

In this section, we study free elastic vibrations of laminated beams. Particular at-
tention will be paid to the problem on free vibrations of non-homogeneous beams
with low reduced shear modulus. We will call a beam non-homogeneous if it has
geometrical and/or physical parameters dependent of an axial coordinate, or if it
is non-uniformly pre-stressed by compressive or tensile forces. Geometrically in-
homogeneous beams are beams with the cross-sectional sizes (width, high, radius)

157© Springer Nature Switzerland AG 2019
G. I. Mikhasev and H. Altenbach, Thin-walled Laminated Structures,
Advanced Structured Materials 106, https://doi.org/10.1007/978-3-030-12761-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12761-9_4&domain=pdf


158 4 Free Vibrations of Elastic Laminated Beams, Plates and Cylindrical Shells

varying along the axis. Physically non-uniform beams are beams in which the mate-
rial properties (elastic moduli, material density) depend on the axial coordinate. This
heterogeneity can be induced by the action of external physical fields (temperature,
magnetic field, etc.). Beams with functionally graded materials (FGM) along the
beam axis are often considered as well. If the beam is in contact with an inhomo-
geneous elastic medium, then the dynamic reaction of the beam is also nonuniform
along its axis. Within the framework of any deformation model for a non-uniform
beam and regardless of the nature of inhomogeneity, the differential equations gov-
erning vibrations of similar beams contain variable coefficients, which significantly
complicates the problem.

It should be noted that despite the complexity of the problems, vibrations of
inhomogeneous beams were studied by many researchers. But for all that, a major-
ity from numerous studies refer to isotropic single layer beams. Cranch and Adler
(1956) and Suppiger and Taleb (1956) were probably the first who in 1956 investi-
gated free bending vibrations of isotropic beams with variable section. Assuming the
linear (Cranch and Adler, 1956) or exponential (Suppiger and Taleb, 1956) law of
variation of the cross-section along the beam axis, they constructed exact solutions
for beams with different boundary conditions. Later, applying different approxi-
mate analytical or numerical methods, a numerous investigations on free vibrations
of isotropic beams with variable section, including tapered ones and beams with
steppered sections, were carried out (s., among others, Conway and Dubil, 1965;
Carnegie and Thomas, 1967; Sanger, 1968; Goel, 1976; Roy and Ganesan, 1994;
Zhou and Cheung, 2000, 2001; Naguleswaran, 2002; Ece et al, 2007; Firouz-Abadi
et al, 2007; Jaworski and Dowell, 2008). Free vibration analysis of geometrically
no-uniform beams subjected to the axial compression or tension were made by Sato
(1980); Naguleswaran (2003); Kukla and Zamojska (2007). The effect of uniform
and non-uniform elastic foundations on natural frequencies and modes was exam-
ined by Lee and Ke (1990); Wang (1991). Bending vibrations of FGM beams with
variation of material properties were studied in (Murin et al, 2010; Huang and Li,
2010; Alshorbagy et al, 2011; Mohanty and Rout, 2012).

As for laminated beams, there are only a few papers considering vibrations
taking into account initial axial stresses or response of a surrounding medium or
foundation. Li et al (2008, 2016) investigated free vibration and buckling behaviors
of axially loaded laminated composite beams having arbitrary lay-up. Using the
dynamic stiffness method (Li et al, 2008) and based on a unified higher-order shear
deformationbeam theory (Li et al, 2016), they analyzed the influences of axial forces,
shear deformation and rotary inertia on the natural frequencies, buckling loads and
mode shapes. Using a three-node shear flexible beam element, Patel et al (1999)
studied nonlinear free flexural vibrations of laminated orthotropic beams resting
on a two parameter elastic foundation. Similar problem was considered by Jafari-
Talookolaei and Ahmadian (2007). Using FEM on the basis of Timoshenko beam
theory, they investigated free vibrations of a cross-ply laminated composite beam
on elastic Pasternak foundation. The effect of viscoelastic support on free vibrations
of laminated fiberglass beam was examined by Koutsawa and Daya (2007). Large
amplitude free vibration analysis of laminated composite thin beams on linear and
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nonlinear elastic foundations was presented by Malekzadeh and Vosoughi (2009);
Baghani et al (2011).

In the aforementioned papers, composite laminated beams were assumed to
be shear deformable. However, axial stresses (Li et al, 2008, 2016) and elas-
tic/viscoelastic properties of foundations (Patel et al, 1999; Jafari-Talookolaei and
Ahmadian, 2007; Koutsawa and Daya, 2007; Malekzadeh and Vosoughi, 2009;
Baghani et al, 2011) were considered to be constant along the beam axis. Appar-
ently, Farghaly and Gadelrab (1995); Dong et al (2005) are among the few available
studies in which laminated beams are geometrically heterogeneous in the axial di-
rection. Based on the first order shear deformation theory, they performed vibration
analysis of stepped laminated composite Timoshenko beams. We also refer readers
to the reviews (Hajianmaleki and Qatu, 2013; Sayyad and Ghugal, 2017), which give
some insight of state of the art on dynamics of laminated elastic beams.

4.1.1 Governing Equation

Let us consider a laminated beam consisting of N elastic laminas. It is assumed that
the beam is compressed by the axial force F ◦ and/or rest on an elastic foundation
with the modulus of substrate reaction cf . The beam is characterized by the total
thickness h =

∑N
j=1 hj , bending stiffness EI and linear density ρl. If the beam

cross section has a rectangular form with hight h and width b, then I = bh3/12. In
the common case, F ◦, ρl, cf may be functions of the coordinate α1 (0 ≤ α1 ≤ L).
We apply here again the ESL theory stated in Chapt. 2. Taking into account the
response of elastic foundation and the dependence of the axial force on α1, Eq.
(2.153) governing dynamics of a multi-layered beam is rewritten as
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(4.1)

where the reduced Young’s modulus E and shear parameters β, θ are calculated by
equations derived in Chapt. 2 with ν = νk = 0.

For the Winkler foundation, the spring constant cf is only influenced by the elastic
properties of the foundation.Assuming the alternative model represented in Chapt. 2,
s. Eq. (2.152), then

cf = αfbπn/L, αf =
2Ef(1− νf)

(1 + νf)(3 − 4νf)
, (4.2)

where n is the wave number in the functionχ = χ0 sinπnα1/L describing the beam
response and Ef , νf are the Young’s modulus and Poison’s ratio of the foundation.



160 4 Free Vibrations of Elastic Laminated Beams, Plates and Cylindrical Shells

Remark 4.1. Equation (4.1) may be used if E, I, β, θ and η3 are functions of α1.
The error of the equation depends on the index of variation of these functions by α1.
The higher this index is, the larger the error of Eq. (4.1).

4.1.2 Simply Supported Beam with Constant Parameters

Let the beam edges be simply supported and all parameters, including F ◦, ρ0, cf ,
be constants. Then the solution of (4.1) satisfying the boundary conditions (3.3) or
(3.4) has the simple form

χ = χ0 sin
πnα1

L
eiωt, (4.3)

where L is the beam length, n is the number of waves and ω is the natural frequency.
The substitution of (4.3) into (4.1) results in the natural frequency

ω =
1√
ρl

√
EIη3π4n4(1 + θKn2)

L4(1 +Kn2)
+
F ◦π2n2

L2
+ cf , (4.4)

where

K =
π2h2

βL2
.

If the foundation spring constant is represented by (4.2), then

cf =
αfbπn

L
,

and for the Winkler foundation cf is a constant independent of n.
If F ◦ > 0, then the beam is stretched, and for F ◦ < 0, it is compressed. In the

last case, it is assumed that |F ◦| < F ∗
cr, where

F ∗
cr = max

n

{
π2n2EIη3(1 + θKn2)

L2(1 +Kn2)
+

cfL
2

π2n2

}
(4.5)

is the critical buckling force. For cf = 0, it coincides with Eq. (3.11) derived in
Chapt. 3. The increase of the tensile force F ◦ and/or the spring constant cf leads to
the growth of the natural frequencies for any number n. In contrast, increasing the
compressive force F ◦ results in decreasing the eigenfrequencies; herewith, ω → 0
as |N◦| → N∗

cr.
Other important conclusions are the following:

a) the incorporation of the shear parameterK into the ESL beam model leads to the
reduction of the natural frequencies and

b) the effect of K on the natural frequencies is weak for low-frequency vibrations
and, in particular, for very long beams, but it becomes noticeable for higher modes
(for large n).



4.1.3 Vibrations of Pre-stressed Beams on Elastic Foundation

Let F ◦, cf , ρl be functions of α1. The parameter β depends on the correlation
between the reduced Young’s and shear moduliE,G and may vary in a wide range.
We consider here the case whenG ∼ h∗E, then β ∼ h∗, where h∗ = h/L is a small
parameter (the beam is assumed to be long). The parameter θ is also small. So, for a
single layer beam θ = 1/85, and for a multi-layered one it may be much less. Here, it
is assumed that θ ∼ hς∗, 1/2 < ς < 1. We introduce some assumptions concerning
the elastic foundation and axial stress resultant. Let the foundation be soft and the
axial force be sufficiently weak so that the following relations hold

cf(α1) = h∗
Ebη3
12L

k(x), F ◦ = h2∗
LEbη3
12

f1(x), (4.6)

where x = α1/L is a dimensionless coordinate. If f1(x) > 0 for any x ∈ [0, 1],
then the force F ◦ is extensional in any point of the beam; when f1(x) < 0 in some
points from the segment [0, 1], the force F ◦ is compressive in this points, but in this
case it is assumed that maxx |f1(x)| < fcr, where fcr is the critical value resulting
in buckling of the beam (s. Chapt. 3).

In the case of free vibrations, the displacement function χ may be found in the
form of

χ = LX(x)eiωt, (4.7)

where ω is the natural frequency. Let us introduce a dimensionless parameter λ and
the characteristic time tc

λ = t2cω
2, tc =

√
12ρlmL2

h∗Ebη3
, (4.8)

where ρlm = max ρl(Rx) is a maximum value of the reduced linear density for a
nonhomogeneous beam.

Then Eq. (4.1) is rewritten as follows

−h3+ς
∗ τ

d6X

dx6
+ h2∗

d4X

dx4
− h∗

d

dx

[
f1(x)

(
1− h∗κ

d2

dx2

)
dX
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]

+k(x)

(
1− h∗κ

d2

dx2

)
X − λr(x)

(
1− h∗κ

d2

dx2

)
X = 0,

(4.9)

where
τ = h1−ς

∗ θβ−1, κ = h∗β
−1, r(x) = ρl(Lx)ρ

−1
lm . (4.10)
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Below, it will be shown that the conclusion b) becomes not valid for a medium-
length laminated cylindrical shell.
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It is assumed that κ, τ , f1(x), k(x), r(x) ∼ 1 as h∗ → 0. Equation (4.9) is
the singular perturbed differential equation with variable coefficients. In common
case, it does not admit a solution in the explicit form. However, from all variety
of eigenforms, one can construct an asymptotic solution of a high variability and

satisfying the condition dX/dx ∼ h
−1/2
∗ at h∗ → 0.

We apply the Wentzel-Kramers-Brillouin method (WKB-method) and seek a
solution in the form of series

X =
∞∑
j=0

h
j/2
∗ Xj(x) exp

{
h
−1/2
∗

∫
g(x)(d)x

}
,

λ = λ0 + h∗λ1 + . . . ,

(4.11)

where Xj , g(x) are infinitely differentiable functions of x ∈ [0, 1]. It should be
noted that a similar asymptotic approach has been applied by Firouz-Abadi et al
(2007) to study free vibrations of an isotropic single layer Euler-Bernoulli beam
of variable-cross-section with and without axial forces. They gave a compact third-
order WKB-approximation for the mode shapes and found the corresponding natural
frequencies.

Let us substitute (4.11) into Eq. (4.9) and equate coefficients at the same powers

of h1/2∗ . Then we arrive at the series of equations. In the zeroth-order approximation
(at j = 0), one has

F(g, x)X0 = 0. (4.12)

where

F(g, x) ≡ g4 − f1(x)g
2(1− κg2) + k(x)(1 − κg2)− λ0r(x)(1 − κg2). (4.13)

We will find the natural frequencies satisfying the inequality

λ0r(x) > k(x) (4.14)

for any x ∈ [0, 1]. Then, resolving the equation F(g, x) = 0 with respect to g, one
obtains

g1, 2 = ±iϕ1(x), g3, 4 = ±ϕ2(x), (4.15)

ϕ1(x) =

√
κλ0r − κk − f1 +

√
(κk − f1 − κλ0r)2 + 4(λ0r − k)

2(1 + κf1)
,

ϕ2(x) =

√
−(κλ0r − κk − f1) +

√
(κk − f1 − κλ0r)2 + 4(λ0r − k)

2(1 + κf1)
,

(4.16)

where ϕ1(x), ϕ2(x) > 0 for any x ∈ [0, 1].
In the first-order approximation (j = 1), we get the following equation

F(g, x)X1 + G[g(x), x]X ′
0 +

[
1

2
G′ + κk′g − κλ0r

′g

]
X0 = 0, (4.17)
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where the prime means the differentiation by x, and

G[g(x), x] = ∂F(g, x)

∂g
. (4.18)

Owing to (4.15) and (4.16),F [gi(x), x)] ≡ 0 and Eq. (4.17) results in the differential
equation by X0 which has the following general solution

X0 =
c√|G[g(x), (x)]| exp

[
κ

∫
g(λ0r

′ − k′)dx

]
(4.19)

with an arbitrary constant c.
Considering the higher-order approximations (j ≥ 2), one can get a sequence of

differential equations by Xj−1 with parameters λj−1. Let us interrupt this process
and consider only the first two approximations.Taking into account (4.15) and (4.16),
the general solution of the differential equation (4.9) may be written as follows:

X0 =
c1√
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⎭ ,

(4.20)

where

I1(x) = κ

∫
ϕ1(x)[λ0r

′(x)− k′(x)]dx,

I2(x) = κ

∫
ϕ2(x)[λ0r

′(x)− k′(x)]dx,

G1(x) = G[ϕ1(x), x], G2(x) = G[ϕ2(x), x],

(4.21)

and ci are constants which are found from the boundary conditions.
We assume here the following restrictions

G1(x) �= 0, G2(x) �= 0 (4.22)

for any x ∈ [0, 1]. The point x∗ ∈ [0, 1], for which G1(x
∗) = 0 or G1(x

∗) = 0, is
generally called the turning point. The general solution (4.20) is the superposition of
the integrals describing the basic dynamical stress state of the beam. It is interesting
to note that the index of variation (see the definition given by Eq. (2.66)) of these
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basic integrals is equal to ι1 = 1/2 which coincide with the index of variation for
the simple edge effect introduced above in Subsect. 2.1.13 for a shell. However, the
integrals composing (4.20) do not depend on the parameter τ which appears at the
highest derivative in Eq. (4.9). In other words, the general solution (4.20) defines the
basic dynamic stress state of a high variability and does not take into account the
special edge effects with the index of variation ι = (1 + ς)/2 > ι1 = 1/2, where
1/2 < ς < 1. The omitted integrals define shears in a vicinity of the edges and
may be incorporated in the general solution by considering the special edge effect
equation

−h1+ς
∗ τ

d6X

dx6
+

d4X

dx4
= 0 (4.23)

and, afterwards, constructing the higher-order approximation at j = 2. The edge
effect equation (4.23) gives two additional integrals,

X5 = c5 exp

⎡
⎢⎣−h−

1 + ς

2
∗

x√
τ

⎤
⎥⎦, X6 = c6 exp

⎡
⎢⎣−h−

1 + ς

2
∗

1− x√
τ

⎤
⎥⎦. (4.24)

As seen from (4.10), the behavior of the shear edge effect integrals depends on the
correlation between the shear parameters β, θ and the beam dimensions h, L.

In what follows, we disregard corrections due to the shear edge effect integrals
and have to choose the basic boundary conditions corresponding to the basic stress
state. As an example, we will consider the boundary conditions of the rigid clamping
group (3.28) and (3.29). For this group, the basic boundary conditions are the
following:

X ′
0 = 0, X0 − h∗κX

′′
0 = 0 at x = 0, 1. (4.25)

The substitution of the general solution (4.20) into (4.25) results in the homoge-
neous system of algebraic equations with respect to constants ci (i = 1, ..., 4):

ACT = 0, (4.26)

where C = (c1, c2, c3, c4) is the three-dimensional vector, and A is the 4×4 - matrix
with the elements

a11 =
1 + κϕ2

1(0)√
|G1(0)|

cos[I1(0)], a12 =
1 + κϕ2

1(0)√
|G1(0)|

sin[I1(0)],

a13 =
1− κϕ2

2(0)√
|G2(0)|

exp [−I2(0)], a14 = 0,

a21 = − ϕ1(0)√
|G1(0)|

sin[I1(0)], a22 =
ϕ1(0)√
|G1(0)|

cos[I1(0)],

a23 = − ϕ2(0)√
|G2(0)|

exp [−I2(0)], a24 = 0,
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a31 =
1 + κϕ2

1(1)√|G1(1)|
cos[Θ1(1)], a32 =

1 + κϕ2
1(0)√|G1(0)|

sin[Θ1(0)],

a34 = 0, a34 =
1− κϕ2

2(1)√
|G2(1)|

exp [Θ2(1)],

a41 = − ϕ1(1)√
|G1(1)|

sin[Θ1(1)], a42 =
ϕ1(1)√
|G1(1)|

cos[Θ1(0)],

a43 = 0, a44 =
ϕ2(1)√
|G2(1)|

exp [I2(1)],

(4.27)

depending on the eigenvalue λ0. In Eqs. (4.27)

Θ1(x) =
1

h
1/2
∗

x∫
0

ϕ1(x)dx+ I1(x). (4.28)

The transcendental equation detA = 0 serves for determining the series of unknown

eigenvalues λ0 = λ
(n)
0 , n = 1, 2, . . ..

Consider the particular case when the beam and foundation are uniform, and the
axial stress resultant is a function of α1. Then r = 1, k are constants, f1 = f1(x),
and I1 = I2 = 0 for any x ∈ [0, 1]. For this case the equation detA = 0 is reduced
to the following

tan

⎧⎨
⎩h−1/2

∗

1∫
0

ϕ1(x)dx

⎫⎬
⎭ =

δ20δ11ϕ10ϕ21 + δ10δ21ϕ20ϕ11

δ10δ11ϕ20ϕ21 − δ20δ21ϕ10ϕ11
, (4.29)

where

δ10 = 1 + κϕ2
1(0), δ11 = 1+ κϕ2

1(1),

δ20 = 1− κϕ2
2(0), δ21 = 1− κϕ2

2(1),

ϕ10 = ϕ1(0), ϕ11 = ϕ1(1), ϕ20 = ϕ2(0), ϕ21 = ϕ2(1),

(4.30)

and the functions ϕi(x) are specified by (4.16). When deriving Eq. (4.29), we have
allowed for the following limiting correlations

lim
h∗→0

h
−j/2
∗ exp

⎧⎨
⎩−h−1/2

∗

1∫
0

ϕ2(x)dx

⎫⎬
⎭ = 0,

lim
h∗→0

h
−j/2
∗ exp

⎧⎨
⎩h−1/2

∗

0∫
1

ϕ2(x)dx

⎫⎬
⎭ = 0

(4.31)

valid for any integer j = 0, 1, . . ..
Constants ci are defined as follows
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c2 = −δ10ϕ20

δ20ϕ10
c1, c3 = −

√∣∣∣∣G2(0)

G1(0)

∣∣∣∣ δ10δ20
c1,

c4 =

√∣∣∣∣G2(1)

G1(1)

∣∣∣∣ ϕ11

ϕ21

⎧⎨
⎩sin

⎡
⎣ 1

h
1/2
∗

1∫
0

ϕ1(x)dx

⎤
⎦

+
δ10ϕ20

δ20ϕ10
cos

⎡
⎣ 1

h
1/2
∗

1∫
0

ϕ1(x)dx

⎤
⎦
⎫⎬
⎭ c1.

(4.32)

To analyse the effect of the shear parameter κ and variable axial force on the natural
frequencies we will present an example.

Example 4.1. Let f1 = 1 + εx be the linear function of x, where ε > −1. It is
seen from Eqs. (4.16) that f1 < κ(λ0 − k). We remind that eigenvalues defined by
Eq. (4.29) have to satisfy the inequality, s. Eq. (4.14),

λ
(n)
0 > k, n = 1, 2, . . . (4.33)

Then the first natural frequency ω =

√
λ
(1)
0 t−1

c with λ
(1)
0 satisfying (4.33) might

be higher than one or several the lowest eigenfrequencies. Table 4.1 displays the

first five eigenvalues λ(n)0 satisfying (4.33) versus the shear parameter κ for k = 1,
ε = 1, h∗ = 0.01. One can see that the influence of the shear parameter κ on

the first eigenvalue λ(1)0 is weak, but it increases together with the number n. The

series of eigenvalues λ(n)0 for n = 1, 2, . . . , 5 and different values of a parameter ε
is shown in Table 4.2. The calculations were performed at κ = 1, k = 1, h∗ = 0.01.

As seen that for any fixed number n each eigenfrequency λ
(n)
0 growths together

with a parameter ε characterizing the rate of inhomogeneity of the axial force, this
frequency increment being greater for a large number n.

It is well known that growing the compressive pre-buckling axial force leads to very
quick decreasing the lowest eigenfrequency. Thus, one may conclude that the first

Table 4.1 Eigenvalues λ(n)
0 vs. shear parameter κ.

κ 0.0 0.5 1.0 2.0

λ
(1)
0 1.225 1.198 1.186 1.173

λ
(2)
0 2.052 1.851 1.771 1.701

λ
(3)
0 3.928 3.085 2.825 2.621

λ
(4)
0 7.552 5.004 4.390 3.944

λ
(5)
0 13.858 7.662 6.477 5.668
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Table 4.2 Series of eigenvalues λ(n)
0 vs. parameter ε.

n 1 2 3 4 5
ε = 1

λ
(n)
0 1.186 1.771 2.825 4.390 6.477

ε = 2

λ
(n)
0 1.231 1.945 3.214 5.082 7.560

ε = 3

λ
(n)
0 1.275 2.110 3.582 5.739 8.587

eigenvalue λ
(1)
0 defined by our asymptotic procedure may do not equal the lowest

natural frequency for the axially compressed laminated beam.

4.2 Laminated Plates

Consider a laminated rectangular plate with thickness h and sides 0 ≤ α1 ≤ L1

and 0 ≤ α2 ≤ L2. The plate is pre-stressed by the shear forces yielding in-plane
stresses T ◦

11, T
◦
22, T

◦
12. The governing equations for free vibrations of a pre-stressed

plate resting on an elastic foundation may be easily obtained from Eqs. (3.23) by
introducing additional terms accounting the inertia forces and response of an elastic
foundation

D

(
1− θh2

β
Δ

)
Δ2χ−

(
ΔT − cf − ρ0h

∂2

∂t2

)(
1− h2

β
Δ

)
χ = 0, (4.34)

were cf is the spring constant for the elastic foundation and

ΔT = T ◦
11

∂2

∂α2
1

+ 2T ◦
12

∂2

∂α1∂α2
+ T ◦

22

∂2

∂α2
2

. (4.35)

The above equations should be supplemented by the equation

1− ν

2

h2

β
Δφ = φ, (4.36)

for the shear function φ and the boundary conditions as well. We will consider here
only the simple support group including the boundary conditions (2.111) or (2.113).

For the first variant of the boundary conditions (when all the edges have a di-
aphragm inhibiting relative shear)

χ = Δχ = Δ2χ =
∂φ

∂αi
= 0 at αi = 0, Li, i = 1, 2, (4.37)
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one can set φ = 0. For the second variant (diaphragm is absent at least on the one
edge α1 = 0) (

1− h2

β
Δ

)
χ = 0,

∂2

∂α2
1

(
1− h2

β
Δ

)
χ = 0,

(
∂2

∂α2
1

+ ν
∂2

∂α2
2

)
χ− (1− ν)

∂2φ

∂α1α2
= 0,

2
∂2χ

∂α1∂α2
+
∂2φ

∂α2
1

− ∂2φ

∂α2
2

= 0 at α1 = 0

(4.38)

the function φ turns out to be coupled to the displacement function χ and should be
taken into account when constructing the edge effects.

4.2.1 Simply Supported Plate with Diaphragm on Edges

At first, we will consider variant (4.37)of the boundary conditions. Let all coefficients
in Eq. (4.34) be constants, and the shear stress resultant T ◦

12 is equal to zero. Then
the solution of the linear boundary-value problem (4.34), (4.37) is easily found as

χ = χ0eiωt sin
πnα1

L1
sin

πmα2

L2
, (4.39)

where n,m are numbers of semi-waves in the α1- and α2-directions, respectively,
ω is the natural frequency, and χ0 is a constant. The substitution of (4.39) into Eq.
(4.34) leads to the following formula for the frequency

ω2 =
π4D

ρ0hL4
2

Λ, (4.40)

where

Λ =
δ2nm(1 + θKδnm)

1 +Kδnm
+ t◦1e

2n2 + t◦2m
2 + kf ,

K =
π2h2

βL2
2

, δnm = e2n2 +m2, e =
L2

L1
, t◦i =

L2
2

π2D
T ◦
ii

(4.41)

The equation for kf depends on the accepted model for the elastic foundation. For
the Winkler foundation model can be assumed

kf =
L4
2

π4D
cf (4.42)

and for the model represented by Eq. (2.137) one has
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kf =
L3
2αf

π3D
δ1/2nm , (4.43)

where αf is defined by (4.2).
It is obvious that for large numbers n,m, the Winkler model gives understated

natural frequencies when comparing to the model represented by Eq. (2.152). It is
also seen that the tensile initial stresses (T ◦

ii > 0) raise eigenfrequencies and the
compressive ones (T ◦

ii < 0) reduce them. In the last case, the magnitudes |T ◦
ii| are

to be less of the critical buckling values (s. Chapt. 3). Assuming the shear parameter
K to be small, formula (4.41) may be rewritten in the following form

Λ = δ2nm
[
1 + δ−2

nm(t◦1e
2n2 + t◦2m

2 + kf)−K(1− θ)δnm + O
(
K2
)]
. (4.44)

It shows that ignoring shear results in overstating values for the natural frequencies.

4.2.2 Simply Supported Plate Without Diaphragm on Edges

Now, we consider the combination of the simple support conditions (4.37)and (4.38),
herewith, the edges α1 = 0, L1 (without diaphragm) satisfy conditions (4.38), and
the edgesα2 = 0, L2 (with the diaphragm) to Eqs. (4.37). In this case, the boundary-
value problem (4.34), (4.36)-(4.38) does not admit the explicit form of a solution.
It may be found by using some numerical method. For instance, a solution may be
represented by an infinite series of beam functions or by the sine- and cosine-series
expansions in α1 and α2. But we, assuming the shear parameter K as a small one,
will apply to the asymptotic approach and construct a solution for low-frequency
vibrations in the form of the superposition of the main stress state and the edges
effect integrals. This approach will permit us to obtain a simple asymptotic equation
for eigenfrequencies and evaluate the effect of shear inside of the plate and in a
neighbourhood of the edges as well.

Consider the case when T ◦
ij = cf = 0. Let a parameter

μ2 =
h2

βR2
. (4.45)

be small, whereR is the characteristic size (one of the lengthesL1, L2 or (L1L2)
1/2).

The required functions satisfying (4.37) are south in the form:

χ = RX(x1) sin
πmx2
l2

eiωt, φ = μυ1RS(x1) cos
πmx2
l2

eiωt, (4.46)

where xi = αi/R, li = Li/R, υ1 > 0, S,X ∼ 1 at μ → 0, and ω is the natural
frequency.

The substitution of (4.46) into (4.34) and (4.36) yields
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−θμ2

(
d6X

dx61
− 3δ2m

d4X

dx41
+ 3δ4m

d2X

dx21
− δ6mX

)

+
d4X

dx41
− 2δ2m

d2X

dx21
+ δ4mX − λX + μ2λ

(
d2X

dx21
− δ2mX

)
= 0

(4.47)

and
d2S

dx21
=

(
1

μ2

2

1− ν
+ δ2m

)
S. (4.48)

Here

δm =
πm

l2
, λ =

ω2

ω2
c

, ω2
c =

D

ρ0hR4
, (4.49)

where ωc is the characteristic frequency. The boundary conditions (4.38) for X(x1)
and S(x1) on the edges x1 = 0, l1 become as follows

X − μ2

(
d2X

dx21
− δ2mX

)
= 0,

d2X

dx21
− μ2 d2

dx21

(
d2X

dx21
− δ2mX

)
= 0 (4.50)

d2X

dx21
− νδ2mX + μ2(1− ν)δm

dS

dx1
= 0, (4.51)

2δm
dX

dx1
+ μ2

(
d2S

dx21
+ δ2mS

)
= 0. (4.52)

Although a parameter θ is small, we assume here that θ ∼ 1. Consider Eq. (4.48). It
has the following general solution

S(x1) = c1e
− 1

μ
γx1

+ c2e
− 1

μ
γ(l1 − x1)

, (4.53)

where c1, c2 are constants, and

γ =

√
2

1− ν
+ μ2δ2m. (4.54)

Function (4.53) is the superposition of the two integrals which specify the shear edge
effects near the ends x1 = 0 and x1 = l1. But apart from these integrals there are
another pair of the edge effect integrals which embrace more narrow regions near the
plate edges. These integrals are defined from an additional equation which is easily
derived from Eq. (4.47). Let dz/dx1 ∼ μ−ι, where ι > 0. The asymptotic analysis
of all summands in Eq. (4.47) gives ι = 1, the basic terms leading to the following
additional equation

θμ2 d6X

dx61
− d4X

dx41
= 0. (4.55)

It is obvious that only two integrals of this equation have the properties of the edge
effect integrals. Their superposition gives the following general solution
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X(e) = c3e
− 1

μ
√
θ
x1

+ c4e
− 1

μ
√
θ
(l1 − x1)

, (4.56)

where c3, c4 are arbitrary constants. It is seen that due to the smallness of θ, func-
tion (4.56) decreases faster than integral (4.53).

We seek a solution of the boundary-value problem (4.47), (4.50)-(4.52) in the
following form

X = X(m)(x1) + μυ2X(e)(x1), X(m), X(e) ∼ 1, (4.57)

λ = λ0 + μλ1 + . . . , (4.58)

where X(m) is also expanded into the series

X(m) = X0(x1) + μX1(x1) + . . . (4.59)

with functions Xi satisfying the condition X ′
i ∼ Xi. Here and below, the prime {′}

means the differentiation with respect to x1.
Let us substitute (4.57) into the boundary conditions (4.51), (4.52) and compare

the main terms. Taking into account the estimates X ′
i ∼ Xi,

(
X(e)

)′ ∼ μ−1X(e),
S′ ∼ μ−1S, one gets the indexes of intensity for the functions describing edge
effects: υ1 = 2 and υ2 = 3. The substitution of (4.57) - (4.59) into Eq. (4.47) and
the boundary conditions (4.50)-(4.52) results in the sequence of the boundary-value
problems. Let us consider them step by step.

In the zeroth-order approximation, one has the homogeneous boundary-value
problem

L0X0 ≡ d4X0

dx41
− 2δ2m

d2X0

dx21
+ δ4mX0 − λ0X0 = 0 (4.60)

X0(0) = X0(l1) = X ′′
0 (0) = X ′′

0 (l1) = 0, (4.61)

which has the following nontrivial solution

X0 = A sin
πnx1
l1

, λ0 = (δ2n + δ2m)2, δn =
πn

l1
. (4.62)

Note that the boundary conditions (4.61) were derived from (4.50).
Keeping in mind the edge integrals (4.53) and solution (4.62), the boundary

conditions (4.52) in the zeroth-orderapproximation results in the followingequations

2δmX
′
0 +

2

1− ν

[
c1e−

1
μ

√
2

1−ν
x1 + c2e−

1
μ

√
2

1−ν
(l1−x1)

]
= 0 at x1 = 0, l1

(4.63)
which give the formulae for constants

c1 = −(1− ν)δnδmA, c2 = (−1)n+1(1 − ν)δnδmA. (4.64)

In the first-order approximation, one gets the nonhomogeneous differential equa-
tion
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L0X1 = λ1X0. (4.65)

and the nonhomogeneous boundary conditions at x1 = 0, l1

X1 = 0, X ′′
1 − 1

θ2

⎡
⎢⎣c3e

− 1

μ
√
θ
x1

+ c4e
− 1

μ
√
θ
(l1 − x1)

⎤
⎥⎦ = 0,

X ′′
1 − νδ2mX1 +

1

θ

⎡
⎢⎣c3e

− 1

μ
√
θ
x1

+ c4e
− 1

μ
√
θ
(l1 − x1)

⎤
⎥⎦

−(1− ν)δm
2

1− ν

⎡
⎢⎢⎣c1e

− 1

μ

√
2

1− ν
x1

+ c2e
− 1

μ

√
2

1− ν
(l1 − x1)

⎤
⎥⎥⎦ = 0.

(4.66)
Taking Eqs. (4.64) into account, the last two conditions (4.66) written at x1 = 0, l1
result in the equations for constants

c3 = −
√
2(1− ν)3θ2δnδ

2
mA

1 + θ
, c4 =

(−1)n
√
2(1− ν)3θ2δnδ

2
mA

1 + θ
. (4.67)

Then the first two equations from (4.66) give the nonhomogeneous boundary con-
ditions for X1

X1(0) = X1(l1) = 0,

X ′′
1 (0) = −

√
2(1− ν)3 δnδ

2
mA

1 + θ
,

X ′′
1 (l1) =

(−1)n
√
2(1− ν)3 δnδ

2
mA

1 + θ
.

(4.68)

Problem (4.65), (4.68) is the nonhomogeneous boundary-value problem on spectrum.
The existence condition for a solution of this problem produces the following formula
for the correction λ1

λ1 = −4
√
2(1− ν)3 δ2nδ

2
m

l1(1 + θ)
. (4.69)

Then the solution of the boundary-value problem (4.65), (4.68) will be the following

X1(x1) = a1 sin δnx1 + a2 cos δnx1 + a3ermnx1 + a4e−rmnx1

+
λ1A

4δn(δ2n + δ2m)
x1 cos δ1x1,

(4.70)

where rmn =
√
2δ2m + δ2m, and constants ai are determined from the boundary

conditions (4.68).
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Let the characteristic size R be equal L2. Then, when breaking the procedure of
seeking the functions Xi and parameters λi, the approximate equation for natural
frequencies may be represented as

ω2 =
Dπ4

ρ0hL4
2

Λ, Λ = δ2nm

{
1− μ

4
√
2(1− ν)3δ2nδ

2
m

e(1 + θ)π4δ2nm
+O(μ2)

}
, (4.71)

where δnm, e are determined by Eqs. (4.41). We note that the small parameter is
proportional to the shear one (s. Eqs. (4.41) and (4.45)): μ2 = K/π2. Then the
asymptotic formula for the dimensionless frequency parameter Λ may be rewritten
as

Λ = δ2nm

{
1−K1/2 4

√
2(1− ν)3 n2m2

πe3(1 + θ)δ2nm
+O(K)

}
(4.72)

One can compare it with the analogous Eq. (4.44). In Eq. (4.72), the shear induced
correction generated by the edge effects has the order K1/2, whereas the similar
correction for simply supported plates with diaphragm, s. Eq. (4.44), is a value of
the order K . Thus, when comparing these two cases, one can conclude: if the plate
edges are free of diaphragm, then the eigenmodes contain additional components
accounting the edge shear and called the edge effect integrals, these integrals may
give more lower eigenfrequencies than transverse shear within the plate.

4.3 Simplest Problems on Free Vibrations of Thin Cylindrical

Shells

In this section we will consider the class of the simplest boundary-valueproblems de-
scribing free linear vibrations of elastic laminated cylindrical shells. In all problems,
the geometrical and physical parameters of layers and a shell in whole are assumed
to be constants so that any natural mode defines a system of waves distributed
evenly over the shell surface. The objective is to study the influence of different
boundary conditions and shear as well on the natural frequencies and corresponding
eigenmodes.

Let us consider a thin laminated cylindrical shell composed of N transversally
isotropic elastic layers. Studying free vibrations, we assume qi = qn = 0 in the
governing equations (2.61)-(2.63). For linear vibrations, the required functions may
be represented in the form

{ûi, ψi, w} = R {Ui(α1, α2), Ψi(α1, α2),W (α1, α2)} exp (iωt), (4.73)

where i = 1, 2, ω is the natural frequency, and R is the characteristic dimension of
the shell. We substitute (4.73) into Eqs. (2.61)-(2.63) and omit nonlinear terms. As
a result, one obtains the following linear differential equations
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∂2U1

∂α2
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+
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2
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∂α2
2

+
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2

∂2U2

∂α1∂α2
+ νk22

∂W
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+
ρ0ω

2

Ẽ
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2

∂2Ψ1

∂α2
2

)
+

12q44

Ẽh3
Ψ1 = 0,

η2
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− η1

(
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+
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2
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1

)
+

12q44

Ẽh3
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h2
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�
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(
∂Ψ1

∂α1
+
∂Ψ2

∂α2
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+k22

(
ν
∂U1

∂α1
+
∂U2

∂α2
+ k22W

)
− ρ0ω

2

Ẽ
W = 0

(4.74)
with Ẽ = E/(1 − ν2). The system of differential equations (4.74) may be used to
study free vibrations of a shell of any length for any number of waves in the axial
and circumferential directions. However, they turn out to be too inconvenient and
cumbersome in the common case. The selection of governing equations depends
on the class of problems under consideration. So, the above equations (4.74) may
be used for studying free vibrations of a very long cylindrical shell with formation
of long waves. However, to analyze vibrations with a large number of minor waves
although in the one direction, it is more convenient to apply to the simplified equations
of the technical shell theory (2.77), (2.85), (2.87).

Let us now apply to the variant of the technical shell theory. Assuming

χ = χ̃(α1, α2)e
iωt, F = F̃ (α1, α2)e

iωt, φ = φ̃(α1, α2)e
iωt, (4.75)

Eqs. (2.77), (2.85), (2.87) are reduced to the following ones

D

(
1− θh2

β
�
)
�2χ̃+ k22

∂2F̃

∂α2
1

− ρ0hω
2

(
1− h2

β
�
)
χ̃ = 0,

�2F̃ − Ehk22
∂2

∂α2
1

(
1− h2

β
�
)
χ̃ = 0,

1− ν

2

h2

β
�φ̃ = φ̃.

(4.76)

The systems of differential equations (4.74) and (4.76) should be supplemented
by the boundary conditions (2.93)-(2.108) and (2.110)-(2.118), respectively. The
classification of integrals for governing equations analogous to (4.74) as well as their
detailed analysis for thin isotropic single-layer shells may be found in Gol’denveizer
et al (1979); Mikhasev and Tovstik (2009).



4.3 Simplest Problems on Free Vibrations of Thin Cylindrical Shells 175

4.3.1 Long Simply Supported Cylinder with Diaphragm on Edges

Let a lengthy cylindrical shell be circular, then k22 = 1/R is a constant. From all
variants of the boundary conditions, we consider here the simply supported edges
with diaphragm. In terms of displacements and stress resultants these conditions are
the following (s. Chapt. 2)

w = û2 = ψ2 = M̂11 = T11 = L̂11 = 0 at α1 = 0, L. (4.77)

Keeping in mind (4.73), we rewrite them in the terms of displacements

W = U2 = Ψ2 = 0,

η3

(
∂2W

∂α2
1

+ ν
∂2W

∂α2
2

)
− η2

(
∂Ψ1

∂α1
+ ν

∂Ψ2

∂α2

)
= 0,

∂U1

∂α1
+ ν

∂U2

∂α2
+
νW

R
= 0,

η2

(
∂2W

∂α2
1

+ ν
∂2W

∂α2
2

)
− η1

(
∂Ψ1

∂α1
+ ν

∂Ψ2

∂α2

)
= 0 at α1 = 0, L.

(4.78)

As seen, the above boundary conditions are satisfied by the following functions

U1 = U◦
1 cos

πnα1

L
cos

mα2

R
,

U2 = U◦
2 sin

πnα1

L
sin

mα2

R
,

W = W ◦ sin
πnα1

L
cos

mα2

R
,

Ψ1 = Ψ◦
1 cos

πnα1

L
cos

mα2

R
,

Ψ2 = Ψ◦
2 sin

πnα1

L
sin

mα2

R
,

(4.79)

where n is a number of semi-waves in the axial direction, m is a number of waves
in the circumferential direction, and U◦

i ,W
◦, Ψ◦

i are constant values.
The substitution of (4.79) into Eqs. (4.74) yields the system of algebraic equations

AXT = 0, (4.80)

where X = (U◦
1 , U

◦
2 ,W

◦, Ψ◦
1 , Ψ

◦
2 ) is the vector, and A is the 5 × 5 matrix with the

elements aij

a11 = −δ2n − 1− ν

2
m2 + (1− ν2)

ω2

ω2
0

, a12 =
1 + ν

2
δnm,

a13 = νδn, a14 = a15 = 0, a21 =
1 + ν

2
δnm,
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,
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1
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ω2
0

,

a54 = −ε8η2δn
η3

(δ2n +m2), a55 =
ε8η2m

η3
(δ2n +m2), (4.81)

where

δn =
πn

l
, l =

L

R
, ε8 =

h2η3
12(1− ν2)R2

, ω2
0 =

E

ρ0R2
. (4.82)

Here, ε is a small parameter and ω0 is the characteristic frequency.
The equation

detA = 0 (4.83)

serves as the existence condition of a nontrivial solution of the homogeneous sys-
tem (4.80). In the general case, it is the cubic equation with respect to the required
frequency parameterΛ = (1− ν2)ω2ω−2

0 . It will be used below in Chapt. 5 to study
free vibrations of viscoelastic laminated shells containing MRE. As a particular case,
we consider the axisymmetric vibrations for which m = U◦

2 = Ψ◦
2 = 0. Then, the

cubic equation (4.83) degenerates into the quadratic one:

Λ2 − (1 + δ2n + μ1δ
4
nrn

)
Λ+ δ2n

(
1− ν2 + μ1δ

4
nrn

)
= 0, (4.84)

where

μ1 = (1− ν2)ε8, rn =
π2 + θKδ2n
π2 +Kδ2n

, K =
π2h2

βR2
, θ = 1− η22

η1η3
. (4.85)

For any fixed number n, there are two the positive roots

Λ = Λj =
1

2

{
1 + δ2n + μ1δ

4
nrn − (−1)j

[
(1− δ2n + μ1δ

4
nrn)

2 + 4ν2δ2n
]1/2}

,

(4.86)
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where j = 1, 2. Then the natural frequencies corresponding to the axially symmetric
longitudinal and bending vibrations accounting transverse shear are defined as

ωj =

√
EΛj

ρ0R2(1− ν2)
,

where ω1 is the eigenfrequency of predominantly longitudinal vibrations, and ω2

relates to bending vibrations. It is obviously, for the fixed n, ω1 > ω2.
The amplitudes of axial, normal and shear displacements are coupled by means

of equations

U◦
1 = − νδn

Λ− δ2n
W ◦, Ψ◦

1 =
η2Kδ3n

η1(π2 +Kδ2n)
W ◦. (4.87)

As seen from Eq. (4.86), Λj − δ2n �= 0 for any n. When K → 0, Eq. (4.86)
gives the frequency parameter for an isotropic shell without taking into account
shears. Because a parameter θ is small, it may be concluded that the incorporation
of the shear parameter K into the shell model results in the reduction of the natural
frequencies for any δn, the influence of the shear parameter K on eigenfrequencies
being very weak for modes with small parameter δn and becoming essential at large
δn and, particularly, for modes of bendingvibrations with very large number of waves
n in the axial direction (and/or for a very short cylindrical shell). This conclusion is
confirmed by calculations performed at m = 0, ν = 0.4, ε = 0.2. Figure 4.1 shows
the parameters Λ1 and Λ2 corresponding to the axially symmetric longitudinal and
bending vibrations, respectively, versus a wave parameter δn. Figure 4.2 demonstrates
the behavior of the frequency parameterΛ2 corresponding the bending modes as the
function of δn for different values of K varying from 0 to 0.6. It is seen, the larger
value of δn is, the higher effect of the shear parameter on eigenfrequencies of flexural
vibrations becomes. Similar computations of the parameterΛ1 corresponding to the
longitudinal modes show that this effect is negligibly small. For instance, curves Λ1

versus δn presented in Fig. 4.1 practically merge in the range of variation of δn form
0 to 40.

Fig. 4.1 Frequency parame-
ters Λ1 (dotted line) and Λ2

(solid line) vs. parameter δn
at K = 0.
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Fig. 4.2 Frequency parameter
Λ2 vs. δn at different values of
K: 1 - K = 0, 2 - K = 0.02,
3 - K = 0.2, 4 - K = 0.4,
5 - K = 0.6.
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4.3.2 Medium-length Cylindrical Shells with Simply Supported

Edges

In this subsection, we consider a medium-length cylindrical shell with simply-
supported edges with and without diaphragm. The boundary conditions written
in terms of the displacement and stress functions are the following:

• for the edges α1 = 0, α1 = L with diaphragm (SSD boundary conditions)

χ̃ = Δχ̃ = Δ2χ̃ =
∂φ̃

∂α1
= 0,

∂2F̃

∂α2
2

= 0,
∂2F̃

∂α2
1

= 0, (4.88)

• for the edges without diaphragm (SSF boundary conditions)(
1− h2

β
Δ

)
χ̃ = 0,

∂2

∂α2
1

(
1− h2

β
Δ

)
χ̃ = 0,(

∂2

∂α2
1

+ ν
∂2

∂α2
2

)
χ̃− (1− ν)

∂2φ̃

∂α1α2
= 0,

2
∂2χ̃

∂α1∂α2
+
∂2φ̃

∂α2
1

− ∂2φ̃

∂α2
2

= 0,

(4.89)

∂2F̃

∂α2
2

= 0,
∂2F̃

∂α1α2
= 0. (4.90)
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4.3.2.1 Shell with Diaphragm on Edges: Solution in the Explicit Form

Variant (4.88) of the boundary conditions allows to write down a solution of Eqs.
(4.76) in the explicit form

χ̃ = χ0 sin
πnα1

L
sin

mα2

R
, F̃ = F0 sin

πnα1

L
sin

mα2

R
, (4.91)

where n,m are positive integers. Inserting (4.92) into Eqs. (4.76) gives

ω2 =
ε8π4EΔnm

R2ρ0
, (4.92)

where

Δnm =

(
1 + θKδnm
1 +Kδnm

)
δ2nm +

n4

l4π4ε8δ2nm
, K =

π2h2

βR2
,

δnm =

(
n2

l2
+
m2

π2

)
, l =

L

R
.

(4.93)

As seen from Eqs. (4.92), (4.93), the effect of the shear parameter K on the natural
frequencies remains the same as for the laminated plates (s. Subsect. 4.1.2): the
transverse shears leads to some reduction of all natural frequencies when compare
them with eigenfrequencies at K = 0.

4.3.2.2 Shell without Diaphragm on Edges: Asymptotic Solution

Consider the boundary conditions (4.89), (4.90) corresponding to the case when
diaphragm at both edges are absent. The boundary-value problem (4.76), (4.89),
(4.90) does not admit the explicit form of a solution, but this problem on low-
frequency vibrations is identical to the boundary-value problem on buckling of a
medium-length cylindrical shell under external pressure considered in Subsubsect.
3.2.1.3 (s. Chapt. 3) and may be solved by the same asymptotic approach.

As in Subsubsect. 3.2.1.3, we assume thatG ∼ h
3/2
∗ E. ThenK/π2 = ε2κ, where

κ ∼ 1. Intending to study low-frequency vibrations, we seek the required functions
χ̃, F̃ , φ̃ in the form of

χ̃ = RX(x) sin
(
ε−1pϕ

)
,

F̃ = ε4EhR2Φ(x) sin
(
ε−1pϕ

)
,

φ̃ = RS(x) cos
(
ε−1pϕ

)
,

(4.94)

where p ∼ 1, x = α1/R, ϕ = α2/R. Then the governing equations (4.76) are
rewritten as follows
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ε4(1− ε2κθΔε)Δ
2
εX +

d2Φ

dx2
− Λ(1− ε2κΔε)X = 0,

ε4Δ2
εΦ− d2

dx2
(1− ε2κΔε)X = 0,

(4.95)

1− ν

2
κ1ε

2ΔεS = S, (4.96)

where

Λ =
ρ0R

2ω2

ε4E
, Δε =

d2

dx2
− ε−2p2,

and the boundary conditions (4.89), (4.90) at x = 0, l take the form

(1− ε2κ1Δε)X = 0,
d2

dx2
(1− ε2κ1Δε)X = 0,(

ε2
d2

dx2
− νp2

)
X + ε(1− ν)p

dS

dx
= 0,

2εp
dX

dx
+ ε2

d2S

dx2
+ p2S = 0,

Φ = 0,
dΦ

dx
= 0.

(4.97)

Omitting details for construction of the asymptotic solution of the boundary-value
problem (4.95)-(4.97), we outline here only the resultant equations. The shear func-
tion S is defined as

S = ε

{
a1 exp

(
−ϑsx

ε

)
+ a2 exp

[
−ϑs(l − x)

ε

]}
, (4.98)

where

ϑs =

√
2

(1− ν)κ1
+ p2, a1 = − 2πnpA

l (p2 + ϑ2
s )
, a2 = (−1)na1. (4.99)

The displacement and stress functions X,Φ and eigenvalue Λ as well are evaluated
as

X = X(m) +X(e), Φ = Φ(m) + Φ(e),

X(m) = X0 + εX1 +O
(
ε2
)
, Φ(m) = Φ0 + εΦ1 +O

(
ε2
)
,

(4.100)

Λ = Λ0 + εΛ1 +O
(
ε2
)
, (4.101)

where the superscript (m) denotes functions corresponding to the main stress-strain
state with the zeroth index of variation ι1 = 0 in the axial direction, and functions
with the superscript (e) are the integrals of edge effects. All the required functions
are determined by the following equations
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X0 = A sin
πnx

l
, X1 = −Λ1p

6l3A

4π3n3
x cos

πnx

l
,

X(e) = ε

[
b1e

−r1
ε
x
+ b2e

−r1
ε

(l − x)
+O(ε)

]
,

Φj =
1 + κp2

p4
d2Xj

dx2
, Φ(e) =

κ1
ε2
X(e),

b1 = − 2πn(1− ν)ϑsp
2A

lr21 [1 + (1− ν)p2κ1] [p2 + ϑ2
s ]
, b2 = (−1)nb1,

(4.102)

and the frequency parameters Λ0, Λ1 are the following:

Λ0(p;n) =
π4n4

l4p4
+
p4(1 + θκp2)

1 + κp2
,

Λ1(p;n) =
8(−1)(n+1)π4n3(1 − ν)κ1ϑs

l5p2 [1 + (1− ν)p2κ1] (p2 + ϑ2
s )
,

(4.103)

where n is a number of semi-waves in the axial direction of the shell, and κ1 ≡ κ is
the shear parameter.

Contrary to the problem on buckling of a shell studied in Subsubsect. 3.2.1.3,
there here is no need to minimize Λ0(p;n) over a parameter p and a number n. The
only requirement for a parameter p is the following: it has to be of the order of the
unit (p ∼ 1) and chosen in such a way that m = ε−1p is a natural number. When
minimizing Λ0(p;n) over p at fixed n, we obtain the eigenvalue

Λ◦
0 = min

p
Λ0(p;n) = Λ0(p

◦;n) (4.104)

and its correctionΛ◦
1 = Λ1(p

◦;n) corresponding to eigenfrequencies from the lowest
part of spectrum at n ∼ 1.

Finally, one can write out the asymptotic formula for the natural frequencies

ω◦ = ε2

√
EΛ◦

0

R2ρ0

[
1 + εks +O

(
ε2
)]
, ks =

Λ◦
1

2Λ◦
0

. (4.105)

It is necessary to distinguish the effect of parameters κ and κ1 on eigenfrequencies.
A parameter κ shows the total influence of the transverse shears on the main stress-
state of a shell and the zeroth approximation for natural frequencies as well; as seen
from (4.103), it reduces all frequencies when comparing them with ones obtained
on the base of the model ignoring shears. And a parameter κ1 gives the impact
of shears generated only by boundary conditions and the edge effect integrals; its
influence has a local character and depend on a number of semi-waves in the axial
direction. If n is an odd number, then εΛ1 gives the positive correction for Λ0, and
this correction becomes negative for evenn. It should be noted that the natural modes
constructed above do not contain the classical (simple) edge effect integrals with the
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index of variation ι1 = 1/2, but they comprise the edge effect integrals (see above
the functions S(x) and X(e)(x)) with the smaller index of variation, ι1 = 1/4.

It is of interesting to compare formula (4.105) with Eqs. (4.92), (4.93) predicting
eigenfrequencies for a medium-length cylinder with the simply supported edges
supplied with diaphragms. We assume n = 1,m = ε−1p◦, then Eqs. (4.92), (4.93)
give the following asymptotic formulas

ω∗ = ε2

√
EΛ◦

0

R2ρ0
[1 + ε2k∗s +O(ε4)], k∗s =

Λ∗
2

2Λ◦
0

, (4.106)

where Λ∗
2 is calculated by

Λ∗
2 =

2π2n2p2 + 3π2θκn2p4

l2(1 + κp2)
− π2n2p4

l2(1 + κp2)2
− 2π6n6

l6p6

at p = p◦. It is seen that (4.105) and (4.106) coincide only in the zeroth approxi-
mation, and the next approximations give corrections of different orders. In (4.105),
the first correction of an order O(ε) is generated by the non-classical edge effects,
whereas the first correction in (4.106) is more less and not related to any edge effects.

Example 4.2. As an example, we consider the five-layered cylindrical shell of the
radius and length R = L = 0.9 m assembled from laminas which are made of
different materials:

• the first (innermost) layer (thickness h1 = 0.5 mm) is the ABS-plastic SD-0170,
• the fifth (outermost) layer (thickness h5 = 0.5 mm) is made of silicon nitrate

(ceramic),
• the second and fourth layers are of the same thicknesses h2 = h4 = 3.0 mm and

made of epoxy,
• the third soft layer of the thickness h3 is alloy-foam.

All materials are assumed as elastic ones with properties given in Example 3.7 (s.
Chapt. 3). Table 4.3 shows the influence of the soft alloy-foam core on the parameters
m∗,m◦, p◦ and the lowest frequencies ω∗, ω◦ for the SSD and SSF boundary
conditions. Here, ω∗ is calculated by (4.92), (4.93) which may be rewritten as

Table 4.3 Wave numbers m∗,m◦, parameters p◦, Λ◦
0 , Λ

◦
1 and the lowest frequencies ω∗, ω◦ for

the 5-layered cylindrical shell for the two variants of boundary conditions (SSD, SSF) vs. thickness
h3 of the alloy-foam core.

h3, mm m∗ ω∗, Hz p◦ m◦ Λ◦
0 Λ◦

1 ω◦, Hz

20 6 634 1.84 6 17.82 0.42 628
25 5 614 1.87 6 16.99 0.63 611
30 5 593 1.90 6 16.19 0.80 596
35 5 577 1.94 6 15.46 0.92 582
38 5 569 1.96 6 15.07 0.97 576
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ω∗ =
ε4π2

K

√
E

ρ0
Δ∗

nm, Δ∗
nm = min

n,m
Δnm(n,m) = Δnm(1,m∗).

The increase of the soft core thickness h3 (at fixed thicknesses of other layers) results
in the decrease of the first natural frequency for both variants of boundary conditions.
This effect is explained by some reduction of the reduced Young’s modulus with
increasing h3. Also, the correction εΛ◦

1 generated by the edge shears turns out
to be small, although it increases together with h3. When comparing results for
different boundary conditions, one can conclude: overlapping diaphragm on the
edges increases the lowest eigenfrequency.

4.4 Free Low-frequency Localized Vibrations of Medium-length

Cylindrical Shells

In this section, we will study free vibrations of elastic, medium-length, non-circular
cylindrical shells or panels. It is assumed that the Young’s and shear moduli are also
functions of the circumferential coordinate. As follows from study (Mikhasev et al,
2014), similar inhomogeneity of physical properties takes place if a laminated shell is
assembled from highly polarized MREs and/or placed in magnetic field. It has been
also shown (Mikhasev et al, 2014), that the eigenmodes of MRE-based sandwich
shells are very affected by applied magnetic field and may be characterized by strong
localization in some area on the shell surface. Here, using the asymptotic Tovstik’s
method (Tovstik, 1983) stated in Subsect. 3.2.2, we will give the formal construction
of these modes and find the corresponding natural frequencies. We note that the
problem will be considered in the elastic statement, and viscoelastic properties of
layers composing the shell will not be taken into account. The effect of viscoelastic
properties of MREs on both free and forced vibrations will be studied in detail in
the next chapter.

Let us introduce the dimensionless magnitudes by the following equations

α1 = Rs, α2 = Rϕ, R2 =
R

k2(ϕ)
,

χ̃ = Rχ∗, F̃ = ε4E◦hR2Φ∗, Λ =
ρR2ω2

ε4E◦
,

(4.107)

where E◦ is the characteristic value of the Young’s modulus. We make also the
following assumptions for the elastic modulus and shear parameter as well

E = E◦d(ϕ) = E◦[1 + εd1(ϕ)],
K

π2
= ε2κ0(ϕ), (4.108)

where d1, κ0 ∼ 1 as ε → 0. We note that the last estimate (4.108) for K holds if

G ∼ h
3/2
∗ E. The reduced Poisson’s ratio ν and a parameter η3 are assumed to be
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weakly dependent on coordinates and considered here as constants and parameter θ
is taken as a very small one.

Taking into account (4.107), (4.108) and above assumptions as well, the first two
equations from (4.76) are rewritten as

ε4d(ϕ)Δ2χ∗ + k2(ϕ)
∂2Φ∗

∂s2
− Λ[1− ε2κ(ϕ)Δ]χ∗ = 0,

ε4Δ2Φ∗ − k2(ϕ)
∂2

∂s2
[1− ε2κ(ϕ)Δ]χ∗ = 0, (4.109)

where d(ϕ), κ0(ϕ) are real functions of an angle ϕ.

Remark 4.2. Equations (4.76) have been derived on the supposition that the Young’s
and shear moduli as well as Poisson’s ratio are constant for all layers. If they are
functions of the curvilinear coordinates α1, α2, the governing equations like (4.76)
and (4.109) will contain additional terms which however do not give the contribution
into the asymptotic solution to be constructed below. Also, when deriving Eqs.
(4.109) from Eqs. (4.76), we have omitted the operatorΔ3χ̃ because of the smallness
of the shear parameter Kθ.

Consider here the simplest variant of boundary conditions

χ∗ = Δχ∗ = Δ2χ∗ = Φ∗ = ΔΦ∗ = 0 at s = 0, l (4.110)

corresponding to the simply supported edges with diaphragm. Let ϕ = ϕ0 be
the weakest generatrix in the neighbourhood of which one occurs localization of
eigenmodes. The required eigenmodes and eigenvalues are approximated by the
following series (Tovstik, 1983; Mikhasev and Tovstik, 2009)

χ∗ = sin
πns

l

∞∑
j=0

εj/2χj(ζ) exp
{

ı
(
ε−1/2pζ + 1/2bζ2

)}
,

Φ∗ = sin
πns

l

∞∑
j=0

εj/2Φj(ζ) exp
{

ı
(
ε−1/2pζ + 1/2bζ2

)}
,

(4.111)

Λ = Λ0 + εΛ1 + . . . . (4.112)

where ζ = ε−1/2(ϕ− ϕ0), p is a real wave parameter, b is an imaginary parameter
so that � b > 0 and χj , Φj are polynomials in ζ.

The functions κ0(ϕ), k2(ϕ), d1(ϕ) are expanded into series in the neighborhood
of the generatrix ϕ = ϕ0. In particular,

κ0(ϕ) = κ0(ϕ0) + ε1/2κ′0(ϕ0)ζ +
1

2
εκ′′0(ϕ0)ζ

2 + . . . (4.113)

All unknown parameters and functions appeared in (4.111), (4.112) are found in
such a way as in Subsect. 3.2.2. We outline here only the principal equations. The
substitution of (4.111), (4.112) into Eqs. (4.109) produces the sequence of algebraic
equations
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ς∑
j=0

LjXXX
T
ς−j , ς = 0, 1, 2, . . . , (4.114)

where Xj = (χj , Φj) are two-dimensional vectors, the superscript T denotes trans-
position and L0 is the 2× 2 matrix with the elements

l11 = p4 − Λ0[1 + κ0(ϕ0)p
2], l12 = −k2(ϕ0)π

2n2l−2,
l21 = k2(ϕ0)[1 + κ0(ϕ0)p

2]π2n2l−2, l22 = p4
(4.115)

and the matrix operators Lj for j ≥ 1 are expressed in terms of the matrix L0 by
Eqs. (3.111), where L∗ ≡ 0 and

N = −Λ1 + d1(ϕ0)p
4. (4.116)

Considering the homogeneous system of algebraic equations (4.114) at ς = 0,
one obtains

Φ0 = −g
1/2
n (ϕ0)

p4
[1 + p2κ0(ϕ0)], (4.117)

Λ0 = f(p, ϕ0) =
gn(ϕ0)

p4
+

p4

1 + κ0(ϕ0)p2
, (4.118)

where
gn(ϕ0) = π4n4l−4k22(ϕ0). (4.119)

As seen from (4.117), p �= 0. The compatibility condition for system (4.114) at ς = 1
implies the equations

fp = 0, fϕ = 0, (4.120)

which may be rewritten as follows

κ0(ϕ0)p
10 + 2p8 − 2gn(ϕ0)κ

2
0p

4 − 4gn(ϕ0)κ0p
2 − 2gn(ϕ0) = 0, (4.121)

g′n(ϕ0)[1 + κ0(ϕ0)p
2]− p10κ′0(ϕ0) = 0, (4.122)

where the subscript p, ϕ denote the partial derivatives of a function with respect
to the corresponding variables p, ϕ0, and the prime (′) means differentiation with
respect to ϕ0. These equations allow to find the wave number p◦ and the weakest
generatrix ϕ0 = ϕ◦

0. Finally, the compatibility condition for system (4.114) at ς = 2
yields the following equations

fppb
2 + 2fpϕb+ fϕϕ = 0, (4.123)

λ1 = −i(m+ 1/2)(fppb+ fpϕ) + p4d1(ϕ0), (4.124)

χ0 = Hm(z), z = [fϕϕf
−1
pp − fpϕf

−1
pp ]1/4ζ, (4.125)
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where Hm(z) is the Hermite polynomial of themth degree. In Eqs. (4.123)-(4.125),
the second derivatives of f with respect to p and ϕ0 are calculated at p = p◦, and
ϕ0 = ϕ◦

0.
Equation (4.123) is used for definition of b. It may be seen that the inequality

�b > 0 holds if the second differential of the function f at point p = p◦, ϕ0 = ϕ◦
0

is a positive definite quadratic form, i.e.

d2f = f◦
ppdp2 + 2f◦

pϕdpdϕ0 + f◦
ϕϕdϕ2

0 > 0. (4.126)

The superscribe ◦ denotes that the function f and its partial derivatives are calcu-
lated at p = p◦, ϕ0 = ϕ◦

0. The conditions (4.120), (4.126) indicate that only eigen-
modes corresponding to the lowest spectrum are considered here. For the inequality
(4.126) to be hold, a solution of Eq. (4.120) should be chosen in such a way that
f◦
pp = fpp(p

◦, ϕ◦
0) > 0. To determine the parameter Λς and functions χς(ζ), Φς(ζ)

appearing in (4.111), (4.112) for ς ≥ 1, one must consider responding system of
nonhomogeneous equations (4.114) in the (ς + 2)nd approximation. However, the
formal procedure for constructing these functions is no longer for ς ≥ 4 because
the correction introduced by appropriate approximations into solution (4.111) at the
sixth step is of the order ε2, which is the same as the error of the governing equations
(4.76).

Consider two particular cases.

A) Let k2 = k2(ϕ) (noncircular shell or panel) and κ0, d1 = 0 are constants. Here
the weakest line ϕ = ϕ◦

0 is the generatrix with the minimum curvature and found
from the conditions

k′2(ϕ
◦
0) = 0, k′′2 (ϕ

◦
0) > 0, (4.127)

and the natural frequency and parameter b are determined by equations

ω = ωcω
∗, ω∗ = (f◦)1/2

[
1 + εΞ +O(ε2)

]

Ξ =
(1 + 2m)π2n2

√
f◦
ppk

′′
2 (ϕ

◦
0)

4l2f◦(p◦)2
,

b◦ =
iπ2n2

l2(p◦)2

√
k′′2 (ϕ

◦
0)

f◦
pp

,

(4.128)

where ωc = ε2R−1(E◦/ρ)1/2 is the characteristic frequency and ω∗ is the
dimensionless frequency parameter.

B) If k2 is constant (circular shell or panel), and the shear parameter κ(ϕ) is a
function, then the weakest line is the one at which the reduced shear parameter
K approaches the local maximum:

κ′0(ϕ
◦
0) = 0, κ′′0(ϕ

◦
0) < 0. (4.129)

As follows from Eqs. (2.59), (4.93), conditions (4.129) are equivalent to the ones
of the local minimum for the reduced shear modulus G. Here, one obtains the
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following equations for the dimensionless parameters Ξ and b◦

Ξ =
1

2f◦

⎡
⎣ (1 + 2m)(p◦)3

√
−f◦

ppκ
′′
0(ϕ

◦
0)

2[1 + (p◦)2κ0(ϕ◦
0)]

+ d1(ϕ
◦
0)(p

◦)4

⎤
⎦ ,

b◦ =
i (p◦)3

1 + (p◦)2κ0(ϕ◦
0)

√
−κ′′0(ϕ

◦
0)

f◦
pp

(4.130)

If we ignore the shear deformations (assumingκ0 = 0), then Eqs. (4.128), (4.130)
are reduced to analogues equations obtained before for the Kirchhoff-Love theory-
based thin elastic isotropic shell (Mikhasev and Tovstik, 2009).

Equations (4.128) and (4.130) show that increasing the parameter k′′2 (ϕ
◦
0) or κ′′(ϕ◦

0)
results in increasing the correction ω∗ − ω∗

0 for the natural frequency, where
ω∗
0 = (f◦)1/2, and leads to growing the power of localization of eigenmodes.

4.5 Localized Vibrations of a Cylindrical Shell Pre-stressed by

Distributed Axial Forces

In this section, we will study free localized vibrations of a thin, axially prestressed,
multi-layered circular cylindrical shell consisting of N transversely isotropic lay-
ers (Mikhasev and Zgirskaya, 2001; Korchevskaya et al, 2004; Korchevskaya and
Mikhasev, 2006; Mikhasev, 2017). It is assumed that simply supported edges are
under action of a nonuniform axial forces T ◦

11(α2) as shown in Fig. 3.11. The gov-
erning equations describing free vibrations of the pre-stressed laminated cylindrical
shell is readily obtained from Eqs. (2.160) by introducing the inertia term into the
first equation

Eh3η3
12(1− ν2)

(
1− θh2

β
Δ

)
Δ2χ+

1

R

∂2F

∂α2
1

+ T ◦
11(α2)

∂2

∂α2
1

(
1− h2

β
Δ

)
χ

+ρh
∂2

∂t2

(
1− h2

β
Δ

)
χ = 0,

Δ2F − Eh

R

∂2

∂α2
1

(
1− h2

β
Δ

)
χ = 0, w =

(
1− h2

β
Δ

)
χ.

(4.131)

Here, R is the radius of the reference surface of the laminated shell, and other
notations are as above. In terms of the displacement and stress functions, the boundary
conditions for simply supported edges are as follows

χ = �χ = �2χ = F = �F = 0. (4.132)

Inhomogeneity of the axial force T ◦
11 results in the appearance of an area at

the shell surface with large compressive axial stresses. If the axial stress resultant
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turns out to be sufficiently large and reaches the critical buckling value T ∗
11, then, as

shown in Chapt. 3, the shell buckles in the neighbourhood of the weakest generatrix
α2 = α◦

2, where maxα2 T
◦
11(α2) = T ∗

11. But if T ◦
11(α2) < T ∗

11 for any α2, then
the pre-buckling compressive forces distorts the natural modes and may result in
strong localization of some ones. To study these modes, we use the same asymptotic
approach as in Subsect. 3.3.3.

To take into account the influence of the shear parameter in the zeroth order
approximation, we assume the following relations

K

π2
= μ2κ,

Kθ

π2
= μ3τ, κ, τ ∼ 1 as μ → 0, (4.133)

which are valid for a sufficiently thin shell with the reduced shear modulusG ∼ h∗E.
Here

K =
π2h2

R2β
, μ4 =

h2η3
12R2(1− ν2)

(4.134)

The required functions χ and Φ are sought in the form

χ = Rχ̂(s, ϕ) sinωt, F = μ2EhRΦ̂(s, ϕ) sinωt. (4.135)

Then, Eqs. (4.131) can be rewritten as follows

μ4(1− μ3τ�)�2χ̂+ μ2 ∂
2Φ̂

∂s2
+ μ2t1(ϕ)

∂2

∂s2
(1 − μ2κ�)χ̂

−Λ(1− μ2κ�)χ̂ = 0,

μ2�2Φ̂− ∂2

∂s2
(1 − μ2κ�)χ̂ = 0,

(4.136)

where

s =
α1

R
, ϕ =

α2

R
, l =

L

R
, t1(ϕ) =

T ◦
11(Rϕ)

μ2Eh
, Λ =

R2ρ

E
ω2, (4.137)

and the boundary conditions for functions χ̂, Φ̂ will be

χ̂ = �χ̂ = �2χ̂ = Φ̂ = �Φ̂ = 0. (4.138)

The problem is to find a positive value ofΛ for which the system of equations (4.136)
has a nontrivial solution satisfying the boundary conditions (4.138).

4.5.1 Asymptotic Solution

A formal asymptotic solution of the boundary-value problem (4.136), (4.138) is
constructed in the following form, s. Eqs. (3.164) and (3.165),
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χ̂ = sin
rms

μ
χm(ξ, μ), (4.139)

χm =

∞∑
j=0

μj/2χmj(ξ) exp

[
i

(
μ−1/2pξ +

1

2
bξ2
)]

,

Λ = Λ0 + μΛ1 + μ2Λ2 + . . . .

(4.140)

where (χ̂⇒ Φ̂, χm ⇒ Φm, χmj ⇒ Φmj)

ξ = μ−1/2(ϕ− ϕ0), �b > 0,

|χmj |, |Φmj |, Λj , p, |b|, rm =
μπm

l
∼ 1 as μ → 0,

(4.141)

and χmj(ξ), Φmj(ξ) are polynomials in ξ. Here, ϕ = ϕ0 is a weakest generatrix
which is unknown. Functions (4.139), (4.140) approximate the eigenmodes localized
in a vicinity of the line ϕ = ϕ0.

The substitution of Eqs. (4.139)-(4.141) into Eqs. (4.136) produces the sequence
of algebraic equations

j∑
k=0

LkXj−k = 0, j = 0, 1, 2, . . . (4.142)

where Xj = (ξmj , Φmj)
T, and L0 is the 2× 2 matrix with the elements

l11 = (r2m + p2)2 − [1 + κ(r2m + p2)][r2mt1(ϕ0) + Λ0],

l12 = −r2m, l21 = r2m[1 + κ(r2m + p2)], l22 = (r2m + p2)2,
(4.143)

and the matrix operators Lj for j ≥ 1 are expressed by the matrix L0 in the same
way as in Sect. 3.2, s. Eqs. (3.111), but now the operator N is the 2× 2 matrix with
the unique nonzero element (n12 = n21 = n22 = 0)

n11 = τ(r2m + p2)3 − Λ1[1 + κ(r2m + p2)]. (4.144)

The sequence of Eqs. (4.142) serves to determine all unknown functions and param-
eters in (4.139) and (4.140). Because the procedure for seeking these magnitudes
is the same as in Subsect. 3.3.2, we omit transitional calculations here and give
only the principle equations. Considering the homogeneous system of algebraic
equations (4.142) for j = 0, one obtains the zeroth-order approximation for the
frequency parameter

Λ0 = f(p, rm, ϕ0) =
(r2m + p2)2

[1 + κ(r2m + p2)]
+

r4m
(r2m + p2)2

− t1(ϕ0)r
2
m. (4.145)
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Holding a number m (and thus, a parameter rm) fixed, we minimize the func-
tion (4.145)over p andϕ. The necessary conditions of this minimum are the following
equations

∂f

∂p
= 0,

∂f

∂ϕ0
= 0 (4.146)

which serve for a determination of p◦ and ϕ◦
0. When solving Eqs. (4.146), three

different cases appear

• rm > z0 (case A),
• rm < z0 (case B),
• rm ≈ z0, (case C),

were z0 is a root of the algebraic equation

−2(1 + κrmz)
2 + z4(2 + κrmz) = 0 (4.147)

with respect to z. Equation (4.147) contains a parameter κ accounting for shears in
the sandwich. If shears are disregarded (κ = 0), its root is z0 = 1.

At first, we consider the cases A) and B). For rm > z0 (case A), we derive

Λ◦
0 = min

p,ϕ0

f(p, rm, ϕ0) = 1− t1(ϕ
◦
0)r

2
m +

r4m
1 + κr2m

, p◦ = 0, (4.148)

and for rm < z0 (case B), one has

Λ◦
0 = min

p,ϕ0

f(p, rm, ϕ0) =
z20r

2
m

1 + κrmz0
+
r2m
z20

− t1(ϕ
◦
0)r

2
m,

p◦ =
√
rm(z0 − rm). (4.149)

Note that Eqs . (4.148), (4.149) are identical at rm = z0. For both cases, the weakest
generatrix ϕ = ϕ◦

0 is determined from the following conditions

t′1(ϕ
◦
0) = 0, t′′1(ϕ

◦
0) < 0. (4.150)

Now, a solution of the homogeneous system of equations (4.142) at j = 0 may
be written as

X0 = P0(ξ)Y0, (4.151)

where P0(ξ) is an unknown polynomial in ξ, and Y0 = (1,−l11/l12) is the vector.
In the first-order approximation (j = 1), one has the non-homogeneous system

of equations (4.142). When taking Eqs. (4.146) into account, this system turns
into identities. Consider the non-homogeneous system (4.142) in the second order
approximation (j = 2). The compatibility condition for this system generates the
formula

b = i
√
fϕϕ/fpp (4.152)

and the equation for P0 is
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d2P0

dξ2
+ ib

(
2ξ

dP0

dxi

)
+

2Λ1

fpp
P0 + IA(B) = 0, (4.153)

where

IA =
2τr6m

fpp(1 + κr2m)
P0 at rm > z0 (case A) (4.154)

IB =
2τr3mz

3
0

fpp(1 + κrmz))
P0 at rm < z0 (case B) (4.155)

If rm = z0, then IA = IB . For both cases

P0(ξ) = Hn

(√
fϕϕ/fppξ

)
. (4.156)

Now we can calculate the complex parameter b characterizing the rate of the
amplitude decrement far from the generatrix ϕ = ϕ◦

0. If rm > z0 (case A), then

b = i

√
r4m(1 + κr2m)2[−t′′1(ϕ◦

0)]

2r4m(2 + κr2m)− 4(1 + κr2m)2
, (4.157)

and for rm > z0 (case B), one obtains

b = i

√
rm(1 + κr2m)3[−t′′1(ϕ◦

0)]

4(z0 − rm)[8 + 9κrmz0 + 3(κrmz0)2]
. (4.158)

It can be seen that
lim

rm→z0
|b| = +∞

for both cases (A) and (B). Thus, requirement (4.141) for b does not hold if a root
rm is close to z0. We will not consider the higher-order approximations because
system (4.131) does not contain some terms which affect the third and subsequent
approximations.

Now we can write equations for the set of eigenvalues. If rm > z0, we derive

Λ(n,m) = 1− t1(ϕ
◦
0)r

2
m +

r4m
1 + κr2m

+ μ

{
(1 + 2n)

√−2t′′(ϕ◦
0)[r

4
m(2 + κr2m)− 2(1 + κr2m)2]

2(1 + κr2m)

+
τr6m

1 + κr2m

}
+O(μ2),

and for rm < z0 one has



192 4 Free Vibrations of Elastic Laminated Beams, Plates and Cylindrical Shells

Λ(n,m) =
z20r

2
m

1 + κrmz0
+
r2m
z20

− t1(ϕ
◦
0)r

2
m

+ μ

{
(1 + 2n)

√−t′′(ϕ◦
0)r

3
m(z0 − rm)[8 + 9κrmz0 + 3(κrmz0)2]

(1 + κr2m)3

+
τr3mz

3
0

1 + κr2m

}
+O(μ2).

The corresponding eigenmodes will be the following: if rm > z0, then

χ(n,m) = sin
rms

μ
exp

{
ib(ϕ− ϕ◦

0)
2

2μ

}{
Hn

[√
ib

μ
(ϕ− ϕ◦

0)

]
+O(μ1/2)

}
,

(4.159)
and for rm < z0, one obtains

χ(n,m) = sin
rms

μ
exp

{
i

μ

[√
rm(z0 − rm)(ϕ− ϕ◦

0)
]}

× exp

{
ib(ϕ− ϕ◦

0)
2

2μ

}{
Hn

[√
ib

μ
(ϕ− ϕ◦

0)

]
+O(μ1/2)

}
.

(4.160)

It may be seen that the eigenmodes (4.159) and (4.160) are different for the cases
(A) and (B). If rm > z0 (case A), the eigenfunctions decay exponentially without
oscillations (p◦ = 0), and for rm < z0 (case B) the localized eigenmodes have a
large number (of the order μ−1) of waves. If rm is close to z0, then Eqs. (4.159)
and (4.160) are not applicable. The case (C), when rm � z0, deserves the special
consideration.

4.5.2 Reconstruction of Asymptotic Solution

Let parameter rm be close to a root z0 of Eq. (4.147). In this case, a solution of the
boundary-value problem (4.136) and (4.138) is found again in the form of (4.139).
The substitution of (4.139) into Eqs. (4.136) results in the following system of
ordinary differential equations

(1− μτ�m)�2
mχm − rmΦm − (t1r

2
m + Λ)(1− κ�m)χm − Λ = 0,

�2
mΦm + r2m(1− κ�m)χm = 0,

(4.161)

where

�m = μ2 d2

dϕ2
− r2m (4.162)

is the differential operator.
Consider Eq. (4.147) again. At rm = z0, it is reduced to the following algebraic

equation
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κr6m + 2r4m − 2(1 + κr2m)2 = 0. (4.163)

Let rm = r∗ be its root. We introduce the following estimations

rm = r∗ + μ̃r′, Λ = Λ∗ + μ̃2Λ′, ϕ− ϕ◦
0 = μ̃η,

t1(ϕ) = t1(ϕ
◦
0) +

1

2
μ̃2t′′1(ϕ

◦
0)η

2 + . . .
(4.164)

where r′, Λ′ ∼ 1 as μ̃ → 0, and

μ̃ = μ2/3 =

[
h2η3

12R2(1− ν2)

]1/6
(4.165)

is a new small parameter.
We will seek a solution of Eqs. (4.161) in the form of series

χm =

∞∑
k=0

μ̃kχ(k)
m (η), Φm =

∞∑
k=0

μ̃kΦ(k)
m (η), (4.166)

where

χ(k)
m , Φ(k)

m ∼ 1, and χ(k)
m , Φ(k)

m → 0 as η → ±∞. (4.167)

In the zeroth- and first-order approximations, Eqs. (4.161) turn into identities if the
following condition holds

Λ∗ = 1− t1(ϕ
◦
0)r

2
∗ +

r4∗
1 + κr2∗

. (4.168)

Note that Eq. (4.168) coincides with Eqs. (4.148) and (4.149) at rm = r∗ = z0.
Equation (4.168) gives the zeroth-order approximation for the eigenvalue Λ. The

eigenfunctions χ(0)
m and Φ(0)

m remain undefined at this step.
Let us consider the second-order approximation. When taking Eq. (4.168) into

consideration, one gets the following equation with respect to χ(0)
m

a4
d4χ(0)

m

dη4
+ a2(r

′)
d2χ(0)

m

dη2
+ [a0(r

′)− aηη
2 − Λ′aλ]χ

(0)
m = 0, (4.169)

where

a4 = 1 +
κ

r2∗
+

3

r4∗
, a2(r

′) = −4r∗r
′ + 2κr∗r

′ − 4r′

r∗
,

a0(r
′) = (r′)2

[
6r2∗ − 1− κr2∗

(
5 +

r2∗
1 + κr2∗

)]
,

aη =
1

2
r2∗(1 + κr2∗)t

′′
1(ϕ

◦
0), aλ = (1 + κr2∗).

The problem is to find such values of r′, Λ′(r′) which satisfy the following condition
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χ(0)
m → 0 as η → ±∞. (4.170)

Applying Fourier transform

χ(0)
m (η) =

1√
2π

+∞∫
−∞

χF(ω̃)eiω̃ηdω̃, (4.171)

we come to the second order equation for function χF

d2χF

dx2
+
{
Λ̃− [x4 + 2γx2 + γ2Q(κ)]

}
χF = 0, (4.172)

where

x =
ω̃

α(κ)
, γ = C(κ)r′, Λ̃ = Λ′

{
1 + κr2∗

(r4∗ + κr2∗ + 3)[−t′′1(ϕ◦
0)]

1/2

}1/3

,

α(κ) =

[
− t′′1(ϕ

◦
0)r

6
∗(1 + κr2∗)

2(r4∗ + κr2∗ + 3)

]1/6
,

C(κ) =
2 + 2r4∗ − κr4∗

r∗
[− 1

2 t
′′
1 (ϕ

◦
0)(1 + κr2∗)(r

4
∗ + κr2∗ + 3)2

]1/3 ,
Q(κ) = 1 +

2A(κ)α2(κ)

C2(κ)t′′1 (ϕ
◦
0)r

2
∗(1 + κr2∗)

,

A(κ) =
1− (1− κ)r2∗(6 + 5κr2∗)

1 + κr2∗
+

(2 + 2r4∗ − κr4∗)
2

r2∗(r
4
∗ + κr2∗ + 3)

.

For each γ, there is a countable set of values Λ̃j(j = 0, 1, . . .) of Λ̃ for which there
exist non-trivial solutions of Eq. (4.172) such that

χF → 0 as x→ ±∞. (4.173)

It may be seen from Eq. (4.172) that the eigenvalues Λ̃j depend on both the fixed
value of the shear parameter κ and the axial stress resultant t1. In Fig. 4.3, the first
two eigenvalues Λ̃0 and Λ̃1 versus a parameter γ are presented for κ = 0.5 and
t1(ϕ) = 0.5(1 + cosϕ). As seen from Fig. 4.3, for parameters accepted above, the
function Λ̃ has the minimum value Λ̃0 ≈ 0.924 at γ ≈ −0.380. Here r∗ ≈ 1.220 and
Λ∗ ≈ 0.782, and applying Eqs. (4.173) one gets Λ′

min ≈ 0.553, and r′ ≈ −0.217.
Then, the wave parameter rm from Eq. (4.164) and the minimum eigenvalue Λ will
be as follows

rm ≈ 1.22− 0.217ε2/3, Λmin ≈ 0.782 + 0.553ε4/3. (4.174)

Table 4.4 shows parameters rm, z0, Λ∗, Λ
′, and Λmin versus κ for the case (C)

when rm ≈ z0. It may be seen that increasing the shear parameter κ leads to a
decrease of the minimum natural frequency of the laminated cylindrical shell.
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Table 4.4 Minimum eigenvalue Λ versus κ at rm ≈ z0 (after Mikhasev, 2017).

κ rm z0 Λ∗ Λ′ Λmin

0.037 0.993 1.014 0.990 0.590 1.005
0.100 1.017 1.039 0.972 0.586 0.986
0.250 1.077 1.102 0.917 0.575 0.931
0.400 1.142 1.171 0.843 0.563 0.857
0.500 1.186 1.220 0.782 0.553 0.796
0.600 1.229 1.271 0.710 0.539 0.723

Example 4.3. We consider a three-layered cylindrical shell with radius R = 150
mm and length L = 450 mm. The first and third layers have the thickness
h1 = h3 = 0.3 mm and are made of aluminium with the Young’s mod-
ulus E1 = E3 = 70, 3 GPa, Poisson’s ratio ν1 = ν3 = 0.345, and density
ρ1 = ρ3 = 2.7 · 10−6 kg/mm3, and the second one is an epoxy matrix with
h2 = 0.8 mm, E2 = 3, 45 GPa, ν2 = 0.3 and ρ2 = 1.2 · 10−6 kg/mm3. The
dimensionless axial membrane stress resultant is assumed as follows

t1(ϕ) =
1

2
(1 + δ cosϕ). (4.175)

Then the generatrix ϕ = ϕ◦
0 = 0 will be the weakest one.

Figure 4.4 shows the dependence of the zeroth-order approximation of the eigen-
valueΛ0 upon both the shear parameterκ and parameter δ atm = 20 (rm = 1.3). In
this case rm > z0 and all calculations were performedby equations corresponding to
the variant (A). It may be seen that the eigenvalueΛ0 is the monotonically decreasing
function of both the axial force (in a neighborhood of the weakest generatrix) and
the shear parameter κ.

Figure 4.5 demonstrates the nonlinear behavior of the relative correction Λ1/Λ0

for the eigenvalue Λ at varying the shear parameter κ for different values of δ.
As accepted, the increase in parameter % characterizing inhomogeneity of loading

Fig. 4.3 First two eigenvalues
Λ̃0, Λ̃1 vs. parameter γ (after
Mikhasev, 2017).

Λ̃0, Λ̃1

γ

Λ̃1

Λ̃0
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involves the increase in the correction Λ1/Λ0 for any fixed κ. But for any fixed
δ, there exists the maximum of Λ1/Λ0 being the function of κ. Approximately at
κ > 0.65, the influence of inhomogeneity in loading on the natural frequencies
becomes negligible.

Example 4.4. Let us consider again the three-layered cylindrical shell with the same
geometrical and physical parameters as in the previous Example. In Table 4.5, the
dependence of the parameters �b, Λ0 (or Λ∗ at rm ≈ z0), and Λ1/Λ0 (or Λ′/Λ∗ for
rm ≈ z0) on the wave parameter rm found by two different asymptotic approaches
is presented. The calculations have been performed at κ = 0.5 for the nonuniform
dimensionless stress resultant t1(ϕ) = 0.5(1 + cosϕ). It may be seen that Λ1/Λ0

decreases and �b increases as rm → z0 = 1.077.

All the problems on free vibrations of laminated beams, plates and cylindrical shells
considered in this chapter have revealed the general feature for the ESL model taking
into account transverse shears: the incorporation of shears into the shell model
reduces all natural frequencies, this effect being stronger for eigenmodes with a large
number of waves and weaker for modes having a small number of waves. Since the
eigenmodes for low-frequency vibrations of thin medium-length cylindrical shells
are characterized by a large number of waves in the circumferential direction, than
the shear induced lowering of natural frequencies may be too significant for these
modes (corresponding to low-frequency vibrations). The outcomes obtained in this
chapter, including the derived equations for natural frequencies, will be used below
to study free and forced vibrations of laminated thin-walled structures assembled
from the viscoelastic smart materials (MREs and ERCs).

Fig. 4.4 Zero approximation
Λ0 of the eigenvalue Λ vs. the
shear parameter κ.
δ = 0.8 - curve 1,
δ = 1 - curve 2,
δ = 1.2 - curve 3
(after Mikhasev, 2017).

Table 4.5 Parameters �b, Λ0 (or Λ∗), Λ1/Λ0 (or Λ′/Λ∗) vs. rm (after Mikhasev, 2017).

Cases rm �b Λ0(Λ∗) Λ1/Λ0(Λ′/Λ∗)
B 0.844 0.285 0.575 1.117
B 0.909 0.347 0.656 0.942
B 0.974 0.448 0.741 0.752
C 1.077 - 0.917 0.627
A 1.360 1.588 1.490 0.552
A 1.490 1.026 1.949 0.564

Λ̃0

κ
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Fig. 4.5 Normalized correc-
tion Λ1/Λ0 vs. the shear
parameter κ.
δ = 0.8 - curve 1,
δ = 1 - curve 2,
δ = 1.2 - curve 3
(after Mikhasev, 2017).
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