®

Check for
updates

Lifted Maximum Expected Utility

Marcel Gehrke!®) @, Tanya Braun'®, Ralf Moller!, Alexander Waschkau?,
Christoph Strumann?, and Jost Steinhiuser?

! Institute of Information Systems, University of Liibeck, Liibeck, Germany
{gehrke,braun,moeller}@ifis.uni-luebeck.de
2 Institute of Family Medicine, University Medical Center Schleswig-Holstein,
Campus Liibeck, Liibeck, Germany
{alexander.waschkau,christoph.strumann, jost.steinhaeuser }Quksh.de

Abstract. The lifted junction tree algorithm (LJT) answers multiple
queries efficiently for relational models under uncertainties by build-
ing and then reusing a first-order cluster representation. We extend
the underling model representation of LJT, which is called parame-
terised probabilistic model, to calculate a lifted solution to the maximum
expected utility (MEU) problem. Specifically, this paper contributes (i)
action and utility nodes for parameterised probabilistic models, result-
ing in parameterised probabilistic decision models and (ii) meuLJT, an
algorithm to solve the MEU problem using parameterised probabilis-
tic decision models efficiently, while also being able to answer multiple
marginal queries.

1 Introduction

Areas such as health care and logistics involve probabilistic data with relational
aspects and need efficient exact inference algorithms, which allow for decision
support. These areas involve many objects in relation to each other with uncer-
tainties about object existence, attribute value assignments, or relations between
objects. More specifically, health care systems involve electronic health records
(EHRs) (the relational part) for many patients (the objects) and uncertainties
[18] due to, e.g., missing information caused by data integration from different
hospitals or faulty sensors. Automatically analysing EHRs can improve the care
of patients and save time. In this paper, we study the problem of exact decision
making under uncertainty in lifted probabilistic models.

Braun and Méller [2] investigate parameterised probabilistic models (PMs) to
represent probabilistic relational behaviour, and furthermore introduce the lifted
junction tree algorithm (LJT), an exact inference algorithm to answer multiple
queries efficiently. Specifically, this paper contributes (i) action and utility nodes
for parameterised probabilistic models, resulting in parameterised probabilistic
decision models (PDecMs) and (ii) meuLJT, an algorithm to solve the maximum

This research originated from the Big Data project being part of Joint Lab 1, funded
by Cisco Systems Germany, at the centre COPICOH, University of Liibeck.
© Springer Nature Switzerland AG 2019

F. Koch et al. (Eds.): ATH 2018, LNAT 11326, pp. 131-141, 2019.
https://doi.org/10.1007/978-3-030-12738-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12738-1_10&domain=pdf
http://orcid.org/0000-0001-9056-7673
http://orcid.org/0000-0003-0282-4284
https://doi.org/10.1007/978-3-030-12738-1_10

132 M. Gehrke et al.

expected utility (MEU) problem using PDecMs efficiently, while also being able
to answer multiple marginal queries.

Action nodes are well-motivated candidates to model, e.g., treatments, while
utility nodes can represent, e.g., the well being of patients, risk scores, or treat-
ment costs. With utilities modelling is not restricted to a single particular area,
but one can also model a combination of areas, such as well being of patients
and risk scores.

Health care needs exact results as approximations might not be good enough
[19]. Further, the lifting approach exploits symmetries in the model to reduce
the number of instances or patients to perform inference on. Additionally, LJT
clusters a model into submodels to efficiently answer queries, like the condition
of each patient. Therefore, LJT is suitable to handle health care related data.

In the following, we recapitulate PMs as a representation for relational prob-
abilistic models and introduce PDecMs, by adding actions and utilities to the
representation. Afterwards, we formalise the MEU problem and discuss different
modelling possibilities, also from an ethical point of view. Lastly, we introduce
meulLJT to reuse computations and answer multiple queries efficiently.

2 Related Work

We take a look at inference under uncertainty in relational models as well as
relational decision support.

First-order probabilistic inference leverages the relational aspect of a static
model. For models with known domain size, it exploits symmetries in a model
by combining instances to reason with representatives, known as lifting [11].
Poole [11] introduces parametric factor graphs as relational models and proposes
lifted variable elimination (LVE) as an exact inference algorithm on relational
models. Further, de Salvo Braz [12], Milch et al. [7], and Taghipour et al. [17]
extend LVE to its current form. Lauritzen and Spiegelhalter [6] introduce the
junction tree algorithm. To benefit from the ideas of the junction tree algorithm
and LVE, Braun and Moller [2] present LJT, which efficiently performs exact
first-order probabilistic inference on relational models given a set of queries.

Nath and Domingos [8] introduce Markov logic decision networks (MLDNs),
which are relational static models with action and utility nodes. Nath and Domin-
gos calculate approximate solutions to the static MEU problem in a completely
grounded way [10] based on MLDNs. Another approach of Nath and Domingos
include unnecessary groundings [9]. Further, Apsel and Brafman [1] propose an
exact lifted solution to the MEU problem based on [8]. These approaches are
designed to handle single queries. However, we propose to answer multiple queries
efficiently.

Additional research focuses on sequential decision making by investigating
first-order (partially observable) Markov decision processes (FO (PO)MDPs)
[5,14,15], which use lifting techniques from de Salvo Braz, Amir, and Roth [13].
In contrast to FO POMDPs, which perform offline policy iteration, we propose
to support probabilistic online planning.

Lifted Maximum Expected Utility 133

3 Parameterised Probabilistic Models

Based on [4], we recapitulate PMs for relational probabilistic models. PMs
combine first-order logic with probabilistic models, representing first-order con-
structs using logical variables (logvars) as parameters. Let us assume, we would
like to remotely infer the condition of patients with regards to water retaining.
To determine the condition of patients, we use the change of their weights. An
increase in weight could either be caused by overeating or retaining water. Addi-
tionally, we use the change of weights of people living with the patient to reduce
the uncertainty to infer conditions. In case both persons gain weight, overeating
is more likely, while otherwise retaining water is more likely. If a water retention
is undetected, it can be an acute life-threatening condition.

People behave in the same way w.r.t. gaining weight if we are interested
whether a person retains water. For a water retention, persons gain weight over
a few days in a way which would be hard to achieve by overeating each day.
Thus, if we are interested whether they retain water, having information about
the weight gain of persons is independent of the actual person. Hence, we can
have a random variable (randvar) for each person about their current condition.
As persons behave the same w.r.t. gaining weight and PMs allow for using logvars
as parameters, we can construct a parameterised randvar (PRV) with the persons
as logvar for our randvar.

Definition 1. Let L be a set of logvar names, @ a set of factor names, and R
a set of randvar names. A PRV A = P(X!, ..., X™) represents a set of randvars
behaving identically by combining a randvar P € R with X',..., X" € L. If
n = 0, the PRV is parameterless. The domain of a logvar L is denoted by D(L).
The term range(A) provides possible values of a PRV A. Constraint (X, Cx)
allows to restrict loguars to certain domain values and is a tuple with a sequence
of logvars X = (X',..., X") and a set Cx C x™;D(X"). T denotes that no
restrictions apply and may be omitted. The term lv(Y') refers to the logvars and
rv(Y) to the randvars in some element Y. The term gr(Y|C) denotes the set of
instances of Y with all logvars in'Y grounded w.r.t. constraint C.

To model our scenario, we use the randvar names C, LT, S, and W for
Condition, LivingTogether, ScaleWorks, and Weight, respectively, and the log-
var names X and X’. From the names, we build PRVs C(X), LT (X, X'),
S(X), and W(X). The domain of X and X’ is {alice, bob, eve}. The range
of C(X) is {normal, deviation, retains water}. LT(X,X’) and S(X) have
range {true, false} and W(X) has range {steady, falling, rising}. A constraint
C = (X, {alice,bob}) for X allows for restricting X to a subset of its domain, in
this case to alice and bob. Using the constraint, the expression gr(W (X)|C) eval-
uates to {W (alice), W (bob)}. The expression gr(W (X)|T) also contains W (eve).
Now, we define parametric factors (parfactors), to set PRVs into relation to each
other.

Definition 2. We denote a parfactor g with VX : ¢(A) |C. X C L being a set
of logvars over which the factor generalises and A = (Al ..., A™) a sequence of

134 M. Gehrke et al.

PRVs. We omit (VX :) if X = lv(A). A function ¢ : x?_range(A?) — R with
name ¢ € ® is defined identically for all grounded instances of A. A list of all
input-output values is the complete specification for ¢. C is a constraint on X. A
PM G = {g'}", is a set of parfactors and semantically represents the full joint
probability distribution Pg = % ergr(c) f where Z is a normalisation constant.

Fig. 1. Parfactor graph for G, the weight is observable

Now, we build the model G* of our example with the parfactors:
gO = ¢O(C(X)7 S(X)’ W(X))‘T and gl = ¢1(C(X)7 C(X/)7 LT(X7 X/))|/€1

We omit the concrete mappings of ¢° and ¢'. Parfactor ¢ has the constraint
T, meaning it holds for alice, bob, and eve. The constraint x!' of g' ensures that
X # X' holds. Figure 1 depicts G®* as a parfactor graph and shows PRVs, which
are connected via undirected edges to parfactors, with W (X) being observable.
We can observe the weight of patients. The remaining PRVs are latent.

The semantics of a model is given by grounding and building a full joint
distribution. In general, queries ask for a probability distribution of a randvar
using a model’s full joint distribution and fixed events as evidence.

Definition 3. Given a PM G, a query term Q (ground PRV), and events
E = {E" = €'}; (ground PRVs with fized range values), the expression P(Q|E)
denotes a query w.r.t. Pqg.

In our example, a query is P(C(bob)|W (bob) = steady), asking for the prob-

ability distribution of bob’s condition given information about his weight.

4 Lifted Maximum Expected Utility

In this section, we introduce actions and utilities to PMs and show how to solve
the MEU problem, by formalising the problem. Further, we discuss different
modelling possibilities with PDecMs.

Lifted Maximum Expected Utility 135

4.1 Parameterised Probabilistic Decision Models
Let us extend PMs with action and utility nodes, resulting in PDecMs.

Definition 4. We represent actions and utilities by PRVs. Let ®“ be a set of
utility factor names. The range of action PRVs is disjoint actions and the range
of utility PRVs is R. A parfactor that maps to a utility PRV U is a utility par-
factor. We denote a utility parfactor u with VX : u(A) |C, where C a constraint
on X. Function p : X?;frange(Ai) — R, A" € A, with name p € P* is defined
identically for all grounded instances of A and its output is the value of U. A
PDecM G is a PM with an additional set G* of utility parfactors. Let rv(G™)
refer to all probability randvars in G*. Then, G* semantically represents the

combination of all utilities Ug = 3 rc gy -

The p functions output a utility, i.e., a scalar, which makes comparing utility
values easy. Further, a scalar allows for testing whether utilities are within an e
margin of each other, making them hardly discriminable. With utilities incorpo-
rated, we look at actions. To model actions, we introduce an action PRV with
the actions in its range. Hence, we have one PRV, which models disjoint actions.
To execute an action, we set the value of the action PRV to the action, which we
want to perform, similar to providing evidence for marginal queries. Thus, the
range of an action PRV A(X) consists of different actions, lets say A!,..., A",
and by setting A(X) to the action, lets say A! (A(X) = Al), we can select the
action we would like to perform

Let us now extend the example with action and utility nodes. In Fig. 2, one
can see one action node (square), one utility node (diamond), and one utility
parfactor (crosses). In our example, the action PRV A(X) has two actions in
its range, namely A' is visit patient and action A? is do nothing. Obviously,
other actions could also be included in the model, e.g., diet related actions or
obtaining a more accurate scale.

Fig. 2. Retaining water example with action and utility nodes in grey

In our example, the condition of patients and A' influence the utility. For
example, patients with a chronic heart failure might tend to retain water. In
case water retention is detected early on, treatment is easier. However, if this
water retention remains undetected, water can also retain in the lung, which can

136 M. Gehrke et al.

lead to a pulmonary edema, making a treatment more costly. More importantly,
pulmonary edema is an acute life-threatening condition. In addition to the con-
dition of patients, A! also influences the utility as a doctor, with limited time,
visiting a patient is expensive. Thus, one always needs to consider that alerting
the doctor too early generates unnecessary costs and alerting the doctor too late
can have serious consequences for the patient.

4.2 Maximum Expected Utility
To select the best action, we define queries and expected utility on a PDecM.

Definition 5. Given a PDecM G, a query term @, and events E, the expression
P(Q|E,s) denotes a probability query w.r.t. Pg. Given an assignment a for
actions, the expression U(Q, E,a) refers to a utility w.r.t. Ug. The expected
utility of G is defined by

eu(Gla) = Z P(v|a) - U(v,a) (1)

verange(rv(G*))

The inner part of the summation in Eq. (1) calculates a belief state P(v|a) and
combines it with corresponding utilities U(v,a). By summing over all randvars
from G™, one obtains a scalar representing the expected utility. LVE allows for
exactly computing an expected utility. Based on expected utility, we define the
MEU as follows.

Definition 6. Given a PDecM G, the MEU problem is given by
meu[G] = (arg max eu(Gla), max eu(Ga)) (2)

Equation (2) suggest a naive algorithm defining how to calculate the MEU,
namely by iterating over all possible action configurations, computing an
expected utility for each configuration using LVE, an iteration that one can-
not avoid if asking for an exact solution. The action assignment that maximises
the expected utility is selected. As the utility value is a scalar, the expected
utility w.r.t. configurations can be easily compared. Therefore, we also can eas-
ily determine configurations whose expected utility lie within an € margin. In
case different actions lie within an € margin, the actions are hardly discriminable
w.r.t. utilities.

The action PRV in G¢* has two possible actions. By setting A(X) = Al,
we turn on Al. By setting A(X) = A2, we turn on A2. Thus, in our example
to calculate the MEU, we need to iterate over two action assignments. For each
expected utility, we obtain a scalar, allowing us to easily compare them and
return the action with the MEU and the actual expected utility value. If all
patients behave the same, we only need to iterate over two actions. In case we
obtain different evidence for lets say two groups of patients, X' and X2, we
need to iterate over the actions for both groups. Hence, we would need to iterate

Lifted Maximum Expected Utility 137

over {A(X1) = A1, A(X?) = A1}, {A(X?Y) = A2, A(X?) = Al}, {A(XY) =
A1, A(X?) = A2}, and {A(X') = A2, A(X?) = A2}. In general, we need to
iterate over r™ actions, where r is the number of actions in the range of an action
PRV and n the number of different groups. Assuming, we have ten patients in
two groups and two possible actions. Solving the MEU in a lifted way, we need
to iterate over 22 = 4 actions. Without the lifting idea, we would need to iterate
over 2'0 = 1024 actions. Therefore, solving the MEU problem in a lifted way
makes the problem manageable.

4.3 How to Model Utilities in a Medical Context

For decision support in a medical context, the model has to take into account the
prevalence, i.e., the probability, of the diseases or health related problems to be
identified. The prevalence does not only depend on the value of data but also on
the source of data. For example, to identify a coronary heart diseases the preva-
lence is higher if the data comes from a chest pain unit compared to examinations
from general practice [16]. In this context, the knowledge of the sensitivity and
specificity of the analytical model and the prevalence is very important. Ideally,
the model should inform the physician about its sensitivity and specificity to
clarify the probability of a false positive result for each patient regarding the
pre/post test probability. These information can help to plan further treatment
and diagnostic decisions. The aim of the model should be to avoid unnecessary
examinations and thus costs. Further, decision making should not unsettle the
patient on the one hand, but on the other hand detect serious conditions timely.

As PDecMs can model different influences, we can take prevalence into
account. Thus, we need to model different PRVs for different sources, which then
depending on the value of the test results, having different impact on the condi-
tion of a patient. Further, there are two different kinds of queries for PDecMs,
namely utility and probability queries. Thus, we can also state marginal queries.
Having marginal queries, we can also query the current belief of the condition
of a patient as well as the condition of a patient after an action, i.e., treatment
or test, is performed.

5 Solving the MEU Problem and Answer Multiple
Marginal Queries Efficiently

In this section, we recapitulate LJT [3] to answer queries for PMs and introduce
meuL.JT to solve the MEU problem and answer multiple marginal queries using
PDecMs efficiently.

5.1 Lifted Junction Tree Algorithm

LJT provides efficient means to answer queries P(Q‘|E), with Q° € Q a set of
query terms, given a PM G and evidence E, by performing the following steps:

138 M. Gehrke et al.

(i) Construct an first-order junction tree (FO jtree) J for G.
(ii) Enter E in J.

(iii) Pass messages.

(iv) Compute answer for each query Q° € Q.

We first define an FO jtree and then go through each step. To define an FO
jtree, we define parameterised clusters (parclusters), nodes of an FO jtree.

Definition 7. A parcluster C is defined by VL : A|C. L is a set of logvars, A
is a set of PRVs with lv(A) C L, and C a constraint on L. We omit (VL :) if
L = lv(A). A parcluster C' can have parfactors ¢(A?)|C? assigned given that
(i) A® C A, (i) lv(A?) C L, and (iii) C? C C holds. We call the set of assigned
parfactors a local model G*.

An FO jtree for a PM G is J = (V,P) where J is a cycle-free graph, the nodes
V denote a set of parclusters, and P is a set of edges between parclusters. J must
satisfy the following properties: (i) A parcluster C* is a set of PRVs from G. (i)
For each parfactor ¢(A)|C in G, A must appear in some parcluster C*. (iii) If a
PRV from G appears in two parclusters C* and C7, it must also appear in every
parcluster C* on the path connecting nodes i and j in J (running intersection,).
The separator SY of edge i — j is given by C* N CJ containing shared PRVs.

LJT constructs an FO jtree using a first-order decomposition tree, enters
evidence in the FO jtree, and to distribute local information of the nodes through
the FO jtree, passes messages through an inbound and an outbound pass. To
compute a message, LJT eliminates all non-separator PRVs from the parcluster’s
local model and received messages. After message passing, LJT answers queries.
For each query, LJT finds a parcluster containing the query term and sums out
all non-query terms in its local model and received messages.

c! c?
W(X), LT(X,X'),
X)), c(X),
5(X) cX’)

C(X)

Fig. 3. FO jtree for G°” (local models under the parclusters)

Figure 3 shows an FO jtree of G** with the local models of the parclusters and
the separators as labels of edges. During the inbound phase of message passing,
LJT sends messages from C'! to C? and for the outbound phase a message from
C? to C!. If we would like to know whether S(bob) holds, we query P(S(bob)) for
which LJT can use parcluster C!. LJT sums out C(X), W(X), and S(X) where
X +# bob from C'’s local model G, {g°}, combined with the received messages.

Lifted Maximum Expected Utility 139

5.2 meulJT

Now, we introduce meuLLJT to solve the MEU problem. For now, we restrict a
PDecM G to have at most one utility PRV and one utility parfactor. The basic
step of meulLJT are similar to LJT, namely:

(i) Construct an FO jtree J for G.
(ii) Enter evidence and actions in J.
(iii) Pass messages.

(iv) Compute answer queries.

Fig. 4. FO jtree for the PDecM G** (local models under the parclusters)

Let us now develop an idea about how meuLJT solves the lifted MEU prob-
lem. Figure4 shows an FO jtree for the PDecM G**. Compared to the FO jtree
from Fig. 3, we see an additional parcluster C? with the utility parfactor. To con-
struct the FO jtree, meulLJT treats the utility parfactor as any other parfactor.
Including utility parfactors in the parcluster definition is straight forward. Using
the FO jtree, meuLLJT distributes local information by message passing. To cal-
culate the probability messages, meulLJT also performs a message pass. During
the message pass, meulLJT excludes utility parfactors as they do not influence
the probability distributions and we only have one utility parfactor and one util-
ity PRV. Hence, during the inbound pass, C? receives a message over C'(X) from
C! and an empty message from C3. For the outbound pass C? sends messages
over C'(X) to C! and C3. To calculate utilities, utility parfactors need to know
the probability distributions, which is distributed by message passing also to
parclusters with utility parfactors. Now, meuLJT can use C! and C? to answer
marginal queries and C? to answer expected utility queries. Given new evidence
or a new action assignment meul.JT has to recompute messages. Hence, for each
action assignment meuLLJT can answer the expected utility query and efficiently
answer multiple marginal queries, e.g., of the condition of patients.

In our example, we have two action sequences {A(X) = Al} and {A(X) =
A2}, if all patients behave the same. To calculate the MEU, meuLJT has to
iterate over all action sequences and calculate the corresponding expected utility.
For the first action sequence, meuLJT enters {A(X) = Al} as evidence in the
FO jtree from Fig.4. After the message pass, meuLJT uses C? to answer the
expected utility query for action {A(X) = Al}. C? received the current belief

140 M. Gehrke et al.

state during message passing and has the current action due to the evidence.
Thus, all required information to calculate the expected utility are present.

For the second action sequence, meuLJT enters {A(X) = A2} as evidence
in the FO jtree from Fig.4. Normally meulLJT would need to perform a new
message pass, but the evidence does not change any calculations of the prob-
ability messages in this case. Thus, meulLJT can reuse the already performed
message pass. Hence, meuLJT can directly use C? to answer the expected utility
query for action {A(X) = A2}. C3 received the current belief state during mes-
sage passing and has the current action due to the evidence. Thus, all required
information to calculate the expected utility are present. Having the expected
utility for both actions, meulLJT selects the action with the MEU. In case, we
have more actions or have more groups of patients, meulLJT has more action
sequences to iterate over. In general, as long as we only have one action PRV
and one utility PRV, and both occur only in a utility parfactor, meulLJT can
reuse the message pass and thereby, prevent redundant calculations.

All in all, meulLJT directly reasons over all patients instead of reason over
each patient individually. Additionally, meuLJT can provide alerts based on
observations of each patient. Apsel and Brafman [1] extend C-FOVE to solve
MEU queries, which significantly outperforms the propositional case. Braun and
Moller [2] show that LJT outperforms GC-FOVE, an extension to C-FOVE,
for multiple queries. Therefore, meuLLJT is well-suited to support lifted decision
making and answering multiple marginal queries.

6 Conclusion

We present meulLJT to support lifted decision making by calculating a solution to
the MEU problem efficiently. Areas like health care benefit from the lifting idea
for many patients and the support of different kinds of queries. By extending the
underlying model with action and utility nodes, complete health care processes
including treatments can be modelled. Additionally, by maximising the expected
utility, meuLLJT can calculate the best action.

The next step is to extend meulLJT and the underlying problem to the tem-
poral case. Further, we investigate whether, for our application, evidence can
reduce the MEU problem roughly from a POMDP to an MDP.

References

1. Apsel, U., Brafman, R.I.: Extended lifted inference with joint formulas. In: Pro-
ceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp. 11-18.
AUATI Press (2011)

2. Braun, T., Moller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert,
M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30-42. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46073-4_3

3. Braun, T., Moller, R.: Parameterised queries and lifted query answering. In: IJCAI,
pp- 4980-4986 (2018)

https://doi.org/10.1007/978-3-319-46073-4_3

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Lifted Maximum Expected Utility 141

Gehrke, M., Braun, T., Moller, R.: Lifted dynamic junction tree algorithm. In:
Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872,
pp. 55—-69. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91379-7_5
Joshi, S., Kersting, K., Khardon, R.: Generalized first order decision diagrams for
first order Markov decision processes. In: IJCAI, pp. 1916-1921 (2009)

Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. J. Roy. Stat. Soc.
Ser. B (Methodol.) 50(2), 157-224 (1988)

Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted
probabilistic inference with counting formulas. In: Proceedings of AAAI, vol. 8,
pp. 1062-1068 (2008)

Nath, A., Domingos, P.: A language for relational decision theory. In: Proceedings
of the International Workshop on Statistical Relational Learning (2009)

Nath, A., Domingos, P.: Efficient lifting for online probabilistic inference. In: Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp.
1193-1198. AAAI Press (2010)

Nath, A., Domingos, P.M.: Efficient belief propagation for utility maximization
and repeated inference. In: Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence, pp. 1187-1192. AAAT Press (2010)

Poole, D.: First-order probabilistic inference. In: Proceedings of IJCAI, vol. 3, pp.
985-991 (2003)

de Salvo Braz, R.: Lifted first-order probabilistic inference. Ph.D. thesis, Ph. D.
dissertation, University of Illinois at Urbana Champaign (2007)

de Salvo Braz, R., Amir, E., Roth, D.: MPE and partial inversion in lifted proba-
bilistic variable elimination. In: AAAI, vol. 6, pp. 1123-1130 (2006)

Sanner, S., Boutilier, C.: Approximate solution techniques for factored first-order
MDPs. In: 17th International Conference on Automated Planning and Scheduling,
ICAPS 2007, pp. 288-295. AAAT Press (2007)

Sanner, S., Kersting, K.: Symbolic dynamic programming for first-order POMDPs.
In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
pp. 1140-1146. AAAT Press (2010)

Steinh&user, J., Kiihlein, T.: Role of the general practitioner. In: Gombotz, H.,
Zacharowski, K., Spahn, D.R. (eds.) Patient Blood Management, pp. 61-65.
Thieme, Stuttgart (2015)

Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination:
decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1),
393-439 (2013)

Theodorsson, E.: Uncertainty in measurement and total error: tools for coping with
diagnostic uncertainty. Clin. Lab. Med. 37(1), 15-34 (2017)

Wemmenhove, B., Mooij, J.M., Wiegerinck, W., Leisink, M., Kappen, H.J., Neijt,
J.P.: Inference in the promedas medical expert system. In: Bellazzi, R., Abu-Hanna,
A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 456-460. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73599-1_61

https://doi.org/10.1007/978-3-319-91379-7_5
https://doi.org/10.1007/978-3-540-73599-1_61

	Lifted Maximum Expected Utility
	1 Introduction
	2 Related Work
	3 Parameterised Probabilistic Models
	4 Lifted Maximum Expected Utility
	4.1 Parameterised Probabilistic Decision Models
	4.2 Maximum Expected Utility
	4.3 How to Model Utilities in a Medical Context

	5 Solving the MEU Problem and Answer Multiple Marginal Queries Efficiently
	5.1 Lifted Junction Tree Algorithm
	5.2 meuLJT

	6 Conclusion
	References

