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Abstract. Accurately determining pain levels in children is difficult,
even for trained professionals and parents. Facial activity provides sensi-
tive and specific information about pain, and computer vision algorithms
have been developed to automatically detect Facial Action Units (AUs)
defined by the Facial Action Coding System (FACS). Our prior work
utilized information from computer vision, i.e., automatically detected
facial AUs, to develop classifiers to distinguish between pain and no-
pain conditions. However, application of pain/no-pain classifiers based on
automated AU codings across different environmental domains results in
diminished performance. In contrast, classifiers based on manually coded
AUs demonstrate reduced environmentally-based variability in perfor-
mance. In this paper, we train a machine learning model to recognize
pain using AUs coded by a computer vision system embedded in a soft-
ware package called iMotions. We also study the relationship between
iMotions (automatically) and human (manually) coded AUs. We find
that AUs coded automatically are different from those coded by a human
trained in the FACS system, and that the human coder is less sensitive
to environmental changes. To improve classification performance in the
current work, we applied transfer learning by training another machine
learning model to map automated AU codings to a subspace of manual

c© Springer Nature Switzerland AG 2019
F. Koch et al. (Eds.): AIH 2018, LNAI 11326, pp. 162–180, 2019.
https://doi.org/10.1007/978-3-030-12738-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12738-1_12&domain=pdf
http://orcid.org/0000-0002-7155-1577
http://orcid.org/0000-0001-8063-2662
http://orcid.org/0000-0002-3347-9578
http://orcid.org/0000-0002-4237-601X
http://orcid.org/0000-0001-5094-1931
http://orcid.org/0000-0001-8250-2044
http://orcid.org/0000-0002-2742-5557
http://orcid.org/0000-0002-0989-3576
https://doi.org/10.1007/978-3-030-12738-1_12


Automated Pain Detection in Facial Videos of Children 163

AU codings to enable more robust pain recognition performance when
only automatically coded AUs are available for the test data. With this
transfer learning method, we improved the Area Under the ROC Curve
(AUC) on independent data from new participants in our target domain
from 0.67 to 0.72.

Keywords: Automated pain detection · Transfer learning ·
Facial action units · FACS

1 Introduction

In the classic model of machine learning, scientists train models on a collected
dataset to accurately predict a desired outcome and then apply learned models
to new data measured under identical circumstances to validate performance.
Given the notable variation in real world data, it is tempting to apply learned
models to data collected under similar but non-identical circumstances. However,
performance in such circumstances often deteriorates due to unmeasured factors
not accounted for between the original and new datasets. Nevertheless, knowl-
edge can be extracted in these scenarios. Transfer learning, or inductive transfer
in machine learning parlance, focuses on using knowledge gained from solving
one problem to improve performance on a different but related problem [1]. The
present paper describes application of transfer learning to the important clinical
problem of automated pain detection in children.

Accurate measurement of pain severity in children is difficult, even for trained
professionals and parents. This is a critical problem as over-medication can result
in adverse side-effects, including opioid addiction, and under-medication can lead
to unnecessary suffering [2].

The current clinical gold standard and most widely employed method of
assessing clinical pain is patient self-report [3]. However, this subjective method
is vulnerable to self-presentation bias. Consequently, clinicians often distrust
pain self-reports, and find them more useful for comparisons over time within
individuals, rather than comparisons between individuals [4]. Further, infants,
young children, and others with communication/neurological disabilities do not
have the ability or capacity to self-report pain levels [3,5,6]. As a result, to
evaluate pain in populations with communication limitations, observational tools
based on nonverbal indicators associated with pain have been developed [7].

Of the various modalities of nonverbal expression (e.g., bodily movement,
vocal qualities of speech), it has been suggested that facial activity provides the
most sensitive, specific, and accessible information about the presence, nature,
and severity of pain across the life span, from infancy [8] to advanced age [9].
Moreover, observers largely consider facial activity during painful events to be
a relatively spontaneous reaction [7].

Evaluation of pain based on facial indicators requires two steps: (1) Extrac-
tion of facial pain features and (2) pain recognition based on these features. For
step (1), researchers have searched for reliable facial indicators of pain, such as
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anatomically-based, objectively coded Facial Action Units (AUs) defined by the
Facial Action Coding System (FACS) [10,11]. (Visualizations of facial activa-
tion units can also be found at https://imotions.com/blog/facial-action-coding-
system/). However, identifying AUs traditionally requires time intensive offline
coding by trained human coders, limiting application in real-time clinical set-
tings. Recently, algorithms to automatically detect AUs [11] have been devel-
oped and implemented in software such as iMotions (imotions.com) allowing
automatic output of AU probabilities in real-time based on direct recording of
face video. In step (2), machine learning algorithms such as linear models [5],
SVM [12], and Neural Networks [13] have been used to automatically recognize
pain based on facial features.

Although a simple machine learning model based on features extracted by
a well-designed algorithm can perform well when training and test data have
similar statistical properties, problems arise when the data follow different dis-
tributions, as happens, for example, when videos are recorded in two different
environments. We discovered this issue when training videos were recorded in
an outpatient setting and test videos in the hospital. One way to deal with this
problem is to use transfer learning, which discovers “common knowledge” across
domains and uses this knowledge to complete tasks in a new domain with a model
learned in the old domain [14]. In this work, we show that features extracted from
human-coded (manual) AUs are less sensitive to domain changes than features
extracted from iMotions (automated) AU codings, and thus develop a simple
method that learns a projection from automated features onto a subspace of
manual features. Once this mapping is learned, future automatically coded data
can be transformed to a representation that is more robust between domains. In
this work, we use a neural network model to learn a mapping from automated
features to manual features, and another neural network model to recognize pain
using the mapped facial features.

To summarize, our contributions of this work include demonstrating that:

– Manually/automatically coded AUs can be used to successfully recognize clin-
ical pain in videos with machine learning.

– Environmental factors modulate the ability of automatically coded AUs to
recognize clinical pain in videos.

– Manually coded AUs (especially previously established “pain-related” ones)
can be used to successfully recognize pain in videos with machine learning
across different environmental domains.

– Automatically coded AUs from iMotions do not directly represent or correlate
with AUs defined in FACS.

– Transfering automated features to the manual feature space improves auto-
matic recognition of clinical pain across different environmental domains.

This work was presented at the Joint Workshop on Artificial Intelligence in
Health and a shorter version of this paper appeared in the proceedings [15].

https://imotions.com/blog/facial-action-coding-system/
https://imotions.com/blog/facial-action-coding-system/
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2 Methods

2.1 Participants

One hundred and forty-three pediatric research participants (94 males, 49
females) aged 12 [10, 15] (median [25%, 75%]) years old and primarily Hispanic
(78%) who had undergone medically necessary laparoscopic appendectomy were
videotaped for facial expressions during surgical recovery. Videos were subse-
quently categorized into two conditions: pain and no-pain. Participating chil-
dren had been hospitalized following surgery for post-surgical recovery and were
recruited for participation within 24 h of surgery at a pediatric tertiary care cen-
ter. Exclusion criteria included regular opioid use within the past six months,
documented mental or neurological deficits preventing study protocol compli-
ance, and any facial anomaly that might alter computer vision facial expression
analysis. Parents provided written informed consent and youth gave written
assent [16]. The local institutional review board approved the research protocol.

Table 1. Numbers of samples at different pain levels in each visit.

Pain level 0 1 2 3 4 5 6 7 8 9 10

V1 16 12 18 28 31 26 26 19 24 15 11

V2 4 18 24 40 21 23 16 13 14 8 4

V3 166 17 3 1 0 0 0 0 0 0 0

2.2 Experimental Design and Data Collection

Data were collected over three visits (V): V1 within 24 h after appendectomy; V2
within the calendar day after the first visit; and V3 at a follow-up visit 25 [19, 28]
(median [25%, 75%]) days postoperatively when pain was expected to have fully
subsided. Data were collected in two environmental conditions: V1 and V2 in
hospital and V3 in the outpatient setting. At every visit, two 10-second videos (60
frames per second at 853× 480 pixel resolution) of the face were recorded while
manual pressure was exerted at the surgical site for 10 seconds (equivalent of a
clinical examination). During hospital visits (V1, V2), participants were lying in
the hospital bed with the head of the bed raised. In the outpatient lab in V3,
they were seated in a reclined chair. Participants rated their pain level during
manual pressure using a 0–10 Numerical Rating Scale, where 0 = no-pain and
10 = worst pain ever. For classification purposes, and following convention used
by clinicians for rating clinically significant pain [17], videos with pain ratings of
0–3 were labeled as no-pain, and videos with pain ratings of 4–10 were labeled
as pain. Two hundred and fifty-one pain videos were collected from V1/2, 160
no-pain videos were collected from V1/2, and 187 no-pain videos were collected
from V3. The numbers of samples collected for different pain levels and visits
are shown in Table 1. Note that all V3 data are labeled as no-pain and there are
only 4 pain ratings over 1 in V3. In contrast, the majority of no-pain data in V1
and V2 are ratings of 2 and 3. Figure 1 “All Data” demonstrates the distribution
of pain and no-pain videos across environmental conditions.
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Fig. 1. Data domain illustration. The area of category is not proportional to the num-
ber of samples.

Fig. 2. FACS names (descriptions) of 20 AUs coded by iMotions. AUs 1–7 and 43 are
upper face AUs, and the others are lower face AUs.

2.3 Feature Extraction

For each 10-second video sample we extracted AU codings per frame to obtain a
sequence of AUs. This was done both automatically by iMotions software (www.
imotions.com) and manually by a FACS trained human in a limited subset. A
second trained human independently coded a subset of the videos coded by the
first human. We then extracted features from the sequence of AUs.

Automated Facial Action Unit Detection: The iMotions software inte-
grates Emotient’s FACET technology (www.imotions.com/emotient), formally
known as CERT [18]. In the described work, iMotions software was used to pro-
cess videos to automatically extract 20 AUs as listed in Fig. 2 and three head
pose indicators (yaw, pitch and roll) from each frame. The values of these codings
represent estimated log probabilities of AUs, ranging from −4 to 4.

Manual Facial Action Unit Detection: A trained human FACS AU coder
manually coded 64 AUs (AU1-64) for each frame of a subset (54%) of videos and
labeled AU intensities (0–5, 0 = absence). In order to evaluate the reliability of

www.imotions.com
www.imotions.com
www.imotions.com/emotient
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the manual codings, we had another trained human coder code a subset (15%)
of videos coded by the first human.

Feature Dimension Reduction: The number of frames in our videos was
too large to use full sequences of frame-coded AUs. To reduce dimensionality,
we applied 11 statistics (mean, max, min, standard deviation, 95th, 85th, 75th,
50th, 25th percentiles, half-rectified mean, and max-min) to each AU over all
frames as in [5] to obtain 11 × 23 features for automatically coded AUs, and
11× 64 features for manually coded AUs. We call these automated features and
manual features, respectively. The range of each feature was rescaled to [0, 1] to
normalize features over the training data.

2.4 Machine Learning Models

Neural Network Model to Recognize Pain with Extracted Features: A
neural network with one hidden layer was used to recognize pain with extracted
automated or manual features. The number of neurons in the hidden layer was
twice the number of neurons in the input layer, and the Sigmoid activation
function σ(x) = 1/(1 + exp(−x)) was used with batch normalization for the
hidden layer. The output layer used Softmax activation and cross-entropy error.

Neural Network Model to Predict Manual Features with Automated
Features: A neural network with the same structure was used to predict manual
features from automated features, except that the output layer was linear and
mean squared error was used as the loss function.

Model Training and Testing: Experiments were conducted in a participant-
based (each participant restricted to one fold) 10-fold cross-validation fashion.
Participants were divided into 10 folds, and each time 1 fold was used as the test
set, and the other 9 folds together were used as the training set. We balanced
classes for each participant in each training set by randomly duplicating samples
from the under-represented class. One out of nine participants in the training
sets were picked randomly as a nested-validation set for early stopping in the
neural network training. A batch size of 1/8 the size of training set was used.

We then examined the receiver operating characteristic curve (ROC curve)
which plots True Positive Rate against False Positive Rate as the discrimination
threshold varies. We used Area under the Curve (AUC) to evaluate classification
performance. We considered data from three domains (D) as shown in Fig. 1: (1)
D1 with pain and no-pain both from V1/2 in hospital; (2) D2 with pain from
V1/2 in hospital and no-pain from V3 from outpatient lab; and (3) All data, i.e.,
pain from V1/2 and no-pain from V1/2/3. The clinical goal was to be able to
discriminate pain levels in the hospital; thus evaluation on D1 (where all samples
were from the hospital bed) was the most clinically relevant evaluation.



168 X. Xu et al.

Table 2. AUC for classification with SEM (standard error of the mean).

Train on Test on Automated Manual Automated
“pain” features

Manual
“pain” features

All D1 0.61 ± 0.006 0.66 ± 0.006 0.63 ± 0.007 0.69± 0.006

D1 D1 0.58 ± 0.014 0.62 ± 0.008 0.61 ± 0.008 0.65± 0.008

D2 D1 0.57 ± 0.005 0.67 ± 0.007 0.62 ± 0.004 0.7± 0.006

All D2 0.9 ± 0.005 0.79 ± 0.007 0.88 ± 0.005 0.8 ± 0.003

D1 D2 0.69 ± 0.011 0.68 ± 0.008 0.73 ± 0.012 0.73 ± 0.01

D2 D2 0.92 ± 0.01 0.79 ± 0.009 0.9 ± 0.007 0.8 ± 0.005

3 Analysis and Discussion

Data from 73 participants labeled by both human and iMotions were used
through Sects. 3.1 to 3.5, and data from the remaining 70 participants using
only automated (iMotions) AU codings were included for independent test set
evaluation in the results section.

3.1 Automated Classifier Performance Varies by Environment

Using automated features, we first combined all visit data and trained a clas-
sifier to distinguish pain from no-pain. This classifier performed well in general
(AUC = 0.77 ± 0.011 on All data), but when we looked at different domains,
the performance of D1 (the most clinically relevant in-hospital environment) was
inferior to that on D2, as shown in data rows 1 and 4 under the “Automated”
column in Table 2.

There were two main differences between D1 and D2, i.e., between V1/2
and V3 no-pain samples. The first was that in V1/2, participants still had some
pain and their self-ratings were greater than 0, while in V3, no-pain ratings were
usually 0 reflecting a “purer” no-pain signal. The second difference was that V1/2
occurred in the hospital with patients in beds and V3 videos were recorded in an
outpatient setting with the participant sitting in a reclined chair. Lighting was
also inherently different between hospital and outpatient environments. Since
automated recognition of AUs is known to be sensitive to facial pose and lighting
differences, we hypothesized that added discrepancy in classification performance
between D1 and D2 was mainly due to the model classifying on environmental
differences between V1/2 and V3. In other words, when trained and tested on
D2, the classifier might distinguish “lying in hospital bed” vs “more upright in
outpatient chair” as much as pain vs no-pain (this is similar to a computer vision
algorithm doing well at recognizing cows by recognizing a green background).

In order to investigate this hypothesis and attempt to improve classification
on the clinically relevant D1, we trained a classifier using only videos from D1.
Within the “Automated” column, row 2 in Table 2 shows that performance on
automated D1 classification does not drop much when D2 samples are removed
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from the training set. At the same time, training using only D2 data results in
the worst classification on D1 (row 3), but the best classification on D2 (last
row) as the network is able to exploit environmental differences (no-pain+more
upright from V3, pain+lying-down from V1/2).

Figure 3(b) (LEFT) shows ROC curves of within and across domain tests for
models trained on automated features in D2. The dotted (red) curve corresponds
to testing on D2 (within domain) and the solid (blue) curve corresponds to
testing on D1 (across domain). The model performed well on within domain
classification, but failed on across domain tasks.

3.2 Classification Based on Manual AUs Are Less Sensitive
to Environmental Changes

We also trained a classifier on manual AUs labeled by a human coder. Interest-
ingly, results from the classifier trained on manual AUs showed less of a difference
in AUCs between domains, with a higher AUC for D1 and a lower AUC for D2
relative to those with automated AUs (see Table 2 “Manual” and “Automated”
columns). Overall, manual AUs appeared to be less sensitive to changes in the
environment, reflecting the ability of human labelers to consistently code AUs
without being affected by lighting and pose variations.

When we restricted training data from All to only D1 or only D2 data, classi-
fication performance using manual AUs went down, likely due to the reduction in
training data, and training with D2 always gave better performance than train-
ing with D1 on both D1 and D2 test data, which should be the case since pain
and no-pain samples in D2 are more discrepant in average pain rating. These
results appear consistent with our hypothesis that human coding of AUs is not as
sensitive as machine coding of AUs to environmental differences between V1/2
and V3.

Figure 3(b) (MIDDLE) displays ROC curves for manual features. As dis-
cussed above, in contrast to the plot on the left for automated features, manual
coding performance outperformed automated coding performance in the clin-
ically relevant test in D1. The dotted (red) curve representing within-domain
performance is only slightly higher than the solid (blue) curve, likely due in part
to the quality difference in no-pain samples in V1/2 and V3, and also possi-
bly any small amount of environmental information that the human labeler was
affected by. Note that ignoring the correlated environmental information in D2
(i.e., pain faces were more reclined and no-pain faces were more upright) resulted
in a lower numerical performance on D2 but does not likely reflect worse classi-
fication of pain but instead the failure to “cheat” by using features affected by
pose angle to classify all upright faces as “no-pain.”

3.3 Restricting Manual AUs to Those Associated with Pain
Improves Classification

In an attempt to reduce the influence of environmental conditions to fur-
ther improve performance on D1, we restricted the classifier to the eight AUs
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(a) Training with D1

(b) Training with D2

(c) Training with All

Fig. 3. ROC curves for classification on D1 and D2 using automated features (left),
manual features (middle) and pain-related manual features (right), when the model is
trained on (a) D1, (b) D2 and (c) All data. The dotted (red) lines are ROCs when
the machine is able to use environment information to differentiate pain and no-pain
conditions, and the solid (blue) lines show the machine’s ability to discriminate between
pain and no-pain based on AU information alone. The straight (yellow) line graphs the
performance of random chance. (Color figure online)

consistently associated with pain: 4 (Brow Lowerer), 6 (Cheek Raiser), 7 (Lid
Tightener), 9 (Nose Wrinkler), 10 (Upper Lip Raiser), 12 (Lip Corner Puller),
20 (Lip Stretcher), and 43 (Eyes Closed) [19,20] as illustrated in Fig. 4 to obtain
11 (statistics) ×8 (AUs) features. Pain prediction results using these “pain” fea-
tures are shown in the last two columns in Table 2. Results show that using
only pain-related AUs improved classification performance of manual features.
However, it did not seem to help as much for automated features.
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Fig. 4. Illustration of eight “pain-related” facial AUs.

Fig. 5. Correlation matrix of AU pairs from automated and manual codings using All
data.

Similarly, Fig. 3(b) (RIGHT) shows that limiting manual features to use only
pain-related AUs further improved D1 performance when training with D2. We
also employed PCA on pain-related features and found that performance in the
hospital domain was similar if using four or more principal components.

In Fig. 3(a) and (c) we show ROC curves similar to Fig. 3(b) except with
different training data. These curves correspond to row 2 and 5 (a), or 1 and 4
(c), under “Automated,” “Manual,” and “Manual ‘Pain’ Features” in Table 2.

3.4 iMotions AUs Are Different Than Manual FACS AUs

Computer Vision AU automatic detection algorithms have been pro-
grammed/trained on manual FACS data. However, we demonstrate differential
performance of AUs encoded automatically versus manually. To understand the
relationship between automatically encoded v. manually coded AUs, we com-
puted correlations between binarized automatically coded AUs and manually
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Fig. 6. Correlations of AU pairs from two of (1) iMotions; (2) human 1; and (3) human
2 on a subset of the data.

Fig. 7. Self-correlation matrices of AU pairs from iMotions or humans.

coded AUs at the frame level as depicted in Fig. 5. The FACS names corre-
sponding to AU numbers are listed in Fig. 2, in which AUs 1, 2, 4, 5, 6, 7, 43
are upper face AUs and all others are lower face AUs. If two sets of AUs were
identical, the diagonal of the matrix (marked with small centered dots) should
yield the highest correlations, which was not the case. For example, manual AU
6 was highly correlated with automated AU 12 and 14, but had relatively low
correlation with automated AU 6.

The correlation matrix shows that not only is our first human coder less
affected by environmental changes, the AUs she coded are not in agreement
with the automated AUs. Our second trained human coder (human 2) shows a
better correlation with the coding of human 1 than between each human and
iMotions, shown in Fig. 6 (LEFT). The correlation between each of the humans
and the software on the same subset is shown in Fig. 6 (MIDDLE, RIGHT). This
likely explains the reduced improvement by restricting the automated features
model to “pain-related AUs” as these have been determined based on human
FACS coded AUs (Fig. 8).
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Fig. 8. Self-correlation matrices of AU pairs from iMotions or humans with “pain”
AUs arranged together at the top left corner.

Table 3. AUC (and SEM) with transferred automated features.

Train on Test on All features “Pain” features 7 PCs 4 PCs 1 PC

All D1 0.61± 0.009 0.63± 0.009 0.68± 0.006 0.69± 0.008 0.65± 0.009

D1 D1 0.62± 0.009 0.64± 0.014 0.66± 0.012 0.67± 0.011 0.65± 0.009

D2 D1 0.58± 0.011 0.59± 0.01 0.66± 0.008 0.68± 0.006 0.66± 0.009

All D2 0.82± 0.009 0.82± 0.009 0.76± 0.009 0.75± 0.012 0.7± 0.01

D1 D2 0.69± 0.009 0.71± 0.013 0.7± 0.015 0.71± 0.015 0.69± 0.011

D2 D2 0.88± 0.011 0.86± 0.006 0.76± 0.013 0.74± 0.01 0.7± 0.009

The self-correlation matrices between AUs in iMotions and the human coder
are shown in Fig. 7. AUs coded by iMotions show higher correlations (between
different iMotions coded AUs) than AUs coded by humans. Some human AU
codings were also correlated, which is expected since specific AUs often occur
together (e.g., AU 1 and 2 for inner and outer brow raiser and AU 25 and 26 for
lips part and jaw drop) and other AUs tend to occur together in pain. This latter
correlation of pain AUs is more evident in Fig. 4 which shows the same content
as Fig. 7 except that in Fig. 4 the eight pain-related AUs are put together at the
upper left corner to highlight their higher correlations. Interestingly, higher cor-
relations within the pain AUs for iMotions coding was observed but the pattern
is different.

3.5 Transfer Learning via Mapping to Manual Features
Improves Performance

We have shown that manual codings are not as sensitive to domain change.
However, manual coding of AUs is very time-consuming and not amenable to
an automated real-time system. In an attempt to leverage manual coding to
achieve similar robustness with automatic AUs, we utilized transfer learning
and mapped automated features to the space of manual features. Specifically,
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Fig. 9. ROC curves for classification on two domains using our transfer learning model
(left) and plot of average model output pain score (with error bars indicating standard
deviation) over true pain level (right).

we trained a neural network model to estimate manual features from automated
features using data coded by both iMotions and a human. Separate models were
trained to predict: manual features of 64 AUs, manual features of the eight pain-
related AUs, and principal components (PCs) of the manual features of the eight
pain-related AUs. PCA dimensionality reduction was used due to insufficient
data for learning an accurate mapping from all automated AUs to all manual
AUs.

Once the mapping network was trained, we used it to transform the auto-
mated features and trained a new network on these transformed data for pain/no-
pain classification. The 10-fold cross-validation was done consistently so that
the same training data was used to train the mapping network and the pain-
classification network.

In Table 3, we show classification AUCs when the classification model was
trained and tested with outputs from the prediction network. We observed that
when using All data to train (which performed best), with the transfer learning
prediction network, automated features performed much better in classification
on D1 (0.68–0.69 compared to 0.61–0.63 in Table 2). Predicting four principal
components of manual pain-related features yielded the best performance in our
data. Overall, the prediction network helped in domain adaptation of a pain
recognition model using automatically extracted AUs.

Figure 9 (LEFT) plots the ROC curves on two domains using the transfer
learning classifier trained and tested using four predicted features. The model
performed well in across-domain classification. Compared to Fig. 3(c) (LEFT),
the transferred automated features showed properties more similar to manual
features (Fig. 3(c) (RIGHT)), with smaller differences between performance on
the two domains and higher AUC on the clinically relevant D1. Table 3 shows
numerically how transfer learning helped automated features ignore environmen-
tal information in D2 like humans, and learn pure pain information that can be
used in classification on D1.

Within-domain classification performance for D1 was also improved with
the prediction network. These results show that by mapping to the manual
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feature space, automated features can be promoted to perform better in pain
classification.

Figure 9 (RIGHT) plots output pain scores of our model tested on D1 versus
0–10 self-reported pain levels. The model output pain score increases with true
pain level, indicating that our model indeed reflects pain levels.

     Classification

Classification Classification

     PCA    Regression

     Regression

Automated features (11x23)

Manual pain-related features (11x8) 

pain/no pain class

4 features

2

6

1

4

3
5

Fig. 10. Illustration of machine learning models. 1/2 are classifications using auto-
mated/manual pain features, in which 2 does better than 1. 3–4 can be done to reduce
feature dimensions while maintaining performance. 6–2 and 5–4 are our transfer learn-
ing models, training a regression network to map automated features to a subspace of
manual pain features before classification.

4 Results

In the previous section we showed that in Fig. 10 classification with pain-related
pain features (2) performed better than automated features (1) on D1, which was
the clinically relevant classification. We also found that applying PCA to manual
features (3–4) does not change performance on D1 much. Thus, we introduced a
transfer learning model to map automated features first to manual pain-related
features (or the top few principal components of them), and then used the trans-
ferred features for classification (6–2 or 5–4). We obtained similar results to
manual features on D1 with the transfer learning model (5–4) mapping to four
principal components of manual features.

Table 2 shows that without our transfer learning method, training on all data
and restricting to pain-related AUs results in the best performance using auto-
mated features for D1. And cross-validation results in Table 3 shows that with our
method, using all data and predicting four PCs yielded the best performance for
D1. With these optimal choices of model structure and training domain before
and after transfer learning, we show the benefits of transfer learning in two
experiments.
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Fig. 11. ROC Curves for classification on NEW test domains D1 and D2 using our
transfer learning model (left) and plot of average model output pain score (with error
bars indicating standard deviation) over true pain level (right).

4.1 Test on New Subjects with only iMotions AU Codings

In this section we report on the results from testing our transfer learning method
on a new separate dataset (new participants), which contained only automated
features. We trained two models, with and without transfer learning, using all
the data in Sect. 3 labeled by both iMotions and humans, and tested the model
on this new dataset only labeled by iMotions D1, D2. (We use italicized domain
names to indicate that this is independent test data D1, D2.) Our model with
transfer learning (AUC = 0.72±0.002) performed better than the model without
it (AUC = 0.67 ± 0.002) on D1 with a p-value= 1.33e − 45 in a one-tailed two-
sample t-test.

Similar to Fig. 9, in Fig. 11 we plot ROC curves for classification on the NEW
test dataset (LEFT) and output pain scores at 0–10 pain levels (RIGHT) using
our transfer learning model.

In Fig. 12, we show a scatter plot of neural network output pain scores using
transferred automated features versus those using original automated features,
as well as pain score distributions, separately for training (All Data from Sect. 3)
and test (D1 from NEW test data in the current section), pain and no-pain. We
can see for original automated features scores, no-pain samples from D1 are
distributed very differently from no-pain in All data domain used for training
and fall mostly in the range of the pain class. Results using transfer learning do
not appear to have this problem.

4.2 Test with Masked Pain and Faked Pain

As another test of the effect of our transfer learning model, we looked at results
of classifying whether participants are in pain or not from videos where children
were asked to fake pain when they were not really in pain as well as when they
were asked to suppress visual expressions of pain when they were in pain.

Although facial expressions convey rich and objective information about pain,
they can be deceptive because people can inhibit or exaggerate their pain dis-
plays when under observation [21]. It has been shown that human observers dis-
criminate real expressions of pain from faked expressions only marginally better
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Fig. 12. Scatter plot and distributions of pain scores (transfer learning vs original)
using original iMotions features (on the x-axis) and transferred iMotions features (on
the y-axis).

than chance [21,22]. Children can also be very good at suppressing pain, but
not fully successful in faking expressions of pain [23]. In this section we discuss
performance of masked and faked pain in machine learning models trained to
distinguish genuine pain and no-pain.

In addition to the data described in Sect. 2.2, we recorded videos of “masked
pain” in V1 and V2 by asking participants to suppress pain during the 10-second
manual pressure, and videos of “faked pain” during V3 by asking participants
to fake the worst pain ever during manual pressure. As in Sect. 2.2, we asked
participants to rate their true pain level during manual pressure with a number
from 0 to 10. We then labeled masked-pain videos with pain ratings of 4–10 as
masked-pain and faked-pain videos with pain ratings of 0–3 as faked-pain, and
discarded other samples. This ensured that in masked-pain videos participants
actually experienced pain and in faked-pain videos participants in fact felt no
pain. One hundred and seventeen masked-pain samples and 116 faked-pain sam-
ples were collected. The distribution of the four classes within the three visits is
shown in Fig. 13.

Using the best models before and after transfer learning trained to distin-
guish between genuine pain and no-pain described above, the masked and faked
pain samples were processed to obtain pain labels. The results are shown in
Fig. 14. We can see that without transfer learning (LEFT), most masked-pain
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Fig. 13. Distribution of four classes in three visits. The area of category is not propor-
tional to the number of samples.

Fig. 14. Bar graph showing classification of real-pain, masked-pain, faked-pain and
no-pain. The area of bars shows the distribution of predicting pain and no-pain.

data were classified as real-pain and most faked-pain as no-pain. This appeared
to be the case because the AU features coded automatically were sensitive to
environmental factors, and during training the machine learned to discrimi-
nate between genuine pain and no-pain by recognizing environmental differences
between them. At test time, since masked-pain is in the same environmental
domain as real-pain and faked-pain is in the similar environment as no-pain,
they are assigned to the corresponding classes. In contrast, with transfer learn-
ing (Fig. 14 (RIGHT)), masked-pain was mostly classified as no-pain and faked-
pain as real-pain. This might be because automated features were transferred to
ignore the difference between the two classes caused by environmental change,
and the machine can only use differences in facial actions to complete the clas-
sification task. Humans’ attempts to mask pain are to mimic no-pain faces and,
similarly, humans’ attempts to fake pain are to mimic pain faces. The machine
in this way classifies pain and no-pain according to expressed facial actions.

5 Conclusion

In the present work we recognized differences in classifier model performance
(pain vs no-pain) across domains that reflect environmental differences as well
as differences reflecting how the data were encoded (automatically v. manu-
ally). We demonstrate that manually coded facial features are more robust than
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automatically coded facial features to environmental changes which allow us to
obtain the best performance on our target data domain. We then introduced a
transfer learning model to map automated features first to manual pain-related
features (or principal components of them), and then used the transferred fea-
tures for classification (6-2 or 5-4 in Fig. 10). This allowed us to leverage data
from another domain to improve classifier performance on the clinically relevant
task of automatically distinguishing pain levels in the hospital. Further, we were
able to demonstrate improved classifier performance on a separate, new data set.

6 Future Work

Planned future work:

1. Classification of real-pain, masked-pain, faked-pain, and no-pain using
machine learning, and comparison to human judgments.

2. Classification of genuine expression and non-genuine expression using machine
learning, and comparison to human judgments.

3. Using transfer learning to improve fusion analysis of video features and
peripheral physiological features in [24].

4. Multidimensional pain assessment such as pain catastrophizing and anxiety
based on facial activities.
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