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Preface

Among the modern structural materials laminates and sandwiches have a lot of
applications as materials for lightweight structures. The history of layered materials
is approximately 100 years old. However, in this short period of time, there has
been an uncountable advancements in science and technology of this new class of
materials. The low density, high strength, high stiffness to weight ratio, excellent
durability, and design flexibility of these materials are the primary reasons for their
use in many structural components in the aircraft, automotive, marine, building,
and other industries. Laminates are now used in applications ranging from rail cars
to oxygen tanks, from aircraft wings to automobile doors, from race cars to tennis
rackets. Their use is increasing at such a rapid rate that they are no longer considered
advanced materials. The main representatives of layered materials are laminates
(in modern structures in some cases up to 50-60 layers and more) and sandwiches
(three-layered materials with two skin sheets and a core).

There are several variants of thin-walled laminated structures: beams, rods, plates,
shells, folded structures, etc. The common property of these structural elements is
that one or two spatial dimension are much smaller than the remaining dimension(s).
In this book the focus is on beams, plates and shells. Extensions to other classes of
thin-walled structures can be realized without any difficulties.

There are a lot of monographs and textbooks devoted to classical laminates and
sandwich structures. An overview and actual state of the art report is given in

• H. Altenbach, J. Altenbach, W. Kissing (2018): Mechanics of Composite Struc-
tural Elements (2nd ed.), Springer, Singapore

During the last decades there are new applications with the progress, for example,
in adaptive structures. Instead of layers characterized by mechanical properties only
now we have layers showing in addition magnetorehological and electrorheological
behavior. They consist of electrorheological composites or magnetorheological elas-
tomers and fluids. If they are affected by electrical or magnetic fields the mechanical
properties (among them stiffness or damping) of such structures can be changed
or controlled. As result one gets an adaptive structure, buckling can be avoided or
vibrations can be suppressed. In this sense such a material is named functional ma-
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vi Preface

terial. The novelty of this monograph is given by presenting a theoretical approach
allowing the analysis of structures with magnetorehological and electrorheological
layers and showing with the help of examples how the mechanical behaviour of
thin-walled laminated structures can be influenced.

The book contains six chapters. Chapter 1 (Introduction) presents a brief overview
on derivation approaches for theories of thin-walled structures, modeling of com-
posites and modeling of laminated and sandwich structures. The presented theory is
based on the application of the generalized Timoshenko hypotheses, the equivalent
single layer model in the theory of layered structures and asymptotic methods in the
shell theory. The generalized Timoshenko hypotheses was firstly presented in

• E.I. Grigolyuk, G.M. Kulikov (1988): Multilayered Reinforced Shells. Calculation
of Pneumatic Tires (in Russ.), Mashinostroenie, Moscow

and the asymptotic approach used in this book is discussed, for example, in

• P.E. Tovstik, A.L. Smirnov (2001): Asymptotic Methods in the Buckling Theory
of Elastic Shells, World Scientific, Singapore

• G.I. Mikhasev, P.E. Tovstik (2009): Localized Vibrations and Waves in Thin
Shells. Asymptotic Methods (in Russ.), FIZMATLIT, Moscow

Chapter 2 is devoted to the equivalent single layer model for thin laminated
cylindrical shells containing also the special cases of plates and beams. In addition
to the classical mechanical properties, electrorheological and magnetorheological
properties are taken into account.

Chapter 3 presents the elastic buckling of laminated beams, plates, and cylindrical
shells. Among other problems, the influence of the boundary conditions, the external
loading and the magnetic fields is discussed. For the asymptotic approach different
approximations are suggested.

Chapter 4 is focussed on the free vibrations of elastic laminated beams, plates,
and cylindrical shells. Again, the influence of the boundary conditions and other
items are investigated.

Chapter 5 presents new results concerning vibrations of laminated structures
composed of smart materials. The influence of electric and magnetic fields on smart
structures is discussed in detail. From these results one can get recommendations for
optimal design of these structures.

Chapter 6 is a short appendix presenting asymptotic estimates and series.
Finally, we have to acknowledge to Dr. E.V. Korobko (A.V. Lykov Heat and Mass

Transfer Institute of National Academy of Sciences of Belarus) acting as a coauthor
of one section, Mr. I.R. Mlechka (Belorussian State University) performing several
computations and Dr. M.G. Botogova (Belorussian State University) and Mrs. S.S.
Maevskaya (Vitebsk State University) supporting us with numerical computations
and graphical design.

Minsk, Magdeburg Gennadi I. Mikhasev

December 2018 Holm Altenbach
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Chapter 1

Introduction

Abstract Laminates and sandwiches belong to lightweight structures of rather thin
cross sections in comparison with the other structural dimensions. Both have a
layered structure. The first one are composed of many layers (in modern structures
up to 40 - 60) each of them have as usual the same thickness and properties. The
second one are composed of three layers and in classical applications the outer
layers are made of uniform (homogeneous) materials, while the inner layer consists
either of a soft, relatively continuous material (different foams) or of a structurally
complicated, inhomogeneous material (cellular fillers, corrugations). However, in
multilayered structures each layer is a composite material itself. A short introduction
into the modelling of composite structures is given in Chapt. 1. In Sect. 1.1 some
general formulation approaches of plate and shell theories are presented. In Sect. 1.2
an introduction to composite modelling is given. Section 1.3 is devoted to modeling
of laminated and sandwich plates and shells.

1.1 Derivation Approaches for Theories of Plates and Shells

Modeling and calculation of three- and multilayered structures is a complicated
problem of the mechanics of deformable solid bodies. Since they are as usual thin
in on direction (thickness) they belong to the so-called surface structures. In the
classical sense two families of structures can be distinguished: plates and shells.
Both families are characterized by the assumption that the thickness is smaller in
comparison with other spatial dimensions and this allows to approximate the three-
dimensional solid mechanics problem by a two-dimensional. Within the geometrical
linear theory for isotropic plates the in-plane and the out-of-plane behavior can be
decoupled. With respect to the shell curvature such decoupling for shells is not
possible without additional assumptions.

Let us present at first the derivation approaches for the governing equations of the
theories of plates and shells. In Sects. 1.2 and 1.3 the special cases of laminate and
sandwich structures will be discussed starting with the description of composite ma-

1© Springer Nature Switzerland AG 2019
G. I. Mikhasev and H. Altenbach, Thin-walled Laminated Structures,
Advanced Structured Materials 106, https://doi.org/10.1007/978-3-030-12761-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12761-9_1&domain=pdf


2 1 Introduction

terials and a brief introduction of averaging methods resulting in effective properties
of composites.

One of the basic problems in engineeringmechanics is the analysis of the strength,
the vibration behavior and the stability of structural elements with the help of a
structural model (Altenbach and Meenen, 2008). In this context, structural models
are approximations of a general continuum theory. The following classification of
structural models can be given

• by certain geometrical (spatial) dimensions,
• by certain applied loads and
• by the use of kinematical and/or statical hypotheses approximating their mechan-

ical behavior.

Structural elements and models for their analysis can be categorized into three main
classes, depending on the ratio of their characteristic dimensions. The first class is
the class of three-dimensional structural elements, which can be defined as follows:

Definition 1.1 (Three-dimensional structural element).

A three-dimensional structural element has three spatial dimensions of the same
order, no predominant dimension exists.

Typical examples of geometrically simple, compact structural elements in the theory
of elasticity are cube, prism, cylinder, sphere, etc. The second basic class is the class
of two-dimensional structural elements which can be defined as follows:

Definition 1.2 (Two-dimensional structural element).

Two-dimensional structural elements are bodies, which have two spatial dimensions
of comparable size, and a third spatial dimension, the so-called thickness, which is
at least one order of magnitude smaller.

Typical examples of two-dimensional structural elements in civil engineering and
structural mechanics are membrane, disc, plate, shell, folded structure, etc. It should
be noted that the applied loading results in various sub-classes: for plane structures
one should distinguish the in-plane and the out-of-plane loading cases; for curved
structures only in some special cases such split makes sense. The last class is related
to the one-dimensional structural elements which can be defined as follows:

Definition 1.3 (One-dimensional structural element).

Two spatial dimensions, which can be related to the cross-section, have a comparable
size. The third dimension, which is related to the length of the structural element, is
at least one order of magnitude larger than the size of the cross-section dimensions.

Typical examples in engineering mechanics are rod, truss, beam, torsion bar, etc.
Like in the case of two-dimensional structural elements the applied loading allows
to distinguish special cases (tension/compression, bending, torsion).

In general, it is possible to introduce other classes. For example, in shipbuilding,
thin-walled structural elements are often used. These are thin-walled light-weight
structures with a special profile and they require an extension of the classical one-
dimensional structural models:
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Definition 1.4 (Quasi-onedimensional structural elements).

If the spatial dimensions are of significantly different order and the thickness of the
profile is small in comparison to the other cross-section dimensions, and the cross-
section dimensions are much smaller in comparison to the length of the structure
one can introduce quasi-onedimensional structural elements.

Suitable theories for the analysis of quasi-onedimensional structural elements are
the thin-walled beam theory (Vlasov-Theory) and the semi-membrane theory or
generalized beam theory (Altenbach et al, 1994, 2018). Typical thin-walled cross-
section profiles are closed cross-section profiles, open cross-section profiles, open-
closed cross-section profiles, etc.

Here the focus is on the second and third class of structural elements. Since the
characteristic length in thickness direction is much smaller than the characteristic
length in the surface direction, for a two-dimensional structures it is tempting to look
for procedures that eliminate the thickness dimension (reduction of the coordinates).
From the mathematical point of view it is obvious that instead of a three-dimensional
coupled partial differential equations, one can analyze a two-dimensional problem,
which is described by two spatial coordinates only. These coordinates represent
a surface in three-dimensional space, and a procedure has to be developed that
maps the real behavior in thickness direction onto the mechanical behavior of the
surface. The transition from the three-dimensional to the two-dimensional problem
is non-trivial, but once a two-dimensional theory has been obtained, the solution
effort decreases significantly and the possibilities to solve problems analytically
are increased (Altenbach and Meenen, 2008). One-dimensional theories are here
presented as special cases of the two-dimensional one.

During the last 50 years various scientific papers, textbooks, monographs and
proceedings on the state of the art and recent developments in the plate and shell
theories were published, for example, in Altenbach et al (2016, 2010); Grigolyuk
and Seleznev (1973); Libai and Simmonds (1998); Naghdi (1972); Reissner (1985);
Rothert (1973). In addition, new developments were discussed on conferences and
courses, s. Altenbach and Eremeyev (2011); Altenbach and Mikhasev (2014); Jaiani
and Podio-Guidugli (2008); Kienzler et al (2004), among others. From these publi-
cations one can conclude that for the formulation of any plate or shell theory there
are two starting points:

• the reduction technique, which starts from the equations of three-dimensional
(3D) continuum and develops approximate two-dimensional (2D) continuum the-
ories; and

• the direct approach, which starts from a rigorous 2D continuum theory (de-
formable surface)

If one starts from the 3D continuum theory, the following approaches can be distin-
guished:

• the use of hypotheses to approximate the three-dimensional equations (e.g. by
introducing these hypotheses into the principle of virtual displacements),

• the use of mathematical approaches, such as series expansions, special functions
or asymptotic integration, or
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• the formulation of consistent theories

All these approaches have their own advantages and disadvantages, and it is difficult
to argue what is the best method for deriving a plate or shell theory. Additionally,
in many cases different derivation methods result in identical or similar sets of
governing equations.

Theories which are based on hypotheses are preferred by engineers because of
their simplicity. For example, there is a huge number of theories which are based
on displacement assumptions. Note that the three displacements in the classical
three-dimensional continuum are split into in-plane displacements and transverse
displacement (deflection). Probably the first theory of plates based on displacement
assumptions was presented by Kirchhoff (1850). Kirchhoff used similar hypotheses
for the kinematics as in the Euler-Bernoulli beam theory. He ignored the in-plane
displacements and with the deflectionw which was assumed to be independent from
the thickness coordinate he got the following kinematical constraints: no transverse
shear and no thickness changes. The final version of his theory he presented, for
example, in Kirchhoff (1883)

D��w = q,

where the bending stiffness1 which is assumed to be constant

D =
Eh3

12(1− ν2)

is a combination of material parameters (E is the Young’s modulus and ν is the
Poisson’s ratio) and a property of the geometry (h is the plate thickness). � denotes
the Laplace operator (� =∇∇∇·∇∇∇ with∇∇∇ as the Hamilton (nabla) operator) and q the
transverse load. It is interesting that Kirchhoff’s approach has shown immediately
that any approximation results in difficulties. Kirchhoff’ final equation was a partial
differential equation of fourth order for the deflection. But it was well-known that one
has satisfy three boundary conditions in the general case. Kirchhoff solved this prob-
lem introducing a combination of the transverse shear force and the torsion moment
(Kirchhoff’s Ersatzkraft) and special edge forces. Kirchhoff’s theory failed if we have
thick plates or sandwiches since the constraints of the kinematics are no more valid.
The theory was seriously improved about 100 years later (s., for example, Reissner,
1944, 1945; Hencky, 1947; Mindlin, 1951). In the various improved theories, similar
to Timoshenko’s beam theory additional degrees of freedom (cross-section rotations)
were introduced, so that transverse shear was considered in an approximate sense.
Such type of theory is named first order shear deformation theory. The introduction
of independent rotations is in some cases not enough, since it is assumed that any
cross-section will be plane before and after deformation. To solve this problem, Am-
bartsumyan (1970) introduced an additional distribution function in the thickness
direction. A less restrictive approximation was proposed by Levinson (1980) and
Reddy (1984b), among others. These refined theories which named third order shear

1 Note that the term stiffness always means a combination of material parameters and geometrical
characteristics.
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deformation theories can be understood as theories that introduce additional degrees
of freedom, or as some part of a power series expansion. The first suggestion of this
type was done by Lo et al (1977). A generalization of the power series approach was
given in Meenen and Altenbach (2001).

An alternative approach considering assumptions for the stress state was suggested
by Reissner (1944, 1945). It can be shown that Mindlin’s and Reissner’s plate theories
contain partly identical equations, but the coefficients take slightly different values
and their physical interpretation is not the same. The similarities are so great that in
the Finite Element references as usual the name Reissner-Mindlin element is used.

Pure mathematical approaches are mostly based on power series, trigonometric
functions, on special functions, asymptotic integration, etc. (s., e.g., Kienzler, 1982;
Preußer, 1984; Reissner, 1985; Vekua, 1985; Touratier, 1991). The mathematical
approaches are very helpful if one wants to check the accuracy of the given approx-
imation. A nice comparison of the different approximations in the series approach
is given in Kienzler (2002) where first time was shown a new approach based on
consistent formulations.An actual reference for the consistent approach and the com-
parison with other approaches is given in Kienzler and Schneider (2016); Schneider
et al (2014).

The direct approach is based on the a priori introduction of a two-dimensional
deformable surface. This approach was applied by Green et al (1965); Palmow and
Altenbach (1982); Rothert (1973); Zhilin (1976), among others. The main advantage
of these theories is that their derivation does not rely on assumptions or series
expansions and is mathematically and physically as strong and exact as the three-
dimensional continuum mechanics. This approach is still under discussion, since
the application is not trivial, and a relationship between the constitutive laws of the
deformable surface and the corresponding three-dimensional body has to be found.

The development of shell theories was similar. One has to distinguish

• theories based on hypotheses (s., for example, Aron, 1874; Novozhilov, 1970;
Donnell, 1976; Love, 1906; Mushtari and Galimov, 1961),

• theories formulated with help of mathematical techniques (Vekua, 1985),
• theories introducing deformable surfaces (Naghdi, 1972, among others)

Details will be not discussed here.

1.2 Modeling of Composites

Development and applications of composite materials and structural elements com-
posed of composite materials have been very rapid in the last decades. The motivation
for this development is the significant progress in material science and technology of
the composite constituents. In addition, the requirements for high performance ma-
terials are not only in aircraft and aerospace structures. The increasing performance
of composites is also related to the development of very powerful experimental
equipments and numerical methods. With the development of composite materials
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a new material design is possible that allows an optimal material composition in
connection with the structural design. In addition, with the application of electrorhe-
ological, magnetorheological, etc. materials as layers in laminates one can suppress
vibrations, prevent buckling, among others.

A useful and correct application of composite materials requires a close inter-
action of different engineering disciplines such as structural design and analysis,
material science, mechanics of materials, process engineering, etc. The main topics
of composite material research and technology are

• investigation of all characteristics of the constituents and the composite materials,
• material design and optimization for the given working conditions,
• development of analytical modeling and solution methods for determining mate-

rial and structural behavior,
• development of experimental methods for material characteristics, stress and

deformation states, failure,
• modeling and analysis of creep, damage, and life prediction,
• development of new and efficient fabrication and recycling procedures, among

others.

1.2.1 Preliminary Remarks and Definitions

In material science the following classification of structural materials is given

• metals,
• ceramics, and
• polymers.

Sometimes there are more classes but we will limited us to these three classes. They
are related to different application fields. It is difficult to give an assessment of the
advantages and disadvantages of these basic material classes, because each of them
covers whole groups of materials within which the range of properties is often as
broad as the differences between the material classes. Some obvious characteristic
properties can be identified (Altenbach et al, 2018):

• Mostly metals are of medium to high density. They have good thermal stability
and can be made corrosion-resistant by alloying. Metals have useful mechanical
characteristics and it is moderately easy to shape and join these materials. For this
reason metals became the preferred structural engineering material, they posed
less problems to the designer than either ceramic or polymer materials.

• Ceramic materials have great thermal stability and are resistant to corrosion,
abrasion and other forms of attack. They are very rigid but mostly brittle and can
only be shaped with difficulty.

• Polymer materials (plastics) are of low density, have good chemical resistance
but lack thermal stability. They have poor mechanical properties, but are easily
fabricated and joined. Their resistance to environmental degradation, e.g. the
photomechanical effects of sunlight, is moderate.
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Let us introduce some basic definitions with respect to the material behavior.

Definition 1.5 (Homogeneous material behavior).

A material is called homogeneous if its properties are the same at every point and
therefore independent of the location.

Homogeneity is associated with the scale of modeling or the so-called representative
volume and the definition describes the averaged material behavior on a macroscopic
(phenomenological) level. On the microscopic level materials can be described as
homogeneous, quasi-homogeneous, inhomogeneous or heterogeneous.

Definition 1.6 (Quasi-homogeneous material behavior).

A material is quasi-homogeneous if its effective (averaged) properties are the same
at every point.

Definition 1.7 (Inhomogeneous material behavior).

A material is inhomogeneous if its properties depend on the location but there is
only one phase.

Definition 1.8 (Heterogeneous material behavior).

A material is heterogeneous if its properties depend on the location but there are
two or more phases.

In addition, the material behavior can be dependent on the loading direction.

Definition 1.9 (Isotropic material behavior).

A material is isotropic if its properties are independent of the orientation, they do
not vary with direction.

Definition 1.10 (Anisotropic material behavior).

If the properties are changing with the loading direction the material behavior is
called anisotropic.

A general anisotropic material has no planes or axes of material symmetry. Special
cases of material symmetries are orthotropy (three orthogonal planes of symmetry),
transverse isotropy (three orthogonal planes of symmetry and one axis of symmetry
in one of the planes of symmetry), among others.

Definition 1.11 (Monolithic material).

If a material contains one constituent or one single phase only, the material is called
monolithic.

The above mentioned classes of materials are in many cases on the macroscopic
level more or less monolithic, homogeneous and isotropic.

1.2.2 Composite Materials

The group of materials which can be defined as composite materials is extremely
large.
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Definition 1.12 (Composite material).

A composite material (or shortened to composite) is any material that is a combina-
tion of two or more constituent materials and has material properties derived from
the individual constituents. The constituents can be from the same material class or
different classes.

In dependence of fabrication the properties may have the combined characteristics of
the constituents or they are substantially different. Sometimes the material properties
of a composite may exceed those of the constituents. The definition of composite
materials include:

• reinforced concrete and masonry,
• composite wood such as plywood,
• reinforced plastics, such as fibre-reinforced polymer (long or short fibres) or

fiberglass,
• ceramic matrix composites (composite ceramic and metal matrices),
• metal matrix composites and
• other advanced composite materials.

In many cases composites have some excellent properties like low weight in com-
bination with high strength and stiffness which is necessary in modern structural
design.

The simplest case of a composite is an assembly of two materials of same or
different nature. The special class of reinforced plastics is related to one discontinuous
material, called the reinforcement, and another material, mostly less stiff and weaker,
continuous and called the matrix. In this case the properties of the composite depend
on (Altenbach et al, 2018):

• the properties of the constituents,
• the geometry of the reinforcements, their distribution, orientation and concentra-

tion usually measured by the volume fraction or fiber volume ratio and
• the nature and quality of the matrix-reinforcement interface.

The prediction of the interface properties is up to now a problematic task. The
properties of the fibres and the matrix can be measured separately, but the interface
does not exist separately. As usual the properties of the interface are computed
by inververse problems. Models of the interface behavior are presented in Hill
(1963, 1964); Gurtin and Murdoch (1975); Murdoch (2005); Hashin (1991) among
others. An overview on interface modeling is given, for example, in Nazarenko et al
(2018a,b).

Summarizing the aspects defining a composite as a mixture of two or more dis-
tinct constituents or phases it must be considered that all constituents have to be
present in reasonable proportions that the constituent phases have quite different
properties from the properties of the composite material and that man-made com-
posites are produced by combining the constituents by various means (Altenbach
et al, 2018). Figure 1.1 shows typical examples of composites with different types of
reinforcement. The reinforcement can be more or less regular or chaotic. Composites
can be classified by their form and distribution of the constituents (Fig. 1.2). The
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Fig. 1.1 Examples of composite materials with different forms of constituents and distributions of
the reinforcements. (a) Laminate with uni- or bidirectional layers, (b) irregular reinforcement with
long fibres, (c) reinforcement with particles, (d) reinforcement with plate strapped particles, (e)
random arrangement of continuous fibres, (f) irregular reinforcement with short fibres, (g) spatial
reinforcement, (h) reinforcement with surface tissues as mats, woven fabrics, etc. (Altenbach et al,
2018, with courtesy of Springer Publisher).

unidirectional
reinforced

bidirectional
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spatial
reinforced

random
orientation

preferred orientation

continous fibre reinforced
(long fibres)

discontinous fibre reinforced
(short fibres)

random
orientation

preferred
orientation

fibre reinforced particle reinforced

Composite

Fig. 1.2 Classification of composites (Altenbach et al, 2018, with courtesy of Springer Publisher).

reinforcement constituent can be described, for example, as fibrous or particulate.
The fibres are assumed to be long (size of the structural element) or short (in compar-
ison to the structural element’s dimension). Long fibres are mostly arranged in uni-
or bidirectional reinforcements, but also irregular reinforcements by long fibres are
possible. The arrangement and the orientation of the fibres determine the mechanical
properties of composites including the type of anisotropy. Particulate reinforcements
can be spherical, platelet or of any regular or irregular geometry. Their arrangement
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may be random or regular with preferred orientations. In many practical applications
particulate reinforced composites are considered to be randomly oriented and the
mechanical properties are quasi-homogeneous and isotropic. In the case of mold
injection manufacturing the particle orientation over the cross-section is partly in
the flow direction, partly orthogonal to the flow direction, and partly chaotic (Gupta
and Wang, 1993; Saito et al, 1998, 2000) and it was established that the structural
elements can show anisotropic behavior (Altenbach et al, 2003, 2005). The preferred
orientation in the case of long fibre composites is unidirectional for each layer or
lamina. In this case, we have in each layer an transversely-isotropic material behav-
ior. With the variation of the fibre angle in each layer one gets finally a laminate with
anisotropic stiffness properties.

Composite materials can also be classified by the nature of their constituents.
According to the nature of the matrix material we have organic, mineral or metallic
matrix composites (Altenbach et al, 2018):

• Organic matrix composites are polymer resins with fillers. The fibres can be
mineral (glass, etc.), organic (aramid, etc.) or metallic (aluminium, etc.).

• Mineral matrix composites are ceramics with metallic fibres or with metallic or
mineral particles.

• Metallic matrix composites are metals with mineral or metallic fibres.

Fibre reinforced polymer resins can be used only in a low temperature range up to
2000 to 3000 C. The two basic classes of resins are thermosets and thermoplastics.
Typical thermoset matrices include Epoxy, Polyester, Polyamide and Vinyl Ester,
among popular thermoplastics are Polyethylene, Polystyrene and Polyether-ether-
ketone (PEEK). Ceramic based composites can also be used in a high temperature
range up to 10000 C and metallic matrix composites in a medium temperature range.

Polymer matrix composites are characterized by relatively low costs, simple man-
ufacturing and high strength. Their main drawbacks are the low working temperature,
high coefficients of thermal and moisture expansion and, in certain directions, low
elastic properties. Polymer matrix composites are usually reinforced by fibres to
improve such mechanical characteristics as stiffness, strength, etc. Fibres can be
made of different materials (glass, carbon, aramid, etc.). Glass fibres are widely used
because their advantages include high strength, low costs, high chemical resistance,
etc., but their elastic modulus is very low and also their fatigue strength. Graphite
or carbon fibres have a high modulus and a high strength and are very common in
aircraft components. The functional requirements of fibres and matrices in a fibre
reinforced polymer matrix composite can be summarized as follows:

• fibres should have a high modulus of elasticity and a high ultimate strength,
• fibres should be stable and retain their strength during handling and fabrication,
• the variation of the mechanical characteristics of the individual fibres should be

low, their diameters uniform and their arrangement in the matrix is more or less
regular,

• matrices have to bind together the fibres and protect their surfaces from damage,
• matrices have to transfer stress to the fibres by adhesion and/or friction and
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• matrices have to be chemically compatible with fibres over the whole working
period.

In some new applications more and more elastomers are used as a material of a
sandwich or laminate layer. An elastomer is a polymer characterized by viscoelastic
properties that means it shows viscose (time-dependent) and elastic (spontaneous)
behavior. Sometimes, such behavior is named rubber-like behavior. An elastomer
has very weak intermolecular forces, and the Young’s modulus is low and the fail-
ure strain is high if we compare with other materials. Elastomers are amorphous
polymers. At ambient temperatures, such rubbers are relatively soft and the Young’s
modulus E ≈ 3 MPa. The deformability is high. In structures discussed later espe-
cially elastomeric layers are used as damping and insulating elements. In these cases
electro- or magnetorheological elastomers consist of polymeric matrix with embed-
ded micro- or nano-sized polarizable or ferromagnetic particles. In some application
instead of elastomers are used electro- or magnetorheological fluids.

1.2.3 Volume Fibre Fraction

The fibre length, their orientation, their shape and their material are main factors
which contribute to the mechanical performance of a composite. Their volume
fraction usually lies between 0.3 and 0.7. The matrix materials generally have low
mechanical properties as compared to fibres, but they influence many characteristics
of the composite such as the transverse and shear moduli, the strength, the thermal
resistance and expansion, etc.

The most important factor which determines the mechanical behavior of a com-
posite material is the proportion of the matrix and the fibres expressed by their
volume or weight fraction. These fractions can be established for a two phase com-
posite in a simple way. The volumeV of the composite is made from a matrix volume
Vm and a fibre volume Vf

V = Vf + Vm (1.1)

Then the following relations hold

vf =
Vf
V
, vm =

Vm
V

(1.2)

with
vf + vm = 1, vm = 1− vf

as the fibre and the matrix volume fractions, respectively. In a similar way the weight
or mass fractions of fibres and matrix can be defined. The mass M of the composite
is made from Mf and Mm

M = Mf +Mm

and
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mf =
Mf

M
, mm =

Mm

M
(1.3)

with
mf +mm = 1, mm = 1−mf

mf and mm are the mass fractions of fibres and matrices, respectively. With the
relation between volume, mass and density ρ = M/V , we can link the mass and the
volume fractions

ρ =
M

V
=

Mf +Mm

V
=

ρfVf + ρmVm
V

= ρfvf + ρmvm = ρfvf + ρm(1− vf)
(1.4)

Starting from the total volume of the composite (1.1) we obtain

M

ρ
=
Mf

ρf
+
Mm

ρm

and

ρ =
1

mf

ρf
+
mm

ρm

(1.5)

The equations of this subsection can be easily extended to multi-phase composites.
Mass fractions are easier to measure in material manufacturing, but volume fractions
appear in the theoretical equations for effective moduli. Therefore, it is helpful to have
simple expressions for shifting from one fraction to the other. The volume fractions
are the base of computing the material parameters of a reinforced composites. The
averaged Young’s modulus, shear modulus or Poisson’s ratio can be expressed using
rheological models combining the fibre and matrix properties with the help of parallel
connection, connection in series or improved formulaes. The last one are based as
usual on fitting experimental data. Some of these expressions are discussed in detail
in Altenbach et al (2018).

The quality of a composite material decreases with increase in porosity. The
volume of porosity should be less than 5 % for a medium quality and less than 1 %
for a high quality composite. If the density is measured experimentally (ρexp) and
calculated with (1.5) (ρtheor), the volume fraction of porosity is given by

vpor =
ρtheor − ρexp

ρtheor
(1.6)

1.2.4 Modeling of Structures Composed of Composites

Composite materials consist of two or more constituents and the modeling, analysis
and design of structures composed of composites are different from conventional
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layers

interface between layers

fibre

fibre-matrix interface

Fig. 1.3 Laminated plates - levels of modeling.

materials such as steel. For example, if we have a laminated structure there are two
levels of modeling (Fig. 1.3).

At the micro-mechanical level the average properties of a single reinforced layer
(a lamina or a ply) have to be determined from the individual properties of the con-
stituents, the fibres and matrix, and may be the fibre-matrix interface. The average
characteristics include the elastic moduli, the thermal and moisture expansion coeffi-
cients, etc. The micro-mechanics of a lamina does not consider the internal structure
of the constituent elements, but recognizes the heterogeneity of the ply. The micro-
mechanics is based on some simplifying approximations. These concern the fibre
geometry and packing arrangement, so that the constituent characteristics together
with the volume fractions of the constituents yield the average characteristics of the
lamina. Note that the averaged properties are derived by considering the lamina to
be quasi-homogeneous.

The calculated values of the averaged properties of a lamina provide the basis
to predict the macrostructural properties. At the macro-mechanical level, only the
averaged properties of a lamina are considered and the microstructure of the lamina
is ignored. In some case the interfaces between the layers are taken into account.
The properties along and perpendicular to the fibre direction, these are the principal
directions of a lamina, are recognized and the so-called on-axis stress-strain relations
for a unidirectional lamina can be developed. Loads may be applied not only on-axis
but also off-axis and the relationships for stiffness and flexibility, for thermal and
moisture expansion coefficients and the strength of an angle ply can be determined.
A laminate is a stack of laminae. Each layer of fibre reinforcement can have various
orientation and in principle each layer can be made of different materials. Knowing
the macro-mechanics of a lamina, one develops the macro-mechanics of the lami-
nate. Averaged stiffness, flexibility, strength, etc. can be determined for the whole
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laminate. The structure and orientation of the laminae in prescribed sequences to a
laminate lead to significant advantages of composite materials when compared to a
conventional monolithic material. In general, the mechanical response of laminates
is anisotropic.

One very important group of laminated composites are sandwich structures. They
as usual consist of two thin faces (the skins or sheets) sandwiching a core (Fig. 1.4).
The faces are made of high strength materials having good properties under tension
such as metals or fibre reinforced laminates while the core is made of lightweight
materials such as foam, resins with special fillers, called syntactic foam, having good
properties under compression. Sandwich composites combine lightness and flexural
stiffness.

(a) (b)

(c) (d)

(e) (f)

Fig. 1.4 Sandwich materials with solid and hollow cores. (a) foam core, (b) balsa wood core, (c)
foam core with fillers, (d) balsa wood core with holes, (e) folded plates core and (f) honeycomb
core (Altenbach et al, 2018, with courtesy of Springer Publisher).
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In contrast to classical sandwiches in photovoltaic applications we have a opposite
situation: thick stiff skin layers and a very thin and very weak core layer (Fig. 1.5).
A detailed discussion of the specific properties and the mechanical analysis is given,
for example, in Aßmus (2019).

When the micro- and macro-mechanical analysis for laminae and laminates or
sandwiches are carried out, the global behavior of laminated composite materials is
known. The last step is the modeling on the structure level and to analyze the global
behavior of a structure made of composite material. By adapting the classical tools
of structural analysis on anisotropic elastic structure elements the analysis of simple
structures as beams or plates may be achieved by analytical methods, but for more
general boundary conditions and/or loading and for complex structures, numerical
methods are used.

Summarizing the different size scales of mechanical modeling structure elements
composed of fibre reinforced composites it must be noted that, independent of the
different possibilities to formulate beam, plate or shell theories, three modeling levels
must be considered (Altenbach et al, 2018):

• The microscopic level, where the average mechanical characteristics of a lamina
have to be estimated from the known characteristics of the fibres and the ma-
trix material taking into account the fibre volume fracture and the fibre packing
arrangement.The micro-mechanicalmodeling leads to a correlation between con-
stituent properties and average composite properties. In general, simple mixture
rules are used in engineering applications. If possible, the average material char-
acteristics of a lamina should be verified experimentally. On the micro-mechanical
level a lamina is considered as a quasi-homogeneous orthotropic material.

• The macroscopic level, where the effective (average) material characteristics of
a laminate have to be estimated from the average characteristics of a set of lami-
nae taking into account their stacking sequence. The macro-mechanical modeling
leads to a correlation between the known average laminae properties and effective
laminate properties. On the macro-mechanical level a laminate is considered gen-
erally as an equivalent single layer element with a quasi-homogeneous, anisotropic
material behavior.

Fig. 1.5 Components of thin
film solar module - anti-

sandwich (Schulze et al, 2012;
Weps et al, 2013).

junction box

back sheet or glass

encapsulant
electrical conductor

thin film layer
front glass
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• The structural level, where the mechanical response of structural members like
beams, plates, shells etc. have to be analyzed taking into account possibilities to
formulate structural theories of different order.

1.2.5 Material Characteristics of the Constituents

The optimal design and the analysis of structural elements requires a detailed knowl-
edge of the material properties, which depend on the nature of the constituent
materials but also on manufacturing. For structures made of composites as usual
we have a more complicated situation. The list of composite materials is numerous
but available standards and specifications are rare. The properties of each material
used for both reinforcements and matrices of composites are extremely diversified.
Structural design based on composite materials requires detailed knowledge about
the material properties of the singular constituents of the composite and the fabri-
cation of the composites for optimization of the material in the frame of structural
applications and also detailed codes for modeling and analysis are necessary.

Let us focus on fibre reinforced composites with polymer resins. Material tests
of the constituents of composites are in many cases a complicated task and so the
material data in the literature are limited (Altenbach et al, 2018, and the references
therein). In engineering applications the averaged data for a lamina are often tested
to avoid this problem and in order to use correct material characteristics in structural
analysis. The main properties for the estimation of the material behavior are

• density ρ,
• Young’s modulus E, Poisson’s ratio ν, shear modulus G,
• ultimate strength σu and
• thermal expansion coefficient α.

The material can be made in bulk form or in the form of fibres. To estimate properties
of a material in the form of fibres, the fibre diameter d can be important.

The estimate of electro- and magneto-rheological properties is more complicated
and will be not discussed here.

1.3 Modeling of Laminated Structures: Different Approaches

Many theories have been developed to model the mechanical behavior of laminated
thin-walled structures. The most accurate models are based on the three-dimensional
elasticity theory. However, this approach leads to complex problems of analysis the
stress-strain state and rigid-body motions (s., among many others Shakeri et al,
2006; Saviz et al, 2007; Malekzadeh et al, 2009; Kulikov and Plotnikova, 2013) and
since the computational effort is great this approach has found limited applications in
the engineering practice. Taking into account thinness of the beams, plates and shell
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(in comparison to its other dimensions) researchers make simplifying assumptions,
called hypotheses, which result in two- or one-dimensional representation of a shell
with some predictable and reasonable accuracy.

Let us focus our attention at first to plates and shells. Theories for beams can be
established in a similar manner. The 2D theories for thin laminated plates and shells
may be divided into two basic models: the equivalent single layer (ESL) model and
the layer-wise (LW) model. A short review of these models will be presented below.
Later in this monograph the ESL model will be preferred. The ESL theories may
be classified, for example, as in Qu et al (2013): classical shell theory (CST), the
first-order shear deformation theory (FSDT), and the higher-order shear deformation
theory (HSDT).

The CST is based on the Kirchhoff-Love hypotheses (Kirchhoff, 1850; Love,
1888). In the original paper of Kirchhoff the following two hypotheses are mentioned
as the base of his theory

• straight line normal to the undeformed middle surface remains straight and normal
to the deformed middle surface,

• the elements of the midplane during the deformation have no dilatation.

The first hypothesis results in neglecting the transverse shear strains. Considering
the second hypothesis, in classical Kirchhoff theory one gets only an equation for
the deflection. Love introduced also the in-plane displacements for the midplane of
the shell.

Depending on different assumptions related to the strain-displacement, consti-
tutive and equilibrium equations the CSTs may be conventionally subdivided into
theories named by Ambartsumyan (1970), Donnell (1976), Flügge (1973), Mushtari
and Galimov (1961), Love (1906), Mindlin (1951), Novozhilov (1970), Reissner
(1944), Sanders (1959), Vlasov (1944), etc. All these approaches lead to three dif-
ferential equations w.r.t. three unknowns. Surveys on the classical theories, initially
derived for isotropic plates and shells, may be found in the monographs of Leissa
(1973); Reddy (2004), and in a early work of Naghdi (1956). Obviously, the first
studies on mechanical behavior of laminated plates and shells were performed in
the framework of the CSTs (Reissner and Stavsky, 1961; Stavsky, 1961; Dong et al,
1962; Yang et al, 1966; Whitney and Leissa, 1969; Ambartsumyan, 1970; Bert, 1976,
1980). These approaches neglecting shear deformations have been shown to be ad-
equate for the static analysis of thin laminates (Pagano, 1969, 1970). Considering
dynamic problems for layered composite shells, such theories may be exploited in
the low-frequency range (Qu et al, 2013), but they result in errors up to 30% in the
prediction of large natural frequencies (Reddy, 2004). For thicker plates and shells
pliable in shear as well as for thin layered structures consisting of a soft layer(s),
the classical theories become inadequate even for predicting static deflections and
stresses.

The first attempts to overcome the shortcomings of the CSTs were made by
Reissner (1945, 1952); Lurie (1947); Hildebrand et al (1949) and Mindlin (1951).
They proposed the so-called FSDTs in accordance to which the deflection w is
independent of the normal coordinate z and the in-plane displacements u1, u2 of
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the middle surface are linear functions of z. These theories take into account the
transverse shear strain components which are constant along the thickness. A detailed
description of these theories may be found in Reissner (1975); Reissner and Wan
(1982). In fact, these approaches may be considered as the development of the
Timoshenko’s beam theory (Timoshenko, 1921). Later, the extension of the FSDTs
to laminated plates has been performed by Yang et al (1966); Whitney and Pagano
(1970); Sun (1971), and a number of similar theories for thin and moderately thick
laminated shells have been developed by Dong et al (1962); Dong and Tso (1972);
Hsu and Wang (1970); Zukas and Vinson (1971); Reddy (1984a); Qatu (1999);
Toorani and Lakis (2000); Auricchio and Sacco (2003). Aforementioned theories
result, as a rule, in five coupled equations w.r.t. five unknowns. Recently Wang
et al (2018) proposed a simple first-order shear deformation shell theory which
contains only four unknowns and can be regarded as an enhanced CST with the
consideration of the effects of transverse shear deformation and rotary inertia terms.
The main defect of the FSDTs (as well as of classical shell theories) is that the traction
conditions at the shell surfaces are violated and so, it requires shear correction factors
(Reissner, 1944; Mindlin, 1951). The problem is that the shear correction factors are
difficult to determine for arbitrary laminated plates and shells because they depend
on the geometrical and lamination parameters, loading and boundary conditions as
well (among many others, s. Srinivas et al, 1970; Chow, 1971; Whitney, 1973; Bert,
1973; Wittrick, 1987; Vlachoutsis, 1992).

In spite of the above mentioned drawbacks of the FSDTs, several improvements
are suggested to study numerous applied problems on mechanical behavior of lam-
inated shells. Qatu (1999) studied free vibrations of laminated simply supported
cylindrical shells. Taking into account transverse shear deformation and rotary in-
ertia effects as well, Toorani and Lakis (2001) considered the coupled problem on
free vibrations of anisotropic laminated cylindrical shell partially or completely
filled with liquids. Wang et al (2002) investigated the propagation of waves in or-
thotropic laminated spherical shells. Free vibrations of thick laminated anisotropic
non-circular cylindrical shells were analyzed by Ganapathi and Haboussi (2003).
The effect of transverse shear and rotary inertia on waves in laminated piezoelectric
cylindrical shells in thermal environment was examined by Dong and Wang (2007).
Ribeiro (2009) studied the effect of membrane inertia and shear deformation on geo-
metrically nonlinear vibrations of open cylindrical laminated shells. Using a unified
variational formulation based on the FSDT, Qu et al (2013) considered free, steady-
state and transient vibrations of composite laminated shells of revolution subjected
to various combinations of boundary conditions.

Further improvements of the shear deformable theories were based on quadratic,
cubic and higher expansions at least of the in-plane displacements u1, u2 in terms of
the transverse coordinatez. These theories are named higher-order shear deformation
theories (HSDTs). First of all, we refer to Whitney and Sun (1973, 1974). They
proposed a second-order theory in which the transverse displacementw is assumed as
a linear function of the thickness coordinate z and the in-plane displacements u1, u2
of the reference surface are expanded as quadratic functions of z. This approach
results in eight coupled equations w.r.t. eight unknowns. Due to the large number
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of dependent unknown magnitudes, this theory is results in more computational
effort then the FSDTs. Furthermore, this second-order theory requires a correction
to the transverse shear stiffness. In contrast to this theory, Reddy (1984a); Reddy
and Liu (1985) developed a third-order but more simple shear deformation theory of
laminated plates and shells. Although, this theory is based on a displacement field in
which the in-plane displacements u1, u2 are expanded as cubic functions of z and the
normal deflectionw is constant through the thickness, it contains only five unknowns
as in FSDTs but requires no shear correction factors. To date, there is a wide variety
of higher-order theories (s. among many others Librescu et al, 1987; Librescu and
Khdeir, 1988; Grigolyuk and Kulikov, 1988b; Mallikarjuna and Kant, 1993, 2002;
Batra and Vidoli, 2002b; Ganapathi et al, 2002; Khare et al, 2003; Swaminathan
and Ragounadin, 2004; Khare and Rode, 2005; Balah and Al-Ghemady, 2005;
Tovstik and Tovstik, 2007; Amabili, 2015; Tovstik and Tovstik, 2017; Shi et al,
2018). In addition, we refer to the so-called New HSDTs proposed by Karama et al
(2009); Aydogdu (2009); Mantari et al (2011a,b). In these theories, the transverse
displacement is assumed to be independent of the thickness coordinate z, and the
in-plane displacements of the reference surface are expanded as a combination of
exponential and polynomial functions of z. Most of the well known shear deformable
theories available in literature, including the aforementioned ones, were developed
as particular cases. A common property of these theories is that they lead to a
system of differential equations for five unknowns and comply with the traction-free
boundary conditions on the top and bottom surfaces of the laminated plate/shell.
Recently, Viola et al (2013) proposed a general variant of HSDTs which contains
nine independent displacement parameters and unifies most of the known higher-
order theories due to the incorporation of general shear functions.

In high accurate layer-wise theories (LWTs), accounting the zig-zag effects, each
layer is considered as a shell with interface boundary conditions guaranteing the
continuity of the displacement or/and stress fields. The early investigations in this
direction, which were performed by Hsu and Wang (1970); Cheung and Wu (1972);
Srinivas (1973); Sun and Whitney (1973); Bolotin and Novichkov (1980); Murakami
(1986); Barbero et al (1990); Cho et al (1991); Gaudenzi et al (1995); Carrera
(1998a,b), have shown the superiority of layer-wise models over ESL ones. Indeed,
the LWTs provide more realistic kinematics of multi-layered plates and shells and
turn out to be more accurate and effective to predict local effects (Reddy and Robbins,
1994; Carrera, 2001; Batra and Vidoli, 2002a; Khare et al, 2003; Demasi, 2009),
high frequency response (Braga and Rivas, 2005; Oh, 2007) and formulate shell
finite elements (Moreira et al, 2006; Yasin and Kapuria, 2013; Wu et al, 2018;
Kordkheili and Soltani, 2018). To date, there are a lot of papers proposing improved
and refined variants of layer-wise models (among many others, s. Sahoo and Singh,
2014; Naumenko and Eremeyev, 2014; Iurlaro et al, 2015; Naumenko and Eremeyev,
2017; Carrera et al, 2015; Akoussan et al, 2017; Shi et al, 2018; Flores et al, 2018)
and studying topical problems on mechanical behavior of laminated plates and shells
based on these models. Thus, Starovoitov and Leonenko (2010) analyzed free and
resonant vibrations of circular sandwich plate using the zig-zag theory, Cetkovic
(2015) studied thermo-mechanical bending of laminated composite and sandwich



20 1 Introduction

plates subjected to mechanical load and non-uniform temperature field, and in more
recent papers (Nikbakht et al, 2017) employed the full layer-wise method to analyze
the elastic bending of functionally graded plates up to yielding, Treviso et al (2017)
used the refined zig-zag theory (RZT) in the framework of shell elements for vibration
analysis of laminated and sandwich shells and shown that the RZT element can
be effectively used to reduce the computational costs of dynamic simulations of
laminated structures, and Moita et al (2018) developed a simple and efficient finite
element model to examine damped vibrations of multilayered sandwich plates and
shells with a viscoelastic core sandwiched between functionally graded material
layers, and including piezoelectric layers.

Despite the variety of layer-wise shell theories, they have not gained wide popu-
larity in modeling practical shell vibration problems because of extreme complexity
of theoretical formulations and high computational costs. There are a few examples
when only layer-wise theories yields in correct results as shown in Schulze et al
(2012); Weps et al (2013); Aßmus (2019). It should be noted that each model of lam-
inated plates and shells has its advantages as well as disadvantages (Reddy, 1993),
and the correct choice of the theory depends on many factors, such as the shell
geometry, the number of layers, the material of which each layer is made, as well
as the loads. Another point affecting the choice of the shell model is the expected
variability of the displacements, strains and stresses. So, if vibrations or buckling
are accompanied by formation of a large number of short waves/dents, then the full
system of governing equations is, as a rule, simplified and reduced to the shallow
shell equations with a less number of unknowns (Grigolyuk and Kulikov, 1988b).

The above literature review does not pretend to be complete. We refer readers
to the survey articles by Grigolyuk and Kulikov (1988a); Kapania (1989); Kapania
and Raciti (1989a,b); Soldatos and Timarci (1993); Altenbach (1998); Toorani and
Lakis (2000); Reddy (1993); Reddy and Wang (2000); Carrera (2002, 2003a); Qatu
(2002); Qatu et al (2010); Atteshamuddin et al (2015); Caliri et al (2016), and books
by Qatu (2004); Reddy (2004); Gorshkov et al (2005). One should also mention
Carrera (2003b); Demasi et al (2017) where a unified formulation is proposed and
models, types and classes of theories for laminated plates and shells are described.

Completing the short overview of existing theories for laminated shells, we draw
attention to the approach developed by Grigolyuk and Kulikov (1988b) which will
be used below. This ESL theory is based on the generalized kinematical hypotheses
of Timoshenko for the in-plane displacements u1, u2 of the reference surface and the
parabolic distribution of transverse shear stresses through both each layer thickness
and the entire shell thickness. It complies with the traction-free boundary conditions
on the top and bottom surfaces of a laminated shell and guaranties the continuity
of transverse shear stresses in the direction of the thickness coordinate z. Recently,
this model was adapted by Mikhasev et al (2011) to laminated cylindrical shells
composed of smart materials (magnetorheological elastomers and electrorheological
composites). The choice of this theory can be explained by the following items:

• if the stress and strain state of a shell has a large variability, even if by one coordi-
nate, then the full system of differential equations w.r.t. five unknowns is readily
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simplified and reduced to three equations written in terms of the displacement,
stress and shear functions χ, Φ, φ;

• the governing equations written in terms of χ, Φ, φ completely coincide with
similar equations derived by Tovstik and Tovstik (2007, 2017) from the 3D theory
of elasticity, the assumed model unifying the simple equations of the Mushtary-
Donnell-Vlasov technical theory and the HSDT equations;

• this theory is simple enough for prediction of the mechanical behavior of multi-
layered shells, including smart structures;

• the accuracy of the governing equations has been verified by finite element sim-
ulations (s. Mikhasev et al, 2001; Korchevskaya et al, 2004; Mikhasaev et al,
2004).
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Chapter 2

Equivalent Single Layer Model for Thin

Laminated Cylindrical Shells

Abstract In this chapter we consider the equivalent single layer model for thin multi-
layered cylindrical shells. It is based on the generalized Timoshenko hypotheses
and results in nonlinear governing equations for the whole stacked sequence of an
elastic laminated shell. Considering variations of the nonlinear equations, we derive
buckling equations of a thin elastic laminated shell loaded with static conservative
loads. The derived dynamic equations are adapted for the case when a shell is
assembled from elastic and viscoelastic layers with properties represented by a
complex shear modulus. Viscoelastic layers or cores are assumed to be made of smart
materials, such as magnetorheological elastomers and electrorheological composites.
The reader can become acquainted with elastic and rheological properties of some
smart viscoelastic materials which may be used as damping elements of smart thin-
walled laminated shells.

2.1 Equations of Thin Elastic Laminated Cylindrical Shells

In this section we consider principle hypotheses for the two-dimensional theory tak-
ing into account transverse shear, the strain-displacement and constitutive relations.
Applying a mixed variational principle, the nonlinear equations describing the mo-
tion of an elastic laminated cylindrical shell and the natural boundary conditions as
well are deduced. For cases when vibrations occur with formation of short waves,
the full system of equations is reduced to the simplified system of three differential
equations for the stress, displacement and shear functions. The edge effect equations
taking into account transverse shear are obtained. The asymptotic error of the derived
equations is shortly discussed.
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2.1.1 Laminated Cylindrical Shell

Consider a thin non-circular laminated cylindrical shell (s. Fig. 2.1) consisting of
N transversely isotropic layers characterized by the following parameters: length L,
thickness hk, density ρk, Young’s modulus Ek, shear modulus Gk, and Poisson’s
ratio νk, where k = 1, 2, . . . , N are the number of layers. It is assumed that each
layer has a constant thickness.

The middle surface of any fixed layer is taken as the reference surface. We
introduce a local orthogonal coordinate system by means of unit vectors eee1, eee2 and
nnn = eee1 × eee2 with origin in the point O as shown in Fig. 2.1. Let α1 and α2 be
the axial and circumferential coordinates, respectively, and α3 = z is the normal
coordinate. The radius of curvature of the reference surface isR2 = 1/k22(α2). The
shell is bounded by two not necessarily plane edges

α∗
1(α2) ≤ α1 ≤ α∗∗

1 (α2) (2.1)

and may be not closed in the direction of α2 (the case of a non-circular cylindrical
panel).

In this section, we assume that every layer is made of an elastic material which
may be inhomogeneous.Then the Young’s moduliEk and Poisson’s ratios νk are real
numbers which may depend on the curvilinear coordinatesα1, α2. Below, laminated
shells and sandwiches with viscoelastic layers and cores will be also considered. In
particular, we discuss the case when a sandwich is formed by embedding a mag-
netorheological elastomer or electrorheological composite between elastic layers.
In this case parameters Ek and Gk corresponding to the viscoelastic laminas with
adaptive elastic and viscous properties will be considered as complex functions of
α1, α2 and time t.

α2

hN

hk δk−1

h1

α3 = z

nnn

eee2
O

eee1

δN

δk
δN−1

δ0

α1

α1

δ1

Fig. 2.1 Laminated cylindrical shell with a curvilinear coordinate system.
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2.1.2 Principal Hypotheses

Now we introduce some additional notations. Let z = δk be the coordinate of the
upper bound of the kth layer, and z = δ0 is the coordinate of the inner surface of
the shell, ui and w are the tangential and normal displacements of points on the
reference surface of the shell, respectively,

h =

N∑
k=1

hk

is the total thickness of the laminate, u(k)i are the tangential displacements of points
of the kth layer, σi3 are the transverse shear stresses (s. Fig. 2.2), θi are the an-
gles of rotation of the normal nnn about the vector eeei (s. Fig. 2.1). Here i = 1, 2;
k = 1, 2, . . . , N .

The following hypotheses of the laminated shell theory stated in Grigolyuk and
Kulikov (1988) are assumed here:

1. The distribution law of the transverse tangent stresses across the thickness of the
kth layer is assumed to be of the form

σi3 = f0(z)μ
(0)
i (α1, α2, t) + fk(z)μ

(k)
i (α1, α2, t) , (2.2)

where t is time, f0(z), fk(z) are continuous functions introduced as follows

f0(z) =
1

h2
(z − δ0)(δN − z) for z ∈ [δ0, δN ],

fk(z) =
1

h2k
(z − δk−1)(δk − z) for z ∈ [δk−1, δk],

fk(z) = 0 for z /∈ [δk−1, δk].

(2.3)

2. Normal stresses acting on the area elements parallel to the original one are
negligible with respect to the other components of the stress tensor.

Fig. 2.2 Infinitesimal element
of a laminated shell, reference
surface and stresses (after
Mikhasev and Botogova,
2017).

h

dα1

z

dα2

α2

σ22

σ23

σ21

σ12 = σ21

σ12

σ13

σ11

α1
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3. The deflection w(α1, α2, t) does not depend on the coordinate z.
4. The tangential (in-plane) displacements are distributed across thickness of the

layer package according to the generalized kinematic Timoshenko hypotheses

u
(k)
i (α1, α2, z, t) = ui(α1, α2, t) + zθi(α1, α2, t) + g(z)ψi(α1, α2, t), (2.4)

where

g(z) =

z∫
0

f0(x)dx.

In Eq. (2.4), ψi are required parameters characterizing the transverse shear in the
shell. Hypothesis (2.4) permits to describe the non-linear dependence of the tangen-
tial displacements on z; at g ≡ 0 it turns into the linear Timoshenko hypotheses
coinciding with the classical Kirchhoff-Love hypotheses if θi are functions of the
tangential displacements and derivatives of the deflection.

In what follows, it will be shown that the functions μ(0)
i (α1, α2), μ

(k)
i (α1, α2)

are coupled with the vector Ψ̄ = (ψ1, ψ2)
T and depend on elements of a matrix

characterizing the shear deformability of the kth layer. So, in the theory developed
by Grigolyuk and Kulikov (1988) and based on the above hypothesis, the five com-
ponents w, ui, ψi(i = 1, 2) are assumed to be independent functions, and θi are
defined in the derivatives of the deflection w.

2.1.3 Strain-displacement Relations

We assume that the shell deformation under buckling or vibrations is accompanied
by the formation of a large number of waves so that the shell may be considered as
shallow one within the limits of one half-wave. Then, θi ≈ −w,i, and taking into
account the hypotheses accepted above, the strain-displacement relations will be as
follows (Grigolyuk and Kulikov, 1988):

u
(k)
i = ui − zw,i + g(z)ψi, i, j = 2, (2.5)

εij = eij + z κij + g(z)ψij , εi3 = f0(z)ψi, (2.6)

where

eij =
1

2
(ui,j + uj,i + w,iw,j) + kijw,

ψij =
1

2
(ψi,j + ψj,i), κij = −w,ij ,

k11 = k12 = 0, k22 =
1

R2(α2)
.

(2.7)

Here, the differentiation with respect to the coordinate αi is designated as (. . .),i.
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2.1.4 Constitutive Equations for Elastic Materials

Let us introduce the vectors

σ̄ = (σ11, σ22, σ12)
T, ε̄ = (ε11, ε22, ε12)

T (2.8)

of the tangential (with respect to the original surface) stresses and strains in the kth

elastic layer for the plane stress state. When taking the static hypothesis (2.2) into
account, these stresses and strains are linked by Hooke’s law

ε̄ = A(k)σ̄, (2.9)

where

A(k) =

⎛
⎜⎜⎜⎝
a
(k)
11 a

(k)
12 a

(k)
16

a
(k)
12 a

(k)
22 a

(k)
26

a
(k)
16 a

(k)
26 a

(k)
66

⎞
⎟⎟⎟⎠ (2.10)

is the 3× 3 matrix of the plane compliances for the kth layer. If the layer is isotropic
, then

a
(k)
11 = a

(k)
22 =

1

Ek
, a

(k)
12 = − νk

Ek
, a

(k)
66 =

1 + νk
Ek

, a
(k)
16 = a

(k)
26 = 0 (2.11)

and the constitutive equation (2.9) for the generalized plane stress state may be
rewritten as it follows

σij =
Ek

1− ν2k
Ξεij , i, j = 1, 2, (2.12)

where
Ξεij = (1− ν)εij + νδij(ε11 + ε22), (2.13)

δij is the Kronecker symbol (δii = 1; δij = 0, i �= j), and

ν =

N∑
k=1

Ekhkνk
1− ν2k

(
N∑

k=1

Ekhk
1− ν2k

)−1

(2.14)

is the reduced Poisson’s ratio for the whole stacked sequence (Grigolyuk and Kulikov,
1988).

The transverse shear stresses σi3 have to satisfy the following matrix equation

ε̄3 = A
(k)
3 σ̄3, (2.15)

where
σ̄3 = (σ13, σ23)

T , ε̄3 = (ε13, ε23)
T (2.16)

and
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A
(k)
3 =

⎛
⎝a(k)55 a

(k)
45

a
(k)
45 a

(k)
44

⎞
⎠ (2.17)

is the 2× 2 matrix of the transverse shear compliances. For a isotropic layer, a(k)45 =

0, a
(k)
55 = a

(k)
44 = G−1

k . It is obvious that because of the accepted hypotheses (2.2),
the constitutive equation (2.15) is not satisfied. However, it will be shown below that
Eq. (2.15) may be satisfied integrally with some weight function for the thickness of
the laminated package.

We also introduce the reduced Young’s modulus

E =
1− ν2

h

N∑
k=1

Ekhk
1− ν2k

, (2.18)

and the dimensionless stiffness characteristics

γk =
Ekhk
1− ν2k

(
N∑

k=1

Ekhk
1− ν2k

)−1

(2.19)

of the kth layer. Then, from Eqs. (2.18) and (2.19) one obtains

Ekhk
1− ν2k

=
Eh

1− ν2
γk (2.20)

for any k = 1, . . . , N . The parameters γk are important in the estimation of the
error of governing equations derived below. In what follows, we assume that the
stiffness characteristics γk for all layers are approximately the same. In the common
case, when a material of some layer is inhomogeneous, the reduced modulus E and
Poisson’s ratio ν are functions of the curvilinear coordinates.

2.1.5 Stress Resultants

LetTij , Qi andMij be the classical stress resultants (s. Fig. 2.3) which are introduced
in the standard way as

Tij =

N∑
k=1

δk∫
δk−1

σij dz, Qi =

N∑
k=1

δk∫
δk−1

σi3 dz, Mij =

N∑
k=1

δk∫
δk−1

z σij dz. (2.21)

In addition to the classical resultants, we introduce the generalized stress resultants
(Grigolyuk and Kulikov, 1988):

• the generalized transverse shear forces
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α1α1

(a) zz

α2
α2

Q2

T22T21
T12

Q1

T11

((b)

M22

M21M11M12

Fig. 2.3 Reference surface. Stress resultants: (a) in-plane forces Tij and transverse shear forces
Qi, (b) moments Mij .

Q0i =

N∑
k=1

δk∫
δk−1

f0(z)σi3 dz, (2.22)

• and the generalized moments

Lij =
N∑

k=1

δk∫
δk−1

g(z)σij dz. (2.23)

The introduction of the generalized forces and moments is caused by the presence
of additional degrees of freedom corresponding to the transverse shear in the shell.

Taking into account Eqs. (2.12)-(2.14), (2.18), Eqs. (2.21), (2.23) can be rewritten

Tij =
Eh

1− ν2
Ξeij +

Eh2

2(1− ν2)
(c13Ξκij + c12Ξψij) ,

Mij =
1

2
hc13Tij +

Eh2

2(1− ν2)
(η3Ξκij + η2Ξψij) ,

Lij =
1

2
hc12Tij +

Eh2

2(1− ν2)
(η2Ξκij + η1Ξψij) ,

(2.24)

where

c12 =

N∑
k=1

ξ−1
k π3kγk, c13 =

N∑
k=1

(ζk−1 + ζk)γk,

1

12
h3π1k =

δk∫
δk−1

g2(z)dz,
1

12
h3π2k =

δk∫
δk−1

z g(z)dz,
1

2
h2π3k =

δk∫
δk−1

g(z)dz,

η1 =

N∑
k=1

ξ−1
k π1kγk − 3c212, η2 =

N∑
k=1

ξ−1
k π2kγk − 3c12c13,

η3 = 4

N∑
k=1

(
ξ2k + 3ζk−1ζk

)
γk − 3c213, hξk = hk, hζn = δn (n = 0, k)

(2.25)
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Equations (2.24) differ from similar equations for homogeneous shells. They contain
terms depending on torsion of the original surface and shear as well. The presence
of these terms is not desirable. To eliminate them, we follow Grigolyuk and Kulikov
(1988) and introduce the so-called generalized displacements and strains

ui = ûi +
1

2
hc13w, i − 1

2
hc12ψi,

eij = êij − 1

2
hc13κij − 1

2
hc12ψij .

(2.26)

Then Eq. (2.24) forTij may be rewritten in terms of the generalized strains as follows

Tij =
Eh

1− ν2
Ξêij . (2.27)

Let us consider the following transformations (Grigolyuk and Kulikov, 1988)

M̂ij =Mij − 1

2
hc13Tij , L̂ij = Lij − 1

2
hc12Tij . (2.28)

They lead to equations for the so-called reduced moments and generalized moments

M̂ij =
Eh3

12(1− ν2)
(η3Ξκij + η2Ξψij) ,

L̂ij =
Eh3

12(1− ν2)
(η2Ξκij + η1Ξψij) .

(2.29)

The substitution of (2.2), (2.3) into (2.22) results in the following equations for the
generalized shear stress resultants

Q0i =

N∑
k=1

(
λkμ

(0)
i + λk0μ

(k)
i

)
, i = 1, 2; (2.30)

λk =

δk∫
δk−1

f2
0 (z)dz, λkn =

δk∫
δk−1

fk(z)fn(z)dz (n = 0, k).

It will be shown later that they may be expressed in terms of the functions ψi.

2.1.6 Mixed Variational Principle

To derive the equations of equilibrium we shall apply to the following mixed varia-
tional principle

δΠ = δA∗
1 + δA∗

2, (2.31)
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whereA∗
1 andA∗

2 are the work of both external surface and boundary forces, respec-
tively, and the functional Π is defined as (Grigolyuk and Kulikov, 1988)

Π =

∫∫
D

⎡
⎢⎣ N∑
k=1

δk∫
δk−1

(
σ̄Tε̄+ σ̄T

3 ε̄3 −Wk

)
(1 + k22z) dz

⎤
⎥⎦ dα1dα2. (2.32)

In (2.32),

Wk =
1

2

(
σ̄TA(k)σ̄ + σ̄T

3A
(k)
3 σ̄3

)
(2.33)

is the strain-energy function of the kth layer, and D is the domain of the reference
surface bounded by a closed curve (s. Fig. 2.4)

ΓD = Γ1 ∪ Γ2,

where

Γ1 = Γ ∗
1 ∪ Γ ∗∗

1 , Γ ∗
1 = {(α1, α2) : α1 = α∗

1(α2)},
Γ ∗∗
1 = {(α1, α2) : α1 = α∗∗

1 (α2)}, Γ2 = Γ ∗
2 ∪ Γ ∗∗

2 ,
Γ ∗
2 = {(α1, α2) : α2 = α∗

2}, Γ ∗∗
2 = {(α1, α2) : α2 = α∗∗

2 },
0 ≤ α∗

2 < α∗∗
2 ≤ 2π.

If the shell is closed in the circumferential direction, then α∗
2 = 0, α∗∗

2 = 2π,
otherwise, one has the cylindrical panel. In the mixed variational principle (2.31),
displacements and stresses are varied independently.

Fig. 2.4 Domain of the origi-
nal surface and its bound. Path
of integration.

(α∗
1 , α

∗∗
2 )

Γ∗∗
2

(α∗∗
1 , α∗∗

2 )

Γ∗∗
1

(α∗∗
1 , α∗

2)

Γ∗
2

(α∗
1 , α

∗
2)Γ∗

1

D
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The variation of the functionalΠ may be written in terms of the stress resultants,
reduced moments and generalized strains êij . Substituting Eqs. (2.5)-(2.9), (2.21)-
(2.30) into (2.32) and introducing the generalized strains by (2.26), one obtains

δΠ =

∫∫
D

{
2∑

i,j=1

(
Tijδêij + M̂ijδκij + L̂ijδψij

)

+
2∑

i=1

Q0iδψi +
N∑

k=1

δk∫
δk−1

(
ε̄3 − A

(k)
3 σ̄3

)T
δσ̄3dz

}
dα1dα2.

(2.34)

When deriving Eq. (2.34), we have neglected k22z (k22z 
 1).
Let us apply the known generalized formula of partial integration∫∫

D

F1
∂F2

∂α1
dα1dα2 =

∫
Γ1

F1F2dα2 −
∫∫
D

F2
∂F1

∂α1
dα1dα2. (2.35)

The standard variational procedure in (2.34) results in the following equation for the
variation of the functionalΠ

δΠ = −
∫∫
D

{
2∑

i=1

(T1i,i + T2i,2) δûi +

2∑
i=1

(
L̂1i,1 + L̂2i,2 −Q0i

)
δψi

+

2∑
i,j=1

[
M̂ij,ij + (Tijw,i),j − k22T22

]
δw

⎫⎬
⎭ dα1dα2

+

∫∫
D

{
N∑

k=1

δk∫
δk−1

(
ε̄3 − A

(k)
3 σ̄3

)T [
f0(z)δμ̄

(0)+ + fk(z)δμ̄
(k)
]

dz

}
dα1dα2

+

∫
Γ1

[
2∑

i=1

(
Ti1δûi + L̂i1δψi

)
− M̂11δw,1

+
(
M̂11, 1 + 2M̂12, 2 + T11w, 1 + T12w, 2

)
δw

]
dα2

+

∫
Γ2

[
2∑

i=1

(
Ti2δûi + L̂i2δψi

)
− M̂22δw,2

+
(
M̂22,2 + 2M̂12,2 + T12w,1 + T22w,2

)
δw

]
dα1,

(2.36)
where

μ̄(n) =
(
μ
(n)
1 , μ

(n)
2

)T
, n = 0, . . . , k.

Let



2.1 Equations of Thin Elastic Laminated Cylindrical Shells 39

qs =

2∑
i=1

qiei + qnn (2.37)

be the vector of the external load acting on the unit area of the reference surface,
where qi(α1, α2) are components of the tangential forces and qn(α1, α2) is the
normal load. Then the variation of the surface forces work will be

δA∗
1 =

∫∫
D

(
2∑

i=1

qiδu1 + qnδw

)
dα1dα2. (2.38)

When turning to the generalized tangential displacements ûi by (2.26) and applying
Eq. (2.35), it is written as follows

δA∗
1 =

∫∫
D

[
2∑

i=1

(
qiδûi + L̂siδψi

)
+ q̂snδw

]
dα1dα2

+

∫
Γ1

Q̂b1δwdα2 +

∫
Γ2

Q̂b2δwdα1,

(2.39)

where

q̂sn = qn − 1

2
hc13

2∑
i=1

qi, i (2.40)

is the reduced normal load which contains additional forces acting on the surface
located at the distance hc13/2 from the reference surface of the laminated shell,

L̂si = −1

2
hc12qi, i = 1, 2 (2.41)

are the reduced moments generated by the components qi and acting on the surface
which is located at the distance hc12/2 from the reference one, and

Q̂bi =
1

2
hc13qi (2.42)

are the reduced shear boundary forces applied to the shell edges Γi at the distance
hc13/2 from the original surface. In contrast to Grigolyuk and Kulikov (1988), where
L̂si = Q̂bi = 0 and q̂sn = qn, Eq. (2.39) takes into account the work of the tangential
surface forces qi.

Let us consider the boundary stress resultants T ∗
ij , Q

∗
i andM∗

ij (i, j = 1, 2) acting
on the shell counter ΓD = Γ1 ∪ Γ2. Here, notations are the same as shown in Fig.
2.3, and the asterisk means that an appropriate force or moment is considered at
the shell edge. Taking into account the additional degrees of freedom corresponding
to the magnitudes ψi, we introduce also the generalized moments L∗

ij at the shell
edges. The variation of the work of the external boundary forces may be presented
in the form



40 2 Equivalent Single Layer Model for Thin Laminated Cylindrical Shells

δA∗
2 =

∫
Γ1

[
T ∗
11δu1 + T ∗

12δu2 +M∗
11δθ1

+

(
∂M∗

12

∂α2
+Q∗

1

)
δw + L∗

11δψ1 + L∗
12δψ2

]
dα2

+

∫
Γ2

[
T ∗
22δu2 + T ∗

21δu1 +M∗
22δθ2

+

(
∂M∗

21

∂α1
+Q∗

2

)
δw + L∗

22δψ2 + L∗
21δψ1

]
dα1.

(2.43)

Let us choose the path of integration in (2.43) as shown in Fig. 2.4. Then, introducing
the generalized tangential displacements ûi by (2.26) and applying Eq. (2.35), one
obtains the following equation

δA∗
2 =

∫
Γ1

[
T ∗
11δû1 + T ∗

12δû2 − M̂∗
11δw, 1 + L̂∗

11δψ1

+ L̂∗
12δψ2 +

(
Q∗

1 + M̂∗
12, 2

)
δw
]

dα2

+

∫
Γ2

[
T ∗
21δû1 + T ∗

22δû2 − M̂∗
22δw, 1 + L̂∗

22δψ2

+ L̂∗
21δψ1 +

(
Q∗

2 + M̂∗
21, 1

)
δw
]

dα1 +
1

2
hc13 [T

∗
12δw]Γ ,

(2.44)

where

L̂∗
ij = L∗

ij −
1

2
hc12T

∗
ij , M̂∗

ij = M∗
ij −

1

2
hc13T

∗
ij , (2.45)

and
[T ∗

12δw]Γ = T ∗
12δw|(α∗

1 ,α
∗∗
2 ) − T ∗

12δw|(α∗
1 ,α

∗
2)

+ T ∗
21δw|(α∗∗

1 ,α∗∗
2 ) − T ∗

21δw|(α∗
1 ,α

∗∗
2 )

+ T ∗
12δw|(α∗∗

1 ,α∗
2)

− T ∗
12δw|(α∗∗

1 ,α∗∗
2 )

+ T ∗
21δw|(α∗

1 ,α
∗
2)

− T ∗
21δw|(α∗∗

1 ,α∗
2)
.

(2.46)

From Eqs. (2.6), (2.7), (2.24) it follows that T12 = T21. Hence, one obtains that
T ∗
12 = T ∗

21. Then
[T ∗

12δw]Γ = 0. (2.47)

2.1.7 Equilibrium Equations and Natural Boundary Conditions

Let us substitute Eqs. (2.36), (2.39), (2.44), (2.47) into the mixed variational principle
(2.31). Taking into account the first hypothesis (2.2) coupling the transverse shear

stresses σi3 with the introduced additional functions μ(0)
i (α1, α2), μ

(k)
i (α1, α2),

we assume the displacements ui, w, ψi and the functions μ(0)
i , μ

(k)
i to be indepen-
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dent. Equating coefficients of the variations of independent magnitudes ui, w, ψi,

μ
(0)
i , μ

(k)
i , we obtain:

• the desired five differential equations of equilibrium in terms of the reduced stress
resultants

T1i, 1 + T2i, 2 = −qi,
L̂1i, 1 + L̂2i, 2 = Q0i − L̂si,

M̂11, 11 + 2M̂12, 12 + M̂22, 22

+w, 11T11 + 2w, 12T12 + w, 22T22 − k22T22 = −q̂sn,
(2.48)

with i = 1, 2,
• the equations coupling the transverse shear stresses with the shear strains

N∑
k=1

δk∫
δk−1

(
ε̄3 − A

(k)
3 σ̄3

)
f0(z)dz = 0, (2.49)

δk∫
δk−1

(
ε̄3 − A

(k)
3 σ̄3

)
fk(z)dz = 0 (2.50)

with k = 1, 2, . . . , N , and
• the natural boundary conditions

Ti1 = T ∗
i1 or ûi = 0,

L̂i1 = L̂∗
i1 or ψi = 0,

M̂11 = M̂∗
11 or w, 1 = 0,

M̂11,1 + 2M̂12,2 + T11w,1 + T12w,2 = Q∗
1 + M̂∗

12, 2 + Q̂b1 or w = 0
(2.51)

for the not necessary plane contours Γ ∗
1 [α1 = α∗

1(α2)], Γ
∗∗
1 [α1 = α∗∗

1 (α2)], and

Ti2 = T ∗
i2 or ûi = 0,

L̂i2 = L̂∗
i2 or ψi = 0,

M̂22 = M̂∗
22 or w, 2 = 0,

M̂22,2 + 2M̂12,1 + T12w,1 + T22w,2 = Q∗
2 + M̂∗

21, 1 + Q̂b2 or w = 0
(2.52)

for the straight contours Γ ∗
2 (α2 = α∗

2) and Γ ∗∗
2 (α2 = α∗∗

2 ).

The equilibrium equations (2.48) as well as the boundary conditions (2.51), (2.52)
take into consideration the shear forces qi applied to the reference surface and they
are different from similar equations and boundary conditions derived by Grigolyuk
and Kulikov (1988).
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2.1.8 Transverse Shear Stresses and Their Resultants

We remind that because of the accepted hypothesis (2.2), the constitutive equations
(2.15) are not satisfied. However, as seen from Eqs. (2.49) and (2.50), the constitutive
equations for the transverse tangent stresses hold integrally for both the thickness of
all laminated package with the weighting function f0(z) and the thickness of the kth

layer with the weighting function fk(z).
Equations (2.49), (2.50) allow us to couple the vector Ψ̄ to the additional vectors

μ̄(0), μ̄(k) (Grigolyuk and Kulikov, 1988). Indeed, the substitution of Eq. (2.2) for
σi3 and Eq. (2.6) for εi3 into Eqs. (2.49), (2.50) results in the following system of
N + 1 algebraic equations for the vectors μ̄(0), μ̄(k)

N∑
k=1

A
(k)
3

(
λkμ̄

(0) + λk0μ̄
(k)
)
=

N∑
k=1

Ψ̄ ,

A
(k)
3

(
λk0μ̄

(0) + λkkμ̄
(k)
)
= λk0Ψ̄ ,

(2.53)

where

λk =

δk∫
δk−1

f2
0 (z)dz, λkn =

δk∫
δk−1

fk(z)fn(z)dz, n = 0, k, (2.54)

and

A
(k)
3 =

(
G−1

k 0

0 G−1
k

)
(2.55)

for the isotropic layers.
The solution of Eqs. (2.53) may be presented in the form

μ
(0)
i = q∗44ψi, μ

(k)
i =

λk0
λkk

(
Gkψi − μ

(0)
i

)
, i = 1, 2; k = 1, 2, . . . , N,

(2.56)
where

q∗44 =

N∑
k=1

(
λk − λ2k0λ

−1
kk

)
N∑

k=1

(
λk − λ2k0λ

−1
kk

)
G−1

k

. (2.57)

Now, we can derive an equation for the generalized transverse stress resultants Q0i.
Substituting Eqs.(2.57) into (2.30), one obtains

Q0i = q44 ψi, (2.58)

where
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q44 =

[
N∑

k=1

(
λk − λ2k0

λkk

)]2
N∑

k=1

(
λk − λ2k0

λkk

)
G−1

k

+

N∑
k=1

λ2k0
λkk

Gk. (2.59)

We shall call the magnitudeG = q44/h as the reduced shear modulus for all package
of the laminated shell.

2.1.9 Equations of Motion in Terms of Displacements

The system of five differential equations (2.48) together with Eqs. (2.27)-(2.29),
(2.57) and Eqs. (2.6), (2.7), (2.26) for the stress resultants and strains, respectively,
form the full system of equations for the five unknown generalized displacements
ûi, w, ψi. To derive these equations, it is convenient to write the stress resultants in
terms of displacements.

The substitution of Eqs. (2.7), (2.26) into (2.27) and (2.29) results in the formu-
lae for the in-plane stress resultants and reduced moments written in terms of the
generalized displacements

Tii =
Eh

1− ν2

[
ûi, i +

1

2
w2

, i + ν

(
ûj, j +

1

2
w2

, j + kiiw

)
+ kjjw

]
,

Tij =
Eh

2(1 + ν)
(ûi, j + ûj, i + w, iw, j) ,

M̂ii = − Eh3

12(1− ν2)
[η3(w, ii + νw, jj)− η2(ψi, i + νψj, j)] ,

M̂ij = − Eh3

12(1 + ν)

[
η3w, ij − 1

2
η2(ψi, j + ψj, i)

]
,

L̂ii = − Eh3

12(1− ν2)
[η2(w, ii + νw, jj)− η1(ψi, i + νψj, j)] ,

L̂ij = − Eh3

12(1 + ν)

[
η2w, ij − 1

2
η1(ψi, j + ψj, i)

]
,

(2.60)

where i, j = 1, 2; i �= j. The generalized transverse stress resultantsQ0i are defined
by (2.58), (2.59).

Introducing (2.60), (2.58), into Eqs. (2.48) yields the system of nonlinear differ-
ential equations in terms of the generalized displacements
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û1, 11 +
1− ν

2
û1, 22 +

1 + ν

2
û2, 12 + νk22w, 1

+w, 1w, 11 + νw, 2w, 21 +
1− ν

2
(w, 1w, 22 + w, 2w, 12) = −q̃1,

1 + ν

2
û1, 12 +

1− ν

2
û2, 11 + û2, 22 + (k22w), 2

+
1− ν

2
(w, 2w, 11 + w, 1w, 12) + w, 2w, 22 + νw, 1w, 12 = −q̃2,

η2�w, 1 − η1

(
ψ1, 11 +

1 + ν

2
ψ2, 12 +

1− ν

2
ψ1, 22

)

+
12(1− ν2)

Eh3

(
q44ψ1 +

1

2
hc12q1

)
= 0,

(2.61)

η2�w, 2 − η1

(
ψ2, 22 +

1+ ν

2
ψ1, 12 +

1− ν

2
ψ2, 11

)

+
12(1− ν2)

Eh3

(
q44ψ2 +

1

2
hc12q2

)
= 0,

(2.62)

h2

12(1− ν2)
� [η3�w − η2 (ψ1, 1 + ψ2, 2)] +

k22
1− ν2

(νû1, 1 + û2, 2 + k22w)

− 1

1− ν2

{
w, 11

[
û1, 1 + ν(û2, 2 + k22w) +

1

2

(
w2

, 1 + νw2
, 2

)]

+w, 22

[
νû1, 1 + û2, 2 + k22w +

1

2

(
w2

, 2 + νw2
, 1

)]

+(1− ν)w1, 12(û1, 2 + û2, 1 + w, 1w, 2)− 1

2
k22

(
w2

, 2 + νw2
, 1

)}
= q̃n,

(2.63)
where

� =
∂2

∂α2
1

+
∂2

∂α2
2

is the Laplace operator, and

q̃i =
(1− ν2)qi

Eh
, q̃n =

1

Eh

(
qn − 1

2
hc13

2∑
i=1

qi, i

)
. (2.64)

The static balance equations (2.61)-(2.64) are in the usual way transformed into
equations describing the shell motion. When neglecting the rotary inertia effects, in
accordance with d’Alembert principle one assumes

q̃i =
(1− ν2)

Eh

(
qi −

N∑
k=1

ρkhk
∂2ûi
∂t2

)
,

q̃n =
1

Eh

(
qn − 1

2
hc13

2∑
i=1

qi, i −
N∑

k=1

ρkhk
∂2w

∂t2

)
,

(2.65)
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where ρk is the specific density of a material of the kth layer, and t is time. If
qi = qn = 0, and T ∗

ij , L
∗
ij ,M

∗
ij are specified static stress resultants on the shell

edges, then Eqs. (2.61)-(2.64), together with (2.65), describe free vibrations.

2.1.10 In-plane Stress State Equations

Let us introduce the index of variation ι of the stress-strain state as

max {|Z, 1|, |Z, 2|} ∼ h−ι
∗ Z, (2.66)

whereh∗ = h/R is the dimensional thickness which is assumed as a small parameter,
R is the characteristic dimension of the shell, and Z is any unknown function which
determines this state. Here and below, the symbol ∼ means that two quantities have
the same asymptotic orders at h∗ → 0 (s. the definition in Chapt. 6).

Depending on a value of ι and orders of all unknown functions in Eqs. (2.48) or
(2.61)-(2.63), one can deduce simplified equations corresponding to different stress-
strain state of a shell. The classification of the characteristic stress-strain states of
a thin single layer isotropic shell has been proposed by Gol’denveizer (1961) and
Novozhilov (1970).

In this subsection, we consider the simplest state called the membrane (moment-

less) stress-strain state1. This state is characterized by slow variation of all unknown
functions (ι = 0) and displacements ûi, w,Rψi being small quantities of the order
Rh∗. The governing equations for this state can be derived from Eqs. (2.48) or
(2.61)-(2.63). When omitting nonlinear terms in (2.48) and introducing the inertial
terms, then the dynamic in-plane stress resultants satisfy the following system of
equations

∂T11

∂α1
+
∂T21

∂α2
= −q1(α1, α2, t) + ρ0h

∂2û1
∂t2

,

∂T12

∂α1
+
∂T22

∂α2
= −q2(α1, α2, t) + ρ0h

∂2û2
∂t2

,

k22T22 = q̂sn(α1, α2, t)− ρ0h
∂2w

∂t2
,

(2.67)

where

ρ0 =

N∑
k=1

ρkξk, (2.68)

and ξk is computed by (2.25).
Equations (2.67) may be used to specify the dynamic stress-strain state if qi and

q̂sn are slowly varying functions of time t and coordinatesαi. They may be rewritten
in terms of the generalized displacements

1 The term membrane stress-strain state is established in the literature. Since membranes cannot
be affected by compression forces it is better to use in-plane stress-strain state.
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û1, 11 +
1− ν

2
û1, 22 +

1 + ν

2
û2, 12 + νk22w, 1 = −q̃1,

1 + ν

2
û1, 12 +

1− ν

2
û2, 11 + û2, 22 + (k22w), 2 = −q̃2,

k22
1− ν2

(νû1, 1 + û2, 2 + k22w) = q̃n.

(2.69)

The corresponding boundary conditions are defined for the in-plane stress resultants
Tij or displacements ûi.

2.1.11 Technical Theory Equations

Equations (2.61)-(2.63), together with an appropriate variant of the boundary con-
ditions (2.51) or (2.52), turn out to be complicated for the analysis of both static
and dynamic stress-strain state. However, they may be significantly simplified under
some additional assumptions.

We will consider here the stress state which is characterized by the index of
variation ι = 1/2 and the following estimates:

w ∼ h∗R, k22 ∼ R−1, ui 
 w. (2.70)

It is obvious that ûi 
 w also. Let

max{ûi} ∼ hζu∗ R, max{ψi} ∼ h
ζψ
∗ , G ∼ hζG∗ E, (2.71)

where ζu, ζψ are the indexes of intensity of the quantities ûi, ψi, respectively, and

hζG∗ is the order of the reduced shear modulusG with regard to the reduced Young’s
modulusE. If any layer is viscoelastic, then the last estimate in (2.71) is replaced by
Gr ∼ hζG∗ Er, where Er = E,Gr = G are the real parts of moduli E,G. Then,
analyzing the orders of all terms in Eqs. (2.61)-(2.63), we find

ζu = 3/2, ζψ = 1/2, ζG = 1. (2.72)

The stress-strain state characterized by the above indexes of variation and intensity
is called the nonlinear combined stress state (Tovstik and Smirnov, 2001). For this
state all terms in Eqs. (2.61)-(2.63), including non-linear ones, has the same order.
Ifw 
 h∗R, then non-linear summands in the governing equations may be omitted.

Let qi = 0 and the inertia forces in the tangential directions are very small. Then
Eqs. (2.61) or (2.48) become homogeneous

T1i, 1 + T2i, 2 = 0. (2.73)

They are identically satisfied by the following functions
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Tij = δij�F − F, ij , (2.74)

where δij is the Kronecker delta, and F is the unknown stress function.
To couple the introduced stress function with the unknown displacements, we ap-

ply the strain compatibility condition. With this purpose in mind, we will write down
the correlations, following from Eqs. (2.26) and (2.7), and linking the generalized
strains and displacements

ê11 = û1, 1 +
1

2
(w, 1)

2 ,

ê22 = û2, 22 + k22w +
1

2
(w, 2)

2
,

ê12 =
1

2
(û1, 2 + û2, 1 + w, 1w, 2) .

(2.75)

Eliminating ûi, one obtains the strain compatibility equation

ê11, 22 − 2ê12, 12 + ê22, 11 = k22w, 11 + (w, 12)
2 − w, 11w, 22. (2.76)

Expressing the generalized strains êij by the stress function F by Eq. (2.27) and
introducing them into (2.76) yield the following equation

�2F − Eh
[
k22w, 11 + (w, 12)

2 − w, 11w, 22

]
= 0. (2.77)

Considering Eqs. (2.62) and following Grigolyuk and Kulikov (1988), we introduce
new functions a and φ so that

ψ1 = a, 1 + φ, 2, ψ2 = a, 2 − φ, 1. (2.78)

The substitution of (2.78) into (2.62) gives

Eh3

12(1− ν2)
�(η1a− η2w), 1 +

Eh3

24(1 + ν2)
η1�φ, 2 = q44(a, 1 + φ, 2),

Eh3

12(1− ν2)
�(η1a− η2w), 2 − Eh3

24(1 + ν2)
η1�φ, 1 = q44(a, 2 − φ, 1).

(2.79)

It may be seen that these equations are identically satisfied if

Eh3

12(1− ν2)
�(η1a− η2w) = q44a, (2.80)

Eh3

24(1 + ν)
η1�φ = q44φ (2.81)

are assumed.
Let us introduce the displacement χ as (Grigolyuk and Kulikov, 1988)
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w =

(
1− h2

β
�
)
χ, (2.82)

a = −η2
η1

h2

β
�χ (2.83)

and substitute them into Eq. (2.80). It can be seen that Eq. (2.80) is identically
satisfied if and only if

β =
12(1− ν2)q44

Ehη1
. (2.84)

Then Eq. (2.81) can be rewritten as

1− ν

2

h2

β
�φ = φ. (2.85)

Consider the last equation of equilibrium, Eq. (2.63) may be rewritten as

Eh3

12(1− ν2)
� [η3�w − η2 (ψ1, 1 + ψ2, 2)]

−w, 11T11 − 2w, 12T12 − w, 22T22 + k22T22 = qn −
N∑

k=1

ρkhk
∂2w

∂t2
.

(2.86)

The substitution of Eqs. (2.74), (2.78), (2.82) and (2.83) into (2.86) after some
transforms results in the following equation

D

(
1− θh2

β
�
)
�2χ−F, 22w, 11+2F, 12w, 12+ F, 11(k22−w, 22) = qn−ρ0h

∂2w

∂t2
,

(2.87)
where

D =
Eh3

12(1− ν2)
η3 (2.88)

is the reduced bending stiffness of the laminated cylindrical shell, and

θ = 1− η22
η1η3

. (2.89)

Calculations performed by Grigolyuk and Kulikov (1988) have shown that θ is a
small parameter. So, for a single layer shell θ = 1/85.

The simplified system of governing equations (2.77), (2.82), (2.85) and (2.87) was
at first derived by Grigolyuk and Kulikov (1988). The limiting process at G → ∞
(or β−1 → 0) implies

χ → w, a → 0,

and this system degenerates into that of nonlinear equations of the technical theory
of thin isotropic shells based on the Kirchhoff-Love hypotheses
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D�2w − F, 22w, 11 + 2F, 12w, 12 + F, 11(k22 − w, 22) = qn − ρ0h
∂2w

∂t2
,

�2F − k22Ehw, 11 + (w, 12)
2 − w, 11w, 22 = 0.

The linearization of Eqs. (2.77) and (2.87), with Eq. (2.82) taken into account,
results in the following coupled equations

D

(
1− θh2

β
�
)
�2χ− k22F, 11 = qn − ρ0h

∂2

∂t2

(
1− h2

β
�
)
χ,

�2F − Eh

[
k22

(
1− h2

β
�
)
χ, 11

]
= 0.

(2.90)

which will be generally used below for studying small forced and free vibrations
of laminated cylindrical shells. When omitting the terms proportional to β−1, one
arrives at the well-known Mushtari-Donnell-Vlasov type equations (Mushtari and
Galimov, 1961; Donnell, 1976; Wlassow, 1958).

2.1.12 Error of Governing Equations

The determination of an exact error of the developed single layer model for a multi-
layered shell is a complicated problem which is not considered here. Below, to
estimate approximately its error, we shall compare eigenvalues of some boundary-
value problems on buckling and vibrations with results obtained by using the 3D
finite-element simulation. In this subsection, we aim only to give some asymptotic es-
timations of errors of the governing equations based on the generalized Timoshenko
hypotheses.

It is known that the error δe of the Kirchhoff-Love hypotheses has the order
δe ∼ h∗. It may be expected that accepted here the generalized Timoshenko
hypotheses improves an accuracy of the governing equations and results in the error
δe ∼ hq∗, where q ≥ 1. However, as has been shown by Gol’denveizer (1961) and
Koiter (1966), the index of variation ι of an expected solution may give the conclusive
contribution in the estimation of an error. If ι < 1, then in the framework of the
Kirchhoff-Love hypotheses, this estimation is defined as

δe ∼ max
{
h∗, h

2−2ι
∗

}
.

For the governing equations (2.61)-(2.63) based on the generalized Timoshenko
hypotheses, one has

δe ∼ max
{
hq∗, h

2−2ι
∗

}
, (2.91)

where q ≥ 1. The peculiarity of Eqs. (2.61)-(2.63) and Eqs. (2.90) is that due to
shears they have solutions with very high index of variation. So, for an isotropic and
homogeneous shell with Young’s and shear moduliE,G having the same asymptotic
order (E ∼ G), additional integrals taking into account shear have the index of
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variation ι = 1. Then δe ∼ 1 and Eqs. (2.61)-(2.63) as well as Eqs. (2.90) become
asymptotically incorrect. But if G ∼ hζG∗ E, where ζG > 0, then ι = 1− ζG/2 < 1.

Now, consider Eqs. (2.90) which are analogous to the well-known Mushtari-
Donnell-Vlasov type equations (Mushtari and Galimov, 1961; Donnell, 1976; Wlas-
sow, 1958). They were obtained after significant simplifications which introduced
the error of order h2ι∗ . It is seen that the error of this equations has the order

δe ∼ max
{
h2ι∗ , h

2−2ι
∗

}
. (2.92)

We remind that Eqs. (2.90) were derived under assumptions that ι = 1/2, ζG = 1.
Hence, for solutions with the index ι = 1/2, one obtains the error δe ∼ h∗.

Equations (2.90) can be also used to describe the semi-momentless dynamic stress
state characterized by the index of variation ι = 1/4 for a shear pliable shell with
ζG ≥ 1. However, for solutions having the index of variation ι = 1/4 (at ζG = 3/2),

the error increases and reaches the order δe ∼ h
1/2
∗ .

2.1.13 Displacement and Stress Function Boundary Conditions

If a problem (on buckling or vibration) is solved on the bases of the technical shell
theory, the boundary conditions (2.51), (2.52) should be rewritten in terms of the
displacements, stress and shear functions, χ, F and φ. Consider possible variants of
the boundary conditions (2.51) at α1 = α∗

1

1. The generalized displacements are bounded in the tangential directions

û1 = 0, û2 = 0. (2.93)

This variant is more difficult because the generalized displacements ûi are not
expressed in the explicit form of χ, F and φ. However, Eqs. (2.7), (2.26), (2.27),
(2.74), (2.78), (2.82) and (2.83) lead to the following system of differential equa-
tions for ûi

û1,1 =
1

Eh
(F, 22 − νF, 11) +

1

2
hc13

(
1− h2

β
�
)
χ, 11

+
1

2
hc12

(
η2
η1

h2

β
�χ, 11 − φ, 12

)
,

û2,2 =
1

Eh
(F, 11 − νF, 22) +

1

2
hc13

(
1− h2

β
�
)
χ, 22

+
1

2
hc12

(
η2
η1

h2

β
�χ, 22 − φ, 12

)
− k22

(
1− h2

β
�
)
χ,

û1, 2 + û2, 1 = −2(1 + ν)

Eh
F, 12 + hc13

(
1− h2

β
�
)
χ, 12

+
1

2
hc12

(
2η2
η1

h2

β
�χ, 12 + φ, 11 − φ, 22

)
.

(2.94)
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When solving Eqs. (2.94), we can satisfy conditions (2.93).
2. The edge is prestressed in the tangential directions

T11 = T ∗
11, T21 = T ∗

21. (2.95)

These conditions are equivalent to the following ones

F, 22 = T ∗
11, F, 21 = −T ∗

21. (2.96)

3. The conditions
ψ1 = ψ2 = 0 (2.97)

mean that the shear in the axial and circumferential directions, respectively, are
absent. They result in the equations

−θ2
θ1

h2

β
�χ, 1 + φ, 2 = 0,

θ2
θ1

h2

β
�χ, 2 + φ, 1 = 0. (2.98)

4. The generalized bending and twisting couples are specified at the edge

L̂11 = L̂∗
11, L̂21 = L̂∗

21. (2.99)

These conditions are rewritten as follows

χ, 11 + νχ, 22 − (1− ν)φ, 12 = − L̂∗
11

Dγ
,

χ, 12 − 1

2
(φ, 22 − φ, 11) = − L̂∗

21

Dγ(1− ν)
.

(2.100)

5. The condition
w, 1 = 0 (2.101)

means that the edge does not rotate about the vector eee2. It is reduced to the
equation (

1− h2

β
�
)
χ, 1 = 0. (2.102)

6. The generalized bending moment is specified

M̂11 = M̂∗
11. (2.103)

This condition may be rewritten as

−
(
1− θh2

β
�
)
(χ, 11 + νχ, 22) + (1− ν)(1 − θ)φ, 12 =

M̂∗
11

D
. (2.104)

7. The condition w = 0 is equivalent to



52 2 Equivalent Single Layer Model for Thin Laminated Cylindrical Shells(
1− h2

β
�
)
χ = 0. (2.105)

8. The shear force in the nnn-direction is specified

M̂11, 1 + 2M̂12, 2 + T11w, 1 + T12w, 2 = Q∗
1 + M̂∗

12, 2. (2.106)

The substitution of Eqs. (2.60) for M̂1i into Eq. (2.123), with Eqs. (2.7), (2.74),
(2.78), (2.82) and (2.83) taken into account, results in the following condition at
α1 = α∗

1

−
(
1− θh2

β
�
)
[χ, 111 + (2 − ν)χ, 122] + (1− ν)(1 − θ)φ, 222

+
1

D

[
F, 22

(
1− h2

β
�
)
χ, 1 − F, 12

(
1− h2

β
�
)
χ, 2

]
=

1

D

(
Q∗

1 + M̂∗
12, 2

)
.

(2.107)
If

Q∗
1 + M̂∗

12, 2 = 0, (2.108)

then the edge is free for displacements in the nnn-direction, that is w �= 0.

The natural boundary conditions listed above may be classified into four groups:

a) (2.93) and (2.96);
b) (2.98) and (2.100);
c) (2.102) and (2.104);
d) (2.105) and (2.107).

Within the range of each group, different boundary conditions are simultaneously not
satisfied. For instance, if the homogeneous conditions (2.96)hold, then the edgeα1 =
α∗
1 is free for the in-plane displacements, hence, ûi �= 0. And if conditions (2.100)

are valid, then the shell is free for the shear in the αi-direction, i.e., ψi �= 0.
The list of boundary conditions given above is not complete. It does not contain

the superposition of conditions from a fixed group from a)-d). For example, the
equation

F, 22 = kspû1 at α1 = α∗
1, (2.109)

where, ksp is the spring constant of a surrounding medium in the axial direction,
represents the condition of elastic support of the edge in the eee1-direction.

Some of the boundary conditions listed above are expressed by too complicated
equations. However, in some cases their combinations result in simple equations:

1. The edgeα1 = α∗
1 is simply supported, but there is the infinite rigidity diaphragm

inhibiting shear along the edge plane

w = M̂11 = L̂11 = ψ2 = 0. (2.110)

In terms of the displacement, stress and shear functions, these conditions are
represented by Eqs. (2.105), (2.103), (2.100) and (2.99), respectively, and after
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calculations may be reduced to the following conditions

χ = Δχ = Δ2χ =
∂φ

∂α1
= 0. (2.111)

2. The edge α1 = α∗
1 is simply supported, and the diaphragm is absent

w = M̂11 = L̂11 = L̂12 = 0. (2.112)

This combination of the boundary conditions is rewritten as follows(
1− h2

β
Δ

)
χ = 0,

∂2

∂α2
1

(
1− h2

β
Δ

)
χ = 0,(

∂2

∂α2
1

+ ν
∂2

∂α2
2

)
χ− (1− ν)

∂2φ

∂α1α2
= 0,

2
∂2χ

∂α1∂α2
+
∂2φ

∂α2
1

− ∂2φ

∂α2
2

= 0.

(2.113)

3. The edge α1 = α∗
1 is clamped, and there is the infinite rigidity diaphragm

inhibiting shear along the edge plane

w =
∂w

∂α1
= ψ1 = ψ2 = 0 (2.114)

or (
1− h2

β
Δ

)
χ = 0,

∂

∂α1

(
1− h2

β
Δ

)
χ = 0,

∂χ

∂α1
− ∂φ

∂α2
= 0,

∂χ

∂α2
+

∂φ

∂α1
= 0.

(2.115)

4. The edge α1 = α∗
1 is clamped, and the diaphragm is absent

w =
∂w

∂α1
= ψ1 = L̂12 = 0 (2.116)

or (
1− h2

β
Δ

)
χ = 0,

∂χ

∂α1
=

∂

∂α1
(Δχ) = φ = 0. (2.117)

It is seen that each variant from (2.111), (2.113), (2.115) or (2.117) is incomplete
because it does not contain conditions for the generalized in-plane displacements ûi
or stress resultants Ti1. For example, the conditions of free support, T11 = ê22 = 0,
results in the additional conditions for the stress function (Grigolyuk and Kulikov,
1988)

F = �F = 0 at α1 = α∗
1. (2.118)

In what follows, the boundary conditions (2.111) and (2.113) supplemented by Eqs.
(2.118) will be considered as the basic ones. To study the main stress state of a
shell with clamped edges, it will be sufficient to satisfy conditions (2.115) or (2.117)
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without considering the additional conditions for the in-plane displacements and/or
the in-plane stress resultants.

2.1.14 Edge Effect Equations

In many cases the shell stress-strain state may be considered as a superposition
of the main stress-strain stateand edge effects (Gol’denveizer, 1961). For a thin
isotropic cylindrical shell the edge effect has the index of variation ι1 = 1/2 in the
neighbourhood of an edge (e.g., α1 = α∗

1) in the direction orthogonal to the edge
and a small index of variation ι2 in the circumferential direction. All magnitudes
corresponding to this stress state are quickly decreasing functions as |α1−α∗

1| → ∞.
In the theory of laminated shells based on the generalized Timoshenkohypotheses

(2.2)-(2.4), the edge effect equations are derived in the same way as in the Kirchhoff-
Love hypotheses based theory (Mikhasev, 2016). Let us consider the linearized Eqs.
(2.61)-(2.63) and assume the following asymptotic estimates

w ∼ h∗R, û1 ∼ h
3/2
∗ R, û2 ∼ h

7/4
∗ R, ψi ∼ h

1/2
∗ ,∣∣∣∣ ∂Z∂α1

∣∣∣∣ ∼ h−ι1
∗ Z,

∣∣∣∣ ∂Z∂α2

∣∣∣∣ ∼ h−ι2
∗ Z, G ∼ h∗E, ι1 = 1/2, ι2 ≤ 1/4,

|q1| ∼ E

1− ν2
h
3/2
∗ , |q2| ∼ E

1− ν2
h
7/4
∗ , |qn| ∼ Eh2∗ as h∗ → 0

(2.119)
which satisfy the above mentioned assumptions (2.70)-(2.72) for the combined stress
state. In Eqs. (2.119), Z denotes any from the functions ûi, w, ψi.

In each equation of system (2.61)-(2.63), we consider the main terms having the
same order as h∗ → 0. In the first and second equations (2.61), the main summands

have the orders h
1/2
∗ R−1 and h

3/4
∗ R−1, respectively. When taking these terms into

account and omitting remaining ones, then Eqs. (2.61) are reduced to the differential
equations

∂2û1
∂α2

1

+ νk22(α2)
∂w

∂α1
= −q̃1, (2.120)

1 + ν

2

∂2û1
∂α1∂α2

+
1− ν

2

∂2û2
∂α2

1

+
∂

α2
[k22(α2)w] = −q̃2. (2.121)

In both Eqs. (2.62), the main terms have the order h−1/2
∗ R−2 and generate the

following equations
∂2ψ2

∂α2
1

=
2β

(1− ν)h2
ψ2, (2.122)

η2
∂3w

∂α3
1

− η1
∂2ψ1

∂α2
1

+
βη1
h2

ψ1 = 0. (2.123)



2.1 Equations of Thin Elastic Laminated Cylindrical Shells 55

Writing these equations down, we have taken into account Eqs. (2.54), (2.59) and
assumed the following estimation

q44 ∼ h∗RG (2.124)

as well. Finally, in Eq. (2.63), the main terms of the order h∗R−1 give

h2

12(1− ν2)

(
η3
∂4w

∂α4
1

− η2
∂3ψ1

∂α3
1

)
+
k22(α2)ν

1− ν2
∂û1
∂α1

+
k222(α2)

1− ν2
w = q̃n. (2.125)

As seen, Eq. (2.122) for ψ2 is independent of the others and the same as Eq. (2.85)
for φ.

Let the surface load intensity be not high and its components satisfy the following
inequalities

|q1| 
 E

1− ν2
h
3/2
∗ , |q2| 
 E

1− ν2
h
7/4
∗ , |qn| 
 Eh2∗. (2.126)

Then q̃i, qn may be omitted,

q̃n = −ρ0
E

∂2w

∂t2
,

and Eqs. (2.120), (2.121) and (2.124) degenerate into homogeneous ones which
describe the simple edge effect.

From all solutions of the homogeneous equations (2.120)-(2.124), one needs to
choose such integrals which satisfy conditions

ûi, ψi, w → 0 at |α1 − α∗
1| → ∞. (2.127)

Fulfilling some transforms with the homogeneous equations (2.120), (2.123), (2.124),
with condition (2.127) in mind, one obtains the basic equation of the dynamic edge
effect

h2η3
12(1− ν2)

(
1− θh2

β

∂2

∂α2
1

)
∂4ψ1

∂α4
1

+

(
1− h2

β

∂2

∂α2
1

)[
k222(α2)ψ1 +

ρ0
E

∂2ψ1

∂t2

]
= 0.

(2.128)
It is of interest to note that the edge effect equation written in terms of the normal
displacement w has the same form

h2η3
12(1− ν2)

(
1− θh2

β

∂2

∂α2
1

)
∂4w

∂α4
1

+

(
1− h2

β

∂2

∂α2
1

)[
k222(α2)w +

ρ0
E

∂2w

∂t2

]
= 0.

(2.129)
In Eqs. (2.128), (2.129), terms proportional to h2/(R2β) account for shear. When
β → ∞ (G → ∞), Eq. (2.129) degenerates into the classical equation of the
dynamical edge effect for a thin isotropic single layer shell in the Kirchhoff-Love
hypotheses based theory. The properties of integrals of this equation are described
in detail in Gol’denveizer (1961); Gol’denveizer et al (1979).
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Equation (2.122) is independent of Eqs. (2.128), (2.129) and has two the expo-
nentially decaying partial solutions. Its general solution is

ψ2 = C1 exp

[
− 1

h

√
2β

1− ν
(α1 − α∗

1)

]
+ C2 exp

[
− 1

h

√
2β

1− ν
(α∗∗

1 − α1)

]
,

(2.130)
where Ci are arbitrary constants. Now consider Eq. (2.128) or (2.129). Let Z be any
of unknown functions (w, ψ1 or any other). In static problems (including buckling
ones based on the static Euler criteria) the inertia term ∂2Z/∂t2 is absent. Then, if
k22 �= 0, then Eqs. (2.128), (2.129) degenerate into the governing equations for the
simple edge effect in the static shell theory accounting for shear. At k22 = 0 and
∂2Z/∂t2 �= 0, one obtains the dynamic equations for laminated plates.

The properties of partial solutions of Eq. (2.129) depends strongly on the order of
the reduced shear modulus G with respect to the reduced Young’s modulus E. The
case whenG ∼ E is not considered here, because in this case β ∼ 1 and Eq. (2.129)
has solutions with the index of variation ι1 = 1. Let Z = Ẑeiωt and ω is a natural
frequency of free vibrations.

Case 1. Let G ∼ h∗E. Then β ∼ h∗ and K1 = h2

βR2 ∼ h∗ ∼ μ2, where

μ4 =
h2η3

12(1− ν2)R2
. (2.131)

Then Eq. (2.129) may be rewritten in the dimensionless form which is more
convenient for the asymptotic analysis

−μ6κθ
∂6X

∂x6
+μ4 ∂

4X

∂x4
−μ2κ [k2(ϕ)− Λ]

∂2X

∂x2
+[k2(ϕ)− Λ]X = 0. (2.132)

Here

w = ŵeiωt, ŵ = RX(x), α1 = Rx, α2 = Rϕ,

K1 = μ2κ, k2(ϕ) = Rk22[R(ϕ)] ∼ 1, Λ =
R2ρ0ω

2

E
.

(2.133)

As shown by Gol’denveizer et al (1979), in the theory of thin elastic isotropic shells
based on the Kirchhoff-Love hypotheses, the frequency parameter Λ satisfies the
following asymptotic estimates

Λ = O
(
h2−4ι
∗

)
if 1/2 ≤ ι < 1 (2.134)

and
Λ ∼ h2−4ι

∗ for 0 ≤ ι < 1/2, (2.135)

where ι = max{ι1, ι2} is the general index of variation of the stress-strain state.
The definition of the symbol O is given in Chapt. 6. We remind (Gol’denveizer
et al, 1979) that estimate (2.134) corresponds to the quasi-transverse vibrations,
and case (2.135) does to the Rayleigh type vibrations.
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Equations of the technical theory of laminated shells, derived in subsection 2.1.11,
are valid in particular for cases when ι = 1/2 and ι = 1/4. So, estimates (2.134),
(2.135) may be applied for the analysis of Eq. (2.132). The type of the edge
integrals and their properties depend on the sign of the expression δ = k2 − Λ
in Eq. (2.132). If ι = 1/4, then δ(ϕ) > 0 for any ϕ, and when ι = 1/2, then the
positive sign may be changed for the opposite one for all ϕ. The case when δ(ϕ)
changes the sign under variation of ϕ is not considered here.
Omitting calculations, we will give the approximate (asymptotic) estimations for
the partial solutions of (2.132). Regardless of the sign of δ, this equation has the
following two integrals

X1 = e
− 1

μ

√
1

θκ
(x− x∗)

[1 +O(μ)], X2 = e
− 1

μ

√
1

θκ
(x∗∗ − x)

[1 +O(μ)]
(2.136)

where x(ϕ)∗ ≤ x ≤ x∗∗(ϕ), and x∗ = α∗/R, x∗∗ = α∗∗/R.
Now, we assume that the inequality

δ = k2 − Λ > 0 (2.137)

holds for any ϕ. Here, there are three different cases:

1) Let κ > 2/δ for any ϕ. Then, with accuracy up to the values of order O(μ),
Eq. (2.132) gives the following four additional integrals

X3 ≈ e
− 1

μ

√
κδ +

√
κ2δ2 − 4δ

2
(x− x∗)

,

X4 ≈ e
− 1

μ

√
κδ +

√
κ2δ2 − 4δ

2
(x∗∗ − x)

,

X5 ≈ e
− 1

μ

√
κδ −√

κ2δ2 − 4δ

2
(x− x∗)

,

X6 ≈ e
− 1

μ

√
κδ −√

κ2δ2 − 4δ

2
(x∗∗ − x)

.

(2.138)

2) It is assumed that κ < 2/δ for any ϕ. Then

X3 ≈ e
− δ

μ
(r1 + ir2)(x− x∗)

, X4 ≈ e
− δ

μ
(r1 + ir2)(x

∗∗ − x)
,

X5 ≈ e
− δ

μ
(r1 − ir2)(x− x∗)

, X4 ≈ e
− δ

μ
(r1 − ir2)(x

∗∗ − x)
,

(2.139)
where i =

√−1 is the imaginary unit, and
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r1 = cos

(
1

2
arctan

√
4δ − κ2δ2

κδ

)
, r2 = sin

(
1

2
arctan

√
4δ − κ2δ2

κδ

)
.

3) Let κ = 2/δ, where k2 = 1 (a circular cylindrical shell). Then, one has

X3 ≈ e
− 1

μ
δ1/4(x − x∗)

, X4 ≈ e
− 1

μ
δ1/4(x∗∗ − x)

,

X5 ≈ x e
− 1

μ
δ1/4(x− x∗)

, X6 ≈ x e
− 1

μ
δ1/4(x∗∗ − x)

.

(2.140)

The variant when the expression κ−2/δ changes the sign at some lineϕ = ϕ∗

for a non-circular shell is not considered here.

It is seen that for κ > 2/
√
δ, all partial solutions of Eq. (2.132) are not oscillating

functions but exponentially decaying far from the edges. If κ < 2/
√
δ, then

Eq. (2.132) has four the oscillating and decaying integrals (2.139) and two the
exponentially decreasing solutions (2.136).
Now, let

δ = k2 − Λ < 0 (2.141)

for any ϕ. Then, in addition to the partial solutions (2.136), Eq. (2.132) has only
the two integrals

X3 ≈ e
− 1

μ

√
κδ +

√
κ2δ2 − 4δ

2
(x − x∗)

,

X4 ≈ e
− 1

μ

√
κδ +

√
κ2δ2 − 4δ

2
(x∗∗ − x)

(2.142)

with the properties of the edges effect integrals, and the last two partial solu-
tions are the oscillating functions which are not written down here. Thus, in
case (2.141), the edge effect equation (2.132) has only four the exponentially
decaying integrals. It should be noted that the decay rate of functions (2.136)
is higher than that of the remaining integrals. Indeed, a parameter θ is small. If
we assume that θ ∼ hσθ

∗ , where σθ > 0, then the index of variation for integrals
(2.136) will be equal to ι1 = (1+σθ)/2. Then, for integrals (2.136) to be asymp-
totically correct and satisfy the accuracy of our model, it should be assumed the
inequality σθ < 1. Thus, if G ∼ h∗E, then the index of variation of the both
integrals (2.136) lies in the interval 1/2 < ι < 1, and the index of variation for
the remaining four integrals equals ι = 1/2 as in the Kirchhoff-Love model.

Case 2. Now, we consider the case when G ∼ h
3/2
∗ E. This estimate holds if

a shell is assembled, for instance, out of elastic layers and cores made of a

magnitorheological elastomer (s. Sect. 2.3). Here, K1 ∼ h
1/2
∗ and Eq. (2.129) is

rewritten as follows
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−μ5κθ
∂6X

∂x6
+μ4 ∂

4X

∂x4
−μκ [k2(ϕ)− Λ]

∂2X

∂x2
+[k2(ϕ)− Λ]X = 0, (2.143)

whereK1 = μκ, κ ∼ 1, and the remaining magnitudes are introduced by (2.133).
The asymptotic analysis of Eq. (2.143) gives two the exponentially decreasing
functions

X1 = e
− 1

μ1/2

√
1

κ
(x− x∗)

[1 +O(μ)],

X2 = e
− 1

μ1/2

√
1

κ
(x∗∗ − x)

[1 +O(μ)]

(2.144)

If δ > 0, then one obtains the additional four oscillating and decaying integrals,

X3 ≈ e
− 1

μ
4

√
δ

4θ
(1 + i) (x− x∗)

, X4 ≈ e
− 1

μ
4

√
δ

4θ
(1 + i) (x∗∗ − x)

,

X5 ≈ e
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μ
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4θ
(1− i) (x− x∗)

, X6 ≈ e
− 1

μ
4

√
δ

4θ
(1− i) (x∗∗ − x)

.
(2.145)

When δ < 0, Eq. (2.143) has only two the exponentially decreasing solutions,

X3 ≈ e
− 1

μ
4

√
−δ
θ

(x− x∗)
, X4 ≈ e

− 1

μ
4

√
−δ
θ

(x∗∗ − x)
, (2.146)

and the remaining two partial solutions are oscillating functions and not written
down here. Taking into account the smallness of a parameter θ, one can con-
clude that the index of variation of integrals (2.145), (2.146) is larger than 1/2.
Assuming the estimate θ ∼ hσθ

∗ , we should to require the inequality σθ < 2.

So, in Case 2 (at G ∼ h
3/2
∗ E), the properties of the edge effect integrals drastically

differ from the ones of similar integrals in the classical Kirchhoff-Love model: two
integrals (2.144) have the index ι = 1/4 and they may be carefully applied for the
correction of the main stress state having the same index of variation and can not
be considered as a correction for the state with more high index of variation; the
remaining four integrals (2.145) (if δ > 0) or two ones (2.146) (at δ < 0) possess the
index of variation ι = 1/2+σθ/4 < 1 which is larger than this index in the classical
theory. Integrals (2.145) or (2.146) may be used to correct the main stress state with
the index of variation ι ≤ 1/2. The index of variation of the shear parameter ψ2

(s. Eq. (2.130)) also depends on the order of the reduced shear parameter G. When

G ∼ h∗E, then ι1 = 1/2, and for G ∼ h
3/2
∗ E, one has ι1 = 1/4.
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2.1.15 Governing Equations for Laminated Plates and Beams

In this item we shall consider governing equations for laminated plates and beams.
They are derived, as particular cases, form equations for cylindrical shells.

2.1.15.1 Laminated Plates

Let the curvature k22 = 0. Then Eqs. (2.77), (2.87) degenerate into the nonlinear
differential equations for a laminated plate

D

(
1− θh2

β
�
)
�2χ− F, 22

(
1− h2

β
�
)
χ, 11 + 2F, 12

(
1− h2

β
�
)
χ, 12

−F, 11

(
1− h2

β
�
)
χ, 22 = qn − ρ0h

∂2

∂t2

(
1− h2

β
�
)
χ,

(2.147)

�2F−Eh
{[(

1− h2

β
�
)
χ, 12

]2
−
(
1− h2

β
�
)
χ, 11

(
1− h2

β
�
)
χ, 22

}
= 0.

(2.148)
For w 
 h∗R, these equations may be linearized, they reducing to the two indepen-
dent equations for the displacement and stress functions:

D

(
1− θh2

β
�
)
�2χ = qn − ρ0h

∂2

∂t2

(
1− h2

β
�
)
χ, (2.149)

�2F = 0. (2.150)

Let the plate rests on an elastic foundation with a modulus of subgrade reaction
cf . Then Eq. (2.149) should be supplemented by the reaction force acting from the
foundation:

D

(
1− θh2

β
�
)
�2χ+

(
cf + ρ0h

∂2

∂t2

)(
1− h2

β
�
)
χ = qn. (2.151)

The simplest model simulating the subgrade reaction is the Winkler foundation
model. According to this model the spring constant cf depends only on elastic prop-
erties of the foundation and is independent of the wave formation pattern of a plate.
The detailed analysis of the response of an elastic foundation appears in Morozov
and Tovstik (2010); Tovstik (2005). This analysis shows that the spring constant cf
depends on a number of waves on the surface of a thin-walled structure. Let the plate
deflection be a periodic function of the coordinateα1, α2:χ = χ0 sin k1α1 sin k2α2.
Then, when assuming the rigid contact between the plate and foundation, one has

cf = αfk, αf =
2Ef(1− νf)

(1 + νf)(3 − 4νf)
, k =

√
k21 + k22 , (2.152)
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where Ef and νf are the Young’s modulus and Poison’s ratio for the foundation.
Eq. (2.152) has been obtained for an infinite plate rested on an elastic half-space.
Therefore, the range of applicability of Eq. (2.151) is restricted by the following
conditions:

1. it is valid far from the plate edges;
2. a foundation has to be sufficiently deep;
3. forces of inertia of a foundation are not taking into account.

2.1.15.2 Laminated Beams

Equation (2.151) may be readily reduced to the governing equation for a beam. We
shall consider a laminated beam with the rectangular cross section with sides h× b,
where b is the beam width, and h is the total thickness of the beam. Let qn and all
required functions be independent of α2. To proceed to the beam model, one needs
to assume that νk, all functions with index 2, and derivatives of these functions
with respect to α2 are equal to zero in all foregoing equations. Then, multiplying
Eq. (2.151) by b, one obtains the following equation

EIη3

(
1− θh2

β

∂2

∂α2
1

)
∂4χ

∂α4
1

+

(
c′f + ρl

∂2

∂t2

)(
1− h2

β

∂2

∂α2
1

)
χ = ql(α1, t),

(2.153)
where

I =
h3b

12
, ρl = ρ0bh, ql = qnb, c′f = cfb.

Here, I is the area moment 2nd order of the beam cross section, ρl, ql are the linear
mass and load, respectively. Note also that θ, β, η3 are calculated at νk = ν = 0.

Equation (2.153) should be supplemented by the one-dimensional equation (2.85)
for φ. However, as will be shown below, the trivial solution φ = 0 is the unique
solution satisfying the appropriate boundary conditions for a beam. When G → ∞
that means β−1 → 0, then Eq. (2.153) degenerate into the classical equation which
does not take shears into account.

2.2 Governing Equations of Shell Buckling

In this section we consider the principle equations which will be used in Chapt. 3
for the buckling analysis of thin laminated elastic cylindrical shells. The governing
equations are derived from the geometrically non-linear equations obtained in the
previous chapter. The physically non-linear formulation of the buckling problem,
assuming the non-linear coupling of stresses on strains, is not considered below.
The derived equations describe the bifurcation (branching) of both the moment and
in-plane equilibrium stress-strain states. They are valid for cases when the shell
thickness is small and buckling occurs with minor sizes of deflections.
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2.2.1 Bending Stress State

In common case, buckling equations for a thin laminated cylindrical shell may be
derived by considering variations of the full system of the nonlinear differential
Eqs. (2.61)-(2.63), in which the inertia terms should be omitted. In this section, we
consider the case when buckling occurs with minor sizes of dents at least at one of
the directions at the shell surface. Then the simplified nonlinear equations (2.77),
(2.85) and (2.87) of the technical theory of laminated shells written in terms of the
functions F, χ, φ may be used as the initial ones.

It is assumed here and in what follows that the shell is under action of only
conservative surface and/or edge loads. The load is called conservative, if the work
done by it depends only on the end states of the shell and does not depend on the way
of deformation. Problems on dynamic stability of the shell experiencing dynamic
and non-conservative loads are not considered here. Solutions of similar problems
may be found, for instance, in Lavrent’ev and Ishlinsky (1949); Srubschik (1985,
1988); Vol’mir (1972, 1976); Bolotin (1956); Fung and Sechler (1974). It should be
noted that only the dynamic criterion gives accurate results for shells subjected to
both dynamic and static non-conservative loads (Ziegler, 1968; Bolotin, 1956).

Let
F ◦, χ◦, φ◦ (2.154)

be functions describing the initial (pre-buckling) stress state of a laminated cylindri-
cal shell. Then, as follows from subsection 2.1.11, all the kinematic characteristics
(normal deflection w◦, generalized displacements û◦i , and angles of rotation ψ◦

i )
as well as the stress characteristics (in-plane stresses T ◦

ij and generalized moments

M̂◦
ij , L̂

◦
ij) are identically determined through the functions F ◦, χ◦, φ◦. The func-

tions F ◦, χ◦, φ◦ or w◦, û◦i , ψ
◦
i , T

◦
ij , M̂

◦
ij, L̂

◦
ij may be found from the linearized Eqs.

(2.61)-(2.63), or (2.77), (2.85) and (2.87).
Following Euler, we consider the adjacent stress state which is infinitesimally

close to the pre-buckling one and characterized by unknown functions

F ◦ + F, χ◦ + χ, φ◦ + φ. (2.155)

Let us substitute functions (2.155) into the non-linear Eqs. (2.77), (2.85) and (2.87).
Then, taking into account the fact that functions (2.155) satisfy the nonhomogeneous
Eqs. (2.77), (2.85) and (2.87) with appropriate boundary conditions (which are not
uniform in the common case) and performing linearization in a neighbourhood of
the stress state characterized by (2.154), one obtains the following homogeneous
buckling equations
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D

(
1− θh2

β
Δ

)
Δ2χ− ∂2w◦

∂α2
1

∂2F

∂α2
2

+ 2
∂2w◦

∂α1∂α2

∂2F

∂α1α2

+

(
1

R2
− ∂2w◦

∂α2
2

)
∂2F

∂α2
1

− T ◦
11

∂2w

∂α2
1

− 2T ◦
12

∂2w

∂α1∂α2
− T ◦

22

∂2w

∂α2
2

= 0,

Δ2F = Eh

(
1

R2

∂2w

∂α2
1

+ 2
∂2w◦

∂α1∂α2

∂2w

∂α1∂α2
− ∂2w◦

∂α2
2

∂2w

∂α2
1

− ∂2w◦

∂α2
1

∂2w

∂α2
2

)
,

w =

(
1− h2

β
Δ

)
χ,

1− ν

2

h2

β
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(2.156)
where

w◦ =

(
1− h2

β
Δ

)
χ◦. (2.157)

When deriving Eq. (2.156), we used the introduced above Eq. (2.74)

T ◦
ij = δijΔF

◦ − ∂2F ◦

∂αi∂αj
, i, j = 1, 2. (2.158)

Equations (2.156) with appropriate homogeneous boundary conditions describe
buckling of the moment stress state. If components of the external load (for in-
stance, the external pressure qn or the axial force T ∗

11) are weakly varying functions
ofα1, α2, then the initial moment stress state may be found as a sum of the membrane
stress state and the edge effect (Tovstik and Smirnov, 2001). The in-plane (moment-
less) stress state are determined by the stress-resultants T ◦

ij which are found from
equations of the membrane shell theory, s. Eqs. (2.67), in which the inertia terms are
omitted. The edge effect described by the displacementw◦ may be determined from
the edge effect equation (2.129)
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(
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β
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1

)
w = 0. (2.159)

2.2.2 In-plane Stress State

Let the external load be such that the initial (pre-buckling) displacements u◦i , w
◦

and the in-plane stress resultants T ◦
ij characterizing this state, are weakly varying

functions of the curvilinear coordinatesα1, α2. Then, the neutral surface before and
after deformation may be identified (Tovstik and Smirnov, 2001). In other words,
we may assume that being in the pre-buckling state the shell is stressed but not
deformed (Alfutov, 2000). For this state called the in-plane stress state, it is assumed
that w◦ = 0. Then the buckling equations (2.156) are simplified
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(2.160)

where

ΔTw = T ◦
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+ 2T ◦
12

∂2w
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+ T ◦

22

∂2w

∂α2
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, (2.161)

and the in-plane stress-resultants T ◦
ij are found from the stationary counterparts of

Eqs. (2.67) of the moment-less shell theory.
The differential equations (2.160) with an appropriate variant of boundary condi-

tions (2.109)-(2.117) describe buckling of the in-plane stress state of a thin laminated
shell. If the initial state is presented by the full system of in-plane stress resultants
T ◦
ij (for instant, at combined loading), it is convenient to assume that the in-plane

forces vary proportionally to a loading parameter λ

T ◦
ij = λt◦ij . (2.162)

Then the buckling problem is reduced to an eigenvalue problem which is to find the
least positive λ = λ∗ for which this problem has a nontrivial solution. Found in this
way the parameter λ∗ is called buckling or critical loading parameter.

Equations (2.160) will be used in the next chapter for studying a number problems
on the local buckling of thin sandwich and multi-layered cylindrical shells under dif-
ferent variant of loading. Note that at β−1 → 0 (implying G → ∞) Eqs. (2.160)
degenerate into the well-known buckling equations of the technical theory of thin
isotropic single layer shells which are based on the original Kirchhoff-Love hypoth-
esis and were widely utilized by many researchers for investigation of an enormous
number of problems (Donnell, 1976; Grigolyuk and Kabanov, 1978; Tovstik and
Smirnov, 2001).

2.3 Laminated Cylindrical Shells with Viscoelastic Smart Layers

This section deals with laminated shells assembled from elastic and viscoelastic
damping layers. In case of the harmonic response, elastic and viscous properties
of damping layers are represented by the complex forms for Young’s and shear
moduli. It is discussed that smart materials, such as magnetorheological elastomers
and electrorheological composites, may be used as damping elements of sandwich
or multi-layered thin-walled structures. The mechanical and rheological properties
of some smart viscoelastic magneto- and electrorheological materials affected by
applied magnetic or electric field are given. The applicability of the equivalent
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single layer model for laminated shells with soft viscoelastic layers or cores is also
discussed.

2.3.1 Viscoelastic Materials in Thin-walled Laminated Structures

Viscoelastic damping materials (VDMs) are used widely in thin-walled laminated
structures. The traditional roles of their application usually are:

a) free layer damping (FLD);
b) constrained layer damping (CLD) (Zhou et al, 2015);
c) core damping (CD).

In the first case a), VDM is attached to the surface of an elastic layer, its outer surface
being free. Earliest researches on application of VDMs in the capacity of FLD began
in the early 1950s, by Oberst and Frankenfeld (1952) and Mead and Ae (1960).

In case b), VDM attached to the basic elastic lamina is in turn constrained by a
backing very thin elastic layer or foil. A common example of CLD is the damping tape
currently used in aircrafts. Kervin Jr. (1959); Ross et al (1959); Ungar and Kerwin
Jr. (1962) may be the first studies where a quantitative analysis on the damping
effectiveness of CLD was performed. After these research works, there were many
other papers (e.g, s. DiTaranto, 1965; Mead and Markus, 1970; Yan and Dowell,
1972; Kumar and Singh, 2010; Wang and Chen, 2004; Raamesh and Ganesan, 1994)
on vibrations of thin plates, beams, curved panels, cylindrical shells, and sandwiched
structures tackled by CLD. The application of constrained viscoelastic treatments for
improving damping capabilities became a very popular method in the case of thin-
walled structures made of materials (e.g., steel, aluminium) which possess a little
material damping. As a rule, a backing layer constraining VDM does not influence
essentially the total stiffness of a thin-walled structure.

In the third variant c), VDM is embedded between two elastic layers, so that
an assembled structure looks like a sandwich. In this case, both elastic layers are,
as a rule, considerably stiffer than a soft VDM and serve as the bearing elements
which define the total stiffness of a structure, whereas the embedded viscoelastic core
ensures the damping mechanism. In the same way, multi-layered beams, plates or
shells with alternating elastic and viscoelastic layers may be assembled. Pan (1969);
Mead and Markus (1969), and DiTaranto (1965) must be the first who considered
problems on damped vibrations of three-layered or multi-layered beams and shells
with viscoelastic cores. By now, there are many papers which deal with different
aspects of the influence of VDM as of damping core on suppression of vibrations of
both sandwich and laminated thin-walled structures (s., among many others, Khatri,
1996; Zhou and Rao, 1996; Yu and Huang, 2001; Matter et al, 2011; Schwaar et al,
2011) and the survey article of Qatu et al (2010).

The damping capability of VDMs in a laminated structure depends not only
on their viscous properties, but on densities of materials composing a structure, a
number of layers (Saravanan et al, 2000) and correlations between thicknesses of
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elastic and viscolelastic laminas as well (Yan and Dowell, 1972; Hu and Huang,
2000; Jin et al, 2015).

2.3.2 Complex Moduli of Viscoelastic Materials

There are different theories on viscoelasticity and various models describing the
dynamic response of the VDM (e.g., the simplest well known models of Maxwell and
Kelvin-Voigt, their generalization to the Kelvin chain model (Parke, 1966) and Biot’s
one (Biot, 1958), numerous non-linear models listed in Bert (1947), the hereditary
theory of material damping (Boltzmann, 1878; Gross, 1947; Volterra, 1950) and
their subsequent generalizations, very popular fractional models as specific cases
of the so-called hereditary continuous media (Koeller, 1984; Cosson and Michon,
1996, and many others).

The application of one or another model of a viscoelastic material depends on
both its type and the character of the dynamic response of a structure. For instance,
if a viscoelastic body or structure is subjected to the long-term exposure of external
forces, or the force load is suddenly withdrawn and the non-stationary strain-stress
state is characterized by the relaxation of stresses, then the hereditary theory of
viscoelastic materials is usually applied. The fractional models are frequently used
to study the dynamic response of elastomers (Cosson and Michon, 1996).

In the case of the harmonic (sinusoidal) response of polymers and elastomers,
frequently utilized models are ones which are based on the assumption of the complex
form for Young’s and shear moduli (Kervin Jr., 1959; Ross et al, 1959)

Ev = E′
v(1 + iη1), Gv = G′

v(1 + iη2), (2.163)

where E′
v, G

′
v are storage moduli, and η1, η2 are loss factors. A storage modulus is

a measure of VDM’s elasticity and the loss factor determines how much energy will
be dissipated in motion.

It is of interest to note that the first representation of stiffness in the complex
form was given by Soroka (1949). According to Bert (1947), utilizing observations
of Kimball and Lovell (1927) for many engineering VDMs, Soroka has proposed to
replace the stiffness k in the undamped elastic system by the Kimball-Lovell complex

stiffness

k = k′ + ik′′. (2.164)

Later, the viscoelastic models assuming the complex representation of the structural
stiffness were used extensively in aircraft structural dynamic and flutter analyses
(e.g., s. Scanlan and Rosenbaum, 1951).

In general case, for the VDM model represented by (2.163), the moduli Ev, Gv

are considered as independent magnitudes. If the VDM is assumed to be isotropic,
then Ev, Gv are coupled

Gv =
Ev

2(1 + ν)
, (2.165)
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where ν is Poison’s ratio of the VDM. As a rule, ν is taken as a real parameter for a
viscoelastic material.

Regardless of the role of the VDM (FLD, CLD or CD) in a thin-walled structure,
the shear phenomenon is the original source with which the VDM dissipates energy
and damps vibrations. An analysis of the effect of this shear damping mechanism was
first given by Kervin Jr. (1959) when studying vibrations of a constrained viscoelastic
plate. Recently, Jin et al (2015) confirmed that the high damping capacity of the
viscoelastic layer is mainly due to the shear deformations of the VDM. Furthermore,
it has been shown that there exists an optimal shear modulus of the viscoelastic core
which results in the best damping performance for a sandwich cylindrical shell.

Thus, the complex shear modulus Gv = G′
v + iG′′

v turns out to be basic in the
damping mechanism, and its real and imaginary parts G′

v, G
′′
v may be influenced

by many factors. So, in accordance with Kerwin-Douglas-Yang model (Kervin Jr.,
1959; Douglas and Yang, 1978), the parameters G′

v, G
′′
v depend on the frequency ω

and temperature T . Later, performing the finite-element simulation and companion
experiment on vibrations of a damped sandwich plates with the viscoelastic core
made of a polymer material (which belongs to class A of thermorheologically simple
materials), Lu et al (1979) justified this model. The empirical equations forG′

v(ω, T )
andG′′

v(ω, T ) were obtained by Drake in 1990 for seven different VDMs (s. Rao and
He, 1992; Zhou and Rao, 1996).

Due to the long-range molecular order associated with their giant molecules,
polymers and elastomers exhibit rheological behavior intermediate between that of
a crystalline solid and a simple liquid (Bert, 1947). Important physical properties of
these VDMs are the marked dependence of both stiffness and damping on frequency
and temperature. However, traditional viscoelastic material are not affected by the
action of other physical fields (such as electrical and magnetic ones). Because of
the predetermined and limited range of variation of the complex shear modulusGv,
they are generally used for passive damping of vibrations.

2.3.3 Smart Electro- and Magnetorheological Materials2

Smart materials are designed materials having properties that can be significantly
changed in a controlled manner by external stimulation of mechanical, electrical,
magnetic, etc. fields. They have a lot of applications, for example as sensors or actu-
ators. Thee modelling of their constitutive behavior is more complicated since me-
chanical responses with other physical fields should be considered. Finally, one gets
a material for which a non-mechanical stimulus, for example changing of electrical
or magnetic fields, can be transformed into changes of strains and stresses. Examples
of similar materials are piezoelectric and magnetostrictive materials, shape memory
alloys, electrorheological composites, magnetorheological fluids and elastomers.

2 This subsection is written in cooperation with E.V. Korobko (A.V. Lykov Heat and Mass
Transfer Institute of National Academy of Sciences of Belarus, Minsk, Belarus, e-mail:
evkorobko@gmail.com).
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The integration of viscoelastic smart materials (VSM) with traditional elastic ones
or passive VDMs is a key idea in the modelling of smart structures and, particularly,
smart thin-walled laminated structures. Indeed, a smart thin laminated shell (STLS) is
able to develop stiffness and damping characteristics which can change in dependence
of changes of the acting physical fields. Such an behavior is not related to a shell
structure made of a traditional material. From all variety of VSMs we will study here
magnetorheological fluids and elastomers and electrorheological composites. They
will be considered as semi-active layers or cores in laminated beams, plates, panels
and shells with viscoelastic properties.

Composite magnetorheological (MR) materials consist of magnetic micro - parti-
cles inserted into a diamagnetic or paramagnetic fluid, or into an elastic or viscoelastic
medium (matrix). The magnetic interaction between these particles depend on many
factors: magnetization direction of particles and their space distribution, the orienta-
tion of external magnetic field and the strain field in a composite material. Depending
on the type of medium where magnetic particles are placed to, one differentiates
magnetorheological elastomers (MRE), gels (MRG) and fluids (MRF).

MREs are magnetizable particles molded in non-magnetic elastomeric or rubber-
like materials (Farshad and Benine, 2004; Li et al, 2009, 2010) including natural
deformed polymer matrices (Farshad and Benine, 2004), natural rubbers (Yang et al,
2013) and synthetic ones (Sun et al, 2008; Bica et al, 2014; Wang et al, 2006; Sun
et al, 2008), and MRFs are liquid dispersions of magnetic particles (Wiess et al,
1994; Zhurauski et al, 2008).

Composite electrorheological (ER) material, more often electrorheological fluid
(ERF), is suspension of dielectric particles of different concentration in a viscous
medium (Hao et al, 1998; Zhurauski et al, 2008). These materials can change
their rheological properties under the action of electrical fields. Some ERFs with
high concentration of dielectric particles under the action of electrical field show
viscoelastic properties very close to properties of elastomer. Similar high-density
smart liquid is often called electrorheological composite (ERC).

It should be noted that MR and ER fluids have some lacks. The first problem
existing in MR/ER fluids is the particle sedimentation. Secondly, they do not keep
their geometrical shape at a low electric or magnetic field level that leads to some
technological problems at designing and running the solid-fluid structures. It is solid
smart materials such as MREs that are mostly applicable in the vibration control of
STLS (Ginder et al, 2001).

Viscoelastic properties of MR/ER materials strongly depend on both composi-
tion and ratio of all components. The optimum weight/density ratio of magnetic or
dielectric particles, carrier viscous liquid and/or polymer matrix substantially de-
termines shear modulus, viscosity and response time of VSMs. As far as MREs,
their properties are also influenced by the technology of production. If a MRE is
produced in the absence of a magnetic field, it possesses by isotropic properties
(Venkateswara et al, 2010; Zajac et al, 2010). On the contrary, when the polymer-
ization reaction is carried out in an external homogeneous magnetic field, then a
MRE becomes highly polarized (Korobko et al, 2009) medium having anisotropic
properties (Stepanov et al, 2007; Kallio et al, 2007; Bica et al, 2015). Furthermore,
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experimental works (Boczkowska et al, 2012) demonstrate that the maximum in-
crease in the storage modulusG′

v of the polarized MRE placed in the homogeneous
magnetic field strongly depends on the particles arrangement within the matrix with
respect to the force lines of a magnetic field.

In the next two items, we will consider MRE and ERC elaborated in the Laboratory
of Rheophysics and Macrokinetics (LRM) of A.V. Luikov Heat and Mass Transfer
Institute (LHMTI) of the National Academy of Sciences of Belarus. For comparison,
the elastic and rheological properties of other available smart composites will be
considered as well.

2.3.3.1 Magnetorheological Elastomers

Let us consider here the anisotropic MRE consisting of deformedpolymer matrix and
magnetic particles embedded in this matrix (Korobko et al, 2012). The procedure of
manufacturing this MRE was the following. A natural inorganic polymer (bentonite
clay, size of laminar particles is 1 - 10 μm) in the synthetic oil Mobil SAE was used
as a matrix for the MRE, and particles of carbonyl iron (particle size is about 20 μm)
as a filler. The matrix for the MRE was prepared by thorough rubbing the polymer in
surfactant-added oil. Then carbonyl iron particles were introduced (about 22 vol. %)
into the prepared matrix. Densities of components and their volume concentrations
for this MRE (called in what follows as MRE-1) are presented in Table 2.1.

The real and imaginary parts, G′
v and G′′

v , of the complex shear modulus Gv for
this MRE have been obtained by the method of rotational viscometry. The rheometer
Physica MCR 301 (Anton Paar) with the "plate-plate" measuring nest in the range
of the magnetic field induction up to 1 Tesla (T) has been used for the experimental
measurements. The viscoelastic properties were defined at different values of the
magnetic induction B and for the amplitude of deformations varying from 0.01 to
2 %. The frequency of deformations was taken to be equal to 0.1, 10, 100 Hz.

Figures 2.5 and 2.6 show the effect of the strain amplitude and the magnetic
inductionB on the storage and loss moduliG′

v andG′′
v for the frequencyω = 10 Hz.

It is seen that the MRE-1 placed in a magnetic field keeps elastic properties only at
small shear strains in the pre-yield regime; when the amplitude of shear deformations
increases, the MRE structure reaches the yield point and begins to fail displaying
the viscous flow features. For the MRE under consideration, the pre-yield regime

Table 2.1 Volume concentrations of the MRE-1 components and their densities.

MRE comonents Density, g/sm3 Weight, g Volume concentration, %

Particles of carbonyl iron 7.50 54.8 22
Bentonite clay 1.65 21.5 39
Oil Mobil SAE 0.85 10.0 35
Surfactant oil 0.94 1.0 3
Total 2.63 87.3 100
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Fig. 2.5 Storage modulus G′
v

of the MRE-1 vs. strain at
the frequency ω = 10 Hz
for different values of the
magnetic induction B:
1 - B = 0 mT,
2 - B = 50 mT,
3 - B = 100 mT,
4 - B = 200 mT,
5 - B = 300 mT,
6 - B = 500 mT.
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Fig. 2.6 Loss modulus G′′
v

of the MRE-1 vs. strain at
the frequency ω = 10 Hz
for different values of the
magnetic induction B:
1 - B = 0 mT,
2 - B = 50 mT,
3 - B = 100 mT,
4 - B = 200 mT,
5 - B = 300 mT,
6 - B = 500 mT.
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strongly depends on the level of an applied magnetic field. In the absence of a
magnetic field or for small values of B, the MRE pre-yield behavior is linearly
viscoelastic only at very small shear deformations, but for B = 300 mT the pre-
yield shear behavior is linearly viscoelastic for shear strains not exceeding 0.15 %.

In Figs. 2.7 and 2.8, the dependence of the storage and loss moduli on the mag-
netic field induction are given for different frequencies of small shear deformations.
As seen, under high frequency harmonic deformations of the MRE-1, the functions
G′

v(B), G′′
v(B) display almost the same behavior. Thus, the storage and loss moduli

of the MRE may be considered invariant with respect to the frequency of shear
vibrations if this frequency exceeds about 10 Hz. These invariants (determined as
average values in the frequency range from 10 to 100 Hz) versus the magnetic induc-
tion B are shown in Fig. 2.9 (Korobko et al, 2012). For the MRE-1, the maximum
values of the storage and loss moduli, maxG′

v ≈ 3089 kPa, maxG′′
v ≈ 830 kPa,

are reached at B ≈ 500 mT and B ≈ 250 mT, respectively. The data presented in



2.3 Laminated Cylindrical Shells with Viscoelastic Smart Layers 71

Fig. 2.7 Storage modu-
lus G′

v of the MRE-1 vs.
the magnetic induction B
for different frequencies
ω = 0.1; 10; 100 Hz of
excitation.
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Fig. 2.8 Loss modulus
G′′

v of the MRE-1 vs.
the magnetic induction B
for different frequencies
ω = 0.1; 10; 100 Hz of
excitation.
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Fig. 2.9 Storage and loss
moduli G′

v - line 1, G′′
v - line

2 vs. the magnetic inductionB
for the MRE-1 (after Korobko
et al, 2012).
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Fig. 2.9 will be repeatedly used below for the analysis of damped vibrations of the
MRE-based laminated beams, plates and shells. The major characteristic for a MRE
is the loss factor which is determined by the ratio between the loss modulusG′′

v and
the storage modulus G′

v as
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ηv = tan δv =
G′′

v

G′
v

. (2.166)

Figure 2.10 shows the effect of the applied magnetic field on the loss factor for
the MRE-1 at different frequencies of shear deformations. One can see that at
low-frequency oscillations of the sample, the loss factor ηv is the monotonically
decreasing function of the magnetic inductionB, but at frequencies exceeding 10Hz
there is a local maximum corresponding to the yield point of the MRE-1.

The analysis of actual researches reveals a large variety of MREs elaborated on
the base of different polymeric materials. For comparison, we give here several
examples of different MREs. The viscoelastic properties of the MRE-2 obtained
by mixing the silicone oil and the RTV141A polymer with subsequent loading
with 30% of ferromagnetic particles (Aguib et al, 2014) are presented in Table
2.2. According to Aguib et al (2014), the density of the MRE-2 equals 1.1 g/sm3,
Poisson’s ratio is 0.44, and the Young’ modulus is assumed to be the real constant
magnitude, 1.7 MPa, independent of a magnetic field. So, the MRE-2 is treated as
the transversally isotropic material.

Table 2.3 shows the compositions of different natural rubber based MREs elab-
orated by Chen et al (2008). For any of these elastomers, the matrix consists of the
same components: 48.5% of natural rubber, 50% of plasticizers, and 1.5% of other
additions. Properties of these MREs are presented in Tables 2.4-2.6.

When comparing properties of the MREs considered above, one can conclude that
the MRE-1 possess the largest loss factor, and the MRE-5 with the highest content

Fig. 2.10 Loss factor ηv
for MRE-1 vs. the mag-
netic induction B at different
frequencies of shear deforma-
tions.

η
v

B, mT

Table 2.2 Storage and loss moduli G′
v, G′′

v and loss factor ηv vs. the magnetic induction B for the
MRE-2 (Aguib et al, 2014).

Magnetic induction B, mT Storage modulus G′
v , kPa Loss modulus G′′

v , kPa Loss factor ηv

0 1600 330 0.206
200 1760 500 0.284
350 1930 540 0.280
500 2070 350 0.170
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Table 2.3 Composition of natural rubber based MREs elaborated by Chen et al (2008).

Sample Magnetic particles, % Carbon black, % Matrix, % Density, g/sm3

MRE-3 33 0 67 1.895
MRE-4 33 4 63 1.872
MRE-5 33 7 60 1.855

Table 2.4 Storage and loss moduli G′
v, G′′

v and loss factor ηv vs. the magnetic induction B for the
MRE-3 (Chen et al, 2007) containing 33% of iron particles and 0% of carbon black.

Magnetic induction B, MT Storage modulus G′
v , kPa Loss modulus G′′

v , kPa Loss factor ηv

0 1000 220 0.22
200 1600 416 0.26
400 2100 504 0.24
600 2200 550 0.25
800 2300 1150 0.25

Table 2.5 Storage and loss moduli G′
v, G′′

v and loss factor ηv vs. the magnetic induction B for the
MRE-4 (Chen et al, 2007) containing 33% of iron particles and 4% of carbon black.

Magnetic induction B, mT Storage modulus G′
v , kPa Loss modulus G′′

v , kPa Loss factor ηv

0 2000 360 0.18
200 2200 440 0.20
400 2400 480 0.20
600 2500 500 0.20
800 2600 494 0.19

Table 2.6 Storage and loss moduli G′
v, G′′

v and loss factor ηv vs. the magnetic induction B for the
MRE-5 (Chen et al, 2008) containing 33% of iron particles and 7% of carbon black.

Magnetic induction B, mT Storage modulus G′
v , kPa Loss modulus G′′

v , kPa Loss factor ηv

0 4050 567 0.14
200 4250 723 0.17
400 6000 960 0.16
600 7900 1185 0.15
800 8000 1120 0.14

of carbon black has very large shear moduli. It is also interesting to note that adding
carbon black results in the weak dependence of the loss factor on the magnetic field
induction.

As mentioned above, viscoelastic properties of any MRE are very influenced by
wether it is isotropic or anisotropic. Figure 2.11 illustrates the effect of a magnetic
field on the storage modulus for the isotropic and anisotropic MREs with the matrix
prepared from formoplast, which is a kind of silicon rubber (Demchuk and Kuzmin,
2002). The powder of iron with particles of the size about 23 μm was used as a filler
for this MRE (called here as the MRE-6). It is seen that the orientation of magnetic
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Fig. 2.11 Storage modulus
G′

v (MPa) vs. the magnetic
induction B (mT) for the
isotropic and anisotropic
MRE-6 (Demchuk and
Kuzmin, 2002): � - isotropic
sample; © - anisotropic sam-
ple.
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Fig. 2.12 Schematic rep-
resentation of the particles
alignment in the anisotropic
MRE sample with reference to
the force lines of the magnetic
field.
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particles influences the storage modulus: if a magnetic field is absent, this effect is
weak, however in the magnetic field of a relatively high induction, the shear modulus
of the anisotropic MRE-6 is about two times as much than for the isotropic sample.

The same effects were detected by other authors for the MREs made of natural
rubber (Aguib et al, 2014) and polyurethane (Boczkowska et al, 2012). Furthermore,
as follows from Boczkowska et al (2012); Kumar and Lee (2017), viscoelastic
properties of a polarized MRE turn out to be very sensitive to the angle between the
force lines of a magnetic field and the direction, in which the magnetic particles are
aligned. In particular, samples of MREs with particles aligned perpendicular to the
magnetic field (s. Fig. 2.12) and with isotropic distribution have exhibited relatively
small rise in the storage modulusG′

v. But higher increase has been observed for the
sample with parallel alignment (α = 0◦) and the highest for that with particle chains
deflected at α = 45◦ and α = 30◦. So, at the frequencyω ≈ 90 Hz, the modulusG′

v

for the sample with α = 30◦ was about 3.5 times as much than that for the sample
with α = 0◦.

2.3.3.2 Electrorheological Composites

In this item, we shall consider a highly concentrated electrorheological liquid con-
sisting of particles of goethite (wt. 45%), transformer oil (wt. 51%) and glycerol
monooleate (wt. 4%). The viscoelastic properties of this ERC elaborated in the
LRM of LHMTI strongly depend on the temperature. As seen from Figs. 2.13 and
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Fig. 2.13 Storage modulus
G′

v vs. electric field strength
E for the ERC with 45 %
of the mass concentration of
disperse phase.
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2.14, the storage and loss moduli, G′
v and G′′

v , increase together with the electric
field strength E at all the interval from 0 to 2 kw/mm for any temperature from 20
to 80◦ C. At the zeroth temperature, the electrorheological activity of the dispersed
phase is very low. At temperature 100◦ C, the effect of electric field drops. And
the highest electrorheological activity is observed at 60◦ C: the moduli G′

v, G′′
v

are monotonically increasing functions of the electric field strength and reach large
values (2779 and 504 kPa, respectively) for E = 3 kw/mm.

Fig. 2.14 Loss modulus G′′
v

vs. electric field strength E
for the ERC with 45 % of
the mass concentration of
disperse phase.
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2.3.3.3 Magnetorheological Fluids

We consider also three samples of magnetorheological fluids, MRF-1, MRF-2 and
MRF-3, with the same percentage of iron particles in an oil (wt. 80% ), but differing
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in particle size (s. Table 2.7). The elastic and rheological properties of these smart
liquids elaborated in the LRM of LHMTI are presented in Tables 2.8-2.10.

The analysis of the loss factor ηv for all MRFs shows that in the absence of a
magnetic field the MRF-1 with more large iron particles behaves as a less viscous
liquid. When the value of the field induction exceeds 200 mT, there is the tendency
of decreasing the value of ηv and the predominance of the elastic properties of the
system as a whole.

When comparing all the smart magnetorheological materials presented above,
one can see that for MRFs the increase in the magnetic field does not give a very
large increment in the storage and loss moduli, which is characteristic of MREs. At
the same time, MRFs posses the largest loss factor at the entire range of variation of
a magnetic field induction.

The elastic and viscous properties of VSMs considered in this section will be used
below for simulation of damping vibrations of the MRE/ERC/MRF-based laminated
beams, plates and shells. It will be shown also that besides damping capabilities
similar VSMs posses capacity to control the total stiffness of thin-walled structures
and thus increase their load-carrying capability.

In what follows, all smart materials given in this section, except for MRE-2, will
be treated as isotropic ones.

Table 2.7 Disperse phase of MRFs.

Sample Graded of main component Particle diameter, μm

MRF-1 S-1000 13
MRF-2 S-3700 3
MRF-3 S-3500 2

Table 2.8 The storage and loss moduli G′
v, G′′

v and loss factor ηv vs. the magnetic induction B for
the MRF-1.

Magnetic induction B, mT Storage modulus G′
v , kPa Loss modulus G′′

v , kPa Loss factor ηv

0 3.14 2.3 0.744
50 56.5 36.9 0.653
100 174.9 76.8 0.439
150 354.7 139.4 0.393
200 443.0 169.2 0.382
250 659.6 186.0 0.282
300 725.3 129.1 0.178
350 728.7 97.6 0.134
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Table 2.9 The storage and loss moduli G′
v, G′′

v and loss factor ηv vs. the magnetic induction B for
the MRF-2.

Magnetic induction B, mT Storage modulus G′
v , kPa Loss modulus G′′

v , kPa Loss factor ηv

0 17.1 30.9 1.808
50 32.6 34.8 1.068
100 59.2 42.2 0.713
150 106.7 47.7 0.447
200 177.9 78.6 0.442
250 255.6 68.5 0.268
300 339.2 76.3 0.225
350 436.1 90.7 0.208

Table 2.10 The storage and loss moduli G′
v, G′′

v and loss factor ηv vs. the magnetic induction B
for the MRF-3.

Magnetic induction B, mT Storage modulus G′
v , kPa Loss modulus G′′

v , kPa Loss factor ηv

0 34.0 29.6 0.870
50 43.0 35.7 0.830
100 91.9 63.9 0.695
150 102.4 48.8 0.477
200 166.5 77.9 0.468
250 262.3 72.4 0.276
300 352.6 68.8 0.195
350 454.6 84.6 0.186
400 677.9 122.0 0.180
450 696.3 122.5 0.176

2.3.4 Governing Equations for Smart Cylindrical Shells

The differential equations derived in Sect. 2.2 may be adapted for the case when
some of layers are made of viscoelastic material (Mikhasev et al, 2011). Let the kth

lamina be fabricated from a VSM described above. When assuming the harmonic
(sinusoidal) dynamic response of a shell, the viscoelastic properties of this layer may
be represented by the complex form (2.163) for Young’s and shear moduli.

As mentioned above, many of VSMs possessing isotropy in absence of external
magnetic or electric field, show anisotropic properties at high level of applied elec-
tromagnetic signal. For a thick layer this property has an essential effect on the modes
for which the amplitudes of the tangential and normal displacements of a shell have
the same order. But the thinner the VSM-based layer is, the less anisotropy affects
the dynamic behaviour of a laminated shell. We assume everywhere that a thickness
of each layer composing a laminated shell is sufficiently small with respect to the
characteristic size R of a structure. In what follows, considering dynamic problems
we will analyze only small flexural vibrations taking into account shear deforma-
tions. Then a viscoelastic layer may be assumed to be transversally isotropic. In this
case, the complex moduli Ek and Gk for the kth viscoelastic layer are coupled by
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Eq. (2.165). For many elastomeric materials, Poison’s ratio νv is about 0, 4 (White
and Choi, 2005). Aguib et al (2014) consider a MRE (see above propereties for
MRE-2) as a material closed to incompressible and assume νv ≈ 0.45. We also
consider Poisson’s ratio νk for the kth viscoelastic layer as a real parameter in the
range from 0.4 to 0.45.

Because the moduli Ek and Gk are the complex magnitudes for the VSM-based
layers, all coefficients appeared in the governing equations becomes complex func-
tions of the magnetic induction B or electric field strength E . In particular, the
reduced Poisson’s ratio ν, Young’s modulus E, shear parameter β, bending stiff-
ness D, and dimensionless stiffness γk defined by Eqs. (2.14), (2.18), (2.84), (2.88)
and (2.19), respectively, will be complex. If a magnetic or electric field is not station-
ary, then they are complex function of time. In addition, due to different exposure of
the external magnetic/electric field on different parts of the VSM-based layer, above
complex magnitudes may depend on the curvilinear coordinates α1, α2.

The accuracy of the governing equations derived in Sect. 2.1 was formally dis-
cussed in Subsect. 2.1.13. However, the estimation of an error of the equivalent single
layer (ESL) model for a multi-layered shell remains by an unsolved problem. One can
states that the stiff characteristics of all layers composing a thin-walled multi-layered
structure have to be approximately of the same order. One of the principle parameters
affecting the error of the ESL model is the dimensionless stiffness γk. To minimize
the total error, the geometrical and physical parameters of layers should be chosen in
such away that parameters |γk| were approximately the same for all k = 1, 2, . . . , N ,
where N is a number of layers. As seen from (2.19), this requirement is equivalent
to the estimate

|Ek|
|Ek+1| ∼

hk+1

hk
for any k = 1, 2, . . . , N. (2.167)

This condition becomes essential for shells assembled form elastic and more soft
viscoelastic layers. As examples, we estimate here the parameters |γk| for two three-
layered plates having the same thicknesses of layers and made of different MREs. Let
the top and bottom of both sandwiches be made of the ABS-plastic SD-0170 with
parametersE1 = E3 = 1.5 ·103 MPa, ν1 = ν3 = 0.4, and cores are fabricated from
the MRE-1 and MRE-5, respectively. The viscoelastic properties of these materials
were specified above (s. Fig. 2.9 and Table 2.4). Figures 2.15 and 2.16 show the
parameters |γ1| = |γ3|, |γ2| for both samples versus the magnetic induction B at
the fixed thickness h1 = h3 = 0.5 mm of the elastic top and bottom layers and
different thicknesses h2 = 5, 8, 11, 15 mm of the viscoelastic cores. It is seen that
at a small level of a magnetic field, the parameters |γk| differ appreciably for both
cases, and with the increase of induction B (from 0 to 200 mT for MRE-1 and
from 200 to 800 mT for MRE-5), plots for |γ1| = |γ3| and |γ2| approach to each
other, from above and below, respectively. The rise of the core thickness (under the
fixed thicknesses of outer and innermost layers) also effects the stiff characteristics
γk: the larger h2 is, the faster values of |γ1,3| and |γ2| approach each other with
increasing magnetic field. When comparing two types of MRE, one can conclude:
for the MRE-5 based sandwich, condition (2.167) is satisfied better, whereas for the
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Fig. 2.15 Dimensionless stiffness parameters: a) |γ1| = |γ3| and b) |γ2| vs. magnetic field
induction B for MRE-1 at different thicknesses h2 of the MRE-1 core: 1 - h2 = 5 mm, 2 -
h2 = 8 mm, 3 - h2 = 11 mm, 4 - h2 = 15 mm.
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Fig. 2.16 Dimensionless stiffness parameters: a) |γ1| = |γ3| and b) |γ2| vs. magnetic field
induction B for MRE-5 at different thicknesses h2 of the MRE-5 core:1 - h2 = 5 mm, 2 -
h2 = 8 mm, 3 - h2 = 11 mm, 4 - h2 = 15 mm.

sample with the MRE-1 based core, this requirement can be reached by only further
increment in the core thickness.

2.4 Finite Element Analysis

As mentioned above, the accurate estimate of an error of all equations derived in
this chapter is still a subject for subsequent investigations. That is why it is a very
important to have an alternative approach to compare solutions of problems found by
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different methods. The finite element method (FEM) is expected as the alternative and
universal method permitting to evaluate the applicability of the governing equations
and the ESL model in whole being developed in this book.

In the next chapters, to analyze buckling or vibrations of laminated cylindrical
shell we will use the SemiLoof element family of the general purpose finite element
package COSAR (Gabbert and Altenbach, 1990). The SemiLoof elements have been
preferred due to their good overall accuracy in most shell applications and robustness
compared with other possible finite shell elements. Originally, the SemiLoof element
family was proposed by Irons (1976). The elements consists of 24 and 32 degrees
of freedom (dof ) for a curved six node triangular and an eight node quadrilateral
element, respectively. These dof are the three displacements at each node, and addi-
tionally, the two tangential rotations at the two Gaussian integration points on each
edge. The displacements and rotations are approximated by two families of shape
functions, Lagrange polynomials are used for the displacements and Legendre poly-
nomials are employed for the rotations. The element has C(0) continuity along the
edges and a poitwiseC(1)continuity at the Loof -nodes (the two Gaussian integration
points on the edges). The element fulfils the patch test.

In order to simulate different material layers the classical laminate theory (CLT)
is used. For buckling analysis a second order theory is utilized (classical stability
problem) to calculate the critical eigenvalues from the eigenvalue problem

(Ks − λKσ)u = 0 (2.168)

with the stiffness matrix Ks, the geometric or initial stress matrix Kσ and the
eigenvalue λ.

In stability problem (3.22), a single parameter load is considered where the critical
stress state σc (first critical buckling point) is calculated from an initial stress state σ̂
as

σc = λσ̂ (2.169)

caused by the initial load state.
The initial stress state σ̂ is calculated from a first linear solution of the cylindrical

shell under the initial load state. In a second step the eigenvalue problem equation
(3.22) is solved where the eigenvalue λ is the load parameter. The matrix Kσ is
assembled from the following geometric element stiffness matrices (Zienkiewicz,
1977)

(2.170)

where Gu contains the displacement gradient expressed by the shape function. The
solution of the eigenvalue problem (2.168) results in the load factorλ, and the critical
load level can be calculated by equation (2.169).

For a vibration analysis of elastic laminated shells the eigenvalue problem

(Ks − ω2Mσ)u = 0 (2.171)

K(e)
σ =

∫
V

GT
uσ̂GudV
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has to be solved, where M is the mass matrix, and ω is the eigenfrequency.
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Chapter 3

Elastic Buckling of Laminated Beams, Plates,

and Cylindrical Shells

Abstract In this chapter, we study the elastic buckling of thin-walled elastic lami-
nated structures. As a preliminary, the simplest problems on stability of laminated
beams and plates are considered in Sect. 3.1. Then, using the derived in Chapt.
2 governing equations based on the equivalent single-layer model, some classes
of problem on the buckling of thin elastic laminated cylindrical shells under dif-
ferent loading (external pressure, axial compression and torsion) are considered. In
Sect. 3.2, the buckling of a medium-length laminated cylindrical shell under external
pressure is investigated. As the special case, using the asymptotic Tovstik’s method,
the localized buckling modes of a thin non-circular cylindrical shell with an oblique
edge are studied. The problems on buckling of axially compressed laminated cylin-
ders are considered in Sect. 3.3; a cylindrical shell under action of non-uniform axial
forces is also examined. Finally, Sect. 3.4 is devoted to stability of laminated shells
under axial torsion. In all cases, the influence of boundary conditions and transverse
shears on the critical values of the buckling load parameter is analyzed. To verify
the applied equivalent single-layer model, the finite-element analysis is performed
for some of problems. We also show that the application of smart materials (i.e.,
magnetorheological elastomers) for assembling sandwiches or multi-layered thin
cylinders allows to increase significantly the total stiffness of a structure and the
critical buckling load as well.

3.1 Simple Problems on Buckling of Laminated Beams and Plates

In this section, we consider the simplest problems on buckling of laminated beam
and plates with boundary conditions permitting to find a solution in an explicit form.
In all cases, the geometrical and physical parameters are assumed to be constants
so that coefficients in the governing equations do not depend on the coordinates
α1, α2. The buckling loads and solutions found in such a way may be compared with
well-known solutions for isotropic beams and plates.
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3.1.1 Laminated Beams

At first, we consider a laminated beam of the total thickness h, width b and length L
subjected to a uniform axial compression by the force N◦

1 . The differential equation
describing buckling of the beam is easily obtained from the first equation of system
(2.160)

Let us consider here only two basic sets of boundary conditions at x = 0, L:
the simple support and rigid clamping conditions. For a beam these conditions are
substantially simplified

1. simple supported boundary conditions

• edge with diaphragm

χ =
d2χ

dx2
=

d4χ

dx4
= 0,

dφ

dx
= 0, (3.3)

• edge without diaphragm

χ− h2

β

d2χ

dx2
= 0,

d2χ

dx2
− h2

β

d4χ

dx4
= 0,

d2χ

dx2
= 0,

d2φ

dx2
= 0, (3.4)

2. rigid clamped boundary conditions

• edge with diaphragm

χ− h2

β

d2χ

dx2
= 0,

dχ

dx
− h2

β

d3χ

dx3
= 0,

dχ

dx
= 0,

dφ

dx
= 0, (3.5)

• edge without diaphragm

χ− h2

β

d2χ

dx2
= 0,

dχ

dx
= 0,

d3χ

dx3
= 0, φ = 0. (3.6)

It is obvious that φ = 0 is the unique solution of Eq. (3.2) for any variant of the
boundary conditions listed above. It is also seen that within the scope of each set
(simple support or rigid clamping) the boundary conditions become identical. In

EIη3

(
1− θh2

β

d2

dx2

)
d4χ

dx4
+N◦

1

(
1− h2

β

d2

dx2

)
d2χ

dx2
= 0. (3.1)

where x = α1 is the axial coordinate. The bending stiffness D and the axial stress
resultant T ◦

11 are replaced by EI = Eh3b/12 and N◦
1 = −T ◦

11b, respectively. We
remind that for a beam the magnitudes β, θ are calculated at ν = νk = 0. The third
equation from system (2.160) describing the shear function becomes as follows

h2

2β

φ

dx2
− φ = 0. (3.2)

d2
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other words, a diaphragm does not effect on the buckling behavior of a laminated
beam represented by our model.

The general solution of Eq. (3.1) has the form

χ = c1 sin
(√

r1
x

L

)
+ c2 cos

(√
r1

x

L

)
+ c3e

√
r2

x

L + c4e
−√

r2
x

L + c5
x

L
+ c6,

(3.7)
where cj are constants which should be determined using the boundary conditions,
and

3.1.1.1 Simply Supported Beams

Let us assume that both edges x = 0, L are simply supported. The substitution of
Eq. (3.7) into the boundary conditions (3.3) or (3.4) results in

c1 �= 0, c2 = c3 = c4 = c5 = c6, sin(
√
r1) = 0. (3.9)

From the last equation, one obtains

N◦
1 =

π2n2EIη3

(
1 +

π2n2θh2

L2β

)

L2

(
1 +

π2n2h2

L2β

) . (3.10)

Then the critical buckling stress resultant

N∗
cr = max

n
N◦

1 =

1 +
θh2

βEI
N∗

E

1 +
h2

βEI
N∗

E

N∗
E η3, (3.11)

where

N∗
E =

π2EI

L2
(3.12)

is the classical Euler’s critical load of the buckling stress resultant (Euler, 1759).
The corresponding buckling mode is

χ(x) = c1 sin
(√

r∗1
x

L

)
, (3.13)

r1 (P
◦) = b− a, r2 (P

◦) = a+ b,

a (P ◦) =
1−K1P

◦

2θK1
, b (P ◦) =

√
1− 2(1− 2θ)K1P ◦ +K2

1(P
◦)2

2θK1
,

P ◦ =
L2N◦

1

EIη3
, K1 =

h2

βL2
.

(3.8)



88 3 Elastic Buckling of Laminated Beams, Plates, and Cylindrical Shells

where

r∗1 = r1 (P
∗
cr) , P ∗

cr =
L2N∗

cr

EIη3
.

Fulfilling the limit transition to the classical model, one has

lim
β→+∞

N∗
cr = N∗

E.

Example 3.1. Let us apply the derived Eq. (3.11) for a single-layer beam to compare
the shear deformation induced correction based on our model with the correction
presented in Timoshenko (1936). For the single-layer beam, the Eqs. (2.25), (2.54),
(2.59), (2.84) and (2.89) yield

θ =
1

85
, β =

9.09G

E
, η3 = 1, (3.14)

and Eq. (3.11) results in

N∗
cr =

1 +
0.0155

hbG
N∗

E

1 +
1.32

hbG
N∗

E

N∗
E, (3.15)

whereG is the shear modulus. We note that Eq. (3.15) for the critical stress resultant
is based on the generalized (kinematical) hypothesis of Timoshenko stated in Chapt.
2, whereas the known Timoshenko’s formula accounting shear has the following
form (Timoshenko, 1936)

N∗
cr =

N∗
E

1 + (hbG)−1N∗
E

. (3.16)

One can calculate the relative correction induced by (3.15) with respect to the
classical Euler’s forceN∗

E. Assuming isotropic material with G = E/2, one obtains

δN =
N∗

E −N∗
cr

N∗
E

≈ 2.146

(
h

L

)2

. (3.17)

The similar correction from Timoshenko’s formula is

δN ≈ 1.645

(
h

L

)2

. (3.18)

It is seen that our model based on the generalized hypothesis of Timoshenko
(Grigolyuk and Kulikov, 1988b) gives slightly higher correction value in comparison
with the known model by Timoshenko (1936).



3.1 Simple Problems on Buckling of Laminated Beams and Plates 89

3.1.1.2 Simply Supported and Clamped Beams

Let the edge x = 0 be simply supported, and x = L be clamped. In this case,
substituting (3.7) into the boundary conditions (3.3), (3.6) yields the coefficients

c2 = c6 = 0, c4 = −c3, c3 =

(
r1
r2

)3/2 cos(
√
r1)

e
√
r2 + e−

√
r2

c1,

c5 = −r
1/2
1 (r1 + r2) cos(

√
r1)

r2
c1

(3.19)

and the following transcendental equation for determining the critical dimensionless
load parameter P ∗

cr can be obtained

tan
(√

r1 (P ◦)
)
= C (P ◦) , (3.20)

where

C =
r
1/2
1 (r1 + r2)

r2(1 +K1r1)
−
(
r1
r2

)3/2
1−K1r2
1 +K1r1

tanh
√
r2, (3.21)

and r1(P ◦), r2(P ◦) are determined by Eqs. (3.8). Equation (3.20) is invariant with
respect to the geometrical and physical parameters of the laminated beam. Let P ∗

cr

be the least positive root of Eq. (3.20). Then

N∗
cr =

EIη3
L2

P ∗
cr (3.22)

is the critical buckling value of the axial stress resultant N◦
1 . In the limit case at

K1 → 0, one obtains r1 → P ◦, r2 → +∞ and Eq. (3.20) degenerates into the
known equation

tan
(√

P ◦
)
=

√
P ◦

for a simply supported-clamped beam not taking into account transverse shear. The
last equation gives P ∗

cr ≈ 20.2 and we obtain the classical formula for the critical
stress resultant (e.g., s. Alfutov, 2000)

N∗
cr ≈

20.2EI

L2
.

Example 3.2. Not specifying the numberof layers and their geometrical and physical
characteristics, we shall calculate the critical buckling force at different values of
parameter θ. Table 3.1 displays the critical dimensionless load parameter P ∗

cr versus
the dimensionless shear parameter K1 for θ = 0.01; 0.03; 0.05. The increase of the
shear parameter K1 results in the increase of the critical buckling stress resultant
P ∗
cr for any θ. In addition, P ∗

cr → 20.2 as K1 → 0 for any θ.
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Table 3.1 Dimensionless load P∗
cr vs. dimensionless shear parameter K1 at θ = 0.01; 0.03; 0.05.

K1 0 0.005 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ = 0.01

P∗
cr 20.20 18.20 8.913 7.817 7.416 6.605 6.117 5.791 5.557 4.196 4.060 2.961

θ = 0.03
P∗
cr 20.20 18.24 6.772 6.193 4.809 4.088 3.646 3.346 3.131 2.967 2.840 2.737

θ = 0.05
P∗
cr 20.20 18.28 7.055 4.639 3.614 3.043 2.680 2.427 2.241 2.099 1.986 1.894

3.1.2 Laminated Plates

Consider a rectangular plate with sides L1, L2 (0 ≤ α1 ≤ L1, 0 ≤ α2 ≤ L2). The
governing equation describing buckling of its in-plane stress state is deduced from
Eqs. (2.160) assuming 1/R2 = 0

D

(
1− θh2

β
Δ

)
Δ2χ−

(
T ◦
11

∂2

∂α2
1

+ 2T ◦
12

∂2

∂α1∂α2
+ T ◦

22

∂2

∂α2
2

)(
1− h2

β
Δ

)
χ = 0,

(3.23)
1− ν

2

h2

β
Δφ = φ, (3.24)

where D is the reduced bending stiffness defined by Eq. (2.88). The boundary
conditions for the simply supported and clamped edges are given by Eqs. (2.110)-
(2.117). We will consider here the simplest variant of boundary conditions (2.111),
when all edges are simply supported and have diaphragm preventing shears along
edges

χ = Δχ = Δ2χ =
∂φ

∂α1
= 0. (3.25)

Then, one can assume φ = 0.
Let the plate be loaded with only one or two forces acting in its plane along the

α1- or/and α2-axes. The loading is assumed to be one-parametric and compressive
so that

T ◦
11 = −T ◦, T ◦

22 = −λT ◦, T ◦
12 = 0, (3.26)

where 0 ≤ λ < +∞, and T ◦ is a required positive stress resultant. The problem
is to find the least value of T ◦ for which the boundary-value problem (3.23)-(3.25)
has a nontrivial solution. In the classical setting (when β → ∞), this problem was
considered by many researches (among them Alfutov, 2000; Donnell, 1976). With
the chosen variant of boundary conditions, the solution of Eq. (3.23) can be found
as follows

χ = χ0 sin
πnα1

L1
sin

πmα2

L2
. (3.27)

Introducing Eq. (3.27) into Eq. (3.23) results in
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T ◦ =
Dπ2

L2
1

(n2 + em2)2[1 + θK(n2 + em2)]

(n2 + λem2)[1 +K(n2 + em2)]
, (3.28)

where

e =

(
L1

L2

)2

, K =
h2π2

βL2
1

. (3.29)

The critical value
T ∗
cr = min

n,m
T ◦(n,m) = T (n∗,m∗) (3.30)

depends on parameters λ, e,K and θ.

3.1.2.1 Uniformly Loaded Edges

Let λ = 1 that means all edges are uniformly loaded. This is probably the unique
case when the critical buckling parameter T ∗

cr and the wave numbers n∗,m∗ for the
rectangular laminated plate are found in the explicit form

n∗ = m∗ = 1, T ∗
cr = T ∗

cl

[1 + θK(1 + e)]

1 +K(1 + e)
, (3.31)

where

T ∗
cl =

Dπ2(1 + e)

L2
1

(3.32)

is the classical value of the buckling stress resultant for a single-layer plate (Alfutov,
2000). For an isotropic plate with the Poisson’s ratio ν, Eq. (3.31) gives the relative
correction

δT =
T ∗
cl − T ∗

cr

T ∗
E

≈ 5.654(1 + ν)(1 + e)

(
h

L1

)2

. (3.33)

3.1.2.2 Non-uniformly Loaded Edges

Here we consider the case when the plate edges α1 = 0, L1 and α2 = 0, L2

are loaded by different forces T ◦
11, T

◦
22 and λ �= 1. This case requires additional

calculations for the specified parameters of the plate.

Example 3.3. Not defining the number of layers, we fix the parameters e = 1 and
θ = 0.05 and calculate the critical load parameter

P ∗ =
(n2 + em2)2[1 + θK(n2 + em2)]

(n2 + λem2)[1 +K(n2 + em2)]

∣∣∣∣
n=n∗,m=m∗

(3.34)

versus the shear parameter K for different values of the ratio λ = 0; 0.2; 0.5; 1.
For all parameters specified above the buckling occurs at n∗ = m∗ = 1. Figure 3.1
shows that the increase of the shear parameterK results in the decrease of the critical
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Fig. 3.1 Dimensionless load
parameter P∗ vs. shear pa-
rameter K at θ = 0.05, e = 1
for different λ: 1 - λ = 0,
2 - λ = 0.2, 3 - λ = 0.5,
4 - λ = 1.

P
∗

K

buckling load parameter P ∗. Taking into account Eq. (3.29) for K and Eqs. (2.59),
(2.84) showing the coupling with the reduced shear modulus G, one can conclude
that introducing transverse shear into the equivalent single layer (ESL) model for
laminated plates may considerably reduce the buckling resistance of the structure.

3.2 Laminated Medium-length Cylindrical Shell Under External

Pressure

The problem on buckling of a thin single-layer isotropic circular cylindrical shell
under external normal pressure is very well studied. Southwell (1913) was probably
the first who obtained a very simple formula for the critical pressure

q∗n = −T ∗
2

R
=

0.856E

(1 − ν2)3/4

(
h5

L2R3

)1/2

, (3.35)

where T ∗
2 is the critical hoop stress resultant T ◦

22, R,L are the radius and length
of the shell, and E, ν are the Young’s modulus and Poisson’s ratio, respectively.
Considering a medium-length cylinder (L ∼ 2R), it was shown that buckling occurs
with formation of one semi-wave in the axial direction and an integer number m of
dents/bulges in the circumferential direction, where m is the closest to

m∗ = 2.77(1− ν2)1/8
(
R3

L2h

)1/4

. (3.36)

Later, Papkovich (1929) has confirmed this formula and von Mises (1914); Timo-
shenko (1936) have derived similar equations using improved theories. It is generally
accepted now that Eq. (3.35) is called the Southwell-Papkovich formula (Grigolyuk
and Kabanov, 1978).
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The problem of buckling of laminated cylindrical shells under external pressure
is obviously more complicated than that for single-layer isotropic shells. Indeed,
this problem can be reduced to the prediction of nonlinear behaviour of each layer
with required satisfaction of boundary conditions on both edges and interfaces.
Apparently, analytical solutions of this problem in an explicit form may be found
only for sandwich shells, having three layers, with the simplest variant of boundary
conditions, the simple support at both edges. For other boundary conditions, the
buckling analysis of three-layer cylinders is performed usually by applying some
numerical procedure, e.g., Galerkin’s method (Lopatin and Morozov, 2015).

For multi-layered shells there are different approximate approaches to predict
their buckling. Omitting papers where these problems are solved by some numerical
method (e.g., FEM simulation) or by using new advanced theories based on 3D stress
analysis and rigid-body motions or on the base of high-accuracy layer-wise theories
(see the review in Chapt. 1), we refer to the buckling analysis based on the equivalent
single layer (ESL) models which seems to be more simple for multi-layered shells.

The ESL theories may be subdivided into the classical laminate, the first-order
shear deformation and higher-order shear deformation theories (the classification of
these theories has been given in Chapt. 1). The accuracy of each of these models
depends not only on the accepted kinematic hypotheses, but also on the correlations
of thicknesses and elastic properties of all layers. Even though some layers are more
soft than others, the ESL model gives an accurate result in the estimation of the
critical buckling pressure if the total thickness of the shell is sufficiently small and
stiffness of all layers is approximately of the same order (Grigolyuk and Kulikov,
1988b; Anastasiadis and Simitses, 1993; Mikhasev et al, 2001b; Han et al, 2004).
So, studying the buckling of a thin sandwich cylinder with face sheets made of
aluminum and an epoxy core, Mikhasev et al (2001b) showed that the divergence
of eigenvalues obtained by using the ESL model (Grigolyuk and Kulikov, 1988b)
and the FEM was varied from 1 to 4% for very thin and moderately thin shells,
respectively. Han et al (2004) analyzed the buckling of cylindrical sandwiches of
different total thicknesses with alloy-foam core and face sheets made of different
materials (boron/epoxy, graphite/epoxy and kevlar/epoxy) in three ways:

a) considering the sandwich as a three-dimensional (3D) elastic body,
b) applying the ESL model accounting the transverse shear effects, and
c) performing the finite-element simulation.

The comparative analysis of different approaches has revealed that the error of the
ESL model vs. the 3D model can varied (depending on the material of the face
layers) from 3.1 to 16.6% for moderately thin shells (R/h = 30) and between 0.13
and 3.3% for thin and very thin shells (R/h = 60 and R/h = 120).

Remark 3.1. In some recent papers (Weps et al, 2013; Eisenträger et al, 2015) it was
shown that the use of ESL yields sometimes not to satisfying results if the thickness
ratio for core and face sheets and the material parameters ratio have extremal values
(e.g., the material parameters ratio for ordinary laminates and sandwiches is≈ 10−2,
in extremal situations this value is 10−4 up to 10−5). If it is so layerwise theories
must be applied.
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The ESL models turned out very fruitful and promoted a further development of
higher-order shear deformation theories as well as numerous studies on pressure-
induced buckling of laminated and sandwich cylindrical shells in different statements
and under various factors (s., among many others, Wu et al, 2008; Li and Lin,
2010; Grover et al, 2013; Nguyen et al, 2016). In particular, in Li and Lin (2010)
the governing equations based on the higher-order shear deformation shell theory
with von Kármán-Donnell-type of kinematic nonlinearity have been used to study
nonlinear buckling and postbuckling of a moderately thick anisotropic laminated
cylindrical shell of finite length subjected to lateral pressure, hydrostatic pressure, and
external liquid pressure. Grover et al (2013) proposed a new inverse hyperbolic shear
deformation theory satisfying traction-free boundary conditions for the buckling
response of laminated shells.

In this section, based on the ESL model (Grigolyuk and Kulikov, 1988b) and
using the governing equations (2.160) derived in Chapt. 2, we shall study buckling
of thin medium-length multi-layered and sandwich cylindrical shells under external
pressure. Each layer of the shell is assumed to be elastic and transversally isotropic.
At first, we shall consider the simplest problem when all geometrical and physical
parameters as well as the pressure are constant. For simply supported edges with
diaphragm this problem has an explicit solution. In the case of other variants of
boundary conditions the asymptotic approach will be applied (Mikhasev and Boto-
gova, 2017). The critical pressure values found by two methods will be compared
with data of FEM simulation (Mikhasev et al, 2001b). As an example we shall analyze
buckling of a sandwich (three-layer) shell with core made of a magnetorheological
elastomer (MRE) under different levels of an applied magnetic field (Mikhasev and
Mlechka, 2014). Another example will illustrate the buckling of a five-layered shell
with very soft core made of an alloy-foam. We shall consider the common case when
the shell is non-circular and its edges are not plane curves or lie in planes not perpen-
dicular to the cylinder axis (Mikhasev et al, 2001a). Using the asymptotic method
established by Tovstik and Smirnov (2001), the buckling modes will be constructed
in the form of functions localized in the neighbourhoodof some generatrix called the
weakest one. In all examples, the influence of shear and various types of boundary
conditions on the buckling pressure is analyzed.

3.2.1 Shell with Constant Parameters Under Uniform Pressure

Let a circular cylindrical shell of radius R be under action of an external constant
hydrostatic pressure qn. Then the pre-buckling hoop stress resultant is T ◦

22 = Rqn
and the remaining in-plane stress resultants are T ◦

11 = T ◦
12 = 0. In this case operator

(2.147) takes the form

ΔTw = T ◦
22

∂2w

∂α2
2

. (3.37)

Then the governing equations describing the pressure induced buckling may be
rewritten as follows
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D

(
1− θh2

β
Δ

)
Δ2χ+

1

R2

∂2F

∂α2
1

− T ◦
22

∂2

∂α2
2

(
1− h2

β
Δ

)
χ = 0,

Δ2F =
Eh

R2

∂2

∂α2
1

(
1− h2

β
Δ

)
χ,

(3.38)

1− ν

2

h2

β
�φ = φ. (3.39)

We shall consider here only the boundary conditions for simple support

1. The edge α1 = α∗
1 is simply supported and there is a diaphragm preventing

transverse shears along the edge

χ = Δχ = Δ2χ =
∂φ

∂α1
= 0. (3.40)

2. The edge α1 = α∗
1 is simply supported, and a diaphragm is absent(
1− h2

β
Δ

)
χ = 0,

∂2

∂α2
1

(
1− h2

β
Δ

)
χ = 0,(

∂2

∂α2
1

+ ν
∂2

∂α2
2

)
χ− (1− ν)

∂2φ

∂α1α2
= 0,

2
∂2χ

∂α1∂α2
+
∂2φ

∂α2
1

− ∂2φ

∂α2
2

= 0.

(3.41)

These conditions should be supplemented by conditions for the tangential displace-
ments or stress resultants. Let us assume that the edge is free in the axial direction
and ê22 = 0, then one has the additional conditions for the stress function

∂2F

∂α2
2

= 0 and
∂2F

∂α2
1

= 0 at α1 = α∗
1. (3.42)

If the edge is free in the circumferential direction, then the second condition from
Eqs. (3.42) should be substituted by

∂2F

∂α1α2
= 0.

In what follows, conditions (3.40) and (3.41), with appropriate conditions forF , will
be called as the SSD (1.) and SSF (2.) boundary conditions, respectively.

The problem is to find the minimum value of stress resultant |T ◦
22| for which Eqs.

(3.38) and (3.39) with appropriate boundary conditions have a nontrivial solution.
Let all the geometrical and physical parameters be independent of coordinatesα1, α2.
Here, α∗

1 = 0 and α∗∗
1 = L is the shell length. In this case all coefficients appearing

in both Eqs. (3.38), (3.39) and boundary conditions are constants. Nevertheless,
finding the buckling modes turns out to be not easy because the characteristic
equation corresponding to Eqs. (3.38) is a tenth degree polynomial. Its roots may be
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found in the explicit form only for the boundary conditions (3.40) when both edges
have diaphragm.

3.2.1.1 Simply Supported Shell with Diaphragm on Edges

Let the edges be simply supported and have a diaphragm of infinite rigidity (SSD
conditions). In this case, Eq. (3.39) is not coupled with Eqs. (3.38) for χ and F , and
the boundary condition (3.40) for a function φ is independent of residual conditions.
As mentioned above, Eq. (3.39) has two nontrivial integrals describing the edge
effects near both edges. It is easy to show that these integrals do not satisfy the
residual boundary conditions (3.40) for φ. Hence, we can set φ = 0.

The residual functions χ, F satisfying the boundary conditions (3.40), (3.42) are
readily found as

χ = χ0 sin
πnα1

L
sin

mα2

R
, F = F0 sin

πnα1

L
sin

mα2

R
, (3.43)

where n,m are positive integers (n is a number of semi-waves along the shell
generatrix andm is a number of waves in the circumferential direction). Substituting
Eqs. (3.43) into Eqs. (3.38) yields the following equation for the hoop stress resultant

T ◦
22 = −ε8π4hEΔnm

m2
, ε8 =

h2η3
12(1− ν2)R2

,

Δnm =
1 + θKδnm
1 +Kδnm

δ2nm +
n4

l4π4ε8δ2nm
, K =

π2h2

βR2
, (3.44)

δnm =
n2

l2
+
m2

π2
, l =

L

R
.

The minimization of T ◦
22 over integern andm results in the critical value for pressure

q∗n = T ∗
2 /R, T ∗

2 = min
n,m

|T ◦
22(n,m)| = |T ◦

22(n
∗,m∗)|. (3.45)

For a single-layer thin isotropic cylinder, one has the following relations and
estimates (Grigolyuk and Kulikov, 1988b; Tovstik and Smirnov, 2001)

η3 = 1, θ = 1/85, n∗ = 1, m∗ ∼ (R/h)1/4, n∗/l 
 m∗/π. (3.46)

Omitting transverse shear (K = 0) and assuming that π2/l2 and 1 can be neglected
compared to (m∗)2, then Eq. (3.45) degenerates into the Southwell-Papkovich for-
mula (3.35).

In Eq. (3.44), the principal mechanical characteristics influencing the buckling
pressure are the reduced modulus of elasticity E and the reduced shear parameter
K . However, the effect of these parameters on the critical pressure is also different
and depends strongly upon the correlation of geometrical and physical parameters of
layers composing a shell as well as on number of waves. For instance, if n,m ∼ 1,
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and R/L ∼ 1, then the effect of K is negligibly small, but on the other hand, the
reduced modulus E will be the main parameter. But if we study buckling of a very

thin medium-length cylinder (n ∼ 1, m ∼ h
−1/4
∗ , s. Tovstik and Smirnov, 2001),

then the parameter K becomes main, and the influence of the reduced parameter E
decreases. The detailed analysis of the impact of shear parameterK on the buckling
pressure will be done below. But at first, we will perform the test calculations by
using Eqs. (3.44), (3.45) and FEM simulation.

Example 3.4. Consider a thin sandwich cylinder with the geometrical parameters
R = 80 mm, L = 200 mm. The top and bottom layers of the same thicknesses
(h1 = h3) are made of aluminum with the Young’s modulus E1 = E3 = 70, 3
GPa, Poisson’s ratio ν1 = ν3 = 0.345 and density ρ1 = ρ3 = 2.7 · 10−6 kg/mm3.
The core have a thickness h2 and is made of epoxy for which E2 = 3, 45 GPa,
ν2 = 0.3, ρ2 = 1.2 · 10−6 kg/mm3 are established. Both materials, aluminum and
epoxy, are treated as the elastic and isotropic ones with the shear moduli defined as

Gi =
Ei

2(1 + νi)
.

We assume the following condition

h1 = h3 = h◦1 −
1

2

ρ2
ρ1

h2 (3.47)

with h◦1 = 0.5 mm, which means that for all thicknesses hi under consideration the
shell weight remains constant.

One of the problems stated here is the problem of optimal design: it is required
to find a core thickness h2 for which the critical pressure q∗n becomes the maximum
value. The second and main objective is to verify our results obtained on the base
of the ESL model represented by Eqs. (3.38). This problem was solved (Mikhasev
et al, 2001b) by using the derived Eqs. (3.44), (3.45) and the finite element method
based on package COSAR (Gabbert and Altenbach, 1990) described in Chapt. 2.

The dependence of q∗n andm∗ on the thickness h2 is shown in Table 3.2. It may be
seen that the optimal value of core thickness is h2 ≈ 1.0 mm. Here n∗ = 1, m∗ = 5
for all values of h2. Table 3.2 shows that the divergence of results obtained by solving

Table 3.2 Buckling pressure q∗n vs. thickness h2.

h2, mm m∗ q∗n found by Eqs. (3.44), (3.45), MPa q∗n found by using FEM, MPa

0 6 0.0867 0.0877
0.5 5 0.1320 0.1371
1.0 5 0.1701 0.1746
1.4 4 0.1614 0.1695
1.6 4 0.1459 0.1526
1.8 4 0.1224 0.1276
2.0 4 0.0894 0.0931
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the governing equations (3.44), (3.45) and applying the FEM increases with the shell
thickness. So, for h2 = 0; 1.0; 2.0 mm the divergence between the exact solution
(3.44), (3.45) and the numerical approach is equal to 1.0; 2.6; 4.0%, respectively.
This fact is explained by the strong dependence of the error of Eqs. (3.38) on the
number m of dents in the circumferential direction. When the thickness increases,
the number m decreases, while the governing equations (3.38) have being derived
at the assumption of minor sizes of dents/bulges.

3.2.1.2 Effect of Shear on the Critical Buckling Pressure

Equation (3.44) derived above for a simply supported shell with diaphragm allows us
to analyse the influence of shear on the critical buckling pressure. Specifying neither
a number of layers nor materials, we shall calculate the dimensionless critical load
parameter

P ∗ =
T ∗
2

π4Eh
(3.48)

for different values of the shear parameterK . Figure 3.2 shows the load parameterP ∗

vs. K at fixed θ = 0.05, l = 2 and different values of the parameter ε characterizing
the shell thickness. It is seen that taking into account shear results in decreasing
the critical buckling pressure. The drop in the critical buckling pressure turns out
to be more noticeable for very thin shells. Figure 3.3 demonstrates the effect of K
on the buckling parameter P ∗ at fixed θ = 0.05, ε = 0.1 and different values of
the dimensionless length l = L/R. As accepted, the increase of the shell length
reduces the effect of shear on the buckling pressure. Indeed, a lengthy cylindrical
shell under the lateral pressure buckles with formation of the one semi-wave in the
axial direction and a small number of waves in the circumferential direction. But
as follows from Eq. (3.44), the influence of the shear parameter K on the buckling
pressure becomes negligibly small at n∗,m∗ ∼ 1. We note that the reducing effect of
shear illustrated in Figs. 3.2 and 3.3 is not associated with the boundary conditions,
it reflects introducing shear (additional degrees of freedom) into the shell model.

Fig. 3.2 Load parameter P∗

vs. shear parameter K at
fixed θ = 0.05, l = 2 and
different values of a parameter
ε characterizing the shell
thickness:
1− ε = 0.1; 2 − ε = 0.13;
3− ε = 0.15 (after Mikhasev
and Botogova, 2017).

P
∗
×

1
0
8

K
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Fig. 3.3 Load parameter P∗

vs. shear parameter K at
fixed θ = 0.05, ε = 0.1
and different values of a
dimensionless length l:
1− l = 4; 2− l = 2;
3 − l = 1 (after Mikhasev
and Botogova, 2017). P

∗
×

1
0
8

K

In the following example we aim to show that the application of smart materials
(e.g., magnetorheological elastomers) for assembling a laminated shell structure
allows varying the reduced shear modulus and, in such a way, increasing the critical
buckling pressure.

Example 3.5. Let us consider a sandwich (three-layer) thin cylinder with a core
made of the magnetorheological elastomer MRE-1. The elastic properties of this
material were specified in Chapt. 2 (s. Fig. 2.9). It is evident that its viscous and
rheological properties are not taken here into consideration. The face skins having
the same thickness h1 = h3 = 0.5 mm are fabricated of the ABS-plastic SD-0170
with parameters E1 = E3 = 1.5 · 109 Pa, ν1 = ν3 = 0.4. The thickness of the
MRE-core is h2 = 8 mm. Table 3.3 shows the effect of applied magnetic field on
the critical buckling pressure q∗n for a sandwich shell of the length L = 1 m and
radius R = 0.5 m. As seen from Fig. 2.9, the application of the magnetic field
B = 100 mT results in the increase of the storage modulus Gv of the MRE-core
from 31 to 1893 kPa. Table 3.3 shows that this rise of the elastic properties implies
the decrease of the dimensionless shear parameter

κ =
K

π2ε4
(3.49)

for the sandwich and, as a consequence, leads to the considerable growth of the
critical buckling pressure, from q∗n = 7.937 kPa at B = 0 mT to q∗n = 12.162 kPa
at B = 100 mT.

Table 3.3 Dimensionless shear parameters κ and critical buckling pressure q∗n vs. magnetic field
induction B.

B, mT 0 20 40 60 80 100

κ 4.298 2.628 1.898 1.489 1.227 1.045

q∗n , kPa 7.937 9.697 10.789 11.538 11.906 12.162
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3.2.1.3 Simply Supported Shell Without Diaphragm on Edges

Let us consider the variant of boundary conditions (3.41), (3.42) corresponding to
the simply supported edges without diaphragm (SSF conditions). In this case the
boundary-value problem (3.38), (3.41), (3.42) does not admit the explicit form of a
solution.

To estimate the effect of the SSF boundary conditions on the critical buckling
pressure we will apply the asymptotic approach. This effect depends on the corre-
lation between the reduced Young’s and shear moduli. As mentioned above, Eqs.
(3.38) are asymptotically correct if G 
 E (not that E,G are the parameters for

the laminated shell, s. Subsect. 2.1.12). Let us assume G ∼ h
3/2
∗ E. This case takes

place for the wide range of smart materials (MREs and ERCs introduced in Chapt. 2)
and for the layer thicknesses to be considered below. Then, the following estimation
for the shear dimensionless parameter K holds

K

π2
= ε2κ, κ ∼ 1, (3.50)

where ε is a small parameter introduced by (3.44).
Let us introduce dimensionless coordinates x, ϕ and a load parameter Λ

α1 = Rx, α2 = Rϕ, T ◦
22 = −ε6EhΛ, (3.51)

where 0 ≤ x ≤ l = L/R. As seen from Eq. (3.44) and Example 3.4, buckling of a
medium-length thin cylindrical shell under external pressure occurs with formation
of one semi-wave in the axial direction and a large number m of dents/bulges in the

circumferential direction so that m ∼ h
−1/4
∗ ∼ ε−1. Then functions χ, F, φ may be

sought in the form
χ = RX(x) sin

(
ε−1pϕ

)
,

F = ε4EhR2Φ(x) sin
(
ε−1pϕ

)
,

φ = RS(x) cos
(
ε−1pϕ

)
,

(3.52)

where p ∼ 1.
The substitution of Eqs. (3.50)-(3.52) into Eqs. (3.38), (3.39) results in differential

equations written in the dimensionless form

ε4(1 − ε2κθΔε)Δ
2
εX +

d2Φ

dx2
− Λp2(1− ε2κΔε)X = 0,

ε4Δ2
εΦ− d2

dx2
(1− ε2κΔε)X = 0,

(3.53)

1− ν

2
κ1ε

2ΔεS = S, (3.54)

where

Δε =
d2

dx2
− ε−2p2 (3.55)
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is a differential operator, and κ1 ≡ κ is introduced to analyze the effect of shear in
the neighborhood of the edges.

The SSF boundary conditions (3.41), (3.42) for the edges x = 0, l without
diaphragm are rewritten as

(1− ε2κ1Δε)X = 0,
d2

dx2
(1 − ε2κ1Δε)X = 0, (3.56)

(
ε2

d2

dx2
− νp2

)
X + ε(1− ν)p

dS

dx
= 0, (3.57)

2εp
dX

dx
+ ε2

d2S

dx2
+ p2S = 0, (3.58)

Φ = 0, ε2
d2Φ

dx2
− p2Φ = 0. (3.59)

If the edges are free in both the axial and circumferential directions, then conditions
(3.59) are substituted for the conditions

Φ = 0,
dΦ

dx
= 0. (3.60)

The boundary-value problem (3.53)-(3.60) is singularly perturbed one. Its solution
may be presented in the form of superposition of the main stress-strain state and the
integrals of the edge effects (Gol’denveizer, 1961)

X = X(m) +X(e), Φ = Φ(m) + Φ(e), (3.61)

where the superscript (m) denotes functions corresponding to the main stress-strain
state with the zeroth index of variation, ι1 = 0, in the axial direction, and functions
with the superscript (e) are the integrals of edge effects having a large index of
variation. Contrary to the classical Kirchhoff-Love theory, our problem stated in
terms of the displacement and shear functions, X(e) and S, has six edge integrals
for X(e) and two edge integrals for the shear function S.

At first, we consider Eq. (3.54). It has the following general solution

S = εγ0

{
a1 exp

(
−ϑsx

ε

)
+ a2 exp

[
−ϑs(l − x)

ε

]}
, (3.62)

where a1, a2 are unknown constants, γ0 is the index of intensity for the shear function,
and

ϑs =

√
2

(1 − ν)κ1
+ p2. (3.63)

The edge effect integralsX(e) may be found from the edge effect equation (2.129) and
Eq. (2.82) coupling χ and w. Another way is to obtain their asymptotic estimations
directly from Eqs. (3.53). Let us introduce
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X(e)(x) = X̂(e)eλx, Φ(e)(x) = Φ̂(e)eλx. (3.64)

The substitution of Eqs. (3.64) into Eqs. (3.53) results in the characteristic equation

[1− κ1θ(ε
2λ2 − p2)](ε2λ2 − p2)4 + λ4[1− κ1(ε

2λ2 − p2)]

−Λp2(ε2λ2 − p2)2[1− κ1(ε
2λ2 − p2)] = 0,

(3.65)

which has only six roots

λ1,2 = ±1

ε

√
1

κ1
+ p2 +O(ε3), (3.66)

λ3,4,5,6 = ± 1

ε2
4

√
1

4θ
(1± i) +O(1) (3.67)

with nonzero real parts. The remaining four roots with zero real parts are not written
down here. The corresponding partial solutions of Eqs. (3.53) form two groups of
functions

X
(e)
1 (x; ε) = e

−r1
ε
x
[1 +O(ε)],

X
(e)
2 (x; ε) = e

−r1
ε

(l − x)
[1 +O(ε)],

Φ
(e)
1, 2 = −ε2 1− θ

κ1(1 + κ1p2)
X

(e)
1,2,

(3.68)

and

X
(e)
3 (x; ε) = e

− r2
ε2

x
cos

(
ε−2r2 x

)
[1 +O(1)],

X
(e)
4 (x; ε) = e

− r2
ε2

x
sin
(
ε−2r2 x

)
[1 +O(1)],

X
(e)
5 (x; ε) = e

− r2
ε2

(l − x)
cos

[
ε−2r2 (l − x)

]
[1 +O(1)],

X
(e)
6 (x; ε) = e

− r2
ε2

(l − x)
sin
[
ε−2r2 (l − x)

]
[1 + O(1)],

Φ
(e)
j =

κ1
ε2
X

(e)
j , j = 3, 4, 5, 6,

(3.69)

with the properties of the edge effect integrals, where

r1 =

√
1

κ1
+ p2, r2 =

4

√
1

θ
. (3.70)

It is obvious that functions (3.69) have the index of variation ι1 = 1/2, that is
the same as in the classical simple edge effect integrals (Gol’denveizer, 1961),
whereas functions (3.68) have the index ι1 = 1/4 and coincide with the similar
integrals (2.144) at p = 0.

We compose the following superposition of the found integrals
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X(e) = εγ1

2∑
i=1

biX
(e)
i + εγ2

6∑
j=3

cjX
(e)
j , (3.71)

where bi, cj are constants and γ1, γ2 are the indexes of intensity of the edge effect
integrals which remain unknown at this step.

Now, we consider the main stress state. Unknown functions X(m), Φ(m) cor-
responding to this state and the eigenvalue Λ are sought in the form of formal
asymptotic series (the definition of asymptotic series is given in Chapt. 6)

X(m) = X0 + εX1 + . . . , Φ(m) = Φ0 + εΦ1 + . . . , (3.72)

Λ = Λ0 + εΛ1 + . . . . (3.73)

We substitute Eqs. (3.72), (3.73) into Eqs. (3.53) and consider the first two approx-
imations. In the zeroth-order approximation, one has the following homogeneous
differential equation

LX0 ≡ d4X0

dx4
+
p6[p2 + θκp4 − Λ0(1 + κp2)]

1 + κp2
X0 = 0 (3.74)

with respect toX0. The next approximationproduces the non-homogeneousequation

LX1 = Λ1p
6X0. (3.75)

The stress and displacement functions are coupled by the formula

Φj =
1 + κp2

p4
d2Xj

dx2
, j = 1, 2. (3.76)

Equations (3.75), (3.76) are of fourth order. So, we have to split the boundary
conditions (3.56)-(3.59) and assign the main two conditions for Xj at each edge and
the additional ones which will serve to determine constants ai, bi, cj and parameters
γ0, γ1, γ2 as well. To this purpose, we substitute Eqs. (3.61), (3.71), (3.72) into the
boundaryconditions (3.56)-(3.59) and, taking into account the indexes of variation of
all functions (we remind that dX0/dx ∼ X, dΦ0/dx ∼ Φ0), demand the fulfillment
of the following conditions

• the boundary conditions for X0, Φ0 should be homogeneous,
• at each edge, there is an inhomogeneous condition coupling ai and the value of

X0 or its derivatives,
• at each edge, there is an inhomogeneous equation for bi,
• it is desirable to get even one inhomogeneous equation for constants cj and
• the boundary conditions for X1, Φ1 should be inhomogeneous and expressed in

terms of ai, bi, cj .

When taking into account the above conditions, the first equations from (3.56), (3.59)
in the zeroth-order approximation result in the main boundary conditions
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X0 = Φ0 = 0 at x = 0, l. (3.77)

The next approximation allows to determine parameters γ0, γ1, γ2 depending on
the second condition for the stress function Φ and generates the main conditions for
X1, Φ1 and the additional equations for ai, bi, cj as well. If we assume conditions
(3.59), then one obtains γ0 = γ1 = 1, γ2 = 4, and for boundary conditions (3.60),
one has γ0 = γ1 = 1, γ2 = 3. However, the chose of the second condition for Φ
does influence neither the main conditions

(1 + κ1p
2)X1(0)− κ1r

2
1b1 = 0, (1 + κ1p

2)X1(l)− κ1r
2
1b2 = 0,

Φ1(0) = 0, Φ1(l) = 0,
(3.78)

for X1, Φ1 nor the following additional conditions

cj = 0, for j = 3, 4, 5, 6,

−νp2X1(0) + r21b1 − (1 − ν)pϑsa1 = 0,

−νp2X1(l) + r21b2 − (1 − ν)pϑsa2 = 0,

2p
dX0(0)

dx
+ (ϑ2

s + p2)a1 = 0, 2p
dX0(l)

dx
+ (ϑ2

s + p2)a2 = 0.

(3.79)

Consider the boundary-value problem (3.74), (3.77) arising in the zero-order
approximation. It should be noted that it is the same within the group of the boundary
conditions for simply supported edges and does not depend on whether an edge has a
diaphragm (SSD conditions) or not (SSF conditions). This problem has the solution

X0 = A sin(πnx/l), (3.80)

if

Λ0(p;n) =
π4n4

l4p6
+
p2(1 + θκp2)

1 + κp2
, (3.81)

where n is a number of semi-waves in the axial direction of the shell. Minimizing
the function Λ0(p) over p and n, one obtains the zeroth-order approximation of the
critical buckling load parameter

Λ◦
0 = min

p,n
Λ0(p, n) = min

p
Λ0(p, 1) = Λ0(p

◦, 1) (3.82)

and the corresponding eigenfunction

X0 = A sin(πx/l). (3.83)

For κ = 0, we get

p◦ =
8

√
3π4

l4
, Λ◦

0 =
4π

33/4l
(3.84)

and the last equation from (3.51) results in the known Southwell-Papkovich formula
(3.35) for the critical buckling pressure.
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Now we consider the non-homogeneous boundary-value problem arising in the
first-order approximation. From Eqs. (3.79), (3.83) and (3.84), one obtains

a1 = − 2πp◦A

l [(p◦)2 + (ϑ◦
s )

2]
, a2 = −a1,

b1 = b2 = − 2π(1− ν)ϑ◦
s (p

◦)2κ1A

l [1 + (1 − ν)(p◦)2κ1] [(p◦)2 + (ϑ◦
s )

2]
,

(3.85)

and the boundary conditions for Eq. (3.75) read

X1(0) = X1(l) = − 2π(1− ν)κ1ϑ
◦
s (p

◦)2A

l [1 + (1− ν)(p◦)2κ1] [(p◦)2 + (ϑ◦
s )

2]
,

Φ1(0) = 0, Φ1(l) = 0,

(3.86)

where ϑ◦
s = ϑs(p

◦). We have the non-homogeneousboundary-valueproblem (3.75),
(3.86) on spectrum. The existence condition of a solution of this problem is

Λ1(p
◦)6

l∫
0

X2
0dx = X ′′′

0 (0)X1(0)−X ′′′
0 (l)X1(l). (3.87)

Hence, one obtains the formula for correction of the critical buckling parameter

Λ◦
1 =

8π4(1− ν)κ1ϑ
◦
s

l5(p◦)4 [1 + (1 − ν)(p◦)2κ1] [(p◦)2 + (ϑ◦
s )

2]
. (3.88)

Then one gets

X1 = − 2π(1− ν)κ1ϑ
◦
s (p

◦)2A

l [1 + (1− ν)(p◦)2κ1] [(p◦)2 + (ϑ◦
s )

2]

(
1− 2x

l

)
cos

πx

l
. (3.89)

If the edge x = 0 has a diaphragm and the edge x = l not, then cj = 0 for
j = 3, 4, 5, 6. The parameters a1, b1 and X1(0) are defined by Eqs. (3.85), (3.86),
but a2 = b2 = X1(l) = 0. Then the correction of the critical buckling parameter
becomes half of the value determined by (3.88):

Λ◦
1 =

4π4(1− ν)κ1ϑ
◦
s

l5(p◦)4 [1 + (1 − ν)(p◦)2κ1] [(p◦)2 + (ϑ◦
s )

2]
.

Finally, we obtain the following equations for the critical buckling pressure for
the simply supported shells without diaphragm on the edges

q∗n = −ε6Eh

R
Λ∗, Λ∗ = Λ◦

0

[
1 + εks +O(ε2)

]
, ks =

Λ◦
1

Λ◦
0

, (3.90)

where ks is the normalized correction depending on the shear parameter κ1 ≡ κ and
taking into account shear in the vicinity of the shell edges. This edge shear appears
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as a result of the absence of the edge diaphragms. Indeed, assuming κ1 = 0,
we ignore the edge effect equation (3.54). Then ks = 0 and Eqs. (3.90) give an
approximate value of the critical buckling pressure for the simply supported shells
with diaphragm on both edges. Note that parameter p◦, Λ◦

0 are also influenced by
the shear parameter κ, but this effect is generated by shear in the shell but not by
boundary conditions.

The approximate formula for the buckling mode will be as follows

χ ≈ R sin
(
ε−1p◦ϕ

){
sin

πx

l
− ε

[
a0

(
1− 2x

l

)
cos

πx

l

+ b1

(
exp

(
−r◦1x

ε

)
− e

(
−r◦1(l − x)

ε

))]}
,

(3.91)

where

a0 =
2π(1− ν)κ1ϑ

◦
s (p

◦)2A

l [1 + (1 − ν)(p◦)2κ1] [(p◦)2 + (ϑ◦
s )

2]
, r◦1 =

√
1

κ1
+ (p◦)2, (3.92)

and b1 is calculated by (3.85). As seen, the edge integrals (3.69) with the index
of variation ι1 = 1/2 do not make a contribution in the first-order approximation.
Their effect may be estimated by considering higher approximations. However, the
accuracy of Eqs. (3.38) is not sufficient to determine the correction ε2Λ2. For this
purpose, the full system of nonlinear differential equations (2.61)-(2.63) written in
terms of the generalized displacements ûi, w, ψi should be used. It is interesting to
note that the construction of the second-order approximation for a thin single-layer
simply supported ylindrical shell considering the Kirchhoff-Love theory also results
in the zeroth coefficients cj in Eq. (3.71). Whereas for other variants of boundary
conditions (particularly, for the case of clamped edges), the edge effect integrals like
(3.69) give a non-zeroth correction ε2Λ2 (Filippov, 1999).

Figures 3.4, 3.5 and 3.6 show the effect of the shear parameterκ on the parameters
p◦, Λ◦

0 and ks at l = 2.5 and different values of a parameter θ. It is seen that at small

Fig. 3.4 Wave parameter
p◦ vs. shear parameter κ at
l = 2.5 and different θ:
1 - θ = 0.005; 2 - θ = 0.025;
3 - θ = 0.05 (after Mikhasev
and Botogova, 2017).

p
◦

κ
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Fig. 3.5 Critical buckling
parameter Λ◦

0 vs. shear pa-
rameter κ at l = 2.5 and
different θ: 1 - θ = 0.005;
2 - θ = 0.025; 3 - θ = 0.05
(after Mikhasev and Boto-
gova, 2017). Λ

◦ 0
κ

Fig. 3.6 Normalized correc-
tion ks vs. shear parameter
κ at l = 2.5 and different θ:
1 - θ = 0.005; 2 - θ = 0.025;
3 - θ = 0.05 (after Mikhasev
and Botogova, 2017).

k
s

κ

values of κ (less than 0.25) the parameter θ does not affect on the dimensionless
magnitudes p◦, Λ◦

0 and ks, and when increasing the shear parameter κ this influ-
ence becomes considerable. The increase of κ results in the increase of the wave
parameter p◦ and the decrease of the critical buckling parameterΛ∗ in the zero-order
approximation. The effect of parameters κ and θ on the normalized correction ks
turns out to be more complicated: for small θ (here θ = 0.005) the correction ks
growths together with κ and, approaching a maximum value at κ ≈ 0.52, begins to
fall, but at θ > 0.025 it becomes a monotonically increasing function of κ.

Figure 3.7 displays the normalized correction ks versus the shear parameter κ for
different values of the dimensionless length l. As expected, the shorter the cylinder
is, the larger the effect of the edge shear on the critical buckling pressure becomes.
But the total impact of the edge shear on the critical pressure is not high. Calculations
performed at ε = 0.1, κ = 2, θ = 0.05 show that the edge effect integrals generated
by the edge shear give positive buckling pressure increments of about 2.4 and 3.4 %
for the lengths l = 1.5 and l = 1, respectively.
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Fig. 3.7 Normalized correc-
tion ks vs. shear parameter κ
at θ = 0.05 and different val-
ues of dimensionless length
l: 1 - l = 2.5; 2 - l = 1.5;
3 - l = 1 (after Mikhasev and
Botogova, 2017). k

s

κ

Now we shall consider two examples illustrating the effect of the edge shear on
the buckling pressure.

Example 3.6. In this example, we shall study the buckling of a sandwich thin cylinder
of the radius R = 0.5 m and length L = 0.5 m with a core made of MRE-1 and
skins made of the ABS-plastic SD-0170. The skins have the same fixed thickness
h1 = h3 = 0.5 mm, and a thickness h2 of the soft MRE-core will be varied. The
application of an external magnetic field leads to changing the mechanical properties
of the core and the whole sandwich as well. It is evident that the viscous and
rheological properties of the MRE are not taken here into consideration. Tables 3.4,
3.5 and 3.6 demonstrate the dependence of the wave numbers m∗,m◦, parameter
p◦ and the critical buckling pressures q∗n, q

◦
0 , q

◦
n on the magnetic induction B for the

sandwiches with two variants of the boundary conditions (SSD and SSF conditions)
and the MRE-core thicknesses h2 = 11, 12, 13 mm, respectively. Here, parameters
with the superscribes ∗ and ◦ correspond to the sandwiches with and without the
edge diaphragm, respectively; the wave number m◦ is defined as the integer part of
ε−1p◦, and q◦0 is the zeroth approximation of the critical buckling pressure for the
SSF sandwich determined by Eq. (3.90) at ks = 0. Tables 3.4, 3.5 and 3.6 also show
the deviation

Table 3.4 Wave numbers m∗,m◦, wave parameter p◦, critical buckling pressures q∗n, q
◦
0 , q

◦
n for

the sandwich with the MRE-core of the thickness h2 = 11 mm for two variants of boundary
conditions (SSD, SSF) vs. magnetic induction B. The edge shears induced corrections δ, δ′ (%) for
the critical buckling pressure vs. magnetic induction B (after Mikhasev and Botogova, 2017).

B, mT m∗ q∗n , Pa p◦ m◦ q◦0 , Pa q◦n , Pa δ δ′

0 9 11714 2.78 8 10246 10721 +4.64% -8.48%
20 7 16883 2.45 7 13986 14652 +4.76% -13.21%
40 7 19905 2.32 7 16789 17531 +4.40% -14.00%
60 7 22102 2.25 7 17556 18121 +3.22% -18.01%
80 6 23681 2.21 7 18551 19042 +2.65% -19.59%
100 6 24705 2.18 7 19229 19727 +2.60% -20.00%
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Table 3.5 Wave numbers m∗,m◦, wave parameter p◦, critical buckling pressures q∗n, q
◦
0 , q

◦
n for

the sandwich with the MRE-core of the thickness h2 = 12 mm for two variants of boundary
conditions (SSD, SSF) vs. magnetic induction B. The edge shears induced corrections δ, δ′ (%) for
the critical buckling pressure vs. magnetic induction B (after Mikhasev and Botogova, 2017).

B, mT m∗ q∗n , Pa p◦ m◦ q◦0 , Pa q◦n , Pa δ δ′

0 10 10872 3.00 9 9365 9549 +1.96% -12.17%
20 8 17545 2.53 7 14561 14929 +2.53% -14.91%
40 7 21593 2.37 7 16985 17360 +2.21% -19.60%
60 7 24420 2.28 7 19333 19629 +1.53% -19.62%
80 6 26355 2.23 7 20320 20620 +1.48% -21.76%
100 6 27684 2.20 6 21344 21607 +1.23% -21.95%

Table 3.6 Wave numbers m∗,m◦, wave parameter p◦, critical buckling pressures q∗n, q
◦
0 , q

◦
n for

the sandwich with the MRE-core of the thickness h2 = 13 mm for two variants of boundary
conditions (SSD, SSF) vs. magnetic induction B. The edge shears induced corrections δ, δ′ (%) for
the critical buckling pressure vs. magnetic induction B (after Mikhasev and Botogova, 2017).

B, mT m∗ q∗n , Pa p◦ m◦ q◦0 , Pa q◦n , Pa δ δ′

0 12 9970 3.25 9 9070 9354 +3.13% -6.18%
20 8 18196 2.60 7 15352 16145 +5.17% -11.27%
40 7 23282 2.40 7 18905 19792 +4.69% -14.99%
60 7 26782 2.30 7 21144 21970 +3.91% -17.97%
80 6 29124 2.25 6 22691 23426 +3.24% -19.56%
100 6 30790 2.21 6 23836 24483 +2.71% -20.48%

δ =
q◦n − q◦0
q◦0

100%

induced by the edge shear with respect to the zeroth approximation of the critical
buckling pressure q◦0 for the shell with the SSF conditions and the deviation

δ′ =
q∗n − q◦n
q∗n

100%

between the critical buckling pressures q∗n and q◦n for the shells with the SSD and
SSF conditions, respectively.

It is obvious that for any fixed values of the geometrical parameters, increasing
the magnetic field inductionB leads to decreasing the wave numbersm∗,m◦ and the
wave parameter p◦ as well, increasing the total stiffness and, as result, the buckling
pressures q∗n, q

◦
n for the simply supported sandwiches with and without diaphragm.

The dependenceof the critical buckling pressure on the thicknessh2 of the soft MRE-
core is more complicated: at low level of the applied magnetic field, or without it,
the increase of B leads to the drop of the sandwich stiffness and the critical buckling
pressure, but at B ≥ 20 mT, the critical pressures q∗n, q

◦
n grow together with h2.

It may be also concluded that the edge shear in simply supported sandwich shells
without diaphragm have weak supporting effect, the deviation δ having maximum at
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aboutB = 20 mT. When comparing the critical values of pressure for the sandwich
shells with the SSD and SSF boundary conditions, the critical buckling pressure q∗n
for the shell with the diaphragm is always more then the critical pressure q◦n for the
same shell but without diaphragm. It is also seen that the deviation δ′ grows together
with the induction B in a nonlinear manner as a function of the core thickness h2.

Example 3.7. As the next example, we consider a five-layered cylindrical shell of
the radiusR = 0.9 m and lengthL = 1.0 m assembled from different laminas which
are assumed to be isotropic:

• the first (innermost) layer of the thickness h1 = 0.5 mm is the ABS-plastic
SD-0170 with the elastic properties specified above;

• the fifth (outermost) layer of the thickness h5 = 0.5 mm is made of silicon nitrate
(ceramic, Si3N4) with the elastic moduli (Reddy, 2004) E5 = 3.484 · 102 GPa,
ν5 = 0.24;

• the second and fourth layers with the same thicknesses h2 = h4 = 3.0 mm are
made of epoxy for which E2 = E4 = 3450 Pa, ν2 = ν4 = 0.3;

• the third soft layer of the thickness h3 is alloy-foam for which (Han et al, 2004)
E3 = 4.59 · 10 MPa, ν3 = 0.33.

Table 3.7 shows the effect of different thicknesses of the soft alloy-foam core on the
parametersm∗,m◦, p◦ and the critical buckling pressures q∗n, q

◦
0 , q

◦
n for the SSD and

SSF boundary conditions. As expected, increasing the thickness h3 of the alloy-form
core at fixed thicknesses of other layers increases the critical buckling pressures
q∗n and q◦n for the both variants of boundary conditions. This effect is explained by
increasing the reduced bending stiffness of the laminated shells. Clearly, this trends
may be easily changed if one or more material or geometrical parameters are changed.
For example, increasing the volume fraction of the alloy-form core will have another
effect on the effective bending stiffness and buckling pressure. However, the basic
results of this example concerns the influence of the soft core thickness on the edge
shear induced correction. The increase of the thickness h3 leads to the reduction of
the effective shear modulus G and this results in growing the transverse shears near
the simply supported edge without a diaphragm; in turn, rising edge shear with minor
supporting effect give the growing positive correction δ for the zeroth approximation

Table 3.7 Wave numbers m∗,m◦, wave parameter p◦, critical buckling pressures q∗n, q
◦
0 , q

◦
n and

the edge shear induced corrections δ, δ′ for the 5-layered cylindrical shell for two variants of
boundary conditions (SSD, SSF) vs. thickness h3 of the alloy-foam core (after Mikhasev and
Botogova, 2017).

h3, mm m∗ q∗n , kPa p◦ m◦ q◦0 , kPa q◦n , kPa δ δ′

20 7 659.94 2.17 8 551394 565134 +2.49% -14.37%
25 7 793.93 2.25 7 663738 689078 +3.82% -13.21%
30 7 913.67 2.32 7 765320 802965 +4.92% -12.12%
35 8 1010.00 2.39 7 861574 910589 +5.69% -9.84%
38 8 1070.00 2.44 7 916356 971556 +6.02% -9.02%
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of the critical buckling pressure. As in the first example, the correction δ′ is always
negative, that is the edge diaphragm reinforces the laminated structure. However, in
this example the value of the correction δ′ decreases with the increase of the soft
core thickness.

The outcomes of Subsect. 3.2.1 allow to make the following conclusions:

• taking into account the transverse shear in a thin laminated cylindrical shell results
in decreasing the critical buckling pressure,

• if both edges of a cylindrical shell are simply-supported, then the simple edge
effects with the index of variation ι1 = 1/2 are absent,

• if the simply-supported edges do not have any diaphragms, then the buckling
mode consists of a slowly varying function and the shear edge effect integrals
with the low index of variation equaled to ι1 = 1/4, the effect of these integrals
on the buckling pressure being larger for short cylinders and

• the presence of a diaphragm in the plane of a simply-supported edge inhibits
appearing any edge effects as of components of the buckling mode.

3.2.2 Localized Forms of Buckling

In this subsection we will consider the special case when a medium-length thin
laminated cylindrical shell buckles in the neighbourhood of some generatrix called
the weakest one (Mikhasev et al, 2001a,b). For the first time, similar problems
on localized buckling of thin isotropic single-layer cylindrical and conical shells
were studied by Tovstik (1983). Considering buckling and free vibrations of non-
circular cylinders with slanted edges, he proposed the asymptotic method whereby
the approximate solutions of the governing equations were constructed in the form
of functions oscillating and quickly decreasing far away from the weakest generatrix.
Later, this method was applied to study buckling of isotropic non-circular conical
shells with slanted edges under nonuniformexternal pressure (Mikhasev and Tovstik,
1990). The concept of Tovstik’s method as well as a great number of solved problems
on buckling of isotropic single-layer shells may be found in Tovstik and Smirnov
(2001).

The present subsection mainly aims to apply Tovstik’s method (Tovstik, 1983)
to study buckling of a thin non-circular multilayered cylindrical shell with oblique
edges subjected to a normal external pressure. The specific goal defined herein is
to consider the same problem utilizing the finite element method, and to compare
the outcomes of different approaches. The effect of shear and different boundary
conditions on the critical buckling pressure and localized buckling mode as well is
studied.



112 3 Elastic Buckling of Laminated Beams, Plates, and Cylindrical Shells

3.2.2.1 Setting the Problem

Let a medium-length thin laminated cylindrical shell shell be non-circular with the
radius of curvatureR2(α2) and non-closed in theα2- direction (cylindrical sandwich
panel). The shell edges are not necessarily plane curves,

α∗
1(α2) ≤ α1 ≤ α∗∗

1 (α2). (3.93)

The shell is assumed to be sufficiently thin to facilitate application of asymptotic
method. We introduce again a small parameter

ε8 =
h2η3

12(1− ν2)R2
, (3.94)

where h is the total thickness of the sandwich,R is a characteristic dimension of the
shell which will be introduced below, and a parameter η3 is defined by (2.25). Other
dimensionless parameters are introduced as follows

α1 = Rs, α2 = Rϕ, R2 =
R

k2(ϕ)
, T ◦

22 = −ε6EhΛ,
χ = Rχ∗, w = Rw∗, F = ε4EhR2F∗, φ = Rφ∗,

(3.95)

where Λ is an unknown positive parameter of loading, and all magnitudes with

asterisk are dimensionless ones. It is also assumed here that G ∼ h
3/2
∗ E and the

parameter θ is small so that the following asymptotic estimations are valid

K

π2
= ε2κ,

Kθ

π2
= ε3τ, (3.96)

where κ, τ ∼ 1 at ε → 0. These assumptions hold for thin shells and those
materials which are considered below as components of the layered package.

Taking into account (3.95), (3.96), the governing equations (3.38), (3.39) may be
rewritten in the dimensionless form

ε4(1− ε3τΔ)Δ2χ∗ + k2(ϕ)
∂2F∗

∂s2
+ ε2Λ

∂2

∂ϕ2
(1− ε2κΔ)χ∗ = 0,

ε4Δ2F∗ − k2(ϕ)
∂2

∂s2
(1− ε2κΔ)χ∗ = 0,

(3.97)

1− ν

2
ε2κ�φ∗ = φ∗. (3.98)

On edges (3.93), we consider one of two variants of boundary conditions (or their
combination), i.e. the simple support (SS) boundary conditions with the infinite rigid-
ity diaphragm (2.111), (2.118) or the rigid clamped (RC) ones without diaphragm
(2.117), (2.118). In the dimensionless form these conditions read
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χ∗ = Δχ∗ = Δ2χ∗ =
∂φ∗

∂α1
= 0, F∗ = �F∗ = 0 (3.99)

for the SS edges s = s1(ϕ), s = s2(ϕ) and(
1− h2

β
Δ

)
χ∗ = 0,

∂χ∗

∂α1
=

∂

∂α1
(Δχ∗) = φ∗ = 0, F∗ = �F∗ = 0

(3.100)
for the RC edges, where s1(ϕ) = α∗

1[Rϕ]/R, and s2(ϕ) = α∗∗
1 [Rϕ]/R.

The stress state of a shell comprises the basic stress state and the edge effects at
the shell edges. As shown in Subsect. 3.2.1, for sandwich cylindrical shells governed
by Eqs. (3.97), (3.98), the edges effects are described by integrals of two kinds.
Without regard for the type of boundary conditions, one can conclude that the first
one includes the integrals of the simple edge effect which, with an accuracy up to
amplitudes depending on a coordinate ϕ, have the form (3.69) with the index of
variation ι1 ≥ 1/2; the edge effect integrals of the second type are generated by the
transverse shears in a vicinity of the shell edges and governed by equations like Eqs.
(3.62) and (3.68). For the boundary conditions (3.99), (3.100), the shear function
φ is independent of the displacement function χ∗ and so φ∗ = 0. As concerns
integrals like (3.68), (3.69), then the asymptotic analysis of the boundary conditions
(3.99), (3.100) shows that they may be determined in higher approximations; they
give corrections of an order O

(
ε2
)

which coincide with an error of the governing
equations (3.97), (3.98). So, to construct the main stress state, being semi-momentless
one, one needs to satisfy only two boundary conditions at each edges. In our case,
apart from the terms of order ε2 these conditions are as follows

χ∗ = F∗ = 0 at s = s1(ϕ), s = s2(ϕ) (3.101)

and

χ∗ =
∂χ∗

∂s
= 0 at s = s1(ϕ), s = s2(ϕ) (3.102)

for the SS edges with diaphragm and the RC edges without diaphragm, respectively.
The problem is to find the least eigenvalueΛ for the boundary-value problem (3.97),
(3.101) or (3.97), (3.102).

3.2.2.2 Asymptotic Approach

It is assumed that the functions k2(ϕ), si(ϕ) are infinitely differentiable and orders
of their derivatives do not exceed orders of original functions. Due to the variability
of the curvature k2(ϕ) and the presence of the sloping edges si(ϕ), buckling occurs
such that the concavities do not spread over the entire surface of the shell.

Following the asymptotic approach stated in Tovstik (1983); Tovstik and Smirnov
(2001), we assume that the buckling modes are localized near some generatrix
ϕ = ϕ0 called the weakest one. Then the periodic conditions in the circumferential
direction ϕ may be changed for the following ones
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|χ∗|, |F∗| → 0 as |ϕ− ϕ0| → ∞. (3.103)

When taking into account the presupposed localization of buckling modes, it is
suitable to scale in the neighbourhood of the weakest generatrix and introduce a new
local coordinate ξ

ϕ− ϕ0 = ε1/2ξ. (3.104)

The formal asymptotic solution of the boundary-value problem is assumed to be in
the form of

χ∗ =

∞∑
j=0

εj/2χj(ξ, s) exp

[
i

(
ε−1/2pξ +

1

2
bξ2
)]

,

F∗ =

∞∑
j=0

εj/2Fj(ξ, s) exp

[
i

(
ε−1/2pξ +

1

2
bξ2
)]

,

(3.105)

�b > 0, (3.106)

Λ = Λ0 + εΛ1 + ε2Λ2 + . . . , (3.107)

where χj(ξ, s), Fj(ξ, s) are polynomials in ξ, p is a wave parameter, the symbol
� denotes the imaginary part, and a parameter b characterizes the rate of decay of
the deflection amplitude when the distance from the weakest generatrix ϕ = ϕ0

increases. Inequality (3.106) guarantees the attenuation of dents amplitudes far from
the lineϕ = ϕ0. The real and the imaginary parts of functions (3.105), with inequality
(3.106) taking into account, give the two localized eigenmodes near the generatrix
ϕ = ϕ0.

To determine unknown functionsχj , Fj and parameters p, b, ϕ0, Λj , we substitute
ansatz (3.105) into system (3.97) and the boundary conditions (3.101), (3.102) and
equalize coefficients by the same powers of ε1/2. All coefficients in Eqs. (3.97)as well
as the functions sj depending onϕ are expended in a power series ofϕ−ϕ0 = ε1/2ξ.
As a result, one obtains the following sequence of equations

L0χ0 = 0, (3.108)

L0χ1 + L1χ0 = 0, (3.109)

L0χ2 + L1χ1 + L2χ0 = 0, . . . (3.110)

with

L0z =
∂4z

∂s4
+
p4[p4 − Λ0p

2(1 + κp2)]

k2(ϕ0)(1 + κp2)
z,

L1z =

(
b
∂L0

∂p
+
∂L0

∂ϕ0

)
ξz − i

∂L0

∂p

∂z

∂ξ
, (3.111)
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L2z =
1

2

(
b2
∂2L0

∂p2
+ 2b

∂2L0

∂p∂ϕ0
+
∂2L0

∂ϕ2
0

)
ξ2z − 1

2

∂2L0

∂p∂ϕ0
z

− 1

2

∂2L0

∂p2

(
iz +

∂2z

∂ξ2

)
− i

(
b
∂2L0

∂p2
+

∂2L0

∂p∂ϕ0

)
ξ
∂z

∂ξ
+ L∗z + Nz,

where

L∗z =
p10τ

k2(ϕ)(1 + κp2)
z, Nz = −Λ1p

6z. (3.112)

The sequence of boundary conditions for χj will be the following:

• for the simply supported edges s = sj(ϕ0) with diaphragm

χ0 = 0,
∂2χ0

∂s2
= 0,

χ1 + ξs′i
∂χ0

∂s
= 0,

∂2χ1

∂s2
+ ξs′i

∂3χ0

∂s3
= 0,

χ2 + ξs′i
∂χ1

∂s
+

1

2
ξ2
(
s′′i
∂χ0

∂s
+ s′i

2 ∂2χ0

∂s2

)
= 0, (3.113)

∂2χ2

∂s2
+ ξs′i

∂3χ1

∂s3
+

1

2
ξ2
(
s′′i
∂3χ0

∂s3
+ s′i

2 ∂4χ0

∂s4

)
− 4is′i

p

∂3χ0

∂s3
= 0, . . . ,

• for the rigid clamped edges without diaphragm

χ0 = 0,
∂χ0

∂s
= 0,

χ1 + ξs′i
∂χ0

∂s
= 0,

∂χ1

∂s
+ ξs′i

∂2χ0

∂s2
= 0,

χ2 + ξs′i
∂χ1

∂s
+

1

2
ξ2
(
s′′i
∂χ0

∂s
+ s′i

2 ∂2χ0

∂s2

)
= 0, (3.114)

∂χ2

∂s
+ ξs′i

∂2χ1

∂s2
+

1

2
ξ2
(
s′′i
∂2χ0

∂s2
+ s′i

2 ∂3χ0

∂s3

)
−

p

∂2χ0

∂s2
= 0, . . .

The prime means differentiation of si(ϕ) with respect to ϕ. Note that Eqs.
(3.113) and (3.114) guarantee a realization of the boundary conditions merely in the
small vicinity of the weakest generatrix s = si(ϕ0). However, there is no sense to
satisfy the boundary conditions on the entire surface of the shell.

The sequence of one-dimensional boundary-value problems (3.108)-(3.114)
serves to determine unknown functions χj(s, ξ), Fj(s, ξ) and parameters Λj , p, b.
The details of seeking these magnitudes are omitted here (s. Tovstik and Smirnov,
2001). We will outline only the principal equations. Let us consider the sequence of
boundary-value problems step-by-step for j = 0, 1, 2, . . .We will call these problems
as BVP0, BVP1, BVP2, . . .

4is′i

(…)
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3.2.2.2.1 Zeroth-order Approximation

In the zeroth-order approximation, one has the homogeneous equation

L0χ0 ≡ ∂4χ0

∂s4
+
p4[p4 − Λ0p

2(1 + κp2)]

k2(ϕ0)(1 + κ2)
χ0 = 0 (3.115)

with the following homogeneous boundary conditions

χ0 = 0,
∂2χ0

∂s2
= 0 at s = si(ϕ0) (3.116)

for the simply supported (SS-SS) edges s = si;

χ0 = 0,
∂χ0

∂s
= 0 at s = si(ϕ0) (3.117)

for the rigidly clamped (RC-RC) edges s = si;

χ0 = 0,
∂2χ0

∂s2
= 0 at s = s1(ϕ0),

χ0 = 0,
∂χ0

∂s
= 0 at s = s2(ϕ0)

(3.118)

for the simply supported and rigidly clamped (SS-RC) edges s = s1 and s = s2,
respectively.

The stress and displacement functions χ0 and F0 are coupled by the relation

F0 =
k2(ϕ0)(1 + κp2)

p4
∂2χ0

∂s2
. (3.119)

The solution of (3.115) may be presented as

χ0(ξ, s;ϕ0) = P0(ξ)z
◦(s), (3.120)

if

Λ0(p, ϕ0) =
α4k22(ϕ0)

p6l4(ϕ0)
+

p2

1 + κp2
, (3.121)

where P (ξ) is an unknown polynomial in ξ, l(ϕ0) = s2(ϕ0) − s1(ϕ0), and α and
z◦ are the least positive eigenvalue and the associated eigenfunction, respectively,
of the equation d4z/dx4 − α4z = 0 with appropriate boundary conditions. If both
edges are simply supported, then

z◦(s) = sin (αx), α = π, x =
s− s1(ϕ0)

l(ϕ0)
. (3.122)

If the edge s = s2(α) is clamped and the edge s = s1(ϕ0) is simply supported, the
results are
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z◦(s) =
sin (αx)

sinα
− sinh (αx)

sinhα
, α ≈ 3.9266, x =

s− s1(ϕ0)

l(ϕ0)
. (3.123)

When both edges are clamped, one has

z◦(s) =
cos (αx)

cosα/2
− cosh (αx)

coshα/2
, α ≈ 4.73, x =

s− s1(ϕ0)

l(ϕ0)
− 1

2
. (3.124)

Minimizing the functionΛ0(p, ϕ0) over p andϕ0 results in the following equations
for the leading approximation of the buckling load parameter,

Λ◦
0 = min

p,ϕ0

Λ0(p, ϕ0) = Λ0(p
◦, ϕ◦

0)

=
8

33/2α2κ3g◦(ϑ◦)3
+

31/2α2κg◦ϑ◦

2 + 31/2α2κ2g◦ϑ◦
, (3.125)

where

ϑ◦ = 1+

√
1 +

4

31/2α2κ2g◦
, g(ϕ) =

k2(ϕ)

l2(ϕ)
, g◦ = g(ϕ◦

0). (3.126)

The wave parameter

p◦ = α

√
31/2κg◦ϑ◦

2
(3.127)

and the weakest generatrix ϕ = ϕ◦
o are found from the following equations:

∂Λ0

∂p
= 0,

∂Λ0

ϕ0
= 0. (3.128)

The last equation in Eq. (3.128) is reduced to

dg

dϕ
= 0. (3.129)

It is assumed here that
d2g

dϕ2
> 0 at ϕ = ϕ◦

0. (3.130)

It may be seen from (3.130) that in a circular cylindrical shell the longest generatrix
is the weakest one, and in a shell with a constant generatrix length the asymptotic
line with a minimum curvature will be the weakest one. The characteristic size of
the shell may be introduced as

R = R2(ϕ
◦
0). (3.131)
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3.2.2.2.2 First-order Approximation

In the first-order approximation, one has the non-homogeneous differential equation
(3.109). When taking into account the solution of boundary-value problem at the
previous step, this equation can be rewritten as

L0χ1 +G1 = 0,

G1 = [bξP0(ξ)− iP ′
0(ξ)]

∂L0

∂p
z◦(s) + ξP0(ξ)

∂L0

∂ϕ0
z◦(s),

(3.132)

where P ′
0 is the derivative of function P0(ξ). Without loss of generality, we will

perform subsequent calculations for the case when both edges are simply supported.
The appropriate boundary conditions for χ1 at s = si(ϕ0) are given by

χ1 + ξP0(ξ)s
′
i(ϕ

◦
0)

dz◦

ds
= 0,

d2χ1

ds2
+ ξP0(ξ)s

′
i(ϕ

◦
0)

d3χ◦

ds3
= 0. (3.133)

We arrived at the non-homogeneousboundary-valueproblem BVP1 (3.132), (3.133)
on spectrum. Taking into account the self-conjugacy of BVP0, the equality

s2∫
s1

z◦(L0χ1 +G1)ds = 0 (3.134)

serves as the condition for existence of a solution of the BVP1.
The function G1 is defined by the operators ∂L0/∂p, ∂L0/∂ϕ0 (s. Eq. (3.111)).

To define these operators, the BVP0 should be differentiated over p and ϕ0

L0χp +
∂L0

∂p
χ0 − ∂Λ0

∂p
χ0 = 0,

χp =
∂2χp

∂s2
= 0 at s = sj(ϕ0).

(3.135)

and

L0χϕ +
∂L0

∂ϕ0
χ0 − ∂Λ0

∂ϕ0
χ0 = 0,

χϕ + s′i
∂χ0

∂s
= 0,

∂2χϕ

∂s2
+ s′i

∂3χ0

∂s3
= 0 at s = sj(ϕ0).

(3.136)

Taking into account the self-conjugacy of the BVP0, one obtains

s2∫
s1

χ0L0χpds =

s2∫
s1

χpL0χ0ds = 0,

s2∫
s1

χ0L0χϕds =

s2∫
s1

χϕL0χ0ds = 0.

(3.137)
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Then, due to Eqs. (3.132), (3.135)-(3.137), condition (3.134) may be rewritten as

{
[bξP0(ξ)− iP ′

0(ξ)]
∂Λ0

∂p
+ ξP0(ξ)

∂Λ0

∂ϕ0

} s2∫
s1

(z◦)2 ds = 0. (3.138)

Because
s2∫

s1

(z◦)
2 ds �= 0

andP0(ξ) is a polynomial in ξ, Eq. (3.138) implies conditions (3.128) derived above.
Now, the solution of BVP1 may be represented as

χ1 = P1(ξ)z
◦ + ξP0(ξ)(bχp + χϕ)− iP ′

0(ξ)χp, (3.139)

where χp, χϕ are solutions of the boundary-value problems (3.135) and (3.136),
respectively, at χ0 = z◦, and P1(ξ) is an unknown polynomial in ξ.

3.2.2.2.3 Second-order Approximation

In the second-order approximation, the non-homogeneous boundary-value problem
(s. Eq. (3.110) with the corresponding boundary conditions (3.113) for χ2 arises
again. The compatibility conditions for this problem may be deduced from the
equation

s2∫
s1

z◦ {L1 [P1(ξ)z
◦ + ξP0(ξ)(bχp + χϕ)− iP ′

0(ξ)χp] + L2P0z
◦} ds = 0.

(3.140)
Omitting details for calculation of operators

∂2L0

∂p2
,
∂2L0

∂ϕ2
0

,
∂2L0

∂p∂ϕ0

appearing in L2, we reduce relation (3.140) to the following differential equation
with respect to the polynomial P0(ξ)

LP0 ≡ −1

2
ΛppP

′′
0 − i(bΛpp + Λpϕ)

(
ξP ′

0 +
1

2
P0

)

+

{
τ(p◦)4

k2(ϕ◦
0)[1 + κ(p◦)2]

− Λ1 + cξ2
}
P0 = 0, (3.141)

where
2c = b2Λpp + 2bΛpϕ + Λϕϕ. (3.142)
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Here, subscripts p, ϕ denote differentiation with respect to the corresponding vari-
ables p and ϕ0, all derivatives being calculated at p = p◦, ϕ0 = ϕ◦

0. Condition c = 0
is necessary for the existence of a polynomial form solution of Eq. (3.141). From the
square equation c = 0 we find the unique value of b◦ such that �b◦ > 0

b◦ = (−Λpϕ + ir)/Λpp, r =
√
d, d = ΛppΛϕϕ − (Λpϕ)

2. (3.143)

It may be seen from Eqs. (3.142) that inequality �b◦ > 0 is valid if inequalities
Λpp > 0 and d > 0 hold simultaneously. For c = 0 and

Λ1 = Λ
(n)
1 =

(
n+

1

2

)
r, n = 0, 1, 2, . . . (3.144)

Eq. (3.141) has the solution

P0(ξ) = Hn(ζ), ζ =

√
r

Λpp
ξ, (3.145)

where Hn are nth degree Hermite polynomials.
In our case, taking into account Eq. (3.120), one has

Λpp =
42α4(g◦)2

(p◦)8
+

2
[
1− 2κ(p◦)2 − 3κ2(p◦)4

]
[1 + κ(p◦)2]

4 ,

Λϕϕ =
2α4g◦g′′(ϕ◦

0)

(p◦)6
, Λpϕ = 0,

b◦ = i

√
Λϕϕ

Λpp

(3.146)

The eigenvalueΛ defined by (3.107), (3.125) and (3.144) has the least value at n = 0.
Then

P0 ≡ 1, Λ1 =
1

2

√
ΛϕϕΛpp +

τ(p◦)4

1 + κ(p◦)2
. (3.147)

The polynomialP1(ξ) remains unknown in this approximation. To find it, one needs
to consider the following two approximations.

3.2.2.2.4 Higher-order Approximations

The following approximations may be constructed in a similar way. We note that
χj(s, ξ) are either even or odd polynomials in ξ. The existence conditions for χ2j+2

give
LP2j + ΛjP0 + F2j(ξ) = 0, j > 0, (3.148)

where L is the operator in the left side of equation (3.141) at c = 0, and F2j(ξ)
is expressed in terms of polynomials P2j−1, P2j−2, . . . found in the previous steps.
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The value Λj is found from the existence conditions for polynomial form solution
of (3.148). If the polynomials Pj are even, then the polynomials Pj+1 and Fj+1 are
odd and vice-versa. In fact, the values of Λj(j ≥ 2) are not found here because they
depend on the terms which were omitted in the governing equations for sandwich
cylindrical shells. In addition, Λj(j ≥ 2) are influenced by the edge effect integrals
which should be already taken into consideration in the fourth-order approximation.
Finally, we obtain the following approximate formula for the buckling pressure

q∗n =
ε6EhΛ◦

0

R

[
1 + εΞ +O

(
ε2
)]
, Ξ =

Λ1

Λ◦
0

, (3.149)

whereΛ◦
0 andΛ1 are evaluated by (3.125) and (3.147), respectively. When separating

the real and imaginary parts in Eqs. (3.105) and taking into account Eq. (2.82) which
couples the deflection w and the displacement function χ, one obtains the following
two buckling modes

w1 = Z◦(s, ϕ) cos
[
ε−1p◦(ϕ− ϕ◦

0) +Θ0

]
,

w2 = Z◦(s, ϕ) sin
[
ε−1p◦(ϕ− ϕ◦

0) +Θ0

]
,

(3.150)

where

Z◦(s, ϕ) = R
{[

1 + κ (p◦)2
]
z◦(s) +O

(
ε1/2

)}
exp

{
−1

2
ε−1b◦(ϕ− ϕ◦

0)
2

}
.

(3.151)
Θ0 is an initial phase. Thus, the buckling pressure (3.149) is asymptotically double.
The method used here does not allow determining a parameterΘ0 = const, nor does
it allow one to distinguish the corresponding eigenvalues (s. details in Tovstik and
Smirnov, 2001).

3.2.2.3 Effect of Shears on Buckling Pressure and Localized Modes

Equations (3.149) - (3.150) contain parameters κ, τ depending on transverse shear in
the laminated shell. They generalize similar formulae derived by Tovstik (1983) for
thin single-layer isotropic cylindrical shells based on the Kirchhoff–Love hypothe-
ses. Figures 3.8-3.11 show the influence of the shear parameter κ on all magnitudes
characterizing the buckling modes and pressure as well. The calculations were per-
formed for three variants of boundary conditions: SS-SS, SS-RC, and RC-RC edges,
respectively. Because the correction ratio Ξ depends on parameter θ (s. Eqs. (3.96)
and (3.147)), its evaluation has been done for θ = 1/300 and θ = 1/85. The
increase of the shear parameter κ results in the increase of the wave number p◦

and the parameter b◦ characterizing the rate of localization of eigenmodes in the
neighbourhood of the weakest generatrix ϕ = ϕ◦

0. But the general conclusion is the
following: neglecting the transverse shear leads to overstated evaluations of the load
parameters Λ◦

0, Ξ and as a result, the buckling pressure q∗n. In the limit case, when
κ → 0, one obtains
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p◦ → α1/231/8(g◦)1/4, b◦ → i

23/233/8

√
αg′′(ϕ◦

0)

(g◦)1/2
,

Λ◦
0 → 4α(g◦)1/2

33/4
, Λ1 → 23/2

33/8

√
αg′′(ϕ◦

0)

g1/2
.

(3.152)

The limit values (3.152) are equal to the corresponding magnitudes for single-
layer isotropic cylindrical shells without taking transverse shear into consideration
(Tovstik, 1983).

Example 3.8. As an example, we consider a three-layer (sandwich) circular cylin-
drical shell with sloped edge as shown in Fig. 3.12. Here

k2 = 1, s1 = 0, s2ϕ = l0 + tanα(cosϕ− 1). (3.153)

α is the inclination angle of the upper edge. The longest generatrixϕ = ϕ◦
0 = 0 is the

weakest one, i.e. the shell buckling occurs in the vicinity of the longest generatrix.
Besides the asymptotic approach, we applied the finite element simulation (s.

Sect. 2.4) to facilitate the estimation of a range to which the results obtained can be
applied. Computations were performed for the cylinder with the maximum length
L = Rl0 = 2000 mm and the mid-surface radius R = 800 mm. The first and third
layers having the thickness h1 = h3 = 0.5 mm are made of aluminum with the
Young’s modulus E1 = E3 = 70, 3 GPa and Poisson’s ratio ν1 = ν3 = 0.345, and
the second one is an epoxy matrix with E2 = 3, 45 GPa and ν2 = 0.3.

For the analysis of the sandwich structure a finite element mesh with a suffi-
cient number of elements in the longitudinal and circumferential directions has to
be chosen to calculate the buckling load with sufficient accuracy. Especially if the
buckling mode corresponds to a high wave number, a corresponding mesh density is
required to ensure sufficient accuracy of the eigenvalues. The first tests revealed that
the first buckling mode always corresponds to a higher wave number in circumferen-
tial direction, whereas in longitudinal direction only one semi-wave occurs. Several
test calculations were performed to study the convergence behaviour of the solution

Fig. 3.8 Wave parameter p◦

vs. shear parameter κ for
different variants of boundary
conditions.

p
◦

κ
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Fig. 3.9 Parameter b◦ vs.
shear parameter κ for different
variants of boundary condi-
tions.

b◦
κ

Fig. 3.10 Zero-order approx-
imation of buckling load
parameter Λ◦

0 vs. shear pa-
rameter κ for different variants
of boundary conditions.

Λ
◦ 0

κ

resulting in a high number of elements in circumferential direction and a lower
number of elements in longitudinal direction. The convergence test was performed
to find the minimum number of elements providing an acceptable accuracy. The
cylinder type with α = 20◦, clamped oblique and simply supported straight edges
and h2 = 0.02 mm was modeled to perform the convergence test. With a number
of 300 elements in circumferential direction the eigenvalue converges to the final
value. The number of elements over the height does not influence the accuracy of
the outcomes. Figure 3.13 shows the first buckling (critical) mode of the cylinder
with α = 30◦, h2 = 0.02 mm, clamped oblique edge and simply supported straight
edge. This mode is localized in the neighbourhood of the longest generatrix.

The dependence of the buckling pressure q∗n on the thickness h2 of epoxy matrix
and angle α for two variants of boundary conditions and their combination are
shown in Tables 3.8 to 3.10. Acronyms AM and FEM correspond to results found
by the asymptotic and finite element methods, respectively. It should be noted that
assumptions (3.102) introduced above hold true for all geometrical and physical
parameters taken into consideration. It can be seen that increasing the inclination
angleα results in the increase of the critical pressure. The estimation of the influence
of shear parameters κ, τ on the buckling pressure indicates that this influence is
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Fig. 3.11 Correction ratio
for buckling load parameter,
Ξ, vs. shear parameter κ for
different variants of boundary
conditions and parameter θ:
(a) θ = 1/300, (b) θ = 1/85. Ξ

Ξ

κ

κ

(a) θ=1/300

(b) θ=1/85

Fig. 3.12 Circular cylindrical
shell with oblique edge.

α

l0
s2(ϕ)

s

ϕ

insignificant for physical and geometrical parameters accepted in this example. In
some cases it hardly reaches 1% (for the shell with α = 20◦, h2 = 0.1 mm when
both edges are simply supported).Calculations carried out by Grigolyuk and Kulikov
(1988b) revealed that this influence grows with a higher number of layers having
essentially different physical properties. In our example, the principal parameters
are the reduced Young’s modulus E and Poisson’s ratio ν for the whole sandwich.
The analysis of calculations revealed that the deviation of the results obtained by
the asymptotic and numerical approaches increases with the core thickness h2. This
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Table 3.8 Dependence of the buckling pressure q∗n on h2 and angle α for RC-RC edges (after
Mikhasev et al, 2001a).

h2, mm 0 0.01 0.05 0.10 0.50 1.00 2.00
α = 20◦

q∗n (AM), kPa 2.33 2.38 2.60 2.89 5.73 10.30 22.50
q∗n (FEM), kPa 2.30 2.35 2.56 2.84 5.61 10.10 21.96

α = 30◦

q∗n (AM), kPa 2.36 2.42 2.64 2.93 5.82 10.50 23.00
q∗n (FEM), kPa 2.28 2.33 2.54 2.81 5.51 9.97 21.78

Table 3.9 Dependence of the buckling pressure q∗n on h2 and angle α when oblique edge is
clamped and straight edge is simply supported (after Mikhasev et al, 2001a).

h2, mm 0 0.01 0.05 0.10 0.50 1.00 2.00
α = 20◦

q∗n (AM), kPa 1.94 1.99 2.17 2.41 4.78 8.64 18.80
q∗n (FEM), kPa 1.96 2.01 2.19 2.45 4.82 8.71 19.04

α = 30◦

q∗n (AM), kPa 1.97 2.02 2.21 2.45 4.87 8.81 19.20
q∗n (FEM), kPa 1.971 2.015 2.198 2.44 4.77 8.68 18.88

Table 3.10 Dependence of the buckling pressure q∗n on h2 and angle α for SS-SS edges (after
Mikhasev et al, 2001a).

h2, mm 0 0.01 0.05 0.10 0.50 1.00 2.00
α = 20◦

q∗n (AM), kPa 1.57 1.60 1.75 1.94 3.86 6.98 15.20
q∗n (FEM), kPa 1.62 1.65 1.81 2.01 3.98 7.25 15.95

α = 30◦

q∗n (AM), kPa 1.60 1.63 1.78 1.98 3.94 7.13 15.60
q∗n (FEM), kPa 1.60 1.636 1.784 1.981 3.98 7.17 15.93

fact is attributable to a higher error rate of the asymptotic method when the shell
thickness is increased.

Fig. 3.13 Fist buckling mode
of cylinder with α = 30◦,
h2 = 0.02 mm and RC-SS
edges (after Mikhasev et al,
2001a).
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3.3 Laminated Shell under Axial Compression

The first fundamental investigations on the buckling behaviour of axially compressed
circular cylindrical shells were carried out at the beginning of the 20th century.
Lorenz (1908) performed the linear analyses and derived an approximate formula
for the axial compressive force resulting in the buckling of a medium-length simply
supported single-layer cylindrical shell (s. also Lorenz, 1911)

T ∗
1 = − Eh2

R
√
3(1− ν2)

. (3.154)

A few years later, Donnell (1934); von Kármán and Tsien (1941) considered this
problem accounting large deflections and Koiter (1967); Donnel and Wan (1950)
studied the influence of imperfections (sensitivity) on the shell stability behaviour of
cylindrical single-layer shells and revealed that initial imperfections were responsible
for the great inconsistency between analytical estimates and experimental data.

As regards the buckling of non-circular cylindrical shells under axial compression,
the first studies have been done by Kempner and Chen (1964, 1967); Hutchinson
(1968); Feinstein et al (1971a,b). They have showed that oval single-layer cylindrical
shells are much less sensitive to imperfections than circular ones. Another important
outcome of these and subsequent relevant papers (Tovstik, 1984; Sun, 1991; Meyers
and Hyer, 1996; Soldatos, 1999) is that the buckling of an elliptical cylindrical
shell occurs under the compressive axial force which is larger than the critical
buckling force for a circular shell with the curvature being equal to the minimum
curvature of the oval cylinder under consideration. Noticeable contribution to the
study of buckling of thin non-circular cylindrical shells has been made by Tovstik
(1984). He has showed that buckling modes of similar shells may be localized in the
neighborhood of some generatrix called the weakest one. Following the asymptotic
approach developed by Tovstik (1984) (s. also Tovstik and Smirnov, 2001), this
generatrix is defined as the asymptotic line at which the radius of curvature has
a local maximum, and the localized buckling mode is constructed in the form of
exponentially decreasing function with a number of circumferential waves strongly
depending on the shell length. In particular, a short thin cylinder buckles mostly
without waves in the circumferential direction but with two bubbles located in the
zone of maximum radius, whereas for a medium-length cylinder, buckling may occur
with a large number of circumferential waves decaying far away from the weakest
generatrix. In the same paper (Tovstik, 1984) and later in Li (1990), it has been shown
that the critical load of a circular cylinder under axial compression is sensitive to
imperfection of an applied load. In particular, the high rate of inhomogeneity of
axial load may also result in localization of the buckling mode near the generatrix
along which the axial stress resultant is maximum (Tovstik, 1984). In 2008, applying
the generalized beam theory, Silvestre (2008) studied the local and global buckling
behaviour of single-layer elliptical shells and thereby justified above mentioned
results (Tovstik and Smirnov, 2001) as well as conclusions on the buckling force
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made by (Kempner and Chen, 1964, 1967; Feinstein et al, 1971a,b; Hutchinson,
1968).

In the past four decades, the wide application of composite materials in designing
of thin-walled structures has excited numerous investigations on non-linear behaviour
of laminated axially compressed, circular and non-circular, cylindrical shells. So,
Soldatos and Tzivanidis (1982); Sheinman and Firer (1994); Firer and Sheinman
(1995) have proposed the simplified models based on the Donnell-type theory.
Later, Jaunky and Knight Jr (1999) has obtained the buckling loads of circular
cylindrical laminated panels using different shell theories with a first-order shear
deformation approach and showed that Donnell’s theory could give error results
for some lamination schemes. The higher order shear deformation theories (e.g., s.
Reddy and Liu, 1985; Grigolyuk and Kulikov, 1988a) as well as the high-accuracy
layer-wise ones (e.g., s. Reddy, 1993; Carrera, 1999, 2001; Reddy and Arciniega,
2004) promoted more accurate studies on buckling of axially compressed laminated
plates, panels (Kim, 1996; Wu et al, 2008; Kheirikhah et al, 2012; Coburn and
Weaver, 2016)) and circular cylindrical shells (s., among many others, Tennyson and
Chan, 1990; Simitses, 1996; Soldatos, 1999). In addition, Sambandama et al (2003);
Patel et al (2004) have studied the linear elastic stability behavior of laminated oval
cylindrical shells through finite element approach taking into account transverse
shear and deformations.

The basic conclusion of above-mentioned papers and other relevant studies is that
the effect of the transverse shears on the buckling axial force may be significant for
laminated shells and plates assembled from materials with different stiffness. So,
the incorporation of transverse shear into the buckling model of sandwich plates
(Kheirikhah et al, 2012) or cylindrical shells (Korchevskaya et al, 2003) with rigid
face sheets but soft and shear pliable core may result in the noticeable reduction of the
buckling axial load. Recently, preforming the buckling analysis of variable-stiffness
sandwich panels, Coburn and Weaver (2016) have revealed that low transverse shear
moduli of a core may be the cause of the local shear crimping instabilities. Mikhasev
and Botogova (2017) have showed that the pressure induced buckling of a thin
medium-length circular sandwich cylinder with a soft core is very affected by the
edge shear for some variant of boundary conditions. If an edge is simply supported
and free of a diaphragm preventing shear in the edge plane, then the external buckling
pressure generates the edge shear deformations, being the part of buckling mode,
which oscillate and exponentially decay far away from this edge, this edge integrals
giving slight supporting effect for the shell.

In this section, we shall consider a thin medium-length laminated cylindrical shell
under the action of axial in-plane stress resultant T ◦

11 < 0(T ◦
22 = T ◦

12 = 0). Here,
the operator (2.161) is simplified

ΔTw = T ◦
11

∂2w

∂α2
1

.

Then the governing equations predicting buckling of axially compressed laminated
cylindrical shell read
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D

(
1− θh2

β
Δ

)
Δ2χ+

1

R2

∂2F

∂α2
1

− T ◦
11

∂2

∂α2
1

(
1− h2

β
Δ

)
χ = 0,

Δ2F =
Eh

R2

∂2

∂α2
1

(
1− h2

β
Δ

)
χ.

(3.155)

It is assumed that both edges α1 = Li are simply supported and have the infinite
rigidity diaphragm inhibiting shear in the edge planes. The appropriate boundary
conditions are given by Eqs. (3.40) and (3.42).

As a preliminary, we will consider the simplest case when all geometrical and
physical parameters are constant, and the axial load is uniform (Korchevskaya et al,
2003; Mikhasev et al, 2004). In this case buckling is accompaniedby the formation of
a regular pattern of small pits, and the governing equations allows us to write the ex-
plicit form of a solution. In particular, the problem on optimal design of multilayered
cylindrical shell with fixed weight of elastic material and magnetorheological elas-
tomer resulting in the maximum value of critical buckling axial force is considered
(Mikhasev, 2018). Then we will study buckling of a non-circular sandwich cylinder
subjected to non-uniform axial compression (Mikhasev and Zgirskaya, 2001). Us-
ing the asymptotic methods, the buckling modes will be constructed in the form of
functions localized near the weakest generatrix on the shell surface (Mikhasev and
Mlechka, 2018). The influence of physical properties of laminas as well as a number
of layers composing the shell on the critical buckling force will be analyzed.

3.3.1 Circular Cylindrical Shell Under Uniform Axial Load

Let the geometrical characteristics R2, Li, hk and the stress resultant T ◦
11 be con-

stants. Then a solution of Eqs. (3.155) with the boundary conditions (3.40), (3.42)
can be found in the explicit form

χ = χ0 sin
πmα1

L
cos

nα2

R
, F = F0 sin

πmα1

L
cos

nα2

R
, (3.156)

where m is a number of semi-waves along the shell generatrix, and n is a number
of waves in the circumferential direction. The substitution of (3.156) into (3.155)
results in the formula for the axial stress resultant

T ◦
11 = −π2Eh

(
μ4l2δ2nm
m2

1 + θKδnm
1 +Kδnm

+
m2

π4l2δ2nm

)
, (3.157)

where

μ4 =
h2η3

12(1− ν2)R2
, K =

π2h2

βR2
, δnm =

(
m2

l2
+
n2

π2

)
, l =

L

R
. (3.158)

This simple formula was first time obtained by Grigolyuk and Kulikov (1988b).
Minimizing T 0

11 over integer n and m, one can find the critical buckling force
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T ∗
1 = min

n,m
|T ◦

11(n,m)| = |T ◦
11(n

∗,m∗)|. (3.159)

In Eq. (3.157), E and K are the reduced Young’s modulus and shear parameter
which depend on a number of layers and their mechanical properties. For a thin
laminated shell with the total thickness h, the new magnitude μ is a small parameter.
The influence of E and K on the buckling axial force T ∗

1 is different and depends
on the cylinder length. It is known that for a medium-length shell the buckling mode
is characterized by a series of small dents so that, at least, a number n∗ is large and
has an order of μ−1 ∼

√
R/h (Tovstik and Smirnov, 2001). Whereas the buckling

of a sufficiently long shell occurs in a manner similar to a rod of circular cross-
section with m∗ = n∗ = 1. Thus, as seen from Eq. (3.157), the effect of the shear
parameter K on the critical force T ∗

1 is more essential for thin cylinders having a
moderate length. This conclusion is confirmed by numerical calculations performed
by Grigolyuk and Kulikov (1988b). They have also showed that the decrease of a
parameter K results in the increase of the buckling axial force.

The following Examples 3.9 and 3.10 illustrate the influence of a number of layers
and thicknesses of interlayer cores as well on the critical buckling force. We will
demonstrate also the manner in which formula (3.157) can be utilized for solving
the optimal design problem for a thin laminated structure.

Example 3.9. Firstly we consider the problem of optimal design of a thin sandwich
cylinder of the radius R = 150 mm and length L = 450 mm. Let the face sheets
of the thickness h1 = h3 be made of aluminum, and the core of thickness h2 is
made of epoxy with properties specified in Example 3.4. It is assumed that the layer
thicknesses hi satisfy condition (3.47), where h◦1 = 0.5 mm. Then for all hi the
shell weight will be constant. It is required to find such value of h2 for which the
critical buckling stress resultant T ∗

1 is maximum. To verify our calculations based on
Eqs. (3.157) and (3.159), we performed the FEM simulation as well. The outcomes
of these calculations displayed in Table 3.11 show that the optimal thickness of the
epoxy core is about h2 ≈ 0.8 mm. The performed calculations allow concluding
that the deviation of results obtained by the analytical and finite element methods
increases with the total thickness of the shell. This fact concurs with analogous
conclusion made when considering Example 3.4. The computational effort in this

Table 3.11 Dependence of the buckling force T∗
1 on the epoxy matrix thickness h2 determined by

using Eqs. (3.157), (3.159) and the FEM simulation (after Korchevskaya et al, 2003).

h2, mm 0 0.2 0.5 0.7 0.8 1.0 1.1
Analytical calculations

m∗ 21 19 17 16 16 15 15
n∗ 2 2 0 0 0 0 0
T∗
1 , N/mm 288.18 322.10 358.11 370.08 372.58 367.27 361.62

FEM simulation
m∗ 22 20 17 16 16 15 15
n∗ 0 0 0 0 0 0 0
T∗
1 , N/mm 288.80 328.40 365.80 375.80 386.40 373.90 371.30
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case was related to the mesh containing 3200 elements and 9760 nodes. The number
of degrees freedom was 42880.

Example 3.10. This example concerns the buckling of laminated cylindrical shells
containing core or layers made of MRE-1 under different intensity of an applied
magnetic field. We will consider three-, five-, and seven-layer shells of the same
length L = 1 m and radius R = 0.5 m. The layers with odd numbers are made
of the ABS-plastic SD-0170, and the those having even numbers are the MRE-1
with properties specified in Chapt. 2. It is assumed that the following conditions for
thicknesses hold:

• for the sandwich (N = 3),

h1 = h3 =
hpl
2
, h2 = hel;

• for the five-layer cylinder (N = 5),

h1 = h3 = h5 =
hpl
3
, h2 = h4 =

hel
2
;

• for the seven-layer shell (N = 7),

h1 = h3 = h5 = h7 =
hpl
4
, h2 = h4 = h6 =

hel
3
,

where hpl = 1 mm is the total thickness of the plastic, and hel = 8 mm is the
summarized thickness of the used elastomer. In each case the same quantity (weight)
of both the plastic and MRE-1 are utilized to assemble the shells. Figure 3.14 shows
the dependence of critical buckling force Fcr = 2πRT ∗

1 on the induction B of
applied magnetic field for three samples of shells under consideration. As seen, the
application of magnetic field increases the total stiffness of all shells and results
in rising the critical buckling force. This influence is found to be very strong for
the sandwich and weak for five-, and seven-layer structures. However, the effect

Fig. 3.14 Critical axial force
Fcr for three- , five-, and
seven-layered cylindrical
shells containing MRE vs.
induction B of magnetic field.

F
c
r
,k

N

B, mT
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of elastomer distribution along the shell thickness on the buckling force is very
complicated. At B < 200 mT, the five-layer cylinder possesses the highest buckling
resistance, whereas for B > 200 mT the sandwich with the one MRE core becomes
more stable than the shells with two, three and more MRE layers. Note that further
increasing the number of layers (from seven and more) made of the MRE-1 leads to
some lowering both the total stiffness and the bearing capacity.

3.3.2 Classification of Buckling Modes

Let all the geometrical parameters and the stress resultant T ◦
11 be again constant. We

shall perform the asymptotic analysis of relations Eqs. (3.157) and (3.159) under
an additional assumption for the shear parameter K . This will enable us to make
the classification of possible buckling modes and deduce the corresponding simple
equations for the critical buckling forces. These equations will be used below for
studying localized buckling modes of laminated cylindrical shells.

In what follows, we assume that the reduced shear modulusG is sufficiently small
with regard to the reduced Young’s modulus E so that

G ∼ μ2E, (3.160)

where μ is a natural small parameter. Then

K

π2
= μ2κ, κ ∼ 1. (3.161)

We introduce new notations

rm =
μπm

l
∼ 1, pn = μn ∼ 1, l =

L

R
, Δnm = r2m + p2n. (3.162)

Note that a parameter θ is independent of μ, but it is also small. So, for a single-layer
isotropic shell θ = 1/85 (Grigolyuk and Kulikov, 1988b). Then term θKδnm may
be omitted and Eq. (3.157) can be rewritten as

T ◦
11 = μ2Ehλ, λ =

Δ2
nm

r2m

1

1 + κΔnm
+

r2m
Δ2

nm

, (3.163)

where λ is an invariant with respect to the geometrical parameters l and μ.
The problem is to find such integer numbers m∗, n∗ which would guarantee a

minimum value λ∗ for the function λ. First, we assume that m (and hence rm) is
fixed. Now we can rewrite Eq. (3.163) to the form

λ(pn,m;κ) =
z2

1 + κrmz
+

1

z2
, z =

Δnm

rm
=
r2m + p2n
rm

(3.164)

and perform the minimization of λ(pn,m;κ). There are three different cases:
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(A) rm < z0,
(B) rm > z0 ,
(C) rm = z0 = rc,

were z0 is a positive root of the algebraic equation

−2(1 + κrmz)
2 + z4(2 + κrmz) = 0 (3.165)

by z. In case (C), the root rC is determined from the equation

κz60 + 2z40 − 2(1 + κz20)
2 = 0. (3.166)

Equations (3.165) and (3.166) contain a parameter κ accounting for shears in the
laminated shell. If shears are disregarded (κ = 0), this root z0 = 1. This case
(for κ = 0) was in detail considered by Tovstik and Smirnov (2001) when studying
buckling of single-layer isotropic shells. In particular, Eqs. (3.163) and (3.164) give
the well-known formula T ∗

1 = Eh2/[R
√
3(1− ν2)] obtained by Lorenz (1911) for

a medium-length shell.
Consider cases (A), (B) and (C) at 0 ≤ κ < 1. In Fig. 3.15 (a), z0(rm) is plotted

as a function of rm at fixed κ ∈ [0, 1), and Fig. 3.15 (b) shows roots rC for different
κ. In case (A), we obtain

λA = min
pn

λ(pn, rm;κ) =
z40 + κrmz0 + 1

z20(1 + κrmz0)
, pn =

√
rm(z0 − rm) �= 0,

(3.167)
and in case (B), one has

λB = min
pn

λ(pn, rm;κ) =
r4m + κr2m + 1

r2m(1 + κr2m)
, pn = 0. (3.168)

Case (C) is the special one, here Eqs. (3.167) and (3.168) give the same formulae

λC = min
pn

λ(pn, rm;κ) =
r4c + κr2c + 1

r2c (1 + κr2c )
, pn = 0. (3.169)

Case (A) refers to the nonaxisymmetric buckling mode and occurs if λA < λB ,
and case B corresponds to the axially symmetric eigenmode with n∗ = 0 and
takes place when λB < λA. It is seen that the function λB(rm) has the minimum
value λκ = λB(rκ) at rm = rκ = (1 − κ)−1/2. However, the magnitude λκ is
not necessarily the critical buckling load parameter, since the real argument rm
possesses discrete values. Consider the search procedure of parameters m∗, n∗ and
λ∗. At first, we note that the derived equations (3.167) and (3.169) are not valid for
very long shells. Let the shell be sufficiently short so that

L < μπR
√
1− κ = π 4

√
R2h2η3(1− κ)2

12(1− ν2)
. (3.170)



3.3 Laminated Shell under Axial Compression 133

Due to (3.162), rm > z0 for m = 1 (s. also 3.15) and case (B) takes place.
Let inequality (3.170) be fulfilled, then one obtains the following relations for the
critical buckling stress resultant

λ∗ =
r41 + κr21 + 1

r21(1 + κr21)
, T ∗

1 =
Eh2

R

√
η3

12(1− ν2)
λ∗. (3.171)

We note that for L4/(μπR)4 
 1 and κ = 0, Eq. (3.171) degenerates into the
well-known Euler formula T ∗

1 = Eh3π2/(12(1 − ν2)L2) for the buckling of an
isotropic beam-strip.

If inequality (3.170) does not hold, then the buckling modes may be both axi-
ally symmetric and nonaxisymmetric. To define the appropriate parametersm∗, n∗,
λ∗, one needs to calculate two integers m′ = [lrκ/(μπ)] = [l/(μπ

√
1− κ)]

and m′′ = 1 + m′, where [x] is the integer part of x, and then compare the
real numbers rm′ = μπm′/l and rm′′ = μπm′′/l. When rm′ < rc, the criti-

Fig. 3.15 (a) Roots z0 of
Eq. (3.165) vs. rm for
different κ: 1 – κ = 0,
2 – κ = 0.4, 3 – κ = 0.75.
(b) Parameter rm = z0 = rC
for different κ (after Mikhasev
and Mlechka, 2018)
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r m
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Fig. 3.16 Functions λA and
λB vs. rm for different κ:
1 – κ = 0, 2 – κ = 0.25,
3 – κ = 0.5, 4 – κ = 0.75
(after Mikhasev and Mlechka,
2018).
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cal buckling eigenvalue is λ∗ = min{λA(rm′), λB(rm′′ )}, and if rm′ ≥ rc, then
λ∗ = min{λB(rm′), λB(rm′′ )}. The number m∗ of semi-waves in the axial di-
rection is determined from integers m′ and m′′ as a number corresponding to the
minimum value of a load parameterλ, and numbern∗ of waves in the circumferential
direction (if case (A) takes place) is found to within one and equals either [p∗n] or
[p∗n] + 1, where p∗n is calculated by (3.167) with rm = rm∗ = μπm∗/l. The quali-
tative analysis of Fig. 3.16 allows also concluding that the most preferable buckling
mode of a medium-length laminated shell with a low reduced shear modulus (e.g.,
s. plots corresponding to κ ≥ 0.5) is an axially symmetric mode.

3.3.3 Non-Circular Cylinder Under Non-uniform Axial Load

Now we consider a problem (Mikhasev and Botogova, 2017) on the buckling of
a non-circular laminated cylindrical shell under inhomogeneous axial compression
(s. Fig. 3.17). Let R2, T

◦
11 be functions of α2. The addition assumptions for these

functions will be introduced below. Let us introduce the following dimensionless
magnitudes

s =
α1

R
, ϕ =

α2

R
, k22(ϕ) =

R

R2(α2)
, χ∗(s, ϕ) =

χ(α1, α2)

R
,

F∗(s, ϕ) =
F (α1, α2)

μ2EhR
, t1(ϕ) = −T ◦

1 (α2)

λμ2Eh
,

(3.172)

where λ is a positive load parameter, R is a characteristic dimension which will be
specified below, and the shear and small parameters, K and μ, are calculated by
Eqs. (3.158). Both edges α1 = Li are assumed to by simply supported and have an
infinite rigidity diaphragm. The appropriate boundary conditions are given by Eqs.
(3.40) or (3.42). Let estimations (3.160), (3.161) for the reduced shear modulus be
valid. In addition, we assume that

Kθ

π2
= μ3τ, τ ∼ 1 as μ → 0. (3.173)
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Then the governing equations (3.155) may be rewritten in the dimensionless form

μ2(1− μ3τ�)�2χ∗ + k22(ϕ)
∂2F∗

∂s2
+ λt1(ϕ)

∂2

∂s2
(1 − μ2κ�)χ∗ = 0,

μ2�2F∗ − k22(ϕ)
∂2

∂s2
(1− μ2κ�)χ∗ = 0.

(3.174)

The appropriate boundary conditions at s = 0, l for dimensionless magnitudes
become

χ∗ = �χ∗ = �2χ∗ = F∗ = �F∗ = 0 at s = 0, l = L/R. (3.175)

The problem is to find the lowest positive value of λ for which system (3.174) has a
nontrivial solution satisfying the boundary conditions (3.175). Due to the presence of
the functions t1(ϕ), k22(ϕ), this boundary-value problem does not have a solution
in the explicit form. However, with assumptions for the functions t1(ϕ), k22(ϕ),
there exist the buckling forms which will be localized in a neighborhood of some
generatrix. To construct these forms, we apply the asymptotic method of Tovstik, s.
Tovstik and Smirnov (2001).

3.3.3.1 Asymptotic Solution

A formal asymptotic solution of the boundary-value problem (3.174), (3.175) is
constructed in the following form

χ∗ = sin
rms

μ
χm(ξ, μ), F∗ = sin

rms

μ
Fm(ξ, μ), (3.176)

Fig. 3.17 Middle surface of
non-circular laminated cylin-
drical shell under non-uniform
axial load and curvilinear co-
ordinates.

T◦
11(ϕ)
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χm =
∞∑
j=0

μj/2χmj(ξ) exp

[
i

(
μ−1/2pξ +

1

2
bξ2
)]

,

Fm =

∞∑
j=0

μj/2fmj(ξ) exp

[
i

(
μ−1/2pξ +

1

2
bξ2
)]

,

λ = λ0 + μλ1 + μ2λ2 + . . . ,

(3.177)

where

ξ = μ−1/2(ϕ− ϕ0), �b > 0,

|χmj|, |fmj |, λj , p, |b|, rm =
μπm

l
∼ 1 as μ → 0,

(3.178)

and χmj(ξ), fmj(ξ) are polynomials in ξ. Here, ϕ = ϕ0 is a weakest generatrix
which is unknown. Functions (3.176) and (3.177) approximate the buckling mode
localized in the vicinity of the line ϕ = ϕ0.

Expending the functions k22(ϕ), t1(ϕ) in power series of ϕ − ϕ0 = μ1/2ξ and
substituting Eqs. (3.176) - (3.178) into Eqs. (3.174), one obtains the sequence of
algebraic equations

j∑
k=0

LkXj−k = 0, j = 0, 1, 2, . . . (3.179)

where Xj = (χmj , fmj)
T are vectors, L0 is the 2× 2 matrix with the elements

l11 = (r2m + p2)2−λ0r2mt1(ϕ0)[1+κ(r
2
m + p2)], l12 = −k22(ϕ0)r

2
m,

l21 = k22(ϕ0)r
2
m[1 + κ(r2m + p2)], l22 = (r2m + p2)2,

(3.180)

the matrix operators Lj for j ≥ 1 are expressed by the matrix L0 as

L1z =

(
b
∂L0

∂p
+
∂L0

∂ϕ0

)
ξz − i

∂L0

∂p

∂z

∂ξ
,

L2z =
1

2

(
b2
∂2L0

∂p2
+ 2b

∂2L0

∂p∂ϕ0
+
∂2L0

∂ϕ2
0

)
ξ2z − 1

2

∂2L0

∂p∂ϕ0
z

− 1

2

∂2L0

∂p2

(
iz +

∂2z

∂ξ2

)
− i

(
b
∂2L0

∂p2
+

∂2L0

∂p∂ϕ0

)
ξ
∂z

∂ξ
+ L∗z + Nz,

(3.181)
and N is the 2× 2 matrix with the unique nonzero element

n11 = τ(r2m + p2)3, n12 = n21 = n22 = 0. (3.182)

The sequence of equations (3.179) serves to determine all unknowns functions
χmj , fmj and parameters p, b, λj appearing in (3.176)-(3.178). Because the proce-
dure for seeking these magnitudes is the same as in Tovstik and Smirnov (2001),
we omit transitional calculations and give only the principle equations. Considering
the homogeneous system of algebraic equations (3.179) for j = 0, one obtains the
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zeroth approximation for the load parameter,

λ0 = f(p, rm, ϕ0;κ) =
1

t1(ϕ0)

{
(r2m + p2)2

r2m[1 + κ(r2m + p2)]
+

k222(ϕ0)r
2
m

(r2m + p2)2

}
.

(3.183)
Holding a numberm (and thus, a parameter rm) fixed, we minimize function (3.183)
over p and ϕ. As a result, one obtains the following equations

∂f

∂p
= 0,

∂f

∂ϕ0
= 0 (3.184)

which serve to determine p◦ and ϕ◦
0.

In what follows, we shall consider only two variants:

(i) k22 is constant (circular shell) and t1(ϕ0) is a function (non-uniform compres-
sion), then the second equation from (3.184) results in

t′1(ϕ0) = 0; (3.185)

(ii) t1 is constant (uniform compression), but k22(ϕ0) is a function (non-circular
shell) so that Eq. (3.184) leads to

k′22(ϕ0) = 0. (3.186)

In Eqs. (3.185) and (3.186) and hereinafter, the prime (′)means differentiation byϕ0.
It is obvious that cases (i) and (ii) do not exclude the variant when ϕ◦

0 satisfies Eqs.
(3.185) and (3.186) simultaneously. After the weakest generatrix ϕ = ϕ◦

0 is found,
one can introduce the characteristic dimension R = R2(ϕ

◦
0). Then k22(ϕ

◦
0) = 1.

Without losing generality, it is also assumed that t1(ϕ◦
0) = 1. It is seen that Eq.

(3.183) coincides with (3.164). Consider the first equation from (3.184). Having
solved it, we again come to three different cases (A), (B), (C) described above. Then,
the zero-order approximation of the load parameter,

λ◦0 = min
p

f(rm, p, ϕ
◦
0;κ) = f(rm, p

◦, ϕ◦
0;κ), (3.187)

will be defined by Eqs. (3.167), (3.168) and (3.169) for cases (A), (B) and (C),
respectively. A solution of the homogeneous system of algebraic equations (3.179)
at j = 0 may be written as

X0 = P0(ξ)Y0, (3.188)

where P0(ξ) is an unknown polynomial in ξ, and Y0 = (1,−l11/l12) is a vector.
In the first-order approximation (j = 1), one has the non-homogeneous system of

algebraic equations (3.179). When taking both Eqs. (3.184) into account, this system
turns into identities. Let us consider the non-homogeneous system of equations
(3.179) in the second-order approximation (j = 2). The compatibility condition for
this system results in the formula (Tovstik and Smirnov, 2001)
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b = i
√
fϕϕ/fpp (3.189)

and leads to the equation

d2P0

dξ2
+ 2ibξ

dP0

dx
+

2

fpp

(
λ1 +

1

2
ifppb+ IA,B

)
P0 = 0 (3.190)

with respect to P0, where

IA =
τr6m

1 + κr2m
at rm > z0,

IB =
τr3mz

3
0

1 + κrmz0
at rm < z0.

(3.191)

It is seen that IA = IB for rm = z0 = rC , where rC is the root of Eq. (3.166). For
both cases, (A) and (B), Eq. (3.190) has the solution

P0(ξ) = Hn

(√
fϕϕ/fpp ξ

)
, (3.192)

where Hn(x) is the nth degree Hermite polynomials in x, if

λ1 =

(
1

2
+ n

)√
fppfϕϕ + IA,B . (3.193)

Here, the subscripts p, ϕ denote the differentiation by variables p, ϕ0 at p = p◦,
ϕ0 = ϕ◦

0. A parameter λ1 has the least value at n = 0. Then P0(ξ) = H0 ≡ 1.
Let us consider variant (i) when the weakest generatrix is determined from Eq.

(3.185). Then Eqs. (3.189) and (3.193) result in the following formulae for parameters
b and λ1:

(A) rm < z0,

b = iz0(1 + κrmz0)

√
−t′′1(ϕ◦

0)rm(1 + κrmz0 + z40)

8(z0 − rm)[z40 + 3(1 + κrmz0)3]
, (3.194)

λ1 =

√
−2t′′1(ϕ

◦
0)(z0 − rm)(1 + κrmz0 + z40)[z

4
0 + 3(1 + κrmz0)3]

z30r
1/2
m (1 + κrmz0)2

+
τr3mz

3
0

(1+ κrmz0)
(3.195)

(B) rm > z0,

b = irm

√
−t′′1(ϕ◦

0)(1 + κr2m)(1 + κr2m + r4m)

2[r4m(2 + κr2m)− 2(1 + κr2m)2]
, (3.196)
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λ1 =
1

2r3m

√
−2t′′1(ϕ

◦
0)(1 + κr2m + r4m)[r4m(2 + κr2m)− 2(1 + κr2m)2]

(1 + κr2m)

+
τr6m

1 + κr2m
(3.197)

It is seen from (3.194) and (3.196) that the inequality �b > 0 holds if t′′1(ϕ
◦
0) < 0.

Thus, the weakest generatrix is the more compressed one.
Finally, for variant (ii) when the weakest generatrix is found from (3.186), one

has:

(A) rm < z0,

b =
iz0
2

√
k′′22(ϕ

◦
0)(1 + κrmz0)3

(z0 − rm)[z40 + 3(1 + κrmz0)3]
, (3.198)

λ1 =
2

z30

√
k′′22(ϕ

◦
0)(z0 − rm)[z40 + 3(1 + κrmz0)3]

rm
(1 + κrmz0)3

+
τr3mz

3
0

1 + κrmz0
(3.199)

(B) rm > z0,

b = irm(1 + κr2m)

√
k′′22(ϕ

◦
0)

r4m(2 + κr2m)− 2(1 + κr2m)2
, (3.200)

λ1 =

√
k′′22(ϕ

◦
0)[r

4
m(2 + κr2m)− 2(1 + κr2m)2]

r3m(1 + κr2m)
+

τr6m
1 + κr2m

. (3.201)

Here, Eqs. (3.199) and (3.201) show that the weakest generatrix is the line with the
minimum curvature. We did not consider here higher order approximations because
system (3.155) is not sufficiently accurate since it does not contain some terms which
effect the third and subsequent approximations.

Now, let an integerm vary. Then due to (3.178), rm takes on a sequence of discreet
values. Following the proceduredescribed above, we can findm∗ andλ∗0 = λ◦0(rm∗),
where rm∗ = μπm∗/l. If rm∗ − rC = O(1) at μ → 0, then the approximate value
of the critical buckling load parameter is

λ∗ = λ∗A,B = λ∗0 + μλ1(rm∗) +O
(
μ2
)
, (3.202)

where λ1(rm∗) is determined by equations derived above depending on case (A) or
(B) and variant (i) or (ii) as well. The corresponding eigenforms are the following

χ∗ = sin
rm∗s

μ
exp

{
i
μ

[√
rm∗(z0 − rm∗)(ϕ− ϕ◦

0) +
1

2
b(ϕ− ϕ◦

0)
2

]}

×
[
1 +O(μ1/2)

]
(3.203)
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for case (A) at rm∗ < rC , and

χ∗ = sin
rm∗s

μ
exp

{
ib(ϕ− ϕ◦

0)
2

2μ

}[
1 +O(μ1/2)

]
, (3.204)

for case (B) when rm∗ > rC . In both cases a parameter b is calculated at rm = rm∗ .
It may be seen that the buckling modes (3.203) and (3.204) are different for cases (A)
and (B). If rm∗ > rC , the eigenfunctions decay exponentially without oscillations
(p◦ = 0), and for rm∗ < rC the localized buckling modes have waves in the
circumferential direction. It is also seen that

lim
rm∗→zC

|b| = +∞ (3.205)

for both cases (A), (B) and variants (i), (ii). Thus, requirement |b| ∼ 1 at μ → 0 does
not hold if the root rm∗ is close to z0 = rC , and Eqs. (3.203) and (3.204) are not
applicable for this case. Case (C) for rm∗ � rC deserves the special consideration.

3.3.3.2 Reconstruction of Asymptotic Expansions

Let parameter rm = rm∗ be close to the root z0 = rc of Eq. (3.166). As seen from
Fig. 3.16, this case takes place when parameter κ is small. In what follows, for the
sake of simplicity, the asterisk in m∗ will be omitted. Without loss of generality,
it is assumed that k22 = 1 and t1(ϕ) is a function. In this case, a solution of the
boundary-value problem (3.174) and (3.175) is again found in the form of functions
(3.176). The substitution of (3.176) into Eqs. (3.174) results in the following system
of ordinary differential equations

(1 − μτ�m)�2
mχm − r2mΦm − λr2mt1(ϕ)(1 − κ�m)χm = 0,

�2
mΦm + r2m(1− κ�m)χm = 0,

(3.206)

where

�m = μ2 d2

dϕ2
− r2m (3.207)

is the differential operator.
We introduce the following estimates

rm = rm∗ = rc + μ̃r′, λ = λC + μ̃2λ′, ϕ− ϕ◦
0 = μ̃η,

t1(ϕ) = t1(ϕ
◦
0) +

1

2
μ̃2t′′1(ϕ

◦
0)η

2 + . . .
(3.208)

where r′, λ′ ∼ 1 as μ̃ → 0, and

μ̃ = μ2/3 =

[
h2η3

12R2(1− ν2)

]1/6
(3.209)
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is a new small parameter, and we seek the solution of Eqs. (3.206) in the form of
series

χm =

∞∑
k=0

μ̃kχ(k)
m (η), Φm =

∞∑
k=0

μ̃kΦ(k)
m (η), (3.210)

where

χ(k)
m , Φ(k)

m ∼ 1, and χ(k)
m , Φ(k)

m → 0 as η → ±∞. (3.211)

In the zeroth- and first-order approximations, Eqs. (3.206) turn into identities if

λC =
r4c + κr2c + 1

t1(ϕ◦
0)r

2
c (1 + κr2c)

. (3.212)

Note that Eq. (3.212) coincides with Eq. (3.169) at rm = z0 = rc. Equation (3.212)

gives the zeroth approximation for the eigenvalue λ. The eigenfunctions χ(0)
m and

Φ
(0)
m remain undefined at this step.
Let us consider the second-order approximation. When taking Eq. (3.212) into

consideration, one gets the following equation with respect to χ(0)
m

a4
d4χ(0)

m

dη4
+ a2(r

′)
d2χ(0)

m

dη2
+ [a0(r

′)− aηη
2 − λ′aλ]χ

(0)
m = 0, (3.213)

where

a4 = 1 +
κ

r2c
+

3

r4c
, a2(r

′) = −2(4 + 5κr2c + κ2r4c )r
′

r3c (1 + κr2c )
,

a0(r
′) =

(5r4c − 6κr2c − 5κ2r4c − 1)r′
2

r2c (1 + κr2c )
,

aη =
1

2
λCr

2
c (1 + κr2c )t

′′
1 (ϕ

◦
0), aλ = r2c (1 + κr2c )t1(ϕ

◦
0).

(3.214)

The problem is to find such values of λ′(r′), for which the nontrivial solutions of
Eq. (3.213) satisfy the following condition

χ(0)
m → 0 as η → ±∞. (3.215)

Applying the Fourier transform

χ(0)
m (η) =

1√
2π

+∞∫
−∞

χF (ω̃) exp (iω̃η)dω̃, (3.216)

we arrive at the second order differential equation for a function χF ,

d2χF

dx2
+
{
Λ̃ − [x4 + 2γ(κ)x2 + γ2(κ)(1 +Θ(κ))]

}
χF = 0, (3.217)
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where

Λ = λ′
r2c (1 + κr2c )α

2t1(ϕ
◦
0)

(r4c + κr2c + 1)ς
, ς = − t′′1 (ϕ

◦
0)

2t1(ϕ◦
0)
, x =

ω̃

α
,

α(κ) =

[
ςr4c (1 + κr2c + r4c )

r4c + κr2c + 3

]1/6
, γ(κ) = r′Γ (κ),

Γ (κ) =
4rc + 5κr3c + κ2r5c

(1 + κr2c )(r
4
∗ + κr2c + 3)

[
r4c + κr2c + 3

r4c (r
4
c + κr2c + 1)ς

]1/3
,

Θ(κ) =
Ξα2(r4c + κr2c + 3)

Γ 2ςr4c (r
4
c + κr2c + 1)

,

Ξ(κ) = r2c

{
5(1− κ2)r4c − 6κr2c − 1

(1 + κr2c )(r
4
c + κr2c + 3)

−
[

κ2r4c + 5κr2c + 4

(1 + κr2c )(r
4
c + κr2c + 3)

]2}
.

(3.218)

For κ = 0, Eq. (3.217) is reduced to the equation derived in Tovstik and Smirnov
(2001) for the classical model eliminating transverse shear.

For each γ, there is a countable set Λj(j = 0, 1, . . .) of values Λ, for which
there exist non-trivial solutions of Eq. (3.217) such that χF → 0 as x → ±∞.
It may be seen from Eqs. (3.217) and (3.218) that the eigenvalues Λj depend on
the fixed value of the shear parameter κ but are invariant with respect to parameter
ς characterizing the rate of inhomogeneity of the axial load. The first eigenvalue
Λ = Λ0 versus parameter γ for different shear parameters κ = 0; 0.25; 0.5; 0.75
is plotted in Fig. 3.18. For κ = 0, the corresponding eigenvalues Λ = Λ0(γ) have
been determined by Tovstik and Smirnov (2001). Figure 3.18 serves to calculate
the correcting load parameter λ′. At first, one needs to find γ by Eqs. (3.208) and
(3.218)5. Then, using Fig. 3.18 and Eq. (3.218)1, one can find the corresponding
parameters Λ and λ′. To define the required buckling load parameter λ∗, one needs
to compare λ∗A,B and λ∗C = λC + μ̃2λ′ found by (3.202) and (3.218), respectively

λ∗ = min {λ∗A, λ∗B, λ∗C} . (3.219)

It is seen that the incorporation of transverse shear (the parameter κ) into the shell
model results in more complex procedure for seeking the critical buckling axial load
in comparison with a similar procedure at κ = 0 (Tovstik, 1984).

Fig. 3.18 First eigenvalue
Λ = Λ0 vs. γ for different κ
1 − κ = 0; 2 − κ = 0.25;
3 − κ = 0.5; 4 − κ = 0.75
(after Mikhasev and Mlechka,
2018) .
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3.3.4 Effect of Shear on Localized Buckling Modes and Critical

Axial Force

In this subsection, we will give several examples illustrating the effect of shear on
localized buckling modes and corresponding critical force. However, as a preliminary
we will perform the comparative calculations using the proposed above asymptotic
technique and FEM simulation (Korchevskaya et al, 2003).

Example 3.11. Let us consider two sandwich-like cylinders (three-layered shells) of
the radiusR = 150 mm but having different length L = 200 mm and L = 450 mm.
The first and third laminas with thicknesses h1 = h3 = 0.3 mm are made of
aluminum, and the core of thickness h2 = 0.8 mm is the epoxy matrix. The physical
properties of both materials are the same as in Example 3.4. The shell is under the
axial (dimensionless) force

t1(ϕ) = 1 + ε cosϕ, (3.220)

where the parameter ε characterizes the rate of the load inhomogeneity in the cir-
cumferential direction. Here, the generatrix ϕ = ϕ◦

0 = 0 is the weakest one.
The critical buckling forces T ∗

1 evaluated by using the asymptotic and finite
element methods for two values of the length L and various ε are presented in Table
3.12. It may be seen that the deviation in results obtained by the asymptotic and
numerical approaches are not large. So, for L = 200 mm and ε = 0, 0.5, 0.7, 1
these deviation are about 1%, 3.8%, 3.9%, 4%, respectively. This fact is explained
by both the applicability of the asymptotic formulas derived above and satisfactory
convergence of the FEM solutions. Table 3.12 justifies indirectly the assumed ESL
model and applicability of the buckling equations (3.155) for prediction of localized
buckling of laminated cylindrical shells.

Now, special attention will be given to the case when the reduced shear modulus of
a laminated shell is much less than the reduced Young’s modulus. We will consider
circular sandwiches containing cores made of MRE-1 with properties specified in
Chapt. 2. The mechanical properties of MRE-1 are very influenced by an applied
magnetic field. Without a magnetic field, it is a soft and shear pliable material, but
under action of an external magnetic field it demonstrates properties of a pseudo-

Table 3.12 The critical axial force T∗
1 vs. parameter ε found by the asymptotic method (AM) and

finite-element method (FEM) (after Korchevskaya et al, 2003).

ε 0.0 0.5 0.6 0.7 0.8 0.9 1.0
L = 200 mm

T∗
1 (AM), N/mm 342.58 228.39 214.11 201.52 190.32 180.31 171.29

T∗
1 (FEM), N/mm 347.90 237.60 222.80 209.70 198.20 187.80 178.50

L = 450 mm
T∗
1 (AM), N/mm 344.53 229.68 215.33 202.66 191.40 181.33 172.26

T∗
1 (FEM), N/mm 355.00 239.92 224.90 211.60 199.90 189.50 179.30
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rigid viscoelastic material with a high storage modulus. Changing the intensity of
a magnetic field, we can vary the core rigidity and such a way, change the reduced
shear modulus of the sandwich. It is obvious that viscose properties of MRE-1 are not
taken here into consideration, so that the MRE is treated as the elastic and isotropic
material. Table 3.13 gives the dependence of dimensionless shear parameter κ on the
magnetic field induction B for the sandwich of radius R = 1 m with the face sheets
made of the ABS-plastic SD-017. Thicknesses of layers composing the sandwich are
h1 = h3 = 0.5 mm, h2 = 8 mm. As seen, the increase of B results in the decrease
of κ and as result, in the increase of the reduced (effective) shear modulusG, s. Eqs.
(2.59), (2.84), (3.158) and (3.161).

Example 3.12. Let the circular sandwich assembled from the ABS-plastic and MRE-
1 with parameters hi and R specified above be under action of the inhomoge-
neous axial force T ◦

1 . The dimensionless counterpart of this force is the function
t1(ϕ) = At(1 + ε cosϕ), where At and ε are constants. Here, ϕ = ϕ◦

0 = 0 is the
weakest generatrix. The type of buckling mode localized near this line (correspond-
ing to one of cases (A), (B) or (C)) depends on the geometrical parameters, load
parameters At, ε and induction B as well. The goal of this example is to demon-
strate the sequence of necessary calculations to define a required buckling load.
Table 3.14 shows the outcomes of this procedure for the shell of length L = 4 m
at At = 0.5, ε = 1.25, B = 100 mT. These calculations involve two stages. At
the first step, we find parameters rc, rκ, rm′ , rm′′ and then calculate rm∗ , λ∗0, λ1
and λ∗B = 1.743 by Eqs. (3.166), (3.197) and (3.202), respectively. At the second
step, we compare r∗m and rc and calculate r′, λC . Then, using data from Fig. 3.18,
we estimate the correcting load parameter λ′ ≈ 0.553 and find λ∗C ≈ 1.591. As
λ∗C < λ∗B , one declares λ∗ = λ∗C ≈ 1.591.

Example 3.13. Now we shall study the effect of an applied magnetic field on the
critical buckling force and other parameters characterizing buckling modes. Table
3.15 displays this effect for the sandwich of the length L = 2 m. The second column
shows a possible case, (A), (B) or (C), which takes place for a fixed value of induction
B. It is seen that at low level of the applied magnetic field (when the reduced shear

Table 3.13 Dimensionless shear parameter κ vs. magnetic field induction B.

B, mT 0 10 30 50 70 90 120 140 180 200

κ 0.662 0.590 0.469 0.389 0.333 0.292 0.247 0.222 0.188 0.176

Table 3.14 Parameters required to calculate buckling load parameter λ∗ (after Mikhasev and
Mlechka, 2018)

rc

rκ

rm′

rm′′

rm∗ λ∗
0 λ1 λ∗

B r′ λC λ′ λ∗
C

1.112

1.173

1.172

1.225
1.119 1.732 0.188 1.743 -0.390 1.576 0.553 1.591
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Table 3.15 Dimensionless parameters rm∗ , pn∗ , �b∗, λ∗ and critical force T∗
1 vs. induction B

(after Mikhasev and Mlechka, 2018).

B, mT Case rm∗ pn∗ �b∗ λ∗ T∗
1 , kN/m

0 (B) 1.712 0 1.22 1.398 9.728

30 (B) 1.282 0 1.59 1.573 10.99

60 (B) 1.147 0 2.45 1.668 11.71

90 (C) 1.172 0 - 1.717 12.21

150 (C) 1.064 0 - 1.791 12.90

180 (C) 1.062 0.900 - 1.815 13.13

210 (A) 1.060 0.770 2.71 2.621 13.28

modulus G is small) the critical buckling force T ∗
1 and parameters rm∗ , �b∗ are

calculated by equations corresponding to case (B), for a medium intensity of the
magnetic field, one has case (C), and for the induction B ≥ 200 mT (when the
sandwich stiffness becomes large), the required T ∗

1 , rm∗ , pn∗ , �b∗ are defined by
formulae from case (A). One can conclude that growing magnetic field results in
increasing the critical buckling force and rearrangement of the buckling modes as
well: a number of waves in the circumferential direction decreases while the rate of
localization of the buckling modes near the weakest generatrix increases.

It is obvious that the pattern of localized buckling mode is influenced by the rate of
inhomogeneity of axial load. To study this effect we consider the following example.

Example 3.14. Let t1(ϕ) = At exp
{−εϕ2

}
with a positive parameter ε specifying

the force variation in the circumferential direction. The geometrical dimensions of
the circular sandwich are the following: L = 2 m, R = 1 m, h1 = h3 = 0.5 mm,
h2 = 8 mm. The skins and core are made of the same materials as in the previous
examples. The calculations performed for the fixed induction B = 20 mT and
different values of ε revealed that the buckling occurs without formation of dents
in the circumferential direction (n∗ = 0) and the critical force T ∗

1 is determined by
equations corresponding to case (B). Table 3.16 displays that the wave number m∗

and the zeroth approximation of load parameter, λ∗0, are independent of ε, and the
remaining parameters are increasing functions of ε. As expected, the influence of
a parameter ε on the magnitude �b, specifying the rate of localization of buckling
modes near the generatrix ϕ = 0, is very strong, whereas this effect on the resulting
buckling force T ∗

1 is found to be weak.

The examples considered above have revealed that a laminated cylindrical shell
subjected to non-uniform axial compression may buckle in three quite different
modes. The first type of buckling modes (case A) may be approximated by a function
which rapidly oscillates and exponentially decays far away from the weakest line,
the second type of eigenmodes (case B) is given by an exponentially decaying



146 3 Elastic Buckling of Laminated Beams, Plates, and Cylindrical Shells

Table 3.16 Dimensionless parameters m∗, λ∗
0 , λ1, λ∗, �b∗ and critical buckling force T∗

1 vs.
parameter ε (after Mikhasev and Mlechka, 2018).

ε Case m∗ λ∗
0 λ1 λ∗ �b∗ T∗

1 , kN/m

0.4 (B) 14 1.487 0.742 1.538 1.651 10.739

0.9 (B) 14 1.487 1.101 1.562 2.477 10.909

1.5 (B) 14 1.487 1.414 1.584 3.198 11.058

2.5 (B) 14 1.487 1.819 1.611 4.128 11.250

4.5 (B) 14 1.487 2.432 1.653 5.538 11.542

function without oscillation, and the third one (case C) can not be represented by
an exponentially decaying function and is found by applying Fourier transform. In
the first two cases (A, B), the asymptotic formulae for the buckling modes and
corresponding critical buckling force were readily written down in the explicit form,
whereas for case (C), the second order differential equation with respect to Fourier
transform and the required eigenvalue were reduced. It was discovered that the pattern
of buckling modes depends not only on the geometrical dimensions of a shell, as
has been previously shown by Tovstik (1984); Tovstik and Smirnov (2001), but on
the shear compliance. In particular, the analysis of found solutions allowed us to
conclude that the most preferable buckling mode for a medium-length laminated
shell with a low reduced shear modulus (as compared with the reduced Young’s
modulus) corresponds to the second or third type of modes (case B or C).

The performed calculations have shown that the buckling formes for the MRE-
sandwich and its buckling resistance are very affected by magnetic field. Under action
of a weak magnetic field or without it, the MRE core turns out to be soft so that
the applied axial force generates transverse shear which leads to buckling without
formation of dents in the circumferential direction. However, increasing magnetic
field results in the reduction of shears and as a consequence, in the rearrangement of
buckling modes: the sandwich with large effective shear modulus prefer to buckle
with formation of waves in the circumferential direction. The analysis of numerical
calculations has also shown that the pattern of buckling mode is very influenced by
imperfection of the axial force: the higher the variation of the applied axial force is,
the larger the rate of localization of eigenforms becomes.

3.4 Laminated Cylinder Under Torsion1

The first analytical solution on buckling of a thin cylindrical shell under axial torsion
was obtained by Schwerin (1925). Considering a very long single-layer isotropic

1 This section is written in cooperation with I.R. Mlechka (Belarussian State University, e-mail:
ignat.mlechka@gmail.com)
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cylinder, a simple formula for the critical shear stress resultant was derived

T ∗
12 =

Eh

3
√
2(1− ν3/4)

(
h

R

)3/2

, (3.221)

where h,R,E, ν are the thickness, radius, Young’s modulus and Poisson’s ratio,
respectively. The critical torqueM∗

T and stress resultantT ∗
12 are linked by the equation

M∗
T = 2πR2T ∗

12. (3.222)

The buckling mode corresponding to M∗
T has the helical form with two waves in the

circumferential direction

w = C cos

[
4

√
h

(1− ν2)R

α1

R
− 2α2

R

]
. (3.223)

3.4.1 Short Review of the State of the Art

Equations (3.221) and (3.223) do not take into account the boundary conditions and
can not be applied for medium-length and short shells. The problem on buckling of
cylindrical shells of finite length under action of torsion torque is difficult because
it does not allow to satisfy all boundary conditions. As a rule, it is assumed the
buckling mode

w = C cos
(πα1

L

)
cos

[ n
R

(α2 + γα1)
]

(3.224)

which satisfies only the one condition w = 0 at α1 = ±L/2. It is seen that Eq.
(3.209) satisfies neither simple support nor clamp support conditions. But it may be
shown that

2πR∫
0

(
∂w

∂α1

)∣∣∣∣
α1=±L/2

dα2 =

2πR∫
0

(
∂2w

∂α2
1

)∣∣∣∣
α1=±L/2

dα2 = 0.

The boundary conditions for clamped and simply supported edges are satisfied in
the integral meaning.

The substitution of Eq. (3.224) into governing equations describing buckling of
a medium-length cylindrical shell results in the following equation for the critical
shear stress-resultant

T ∗
12 = kv

Eh

(1− ν2)5/8

(
h

R

)5/4(
R

L

)1/2

. (3.225)
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This equation with the factor kv = 0.69 was firstly derived by K. Mushtari in 1934.
Afterwards, Batdorf (1947); Batdorf et al (1947) and Darevskiy (1957) obtained
similar equation with factors kv = 0.705 and kv = 0.740, respectively.

The detailed investigations of the effect of different boundary conditions on the
critical value of torsion torque were performed by Alumae (1954) and Yamaki and
Kodama (1966) (s. also Yamaki, 1984). They have shown that the basic boundary
conditions influencing essentially on the critical torque are conditions for the normal
and axial displacements. Probably, the first study on the effect of initial imperfections
on the buckling of thin isotropic cylinders under torsion has been done by Loo (1954)
and Nash (1957) has additionally accounted large deflections.

As concerns buckling of anisotropic composite circular cylinders under torsion,
the intensive investigations of these problems in various statements started in the
beginning of the seventies (s. the review Tennyson, 1975). Based on the nonlin-
ear Donnell-type kinematic relations, linearly elastic material behavior and usual
lamination theory, Shaw et al (1983); Simitses et al (1985) analyzed buckling of
both perfect and imperfect laminated circular cylindrical thin shells subjected to a
uniform axial compression and torsion (individually applied and in combination).
In Simitses (1996), problems on buckling of moderately thick laminated shells are
analyzed; the analyzed papers were based on the first-order or higher-order shear
deformation shell theories with or without a shear correction factor. Results obtained
by these shell theories and by employing classical thin shell theory are compared
to determine the range of applicability of different approaches. Using the first-order
shear deformation theory with a shear correction factor of 5/6, Mao and Lu (1999)
have performed the buckling analysis of a cross-ply laminated cylindrical shell under
torsion subjected to mixed boundary conditions. They have shown that the mixed
boundary conditions yield appreciably lower buckling torque and less circumferen-
tial wave number than the completely clamped boundary conditions. Later, Mao and
Lu (2002) have analyzed the elastic-plastic buckling of cylindrical shells subjected
to torsion under various boundary conditions. Based on the shell theory including
anisotropy and transverse shear stiffness, Takano (2011) has investigated the effects
of anisotropy and transverse shear stiffness on buckling under pure torsion and under
combined axial compression. Comparing his own results with previous analyses, he
has concluded that the Donnell-type theory is not appropriate for studying buckling
of laminated shells and a more complex shell theory accounting transverse shear
stiffness must be used.

3.4.2 Buckling Modes and Critical Torque

In this subsection, we study buckling of a laminated cylindrical shell under the
torsional axial torque MT. The pre-buckling in-plane stress resultants T ◦

12 =
MT/(2πR), T ◦

11 = T ◦
22 = 0, and the governing equations (3.14), (3.15) take the

following form
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D

(
1− θh2

β
Δ

)
Δ2χ+

1

R2

∂2F

∂α2
1

− 2T ◦
12

∂2

∂α1α2

(
1− h2

β
Δ

)
χ = 0,

Δ2F =
Eh

R2

∂2

∂α2
1

(
1− h2

β
Δ

)
χ.

(3.226)

Let both edges α1 = Li be simply supported and have a infinite rigidity di-
aphragm inhibiting relative shears of layers along the edges. The appropriate bound-
ary conditions are specified by Eqs. (3.17) or (3.18). All geometrical parameters
L1 = −L/2, L2 = L/2, R2 and the shear stress-resultant T ◦

12 are constants. Then a
solution of Eqs. (3.226) may be found in the following explicit form

χ = χ0 cos
(πα1

L

)
cos

( n
R
[α2 + γα1]

)
,

F = F0 cos
(πα1

L

)
cos

( n
R
[α2 + γα1]

)
,

(3.227)

where γ is a slope ratio, and n is a number of waves in the circumferential direction.
Functions (3.227) may be presented as

χ =
1

2
χ0 [X+(α1, α2) +X−(α1, α2)],

F =
1

2
F0 [X+(α1, α2) +X−(α1, α2)],

(3.228)

where

X+(α1, α2) = cos

(
α1

R+

)
cos

(nα2

R

)
− sin

(
α1

R+

)
sin
(nα2

R

)
,

X−(α1, α2) = cos

(
α1

R−

)
cos

(nα2

R

)
− sin

(
α1

R−

)
sin
(nα2

R

)
,

1

R+
=
nγ

R
+
π

L
,

1

R−
=
nγ

R
− π

L
.

(3.229)

The functions X+(α1, α2), X−(α1, α2) are linearly independent in the domain
Λ = {−L/2 ≤ α1 ≤ L/2, 0 ≤ α2 < 2πR}. Then, substituting (3.228) into Eqs.
(3.226) and equating coefficients at these functions, one obtains two systems of
algebraic equations with respect to χ0 and F0. The first system is as follows{[(

n2

R2
+

1

R2
+

)2

+
h2θ

β

(
n2

R2
+

1

R2
+

)3
]

+
nT ◦

12

RR+

[
1− h2

β

(
n2

R2
+

1

R2
+

)]}
χ0 − 1

RR2
+

F0 = 0,

Eh

RR2
+

[
1 +

h2

β

(
n2

R2
+

1

R2
+

)]
χ0 +

(
n2

R2
+

1

R2
+

)2

F0 = 0.

(3.230)
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The second one has the same formwithR+ replaced byR−. The existence conditions
of a nonzero solutions of these systems result in the following two equations for the
shear stress-resultants

T
(+)
12 =

1

2n

[
EhL4R3

R3
+g

2
+

+
Dg2+R+(L

2R2β + θh2g+)

L4R3(L2R2β + h2g+)

]
, (3.231)

T
(−)
12 =

1

2n

[
EhL4R3

R3
+g

2
−

+
Dg2−R+(L

2R2β + θh2g−)

L4R3(L2R2β + h2g−)

]
, (3.232)

where
g± = π2R2 ± 2πLnRγ + L2n2

(
1 + γ2

)
, (3.233)

D is the reduced bending stiffness of the sandwich, and β, θ are the shear parameters
defined in Chapt. 2. It is obvious that Eqs. (3.231) and (3.232) give the same critical
value of the shear stress-resultant. Hence, one has the equation coupling parameters
n and γ,

T
(+)
12 (n, γ) = T

(−)
12 (n, γ). (3.234)

Equations (3.231) and (3.232) serve to determine unknown parameters n∗, γ∗ and
the critical buckling stress-resultant

T ∗
12 = min

n
T ◦
12[n, γ(n)] = T ◦

12[n
∗, γ(n∗)] = T ◦

12(n
∗, γ∗). (3.235)

Equations (3.231)-(3.235) contain the parameters θ and β taking into account trans-
verse shear in the shell. Because of these parameters, Eq. (3.235) is not reduced to
the explicit form like (3.225).

Example 3.15. Consider a thin cylindrical sandwich shell with the outermost and
innermost layers made of aluminium and the middle layer fabricated of epoxy. The
geometrical and physical parameters are the same as in Example 3.4. Thicknesses
hi are assumed to satisfy condition (3.47) which means that for any thickness h2
of the epoxy matrix the shell weight remains constant. Again, we set the problem
to determine the optimal thickness of the internal matrix resulting in the maximum
value of the buckling shear stress-resultant T ∗

12. The results of calculations of T ∗
12

and parametersn∗, γ∗ for different values of h2 are presented in Table 3.17. As seen,

Table 3.17 Dependence of the buckling shear stress-resultant T∗
12 and parameters n∗, γ∗ on

thickness h2 of the epoxy matrix.

h2, mm 0 0.1 0.2 0.5 0.7 0.8 1.0 1.1

n∗ 21 21 19 17 16 16 15 15

γ∗ 2 2 2 0 0 0 0 0

T∗
1 , N/mm 288.18 2999 322.10 358.11 370.08 372.58 367.27 361.62
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the sandwich with the thickness h2 = 0.8 mm of the epoxy matrix withstands the
greatest twisting load.

Example 3.16. Now we shall study the torsion induced buckling of three-, five-, and
seven-layered cylinders of the same length L = 1 m and radius R = 0.5 m with
MRE-layers. The layers with odd numbers are made of the ABS-plastic SD-0170,
and the ones with even numbers are MRE-1 with properties specified in Chapt. 2.
As well as in Example 3.10, the following conditions for thicknesses are assumed

• for a three-layered shell (N = 3),

h1 = h3 =
hpl
2
, h2 = hel;

• for a five-layered cylinder (N = 5),

h1 = h3 = h5 =
hpl
3
, h2 = h4 =

hel
2
;

• for a seven-layered sandwich (N = 7),

h1 = h3 = h5 = h7 =
hpl
4
, h2 = h4 = h6 =

hel
3
,

where hpl = 1 mm and hel = 8 mm are the total thicknesses of the plastic and
elastomer, respectively. Above conditions mean that the total weight of both the
plastic and elastomer remains invariant for all cases.

The problem is to explore the effect of an applied magnetic field and a number
of layers as well on the critical buckling stress-resultant T ∗

12. The detailed analysis
of this influence is presented in Tables 3.18 and 3.19 for the three-, five-, and
seven-layered shells. It is seen that for all variants under consideration, the buckling
stress-resultant T ∗

12 is a monotonically increasing function of the magnetic field
induction B. However, the impact of B on T ∗

12 is more significant for the sandwich
shell than for the five-, and seven-layered shells. So, for the three-layered shell,
applying the magnetic field with the induction of about 200 mT results in increasing
the buckling stress-resultant T ∗

12 up to 30%, whereas, for the shells with five and
seven laminas, these increments are only 3 and 4%, respectively. The wave number
n∗ and slope ratio γ∗ are less sensitive to magnetic field. For instance, n∗ = 6 for the
five-, and seven-layered shells, and γ∗ ≈ 0.47 and γ∗ ≈ 0.46 for the five-, and seven-
layered shells, respectively, at any level of the applied magnetic field. The additional
calculations shows that assembling multilayered shells with as much number of the
MRE-layers as possible and fixed the total weight of plastic and elastomer does not
give increasing the buckling shear stress-resultant. So, a seven-layered shell (with
three MRE cores) turns out to be less stiffen then the three-, and five-layered ones
(with one and two MRE cores, respectively) for any intensity of the magnetic field.
But, when comparing the shells with three and five layers, the five-layered sandwich
is more stable than the three-layered one at low level of the applied magnetic field
(B < 20 mT). On the contrary, if a MRE-based shell is under action of very strong
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Table 3.18 Critical buckling shear stress-resultant T∗
12 and the corresponding wave parameter n∗

and slope ratio γ∗ vs. magnetic field induction B for the sandwich cylindrical shell.

B, mT n∗ γ∗ T∗
12, N/m

0 7 0.522987 7942.30
10 7 0.525109 8296.41
20 6 0.488641 8539.79
30 6 0.489772 8735.90
40 6 0.490627 8908.54
50 6 0.491281 9061.97
60 6 0.491785 9199.46
70 6 0.492173 9323.58
80 6 0.492473 9436.38
90 6 0.492702 9539.51
100 6 0.492877 9634.30
110 6 0.493006 9721.87
120 6 0.493099 9803.12
130 6 0.493163 9878.82
140 6 0.493202 9949.62
150 6 0.493221 10016.1
160 6 0.493222 10078.7
170 6 0.493209 10137.8
180 6 0.493184 10193.7
190 6 0.493149 10246.9
200 6 0.493104 10297.5

Table 3.19 Critical buckling shear stress-resultants T∗
12 vs. magnetic field induction B for five-,

and seven-layered thin cylindrical shells.

B, mT T∗
12 for 5-layered shell T∗

12, N/m, for 7-layered shell

0 8556.24 7677.34
20 8583.37 7704.66
40 8610.48 7731.97
60 8637.59 7759.28
80 8664.68 7786.59
100 8691.77 7813.89
120 8718.86 7841.2
140 8745.93 7868.49
160 8773.00 7895.79
180 8800.06 7923.08
200 8827.11 7950.37

magnetic field, then the variant of three-layered shell with one thick MRE core
becomes more optimal.

The choice of the optimal number of the MRE-layers under modelling of adaptive
thin-walled MRE-structures depends upon many factors: geometrical parameters of
a structure, mechanical properties of materials utilized for assembling a shell, type



References 153

of loading, boundary conditions, and an intensity of applied magnetic field. So, as
opposed to the last example, the outcomes of the problem considered in Example
3.10 showed that for the MRE-sandwich under axial compression the total number
of laminas equaled five (with two MRE-cores) turns out to be more optimal at all
size of changing of the magnetic field induction.

Examples 3.10, 3.15 and 3.16 considered above have demonstrated that MREs
embedded between elastic layers provide for a sandwich a wide range of mechanical
properties (shear modulus, buckling force) when subjected to different magnetic
field levels. The correct choice of a number of MRE-layers in a sandwich structure
with a fixed total thickness and weight of an adaptive material (MRE) and basic
components (here, a plastic) allows us to design a thin-walled structure with the
bearing capacity being controlled by virtue of an applied magnetic field. In Chapt.
5, we will show that introducing the MRE-cores into a sandwich permits one solves
another very important problem, an efficient suppression of vibrations in thin-walled
structures with adaptive visco-elastic properties.
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Chapter 4

Free Vibrations of Elastic Laminated Beams,

Plates and Cylindrical Shells

Abstract In this chapter, based on the equivalent single layer model for thin laminated
members, natural modes and corresponding eigenfrequencies for laminated elastic
beams plates and cylindrical shells are studied taking into account shears. At first,
elastic vibrations of laminated beams are analyzed in Sect. 4.1, the emphasis being
made on non-uniformly stressed beams contacting with an elastic inhomogeneous
medium. Then, in Sect. 4.2, the eigenmodes and frequencies of elastic rectangular
plates are analyzed for two variants of boundary conditions: if all edges are simply
supported and have diaphragms preventing shears, the boundary-value problem is
solved in the explicit form; and if one of edges is free of a diaphragm, the solution
of a corresponding boundary-value problem is constructed in the form of the su-
perposition of the main stress-strain state and the edge effect integrals accounting
for the edge shears. Section 4.3 is devoted to vibrations of a circular cylindrical
shell of an arbitrary length with constant geometrical and physical parameters. In
Sect. 4.4, the localized natural modes for a medium-length laminated cylinder is
investigated. And finally, Sect. 4.5 contains the problem on free localized vibrations
of a laminated cylindrical shell under axial forces no-uniformly distributed in the
circumferential direction. In the last two sections, natural modes are constructed by
using the asymptotic method. In all problems, the effect of shears on the natural
frequencies is analyzed. Examples on free vibrations of laminated cylinders and
panels assembled from different materials are considered.

4.1 Laminated Beams

In this section, we study free elastic vibrations of laminated beams. Particular at-
tention will be paid to the problem on free vibrations of non-homogeneous beams
with low reduced shear modulus. We will call a beam non-homogeneous if it has
geometrical and/or physical parameters dependent of an axial coordinate, or if it
is non-uniformly pre-stressed by compressive or tensile forces. Geometrically in-
homogeneous beams are beams with the cross-sectional sizes (width, high, radius)
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varying along the axis. Physically non-uniform beams are beams in which the mate-
rial properties (elastic moduli, material density) depend on the axial coordinate. This
heterogeneity can be induced by the action of external physical fields (temperature,
magnetic field, etc.). Beams with functionally graded materials (FGM) along the
beam axis are often considered as well. If the beam is in contact with an inhomo-
geneous elastic medium, then the dynamic reaction of the beam is also nonuniform
along its axis. Within the framework of any deformation model for a non-uniform
beam and regardless of the nature of inhomogeneity, the differential equations gov-
erning vibrations of similar beams contain variable coefficients, which significantly
complicates the problem.

It should be noted that despite the complexity of the problems, vibrations of
inhomogeneous beams were studied by many researchers. But for all that, a major-
ity from numerous studies refer to isotropic single layer beams. Cranch and Adler
(1956) and Suppiger and Taleb (1956) were probably the first who in 1956 investi-
gated free bending vibrations of isotropic beams with variable section. Assuming the
linear (Cranch and Adler, 1956) or exponential (Suppiger and Taleb, 1956) law of
variation of the cross-section along the beam axis, they constructed exact solutions
for beams with different boundary conditions. Later, applying different approxi-
mate analytical or numerical methods, a numerous investigations on free vibrations
of isotropic beams with variable section, including tapered ones and beams with
steppered sections, were carried out (s., among others, Conway and Dubil, 1965;
Carnegie and Thomas, 1967; Sanger, 1968; Goel, 1976; Roy and Ganesan, 1994;
Zhou and Cheung, 2000, 2001; Naguleswaran, 2002; Ece et al, 2007; Firouz-Abadi
et al, 2007; Jaworski and Dowell, 2008). Free vibration analysis of geometrically
no-uniform beams subjected to the axial compression or tension were made by Sato
(1980); Naguleswaran (2003); Kukla and Zamojska (2007). The effect of uniform
and non-uniform elastic foundations on natural frequencies and modes was exam-
ined by Lee and Ke (1990); Wang (1991). Bending vibrations of FGM beams with
variation of material properties were studied in (Murin et al, 2010; Huang and Li,
2010; Alshorbagy et al, 2011; Mohanty and Rout, 2012).

As for laminated beams, there are only a few papers considering vibrations
taking into account initial axial stresses or response of a surrounding medium or
foundation. Li et al (2008, 2016) investigated free vibration and buckling behaviors
of axially loaded laminated composite beams having arbitrary lay-up. Using the
dynamic stiffness method (Li et al, 2008) and based on a unified higher-order shear
deformationbeam theory (Li et al, 2016), they analyzed the influences of axial forces,
shear deformation and rotary inertia on the natural frequencies, buckling loads and
mode shapes. Using a three-node shear flexible beam element, Patel et al (1999)
studied nonlinear free flexural vibrations of laminated orthotropic beams resting
on a two parameter elastic foundation. Similar problem was considered by Jafari-
Talookolaei and Ahmadian (2007). Using FEM on the basis of Timoshenko beam
theory, they investigated free vibrations of a cross-ply laminated composite beam
on elastic Pasternak foundation. The effect of viscoelastic support on free vibrations
of laminated fiberglass beam was examined by Koutsawa and Daya (2007). Large
amplitude free vibration analysis of laminated composite thin beams on linear and
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nonlinear elastic foundations was presented by Malekzadeh and Vosoughi (2009);
Baghani et al (2011).

In the aforementioned papers, composite laminated beams were assumed to
be shear deformable. However, axial stresses (Li et al, 2008, 2016) and elas-
tic/viscoelastic properties of foundations (Patel et al, 1999; Jafari-Talookolaei and
Ahmadian, 2007; Koutsawa and Daya, 2007; Malekzadeh and Vosoughi, 2009;
Baghani et al, 2011) were considered to be constant along the beam axis. Appar-
ently, Farghaly and Gadelrab (1995); Dong et al (2005) are among the few available
studies in which laminated beams are geometrically heterogeneous in the axial di-
rection. Based on the first order shear deformation theory, they performed vibration
analysis of stepped laminated composite Timoshenko beams. We also refer readers
to the reviews (Hajianmaleki and Qatu, 2013; Sayyad and Ghugal, 2017), which give
some insight of state of the art on dynamics of laminated elastic beams.

4.1.1 Governing Equation

Let us consider a laminated beam consisting of N elastic laminas. It is assumed that
the beam is compressed by the axial force F ◦ and/or rest on an elastic foundation
with the modulus of substrate reaction cf . The beam is characterized by the total
thickness h =

∑N
j=1 hj , bending stiffness EI and linear density ρl. If the beam

cross section has a rectangular form with hight h and width b, then I = bh3/12. In
the common case, F ◦, ρl, cf may be functions of the coordinate α1 (0 ≤ α1 ≤ L).
We apply here again the ESL theory stated in Chapt. 2. Taking into account the
response of elastic foundation and the dependence of the axial force on α1, Eq.
(2.153) governing dynamics of a multi-layered beam is rewritten as

EIη3

(
1− θh2

β

∂2

∂α2
1

)
∂4χ
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1

− ∂
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[
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(
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β
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∂α2
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)
∂2χ

∂t2
= 0,

(4.1)

where the reduced Young’s modulus E and shear parameters β, θ are calculated by
equations derived in Chapt. 2 with ν = νk = 0.

For the Winkler foundation, the spring constant cf is only influenced by the elastic
properties of the foundation.Assuming the alternative model represented in Chapt. 2,
s. Eq. (2.152), then

cf = αfbπn/L, αf =
2Ef(1− νf)

(1 + νf)(3 − 4νf)
, (4.2)

where n is the wave number in the functionχ = χ0 sinπnα1/L describing the beam
response and Ef , νf are the Young’s modulus and Poison’s ratio of the foundation.
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Remark 4.1. Equation (4.1) may be used if E, I, β, θ and η3 are functions of α1.
The error of the equation depends on the index of variation of these functions by α1.
The higher this index is, the larger the error of Eq. (4.1).

4.1.2 Simply Supported Beam with Constant Parameters

Let the beam edges be simply supported and all parameters, including F ◦, ρ0, cf ,
be constants. Then the solution of (4.1) satisfying the boundary conditions (3.3) or
(3.4) has the simple form

χ = χ0 sin
πnα1

L
eiωt, (4.3)

where L is the beam length, n is the number of waves and ω is the natural frequency.
The substitution of (4.3) into (4.1) results in the natural frequency

ω =
1√
ρl

√
EIη3π4n4(1 + θKn2)

L4(1 +Kn2)
+
F ◦π2n2

L2
+ cf , (4.4)

where

K =
π2h2

βL2
.

If the foundation spring constant is represented by (4.2), then

cf =
αfbπn

L
,

and for the Winkler foundation cf is a constant independent of n.
If F ◦ > 0, then the beam is stretched, and for F ◦ < 0, it is compressed. In the

last case, it is assumed that |F ◦| < F ∗
cr, where

F ∗
cr = max

n

{
π2n2EIη3(1 + θKn2)

L2(1 +Kn2)
+

cfL
2

π2n2

}
(4.5)

is the critical buckling force. For cf = 0, it coincides with Eq. (3.11) derived in
Chapt. 3. The increase of the tensile force F ◦ and/or the spring constant cf leads to
the growth of the natural frequencies for any number n. In contrast, increasing the
compressive force F ◦ results in decreasing the eigenfrequencies; herewith, ω → 0
as |N◦| → N∗

cr.
Other important conclusions are the following:

a) the incorporation of the shear parameterK into the ESL beam model leads to the
reduction of the natural frequencies and

b) the effect of K on the natural frequencies is weak for low-frequency vibrations
and, in particular, for very long beams, but it becomes noticeable for higher modes
(for large n).



4.1.3 Vibrations of Pre-stressed Beams on Elastic Foundation

Let F ◦, cf , ρl be functions of α1. The parameter β depends on the correlation
between the reduced Young’s and shear moduliE,G and may vary in a wide range.
We consider here the case whenG ∼ h∗E, then β ∼ h∗, where h∗ = h/L is a small
parameter (the beam is assumed to be long). The parameter θ is also small. So, for a
single layer beam θ = 1/85, and for a multi-layered one it may be much less. Here, it
is assumed that θ ∼ hς∗, 1/2 < ς < 1. We introduce some assumptions concerning
the elastic foundation and axial stress resultant. Let the foundation be soft and the
axial force be sufficiently weak so that the following relations hold

cf(α1) = h∗
Ebη3
12L

k(x), F ◦ = h2∗
LEbη3
12

f1(x), (4.6)

where x = α1/L is a dimensionless coordinate. If f1(x) > 0 for any x ∈ [0, 1],
then the force F ◦ is extensional in any point of the beam; when f1(x) < 0 in some
points from the segment [0, 1], the force F ◦ is compressive in this points, but in this
case it is assumed that maxx |f1(x)| < fcr, where fcr is the critical value resulting
in buckling of the beam (s. Chapt. 3).

In the case of free vibrations, the displacement function χ may be found in the
form of

χ = LX(x)eiωt, (4.7)

where ω is the natural frequency. Let us introduce a dimensionless parameter λ and
the characteristic time tc

λ = t2cω
2, tc =

√
12ρlmL2

h∗Ebη3
, (4.8)

where ρlm = max ρl(Rx) is a maximum value of the reduced linear density for a
nonhomogeneous beam.

Then Eq. (4.1) is rewritten as follows

−h3+ς
∗ τ

d6X

dx6
+ h2∗

d4X

dx4
− h∗

d

dx

[
f1(x)

(
1− h∗κ

d2

dx2

)
dX

dx

]

+k(x)

(
1− h∗κ

d2

dx2

)
X − λr(x)

(
1− h∗κ

d2

dx2

)
X = 0,

(4.9)

where
τ = h1−ς

∗ θβ−1, κ = h∗β
−1, r(x) = ρl(Lx)ρ

−1
lm . (4.10)
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Below, it will be shown that the conclusion b) becomes not valid for a medium-
length laminated cylindrical shell.
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It is assumed that κ, τ , f1(x), k(x), r(x) ∼ 1 as h∗ → 0. Equation (4.9) is
the singular perturbed differential equation with variable coefficients. In common
case, it does not admit a solution in the explicit form. However, from all variety
of eigenforms, one can construct an asymptotic solution of a high variability and

satisfying the condition dX/dx ∼ h
−1/2
∗ at h∗ → 0.

We apply the Wentzel-Kramers-Brillouin method (WKB-method) and seek a
solution in the form of series

X =
∞∑
j=0

h
j/2
∗ Xj(x) exp

{
h
−1/2
∗

∫
g(x)(d)x

}
,

λ = λ0 + h∗λ1 + . . . ,

(4.11)

where Xj , g(x) are infinitely differentiable functions of x ∈ [0, 1]. It should be
noted that a similar asymptotic approach has been applied by Firouz-Abadi et al
(2007) to study free vibrations of an isotropic single layer Euler-Bernoulli beam
of variable-cross-section with and without axial forces. They gave a compact third-
order WKB-approximation for the mode shapes and found the corresponding natural
frequencies.

Let us substitute (4.11) into Eq. (4.9) and equate coefficients at the same powers

of h1/2∗ . Then we arrive at the series of equations. In the zeroth-order approximation
(at j = 0), one has

F(g, x)X0 = 0. (4.12)

where

F(g, x) ≡ g4 − f1(x)g
2(1− κg2) + k(x)(1 − κg2)− λ0r(x)(1 − κg2). (4.13)

We will find the natural frequencies satisfying the inequality

λ0r(x) > k(x) (4.14)

for any x ∈ [0, 1]. Then, resolving the equation F(g, x) = 0 with respect to g, one
obtains

g1, 2 = ±iϕ1(x), g3, 4 = ±ϕ2(x), (4.15)

ϕ1(x) =

√
κλ0r − κk − f1 +

√
(κk − f1 − κλ0r)2 + 4(λ0r − k)

2(1 + κf1)
,

ϕ2(x) =

√
−(κλ0r − κk − f1) +

√
(κk − f1 − κλ0r)2 + 4(λ0r − k)

2(1 + κf1)
,

(4.16)

where ϕ1(x), ϕ2(x) > 0 for any x ∈ [0, 1].
In the first-order approximation (j = 1), we get the following equation

F(g, x)X1 + G[g(x), x]X ′
0 +

[
1

2
G′ + κk′g − κλ0r

′g

]
X0 = 0, (4.17)



4.1 Laminated Beams 163

where the prime means the differentiation by x, and

G[g(x), x] = ∂F(g, x)

∂g
. (4.18)

Owing to (4.15) and (4.16),F [gi(x), x)] ≡ 0 and Eq. (4.17) results in the differential
equation by X0 which has the following general solution

X0 =
c√|G[g(x), (x)]| exp

[
κ

∫
g(λ0r

′ − k′)dx

]
(4.19)

with an arbitrary constant c.
Considering the higher-order approximations (j ≥ 2), one can get a sequence of

differential equations by Xj−1 with parameters λj−1. Let us interrupt this process
and consider only the first two approximations.Taking into account (4.15) and (4.16),
the general solution of the differential equation (4.9) may be written as follows:

X0 =
c1√

|G1(x)|

⎧⎨
⎩cos

⎡
⎣h−1/2

∗

x∫
0

ϕ1(x)dx+ I1(x)

⎤
⎦ +O

(
h
1/2
∗

)⎫⎬
⎭

+
c2√

|G1(x)|

⎧⎨
⎩sin

⎡
⎣h−1/2

∗

x∫
0

ϕ1(x)dx+ I1(x)

⎤
⎦ +O

(
h
1/2
∗

)⎫⎬
⎭

+
c3√

|G2(x)|

⎧⎨
⎩exp

⎡
⎣−h−1/2

∗

x∫
0

ϕ2(x)dx− I2(x)

⎤
⎦ +O

(
h
1/2
∗

)⎫⎬
⎭

+
c4√

|G2(x)|

⎧⎨
⎩exp

⎡
⎣h−1/2

∗

x∫
1

ϕ2(x)dx+ I2(x)

⎤
⎦ +O

(
h
1/2
∗

)⎫⎬
⎭ ,

(4.20)

where

I1(x) = κ

∫
ϕ1(x)[λ0r

′(x)− k′(x)]dx,

I2(x) = κ

∫
ϕ2(x)[λ0r

′(x)− k′(x)]dx,

G1(x) = G[ϕ1(x), x], G2(x) = G[ϕ2(x), x],

(4.21)

and ci are constants which are found from the boundary conditions.
We assume here the following restrictions

G1(x) �= 0, G2(x) �= 0 (4.22)

for any x ∈ [0, 1]. The point x∗ ∈ [0, 1], for which G1(x
∗) = 0 or G1(x

∗) = 0, is
generally called the turning point. The general solution (4.20) is the superposition of
the integrals describing the basic dynamical stress state of the beam. It is interesting
to note that the index of variation (see the definition given by Eq. (2.66)) of these
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basic integrals is equal to ι1 = 1/2 which coincide with the index of variation for
the simple edge effect introduced above in Subsect. 2.1.13 for a shell. However, the
integrals composing (4.20) do not depend on the parameter τ which appears at the
highest derivative in Eq. (4.9). In other words, the general solution (4.20) defines the
basic dynamic stress state of a high variability and does not take into account the
special edge effects with the index of variation ι = (1 + ς)/2 > ι1 = 1/2, where
1/2 < ς < 1. The omitted integrals define shears in a vicinity of the edges and
may be incorporated in the general solution by considering the special edge effect
equation

−h1+ς
∗ τ

d6X

dx6
+

d4X

dx4
= 0 (4.23)

and, afterwards, constructing the higher-order approximation at j = 2. The edge
effect equation (4.23) gives two additional integrals,

X5 = c5 exp

⎡
⎢⎣−h−

1 + ς

2
∗

x√
τ

⎤
⎥⎦, X6 = c6 exp

⎡
⎢⎣−h−

1 + ς

2
∗

1− x√
τ

⎤
⎥⎦. (4.24)

As seen from (4.10), the behavior of the shear edge effect integrals depends on the
correlation between the shear parameters β, θ and the beam dimensions h, L.

In what follows, we disregard corrections due to the shear edge effect integrals
and have to choose the basic boundary conditions corresponding to the basic stress
state. As an example, we will consider the boundary conditions of the rigid clamping
group (3.28) and (3.29). For this group, the basic boundary conditions are the
following:

X ′
0 = 0, X0 − h∗κX

′′
0 = 0 at x = 0, 1. (4.25)

The substitution of the general solution (4.20) into (4.25) results in the homoge-
neous system of algebraic equations with respect to constants ci (i = 1, ..., 4):

ACT = 0, (4.26)

where C = (c1, c2, c3, c4) is the three-dimensional vector, and A is the 4×4 - matrix
with the elements

a11 =
1 + κϕ2

1(0)√
|G1(0)|

cos[I1(0)], a12 =
1 + κϕ2

1(0)√
|G1(0)|

sin[I1(0)],

a13 =
1− κϕ2

2(0)√
|G2(0)|

exp [−I2(0)], a14 = 0,

a21 = − ϕ1(0)√
|G1(0)|

sin[I1(0)], a22 =
ϕ1(0)√
|G1(0)|

cos[I1(0)],

a23 = − ϕ2(0)√
|G2(0)|

exp [−I2(0)], a24 = 0,
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a31 =
1 + κϕ2

1(1)√|G1(1)|
cos[Θ1(1)], a32 =

1 + κϕ2
1(0)√|G1(0)|

sin[Θ1(0)],

a34 = 0, a34 =
1− κϕ2

2(1)√
|G2(1)|

exp [Θ2(1)],

a41 = − ϕ1(1)√
|G1(1)|

sin[Θ1(1)], a42 =
ϕ1(1)√
|G1(1)|

cos[Θ1(0)],

a43 = 0, a44 =
ϕ2(1)√
|G2(1)|

exp [I2(1)],

(4.27)

depending on the eigenvalue λ0. In Eqs. (4.27)

Θ1(x) =
1

h
1/2
∗

x∫
0

ϕ1(x)dx+ I1(x). (4.28)

The transcendental equation detA = 0 serves for determining the series of unknown

eigenvalues λ0 = λ
(n)
0 , n = 1, 2, . . ..

Consider the particular case when the beam and foundation are uniform, and the
axial stress resultant is a function of α1. Then r = 1, k are constants, f1 = f1(x),
and I1 = I2 = 0 for any x ∈ [0, 1]. For this case the equation detA = 0 is reduced
to the following

tan

⎧⎨
⎩h−1/2

∗

1∫
0

ϕ1(x)dx

⎫⎬
⎭ =

δ20δ11ϕ10ϕ21 + δ10δ21ϕ20ϕ11

δ10δ11ϕ20ϕ21 − δ20δ21ϕ10ϕ11
, (4.29)

where

δ10 = 1 + κϕ2
1(0), δ11 = 1+ κϕ2

1(1),

δ20 = 1− κϕ2
2(0), δ21 = 1− κϕ2

2(1),

ϕ10 = ϕ1(0), ϕ11 = ϕ1(1), ϕ20 = ϕ2(0), ϕ21 = ϕ2(1),

(4.30)

and the functions ϕi(x) are specified by (4.16). When deriving Eq. (4.29), we have
allowed for the following limiting correlations

lim
h∗→0

h
−j/2
∗ exp

⎧⎨
⎩−h−1/2

∗

1∫
0

ϕ2(x)dx

⎫⎬
⎭ = 0,

lim
h∗→0

h
−j/2
∗ exp

⎧⎨
⎩h−1/2

∗

0∫
1

ϕ2(x)dx

⎫⎬
⎭ = 0

(4.31)

valid for any integer j = 0, 1, . . ..
Constants ci are defined as follows
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c2 = −δ10ϕ20

δ20ϕ10
c1, c3 = −

√∣∣∣∣G2(0)

G1(0)

∣∣∣∣ δ10δ20
c1,

c4 =

√∣∣∣∣G2(1)

G1(1)

∣∣∣∣ ϕ11

ϕ21

⎧⎨
⎩sin

⎡
⎣ 1

h
1/2
∗

1∫
0

ϕ1(x)dx

⎤
⎦

+
δ10ϕ20

δ20ϕ10
cos

⎡
⎣ 1

h
1/2
∗

1∫
0

ϕ1(x)dx

⎤
⎦
⎫⎬
⎭ c1.

(4.32)

To analyse the effect of the shear parameter κ and variable axial force on the natural
frequencies we will present an example.

Example 4.1. Let f1 = 1 + εx be the linear function of x, where ε > −1. It is
seen from Eqs. (4.16) that f1 < κ(λ0 − k). We remind that eigenvalues defined by
Eq. (4.29) have to satisfy the inequality, s. Eq. (4.14),

λ
(n)
0 > k, n = 1, 2, . . . (4.33)

Then the first natural frequency ω =

√
λ
(1)
0 t−1

c with λ
(1)
0 satisfying (4.33) might

be higher than one or several the lowest eigenfrequencies. Table 4.1 displays the

first five eigenvalues λ(n)0 satisfying (4.33) versus the shear parameter κ for k = 1,
ε = 1, h∗ = 0.01. One can see that the influence of the shear parameter κ on

the first eigenvalue λ(1)0 is weak, but it increases together with the number n. The

series of eigenvalues λ(n)0 for n = 1, 2, . . . , 5 and different values of a parameter ε
is shown in Table 4.2. The calculations were performed at κ = 1, k = 1, h∗ = 0.01.

As seen that for any fixed number n each eigenfrequency λ
(n)
0 growths together

with a parameter ε characterizing the rate of inhomogeneity of the axial force, this
frequency increment being greater for a large number n.

It is well known that growing the compressive pre-buckling axial force leads to very
quick decreasing the lowest eigenfrequency. Thus, one may conclude that the first

Table 4.1 Eigenvalues λ(n)
0 vs. shear parameter κ.

κ 0.0 0.5 1.0 2.0

λ
(1)
0 1.225 1.198 1.186 1.173

λ
(2)
0 2.052 1.851 1.771 1.701

λ
(3)
0 3.928 3.085 2.825 2.621

λ
(4)
0 7.552 5.004 4.390 3.944

λ
(5)
0 13.858 7.662 6.477 5.668
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Table 4.2 Series of eigenvalues λ(n)
0 vs. parameter ε.

n 1 2 3 4 5
ε = 1

λ
(n)
0 1.186 1.771 2.825 4.390 6.477

ε = 2

λ
(n)
0 1.231 1.945 3.214 5.082 7.560

ε = 3

λ
(n)
0 1.275 2.110 3.582 5.739 8.587

eigenvalue λ
(1)
0 defined by our asymptotic procedure may do not equal the lowest

natural frequency for the axially compressed laminated beam.

4.2 Laminated Plates

Consider a laminated rectangular plate with thickness h and sides 0 ≤ α1 ≤ L1

and 0 ≤ α2 ≤ L2. The plate is pre-stressed by the shear forces yielding in-plane
stresses T ◦

11, T
◦
22, T

◦
12. The governing equations for free vibrations of a pre-stressed

plate resting on an elastic foundation may be easily obtained from Eqs. (3.23) by
introducing additional terms accounting the inertia forces and response of an elastic
foundation

D

(
1− θh2

β
Δ

)
Δ2χ−

(
ΔT − cf − ρ0h

∂2

∂t2

)(
1− h2

β
Δ

)
χ = 0, (4.34)

were cf is the spring constant for the elastic foundation and

ΔT = T ◦
11

∂2

∂α2
1

+ 2T ◦
12

∂2

∂α1∂α2
+ T ◦

22

∂2

∂α2
2

. (4.35)

The above equations should be supplemented by the equation

1− ν

2

h2

β
Δφ = φ, (4.36)

for the shear function φ and the boundary conditions as well. We will consider here
only the simple support group including the boundary conditions (2.111) or (2.113).

For the first variant of the boundary conditions (when all the edges have a di-
aphragm inhibiting relative shear)

χ = Δχ = Δ2χ =
∂φ

∂αi
= 0 at αi = 0, Li, i = 1, 2, (4.37)
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one can set φ = 0. For the second variant (diaphragm is absent at least on the one
edge α1 = 0) (

1− h2

β
Δ

)
χ = 0,

∂2

∂α2
1

(
1− h2

β
Δ

)
χ = 0,

(
∂2

∂α2
1

+ ν
∂2

∂α2
2

)
χ− (1− ν)

∂2φ

∂α1α2
= 0,

2
∂2χ

∂α1∂α2
+
∂2φ

∂α2
1

− ∂2φ

∂α2
2

= 0 at α1 = 0

(4.38)

the function φ turns out to be coupled to the displacement function χ and should be
taken into account when constructing the edge effects.

4.2.1 Simply Supported Plate with Diaphragm on Edges

At first, we will consider variant (4.37)of the boundary conditions. Let all coefficients
in Eq. (4.34) be constants, and the shear stress resultant T ◦

12 is equal to zero. Then
the solution of the linear boundary-value problem (4.34), (4.37) is easily found as

χ = χ0eiωt sin
πnα1

L1
sin

πmα2

L2
, (4.39)

where n,m are numbers of semi-waves in the α1- and α2-directions, respectively,
ω is the natural frequency, and χ0 is a constant. The substitution of (4.39) into Eq.
(4.34) leads to the following formula for the frequency

ω2 =
π4D

ρ0hL4
2

Λ, (4.40)

where

Λ =
δ2nm(1 + θKδnm)

1 +Kδnm
+ t◦1e

2n2 + t◦2m
2 + kf ,

K =
π2h2

βL2
2

, δnm = e2n2 +m2, e =
L2

L1
, t◦i =

L2
2

π2D
T ◦
ii

(4.41)

The equation for kf depends on the accepted model for the elastic foundation. For
the Winkler foundation model can be assumed

kf =
L4
2

π4D
cf (4.42)

and for the model represented by Eq. (2.137) one has
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kf =
L3
2αf

π3D
δ1/2nm , (4.43)

where αf is defined by (4.2).
It is obvious that for large numbers n,m, the Winkler model gives understated

natural frequencies when comparing to the model represented by Eq. (2.152). It is
also seen that the tensile initial stresses (T ◦

ii > 0) raise eigenfrequencies and the
compressive ones (T ◦

ii < 0) reduce them. In the last case, the magnitudes |T ◦
ii| are

to be less of the critical buckling values (s. Chapt. 3). Assuming the shear parameter
K to be small, formula (4.41) may be rewritten in the following form

Λ = δ2nm
[
1 + δ−2

nm(t◦1e
2n2 + t◦2m

2 + kf)−K(1− θ)δnm + O
(
K2
)]
. (4.44)

It shows that ignoring shear results in overstating values for the natural frequencies.

4.2.2 Simply Supported Plate Without Diaphragm on Edges

Now, we consider the combination of the simple support conditions (4.37)and (4.38),
herewith, the edges α1 = 0, L1 (without diaphragm) satisfy conditions (4.38), and
the edgesα2 = 0, L2 (with the diaphragm) to Eqs. (4.37). In this case, the boundary-
value problem (4.34), (4.36)-(4.38) does not admit the explicit form of a solution.
It may be found by using some numerical method. For instance, a solution may be
represented by an infinite series of beam functions or by the sine- and cosine-series
expansions in α1 and α2. But we, assuming the shear parameter K as a small one,
will apply to the asymptotic approach and construct a solution for low-frequency
vibrations in the form of the superposition of the main stress state and the edges
effect integrals. This approach will permit us to obtain a simple asymptotic equation
for eigenfrequencies and evaluate the effect of shear inside of the plate and in a
neighbourhood of the edges as well.

Consider the case when T ◦
ij = cf = 0. Let a parameter

μ2 =
h2

βR2
. (4.45)

be small, whereR is the characteristic size (one of the lengthesL1, L2 or (L1L2)
1/2).

The required functions satisfying (4.37) are south in the form:

χ = RX(x1) sin
πmx2
l2

eiωt, φ = μυ1RS(x1) cos
πmx2
l2

eiωt, (4.46)

where xi = αi/R, li = Li/R, υ1 > 0, S,X ∼ 1 at μ → 0, and ω is the natural
frequency.

The substitution of (4.46) into (4.34) and (4.36) yields
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−θμ2

(
d6X

dx61
− 3δ2m

d4X

dx41
+ 3δ4m

d2X

dx21
− δ6mX

)

+
d4X

dx41
− 2δ2m

d2X

dx21
+ δ4mX − λX + μ2λ

(
d2X

dx21
− δ2mX

)
= 0

(4.47)

and
d2S

dx21
=

(
1

μ2

2

1− ν
+ δ2m

)
S. (4.48)

Here

δm =
πm

l2
, λ =

ω2

ω2
c

, ω2
c =

D

ρ0hR4
, (4.49)

where ωc is the characteristic frequency. The boundary conditions (4.38) for X(x1)
and S(x1) on the edges x1 = 0, l1 become as follows

X − μ2

(
d2X

dx21
− δ2mX

)
= 0,

d2X

dx21
− μ2 d2

dx21

(
d2X

dx21
− δ2mX

)
= 0 (4.50)

d2X

dx21
− νδ2mX + μ2(1− ν)δm

dS

dx1
= 0, (4.51)

2δm
dX

dx1
+ μ2

(
d2S

dx21
+ δ2mS

)
= 0. (4.52)

Although a parameter θ is small, we assume here that θ ∼ 1. Consider Eq. (4.48). It
has the following general solution

S(x1) = c1e
− 1

μ
γx1

+ c2e
− 1

μ
γ(l1 − x1)

, (4.53)

where c1, c2 are constants, and

γ =

√
2

1− ν
+ μ2δ2m. (4.54)

Function (4.53) is the superposition of the two integrals which specify the shear edge
effects near the ends x1 = 0 and x1 = l1. But apart from these integrals there are
another pair of the edge effect integrals which embrace more narrow regions near the
plate edges. These integrals are defined from an additional equation which is easily
derived from Eq. (4.47). Let dz/dx1 ∼ μ−ι, where ι > 0. The asymptotic analysis
of all summands in Eq. (4.47) gives ι = 1, the basic terms leading to the following
additional equation

θμ2 d6X

dx61
− d4X

dx41
= 0. (4.55)

It is obvious that only two integrals of this equation have the properties of the edge
effect integrals. Their superposition gives the following general solution
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X(e) = c3e
− 1

μ
√
θ
x1

+ c4e
− 1

μ
√
θ
(l1 − x1)

, (4.56)

where c3, c4 are arbitrary constants. It is seen that due to the smallness of θ, func-
tion (4.56) decreases faster than integral (4.53).

We seek a solution of the boundary-value problem (4.47), (4.50)-(4.52) in the
following form

X = X(m)(x1) + μυ2X(e)(x1), X(m), X(e) ∼ 1, (4.57)

λ = λ0 + μλ1 + . . . , (4.58)

where X(m) is also expanded into the series

X(m) = X0(x1) + μX1(x1) + . . . (4.59)

with functions Xi satisfying the condition X ′
i ∼ Xi. Here and below, the prime {′}

means the differentiation with respect to x1.
Let us substitute (4.57) into the boundary conditions (4.51), (4.52) and compare

the main terms. Taking into account the estimates X ′
i ∼ Xi,

(
X(e)

)′ ∼ μ−1X(e),
S′ ∼ μ−1S, one gets the indexes of intensity for the functions describing edge
effects: υ1 = 2 and υ2 = 3. The substitution of (4.57) - (4.59) into Eq. (4.47) and
the boundary conditions (4.50)-(4.52) results in the sequence of the boundary-value
problems. Let us consider them step by step.

In the zeroth-order approximation, one has the homogeneous boundary-value
problem

L0X0 ≡ d4X0

dx41
− 2δ2m

d2X0

dx21
+ δ4mX0 − λ0X0 = 0 (4.60)

X0(0) = X0(l1) = X ′′
0 (0) = X ′′

0 (l1) = 0, (4.61)

which has the following nontrivial solution

X0 = A sin
πnx1
l1

, λ0 = (δ2n + δ2m)2, δn =
πn

l1
. (4.62)

Note that the boundary conditions (4.61) were derived from (4.50).
Keeping in mind the edge integrals (4.53) and solution (4.62), the boundary

conditions (4.52) in the zeroth-orderapproximation results in the followingequations

2δmX
′
0 +

2

1− ν

[
c1e−

1
μ

√
2

1−ν
x1 + c2e−

1
μ

√
2

1−ν
(l1−x1)

]
= 0 at x1 = 0, l1

(4.63)
which give the formulae for constants

c1 = −(1− ν)δnδmA, c2 = (−1)n+1(1 − ν)δnδmA. (4.64)

In the first-order approximation, one gets the nonhomogeneous differential equa-
tion
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L0X1 = λ1X0. (4.65)

and the nonhomogeneous boundary conditions at x1 = 0, l1

X1 = 0, X ′′
1 − 1

θ2

⎡
⎢⎣c3e

− 1

μ
√
θ
x1

+ c4e
− 1

μ
√
θ
(l1 − x1)

⎤
⎥⎦ = 0,

X ′′
1 − νδ2mX1 +

1

θ

⎡
⎢⎣c3e

− 1

μ
√
θ
x1

+ c4e
− 1

μ
√
θ
(l1 − x1)

⎤
⎥⎦

−(1− ν)δm
2

1− ν

⎡
⎢⎢⎣c1e

− 1

μ

√
2

1− ν
x1

+ c2e
− 1

μ

√
2

1− ν
(l1 − x1)

⎤
⎥⎥⎦ = 0.

(4.66)
Taking Eqs. (4.64) into account, the last two conditions (4.66) written at x1 = 0, l1
result in the equations for constants

c3 = −
√
2(1− ν)3θ2δnδ

2
mA

1 + θ
, c4 =

(−1)n
√
2(1− ν)3θ2δnδ

2
mA

1 + θ
. (4.67)

Then the first two equations from (4.66) give the nonhomogeneous boundary con-
ditions for X1

X1(0) = X1(l1) = 0,

X ′′
1 (0) = −

√
2(1− ν)3 δnδ

2
mA

1 + θ
,

X ′′
1 (l1) =

(−1)n
√
2(1− ν)3 δnδ

2
mA

1 + θ
.

(4.68)

Problem (4.65), (4.68) is the nonhomogeneous boundary-value problem on spectrum.
The existence condition for a solution of this problem produces the following formula
for the correction λ1

λ1 = −4
√
2(1− ν)3 δ2nδ

2
m

l1(1 + θ)
. (4.69)

Then the solution of the boundary-value problem (4.65), (4.68) will be the following

X1(x1) = a1 sin δnx1 + a2 cos δnx1 + a3ermnx1 + a4e−rmnx1

+
λ1A

4δn(δ2n + δ2m)
x1 cos δ1x1,

(4.70)

where rmn =
√
2δ2m + δ2m, and constants ai are determined from the boundary

conditions (4.68).
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Let the characteristic size R be equal L2. Then, when breaking the procedure of
seeking the functions Xi and parameters λi, the approximate equation for natural
frequencies may be represented as

ω2 =
Dπ4

ρ0hL4
2

Λ, Λ = δ2nm

{
1− μ

4
√
2(1− ν)3δ2nδ

2
m

e(1 + θ)π4δ2nm
+O(μ2)

}
, (4.71)

where δnm, e are determined by Eqs. (4.41). We note that the small parameter is
proportional to the shear one (s. Eqs. (4.41) and (4.45)): μ2 = K/π2. Then the
asymptotic formula for the dimensionless frequency parameter Λ may be rewritten
as

Λ = δ2nm

{
1−K1/2 4

√
2(1− ν)3 n2m2

πe3(1 + θ)δ2nm
+O(K)

}
(4.72)

One can compare it with the analogous Eq. (4.44). In Eq. (4.72), the shear induced
correction generated by the edge effects has the order K1/2, whereas the similar
correction for simply supported plates with diaphragm, s. Eq. (4.44), is a value of
the order K . Thus, when comparing these two cases, one can conclude: if the plate
edges are free of diaphragm, then the eigenmodes contain additional components
accounting the edge shear and called the edge effect integrals, these integrals may
give more lower eigenfrequencies than transverse shear within the plate.

4.3 Simplest Problems on Free Vibrations of Thin Cylindrical

Shells

In this section we will consider the class of the simplest boundary-valueproblems de-
scribing free linear vibrations of elastic laminated cylindrical shells. In all problems,
the geometrical and physical parameters of layers and a shell in whole are assumed
to be constants so that any natural mode defines a system of waves distributed
evenly over the shell surface. The objective is to study the influence of different
boundary conditions and shear as well on the natural frequencies and corresponding
eigenmodes.

Let us consider a thin laminated cylindrical shell composed of N transversally
isotropic elastic layers. Studying free vibrations, we assume qi = qn = 0 in the
governing equations (2.61)-(2.63). For linear vibrations, the required functions may
be represented in the form

{ûi, ψi, w} = R {Ui(α1, α2), Ψi(α1, α2),W (α1, α2)} exp (iωt), (4.73)

where i = 1, 2, ω is the natural frequency, and R is the characteristic dimension of
the shell. We substitute (4.73) into Eqs. (2.61)-(2.63) and omit nonlinear terms. As
a result, one obtains the following linear differential equations
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2

Ẽ
W = 0

(4.74)
with Ẽ = E/(1 − ν2). The system of differential equations (4.74) may be used to
study free vibrations of a shell of any length for any number of waves in the axial
and circumferential directions. However, they turn out to be too inconvenient and
cumbersome in the common case. The selection of governing equations depends
on the class of problems under consideration. So, the above equations (4.74) may
be used for studying free vibrations of a very long cylindrical shell with formation
of long waves. However, to analyze vibrations with a large number of minor waves
although in the one direction, it is more convenient to apply to the simplified equations
of the technical shell theory (2.77), (2.85), (2.87).

Let us now apply to the variant of the technical shell theory. Assuming

χ = χ̃(α1, α2)e
iωt, F = F̃ (α1, α2)e

iωt, φ = φ̃(α1, α2)e
iωt, (4.75)

Eqs. (2.77), (2.85), (2.87) are reduced to the following ones

D

(
1− θh2

β
�
)
�2χ̃+ k22

∂2F̃

∂α2
1

− ρ0hω
2

(
1− h2

β
�
)
χ̃ = 0,

�2F̃ − Ehk22
∂2

∂α2
1

(
1− h2

β
�
)
χ̃ = 0,

1− ν

2

h2

β
�φ̃ = φ̃.

(4.76)

The systems of differential equations (4.74) and (4.76) should be supplemented
by the boundary conditions (2.93)-(2.108) and (2.110)-(2.118), respectively. The
classification of integrals for governing equations analogous to (4.74) as well as their
detailed analysis for thin isotropic single-layer shells may be found in Gol’denveizer
et al (1979); Mikhasev and Tovstik (2009).
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4.3.1 Long Simply Supported Cylinder with Diaphragm on Edges

Let a lengthy cylindrical shell be circular, then k22 = 1/R is a constant. From all
variants of the boundary conditions, we consider here the simply supported edges
with diaphragm. In terms of displacements and stress resultants these conditions are
the following (s. Chapt. 2)

w = û2 = ψ2 = M̂11 = T11 = L̂11 = 0 at α1 = 0, L. (4.77)

Keeping in mind (4.73), we rewrite them in the terms of displacements

W = U2 = Ψ2 = 0,

η3

(
∂2W

∂α2
1

+ ν
∂2W

∂α2
2

)
− η2

(
∂Ψ1

∂α1
+ ν

∂Ψ2

∂α2

)
= 0,

∂U1

∂α1
+ ν

∂U2

∂α2
+
νW

R
= 0,

η2

(
∂2W

∂α2
1

+ ν
∂2W

∂α2
2

)
− η1

(
∂Ψ1

∂α1
+ ν

∂Ψ2

∂α2

)
= 0 at α1 = 0, L.

(4.78)

As seen, the above boundary conditions are satisfied by the following functions

U1 = U◦
1 cos

πnα1

L
cos

mα2

R
,

U2 = U◦
2 sin

πnα1

L
sin

mα2

R
,

W = W ◦ sin
πnα1

L
cos

mα2

R
,

Ψ1 = Ψ◦
1 cos

πnα1

L
cos

mα2

R
,

Ψ2 = Ψ◦
2 sin

πnα1

L
sin

mα2

R
,

(4.79)

where n is a number of semi-waves in the axial direction, m is a number of waves
in the circumferential direction, and U◦

i ,W
◦, Ψ◦

i are constant values.
The substitution of (4.79) into Eqs. (4.74) yields the system of algebraic equations

AXT = 0, (4.80)

where X = (U◦
1 , U

◦
2 ,W

◦, Ψ◦
1 , Ψ

◦
2 ) is the vector, and A is the 5 × 5 matrix with the

elements aij

a11 = −δ2n − 1− ν

2
m2 + (1− ν2)

ω2

ω2
0

, a12 =
1 + ν

2
δnm,

a13 = νδn, a14 = a15 = 0, a21 =
1 + ν

2
δnm,
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2
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2
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+
q44R

2η3
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,
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m

1− ν2
,

a53 = ε8(δ2n +m2)2 +
1

1− ν2
− ω2

ω2
0

,

a54 = −ε8η2δn
η3

(δ2n +m2), a55 =
ε8η2m

η3
(δ2n +m2), (4.81)

where

δn =
πn

l
, l =

L

R
, ε8 =

h2η3
12(1− ν2)R2

, ω2
0 =

E

ρ0R2
. (4.82)

Here, ε is a small parameter and ω0 is the characteristic frequency.
The equation

detA = 0 (4.83)

serves as the existence condition of a nontrivial solution of the homogeneous sys-
tem (4.80). In the general case, it is the cubic equation with respect to the required
frequency parameterΛ = (1− ν2)ω2ω−2

0 . It will be used below in Chapt. 5 to study
free vibrations of viscoelastic laminated shells containing MRE. As a particular case,
we consider the axisymmetric vibrations for which m = U◦

2 = Ψ◦
2 = 0. Then, the

cubic equation (4.83) degenerates into the quadratic one:

Λ2 − (1 + δ2n + μ1δ
4
nrn

)
Λ+ δ2n

(
1− ν2 + μ1δ

4
nrn

)
= 0, (4.84)

where

μ1 = (1− ν2)ε8, rn =
π2 + θKδ2n
π2 +Kδ2n

, K =
π2h2

βR2
, θ = 1− η22

η1η3
. (4.85)

For any fixed number n, there are two the positive roots

Λ = Λj =
1

2

{
1 + δ2n + μ1δ

4
nrn − (−1)j

[
(1− δ2n + μ1δ

4
nrn)

2 + 4ν2δ2n
]1/2}

,

(4.86)
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where j = 1, 2. Then the natural frequencies corresponding to the axially symmetric
longitudinal and bending vibrations accounting transverse shear are defined as

ωj =

√
EΛj

ρ0R2(1− ν2)
,

where ω1 is the eigenfrequency of predominantly longitudinal vibrations, and ω2

relates to bending vibrations. It is obviously, for the fixed n, ω1 > ω2.
The amplitudes of axial, normal and shear displacements are coupled by means

of equations

U◦
1 = − νδn

Λ− δ2n
W ◦, Ψ◦

1 =
η2Kδ3n

η1(π2 +Kδ2n)
W ◦. (4.87)

As seen from Eq. (4.86), Λj − δ2n �= 0 for any n. When K → 0, Eq. (4.86)
gives the frequency parameter for an isotropic shell without taking into account
shears. Because a parameter θ is small, it may be concluded that the incorporation
of the shear parameter K into the shell model results in the reduction of the natural
frequencies for any δn, the influence of the shear parameter K on eigenfrequencies
being very weak for modes with small parameter δn and becoming essential at large
δn and, particularly, for modes of bendingvibrations with very large number of waves
n in the axial direction (and/or for a very short cylindrical shell). This conclusion is
confirmed by calculations performed at m = 0, ν = 0.4, ε = 0.2. Figure 4.1 shows
the parameters Λ1 and Λ2 corresponding to the axially symmetric longitudinal and
bending vibrations, respectively, versus a wave parameter δn. Figure 4.2 demonstrates
the behavior of the frequency parameterΛ2 corresponding the bending modes as the
function of δn for different values of K varying from 0 to 0.6. It is seen, the larger
value of δn is, the higher effect of the shear parameter on eigenfrequencies of flexural
vibrations becomes. Similar computations of the parameterΛ1 corresponding to the
longitudinal modes show that this effect is negligibly small. For instance, curves Λ1

versus δn presented in Fig. 4.1 practically merge in the range of variation of δn form
0 to 40.

Fig. 4.1 Frequency parame-
ters Λ1 (dotted line) and Λ2

(solid line) vs. parameter δn
at K = 0.

1 2 3 4

5

10

15

0

Λ
1
,Λ

2

δn



178 4 Free Vibrations of Elastic Laminated Beams, Plates and Cylindrical Shells

Fig. 4.2 Frequency parameter
Λ2 vs. δn at different values of
K: 1 - K = 0, 2 - K = 0.02,
3 - K = 0.2, 4 - K = 0.4,
5 - K = 0.6.
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4.3.2 Medium-length Cylindrical Shells with Simply Supported

Edges

In this subsection, we consider a medium-length cylindrical shell with simply-
supported edges with and without diaphragm. The boundary conditions written
in terms of the displacement and stress functions are the following:

• for the edges α1 = 0, α1 = L with diaphragm (SSD boundary conditions)

χ̃ = Δχ̃ = Δ2χ̃ =
∂φ̃

∂α1
= 0,

∂2F̃

∂α2
2

= 0,
∂2F̃

∂α2
1

= 0, (4.88)

• for the edges without diaphragm (SSF boundary conditions)(
1− h2

β
Δ

)
χ̃ = 0,

∂2

∂α2
1

(
1− h2

β
Δ

)
χ̃ = 0,(

∂2

∂α2
1

+ ν
∂2

∂α2
2

)
χ̃− (1− ν)

∂2φ̃

∂α1α2
= 0,

2
∂2χ̃

∂α1∂α2
+
∂2φ̃

∂α2
1

− ∂2φ̃

∂α2
2

= 0,

(4.89)

∂2F̃

∂α2
2

= 0,
∂2F̃

∂α1α2
= 0. (4.90)
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4.3.2.1 Shell with Diaphragm on Edges: Solution in the Explicit Form

Variant (4.88) of the boundary conditions allows to write down a solution of Eqs.
(4.76) in the explicit form

χ̃ = χ0 sin
πnα1

L
sin

mα2

R
, F̃ = F0 sin

πnα1

L
sin

mα2

R
, (4.91)

where n,m are positive integers. Inserting (4.92) into Eqs. (4.76) gives

ω2 =
ε8π4EΔnm

R2ρ0
, (4.92)

where

Δnm =

(
1 + θKδnm
1 +Kδnm

)
δ2nm +

n4

l4π4ε8δ2nm
, K =

π2h2

βR2
,

δnm =

(
n2

l2
+
m2

π2

)
, l =

L

R
.

(4.93)

As seen from Eqs. (4.92), (4.93), the effect of the shear parameter K on the natural
frequencies remains the same as for the laminated plates (s. Subsect. 4.1.2): the
transverse shears leads to some reduction of all natural frequencies when compare
them with eigenfrequencies at K = 0.

4.3.2.2 Shell without Diaphragm on Edges: Asymptotic Solution

Consider the boundary conditions (4.89), (4.90) corresponding to the case when
diaphragm at both edges are absent. The boundary-value problem (4.76), (4.89),
(4.90) does not admit the explicit form of a solution, but this problem on low-
frequency vibrations is identical to the boundary-value problem on buckling of a
medium-length cylindrical shell under external pressure considered in Subsubsect.
3.2.1.3 (s. Chapt. 3) and may be solved by the same asymptotic approach.

As in Subsubsect. 3.2.1.3, we assume thatG ∼ h
3/2
∗ E. ThenK/π2 = ε2κ, where

κ ∼ 1. Intending to study low-frequency vibrations, we seek the required functions
χ̃, F̃ , φ̃ in the form of

χ̃ = RX(x) sin
(
ε−1pϕ

)
,

F̃ = ε4EhR2Φ(x) sin
(
ε−1pϕ

)
,

φ̃ = RS(x) cos
(
ε−1pϕ

)
,

(4.94)

where p ∼ 1, x = α1/R, ϕ = α2/R. Then the governing equations (4.76) are
rewritten as follows
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ε4(1− ε2κθΔε)Δ
2
εX +

d2Φ

dx2
− Λ(1− ε2κΔε)X = 0,

ε4Δ2
εΦ− d2

dx2
(1− ε2κΔε)X = 0,

(4.95)

1− ν

2
κ1ε

2ΔεS = S, (4.96)

where

Λ =
ρ0R

2ω2

ε4E
, Δε =

d2

dx2
− ε−2p2,

and the boundary conditions (4.89), (4.90) at x = 0, l take the form

(1− ε2κ1Δε)X = 0,
d2

dx2
(1− ε2κ1Δε)X = 0,(

ε2
d2

dx2
− νp2

)
X + ε(1− ν)p

dS

dx
= 0,

2εp
dX

dx
+ ε2

d2S

dx2
+ p2S = 0,

Φ = 0,
dΦ

dx
= 0.

(4.97)

Omitting details for construction of the asymptotic solution of the boundary-value
problem (4.95)-(4.97), we outline here only the resultant equations. The shear func-
tion S is defined as

S = ε

{
a1 exp

(
−ϑsx

ε

)
+ a2 exp

[
−ϑs(l − x)

ε

]}
, (4.98)

where

ϑs =

√
2

(1− ν)κ1
+ p2, a1 = − 2πnpA

l (p2 + ϑ2
s )
, a2 = (−1)na1. (4.99)

The displacement and stress functions X,Φ and eigenvalue Λ as well are evaluated
as

X = X(m) +X(e), Φ = Φ(m) + Φ(e),

X(m) = X0 + εX1 +O
(
ε2
)
, Φ(m) = Φ0 + εΦ1 +O

(
ε2
)
,

(4.100)

Λ = Λ0 + εΛ1 +O
(
ε2
)
, (4.101)

where the superscript (m) denotes functions corresponding to the main stress-strain
state with the zeroth index of variation ι1 = 0 in the axial direction, and functions
with the superscript (e) are the integrals of edge effects. All the required functions
are determined by the following equations
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X0 = A sin
πnx

l
, X1 = −Λ1p

6l3A

4π3n3
x cos

πnx

l
,

X(e) = ε

[
b1e

−r1
ε
x
+ b2e

−r1
ε

(l − x)
+O(ε)

]
,

Φj =
1 + κp2

p4
d2Xj

dx2
, Φ(e) =

κ1
ε2
X(e),

b1 = − 2πn(1− ν)ϑsp
2A

lr21 [1 + (1− ν)p2κ1] [p2 + ϑ2
s ]
, b2 = (−1)nb1,

(4.102)

and the frequency parameters Λ0, Λ1 are the following:

Λ0(p;n) =
π4n4

l4p4
+
p4(1 + θκp2)

1 + κp2
,

Λ1(p;n) =
8(−1)(n+1)π4n3(1 − ν)κ1ϑs

l5p2 [1 + (1− ν)p2κ1] (p2 + ϑ2
s )
,

(4.103)

where n is a number of semi-waves in the axial direction of the shell, and κ1 ≡ κ is
the shear parameter.

Contrary to the problem on buckling of a shell studied in Subsubsect. 3.2.1.3,
there here is no need to minimize Λ0(p;n) over a parameter p and a number n. The
only requirement for a parameter p is the following: it has to be of the order of the
unit (p ∼ 1) and chosen in such a way that m = ε−1p is a natural number. When
minimizing Λ0(p;n) over p at fixed n, we obtain the eigenvalue

Λ◦
0 = min

p
Λ0(p;n) = Λ0(p

◦;n) (4.104)

and its correctionΛ◦
1 = Λ1(p

◦;n) corresponding to eigenfrequencies from the lowest
part of spectrum at n ∼ 1.

Finally, one can write out the asymptotic formula for the natural frequencies

ω◦ = ε2

√
EΛ◦

0

R2ρ0

[
1 + εks +O

(
ε2
)]
, ks =

Λ◦
1

2Λ◦
0

. (4.105)

It is necessary to distinguish the effect of parameters κ and κ1 on eigenfrequencies.
A parameter κ shows the total influence of the transverse shears on the main stress-
state of a shell and the zeroth approximation for natural frequencies as well; as seen
from (4.103), it reduces all frequencies when comparing them with ones obtained
on the base of the model ignoring shears. And a parameter κ1 gives the impact
of shears generated only by boundary conditions and the edge effect integrals; its
influence has a local character and depend on a number of semi-waves in the axial
direction. If n is an odd number, then εΛ1 gives the positive correction for Λ0, and
this correction becomes negative for evenn. It should be noted that the natural modes
constructed above do not contain the classical (simple) edge effect integrals with the
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index of variation ι1 = 1/2, but they comprise the edge effect integrals (see above
the functions S(x) and X(e)(x)) with the smaller index of variation, ι1 = 1/4.

It is of interesting to compare formula (4.105) with Eqs. (4.92), (4.93) predicting
eigenfrequencies for a medium-length cylinder with the simply supported edges
supplied with diaphragms. We assume n = 1,m = ε−1p◦, then Eqs. (4.92), (4.93)
give the following asymptotic formulas

ω∗ = ε2

√
EΛ◦

0

R2ρ0
[1 + ε2k∗s +O(ε4)], k∗s =

Λ∗
2

2Λ◦
0

, (4.106)

where Λ∗
2 is calculated by

Λ∗
2 =

2π2n2p2 + 3π2θκn2p4

l2(1 + κp2)
− π2n2p4

l2(1 + κp2)2
− 2π6n6

l6p6

at p = p◦. It is seen that (4.105) and (4.106) coincide only in the zeroth approxi-
mation, and the next approximations give corrections of different orders. In (4.105),
the first correction of an order O(ε) is generated by the non-classical edge effects,
whereas the first correction in (4.106) is more less and not related to any edge effects.

Example 4.2. As an example, we consider the five-layered cylindrical shell of the
radius and length R = L = 0.9 m assembled from laminas which are made of
different materials:

• the first (innermost) layer (thickness h1 = 0.5 mm) is the ABS-plastic SD-0170,
• the fifth (outermost) layer (thickness h5 = 0.5 mm) is made of silicon nitrate

(ceramic),
• the second and fourth layers are of the same thicknesses h2 = h4 = 3.0 mm and

made of epoxy,
• the third soft layer of the thickness h3 is alloy-foam.

All materials are assumed as elastic ones with properties given in Example 3.7 (s.
Chapt. 3). Table 4.3 shows the influence of the soft alloy-foam core on the parameters
m∗,m◦, p◦ and the lowest frequencies ω∗, ω◦ for the SSD and SSF boundary
conditions. Here, ω∗ is calculated by (4.92), (4.93) which may be rewritten as

Table 4.3 Wave numbers m∗,m◦, parameters p◦, Λ◦
0 , Λ

◦
1 and the lowest frequencies ω∗, ω◦ for

the 5-layered cylindrical shell for the two variants of boundary conditions (SSD, SSF) vs. thickness
h3 of the alloy-foam core.

h3, mm m∗ ω∗, Hz p◦ m◦ Λ◦
0 Λ◦

1 ω◦, Hz

20 6 634 1.84 6 17.82 0.42 628
25 5 614 1.87 6 16.99 0.63 611
30 5 593 1.90 6 16.19 0.80 596
35 5 577 1.94 6 15.46 0.92 582
38 5 569 1.96 6 15.07 0.97 576
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ω∗ =
ε4π2

K

√
E

ρ0
Δ∗

nm, Δ∗
nm = min

n,m
Δnm(n,m) = Δnm(1,m∗).

The increase of the soft core thickness h3 (at fixed thicknesses of other layers) results
in the decrease of the first natural frequency for both variants of boundary conditions.
This effect is explained by some reduction of the reduced Young’s modulus with
increasing h3. Also, the correction εΛ◦

1 generated by the edge shears turns out
to be small, although it increases together with h3. When comparing results for
different boundary conditions, one can conclude: overlapping diaphragm on the
edges increases the lowest eigenfrequency.

4.4 Free Low-frequency Localized Vibrations of Medium-length

Cylindrical Shells

In this section, we will study free vibrations of elastic, medium-length, non-circular
cylindrical shells or panels. It is assumed that the Young’s and shear moduli are also
functions of the circumferential coordinate. As follows from study (Mikhasev et al,
2014), similar inhomogeneity of physical properties takes place if a laminated shell is
assembled from highly polarized MREs and/or placed in magnetic field. It has been
also shown (Mikhasev et al, 2014), that the eigenmodes of MRE-based sandwich
shells are very affected by applied magnetic field and may be characterized by strong
localization in some area on the shell surface. Here, using the asymptotic Tovstik’s
method (Tovstik, 1983) stated in Subsect. 3.2.2, we will give the formal construction
of these modes and find the corresponding natural frequencies. We note that the
problem will be considered in the elastic statement, and viscoelastic properties of
layers composing the shell will not be taken into account. The effect of viscoelastic
properties of MREs on both free and forced vibrations will be studied in detail in
the next chapter.

Let us introduce the dimensionless magnitudes by the following equations

α1 = Rs, α2 = Rϕ, R2 =
R

k2(ϕ)
,

χ̃ = Rχ∗, F̃ = ε4E◦hR2Φ∗, Λ =
ρR2ω2

ε4E◦
,

(4.107)

where E◦ is the characteristic value of the Young’s modulus. We make also the
following assumptions for the elastic modulus and shear parameter as well

E = E◦d(ϕ) = E◦[1 + εd1(ϕ)],
K

π2
= ε2κ0(ϕ), (4.108)

where d1, κ0 ∼ 1 as ε → 0. We note that the last estimate (4.108) for K holds if

G ∼ h
3/2
∗ E. The reduced Poisson’s ratio ν and a parameter η3 are assumed to be
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weakly dependent on coordinates and considered here as constants and parameter θ
is taken as a very small one.

Taking into account (4.107), (4.108) and above assumptions as well, the first two
equations from (4.76) are rewritten as

ε4d(ϕ)Δ2χ∗ + k2(ϕ)
∂2Φ∗

∂s2
− Λ[1− ε2κ(ϕ)Δ]χ∗ = 0,

ε4Δ2Φ∗ − k2(ϕ)
∂2

∂s2
[1− ε2κ(ϕ)Δ]χ∗ = 0, (4.109)

where d(ϕ), κ0(ϕ) are real functions of an angle ϕ.

Remark 4.2. Equations (4.76) have been derived on the supposition that the Young’s
and shear moduli as well as Poisson’s ratio are constant for all layers. If they are
functions of the curvilinear coordinates α1, α2, the governing equations like (4.76)
and (4.109) will contain additional terms which however do not give the contribution
into the asymptotic solution to be constructed below. Also, when deriving Eqs.
(4.109) from Eqs. (4.76), we have omitted the operatorΔ3χ̃ because of the smallness
of the shear parameter Kθ.

Consider here the simplest variant of boundary conditions

χ∗ = Δχ∗ = Δ2χ∗ = Φ∗ = ΔΦ∗ = 0 at s = 0, l (4.110)

corresponding to the simply supported edges with diaphragm. Let ϕ = ϕ0 be
the weakest generatrix in the neighbourhood of which one occurs localization of
eigenmodes. The required eigenmodes and eigenvalues are approximated by the
following series (Tovstik, 1983; Mikhasev and Tovstik, 2009)

χ∗ = sin
πns

l

∞∑
j=0

εj/2χj(ζ) exp
{

ı
(
ε−1/2pζ + 1/2bζ2

)}
,

Φ∗ = sin
πns

l

∞∑
j=0

εj/2Φj(ζ) exp
{

ı
(
ε−1/2pζ + 1/2bζ2

)}
,

(4.111)

Λ = Λ0 + εΛ1 + . . . . (4.112)

where ζ = ε−1/2(ϕ− ϕ0), p is a real wave parameter, b is an imaginary parameter
so that � b > 0 and χj , Φj are polynomials in ζ.

The functions κ0(ϕ), k2(ϕ), d1(ϕ) are expanded into series in the neighborhood
of the generatrix ϕ = ϕ0. In particular,

κ0(ϕ) = κ0(ϕ0) + ε1/2κ′0(ϕ0)ζ +
1

2
εκ′′0(ϕ0)ζ

2 + . . . (4.113)

All unknown parameters and functions appeared in (4.111), (4.112) are found in
such a way as in Subsect. 3.2.2. We outline here only the principal equations. The
substitution of (4.111), (4.112) into Eqs. (4.109) produces the sequence of algebraic
equations
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ς∑
j=0

LjXXX
T
ς−j , ς = 0, 1, 2, . . . , (4.114)

where Xj = (χj , Φj) are two-dimensional vectors, the superscript T denotes trans-
position and L0 is the 2× 2 matrix with the elements

l11 = p4 − Λ0[1 + κ0(ϕ0)p
2], l12 = −k2(ϕ0)π

2n2l−2,
l21 = k2(ϕ0)[1 + κ0(ϕ0)p

2]π2n2l−2, l22 = p4
(4.115)

and the matrix operators Lj for j ≥ 1 are expressed in terms of the matrix L0 by
Eqs. (3.111), where L∗ ≡ 0 and

N = −Λ1 + d1(ϕ0)p
4. (4.116)

Considering the homogeneous system of algebraic equations (4.114) at ς = 0,
one obtains

Φ0 = −g
1/2
n (ϕ0)

p4
[1 + p2κ0(ϕ0)], (4.117)

Λ0 = f(p, ϕ0) =
gn(ϕ0)

p4
+

p4

1 + κ0(ϕ0)p2
, (4.118)

where
gn(ϕ0) = π4n4l−4k22(ϕ0). (4.119)

As seen from (4.117), p �= 0. The compatibility condition for system (4.114) at ς = 1
implies the equations

fp = 0, fϕ = 0, (4.120)

which may be rewritten as follows

κ0(ϕ0)p
10 + 2p8 − 2gn(ϕ0)κ

2
0p

4 − 4gn(ϕ0)κ0p
2 − 2gn(ϕ0) = 0, (4.121)

g′n(ϕ0)[1 + κ0(ϕ0)p
2]− p10κ′0(ϕ0) = 0, (4.122)

where the subscript p, ϕ denote the partial derivatives of a function with respect
to the corresponding variables p, ϕ0, and the prime (′) means differentiation with
respect to ϕ0. These equations allow to find the wave number p◦ and the weakest
generatrix ϕ0 = ϕ◦

0. Finally, the compatibility condition for system (4.114) at ς = 2
yields the following equations

fppb
2 + 2fpϕb+ fϕϕ = 0, (4.123)

λ1 = −i(m+ 1/2)(fppb+ fpϕ) + p4d1(ϕ0), (4.124)

χ0 = Hm(z), z = [fϕϕf
−1
pp − fpϕf

−1
pp ]1/4ζ, (4.125)
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where Hm(z) is the Hermite polynomial of themth degree. In Eqs. (4.123)-(4.125),
the second derivatives of f with respect to p and ϕ0 are calculated at p = p◦, and
ϕ0 = ϕ◦

0.
Equation (4.123) is used for definition of b. It may be seen that the inequality

�b > 0 holds if the second differential of the function f at point p = p◦, ϕ0 = ϕ◦
0

is a positive definite quadratic form, i.e.

d2f = f◦
ppdp2 + 2f◦

pϕdpdϕ0 + f◦
ϕϕdϕ2

0 > 0. (4.126)

The superscribe ◦ denotes that the function f and its partial derivatives are calcu-
lated at p = p◦, ϕ0 = ϕ◦

0. The conditions (4.120), (4.126) indicate that only eigen-
modes corresponding to the lowest spectrum are considered here. For the inequality
(4.126) to be hold, a solution of Eq. (4.120) should be chosen in such a way that
f◦
pp = fpp(p

◦, ϕ◦
0) > 0. To determine the parameter Λς and functions χς(ζ), Φς(ζ)

appearing in (4.111), (4.112) for ς ≥ 1, one must consider responding system of
nonhomogeneous equations (4.114) in the (ς + 2)nd approximation. However, the
formal procedure for constructing these functions is no longer for ς ≥ 4 because
the correction introduced by appropriate approximations into solution (4.111) at the
sixth step is of the order ε2, which is the same as the error of the governing equations
(4.76).

Consider two particular cases.

A) Let k2 = k2(ϕ) (noncircular shell or panel) and κ0, d1 = 0 are constants. Here
the weakest line ϕ = ϕ◦

0 is the generatrix with the minimum curvature and found
from the conditions

k′2(ϕ
◦
0) = 0, k′′2 (ϕ

◦
0) > 0, (4.127)

and the natural frequency and parameter b are determined by equations

ω = ωcω
∗, ω∗ = (f◦)1/2

[
1 + εΞ +O(ε2)

]

Ξ =
(1 + 2m)π2n2

√
f◦
ppk

′′
2 (ϕ

◦
0)

4l2f◦(p◦)2
,

b◦ =
iπ2n2

l2(p◦)2

√
k′′2 (ϕ

◦
0)

f◦
pp

,

(4.128)

where ωc = ε2R−1(E◦/ρ)1/2 is the characteristic frequency and ω∗ is the
dimensionless frequency parameter.

B) If k2 is constant (circular shell or panel), and the shear parameter κ(ϕ) is a
function, then the weakest line is the one at which the reduced shear parameter
K approaches the local maximum:

κ′0(ϕ
◦
0) = 0, κ′′0(ϕ

◦
0) < 0. (4.129)

As follows from Eqs. (2.59), (4.93), conditions (4.129) are equivalent to the ones
of the local minimum for the reduced shear modulus G. Here, one obtains the
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following equations for the dimensionless parameters Ξ and b◦

Ξ =
1

2f◦

⎡
⎣ (1 + 2m)(p◦)3

√
−f◦

ppκ
′′
0(ϕ

◦
0)

2[1 + (p◦)2κ0(ϕ◦
0)]

+ d1(ϕ
◦
0)(p

◦)4

⎤
⎦ ,

b◦ =
i (p◦)3

1 + (p◦)2κ0(ϕ◦
0)

√
−κ′′0(ϕ

◦
0)

f◦
pp

(4.130)

If we ignore the shear deformations (assumingκ0 = 0), then Eqs. (4.128), (4.130)
are reduced to analogues equations obtained before for the Kirchhoff-Love theory-
based thin elastic isotropic shell (Mikhasev and Tovstik, 2009).

Equations (4.128) and (4.130) show that increasing the parameter k′′2 (ϕ
◦
0) or κ′′(ϕ◦

0)
results in increasing the correction ω∗ − ω∗

0 for the natural frequency, where
ω∗
0 = (f◦)1/2, and leads to growing the power of localization of eigenmodes.

4.5 Localized Vibrations of a Cylindrical Shell Pre-stressed by

Distributed Axial Forces

In this section, we will study free localized vibrations of a thin, axially prestressed,
multi-layered circular cylindrical shell consisting of N transversely isotropic lay-
ers (Mikhasev and Zgirskaya, 2001; Korchevskaya et al, 2004; Korchevskaya and
Mikhasev, 2006; Mikhasev, 2017). It is assumed that simply supported edges are
under action of a nonuniform axial forces T ◦

11(α2) as shown in Fig. 3.11. The gov-
erning equations describing free vibrations of the pre-stressed laminated cylindrical
shell is readily obtained from Eqs. (2.160) by introducing the inertia term into the
first equation

Eh3η3
12(1− ν2)

(
1− θh2

β
Δ

)
Δ2χ+

1

R

∂2F

∂α2
1

+ T ◦
11(α2)

∂2

∂α2
1

(
1− h2

β
Δ

)
χ

+ρh
∂2

∂t2

(
1− h2

β
Δ

)
χ = 0,

Δ2F − Eh

R

∂2

∂α2
1

(
1− h2

β
Δ

)
χ = 0, w =

(
1− h2

β
Δ

)
χ.

(4.131)

Here, R is the radius of the reference surface of the laminated shell, and other
notations are as above. In terms of the displacement and stress functions, the boundary
conditions for simply supported edges are as follows

χ = �χ = �2χ = F = �F = 0. (4.132)

Inhomogeneity of the axial force T ◦
11 results in the appearance of an area at

the shell surface with large compressive axial stresses. If the axial stress resultant
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turns out to be sufficiently large and reaches the critical buckling value T ∗
11, then, as

shown in Chapt. 3, the shell buckles in the neighbourhood of the weakest generatrix
α2 = α◦

2, where maxα2 T
◦
11(α2) = T ∗

11. But if T ◦
11(α2) < T ∗

11 for any α2, then
the pre-buckling compressive forces distorts the natural modes and may result in
strong localization of some ones. To study these modes, we use the same asymptotic
approach as in Subsect. 3.3.3.

To take into account the influence of the shear parameter in the zeroth order
approximation, we assume the following relations

K

π2
= μ2κ,

Kθ

π2
= μ3τ, κ, τ ∼ 1 as μ → 0, (4.133)

which are valid for a sufficiently thin shell with the reduced shear modulusG ∼ h∗E.
Here

K =
π2h2

R2β
, μ4 =

h2η3
12R2(1− ν2)

(4.134)

The required functions χ and Φ are sought in the form

χ = Rχ̂(s, ϕ) sinωt, F = μ2EhRΦ̂(s, ϕ) sinωt. (4.135)

Then, Eqs. (4.131) can be rewritten as follows

μ4(1− μ3τ�)�2χ̂+ μ2 ∂
2Φ̂

∂s2
+ μ2t1(ϕ)

∂2

∂s2
(1 − μ2κ�)χ̂

−Λ(1− μ2κ�)χ̂ = 0,

μ2�2Φ̂− ∂2

∂s2
(1 − μ2κ�)χ̂ = 0,

(4.136)

where

s =
α1

R
, ϕ =

α2

R
, l =

L

R
, t1(ϕ) =

T ◦
11(Rϕ)

μ2Eh
, Λ =

R2ρ

E
ω2, (4.137)

and the boundary conditions for functions χ̂, Φ̂ will be

χ̂ = �χ̂ = �2χ̂ = Φ̂ = �Φ̂ = 0. (4.138)

The problem is to find a positive value ofΛ for which the system of equations (4.136)
has a nontrivial solution satisfying the boundary conditions (4.138).

4.5.1 Asymptotic Solution

A formal asymptotic solution of the boundary-value problem (4.136), (4.138) is
constructed in the following form, s. Eqs. (3.164) and (3.165),
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χ̂ = sin
rms

μ
χm(ξ, μ), (4.139)

χm =

∞∑
j=0

μj/2χmj(ξ) exp

[
i

(
μ−1/2pξ +

1

2
bξ2
)]

,

Λ = Λ0 + μΛ1 + μ2Λ2 + . . . .

(4.140)

where (χ̂⇒ Φ̂, χm ⇒ Φm, χmj ⇒ Φmj)

ξ = μ−1/2(ϕ− ϕ0), �b > 0,

|χmj |, |Φmj |, Λj , p, |b|, rm =
μπm

l
∼ 1 as μ → 0,

(4.141)

and χmj(ξ), Φmj(ξ) are polynomials in ξ. Here, ϕ = ϕ0 is a weakest generatrix
which is unknown. Functions (4.139), (4.140) approximate the eigenmodes localized
in a vicinity of the line ϕ = ϕ0.

The substitution of Eqs. (4.139)-(4.141) into Eqs. (4.136) produces the sequence
of algebraic equations

j∑
k=0

LkXj−k = 0, j = 0, 1, 2, . . . (4.142)

where Xj = (ξmj , Φmj)
T, and L0 is the 2× 2 matrix with the elements

l11 = (r2m + p2)2 − [1 + κ(r2m + p2)][r2mt1(ϕ0) + Λ0],

l12 = −r2m, l21 = r2m[1 + κ(r2m + p2)], l22 = (r2m + p2)2,
(4.143)

and the matrix operators Lj for j ≥ 1 are expressed by the matrix L0 in the same
way as in Sect. 3.2, s. Eqs. (3.111), but now the operator N is the 2× 2 matrix with
the unique nonzero element (n12 = n21 = n22 = 0)

n11 = τ(r2m + p2)3 − Λ1[1 + κ(r2m + p2)]. (4.144)

The sequence of Eqs. (4.142) serves to determine all unknown functions and param-
eters in (4.139) and (4.140). Because the procedure for seeking these magnitudes
is the same as in Subsect. 3.3.2, we omit transitional calculations here and give
only the principle equations. Considering the homogeneous system of algebraic
equations (4.142) for j = 0, one obtains the zeroth-order approximation for the
frequency parameter

Λ0 = f(p, rm, ϕ0) =
(r2m + p2)2

[1 + κ(r2m + p2)]
+

r4m
(r2m + p2)2

− t1(ϕ0)r
2
m. (4.145)
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Holding a number m (and thus, a parameter rm) fixed, we minimize the func-
tion (4.145)over p andϕ. The necessary conditions of this minimum are the following
equations

∂f

∂p
= 0,

∂f

∂ϕ0
= 0 (4.146)

which serve for a determination of p◦ and ϕ◦
0. When solving Eqs. (4.146), three

different cases appear

• rm > z0 (case A),
• rm < z0 (case B),
• rm ≈ z0, (case C),

were z0 is a root of the algebraic equation

−2(1 + κrmz)
2 + z4(2 + κrmz) = 0 (4.147)

with respect to z. Equation (4.147) contains a parameter κ accounting for shears in
the sandwich. If shears are disregarded (κ = 0), its root is z0 = 1.

At first, we consider the cases A) and B). For rm > z0 (case A), we derive

Λ◦
0 = min

p,ϕ0

f(p, rm, ϕ0) = 1− t1(ϕ
◦
0)r

2
m +

r4m
1 + κr2m

, p◦ = 0, (4.148)

and for rm < z0 (case B), one has

Λ◦
0 = min

p,ϕ0

f(p, rm, ϕ0) =
z20r

2
m

1 + κrmz0
+
r2m
z20

− t1(ϕ
◦
0)r

2
m,

p◦ =
√
rm(z0 − rm). (4.149)

Note that Eqs . (4.148), (4.149) are identical at rm = z0. For both cases, the weakest
generatrix ϕ = ϕ◦

0 is determined from the following conditions

t′1(ϕ
◦
0) = 0, t′′1(ϕ

◦
0) < 0. (4.150)

Now, a solution of the homogeneous system of equations (4.142) at j = 0 may
be written as

X0 = P0(ξ)Y0, (4.151)

where P0(ξ) is an unknown polynomial in ξ, and Y0 = (1,−l11/l12) is the vector.
In the first-order approximation (j = 1), one has the non-homogeneous system

of equations (4.142). When taking Eqs. (4.146) into account, this system turns
into identities. Consider the non-homogeneous system (4.142) in the second order
approximation (j = 2). The compatibility condition for this system generates the
formula

b = i
√
fϕϕ/fpp (4.152)

and the equation for P0 is
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d2P0

dξ2
+ ib

(
2ξ

dP0

dxi

)
+

2Λ1

fpp
P0 + IA(B) = 0, (4.153)

where

IA =
2τr6m

fpp(1 + κr2m)
P0 at rm > z0 (case A) (4.154)

IB =
2τr3mz

3
0

fpp(1 + κrmz))
P0 at rm < z0 (case B) (4.155)

If rm = z0, then IA = IB . For both cases

P0(ξ) = Hn

(√
fϕϕ/fppξ

)
. (4.156)

Now we can calculate the complex parameter b characterizing the rate of the
amplitude decrement far from the generatrix ϕ = ϕ◦

0. If rm > z0 (case A), then

b = i

√
r4m(1 + κr2m)2[−t′′1(ϕ◦

0)]

2r4m(2 + κr2m)− 4(1 + κr2m)2
, (4.157)

and for rm > z0 (case B), one obtains

b = i

√
rm(1 + κr2m)3[−t′′1(ϕ◦

0)]

4(z0 − rm)[8 + 9κrmz0 + 3(κrmz0)2]
. (4.158)

It can be seen that
lim

rm→z0
|b| = +∞

for both cases (A) and (B). Thus, requirement (4.141) for b does not hold if a root
rm is close to z0. We will not consider the higher-order approximations because
system (4.131) does not contain some terms which affect the third and subsequent
approximations.

Now we can write equations for the set of eigenvalues. If rm > z0, we derive

Λ(n,m) = 1− t1(ϕ
◦
0)r

2
m +

r4m
1 + κr2m

+ μ

{
(1 + 2n)

√−2t′′(ϕ◦
0)[r

4
m(2 + κr2m)− 2(1 + κr2m)2]

2(1 + κr2m)

+
τr6m

1 + κr2m

}
+O(μ2),

and for rm < z0 one has
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Λ(n,m) =
z20r

2
m

1 + κrmz0
+
r2m
z20

− t1(ϕ
◦
0)r

2
m

+ μ

{
(1 + 2n)

√−t′′(ϕ◦
0)r

3
m(z0 − rm)[8 + 9κrmz0 + 3(κrmz0)2]

(1 + κr2m)3

+
τr3mz

3
0

1 + κr2m

}
+O(μ2).

The corresponding eigenmodes will be the following: if rm > z0, then

χ(n,m) = sin
rms

μ
exp

{
ib(ϕ− ϕ◦

0)
2

2μ

}{
Hn

[√
ib

μ
(ϕ− ϕ◦

0)

]
+O(μ1/2)

}
,

(4.159)
and for rm < z0, one obtains

χ(n,m) = sin
rms

μ
exp

{
i

μ

[√
rm(z0 − rm)(ϕ− ϕ◦

0)
]}

× exp

{
ib(ϕ− ϕ◦

0)
2

2μ

}{
Hn

[√
ib

μ
(ϕ− ϕ◦

0)

]
+O(μ1/2)

}
.

(4.160)

It may be seen that the eigenmodes (4.159) and (4.160) are different for the cases
(A) and (B). If rm > z0 (case A), the eigenfunctions decay exponentially without
oscillations (p◦ = 0), and for rm < z0 (case B) the localized eigenmodes have a
large number (of the order μ−1) of waves. If rm is close to z0, then Eqs. (4.159)
and (4.160) are not applicable. The case (C), when rm � z0, deserves the special
consideration.

4.5.2 Reconstruction of Asymptotic Solution

Let parameter rm be close to a root z0 of Eq. (4.147). In this case, a solution of the
boundary-value problem (4.136) and (4.138) is found again in the form of (4.139).
The substitution of (4.139) into Eqs. (4.136) results in the following system of
ordinary differential equations

(1− μτ�m)�2
mχm − rmΦm − (t1r

2
m + Λ)(1− κ�m)χm − Λ = 0,

�2
mΦm + r2m(1− κ�m)χm = 0,

(4.161)

where

�m = μ2 d2

dϕ2
− r2m (4.162)

is the differential operator.
Consider Eq. (4.147) again. At rm = z0, it is reduced to the following algebraic

equation
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κr6m + 2r4m − 2(1 + κr2m)2 = 0. (4.163)

Let rm = r∗ be its root. We introduce the following estimations

rm = r∗ + μ̃r′, Λ = Λ∗ + μ̃2Λ′, ϕ− ϕ◦
0 = μ̃η,

t1(ϕ) = t1(ϕ
◦
0) +

1

2
μ̃2t′′1(ϕ

◦
0)η

2 + . . .
(4.164)

where r′, Λ′ ∼ 1 as μ̃ → 0, and

μ̃ = μ2/3 =

[
h2η3

12R2(1− ν2)

]1/6
(4.165)

is a new small parameter.
We will seek a solution of Eqs. (4.161) in the form of series

χm =

∞∑
k=0

μ̃kχ(k)
m (η), Φm =

∞∑
k=0

μ̃kΦ(k)
m (η), (4.166)

where

χ(k)
m , Φ(k)

m ∼ 1, and χ(k)
m , Φ(k)

m → 0 as η → ±∞. (4.167)

In the zeroth- and first-order approximations, Eqs. (4.161) turn into identities if the
following condition holds

Λ∗ = 1− t1(ϕ
◦
0)r

2
∗ +

r4∗
1 + κr2∗

. (4.168)

Note that Eq. (4.168) coincides with Eqs. (4.148) and (4.149) at rm = r∗ = z0.
Equation (4.168) gives the zeroth-order approximation for the eigenvalue Λ. The

eigenfunctions χ(0)
m and Φ(0)

m remain undefined at this step.
Let us consider the second-order approximation. When taking Eq. (4.168) into

consideration, one gets the following equation with respect to χ(0)
m

a4
d4χ(0)

m

dη4
+ a2(r

′)
d2χ(0)

m

dη2
+ [a0(r

′)− aηη
2 − Λ′aλ]χ

(0)
m = 0, (4.169)

where

a4 = 1 +
κ

r2∗
+

3

r4∗
, a2(r

′) = −4r∗r
′ + 2κr∗r

′ − 4r′

r∗
,

a0(r
′) = (r′)2

[
6r2∗ − 1− κr2∗

(
5 +

r2∗
1 + κr2∗

)]
,

aη =
1

2
r2∗(1 + κr2∗)t

′′
1(ϕ

◦
0), aλ = (1 + κr2∗).

The problem is to find such values of r′, Λ′(r′) which satisfy the following condition
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χ(0)
m → 0 as η → ±∞. (4.170)

Applying Fourier transform

χ(0)
m (η) =

1√
2π

+∞∫
−∞

χF(ω̃)eiω̃ηdω̃, (4.171)

we come to the second order equation for function χF

d2χF

dx2
+
{
Λ̃− [x4 + 2γx2 + γ2Q(κ)]

}
χF = 0, (4.172)

where

x =
ω̃

α(κ)
, γ = C(κ)r′, Λ̃ = Λ′

{
1 + κr2∗

(r4∗ + κr2∗ + 3)[−t′′1(ϕ◦
0)]

1/2

}1/3

,

α(κ) =

[
− t′′1(ϕ

◦
0)r

6
∗(1 + κr2∗)

2(r4∗ + κr2∗ + 3)

]1/6
,

C(κ) =
2 + 2r4∗ − κr4∗

r∗
[− 1

2 t
′′
1 (ϕ

◦
0)(1 + κr2∗)(r

4
∗ + κr2∗ + 3)2

]1/3 ,
Q(κ) = 1 +

2A(κ)α2(κ)

C2(κ)t′′1 (ϕ
◦
0)r

2
∗(1 + κr2∗)

,

A(κ) =
1− (1− κ)r2∗(6 + 5κr2∗)

1 + κr2∗
+

(2 + 2r4∗ − κr4∗)
2

r2∗(r
4
∗ + κr2∗ + 3)

.

For each γ, there is a countable set of values Λ̃j(j = 0, 1, . . .) of Λ̃ for which there
exist non-trivial solutions of Eq. (4.172) such that

χF → 0 as x→ ±∞. (4.173)

It may be seen from Eq. (4.172) that the eigenvalues Λ̃j depend on both the fixed
value of the shear parameter κ and the axial stress resultant t1. In Fig. 4.3, the first
two eigenvalues Λ̃0 and Λ̃1 versus a parameter γ are presented for κ = 0.5 and
t1(ϕ) = 0.5(1 + cosϕ). As seen from Fig. 4.3, for parameters accepted above, the
function Λ̃ has the minimum value Λ̃0 ≈ 0.924 at γ ≈ −0.380. Here r∗ ≈ 1.220 and
Λ∗ ≈ 0.782, and applying Eqs. (4.173) one gets Λ′

min ≈ 0.553, and r′ ≈ −0.217.
Then, the wave parameter rm from Eq. (4.164) and the minimum eigenvalue Λ will
be as follows

rm ≈ 1.22− 0.217ε2/3, Λmin ≈ 0.782 + 0.553ε4/3. (4.174)

Table 4.4 shows parameters rm, z0, Λ∗, Λ
′, and Λmin versus κ for the case (C)

when rm ≈ z0. It may be seen that increasing the shear parameter κ leads to a
decrease of the minimum natural frequency of the laminated cylindrical shell.



4.5 Localized Vibrations of a Cylindrical Shell Pre-stressed by Distributed Axial Forces 195

Table 4.4 Minimum eigenvalue Λ versus κ at rm ≈ z0 (after Mikhasev, 2017).

κ rm z0 Λ∗ Λ′ Λmin

0.037 0.993 1.014 0.990 0.590 1.005
0.100 1.017 1.039 0.972 0.586 0.986
0.250 1.077 1.102 0.917 0.575 0.931
0.400 1.142 1.171 0.843 0.563 0.857
0.500 1.186 1.220 0.782 0.553 0.796
0.600 1.229 1.271 0.710 0.539 0.723

Example 4.3. We consider a three-layered cylindrical shell with radius R = 150
mm and length L = 450 mm. The first and third layers have the thickness
h1 = h3 = 0.3 mm and are made of aluminium with the Young’s mod-
ulus E1 = E3 = 70, 3 GPa, Poisson’s ratio ν1 = ν3 = 0.345, and density
ρ1 = ρ3 = 2.7 · 10−6 kg/mm3, and the second one is an epoxy matrix with
h2 = 0.8 mm, E2 = 3, 45 GPa, ν2 = 0.3 and ρ2 = 1.2 · 10−6 kg/mm3. The
dimensionless axial membrane stress resultant is assumed as follows

t1(ϕ) =
1

2
(1 + δ cosϕ). (4.175)

Then the generatrix ϕ = ϕ◦
0 = 0 will be the weakest one.

Figure 4.4 shows the dependence of the zeroth-order approximation of the eigen-
valueΛ0 upon both the shear parameterκ and parameter δ atm = 20 (rm = 1.3). In
this case rm > z0 and all calculations were performedby equations corresponding to
the variant (A). It may be seen that the eigenvalueΛ0 is the monotonically decreasing
function of both the axial force (in a neighborhood of the weakest generatrix) and
the shear parameter κ.

Figure 4.5 demonstrates the nonlinear behavior of the relative correction Λ1/Λ0

for the eigenvalue Λ at varying the shear parameter κ for different values of δ.
As accepted, the increase in parameter % characterizing inhomogeneity of loading

Fig. 4.3 First two eigenvalues
Λ̃0, Λ̃1 vs. parameter γ (after
Mikhasev, 2017).

Λ̃0, Λ̃1

γ

Λ̃1

Λ̃0
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involves the increase in the correction Λ1/Λ0 for any fixed κ. But for any fixed
δ, there exists the maximum of Λ1/Λ0 being the function of κ. Approximately at
κ > 0.65, the influence of inhomogeneity in loading on the natural frequencies
becomes negligible.

Example 4.4. Let us consider again the three-layered cylindrical shell with the same
geometrical and physical parameters as in the previous Example. In Table 4.5, the
dependence of the parameters �b, Λ0 (or Λ∗ at rm ≈ z0), and Λ1/Λ0 (or Λ′/Λ∗ for
rm ≈ z0) on the wave parameter rm found by two different asymptotic approaches
is presented. The calculations have been performed at κ = 0.5 for the nonuniform
dimensionless stress resultant t1(ϕ) = 0.5(1 + cosϕ). It may be seen that Λ1/Λ0

decreases and �b increases as rm → z0 = 1.077.

All the problems on free vibrations of laminated beams, plates and cylindrical shells
considered in this chapter have revealed the general feature for the ESL model taking
into account transverse shears: the incorporation of shears into the shell model
reduces all natural frequencies, this effect being stronger for eigenmodes with a large
number of waves and weaker for modes having a small number of waves. Since the
eigenmodes for low-frequency vibrations of thin medium-length cylindrical shells
are characterized by a large number of waves in the circumferential direction, than
the shear induced lowering of natural frequencies may be too significant for these
modes (corresponding to low-frequency vibrations). The outcomes obtained in this
chapter, including the derived equations for natural frequencies, will be used below
to study free and forced vibrations of laminated thin-walled structures assembled
from the viscoelastic smart materials (MREs and ERCs).

Fig. 4.4 Zero approximation
Λ0 of the eigenvalue Λ vs. the
shear parameter κ.
δ = 0.8 - curve 1,
δ = 1 - curve 2,
δ = 1.2 - curve 3
(after Mikhasev, 2017).

Table 4.5 Parameters �b, Λ0 (or Λ∗), Λ1/Λ0 (or Λ′/Λ∗) vs. rm (after Mikhasev, 2017).

Cases rm �b Λ0(Λ∗) Λ1/Λ0(Λ′/Λ∗)
B 0.844 0.285 0.575 1.117
B 0.909 0.347 0.656 0.942
B 0.974 0.448 0.741 0.752
C 1.077 - 0.917 0.627
A 1.360 1.588 1.490 0.552
A 1.490 1.026 1.949 0.564

Λ̃0

κ
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Fig. 4.5 Normalized correc-
tion Λ1/Λ0 vs. the shear
parameter κ.
δ = 0.8 - curve 1,
δ = 1 - curve 2,
δ = 1.2 - curve 3
(after Mikhasev, 2017).
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Chapter 5

Vibrations of Laminated Structures Composed

of Smart Materials

Abstract In this chapter, we consider thin-walled laminated beams, plates and shells
containing layers made of viscoelastic smart materials (VSMs). Generally, from all
variety of these materials, the magnetorheological elastomer MRE-1 with properties
specified in Chapt. 2 will be used for damping layers or core. To compare the damping
capabilities of this material with others, we will study also vibrations of thin-walled
laminates assembled from other smart materials (MREs, MRFs and ERCs) described
in Chapt. 2.

The basic purpose of this chapter is to analyze free and forced vibrations of
thin-walled laminated structures with adaptive physical properties and to show that
the application of VSMs embedded between elastic layers allows changing not only
the total rigidity, as detected in Chapt. 3, but more the total damping capability of
the structure when subjected to the action of an external magnetic or electric field.
In particular, it will be shown that the application of a magnetic field may result in
significant enhance of the damping capacity of a MRE-based laminated structure
and as a consequence, in effective damping of both free and forced vibrations.

The chapter begins with a brief review of the state of the art of research on
vibration of MR/ER-based laminated structures (Sect. 5.1). In Sect. 5.2, free and
forced vibrations of sandwich beams with MRF or MRE cores are examined. In
Sect. 5.3, free and forced vibrations of MRE-based rectangular plates are shortly
discussed. Section 5.4 is the main one, it is devoted to free and forced vibrations of
laminated and sandwich MRE/ERC-based panels and shells affected by stationary
magnetic fields. The detailed analysis of damping capability of different VSMs
materials (MREs and ERCs with properties specified in Chapt. 2) incorporated with
sandwich panels is given. Finally, in Sects. 5.5 and 5.6, the impact of magnetic field
on localized modes and non-stationary vibrations in medium-length MRE-based
cylindrical shells is studied. In particular, the effect of soft suppression of travelling
localized waves under slowly varying magnetic field is demonstrated.
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5.1 Brief Review of the State of the Art

One of the main issues of any thin-walled structure are undesirable vibrations.
The control of structural vibrations may be implemented by passive, semi-active or
active manner. The passive damping of vibrations is provided by utilizing viscoelastic
materials with fixed physical properties. A passive damped thin-walled structure is
formed as a rule by placing viscoelastic damping material between elastic layers.
The problems of free and forced vibrations of similar laminated structures assembled
with traditional viscoelastic materials are well studied (we do not discuss here
investigations arising to the earliest papers of DiTaranto (1965); Mead and Markus
(1970) and refer only to the review article by Qatu et al, 2010).

The semi-active or active control of structural vibrations is attained as a rule
by modifying the total stiffness and damping ratio (viscosity). A number of ac-
tive materials such as piezoelectric, electromagnetotstrictive materials, electro- and
magnetorheological fluids and elastomers, etc., may be used to vary the total vis-
coelastic characteristics of thin-walled smart structures (Gandhi et al, 1989; Gandhi
and Thompson, 1992).

During the last two decades, electrorheological (ER) and magnetrheological (MR)
fluids as well as magnetorheological elastomers (MREs) became to attract a height-
ened attention of researchers studying controllable damping vibrations of thin-walled
laminated structures (Li et al, 2014). Gandhi et al (1989) reported on the first ex-
perimental investigation focussed on evaluating the electro-elastodynamic response
of cantilevered multi-layered beams containing ER fluids. The results of this pio-
neering paper have clearly demonstrated for the first time the feasibility of actively
controlling in real-time the dynamic characteristics (natural frequencies, amplitudes
and damping ratio) of laminated structures fabricated upon ultra-advanced smart
composite materials. Afterwards, numerous theoretical and experimental studies on
the behavior of a sandwich beam with ER fluid were carried out (among many
others, s. Choi et al, 1990; Lee, 1995; Berg et al, 1996; Oyadiji, 1996; Yalcintas
and Coulter, 1995, 1998; Yalcintas and Dai, 1999; Shaw, 2000; Kang et al, 2001;
Phani and Venkatraman, 2003; Allahverdizadeh et al, 2013). In particular, detailed
investigations of the influence of ER materials on the composite structural vibration
and damping have been carried out by Yalcintas and Coulter (1995, 1998); Yalcintas
and Dai (1999). They and afterwards Kang et al (2001) have discussed variations
of the modal loss factors with different designed parameters and showed that the
possible damping capacity of ER based sandwich beams can be maximized by the
proper choice of geometrical parameters and electric field. It has been also revealed
that the adaptive nature of sandwich beams with ER liquid core was achieved by
controlling the pre-yield rheology of ER smart materials in response to varying
applied electric field levels. An important outcome of all aforementioned theoretical
studies are analytical models of sandwich (three-layered) beams with a liquid ER
core. The principle assumptions of these models are the following:

• ER liquid core exhibits linear shear behavior at small strain levels, corresponding
to the pre-yield regime;
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• the shear modulus of a viscoelastic core is a complex magnitude dependent of the
electrical field level;

• no normal stresses in the ER layer;
• all three layers experience the same transverse displacement;
• no slipping between the elastic layers and ER layer.

All studies based on these models have reported that the definite increase in electric
field across ER fluid, corresponding to the pre-yield regime, results in the increase
of the loss factor of the ER layer and ultimately the equivalent damping ratio for a
smart beam.

As for MR materials, they have demonstrated very quick time response, in the
order of milliseconds, to an applied magnetic field (s. Chapt. 2), and thus become
potentially applicable to smart tunable laminated structures (Sun et al, 2003). The
available experimental studies (Yalcintas and Dai, 2004; Wei et al, 2008; Lara-Prieto
et al, 2010; Chikh et al, 2016; Kozlowska et al, 2016; Irazu and Elejabarrieta, 2017)
and numerous theoretical papers (Yalcintas and Dai, 1999; Sun et al, 2003; Zhou and
Wang, 2005, 2006a,b,c; Hu et al, 2006; Mikhasev et al, 2010; Nayak et al, 2011, 2012;
Korobko et al, 2012) have shown that the application of an external magnetic field
results in very quick increasing of the stiffness and damping properties of sandwich
beams containing MR fluids or elastomers. This effect may be efficiently used to
tune the dynamic characteristics such as natural frequencies, vibration amplitudes,
mode shapes and loss factors. As shown in Korobko et al (2012), for assumed
and fixed geometrical and physical parameters of a MRE based beam, there is an
optimal intensity of the magnetic field providing the maximum loss factor for a
smart beam. In contrast to earlier papers on the ER fluid based sandwich beams, the
theoretical investigations by Zhou and Wang (2006a,b,c); Choi et al (2010) containing
mathematical models were based on the higher-order shear deformation theory for
a soft MRE core, some of approaches (Zhou and Wang, 2006b,c) accounting the
normal stresses in the MRE layer. The effect of non-homogeneous magnetic field
on MRE sandwich beams fabricated from a MRE between two aluminum layers
was examined by Hu et al (2011, 2012); Long et al (2013). Whereas the majority
of investigations showed that the application of a uniform magnetic field results in
increasing the total stiffness of a MRE based sandwich beam and leads to right
shifting natural frequencies, the experimental tests performed by Hu et al (2011,
2012) have revealed unlooked-for result: the first natural frequency of the cantilever
MRE beam decreased as the magnetic field applied to the beam was moved from
the clamped edge to the free one. The left shift trend of the first natural frequency
has been also confirmed by finite element simulations performed by Megha et al
(2016). The nonlinear mechanical behavior of sandwich beams with a MRE core
subjected to a permanent magnetic field was recently analyzed by Zeerouni et al
(2018). They showed that MRE beams may exhibit a non-linear behavior even at
small deformations due to the rheological properties of a MRE.

The vibration analysis becomes very important when the applied load is not
constant and induces unstable modes or resonance. The advantages of using MR
liquids or elastomers to active control the forced vibration of sandwich beams were
illustrated in Dwivedy et al (2009); Rajamohan et al (2010); Nayak et al (2014);
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Aguib et al (2016); Megha et al (2016); Yildirim et al (2016). Using finite element
and Ritz’ methods, Rajamohan et al (2010) have demonstrated the efficiency of
utilizing MR fluid to suppress forced vibrations of a sandwich beam under harmonic
force excitation. Dwivedy et al (2009) have examined parametric instability of a
MRE based sandwich beam subjected to a periodic axial load. Aguib et al (2016)
have experimentally and numerically studied the vibrational response of a MRE
sandwich beam subjected to harmonic excitation by magnetic force applied at the
free end. The nonlinear dynamic response of a clamped-clamped geometrically
imperfect MRE sandwich beam with a concentrated mass at the centre under a point
excitation has been investigated by Yildirim et al (2016). The numerical calculations
and experimental tests on free and forced vibrations of sandwich beams and panels
with carbon/epoxy composite skins and a honeycomb core filled with MRE were
performed recently by de Souza Eloy et al (2018, 2019). Free and forced vibration
tests conducted under several magnetic field intensities were performed to evaluate
dynamic properties of the sandwich beams. The experiments showed the noticable
reduction of mechanical vibrations, especially on the fundamental mode of the
sandwich structure. It was also revealed shifting the natural frequencies to the right
due to the increase of an induced magnetic field.

Contrary to laminated smart beams, the dynamics of sandwich plates and shells
with embedded ER or MR cores remains less studied. The vibration analysis of
isotropic and orthotropic sandwich rectangular plates with MRE core has been
performed by Yeh (2013, 2014). In Aguib et al (2014) numerical and experimental
studies of the dynamic behavior of sandwich plates consisting of two aluminum skins
and a polarized MRE core (elaborated under the action of a magnetic field) have
been performed. Eshaghi et al (2015) considered two sandwich plates consisting of
polyethylene terephthalate face layers with two different magnetorheological fluids
as core layers. At first, the dynamic responses of the cantilever sandwich plate
were experimentally characterized; then, using a finite element model based on the
classical plate theory, they showed enhanced vibration suppression properties of
the magnetorheological sandwich plate over a wide frequency range. The dynamic
performance of tapered laminated MRE sandwich plates has been analyzed in recent
papers by Vemuluri and Rajamohan (2016); Vemuluri et al (2018). Applying FEM
and carrying out experiments on the various prototypes of tapered composite silicon
based MRE sandwich plates, they have investigated the effects of magnetic field,
taper angle of the top and bottom layers and various end conditions on the dynamic
properties of sandwich plates. Further, the transverse vibration responses of tapered
sandwich plates under harmonic force excitation have been also analyzed at various
levels of applied magnetic field. The nonlinear vibration analysis of a MRE sandwich
plate was conducted experimentally by Zhang et al (2018). They have constructed
the frequency-response curves in the vicinity of the fundamental natural frequency
of a MRE sandwich plate in either the absence or presence of a localized external
magnetic field at different geometrical locations. It was observed that all the MRE
plates displayed strong hardening-type nonlinear behaviour, however, this behaviour
transitioned to a weak hardening-type nonlinearity with increasing magnetic field.
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As concerns shells, there are only a few investigations on the dynamic analysis
of thin-walled structures containing ER or MR cores (Yeh, 2011; Mohammadi
and Sedaghati, 2012; Mikhasev et al, 2011, 2014, 2016; Mikhasev, 2018). In Yeh
(2011) vibrations of orthotropic cylindrical sandwich shells composed of ER core
and constraining layers have been studied by utilizing the discrete layer FEM. The
author has computed the natural frequencies and modal loss factors of an orthotropic
cylindrical sandwich shell and concluded that by applying different electric fields,
the natural frequencies and modal loss factors of the smart shell can be controlled
and changed immediately. In Mohammadi and Sedaghati (2012) a nonlinear finite
element model of a sandwich shell with an ER fluid in the core has been developed
to perform nonlinear vibration analysis and examine the effect of small and large
displacements, core thickness ratio and electric field intensity on the nonlinear
damping behavior of the shell. The equivalent single-layer model for multi-layered
cylindrical shells containing MRE cores has been proposed by Mikhasev et al (2011).
Later, this model has been used to study the effect of an external magnetic field on
the natural modes of a medium-length thin sandwich cylindrical shell containing a
highly polarized MR core (Mikhasev et al, 2014). It has been revealed that applying a
constant magnetic field may result in strong distortion of eigenmodes corresponding
to the lowest eigenfrequencies. In Mikhasev et al (2016) the response of the MRE-
based sandwich medium-length cylindrical shell to the initial localized perturbations
and an applied time-dependent magnetic field has been studied. It has been shown
that the time dependent magnetic field may result in soft suppression of running
localized bending waves. Finally, the analysis of different problems considered in
Mikhasev (2017, 2018) has clearly demonstrated that MREs may be successfully
used in designing smart thin-walled laminated structures of variable and predictable
mechanical properties. Some problems on free and forced vibrations of MRE based
cylindrical shells studied in Mikhasev et al (2011, 2014); Mikhasev (2017, 2018)
will be in detail considered in the subsequent sections of this chapter. Concluding
the section, we refer readers to the review by Eshaghi et al (2016).

5.2 Sandwich and Multi-layered Beams with Magnetorheological

Core

Consider a sandwich beam of the length L and the rectangular cross section with
the sides h and b as shown in Fig. 5.1. The face sheets of the thickness h1, h3
are made of an elastic material, and the viscoelastic core of the thickness h2 is
fabricated from a magnetorheological composite (MRC). From all variations of
smart composite materials, we consider here only the magnetorheological fluids
(MRFs) and the magnetorheological elastomer (MRE-1) with properties given in
Chapt. 2. Obviously, the choice of a mathematical model for the sandwich MR beam
depends on whether the core is a liquid or an elastomer.
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h1

h3 L
b

h2 h

MRC

Fig. 5.1 Sandwich beam with MRC core.

5.2.1 Sandwich Beam with Magnetorheological Fluid Core

Let the core be a smart magnetorheological fluid, MRF. The ESL model for laminated
beams presented in Chapt. 2 and based on the generalized hypotheses of Timoshenko
can not be used here, because it presupposes the same order of stiffness for all layers
composing a beam. We shall take here the simplest model proposed by Yalcintas and
Dai (2004) and based on the assumptions stated in Sect. 5.1. According to this model
for a sandwich beam with the same thicknesses for all layers (h1 = h2 = h3 = a),
the governing equations accounting tranverse shear in the liquid MR core are the
following

ρ
∂2w

∂t2
+ 2EI

∂4w

∂x4
− 4Gvab

(
∂2w

∂x2
− ∂φ

∂x

)
= f,

J
∂2φ

∂t2
− 2Ea2b

∂2φ

∂x2
− 4Gvab

(
∂w

∂x
− φ

)
= 0,

(5.1)

where w is the normal deflection of the beam (the medium line of the core), φ is the
cross-sectional rotation, x is a coordinate at the core medium line, f is the external
force per unit length, t is time, E is the Young’s modulus of the surface layers, Gv

is the complex shear modulus for the one of MRFs with properties given in Tables
2.8-2.10, ρ is the reduced density of the sandwich per unit length, I is the geometric
moment of area 2nd order of the cross-section, and J is the moment of inertia per
unit length. The magnitudes ρ, I, J are introduced as

ρ = 2ρ1 + ρ2,

I =
9

4
ba3,

J = a2
(
13ρ1
6

+
ρ2
12

)
,

(5.2)

where ρ1 and ρ2 are densities per unit length of the face sheets and MRF, respectively.
Let the edges be simply supported. The appropriate boundary conditions read

w =
∂2w

∂x2
=
∂φ

∂x
= 0 at x = 0, L. (5.3)
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5.2.1.1 Free Vibrations

Let f = 0. Then the natural modes corresponding to conditions (5.3) are given by
functions

w = wn(x, t) = sinλnx e
iΩt, φ = φn(x, t) = Cn cosλnx e

iΩt, n = 1, 2, . . .
(5.4)

where

λn =
πn

L
, Cn =

2λnGv

λ2a2E + 2G
(5.5)

and

Ω = Ωn = λ2n

√
E

ρ

[
2I +

4Gvab

Eλ2n

(
1 +

2Gv

λ2na
2E + 2Gv

)]
(5.6)

is the complex eigenvalue. Deriving Eq. (5.6), we neglected the rotation inertia of
the cross-section. Separating in (5.6) the real and imaginary parts, one obtains the
required natural frequency ω = Ω and the associated damping ratio α = �Ω > 0
of damped vibrations.

Remark 5.1. In addition to the complex eigenvalue Ω = ω + iα defined by (5.6),
the boundary-value problem (5.1), (5.3) has another eigenvalue Ω = −ω − iα. It
is obvious that the second one does not satisfy the condition of damped vibrations,
and so will not be taking into consideration in what follows.

To analyse the effect of magnetic field and the type of MRF chosen on damped
vibrations, we consider the following example.

Example 5.1. Let the sandwich beam of the length L = 390 mm with the sides
a = 0.7 mm, b = 25 mm in the cross-section be assembled from aluminum face
sheets and MRF placed between these sheets. We consider three types of MRFs:
MRF-1, MRF-2 and MRF-3, with properties given in Tables 2.8-2.10. Figures 5.2-
5.4 demonstrate the effect of magnetic field on the natural frequencies ω = Ω
corresponding to three modes with numbers of semi-wavesn = 1, 3, 5 for the beams
with different MRFs. As can be seen from the figures, the natural frequencies shift
right as the applied magnetic field increases from 0 to 350 mT, these variations
being observed more dominantly for the MRF-1, which contains iron particles of
large size.

An important parameter characterizing the rate of vibration damping is the loga-
rithmic decrement

Dl =
2πα√
ω2 − α2

. (5.7)

Figures 5.5-5.7 show the behavior of scaled logarithmic decrement dl = 50Dl/π
under varying the magnetic induction B for three types of MRFs. Calculations
have been performed for n = 1, 3, 5. It is seen that the effect of magnetic field on
the logarithmic decrement is very complicated due to complicated behavior of the
loss factor ηv for all the MR liquids (s. Tables 2.8-2.10). The general conclusion
related to all MRFs under consideration is that the logarithmic decrement decreases
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Fig. 5.2 First natural fre-
quency ω1 = �Ω1 for
sandwich beams with differ-
ent MRF cores vs. induction
B:
1 - MRF-1; 2 - MRF-2;
3 - MRF-3.

0 50 100 150 200 250 300 350

0.28

0.29

0.30

0.31

0 32.

1

2
3

0.27

ω
,
kH

z
B, mT

Fig. 5.3 Third natural fre-
quency ω3 = �Ω3 for
sandwich beams with differ-
ent MRF cores vs. induction
B:
1 - MRF-1; 2 - MRF-2;
3 - MRF-3.
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Fig. 5.4 Fifth natural fre-
quency ω5 = �Ω5 for
sandwich beams with differ-
ent MRF cores vs. induction
B:
1 - MRF-1; 2 - MRF-2;
3 - MRF-3.
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with growing the mode number. Thus, the mathematical model for a sandwich used
here shows that MRFs are most effective for damping low-frequency vibrations of
three-layered beams with the MRF core.

Figures 5.8 and 5.9 allow us to compare the damping capabilities of different
smart fluids on the first and third modes, respectively, at different levels of applied
magnetic field. It is seen that the MRF-2 and MRF-3 possess the best damping
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Fig. 5.5 Scaled logarithmic
decrement dl for the sandwich
beam with the MRF-1 core
corresponding to different
modes vs. induction B: solid
line - n = 1, dashed line -
n = 3, dotted line - n = 5.
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Fig. 5.6 Scaled logarithmic
decrement dl for the sandwich
beam with the MRF-2 core
corresponding to different
modes vs. induction B: solid
line - n = 1, dashed line -
n = 3, dotted line - n = 5.
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Fig. 5.7 Scaled logarithmic
decrement dl for the sandwich
beam with the MRF-3 core
corresponding to different
modes vs. induction B: solid
line - n = 1, dashed line -
n = 3, dotted line - n = 5. 0 4.
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capability at a weak magnetic field (B < 50 mT), while the MRF-1 demonstrates
the highest damping effect for B varying from 50 to 300 mT.

5.2.1.2 Forced Stationary Vibrations

Now we consider forced vibrations under the external normal harmonic force

f = ρF0(x) e
iωet, (5.8)

where ωe is the excitation frequency. The magnetic field, if applied, is constant and
homogeneous (independent of time t and coordinate x).

A solution of Eqs. (5.1) with the boundary conditions (5.3) may be found in the
form of series
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Fig. 5.8 Scaled logarithmic
decrement dl for the sandwich
beam with different MRFs
cores corresponding to the
first mode (n = 1) vs.
induction B: 1 - MRF-1;
2 - MRF-1; 3 - MRF-3.
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Fig. 5.9 Scaled logarithmic
decrement dl for the sandwich
beam with different MRFs
cores corresponding to the
third mode (n = 3) vs.
induction B: 1 - MRF-1;
2 - MRF-1; 3 - MRF-3.
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w(x, t) =

∞∑
n=1

sin(λnx) qn(t), φ(x, t) =

∞∑
n=1

Cn cos(λnx) qn(t), (5.9)

where qn(t) is the so-called generalized coordinates of the vibrating system. Substi-
tuting Eqs. (5.9) into (5.1), then multiplying them by sin(λnx) and integrating over
the beam length, we obtain the following equation

q̈n(t) +Ω2
nqn(t) = Fne

iωet, (5.10)

where

Fn =

∫ L

0

F0(x) sin(λnx)dx (5.11)

is the generalized force corresponding to qn(t). The partial solution of Eq. (5.10) is

qn(t) = Fn
eiωet

Ω2
n − ω2

e

. (5.12)

Then the amplitude of forced stationary vibrations at any point of the beam will be
defined by
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w(x, t) =
∞∑
n=1

Fn

Ω2
n − ω2

e

sin(λnx)e
iωet =

∞∑
n=1

Fn sin(λnx)e
iωet

ω2
n − α2

n − ω2
e + 2iωnαn

. (5.13)

Since the complex eigenfrequency Ωn depend on the complex shear modulus Gv

being the function of induction B, the amplitude of sustained forced vibrations
becomes to some extent a controllable quantity.

5.2.1.3 Equivalent Model with External Friction for Prediction of Unsteady

Vibrations

We note that the homogeneous equation corresponding to Eq. (5.10) has the two
partial solutions, e−α+iωt and eα−iωt, of which the second one does not satisfy the
damping condition (s. Remark 5.1). Thus, the general solution of Eq. (5.10) based
on the assumed above model for viscoelastic MRF with internal friction can not be
used to describe unsteady forced vibrations of the MRF-based sandwich beam.

In order to give an approximate analysis of unsteady vibrations, we shall replace
the initial model by an equivalent model with external friction. The idea of this
substitution is the following. The dynamic unsteady response of the beam to the
external harmonic excitation can be represented by the superposition of the damped
eigenmodes and undamped forced modes (5.13). Each of the damped eigenmodes is
characterized by the natural frequency ωn = Ωn and the associated damping ratio
αn = �Ωn. We consider the series of viscoelastic n-oscillators

ÿn + 2αnẏn + (ω2
n + α2

n)yn = 0 (5.14)

with the external friction and having the same natural frequencies ωn and damping
ratio αn. Then Eq. (5.10) may be replaced by the following equation

¨̃qn(t) + 2αn
˙̃qn + (ω2

n + α2
n)q̃n = Fne

iωet, (5.15)

where q̃n is the generalized coordinate of the equivalent viscoelastic system with
damping ratio depending on the wave number n.

The general solution of Eq. (5.15) is

q̃n =
Fne

iωet

ω2
n − ω2

e + α2
n + 2iαnωe

. (5.16)

Then the amplitude of forced unsteady vibrations for the equivalent smart beam will
be as follows

w(x, t) =

∞∑
n=1

[
e−αnt

(
c(s)n sinωnt+ c(c)n cosωnt

)

+
Fne

iωet

ω2
n − ω2

e + α2
n + 2iαnωe

]
sin(λnx).

(5.17)
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We note that the component in Eq. (5.17) corresponding to the amplitude of forced
unsteady vibrations does not coincide with the amplitude of forced stationary vibra-
tions (5.13). However, the real parts of these components become the same for the
resonance excitation, i.e. for ωe = ωn. Equation (5.17) derived for the equivalent

beam can be used only to estimate approximately unsteady vibrations of the smart
beam under consideration. To make that, we shall consider the following example.

Example 5.2. Let the motionless sandwich MR beam with parameters specified in
Example 5.1 be subjected to the periodic concentrated force

f = ρδ(x− x∗) sinωet

applied in the point x = x∗ ∈ (0, L) at t ≥ 0, where δ(x) is the delta function. Then
the generalized force

Fn =
2

L
sinλnx

∗.

We consider the case when the frequency of excitation is very close to the first
natural frequency ωe ≈ ω1 = Ω1 of the beam when a magnetic field is absent. In
Fig. 5.10, curve 1 shows the scaled amplitude A = wmax × 105 of the resonance

vibrations of the equivalent beam without magnetic field, and the curve marked by 2
corresponds to vibrations of the same beam when the magnetic field of the constant
induction B = 250 mT is applied. Here, wmax is the maximum amplitude. The
calculations were performed for x∗ = L/7 and ωe = 271 Hz. It is clearly seen,
that due to viscosity of the MRF-1 the small oscillations generated by the initial
conditions quickly decay with and without magnetic field, while the amplitude of
forced vibrations is the growing function which converges to some limited value at
t → ∞, if a magnetic field is absent. The application of magnetic field leads to slight
shifting all natural frequencies, including the first one (s. again Fig. 5.2), to right and
in that way prevents resonance vibrations.

Fig. 5.10 Scaled maximum
amplitude A of forced vibra-
tions of the sandwich beam
with the MRF-1 core vs. time t
without magnetic field (curve
1) and under magnetic field of
the induction B = 250 mT
(curve 2).
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5.2.1.4 Suppression of Forced Vibrations in Thin-walled Structures via

Magnetic/Electric Fields

The basic principles of damping forced vibrations of MR/ER-based beams, plates and
shells are to give a time signal of the magnetic/electric field and also to determine its
optimal intensity. The criteria of selecting the signal time of an external physical field
may be different. The simplest criterion is monitoring of the maximum amplitude
of vibrations: the magnetic/electric field signal is fed, if the maximum amplitude
(in some point) achieves a certain critical magnitude. Another criterion is based on
the estimation of the total mechanical energy of the structure. For instance, for the
sandwich beam considered in this section this energy is defined as

Es = T +Π1 +Π2 +Π3, (5.18)

where

T =
1

2

L∫
0

(
∂w

∂t

2)
ρ dx+

1

2

L∫
0

(
∂φ

∂t

2)
J dx,

Π1 = ba3E

L∫
0

(
∂φ

∂t

2)
dx, Π2 = EI

L∫
0

(
∂w

∂t

2)
dx,

Π3 =
1

2
G′

vab

L∫
0

γ2ρdx.

In Eq. (5.18), T is the kinetic energy of the beam,Π1, Π2 are the potential energy of
tangential and bending deformations, andΠ3 is the potential energyof the transversal
shears in the MR/ER core. We note that the energy (5.18) does not contain the work
that goes to the heating the whole system, including the work on heating the MR/ER
core, which depends on the loss modulusG′′

v of the smart viscoelastic material.
The problem is to minimize the maximum amplitude of excited vibrations, the

mechanical energyEs or the rate of its growth Ės (Lai and Wang, 1996). For instance,

if at t = tcr the energy achieves some critical value E
(cr)
s , a magnetic/electric field

signal is applied, leading to a sudden or gradual change in the physical characteristics
of a smart core.

Example 5.3. In this example, we study the response of the beam considered in the
previous example when the magnetic field of the intensity B = 270 mT is suddenly
applied at t = tcr = 0.1 s. Let w(1)(x, t) be the beam response to the resonance
excitation at the interval 0 < t ≤ tcr = 0.1 s (see the dotted line in Fig. 5.10).
Consider the following initial conditions

w(x, t)|tcr = w(1)(x, tcr), ẇ(x, t)|t=tcr = ẇ(1)(x, tcr) (5.19)

for Eqs. (5.1). Let w(2)(x, t) be a solution of the initial boundary-value problem
(5.1), (5.3), (5.19) for t ≥ tcr when the magnetic field signal is fed. We assume



212 5 Vibrations of Laminated Structures Composed of Smart Materials

that after applying the magnetic field at t = tcr the viscoelastic properties of the
beam is changed in a moment. So, to use formulae (5.17) at t ≥ tcr, one needs
to recalculate at first all natural frequencies for the sandwich at B = 270 mT.
Figure 5.11 shows the response of the equivalent MRF-1 sandwich at two time gaps,
for 0 ≤ t < tcr (the dotted line) and t ≥ tcr (the solid line). It is seen that the
application of a magnetic field results in some high-frequency oscillations generated
by the initial displacements and velocities (5.19), these oscillations being rapidly
suppressed during the time. However, the basic effect of the applied magnetic field
is a quick withdrawal of the beam from a regime of the resonance vibrations and
stabilization of forced vibrations with more low amplitude.

Remark 5.2. It should be noted that the response of a smart material to a signal of
magnetic/electric field depends on the ratio of timescales of controlling signal and the
reaction of the very MR/ER medium (Korobkoet al, 2012). So, at sudden application
of a magnetic field, the time of reaction of MRF or MRE is about 10−3 − 10−2 s.
An abrupt impact of an external physical field is the kind of a parametric blow for
the adaptable mechanical system and can excite additional high-frequency modes.

Solution (5.17) found above for the equivalent smart beam as well as Examples 5.2,
5.3 relate to the case when the applied magnetic field is stationary. It is obvious that
these solutions do not take into account the aforementioned parametric impact. In
the next item, we shall construct high-frequency modes accounting for the real time
response of a smart MR material to a signal of an external magnetic field.
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Fig. 5.11 Response of the MRF-1 based sandwich beam to the resonance harmonic force and
magnetic field applied at t = tcr = 0.1 s.
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5.2.1.5 High-frequency Response of Magnetorheological Beam on the Rapid

Signal of a Magnetic Field

Let the complex shear modulus Gv = Gv(vrt) of the MRF be a function of time,
where vr = 1/tr is the speed of the liquid reaction on the signal of a magnetic field.
For a majority of MRFs, vr varies from 10−3 to 10−2 s−1. Let tr = 10−2 s be the
characteristic time.

We introduce the dimensionless magnitudes

w = LW ∗, t = trτ, g(τ) =
2Gv(trτ)L

2

ε1/2Ea2

ε =
tr
Tp

, Tp =
1

3

√
2ρa

Eb

L2

a2
,

(5.20)

where Tp is the period of low-frequency vibrations of the beam without the MRF
core. Furthermore, it is assumed that ε is a small parameter.

The dimensionless deflection and angle of rotation satisfying the boundary con-
ditions (5.3) are sought in the form

W ∗ = W (τ) sin
πnx

L
, φ = Φ(τ) cos

πnx

L
, n = ε−1/2p, p ∼ 1, (5.21)

where n is an integer. Then Eqs. (5.1) can be rewritten as

ε
d2W

dτ2
+ δ4W +

4

9
ε1/2δ2g(τ)W +

4

9
εδg(τ)Φ = 0,

ες2
d2Φ

dτ2
+ δ2Φ+ δg(τ)W − ε1/2g(τ)Φ = 0,

(5.22)

where

δ = πp, ς2 =
9ρJa

2

2ρL2
, ρJ =

13

6
ρ1 +

1

12
ρ2, g(τ) = g1(τ) + ig2(τ). (5.23)

Here, g1 and g2 are the real and imaginary parts of the complex function g(τ), g2
being positive.

To solve Eqs. (5.21), we apply to the multiple scale method. Let

τ0 = ε−1/2τ, τ1 = τ, τ2 = ε1/2τ, . . . (5.24)

be independent variables. The asymptotic solution of Eqs. (5.22) can be found in the
form of series

W = W0 + ε1/2W1 + εW2 + . . . , Φ = Φ0 + ε1/2Φ1 + εΦ2 + . . . (5.25)

where Wk and Φk are functions of independent arguments τj defined by (5.24).
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Substitution of (5.25) into Eqs. (5.22) results in the sequence of differential
equations with respect to required Wk, Φk. Consider these equations step-by-step.
In the zeroth-order approximation, one has the homogeneous equations

∂2W0

∂τ20
+ δ4W0 = 0,

∂2Φ0

∂τ20
+
δ2

ς2
Φ0 +

δ

ς2
g(τ1)W0 = 0. (5.26)

Their solution are

W0 = A0(τ1, . . .)e
iδ2τ0 + Ā0(τ1, . . .)e

−iδ2τ0 ,

Φ0 = B0(τ1, . . .)e
i δ
ς
τ0 + B̄0(τ1, . . .)e

−i δ
ς
τ0

+
g(τ1)

δ(1− δ2ς2)

[
A0e

iδ2τ0 + Ā0e
−iδ2τ0

]
,

(5.27)

where A0(τ1, τ2, . . .), B0(τ1, τ2, . . .) are required complex functions. In the first-
order approximation, one obtains the nonhomogeneous system of differential equa-
tions

∂2W1

∂τ20
+ δ4W1 = −2

∂2W0

∂τ0∂τ1
− 4

9
δ2g(τ1)W0,

∂2Φ1

∂τ20
+
δ2

ς2
Φ1 +

δ

ς2
g(τ1)W1 = −2

∂2Φ0

∂τ0∂τ1
− g(τ1)

ς2
Φ0.

(5.28)

In above equations, the right-hand members generate secular partial solutions. Elim-
inating these solutions, one arrives at the differential equations

i
∂A0

∂τ1
+

2

9
g(τ1)A0 = 0, 2iδς

∂B0

∂τ1
− g(τ1)B0 = 0. (5.29)

These equations have the solutions

A0(τ1, τ2, . . .) = A01(τ2, . . .) exp

⎧⎨
⎩2i

9

τ1∫
0

g(τ)dτ

⎫⎬
⎭ ,

B0(τ1, τ2, . . .) = B01(τ2, . . .) exp

⎧⎨
⎩ i

2δς

τ1∫
0

g(τ)dτ

⎫⎬
⎭ .

(5.30)

When taking into account (5.30), the general solution of the system (5.28) becomes
as follows

W1 = A1(τ1, . . .)e
iδ2τ0 + Ā1(τ1, . . .)e

−iδ2τ0 ,

Φ1 = B1(τ1, . . .)e
i δ
ς
τ0 + B̄1(τ1, . . .)e

−i δ
ς
τ0

+ C1(τ1, . . .)e
iδ2τ0 + C̃1(τ1, . . .)e

−iδ2τ0 ,

(5.31)
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where

C1 = − g

δ(1− δ2ς2)
A1 +

4ς2δ2g2 − 9iδ2g′ + 9g2

9δ(1− δ2ς2)2
A0,

C̃1 = − g

δ(1− δ2ς2)
Ā1 +

4ς2δ2g2 + 9iδ2g′ + 9g2

9δ(1− δ2ς2)2
Ā0.

(5.32)

The unknown functions A01, B01, A1, B1 are found from the next approximation.
We limit ourselves to the first two approximations.Then the approximate formulae

for the deflection and the angle of rotation become as follows

w = L sin
( πps
ε1/2

)
exp

⎡
⎣−2

9

τ∫
0

g2(τ)dτ

⎤
⎦
⎧⎨
⎩A01exp

⎡
⎣i
⎛
⎝ δ2τ

ε1/2
+

2

9

τ∫
0

g1(τ)dτ

⎞
⎠
⎤
⎦

+ Ā01 exp

⎡
⎣−i

⎛
⎝ δ2τ

ε1/2
+

2

9

τ∫
0

g1(τ)dτ

⎞
⎠
⎤
⎦
⎫⎬
⎭+O

(
ε1/2

)
,

(5.33)

φ = cos
( πps
ε1/2

)
exp

⎡
⎣− 1

2δς

τ∫
0

g2(τ)dτ

⎤
⎦
⎧⎨
⎩B01exp

⎡
⎣i
⎛
⎝ δτ

ςε1/2
+

1

2δς

τ∫
0

g1(τ)dτ

⎞
⎠
⎤
⎦

+ B̄01 exp

⎡
⎣−i

⎛
⎝ δτ

ςε1/2
+

1

2δς

τ∫
0

g1(τ)dτ

⎞
⎠
⎤
⎦
⎫⎬
⎭+O

(
ε1/2

)
,

(5.34)
where A01 and B01 are found from the initial conditions.

Equations (5.33) and (5.34) give the leading terms in the asymptotic series pre-
dicting high-frequency unsteady damping vibrations. It is seen that these terms are
asymptotically independent. Equation (5.33) describes bending vibrations with the
current frequency

ωb =
δ2τ

ε1/2
+

2

9

τ∫
0

g1(τ)dτ (5.35)

and the damping ratio

αb =
2

9

τ∫
0

g2(τ)dτ, (5.36)

and Eq. (5.34) predicts torsional vibrations with the frequency

ωr =
δτ

ςε1/2
+

1

2δς

τ∫
0

g1(τ)dτ (5.37)

and the damping ratio
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αr =
1

2δς

τ∫
0

g2(τ)dτ. (5.38)

Thus, high-frequency vibrations are asymptotically decomposed into bending and
torsional ones. The second terms in Eqs. (5.35) and (5.37) give nonstationary cor-
rections for frequencies, these corrections are induced by the rapid variation of the
storage modulus of the MRF under the impulse signal of the magnetic field. The
time-dependentdamping ratios (5.36) and (5.38) reflect the variation of the loss mod-
ulus of the smart viscoelastic core. If we take into account the next approximations, it
would be detected that the bendingvibrations defined by Eq. (5.33) generate torsional
vibrations with amplitudes of order O

(
ε1/2

)
and vice versa, the high-frequency ro-

tations of the beam cross-sections (5.34) cause small bending oscillations. Thus, the
bending and torsional vibrations are coupled.

The above mentioned methods of vibration damping belong to semi-active meth-
ods. Obviously, they have both advantages and disadvantages. One of the advantages
of these approaches, based on the application of MR/ER smart materials, is that
without the use of any special damping devices it is possible to change reversibly the
elastic and viscous properties of the entire mechanical system to withdraw it from
the regime of resonance vibrations. In addition, these methods allow suppressing
efficiently any free oscillations generated by the initial conditions. Their common
drawback is that their implementation results in partial suppression of the forced
vibrations only due to some increasing all natural frequencies.

5.2.2 Laminated Beams with Magnetorhelogical Elastomer Layers

In this subsection, we consider both sandwich and multi-layered beams with one ore
several layers made of a MRE. To predict the dynamic response of the MRE-based
laminated beams, we use the ESL theory stated in Chapt. 2. The differential equation
governing forced vibrations of the beam represented in Fig. 5.1 is the following
(2.153)

EIη3

(
1− θh2

β

∂2

∂x2

)
∂4χ

∂x4
+ ρl

(
1− h2

β

∂2

∂x2

)
∂2χ

∂t2
= ql, (5.39)

where ql(x, t) is the external normal force per unit length of the beam, ρl is the linear
mass introduced in Sect. 2.1, χ is the displacement function coupled with the normal
displacement w by

w =

(
1− h2

β

∂2

∂x2

)
χ. (5.40)

In contrast to the cases considered in Chapt. 4, the reduced Young’s modulusE and
parameters η3, θ, β are here complex magnitudes dependent on the induction B of
the external magnetic field. The complex values of these parameters are calculated
by Eqs. (2.18), (2.25), (2.84) and (2.89).
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Consider here only one variant of boundary conditions

χ =
d2χ

dx2
=

d4χ

dx4
= 0, (5.41)

corresponding to the simply supported edges α1 = 0, L. We remind that for a
laminated beam represented by the ESL model, boundary conditions for the simply
supported edges with and without diaphragm are identical (s. Subsect. 3.1.1).

5.2.2.1 Free Vibrations

At first, we consider free vibrations (ql = 0). The eigenmodes satisfying conditions
(5.40) are written down

χ = χ0 sin
πnx

L
eiΩt, (5.42)

where n is the number of semi-waves, andΩ is the complex natural frequency. Then
ω = Ω is the natural frequency and α = �Ω is the damping ratio.

The substitution of Eq. (5.42) in Eq. (5.39) gives the formula for the complex
eigenvalues

Ω = Ωn =
1√
ρl

√
EIη3π4n4(1 + θKn2)

L4(1 +Kn2)
, (5.43)

where K = π2h2/βL2 is the complex shear parameter. The variation of induction
B allows changing the complex parameters η3, θ,K and ultimately the natural fre-
quencies ω = Ω and corresponding damping ratios α = �Ω > 0. To estimated
this effect, we consider the following example.

Example 5.4. Let L = 0.3 m, b = 15 mm and h1 = h3 = 1 mm. The face sheets
are made of aluminum. The smart core is the MRE-1 (see its properties in Chapt.
2). Figure 5.12 shows the influence of the magnetic field on the lowest frequency
ω (n = 1) for different thicknesses h2 of the smart material. Figure 5.13 gives the
frequenciesω at n = 9 versus the inductionB when the core thickness h2 = 12 mm.
It is clearly seen that the eigenfrequencies increase at the interval of varying of the
inductionB from 0 to 210 mT, however this influence is very weak for the first modes
and thin core; it becomes noticeable with growing of the smart core layer thickness
h2 for a large number of mode (compare Figs. 5.12 and 5.13).

Figure 5.14 shows the scaled logarithmic decrement dl = 500 Dl/π, where Dl

is calculated by (5.7), as a function of the increasing magnetic field. For the first
and ninth modes and different thicknesses of the MRE core, the best damping takes
place at about 280 mT, this effect becoming stronger with growing the MRE layer.
Comparing outcomes presented on Fig. 5.14 with similar results for the sandwich
beam with MRF core (s. Figs. from 5.5 to 5.9), one can conclude: MR liquids display
the best damping capability at the lowest frequencies, while the MRE-1 does it for
modes with large number n of semi-waves.
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It is of interesting to study the effect of a MRE uniformly distributed between
different elastic layers on natural frequencies and decrement for multi-layered beams.

Example 5.5. We consider different beams of the same geometrical parameters as in
Example 5.4, but consisting of three, five, seven and nine layers. The total thickness
hAl of sheets made of aluminum is equal to 2 mm, and the total thickness hMRE of
the MRE-1 laminaes is 12 mm. It is assumed that the elastic material (aluminum)
and the MRE-1 are uniformly distributed between layers so that the thicknesses of
laminas with odd and even numbers are as follows:

• for the sandwich (N = 3),

h1 = h3 =
hAl

2
, h2 = hMRE;

• for the five-layer beam (N = 5),

h1 = h3 = h5 =
hAl

3
, h2 = h4 =

hMRE

2
;

• for the seven-layer beam (N = 7),

h1 = h3 = h5 = h7 =
hAl

4
, h2 = h4 = h6 =

hMRE

3
,

• for the nine-layer beam (N = 9)

h1 = h3 = h5 = h7 = h9 =
hAl

5
, h2 = h4 = h6 = h8 =

hMRE

4
.

Regardless of a number of layers, the quantity of elastic and smart viscoelastic
materials is fixed. The outcomes for the sandwich beam (N = 3) are presented in
Figs. 5.12 (b), 5.13 and 5.14.

The first and ninth frequencies and the corresponding logarithmic decrements
for multi-layered beams are displayed in Figs. 5.15 and 5.16. As seen, the impact
of magnetic field on eigenfrequencies and damping ratio becomes more weak with
increasing number of layers. However, at the fixed inductionB, the number of layers
greatly influences on all the spectrum of natural frequencies and corresponding
damping ratios. When comparing Figs. 5.12 (b) and 5.15 (a), then one concludes that
increasing number of layers results in some decreasing the lowest natural frequency
at all range of varying B. As for modes with a large number of semi-waves (for
instance, compare Figs. 5.13 and 5.15 (b)), the corresponding natural frequencies
unevenly increase when the beam is subjected to the partition into five, seven and
more number of layers. So, for the ninth mode (n = 9) and B ≥ 200 mT, the natural
frequency jumps from 20.30 kHz (for the sandwich beam) up to about 63.60 kHz
(for the five-ply beam) and then slightly decreases when the number of layers is
increasing. The comparison of Figs. 5.14 and 5.16 shows that the increase of the
number of layers leads to a dramatic decreasing of the logarithmic decrement for
each mode at the fixed level of applied magnetic field, this reduction being more
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noticeable for the highest modes. It is of interest to note the behavior of the scaled
logarithmic decrement dl corresponding to the first mode versus the number of
layers: under increasing N from 3 to 5, the maximum value of dl (at B = 200 mT)
drops from about 1 to 0.046, and then it grows together with the numberN of layers.

This example allows us to conclude: splitting the sandwich beam with the MRE
core into a large number of layers under fixed quantity of elastic and viscoelastic
smart materials results in the reduction of damping properties of the beam, however
permits to change significantly the spectrum of natural frequencies (especially its
part corresponding to highest modes) removing it to right. Obviously, this property
may be used in designing smart laminated beam with adjustable elastic and damping
properties.
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5.2.2.2 Forced Stationary Vibrations and Their Suppression

Let the beam be under the external periodic force

ql = ρlF0(x) e
iωet, (5.44)

where ωe is the excitation frequency. A solution of Eq. (5.39) with the boundary
conditions (5.41) can be presented in the form of the series

χ(x, t) =

∞∑
n=1

sin(λnx)qn(t). (5.45)

Substituting (5.45) into Eq. (5.39), we obtain the series of equations

q̈n +Ω2
nqn =

2Fn

L(1 +Kn2)
eiωet, n = 1, 2, . . . , (5.46)

where the generalized forces Fn are defined by Eq. (5.11). The partial solution of
(5.46) is

qn(t) =
2Fn

L(1 +Kn2)(Ω2
n − ω2

e )
eiωet. (5.47)

Then the amplitude of forced stationary vibrations will be given by

χ =

∞∑
n=1

2Fn e
iωet

L(1 +Kn2)(Ω2
n − ω2

e )
sin(λnx). (5.48)

Example 5.6. Consider the sandwich beam with parameters specified in Exam-
ple 5.5. The thickness of the MRE core is equal to h2 = 12 mm. We assume the
following distribution of the normal periodic force

F0(x) = 4
x

L

(
1− x

L

)
. (5.49)

Figures 5.17 and 5.18 demonstrate the amplitude-frequency characteristics for the
sandwich beam subjected to the periodic force (5.44) with (5.49) in the frequency
interval ωe from 1.10 to 10.10 kHz, the dotted line showing the scaled amplitude
As versus ωe if the magnetic field is absent and the solid curve corresponds to
the case, when the beam is in the magnetic field of the induction B = 200 mT.
It is clearly seen that the applied magnetic field shifts the resonance regions to

right, this shifting being slight for the lowest resonance frequencies and growing
together with the mode number n. The relative reduction of the maximum amplitude
AB

s /A
0
s , where AB

s and A0
s are the scaled amplitude calculated at B = 200 mT and

B = 0 mT, respectively, depends also on n. So, it is equal to approximately 2, 16,
14 for n = 1, 2, 3, respectively. Thus, our conclusion made above on the basis of the
modal analysis (see the previous example) is confirmed: MREs used as smart cores
in sandwich beams reveal the best damping capability at the highest modes and so,
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Fig. 5.17 Amplitude-
frequency characteristics for
the MRE-1 sandwich beam
at the interval ωe from 1.10
to 4.00 kHz for two different
cases: dotted line - magnetic
field is absent, solid line -
magnetic field of the induc-
tion B = 200 mT is applied.
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Fig. 5.18 Amplitude-
frequency characteristics for
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10.10 kHz for two different
cases: dotted line - magnetic
field is absent, solid line -
magnetic field of the induc-
tion B = 200 mT is applied.
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their application turns out to be more effective for suppression of high-frequency
vibrations.

The next example illustrates the resonance response of the beam without magnetic
field and after its application.

Example 5.7. Let the beam considered in the previous example be subjected to the
resonance periodic force (5.44) applied in the point x = x∗ = L/7, where the
excitation frequency ωe = 3.46 kHz is close to the second natural frequency of the
beam. In Fig. 5.19, the scaled maximum amplitude for the so-called equivalent beam

with external friction is plotted at 0 ≤ t < tcr, when the magnetic field is absent, and
for t ≥ tcr as well, where tcr = 0.2 is the time of turning on the magnetic field of the
inductionB = 300 mT. In the initial moment the beam is motionless. Computations
at t ≥ tcr were performed by the approach applied in Example 5.2 in accordance
to which the natural frequencies, damping ratio and modes were recalculated after
applying the magnetic field. The high-frequency excited oscillations due to the impact
action of magnetic field were disregarded. Figure 5.19 shows that the application
of magnetic field removed the beam from the regime of resonance vibrations and
resulted in about fourfold reduction of the amplitude of forced vibrations.
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Fig. 5.19 Response of the
equivalent MRE-1 based

sandwich beam to reso-
nance harmonic force and
the magnetic field of induc-
tion B = 300 mT applied at
t = tcr = 0.2 s.
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5.3 Magnetorheological Sandwich and Multi-Layered Plates

In this section, we consider laminated plates consisting of N transversally isotropic
laminas. The sides in the plate plane are equal to L1 and L2. Each layer with the
number k(k = 1, 2, . . . , N) is characterized by the thickness hk, Young’s modulus
Ek, shear modulusGk and Poisson’s ratio νk. If a plate is three-layered (sandwich),
as shown in Fig. 5.1, then the face sheets are elastic and the core is a MRE. For
multi-layered plate, elastic and smart viscoelastic laminas alternate, odd laminas
being made of an elastic material, and even ones being MREs.

Assuming the ESL theory for laminated plate stated in Chapt. 2, we use here the
following equations

D

(
1− θh2

β
�
)
�2χ+ ρ0h

∂2w

∂t2
= qex, w =

(
1− h2

β
�
)
χ,

(1− ν)h2

2β
�φ = φ,

(5.50)

where� is the Laplace operator in a Cartesian coordinate system α1, α2, (0 ≤ α1 ≤
L1, 0 ≤ α2 ≤ L2), w is the deflection of the plate, φ is the shear function, s. its
introduction in Chapt. 2, Eq. (2.78), qex(α1, α2, t) is the normal load, t is time. All
other notations appearing in Eq. (5.50) are the same as in Chapt. 2. We only note that
the reduced bending stiffness D and the shear parameter β depend on the intensity
of the applied magnetic field.

We consider here only one variant of boundary conditions. Let all the edges be
simply supported and provided by diaphragm preventing edge shear

χ = �χ =
∂φ

∂αk
= 0 at αk = 0, Lk; k = 1, 2. (5.51)

Then, one can set φ = 0.
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5.3.1 Free Vibrations

At first, we analyse free vibrations (qex = 0). The solution of the boundary-value
problem (5.50), (5.51) can be found as

χ = χ0 sin
πnα1

L1
sin

πmα2

L2
eiΩt, (5.52)

where n,m are numbers of semi-waves in the α1− and α2− directions, respectively,
and Ω is the complex natural frequency.

Substituting Eq. (5.52) into Eqs. (5.50) gives a simple formula for the required
complex eigenvalue

Ω = Ωnm =

√
π2D

ρ0hL4
1

Λ1/2, (5.53)

where

Λ = Λnm =
δ2nm(1 + θKδnm)

1 +Kδnm
, K =

π2h2

βL2
2

, δnm = n2 + e2m2, e =
L1

L2
.

(5.54)
Equation (5.53) gives two complex eigenvalues. We need to chose only one value
with the positive imaginary part.

If some of the edges is free of a diaphragm, then a solution of Eqs. (5.50) with
corresponding boundary conditions (4.38) may be constructed by the asymptotic ap-
proach developed in Subsect. 4.2.2 for an elastic laminated plate. According to this
approach, the solution is constructed in the form of superposition of functions corre-
sponding to the main stress-strain state and edge effect integrals in the neighborhood
of an edge which is free of diaphragm.

In Eqs. (5.53), (5.54), parameters D,K depend on the induction B, the shear
parameter K being the principal one. Just as for a layered beam, a magnetic field
and, as consequence, a parameter K have a weak effect on the lowest frequencies
and the corresponding decrements. The effect of magnetic field and shears manifests
itself on modes for which the number of waves is large in at least one direction. This
conclusion is clearly confirmed by the following example.

Example 5.8. Let us consider a square sandwich plate with L1 = L2 = 1 m. The
outer layers (thicknessesh1 = h3 = 0.5mm) are made of ABS-plastic SD-0170 with
parameters E1 = E3 = 1.5 · 103 MPa, ν1 = ν3 = 0.4, ρ1 = ρ3 = 1.4 · 103 kg/m3.
The core of thickness h2 = 10 mm is MRE-1 with properties given in Chapt. 2 (s.
Fig. 2.9). Figures 5.20 and 5.21 show the influence of the magnetic field induction
on the natural frequenciesω = Ω and decrementsα = �Ω for modes with n = 10
waves in the α1-direction and different number of waves in the other direction. It is
seen, the larger the wave numbersm and/or n, the stronger the effect of the magnetic
field on the characteristics of eigenmodes for the sandwich plate.
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Fig. 5.20 Natural frequency
ω vs. induction B for modes
with n = 10 and different
values of m: 1 - m = 1,
2 - m = 5, 3 - m = 7,
4 - m = 10.
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Fig. 5.21 Decrement α vs.
induction B for modes with
n = 10 and different values
of m: 1 - m = 1, 2 - m = 5,
3 - m = 7, 4 - m = 10.
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5.3.2 Forced Stationary Vibrations

Let the plate be under action of the periodic normal force

qex(α1, α2, t) = F0(α1, α2)e
iωet (5.55)

with the frequencyωe. Here, a solution of Eq. (5.50) with boundary conditions (5.51)
is found in the form of the double series
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χ(α1, α2, t) =
∞∑
n=1

∞∑
m=1

sin
πnα1

L1
sin

πmnα1

L2
qnm(t), (5.56)

where qnm(t) is generalized coordinates of the system. We substitute (5.56) into
Eq. (5.50) and expand function (5.56) into Fourier series. Then, we arrive at the
series of differential equations

q̈nm +Ω2
nm qnm =

Fnm

ρh(1 +Kδnm)
, n,m = 1, 2, . . . , (5.57)

where

Fnm =
4

L1L2

L1∫
0

L2∫
0

F0(α1, α2) sin
πnα1

L1
sin

πnα2

L2
(5.58)

are the generalized forces corresponding to the generalized coordinates qnm(t) and
the Ωnm are the complex eigenfrequencies defined by (5.54).

The partial solutions of Eqs. (5.58) are the functions

qnm(t) =
Fnmeiωet

ρh(1 +Kδnm)(Ω2
nm − ω2

e )
, n,m = 1, 2, . . . (5.59)

Then, the amplitude of forced steady-state vibrations will be as follows

χ(α1, α2, t) =

∞∑
n=1

∞∑
m=1

Fnmeiωet

ρh(1 +Kδnm)(Ω2
nm − ω2

e)
sin

πnα1

L1
sin

πnα2

L2
. (5.60)

Equation (5.60) serves to predict the dynamic stationary response of the plate
to the periodic force (5.55) arbitrary distributed along the surface. We note that
D,K, θ,Ωnm are complex magnitudes depending on the magnetic field induction.
Thus, applying a magnetic field one can affect the modes and the damping capability
of a MRE embedded in the plate and reduce the response of the plate to external
forces. We do not give here any examples because the mechanism of suppression
of forced vibrations in MRE-based laminated plates is the same as for smart beams
considered above.

5.4 Shells with Magneto- and Electrorhelogical Layers Affected

by Magnetic/Electric Fields

In this section, we study free and steady-state forced vibrations of laminated MRE-
and ERC-based cylindrical panels and shells affected by a constant magnetic or
electric field. The main attention will be paid to sandwich panels with a core made
of different smart materials whose elastic and rheological properties were given in
Chapt. 2.
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Let us consider a laminated cylindrical panel (cylinder not closed in the circum-
ferential direction) of the radiusR. The length of the straight side is equal to L1 and
the panel width is L2 = Rϕ2, where [0, 2π) � ϕ2 is the apex angle of the panel. If
ϕ2 = 2π, one has a shell closed in the circumferential direction. The choice of the
governing equations depends on the geometric dimensions of the panel as well as
the expected vibration shape. So, to predict vibrations with formation of very long
waves, one has to use the full system of differential equations (2.61)-(2.63) written
in terms of displacements ûi, ψi, w, while for studying vibrations accompanied by
formation of a large number of short waves, equations of the technical shell theory
(2.85) and (2.90) can be used.

5.4.1 Governing Equations and Boundary Conditions

At first, we apply to the full system of differential equations (2.61)-(2.63) which are
universal and may be used to examine any type of vibrations for any geometrical
dimensions. Omitting non-linear terms, one obtains the system of linear differential
equations governing small vibrations of a laminated cylindrical shell

∂2û1
∂α2

1

+
1− ν

2

∂2û1
∂α2

2

+
1 + ν

2

∂2û2
∂α1∂α2

+
ν

R

∂w

∂α1
+

1− ν2

Eh

(
q1 − ρ0

∂2û1
∂t2

)
= 0,

1 + ν

2

∂2û1
∂α1∂α2

+
1− ν

2

∂2û2
∂α2

1

+
∂2û2
∂α2

2

+
∂

α2

(w
R

)
+

1− ν2

Eh

(
q2 − ρ0

∂2û2
∂t2

)
= 0,

η2
∂�w

∂α1
− η1

(
∂2ψ1

∂α2
1

+
1 + ν

2

∂2ψ2

∂α1∂α2
+

1− ν

2

∂2ψ1

∂α2
2

)

+
12(1− ν2)

Eh3

(
q44ψ1 +

1

2
hc12q1

)
= 0,

η2
∂�w

∂α2
− η1

(
∂2ψ2

∂α2
2

+
1 + ν

2

∂2ψ1

∂α1∂α2
+

1− ν

2

∂2ψ2

∂α2
1

)

+
12(1− ν2)

Eh3

(
q44ψ2 +

1

2
hc12q2

)
= 0,

h2

12(1− ν2)
�
[
η3�w − η2

(
∂ψ1

∂α1
+
∂ψ2

∂α2

)]
+

1

R(1− ν2)

(
ν
∂û1
∂α1

+
w

R

)

=
1

Eh

(
qn − 1

2
hc13

2∑
i=1

∂qi
∂αi

− ρ0
∂2w

∂t2

)
,

(5.61)
where ûi are the generalized tangential displacements coupled with the corre-
sponding tangential displacements ui, deflection w and shear displacements ψi

by Eq. (2.26), qi, qn(i = 1, 2) are components of the surface load, and parameters
c12, c13, q44 and ρ0 are calculated by Eqs. (2.25), (2.59) and (2.68), respectively.
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Let the straight and curvilinear edges α1 = 0, L1 and α2 = 0, L2 be simply
supported and provided by diaphragm. The appropriate boundary conditions are
written as

w = ûj = ψj = 0, (5.62)

M̂ii = Tii = L̂ii = 0 (5.63)

for αi = 0, Li, where i, j = 1, 2 and i �= j. Taking into account Eqs. (2.60), the
second set of boundary conditions (5.63) may be rewritten in terms of displacements

η3

(
∂2w

∂α2
i

+ ν
∂2w

∂α2
j

)
− η2

(
∂ψi

∂αi
+ ν

∂ψj

∂αj

)
= 0,

∂ûi
∂αi

+ ν
∂ûj
∂αj

+
νw

R
= 0,

η2

(
∂2w

∂α2
i

+ ν
∂2w

∂α2
j

)
− η1

(
∂ψi

∂αi
+ ν

∂ψj

∂αj

)
= 0.

(5.64)

The linearized dynamic equations (2.85) and (2.90) of the technical shell theory
are written as follows

D

(
1− θh2

β
�
)
�2χ+

1

R

∂2F

∂α2
1

+ ρ0h
∂2w

∂t2
= qn,

w =

(
1− h2

β
�
)
χ, �2F − Eh

R

∂2w

∂α2
1

= 0,

1− ν

2

h2

β
�φ = φ.

(5.65)

where χ, F are the displacement and the force functions, respectively, φ is the
additional shear functions, s. Eqs. (2.78) and (2.83), β andD are the shear parameter
and the reduced bending stiffness, respectively, introduced by Eqs. (2.84) and (2.88),
respectively. The appropriate boundary conditions in terms of displacement, stress
and shear functions for the straight and curvilinear edges are the following

χ = Δχ = Δ2χ =
∂φ

∂αi
= 0,

∂2F

∂α2
2

= 0,
∂2F

∂α2
1

= 0 at αi = 0, Li, (5.66)

where i = 1, 2. We note that all coefficients D,E, ν, β, ηk, c12, c13, q44, appearing
in the above equations and boundary conditions, are complex quantities depending
on the magnitude of the magnetic or electric field depending on whether the shell
contains MRE or ERE layers.
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5.4.2 Free Vibrations

Let qi = qn = 0. Then the natural modes for a shell governed by Eqs. (5.61) with the
boundary conditions (5.66) can be represented by the following functions

û1 = u◦1 cos
πnα1

L1
sin

πmα2

L2
exp(iΩt),

û2 = u◦2 sin
πnα1

L1
cos

πmα2

L2
exp(iΩt),

w = w◦ sin
πnα1

L1
sin

πmα2

L2
exp(iΩt),

ψ1 = ψ◦
1 cos

πnα1

L1
sin

πmα2

L2
exp(iΩt),

ψ2 = ψ◦
2 sin

πnα1

L1
cos

πmα2

L2
exp(iΩt),

(5.67)

where Ω = ω + iα, ω = Ω is the required natural frequency, α = �Ω > 0
is the associated damping ratio, n,m are numbers of semi-waves in the axial and
circumferential directions, respectively, and u◦i , w

◦, ψ◦
i are constants. If the shell is

closed in the circumferential direction, then m is an even number.
Substituting (5.67) into Eqs. (5.61), we arrive at the linear system of five algebraic

equations
AXT = 0, (5.68)

where X = (u◦1, u
◦
2, w

◦, ψ◦
1 , ψ

◦
2) is the amplitude vector and A is the matrix with

complex elements

a11 = −δ2n − 1− ν

2
δ2m +

ρ0R
2(1− ν2)

E
Ω2, a12 =

1 + ν

2
δnδm,

a13 = νδn, a14 = a15 = 0, a21 =
1 + ν

2
δnδm,

a22 = −1− ν

2
δ2n − δ2m +

ρ0R
2(1− ν2)

E
Ω2, a23 = −δm, a24 = a25 = 0,

a31 = a32 = 0, a33 = −η2δn(δ2n + δ2m), a34 = η1

(
δ2n +

1− ν

2
δ2m

)
+
q44R

2η3
D

,

a35 = −η1(1 + ν)

2
δnδm, a41 = a42 = 0, a43 = −η2δm(δ2n + δ2m),

a44 = −η1(1 + ν)

2
δnδm, a45 = η1

(
δ2m +

1− ν

2
δ2n

)
+
q44R

2η3
D

,

a51 = − ν

1− ν2
δn, a52 =

1

1− ν2
δm,

a53 =
h2η3

12(1− ν2)R2
(δ2n + δ2m)2 +

1

1− ν2
− ρ0R

2

E
Ω2,

a54 = − h2η2
12(1− ν2)R2

δn(δ
2
n + δ2m), a55 =

h2η2
12(1− ν2)R2

δm(δ2n + δ2m),

(5.69)
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where

δn =
πnR

L1
, δm =

πmR

L2
=
πm

ϕ2
. (5.70)

Although, the structure of the matrix A with elements (4.81) and (5.71) is the
same, but there are differences: all elements (4.81) are real, while the quantities
ηk, ν, E,D in (5.71) are complex magnitudes; in (4.81), m is the number of waves
in the circumferential direction for a cylinder closed in the circumferential direction
and m appearing in Eqs. (5.71) denotes the number of semi-waves in this direction
for a panel.

The condition for the existence of a nontrivial solution of Eqs. (5.70) leads to the
equation

detA = 0 (5.71)

which serves to find the complex eigenvalue Ω. For any fixed numbers n,m, this
equation gives six complex roots

Ω
(j)
nm = ω

(j)
nm + iα

(j)
nm, α

(j)
nm > 0,

Ω
(j+3)
nm = −(ω

(j)
nm + iα

(j)
nm), j = 1, 2, 3.

(5.72)

It is obvious that the eigenvalues Ω(4)
nm, Ω

(5)
nm, Ω

(6)
nm do not satisfy to the damping

conditions and are not taken into consideration in what follows.
In the general case, the first three roots in (5.72) correspond to the coupled

bending (out-of-plane) and tangential (in-plane) vibrations accounting for shears
(we note that the inertia of shear deformations is here not taking into account). To
study predominately bending vibrations, the terms containing Ω in the elements
a11, a22 of the matrix A might be omitted. Then Eq. (5.71) will give only the one

root Ω
(1)
nm with the positive imaginary part α

(1)
nm > 0.

Regardless of the mode type, the amplitudes of tangential and shear displacements
are coupled with the normal displacement as follows

u◦1 = b1(n,m)w◦, u◦2 = b2(n,m)w◦,

ψ◦
1 = d1(n,m)w◦, ψ◦

2 = d2(n,m)w◦,

b1(n,m) =
a13a22 − a12a23
a12a21 − a22a11

, b2(n,m) =
a23a11 − a13a21
a12a21 − a22a11

,

d1(n,m) =
a33a45 − a35a43
a44a35 − a34a45

, d2(n,m) =
a43a34 − a44a33
a44a35 − a34a45

,

(5.73)

where bj , dj are the functions of the number of semi-waves n and m in the axial and
circumferential directions.

Consider a cylindrical shell closed in the circumferential direction. For axisym-
metric modes (m = 0), Eq. (5.71) results in four complex roots calculated by the
formula
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Ω = Ωn0 = ±
√

EΛ
(j)
n0

ρ0R2(1− ν2)
, j = 1, 2, (5.74)

where the complex Λ(j)
n0 are found by (4.86)

Λ
(j)
n0 =

1

2

[
1 + δ2n + μ1δ

4
nrn − (−1)j

√
(1 − δ2n + μ1δ4nrn)

2 + 4ν2δ2n

]
. (5.75)

Here,

μ1 = (1− ν2)ε8, rn =
π2 + θKδ2n
π2 +Kδ2n

, K =
π2h2

βR2
, θ = 1− η22

η1η3
. (5.76)

Obviously, from four complex eigenmodes (5.74), one needs to choose only two

ones, Ω(j)
n0 = ω

(j)
n0 + iα

(j)
n0 , with α(j)

n0 > 0 for j = 1, 2.
Now we consider Eqs. (5.65) corresponding to the technical shell theory. Their

solution satisfying to the boundary conditions (5.68) at all edges is readily written
down:

χ = χ◦ sin
πnα1

L1
sin

πmα2

L2
exp(iΩt)

F = F ◦ sin
πnα1

L1
sin

πmα2

L2
exp(iΩt),

(5.77)

where χ◦, F ◦ are constant amplitudes of flexural vibrations. The substitution of
(5.77) into Eqs. (5.67) results in the required complex eigenfrequency

Ω = Ωnm =

√
E

ρ0R2

[
ηh2

12R2

δ2nm(1 + θKδnm)

1 +Kδnm
+

n4

l41δ
2
nm

]1/2
, (5.78)

where

η =
π4η3
1− ν2

, δnm =
1

π2
(δ2n + δ2m) =

n2

l21
+
m2

ϕ2
2

, l1 =
L1

R
,

and the magnitudes β, θ are calculated by Eqs. (2.84) and (2.89), respectively.
The frequency equation (5.71) with (5.69) may be used to predict the frequency

and damping response of the smart viscoelastic laminated panel of arbitrary lengthL1

and apex angle ϕ2. If L2 ∼ R and the angle ϕ2 is large (close to 2π), then to predict
low-frequency vibrations with a large number of semi-waves in the circumferential
direction, one can apply to more simple formula (5.78).

5.4.2.1 Main Tunable Complex Parameters1

Coefficients of Eq. (5.71) depend on the following six complex parameters

1 This subsection is written in cooperation with S.S. Maevskaya (Vitebsk State University, Belarus,
Vitebsk, e-mail: svetlanamaevskaya@ya.ru).
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η1, η2, η3, E, q44 (or K), ν, (5.79)

which are functions of the magnitude of the applied magnetic/electric field. In
the framework of the ESL theory, they can be considered as independent integral
characteristics of variable viscoelastic properties regardless of the number of layers.
It is of interest to note that their number is equal to the number of independent
physical characteristics of the three-layer shell (sandwich) in the case when each
layer is isotropic. As can be seen from Eqs. (5.74) for the axially symmetric modes,
the quantity of these parameters may be reduced to five

η3, θ, E, K, ν. (5.80)

When assuming Eqs. (5.65) of the technical shell theory, the number of independent
variable parameters is reduced to four, s. Eqs. (5.78),

η, θ, E, K, (5.81)

where η is expressed in terms of η3 and ν.
Applying a magnetic or electric field (depending on whether a shell assembled

form MR or ER smart material), one can vary the parameters (5.80) or (5.81) and,
in such a way, to change the frequency characteristics and damping properties of
a smart structure. It is obvious that the influence of the magnetic/electric field on
the above tunable parameters is different. This effect depends on the correlation
between layer thicknesses and their viscoelastic properties. To analyse this effect in
detail, we consider several cylindrical sandwiches of the same radius R = 0.5 m
with the face sheets of the thickness h1 = h2 = 0.5 mm made of ABS-plastic
SD-0170 (see properties in Example 5.8). Other dimensions of the sandwiches are
not specified here. The viscoelastic cores of these sandwiches are made of different
smart materials (MRE-1, MRE-2, MRE-3, MRE-4, MRE-5, ERC) listed with their
properties in Chapt. 2. The core thickness is also varied. Figures 5.22-5.25 show the
behavior of the real and imaginary parts of parameters (5.81) versus the magnetic
field induction B for different thicknesses h2 of the viscoelastic smart core made
of the MRE-1. Here ηr = η, ηi = �η, θr = θ, θi = �θ, Er = E,Ei = �E,
Kr = K and Ki = �K .

As follows from equations given in Chapt. 2, parameters η, θ, E are expressed in
terms of Young’s moduli of all layers and independent of the shear moduliGk, while
the reduced shear parameter K is a function of Gk. However, if a smart viscoelastic
material is treated as an isotropic one, then η, θ, E should be considered as functions
of the variable shear modulus G2 for the smart core. We remind that MRE-1 was
assumed as the isotropic material (s. Chapt. 2). Therefore, ηr, ηi, θr, θi, Er and
Ei reveal some dependence on the magnetic field induction B, these dependencies
being linear. It is seen from Fig. 5.23 that parameters θr and θi are very small and
cannot be taken into account when calculating the eigenfrequencies. The real part
of the reduced Young’s modulus, Er may be considered as a constant magnitude
for the fixed value of h2, while Ei is a monotonically increasing function of B.
The shear parameters Kr and Ki are the main adaptive parameters affected by
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the applied magnetic field. Figure 5.25 demonstrates the nonlinear behavior of the
principal dissipative parameter Ki when the magnetic field induction is varying,
this nonlinearity is becoming more noticeable when increasing the thickness h2 in
comparison with the total thickness h. At a fixed value of h2, the function |Ki(B)|
has a maximum which increases together with h2 but it is reached at more low level
of the magnetic field.

The outcomes of calculations of parameters (5.81) for sandwich structures with
a core made of other VSMs (MRE-3, MRE-4, MRE-5 and ERC) treated as isotropic
materials are presented in Figs. 5.26-5.41. Their analysis allows concluding that the
qualitative behavior of all tunable parameters versus the magnetic field induction
(for the MRE-3, MRE-4 and MRE-5 based cores) or the electric field strength (for
the ERC based core) is the same as for the MRE-1 based sandwich: the influence
of the magnetic or electric field on ηr, ηi, θr, θi, Er and Ei turns out to be minor or
very small, while the shear parametersKr and Ki reveal the nonlinear behavior and
strong dependence on the intensity of applied magnetic or electric field.

Let us compare parameters (5.78) calculated for sandwiches containing isotropic
smart cores with similar parameters for the MRE-2 based sandwich. MRE-2 is a
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Fig. 5.25 Parameters Kr (a) and Ki (b) for sandwich with MRE-1 core vs. induction B at different
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Fig. 5.26 Parameters ηr (a) and ηi (b) for sandwich with MRE-3 core vs. induction B at different
values of thickness h2: 1 - h2 = 3 mm, 2 - h2 = 5 mm, 3 - h2 = 8 mm, 4 - h2 = 11 mm.

isotropic material with the Young’s modulus independent of the magnetic field in-
duction B (Aguib et al, 2014). Table 5.1 shows that η, θ and the reduced Young’s
modulus E are real magnitudes depending only on the thickness h2 of the transver-
sally isotropic smart core made of MRE-2. Figure 5.42 demonstrates the strong
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Fig. 5.27 Parameters θr (a) and θi (b) for sandwich with MRE-3 core vs. induction B at different
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Fig. 5.28 Parameters Er (a) and Ei (b) for sandwich with MRE-3 core vs. induction B at different
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Fig. 5.29 Parameters Kr (a) and Ki (b) for sandwich with MRE-3 core vs. induction B at different
values of thickness h2: 1 - h2 = 3 mm, 2 - h2 = 5 mm, 3 - h2 = 8 mm, 4 - h2 = 11 mm.

influence of induction B on the shear parameters Kr and Ki. When comparing the
plots Kr(B) and Ki(B) for MRE-1 with the same curves for other smart materials
listed in Chapt. 2, s. Figs. 5.26-5.41,one can conclude that MRE-1 reveals the highest
sensitiveness to a signal of an external physical field.
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Fig. 5.32 Parameters Er (a) and Ei (b) for sandwich with MRE-4 core vs. induction B at different
values of thickness h2: 1 - h2 = 3 mm, 2 - h2 = 5 mm, 3 - h2 = 8 mm, 4 - h2 = 11 mm.

5.4.2.2 Free Low-frequency Vibrations of Medium-length Cylindrical

Sandwich Panels

To display the real damping capability of aforementioned VSMs, we study free
low-frequency vibrations of thin cylindrical sandwiches with different viscoelastic
cores.
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Fig. 5.35 Parameters θr (a) and θi (b) for sandwich with MRE-5 core vs. induction B at different
values of thickness h2: 1 - h2 = 3 mm, 2 - h2 = 5 mm, 3 - h2 = 8 mm, 4 - h2 = 11 mm.

Example 5.9. The sandwich has the length L2 = 1 m, the radius of the reference
surface R = 0.5 m and the apex angle ϕ2 = π. The face sheets (thickness h1 =
h2 = 0.5 mm) are made of ABS-plastic SD-0170. The smart core of the thickness
h2 = 8 mm is MRE-1. The natural modes of low-frequency vibrations of a thin
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Fig. 5.38 Parameters ηr (a) and ηi (b) for sandwich with ERC core vs. electric field strength E at
different values of thickness h2: 1 - h2 = 3 mm, 2 - h2 = 5 mm, 3 - h2 = 8 mm, 4 - h2 = 11 mm.

medium-length cylindrical shell are characterized by one semi-wave in the axial
direction and a large number of waves in the circumferential direction. To find the
lowest eigenfrequencies ω = Ω, we apply Eq. (5.78) for n = 1 and different
numbers m of semi-waves in the circumferential direction. Figure 5.43 shows that
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Fig. 5.41 Parameters Kr (a) and Ki (b) for sandwich with ERC core vs. electric field strength E at
different values of thickness h2: 1 - h2 = 3 mm, 2 - h2 = 5 mm, 3 - h2 = 8 mm, 4 - h2 = 11 mm.

for anyB the lowest eigenfrequency refers to the mode withm = 4 semi-waves. The
effect of magnetic field on natural frequencies turns out to be minor for modes with
m = 1, 2, 3 semi-waves and becomes significant for a large number m beginning
from m = 5. This effect depends on the core thickness and the type of VSM.
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Fig. 5.43 Natural frequencies
of the MRE-1 based sandwich
corresponding to n = 1 semi-
waves in the axial direction
and different number m of
semi-waves in the circumfer-
ential direction vs. induction
B. The plot number corre-
sponds to a number m.
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The next series of calculations is aimed to examine the effect of a thickness h2
and available smart materials on the lowest natural frequencies and corresponding
damping ratios at different levels of applied magnetic or electric field.

Example 5.10. We consider six different sandwiches, S-1, S-2, S-3, S-4, S-5 and S-6,
with cores made of MRE-1, MRE-2, MRE-3, MRE-4, MRE-5 or ERC, respectively.
The viscoelastic properties of these smart composite materials are given in Chapt. 2.
The behavior of the principal complex parameters η, θ, E andK versus the magnetic
induction (or electric strength) was shown above. The geometrical dimensions of
all sandwiches are the same as in the previous example. In Figs. 5.44-5.49 the

Table 5.1 Parameters η, θ and reduced Young’s modulus E vs. the core thickness h2.

h2, mm η θ × 103 E, MPa

3 267 3.265 376
5 292 1.751 251
8 308 0.963 168
11 317 0.693 127
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Fig. 5.44 Natural frequency ω (a) and logarithmic decrement Dl (b) for sandwiches S-1 with
MRE-1 core and different values of thickness h2 vs. induction B: 1 - h2 = 3 mm, 2 - h2 = 5 mm,
3 - h2 = 8 mm, 4 - h2 = 11 mm.
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Fig. 5.45 Natural frequency ω (a) and logarithmic decrement Dl (b) for sandwiches S-2 with
MRE-2 core and different values of thickness h2 vs. induction B: 1 - h2 = 3 mm, 2 - h2 = 5 mm,
3 - h2 = 8 mm, 4 - h2 = 11 mm.

lowest natural frequencies ω = Ω and corresponding logarithmic decrements Dl

calculated by Eq. (5.7) are plotted as functions of the magnetic field inductionB (for
sandwiches with MRE-core) or the electric field strength E (for S-6 sandwich with
ERC-core) at different values of h2. For any fixed h2, the lowest eigenfrequencies
are monotonically increasing functions of the intensity of the external physical field,
the frequency gain being higher for sandwiches with more thick smart viscoelastic
core. However, the behavior of ω vs. h2 at a fixed B (or E) is very complicated and
strongly depends on the VSM embedded between elastic layers. For the sandwiches
S-2 and S-5 assembled from MRE-2 and MRE-5 smart materials, respectively, the
lowest eigenfrequencies increase together with the core thickness at anyB, while for
other sandwiches the monotonic growth of ω(h2) is not detected. Note that MRE-2
is considered as a material with the Young’s modulus independent ofB, and MRE-5
with the highest content of carbon black and treated here as a material possesses a
very large shear modulus. Interesting results are shown in Figs. 5.44 (a) and 5.49
(a) related to S-1 and S-6 sandwiches: if a magnetic (or electric) field is weak, then
increasing the thickness of soft MRE-1 or ERC cores leads to some softening of
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Fig. 5.46 Natural frequency ω (a) and logarithmic decrement Dl (b) for sandwiches S-3 with
MRE-3 core and different values of thickness h2 vs. induction B: 1 - h2 = 3 mm, 2 - h2 = 5 mm,
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Fig. 5.47 Natural frequency ω (a) and logarithmic decrement Dl (b) for sandwiches S-4 with
MRE-4 core and different values of thickness h2 vs. induction B: 1 - h2 = 3 mm, 2 - h2 = 5 mm,
3 - h2 = 8 mm, 4 - h2 = 11 mm.

entire packet and, in such a way, to decreasing eigenfrequencies. The application
of a strong physical field violent increases the core stiffness and, finally, results in
growing natural frequencies.

As expected, the damping capabilities of all VSMs under consideration are dif-
ferent and strongly affected by the level of an applied physical field and thickness
of a smart core as well. For the S-5 sandwich with the MRE-5 core possessing
the highest shear modulus and lowest loss factor, the logarithmic decrement DL

monotonically increases at all range of varying the induction B, from 0 to 800 mT.
The same behavior of DL is observed for all other sandwiches (excluding S-2) with
medium and very thin viscoelastic cores. For the S-2 sandwich with the transversally
isotropic MRE-2 core as well as for other sandwiches but with thick viscoelastic
cores (at about h2 = 11 mm), there are value B = B∗ (or E = E∗ ) corresponding
to the yielding point for a rheological material and resulting in the maximum value
of the decrementDL. Finally, when comparing damping capabilities of all VSMs at
the same geometrical dimensions for sandwiches, the MRE-1 and MRE-3 reveal the
best damping properties.
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Fig. 5.49 Natural frequency ω (a) and logarithmic decrement Dl (b) for sandwiches S-6 with ERC
core and different values of thickness h2 vs. the electric strength E : 1 - h2 = 3 mm, 2 -
h2 = 5 mm, 3 - h2 = 8 mm, 4 - h2 = 11 mm.

The example considered allows concluding:

• using VSMs and correctly choosing a thickness for smart core or layers, one can
assemble a smart thin-walled medium-length cylindrical laminated (in particular,
sandwich) panels with tunable viscoelastic properties;

• the application of an external physical field permits to shift right the spectrum
of natural frequencies of a panel and greatly improve damping capacity of smart
viscoelastic core or layers composing a laminated structure.

5.4.3 Steady-state Forced Vibrations and Their Suppression

Let us consider the nonhomogeneous coupled Eqs. (5.61) with the boundary condi-
tions (5.64) for

qn(α1, α2, t) = q3(α1, α2)e
iωet, (5.82)
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where ωe is the frequency of excitation and q3 is some complex dimensionless
amplitude function. Intending to study predominantly bending vibrations, we shall
omit the inertia terms in the first two equations from (5.61). To satisfy the boundary
conditions (5.64), we seek a solution of Eqs. (5.61) in the form of double series

û1 = R

∞∑
n=1

∞∑
m=1

U (1)
nm(t) cos

πnα1

L1
sin

πmα2

L2
,

û2 = R
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U (2)
nm(t) sin
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L1
cos
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L2
,

w = R
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Wnm(t) sin
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L2
,
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∞∑
m=1

Ψ (1)
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sin

πmα2

L2
,

ψ2 =

∞∑
n=1
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m=1

Ψ (2)
nm(t) sin

πnα1

L1
cos

πmα2

L2
,

(5.83)

where U (j)
nm(t),Wnm(t), Ψ

(j)
nm(t)(j = 1, 2) are the required functions of t called the

generalized co-ordinates of the mechanical system.
The function q3(α1, α2) is also expended into the series

q3 =

∞∑
n=1

∞∑
m=1

qnm sin
πnα1

L1
sin

πmα1

L2
, (5.84)

where

qnm =
4

L1L2

L1∫
0

L2∫
0

q3(α1, α2) sin
πnα1

L1
sin

πmα1

L2
dα1dα2. (5.85)

We substitute Eqs. (5.83) and (5.84) into the governing equations (5.61), multiplying
the equations by the following terms

cos
πiα1

L1
sin

πjα2

L2
, sin

πiα1

L1
cos

πjα2

L2
, sin

πiα1

L1
sin

πjα2

L2
,

cos
πiα1

L1
sin

πjα2

L2
, sin

πiα1

L1
cos

πjα2

L2
,

respectively, where i, j are fixed natural numbers, and integrate them over the panel

surface. Then, eliminating U (ς)
nm(t) and Ψ (ς)

nm(t), ς = 1, 2, from the first four equa-
tions, we arrive at the differential equation

Ẅij +Ω2
ijWij =

qij
ρ0hR

eiωet, i, j = 1, 2, . . . , (5.86)
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with respect to the functions Wij(t), where Ωij = ±(ωij + iαij) are two complex
eigenvalues determined from Eq. (5.71). Note that the in-plane inertia forces in (5.61)
are neglected.

The partial solution of Eq. (5.86) is the function

Wij(t) =
qij

ρ0hR(Ω2
ij − ω2

e)
eiωet. (5.87)

Then the amplitude of forced steady-state vibrations at any point on the shell surface
will be defined by the formula

w = R

∞∑
n=1

∞∑
m=1

qnmeiωet

ρ0hR(Ω2
nm − ω2

e )
sin

πnα1

R
sin

πmα2

R
, (5.88)

and the associated displacements û(1), û(2), ψ(1), ψ(2) are calculated by Eqs. (5.73),
where

U (ς)
nm(t) = bς(n,m)W̃nm(t), Ψ (ς)

nm(t) = dς(n,m)W̃nm(t), ς = 1, 2.

Equation (5.88) determines the amplitude-frequency response which depends on the
distributionof harmonic force over the shell surface. Because the complex eigenvalue
Ωnm depends upon the effective complex shear modulus G being a function of the
induction B, the amplitude of sustained forced vibration becomes to some extent a
controlled quantity. To detect this effect, we consider the following example.

Example 5.11. Let two S-1 cylindrical sandwich panels (the notations of sandwiches
are the same as in Example 5.10) with the opening angles ϕ2 = π/3 and ϕ2 = π be
subjected to the concentrated harmonic force

F = F0 sinωet (5.89)

applied in the point α1 = α◦
1 = L1/2, α2 = α◦

2 = L2/2, where F0 is the amplitude
of concentrated force which is not specified in view of the linearity of the problem.
All other geometrical dimensions and physical characteristics are the same as in
Example 5.10.

The normal pressure qn per unit area can be expressed as follows

qn = lim
x1→0
x2→0

F0

4x1x2
[H0(α

◦
1 − x1 − α1)−H0(α

◦
1 + x1 − α1)]

× [H0(α
◦
2 − x2 − α2)−H0(α

◦
2 + x2 − α2)] sinωet,

(5.90)

where H0(x) is the Heaviside function. Then

qij = − 2iF0

L1L2
sin

δiα
◦
1

R
sin

δjα
◦
2

R
, (5.91)

where δi, δj are determined by Eqs. (5.70).
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We consider the real part of an amplitude of forced stationary vibrations calculated
by Eq. (5.88) in the point of the force application

w◦
r =

4F0

ρ0hL1L2

∞∑
n=1

∞∑
m=1

ω2
nm − α2

nm − ω2
e

(ω2
nm − α2

nm − ω2
e )

2 + 4α2
nmω

2
nm

× sin2
δnL1

2R
sin2

δmL2

2R
.

(5.92)

Figures 5.50 and 5.51 show the scaled amplitude w◦
r , denoted by Am, versus the

frequency of excitation ωe varying from 0 to 400 Hz. The amplitude-frequency plots
for both sandwiches are displayed for three different cases, forB = 0 (magnetic field
is absent), B = 40 and 200 mT. It may be seen that the application of a magnetic
field results in significant reduction of the amplitude of resonance vibrations. So, for
the first sandwich cylindrical panel with the opening angle ϕ2 = π/3, one has about
two- and three-fold reductions at B = 40 and B = 200 mT, respectively.

It is also seen that in all cases, with and without magnetic field, for the panel
with the opening angle ϕ2 = π/3, more intensive resonance vibrations occur on the
lowest (first) eigenfrequency with one semi-wave in both the axial and circumferential

Fig. 5.50 Amplitude-
frequency characteristic for
the sandwich S-1 with the
opening angle ϕ2 = π/3
at different levels of applied
magnetic field:
1 -B = 0mT, 2 -B = 40mT,
3 - B = 200 mT.
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Fig. 5.51 Amplitude-
frequency characteristic for
the sandwich S-1 with the
opening angle ϕ2 = π at
different levels of applied
magnetic field:
1 -B = 0mT, 2 -B = 40mT,
3 - B = 200 mT.
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directions (n = 1,m = 1), while for the panel withϕ2 = π, the maximum amplitude
of resonance vibrations is observed due to superposition of the fifth and sixth modes
with the wave numbers n = 2,m = 5 and n = 2,m = 6, respectively, which have
very close natural frequencies. Our additional accurate calculations (their outcomes
are omitted here) detected that for cylindrical panels with a small opening angle as
well as for plates, the amplitude of resonance vibrations is a monotonically decreasing
function of the resonance frequency (at least at the low part of the spectrum), while
for panels with a largeϕ2 as well as for cylindrical shells closed in the circumferential
direction, the peak of maximum amplitude shifts to the right (at the frequency axis)
and corresponds to the superposition of two or more modes with very close associated
eigenfrequencies.

It should be noticed that the mechanisms of suppression of resonance vibrations
at the first eigenmode are different for sandwiches with small and large opening
angles. So, Fig. 5.50 shows that applying magnetic field results in slight shifting of
the first resonance frequency, and the suppression occurs mainly due to the increase
the damping capability of the smart material (here, MRE-1). As for panels with large
opening angle ϕ2 (s. Fig. 5.51) and cylindrical shells closed in the circumferential
direction, the action of magnetic field leads to very noticeable shifting the first
resonance region to the right and about two-fold decreasing the resonance peak.

It is obvious that different VSMs incorporated with a sandwich panel possess different
capability to suppress resonance vibrations. For instance, we choose here the MRE-3
because the logarithmic decrement corresponding to the lowest eigenfrequency for
the sandwich S-3 (here, the sandwich notation is the same as in Subsect. 5.4.2) is
larger (in the average for any induction B) than for other smart materials under
consideration (compare Figs. (b) of 5.44-5.49). To estimate the damping power of
MRE-3, we shall consider one more example.

Example 5.12. Let the sandwich cylindrical panel S-3 with MRE-3 based core (see
the property of this smart material in Subsect. 2.3.3) has the opening angleϕ = π and
all other geometrical and physical characteristics are the same as in Example 5.11.
The panel experiences the same periodic load (5.89) and (5.90) applied at the point
α1 = α◦

1 = L1/2, α2 = α◦
2 = L2/2. Figure 5.52 demonstrates the amplitude-

frequency response of the panel without magnetic field and under its action with
the induction B = 800 mT. The plots show that the application of very strong
magnetic field leads to only shifting the first and second resonance regions to the
right, while the reduction of amplitudes corresponding to these regions is very weak.
The noticeable lowering of the amplitude (about twofold reduction) is observed for
the resonance vibrations on the third natural frequency, however this reduction is
reached by the application of very strong magnetic field in comparison with the
sandwich S-2 (see the fifth resonance region in Fig. 5.51) subjected to more weak
magnetic field. Similar calculations for other sandwiches (S-3, S-4 and S-5) and
their comparisonwith outcomes for the S-1 sandwich revealed that the smart material
MRE-1 possesses the best damping capability to suppress resonance vibrations. This
suppression being provided by applying relatively weak magnetic field.
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Fig. 5.52 Amplitude-
frequency characteristic for
the sandwich S-3 with the
opening angle ϕ2 = π with-
out and with magnetic field: 1
-B = 0mT, 2 -B = 800mT.
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5.5 Influence of Stationary Magnetic Field on Localized Modes

of Free Vibrations

In this section, we shall study localized modes of free vibrations of medium-length
MRE-based laminated cylindrical shells. Using the asymptotic approach (Mikhasev
and Tovstik, 2009) displayed in Chapt. 4, the effect of magnetic field on the nat-
ural frequencies, damping ratios and associated localized modes will be analyzed
(Mikhasev et al, 2014). As an example, a sandwich cylinder with highly polarized
MRE-1 embedded between two elastic face layers will be examined.

5.5.1 Setting the Problem

Let a medium-length laminated cylindrical shell with at least one layer made of a
MRE be in a stationary magnetic field. The MRE is assumed to be inhomogeneous
so that its complex shear and Young’s moduli are functions of an angle ϕ. The
reasons resulting in nonhomogeneity of viscoelastic properties of MRE layer may be
different. The heterogeneous magnetic field may leads to not uniform distribution of
magneto-sensitive particles in a MRE. But even if the magnetic field is uniform, their
impact on various parts of a polarized MRE may be unequal because of different
angles between the magnetic force lines and the alignment of magnetic particles
(s. Fig. 5.53). This assumption is confirmed by experimental results presented in
Boczkowska et al (2012). Studying the urethane MRE consisting of carbonyl-iron
particles in a polyurethane matrix, it was found out that the maximum value of
the modulus G′ = 0.5 MPa was observed for samples with particles orientated at
30◦ with respect to the lines of magnetic field, whereas the minimum magnitude
G′ = 0.1 MPa corresponded to samples with angle 90◦ between the magnetic force
lines and the particle alignment.

In what follows, not specifying the reason causing inhomogeneity of viscoelastic
properties of a MRE, we assume that all magneto-sensitive complex magnitudes
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Fig. 5.53 Cross-section of sandwich cylindrical shell with the core made of polarized MRE in
magnetic field with parallel force lines (after Mikhasev et al, 2014).

ν, η3, E, θ, β and K appearing in Eq. (5.65) are functions of the circumferential
co-ordinate α2. We introduce a small parameter

ε8 =
h2∗η

(0)
3r

12[1− (ν
(0)
r )2]

, (5.93)

and consider sufficiently thin shells for which parameter h∗ is a quantity of the order
∼ 0.01 or less. In Eq. (5.93) and below, the superscript (0)means that an appropriate

parameter is calculated at B = 0. Here, η3r =  η3, νr =  ν, ν
(0)
r ≈ 0.4. We

assume also the following asymptotic estimations for the basic tunable parameters

ν = ν
(0)
r [1 + ε4δν(ϕ)], θr ∼ ε3, θi ∼ ε4,

η3 = η
(0)
3r [1 + ε2δη3(ϕ)], η

(0)
3r = π−4η

(0)
r [1− (ν

(0)
r )2],

Er = E
(0)
r d(ϕ) = E

(0)
r [1 + εd1(ϕ)], Ei/E

(0)
r ∼ ε4,

π−2K = ε2κ(ϕ) = ε2[κ0(ϕ) + iεκ1(ϕ)] for ε → 0.

(5.94)

In Eqs. (5.94), δν, δη3 and d1, κ0, κ1 are complex and real functions of angle
ϕ = α2/R, respectively, so that their absolute magnitudes are quantities of the
order O(1) at ε → 0. Estimates (5.94) hold for laminated cylindrical panels and
shells containing any MRE specified in Chapt. 2 with the summary thickness of a
smart material not less then 70% from the total thickness h of a shell. In particular,
these conditions are valid for the considered above S-1 sandwiches with the MRE-1
based core. In the general case, the shell is non-circular with the radius of curvature
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R2 = Rk(ϕ). At the shell edges, the boundary conditions (5.66) are assumed. The
solution of Eqs. (5.65) describing free vibrations (at qn = 0) are assumed to be of
the form

χ = ε−4Rχ∗(s, ϕ) exp (iΩt), F = E(0)
r hR2Φ∗(s, ϕ) exp (iΩt), φ = 0,

(5.95)
where s = α1/R is a dimensionless axial co-ordinate, Ω is a required complex
eigenvalue, and χ∗, F ∗ are dimensionless displacement and stress functions.

The substitution of Eqs. (5.95) into Eqs. (5.65) results in the differential equations

ε4d(ϕ)Δ2χ∗ + k(ϕ)
∂2Φ∗

∂s2
− Λ[1− ε2κ(ϕ)Δ]χ∗ = 0,

ε4Δ2Φ∗ − k(ϕ)
∂2

∂s2
[1− ε2κ(ϕ)Δ]χ∗ = 0

(5.96)

written in the dimensionless form, where Λ = ρR2Ω2/(ε4E
(0)
r ) is the dimen-

sionless frequency parameter. When deriving Eqs. (5.96) from Eqs. (5.65), we
have omitted the operator Δ3χ because of smallness of the coefficient Kθ, s.
Eqs. (5.76) for K and (5.94), and disregarded by very small dimensionless param-

eters ε4δν, ε2δη3, Ei/E
(0)
r . It should be noticed that when studying low-frequency

eigenmodes this simplification leads to the error of the order h∗ which is comparable
with the error of Eqs. (5.65). In Eqs. (5.96),

κ = κ0(ϕ) + εiκ1(ϕ) (5.97)

is the principal complex shear parameter depending on both the co-ordinate ϕ and
the magnetic field induction B. The appropriate boundary conditions are as follows

χ∗ = Δχ∗ = Δ2χ∗ =
∂2Φ∗

∂s2
=
∂2Φ∗

∂ϕ2
= 0 at s = 0, l, (5.98)

where l = L/R.

5.5.2 Localized Natural Modes

The boundary-value problem (5.96), (5.98) is identical to the problem considered in
Sect. 4.4. The difference lies in the fact that now the coefficients d, κ are complex
functions those depend not only on the angle ϕ, but also on the induction of mag-
netic field. Varying the magnetic field, one can affect the localized natural modes.
Furthermore, applying a nonuniform magnetic field, it is possible to disturb the
uniform natural modes and result in localization of some modes corresponding to
low-frequency vibrations.

Let y be any of the foregoing parameters depending on ϕ. It is assumed that
dy/dϕ ∼ y at ε → 0. Then, under some additional conditions for the functions
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κ0(ϕ), k(ϕ) (which will be specified below), the boundary value problem (5.96),
(5.98) may have a solution localized in the neighborhood of some generator ϕ = ϕ0

called the weakest one (Mikhasev and Tovstik, 2009). The required solution is seeking
in the form identical to (4.111)

χ∗ = sin
πns

l

∞∑
j=0

εj/2χj(ζ) exp
{

i
(
ε−1/2pζ + 1/2bζ2

)}
,

Φ∗ = sin
πns

l

∞∑
j=0

εj/2Φj(ζ) exp
{

i
(
ε−1/2pζ + 1/2bζ2

)}
,

Λ = Λ0 + εΛ1 + . . . ,

(5.99)

where ζ = ε−1/2(ϕ− ϕ0), p is a real wave parameter, b is a complex parameter so
that � b > 0, and χj , Φj are polynomials in ζ.

The functions κ0(ϕ), κ1(ϕ), k(ϕ), d1(ϕ) are expanded into series in the neigh-
borhood of the generatrix ϕ = ϕ0. In particular,

κ0(ϕ) = κ0(ϕ0) + ε1/2κ′0(ϕ0)ζ +
1

2
εκ′′0(ϕ0)ζ

2 + . . . (5.100)

Because the procedure of seeking all required parameters and functions in series
(5.99) are the same as in Sect. 4.4, we omit it and give only the resulting formulas
and equations for two particular cases.

5.5.2.1 Non-circular Cylinder

Let only the dimensionless curvature k(ϕ) be a function of the angleϕ, and parame-
ters κ0(B), κ1(B), d1(B) dependent only on the inductionB. Here the weakest line
is the generatrix with the minimum curvature which can found from the conditions

k′(ϕ◦
0) = 0, k′′(ϕ◦

0) > 0, (5.101)

and the natural frequency and damping ratio are determined by equations

ω = Ω = ωcω
∗, α = �Ω = ωcα

∗,

ω∗ = (f◦)1/2 +
ε

2(f◦)1/2

[ (1 + 2m)π2n2
√
f◦
ppk

′′(ϕ◦
0)

2l2(p◦)2
+ d1(p

◦)4
]
,

α∗ = −ε(f◦)1/2κ1(p
◦)2

2[1 + κ0(p◦)2]
,

(5.102)

where ωc = ε2R−1(E
(0)
r /ρ)1/2 is the characteristic frequency, and ω∗, α∗ are

dimensionless parameters. The parameter b◦ is the same as for the elastic shell - to
compare s. Eq. (4.128)
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b◦ =
iπ2n2

l2(p◦)2

√
k′′(ϕ◦

0)

f◦
pp

. (5.103)

Here, f◦
pp is the second derivative of the function (s. Eq. (4.118))

f(p, ϕ0) =
π4n4k2(ϕ0)

l4p4
+

p4

1 + κ0(ϕ0)p2
(5.104)

with respect to p calculated at constant κ0 (not dependent of ϕ0) and p = p◦,
ϕ0 = ϕ◦

0, and the parameter p◦ is found from Eq. (4.121)

κ0p
10 + 2p8 − 2π4n4k2(ϕ◦

0)l
−4(κ20p

4 + 4κ0p
2 + 2) = 0. (5.105)

Equations (5.102), (5.103) show that increasing the parameter k′′(ϕ◦
0) results in

increasing the correction ω∗ − ω∗
0 for the natural frequency, where ω∗

0 = (f◦)1/2,
and leads to growing power of localization of eigenmodes. To analysis the effect of
a magnetic field on these modes we consider the following example.

Example 5.13. The sandwich cylindrical shell is assembled from the face sheets
made of the ABS-plastic SD-0170 and MRE-1 core. The cross-section of the shell
is an ellipse with semi-axes e1, e2(e1 ≤ e2). Here

k =
r2 + 2r′2 − rr′′

(r2 + r′2)3/2
, (5.106)

where

r(ϕ) =

√
e21

1− δ2 sin2 ϕ
, −π < ϕ ≤ π, δ =

√
1− e21

e22
. (5.107)

Then, one has two the weakest generatrix ϕ = ϕ◦
0 = 0 and ϕ = ϕ◦

0 = π. Table 5.2
shows the parameters p◦, ω∗

0 , ω∗, α∗,� b◦, Dl = 2πα∗/ω∗ versus the induction B
for the shells with the following geometrical parameters: R = 1 m, L = 1.5 m,
e1 = 1, e2 = 2, h1 = h3 = 0.5 mm, h2 = 11 mm. The calculations were performed
at n = 1,m = 0 in Eqs. (5.102), (5.103). The parameters κ0(ϕ◦

0), κ1(ϕ
◦
0), d1(ϕ

◦
0)

were calculated by using Eqs. (5.94) and Figs. 5.24 and 5.25. To define the natural fre-
quency ω and damping ratio α, the corresponding dimensionless parameters ω∗, α∗

from Table 5.2 should be multiplied by the characteristic frequencyωc dependent on
the thickness h2 for the MR layer. Table 5.2 reveals a weak dependence of the wave
parameter p◦ on the inductionB. As for the behavior of residual parameters, one can
conclude that increasing the magnetic field induction results in some increase in the
natural frequency (up to 7%) and minor decrease of the parameter � b◦ specifying
the width of the area where intensive vibrations occur. The effect of a magnetic
field on the damping capability of the MRE-1 is found to be more appreciable. In
particular, in the presence of magnetic field with the induction from 25 to 75 mT, the
damping ratio α∗ is about three times than that at B = 0. Thus, the localized natural
modes of the non-circular sandwich cylindrical shell with MRE-1 core are insignif-
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Table 5.2 Parameters p◦, ω∗, α∗, � b◦, Dl for a thin sandwich cylinder with ellipse-type
cross-section vs. the magnetic induction B at h1 = h3 = 0.5 mm, h2 = 11 mm, ε = 0.248 and
ωc = 13.704 Hz (after Mikhasev et al, 2014).

B, mT p◦ ω∗ α∗ � b◦ Dl

0 1.054 2.749 0.0040 0.2903 0.0136
25 1.040 2.846 0.0123 0.2678 0.0272
50 1.035 2.886 0.0110 0.2592 0.0240
75 1.032 2.907 0.0095 0.2546 0.0205
100 1.031 2.921 0.0082 0.2518 0.0176
125 1.029 2.930 0.0072 0.2499 0.0154
150 1.029 2.937 0.0064 0.2486 0.0136

icantly influenced by the magnetic field, but the associated decrement demonstrates
the significant dependence on induction B for the MRE-1.

5.5.2.2 Circular Magnetorhelogical Elastomer-based Cylinder with

Nonuniform Physical Properties

Let all geometrical parameters of a cylindrical shell be constant. The viscoelastic
properties of a MRE composing layer(s) are nonuniform in the circumferential
direction. Here k ≡ 1, and κ0, κ1, d1 are functions of ϕ. Similar inhomogeneity
of elastic and shear parameters may be observed if a magnetic field is spatially
nonuniform or/and a MRE embedded between elastic layers is polarized and the
angle between the magnetic force lines and the alignment of magnetic particles
depends on a co-ordinate ϕ (Fig. 5.53).

Here, the weakest generatrix ϕ = ϕ◦
0 is the line at which the reduced shear

parameter Kr introduced by (5.94) approaches the maximum:

κ′0(ϕ
◦
0) = 0, κ′′0(ϕ

◦
0) < 0. (5.108)

In this case, the asymptotic approach stated in Sect. 4.4 results in the following new
equations for the dimensionless frequency ω∗, damping ratio α∗ and parameter b◦

ω∗ =
1

(f◦)1/2

⎧⎨
⎩f◦ +

ε

2

⎡
⎣ (1 + 2m)(p◦)3

√
−f◦

ppκ
′′
0(ϕ

◦
0)

2[1 + (p◦)2κ0(ϕ◦
0)]

+ d1(ϕ
◦
0)(p

◦)4

⎤
⎦
⎫⎬
⎭ ,

α∗ = −ε(f◦)1/2κ1(ϕ
◦
0)(p

◦)2

2[1 + κ0(ϕ◦
0)(p

◦)2]
, b◦ =

i (p◦)3

1 + (p◦)2κ0(ϕ◦
0)

√
−κ′′0(ϕ

◦
0)

f◦
pp

.

Tables 5.3 and 5.4 reveal the effect of the applied magnetic field on parameters p◦,
ω∗, α∗,� b◦, Dl for two circular sandwich cylinders with nonuniform elastic and
shear moduli of the same radiusR = 1 m and length L = 1.5 m but having different
thickness of the MRE-1 core (h2 = 8 mm and h2 = 11 mm, respectively). The face
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sheets are the same as in the previous example. The calculations were performed
at n = 1,m = 0, h1 = h3 = 0.5 mm. The parameter κ′′0(ϕ

◦
0) characterizing the

variability of the reduced shear modulus in the neighborhood of the weakest generator
ϕ = ϕ◦

0 has been taken as κ′′0 = −1.5 for both cases. This is the approximate value
estimated proceeding from the experimental data from Boczkowska et al (2012). The
parametersκ0(ϕ◦

0), κ1(ϕ
◦
0), d1(ϕ

◦
0)were found from Eqs. (5.94)and Figs. 5.24, 5.25.

Calculations shown that for both shells accounting inhomogeneity of the reduced
shear parameter K results in increasing the natural frequency up to 20 %. For the
second sandwich, increasing the level of magnetic field from B = 0 to B = 150
mT leads to increasing the natural frequency ω∗ up to 8.4 % (from 3.304ωc at
B = 0 mT to 3.582ωc at B = 150 mT) and minor decreasing the number of
waves in the circumferential direction (the parameter p◦). The effect of magnetic
field on the damping ratio α∗ and logarithmic decrement Dl is more complicated
and appreciable. It is also influenced by the thickness h2 of the MRE-1 core. For
h2 = 8 mm and h2 = 11 mm, the best passive suppression of the eigenmodes
takes place at B = 75 mT and B = 25 mT respectively. In particular, applying
the magnetic field of the intensity B = 75 mT (at h2 = 8 mm) gives three-fold
increase in the damping ratio. Decreasing the parameter � b◦ under increasing the
induction B indicates that applying strong magnetic field results in some spreading
of localized modes over the shell surface.

Table 5.3 Parameters p◦, ω∗, α∗, � b◦, Dl for a cylinder vs. induction B at h2 = 8 mm,
ε = 0.231, ωc = 13.828 Hz (after Mikhasev et al, 2014).

B, mT p◦ ω∗ α∗ � b◦ Dl

0 1.479 3.438 0.0025 0.498 0.0046
25 1.471 3.472 0.0091 0.487 0.0165
50 1.466 3.494 0.0107 0.480 0.0193
75 1.463 3.511 0.0108 0.475 0.0193
100 1.461 3.523 0.0104 0.472 0.0186
125 1.459 3.534 0.0098 0.470 0.0175
150 1.458 3.543 0.0093 0.468 0.0164

Table 5.4 Parameters p◦, ω∗, α∗, � b◦, Dl for a cylinder vs. induction B at h2 = 11 mm,
ε = 0.248, ωc = 13.704 Hz (after Mikhasev et al, 2014).

B, mT p◦ ω∗ α∗ � b◦ Dl

0 1.532 3.304 0.0133 0.573 0.0253
25 1.494 3.436 0.0291 0.519 0.0532
50 1.480 3.493 0.0266 0.499 0.0479
75 1.472 3.527 0.0231 0.488 0.0411
100 1.467 3.550 0.0201 0.481 0.0355
125 1.464 3.568 0.0177 0.477 0.0311
150 1.462 3.582 0.0157 0.474 0.0276
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5.6 Suppression of Travelling Vibrations in Magnetorhelogical

Elastomer-based Shells

Below we consider the special class of vibrations, localized bending waves running
in the circumferential direction in MRE-based cylindrical shells of medium length.
Localized non-stationary vibrations may be generated in a shell by some static
(Lukasiewicz, 1979) or transient forces (Skudrzyk, 1968) applied along a line or
point on the shell surface. Similar vibrations may also appear as a result of parametric
excitation of a shell with variable geometric parameters (e.g., curvature, thickness
or generatrix length) and/or experiencing non-uniform loading (Mikhasev, 1997;
Mikhasev and Kuntsevich, 1999) and/or situated in non-stationary temperature field
(Botogova and Mikhasev, 1996; Mikhasev and Kuntsevich, 1997).

If some natural modes of a shell are localized in the neighbourhood of so-
called weakest line or point, then dynamic loading may result in unsteady localized
vibrations running over the shell surface. In particular, growing axial force (Avdoshka
and Mikhasev, 2001) or external pressure (Mikhasev, 2002) leads to splitting natural
modes localized near the weakest generatrix and, as a result, generate a family
of bending waves (wave packets) travelling in the circumferential direction of an
isotropic elastic cylindrical shell. A similar problem on packets of bending, tangential
and torsional waves in an infinite thin elastic isotropic cylindrical pipe under non-
uniform internal pressure was studied in Mikhasev (1998). The above-mentioned
and other papers (e.g., s. Mikhasev, 1996a,b) have detected that unsteady localized
vibrations may be accompanied by such complicated effects as multiple reflection
of wave packets (WPs) from more stiffen regions, focusing WPs and growth of
amplitudes, which are extremely undesirable and destructive because they are the
cause of the noise radiation and results in concentration of dangerous stresses in a
thin-walled structure.

The main purpose of this section is to show that the application of a magnetic field
allows suppressing unsteady (running) localized vibrations in laminated shells con-
taining layers or core made of a MRE (Mikhasev et al, 2016). Using the asymptotic
approach (Mikhasev and Tovstik, 2009), a solution of equations governing motion of
a medium-length cylindrical MRE-based laminated shell will be constructed in the
form of travelling WPs with dynamic characteristics (current frequency, amplitude,
width of WPs) being tunable by means of an applied magnetic field.

5.6.1 Setting of the Initial Boundary Value Problem

We consider a medium-length cylindrical laminated MRE-based shell as was stated
in Sect. 5.5. The shell is sufficiently thin so that h∗ = h/R is a quantity of the order
∼ 0.01 or less.

Let ε be a small parameter introduced by Eq. (5.93), where all notations are the
same as were assumed in Sect. 5.5. Equations (5.65) are considered as the governing
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ones with the boundary conditions (5.66)at not plane edgesαj = L2(α2) (j = 1, 2).
We assume also that the geometrical dimensions and viscoelastic properties of the
layers composing the shell are such that the asymptotic estimations (5.94) hold. In
our case, δν(B), δη3(B), d1(B), κ0(B), κ1(B) are functions of induction B.

We introduce the dimensionless magnitudes χ∗, Φ∗ and time τ as follows

χ = ε−4Rχ∗(s, ϕ, t), F = E(0)
r hR2Φ∗(s, ϕ, t), t = ε−3tcτ, (5.109)

where tc =
√
ρR2/E

(0)
r is the characteristic time. Then Eqs. (5.65) may be rewritten

in the dimensionless form

ε4d(B)Δ2χ∗ + k(ϕ)
∂2Φ∗

∂s2
+ ε2

∂2

∂τ2
[1− ε2κ(B)Δ]χ∗ = 0,

ε4Δ2Φ∗ − d(B)k(ϕ)
∂2

∂s2
[1− ε2κ(B)Δ]χ∗ = 0,

(5.110)

and the corresponding boundary conditions are

χ∗ = Δχ∗ = Δ2χ∗ = Φ∗ = ΔΦ∗ = 0 at s = s1(ϕ), s2(ϕ), (5.111)

where sj(ϕ) = Lj(Rϕ)/R.
Let us consider the following initial conditions for the displacement function χ∗

χ∗|τ=0 = χ̂0 exp [iε−1S0(ε)],

χ̇∗|τ=0 = iε−1v̂0 exp [iε−1S0(ε)],

S0(ϕ) = a◦ϕ+
1

2
b◦ϕ2, a◦ > 0, �b◦ > 0,

(5.112)

a◦, |b◦|, |χ̂0|, |v̂0|,
∣∣∣∣∂χ̂0

∂s

∣∣∣∣ ,
∣∣∣∣∂v̂0∂s

∣∣∣∣ = O(1) when ε → 0, (5.113)

where χ̂0(s, ϕ, ε), v̂0(s, ϕ, ε) are complex-valued functions satisfying (5.111).
The real and imaginary parts of functions (5.112) define the two initial wave

packets localized near the generatrix ϕ = 0 on the shell surface. These functions
may be considered as approximations of the initial perturbations being the result
of some transient forces applied along the line ϕ = 0. It should be also noted that
under some conditions for parameters a0, b0, functions (5.112) coincide with the
eigenmodes (5.99) localized in a vicinity of the weakest generatrix. The problem is
to construct a solution of the initial-boundary-value problem (5.110)-(5.112) and to
analyze the effect of applied magnetic field on the dynamic characteristics of running
WPs, including amplitudes.
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5.6.2 Asymptotic Approach

Let

yj(s, ϕ) = sin
πj[s− s1(ϕ)]

l(ϕ)
and λj =

π4j4

l4(ϕ)
, j = 1, 2, 3, . . . (5.114)

be an infinite system of eigenfunctions and associated eigenvalues of the boundary-
value problem

d4y

ds4
− λy = 0, (5.115)

y = y′′ = 0 at s = s1(ϕ), s = s2(ϕ), (5.116)

where l(ϕ) = s2(ϕ)− s1(ϕ).
Because the functionsχ0(s, ϕ), v0(s, ϕ) appearing in (5.112)satisfy the boundary

conditions (5.111), they can be expanded in terms of the eigenfunctions yj(s, ϕ) into
uniformly convergent series in some section ϕ1 ≤ ϕ ≤ ϕ2

χ̂0 =
∞∑
j=1

χ◦
j (ϕ, ε)yj(s, ϕ), χ◦

j =

s2(ϕ)∫
s1(ϕ)

χ̂0(s, ϕ, ε)yj(s, ϕ)ds,

v̂0 =

∞∑
j=1

v◦j (ϕ, ε)yj(s, ϕ), v◦j =

s2(ϕ)∫
s1(ϕ)

v̂0(s, ϕ, ε)yj(s, ϕ)ds.

(5.117)

It is assumed that χ◦
j , v

◦
j are polynomials of ε−1/2 whose coefficients are regular

functions of ε. Then they may be represented by the series

χ◦
j =

∞∑
i=0

εi/2χ◦
ji(ζ), χ

◦
ji(ζ) =

Mji∑
ι=0

c◦jiιζ
ι, v◦j =

∞∑
i=0

εi/2v◦ji(ζ), v
◦
ji(ζ) =

Mji∑
ι=0

d◦jiιζ
ι

(5.118)
where ζ = ε−1/2ϕ, and c◦j i ι, d

◦
j i ι = O(1).

Due to linearity of the initial-boundary-value problem (5.110)-(5.112), its solution
may be presented in the form

χ∗ =

∞∑
j=1

χ∗
j (s, ϕ, τ, ε), Φ∗ =

∞∑
j=1

Φ∗
j (s, ϕ, τ, ε), (5.119)

where χ∗
j , Φ

∗
j are the required functions localized in a neighborhood of moving gen-

eratrix ϕ = qj(τ). Here qj(t) is a twice differentiable function such that qj(0) = 0.
The pair of functions χ∗

j , Φ
∗
j is called the jth wave packet (WP) with the center at

ϕ = qj(τ) (Mikhasev, 2002).
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5.6.2.1 Initial Boundary Value Problem for the jth Wave Packet

Let us hold any natural number j fixed and study the behavior of the jth WP. It is
convenient to go over to a local co-ordinate system ϕ = qj(τ) + ε1/2ξj associated
with the moving center ϕ = qj(τ). In the new co-ordinate system, equations (5.110)
read

d(B)

(
ε2
∂4χ∗

j

∂ξ4j
+ 2ε3

∂4χ∗
j

∂ξ2j ∂s
2
+ ε4

∂4χ∗
j

∂s4

)
+ k(ϕ)

∂2Φ∗
j

∂s2
+

(
ε2

∂2

∂τ2

−2ε3/2q̇j
∂2

∂ξj∂τ
+ εq̇2j

∂2

∂ξ2j
−ε3/2q̈j ∂

∂ξj

)[
χ∗
j − κ(B)

(
ε
∂2χ∗

j

∂ξ2j
+ ε2

∂2χ∗
j

∂s2j

)]
= 0,

ε2
∂4Φ∗

j

∂ξ4j
+ 2ε3

∂4Φ∗
j

∂ξ2j ∂s
2
+ ε4

∂4Φ∗
j

∂s4

−d(B)k(ϕ)
∂2

∂s2

[
χ∗
j − κ(B)

(
ε
∂2χ∗

j

∂ξ2j
+ ε2

∂2χ∗
j

∂s2j

)]
= 0,

(5.120)
where κ = κ0(B) + iκ1(B), and the function k(ϕ), s1(ϕ), s2(ϕ) are expanded into
a series in the neighborhood of the center ϕ = qj(τ). For instance,

k(ϕ) = k[q(t)] + ε1/2k′[q(t)]ξj +
1

2
εk′′[q(τ)]q2j + . . . (5.121)

Here and in what follows, the dot (·) and prime (′) denote differentiation with respect
to dimensionless time τ and angle ϕ, respectively.

The initial conditions for jth WP take the form

χ∗
j |τ=0 = χ◦

j (ϕ, ε)yj(s, ϕ) exp
[
iε−1S0(ϕ)

]
,

χ̇∗
j |τ=0 = iε−1v◦j (ϕ, ε)yj(s, ϕ) exp

[
iε−1S0(ϕ)

]
.

(5.122)

The dynamic stress state of the shell consists of the basic stress state and the dynamic
edge-effect integrals describing the shell behavior in a small neighborhood of each
edge. To study the basic state on each edge, we have to satisfy two basic conditions
only. Apart from terms of the order ε2, these conditions for the jth WP have the form

χ∗
j = Φ∗

j = 0 at s = s1(ϕ), s2(ϕ). (5.123)

We note that the functions yj(s, ϕ) should be also expended into series in a vicinity
of the center ϕ = qj(τ). In what follows, we omit the subscript j. For instance, the
notations χ∗

j , χ
◦
j , yj , χ◦

ji, ξj , c
◦
jiι are replaced by χ∗, χ◦, y, χ◦

i , ξ, c
◦
iι, respectively.

When following to the asymptotic approach developed in Mikhasev and Tovstik
(2009), the solution of the initial-boundary-value problem (5.120), (5.122), (5.123)
may be constructed in the form of complex WKB-approximations
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χ∗ =
∞∑
ς=0

ες/2χς exp
(
iε−1S

)
, Φ∗ =

∞∑
ς=0

ες/2Φς exp
(
iε−1S

)
,

S(ξ, τ) =

τ∫
0

ω(τ̃ )dτ̃ + ε1/2p(τ)ξ +
1

2
εb(τ)ξ2.

(5.124)

In anzatz (5.124), �b(τ) > 0 for any time τ > 0, χς(s, ξ, τ), Φς(s, ξ, τ) are poly-
nomials in ξ with complex coefficients depending on τ and s, |ω(τ)| is the current
frequency of vibrations in the neighborhood of the moving center ϕ = q(t), p(τ) is
the variable wave parameter, and b(τ) defines the width of the jth WP, the inequality
�b(τ) > 0 guaranteeing attenuation of wave amplitudes within the WP.

As seen, functions (5.124) approximate running unsteady localized vibrations in
the shell. In the case when q = 0, and ω, p, b, χς and Φς are independent of time τ ,
expansions (5.124) are degenerated into the stationary WP, like (5.99), describing
free localized vibrations in a vicinity of the fixed (weakest) generatrix.

5.6.2.2 Sequence of One-dimensional Boundary Value Problems on Moving

Generatrix

To define all required functions appearing in ansatz (5.124), one needs to substitute
them into governing equations and boundary conditions as well. The substitution of
expansions (5.124) into Eqs. (5.120) results in a sequence of 1D differential equations

ς∑
j=0

Ljχς−j = 0, ς = 0, 1, 2, . . . (5.125)

where

L0z =
k2(q)d(B)[1 + κ0(B)p2]

p4
∂4z

∂s4
+
{
p4 − [1 + κ0(B)p2](ω − q̇p)2

}
z,

L1 = (bLp + Lq + ṗLω) ξ − iLp
∂

∂ξ
,

L2 =
(
b2Lpp + 2bLpq + Lqq + ṗ2Lωω + 2ṗLωq

+ 2ṗbLωp + ḃLω

)
ξ2 − 1

2
Lpp

∂2

∂ξ2
− i (bLpp + Lpq + ṗLωp) ξ

∂

∂ξ

− iLω
∂

∂t
− i

(
1

2
bLpp +

1

2
ω̇Lωω + ṗLωp +

1

2
Lpq + q̈p+ N

)
, . . . ,

(5.126)

N =
iκ1(B)d(B)p6(τ)

1 + κ0(B)p2(τ)
.
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In Eqs. (5.126), the subscripts p, q, ω denote the differentiation with respect to the
corresponding variables p, q, ω. Operators Lς for ς ≥ 3 are not written out here
because of its awkwardness.

The functions Φς may be found step by step from a sequence of inhomogeneous
equations and expressed in terms of the functions χς . The substitution of (5.124)
into the basic boundary conditions lead to the sequence of boundary conditions at
the moving center of the jth WP

χ0 = 0,
d2χ0

ds2
= 0 at s = si[q(t)]; (5.127)

χ1 + ξs′i
∂χ0

∂s
= 0,

∂2χ1

∂s2
+ ξs′i

∂3χ0

∂s3
= 0 at s = si[q(t)]; . . . (5.128)

The sequence of the 1D boundary-value-problems (5.125)-(5.128) serves for deter-
mination of required functions appearing in (5.124). The procedure for their seeking
is given in Mikhasev and Tovstik (2009); Mikhasev (2002). Omitting its details, we
shall give here only the principal equations.

5.6.2.3 Zeroth-order Approximation

In the leading approximation (ς = 0), one has the homogeneous ordinary differential
equation (5.125) with the homogeneous boundary conditions (5.127). Its solution
may be presented in the form

χ0(s, ξ) = P0(ξ, τ)y[s, q(τ)], (5.129)

where P0(ξ, τ) is an unknown polynomial in ξ. Substituting Eq. (5.129) into Eq.
(5.125) at ς = 0 yields the relation

ω = q̇(τ)p(τ) ∓H [p(τ), q(τ), τ ] (5.130)

coupling the current frequency ω(τ) to the wave parameter p(τ) and the group
velocity v(τ) = q̇(τ) of the jth WP, where

H(p, q, τ) =

√
d[B(τ)]

{
p4

1 + κ0[B(τ)]p2
+
λ(q)k2(q)

p4

}
(5.131)

is the Hamilton function. In Eqs. (5.130), the signs ± indicate the availability of
positive and negative branches of the required solution.

5.6.2.4 First-order Approximation

In the first-order approximation (at ς = 1), we arrive at the non-homogeneous differ-
ential equation (5.125) with the non-homogeneousboundary conditions (5.128). The
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compatibility condition for this non-homogeneous boundary-value problem results
in the two Hamiltonian systems

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
and q̇ = −∂H

∂p
, ṗ =

∂H

∂q
(5.132)

corresponding to the positive and negative branches of the solution, respectively.
These solutions are associated with two WPs moving in the opposite directions. In
what follows, all calculations are given for the positive jth WP governed by Eqs.
(5.132)1. Comparing anzatz (5.124) with the initial condition (5.122) for the jth WP,
we readily obtain the initial conditions for the Hamiltonian system

p(0) = a◦, q(0) = 0. (5.133)

5.6.2.5 Second-order Approximation

The compatibility condition for the non-homogeneous boundary-value problem
(5.125), (5.128) arising in the second-order approximation (ς = 2) yields

(ξ2Db − 2Dξt)P0 = 0, (5.134)

where

Db = ḃ+Hppb
2 + 2Hpqb+Hqq, Dξt = ĥ0

∂2

∂ξ2
+ ĥ1ξ

∂

∂ξ
+ ĥ2

∂

∂t
+ ĥ3,

ĥ0(t) =
1

2
Hpp, ĥ1(t) = i(bHpp +Hpq), ĥ2 = i,

ĥ3(t) =
i

2H

⎧⎨
⎩bHHpp − ω̇ − 2HqHp + q̈p+

1

η

s2∫
s1

Lω ẏyds+ Γ

⎫⎬
⎭ ,

Γ (t) = −2k(τ)k′(τ)d(B)[2 + κ0(B)p2(τ)]λ[q(τ)]

p5(τ)
− d(B)κ1(B)p6(τ)

1 + κ0(B)p2(τ)
.

Equation (5.134) has a solution of polynomial form if and only if the function b(τ)
satisfies the Riccati equation

ḃ+Hppb
2 + 2Hpqb+Hqq = 0. (5.135)

The repeated comparison of Eqs. (5.124) and (5.122) gives the initial condition

b(0) = b◦ (5.136)

for the above equation.
Taking into account the Riccati equation, Eq. (5.134) is reduced to the following

equation
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DξtP0 ≡ ĥ0
∂2P0

∂ξ2
+ ĥ1ξ

∂P0

∂ξ
+ ĥ2

∂P0

∂τ
+ ĥ3P0 = 0 (5.137)

called the amplitude one. Its solution in two different forms has been given in
Mikhasev (2002). We adduce here the solution expressed in terms of the Hermite
polynomials. Such presentation will be suitable in two special cases:

1. to compare expansion (5.124) with the localized natural mode (5.99);
2. to study the effect of non-stationary magnetic field on eigenmode (5.99).

The required polynomialP0(ξ, τ) in ξ with coefficients depending on dimensionless
time τ may be represented in the form:

P0 = Θm(τ)Hm(x), (5.138)

where Hm(x) is the Hermite polynomials in x of the mth degree, and

x = %̂(τ)ξ, %̂(τ) =

exp

[
−
∫

ĥ1(τ)dτ

ĥ2(τ)

]
√√√√4

∫
ĥ0(τ)

ĥ2(τ)
exp

[
−2

∫
ĥ1(τ)dτ

ĥ2(τ)

]
dτ

,

Θm(τ) =

{
4

∫
(ĥ0/ĥ2) exp

[
−2

∫
(ĥ1/ĥ2)dτ

]
dτ

}m/2

exp

[∫
(ĥ3/ĥ2)dτ

] .

(5.139)

It is evident that the polynomial

P0(ξ, τ ; cm) =

M∑
m=0

cmΘm(τ)Hm[%̂(τ)ξ] (5.140)

of the M th degree is also the solution of the amplitude equation (5.137), where cm
are arbitrary constants found from the initial conditions.

5.6.2.6 Higher-order Approximations

To findχς, Φς for ς ≥ 1, one need to consider corresponding boundary-value problem
(5.125), (5.128) in the ς + 2nd approximation. The existence of a solution of this
problem results in the non-homogeneous differential equation

DξtPς = P ∗
ς (5.141)
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for a polynomialPς(χ, τ), whereP ∗
ς (χ, τ) is some polynomial expressed by means of

polynomials P0, . . . , , Pς−1. However, we interrupt the formal procedure of seeking
χ1, χ2, . . . because the accuracy of governing equations (5.110) is not sufficient.

5.6.3 Solution of the Initial Boundary Value Problem in the

Leading Approximation

We note that there exist two branches of solutions of the initial boundary-value prob-
lem. Let p+(τ), q+(τ) and p−(τ), q−(τ) be solutions of the Hamiltonian systems
(5.132)1 and (5.132)2, respectively. Here, ϕ = q+(τ) and ϕ = q−(τ) are centers of
the positive and negative WPs moving in the opposite directions. We introduce also
the local coordinates

ξ± = ε−1/2[ϕ− q±(τ)]. (5.142)

in the scaled coordinate systems with centers at the moving generatrix ϕ = q±(τ).
Then

ω±, b±, P±
0 , χ±

0 , Φ±
0 (5.143)

are found above functions corresponding to the positive and negative WPs, respec-
tively. Consider the following functions:

χ = χ+ + χ−, Φ = Φ+ + Φ−, (5.144)

where

χ± =
[
χ±
0 +O

(
ε1/2

)]
exp

(
iε−1S±

)
,

Φ± =
[
Φ±
0 +O

(
ε1/2

)]
exp

(
iε−1S±

)
,

χ±
0 = P±

0 (ξ±, τ ; c±m)y[s, q±(τ)], P±
0 =

M∑
m=0

c±mΘm(τ)Hm[%̂(τ)ξ±],

Φ±
0 =

d(B)k[q±(τ)]P±
0 (ξ±, τ ; c±m)

[p±(τ)]4

[
∂2y(s, ϕ)

∂s2
+κ(B)[p±(τ)]2y(s, ϕ)

]
ϕ=q±(τ)

,

S± =

τ∫
0

ω±(τ̃ )dτ̃ + ε1/2p±(τ)ξ± +
1

2
εb±(τ)(ξ±).

(5.145)
The composed functions (5.144) are the leading approximation of the required

solution of the initial-boundary-value problem (5.110)-(5.112) for the fixed j. They
contain undefined constants c±m which are found from the initial conditions for the
WPs with the fixed number j (we remind that a number j is associated with the
number of eigenvalue λ of the boundary-value problem (5.115), (5.116)). If the
polynomials P±

0 are expressed in terms of the Hermite polynomials, then as shown
in Mikhasev (2002), these constants calculated by the equation
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c±m =
1

2m+1m!
√
πΘm(0)

+∞∫
−∞

e−ζ2Hm[%̂(0)ζ]

[
χ◦
0(ζ)∓

v◦0(ζ)

H◦

]
dζ, (5.146)

where χ◦
0 ≡ χ◦

j0, v
◦
0 ≡ v◦j0 are polynomials evaluated by Eqs. (5.118), and

H◦ = H(a◦, 0, 0) is the initial value of the Hamiltonian function.

Remark 5.3. Let the parameters q = 0, p = a◦ satisfy equations

Hp = 0, Hq = 0, (5.147)

and b = b◦ is the solution of the quadratic equation

Hppb
2 + 2Hpqb+Hqq = 0 (5.148)

in the absence of magnetic field (B = 0). Then p±(τ) ≡ a◦, q±(τ) ≡ 0 and
b±(τ) ≡ b◦ are the solutions of the Hamiltonian systems and Riccati equations,
respectively, at B = 0. In this case, the constructed solution (5.144)-(5.146) gives
the stationary WP with the center ϕ = 0, which coincide with the localized natural
mode (5.99).

In what follows, we shall study the effect of growing magnetic field on the localized
eigenmodes (5.99) being characteristics of a shell without magnetic field.

5.6.4 Running Localized Vibrations in Magnetorhelogical

Elastomer-based Cylindrical Shells vs. Magnetic Field

The constructed asymptotic solution (5.144)-(5.146) may be used to predict the
response of a laminated MRE-based shell to the initial localized perturbations at
the shell surface taking into account an applied magnetic field. We note that the
principal tunable parameters d(B), κ(B) and κ1(B) appearing in the Hamiltonian
function and amplitude equation depend on the magnetic field inductionB. Varying
the intensity of magnetic field, one can affect the behavior of running WPs and softly
suppress vibrations as well.

5.6.4.1 Wave Packets in Shells with Constant Parameters

At first, we consider the simplest case when all geometrical parameters, including
the curvature and the generatrix length, are constants, and the applied magnetic field
is non-stationary. Here k ≡ 1, s1 = 0, s2 = l and the induction B(τ) is a function
of the dimensionless time τ . In this case, the Hamilton function for the jth WP is
simplified

H(p, τ) =

√
d[B(t)]

{
p4

1 + κ0[B(t)]p2
+
π4j4

l4p4

}
, (5.149)
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Fig. 5.54 Dimensionless cur-
rent frequency ω = |ω±(τ)|
versus dimensionless time for
different c = 0, 5, 10 mT
(after Mikhasev et al, 2016).

ω

τ

c = 0 mT
c = 5 mT
c = 10 mT

and the Hamiltonian systems and Riccati equations admit solutions in the explicit
form

p± = a◦, q±(τ) = ±
τ∫

0

Hpdτ, ω±(τ) = ±a◦Hp ∓H,

b±(τ) =
b0

1 + b0

τ∫
0

Hppdτ

. (5.150)

If the magnetic field is constant, then the current frequencies |ω±| for both
WPs are constants; if not, then |ω±(τ)| are time-dependent. The functions �b±(τ)
characterize the size of the shell area spanned by vibrations and χ±

0 (τ) define the
amplitudes of these unsteady vibrations. To analyze the effect of magnetic field on
travelling WPs in detail, we consider the following example.

Example 5.14. A sandwich cylindrical shell is assembled from two face sheets
made of ABS-plastic SD-0170 and MRE-1 core. The geometrical parameters are
the following: R = 0.4 m, L = 1.5 m, h1 = h3 = 0.5 mm, h2 = 11 mm. The
numerical computations of magnitudesω = |ω±(τ)|,�b = �b±(τ), |χ0| = |χ±

0 (τ)|
versus dimensionless time were performed for two different cases: (a) B = 0; (b)
the magnetic induction B(τ) = cτ is the linear function of dimensionless time
at c = 5, 10 mT. The following parameters were considered as the initial ones:
a0 = 2.5, b0 = i, χ◦

1 = 1, v◦1 = 0 and χ◦
j = v◦j = 0 at j > 1. Figure 5.54

shows that for the accepted parameters and case (b) the current frequency ω(τ)|
is the decreasing function of time. As seen from Fig. 5.55, the width of the 1st

running WP increases in time for both cases, (a) and (b), that means that the WP
spreads in the circumferential direction. But the speed of this spreading depends
weakly on whether the magnetic field is stationary or time-dependent. As concerns
the wave amplitudes (s. Fig. 5.56), they demonstrate a very strong dependence on the
visco-elastic properties of MREs which are affected by the applied magnetic field.
The curve corresponding to c = 0 mT shows the capability of the MRE to damp
travelling vibrations in the sandwich without magnetic field. The other two curves
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Fig. 5.55 Parameter
�b = �b±(τ) vs. dimen-
sionless time for different
c = 0, 5, 10 mT (after Mikha-
sev et al, 2016).

�
b

τ

c = 0 mT
c = 5 mT
c = 10 mT

Fig. 5.56 Maximum am-
plitude |χ0| versus dimen-
sionless time for different
c = 0, 5, 10 mT (after Mikha-
sev et al, 2016).

|χ
0
|

τ

c = 0 mT
c = 5 mT
c = 10 mT

bring out clearly that this capability becomes stronger under the action of growing
magnetic field. So, when comparing amplitudes at the fixed moment τ = 2.4, one
can see that the maximum amplitude |χ0| for c = 5 mT and c = 10 mT are 3-and
6-times less, respectively, than that for c = 0 mT.

5.6.4.2 Wave Packets in Shells with Variable Geometrical Parameters

The numerical calculations performed by Mikhasev and Tovstik (1990) for single-
layer isotropic shells revealed that behavior of excited WPs in shells with variable
curvature or/and generatrix length may be very complicated and characterized by
reflection of WPs possessing a small initial energy from some generatrix. As a rule,
these reflections are accompanied by strong focusing of WPs and growing ampli-
tudes. Additionally, if a shell is subjected to an external dynamic load (Avdoshka
and Mikhasev, 2001; Mikhasev, 2002), then increasing amplitudes in running WPs
may be dramatic and lead to possible dynamic instability of a structure. To study
similar effects in MRE-based shell with variable geometrical parameters, we apply
to the next example

Example 5.15. Consider a circular sandwich cylindrical shell with an oblique edge
as shown in Fig. 5.57. Here

k = 1, s1 = 0, s2(ϕ) = l0 + (cosϕ− 1) tanα, (5.151)



5.6 Suppression of Travelling Vibrations in Magnetorhelogical Elastomer-based Shells 267

Fig. 5.57 Medium surface
of a circular cylindrical shell
with oblique edge. (after
Mikhasev et al, 2016).

α

l0

s2(ϕ) ϕ

s

whereRl0 is the longest generatrix length andα is the slope angle of the oblique edge.
The viscoelastic properties of two elastic layers and MRE core are the same as in
Example 5.14 and the geometrical parameters are the following:h1 = h3 = 0.5mm,
h2 = 11 mm, R = 0.4 m, l0 = 2.

For this shell, the longest generatrix ϕ = ϕ◦
0 = 0 is the weakest one. The

natural modes (5.99) localized in the neighbourhood of this line are characterized
by parameters p = a◦, b = b◦ which jointly with q = 0 are determined as the
solutions of Eqs. (5.138), (5.148) for j = 1 (s. Remark 5.3). As the initial conditions
for Hamiltonian systems (5.132)1, (5.132)2 and Riccati equation (5.135), we assume
the above parameters p = a◦, q = 0, b = b◦. In other words, up to amplitudes
χ◦
j , iε

−1v◦j , one of the localized eigenmodes (5.99) with j = 1 semi-waves in the
axial direction to be considered as the initial WP. It is of interest to study its behavior
when apply non-stationary magnetic field with the induction B = cτ .

Figures 5.58 to 5.62 show parameters p+, q+, ω+,�b+, |χ+
0 |, |�χ+

0 | vs. dimen-
sionless time τ for different c = 0, 5 and 10 mT. The calculations were performed
for the 1st positive WP (at j = 1) with the initial amplitudes χ◦

1 = 1, v◦1 = 0
in (5.122). Due to the symmetry of the shell and the initial WP with regard to the
plane ϕ = 0, the curves for all functions corresponding to the negative WP are
the same as in Figs. 5.58-5.62. In all figures the straight dotted lines correspond
to the eigenform localized in the neighborhood of the longest generatrix ϕ = 0.
Thus, if a magnetic field is absent (c = 0 mT), the initial WP coinciding with one
of eigenmodes stays motionless, with the wave number p+, eigenfrequency ω+ and
parameter b+ being constants for any point of time. The maximum amplitude of free

Fig. 5.58 Center
ϕ = q+ = 0 of the initial WP
(at c = 0 mT) and the center
ϕ = q+ of the 1st positive WP
versus dimensionless time τ
at different rates of growing of
the magnetic field induction,
c = 5, 10 mT (after Mikhasev
et al, 2016).

q
+

τ

c = 0 mT
c = 5 mT

c = 10 mT
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Fig. 5.59 Wave parameter
p+ = a0 ≈ 1.41 of the
initial WP (at c = 0 mT) and
parameter p+ of the 1st posi-
tive WP versus dimensionless
time τ at different rates of
growing of the magnetic field
induction, c = 5, 10 mT
(after Mikhasev et al, 2016).

p
+

τ

c = 0 mT
c = 5 mT
c = 10 mT

Fig. 5.60 Natural frequency
|ω+| = ω0 ≈ 1.25 of the
initial WP (at c = 0 mT)
and the current frequency
|ω+| of the 1st positive WP
versus dimensionless time τ
at different rates of growing of
the magnetic field induction,
c = 5, 10 mT (after Mikhasev
et al, 2016).

|ω
+
|

τ

c = 0 mT
c = 5 mT
c = 10 mT

Fig. 5.61 Parameter �b+ =
�b0 ≈ 0.36 for the initial WP
and parameter �b+ for the
1st positive WP versus dimen-
sionless time at different rates
of growing of the magnetic
field induction, c = 5, 10 mT
(after Mikhasev et al, 2016).

�
b+

τ

c = 0 mT
c = 5 mT
c = 10 mT

vibrations (s. Fig. 5.62) is the decreasing function of the dimensionless time τ due
to viscoelastic properties of the MRE core regardless of whether the magnetic field
is applied or not.

Interesting effects are observed when the magnetic field is applied. After its
turning on, the eigenmode (initial WP) is spitted into two WPs, positive and negative
ones, travelling in the opposite directions (s. Fig. 5.58). Figure 5.58 shows also that
the increase of the magnetic field results in the multiple refections of the WP from
the certain generatrices ϕ = ϕr = q+(τr), these refections being accompanied by
slight focusing (s. Fig. 5.61). Herewith, the larger the growth rate of the induction
(parameter c, mT) is, the earlier the reflection occurs. So, for c = 5 mT the first
reflection occurs from the generatrix ϕ ≈ 0.13 at the point of time τ = τr ≈ 2.45,
and for c = 10 mT, one has ϕ ≈ 0.21, τr ≈ 2.1. At τ = τ0, the WP center goes back
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Fig. 5.62 |χ+
0 | for the 1st

positive WP versus dimen-
sionless time at c = 0 and
different rates of growing of
the magnetic field induction,
c = 5, 10 mT (after Mikhasev
et al, 2016).

|χ
+ 0
|

τ

c = 0 mT
c = 5 mT

c = 10 MT

to the initial position at the longest generatrix (ϕ = 0). Here, τ0 ≈ 4.0 and τ0 ≈ 3.58
for c = 5 mT and c = 10 mT, respectively. Figures 5.59 and 5.60 demonstrate how
the wave parameter p+ and the dimensionless current frequency |ω+| vary with time.
In the beginning, the frequency |ω+| drops slightly, but then it runs up together with
the induction B(τ). The strong growth of the frequency is explained by increasing
the total stiffness for the sandwich at high level of the applied magnetic field.

From the analysis of Fig. 5.62 follows that the increase of the magnetic field
induction leads to a soft suppression of running vibrations. For instance, at c =
10 mT, the damping decrement is about two times than that without magnetic field
(at c = 0 mT): the larger the growth rate of the magnetic field is, the faster the
damping of running vibrations occurs.
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Chapter 6

Appendix: Asymptotic Estimates and Series

Abstract In this appendix, the definitions of symbolsO, o,∼ and asymptotic expan-
sions met in the book are shortly given.

6.1 Estimates of Functions

Let functions f(z) and g(z) be defined on a set D of the complex numbers,C, or the
real numbers, R, and let a be a point of accumulation of D.

Notation 1. We write

f(z) = O(g(z)) as z → a (6.1)

if there exists a neighborhoodU of the point a and a constant C such that

|f(z)| ≤ C|g(z)| for any z ∈ U ∩ D. (6.2)

Notation 2. One writes
f(z) = O(g(z)) (6.3)

if there exists a constant C such that the inequality

|f(z)| ≤ C|g(z)| (6.4)

holds for all z ∈ D.
Notation 3. The notation

f(z) = o(g(z)) as z → a (6.5)

means that

lim
z→a

f(z)

g(z)
= 0. (6.6)
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Notation 4. If f(z) = O(g(z)) and f(z) = o(g(z)) hold simultaneously as
z → a, we write

f(z) ∼ g(z) as z → a. (6.7)

The notations O(g(z)) and o(g(z)) define the class of functions which satisfy es-
timations (6.3) and (6.5), respectively. We list here some rules for operations with
these symbols (classes of functions). As z → a and z ∈ D, there are valid the
following properties:

o(g(z)) + o(g(z)) = o(g(z)), o(g(z)) +O(g(z)) = O(g(z)),

o(g(z))× o(f(z)) = o(g(z)× f(z)), o(g(z))×O(f(z)) = o(g(z)× f(z)),

O(o(g(z))) = o(g(z)), o(O(g(z))) = o(g(z)),

o(o(g(z))) = o(g(z)), o(g(z)) = O(g(z)).
(6.8)

The prove of some of the above relations as well as a large number of examples may
be found in De Bruijn (1970); Nayfeh (1973); Olver (1974); Bauer et al (2015).

6.2 Asymptotic Series

Consider a sequence of functions un(z), n = 0, 1, 2, . . ., defined on D and let a be
a point of accumulation of D.

Definition 6.1. The sequence un(z) is said to be asymptotic as z → a, if for any
integer n ≥ 0,

un+1(z) = o(un(z)), as z → a. (6.9)

For example, the sequence un(z) = F (z)(z − a)m as z → a, where F (z) is an
arbitrary function bounded on the set D, is the asymptotic one. Similar sequence
appear in Eqs. (3.105). Indeed, the sequence

un(ε; ξ, s) = εn/2χn(ξ, s) exp

{
i

(
ε−1/2pξ +

1

2
bξ2
)}

(6.10)

is the asymptotic as ε → 0 for any fixed ξ, s.

Definition 6.2. Let the function f(z) be defined on D and the sequence un(z) is
asymptotic as z → a, then the series

f(z) ∼=
∞∑

n=0

anun(z) as z → a (6.11)

is called an asymptotic expansion of f(z) in the Poincaré sense by means of the
asymptotic sequence un(z) if there are constants an such that for any integerN ≥ 0
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f(z)−
N∑

n=0

anun(z) = o(uN (z)) (6.12)

or

f(z)−
N∑

n=0

anun(z) = O(uN+1(z)) (6.13)

as z → a.

If the function f(z) is expanded into asymptotic series (6.11) by means of the
asymptotic sequence un(z), then the coefficients an in (6.11) are determined in a
unique way; in other words, expansion (6.11) is unique.

We note that an asymptotic series may diverge. Asymptotic series may be summed,
multiplied by functions, differentiated and integrated under special assumptions.
Basic properties of asymptotic series and operations on them are given in Jahnke
et al (1960); Evgrafov (1961); De Bruijn (1970); Nayfeh (1973); Olver (1974);
Erdèlyi (2010); Bauer et al (2015).
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