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Abstract. A significant proportion of the population has become used to
sharing private information on the internet with their friends. This information
can leak throughout their social network and the extent that personal information
propagates can depend on the privacy policy of large corporations. In an era of
artificial intelligence, data mining, and cloud computing, is it necessary to share
personal information with unidentified people? Our research shows that deep
learning is possible using relatively low capacity computing. When applied, this
demonstrates promising results in spatio-temporal positioning of subjects, in
prediction of movement, and assessment of contextual risk. A private surveil-
lance system is particularly suitable in the care of those who may be considered
vulnerable.
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1 Background

Advancements in mobile devices that can be worn and carried, their interconnectivity,
and the improvement of artificially intelligent tools provide a significant opportunity to
assist in the care of the aged. In accordance with a human right to private life, we have
examined methods to keep tracking information private unless there is a moral argu-
ment, such as risk to the person being monitored, that justifies a breach in privacy. In
this scenario, safety is paramount and in the interests of beneficence and non-
maleficence an ethical policy in terms of design is employed, which defines that
personal information is precious and should therefore not be shared on the internet.

Dementia is a debilitating condition that is growing with the aging society. Con-
tinuance with life in the community is encouraged, since social interaction and physical
activity stimulates a healthy mental state in the person with symptoms (PwS) along
with the family carer. We seek bespoke artificially intelligent solutions for these per-
sons living with dementia (PlwD) who wish to preserve independence of the PwS.
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Initial system infrastructure and findings are published in [1], the suitability of a mobile
computer technology in tracking PwS and ethical aspects are previously outlined in [2].
The work described here contributes to the ethical debate regarding the question at
which point information gathered when monitoring a PwS should be shared. We
investigate a technological solution that keeps data private until a threshold of risk is
reached. AI is used to learn what is ‘normal’ for a person (based on individual habits),
various metrics are then used in the decision making to change the default private state.

To this end, a monitoring system is designed that requires the PwS to carry a
mobile phone and wear a fitness tracker. It is understood that some may not be
comfortable with this and it is anticipated that the mobile technology component will
ultimately be integrated in a single wearable device. This technology can be particu-
larly useful for patients who have early-onset dementia, i.e., those of working age and
therefore more likely to be used to carrying a phone or wearing a smart-watch.

2 The Problem

The onset of dementia has a profound effect on the PwS and the wider family unit.
Diagnosis can bring with it a loss of role function, uncertainty about the future, fear of
being a burden, and reduced mobility that can lead to social isolation [3]. The objective
of this study is to create an ‘electronic safety net’ that can provide peace of mind to the
carer, while preserving the rights and independence of the PwS. A key aim of the
project is to delay residential care.

2.1 Dementia

Dementia is caused by several diseases of the brain. There is a wide spectrum of
symptoms, some of which may manifest in a propensity to walk independently at
inappropriate times [4]. Literature indicates that this can lead to premature mortality [4–
6]. Actions to mitigate this risk can lead to increased dependence, to curtailment of
social activities, and reduction in quality of life [7]. Elopement episodes are a major
reason for nursing home admission [8]. A study in Finland reports that the latter may be
delayed, using assistive technology, by an average of eight months [9].

2.2 Privacy

Online data privacy divides opinion. Many elect to share very varied information about
their lives publicly on the internet, but this is not always a conscious decision – Terms
and conditions regarding data sharing tend to be ignored by many users as they install
applications and use online services. Nevertheless, consent given in this way is often
referred to as informed when the potential for data propagation is mentioned in the
supplied information, even though this information is rarely considered thoroughly.

Leaks of private information have recently been in the news headlines. Data stored
on the internet, e.g. by cloud services, is often assumed to be safe, but human inter-
vention and inadequate security measures allow breaches [10]. Advocates of privacy
treat personal information very differently and avoid sharing their information with
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people or organisations. This attitude is supported by cyber-security activists, e.g. in a
report of vulnerabilities leading to 91 exploits of tracking service providers in January
2018 [11]. In the case of care for persons who may be considered vulnerable it seems
ethically correct that a strict data protectionist policy should be the default.

2.3 A Human Rights-Based Approach

The World Health Organisation (WHO) advocates a human rights-based approach for
PlwD [12]. In our study, almost two years of personal data was collected. This included
location (derived using GPS and nearby Wi-Fi nodes), activity recognition, indoor
movement, and logs of heart rate, steps, and sleep patterns. This kind of monitoring
undoubtedly has the potential to invade a person’s right to private life. The tracking
was described by the subject as a big-brother bad dream. On reflection, the level of
‘invasion’ depends on who has access to the data.

3 Machine Learning (ML)

The aim is for an algorithm to learn human mobility patterns of an individual, and to
assess the perceived risk against the learnt normality that is deemed to be ‘safe’.
A measure of risk is used to determine the level of protection required on the personal
data collected. To protect privacy, propagation of this information is restricted to the
secure home network. No interaction with the wearable or phone is required of the PwS.

To improve potential accessibility to many users in the long run, the equipment
used in a working prototype is a standard smart-phone and a home-based ‘hub’, which
is a credit-card sized computer with limited resources, such as a Quad-Core 1.2 GHz
CPU and 1 GB RAM. Networking between the two in ‘monitoring’ mode is via on-
board Bluetooth and Wi-Fi only while at home.

Unconventional Deep Learning: Deep learning (DL) discovers intricate patterns in
large datasets by using multiple processing layers to learn representations of data [13].
Sequential and parallel information is processed in a cyclical (recurrent) fashion by
modifying internal weightings of input signals to produce an expected output signal
[14, 15]. The hardware platform described may seem restrictive for a DL task in an age
where we are used to resources being server based and ubiquity being the norm.
Convention says that DL requires large computing capacity, but this is not available for
the present use case. Long Short-Term Memory (LSTM) networks [16] are a type of
Recurrent Neural Network suitable for learning and predicting sequential patterns in
timelines. Using accelerometers, as commonly found in modern mobile devices, LSTM
are deployed in human activity recognition (HAR). X-Y-Z accelerometer readings are
interpreted over a defined time-period and then compared to those taken in a laboratory
to determine probability that a categorised activity is taking place [17]. We have
assimilated this using GPS sensor data. A dataset suitable for learning using an LSTM
neural network was developed, and the resultant tensor was deployed to an Android
device to calculate the probability of being on a learnt trajectory or otherwise.
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The novel concept that surveillance need not be invasive is introduced. There is a
host of literature relating to HAR [18], there are indoor monitoring studies with AI, e.g.
[19], and studies of wandering trajectories, e.g. [20]. None of these describe cate-
gorisation of the normal movements of a person together with discrete monitoring that
keeps information private until anomalies are found.

3.1 ML Methodology

Data: GPS data is collected from one subject using a standard HTC-10 smartphone
used solely for that purpose. Considerable data preparation is required using the
minute-by-minute location coordinates. Data is first compartmentalised based on total
movement to date (tm). This is then divided by an increment (i) giving sub-divisions as
shown in Fig. 1 with i = 20.

To optimise computation time, daily data is reduced to only the proportion that
represents movement.

Categorisation. Points within each segment (or compartment) are assessed for each
trajectory and each segment’s points are compared using a kd-tree-based nearest-
neighbour algorithm [21]. The degree of similarity is assessed giving a percentage and
a threshold provides a similarity decision. There is difficulty in some trajectories where,
for example, topographical, atmospheric, or networking issues used in test data col-
lection lead to sparse and noisy data. Sparse data was dealt with using 1d-univariate
interpolation [22]. This is particularly important in the early days of training where
there are few trajectories to compare. Noisy data is essentially ignored at this time by

Fig. 1. Boundaries of the extent of total movement for 3 months, i = 20. Map: © Google.
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adding a tolerance to the similarity decision just described which is explained in more
detail below. The result of the comparison algorithm is a segment chain (string) for
trajectories with 1 or 0 signifying a match in each square (Fig. 2).

Categorisation by comparison of trajectory segment chains by only comparing
matched segments significantly reduces the computational capacity required in terms of
processing and memory. If a match is found, interpolated point data is added to a
master repository with which future comparisons are made. An encoded polyline [23]
reduces database size requirements and allows trajectories to be stored as entities. In
time, the necessity for interpolation is reduced as the repository trajectory density
increases.

As seen in Fig. 3, interpolation may cause significant deviation from the route that is
travelled, e.g. by cutting corners and using roundabouts, but this level of granulation is
considered satisfactory as a ‘zone of safe movement’ is maintained. Matching segments
rely on a nearest neighbour tolerance (nnT) and merging with subsequent trajectories
eventually creates a dense category master that is used to define this zone.

Fig. 4. (a) A comparison tolerance nnT leads improved matches while ignoring noise.
(b) Interpolated points are merged to create a dense category master.

Fig. 2. A successful match of two segment
chains. 29 segments, i = 10.

Fig. 3. Interpolation used to deal with
sparse data causing accuracy issues. Map
data: © Google.
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nnT set at 0.005 in decimal degrees, equating to just over 500 m, is used in the
experiments. This tolerance can be linked to tm in further work as the extent of
movement defines the granularity required within the movement space. The resultant
categories develop into a densely populated polyline seen in Fig. 4b. All movement
within a data collection period are matched with destinations recognised in the initial
cluster analysis.

In addition to our collected data, the comparison algorithm was tested using seven
users’ data from the Geolife (GL) dataset [24]. This contains better quality GPS tra-
jectories and includes higher variance in modes of travel. With nnT applied to nearest
neighbour algorithm it is observed that small deviations from a route are not a sig-
nificant problem. As can be seen in Fig. 5, four separate tracks converge on a desti-
nation and in the extent of this day’s movement all points are within one segment.

Noise, detours and differing distances included in two tracks taking Route 1 and
Route 2 in Fig. 6, both arrive at the same place E1 and C2. nnT allows for the even-
tuality of C1 and D1 not matching Route 2. Adding both to the master increases the
possibility that subsequent trajectories match by widening the dataset.

Bearing. Some GL users’ data highlighted the difficulty of recognising direction of
travel in that only one-way trajectories are recorded. Experimentation with inclusion of
direction of travel gave complex results, consequently movement is treated as omni-
directional; the category master is essentially an amalgamation of history on that route.

Time Factor. This is an important consideration in the study scenario, but the like-
lihood of a person travelling a recognised trajectory at the same time is low so pre-
diction of this is not required. There are detours from a route, the method of travel may
change, there may be traffic. These factors all have a significant impact on spatio-
temporal data and following extensive experimentation, it is concluded that data-point
true timestamps cause confusion. Instead, each category master is indexed sequentially.

Predictability. Major studies in human mobility patterns find that there is a high
degree of temporal and spatial regularity [25]. In the datasets investigated, this study

Fig. 6. Widening the category master by
allowing a nearest neighbour tolerance.

Fig. 5. Detours and converging paths are
handled using nnT and segment comparison.
Map: © Google Maps.
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concurs; the number of places travelled to is surprisingly low. The three most regularly
visited destinations are selected for demonstration; these are travel to University
(south), to social visits (west) and to a supermarket (east) seen in Fig. 7.

Pre-processing. Category masters are exported and the number of records per cate-
gory is equalised by interpolating (increased or reduced) to 10,000 records each. Noise
is amplified where outliers are interpolated. These outliers will be removed in later
versions of the system. The data is stacked and normalised. Train:test split is 80:20.

Machine Learning. Inspiration for this is credited to work using Convolutional
Neural Network and LSTM RNN in mobile phone HAR applications. The solution
selected for our application is Tensorflow ‘BasicLSTMCell’ stacked with ‘Multi-
RNNCell’ with 64 hidden units. The neural network is expected to learn geo-spatial
data to predict categorisation (of the trajectory) when it is given further blocks.

3.2 ML Results

Experimentation found that the number of time steps set at 10, in blocks of 10 gave an
accuracy of 90–97% over 500 epochs in less than 1.5 h (Fig. 8).

Deployment. Using our dataset, the resultant tensor is imported to an Android
application that sequentially passes arrays of 10 steps of a test trajectory in a timed
fashion. A Tensorflow classifier returns the probability of the array being Category 1, 2
or 3 for the three trained classes. These predictions are logged on the phone (Fig. 9).

Mobile Results
Category 1: Correctly predicted with 98–99% certainty unless trajectories overlap.
Category 2: Correctly predicted with 55–86% certainty.
Category 3: Correctly predicted with 77–90% certainty.

Fig. 7. Three categories of travel overlaid with noise showing, interpolated; 3 � 10 k records.
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The Tensorflow classifier gives reliable prediction of a route being tested in all
cases. These are very satisfactory results. Overlap between two categories returning a
50:50 result in the Category 1 test is perfectly acceptable since the routes do overlap.

Public Dataset Results
Training was carried out using matched trajectories in the GL dataset with similarly
acceptable results (Fig. 10).

Volunteer Test Results
Six volunteers were recruited from a convenience sample that consented to be tracked
by phone and fitness tracker for a period of three months. GPS data was collected by
enabling Google Timeline and by configuring their phone accordingly. Places visited,
and routes taken are stored on Google servers1. At the end of the period data was

Fig. 8. LSTM training session over 1.4 h. 90–97% accuracy.

Fig. 9. Android category prediction results: the vertical scale on these graphs range from 0 to 1
where 1 = 100% certainty. (a) Category 1 (dotted line). (b) Category 2 (dashed line).
(c) Category 3 (solid line).

1 Note that Google Timeline is only used for data gathering in this initial feasibility study. The full
solution uses GPS data stored only locally on the mobile device and processed on the home hub.
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exported, and a bespoke script was developed to interpret the data. With very few
exceptions, it was found that the main locations visited can be classified as attending a
place of work or study, going shopping and visiting friends or family.

Machine Learning Results: As previously explained, the six datasets consist of lat-
itude, longitude, and elevation. When subjected to the same neural network, training
test results are shown in Table 1.

Volunteer 3 presented problems in that trajectories overlapped due to the topogra-
phy of their home address. A revised method that change the way overlapping tra-
jectories are categorised can be used overcome these issues. Volunteer 4 had noticeably
more restricted movement and comparably reduced distance travelled causing specific
issues of data sparsity. For these reasons both datasets required manual categorisation
and matching.

Data Augmentation: Noisy data was dealt with using Google Snap-to-Road [26]
and/or TrackMatching [27] and when sparsity occurred, gaps were filled using route
finding techniques such as Google Directions API [28] or a variation of Open Street
Maps routing [29]. Route finding methods of augmentation cause an element of sub-
jectivity but provided data suitable to test the network.

Deployment Results: The Android simulator gives closely comparable results as that
with our own data, for example volunteer 1:

Fig. 10. LSTM training session for 7 users (in 9 tests) using Geolife dataset.

Table 1. Volunteer machine learning results

Volunteer Age Gender Phone % accuracy result

1 46 F iPhone 5s 86
2 23 M iPhone 6s 84
3 22 F iPhone 5s 85
4 80 F Android Galaxy S5 89
5 45 M Android Galaxy J3 97
6 54 M Android Galaxy S4 88
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Category 1: Correctly predicted with 42–54% certainty.*
Category 2: Correctly predicted with 97–99% certainty.
Category 3: Correctly predicted with 98–99% certainty.
* routes overlap

It is concluded from this series of tests that the developed machine learning model
provides adequate accuracy in the categorisation of routes. The differing data collection
methods give a valuable insight into how best to develop training data. The method of
transferring learnt information to a mobile phone is particularly interesting as heavy
processing can be carried out on a hub, thus preserving the restricted battery resource of
the mobile device.

4 Situation Appraisal

Real-time appraisal of the situation of the person being monitored is key to ensuring
their well-being. The system is designed with PlwD in mind, so apart from elopement,
issues specific to PwS are considered:

Sleep and Dementia. Circadian rhythm disorders can present as an early component
of the disease. They have significant impact on patients and caregivers and are a ‘major
risk factor for early institutionalisation’ [30, 31]. Symptoms include sleep disturbances,
sun-downing, and agitation. Instances of elopement regularly occur at night. Distur-
bance in sleep of the PwS has a significant effect on care-givers that can lead to their ill-
health [32, 33].

Therefore, monitoring of sleep is highly relevant to this study. Not only should
PwS’s safety outdoors be monitored, but a metric of well-being should be used to
modify system sensitivity. The following section describes the approach and some
technicalities of machine learning in this area. In addition, the initial metrics used in
appraisal of the contextual situation the person being monitored is in are outlined.
Factors such as sleep, and heart rate are here referred to as the ‘pre-disposition’ of the
person. This may be understood as a metric for their well-being.

Data Collection. Although sharing data to a manufacturer’s server breaches the
complete privacy rule, a FitBit fitness monitor is used in this study for convenience.
A dedicated wearable with direct, local data access would allow to preserve privacy and
will be used in the final prototype. A FitBit ‘Ionic’ is one of many devices that are
popular with those who wish to monitor, for example, a keep-fit regime. While wrist
actigraphy is customarily used in sleep research there is evidence that FitBit devices
provide close estimation of total sleep time [34]. Over 2 years of data was collected
from one subject using this device and more than three months of data from six
volunteers using similar models. It was found that the data collected gives a good
representation of actual sleep patterns. A secure authenticated oAuth2.0 API is used to
access data from the FitBit servers, yielding daily data, when visualised is shown in
Fig. 11.

Machine Learning. Machine-learning techniques have been developed that assess the
data, which includes minute by minute heart-rate, steps and sleep records. The
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requirement is that human activity is discretely monitored with automated realisation of
trends. The daily situation is then evaluated and compared to what is deemed ‘normal’
for the individual.

Sleep Period. This is modelled using a Gaussian Distribution in order to give clarity
on the expected duration of sleep. Long term changes to averages in a 3-month moving
period for example using start, finish and duration of sleep may be used in appraisal (cf.
Fig. 12).

While the subject in this study does not suffer from disruption in diurnal rhythm per
se, average sleep per week, and distribution, give an interesting illustration that show
variance in the time-period (cf. Fig. 13).

Results can be categorised using 1r or 2r, i.e. 68% or 98% of the norm (l). Waking
times can be defined as normal (up to 1r), early or late (between 1r and 2r), and very
early or late (>2r). When visualised, trends are apparent, there are outliers that rep-
resent exceptional occurrences in this period.

Fig. 11. Graph of steps, heart rate and sleep records for one day.

Fig. 12. Gaussian distribution of sleep start, finish and duration for 3 months.
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Activity. The same method was applied to step-count in daytime and night periods.
This information is useful in recognising active periods during the night and possible
association of these with daytime sedentary periods possibly in correlation with less
sleep at night.

Heart Rate While Asleep. It is observed in our dataset that in the day, heart rate
closely relates to physical activity such as steps, but while asleep, lack of movement
can be used to provide a period in which it is possible to benchmark and provide
reliable regression analysis. As illustrated in Fig. 11, minute by minute daily heart rate
is collected. When heart-rate while asleep is extrapolated across days and polynomial
regression compared, clear differences are evident. Centroids of five sleep periods are
analysed. The sleep periods are start, early, mid, late and finish. In this way, varying
sleep periods of different lengths are normalised. Agglomerative clustering with simple
Euclidean affinity [35], and k-means cluster analysis [36] are used to give single
centroids for each period. Having results for each period makes it possible to visualise
clusters (cf. Fig. 14), and conclude l and r in any defined period.

Fig. 13. Trends in weekly sleep time for one year ignoring restlessness.

Fig. 14. Five clusters of heart rate readings in one night. l = 63 bpm.
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Centroid data for a date period gives an average of averages (l). If a limit of, for
example, (l + 0.5r) is applied on data available then results can be categorised as
being ordinary (0) or otherwise (1). Currently, only checks for high heart rate are
introduced into the training data, but others could be included in future.

Neural Network. A neural network was developed using Keras and TensorFlow. The
input layer and 2nd hidden layer uses a rectifier activation function with 6 nodes and 9
inputs. These are maximum, minimum, l, r and the five centroid results. A sigmoid
activation function is used on the output layer. The classifier function is compiled using
the ‘adam’ optimiser with ‘binary_crossentropy’ loss, 500 epochs are used in training in
batches of 10. The data is split so that 80% is used in training and 20% as test data.
Experimentation using just over a year of raw-data were useful in that they were able to
recognise the categorisation that had been applied to that data. 94.9% accuracy was
measured for 1 year’s data in 105 s. Using 1 month of data, 85% accuracy was measured
in 24 s, this was then improved to 87% by only supplying centroid measurements i.e.
5 inputs. It was concluded that pre-processing using hierarchical clustering then k-means
and applying a fixed rule for categorisation is reliably recognised in a Neural Network; it
is possible, for this subject, to predict with 87% accuracy given a month of data. The
categorisation of data requires a rule to build training data, but once training has taken
place the resultant tensor is deployed to the phone to process daily readings autono-
mously. The system successfully recognised exceptional heart rate events of the subject.

A fitness tracker that is worn 24 h a day provides an efficient way to collect infor-
mation for this study. The product used is aesthetically pleasing and if a PwS is used to
wearing a smart-watch it should not present a problem in use. Activity and indication of
heart-rate levels may provide a useful indicator of well-being of a person at night.

5 Contextual Factors

When coupled with fundamental contextual factors such as time-of-day, distance from
home, and weather conditions, contextual risk of being at a location outdoors can be
used in decisions regarding preservation of privacy. The following sections summarise
factors used in this study.

5.1 Time and Distance Metric

Time-of-day is easily determined on a computer and is an important factor when
considering risk. Weightings w(t) of time t and distance from home are used for
analysis. A time metric simply uses the hour of day, this is provisionally set as follows:

w tð Þ ¼
1 if 9:00� t\18:00
2 if 6:00� t\9:00 or 18:00� t\21:00
3 if 21:00� t or t\6:00

8
<

:
ð1Þ
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with 1 representing low risk. A distance metric w′(d) for distance d is similarly set at:

w0 tð Þ ¼
1 if 0 km� d\1 km
2 if 1 km� d\5 km
3 if 5 km� d

8
<

:
ð2Þ

These definitions are notional values for use in the experiments which should
initially be decided by the user dyad after considering the questions of when and how
far is normal for the individual PwS.

5.2 Weather Metric

In a similar way, scales of risk can be compiled using weather forecasting applications
such as Dark Sky or OpenWeatherMap. The Dark Sky API [37] offers a full collection
of meteorological conditions and is used in the study. The locality of the subject is
known so forecast data is retrieved for temperature, precipitation and wind in that area.
A rudimentary weather metric is defined using a matrix (see Table 2 where, again, 1
corresponds to low risk).

Figure 15 illustrates how this matrix can be used to conclude an accumulated
weather measurement and how this can be weighted by time of day.

Table 2. Weather metric matrix

Weight Temperature (°C) Precipitation (mm/h) Wind (Beaufort scale)

1 ]15..25] [0..1] [0..5]
2 ]10..15], ]25..27] ]1..4] ]5..11]
3 [∞..15], ]27..∞] ]4..∞] ]11.. ∞]

Fig. 15. Examples of a weather metric at different times of the day.
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The weather metric, time, and categorised location result, when amalgamated with
pre-disposition give a measure of risk. Put simply, if the monitored person is well
rested and is outside on a sunny afternoon in a place which is defined as normal then
perceived risk may be low, an accumulated score is used to derive the overall risk.
When viewed together, these measures can be used to decide the point at which to
override the privacy rule to ensure the monitored person is not harmed. The following
section describes a working application designed to illustrate this.

6 Risk Analysis

Complex methods can be applied to calculate the perceived risk to the PwS; all the
metrics described may be used to adjust the overall sensitivity of the system.

6.1 Inferring an Unknown Location

The Tensorflow Classifier, described in Sect. 3, is used in prediction of where the
subject is in relation to normally visited places. If the subject moves to a new space, the
contextual risk of that activity is assessed using time, distance from home, and fore-
casted weather conditions. In Fig. 16(a) movement along the test trajectory is outside
known areas (shaded grey), distance and known temperature for the area is monitored
(left graph above map). Risk is visualised in the right graph. As distance from home
(start point) reduces, the system perceives this as returning and hence risk decreases. In
Fig. 16(b) a detour outside a known path instigates appraisal and logs this as a new
place, leading to an accumulation of risk, that is reset when the probability of normal
movement increased, as shown in Fig. 16(c).

Fig. 16. (a) Graphed representation of accumulating risk reducing with distance. (b) Risk
increasing when taking a detour from the trained path. (c) Correct categorisation of trajectory
with 99% accuracy – risk is reset.
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The described system is indicative of how machine learning can be used to assess
the ‘normality’ of outdoor movement and changes in sleep and heart rate patterns. The
attraction of using AI in this way is that data learnt can be transferred across platforms
and re-training can take place using a private network overnight. The tensor allows the
mobile device carried by the PwS (in our study a phone) to act as an autonomous agent
that does not require the internet, which has a very significant positive impact on
battery life.

This research introduces a method using an AI agent to continuously assess the
situation and make an ethical decision on overriding the default level of privacy. The
point at which a measure of risk translates into a decision to breach privacy for the
good of the monitored person is the topic of significant and ongoing debate, to which
this technical study contributes. The following section briefly touches on considera-
tions in this field.

7 Ethics

The ethical debate regarding the point at which location data is shared, and with whom
is an interesting area to which our findings contribute. If activity, time, place, or
weather is appraised as high risk or ‘inappropriate’, a prior moral framework that rates
safety and risk versus privacy can justify that recent movement and current location
may be shared. A wellbeing metric can be used to determine system sensitivity. The
sharing of location can take the form of an SMS alert, or an alert via the internet
including a map showing the current position of the PwS to a trusted carer. Continuous
updates can facilitate speedy recovery. In all other cases, the PwS may continue
independently and all data collected is kept private.

Several questions arise:

• When applied to vulnerable persons, who may decide the threshold and who defines
what is ‘inappropriate’?

• Is normality really ‘safe’?
• In production, would an AI-based algorithm implementing a definition of privacy

be trusted?

Our work does not attempt to answer these questions, but provides investigation
into the capabilities of technology. It is found in literature that technological solutions
fail to offer a considered approach to resolve well-known privacy issues. Surveillance
of those who may be deemed vulnerable is considered by many as ethically inappro-
priate, but ‘needs must’ and carers are taking DIY approaches [38], with systems that
use technology not optimised for privacy. This exposes them to potential security
vulnerabilities as described above. We have shown that a fitness tracker can be used to
learn what is normal in terms of heart rate while asleep. This, and other contextual
matrices can be used to modify system sensitivity. A private monitoring system that
uses AI to determine out-of-the-ordinary movement is novel. Since it respects privacy,
this surveillance is not intrusive. Development and implementation of such a system is
likely to provide PlwD with an ethically robust ‘safety net’ that may be used to improve
quality of life. It can increase independent living of the PwS, provide peace of mind to
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the carer, while not requiring data sharing to call centres, or collection on central
servers of tracking providers. Our system achieves secure data control and maintains
data ownership.

8 Conclusion

The research presented shows promising results both in recognition of human geo-
spatial activity and in prediction of movement along normally travelled routes.
A wellness monitor discretely monitors both sleep and heart rate and this can be used to
learn what is normal to enable it to flag exceptions. A cost-effective working prototype
has been produced to demonstrate that deep-learning techniques can be applied to
spatio-temporal data after programmatically categorising normally travelled trajecto-
ries. It has been found that when only part of a trajectory has been travelled, likely
destinations can reliably be inferred. The application is designed to restrict personal
information propagation to a home network and the limitations of computing capacity
do not detract from the quality of results.

The World Health Organisation recognises that surveillance is intrusive, that the
human rights of PwS are sometimes denied and that abuse of liberties is present.
Locking doors to stop a person eloping violates their human right to liberty, but
surveillance normally results in sharing of personal information, so is contrary to their
human right to private life. Risk, when deviations from known places are sensed, is
assessed automatically on a smart-phone in the context of time, extent and weather
conditions.

Human rights (of private life and liberty) of the person with symptoms will be
respected until the point at which it is judged that a prior moral argument of safety and
risk supersedes the importance of privacy. If this happens, alerts containing location
and recent movements are shared with an assigned carer, thus facilitating swift
recovery.

The potential of the AI system described here is considerable. It is likely that many
who value the importance of privacy highly will welcome a surveillance system that
monitors but does not divulge detail. Predictions of likely trajectory of movement using
real-time location data is novel, as is the concept of private surveillance as described.
Availability of an internet connection or at least cellular coverage to deliver alerts is a
requirement for implementation.

Ongoing work includes the processing of data from recruited volunteers, it is
difficult to assess how the data-sets used differ from that which could be collected from
PwS, subject to gaining the appropriate ethical approvals trials will embark with
recruited PwS. The assessment of complex and intertwined trajectories and comparison
of different scales of movement is currently under investigation. Findings will con-
tribute to further refinement of the methodology after consultation with health pro-
fessionals and PlwD. In an ideal scenario this would be used for prolonged
independence of PwS, alleviation of a 24/7 burden of care, and could delay the
necessity of moving the PwS to a care home.
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