
Chapter 1

Introduction

Abstract Laminates and sandwiches belong to lightweight structures of rather thin
cross sections in comparison with the other structural dimensions. Both have a
layered structure. The first one are composed of many layers (in modern structures
up to 40 - 60) each of them have as usual the same thickness and properties. The
second one are composed of three layers and in classical applications the outer
layers are made of uniform (homogeneous) materials, while the inner layer consists
either of a soft, relatively continuous material (different foams) or of a structurally
complicated, inhomogeneous material (cellular fillers, corrugations). However, in
multilayered structures each layer is a composite material itself. A short introduction
into the modelling of composite structures is given in Chapt. 1. In Sect. 1.1 some
general formulation approaches of plate and shell theories are presented. In Sect. 1.2
an introduction to composite modelling is given. Section 1.3 is devoted to modeling
of laminated and sandwich plates and shells.

1.1 Derivation Approaches for Theories of Plates and Shells

Modeling and calculation of three- and multilayered structures is a complicated
problem of the mechanics of deformable solid bodies. Since they are as usual thin
in on direction (thickness) they belong to the so-called surface structures. In the
classical sense two families of structures can be distinguished: plates and shells.
Both families are characterized by the assumption that the thickness is smaller in
comparison with other spatial dimensions and this allows to approximate the three-
dimensional solid mechanics problem by a two-dimensional. Within the geometrical
linear theory for isotropic plates the in-plane and the out-of-plane behavior can be
decoupled. With respect to the shell curvature such decoupling for shells is not
possible without additional assumptions.

Let us present at first the derivation approaches for the governing equations of the
theories of plates and shells. In Sects. 1.2 and 1.3 the special cases of laminate and
sandwich structures will be discussed starting with the description of composite ma-
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terials and a brief introduction of averaging methods resulting in effective properties
of composites.

One of the basic problems in engineeringmechanics is the analysis of the strength,
the vibration behavior and the stability of structural elements with the help of a
structural model (Altenbach and Meenen, 2008). In this context, structural models
are approximations of a general continuum theory. The following classification of
structural models can be given

• by certain geometrical (spatial) dimensions,
• by certain applied loads and
• by the use of kinematical and/or statical hypotheses approximating their mechan-

ical behavior.

Structural elements and models for their analysis can be categorized into three main
classes, depending on the ratio of their characteristic dimensions. The first class is
the class of three-dimensional structural elements, which can be defined as follows:

Definition 1.1 (Three-dimensional structural element).

A three-dimensional structural element has three spatial dimensions of the same
order, no predominant dimension exists.

Typical examples of geometrically simple, compact structural elements in the theory
of elasticity are cube, prism, cylinder, sphere, etc. The second basic class is the class
of two-dimensional structural elements which can be defined as follows:

Definition 1.2 (Two-dimensional structural element).

Two-dimensional structural elements are bodies, which have two spatial dimensions
of comparable size, and a third spatial dimension, the so-called thickness, which is
at least one order of magnitude smaller.

Typical examples of two-dimensional structural elements in civil engineering and
structural mechanics are membrane, disc, plate, shell, folded structure, etc. It should
be noted that the applied loading results in various sub-classes: for plane structures
one should distinguish the in-plane and the out-of-plane loading cases; for curved
structures only in some special cases such split makes sense. The last class is related
to the one-dimensional structural elements which can be defined as follows:

Definition 1.3 (One-dimensional structural element).

Two spatial dimensions, which can be related to the cross-section, have a comparable
size. The third dimension, which is related to the length of the structural element, is
at least one order of magnitude larger than the size of the cross-section dimensions.

Typical examples in engineering mechanics are rod, truss, beam, torsion bar, etc.
Like in the case of two-dimensional structural elements the applied loading allows
to distinguish special cases (tension/compression, bending, torsion).

In general, it is possible to introduce other classes. For example, in shipbuilding,
thin-walled structural elements are often used. These are thin-walled light-weight
structures with a special profile and they require an extension of the classical one-
dimensional structural models:
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Definition 1.4 (Quasi-onedimensional structural elements).

If the spatial dimensions are of significantly different order and the thickness of the
profile is small in comparison to the other cross-section dimensions, and the cross-
section dimensions are much smaller in comparison to the length of the structure
one can introduce quasi-onedimensional structural elements.

Suitable theories for the analysis of quasi-onedimensional structural elements are
the thin-walled beam theory (Vlasov-Theory) and the semi-membrane theory or
generalized beam theory (Altenbach et al, 1994, 2018). Typical thin-walled cross-
section profiles are closed cross-section profiles, open cross-section profiles, open-
closed cross-section profiles, etc.

Here the focus is on the second and third class of structural elements. Since the
characteristic length in thickness direction is much smaller than the characteristic
length in the surface direction, for a two-dimensional structures it is tempting to look
for procedures that eliminate the thickness dimension (reduction of the coordinates).
From the mathematical point of view it is obvious that instead of a three-dimensional
coupled partial differential equations, one can analyze a two-dimensional problem,
which is described by two spatial coordinates only. These coordinates represent
a surface in three-dimensional space, and a procedure has to be developed that
maps the real behavior in thickness direction onto the mechanical behavior of the
surface. The transition from the three-dimensional to the two-dimensional problem
is non-trivial, but once a two-dimensional theory has been obtained, the solution
effort decreases significantly and the possibilities to solve problems analytically
are increased (Altenbach and Meenen, 2008). One-dimensional theories are here
presented as special cases of the two-dimensional one.

During the last 50 years various scientific papers, textbooks, monographs and
proceedings on the state of the art and recent developments in the plate and shell
theories were published, for example, in Altenbach et al (2016, 2010); Grigolyuk
and Seleznev (1973); Libai and Simmonds (1998); Naghdi (1972); Reissner (1985);
Rothert (1973). In addition, new developments were discussed on conferences and
courses, s. Altenbach and Eremeyev (2011); Altenbach and Mikhasev (2014); Jaiani
and Podio-Guidugli (2008); Kienzler et al (2004), among others. From these publi-
cations one can conclude that for the formulation of any plate or shell theory there
are two starting points:

• the reduction technique, which starts from the equations of three-dimensional
(3D) continuum and develops approximate two-dimensional (2D) continuum the-
ories; and

• the direct approach, which starts from a rigorous 2D continuum theory (de-
formable surface)

If one starts from the 3D continuum theory, the following approaches can be distin-
guished:

• the use of hypotheses to approximate the three-dimensional equations (e.g. by
introducing these hypotheses into the principle of virtual displacements),

• the use of mathematical approaches, such as series expansions, special functions
or asymptotic integration, or
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• the formulation of consistent theories

All these approaches have their own advantages and disadvantages, and it is difficult
to argue what is the best method for deriving a plate or shell theory. Additionally,
in many cases different derivation methods result in identical or similar sets of
governing equations.

Theories which are based on hypotheses are preferred by engineers because of
their simplicity. For example, there is a huge number of theories which are based
on displacement assumptions. Note that the three displacements in the classical
three-dimensional continuum are split into in-plane displacements and transverse
displacement (deflection). Probably the first theory of plates based on displacement
assumptions was presented by Kirchhoff (1850). Kirchhoff used similar hypotheses
for the kinematics as in the Euler-Bernoulli beam theory. He ignored the in-plane
displacements and with the deflection w which was assumed to be independent from
the thickness coordinate he got the following kinematical constraints: no transverse
shear and no thickness changes. The final version of his theory he presented, for
example, in Kirchhoff (1883)

D��w = q,

where the bending stiffness1 which is assumed to be constant

D =
Eh3

12(1− ν2)

is a combination of material parameters (E is the Young’s modulus and ν is the
Poisson’s ratio) and a property of the geometry (h is the plate thickness). � denotes
the Laplace operator (� =∇∇∇·∇∇∇ with∇∇∇ as the Hamilton (nabla) operator) and q the
transverse load. It is interesting that Kirchhoff’s approach has shown immediately
that any approximation results in difficulties. Kirchhoff’ final equation was a partial
differential equation of fourth order for the deflection. But it was well-known that one
has satisfy three boundary conditions in the general case. Kirchhoff solved this prob-
lem introducing a combination of the transverse shear force and the torsion moment
(Kirchhoff’s Ersatzkraft) and special edge forces. Kirchhoff’s theory failed if we have
thick plates or sandwiches since the constraints of the kinematics are no more valid.
The theory was seriously improved about 100 years later (s., for example, Reissner,
1944, 1945; Hencky, 1947; Mindlin, 1951). In the various improved theories, similar
to Timoshenko’s beam theory additional degrees of freedom (cross-section rotations)
were introduced, so that transverse shear was considered in an approximate sense.
Such type of theory is named first order shear deformation theory. The introduction
of independent rotations is in some cases not enough, since it is assumed that any
cross-section will be plane before and after deformation. To solve this problem, Am-
bartsumyan (1970) introduced an additional distribution function in the thickness
direction. A less restrictive approximation was proposed by Levinson (1980) and
Reddy (1984b), among others. These refined theories which named third order shear

1 Note that the term stiffness always means a combination of material parameters and geometrical
characteristics.
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deformation theories can be understood as theories that introduce additional degrees
of freedom, or as some part of a power series expansion. The first suggestion of this
type was done by Lo et al (1977). A generalization of the power series approach was
given in Meenen and Altenbach (2001).

An alternative approach considering assumptions for the stress state was suggested
by Reissner (1944, 1945). It can be shown that Mindlin’s and Reissner’s plate theories
contain partly identical equations, but the coefficients take slightly different values
and their physical interpretation is not the same. The similarities are so great that in
the Finite Element references as usual the name Reissner-Mindlin element is used.

Pure mathematical approaches are mostly based on power series, trigonometric
functions, on special functions, asymptotic integration, etc. (s., e.g., Kienzler, 1982;
Preußer, 1984; Reissner, 1985; Vekua, 1985; Touratier, 1991). The mathematical
approaches are very helpful if one wants to check the accuracy of the given approx-
imation. A nice comparison of the different approximations in the series approach
is given in Kienzler (2002) where first time was shown a new approach based on
consistent formulations.An actual reference for the consistent approach and the com-
parison with other approaches is given in Kienzler and Schneider (2016); Schneider
et al (2014).

The direct approach is based on the a priori introduction of a two-dimensional
deformable surface. This approach was applied by Green et al (1965); Palmow and
Altenbach (1982); Rothert (1973); Zhilin (1976), among others. The main advantage
of these theories is that their derivation does not rely on assumptions or series
expansions and is mathematically and physically as strong and exact as the three-
dimensional continuum mechanics. This approach is still under discussion, since
the application is not trivial, and a relationship between the constitutive laws of the
deformable surface and the corresponding three-dimensional body has to be found.

The development of shell theories was similar. One has to distinguish

• theories based on hypotheses (s., for example, Aron, 1874; Novozhilov, 1970;
Donnell, 1976; Love, 1906; Mushtari and Galimov, 1961),

• theories formulated with help of mathematical techniques (Vekua, 1985),
• theories introducing deformable surfaces (Naghdi, 1972, among others)

Details will be not discussed here.

1.2 Modeling of Composites

Development and applications of composite materials and structural elements com-
posed of composite materials have been very rapid in the last decades. The motivation
for this development is the significant progress in material science and technology of
the composite constituents. In addition, the requirements for high performance ma-
terials are not only in aircraft and aerospace structures. The increasing performance
of composites is also related to the development of very powerful experimental
equipments and numerical methods. With the development of composite materials
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a new material design is possible that allows an optimal material composition in
connection with the structural design. In addition, with the application of electrorhe-
ological, magnetorheological, etc. materials as layers in laminates one can suppress
vibrations, prevent buckling, among others.

A useful and correct application of composite materials requires a close inter-
action of different engineering disciplines such as structural design and analysis,
material science, mechanics of materials, process engineering, etc. The main topics
of composite material research and technology are

• investigation of all characteristics of the constituents and the composite materials,
• material design and optimization for the given working conditions,
• development of analytical modeling and solution methods for determining mate-

rial and structural behavior,
• development of experimental methods for material characteristics, stress and

deformation states, failure,
• modeling and analysis of creep, damage, and life prediction,
• development of new and efficient fabrication and recycling procedures, among

others.

1.2.1 Preliminary Remarks and Definitions

In material science the following classification of structural materials is given

• metals,
• ceramics, and
• polymers.

Sometimes there are more classes but we will limited us to these three classes. They
are related to different application fields. It is difficult to give an assessment of the
advantages and disadvantages of these basic material classes, because each of them
covers whole groups of materials within which the range of properties is often as
broad as the differences between the material classes. Some obvious characteristic
properties can be identified (Altenbach et al, 2018):

• Mostly metals are of medium to high density. They have good thermal stability
and can be made corrosion-resistant by alloying. Metals have useful mechanical
characteristics and it is moderately easy to shape and join these materials. For this
reason metals became the preferred structural engineering material, they posed
less problems to the designer than either ceramic or polymer materials.

• Ceramic materials have great thermal stability and are resistant to corrosion,
abrasion and other forms of attack. They are very rigid but mostly brittle and can
only be shaped with difficulty.

• Polymer materials (plastics) are of low density, have good chemical resistance
but lack thermal stability. They have poor mechanical properties, but are easily
fabricated and joined. Their resistance to environmental degradation, e.g. the
photomechanical effects of sunlight, is moderate.
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Let us introduce some basic definitions with respect to the material behavior.

Definition 1.5 (Homogeneous material behavior).

A material is called homogeneous if its properties are the same at every point and
therefore independent of the location.

Homogeneity is associated with the scale of modeling or the so-called representative
volume and the definition describes the averaged material behavior on a macroscopic
(phenomenological) level. On the microscopic level materials can be described as
homogeneous, quasi-homogeneous, inhomogeneous or heterogeneous.

Definition 1.6 (Quasi-homogeneous material behavior).

A material is quasi-homogeneous if its effective (averaged) properties are the same
at every point.

Definition 1.7 (Inhomogeneous material behavior).

A material is inhomogeneous if its properties depend on the location but there is
only one phase.

Definition 1.8 (Heterogeneous material behavior).

A material is heterogeneous if its properties depend on the location but there are
two or more phases.

In addition, the material behavior can be dependent on the loading direction.

Definition 1.9 (Isotropic material behavior).

A material is isotropic if its properties are independent of the orientation, they do
not vary with direction.

Definition 1.10 (Anisotropic material behavior).

If the properties are changing with the loading direction the material behavior is
called anisotropic.

A general anisotropic material has no planes or axes of material symmetry. Special
cases of material symmetries are orthotropy (three orthogonal planes of symmetry),
transverse isotropy (three orthogonal planes of symmetry and one axis of symmetry
in one of the planes of symmetry), among others.

Definition 1.11 (Monolithic material).

If a material contains one constituent or one single phase only, the material is called
monolithic.

The above mentioned classes of materials are in many cases on the macroscopic
level more or less monolithic, homogeneous and isotropic.

1.2.2 Composite Materials

The group of materials which can be defined as composite materials is extremely
large.



8 1 Introduction

Definition 1.12 (Composite material).

A composite material (or shortened to composite) is any material that is a combina-
tion of two or more constituent materials and has material properties derived from
the individual constituents. The constituents can be from the same material class or
different classes.

In dependence of fabrication the properties may have the combined characteristics of
the constituents or they are substantially different. Sometimes the material properties
of a composite may exceed those of the constituents. The definition of composite
materials include:

• reinforced concrete and masonry,
• composite wood such as plywood,
• reinforced plastics, such as fibre-reinforced polymer (long or short fibres) or

fiberglass,
• ceramic matrix composites (composite ceramic and metal matrices),
• metal matrix composites and
• other advanced composite materials.

In many cases composites have some excellent properties like low weight in com-
bination with high strength and stiffness which is necessary in modern structural
design.

The simplest case of a composite is an assembly of two materials of same or
different nature. The special class of reinforced plastics is related to one discontinuous
material, called the reinforcement, and another material, mostly less stiff and weaker,
continuous and called the matrix. In this case the properties of the composite depend
on (Altenbach et al, 2018):

• the properties of the constituents,
• the geometry of the reinforcements, their distribution, orientation and concentra-

tion usually measured by the volume fraction or fiber volume ratio and
• the nature and quality of the matrix-reinforcement interface.

The prediction of the interface properties is up to now a problematic task. The
properties of the fibres and the matrix can be measured separately, but the interface
does not exist separately. As usual the properties of the interface are computed
by inververse problems. Models of the interface behavior are presented in Hill
(1963, 1964); Gurtin and Murdoch (1975); Murdoch (2005); Hashin (1991) among
others. An overview on interface modeling is given, for example, in Nazarenko et al
(2018a,b).

Summarizing the aspects defining a composite as a mixture of two or more dis-
tinct constituents or phases it must be considered that all constituents have to be
present in reasonable proportions that the constituent phases have quite different
properties from the properties of the composite material and that man-made com-
posites are produced by combining the constituents by various means (Altenbach
et al, 2018). Figure 1.1 shows typical examples of composites with different types of
reinforcement. The reinforcement can be more or less regular or chaotic. Composites
can be classified by their form and distribution of the constituents (Fig. 1.2). The
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Fig. 1.1 Examples of composite materials with different forms of constituents and distributions of
the reinforcements. (a) Laminate with uni- or bidirectional layers, (b) irregular reinforcement with
long fibres, (c) reinforcement with particles, (d) reinforcement with plate strapped particles, (e)
random arrangement of continuous fibres, (f) irregular reinforcement with short fibres, (g) spatial
reinforcement, (h) reinforcement with surface tissues as mats, woven fabrics, etc. (Altenbach et al,
2018, with courtesy of Springer Publisher).
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reinforced
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spatial
reinforced

random
orientation
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random
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preferred
orientation

fibre reinforced particle reinforced
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Fig. 1.2 Classification of composites (Altenbach et al, 2018, with courtesy of Springer Publisher).

reinforcement constituent can be described, for example, as fibrous or particulate.
The fibres are assumed to be long (size of the structural element) or short (in compar-
ison to the structural element’s dimension). Long fibres are mostly arranged in uni-
or bidirectional reinforcements, but also irregular reinforcements by long fibres are
possible. The arrangement and the orientation of the fibres determine the mechanical
properties of composites including the type of anisotropy. Particulate reinforcements
can be spherical, platelet or of any regular or irregular geometry. Their arrangement
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may be random or regular with preferred orientations. In many practical applications
particulate reinforced composites are considered to be randomly oriented and the
mechanical properties are quasi-homogeneous and isotropic. In the case of mold
injection manufacturing the particle orientation over the cross-section is partly in
the flow direction, partly orthogonal to the flow direction, and partly chaotic (Gupta
and Wang, 1993; Saito et al, 1998, 2000) and it was established that the structural
elements can show anisotropic behavior (Altenbach et al, 2003, 2005). The preferred
orientation in the case of long fibre composites is unidirectional for each layer or
lamina. In this case, we have in each layer an transversely-isotropic material behav-
ior. With the variation of the fibre angle in each layer one gets finally a laminate with
anisotropic stiffness properties.

Composite materials can also be classified by the nature of their constituents.
According to the nature of the matrix material we have organic, mineral or metallic
matrix composites (Altenbach et al, 2018):

• Organic matrix composites are polymer resins with fillers. The fibres can be
mineral (glass, etc.), organic (aramid, etc.) or metallic (aluminium, etc.).

• Mineral matrix composites are ceramics with metallic fibres or with metallic or
mineral particles.

• Metallic matrix composites are metals with mineral or metallic fibres.

Fibre reinforced polymer resins can be used only in a low temperature range up to
2000 to 3000 C. The two basic classes of resins are thermosets and thermoplastics.
Typical thermoset matrices include Epoxy, Polyester, Polyamide and Vinyl Ester,
among popular thermoplastics are Polyethylene, Polystyrene and Polyether-ether-
ketone (PEEK). Ceramic based composites can also be used in a high temperature
range up to 10000 C and metallic matrix composites in a medium temperature range.

Polymer matrix composites are characterized by relatively low costs, simple man-
ufacturing and high strength. Their main drawbacks are the low working temperature,
high coefficients of thermal and moisture expansion and, in certain directions, low
elastic properties. Polymer matrix composites are usually reinforced by fibres to
improve such mechanical characteristics as stiffness, strength, etc. Fibres can be
made of different materials (glass, carbon, aramid, etc.). Glass fibres are widely used
because their advantages include high strength, low costs, high chemical resistance,
etc., but their elastic modulus is very low and also their fatigue strength. Graphite
or carbon fibres have a high modulus and a high strength and are very common in
aircraft components. The functional requirements of fibres and matrices in a fibre
reinforced polymer matrix composite can be summarized as follows:

• fibres should have a high modulus of elasticity and a high ultimate strength,
• fibres should be stable and retain their strength during handling and fabrication,
• the variation of the mechanical characteristics of the individual fibres should be

low, their diameters uniform and their arrangement in the matrix is more or less
regular,

• matrices have to bind together the fibres and protect their surfaces from damage,
• matrices have to transfer stress to the fibres by adhesion and/or friction and
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• matrices have to be chemically compatible with fibres over the whole working
period.

In some new applications more and more elastomers are used as a material of a
sandwich or laminate layer. An elastomer is a polymer characterized by viscoelastic
properties that means it shows viscose (time-dependent) and elastic (spontaneous)
behavior. Sometimes, such behavior is named rubber-like behavior. An elastomer
has very weak intermolecular forces, and the Young’s modulus is low and the fail-
ure strain is high if we compare with other materials. Elastomers are amorphous
polymers. At ambient temperatures, such rubbers are relatively soft and the Young’s
modulus E ≈ 3 MPa. The deformability is high. In structures discussed later espe-
cially elastomeric layers are used as damping and insulating elements. In these cases
electro- or magnetorheological elastomers consist of polymeric matrix with embed-
ded micro- or nano-sized polarizable or ferromagnetic particles. In some application
instead of elastomers are used electro- or magnetorheological fluids.

1.2.3 Volume Fibre Fraction

The fibre length, their orientation, their shape and their material are main factors
which contribute to the mechanical performance of a composite. Their volume
fraction usually lies between 0.3 and 0.7. The matrix materials generally have low
mechanical properties as compared to fibres, but they influence many characteristics
of the composite such as the transverse and shear moduli, the strength, the thermal
resistance and expansion, etc.

The most important factor which determines the mechanical behavior of a com-
posite material is the proportion of the matrix and the fibres expressed by their
volume or weight fraction. These fractions can be established for a two phase com-
posite in a simple way. The volumeV of the composite is made from a matrix volume
Vm and a fibre volume Vf

V = Vf + Vm (1.1)

Then the following relations hold

vf =
Vf

V
, vm =

Vm

V
(1.2)

with
vf + vm = 1, vm = 1− vf

as the fibre and the matrix volume fractions, respectively. In a similar way the weight
or mass fractions of fibres and matrix can be defined. The mass M of the composite
is made from Mf and Mm

M = Mf +Mm

and
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mf =
Mf

M
, mm =

Mm

M
(1.3)

with
mf +mm = 1, mm = 1−mf

mf and mm are the mass fractions of fibres and matrices, respectively. With the
relation between volume, mass and density ρ = M/V , we can link the mass and the
volume fractions

ρ =
M

V
=

Mf +Mm

V
=

ρfVf + ρmVm

V
= ρfvf + ρmvm = ρfvf + ρm(1− vf)

(1.4)

Starting from the total volume of the composite (1.1) we obtain

M

ρ
=

Mf

ρf
+

Mm

ρm

and

ρ =
1

mf

ρf
+

mm

ρm

(1.5)

The equations of this subsection can be easily extended to multi-phase composites.
Mass fractions are easier to measure in material manufacturing, but volume fractions
appear in the theoretical equations for effective moduli. Therefore, it is helpful to have
simple expressions for shifting from one fraction to the other. The volume fractions
are the base of computing the material parameters of a reinforced composites. The
averaged Young’s modulus, shear modulus or Poisson’s ratio can be expressed using
rheological models combining the fibre and matrix properties with the help of parallel
connection, connection in series or improved formulaes. The last one are based as
usual on fitting experimental data. Some of these expressions are discussed in detail
in Altenbach et al (2018).

The quality of a composite material decreases with increase in porosity. The
volume of porosity should be less than 5 % for a medium quality and less than 1 %
for a high quality composite. If the density is measured experimentally (ρexp) and
calculated with (1.5) (ρtheor), the volume fraction of porosity is given by

vpor =
ρtheor − ρexp

ρtheor
(1.6)

1.2.4 Modeling of Structures Composed of Composites

Composite materials consist of two or more constituents and the modeling, analysis
and design of structures composed of composites are different from conventional



1.2 Modeling of Composites 13

layers

interface between layers

fibre

fibre-matrix interface

Fig. 1.3 Laminated plates - levels of modeling.

materials such as steel. For example, if we have a laminated structure there are two
levels of modeling (Fig. 1.3).

At the micro-mechanical level the average properties of a single reinforced layer
(a lamina or a ply) have to be determined from the individual properties of the con-
stituents, the fibres and matrix, and may be the fibre-matrix interface. The average
characteristics include the elastic moduli, the thermal and moisture expansion coeffi-
cients, etc. The micro-mechanics of a lamina does not consider the internal structure
of the constituent elements, but recognizes the heterogeneity of the ply. The micro-
mechanics is based on some simplifying approximations. These concern the fibre
geometry and packing arrangement, so that the constituent characteristics together
with the volume fractions of the constituents yield the average characteristics of the
lamina. Note that the averaged properties are derived by considering the lamina to
be quasi-homogeneous.

The calculated values of the averaged properties of a lamina provide the basis
to predict the macrostructural properties. At the macro-mechanical level, only the
averaged properties of a lamina are considered and the microstructure of the lamina
is ignored. In some case the interfaces between the layers are taken into account.
The properties along and perpendicular to the fibre direction, these are the principal
directions of a lamina, are recognized and the so-called on-axis stress-strain relations
for a unidirectional lamina can be developed. Loads may be applied not only on-axis
but also off-axis and the relationships for stiffness and flexibility, for thermal and
moisture expansion coefficients and the strength of an angle ply can be determined.
A laminate is a stack of laminae. Each layer of fibre reinforcement can have various
orientation and in principle each layer can be made of different materials. Knowing
the macro-mechanics of a lamina, one develops the macro-mechanics of the lami-
nate. Averaged stiffness, flexibility, strength, etc. can be determined for the whole
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laminate. The structure and orientation of the laminae in prescribed sequences to a
laminate lead to significant advantages of composite materials when compared to a
conventional monolithic material. In general, the mechanical response of laminates
is anisotropic.

One very important group of laminated composites are sandwich structures. They
as usual consist of two thin faces (the skins or sheets) sandwiching a core (Fig. 1.4).
The faces are made of high strength materials having good properties under tension
such as metals or fibre reinforced laminates while the core is made of lightweight
materials such as foam, resins with special fillers, called syntactic foam, having good
properties under compression. Sandwich composites combine lightness and flexural
stiffness.

(a) (b)

(c) (d)

(e) (f)

Fig. 1.4 Sandwich materials with solid and hollow cores. (a) foam core, (b) balsa wood core, (c)
foam core with fillers, (d) balsa wood core with holes, (e) folded plates core and (f) honeycomb
core (Altenbach et al, 2018, with courtesy of Springer Publisher).
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In contrast to classical sandwiches in photovoltaic applications we have a opposite
situation: thick stiff skin layers and a very thin and very weak core layer (Fig. 1.5).
A detailed discussion of the specific properties and the mechanical analysis is given,
for example, in Aßmus (2019).

When the micro- and macro-mechanical analysis for laminae and laminates or
sandwiches are carried out, the global behavior of laminated composite materials is
known. The last step is the modeling on the structure level and to analyze the global
behavior of a structure made of composite material. By adapting the classical tools
of structural analysis on anisotropic elastic structure elements the analysis of simple
structures as beams or plates may be achieved by analytical methods, but for more
general boundary conditions and/or loading and for complex structures, numerical
methods are used.

Summarizing the different size scales of mechanical modeling structure elements
composed of fibre reinforced composites it must be noted that, independent of the
different possibilities to formulate beam, plate or shell theories, three modeling levels
must be considered (Altenbach et al, 2018):

• The microscopic level, where the average mechanical characteristics of a lamina
have to be estimated from the known characteristics of the fibres and the ma-
trix material taking into account the fibre volume fracture and the fibre packing
arrangement.The micro-mechanicalmodeling leads to a correlation between con-
stituent properties and average composite properties. In general, simple mixture
rules are used in engineering applications. If possible, the average material char-
acteristics of a lamina should be verified experimentally. On the micro-mechanical
level a lamina is considered as a quasi-homogeneous orthotropic material.

• The macroscopic level, where the effective (average) material characteristics of
a laminate have to be estimated from the average characteristics of a set of lami-
nae taking into account their stacking sequence. The macro-mechanical modeling
leads to a correlation between the known average laminae properties and effective
laminate properties. On the macro-mechanical level a laminate is considered gen-
erally as an equivalent single layer element with a quasi-homogeneous, anisotropic
material behavior.

Fig. 1.5 Components of thin
film solar module - anti-

sandwich (Schulze et al, 2012;
Weps et al, 2013).

junction box

back sheet or glass

encapsulant
electrical conductor

thin film layer
front glass
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• The structural level, where the mechanical response of structural members like
beams, plates, shells etc. have to be analyzed taking into account possibilities to
formulate structural theories of different order.

1.2.5 Material Characteristics of the Constituents

The optimal design and the analysis of structural elements requires a detailed knowl-
edge of the material properties, which depend on the nature of the constituent
materials but also on manufacturing. For structures made of composites as usual
we have a more complicated situation. The list of composite materials is numerous
but available standards and specifications are rare. The properties of each material
used for both reinforcements and matrices of composites are extremely diversified.
Structural design based on composite materials requires detailed knowledge about
the material properties of the singular constituents of the composite and the fabri-
cation of the composites for optimization of the material in the frame of structural
applications and also detailed codes for modeling and analysis are necessary.

Let us focus on fibre reinforced composites with polymer resins. Material tests
of the constituents of composites are in many cases a complicated task and so the
material data in the literature are limited (Altenbach et al, 2018, and the references
therein). In engineering applications the averaged data for a lamina are often tested
to avoid this problem and in order to use correct material characteristics in structural
analysis. The main properties for the estimation of the material behavior are

• density ρ,
• Young’s modulus E, Poisson’s ratio ν, shear modulus G,
• ultimate strength σu and
• thermal expansion coefficient α.

The material can be made in bulk form or in the form of fibres. To estimate properties
of a material in the form of fibres, the fibre diameter d can be important.

The estimate of electro- and magneto-rheological properties is more complicated
and will be not discussed here.

1.3 Modeling of Laminated Structures: Different Approaches

Many theories have been developed to model the mechanical behavior of laminated
thin-walled structures. The most accurate models are based on the three-dimensional
elasticity theory. However, this approach leads to complex problems of analysis the
stress-strain state and rigid-body motions (s., among many others Shakeri et al,
2006; Saviz et al, 2007; Malekzadeh et al, 2009; Kulikov and Plotnikova, 2013) and
since the computational effort is great this approach has found limited applications in
the engineering practice. Taking into account thinness of the beams, plates and shell
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(in comparison to its other dimensions) researchers make simplifying assumptions,
called hypotheses, which result in two- or one-dimensional representation of a shell
with some predictable and reasonable accuracy.

Let us focus our attention at first to plates and shells. Theories for beams can be
established in a similar manner. The 2D theories for thin laminated plates and shells
may be divided into two basic models: the equivalent single layer (ESL) model and
the layer-wise (LW) model. A short review of these models will be presented below.
Later in this monograph the ESL model will be preferred. The ESL theories may
be classified, for example, as in Qu et al (2013): classical shell theory (CST), the
first-order shear deformation theory (FSDT), and the higher-order shear deformation
theory (HSDT).

The CST is based on the Kirchhoff-Love hypotheses (Kirchhoff, 1850; Love,
1888). In the original paper of Kirchhoff the following two hypotheses are mentioned
as the base of his theory

• straight line normal to the undeformed middle surface remains straight and normal
to the deformed middle surface,

• the elements of the midplane during the deformation have no dilatation.

The first hypothesis results in neglecting the transverse shear strains. Considering
the second hypothesis, in classical Kirchhoff theory one gets only an equation for
the deflection. Love introduced also the in-plane displacements for the midplane of
the shell.

Depending on different assumptions related to the strain-displacement, consti-
tutive and equilibrium equations the CSTs may be conventionally subdivided into
theories named by Ambartsumyan (1970), Donnell (1976), Flügge (1973), Mushtari
and Galimov (1961), Love (1906), Mindlin (1951), Novozhilov (1970), Reissner
(1944), Sanders (1959), Vlasov (1944), etc. All these approaches lead to three dif-
ferential equations w.r.t. three unknowns. Surveys on the classical theories, initially
derived for isotropic plates and shells, may be found in the monographs of Leissa
(1973); Reddy (2004), and in a early work of Naghdi (1956). Obviously, the first
studies on mechanical behavior of laminated plates and shells were performed in
the framework of the CSTs (Reissner and Stavsky, 1961; Stavsky, 1961; Dong et al,
1962; Yang et al, 1966; Whitney and Leissa, 1969; Ambartsumyan, 1970; Bert, 1976,
1980). These approaches neglecting shear deformations have been shown to be ad-
equate for the static analysis of thin laminates (Pagano, 1969, 1970). Considering
dynamic problems for layered composite shells, such theories may be exploited in
the low-frequency range (Qu et al, 2013), but they result in errors up to 30% in the
prediction of large natural frequencies (Reddy, 2004). For thicker plates and shells
pliable in shear as well as for thin layered structures consisting of a soft layer(s),
the classical theories become inadequate even for predicting static deflections and
stresses.

The first attempts to overcome the shortcomings of the CSTs were made by
Reissner (1945, 1952); Lurie (1947); Hildebrand et al (1949) and Mindlin (1951).
They proposed the so-called FSDTs in accordance to which the deflection w is
independent of the normal coordinate z and the in-plane displacements u1, u2 of
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the middle surface are linear functions of z. These theories take into account the
transverse shear strain components which are constant along the thickness. A detailed
description of these theories may be found in Reissner (1975); Reissner and Wan
(1982). In fact, these approaches may be considered as the development of the
Timoshenko’s beam theory (Timoshenko, 1921). Later, the extension of the FSDTs
to laminated plates has been performed by Yang et al (1966); Whitney and Pagano
(1970); Sun (1971), and a number of similar theories for thin and moderately thick
laminated shells have been developed by Dong et al (1962); Dong and Tso (1972);
Hsu and Wang (1970); Zukas and Vinson (1971); Reddy (1984a); Qatu (1999);
Toorani and Lakis (2000); Auricchio and Sacco (2003). Aforementioned theories
result, as a rule, in five coupled equations w.r.t. five unknowns. Recently Wang
et al (2018) proposed a simple first-order shear deformation shell theory which
contains only four unknowns and can be regarded as an enhanced CST with the
consideration of the effects of transverse shear deformation and rotary inertia terms.
The main defect of the FSDTs (as well as of classical shell theories) is that the traction
conditions at the shell surfaces are violated and so, it requires shear correction factors
(Reissner, 1944; Mindlin, 1951). The problem is that the shear correction factors are
difficult to determine for arbitrary laminated plates and shells because they depend
on the geometrical and lamination parameters, loading and boundary conditions as
well (among many others, s. Srinivas et al, 1970; Chow, 1971; Whitney, 1973; Bert,
1973; Wittrick, 1987; Vlachoutsis, 1992).

In spite of the above mentioned drawbacks of the FSDTs, several improvements
are suggested to study numerous applied problems on mechanical behavior of lam-
inated shells. Qatu (1999) studied free vibrations of laminated simply supported
cylindrical shells. Taking into account transverse shear deformation and rotary in-
ertia effects as well, Toorani and Lakis (2001) considered the coupled problem on
free vibrations of anisotropic laminated cylindrical shell partially or completely
filled with liquids. Wang et al (2002) investigated the propagation of waves in or-
thotropic laminated spherical shells. Free vibrations of thick laminated anisotropic
non-circular cylindrical shells were analyzed by Ganapathi and Haboussi (2003).
The effect of transverse shear and rotary inertia on waves in laminated piezoelectric
cylindrical shells in thermal environment was examined by Dong and Wang (2007).
Ribeiro (2009) studied the effect of membrane inertia and shear deformation on geo-
metrically nonlinear vibrations of open cylindrical laminated shells. Using a unified
variational formulation based on the FSDT, Qu et al (2013) considered free, steady-
state and transient vibrations of composite laminated shells of revolution subjected
to various combinations of boundary conditions.

Further improvements of the shear deformable theories were based on quadratic,
cubic and higher expansions at least of the in-plane displacements u1, u2 in terms of
the transverse coordinatez. These theories are named higher-order shear deformation
theories (HSDTs). First of all, we refer to Whitney and Sun (1973, 1974). They
proposed a second-order theory in which the transverse displacementw is assumed as
a linear function of the thickness coordinate z and the in-plane displacements u1, u2

of the reference surface are expanded as quadratic functions of z. This approach
results in eight coupled equations w.r.t. eight unknowns. Due to the large number
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of dependent unknown magnitudes, this theory is results in more computational
effort then the FSDTs. Furthermore, this second-order theory requires a correction
to the transverse shear stiffness. In contrast to this theory, Reddy (1984a); Reddy
and Liu (1985) developed a third-order but more simple shear deformation theory of
laminated plates and shells. Although, this theory is based on a displacement field in
which the in-plane displacements u1, u2 are expanded as cubic functions of z and the
normal deflectionw is constant through the thickness, it contains only five unknowns
as in FSDTs but requires no shear correction factors. To date, there is a wide variety
of higher-order theories (s. among many others Librescu et al, 1987; Librescu and
Khdeir, 1988; Grigolyuk and Kulikov, 1988b; Mallikarjuna and Kant, 1993, 2002;
Batra and Vidoli, 2002b; Ganapathi et al, 2002; Khare et al, 2003; Swaminathan
and Ragounadin, 2004; Khare and Rode, 2005; Balah and Al-Ghemady, 2005;
Tovstik and Tovstik, 2007; Amabili, 2015; Tovstik and Tovstik, 2017; Shi et al,
2018). In addition, we refer to the so-called New HSDTs proposed by Karama et al
(2009); Aydogdu (2009); Mantari et al (2011a,b). In these theories, the transverse
displacement is assumed to be independent of the thickness coordinate z, and the
in-plane displacements of the reference surface are expanded as a combination of
exponential and polynomial functions of z. Most of the well known shear deformable
theories available in literature, including the aforementioned ones, were developed
as particular cases. A common property of these theories is that they lead to a
system of differential equations for five unknowns and comply with the traction-free
boundary conditions on the top and bottom surfaces of the laminated plate/shell.
Recently, Viola et al (2013) proposed a general variant of HSDTs which contains
nine independent displacement parameters and unifies most of the known higher-
order theories due to the incorporation of general shear functions.

In high accurate layer-wise theories (LWTs), accounting the zig-zag effects, each
layer is considered as a shell with interface boundary conditions guaranteing the
continuity of the displacement or/and stress fields. The early investigations in this
direction, which were performed by Hsu and Wang (1970); Cheung and Wu (1972);
Srinivas (1973); Sun and Whitney (1973); Bolotin and Novichkov (1980); Murakami
(1986); Barbero et al (1990); Cho et al (1991); Gaudenzi et al (1995); Carrera
(1998a,b), have shown the superiority of layer-wise models over ESL ones. Indeed,
the LWTs provide more realistic kinematics of multi-layered plates and shells and
turn out to be more accurate and effective to predict local effects (Reddy and Robbins,
1994; Carrera, 2001; Batra and Vidoli, 2002a; Khare et al, 2003; Demasi, 2009),
high frequency response (Braga and Rivas, 2005; Oh, 2007) and formulate shell
finite elements (Moreira et al, 2006; Yasin and Kapuria, 2013; Wu et al, 2018;
Kordkheili and Soltani, 2018). To date, there are a lot of papers proposing improved
and refined variants of layer-wise models (among many others, s. Sahoo and Singh,
2014; Naumenko and Eremeyev, 2014; Iurlaro et al, 2015; Naumenko and Eremeyev,
2017; Carrera et al, 2015; Akoussan et al, 2017; Shi et al, 2018; Flores et al, 2018)
and studying topical problems on mechanical behavior of laminated plates and shells
based on these models. Thus, Starovoitov and Leonenko (2010) analyzed free and
resonant vibrations of circular sandwich plate using the zig-zag theory, Cetkovic
(2015) studied thermo-mechanical bending of laminated composite and sandwich
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plates subjected to mechanical load and non-uniform temperature field, and in more
recent papers (Nikbakht et al, 2017) employed the full layer-wise method to analyze
the elastic bending of functionally graded plates up to yielding, Treviso et al (2017)
used the refined zig-zag theory (RZT) in the framework of shell elements for vibration
analysis of laminated and sandwich shells and shown that the RZT element can
be effectively used to reduce the computational costs of dynamic simulations of
laminated structures, and Moita et al (2018) developed a simple and efficient finite
element model to examine damped vibrations of multilayered sandwich plates and
shells with a viscoelastic core sandwiched between functionally graded material
layers, and including piezoelectric layers.

Despite the variety of layer-wise shell theories, they have not gained wide popu-
larity in modeling practical shell vibration problems because of extreme complexity
of theoretical formulations and high computational costs. There are a few examples
when only layer-wise theories yields in correct results as shown in Schulze et al
(2012); Weps et al (2013); Aßmus (2019). It should be noted that each model of lam-
inated plates and shells has its advantages as well as disadvantages (Reddy, 1993),
and the correct choice of the theory depends on many factors, such as the shell
geometry, the number of layers, the material of which each layer is made, as well
as the loads. Another point affecting the choice of the shell model is the expected
variability of the displacements, strains and stresses. So, if vibrations or buckling
are accompanied by formation of a large number of short waves/dents, then the full
system of governing equations is, as a rule, simplified and reduced to the shallow
shell equations with a less number of unknowns (Grigolyuk and Kulikov, 1988b).

The above literature review does not pretend to be complete. We refer readers
to the survey articles by Grigolyuk and Kulikov (1988a); Kapania (1989); Kapania
and Raciti (1989a,b); Soldatos and Timarci (1993); Altenbach (1998); Toorani and
Lakis (2000); Reddy (1993); Reddy and Wang (2000); Carrera (2002, 2003a); Qatu
(2002); Qatu et al (2010); Atteshamuddin et al (2015); Caliri et al (2016), and books
by Qatu (2004); Reddy (2004); Gorshkov et al (2005). One should also mention
Carrera (2003b); Demasi et al (2017) where a unified formulation is proposed and
models, types and classes of theories for laminated plates and shells are described.

Completing the short overview of existing theories for laminated shells, we draw
attention to the approach developed by Grigolyuk and Kulikov (1988b) which will
be used below. This ESL theory is based on the generalized kinematical hypotheses
of Timoshenko for the in-plane displacements u1, u2 of the reference surface and the
parabolic distribution of transverse shear stresses through both each layer thickness
and the entire shell thickness. It complies with the traction-free boundary conditions
on the top and bottom surfaces of a laminated shell and guaranties the continuity
of transverse shear stresses in the direction of the thickness coordinate z. Recently,
this model was adapted by Mikhasev et al (2011) to laminated cylindrical shells
composed of smart materials (magnetorheological elastomers and electrorheological
composites). The choice of this theory can be explained by the following items:

• if the stress and strain state of a shell has a large variability, even if by one coordi-
nate, then the full system of differential equations w.r.t. five unknowns is readily
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simplified and reduced to three equations written in terms of the displacement,
stress and shear functions χ, Φ, φ;

• the governing equations written in terms of χ, Φ, φ completely coincide with
similar equations derived by Tovstik and Tovstik (2007, 2017) from the 3D theory
of elasticity, the assumed model unifying the simple equations of the Mushtary-
Donnell-Vlasov technical theory and the HSDT equations;

• this theory is simple enough for prediction of the mechanical behavior of multi-
layered shells, including smart structures;

• the accuracy of the governing equations has been verified by finite element sim-
ulations (s. Mikhasev et al, 2001; Korchevskaya et al, 2004; Mikhasaev et al,
2004).
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