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Preface

Artificial Intelligence is a key tool to evolve health systems by providing tools that aid
medical professionals analyse available information in new ways, support patients with
smart applications, and open new frontiers in diagnostics through the use of machine
learning with unprecedented amounts of data. These are just some of the topics that
were discussed during the Joint Workshop on Artificial Intelligence in Health (AIH
2018)1, which consolidated the workshops CARE, KRH4C and AI4HC into a single
event. The workshop took place in Stockholm, Sweden, July 13–14, 2018.

The objective of the workshop was to provide a discussion forum for the most recent
and innovative work on the study and application of AI technologies in compelling
health-care scenarios. The workshops covered a wide spectrum of applications, from
those aimed at easing and supporting health-care professional work to those devoted to
improving patient lives. The discussions revolved around AI technologies with medical
applications focusing on three tracks: Agents in Health Care; Data Science and
Decision Systems in Medicine; and Knowledge Management in Health Care. The
workshop promoted an international discussion forum with Program Committee
members from many countries in Asia (Israel), Europe (Germany, France, UK, Russia,
The Netherlands, Switzerland, Spain, Italy, Norway, Sweden, Poland, Czech Republic,
Greece and Portugal), Oceania (Australia and New Zealand), and the Americas (USA,
Canada, Brazil and Colombia). A common theme through the tracks was the ethical use
of AI in health care, around which there was a panel discussion with Dr. Christian
Guttmann, Dr. Maite Lopez, and Dr. Anthony Chang.

The workshop received 42 submissions from which we selected 26 for presentation,
and 18 extended versions were selected for the proceedings. All submissions were
reviewed by at least three different reviewers. Papers being published in this volume

1 AIH 2018: http://sots.brookes.ac.uk/*p0072382/ai4h2018/

http://sots.brookes.ac.uk/~p0072382/ai4h2018/


highlight the innovation and contribution to the field, providing a review of the
knowledge domain, challenges, opportunities, and contributions to real-world
problems.
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Part I: Agents in Health Care and Knowledge
Management in Health Care

The first part of this volume includes extended and revised versions of a set of selected
work from the track “Agents in Health Care and Knowledge Management in Health
Care”.

In the first chapter, “MeSHx-Notes: Web-System for Clinical Notes”, Nunes et al.
outline a novel application for automatically highlighting and describing medical terms
in clinical notes, in order to make it easier and faster to understand these texts. The
presentation includes an early-stage demonstration of the proof-of-concept imple-
mentation along with an evaluation of the proposal’s applicability.

The second chapter, “Multiagent Systems to Support Planning and Scheduling in
Home Health Care Management: A Literature Review”, Becker et al. provides an
overview of operational management processes applied for planning and scheduling.
The work focuses on the home health care systems application domain. The paper
presents a systematic literature review on relevant approaches, along with a compar-
ative analysis and identified deficiencies. The work concludes on the lack of an all-
encompassing approach and infers the opportunity for contributing with new methods
of dynamic distributed scheduling for the control of operational processes to increases
efficiency and optimise resource utilisation in these environments.

In the third chapter, “Ethical Surveillance: Applying Deep Learning and Contextual
Awareness for the Benefit of Persons Living with Dementia”, Williams, Ware and
Müller propose a privacy-aware system for tracking when persons with dementia
exhibit risky behaviour. The innovation revolves around a system that prevents third-
parties spying on the subject. The method employs machine learning techniques to
detect if the subject is at risk and if there is sufficient danger. The application is
designed to notify caretakers of the subject’s location.

In the fourth chapter, “Active Learning for Conversational Interfaces in Health-
Care Applications”, Härmä, Polyakov and Chernyak present a novel method for
choosing which samples to manually label in a large and problematic data set of
conversation. The work compares the proposed method query by embedded committee
with the state of the art and demonstrate positive results in providing similarly accurate
classifiers with fewer labeled samples.

In the fifth chapter, “Analysis of Topic Propagation in Therapy Sessions Using
Partially Labeled Latent Dirichlet Allocation”, Chaoua et al. present an innovation
method combining topic modeling and transitions matrices to detect and track topics in
real-life psychotherapeutic conversation. The method is based on Partially Labelled
Dirichlet Allocation and allows to identify the semantic themes of the current thera-
peutic conversation and predict topics for each talk-turn between the patient and the
counsellor. In addition, the method also proposes a solution to understand and explore
the dynamics of the conversation giving insights and tips on logic and strategy to adopt.



Next, Raff, Lantzy and Maier present the discussion “Dr. AI, Where did you get
your degree?” on regulatory issues surrounding AI in medicine. They propose a novel
approach by treating sufficiently advanced diagnostic tools more like medical profes-
sionals and less like medical tools. The paper reviews several issues related to this
approach, introduces a regulatory framework, and foments the discussion of how
medical AI in medicine may be regulated.

In the seventh chapter, “Principles for agent-based assistive technology design”,
Guerrero et al. describe a process for deciding when the technology should take action,
and when a patient or a caregiver able to perform the task without further help. They
use formal argumentation to create a framework for reasoning about situations and use
the concept of zones of proximal development to make decisions. The paper presents a
proof-of-concept implementation applying augmented reality and discusses utilisation
issues.

The eighth chapter, “Microsoft Hololens, a mHealth Solution for Medication
Adherence”, Ingeson, Blusi and Nieves introduce a smart mHealth application based on
the augmented reality to support patients with management of their medication. The
solution allows evaluating patients’ performance over time and adapt in order to
improve interventions. The work presents a proof-of-concept implementation with the
solution embodied as a smart augmented reality application on top of Microsoft
HoloLens, testing in a controlled environment. The results were very positive
demonstrating the potential to utilise the proposed technology in real-world settings.

Completing this first part, chapter “A Knowledge-Based Simulation Framework for
Decision Support in Brazilian National Cancer Institute”, by Gonçalves et al. present a
knowledge-based simulation framework developed at the Brazilian National Cancer
Institute (INCA) to reduce patients’ waiting time to start cancer treatment. The system
evaluates what-if scenarios to identify potential negative cases. The solution is being
tested in a controlled environment leading to optimisation of waiting time for cancer
treatment, what impacts on patients’ quality of life.
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MeSHx-Notes: Web-System for Clinical
Notes

Rafael O. Nunes, João E. Soares, Henrique D. P. dos Santos(B) ,
and Renata Vieira

School of Technology at Pontifical Catholic University of Rio Grande do Sul,
Porto Alegre, Brazil

{rafael.oleques,joao.etchichury,henrique.santos.003}@acad.pucrs.br,
renata.vieira@pucrs.br

Abstract. We present MeSHx-Notes, MeSH eXtended for clinical notes,
a multi-language web system based on the Django framework to present
selected terms in clinical notes. MeSHx-Notes extends Medical Subject
Headings (MeSH) terms with Word Embeddings with similar words.
Since MeSH is available in 15 languages, MeSHx-Notes is easily extend-
able by replacing the MeSH thesaurus with the target language (plus the
generation of the corresponding WE for the new language). Our version
deals with Portuguese and English.

Keywords: Multi-language · Web system · Clinical notes ·
Information extraction · Word Embeddings · MeSH

1 Introduction

Electronic Health Records (EHR) play an important role in hospital environ-
ments, bringing many benefits in terms of patient safety, satisfaction, and effec-
tiveness/efficiency of care [1]. Records of health care practices in hospitals gen-
erate a rich and large amount of patient information and an intrinsic relation
between symptoms, diseases, drug interactions, and diagnoses that may be used
for many purposes [2,7,8]. Clinical notes, such as discharge summaries, have
a semi- or unstructured format. These documents contain information about
diseases, treatments, drugs, etc. Extracting meaningful information from them
becomes challenging due to their narrative format [5].

This work aims to help healthcare professionals concerning the understand-
ing of what is informed in clinical notes. This is possible through the use of
Natural Language Processing (NLP), combined with the MeSH dictionary1. We
developed a web application that exhibits the meaning and the related words
for terms of a set of categories used in clinical notes, thus enhancing the under-
standing of what is reported.

1 https://www.ncbi.nlm.nih.gov/mesh.

c© Springer Nature Switzerland AG 2019
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In this context, we present an easy-to-use system that provides users with
extra knowledge of the information given in clinical notes, which can be used by
anyone with access to the internet.

The rest of this paper is organized as follows: Sect. 2 presents previous works
on information extraction through clinical notes. In Sect. 3 we explain the con-
cepts related to the term expansion. Section 4 describes the concepts used in the
MeSHx-Notes system, followed by the results in Sect. 5. Finally, in Sect. 6 we
summarize our contributions and present further research directions.

2 Related Work

One problem in clinical notes is that registers are not always is accordance with
the standard language, therefore the identification of the right dictionary entry is
challenging [12]. Clinical notes usually contain abbreviations, misspelled words,
and word concatenations. To overcome such problems, we propose the use of
Word Embedding models (generated on the basis of clinical notes) to spot terms
that are similar to the dictionary entries.

The use of pre-established ontologies for the classification of medical docu-
ments has also become a trend, since such structures already bring a semantic
knowledge of the data and help in the organization of texts [10]. The US National
Library of Medicine has developed an ontology for medical systems to commu-
nicate, called the Unified Medical Language System (UMLS). The same project
includes the medical subject ontology, known as MeSH, which relates the medical
vocabularies of diseases, symptoms, organs, etc.

While other systems, such as cTAKES [9], rely on several UMLS sources for
English to provide several information from clinical notes, we focus on developing
a user-friendly and easy-to-handle web interface, portable for languages other
than English, using a language-specific MeSH thesaurus.

Several efforts have been reported in the area of clinical text mining to bridge
the gap between unstructured clinical notes and structured data representation,
including tools such as MetaMap and KnowledgeMap, which have been devel-
oped to automatically annotate medical concepts in free text, along with systems
to identify the patient’s disease status, medication information, etc. [3].

3 MeSH Dictionary Expansion

3.1 Medical Subject Headings (MeSH)

The MeSH dictionary (Medical Subject Headings) (see footnote 1) is the
National Library of Medicine controlled vocabulary thesaurus used to index arti-
cles for PubMed.

Started in 2013, MeSH has 54,935 entries where each entry has a unique
tree number and consists of 26,851 main headings and 213,000 entry terms that
increase the power of classification of medical documents. MeSH is available in 15
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languages: English, Croatian, Czech, Dutch, Finnish, French, German, Italian,
Japanese, Norwegian, Polish, Portuguese, Russian, Spanish, and Swedish.

In MeSH, each heading has information about a term - e.g., Unique ID,
Scope Note, qualifiers, and Entry Terms. The unique ID refers to the working
term, therefore, homonyms “perna” (leg) and “perna” (organism) have distinct
IDs. The Scope Note refers to the term’s meaning. Qualifiers divide terms into
categories. Entry Terms are synonymous or alternative ways to write a term, for
instance “ache” is an Entry Term of “pain”.

MeSH has 81 qualifiers. In our study we selected five categories: pharma-
cology, anatomy, methods, diagnosis, and others. These are the most frequent
qualifiers, according to our analysis. The category ‘others’ includes the least fre-
quent 77 categories and terms that do not have a qualifier. We use the qualifiers
as a way to classify not only terms previously found in MeSH but also the new
terms with which our dictionary was enriched, as explained below.

3.2 Electronic Health Records

The Portuguese dataset was obtained from Hospital Nossa Senhora da Conceição
(HNSC). We used a large cohort extracted from the administrative hospitaliza-
tion database from this Hospital. HNSC is part of the Brazilian public healthcare
system and provides tertiary care. The data comprises 1.5 million clinical notes
from 48.9 thousand hospitalization records annotated with the Charlson comor-
bidity index between January 2012 and December 2017.

Ethical approval to use the hospital dataset in this research was granted by
the Research Ethics Committee of Conceição Hospital Group under the number
71571717.7.0000.5530.

The English dataset was obtained from i2b2 Challenge [11] from 2008 to 2012.
It is a set of nine datasets from several shared tasks promoted by Informatics
for Integrating Biology and the Bedside (i2b2). In the 2012 i2b2 Challenge, 310
discharge summaries were annotated for temporal information. The challenge
focused specifically on the identification of clinically relevant events in patient
records and on the relative ordering of the events with respect to each other and
with respect to time expressions included in the records.

3.3 Word Embeddings

Word vectors are a way of mapping words in a numerical space. A latent syn-
tactic/semantic vector for each word is induced from a large unlabeled corpus.
The Portuguese and English model for the word embeddings was trained with
Word2Vec [4]. For the Portuguese version, we used 21 million sentences from
HNSC’s medical records, trained with 50 dimensions per word and a minimum
word count of 100 [6]. This training resulted in 73 thousand word vectors. For
the English version, we used 171 thousand sentences from the i2b2 challenge
dataset, trained with 50 dimensions and a minimum word count of 10, resulting
in 17 thousand word vectors.
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The original dictionary was expanded using Word Embeddings. The expan-
sion process was made by analyzing the similarity of the MeSH’s Entry Terms of
each input with those from the Word Embeddings. The terms which were con-
sidered similar were linked to the specific Unique ID of the enriched dictionary
and added to a reverse index.

Table 1. Enrichment of MeSH terms

Heading Original terms New similar terms

Abdomem abdomem, belly abd, abdome...

Celecoxib celecoxib, celebrex norvasc, losartan...

Abscess abcesso, absceso abscess, abscesses...

Table 1 shows some examples of heading terms in the MeSh dictionary, their
alternative terms, and the corresponding new identified terms. For example, the
heading “Abscesso” had “abcesso” and “absceso” as alternative MeSH terms,
and “abscess” and “abscesses” were added as new terms found through the WE
model. Originally the dictionary had 80,973 terms; with the expansion there
was an enrichment of 40,588 new terms. The enrichment brings new terms due
to abbreviations, orthography errors, and word concatenations. Table 2 shows
examples of such cases.

Table 2. Enriched dictionary terms

MeSH terms Expanded terms

Tomography tomo, tc, tomographyexanms

General surgery srg, surrgery, sugery

Enoxaparin enoxa, enoxeparin

Fever chills, hyperthermia

Behavior behav, bhv

4 MeSHx-Notes: System Description

The system consists of a web application that receives clinical notes, identifies
the main terms, and then returns their definition, similar words and a link to
the MeSH dictionary. Its development is based on Python, Django, Pandas,
Bootstrap, JQuery, Word Embeddings, XPath, and the MeSH thesaurus.

In the web page, buttons are provided to navigate between clinical notes and
to change the language. Besides, the clinical note description is given, with data
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Fig. 1. Example of clinical notes with highlighted terms, color legend for each category,
and MeSH descriptor.

about the patient record and its modification date with a concomitant section of
legends that are related to the classification of the terms. Nonetheless, identified
words are underlined according to their classification, so that, when clicked, they
show their technical name, ID, description, terms with similar meanings, and a
link to the MeSH description website. Some special features were implemented,
such as highlighting of terms of a specific category.

Having in mind the processing time for information to be presented to the
user, we search for terms using a reverse index, previously generated with the
terms and their IDs. MeSHx-Notes was built for Portuguese and English.

This system shows the definition of medical terms, helping in their under-
standing. It can be applied in various situations: some applications improve
learning of nursing, medical or other health-related students, in addition to aid-
ing multidisciplinary research groups in which not all members have technical
medical knowledge. Besides, the system works not only with clinical notes, but
also with any texts related to health, for example, journalistic and academic
texts.

4.1 Back-End

First, the extended MeSH dictionary is generated, using previously saved data
in an XML file, containing ID, name, scope, terms, and qualifier. The dictionary
is enriched to provide a greater range of terms, which are stored in the terms
field. We consider higher similarity degrees to identify those words.

After that step, we read the clinical notes, using Pandas in the web appli-
cation, using Django as the development framework. Each word found in the
dictionary is captured, and the lists of original and new similar words are stored.
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4.2 Front-End

When a clinical note is shown to the user, terms from the (enriched) dictio-
nary are highlighted. These words are shown in different colors, according to the
following classes: medication, diagnosis, procedure or anatomy. It is possible to
select specific classes, providing better information visualization (e.g., only med-
ication to look for what the patient is using in a treatment). This development
used JQuery and Bootstrap.

5 Term Expansion Evaluation

For the expansion of alternative terms, there was a manual evaluation of the
enriched terms from 42 clinical notes, whose expanded terms were annotated as
“correct” or not. Based on this evaluation, a gold standard was generated with
all the appended terms and their Unique IDs, to which each term should be
properly related. As a result, we had 651 examples. Based on that, we tested
several thresholds, to estimate the best threshold for each category.

Through the gold standard and different thresholds, we obtained values with
the lowest failure rates using an algorithm. This algorithm analyzed the accuracy
of each threshold, as shown in Table 3. The analysis started with a threshold of
0.80 to 0.99–1.00 returns the term itself. Thus, we accomplished a 58% accuracy
rate assessing 691 terms contained in our gold standard. The obtained results
are based on tests with real clinical notes.

This accuracy value of 58% is yet to be improved. At this stage, the user still
has to judge for themselves the alternatives presented by the system. However,
given the difficulty of the task, we consider that this initial result is promising
and there are ways in which it could be further improved.

Table 3. Best thresholds per qualifier

Qualifier Thresholds Correct Total Accuracy

Methods 0.89 80 116 71%

Diagnosis 0.93 81 164 49%

Pharmacology 0.96 137 263 65%

Anatomy 0.95 44 83 54%

Others 0.94 97 188 51%

True positives (correctly enriched terms) are presented in Table 4. There are
terms with lexical similarity (e.g., rehab and rehabilitation), but also terms that
are semantically similar but lexically distant—e.g., amlodipine and norvasc.
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Table 4. True positive terms

MeSH term True positive

Arteries Vessels

Angioplasty Stenting

Rehabilitation Rehab

Amlodipine Norvasc

Table 5 presents examples of false positives, terms that were incorrectly iden-
tified as similar through Word Embeddings. These terms, on the established
threshold, had a degree of similarity. New NLP techniques, based on word-sense
disambiguation, are being studied to try to solve these problems.

Table 5. False positive terms

MeSH term False positive

Thoracotomy Parietal

Bicuspid Ulcerative colitis

Ocular vision Weakness

6 Conclusion and Further Work

MeSHx-Notes aims to provide, both for health professionals and for non-
specialists, a simple tool that enables a better understanding of the terms used
in clinical notes in a clear, concise, accessible way. The source code is avail-
able on the project’s Github page2. A web demo is also available3. As further
work, we plan to use bigram and trigram embeddings to find similar multi-word
expressions.

Aiming to improve the system and the accuracy rate (58%), we will use
new disambiguation techniques and similarity analysis, besides the evaluation of
enriched terms made by nurses. MeSH ambiguity is a problem to be studied in
the continuation of this work. User pilot studies are an important phase to be
pursued to test whether the system enhances the readability of medical notes,
after we achieve better accuracy rates.

Another goal is to perform classification tasks in clinical notes written in Por-
tuguese using MeSH codes. Then, we will validate the learned model in clinical
notes in English using MeSH terms for those codes. These experiments intend
to evaluate the cross-language ability of MeSH for classification tasks in dif-
ferent languages. Furthermore, our purpose is to use a new database with the
MeSH definitions in Portuguese [13]. This way, we will be able to better identify
ambiguous terms through their definition elements in clinical notes.
2 https://github.com/nlp-pucrs/meshx-notes.
3 http://grupopln.inf.pucrs.br/meshx.

https://github.com/nlp-pucrs/meshx-notes
http://grupopln.inf.pucrs.br/meshx
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Abstract. Ensuring sustainable care-giving systems with a focus on
human needs and desires is a major challenge. An increasing demand
in home health care as well as a limited number of professionals in the
labor market have led to a call for efficiency. Thus, managing existing
resources has gained relevance. The overall goal is high quality care ser-
vices, while ensuring economic viability. At the same time, there is a
need for modern customer-friendly solutions as well as the considera-
tion of employees’ preferences. To achieve this, adequate methods are
needed that take current and future developments into account. Oper-
ational management processes in terms of planning and scheduling can
be supported by multiagent systems as well as decision support systems
using agent-based simulation. The aim of this work is to provide an
overview of these solutions in the domain of home health care systems.
To this end, we conducted a systematic literature review in which 11 rele-
vant approaches were identified. In addition, these publications were ana-
lyzed to identify deficiencies and compared to each other. Because none
of the approaches offers a sufficient solution, future work will focus on
dynamic distributed scheduling for the control of operational processes
which increases efficiency and improves the use of limited resources.

Keywords: Multiagent systems · Agent-based simulation ·
Logistics · Home health care · Scheduling · Software agents ·
Operations management · Multiagent planning ·
Distributed artificial intelligence

1 Introduction

Demographic change and urbanization have resulted in an increasing demand
for care services. Decreasing birth rates and improved health care cause a higher
ratio of elderly people, who potentially become care dependent. Due to global-
ization and an increasing willingness of younger people to relocate, relatives who
could provide care might not be available. Furthermore, it is possible that the
employment status of relatives does not allow them to provide intra-familial care
services. Hence, it can be assumed that there is an increasing trend in demand
c© Springer Nature Switzerland AG 2019
F. Koch et al. (Eds.): AIH 2018, LNAI 11326, pp. 13–28, 2019.
https://doi.org/10.1007/978-3-030-12738-1_2
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for professional care services. In the near future, any decrease in the tendency
of this development can not be expected, meaning that ensuring sustainable
care-giving systems with focus on human needs and desires is a major challenge.

Instead of receiving care services in specialized care facilities, many care-
receivers prefer to stay in their familiar environment. Such services are offered by
home health care (HHC) service providers. The caregivers are equipped with cars
and render the required care services in the respective patients’ homes. By this
means, care dependent persons receive the required assistance while maintaining
their current way of living. To cope with an increasing demand in home health
care, additional caregivers must be hired by service providers. However, in the
labor market, qualified caregivers can be considered to be a limited rare resource.
Following this, managing existing human resources in HHC gains in relevance to
enable efficient service delivery. In this regard, the cost-benefit ratio of provided
care services must be traded off against ethical aspects of care. The overall goal
is to provide high-quality care services, while ensuring economic viability.

At the same time, modern customer-friendly solutions as well as the con-
sideration of employees’ preferences are required. Methods from classic HHC
logistics focus only on scheduling and routing of caregivers. Yet, these methods
do not seem sufficient with regard to modern HHC logistics, where in addition
the individual desires of both caregivers and care recipients are considered as
well as interaction between the participants. This includes the flexible adjust-
ment of individual tasks or schedules for adaptively dealing with a dynamic
environment. Moreover, taking real-world data into account might be necessary
to achieve a proper planning result (e.g., traffic delay data). This also allows for
dynamic changes of preferences: On the one hand, caregivers can for instance
receive flexible schedules and are able to react on planning disturbances. On
the other hand, care receivers are for example able to alter appointment time
windows and demanded care services in the short term. Furthermore, manage-
ment instructions should not only define or designate the tasks, but also define
the scope of action based on individual qualifications, preferences, and other
personal attributes of each employee. By this means, individuals are provided
with both instructions on what tasks they have to accomplish and instructions
regarding flexibility in their execution (e.g., sequence of accomplishment, type
and manner of execution, as well as individual adaption of a task).

From an HHC provider’s perspective, the management of this situation is
challenging. Adequate methods are required that take current and future devel-
opments into account. To allow for corresponding management with focus on
planning and scheduling, resulting requirements can be summarized as a need
for flexibility in caregivers’ operations, efficiency in the use of resources, and eco-
nomic viability under present and future conditions. Considering these require-
ments, it is questionable whether and to what extent they are met by current
approaches. In case no satisfying methods can be identified, as a first step, the
question of shortcomings arises. To close this gap, the goal of this paper is to
provide an overview of current approaches which support operational manage-
ment in terms planning and scheduling in home health care systems. Moreover,
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if current approaches show deficiencies, these shortcomings must be analyzed
and resulting challenges derived. To this end, a systematic literature review is
conducted in order to gather relevant contributions.

The remainder of the paper is structured as follows: Sect. 2 presents back-
ground information. Section 3 introduces the methodology pursued in the sys-
tematic literature review as well as the applied search and evaluation criteria.
Section 4 gives an overview of the surveyed approaches and Sect. 5 describes
shortcomings of these approaches. Finally, the conclusion of this article and
comments about further work are provided.

2 Background

To increase the efficiency of the operational management processes as well as the
managed processes, the need to use information and communication technology
is obvious. The application ranges from basic technologies for carrying out daily
management tasks to comprehensive support for difficult decisions using special
software systems. In particular, the use of methods from the field of artificial
intelligence is an increasing trend in practical applications. This area includes
the concept of agents. An agent can be described as a software entity or a
robot (hardware), that is able to perceive its environment and to act upon that
environment autonomously [17]. Hence, an agent can be for instance a part of
an automatic workflow or an individual representative of a real-world person.
Taking individual stakeholders into account as well as the need for flexibility as
described in Sect. 1, the usage of methods from the field of multiagent systems
(MAS) and agent-based simulation (ABS) seems promising. They can be used in
many different ways. For example, a distributed software system can be used to
support automatic coordination and group decisions of real-world participants
in their operational activities. In particular, multiagent technology is known for
offering flexible solutions and adaptive IT systems [9]. Furthermore, assistance
systems with ABS components are able to provide decision support based on the
execution of simulation runs, which try to imitate the behavior of the real system.
Evaluating various ideas on an artificial system as a simulation model of the real
world can be less expensive and time-consuming. The use of multiple agents as a
modeling paradigm to build artificial societies or social systems is a unique way
of testing theories for many application domains [12]. Beside that, simulation can
also be used to evaluate the functionality of a developed MAS by placing the
system in a simulated environment. The following description from Wooldridge
is helpful for classifying the terms: “A multiagent system is one that consists of
a number of agents, which interact with one another, typically by exchanging
messages through some computer network infrastructure.” [21, p. 5]. Thus, an
agent-based simulation can be seen as an MAS as well. Despite that, in the
following we will use the term MAS to describe a distributed software system
and distinguish it from a software system which make use of an agent-based
simulation.



16 C. A. Becker et al.

The development of both MAS and ABS can be observed in relation to the
domain of home health care. The term home health care refers to “the provision
of healthcare services to people of any age at home or in other noninstitutional
settings” [5, p. 9]. To distinguish skilled medical services and non-skilled services,
like personal care routines, household maintenance, and social service, the latter
is described using the term home care, while home health care includes medical
treatments, nursing services, and physical therapies [16]. To support manage-
ment in both sectors, various research areas are working on innovative methods.
For instance, in operations research scientists work on the optimization of daily
routing and scheduling for HHC services [6]. Here, engineers, social scientists, and
computer scientists, among others, are working on similar problems. To reduce
the coverage of the entire range of operational management tasks, the following
sections focus on supporting the HHC service provider’s planning and resource
scheduling. This refers in particular to scheduling processes of employees, i.e.,
which employee takes on which tasks at which point in time.

3 Review Methodology

As mentioned in the previous section, various approaches exist that apply MAS
and ABS in home health care. In order to investigate how and to what extent
existing approaches contribute to the operational management of HHC systems,
applicable approaches must be identified and analyzed. The conducting of a
systematic literature review seems reasonable. For this purpose, search criteria
must be defined and applied using a methodologically sound procedure. In this
section, both key features for the review and corresponding methodology are
presented.

3.1 Literature Search

The identification of relevant approaches, which will be analyzed with the use of
the presented key features, was started in March 2018 as a systematic literature
search. To this end, a snowballing procedure was chosen: The reference list of
a scientific paper (backward snowballing) as well as the list of papers citing
this paper (forward snowballing) is used for identifying new relevant papers to
examine and the references from as well as to these selected papers are also
used in further iterations [20]. The application process can be summarized in
the following listing.

1. We generated a literature start set by selecting relevant papers with the help
of a web search engine.

2. The reference lists of this start set were used to find further relevant papers,
so a second literature set was created.

3. Further, the list of papers citing elements of this start set were examined
which generates a third literature set.

4. The references of the second set were examined and no further relevant papers
could be found.
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5. The list of papers citing papers of the second set were examined and no
further relevant papers could be found, too.

6. Thereafter, references of the third set were analyzed and no further relevant
papers could be found.

7. Papers citing papers of the third set were also examined and no further rele-
vant papers could be found.

8. All papers found were analyzed in detail and finally 11 contributions can be
presented as the result.

The publication dates of the identified approaches range from 2006 to 2017, but
in the literature search no temporal restrictions were applied as exclusion criteria.
Since background-related biases are possible, it should be mentioned that the
education and experience of the authors focus on the field of design-oriented
information systems research and artificial intelligence.

As a first step, a web search engine is chosen for the generation of the lit-
erature start set. Despite the risk of grey literature Google Scholar was chosen
because of an absence of knowledge of relevant databases for the considered
domain and also because of the fact that the web search engine was only used
to create the literature start set. To achieve a small number of iterations in the
snowballing procedure, multiple keywords were combined in a search string to
generate a suitable literature start set which comprises a high number of papers
containing relevant information. The search string used in the web search engine
is presented in Table 1. The string contains three groups of keywords, separated
by the use of brackets. Each group refers to a domain, which should be rep-
resented in a search result. To increase the probability that the content of a
search result is a combination of contents of all three domains, the groups are
concatenated with logical conjunctions. The first group of keywords specifies the
considered operational management in terms of the HHC provider’s planning
and resource scheduling. The second group specifies the domain of home health
care. The third group focuses on the use of the concept of software agents as
described in Sect. 2. The use of quotation marks defines a string-based search.
For example, any document containing the character string “plan” will be part of
the result set, like documents containing the word “planning” or “planner”. Due
to different spellings, several alternatives are concatenated with logical disjunc-
tions. Furthermore, disjunctions are used for different keywords which describe
the same domain.

Table 1. String used in the search engine for generating literature start set.

Domain String

Planning and Scheduling (“scheduling” | “roster” | “plan”)
HHC (“home-care” | “home care” | “home health-care” | “home healthcare”

| “home health care” | “home health nursing” | “caregiver”
| “caregiving” | “long-term care” | “long term care”)

MAS (“multiagent” | “multi-agent” | “agent-based” | “agent based”)
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As the inclusion criterion for the snowballing procedure, each domain listed
in Table 1 should be represented such that one contribution addresses the appli-
cation of an agent-based approach that in some way support planning and
scheduling in operational HHC management. 16 scientific papers were selected
by examining 200 search results (20 result pages) as a result of the usage of the
explicated search string in order to create the literature start set. All relevant
papers of this start set were found in the first one hundred results. Following the
backward snowballing procedure, the reference lists of those 16 papers were eval-
uated and a second literature set was generated containing two scientific papers.
After another iteration, no further publications were found. Following the for-
ward snowball procedure, papers citing a paper of the start set were examined
and a third set was created containing five papers. Further, the list of publi-
cations citing one of this set was examined and no further papers were found.
The remaining iterations, forward procedure with the second set and backward
procedure with the third set, neither generated new papers. Afterwards, all 23
papers were analyzed in detail to find only contributions which support oper-
ational HHC management in terms of planning and scheduling comprising the
conception of a multiagent system or an agent-based simulation. For example,
pure literature studies were sorted out. Finally, 11 contributions can be pre-
sented as a result. Further iterations of the snowball procedure have already
been counteracted by finding useful results with the web search engine in the
first step. In addition, due to the application of a comprehensive search string,
several papers within the first literature set have mutual references.

3.2 Key Features

To analyze the suitability of the identified approaches, different perspectives of
the scientific process must be considered. Before the respective content is pre-
sented in the next section, the categorization and the usage of the review key
features are outlined. The key features can be divided in concept, implementa-
tion, and evaluation. As a first step, the concept is examined to determine how
and to which purpose the agent-based system is utilized. Further, the practical
implementation as well as the evaluation of the system are investigated. While
the implementation focuses on the availability of software and hardware systems,
the evaluation makes sure that the developed concept is applicable in the field.

Five key features are related to the concept. Beside a brief description of
the approach’s main ideas, the target group of users is identified. In this regard,
the outcome or product is described that is provided to the user. Moreover,
methodical limitations and focus of the considered approach are characterized
by the key features spatial aspects, goals and constraints, and agents. The latter
designates the agents, which are identified in the approach. The feature goals and
constraints comprises the targeted performance measures as well as restrictions
of the parameter or solution space. The feature spatial aspects determines the
consideration of any geographic related entities or factors in the model, such as
distance computations, traffic predictions, map data, and regional specifications
or restrictions.
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After taking a conceptual perspective, the provided implementation is ana-
lyzed. When implementing a MAS or an ABS, the use of an existing modeling and
simulation (software) framework is feasible. By this means, common functional-
ities are provided, which improves the re-usability of the implemented concept.
Here, a differentiation has to be made between free-to-use and commercial frame-
works. This is directly related to the key feature accessibility, which describes
whether or not the implementation is available for further use in terms of the
used licensing model as well as the provision, e.g., in a public repository. Further-
more, the interactivity of the implemented approaches might vary. While some
approaches do not allow for real-time interaction, others are equipped with inter-
faces, which enable the interaction with one or multiple users and also between
the involved users.

In the evaluation perspective, the implemented concept is practically applied
to home health care scenarios. In terms of MAS or ABS, the evaluation commonly
consists of simulation experiments that are conducted as part of a study. This
includes design, execution, and analysis of simulation experiments. The design
of experiments comprises techniques for the identification of relevant experi-
ments (design points; DP) as well as the systematic limitation of the considered
parameter space. For stochastic models, the estimation of the required number
of replications (sample size; N) is another important task. In addition, input
data is required for the definition of the simulated scenario. The key feature
input data distinguishes between synthetic and real-world data and gives back-
ground information like geographical affiliation. Output data that is generated
during the execution of the model must be analyzed to draw conclusions about
the observed behavior of the system. Based on this, the key feature output data
analysis describes what means are applied and what efforts are made for assess-
ing statistical significance.

4 Approaches for Supporting Planning and Scheduling

The goal of this work is to survey existing approaches that make use of ABS or
MAS to support operational HHC management in terms of planning and resource
scheduling. With respect to the conducting of a systematic literature study, the
applied research methodology as well as the key features for the assessment of
the surveyed approaches were presented in the previous section. As a result of
the execution of the literature study, 11 relevant approaches for home health
care management were identified. In this section, a comprehensive overview on
as well as a comparison of these approaches is presented, which allows for the
identification of shortcomings (cf. Tables 2, 3, and 4).

To judge whether and to what extent each of the specified key features (cf.
Sect. 3) is satisfied by the approaches, only evidence is used that is directly pro-
vided by the scientific publication in which the approach is proposed. Accord-
ingly, in case specific aspects of the system are not discussed in the publication,
it is assumed that the approach is not capable of fulfilling the respective key
feature. The same applies for ambiguous descriptions or assertions regarding
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Table 2. Overview of the concepts (part 1) of the surveyed approaches.

Approach User Outcome/product

Castelnovo et al. [1] ABS of home care

organization model

HHC service

provider

Framework to control

the home care

processes at an

operational level

Itabashi et al. [8] MAS for negotiation of care

schedules

HHC service

provider

Communication

platform for caregivers

and patients, care

schedule

López-Santana et al. [10] Multiagent approach using

mixed integer programming

model

HHC service

provider

Communication

platform, scheduling

and routing for

caregivers

Marcon et al. [11] Global optimizer and ABS

of caregiver behavior to

solve routing problems

HHC service

provider

System for solving

scheduling and routing

problem in dynamic

context

Mohammadi & Eneyo [13] Sweep-coverage for efficient

monitoring of patients by

means of a MAS

HHC service

provider

Information

management system,

solving of scheduling

and routing problem

Mutingi & Mbohwa [14] MAS with satisficing

heuristic for staff scheduling

HHC service

provider

Theoretical framework

for staff scheduling

and task assignment

Stojanova et al. [18] Scheduling algorithm and

ABS

HHC service

provider

Support system for

generation and

analysis of staff

schedules

Widmer & Premm [19] MAS for negotiation of

caregiving resources using

double auctions

HHC service

provider

Agent-based decision

support system for

allocation of resources

Xie et al. [22] MAS for negotiation

between home health agency

and practitioners

Home health

agency

Iterative bidding

framework as a

decentralized decision

making tool

Xie & Wang [23] ABS for evaluation of

schedules generated by

repair algorithm

HHC service

provider

System for generating

and evaluating

schedules

Zarour et al. [25] MAS/agent-based

architecture

Set of HHC

partners

Platform for

communication and

cooperation

functionalities of the approaches. To avoid misinterpretations, the assessment
which is presented in this section is not based on assumptions in terms of inter-
pretations of text passages. Instead, the wording of the authors is adopted for
the description of the approaches. As the terminology that is used for describ-
ing the surveyed approaches is not unified, ambiguousness and terminological
inconsistencies might occur in the following discussion of the contributions.



MAS to Support Planning and Scheduling in HHC Management 21

Table 3. Overview of the concepts (part 2) of the surveyed approaches.

Spatial aspects Goals and constraints Agents

[1] - - Assumption:

participants of a

proposed home care

reference model

[8] - G: MIN total cost of service;

C: skills, date/time interval

interface, schedule,

helper

[10] Arrival/departure

location, static travel

times, multi-depot

G: MIN travel time, MIN delay arrival

time;

C: skills, locality, priority

Patients, organizer,

coordinator,

caregiver

[11] Random events (e.g.,

traffic jams and road

accidents)

G: agents’ decision rule (e.g., MIN travel

or waiting time);

C: unspecified

Patient, caregiver

[13] Distance from service

provider’s facility to

patient’s location

G: MIN no. of therapists;

C: location of patients and therapists

Patient, therapist,

hospital

[14] - G: MIN schedule cost, MAX

patient/worker satisfaction;

C: tasks, preferences

Manager, patient,

nurse, supervisor,

resource, scheduler

[18] - G: MIN processing time;

C: servicing time

Patient, caregiver

[19] - G: MAX social welfare;

C: time/priority for service, skills,

valuation of patient

Patient, caregiver,

auctioneer

[22] - G: MIN service costs;

C: time, skill set, preferences

-

[23] GIS map as operative

environment in

simulation

G: MIN service costs;

C: practitioner’s availability/eligibility,

visit time

Practitioner,

healthcare agency

[25] - - Patient, broker,

doctor, and each

cooperation partner

The framework proposed by Castelnovo, Matta, Tolio, Saita, and De
Conno [1] consists of an ABS of the interactions between different actors that are
involved in home care processes. In this regard, the authorsmake use of the contract
net protocol to model task distribution between the agents. The goal of the model
is to enable patients to stay at home instead of being forced to stay in professional
care facilities in case this is not medically necessary. To give a better understanding
of possible involved actors, the authors proposed a reference model for the home
care domain. The presented approach is implemented in Arena and evaluated in a
case study of a Palliative Home Care Program from Italy.

Itabashi, Chiba, Takahashi, and Kato [8] presented a more compre-
hensible approach using MAS for the negotiation of care schedules. Equip-
ping caregivers and patients with PDA devices enables the dynamic request of
care services as well as the real-time confirmation or rejection of resulting care
schedules. The approach aims at minimizing the overall costs of service as care
schedules can be adjusted to efficiently take current care requests into account.
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In this negotiation process, individual skills of the caregivers as well as date and
time preferences of the patients are taken into account. The authors used JADE
to implement the approach, yet, only presented a synthetic example request to
demonstrate its feasibility.

López-Santana, Espejo-Dı́az, and Méndez-Giraldo [10] make use of
a multi-objective mixed integer programming model to enable scheduling and
routing of caregivers in home health care. To consider driveways in the routing
and to minimize travel times and delays, departure and arrival locations of the
caregivers are specified. However, the presented approach is limited to a single
geographical area and travel times are assumed to be static, i.e., not influenced
by road closures or traffic-related delays. The proposed platform works well for
small numbers of patients (less than 15) but requires heuristics for the calcu-
lation of larger amounts of patients. Like the previously introduced approach,
the implementation is based on JADE. To this end, the authors presented four
scenarios with four different parametrizations of the model to illustrate the vari-
ation of waiting times.

Of the analyzed approaches, the system presented by Marcon, Chaabane,
Sallez, Bonte, and Trentesaux. [11] provides the most sophisticated and real-
istic routing. The combination of a global optimizer with a simulation of individ-
ual caregiver decision behavior using MAS allows for the agents’ perception of
random spatial events such as traffic jams to minimize travel or waiting times. By
this means, new requests can also be considered by the system and included in
the scheduling and routing process. Constraints that must be considered during
the scheduling and routing are unspecified and provided by mixed integer lin-
ear programming (MILP) or heuristics. For the implementation of the system,
NetLogo were used and a comprehensive evaluation is provided. The authors
presented two case studies which were derived from French HHC providers and
for each case study 500 working days were simulated. As the proposed model
consists of stochastic components, the authors executed 100 replications of each
parametrization of the model. Finally, they analyzed the performance of the
proposed system according to five properties: efficiency, pertinence, scalability,
robustness, and implementability.

In the approach presented by Mohammadi and Eneyo [13], the scheduling
and routing problem is solved by a central unit and by applying sweep-coverage
mechanisms. To this end, the authors goal was not the minimization of travel
times but the reduction of the required number of therapists. To demonstrate the
feasibility of the proposed algorithm, the authors used a MATLAB implemen-
tation to execute two scenarios each consisting of ten different parametrizations
of the model. To take stochastic uncertainties into account, each simulation run
was replicated 100 times.

In contrast to other approaches which aim at optimizing HHC scheduling, the
architecture proposed by Mutingi and Mbohwa [14] makes use of a satisficing
heuristic. Here, a schedule that is acceptable for all caregivers is generated based
on specific thresholds. To this end, an acceptable schedule is not necessarily opti-
mal. Still, the authors aimed at minimizing scheduling costs while maximizing
both patient and worker satisfaction. Of all the analyzed approaches, this one
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consists of the most agent types. Besides the types manager, nurse, and patient,
the authors defined resource, supervisor, and scheduler agents to accomplish
multi-objective decision making. The approach was published in 2013. In 2015,
the authors applied the approach to decision making for drug delivery in home
care services [15].

Stojanova, Stojkovic, Kocaleva, and Koceski [18] focused on schedul-
ing and did not address the routing problem. The authors illustrated analo-
gies between job shop scheduling in logistics and the scheduling of caregivers
and elderly people. In the presented ABS, the individuals from both groups are
modeled as individual agents which enables communication between the groups.
Unfortunately, the resulting simulation is only presented briefly in the paper such
that the implemented mechanics remain mostly unclear. AnyLogic was used for
the implementation of the model, however, experiments or generated results are
not presented.

The decision support system proposed by Widmer and Premm [19] makes
use of an auction-based protocol (double-auctions) to achieve an optimal alloca-
tion of caregivers to dementia patients. By this means, they aimed at maximizing
social welfare by taking the time required for each service, the skills of each care-
giver, service priorities, and valuations of the patients into account. The specifi-
cation and justification of the proposed auction protocol is the main contribution
of the paper. In this regard, a software architecture as well as dementia-specific
requirements are introduced. Unlike other contributions that use simulation for
their evaluation, the authors presented a scenario-based evaluation to demon-
strate the submission of bids as would take place during an auction. The pro-
totype is developed using only the Java Development Kit (JDK) and without a
dedicated software framework for agent-based approaches.

Xie, Sharath, and Wang [22] presented an MAS framework that imple-
ments an iterative bidding procedure for the negotiation of HHC schedules. The
parties that are involved in this negotiation process are just the home health
agency and the caregivers, leaving out the patients. As the routing of the care-
givers is not the primary goal of the presented system, spatial aspects such as
traffic or street maps are not considered. The optimization goal which is pursued
by this approach is related to the minimization of service costs. To achieve this,
time windows, skill sets of caregivers, and preferences of clients are considered.
Even though the authors do not present an implementation of the model, they
provide experimental results and compared them to the optimal problem solu-
tion generated by means of the optimization software ILOG CPLEX. For this
purpose, eight scenarios were defined each of which is replicated ten times.

Two years after their publication in 2015, two of the authors from the pre-
viously presented work proposed another scheduling approach for home health
care. As the approaches differ considerably, the system presented by Xie and
Wang [23] is discussed as well. Unlike the previous publication, the authors
proposed an ABS for generating and evaluating HHC schedules using a repair
algorithm. Moreover, a spatial aspect was added, so a GIS map serves as oper-
ative environment in the simulation. For the implementation, the authors used
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AnyLogic and demonstrate the feasibility of the approach based on ten repair
runs. As no information on the chosen scenario is given, it must be assumed that
the data basis was generated synthetically.

Table 4. Overview of implementation, experimentation, and domain of the surveyed
approaches.

Software Interactivity Design of experiment Input data Output data

analysis

Domain

[1] Arena - Sensitivity analysis 1 case study

(palliative

home care

provider in

Milan,

Italy)

Average values of

a performance

measure (waiting

time)

Palliative

Home

Care

[8] JADE Participants

reject/accept

proposed

schedules

- 1 example

of single

request

(synthetic

data)

- HHC

[10] JADE Allows for new

requests during

run time

DP = 16, N = 1,

deterministic/ stochastic

model (unclear)

4 Scenarios

(synthetic

data)

Average values of

a performance

measure

HHC

[11] NetLogo Real-time request

of availability of

patients

2 simulations of 500

working days, stochastic

model, N=100 for each

decision rule

2 case

studies

(synthetic

data,

inspired

from

classical

types of

French HHC

providers)

Statistical

significance

(confidence

interval),

evaluation of

efficiency,

pertinence,

scalability,

robustness, and

implementability

HHC

[13] MATLAB Assumption:

appointments can

be made by

patients

DP = 20, N = 100,

stochastic model

2 scenarios

(synthetic

data)

Average values of

a performance

measure

HHC

[14] - Update of

preferences and

management goals

- - - HHC

[18] AnyLogic - - - - HHC

[19] JDK Caregivers and

patients submit

bids to an

auctioneer

- 1 scenario

(unknown

data source)

- Dementia

(Home)

Care

[22] - - Comparison to optimal

solution of 8 model con-

figurations (DP = 8),

N = 10, stochastic

model

8 scenarios

(synthetic

data at

realistic

scale)

Average values of

a performance

measure (bidding

solution payment)

HHC

[23] AnyLogic - 10 repair runs Assumption:

synthetic

data

Average value of a

performance

measure (costs)

HHC

[25] JADE Information

exchange, service

requests and offers

- Two

examples of

coordina-

tion

(synthetic

data)

- HHC
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Zarour, Zarour, and Khalfi [25] provide an agent-based architecture to
support coordination and communication for patients and cooperating providers
of services regarding the patient’s care. Similar to the previously mentioned con-
tributions from Castelnovo et al. and Itabashi et al., the protocol contract net
was used to enable coordination like scheduling on an abstract level. Further-
more, the authors defined the agent’s communication processes and presented
an ontology for information exchange in the considered domain. The implemen-
tation is based on JADE and for evaluation the authors compared their infor-
mation system with a similar agent-based support system. Because of missing
information regarding the input data of the scenario for comparison, it must be
assumed that they used synthetic data. A part of this work (presented in 2010)
was already published in 2008 by two of the authors [24].

Beside these 11 approaches, which were selected in the literature review as
described in Sect. 3, the ideas presented by Fraile Nieto, Rodŕıguez, Bajo,
and Corchado [7] are worth mentioning. The authors applied an abstract MAS
architecture to a home care scenario, where agents can offer and request services
from other participants. This can be conceived as a part of a management solu-
tion. Because of a lack of elaboration in the area of resource scheduling, the
publication is not part of the tables. The authors only mention that it could be
possible to use this architecture for scheduling medical staff.

Similar to the previously mentioned contributions using the contract net pro-
tocol, the work of De Causmaecker, Demeester, Berghe, and Verbeke [3]
provides an agent-based scheduling approach including negotiations for person-
nel exchange respectively task exchange. In the same year (2005), the authors
published another paper to this topic and give further information regarding
an implementation and planned experiments [4]. Because both publications are
very short, without details, and not linked directly to the domain of home health
care, the contribution is not part of the tables here. By looking at an earlier
publication from 2004, a connection to the domain of HHC can be established.
Here, De Causmaecker et al. [2] analyzed personnel scheduling problems, men-
tion application domains, and propose a classification, where one type of plan-
ning refers to home health care.

5 Shortcomings of the Surveyed Approaches

The previous section analyzed the identified contributions with respect to the
defined key features. None of the surveyed approaches is satisfactory to support
planning and scheduling in operational HHC management regarding flexibility in
caregivers’ operations, efficiency in the use of resources, and economic viability
under present and future conditions.

Shortcomings in the approaches’ concepts are mostly related to outcome,
spatial aspects, and goals. It can be observed that an outcome for the HHC man-
agement that is “ready to use” does not exist. Beside theoretical contributions,
like frameworks, the publications provide outcomes on a prototype level. Further,
spatial aspects, such as traffic times or map data, are not sufficiently considered
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and no real-world traffic data is used. Instead, static travel times are used, not
regarded at all, or no distinction in the direction among the nodes is made.
Specific optimization goals are pursued in 9 out of 11 publications and only
one system allows for the interchangeability of goals. The approach by López-
Santana et al. takes cargivers’ skills into account and allows for new customer
requests during runtime. However, their system focuses only on minimizing travel
times of caregivers as well as delays in arrival times at customer locations. Here,
generating an optimal solution takes too much time for real-world problems.
Similarly, the approach by Xie and Wang only focuses on minimizing service
costs and the search for an optimal solution takes too long here as well. The
approach by Marcon et al. assigns each caregiver to a set of customers with a
corresponding route proposal, which can be adapted later by the caregiver. Fol-
lowing this, a dynamic solution is provided based on a caregiver’s local decision.
By changing the local decision-making mechanisms, different higher-level objec-
tives can be pursued, e.g., minimizing waiting times. But each caregiver only
interacts with his own patients, so interchangeability is not possible. In addi-
tion, there is no coordination between caregivers to react on events in order to
reach a better joint solution. The remaining surveyed approaches do not provide
sufficient dynamic scheduling solutions, but communication platforms and basic
coordination solutions.

In the implementation of the surveyed approaches, shortcomings are observed
in terms of used software and its accessibility. Through the use of commercial
frameworks, a third-party is included which claims license fees for use. Conse-
quently, a monetary dependency results. Further, a dependency arises in software
maintenance and durability. Overall, the applicability of the implementation is
strongly limited. Regarding the accessibility of the implementations, none of the
authors referred to online repositories or websites for downloading the proposed
implementations. Because of the inaccessibility of all developed software, the
key feature accessibility is not part of the tables. Shortcomings in the evalua-
tion of the surveyed approaches arise in all defined key features. First, relevant
parts of the parameter space must be identified and systematically investigated.
Unfortunately, the design of experiment in the publications is mostly on a non-
professional level. Second, input data in terms of suitable real-world data is not
provided sufficiently. Either synthetic data or a brief case study is given. Third,
to ensure statistical reliability and the significance of the evaluation results, it
is recommended to apply means of output data analysis. The greater part of the
surveyed approaches uses information about considered performance measures
in terms of statistical measurements of central tendencies.

6 Conclusion and Further Work

Operational management processes in terms of planning and scheduling in the
domain of home health care systems can be supported by multiagent systems
as well as decision support systems using agent-based simulation. This article
provides an overview of these approaches. Therefore, we conducted a systematic
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literature review in which 11 relevant approaches using agent technology were
identified. Further, the identified publications were analyzed and shortcomings
were detected. The shortcomings comprise aspects of the respective concepts,
the provision of implementations and the execution of evaluation processes. In
order to cope with an increasing demand in HHC, besides efforts to improve
efficiency, additional caregivers must be hired by service providers. However, the
availability of skilled caregivers on the labor market is very limited. None of
all current agent-based approaches offers a sufficient solution to dealing with
a shortage of skilled workers. Furthermore, no learning mechanisms for agents
are used to increase efficiency and the handling of the dynamic environment is
not sufficient as well. The latter includes coping caregiver outages and delays in
operational processes as well as no usage of real-world traffic data.

As the need for management support persists, we are working on a dynamic
distributed scheduling solution for the control of operational processes which
increases efficiency and improves the use of limited resources to allow for coping
with the rising demand.
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Abstract. A significant proportion of the population has become used to
sharing private information on the internet with their friends. This information
can leak throughout their social network and the extent that personal information
propagates can depend on the privacy policy of large corporations. In an era of
artificial intelligence, data mining, and cloud computing, is it necessary to share
personal information with unidentified people? Our research shows that deep
learning is possible using relatively low capacity computing. When applied, this
demonstrates promising results in spatio-temporal positioning of subjects, in
prediction of movement, and assessment of contextual risk. A private surveil-
lance system is particularly suitable in the care of those who may be considered
vulnerable.
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Ethics � mHeath �Wearable health � Dementia � Safer walking � GPS � LSTM �
RNN

1 Background

Advancements in mobile devices that can be worn and carried, their interconnectivity,
and the improvement of artificially intelligent tools provide a significant opportunity to
assist in the care of the aged. In accordance with a human right to private life, we have
examined methods to keep tracking information private unless there is a moral argu-
ment, such as risk to the person being monitored, that justifies a breach in privacy. In
this scenario, safety is paramount and in the interests of beneficence and non-
maleficence an ethical policy in terms of design is employed, which defines that
personal information is precious and should therefore not be shared on the internet.

Dementia is a debilitating condition that is growing with the aging society. Con-
tinuance with life in the community is encouraged, since social interaction and physical
activity stimulates a healthy mental state in the person with symptoms (PwS) along
with the family carer. We seek bespoke artificially intelligent solutions for these per-
sons living with dementia (PlwD) who wish to preserve independence of the PwS.
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Initial system infrastructure and findings are published in [1], the suitability of a mobile
computer technology in tracking PwS and ethical aspects are previously outlined in [2].
The work described here contributes to the ethical debate regarding the question at
which point information gathered when monitoring a PwS should be shared. We
investigate a technological solution that keeps data private until a threshold of risk is
reached. AI is used to learn what is ‘normal’ for a person (based on individual habits),
various metrics are then used in the decision making to change the default private state.

To this end, a monitoring system is designed that requires the PwS to carry a
mobile phone and wear a fitness tracker. It is understood that some may not be
comfortable with this and it is anticipated that the mobile technology component will
ultimately be integrated in a single wearable device. This technology can be particu-
larly useful for patients who have early-onset dementia, i.e., those of working age and
therefore more likely to be used to carrying a phone or wearing a smart-watch.

2 The Problem

The onset of dementia has a profound effect on the PwS and the wider family unit.
Diagnosis can bring with it a loss of role function, uncertainty about the future, fear of
being a burden, and reduced mobility that can lead to social isolation [3]. The objective
of this study is to create an ‘electronic safety net’ that can provide peace of mind to the
carer, while preserving the rights and independence of the PwS. A key aim of the
project is to delay residential care.

2.1 Dementia

Dementia is caused by several diseases of the brain. There is a wide spectrum of
symptoms, some of which may manifest in a propensity to walk independently at
inappropriate times [4]. Literature indicates that this can lead to premature mortality [4–
6]. Actions to mitigate this risk can lead to increased dependence, to curtailment of
social activities, and reduction in quality of life [7]. Elopement episodes are a major
reason for nursing home admission [8]. A study in Finland reports that the latter may be
delayed, using assistive technology, by an average of eight months [9].

2.2 Privacy

Online data privacy divides opinion. Many elect to share very varied information about
their lives publicly on the internet, but this is not always a conscious decision – Terms
and conditions regarding data sharing tend to be ignored by many users as they install
applications and use online services. Nevertheless, consent given in this way is often
referred to as informed when the potential for data propagation is mentioned in the
supplied information, even though this information is rarely considered thoroughly.

Leaks of private information have recently been in the news headlines. Data stored
on the internet, e.g. by cloud services, is often assumed to be safe, but human inter-
vention and inadequate security measures allow breaches [10]. Advocates of privacy
treat personal information very differently and avoid sharing their information with
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people or organisations. This attitude is supported by cyber-security activists, e.g. in a
report of vulnerabilities leading to 91 exploits of tracking service providers in January
2018 [11]. In the case of care for persons who may be considered vulnerable it seems
ethically correct that a strict data protectionist policy should be the default.

2.3 A Human Rights-Based Approach

The World Health Organisation (WHO) advocates a human rights-based approach for
PlwD [12]. In our study, almost two years of personal data was collected. This included
location (derived using GPS and nearby Wi-Fi nodes), activity recognition, indoor
movement, and logs of heart rate, steps, and sleep patterns. This kind of monitoring
undoubtedly has the potential to invade a person’s right to private life. The tracking
was described by the subject as a big-brother bad dream. On reflection, the level of
‘invasion’ depends on who has access to the data.

3 Machine Learning (ML)

The aim is for an algorithm to learn human mobility patterns of an individual, and to
assess the perceived risk against the learnt normality that is deemed to be ‘safe’.
A measure of risk is used to determine the level of protection required on the personal
data collected. To protect privacy, propagation of this information is restricted to the
secure home network. No interaction with the wearable or phone is required of the PwS.

To improve potential accessibility to many users in the long run, the equipment
used in a working prototype is a standard smart-phone and a home-based ‘hub’, which
is a credit-card sized computer with limited resources, such as a Quad-Core 1.2 GHz
CPU and 1 GB RAM. Networking between the two in ‘monitoring’ mode is via on-
board Bluetooth and Wi-Fi only while at home.

Unconventional Deep Learning: Deep learning (DL) discovers intricate patterns in
large datasets by using multiple processing layers to learn representations of data [13].
Sequential and parallel information is processed in a cyclical (recurrent) fashion by
modifying internal weightings of input signals to produce an expected output signal
[14, 15]. The hardware platform described may seem restrictive for a DL task in an age
where we are used to resources being server based and ubiquity being the norm.
Convention says that DL requires large computing capacity, but this is not available for
the present use case. Long Short-Term Memory (LSTM) networks [16] are a type of
Recurrent Neural Network suitable for learning and predicting sequential patterns in
timelines. Using accelerometers, as commonly found in modern mobile devices, LSTM
are deployed in human activity recognition (HAR). X-Y-Z accelerometer readings are
interpreted over a defined time-period and then compared to those taken in a laboratory
to determine probability that a categorised activity is taking place [17]. We have
assimilated this using GPS sensor data. A dataset suitable for learning using an LSTM
neural network was developed, and the resultant tensor was deployed to an Android
device to calculate the probability of being on a learnt trajectory or otherwise.
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The novel concept that surveillance need not be invasive is introduced. There is a
host of literature relating to HAR [18], there are indoor monitoring studies with AI, e.g.
[19], and studies of wandering trajectories, e.g. [20]. None of these describe cate-
gorisation of the normal movements of a person together with discrete monitoring that
keeps information private until anomalies are found.

3.1 ML Methodology

Data: GPS data is collected from one subject using a standard HTC-10 smartphone
used solely for that purpose. Considerable data preparation is required using the
minute-by-minute location coordinates. Data is first compartmentalised based on total
movement to date (tm). This is then divided by an increment (i) giving sub-divisions as
shown in Fig. 1 with i = 20.

To optimise computation time, daily data is reduced to only the proportion that
represents movement.

Categorisation. Points within each segment (or compartment) are assessed for each
trajectory and each segment’s points are compared using a kd-tree-based nearest-
neighbour algorithm [21]. The degree of similarity is assessed giving a percentage and
a threshold provides a similarity decision. There is difficulty in some trajectories where,
for example, topographical, atmospheric, or networking issues used in test data col-
lection lead to sparse and noisy data. Sparse data was dealt with using 1d-univariate
interpolation [22]. This is particularly important in the early days of training where
there are few trajectories to compare. Noisy data is essentially ignored at this time by

Fig. 1. Boundaries of the extent of total movement for 3 months, i = 20. Map: © Google.
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adding a tolerance to the similarity decision just described which is explained in more
detail below. The result of the comparison algorithm is a segment chain (string) for
trajectories with 1 or 0 signifying a match in each square (Fig. 2).

Categorisation by comparison of trajectory segment chains by only comparing
matched segments significantly reduces the computational capacity required in terms of
processing and memory. If a match is found, interpolated point data is added to a
master repository with which future comparisons are made. An encoded polyline [23]
reduces database size requirements and allows trajectories to be stored as entities. In
time, the necessity for interpolation is reduced as the repository trajectory density
increases.

As seen in Fig. 3, interpolation may cause significant deviation from the route that is
travelled, e.g. by cutting corners and using roundabouts, but this level of granulation is
considered satisfactory as a ‘zone of safe movement’ is maintained. Matching segments
rely on a nearest neighbour tolerance (nnT) and merging with subsequent trajectories
eventually creates a dense category master that is used to define this zone.

Fig. 4. (a) A comparison tolerance nnT leads improved matches while ignoring noise.
(b) Interpolated points are merged to create a dense category master.

Fig. 2. A successful match of two segment
chains. 29 segments, i = 10.

Fig. 3. Interpolation used to deal with
sparse data causing accuracy issues. Map
data: © Google.

Ethical Surveillance: Applying Deep Learning and Contextual Awareness 33



nnT set at 0.005 in decimal degrees, equating to just over 500 m, is used in the
experiments. This tolerance can be linked to tm in further work as the extent of
movement defines the granularity required within the movement space. The resultant
categories develop into a densely populated polyline seen in Fig. 4b. All movement
within a data collection period are matched with destinations recognised in the initial
cluster analysis.

In addition to our collected data, the comparison algorithm was tested using seven
users’ data from the Geolife (GL) dataset [24]. This contains better quality GPS tra-
jectories and includes higher variance in modes of travel. With nnT applied to nearest
neighbour algorithm it is observed that small deviations from a route are not a sig-
nificant problem. As can be seen in Fig. 5, four separate tracks converge on a desti-
nation and in the extent of this day’s movement all points are within one segment.

Noise, detours and differing distances included in two tracks taking Route 1 and
Route 2 in Fig. 6, both arrive at the same place E1 and C2. nnT allows for the even-
tuality of C1 and D1 not matching Route 2. Adding both to the master increases the
possibility that subsequent trajectories match by widening the dataset.

Bearing. Some GL users’ data highlighted the difficulty of recognising direction of
travel in that only one-way trajectories are recorded. Experimentation with inclusion of
direction of travel gave complex results, consequently movement is treated as omni-
directional; the category master is essentially an amalgamation of history on that route.

Time Factor. This is an important consideration in the study scenario, but the like-
lihood of a person travelling a recognised trajectory at the same time is low so pre-
diction of this is not required. There are detours from a route, the method of travel may
change, there may be traffic. These factors all have a significant impact on spatio-
temporal data and following extensive experimentation, it is concluded that data-point
true timestamps cause confusion. Instead, each category master is indexed sequentially.

Predictability. Major studies in human mobility patterns find that there is a high
degree of temporal and spatial regularity [25]. In the datasets investigated, this study

Fig. 6. Widening the category master by
allowing a nearest neighbour tolerance.

Fig. 5. Detours and converging paths are
handled using nnT and segment comparison.
Map: © Google Maps.
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concurs; the number of places travelled to is surprisingly low. The three most regularly
visited destinations are selected for demonstration; these are travel to University
(south), to social visits (west) and to a supermarket (east) seen in Fig. 7.

Pre-processing. Category masters are exported and the number of records per cate-
gory is equalised by interpolating (increased or reduced) to 10,000 records each. Noise
is amplified where outliers are interpolated. These outliers will be removed in later
versions of the system. The data is stacked and normalised. Train:test split is 80:20.

Machine Learning. Inspiration for this is credited to work using Convolutional
Neural Network and LSTM RNN in mobile phone HAR applications. The solution
selected for our application is Tensorflow ‘BasicLSTMCell’ stacked with ‘Multi-
RNNCell’ with 64 hidden units. The neural network is expected to learn geo-spatial
data to predict categorisation (of the trajectory) when it is given further blocks.

3.2 ML Results

Experimentation found that the number of time steps set at 10, in blocks of 10 gave an
accuracy of 90–97% over 500 epochs in less than 1.5 h (Fig. 8).

Deployment. Using our dataset, the resultant tensor is imported to an Android
application that sequentially passes arrays of 10 steps of a test trajectory in a timed
fashion. A Tensorflow classifier returns the probability of the array being Category 1, 2
or 3 for the three trained classes. These predictions are logged on the phone (Fig. 9).

Mobile Results
Category 1: Correctly predicted with 98–99% certainty unless trajectories overlap.
Category 2: Correctly predicted with 55–86% certainty.
Category 3: Correctly predicted with 77–90% certainty.

Fig. 7. Three categories of travel overlaid with noise showing, interpolated; 3 � 10 k records.
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The Tensorflow classifier gives reliable prediction of a route being tested in all
cases. These are very satisfactory results. Overlap between two categories returning a
50:50 result in the Category 1 test is perfectly acceptable since the routes do overlap.

Public Dataset Results
Training was carried out using matched trajectories in the GL dataset with similarly
acceptable results (Fig. 10).

Volunteer Test Results
Six volunteers were recruited from a convenience sample that consented to be tracked
by phone and fitness tracker for a period of three months. GPS data was collected by
enabling Google Timeline and by configuring their phone accordingly. Places visited,
and routes taken are stored on Google servers1. At the end of the period data was

Fig. 8. LSTM training session over 1.4 h. 90–97% accuracy.

Fig. 9. Android category prediction results: the vertical scale on these graphs range from 0 to 1
where 1 = 100% certainty. (a) Category 1 (dotted line). (b) Category 2 (dashed line).
(c) Category 3 (solid line).

1 Note that Google Timeline is only used for data gathering in this initial feasibility study. The full
solution uses GPS data stored only locally on the mobile device and processed on the home hub.
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exported, and a bespoke script was developed to interpret the data. With very few
exceptions, it was found that the main locations visited can be classified as attending a
place of work or study, going shopping and visiting friends or family.

Machine Learning Results: As previously explained, the six datasets consist of lat-
itude, longitude, and elevation. When subjected to the same neural network, training
test results are shown in Table 1.

Volunteer 3 presented problems in that trajectories overlapped due to the topogra-
phy of their home address. A revised method that change the way overlapping tra-
jectories are categorised can be used overcome these issues. Volunteer 4 had noticeably
more restricted movement and comparably reduced distance travelled causing specific
issues of data sparsity. For these reasons both datasets required manual categorisation
and matching.

Data Augmentation: Noisy data was dealt with using Google Snap-to-Road [26]
and/or TrackMatching [27] and when sparsity occurred, gaps were filled using route
finding techniques such as Google Directions API [28] or a variation of Open Street
Maps routing [29]. Route finding methods of augmentation cause an element of sub-
jectivity but provided data suitable to test the network.

Deployment Results: The Android simulator gives closely comparable results as that
with our own data, for example volunteer 1:

Fig. 10. LSTM training session for 7 users (in 9 tests) using Geolife dataset.

Table 1. Volunteer machine learning results

Volunteer Age Gender Phone % accuracy result

1 46 F iPhone 5s 86
2 23 M iPhone 6s 84
3 22 F iPhone 5s 85
4 80 F Android Galaxy S5 89
5 45 M Android Galaxy J3 97
6 54 M Android Galaxy S4 88
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Category 1: Correctly predicted with 42–54% certainty.*
Category 2: Correctly predicted with 97–99% certainty.
Category 3: Correctly predicted with 98–99% certainty.
* routes overlap

It is concluded from this series of tests that the developed machine learning model
provides adequate accuracy in the categorisation of routes. The differing data collection
methods give a valuable insight into how best to develop training data. The method of
transferring learnt information to a mobile phone is particularly interesting as heavy
processing can be carried out on a hub, thus preserving the restricted battery resource of
the mobile device.

4 Situation Appraisal

Real-time appraisal of the situation of the person being monitored is key to ensuring
their well-being. The system is designed with PlwD in mind, so apart from elopement,
issues specific to PwS are considered:

Sleep and Dementia. Circadian rhythm disorders can present as an early component
of the disease. They have significant impact on patients and caregivers and are a ‘major
risk factor for early institutionalisation’ [30, 31]. Symptoms include sleep disturbances,
sun-downing, and agitation. Instances of elopement regularly occur at night. Distur-
bance in sleep of the PwS has a significant effect on care-givers that can lead to their ill-
health [32, 33].

Therefore, monitoring of sleep is highly relevant to this study. Not only should
PwS’s safety outdoors be monitored, but a metric of well-being should be used to
modify system sensitivity. The following section describes the approach and some
technicalities of machine learning in this area. In addition, the initial metrics used in
appraisal of the contextual situation the person being monitored is in are outlined.
Factors such as sleep, and heart rate are here referred to as the ‘pre-disposition’ of the
person. This may be understood as a metric for their well-being.

Data Collection. Although sharing data to a manufacturer’s server breaches the
complete privacy rule, a FitBit fitness monitor is used in this study for convenience.
A dedicated wearable with direct, local data access would allow to preserve privacy and
will be used in the final prototype. A FitBit ‘Ionic’ is one of many devices that are
popular with those who wish to monitor, for example, a keep-fit regime. While wrist
actigraphy is customarily used in sleep research there is evidence that FitBit devices
provide close estimation of total sleep time [34]. Over 2 years of data was collected
from one subject using this device and more than three months of data from six
volunteers using similar models. It was found that the data collected gives a good
representation of actual sleep patterns. A secure authenticated oAuth2.0 API is used to
access data from the FitBit servers, yielding daily data, when visualised is shown in
Fig. 11.

Machine Learning. Machine-learning techniques have been developed that assess the
data, which includes minute by minute heart-rate, steps and sleep records. The
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requirement is that human activity is discretely monitored with automated realisation of
trends. The daily situation is then evaluated and compared to what is deemed ‘normal’
for the individual.

Sleep Period. This is modelled using a Gaussian Distribution in order to give clarity
on the expected duration of sleep. Long term changes to averages in a 3-month moving
period for example using start, finish and duration of sleep may be used in appraisal (cf.
Fig. 12).

While the subject in this study does not suffer from disruption in diurnal rhythm per
se, average sleep per week, and distribution, give an interesting illustration that show
variance in the time-period (cf. Fig. 13).

Results can be categorised using 1r or 2r, i.e. 68% or 98% of the norm (l). Waking
times can be defined as normal (up to 1r), early or late (between 1r and 2r), and very
early or late (>2r). When visualised, trends are apparent, there are outliers that rep-
resent exceptional occurrences in this period.

Fig. 11. Graph of steps, heart rate and sleep records for one day.

Fig. 12. Gaussian distribution of sleep start, finish and duration for 3 months.
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Activity. The same method was applied to step-count in daytime and night periods.
This information is useful in recognising active periods during the night and possible
association of these with daytime sedentary periods possibly in correlation with less
sleep at night.

Heart Rate While Asleep. It is observed in our dataset that in the day, heart rate
closely relates to physical activity such as steps, but while asleep, lack of movement
can be used to provide a period in which it is possible to benchmark and provide
reliable regression analysis. As illustrated in Fig. 11, minute by minute daily heart rate
is collected. When heart-rate while asleep is extrapolated across days and polynomial
regression compared, clear differences are evident. Centroids of five sleep periods are
analysed. The sleep periods are start, early, mid, late and finish. In this way, varying
sleep periods of different lengths are normalised. Agglomerative clustering with simple
Euclidean affinity [35], and k-means cluster analysis [36] are used to give single
centroids for each period. Having results for each period makes it possible to visualise
clusters (cf. Fig. 14), and conclude l and r in any defined period.

Fig. 13. Trends in weekly sleep time for one year ignoring restlessness.

Fig. 14. Five clusters of heart rate readings in one night. l = 63 bpm.
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Centroid data for a date period gives an average of averages (l). If a limit of, for
example, (l + 0.5r) is applied on data available then results can be categorised as
being ordinary (0) or otherwise (1). Currently, only checks for high heart rate are
introduced into the training data, but others could be included in future.

Neural Network. A neural network was developed using Keras and TensorFlow. The
input layer and 2nd hidden layer uses a rectifier activation function with 6 nodes and 9
inputs. These are maximum, minimum, l, r and the five centroid results. A sigmoid
activation function is used on the output layer. The classifier function is compiled using
the ‘adam’ optimiser with ‘binary_crossentropy’ loss, 500 epochs are used in training in
batches of 10. The data is split so that 80% is used in training and 20% as test data.
Experimentation using just over a year of raw-data were useful in that they were able to
recognise the categorisation that had been applied to that data. 94.9% accuracy was
measured for 1 year’s data in 105 s. Using 1 month of data, 85% accuracy was measured
in 24 s, this was then improved to 87% by only supplying centroid measurements i.e.
5 inputs. It was concluded that pre-processing using hierarchical clustering then k-means
and applying a fixed rule for categorisation is reliably recognised in a Neural Network; it
is possible, for this subject, to predict with 87% accuracy given a month of data. The
categorisation of data requires a rule to build training data, but once training has taken
place the resultant tensor is deployed to the phone to process daily readings autono-
mously. The system successfully recognised exceptional heart rate events of the subject.

A fitness tracker that is worn 24 h a day provides an efficient way to collect infor-
mation for this study. The product used is aesthetically pleasing and if a PwS is used to
wearing a smart-watch it should not present a problem in use. Activity and indication of
heart-rate levels may provide a useful indicator of well-being of a person at night.

5 Contextual Factors

When coupled with fundamental contextual factors such as time-of-day, distance from
home, and weather conditions, contextual risk of being at a location outdoors can be
used in decisions regarding preservation of privacy. The following sections summarise
factors used in this study.

5.1 Time and Distance Metric

Time-of-day is easily determined on a computer and is an important factor when
considering risk. Weightings w(t) of time t and distance from home are used for
analysis. A time metric simply uses the hour of day, this is provisionally set as follows:

w tð Þ ¼
1 if 9:00� t\18:00
2 if 6:00� t\9:00 or 18:00� t\21:00
3 if 21:00� t or t\6:00

8
<

:
ð1Þ
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with 1 representing low risk. A distance metric w′(d) for distance d is similarly set at:

w0 tð Þ ¼
1 if 0 km� d\1 km
2 if 1 km� d\5 km
3 if 5 km� d

8
<

:
ð2Þ

These definitions are notional values for use in the experiments which should
initially be decided by the user dyad after considering the questions of when and how
far is normal for the individual PwS.

5.2 Weather Metric

In a similar way, scales of risk can be compiled using weather forecasting applications
such as Dark Sky or OpenWeatherMap. The Dark Sky API [37] offers a full collection
of meteorological conditions and is used in the study. The locality of the subject is
known so forecast data is retrieved for temperature, precipitation and wind in that area.
A rudimentary weather metric is defined using a matrix (see Table 2 where, again, 1
corresponds to low risk).

Figure 15 illustrates how this matrix can be used to conclude an accumulated
weather measurement and how this can be weighted by time of day.

Table 2. Weather metric matrix

Weight Temperature (°C) Precipitation (mm/h) Wind (Beaufort scale)

1 ]15..25] [0..1] [0..5]
2 ]10..15], ]25..27] ]1..4] ]5..11]
3 [∞..15], ]27..∞] ]4..∞] ]11.. ∞]

Fig. 15. Examples of a weather metric at different times of the day.
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The weather metric, time, and categorised location result, when amalgamated with
pre-disposition give a measure of risk. Put simply, if the monitored person is well
rested and is outside on a sunny afternoon in a place which is defined as normal then
perceived risk may be low, an accumulated score is used to derive the overall risk.
When viewed together, these measures can be used to decide the point at which to
override the privacy rule to ensure the monitored person is not harmed. The following
section describes a working application designed to illustrate this.

6 Risk Analysis

Complex methods can be applied to calculate the perceived risk to the PwS; all the
metrics described may be used to adjust the overall sensitivity of the system.

6.1 Inferring an Unknown Location

The Tensorflow Classifier, described in Sect. 3, is used in prediction of where the
subject is in relation to normally visited places. If the subject moves to a new space, the
contextual risk of that activity is assessed using time, distance from home, and fore-
casted weather conditions. In Fig. 16(a) movement along the test trajectory is outside
known areas (shaded grey), distance and known temperature for the area is monitored
(left graph above map). Risk is visualised in the right graph. As distance from home
(start point) reduces, the system perceives this as returning and hence risk decreases. In
Fig. 16(b) a detour outside a known path instigates appraisal and logs this as a new
place, leading to an accumulation of risk, that is reset when the probability of normal
movement increased, as shown in Fig. 16(c).

Fig. 16. (a) Graphed representation of accumulating risk reducing with distance. (b) Risk
increasing when taking a detour from the trained path. (c) Correct categorisation of trajectory
with 99% accuracy – risk is reset.
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The described system is indicative of how machine learning can be used to assess
the ‘normality’ of outdoor movement and changes in sleep and heart rate patterns. The
attraction of using AI in this way is that data learnt can be transferred across platforms
and re-training can take place using a private network overnight. The tensor allows the
mobile device carried by the PwS (in our study a phone) to act as an autonomous agent
that does not require the internet, which has a very significant positive impact on
battery life.

This research introduces a method using an AI agent to continuously assess the
situation and make an ethical decision on overriding the default level of privacy. The
point at which a measure of risk translates into a decision to breach privacy for the
good of the monitored person is the topic of significant and ongoing debate, to which
this technical study contributes. The following section briefly touches on considera-
tions in this field.

7 Ethics

The ethical debate regarding the point at which location data is shared, and with whom
is an interesting area to which our findings contribute. If activity, time, place, or
weather is appraised as high risk or ‘inappropriate’, a prior moral framework that rates
safety and risk versus privacy can justify that recent movement and current location
may be shared. A wellbeing metric can be used to determine system sensitivity. The
sharing of location can take the form of an SMS alert, or an alert via the internet
including a map showing the current position of the PwS to a trusted carer. Continuous
updates can facilitate speedy recovery. In all other cases, the PwS may continue
independently and all data collected is kept private.

Several questions arise:

• When applied to vulnerable persons, who may decide the threshold and who defines
what is ‘inappropriate’?

• Is normality really ‘safe’?
• In production, would an AI-based algorithm implementing a definition of privacy

be trusted?

Our work does not attempt to answer these questions, but provides investigation
into the capabilities of technology. It is found in literature that technological solutions
fail to offer a considered approach to resolve well-known privacy issues. Surveillance
of those who may be deemed vulnerable is considered by many as ethically inappro-
priate, but ‘needs must’ and carers are taking DIY approaches [38], with systems that
use technology not optimised for privacy. This exposes them to potential security
vulnerabilities as described above. We have shown that a fitness tracker can be used to
learn what is normal in terms of heart rate while asleep. This, and other contextual
matrices can be used to modify system sensitivity. A private monitoring system that
uses AI to determine out-of-the-ordinary movement is novel. Since it respects privacy,
this surveillance is not intrusive. Development and implementation of such a system is
likely to provide PlwD with an ethically robust ‘safety net’ that may be used to improve
quality of life. It can increase independent living of the PwS, provide peace of mind to
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the carer, while not requiring data sharing to call centres, or collection on central
servers of tracking providers. Our system achieves secure data control and maintains
data ownership.

8 Conclusion

The research presented shows promising results both in recognition of human geo-
spatial activity and in prediction of movement along normally travelled routes.
A wellness monitor discretely monitors both sleep and heart rate and this can be used to
learn what is normal to enable it to flag exceptions. A cost-effective working prototype
has been produced to demonstrate that deep-learning techniques can be applied to
spatio-temporal data after programmatically categorising normally travelled trajecto-
ries. It has been found that when only part of a trajectory has been travelled, likely
destinations can reliably be inferred. The application is designed to restrict personal
information propagation to a home network and the limitations of computing capacity
do not detract from the quality of results.

The World Health Organisation recognises that surveillance is intrusive, that the
human rights of PwS are sometimes denied and that abuse of liberties is present.
Locking doors to stop a person eloping violates their human right to liberty, but
surveillance normally results in sharing of personal information, so is contrary to their
human right to private life. Risk, when deviations from known places are sensed, is
assessed automatically on a smart-phone in the context of time, extent and weather
conditions.

Human rights (of private life and liberty) of the person with symptoms will be
respected until the point at which it is judged that a prior moral argument of safety and
risk supersedes the importance of privacy. If this happens, alerts containing location
and recent movements are shared with an assigned carer, thus facilitating swift
recovery.

The potential of the AI system described here is considerable. It is likely that many
who value the importance of privacy highly will welcome a surveillance system that
monitors but does not divulge detail. Predictions of likely trajectory of movement using
real-time location data is novel, as is the concept of private surveillance as described.
Availability of an internet connection or at least cellular coverage to deliver alerts is a
requirement for implementation.

Ongoing work includes the processing of data from recruited volunteers, it is
difficult to assess how the data-sets used differ from that which could be collected from
PwS, subject to gaining the appropriate ethical approvals trials will embark with
recruited PwS. The assessment of complex and intertwined trajectories and comparison
of different scales of movement is currently under investigation. Findings will con-
tribute to further refinement of the methodology after consultation with health pro-
fessionals and PlwD. In an ideal scenario this would be used for prolonged
independence of PwS, alleviation of a 24/7 burden of care, and could delay the
necessity of moving the PwS to a care home.

Ethical Surveillance: Applying Deep Learning and Contextual Awareness 45



Acknowledgements. Knowledge Economy Skills Scholarships (KESS) is a pan-Wales higher
level skills initiative led by Bangor University on behalf of the HE sectors in Wales. It is part
funded by the Welsh Government’s European Social Fund (ESF) convergence programme for
West Wales and the Valleys and is supported by the industrial partner SymlConnect Limited.

References

1. Williams, S.,Müller, B.: Agents and dementia—smart risk assessment. In: Criado Pacheco, N.,
Carrascosa, C., Osman, N., Julián Inglada, V. (eds.) EUMAS/AT-2016. LNCS (LNAI), vol.
10207, pp. 277–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59294-7_22

2. Williams, S., Ware, J.M.: Is the use of ‘mobile computer technology’ appropriate for
locating people with dementia? In: 2015 Proceedings of GIS Research UK (GISRUK),
pp. 659–664. Figshare, Leeds (2015). https://doi.org/10.6084/m9.figshare.1491375

3. Read, S., Toye, C., Wynaden, D.: Experiences and expectations of living with dementia: a
qualitative study. Collegian 24(5), 427–432 (2017). https://doi.org/10.1016/j.colegn.2016.
09.003

4. Silverstein, N.F.: Dementia and Wandering Behavior: Concern for the Lost Elder. Springer,
New York (2006). ISBN 0-8261-0272-7

5. McShane, R., et al.: Getting lost in dementia: a longitudinal study of a behavioral symptom.
Int. Psychogeriatr. 10(03), 253–260 (1998). http://www.ncbi.nlm.nih.gov/pubmed/9785146

6. Ali, N., et al.: Risk assessment of wandering behavior in mild dementia. Int. J. Geriatr.
Psychiatry 31, 367–374 (2016). https://doi.org/10.1002/gps.4336

7. Martyr, A., et al.: Living well with dementia: a systematic review. Alzheimer’s Dement.
J. Alzheimer’s Assoc. 13(7), 1567–1568 (2017). https://doi.org/10.1016/j.jalz.2017.07.725

8. Cipriani, G., Lucetti, C., Nuti, A., Danti, S.: Wandering and dementia. Psychogeriatrics 14,
135–142 (2014). https://doi.org/10.1111/psyg.12044

9. Riikonen, M., Mäkelä, K., Perälä, S.: Safety and monitoring technologies for the homes of
people with dementia. Gerontechnology 9(1), 32–45 (2010). https://doi.org/10.4017/gt.2010.
09.01.003.00

10. Mathews, L.: Data From 540,000 GPS Vehicle Trackers Leaked Online forbes.com (2017).
https://www.forbes.com/sites/leemathews/2017/09/22/data-from-540000-vehicle-tracking-
devices-leaked-online/#40b9c009274b. Accessed 19 Sept 2018

11. Trackmageddon website: Multiple vulnerabilities in the online services of (GPS) location
tracking devices (2018). https://0x0.li/trackmageddon/. 18 Aug 2018

12. World Health Organisation: Ensuring a human rights-based approach for people living with
dementia (2015). The need for a human-rights based approach: http://www.who.int/mental_
health/neurology/dementia/dementia_thematicbrief_human_rights.pdf. Accessed Mar 2018

13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.
org/10.1038/nature14539

14. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Networks 61, 85–
117 (2014). https://doi.org/10.1016/j.neunet.2014.09.003

15. Brownlee, J.: How to Implement the Backpropagation Algorithm From Scratch in Python
(2016). Machine Learning Mastery: https://machinelearningmastery.com/implement-
backpropagation-algorithm-scratch-python/. Accessed Mar 2018

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997). https://doi.org/10.1162/neco.1997.9.8.1735

17. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone
accelerometers. ACM SIGKDD Explor. Newsl. 12(2), 74–82 (2010). https://doi.org/10.
1145/1964897.1964918

46 S. Williams et al.

http://dx.doi.org/10.1007/978-3-319-59294-7_22
http://dx.doi.org/10.6084/m9.figshare.1491375
http://dx.doi.org/10.1016/j.colegn.2016.09.003
http://dx.doi.org/10.1016/j.colegn.2016.09.003
http://www.ncbi.nlm.nih.gov/pubmed/9785146
http://dx.doi.org/10.1002/gps.4336
http://dx.doi.org/10.1016/j.jalz.2017.07.725
http://dx.doi.org/10.1111/psyg.12044
http://dx.doi.org/10.4017/gt.2010.09.01.003.00
http://dx.doi.org/10.4017/gt.2010.09.01.003.00
https://www.forbes.com/sites/leemathews/2017/09/22/data-from-540000-vehicle-tracking-devices-leaked-online/#40b9c009274b
https://www.forbes.com/sites/leemathews/2017/09/22/data-from-540000-vehicle-tracking-devices-leaked-online/#40b9c009274b
https://0x0.li/trackmageddon/
http://www.who.int/mental_health/neurology/dementia/dementia_thematicbrief_human_rights.pdf
http://www.who.int/mental_health/neurology/dementia/dementia_thematicbrief_human_rights.pdf
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://machinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/
https://machinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1145/1964897.1964918
http://dx.doi.org/10.1145/1964897.1964918


18. Ramamurthy, S.R., Roy, N.: Recent trends in machine learning for human activity
recognition—a survey. Data Min. Knowl. Discov. 8, 1–19 (2018). https://doi.org/10.1002/
widm.1254

19. Arifoglu, D., Bouchachia, A.: Activity recognition and abnormal behaviour detection with
recurrent neural networks. In: 14th International Conference on Mobile Systems and
Pervasive Computing (MobiSPC 2017) (2017). Procedia Comput. Sci. 110, 86–93. https://
doi.org/10.1016/j.procs.2017.06.121

20. Batista, E., Borras, F., Casino, F., Solanas, A.: A study on the detection of wandering
patterns in human trajectories. In: 6th International Conference on Information, Intelligence,
Systems and Applications (IISA), pp. 1–6. IEEE, Corfu (2015)

21. Maneewongvatana, S., Mount, D.M.: Analysis of approximate nearest neighbor searching
with clustered point sets. CoRR arXiv:cs/9901013v1 (1999)

22. SciPy.Org: Interpolation (scipy.interpolate). https://docs.scipy.org/doc/scipy/reference/
interpolate.html. Accessed 17 Mar 2018

23. Google: Encoded Polyline Algorithm Format. Google Maps Api: https://developers.google.
com/maps/documentation/utilities/polylinealgorithm?csw=1. Accessed 17 Mar 2018

24. Zheng, Y., et al.: Geolife GPS trajectories 1.1. In: Geolife GPS Trajectory Dataset - User
Guide. Microsoft Research (2011). https://www.microsoft.com/en-us/research/publication/
Geolife-gps-trajectory-dataset-user-guide. Accessed 18 Sept 2018

25. González, M.C., Hidalgo, C.A., Barabási, A.: Understanding individual human mobility
patterns. Nature 453, 779–782 (2008). https://doi.org/10.1038/nature06958

26. Google Maps Platform: Snap to Roads. Roads API: https://developers.google.com/maps/
documentation/roads/snap. Accessed 18 Sept 2018

27. Fabrice Marchal: TrackMatching API. TrackMatching Website: https://mapmatching.3scale.
net/mmswag. Accessed 18 Sept 2018

28. Google Directions API: Google Directions API. Google Maps: https://developers.google.
com/maps/documentation/directions/start. Accessed 18 Sept 2018

29. Lambertus: YOURS Routing_API. Yet another OpenStreetMap Route Service: https://wiki.
openstreetmap.org/wiki/YOURS#Routing_API. Accessed 18 Sept 2018

30. Laure, P.-D., Yammine, P., Bastuji, H., Croisilef, B.: Sleep and Alzheimer’s disease. Sleep
Med. Rev. 19, 29–38 (2015)

31. Hope, T., et al.: Predictors of institutionalization for people with dementia living at home
with a carer. Int. J. Geriatr. Psychiatry 13(10), 682–690 (1998)

32. McCurry, S., Logsdon, R., Teri, L., Vitiello, M.: Sleep disturbances in caregivers of persons
with dementia: contributing factors and treatment implications. Sleep Med. Rev. 11(2), 143–
153 (2007)

33. Brodaty, H.D.: Family caregivers of people with dementia. Dialogues Clin. Neurosci. 11(2),
217–228 (2009). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181916/. Accessed 17
Apr 2018

34. Keill, A.K., et al.: Validity of wearable fitness trackers on sleep measure. Med. Sci. Sports
Exerc. 48(5S), 10 (2016)

35. scikit-learn developers: sklearn.cluster.AgglomerativeClustering. http://scikit-learn.org/
stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html. Accessed 18 Sept
2018

36. sklearn.cluster developers: sklearn.cluster.KMeans. scikit-learn: http://scikit-learn.org/stable/
modules/generated/sklearn.cluster.KMeans.html. Accessed 18 Sept 2018

37. Dark Sky Website: Dark Sky Weather API. https://darksky.net/dev. Accessed 18 Sept 2018
38. Gibson, G., et al.: The everyday use of assistive technology by people with dementia and

their family carers: a qualitative study. BMC Geriatr. 15, 89 (2015). https://doi.org/10.1186/
s12877-015-0091-3

Ethical Surveillance: Applying Deep Learning and Contextual Awareness 47

http://dx.doi.org/10.1002/widm.1254
http://dx.doi.org/10.1002/widm.1254
http://dx.doi.org/10.1016/j.procs.2017.06.121
http://dx.doi.org/10.1016/j.procs.2017.06.121
http://arxiv.org/abs/cs/9901013v1
https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://developers.google.com/maps/documentation/utilities/polylinealgorithm?csw=1
https://developers.google.com/maps/documentation/utilities/polylinealgorithm?csw=1
https://www.microsoft.com/en-us/research/publication/Geolife-gps-trajectory-dataset-user-guide
https://www.microsoft.com/en-us/research/publication/Geolife-gps-trajectory-dataset-user-guide
http://dx.doi.org/10.1038/nature06958
https://developers.google.com/maps/documentation/roads/snap
https://developers.google.com/maps/documentation/roads/snap
https://mapmatching.3scale.net/mmswag
https://mapmatching.3scale.net/mmswag
https://developers.google.com/maps/documentation/directions/start
https://developers.google.com/maps/documentation/directions/start
https://wiki.openstreetmap.org/wiki/YOURS#Routing_API
https://wiki.openstreetmap.org/wiki/YOURS#Routing_API
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181916/
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://darksky.net/dev
http://dx.doi.org/10.1186/s12877-015-0091-3
http://dx.doi.org/10.1186/s12877-015-0091-3


Active Learning for Conversational
Interfaces in Healthcare Applications
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Abstract. In automated health services based on text and voice inter-
faces, there is a need to be able to understand what the user is talking
about, and what is the attitude of the user towards a subject. Typical
machine learning methods for text analysis require a lot of annotated
data for the training. This is often a problem in addressing specific and
possibly very personal health care needs. In this paper, we propose an
active learning algorithm for the training of a text classifier for a con-
versational therapy application in the area of health behavior change. A
new active learning algorithm, Query by Embedded Committee (QBEC),
is proposed in the paper. The methods are particularly suitable for the
text classification task in a dynamic environment and give a good per-
formance with realistic test data.

1 Introduction

The application context of the current paper is the development of automated
therapeutic conversational interventions for behavior change [2], in particular,
related to substance abuse. Counseling is known to be the most effective inter-
vention for many lifestyle diseases, but counseling sessions are expensive for
the health care system and often inconvenient for patients. Automation of the
effective mechanisms of counseling by automated agents would lead to better
coverage and cost savings. In a typical application, a conversational agent would
implement some elements of the Cognitive Behavioral Therapy [9]. Typically, the
agent would be available through a social media platform possibly with a speech
interface. The text understanding system should be able to detect the topics and
sentiment structures relevant to the control of the conversation according to the
selected therapeutic strategy.

Recurrent neural networks are popular for text understanding, but they
require a large corpus of labeled training data, which is difficult to collect. Also,
natural language communication is an example of a non-stationary learning envi-
ronment where the evolution in the conversational culture over time and pop-
ulations require local customization and maintenance of the classifier, possibly
even at the level of an individual customer. The client talk related to a partic-
ular substance may be very specific and patients may even develop a personal
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vocabulary to discuss about the addiction. Also, the content is naturally very
sensitive and it is therefore desired that the client talk should not be uploaded
to a cloud processing platform but processed locally in the client device.

One approach for the maintenance and continuous improvement of a classifier
in the production environment is to use active learning (AL) methods [3,16]. In
pool-based AL methods, only a small part of the available content is manually
labeled and used to train the classifier. A typical approach is to use a committee
of classifiers [12] to select items that are difficult to classify based on the current
statistics. This approach works well in many conventional problems but often
leads to robustness problems that are common in many deep learning architec-
tures [6]. Also, while the classification of client talk may be, at least in the future
Edge AI technologies, performed the client device, the detection of novel training
content selection based in AL in a client device is significantly more challenging.

In this paper, we demonstrate an application of active learning in the clas-
sification of short text messages, tweets, from a social media platform using a
text classifier based on Recurrent Neural Networks, RNNs [8]. We propose an
algorithm for the pool-based selection where the committee method is applied
in a latent variable space. In particular, the committee is embedded in a space
spanned by the class likelihoods of the last classifier. In this paper, the method is
called Query by Embedded Committee, QBEC. The method is computationally
significantly lighter than the conventional Query-by-Committee, QBC, method.

2 Sample Selection Methods

In pool-based active learning [16] new samples are selected to the training data
from a large pool of unlabeled content. The selection may be based on different
principles and aim at selecting the most informative or representative samples
[10,17], reduce the variance of the classification errors [3], or diameter in a space
spanned by alternative classifiers [4].

The AL process starts with an initial set P0 of labeled tuples of K feature
vectors xk and corresponding labels lk, i.e.,

P0 = {xk, lk}, k = 0, · · · ,K − 1 (1)

The Initial classification model M0 is developed using P0. Next, a new set S1 is
selected from the pool. The samples are manually labeled by a human oracle, for
example, a health counselor. The new training data P1 is produced by adding
the samples S1 to P0. The model is updated and deployed. The same update
cycle can then be continuously repeated.

The selection of the next batch Sj+1 of B samples can be based on many
different criteria. The minimum requirements for a jth iteration are

1. novelty: Pj ∩ Sj+1 = ∅
2. richness: xn �= xm,∀n,m ∈ Sj+1

i.e., the B new samples in Sj+1 should be novel and they should be different
from each other.
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2.1 Query by Committee

In the popular Query-by-Committee (QBC) method [12] the novelty condition is
addressed by measuring the disagreement in a committee of R different classifiers
Cr trained using Pj .

dj = D [C0(xk), C1(xk), · · · , CR(xk)] (2)

where D[] is some measure to compute the disagreement.
In a typical case, the disagreement is based on vectors of class likelihoods

given by the classifiers pr(xk) = Cr(xk). In a committee of two classifiers, the
disagreement can be defined as a norm of the difference dk = |p0(xk) −p1(xk)|.

Algorithm 1. Query by Committee
Require: Label the initial data set Pj and set j = 0
1: repeat
2: Train the main classifier model Mj using Pj data
3: Train the committee classifiers C0, C1 using Pj data
4: Compute the disagreement dk ∈ S in the new batch
5: Pick K samples from S which has the highest disagreement using the knockout

neighborhood penalization described above.
6: Labeling of the new samples by a human expert
7: Add new samples to the training data Pj+1, j = j + 1
8: until Stopping criteria are met.

The committee often disagrees on very similar samples, and therefore the
basic algorithm does not provide the required richness for the new sample col-
lection. A pareto optimal solution is needed to meet both the novelty and richness
conditions. The richness is related to the nearest neighbor problem (NN). The
k-nearest-neighbor searching problem (kNN) is to find the k -nearest points in
a dataset X ⊂ R

d containing n points to a query point q ∈ R
d under some

norm. There are several effective methods for this problem when the dimension
d is small (e.g. 1, 2, 3), such as Voronoi diagrams [18] or Delaunay triangula-
tion [5]. When the dimension is moderate (e.g., up to the 10’s), it is possible to
use kd trees [8] and metric trees [11]. If the dimension is high, then Locality-
Sensitive Hashing (LSH) is the very popular method used in applications. In
the current paper, we use an iterative algorithm where the new samples that are
close to already selected samples are penalized. Experiments with other sampling
principles is a part of future work.

2.2 Query by Embedded Committee

The selection of the new samples based on a disagreement of a committee
assumes a certain variability among the committee members [12]. This is typi-
cally achieved by using different initialization of the classifiers Cj , or by using
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different classifier prototypes or kernels. In the case of a complex model, for
example, based on multiple layers of memory networks and dense layers, the
training of a committee can be a large effort and may take, for example, several
hours of processing time in a GPU. In principle, the training of each committee
member model takes as much time as the training of the main model itself. How-
ever, the final scoring of the network is light and can be performed, for example,
in a smartphone or another end-user device.

In this paper, the proposed method is to use the committee in another fea-
ture space derived from the outputs of the model. A multi-class classifier is often
developed using the one-hot encoding principle where the classifier produces a
vector of class likelihoods pr(xk) = M(xk) for a feature vector xk. The likeli-
hoods represent the class predictions for the testing data. In a geometric sense,
the likelihood vectors pr(xk) span an orthonormal space, a class space of the
current classifier, where each axis represents a class.

The proposed method is a variation of the QBC method where the selection
task is performed in the class space of the current classifier. The class space is
a metric low-dimensional space, and there the committee can be based on con-
ventional classification tools, e.g., based on a random forest or another relatively
light algorithm. The training of the committee of classifiers and testing of them
on a new data can be performed in an end-user device. Therefore, this enables
local active learning of the classification model.

The processing steps of the proposed method are described in Algorithm 2
below.

Algorithm 2. Query by Embedded Committee (QBCSC)
1: repeat
2: Use classifier Mj to get class likelihood vectors for data pr(xk)∀xk ∈ Pj

3: Use QBC method defined in the class space to select the new samples for labeling.
4: Add new samples to the training data Pj+1, j = j + 1
5: until Stopping criteria are met.

In this paper we call the modified method Query by Embedded Commit-
tee (QBEC), to separate it from the conventional QBC. In the current paper,
the committee is embedded in the class space. Naturally the same can also be
performed in another output space, for example, corresponding to intermediate
layers of the network.

2.3 Computational Load

QBEC method works faster then QBC due to hypothesis space reduction.
Namely, it has been shown in [7] that the number of queries for labels that the
algorithm will make is O(d

g log( 1ε )), where d is the Vapnik-Chevonenkis dimen-
sion, g is some constant, ε is required accuracy.

If QBC works in R
n, then d = n + 1 (as the hypothesis space is divided by

set of oriented hyperplanes). Simultaneously, QBEC works in R
k, where k � n
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is the dimension of a space which is spanned by the class likelihoods of the
current classifier. So, the corresponding Vapnik-Chervonenkis dimension will be
m = k + 1. So, the complexity of QBEC is O(m

g log( 1ε )) < O(d
g log( 1ε )).

3 Experiments

Let us start with a synthetic example to illustrate the differences between QBC
and the proposed QBEC method, and their benefits over random sampling from
the pool.

3.1 Synthetic Example

The original synthetic data is shown in Fig. 1(a) with two classes illustrated by
red crosses and blue circles. A random forest (RF) classifier was designed for
the set P0 with 100 labeled samples. In the QBC method a committee of two
RF classifiers was designed using a different initialization. The selection of new
samples was based on selection of the samples with the largest difference in the
class likelihood values between the classifiers. Figure 1(b) shows an example of a

Fig. 1. (a) test data, (b) QBC samples, (c) random samples, (d) QBEC sampling. The
x and y axes are arbitrary coordinates. (Color figure online)
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QBC sampling. A random sampling used in the reference condition is illustrated
in Fig. 1(c). The QBC method clearly takes more samples from the class borders
that the random sampling method. The QBEC method also focuses on the class
borders but puts more emphasis on the borders between classes rather than
outer borders.

The accuracy in the training in the three methods is shown in Figs. 2(a) and
2(b). The QBC and QBEC have a similar performance in the first batches, but
the accuracy of QBEC method keeps improving at the point where the perfor-
mance of QBC saturates. This may be understood in this case by comparing the
selections in the two methods in Fig. 1(b). In the QBCSC the sampling focuses
on borders between the classes while in the conventional QBC solution a large
number of samples are selected from the outskirts of the feature space which is
less relevant for the class confusions measured by the accuracy.

Fig. 2. Accuracy in an iterative active learning experiment using the three methods.
The straight green line corresponds to the accuracy of a single classifier trained with
the full set of 600 labeled samples. Batch sizes are (a) 1 (b) 10 (Color figure online)

4 Experiment with Tweets

In this paper, the content is from Twitter, which is a popular short-text messag-
ing platform. The content was selected by keywords that relate to smoking and
tobacco use. In the typical flow of content, the test system gave approximately
1000 tweets per day when excluding repetitions (re-tweets) of the same message
(Fig. 3).

In the current paper the content is manually classified into three classes: sus-
tain talk, change talk, and neutral communication. The two first classes are con-
sidered important elements in many therapeutic techniques for substance abuse,
such as CBT [9] or Motivational Interviewing (MI) [14]. The target behavior is
to reduce or quit smoking. Sustain and change talk contains all client talk that
speaks against or for the target behavior, respectively. The neutral class contains
all other content with the same keywords. The data contains all English language
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Fig. 3. Architecture of the deep learning neural network used for text classification.
On the left: the general architecture of the deep learning neural network. On the
right: the input layer and the first Bi-LSTM Layer. The second Bi-LSTM copies the
first one, except the input are not embeddings, but the output of the first Bi-LSTM
layer. See Table 1 for the number of units and other parameters.

messages from Oct. 2017 until the end of Jan 20181. There are cultural elements
in the data. For example, the tweets from October contain messages that relate
to the Stoptober smoking cessation campaign in the UK and other countries, in
December there are tweets from people who plan to quit for January, and there
are several referrals to a popular song called cigarette daydreams.

4.1 Text Classification System

In this paper, we use a typical architecture for a text classifier based on a state-of-
the-art deep learning RNN tools. The text classifier model has six components,
presented in Table 1.

Table 1. Architecture of the deep learning neural network used for text classification

Layer Parameters

Input: embedding layer Google SGNS [13], Stanford GloVe [15]

Bi-LSTM 64 LSTM units

Dropout 0.2

Bi-LSTM 32 LSTM units

Hard attention layer [1]

Output: dense layer Regular dense layer with softmax activation

1 The ethical and legal approval of the data collection was granted, and handled
according to, by the Internal Committee for Biomedical Experiments (ICBE) of
Philips.
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The embedding layer is meant to map each word of the input text into
a low dimensional embedding vector, while the bidirectional layers get higher
level features from the input, dropout being used for regularization. The hard
attention layer is used for global re-weighting of hidden layers, and the desired
class label is chosen using a regular dense layer with softmax activation.

5 Results

The initial classifier C(0) was trained using a manually classified set of 2398
tweets. Examples of typical tweet types and their counts in the initial training
set are shown in Table 2. Also, an independent test data set with manually
labeled tweets was used for testing. The performance of C(0) in an independent
training set is poor; the accuracy is barely above 0.5. In the following experiment,
the active learning process was executed sequentially so that the current dump
of tweets about the target topic was downloaded once a day, classified using
classifier C(n). Approximately one percent, typically around 30 tweets, were
selected to the manual labeling using one of the selection methods. The samples
were manually labeled and included in the training set, and subsequently used
in the training of the next model C(n+1).

Table 2. Examples of tweets and their counts in the initial training set.

Talk type Example #samples

Change talk Two weeks without smoking! 246

Sustain talk I’m having a cigarette 514

Neutral A man was smoking outside 1651

The latent space representation formed by the outputs of likelihoods at the
output layer of the network is illustrated in Fig. 4. The three talk types are
separated in the latent variable space.

The numbers of new labeled samples resulting from daily 23 iterations in the
three methods are illustrated in Figs. 5a–c. First, it seems that random selection
rarely picks samples from change talk category while those are much more com-
mon in the two other methods. The accuracy in the three methods, respectively,
is shown in Fig. 5d. In the random selection the accuracy does not improve over
the iterations, but in the two other methods, there is a clear improving trend.
Unlike the results with the checker board data, there is not really a difference in
accuracy between QBC and QBEC, although, the computational requirements
and processing time in QBEC is obviously significantly lower than in QBC.
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Fig. 4. Example of three classes of tweets in the 3D latent variable space.

Fig. 5. (a) Random selection (b) QBC, and (c) QBEC, (d) accuracy in the three
methods based on correct detections. X-axis represents the iteration number (days of
downloaded tweets). One data point in QBC curve is missing due to an error in data
handling.
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6 Conclusions

In this paper, we propose a new algorithm for active learning in the application
of text classification in the application of health counseling. The training of a
classifier for a specific complex talk type requires a large labeled database which
is typically difficult, expensive, and time-consuming. There may also continuous
concept drift in the target area, for example, due to various cultural influences.

A popular approach for active learning is to use a disagreement in a com-
mittee of classifiers to select samples for manual labeling and inclusion into
the training. These methods are commonly called Query-by-Committee (QBC)
methods. The QBC methods require that multiple classifiers are trained for the
task. In applications where the classifier is complex, a.e.g, a deep neural net-
work model, and requires a long training time this may be problematic. In the
method introduced in the current paper, the committee selection is performed
in a low dimensional space spanned by the likelihoods of the current classifier
model. In this case, the actual classifiers of the committee can be fairly simple.
The method is called Query-by-Embedded-Committee (QBEC).

We demonstrate the performance of QBEC first using synthetic data. The
performance of QBEC turns out to be superior to the random selection of train-
ing samples and it, surprisingly, exceeds the performance of QBC. One may
speculate that this is because the embedding based on the prediction likelihoods
inherently zooms the committee to zoom into areas where the disagreement is
largest.

In a second experiment, we trained a complex classifier for classification
of tweets related to smoking behavior into three classes. The classes represent
change talk, sustain talk, and neutral communication of the talker about tobacco
use. This is a very challenging classification problem requiring a large labeled
database. In the active learning experiment, 1% of tweet content downloaded on
each day was manually labeled and included in the new model. It was shown
that QBC and QBEC outperform random selection of samples. However, the
results of the two methods are similar. However, it should be noted that the
computational of QBEC is significantly lower than in QBC. Therefore, the sam-
ple selection in QBEC could be performed even in a customer device such as a
smartphone.
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Abstract. The full comprehension of how topics change within psy-
chotherapeutic conversation is key for assessment and therapeutic strate-
gies to adopt by the counselor to the patients. That might enable artificial
intelligence (AI) approaches to recommend the most suitable strategy
for a new patient. Basically, understanding the topics dynamics of pre-
vious cases allows choosing the best therapy to perform for new patients
depending on their current conversations.

In this paper we leverage Partially Labeled Dirichlet Allocation with
the goal to detect and track topics in real-life psychotherapeutic conver-
sations. On the one hand, the detection of topics allows us identifying
the semantic themes of the current therapeutic conversation and pre-
dicting topics ad-hoc for each talk-turn between the patient and the
counselor. On the other hand, the tracking of topics is key to understand
and explore the dynamics of the conversation giving insights and tips on
logic and strategy to adopt.

We point out that the entire conversation is structured and modeled
according to a sequence of ongoing topics that might propagate through
each talk-turn. We present a new method that combines topic modeling
and transitions matrices that gives important information to counselors
for their therapeutic strategies.

Keywords: Conversational AI · Psychotherapeutic conversations ·
Topics detection and modeling ·
Partially Labeled Dirichlet Allocation · Transitions matrices

1 Introduction

Analysis and research of therapeutic conversations is a growing domain of
research: technological advances and innovations in areas such as Natural Lan-
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guage Processing (NLP), Semantic Web, Big Data, Artificial Intelligence and
healthcare have triggered such a growth [13].

Humans interactions have been targeted and machine learning approaches
have been employed to detect unusual patterns. An example, authors in [6]
aimed to infer predictive models to structure task-oriented dialogs.

Cognitive Behavior Therapy (CBT) entails therapeutic conversational meth-
ods which consist of therapies that aim at treating mental health problems,
emotional challenges, sleeping difficulties, relationship problems, drug and alco-
hol abuse, anxiety and depression. Such therapies tackle and try to change the
way of thinking and behaving of patients. Figure 1 shows a diagram of the CBT
rationale1.

Fig. 1. The diagram depicts how emotions, thoughts and behaviors are related to each
other. The inner triangle represents CBT’s tenet that all humans’ core beliefs can be
summed up in the three mentioned categories.

More in detail, these therapeutic methods work by changing people’s atti-
tudes and their behavior by focusing on the thoughts, images, beliefs and atti-
tudes that are held (a person’s cognitive processes) and how these processes
relate to the way a person behaves, as a way of dealing with emotional problems.
The treatment is relatively short, taking five to ten months for most emotional
problems. Patients usually attend one session per week where each session lasts
less than 1 h. It is usually a face-to-face interaction between the counselor and the
patient where the former needs to understand patient’s feelings, e.g. confident,
anxious, or depressed, as well as the causes of his feelings.

The conversation consists of a series of spoken sentences. Each is character-
ized by a certain topic: this creates a thematic structure to the whole therapeutic

1 Image taken from Wikipedia https://en.wikipedia.org/wiki/Cognitive behavioral
therapy.

https://en.wikipedia.org/wiki/Cognitive_behavioral_therapy
https://en.wikipedia.org/wiki/Cognitive_behavioral_therapy


Analysis of Topic Propagation in Therapy Sessions 61

conversation. The counselor employs techniques and strategies coming from clin-
ical practice: he/she reacts to the patient and drives the conversation towards
certain themes in order to tackle and solve the psychological problems of the
patient.

It follows that the analysis and modeling of these human-to-human dialogues
may be useful for the development of AI-based dialogue systems able to recom-
mend the most appropriate therapeutic strategy to adopt by the practitioner
for a new patient [6]. In such a context, a subset of the NLP research is related
to the problem of topic detection and tracking (TDT), which has been widely
focused and studied and combined with AI methods in the literature [15]. One
goal of the TDT is the identification of the new topics in a conversation and
their reappearance. Authors of [12] provide extensive background about that.

In this paper we focus on the conversation between counselor and patient
and model the propagation of the topics identified during a given therapeutic
conversation by using Partially Labeled Latent Dirichlet Allocation (PLDA) [21].

Traditional Latent Dirichlet Allocation (LDA) is one of the most popular
topic model in the literature. LDA is based on a bag-of-words approach and is
a generative statistical model that allows sets of observations to be explained
by unobserved groups that explain why some parts of the data are similar.
Our choice reflected on PLDA because the data we have used in our study are
partially labeled and PLDA tends to achieve higher precision than traditional
LDA on them.

The dataset we have used consists of 1729 real-life transcribed psycho-
therapeutic conversations, each made of different talk-turns. Further details
about the data will be given in Sect. 4. Our approach works as it follows:

– First, we identify the most common topics used within the dataset.
– Then, the PLDA model takes as input the given conversations and detects

significant words for each topic.
– The trained PLDA model is thus able to determine the potential topic

addressed in each talk-turn.
– Within each conversation, the talk-turns flow is then transformed into a

sequence of potential topics.
– Finally, for each topic, the semi-supervised PLDA topic model is evaluated

by computing its coherence over the most significant words.

Our ultimate goal is to detect the key patterns within therapeutic conver-
sations and to identify the topic switches according to the adopted dialogue
strategy and topics propagation dynamics. In our method we are able to distin-
guish the topic changes driven by the counselor and the ones prompted by the
patient. Two topic transition matrices are constructed accordingly to evaluate
the two different topic changes. These matrices provide a numerical summary of
the conversation and can be exploited to obtain tips for the overall understanding
of the topics propagation dynamics.

This paper is further structured as it follows. Related works and literature
background on automatic topic detection methods and therapeutic dialogue
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analysis are discussed in Sect. 2. LDA-based topic modelling algorithms are pre-
sented in Sect. 3, where we describe how they work, specifying their main charac-
teristics and giving details about them. Section 4 includes details of the dataset
we have employed for the experiments and the preprocessing we have performed
on that. Our approach on TDT is presented in Sect. 5. Section 6 includes details
related to the evaluation of our approach. Finally Sect. 7 ends the paper with
conclusions and directions where we are headed.

2 Related Work

There is earlier work in the area of computational analysis of therapeutic sessions
using topic modeling techniques, see, e.g., [5,17]. However, there seems to be few
earlier works on dynamics of topic propagation in those conversations.

Digitalizing spoken interactions and recommending specific treatments are
two current trends within the therapeutic conversations research. They use effec-
tive NLP technologies with the goal of extracting knowledge in text form from
consultation transcripts. For example, work in [3] discussed an idea to combine
communication theory used in healthcare and a visualization text analytic tech-
nique called Discursis, with the goal of analyzing the conversational behavior in
consultations. More specifically, Discursis2 is a computer-based tool for analysing
human communication that can assist practitioners in understanding the struc-
ture, information content, and inter-speaker relationships that are present within
input data. Discursis processes conversation transcript data to determine the
conceptual content of each conversation turn. It offers visualizations and reports
on the above information such as a concept map of the communication con-
tent, communication channels, concept recurrence matrix, score cards for each
conversation in terms of, e.g., leader, follower, innovator, promoter.

The classification of conversations is not an easy task in medical consultations
as it includes intense performance requirements, it is time-consuming and it
suffers from non-standardized annotating systems. Authors of [14] presented
an automated annotating system which leverages a Labeled LDA model [20]
to assess the relationships between a certain conversation and its annotations.
Annotations are related to the subjects symptoms present within the therapeutic
conversations. The system is therefore able to identify the relevant annotations
in separate talk-turns.

LDA also been used in a different way by authors in [16]. In particular, they
have analysed a LDA topic model [8] as an automatic annotator tool for the
topics and therapy prediction of the conversation. One assumption made by the
authors was related to the fact that the automated detection of topics can be
used to predict factors such as patient satisfaction and ratings of the therapy
quality rather than predict the symptoms. The employment of the Labeled LDA
and the LDA indicates that the identification and tracking of topics can provide
important information to clinicians. They can use such information to better
assist the patients and improve their treatments.
2 http://www.discursis.com/.

http://www.discursis.com/
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Other authors analysed human communications in [2] where they developed a
discourse visualization system which converted transcribed conversations to time
series, a text analysis model and a set of quantitative metrics to detect and assess
significant features. Their system was able to identify the topics adopted in a
certain discussion by the participants and generate reports for each conversation.

These metrics can be seen as an extension of recurrence quantification anal-
ysis into the symbolic domain. The proposed technique may be used to monitor
the state of a communication system and inform about interaction dynamics,
including the level of topic consistency between participants; the timing of state
changes for the participants as a result of changes in topic focus; and, patterns
of topic proposal, reflection, and repetition.

Other researchers proposed one more use of the LDA model. In particular
they adopted a conceptual dynamic latent Dirichlet allocation (CDLDA) model
for TDT in conversational text content [24]. The differences between traditional
LDA and the CDLDA model is that whereas the former employs bag-of-words
techniques to identify topics, the latter considers information such as speech
acts, semantic concepts, and hypernym definitions in E-HowNet [11]3. The pro-
posed method extracts the dependencies between speech acts and topics, where
hypernym information makes the topic structure more complete and extends
the abundance of original words. Results performed by the researchers propos-
ing this idea indicated that the approach outperforms the conventional Dynamic
Topic Models [7], LDA, and support vector machine models, achieving very high
performance for TDT.

Work performed in [1] includes OntoLDA for the task of topic labeling.
OntoLDA adopts an ontology-based topic model and a graph-based topic label-
ing method. Basically, the topic labeling method is based on the ontological
meaning of the concepts included in the discovered topics. This approach indi-
cated each topic as a multinomial distribution of concepts, and each concept as
a distribution of words. OntoLDA scaled better the topics coherence score than
the classical LDA. This was achieved by combining ontological concepts with
probabilistic topic models towards a combined framework applied to various
types of text collections.

One more approach that improved the human-agent dialogs was presented
by authors in [9]. Their approach leveraged the basis of contextual knowledge
provided by Wikipedia category system. To build their approach they had to map
the different utterances to Wikipedia articles and define their relevant Wikipedia
categories as a list of topics. It followed that the detection method was able to
recognize a topic without holding a priori knowledge of its subject category.

Authors in [16] questioned the use of LDA to cast more light on the role of
topic modeling to provide a measure of content more general than word features
with the goal to identify patient satisfaction and evaluations of therapy quality.
The unsupervised model they introduced produces models similar to manual
annotation, and it appears to be better at predicting evaluations of the thera-
peutic relationship and important features of communication style particularly

3 http://ckip.iis.sinica.edu.tw/taxonomy.

http://ckip.iis.sinica.edu.tw/taxonomy
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that of the counselors. This may suggest that unsupervised models used in this
way are able to discover and track topics to provide more insight to therapists,
enabling them to better direct their conversations in time-limited consultations,
and serve the identification of patients who can afterward be at risk of relapse
or non-adherence to treatment.

3 Topic Modeling

Topic models are a family of probabilistic approaches that aim at discovering
latent semantic structures in large documents. Based on the presumption that
meanings are relational, they interpret topics or themes within a set of documents
originally constructed from a probability distribution over words. As a result,
a document is viewed as a combination of topics, while a topic is viewed as a
blend of words.

One of the most widely used statistical language modeling for this end is
Latent Dirichlet Allocation (LDA) introduced by Blei et al. [8]. LDA is a gen-
erative approach. It assumes that documents in a given corpus are generated
by repeatedly picking up a topic, then a word from that topic according to the
distribution of all observed words in the corpus given that topic. LDA aims at
learning these distributions and inferring the (hidden) topics given the (observed)
words of the documents [18]. Given the nature of our data which includes partial
annotations, we employ the following two variants of LDA.

Labeled Latent Dirichlet Allocation (LLDA) [20] is a supervised version of LDA
that constraints it by defining a one-to-one correspondence between topics and
human-provided labels. This approach, illustrated in the probabilistic graphical
model in Fig. 2, allows LLDA to learn word-label correspondences.

Fig. 2. Probabilistic graphical model of LLDA: unlike standard LDA, both the label
set Λ as well as the topic prior α influence the topic mixture θ. β represents a vector
of the parameters of the multinomial distribution whereas η are the parameters of the
word prior. ω is the word, z is the per-word label assignments and φ is the label prior.
Please check [20] for further details.
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Partially Labeled Latent Dirichlet Allocation (PLDA) [21] is a semi-supervised
version of LDA which extends it with constraints that align some learned topics
with a human-provided label. The model exploits the unsupervised learning of
topic models to explore the unseen themes with each label, as well as unlabeled
themes in the large collection of data. As illustrated in Fig. 3, PLDA assumes
that the document’s words are drawn from a document-specific mixture of latent
topics, where each topic is represented as a distribution over words, and each
document can use only those topics that are in a topic class associated with
one or more of the document’s labels. This approach enables PLDA to detect
extensive patterns in language usage correlated with each label.

Fig. 3. Probabilistic graphical model for PLDA: each document’s word ω and label Λ
are observed, with the per-doc label distribution ψ, per-doc-label topic distributions θ,
and per-topic word distributions Φ hidden variables. Because each document’s label-set
λd is observed, its sparse vector prior γ is unused; included for completeness. η are the
parameters of the word prior whereas l is a label and z a topic. For further details
please check the work in [21].

4 Experimental Dataset

In this section, we describe the dataset used in our experiments and the applied
preprocessing steps. The used dataset consists of a collection of psychotherapeu-
tic transcripts available for research. The transcribed and collected conversations
adhere to the guidelines of the American Psychological Association (APA)4. An
approval to use the collection was granted by an Internal Committee of Biomedi-
cal Experiments (ICBE) of Philips after a review of the agreements, the consent
procedures, and data handling plan by legal and privacy experts. We remark
that meta-data preprocessing has been executed for the two tasks we present in
this paper (TDT), whereas text preprocessing has been run on topic detection
only.

4 http://www.apa.org.

http://www.apa.org
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4.1 Data Description

Counseling and psychotherapy transcripts contained in our data encompass a
diverse set of patients, a large-scale array of topics, and different therapeutic
strategies. Hundreds practicing counselors worldwide have transcribed and ren-
dered the used conversations according to APA Ethics Guidelines for use and
anonymity. The dataset consists of 1729 transcripts of 1:1 conversation with a
total of 340,455 talk turns, 75,732 unique terms, and more than 9 million words.
Each transcript has on average 200 talk-turns and eight words for talk-turn.
They are also extended with meta-data consisting of the corresponding school of
psychotherapy, counselors-patients information such as gender, age range, and
sexual orientation as well as a table of topics discussed during the therapeu-
tic conversation. Two different kind of information is contained in the table of
topics, that is:

– Subjects, which are specified hierarchically into three consecutive levels. The
top level is the most general subject, whereas the remaing two levels are more
precise5

– Symptoms, which are overall 79 symptoms defined in the DSM-IV6 manual,
like, for example, Depression, Anger, Fear. Reason why we have adopted the
DSM-IV and not the newer DSM-V is because the dataset we have employed
has been structured according to DSM-IV.

4.2 Preprocessing of the Meta-data

Considering the high number of items in the table of topics, similar topics have
been merged experimentally by means of the following steps:

1. Eliminate all the subjects and symptoms that occur in less than 3% of the
dataset;

2. Group together all the subjects belonging to the same Wikipedia category7

regardless their position in the given hierarchical structure.
3. Assign a label to the new subject according to the psychology topics table

from APA. For example Parent-child relationship and Family are mapped to
a new subject from APA known as Parenting.

4. Reduce the number of symptoms by using the DSM-IV manual with the
expert support of a counselor. In particular, we group symptoms with high-
level correlation into a representative one. For example, Sadness and Hope-
lessness are merged into the symptom: Depression.

In this way the final set, illustrated in Fig. 4, has been reduced to 18 subjects
and 16 symptoms only.
5 For example, the word Family could correspond to a top level topic, while Family
violence and Child abuse would be associated to the second and third levels respec-
tively. Up to 575 subjects have been used in the three levels in total.

6 https://dsm.psychiatryonline.org.
7 https://en.wikipedia.org/wiki/Category:Main topic classifications.

https://dsm.psychiatryonline.org
https://en.wikipedia.org/wiki/Category:Main_topic_classifications
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Fig. 4. The resulting 18 subjects (up) and 16 symptoms (bottom)

4.3 Preprocessing of the Conversation Text

A number of classic NLP pre-processing steps [23] have been applied to the
dataset by using the NLTK platform8. The performed steps include:

1. tokenization, which transforms texts into a sequence of tokens;

8 http://www.nltk.org/.

http://www.nltk.org/
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2. removal of all punctuations, stop words, numbers, words that frequently
appeared in the text with minor content information (e.g., “mm-hmm”), and
words that occurred in less than five documents whereas keeping nouns, verbs
and adjectives only. This step was achieved by using unigram part-of-speech
tagging [19], contained in the NLTK framework, in order to identify word
types in each talk turn.

3. removal of the most common words (100 overall, in our case), and of the talk
turns with one word only or with words shorter than three characters.

Note that the stemming and lemmatization steps have been omitted on pur-
pose to avoid negative impact because the resulting changes may influence the
evaluation of the topic model.

After the performed pre-processing steps, the resulting corpus consists of
2,849,457 tokens (14,274 unique ones) and a total of 268,478 talk turns.

5 The Proposed Approach for TDT

As described below, our proposed method consists of three phases; (1) topic
modeling, (2) assignment of topic labels to talk turns, and, finally (3) tracking
of the propagation of topics over the conversation.

5.1 Topic Modeling

The topic detection was performed using a PLDA implementation based on the
Stanford Topic Modeling Toolbox9(TMT). The model requires a set of parame-
ters including the number of hidden topics to be discovered, the α and η hyper-
parameters (see Fig. 3), and a training corpus. We define each talk-turn as a
document. This results in a total of 268,478 documents after the reprocessing
step. Each document is associated with the corresponding topics from the table
of topics of the corresponding transcript. Additionally to the 34 predefined topics
inferred from the metadata, we experimentally set the number of hidden topics
to 20. The hyperparameters α and η are set to 0.01. Based on those parame-
ters, we train our model with 150 epochs using an approximate variant of the
collapsed variational Bayes algorithm or the so called VB0 algorithm [4].

5.2 Topic Inference

The learned model delivers a weighted set of words per topic as illustrated
in Table 1. The table depicts the top ten terms for each topic. The first col-
umn shows an example of a latent (i.e. discovered topic) whereas the second
and third columns show two predefined topics together with their related words.
As expected, terms associated to a particular topic tend to be semantically
related particularly for subjects and symptoms. For example, the topic Par-
enting is defined by terms including family members, such as mom, mother,
9 https://nlp.stanford.edu/software/tmt/tmt-0.4/.

https://nlp.stanford.edu/software/tmt/tmt-0.4/
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dad, etc. whereas the topic Addiction includes terms close to alcohol and drugs
(drinking, smoke, etc.). The same holds for latent topics, where Topic-5, for
instance, includes similar terms related to work. Based on the learned weighted
lists of terms, the model infers the most likely topics given a particular talk turn.
Figure 5 depicts the per-document topic distribution of the five most likely top-
ics in a selected conversation (i.e. Stress and Job; Suicide and Death; Sexuality ;
Depression; Fear).

Table 1. An illustrative example of the three kinds of topics and their most likely asso-
ciated terms. Topic-5 shows an example of the discovered topic, Parenting presents an
example of a known subject, and Addiction presents an example of a known symptom.

Discovered topic: Topic-5 Known subject: Parenting Known symptom: Addiction

Associated words Weight Associated words Weight Associated words Weight

Pay 1125386 Mom 1354.692 Drinking 120.9583

Month 957.7061 Mother 1190.696 Drugs 78.25677

Working 809.5385 Dad 1103.559 Alcohol 60.09412

End 799.9208 Family 996.8899 Drug 59.39509

Help 649.7758 Brother 786.8062 Stoned 47.30778

Giving 516.6524 Parents 745.5274 Smoking 44.19726

Months 502.375 Father 689.4923 Marijuana 41.16274

Year 463.4732 Sister 490.4897 Girlfriend 37.31469

Paid 421.3631 Kids 376.6678 Smoke 36.22964

Paying 416.7115 Children 313.5798 Uptight 35.90694

Fig. 5. Example of the per-document topic distribution in each talk-turn on a conver-
sation.

Table 2 reports some examples of talk-turns of the patient and their associ-
ated representing topics, with the corresponding probabilities, produced by our
PLDA-based method.
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Table 2. Examples of talk-turns and their associated topics after PLDA within differ-
ent conversations

Talk-turns Associated topic

I came into it late, and it was a story about a father and
daughter. And it was very much about feelings and. . .this was a
man whose only family was his daughter and. . .had reappeared
in her life and all that. And I remember thinking “Oh I bet
Dad’s not watching this at all.” Or. . .is not enjoying it because I
don’t think ever of my family could feel ever be shared. Not
with mom and me but even there I mean there were layers
of. . .constraint. Etc.

Parenting, 40%

No. I don’t know-maybe I do like it underneath it all. You know
it keeps coming back to this climaxing - that I think I would
enjoy intercourse if I could climax. And that seems to be you
know, know-maybe know keeps coming climaxing think to enjoy
intercourse climax seems to know

Sexual
dysfunction, 92%

It’s a kind of close friendship I guess of being able to just talk
to them about anything or to not talk to them about anything.
I mean just to sort of be able to be with them and have them
understand how your feeling if you happen to be feeling any
way at all or do enjoy things with you. Etc.

Friendship, 46%

Right. These feelings. That you know beginning to wonder if
you know. You know I’m going to be this unhappy in marriage.
To feel this lonely in the marriage. I don’t want to be alone you
know. In fact, I have all of the responsibility but none of the
advantages. I want just to know have some of the advantages of
being alone. And it feels pretty screwed up

Spousal
relationship, 42%

Like sometimes when I’m thinking about sex or just getting
away from everything including the person I’m talking to, and I
don’t feel like I can say that to a person right to his face

Sexuality, 82%

I never get really happy about anything very rarely, and at the
same time, I never get really depressed about anything. I just
don’t let myself you know. And I was consciously sitting there
trying to get - I mean after I started getting depressed I decided
to relax and get just as depressed as I could get because Meg
says that often helps

Depression, 46%

It’s craving the marijuana. It’s craving the alcohol. It’s craving
you know whatever it is

Addiction(s), 99%

All right sure. What effect does the medications we have you on
now which is predominantly Lamictal and we have you on some
Trazodone at night for sleep and I understand that s a catch 22
type of medication

Medication, 76%
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5.3 Tracking Topics

In order to investigate how topics propagate throughout the given therapeutic
conversations, we built two topics transition matrices (TTMs). For convenience,
we added a new topic annotated as Meaningless talk which we associated to
talk-turns that provide poor semantics contents or language, or non-verbal com-
munication (e.g. “Yahh!!, Mm-hmm”). In general, the three main types of topics
changes are depicted:

1. The counselor keeps talking about the same topic to the patient from the
previous talk-turn, and vice versa;

2. The counselor moves to a new topic after the talk-turn of the patient;
3. The patient moves to a new topic after the talk-turn of the counselor.

To illustrate the topics dynamics in more details, we create a patient-to-
counselor TTM CPk that describes all the topic changes within the conversation
k. In particular, CPk[i, j] is the number of times that topic i changes into topic
j in a conversation k. We merge the CPk matrices together by summing them
up and obtain our final matrix CP . Similarly, we built a counselor-to-patient
matrix PC by using the topics-change defined earlier by switching counselor
and patient. The arithmetic difference between the two matrices is illustrated in
Fig. 6.

The resulting values are mapped into colors to visually indicate the different
levels of engagement between the counselor and the patient: black corresponds
to values below −10, grey to values between −10 and +10, and greater white
for values greater than 10. Thus, the diagonal of the matrix gives an idea about
“resistance level” to a particular topic. In general, there is a prevalence of the grey
color in the diagonal (17 values) which suggest that the clients are mostly open
to continuing the same topic. With twelve black values and six white values, the
diagonal also suggests that counselors tend to switch topics twice as the patients
do. A possible explanation is that counselors aim at searching for other correlated
symptoms or subjects that would lead to a mental disease. The other values of the
matrix describe the second and third type of topic changes; the number of white
and black values are approximately equal, which means that the conversations,
in general, are discussed without perceived tactics. Nevertheless, some rows and
columns are mostly either negative or positive (e.g. Parenting) which indicate the
potential use of some strategies. The counselor often switches the topic if the
previous one was Mania, Medication or Patient-Counselor Relations. Instead,
he/she frequently starts a new topic if the patient’s talk restrains less semantic
contents (Meaningless Talk). On the other hand, the patient often switches topics
if the previous topic was related to Parenting, Friendship, Sexual dysfunction,
Crying, or Stress-and-Work.

6 Evaluation

The evaluation of the performance of a topic model is not an easy task. In most
cases, topics need to be manually evaluated by humans, which may express dif-
ferent opinions and annotations. The most common quantitative way to assess
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Fig. 6. The difference matrix between CP and PC.
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a probabilistic model is to measure the log-likelihood of a held-out test set per-
forming perplexity. However, the authors in [10] have shown that, surprisingly,
perplexity and human judgment are often not correlated, and may infer less
semantically meaningful topics. A potential solution to this problem is provided
by the topic coherences, that is a typical way to assess qualitatively topic mod-
els by examining the most likely words in each topic. For such a purpose, we
employed Palmetto10, a tool to compute topic coherence of a given word set with
six different methods. The one that we selected for our purposes was the C V
method [22], which uses word co-occurrences from the English Wikipedia, and
that has been proven to highly correlate with human ratings. C V is depended
on a one-set segmentation of the top words and a measure that uses normalized
pointwise mutual information. The one-set segmentation computes the cosine
similarity between each top words vector and the amount of all top words vec-
tors. The coherence value is then the arithmetic average of these similarities and
represents an intuitive measure of the goodness of the topics produced by PLDA.
In this work, we evaluated our PLDA topic model for topic detection using C V
coherence. In particular, we gave the top five terms (according to the weight of
PLDA shown in Table 1) for each of the 34 topics as the input, obtaining as out-
put a satisfactory coherence amongst all the detected topics. Indeed on average
a topics coherence value larger than 50% was obtained, which is recognized in
the research community already as a well-acceptable coherence score for a TDT
model. This further substantiates the validity and potentials of our method.

7 Conclusions

In this paper, we study the topic propagation in a large collection of transcrip-
tions from real psychotherapeutic sessions. For topic modeling, we used Partially
Labeled Latent Dirichlet Allocation, PLDA, which makes it possible to track
both common topics that are known in advance, and topics encountered in the
conversational data. Moreover, we used topic coherence evaluation algorithms
to evaluate the consistency of the topic system. Finally, we computed TTM to
capture the dynamics of each ongoing topic in the conversations understanding
the patterns how the patient and therapist, respectively, maintain and switch
topics during the therapy sessions.

Knowing how topics change and propagate over the session can be used by
counselors to drive the discussion and to adjust their assessment of the emo-
tional state and barriers of the patient. These aspects of interaction are critical
for all mental health specialists as they are related to the health state of the
patients. We conclude that PLDA and TTM may be of benefit to the thera-
peutic conversational speech analysis and other real-life applications of AI to
psychotherapy.

10 http://aksw.org/Projects/Palmetto.html.
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Abstract. Federal health agencies are currently developing regulatory
strategies for Artificial Intelligence based medical products. Regulatory
regimes need to account for the new risks and benefits that come with
modern AI, including safety concerns and unique opportunities, like the
potential for autonomous learning, that makes AI dramatically different
from traditional static medical products. The current default regulatory
regime is to treat AI like a medical device (i.e., as opposed to like a
drug or a biologic product). As agencies like the U.S. Food and Drug
Administration (FDA) develop new regulation to cover the uniqueness of
AI, we suggest they consider adopting aspects of regulation traditionally
used in the practice of medicine (i.e., doctors). In fact, FDA is currently
undergoing a pilot that moves in that direction. We propose that AI
regulation in the medical domain can analogously adopt aspects of the
models used to regulate medical providers. We provide this view point
to encourage discussion of how medical AI might be regulated. In doing
so, we will also review several issues our framework does not resolve.

Keywords: Regulation · Continuous learning · Clinical applications

1 Introduction

Governmental agencies like the FDA are anticipating a wave of new software prod-
ucts for medical applications, and are currently drafting regulatory guidance in
anticipation of this wave. Goals of new regulatory guidance include protecting
the public from risk, reducing the time to market for these devices, and foster-
ing an innovative market for the new software. For example, the FDA’s Digital
Health Program is running an nine-company pilot program1 to pre-certify orga-
nizations developing software as a medical device (SaMD) for streamlined pre-
market review [1]. However, FDA’s recent draft publication2 stops short of pro-
viding guidance for artificial intelligence as a medical device (AIaMD). In this

1 https://www.fda.gov/medicaldevices/digitalhealth/digitalhealthprecertprogram/
default.htm.

2 https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/
GuidanceDocuments/UCM524904.pdf.
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paper, we extend the SaMD discussion to a regulatory framework for AIaMD. For
the purpose of this paper, we define AI-enabled medical device as a software prod-
uct that actively learns after it is released to the market, and that is intended to
inform or make decisions on behalf of a health care provider or patient.

Medical products, such as drugs, biologics, and non-AI devices undergo an
evidence-based review of their safety and efficacy, i.e., their benefit-risk pro-
files. AIaMD will upend this traditional regulatory paradigm because, by defini-
tion, the devices can automatically change their own benefit-risk profile without
human intervention. For example, an algorithm to detect cancer from MRI imag-
ines and recommend treatment pathway could become more precise and sensitive
over time by learning from cases in situ. While we have not yet seen reports of
AIaMD in the health care market, it is crucial that governments provide clear
guidance on how upcoming AIaMD product submissions will be reviewed and
approved. Promising AI-enabled medical products have surfaced, albeit ones
that do not continuously learn. For example, in early 2017, Arterys Inc. received
FDA 510(k) clearance for its web-based medical imaging analytics software3.
The lack of AIaMD submissions may be due to lack of sufficient readiness of the
technology, but it may also be stymied by the lack of clear regulatory guidance
and government approval pathways. The development of clear AIaMD regula-
tion will provide market stability and encourage innovation due to: (1) improved
consumer confidence in the safety and efficacy of products; (2) a clear under-
standing of the requirements for marketing approval, thereby allowing companies
to judge risk of their investment going to market, and informing academic and
institutional review boards of the requirements surrounding medical studies. As
AI researchers, it is critical we have a voice in how this regulation forms to
ground expectations and ensure that innovation is not unduly stifled.

We believe there is a risk that harmful regulation could be established (i.e.,
regulation that does not increase safety and efficacy but prevents or slows inno-
vation) due to fear and the uncertainty around AIaMD. For example, the often
“black-box” nature of AI has spurred considerable demand for interpretability
and explainability in an AI-based medical device [10]. A “right to explanation”
has already been codified in the European Union’s laws [7]. Regulatory review
of medical products traditionally focuses on evidence of safety and effectiveness
over interpretability or mechanism of action. We contend that mandating inter-
pretability is excessively burdensome for AI-enabled devices. This is not to say
that interpretability has no value; AI systems that can explain their choices may
warrant faster regulator approval. But to focus on interpretability as a necessity
for AI would stifle progress.

Rather than focusing regulation on algorithm explainability and self-
updating models, we would like to shift focus to outcomes for the patient and to
the healthcare market. In this paper we use the paradigm of regulating the prac-
tice of medicine as a framework for thinking differently. We propose elements
of a framework analogous to the standards used to license medical providers.

3 https://www.forbes.com/sites/bernardmarr/2017/01/20/first-fda-approval-for-
clinical-cloud-based-deep-learning-in-healthcare.
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Similar to accredited medical schools which train medical doctors, we contend
that AI-enabled devices should be trained utilizing accredited data collection
and validation methods. AIaMD trained using these accredited data collection
and validation methods should then be evaluated based on measured outcomes
to individual patients. Similar to state medical boards which remove harmful
doctors from practice, we contend that we need an AI regulator to surveil and
remove AIaMD if they become harmful.

2 Regulatory Design for AIaMD

To ensure that the immense potential of AI is not hampered, stakeholders must
actively engage in the development of the regulatory framework. Researchers,
software product developers, patient advocates, medical providers, and payers’
participation in this discussion will help to avoid the hype and fear that has
led to previous AI winters. We argue that the methodological accreditation and
outcomes-focus framework outlined below, will enable regulatory agencies to
accomplish their mandate of protecting public health while allowing for innova-
tion by AI researchers. However, discussion, dialogue, and iteration is needed.
The FDA has invited public feedback and participation in the conversation.4

2.1 Accrediting Our Data Sources and Methods

Doctors are educated by accredited universities. AIaMD should be trained with
accredited data and methods. While much of the discussion around AI focuses
on the algorithms used, data collection and the training methods are extremely
important to the success of any model. AI is not immune to the “garbage-in
garbage-out” problem, and so ensuring that high-quality algorithms are devel-
oped means we must ensure data is of an equally high quality. Accrediting the
process by which data is acquired and prepared provides the foundation needed
for any level of trust in the results. Accreditation of a dataset’s labeling and
creation process should mirror the acceptance criteria of sufficient evidence for
new clinical guidance in medical practice. For example, the dataset accreditation
scheme should consider: an appropriate diversity of patient backgrounds (e.g.,
age, BMI, etc); a diversity of feature sources (e.g., MRI images used for train-
ing must come from multiple MRI machines of differing versions and differing
vendors); the consistency of feature sources between the training and clinical
contexts; the completeness of data meta-information; defined measurable and
clinically-relevant outcomes (e.g., real-time insulin levels), rather than measures
that may be available (e.g., unqualified claims records). Fully satisfying all of
these goals may not be possible in each case, but should always be considered
and addressed. Significant failures in any of these sub-components can prevent
development of actionable and effective AI solutions. For example, [12] found

4 https://www.fda.gov/MedicalDevices/DigitalHealth/DigitalHealthPreCertPro
gram/default.htm\#getinvolved.

https://www.fda.gov/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/default.htm\#getinvolved
https://www.fda.gov/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/default.htm\#getinvolved
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that out of 2,511 recent genome-wide association studies, 81% of all participants
were of European ancestry. This poses a risk that developed solutions and results
will be ineffective for the majority of the world’s population.

As part of Booz Allen Hamilton’s organization of the 2016 and 2017 Data
Science Bowl competitions [2], which focused on detecting heart function and
lung cancer respectively, organizers examined each of these aspects of the com-
petition data to ensure that it was high-quality and enabled the development of
useful algorithms. We found unexpected metadata which artificially boosted the
algorithm’s appearance of clinical performance (i.e., leakage). Specifically, meta-
information describing the hospital that labeled the cardiac MRI images proved
to be strongly predictive of a specific heart measurement, despite having no clini-
cal diagnostic power. If this meta-information was not recorded, organizers would
not have discovered the correlated, but not actionable feature, and could have
led to model overfitting to the training data. This exemplifies why data should
be acquired from a diversity of locations, and why trained medical providers
must be part of the data preparation process. As one step toward ensuring the
safety, AI-enabled devices must be robust to a diversity of input sources. The
best way to achieve this robustness is to utilize a diverse high-quality data set
for training.

It is possible for regulators to take a proactive approach by creating gold-
standard data sets for important and prevalent conditions. Such data could be
used in multiple ways to both improve the efficiency of regulation and the speed
at which products are developed. These could be kept as secret evaluation sets to
confirm reported performance, an independent training set to independently test
system generalizability, or even provided to product developers to reduce data
acquisition costs and promote marketplace competition. The FDA is already
exploring the development and curation of a standard dataset for radiogenomics
[8]. This could also allow the FDA to preemptively remove barriers that slowed
the adoption of Electronic Medical Records in the United States relative to other
nations, such as lack of capital and standardized data exchange formats [3].

2.2 Focus on the Outcomes

Doctors’ outcomes are monitored by their medical boards, colleagues, and
patients; AIaMD postmarket surveillance should include a diversity of feedback
sources. By definition, AIaMD learn from well-defined outcomes which are mea-
sured while in use. Therefore, post-market surveillance (i.e., monitoring the
benefit-risk profile of a medical product after it has been released on the mar-
ket) can be built directly into an AI product. AIaMD developers should focus
on building a system capable of collecting the right outcomes. Regulators should
focus on the process by which an AI device developer defines, collects, and uses
post-market outcomes to refine and improve the model. Next, similar to a doc-
tor who is subject to review and possible sanctions by their state medical board
(i.e., probation periods with added surveillance, or suspension from medical prac-
tice), regulators should sanction and/or withdraw an AIaMD from the market
for egregious errors.
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We propose that, like medical review boards for medical providers, regula-
tors should institute AI review boards consisting of a multidisciplinary group of
experts from within and outside the regulatory agency. The AI boards would
include continuing education-like requirements to update AI models using new
standards and ground truth data, sanctioning AI producers for errors or AI
misconduct or bias, and removal of an AI product when it does harm. Trials
and studies will remain necessary to ensure that the device is both safe (does
no harm), and effective (provides meaningful and quantifiable improvement in
outcomes).

3 So Can We Treat AI Like a Doctor?

Framing the regulation of AI in the same manner as medical doctors provides a
basis for constructing regulation for non-static products. This approach allows
regulators, the AI community, and the general public to debate the opportunities
and obstacles of AI-enabled medical devices.

A primary psychological benefit of this approach is to avoid the problem of
moving goal posts or an AI double standard. The public is often unwilling to
trust a machine to perform a task unless the outcome is far better than what
a human can produce.5 This thought process ignores the intrinsic benefits of
availability and faster decision making. For example, AI-enabled medical devices
can provide both routine care in rural and poor communities that would have
no access otherwise, and faster diagnosis, leading to improved patient outcomes.
With regulation focused on data accreditation and clinical outcomes, regulators
avoid unnecessarily delaying adoption of AI technology for medicine.

This regulatory framework also provides guidance on ensuring AI devices
remain safe over time. Physicians are not simply told to do no harm. Rather,
physicians progress from interns to specialist over their careers, and as they
progress their responsibilities and autonomy increases. AI devices could follow a
similar (task-dependent) progression. This lends to a natural encouragement for
AI products to be developed in an incremental approach. However, AI devices
need not progress completely to autonomous continually learning agents (i.e.,
a specialist). Instead AI devices can ultimately be tools, which have utility to
physicians irrespective of their autonomous continually learning capability.

With this regulatory approach we must collectively recognize that errors and
mistakes will be made. Just as doctors, drugs, and devices sometimes uninten-
tionally harm patient, AIaMD will as well. Just as deaths due to medical errors
occur, so do deaths caused by software bugs [9]. Every death is tragic; yet the
question of safety is not whether a doctor or an AIaMD prevents all harm, but
rather he/she/it reduces the rate of harm from the current standard of care.
SaMD deaths in Leveson [9] were incidents that the FDA studied in order to
remediate and prevent future incidents. While the hope for AI devices is to
reduce the frequency of such unfortunate incidents, the same lessons will apply
to the AI space. Researchers who acquire and prepare the data, and develop
5 https://phys.org/news/2016-05-humans-automated-advisor-bad-advice.html#jCp.

https://phys.org/news/2016-05-humans-automated-advisor-bad-advice.html#jCp
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models to analyze take action must understand this risk. Given the potential
greater autonomy of AIaMD, AI developers may require a form of “malprac-
tice” insurance. This insurance would provide fiscal and regulatory incentives to
encourage safety and provide financial recompense when incidents occur.

4 Failure Points

We believe lifting and adapting from the regulatory framework for medical
providers is useful to frame our discussion around regulating AI. However, that
framework is not perfect as it exists today, and we see no reason to expect it
will be perfect for AI either. It is important to also discuss points where the
regulatory schema for the practice of medicine will not work for AIaMD. In
the sections below we discuss these failure points and offer prompts to develop
thought and discussion from the community. Below we will discuss three issues,
which we feel are important toward developing complete regulation.

4.1 Recalling AI

The reach of bad AIaMD will be broader than the reach of a bad doctor. Every
year thousands of doctors are sanctioned by their state medical boards. Morrison
and Wickersham [11] found that 79% of California’s disciplinary cases resulted
in some form of license suspension or revocation. This is an important issue and
part of the reason physicians are licensed, but it is also reactive—action does
not occur until something goes wrong. During the time between misconduct
and revocation, these doctors are unfortunately putting their patients at risk.
Similarly, some AIaMD products will need to be recalled (i.e., have their “license”
suspended) in the same reactive manner. We will again have an issue with the
time between product failure (“misconduct”) and a successful removal from the
market. But in this case, an AI product could have potentially been deployed
nation wide or even globally, where a single doctor’s misconduct is intrinsically
limited to a smaller pool of people. This increases the potential cost (e.g., of
patient well being, potential monetary damages) of an AI failure case.

AIaMD may be less fungible than individual doctors, making removal more
disruptive. Removing AIaMD may also be more locally disruptive than removing
a bad doctor because it may be too unique. If one doctor is removed from med-
ical practice, there are other doctors who can step in to perform the functions.
However, if AIaMD performs a unique function that becomes an essential part
of a clinical workflow, it may be more difficult to replace the function. For exam-
ple, if radiologists begin to rely heavily on computer analysis of tumor images,
removing that AIaMD may cause a temporary lapse in care for tumor analysis.

4.2 Adversarial AI and Security

While the medical industry has long had to handle sensitive personally iden-
tifiable and protected health information, security of this information has not
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historically been reviewed by regulatory agencies. The Health Insurance Porta-
bility and Accountability Act (HIPAA) laws in the U.S. provide some regulation
regarding security issues, and will require updates as AIaMDs enters the market.
With the advent of adversarial machine learning, a new kind of security issue
must also be considered.

In adversarial machine learning, a hypothetical adversary attempts to trick a
classifier into making specific incorrect decisions [5]. This research field, which is
at the intersection of machine learning and computer security, is most prevalent
in the fields of spam filtering, malware detection, and computer vision com-
munity, including for self-driving cars. Due to the potential to interact with
adversaries, AI-enabled medical device developers must also consider this form
of attack. Notably, AI-enabled medical device adversarial interactions may be
with individuals engaging in drug-seeking behaviour, as well as sophisticated
malicious groups. Fraud is already an enormous issue in the medical field, with
hundreds of billions of dollars lost, and there is fear that this problem will only
worsen with the adoption of machine learning systems [6].

Ultimately, it is not yet known to what degree adversarial attacks will affect
SaMD and AIaMD. AIaMD developers can follow current practices of defining a
threat-model by which adversaries can act to evaluate the risk to their systems
[4]. However, it has so far been found that such attacks are easy to create and
apply, even with threat-models that are highly restrictive to the adversary’s
actions and knowledge [5]. Regulators must eventually decide how far AIaMD
developers must go to protect systems from attacks, and determine in advance
domains where their product should not be applied due to risk of attack. This is
an issue that will require careful consideration, and by its very nature, not one
that we can rely on current systems to handle.

5 Conclusion

Fundamentally, medical regulation exists precisely because without it consumers
cannot reasonably assess the quality of all possible medical diagnoses and the
benefits and risks of recommended treatments. Regulatory agencies are develop-
ing new policy and guidance for static SaMD, and will soon codify rules to govern
dynamic AIaMD. Rather than developing new regulations based on our exist-
ing rules for static medical products, we proposed using the analogy of medical
practice regulation as a foundation to develop a novel regulatory framework for
AI-enabled devices. We argue that the regulatory framework for medical practice
provides a natural paradigm to address the public’s concerns about the use of AI
in healthcare, and we have used it to illustrate points of consideration for new
regulation. Though the accreditation process for medical doctors is not perfect,
the approach has served society for decades and can serve as the foundation for
regulating AI-enabled medical devices.
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Abstract. This paper is aimed at formalizing the interplay among a per-
son to be assisted, an assistive agent-based software, and a caregiver. We
propose general principles for designing the interplay between a person to
be assisted and an agent based on formal argumentation theory to char-
acterize the agent’s reasoning processes. These principles emerge from a
novel perspective to understand assistive technology using the concept
of zone of proximal development (ZPD) from social sciences. ZPD can be
understood as a measurement of activity development, comparing what
a person can perform with or without external help. We characterize
a rational agent in four ZPD zones: (I) independent activity execution,
agent takes no action; (II) ZPDH : a person supported by another person,
agent takes no action; (III) ZPDS : a person is supported by an agent;
and (IV) ZPDH+S : a person is supported by a caregiver and a software
agent at the same time. An algorithm was developed for the agent to
reason about the actions to be selected in different situations, based on
formal argumentation theory for allowing non-monotonic reasoning. The
formal models and algorithm were implemented in a prototype system
using augmented reality as interface. Future work includes evaluating the
principles and algorithm in actual use situations.

Keywords: Argumentation theory · Rational agents ·
Assistive technology · Human activity · Activity theory

1 Introduction

Intelligent assistive technology (AT) is an umbrella of artificial intelligence-based
machinery, that in general, is able to observe and reason about appropriate and
tailored support to individuals [24]. An AT may have different aims, as an assur-
ance system, compensation system or as an assessment system [31]. No matter
what the assistive goal is, the internal machinery of an intelligent AT should
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reason about: (1) the client-caregiver interaction1; and (2) the context where
the AT service is provided. Moreover, the AT system should generate consistent
services, as outputs of the intelligent system. In contrast to AT provision based
on artificial intelligence, public AT service provision is regulated by policies, pro-
cedures and approaches, being part of different national or regional health care
and welfare systems [39].

In the deductive systems[26] literature as part of AI, different effort have
been developed to provide formal principles of a deductive system (see [2,7,12,
16]). In this setting, and inspired by public AT efforts to provide high quality
services, we propose in this paper a novel formal set of principles that AT based
on AI should follow to warranty consistent AT services. We hypothesize that
the internal reasoning process of an AT needs to fulfill general principles of
consistency and soundness, aiming at not interfere, contradict or disregard client
and/or caregiver actions.

To this end, this paper has a two-fold goals: (1) propose a general decision-
making mechanism (algorithm) considering information of a client and a care-
giver who supports during activity execution; and (2) introduce general prin-
ciples of no-contradiction to which any AT reasoning about observations, goals
and actions of individuals must comply. We framed those principles in a client-
caregiver-agent2 interaction in four common AT scenarios, as follows:

S1. Independent activity execution: a client does not need to be assisted during
the execution of an activity, an AT is present but it takes no action.

S2. Human support: a caregiver assists a client that needs support during an
activity execution. An AT is present but it takes no action.

S3. Agent supporting: a client is supported by an AT. A caregiver is not present
during such interaction.

S4. Joint assistance: a client is supported by a caregiver and an AT.

Formal argumentation theory [3] is used to embed non-monotonic reason-
ing in an agent, i.e., resembling the kind of assessment reasoning performed
by clinicians: (1) gathering data through observations; (2) handling ambigu-
ous and uncertain observation information; (3) generating current function sta-
tus hypothesis; (4) deduce an explanatory outcome of explanation; and (5)
retracting the explanation under new evidence [18]. In this sense, the proposed
argumentation-based algorithm (Algorithm1) takes different decisions depend-
ing on the observations, goals and actions in particular scenarios (S1–4).

Scenarios S1–4 are analyzed from an activity theory [13,21] perspective, which
investigates these AT contexts as a continuum of support adaptation. We analyze
S1–4 as “distances” from what a client can do independently, to the activity
potential of that client supported by a caregiver or an AT system. We explore

1 In this context, client is an individual that receives support from a caregiver and/or
an intelligent AT system.

2 In this paper, an agent is an AT machinery based on the concept of software agents
that takes decisions about how to support an individual during activity execution
see [14].
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computational versions of the so-called zone of proximal development (ZPD) [38]
for each scenario.

We present a basic architecture for an AT system able to identify these assis-
tive scenarios. We implement a prototype of such architecture using a projected
augmented reality the AT system supports a client displaying personalized infor-
mation. Our AT system captures information from the client and caregiver using
3D cameras, goals and hypothetical actions are embedded in a program using a
multi-agent system platform.

This paper is organized as follows: in Sect. 2 methods and theories utilized
as foundation of our proposal are presented. Section 3 introduces an algorithm
goal-based reflection as an internal mechanism of an agent. Section 4 introduces
a set of general principles that an AT system should fulfill. In Sect. 5, the archi-
tecture of an AT system that we developed using projected augmented reality is
presented. A discussion with our future paths of this investigation are presented
in Sect. 6.

2 Theoretical Background

In this section, some concepts of activity theory [22] and formal argumentation
theory [3] are introduced. The former, is used in this paper as a framework
to represent knowledge about an activity; the later is used to characterize the
internal decision-making process of the intelligent assistive system.

2.1 Activity Theory

In this paper, activity theory is used for two purposes: (1) for knowledge represen-
tation, structuring information of clients and caregivers following a hierarchical
model; and (2) to understand the potential level of activity achievement of a
person.

Activity theory describes an activity as a hierarchical structure composed of
actions, which are composed of operations as is represented in Fig. 1. Actions
are directed to goals; goals are conscious, i.e., a human agent is aware of goals
to attain. Actions, in their turn, can also be decomposed into lower-level units of
activity called operations. Operations are routine processes providing an adjust-
ment of an action to the ongoing situation, they are oriented toward the condi-
tions under which the agent is trying to attain a goal.

In this paper we use logic programs to capture information about an activity,
we denote P as a program and LP the set of atoms which appear in such program.
In this regard, an activity model (A) corresponds to information characterizing
mental states of an agent framed on a particular activity. A can be expressed
using propositional logic as a syntax language.

Definition 1 (Activity model). Let P be a logic program capturing the behav-
ior rules of an activity. An activity model A is a tuple of the form 〈Ax,Go,Op〉
in which:
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Goal1.1

Actionm

Activity

Action1

Operation1

...

Operationi
... Operation1 Operationj

...

Action1.1 Action1.n
...

Goal1

Condition1

Motive

Fig. 1. Hierarchical structure of activity. Activities are composed of actions, which are,
in turn, composed of operations. These three levels correspond, respectively, to the
motive, goals, and conditions, as indicated by bidirectional arrows. Adapted from [21]

• Ax = {ax1, . . . , axj}(j > 0) is a set of atoms such that Ax ⊆ LP . Ax denotes
the set of actions in A.

• Go = {g1, . . . , gk}(k > 0) is a set of atoms such that Go ⊆ LP . Go denotes
the set of goals in A.

• Op = {o1, . . . , ol}(l > 0) is a set of atoms such that Op ⊆ LP . Op denotes
the set of operations in A.

In our approach, an activity model A (Definition 1) may capture information
from a client or a caregiver (as in [18]) or/and a software agent-based system (as
in [14]). In this paper, we denote Ac, Ag and Aa to represent the activity mod-
els of a client a caregiver and an agent respectively. In terms of activity theory,
A = 〈Ax,Go,Op〉 can be seen as a partial description of a complex activity.

In this paper, activity theory is also used to quantify the potential level of
activity achievement aiming to frame the decision-making process of the intel-
ligent assistive system. Vygotsky [38] proposed to measure the level of develop-
ment not through the level of current performance, but through the difference
(“the distance”) between two performance indicators: (1) an indicator of inde-
pendent problem solving, and (2) an indicator of problem solving in a situation
in which the individual is provided with support from other people [21]. This
indicator was coined as a zone of proximal development (ZPD) and it has been
used extensively in social sciences (see [1,9,19,34]) to understand changes of
individuals during assisted learning processes.

In order to create a computable version of the concept of zone of proximal
development, we use a function dist that compares two variables (e.g. observa-
tions of an activity) and returns a numerical value α ∈ R representing in this
case, a ZPD difference. For convenience, we rename scenarios described in Sect. 1
S1–4 as ZPDi, ZPDh, ZPDs and ZPDh+s respectively.
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2.2 Formal Argumentation Theory

Generally speaking, a formal argumentation process can be seen as a mecha-
nism consisting of the following steps (see Fig. 2): (1) Constructing arguments
(in favor/against a “statement”) from a knowledge base; (2) Determining the
different conflicts among the arguments; (3) Evaluating the acceptability of the
different arguments; and (4) Concluding, or defining the justified conclusions.
From artificial intelligence perspective, the important and distinctive character-
istics of this process are: (1) their non-monotonic behavior, i.e., changing the
conclusion when more knowledge is added, and (2) their traceability, providing
explanations in every step of the reasoning process.

Activity 
fragments

construction

Conflict 
analysis

Acceptability 
of activity 
fragments

Justified 
conclusions

Knowledge 
base

Activity 
fragments

Argument 
framework Extensions

Formal argumentation process
Argument-based 

Conclusions

STEP 1 STEP 2 STEP 3 STEP 4

Fig. 2. Inference of an argument-based conclusion using a formal argumentation
process

We define the concept of an activity framework which frames the necessary
knowledge that an agent needs to take a decision.

Definition 2 (Activity framework). An activity framework ActF is a tuple
of the form 〈P,HA,G,O,A〉 in which:

• P is a logic program. LP denotes the set of atoms which appear in P .
• HA = {h1, . . . , hi} is a set of atoms such that HA ⊆ LP . HA denotes the set

of hypothetical actions which an agent can perform in a world.
• G = {g1, . . . , gj} is a set of atoms such that G ⊆ LP . G denotes a set of goals

of an agent.
• O = {o1, . . . , ok} is a set of atoms such that O ⊆ LP . O denotes a set of

world observations of an agent.
• A is an activity model of the form: 〈Ax,Go,Op〉, following Definition 1.

ActF according to Definition 2 defines the space of knowledge of an assistive
agent. In this space, an argument-based process (see Fig. 2) can be performed
to obtain sets of explainable structures support-conclusion for what is the best
assistive action to take. These structures can be seen as fragments of an activity
[18] (see Fig. 3) and can be generated as follows:

Definition 3 (Hypothetical fragments). Let ActF = 〈P,HA,G,O,A〉 be
an activity framework. A hypothetical fragment of an activity is of the form
HF = 〈S,O

′
, h, g〉 such that:
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Goal1.1

Action3

Activity
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Operation1 Operationi
... Operation7 Operationj

...

Action1.1 Action1.n
...

Goal1

Motive

Goal4

FRAGMENT 1 FRAGMENT 2

SUB-FRAGMENT

...

Fig. 3. Fragments and sub-fragments of an hierarchical activity

• S ⊆ P, O
′ ⊆ O, h ∈ HA, g ∈ G;

• S ∪ O
′ ∪ {h} is consistent;

• g �=⊥; and
• S and O

′
are minimal w.r.t. set inclusion.

Let us introduce a function Supp(HF ) which retrieves the set {S,O
′
, h} of a

given fragment, which can be seen as the support for concluding a goal g. Next
step in the argumentation-based process is find different types of contradictions
among such fragments (Definition 3): (1) when two fragments have conclusive
evidence about opposed achievement of goals; and (2) when a fragment contra-
dicts the support evidence of another. These two types of relationships among
fragments resembles the well-known notions of undercut and rebut in argumen-
tation theory [4,32].

Definition 4 (Contradictory relationships among fragments). Let
ActF = 〈P,HA,G,O, Acts〉 be an activity framework. Let HF1 = 〈S1, O

′
1,

a1, g1〉, HF2 = 〈S2, O
′
2, a2, g2〉 be two fragments such that HF1,HF2 ∈ HF .

HF1 attacks HF2 if one of the following conditions hold: (1) g2 = ¬g1; and (2)
g2 ⊆ Supp(HF1) =⊥ or g1 ⊆ Supp(HF2) =⊥.

An argumentation framework is a pair 〈Args, att〉 in which Args is a finite
set of arguments and att ⊆ Args×Args. In [17] an argumentation-based activity
framework for reasoning about activities was proposed. We reuse this concept
for in our paper, as follows:

Definition 5 (Activity argumentation framework). Let ActF be an activ-
ity framework of the form 〈P,HA,G,O, Acts〉; let HF be the set of fragments
w.r.t. ActF and AttHF or simply Att the set of all the attacks among HF .
An activity argumentation framework AAF with respect to ActF is of the form:
AAF = 〈ActF,HF , Att〉.

Dung [11], introduced a set of patterns of selection of arguments called argu-
mentation semantics (SEM)3. SEM is a formal method to identify conflict
3 Let SEM() be a function returning a set of extensions, given an argumentation

framework such as an AAF.
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outcomes from argumentation frameworks, such as an activity argumentation
framework.

Definition 6. Let AAF = 〈ActF,HF , Att〉 be an activity argumentation frame-
work AAF with respect to ActF = 〈P,HA,G,O, Acts〉 An admissible set of frag-
ments S ⊆ HF is stable extension if and only if S attacks each argument which
does not belong to S. preferred extension if and only if S is a maximal (w.r.t.
inclusion) admissible set of AAF. complete extension if and only if each argu-
ment, which is acceptable with respect to S, belongs to S. grounded extension if
and only if it is a minimal (w.r.t. inclusion) complete extension. ideal extension
if and only if it is contained in every preferred set of AAF.

The sets of arguments suggested by SEM are called extensions. We can denote
SEM(AAF ) = {Ext1, . . . , Extk} as the set of k extensions generated by SEM
w.r.t. an activity argumentation framework AAF . In this setting, from the per-
spective of an intelligent agent what it is expected to have is: (1) no contradictory
or conflicting sets of fragments sets explaining what is happening in the ongo-
ing activity, and (2) fragments sets defending/supporting a hypothesis about the
activity from other fragments. These two notions defines two main concepts in
Dung’s argumentation semantics: acceptable and admissible arguments.

Definition 7. (1) An fragment HFA ∈ HF is acceptable w.r.t. a set S of frag-
ments iff for each fragment HFB ∈ HF : if HFB attacks HFA, then HFB is
attacked by S. (2) conflict-free set of fragments S in an activity is admissible iff
each fragment in S is acceptable w.r.t. S.

Using these notions of fragment admissibility, different argumentation seman-
tics can draw given an activity argumentation framework:

Definition 8. Let AAF = 〈ActF,HF , Att〉 be an activity argumentation frame-
work following Definition 5. An admissible set of fragments S ⊆ HF is: (1) stable
if and only if S attacks each fragment which does not belong to S; (2) preferred
if and only if S is a maximal (w.r.t. inclusion) admissible set of AAF ; (3) com-
plete if and only if each fragment, which is acceptable with respect to S, belongs
to S; and (4) the grounded extension of AAF if and only if S is the minimal
(w.r.t. inclusion) complete extension of AAF .

Conclusions of an argument-based reasoning about an activity may be
obtained using a skeptical perspective, i.e., accepting only irrefutable conclu-
sions as follows:

Definition 9 (Justified conclusions). Let P be an extended logic pro-
gram, AFP = 〈ArgP , At(ArgP )〉 be the resulting argumentation framework
from P and SEMArg be an argumentation semantics. If SEMArg(AFP ) =
{E1, . . . , En}(n ≥ 1), then Concs(Ei) = {Conc(A) | A ∈ Ei}(1 ≤ i ≤ n).
Output =

⋂
i=1...n Concs(Ei).

Where Ei are sets of fragments called extensions. The set of all the extensions
generated by SEMArg(AFP ) are denoted as E.
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3 Reflection on Decisions About Human Activity

Reflection, as an internal mechanism of a rational agent to (re)consider the
best decision alternative (inferring strategies), has been an important line of
research in AI particularly in practical reasoning (see [20,37]). In this paper, we
do not consider an agent with pro-attitudes as in Bratman model [6], we propose
a control loop algorithm (as in [33,36]) to design the action selection and its
reflection based on an activity model.

Algorithm 1. Goal-based action reflection
input : E sets of extensions
output: h ∈ HA

1 H ←− ∅ // list of agent’s decisions

2 Go ←− ∅ // list of human’s goals

3 Ref ←− ∅ // list of human’s reference goals

4 numExt = |E| // number of extensions

5 numArg = |Ei|, Ei ∈ E // number of hypoth. decisions per extension

6 α ←− 0 // numeric value of a distance (0 ≤ α ≤ 4)
7 decisionLat < α, h >= // lattice of decisions

8 for i ← 0 to numExt do
9 for j ←− 0 to numArg do

10 h ←−Act (hfj)
11 O ←−Obs (hfj)
12 α ←− dist(OGo,RefGo) // distance function considering

observations and a reference value w.r.t. person goals Go
13 decisionLat ←− (α, h)hfj // decision tuple is a ZPD metric for

the current activity fragment

14 end

15 end
16 return max(α, h)

Given a set of hypothetical fragments suggested by an argumentation pro-
cess, our algorithm selects an agent’s action that maximize humans’ goals. This
mechanism is summarized in Algorithm 1.

Algorithm 1 prioritizes the activity model of a client over an agent and, at
the same time, it computes a distance between activity variables. In lines 8–15
of Algorithm 1, such distance is calculated (line 12) over sets of hypothetical
fragments. This distance calculation is based on computing a similarity function
between the current achievement of human goals in the activity model w.r.t. a
set of goal reference (RefGo line 12). The dist function in line 12 follows the notion
of ZPD, by measuring in every computation the distance between the current
development of a person and a reference, which can be given by a caregiver. This
approach for comparing current activity execution with a reference has been used
in previous approaches [17,18].
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The importance of Algorithm 1 lies on the mechanism for associating a human
activity quantification with the internal action decision of an agent. The Algo-
rithm output depends entirely on previous extensions computation. Proposi-
tions 1 and 2 present two special cases of agent’s behavior when Algorithm 1 is
used4. One is the possibility to have a conclusion with no action, and the second
expresses an inconclusive behavior given that stable semantics may return ∅ as
output.

Proposition 1. An agent calculating the goal-based action reflection Algo-
rithm1 using a skeptic semantics, grounded or ideal, may result in a conclusive
empty decision.5

Proposition 2. An agent calculating the goal-based action reflection Algo-
rithm 1 using the credulous semantics: stable, may result in an inconclusive
decision.6

3.1 Support in Relation to the Zone of Proximal Development
Using Formal Argumentation

In this section, based on the common-sense reasoning of activities using argu-
mentation theory, we propose a theory to calculate the following four scenarios
in assistive agent-based technology:

I. ZPDi independent activity execution. This scenario describes an
observer agent which takes the decision to do nothing to support a person.
More formally, the type of fragments (Definition 3) generated by the agents are
of the form HF = 〈S,O

′
, h∗, g〉 such that h∗ ∈ HA = {∅, do Nothing}. In this

setting, all the extensions generated by SEM(AFP ) = E during a period of time
will create an activity structure. In other words, the cumulative effect of gen-
erating fragments, re-construct an activity in a bottom-up manner. Moreover,
Algorithm 1 returns only values of α, i.e. the current value of a qualifier when
the agent does not take any supportive action. This context defines the baseline
of activity execution independence of a person.

II. ZPDh activities supported by another person. Similarly to previous
scenario, the role of the software agent is to be an observer. However, built frag-
ments have the form HF = 〈S,O∗, h∗, g〉 such that h∗ ∈ HA = {∅, do Nothing}
and O∗ = O

′ ∪ O
′′
, where O∗ is the set of joint observations from the agent’s

perspective about the individual supported (O
′
) and the supporter O

′′
. We have

that O
′ ⊆ O

′′
, and O

′
, O

′′ �= ∅. In this scenario, O
′′

is considered a reference
set of observations (Ref lines 3 and 12 in Algorithm1). Algorithm 1 will return
a value of α which measures to what extent an individual follows the guide
provided by another person.

4 Due to lack of space, the full proofs of these propositions are omitted.
5 Proof sketch: output of grounded and ideal may include {∅}. See [10].
6 Proof sketch: output of stable semantics may include ∅. See [10].
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When multiple extensions are collected during the period of time that the
individual is supported, then a different set of activities than individual activity
execution may be re-generated in a bottom-up manner.

III. ZPDs activities supported by an agent. In this scenario, an assistive
agent takes a decision oriented to uphold human interests, priorities and ability
to conduct an activity. This is a straightforward scenario where h ∈ HA �=
{∅, do Nothing}.

IV. ZPDh+s caregiver and agent supporting cooperatively. In this sce-
nario, the main challenge for the agent perspective is to detect: (1) actions that
an assistant person executes, and (2) observations of both, the person assisted
and the person who attends. This is similar to ZPDH but with fragments built
from HA �= {∅, do Nothing}. In this case, the level of ZPDH+S is given by
Algorithm 1, and the set of extensions E with aligned goals between agent and
the caregiver.

4 Principles for Providing Consistent Assistive Services

In this section, we propose a set of general principles that AT based on deductive
systems should follow to warranty consistency in their outputs.

4.1 Activity-Oriented Principles

Based on previous detailed analysis of different ZPD scenarios, we propose in the
following a set of principles that need to be fulfilled to provide assistive services.

Proposition 3. Let A∗ be the set of all the possible activity models; let R ⊆ Aj

a set of fragments from an activity model; let hj ∈ Ha and gj ∈ Ga be an agents’
action and goal; and let Ek ⊆ E be an extension of hypothetical fragments. The
following holds:

�〈R, h, g〉inEk /∈ A∗

Proposition 3 establishes that there is no hypothetical fragment that can be
built that does not belong to the set of all the activity models. This proposition
defines a principle of closure, i.e. that an AT system should not generate outputs
(e.g. AT services) that are not contained in the main set of activities.

Proposition 4. Let A∗ be the set of all the possible activity models; and let
A〈Ax,Go,Op〉 be an activity model with A ⊆ A∗. The following holds: � any
ax ∈ Ax, g ∈ Go or o ∈ Op /∈ A∗.

Proposition 4 seems straightforward but it establishes that only those activities
framed on an activity model can be seen as actions, goals or operations. Out
of an activity, individually, those elements have not influence in the decision-
making of an argument-based assistive system. Proposition 4 has a social science
background, activity theory defines an activity by its motive, and activity nec-
essarily builds on the hierarchy of actions and operations, roughly saying that
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there not exists any action, goal or operation out of an activity. These elements
of an activity can not be considered separately or independently [21]. In this
sense, Proposition 4 establishes the same principle, defining with Proposition 3
basic conditions of activity knowledge closure.

Postulate 1. Let OGo be a set of observations about human goals (Go) and
actions (Ax) framed on an activity, captured by an agent using an activity model
A. Let G and HA be agent’s goals and its hypothetical actions. In order to provide
non-conflicting assistance two properties have to be fulfilled:

• PROP1: OGo ∩ G �= ∅
• PROP2: OAx ∩ HA �= ∅.

Postulate 1 can be seen as a self-evident rule that any intelligent assistive
system should follow. PROP1 and PROP2 provides coherence among human-
agents actions and goals. This two properties may define a first attempt to
establish consistency principles of agent-based assistance. This is a future work
in our research.

5 Implementation

The scenario selected for implementing a demonstrator for the formal results
describes the situation where an older adult performs the the activity to dis-
tribute medication into a medicine cabinet. This activity is supported by an

Fig. 4. Smart medicines cabinet using argument-based reasoning and an augmented
reality projection. (I) Gesture recognition using three Kinect cameras, one for client
body capture, another for assistant personal gesture recognition, last one (Kinect sensor
2) on the top of the cabinet to recognize text from medicines boxes; (II) Google API
for text recognition; (III) argument-based reasoning; (IV) goal-based action reflection
to consider human side; (V) database containing doses and timing of pill intake.
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intelligent system and technology for augmented reality that is used for mediat-
ing the information provided by the system (see Fig. 4).

The prototype architecture consists of five main parts (see Fig. 5): (1) ges-
tures recognition: obtaining observations from individuals using Kinect cameras;
(2) text recognition using another Kinect camera with Google API text recogni-
tion (https://cloud.google.com/vision); (3) argument-based reasoning: the main
agent-based mechanism of common sense reasoning; (4) goal-based action reflec-
tion generating an augmented reality feedback: a module to generate support
indications as projections in the smart environment; and (5) a database of
medicine doses to obtain appropriate messages.

We use three 3D cameras to capture: (1) observations of an individual that
needs help in a physical activity; (2) observations of the smart environment,
including a supporting person; and (3) information of the handle gestures of
medicine manipulation. A central computer was connected to the cameras, pro-
cessing the information in real-time analyzing gestures of individuals as observa-
tions for the agent. The agent platform (JaCaMo) was used to build the agent.
An argumentation process was used using an argumentation library previously
developed (see [16]). An agent updates/triggers its plan every time that a pre-
defined gesture of the 3D camera is identified. Those pre-defined gestures were
defined and trained based on data from three older adults and two medical
experts.

6 Discussion and Conclusions

Our main contribution in this paper is a formal understanding of the interplay
among an assistive agent-based software, a person to be assisted and a caregiver.

Argumentation-based systems, have become influential in artificial intelli-
gence particularly in multi-agent systems design (see [8] for a systematic review).
Argumentation theory can be seen as a process to provide common-sense to
the decision-making process of a deductive system. Common-sense reasoning
about an activity implies a non-monotonic process in which the output may

https://cloud.google.com/vision
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change, when more knowledge is added. In the context of this paper, the con-
trary of a non-monotonic behavior is, for example a stubborn system, providing
support when an individual does not need it and even under direct negative
response from a user. In this paper we argue that non-monotonic reasoning may
be used as main mechanism for decision-making of intelligent assistive systems.
In fact, in ambient-assistive literature few authors have explore this approach
(see [18,25,27,28,30]).

We propose an algorithm to integrate client’s information (the activity model
Definition 1) into the final decision-making process of an agent. This mechanism
captured in Algorithm 1, resembles a process of “reflection” which in humans
is a re-consideration of actions and goals given some parameters. Our reflection
mechanism can be seen as an “action-filtering” process with the human-in-the-
loop7. We also analyze different outputs of Algorithm1 considering two groups
of argumentation semantics (Propositions 1 and 2).

We propose different properties that software agents should follow if their
goals are linked to human goals. We highlight the relevance of Postulate 1 which
is understood as a primary rule for an intelligent assistive system. The relevance
and impact of these properties not only covers agents based on formal argumen-
tation theory, but other approaches, such as those based on the Belief Desire
Intention model [5].

Our proposed principles are a starting point for evaluating assistive technol-
ogy systems. This is a first step to establish general properties that such system
should follow. We are aware that several principles can be added and we are
aiming to continue this research line as future work.

We are also interested in the analysis of activity dynamics extending our for-
mal results. In activity theory, the hierarchical structure is dynamic, there are
transformations among internal levels of the hierarchy triggered by the demands
and prerequisites in the environment [23]. We aim to investigate transforma-
tions in the activity, for example when the ZPD “increases”, i.e. a person can
achieve more activities with help of a caregiver or an assistive technology system,
the activity hierarchy changes. From computational point of view, such change
implies a modification at the information structure level, which may define sce-
narios where consistency can not be assured. In this sense, part of the future
work will be focused on analyzing activity dynamics, but leveraged by the cur-
rent “static” research of activities e.g. in [15,17,18,29].
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27. Muñoz, A., Augusto, J.C., Villa, A., Bot́ıa, J.A.: Design and evaluation of an
ambient assisted living system based on an argumentative multi-agent system.
Pers. Ubiquitous Comput. 15(4), 377–387 (2011)
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Abstract. The aim of this paper is to introduce a smart mHealth appli-
cation based on the augmented reality (AR)-paradigm that can support
patients with common problems, related to management of their medi-
cation. This smart mHealth application is designed and implemented as
a medication coach intelligent agent, called Medication Coach Intelligent
Agent (MCIA). The MCIA has to manage different types of information
such as the medication plan (medication regime) of the patients, medi-
cation restrictions, as well as the patient’s preferences and sensor input
data from an AR-headset. Considering all this information, the MCIA
leads with holistic decisions in order to offer personalized and unobtru-
sive interventions, in an autonomous way, to the patients. From a long-
term perspective, the MCIA should also evaluate its performance over
time and adapt in order to improve its interventions with the patients.
To show the feasibility of our approach, a proof-of-concept prototype
was implemented and evaluated. In this proof-of-concept prototype, the
MCIA has been embodied as a smart augmented reality (AR)-mHealth
application in the settings of a Microsoft HoloLens. The results show a
high potential for using the MCIA in real settings.

1 Introduction

Medication adherence is a global problem [12], which can be defined as the
“extent to which a patient acts in accordance with the prescribed interval, and
dose of a dosing regimen” [13]. Lack of medication adherence leads to patients not
achieving sufficient health outcomes [25], and about 25–50% of the patients do
not follow their prescriptions correctly [22]. Non-adherence has been estimated
to a cost of 100–289 billion dollars a year for the U.S healthcare system [29].
From a medical perspective it has long been recognized that poor adherence to
medical treatment is a substantial roadblock to achieving better outcome for
patients [16]. Nonadherence to medication regimens affects both quality of life
and length of life [15].
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Several attempts have been made in order to address this problem such as
different mHealth-applications1 and different types of robots. Even though some
interesting robots are on its way such as Pillo2, robots have by nature, the
limitation of being more or less fixed in its location.

Some of the critiques towards current mHealth- applications is that they lack
several basic adherence attributes [19], as well as persuasive techniques to engage
people in the digital management of their disease [18].

Non-adherence can be either intentional or unintentional [11]. Unintentional
non-adherence could, at least in theory, easily be addressed by sending reminders
to patients. This may work very well for mHealth-applications, but it is more
difficult when using robots since the user may not be close enough to the robot at
all times. Intentional non-adherence is more challenging since sending a reminder
can be seen as a useless attempt since, it will most likely not change the mental
state of the patient. There is a conflict of interest between the system/agent and
the patient in this situation. Persuasive techniques may play an important role
when dealing with intentional non-adherence, but as mentioned many mHealth-
applications lack this feature. AR3-headsets open up for a seamless interaction
and brings a new approach for dealing with the problems of non-adherence.

An augmented reality (AR)-headset makes it possible to have the mobility
of a mobile device and still establish a social and friendly relationship with the
user. Through holograms it is possible to augment the users’ field of view with
an avatar. With a digital avatar there are more possibilities regarding the looks
and appearance compared with a physical robot, which might have more affect
on the intentions of the users. An AR-headset, such as the Microsoft HoloLens,
also makes it possible to be more aware of the environment and user activities
because of its many sensors.

Against this background, this paper introduces a novel solution to lead with
the medication adherence problem based on the AR-paradigm and intelligent
coaching systems. In particular, we introduce the so-called Medication Coach
Intelligent Agent (MCIA). The MCIA has proactive and reactive behavior in
order to support the medical management of patients. Moreover, the MCIA has
autonomous reasoning capabilities that allow the MCIA to lead with long-term
goals in the settings of medication plans. As part of the results of this paper,
an architecture of the MCIA is introduced. This architecture aims for a techno-
logically scalable solution based on an AR-headset and multi-agent systems. We
also present a usability evaluation of a proof-of-concept prototype of the MCIA.

The rest of the paper is organized as follows. In Sect. 2, different issues
regarding medication management are discussed. In Sect. 3, the main goals of
the research addressed in this paper from the medical perspective is presented.
In Sect. 4, a theoretical framework regarding the MCIA is presented. In Sect. 5,
an implementation of the MCIA in the settings of the Microsoft HoloLens is pre-

1 Practice of medicine and public health using mobile devices, apps, smart devices and
smartphones.

2 https://www.pillohealth.com.
3 Augmented reality.

https://www.pillohealth.com
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sented. In Sect. 6, an evaluation of our proof-of-concept prototype is described.
In Sect. 7, a short review of the related work is presented. In the last section, we
outline our conclusions and future work.

2 Medication Scenario

The research in this project was developed as nurses from home healthcare
brought attention to several patients having problems maintaining medication
adherence through self management. Self management includes strategies and
activities a person performs to live well with illness and it can be performed by
the individual or in collaboration with a significant other [5,8,30]. Patients who
are unable to perform health- and medication related activities as self manage-
ment, for example handling and taking prescribed pills and following a medica-
tion plan, can get professional help in their homes, so called home healthcare
[5]. A common reason for patients over age 70 to enroll in home healthcare is
they are no longer able to handle their medication through self management and
need professional help.

2.1 Patient Groups

From a medication management perspective, patients who use medicine regularly
can be categorized into three conceptual groups. Group 1 is independent and do
not rely on help from others for managing their medication. Group 2 is partly
independent, receives help from relatives or friends, but do not get professional
help. Group 3 is in need of professional help.

The target group for the research in this project are patients from groups
2 and 3. The purpose is to investigate if AR-technology (using an AR-headset)
may be used as a tool to increase their ability to improve and maintain medicine-
related self management, thereby contributing to them staying independent for a
longer time, delaying need for home healthcare and facilitate medication adher-
ence.

2.2 Rules for Interchangeable Medicines

Many patients have several different medicines, as a strategy to simplify handling
pills they use pill dispensers, where the medicine is distributed on a weekly
basis. A common problem for the target group, and a reason why many patients
need help managing their medication, is the continuous variation regarding their
medicines, names of medicines and the visual appearance of pills and packages.
This leads to patients and their non-professional helpers being confused when
handling medication and preparing pill dispensers, which in turn leads to needing
a nurse to come to their homes on a regular basis, preparing the dispenser for
them.

What actually causes the variation is that the pharmacies can deliver different
brands for the same type of medicine. The names and boxes varies with the brand
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and this makes the patients insecure and afraid of preparing their dispensers.
The underlying reason for the frequent exchange of medicine brands are the rules
for interchangeable medicines which are applied in most European countries.
According to the rules, if a patient gets prescription for a particular medicine,
the pharmacy always has to offer the brand with the lowest price if the medicines
are interchangeable [1].

One of the main aims of the MCIA is to make patients and their helpers
confident enough, using an AR-headset, to prepare their dispensers and therefore
remove or delay the need of home healthcare (nurse). Another priority of the
MCIA, in order to consider a long term experience, will be to help the patients
to follow their medication plans through self management.

2.3 Prescription and On Demand Medicines

For this project a characterization of medicines has been made since there are dif-
ferences in how different types of medicines should be managed by the MCIA. All
medicines comes with prescription from a doctor. Prescriptions include adher-
ence information about how the medicine should be taken regarding dose and
time schedule. Adherence information is personalized for each patient, printed
on adhesive labels at the pharmacy and attached to each package of medicine.

Medicines to be Taken On a Regular Basis: The prescription label on
these medicines state dose and the specific times each dose of the medicine
should be taken. The goal of the MCIA is to make sure that the patient takes
these medicines at the times they are specified.

Medicines to be Taken On Demand: This type of medicines are medicines
that the patient can take when he or she feels the need. Examples of common
on demand medicines are pills to decrease pain or anxiety. The information on
the prescription label states strength per dose, minimum time interval between
doses and maximum amount of doses allowed in 24 h. The goal of the MCIA will
be to make sure that the user does not exceed the maximum dosage per day and
occasion.

3 Research Questions and Methodology

The research conducted in this project was a collaboration between the Depart-
ment of Community Medicine and Rehabilitation and Department of Computing
Science at Ume̊a University in Sweden. The collaboration originated from clinical
problems and challenges experienced in home health care environments.

The purpose of the project was to develop, test, implement and evaluate an
intelligent system that can support patients in

1. adherence to prescribed medication,
2. assist the patient in filling the pillbox, and
3. provide patients with individual assurance and confirmation that they are

taking the right pills at the right time.
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The overall research question was: Would it be possible to use a medication coach
intelligent agent to solve this? From a medical perspective the following five
areas had been identified as essential: (1) patients maintaining self management
of pills, (2) confirmation and patient security, (3) personalization, (4) mobility
and (5) possible replacement of nurses.

3.1 Maintaining Self Management

When a person is on a medication regimen it is the individuals responsibility
to follow the medication as prescribed. There is a number of tools available to
assist and facilitate self management. Using a pillbox is one of the most common
strategies for patients on treatments involving multiple pills to be taken at dif-
ferent times throughout the day. Instead of taking pills from multiple packages
every time, the pillbox is filled up for a week at the time. A pillbox commonly has
28 compartments, distributed as seven horizontal compartments labeled Monday
to Sunday, with 4 vertical slots for each day. The vertical compartments have
labels suitable for the most common times to take pills during a day, such as
morning, noon, evening and bed. As previously mentioned in Sect. 2.1 it may be
confusing for patients to fill their pillboxes, as due to the rules of interchangeable
medicines one pill in the middle of a week can change both name and appear-
ance. Thus patients apply for home health care and nurse can fill the pill box
instead. With this patients lose their independence.

3.2 Confirmation and Patient Security

Currently patients turn to nurses for help when they feel insecure about their
medicines. A desire for the system was that it should be able to communicate
with the patients regarding questions about their pills. Example of questions
from patients: Is this the right pill? When shall I take this pill? How many shall
I take? This feature would be useful as support when patients fill their weekly
pillboxes. Another desire was that the system should be able to remind patients
at the time pills are to be taken and give information about how many to take
on each occasion.

3.3 Personalization

Each patient has their own individual prescribed medication plan. The system
must be able to personalize the answers to the questions to each patients’ medi-
cation list as well as individual needs for support. A medication plan can change
over time and also temporary changes can occur. The system needs to be able
to cope with such changes.

3.4 Mobility

Requirements for mobility were that patients should not be tied to a specific time
and place when using the system. Further, patients should be able to decide when
and where to use it and also bring it along when leaving the home.
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3.5 Replacement for Nurses

In Sweden, as in several other countries, there is a lack of nurses. With many
nurse-positions vacant the work environment become stressful. If technology
could assist patients in filling their pillboxes, and handling related issues as
described above, nurses would be able to re-arrange their time to work tasks
where it is not suitable to replace nurses with technology. The demographic
development where the proportion as well as the number of older people with
care needs has rapidly increased, and will continue to do so, brings an increased
demand for long-term care services. This will be a challenge as current supply
is considered to be insufficient and inadequate in terms of meeting current and
especially future needs for long-term care. The demographic development is one
reason why it is important to develop technology in the health care sector [17].

4 Theoretical Framework

The aim of this section is to formally introduce both data sources and a multi-
criteria decision making approach for supporting the decision making processes
of the MCIA.

4.1 Data Modeling

Let us start introducing the basic definition of a time point. A time point is a
time stamp 〈Date, time clock〉. T denotes all the possible time points. Now let us
introduce the basic definition of a medicine. A particularly interesting attribute
of a medicine is its Anatomical Therapeutic Chemical (ATC)-code. The ATC-
classification is an internationally accepted classification system, based on active
ingredients and their therapeutic, pharmacological and chemical properties4. By
ATC codes, we denote a finite set of ATC-codes. Hence, a medicine is defined
as follows:

Definition 1. Medicine
A medicine m is a tuple of the form 〈ε, ς, p, δ, α〉, such that m ∈ ATC codes ×
R×[0, 1]×I×Active ingridients, where ς ∈ R denotes a substance concentration
in milligrams, p ∈ [0, 1] denotes a priority degree, δ ∈ I denotes a time interval
such that I = T × T . M denotes the set of all possible medicines.

Medicines will be managed in terms of events. An event is something that
happens and which should be acknowledged by the MCIA. For example, if a
reminder is presented to a patient whereupon the patient takes the medicines, the
MCIA should notice that event and not present any more reminders regarding
the same medicines for the same occasion. Events could also be things like eating
food, drinking milk or other things that might have an impact, or have an effect,
on the users’ medication. This project however, only considers events regarding
taking of an oral medicine, and is defined as follows:
4 http://www.hpra.ie/homepage/medicines/medicines-information/atc-codes.

http://www.hpra.ie/homepage/medicines/medicines-information/atc-codes
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Definition 2. Event
An event e is a pair 〈m, t〉, such that e ∈ M×T . E denotes the set of all possible
events.

Constraints regarding medications can appear in three different ways. Firstly,
it can be a medicine incompatibility, i.e. some medicines should not be taken
at the same time as others, since it may have an impact on the effect of one
or both of the medicines [6]. Secondly, there are time constraints. For example,
if a patient takes an on demand medicine (such as regular painkillers), then a
certain amount of time has to elapse until he or she can take it again. Thirdly,
there can be a maximum dosage, or amount, per day. Due to lack of space, the
formal definition of these constraints are not presented in this paper. The formal
definition of these constrains can be found in [20]. We assume that the set of all
possible constraints are denoted by Constraints.

A medication plan is the general plan which the MCIA wants the patient
to follow. It is the foundation of the goals of the MCIA, and it is adherence
to the medication plan that will be the primary source of feedback on how
well the MCIA performs. The medication plan consists of all medicines that are
prescribed, and also a set of constraints which should be considered while taking
these medicines.

Definition 3. Medication plan
A medication plan MP is of the form MP = 〈(m1,m2, . . . ,mn), μ〉 such that
mi ∈ M(1 ≤ i ≤ n), μ = {C1, C2, . . . , Cn}, Ci ∈ Constraints(1 ≤ i ≤ n).

Medication adherence is the measure of how well patients follow their medi-
cation plan. This is important information for the MCIA, since it can be seen as
the result of its actions and decisions. Medication adherence can be divided into
two parts, overall adherence (how well the patient is following the medication
plan), and the individual adherence for a specific medicine. It is not easy to mea-
sure adherence since there are many factors which it depends on, e.g. skipping
one medicine one time might be fine, while skipping another is not. Elementary
factors of estimating the adherence are the priority of each medicine, which indi-
cates how important it is to take the medicine, and the history of the intakes
(compliance to the plan). The two definitions of adherence are presented below.
An adherence function will be used to calculate adherence.

Definition 4. Medication adherence for individual medicines
Let βm be the medication adherence of a medicine m such that βm = f1(γm, p)
where f1 is an adherence function for individual medicines, γm is the history for
medicine m and p be its priority.

Definition 5. Medication adherence in general
Let π be the over all medication adherence π = f2(

∑n
1 βmi

) where, f2 is an
overall adherence function, and βmi

is the individual adherence for medicine
mi(1 ≤ i ≤ n).
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Let us point out that the adherence functions f1 (w.r.t. Definition 4) and f2
(w.r.t Definition 5) are basically distance functions between the current state
of adherence and the intended medication plan. Hence, these functions can
be implemented in different ways. In our proof-of-concept prototype, f1 was
implemented as a model checking function, based on weak-constraints, following
Answer Set Programming (ASP) [7], regarding the constraints of each medi-
cation in the medication plan. Regarding f2, it was implemented as a basic
normalization function, f2 : R → [0, 1], such that 0 means null adherence and 1
means total adherence.

4.2 Decision Making Modeling

In order to make decisions considering all of the relevant information such as the
medication plan and the so called information variables, a multi-criteria deci-
sion making-approach has been chosen and more specifically, the weighted sum
method (WSM) [21]. Information variables are used by the WSM for calculat-
ing weighted sums; an information variable is a pair of the form 〈n, v〉, where
n is a propositional atom that describes what the variable represents (such as
a preference or a context factor) and v ∈ [0, 1], e.g. 〈prefersAudioOutput, 0.4〉,
〈noisy, 0.8〉.
Information Variables are Compensatory. Having a global rank where a
good criterion can compensate for a bad criterion is usually referred to as the
full aggregation approach [21]. This is highly desirable since the MCIA will deal
with conflicting information and priorities. For example, if the user is in a very
noisy environment the MCIA should presents visual information, even if the user
preference of visual presentation is very low. High values should therefore be able
to compensate for low values, in order to make context-aware decisions.

Information Availability. One of the drawbacks with multi-criterion decision
making in general, is that a lot of information has to be specified. In this case
however, the information should always be available in real time through sensors
and internal values.

All desires (also called goals), which the MCIA have committed to achieve,
are called intentions and for each intention there is a finite set of actions
{a1, a2, . . . , an}. Actions are basically different ways of achieving an intention.
Actions can also be seen as the MCIA’s means of interacting with the envi-
ronment. The distinction between intentions and actions is a way of handling
high level reasoning (using intentions), while still being able to adapt and be
sensitive to the current situation (by using an appropriate action). An intention
is defined as follows:

Definition 6. Intention
An intention x is a pair 〈ID, α〉, where ID ∈ N, α be the intention to be per-
formed.
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Example 1. Let xr be the intention to send a reminder to the user. Then
there is a set of actions {a1, a2, a3} related the intention xr, where a1 =
use audio output, a2 = use visual output and a3 = use audio and visual output.

Before presenting the definition of decision making, a couple of related defini-
tions are presented. Utiliy weights can be seen as the priority of the information
variable regarding a given decision, and is defined in the following way.

Definition 7. Utility weights
Let wxd be the weight for information variable x regarding the decision d, then
wxd ∈ {L,M,H} (low, medium or high importance).

An exact numeric value of the utility weight for the different priorities, is
not defined and it may have to depend on the type of decision. However, a value
between 0 and 1 will always be used for each of the different levels of importance.

The utility function U(a), uses information variables with utility weights to
calculate the utility of an alternative a and is defined in the following way.

Definition 8. Utility function
Let a be an action, and σ1, σ2, . . . , σn be the positive information variables,
then U(a) =

∑n
0 xiwi where, xi is the value of the information variable

σi(1 ≤ i ≤ n), wi be the weight of the information variable σi.

Only positive information variables are used in the calculation. Positive, sim-
ply means that if the information variable has a high value, it should increase the
utility for the given alternative. This is chosen for simplicity of the calculation,
but it puts some requirements on what information variables there must be in
order for the utility function to be fair. Competing alternatives should always
depend on similar information variables, which means that they should have the
same importance and have a similar purpose. This problem could be addressed
by setting a weight which corresponds to the exact value of the importance of the
variable, but it is hard to exactly define the importance of an information vari-
able for a given decision. Instead, utility weights are merely a rough estimation
of how important an information variable is.

Information which is not defined explicitly as a value (such as information in
the medication plan), but may still be important when calculating the utility of
the alternative, will be converted into an information variable using a separate
function. This function varies depending on the type of information, but the
result will be a number between 0 and 1 and will therefore be treated as a
regular information variable.

The decision of choosing the best action is taken in real time by using the
following definition.

Definition 9. Decision making
Let D be a decision and a1, a2, . . . , an be competing actions, then
D = max(U(a1), U(a2), . . . , U(an)) such that U(ai) is a utility function which
calculates the utility of ai(1 ≤ i ≤ n).
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A plan is simply a list of intentions which, if nothing changes, will be executed
by the MCIA.

Definition 10. Plan
Let δ be a plan δ = (ν, θ), ν = [x1, x2, . . . , xn] where each xi(1 ≤ i ≤ n) be
an intention, θ = [l1, l2, . . . , ln] be a list of dependencies such that li = (π, β),
π ∈ {ID|(ID, α) appears in ν}, β ⊆ {ID|(ID, α) appears in ν}5 and π /∈ β.

5 Implementation

In this section, a proof-of-concept prototype of the MCIA is described. In this
proof-of-concept prototype, the MCIA has been embodied as a smart augmented
reality (AR)-mHealth application in the settings of a Microsoft HoloLens. This
AR-mHealth application was designed as a long-term experience application
(LTEA) [20]. The goal with the presented architecture and reasoning loop is
to make the MCIA context-aware, unintrusive, being able to personalize to indi-
vidual users and to plan towards long-term goals. These four areas are identified
as particularly important when designing long-term experience applications for
augmented reality [20].

The internal reasoning process of the MCIA follows the beliefs-desires-
intentions (BDI)-model [31]. The BDI approach was chosen to handle a practical
reasoning algorithm. Unity and Visual Studio were used to implement the proto-
type, and Vuforia was used as a plug-in to Unity in order to recognize medicine
boxes. The general architecture of the system is depicted by Fig. 1. The archi-
tecture consists of three major components, the MCIA, external agents and
databases. The external agents and the databases provides the MCIA with the
information it needs in order to supply the services to the user. The external
agents, which are also BDI-agents, were introduced in our previous work [27].

The reasoning loop of the MCIA can be seen in Fig. 2. A plan of intentions
(later referred to as plan) will be constructed using the current state, referred
to as internal state (Figs. 1 and 2), and the long-term goals. This plan will be
created on a daily basis and planning will take place over a specific time period.
By practical reasons, it is assumed that this planning process will take place
during night time. This means that when the user wakes up, the plan for the
day has already been made and only re-planning using the event-driven approach
is necessary. The reason why it is referred to as an event-driven process is that
events can be seen as triggers that changes the internal mental state of the
MCIA. Therefore, in the case of an event, the MCIA should check for interactions
with the plan and re-plan accordingly.

Proactive behavior emerges by actions executed in order to achieve the inten-
tions of the MCIA, such as sending reminders to the patient. Reminders are also
context-aware regarding time, but in our proof of concept, also by simulated
information from the environment. Reactive behavior emerges by using input
to directly trigger some behavior, e.g. using voice commands and information
5 appears in is the classical membership operator in lists.
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Fig. 1. Architecture

Fig. 2. Reasoning loop
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regarding the user’s vision (using the AR-headset), it is possible to display infor-
mation regarding medicine boxes. Autonomous behavior emerges by reasoning
about the intentions of the day. The purpose of intentions are to improve med-
ication adherence of the user, and by evaluating the behavior of the user, the
reasoning can be adapted.

6 Evaluation

In order to show the feasibility of our approach, a usability evaluation of the
proof-of-concept prototype of the MCIA was done. We aimed to answer the
following questions:

– Is there a difference, related to age, regarding if people are willing to use an
AR-headset for medication management?

– Is there a difference, related to experience of using smart technology, regarding
if people are willing to use an AR-headset for medication management?

The functionality involved displaying information about medicine boxes
regarding two features namely, helping the user to use a medicine at this moment
and to help the user to prepare a dispenser. The evaluation involved 15 partic-
ipants who were selected by using the following criteria: a. Different levels of
management of medication on a regular basis; b. Wide range of ages (medica-
tion management in applies to people in all ages, not just elderly); c. Different
experiences using smart technology in general. The setting was a quiet and home-
like environment. The participants were able to use voice, vision and gestures to
interact with the system and were presented with both visual and audible out-
put. Figure 3 summarizes the visual information presented to the participants.
After the test they were asked to fill in a form. Responses were on a five-point
Likert-type scale graded from 1 (strongly disagree) to 5 (strongly agree). The
lower bound to agree was made at 4 (4 or 5 = agree).

Fig. 3. Visual information about medicines presented to test participants
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The evaluation showed that of all participants 20% perceived the technol-
ogy hard to use and 13% thought that they would need a lot of training before
using this technology in real life. There were a couple of vast differences regard-
ing participants over and under 70 (4 and 11 respectively), and also between
experienced smart technology users and those less experienced (8 and 7 respec-
tively). Of the participants over 70, 50% were willing to use the technology in
the future but none thought other people would appreciate the technology. For
the participants under 70, the corresponding numbers were 91% and 100%. For
participants over 70, 0% considered themselves as experienced smart technology
users, while 73% of the people under 70 considered themselves as experienced.
Of all experienced participants 100% were willing to use this technology in the
future and 88% thought that most other people would appreciate the technology.

7 Related Work

The possibilities of using smart-glasses (AR) within a system to assist doctors
and other healthcare-personnel in emergency situations was explored in [14].
Smart-glasses was connected to different types of medical equipment and was
used to display important information for the person wearing them. The smart-
glasses could also be used to record video/audio and to take snapshots of the
process.

Mitrasinovic et al. concluded that smart-glasses have evident utility to health-
care professionals [26]. A major advantage mentioned by Mitrasinovic et al. is
that the glasses are hands-free which liberates the users from giving manual
input.

A concept to send context-aware reminders to users in order to increase
medication adherence was presented in [24]. They argued that sending reminders
should depend on other factors than time, since there are a lot of scenarios where
time-based reminders can fail. Results showed that the concept proved to be
better compared to time-based reminders, which motivates the need of being
context-aware. Also, one of their priorities was to be unobtrusive, in this case
in terms of monitoring of elderlys’ activities, which we also believe is important.
The user should not be annoyed by the system and it is important that the user
has a positive attitude towards the system, especially for the results of long-term
usage.

An article about using a humanoid robot to support elderly peoples’ every-
day life [28], supplied similar functionality that we wish to do. They wanted
to help the user to take the right medicine (selecting), prevent the user from
taking the wrong medicine, helping the user remembering to take the medicine,
keep a record of all medicine intakes and allow administers to remotely edit pre-
scriptions. Their prototype showed that there is potential in using a humanoid
robot, and by using a robot (NAO in this case) it is possible to handle additional
problem domains such as emergency situations. We believe that an AR-headset,
such as the Microsoft HoloLens, is even more capable of handling other problem
domains requiring mobility and portability.
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General tools to increase medication adherence for patients are smart dis-
pensers (e.g. [4]), robots (e.g. [3]) and applications to mobile devices (e.g. [2]).
General functionality of these devices is to remind the patient to take the
medicine and to help them with taking the right medicines. Our vision is to
combine all of these common features and to add a more intelligent behavior.

8 Conclusions and Future Work

Medication adherence is a healthcare issue that affects both youth and elderly
patients around the world. Until now, there is no a general solution that can
support the dynamic demands that each individual requires for keeping his or
her self-medication management optimal. In this regard, we argue that our app-
roach based on intelligent coaching systems and AR-headsets shows a solid and
scalable solution for leading with the complex processes of tailored services on
medication management. Results from our evaluation showed that participants
felt comfortable using an AR-headset during medication management proce-
dures, such as taking pills and putting pills into pill dispensers. The evaluation
indicates that the MCIA embodied in an AR-headset can be a useful tool in
helping patients to maintain self management and medication adherence. From
a societal perspective, maintained self management is likely to delay or possibly
prevent, the need for professional assistance by nurses. As most western coun-
tries suffer from lack of nurses and other health care professionals the effects
of the MCIA would potentially have a high impact on sustainability of public
health resources.

The feasibility of using the MCIA today is somewhat restricted to the lim-
itations regarding wearable AR-technology hardware. Some of the most crucial
limitations being short battery life, size of field of view and the physical size of
the headset.

When replacing human interaction with technology devices the risk for possi-
ble negative effects must be taken into consideration. From a health-care perspec-
tive there are both medical and social risks. Changing a medical situation where
traditionally health professionals are physically present in the patient’s home
and perform a task for the patient, to the patient performing the task them-
selves requires a shift of mindset. Changing routines is often challenging and
may be particularly difficult as the supportive technology is inside the Hololens
and thereby may be experienced as “invisible” by patient, as opposed to a nurse
standing in front of him. Patients need to learn to trust the technology and
the technology must be safe. If the system is not sufficiently programmed the
patient will get the wrong information, thereby not taking the prescribed med-
ication correctly which can lead to serious medical conditions. Among elderly
home care clients loneliness is a recognized health problem. For many of them
the visits from health professionals are the only social interaction they have
with other humans. Replacing human interaction with technology devices may
increase feelings of loneliness for those patients [9].

From a software perspective, providing proactive and autonomous behavior
in a context-aware and personalized manner is of course also a challenge. Goal
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reasoning and planning are hard and complex processes which are necessary for
proactive and autonomous behavior. Computationally heavy processes combined
with already insufficient batteries are not a good match. One workaround to
this problem can be to take advantage of the increased availability of Wifi and
increased speed of mobile networks to offload the heavy computations from the
mobile devices to a server. This would decrease the performance demands on the
AR-headsets, hypothetically making them smaller, and enables more advanced
and heavy processes since the limitations now lies at the server.

A majority of the patients in the target group for this mHealth device is
likely to be found among persons older than 65 years. Statistics show that indi-
viduals in this group have 3 chronic conditions on average and over 70% take
5 or more drugs every day [10,23]. In our future work, we aim for a complete
implementation of the MCIA and a long term usability evaluation. The evalu-
ation presented in this paper was conducted with test persons in a living lab,
set up as a quiet and home-like environment. Future evaluations are planned to
take place in collaboration with a regional home-care organisation, where home-
care patients with daily multiple-drug use will test the mHealth device at their
kitchen tables based on their own individual medication plans. These evalua-
tions will address usability and user experience from both technical and medical
points of interest. We believe it has been a strength to this research project to
have a multidisciplinary research group where researchers with experience from
various fields such as computer science, AI, engineering, medicine and nursing
have collaborated.
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Abstract. Knowledge Management is decisive for clinical decision-making
and for delivering better outcomes for patients care. The importance of medical
knowledge has been emphasized in the researches to support evidence-based
medicine. Currently, cancer is responsible for over 130,000 deaths every year in
Brazil. Extensive waiting queues for diagnosis and treatments have become
routine. One of the critical success factors in a cancer treatment is the early
diagnosis. The reduction of waiting time to start cancer treatment is one of the
main issues for improvement of patient’s quality of life and possibilities of cure.
This study presents a knowledge-based simulation framework developed at the
Brazilian National Cancer Institute (INCA) to reduce patients’ waiting time to
start cancer treatment.

Keywords: Knowledge-based simulation � Decision support �
Framework for decision support

1 Introduction

Nowadays, a great number of countries deal with grave problems and substantial
expenditures in healthcare organizations, rising from the increase in the demand for
healthcare services due to the growth in the number of elderly citizens with chronic
diseases. The cancer treatment planning has become more complex with a huge
demand for accessibility to hospital services with efficiency, equality, and customiza-
tion of care [1].

Healthcare processes are characterized by knowledge-intensive tasks, and Infor-
mation and Communication Technology (ICT) is largely used to support knowledge
management in healthcare organizations. Knowledge is extremely important in
healthcare organizations because low-quality information can lead to deficient clinical
decisions and even endanger lives [2].
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In this circumstances, Knowledge Management is decisive for clinical decision-
making and to offer better outcomes for patients. The importance of medical infor-
mation has been emphasized in the researches to support evidence-based medicine.
Gradually, healthcare staff depends on ICT tools to deal with the challenges to create,
structure, share and apply knowledge [3, 4].

Taking into consideration the principal objective of Knowledge Management
(KM) in clinical decision-making, it is fundamental to use ICT tools to support
effective sharing of information among to the clinic staff. Accessibility to actualized
and accurate information is crucial. The use of ICT supports the storage of a big
volume of data, which can be processed by decision support systems in healthcare
services [5].

Cancer is responsible for over 130,000 deaths per year in Brazil. Advances in life
quality increased citizens’ life expectations. However, because of limited resources,
cancer in Brazil can be considered a severe public health problem. The management of
cancer treatment is a long and complex process. The reduction of the patient’s waiting
time to start cancer treatment plays an increasingly important role in the treatment of
this chronic illness [5, 6].

Healthcare simulation models generally require the implementation of systems with
complex activities, involving stakeholders with a diversity of views and intentions [7].
It is thought that the active involvement of clinic staff throughout the study can
decrease these problems, creating solid ownership of the model formulation and
acceptance of charge for actions to be taken [8].

Organizations rely on data analytics to strategic decisions making. Descriptive
analytics is commonly used to provide insight into past behavior. However, greater
value can be achieved by predicting future behavior. Knowledge-based simulation
represents an innovative area linking the fields of computer simulation and artificial
intelligence. Simulation plays an important role in predictive analytics [9, 10].

The objective of this article is to describe the development of a knowledge-based
simulation framework for decision support applied in the Brazilian National Cancer
Institute (INCA) to reduce patients’ waiting time to start cancer treatment. The adopted
methodology was focused on the patient treatment flow and on the quick start of cancer
treatment. The theory of constraints was used to identify bottlenecks in patient treat-
ment flow and a discrete event simulation model was created to exploit the system’s
constraints and produce ongoing improvement efforts.

2 Methods

Knowledge Management is important for the clinical decision-making process and for
delivering better outcomes for patients. The knowledge-based framework deployed at
INCA includes four steps: creating, structuring, sharing and applying. The four stages
support an integrated simulation environment for cancer treatment planning. Fig. 1
presents a list of activities and tools contained within each step. The graphics con-
figuration of this simulation framework is presented in Fig. 1.
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The creating phase consists of data acquisition and identification of best practices.
The process for data acquisition, from internal and external sources, is strongly
interrelated with the clinical staff involved in cancer treatment.

The structuring phase consists of define, store, index and link clinical guidelines for
cancer treatment. This phase involves classify and store protocols and clinical guide-
lines into data storages.

The sharing phase comprises the diffusion of best practices using extranets, intra-
net, groupware, communities of practice and multidisciplinary teams.

The last phase includes activities related to the clinical decision-making process and
problem-solving using simulation models and Data Mining applications.

Computer simulation is an efficient tool to analyze complex systems and investi-
gating different scenarios related to patient waiting-time reduction, resources allocation,
staff scheduling, capacity planning, and on-going improvement.

A significant increase in the number of simulation models applied in healthcare
services is evident. This growth is motivated by the ability of these simulation models
in addressing complex problems that cannot be addressed by decision support systems.
Much of its growth can be attributed to ICT development and the volume of real-time
data available for analytics.

To support the physicians’ activities, INCA’s ICT technicians have developed data
mining applications to find out the most effective treatments. These applications
compare treatments patterns, symptoms and undesirable effects and then keep
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Best Practices
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SHARING
Groupware
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Fig. 1. INCA knowledge management process
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investigating which medical procedures will be most effective for a group of patients.
This is also a way to identify the clinical best practices and protocols for cancer care.

Data mining have a high potential for cancer care institutions by allowing managers
to consistently use data science and analytics tools to detect inefficiencies and apply
good practices that increase outcomes and reduce costs. The INCA objective was to
develop a framework to support the clinical decision-making process. Most of these
tools are patient-centric as shown in the INCA Knowledge-based Simulation Frame-
work presented in Fig. 2.

An innovative approach to analyzing issues of the healthcare services quality
assessment is the creation of data-driven models. Such models allow considering the
interests of all stakeholders to assess operations environment from the staff view and
the effectiveness of work from the manager view. The critical success factor is to work
with data from the hospital information system (HIS) and electronic health records
(EHR).

This Knowledge-based simulation framework has developed using INCA’s intranet
network that provides safe access to key benefits of an e-health strategy that uses
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emerging information and communication technology to improve and facilitate health
care. This solution has included enhanced collaboration between physicians and
managers, simplifying the physician work, and empowering managers with sophisti-
cated and cost-effective applications on the Web architecture. The legacy systems have
fed the INCA data warehouse, which was the base to build the clinical data marts.

INCA data warehouse has processed information of 540,000 patients extracted
from legacy systems. This repository was the hub of all data analysis. Several queries
were created to validate data consistency. The development of a multidimensional
database was to improve analytics applications and to examine the key performance
indicators.

Over the last few years, the Brazilian National Cancer Institute (INCA) has been
investing significantly in the implementation of an ICT architecture that integrates the
organization’s main processes and provides decision support systems which contain the
following components.

3 INCA Knowledge-Based Simulation Framework

INCA has five specific hospital units with different stakeholders, but which share the
same processes and technologies based on a common patient database and standardized
information systems. To support the physicians’ activities, several tools, such as
tracking mechanisms for keeping the longitudinal patient history, online tools for
gathering clinical information and the traditional medical record, are used. Most of
these are patient-centric and make the hospital environment amenable to the kind of
knowledge management system framework, such as presented in Fig. 3.

The INCA knowledge-based simulation framework was developed using INCA’s
intranet network that provides a safe access to applications developed to improve
healthcare. This solution includes a collaboration environment between physicians and
managers, simplifying the physician work, and empowering managers involved in the
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decision-making processes. The legacy systems feed the clinical data repository, which
is the basis to build the decision support systems.

3.1 Clinical Analysis (Patient Treatment Flow)

The proposed framework allows decision-makers to have a set of alternative scenarios
in real-time. It consists of several models linked to the patient’s treatment flow. The
automated cancer treatment flow component is a new interesting feature. It offers the
possibility to electronically generate the patient’s treatment flow from the clinical data
repository. Therefore, the users are able to examine, in a visual fashion, the evolution of
the treatment. This component is a very useful tool to support decision-making with
regards to the care provided. The doctors can blend, on one screen, the past, the present
and the future events of the patient treatment history. The sequence of events, the dates
and the duration of each event are very important to understand the structure of the
treatment. Figure 4 shows an example of the flow of treatment for a particular patient.

This component increases the traceability and is totally patient-oriented. It is
possible to see, in an animated fashion, the details of the flow of a particular patient
over the treatment process. The physician in charge of the case is able to follow a
particular patient or a group of patients step by step in their cancer treatment. Based on
the easily available information, one is able to detect and/or predict possible problem in
the treatment flow.

Fig. 4. Patient treatment flow
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Understanding the flow of the treatment, evaluating the constraints and managing
the bottlenecks could be a possible way to improve quality. A constraint is anything
that limits the system’s performance. The identification of the constraints is a great
opportunity to evaluate and improve the system concerned. There are five fundamental
steps to follow: 1. Identify the system’s constraint(s); 2. Decide how to exploit the
system’s constraint(s); 3. Subordinate/synchronize everything else to the above deci-
sions; 4. Elevate the system’s constraint(s); 5. If in the above steps the constraint has
shifted, go back to step 1.

These concepts have already been explored for productivity improvements in the
manufacturing area. The application of this approach to health services is suitable.
A search in the literature provides an excellent and more detailed review of applying
the theory of constraints (TOC) to healthcare services [11].

3.2 Capacity Analysis (Simulation Model)

Simulation modeling in healthcare is an efficient approach to analyze the interdepen-
dence between human resources and infrastructure variables in complex systems and to
explore scenarios of decision-making from different stakeholders.

A discrete-event simulation is a valuable tool for studying system capacity and
throughput. The use of simulation models with healthcare application includes emer-
gency departments, hospitals, and outpatient clinics. Simulation models can help
decision-makers to carry out a ‘what if?’ analysis to determine good policies for
reducing the waiting times of patients, increasing system throughput and improving
workflows.

A simulation experiment was developed at the radiology clinic of one of the
hospital units of INCA. The objective of the model was to contribute to the reduction of
the patient’s waiting time to start cancer treatment. The patient’s flow was analyzed,
and the access alternatives focused. The preliminary steps were to identify bottlenecks
and evaluate options for the allocation of resources. The model represents the flow of
patients in the radiology department. The sector had three computed tomography
scanners (CT). The annual production was about 15000 exams. The main activities
evaluated included:

• Reception;
• Patient preparation;
• Medical examination;
• CT Scan;
• Film production.

The simulation model was used to examine alternative scenarios. The objective was
the reduction of the waiting time between the computed tomography exam booking and
its accomplishment. The target was to increase the capacity to make computed
tomography (CT) exams. Figure 5 shows the model of the computed tomography
exams’ flow in the radiology clinic.
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This simulation model has supported decision makers through “what-if” scenarios
for decision-making under conditions of high risks, uncertainty, and lack of informa-
tion. Different scenarios were chosen for continually evaluating and improving upon
key processes. They were characterized by different external environmental situations
like a regular workload and an emergency workload at the radiology clinic. The first
scenario was regular; it means that there were no unexpected additional patients in the
radiology clinic. This scenario has provided management decisions about staff
schedules and other resources like the numbers of computed tomography equipment.
The emergency scenario has supported decision making in unpredictable circumstances
in case of additional patients or equipment breakdown.

The method of conducting the experiment is the visual simulation that is proved to
be a powerful tool. The proposed model examines individual patients as they arrive and
pass through CT exams. Arrivals, priority rules and exam types provide the necessary
detail to reproduce the real-life processes. Alternative scenarios can be compared and
modified without high costs. The knowledge gained from the experiments allows one
to take decisions without investing major resources.

Fig. 5. Simulation model
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4 Results

The Discrete Event Simulation model (DES) was used to investigate several “what- if”
scenarios. The experiment showed that to reduce overall exam execution time was
necessary to remove the phase of film production. The recommendation was to
implement a Picture Archiving and Communication system (PACS). Figure 6 shows
how the time of accomplishment of a group of examinations was reduced with the
exclusion of the film production phase.

All patients’ data were aggregated in a clinical Data Mart to create the automated
patient’s treatment flow. This flow has joined electronic medical records and the
sequence of events of a patient in only one screen. This approach was radically
innovative allowing physicians to examine the clinical evolution of a patient quickly by
using past events, current situation, and future procedures.

The dashboard has increased the traceability and was totally patient-oriented. It was
possible to see, in an animated fashion, the details of the flow of a particular patient
over the treatment process. The doctor in charge of the case was able to follow a
specific patient or a group of patients step by step in their cancer treatment. Based on
the easily available information, one was able to detect and/or predict possible bot-
tlenecks in the treatment flow.

Fig. 6. Reduction of computed tomography (CT) exams time
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These analytics applications were developed to support clinicians’ access robust
data visualizations on their own, enabling them to drill down into and filter data based
on their specific information needs.

The use of simulation model recommendations has made a significant impact in
terms of reduction of the waiting time to obtain CT image diagnosis at INCA.
A comparative study has evaluated this indicator before and after the implementation of
the Picture Archiving and Communication system (PACS). Figure 7 shows that the
interval was reduced from 30 to 22 days with a reduction of 25% of the average waiting
time, proving the effectiveness of the process.

5 Conclusions

Nowadays, healthcare organizations generate huge quantities of data, but regrettably,
this asset is not yet entirely used for improving the management and delivery of
healthcare services. The benefits gained from the implementation of this knowledge
management framework are real-time knowledge access; knowledge share; costs
reduction; cancer diagnosis agility and treatment quality.

The adoption of an integrated simulation environment can improve the efficiency of
healthcare delivery allied with capturing and sharing patient data among different health
professionals. The growth of simulation experiments over the last years has been encour-
aged by a great number of scientists and researchers conducting exploratory researchwith
simulation models applied to diverse cases of healthcare services management.

Waiting time to obtain image diagnosis
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Fig. 7. INCA Patient’s average waiting time to obtain CT image diagnosis.
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This paper indicated how decision making in a cancer treatment center can be
improved using a knowledge-based simulation framework. The use of this environment
provided the necessary analytic support and insights into such operational decisions.
The chosen approach was supported by the suite of applications which has retrieved
information about the clinical history of patients, identified process bottlenecks and
used discrete simulation technique to investigate alternative scenarios to reduce the
patients’ waiting time to realize CT’s exams. The alternative which has indicated the
PACS implementation has reduced patients’ waiting time for cancer treatment. Its
implementation showed, therefore, that good simulation experiments can make positive
changes.

A clear understanding of the decision-making process by managers and clinical
staff was essential. The reaction against new analytics tools on part of some physicians
has been overcome by the development of user-friendly simulation interfaces. Another
incentive has been the warm adhesion of young medical staff. A trend related to the use
of graphics interfaces as a deployment critical success factor was observed.
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Part II: Data Science and Decision Systems
in Medicine

The second part of this volume comprises the extended and revised versions of a set of
selected work from the track “Data Science and Decision Systems in Medicine”.

In the first paper of the second part, “Lifted Maximum Expected Utility”, Gehrke
et al. present an extension to a parameterised probabilistic model known as the lifted
junction tree (LJT) algorithm for querying relational models under uncertainty, such as
found in electronic health records (EHRs). This algorithm answers multiple queries
efficiently for relational models under uncertainty by building then reusing a first-order
cluster representation. By calculating a lifted solution to the maximum expected utility
(MEU) problem, the underlying LJT model can be extended into a parameterised
probabilistic decision model by adding action and utility nodes, thus creating the
meuLJT algorithm, capable of solving the MEU problem using parameterised proba-
bilistic decision models efficiently, while also being able to answer multiple marginal
queries.

Next, “The Role of Usability Engineering in the Development of an Intelligent
Decision Support System”, Martin et al. describe the role of human factors and user-
centred design in the creation of medical systems that adhere to international standards.
After introducing the reader to the usability engineering process, the paper describes
how human factors are being considered throughout the development of a personalised
clinical decision support system for the management of type 1 diabetes called PEPPER,
which applies artificial intelligence methods to recommend medication dosage. The
design of the system involves users at every stage of the development and uses multiple
techniques to maximise usability, minimise errors, and increase acceptance of rec-
ommendations by users. The preliminary analysis of data shows promising results.

The third paper in this part, “Automated Pain Detection in Facial Videos of
Children Using Human-Assisted Transfer Learning”, by Xu et al. tackles the task of
automatically and accurately detecting pain in children from their facial expressions.
Computer vision algorithms have been trained in the past to detect facial action units
(AUs) and classification systems have been built to differentiate between pain and no
pain, however these systems show variable performance depending on environmental
factors. The paper presents an improvement in pain detection by applying transfer
learning between automated AU codings and a subspace of manual AU codings to
enable more robust pain recognition performance than when only automatically coded
AUs are available for the test data. Using the transfer learning method, the authors
improved the area under the ROC curve on an independent test set from 0:67 to 0:72.

In the fourth chapter of this part, “Towards Automated Pain Detection in Children
Using Facial and Electrodermal Activity”, Xu et al. apply a different method to
automatically and accurately detect pain in children. In addition to the facial activity
recognition, electro-dermal activity (EDA) is jointly exploited to build a more robust
model through model fusion. The paper discusses the preliminary steps towards fusing



models trained on video for facial activity recognition and on EDA respectively. The
authors then compare fusion models using original video features and those using
transferred video features, which are less sensitive to environmental changes. The paper
concludes by demonstrating the advantage of the fusion between the transferred video
features and the EDA features through improved performance relative to using EDA
and video features alone.

Next, chapter “Interpretation of Best Medical Coding Practices by Case-Based
Reasoning, A User Assistance Prototype for Data Collection for Cancer Registries”,
Schnell et al. highlight the importance of cancer registries as an important tool to fight
this disease. At the heart of these registries lies the data collection and coding process.
This process is ruled by complex international standards and a number of best prac-
tices, which can easily overwhelm (coding) operators. This paper presents a system
assisting operators in the interpretation of best medical coding practices and its eval-
uation. By leveraging the arguments used by the coding experts to determine the best
coding option, the proposed system answers coding questions from operators and
provides a partial explanation for the proposed solution.

Chapter “Identification of Serious Illness Conversations in Unstructured Clinical
Notes Using Deep Neural Networks”, Chien et al. focus on applying deep learning to
care planning, in an attempt to clarify and document goals of care and preferences for
future care in the context of end-of-life care. To remain consistent with the preferences
of dying patients and their families, physicians document their communication about
these preferences as unstructured free text in clinical notes; as a result, routine
assessment of this quality indicator is time consuming and costly. In this study, the
authors trained and validated a deep neural network to detect documentation of
advanced care planning conversations in clinical notes from electronic health records.
The system performance was assessed against rigorous manual chart review and rule-
based regular expressions. For detecting documentation of patient care preferences at
the note level, the algorithm showed high F1 score, sensitivity and specificity, and
consistently outperformed regular expressions.

Chapter “Generating Reward Functions using IRL Towards Individualized Cancer
Screening”, Petousis et al. demonstrate how inverse reinforcement learning (IRL) can
serve precision medicine by providing individualized cancer screening recommenda-
tions and consequently decreasing overdiagnosis. Personalized cancer screening
addresses the heterogeneity of cancer screening participants. Partially observable
Markov decision processes (POMDPs), when defined with an appropriate reward
function, can be used to suggest optimal, individualized screening policies. However,
determining an appropriate reward function can be challenging. This paper proposes
the use of inverse reinforcement learning to form rewards functions for lung and breast
cancer screening POMDPs. Using experts (physicians) retrospective screening deci-
sions for lung and breast cancer screening, the paper presents two POMDP models with
corresponding reward functions, namely the maximum entropy (MaxEnt) IRL algo-
rithm with an adaptive step size and the multiplicative model to learn state-action pair
rewards. These reward functions, when combined with POMDP models in lung and
breast cancer screening, demonstrate a performance comparable to that of experts.

Finally, chapter “Deep Learning Architectures for Vector Representations of
Patients and Exploring Predictors of 30-Day Hospital Readmissions in Patients with
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Multiple Chronic Conditions”, Rafiq et al. explore the usefulness of deep learning
architectures to identify patient segments and factors contributing to 30-day hospital
readmissions in a group of patients affected by complex chronic concurrent conditions
(diabetes, cardiovascular and kidney diseases). A convolutional neural network
(CNN) and recurrent neural network (RNN) was implemented on sequential electronic
health records data at the Danderyd Hospital in Stockholm, Sweden. Three distinct sub-
types of patient groups were identified: chronic obstructive pulmonary disease, kidney
transplant, and paroxysmal ventricular tachycardia. The CNN learned vector repre-
sentations of patients, but the RNN was better able to identify and quantify key con-
tributors to readmission such as myocardial infarction and echocardiography. This
study suggests that a vector representation of patients with deep learning should pre-
cede predictive modelling of complex patients. The approach also has potential
implications for supporting care delivery, care design and clinical decision-making.
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Abstract. The lifted junction tree algorithm (LJT) answers multiple
queries efficiently for relational models under uncertainties by build-
ing and then reusing a first-order cluster representation. We extend
the underling model representation of LJT, which is called parame-
terised probabilistic model, to calculate a lifted solution to the maximum
expected utility (MEU) problem. Specifically, this paper contributes (i)
action and utility nodes for parameterised probabilistic models, result-
ing in parameterised probabilistic decision models and (ii) meuLJT, an
algorithm to solve the MEU problem using parameterised probabilis-
tic decision models efficiently, while also being able to answer multiple
marginal queries.

1 Introduction

Areas such as health care and logistics involve probabilistic data with relational
aspects and need efficient exact inference algorithms, which allow for decision
support. These areas involve many objects in relation to each other with uncer-
tainties about object existence, attribute value assignments, or relations between
objects. More specifically, health care systems involve electronic health records
(EHRs) (the relational part) for many patients (the objects) and uncertainties
[18] due to, e.g., missing information caused by data integration from different
hospitals or faulty sensors. Automatically analysing EHRs can improve the care
of patients and save time. In this paper, we study the problem of exact decision
making under uncertainty in lifted probabilistic models.

Braun and Möller [2] investigate parameterised probabilistic models (PMs) to
represent probabilistic relational behaviour, and furthermore introduce the lifted
junction tree algorithm (LJT), an exact inference algorithm to answer multiple
queries efficiently. Specifically, this paper contributes (i) action and utility nodes
for parameterised probabilistic models, resulting in parameterised probabilistic
decision models (PDecMs) and (ii) meuLJT, an algorithm to solve the maximum
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expected utility (MEU) problem using PDecMs efficiently, while also being able
to answer multiple marginal queries.

Action nodes are well-motivated candidates to model, e.g., treatments, while
utility nodes can represent, e.g., the well being of patients, risk scores, or treat-
ment costs. With utilities modelling is not restricted to a single particular area,
but one can also model a combination of areas, such as well being of patients
and risk scores.

Health care needs exact results as approximations might not be good enough
[19]. Further, the lifting approach exploits symmetries in the model to reduce
the number of instances or patients to perform inference on. Additionally, LJT
clusters a model into submodels to efficiently answer queries, like the condition
of each patient. Therefore, LJT is suitable to handle health care related data.

In the following, we recapitulate PMs as a representation for relational prob-
abilistic models and introduce PDecMs, by adding actions and utilities to the
representation. Afterwards, we formalise the MEU problem and discuss different
modelling possibilities, also from an ethical point of view. Lastly, we introduce
meuLJT to reuse computations and answer multiple queries efficiently.

2 Related Work

We take a look at inference under uncertainty in relational models as well as
relational decision support.

First-order probabilistic inference leverages the relational aspect of a static
model. For models with known domain size, it exploits symmetries in a model
by combining instances to reason with representatives, known as lifting [11].
Poole [11] introduces parametric factor graphs as relational models and proposes
lifted variable elimination (LVE) as an exact inference algorithm on relational
models. Further, de Salvo Braz [12], Milch et al. [7], and Taghipour et al. [17]
extend LVE to its current form. Lauritzen and Spiegelhalter [6] introduce the
junction tree algorithm. To benefit from the ideas of the junction tree algorithm
and LVE, Braun and Möller [2] present LJT, which efficiently performs exact
first-order probabilistic inference on relational models given a set of queries.

Nath and Domingos [8] introduce Markov logic decision networks (MLDNs),
which are relational static models with action and utility nodes. Nath and Domin-
gos calculate approximate solutions to the static MEU problem in a completely
grounded way [10] based on MLDNs. Another approach of Nath and Domingos
include unnecessary groundings [9]. Further, Apsel and Brafman [1] propose an
exact lifted solution to the MEU problem based on [8]. These approaches are
designed to handle single queries. However, we propose to answer multiple queries
efficiently.

Additional research focuses on sequential decision making by investigating
first-order (partially observable) Markov decision processes (FO (PO)MDPs)
[5,14,15], which use lifting techniques from de Salvo Braz, Amir, and Roth [13].
In contrast to FO POMDPs, which perform offline policy iteration, we propose
to support probabilistic online planning.
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3 Parameterised Probabilistic Models

Based on [4], we recapitulate PMs for relational probabilistic models. PMs
combine first-order logic with probabilistic models, representing first-order con-
structs using logical variables (logvars) as parameters. Let us assume, we would
like to remotely infer the condition of patients with regards to water retaining.
To determine the condition of patients, we use the change of their weights. An
increase in weight could either be caused by overeating or retaining water. Addi-
tionally, we use the change of weights of people living with the patient to reduce
the uncertainty to infer conditions. In case both persons gain weight, overeating
is more likely, while otherwise retaining water is more likely. If a water retention
is undetected, it can be an acute life-threatening condition.

People behave in the same way w.r.t. gaining weight if we are interested
whether a person retains water. For a water retention, persons gain weight over
a few days in a way which would be hard to achieve by overeating each day.
Thus, if we are interested whether they retain water, having information about
the weight gain of persons is independent of the actual person. Hence, we can
have a random variable (randvar) for each person about their current condition.
As persons behave the same w.r.t. gaining weight and PMs allow for using logvars
as parameters, we can construct a parameterised randvar (PRV) with the persons
as logvar for our randvar.

Definition 1. Let L be a set of logvar names, Φ a set of factor names, and R
a set of randvar names. A PRV A = P (X1, ...,Xn) represents a set of randvars
behaving identically by combining a randvar P ∈ R with X1, ...,Xn ∈ L. If
n = 0, the PRV is parameterless. The domain of a logvar L is denoted by D(L).
The term range(A) provides possible values of a PRV A. Constraint (X, CX)
allows to restrict logvars to certain domain values and is a tuple with a sequence
of logvars X = (X1, ...,Xn) and a set CX ⊆ ×n

i=1D(Xi). � denotes that no
restrictions apply and may be omitted. The term lv(Y ) refers to the logvars and
rv(Y ) to the randvars in some element Y . The term gr(Y |C) denotes the set of
instances of Y with all logvars in Y grounded w.r.t. constraint C.

To model our scenario, we use the randvar names C, LT , S, and W for
Condition, LivingTogether, ScaleWorks, and Weight, respectively, and the log-
var names X and X ′. From the names, we build PRVs C(X), LT (X,X ′),
S(X), and W (X). The domain of X and X ′ is {alice, bob, eve}. The range
of C(X) is {normal, deviation, retains water}. LT (X,X ′) and S(X) have
range {true, false} and W (X) has range {steady, falling, rising}. A constraint
C = (X, {alice, bob}) for X allows for restricting X to a subset of its domain, in
this case to alice and bob. Using the constraint, the expression gr(W (X)|C) eval-
uates to {W (alice),W (bob)}. The expression gr(W (X)|�) also contains W (eve).
Now, we define parametric factors (parfactors), to set PRVs into relation to each
other.

Definition 2. We denote a parfactor g with ∀X : φ(A) |C. X ⊆ L being a set
of logvars over which the factor generalises and A = (A1, ..., An) a sequence of
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PRVs. We omit (∀X :) if X = lv(A). A function φ : ×n
i=1range(Ai) �→ R

+ with
name φ ∈ Φ is defined identically for all grounded instances of A. A list of all
input-output values is the complete specification for φ. C is a constraint on X. A
PM G := {gi}n

i=0 is a set of parfactors and semantically represents the full joint
probability distribution PG = 1

Z

∏
f∈gr(G) f where Z is a normalisation constant.

LT (X,X ′)
g1

C(X ′)

C(X)
g0

S(X)W (X)

Fig. 1. Parfactor graph for Gex, the weight is observable

Now, we build the model Gex of our example with the parfactors:

g0 = φ0(C(X), S(X),W (X))|� and g1 = φ1(C(X), C(X ′), LT (X,X ′))|κ1

We omit the concrete mappings of φ0 and φ1. Parfactor g0 has the constraint
�, meaning it holds for alice, bob, and eve. The constraint κ1 of g1 ensures that
X �= X ′ holds. Figure 1 depicts Gex as a parfactor graph and shows PRVs, which
are connected via undirected edges to parfactors, with W (X) being observable.
We can observe the weight of patients. The remaining PRVs are latent.

The semantics of a model is given by grounding and building a full joint
distribution. In general, queries ask for a probability distribution of a randvar
using a model’s full joint distribution and fixed events as evidence.

Definition 3. Given a PM G, a query term Q (ground PRV), and events
E = {Ei = ei}i (ground PRVs with fixed range values), the expression P (Q|E)
denotes a query w.r.t. PG.

In our example, a query is P (C(bob)|W (bob) = steady), asking for the prob-
ability distribution of bob’s condition given information about his weight.

4 Lifted Maximum Expected Utility

In this section, we introduce actions and utilities to PMs and show how to solve
the MEU problem, by formalising the problem. Further, we discuss different
modelling possibilities with PDecMs.
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4.1 Parameterised Probabilistic Decision Models

Let us extend PMs with action and utility nodes, resulting in PDecMs.

Definition 4. We represent actions and utilities by PRVs. Let Φu be a set of
utility factor names. The range of action PRVs is disjoint actions and the range
of utility PRVs is R. A parfactor that maps to a utility PRV U is a utility par-
factor. We denote a utility parfactor u with ∀X : μ(A) |C, where C a constraint
on X. Function μ : ×n−1

i=1 range(Ai) �→ R, Ai ∈ A, with name μ ∈ Φu is defined
identically for all grounded instances of A and its output is the value of U . A
PDecM G is a PM with an additional set Gu of utility parfactors. Let rv(Gu)
refer to all probability randvars in Gu. Then, Gu semantically represents the
combination of all utilities UG =

∑
f∈gr(Gu) f .

The μ functions output a utility, i.e., a scalar, which makes comparing utility
values easy. Further, a scalar allows for testing whether utilities are within an ε
margin of each other, making them hardly discriminable. With utilities incorpo-
rated, we look at actions. To model actions, we introduce an action PRV with
the actions in its range. Hence, we have one PRV, which models disjoint actions.
To execute an action, we set the value of the action PRV to the action, which we
want to perform, similar to providing evidence for marginal queries. Thus, the
range of an action PRV A(X) consists of different actions, lets say A1, ..., An,
and by setting A(X) to the action, lets say A1 (A(X) = A1), we can select the
action we would like to perform

Let us now extend the example with action and utility nodes. In Fig. 2, one
can see one action node (square), one utility node (diamond), and one utility
parfactor (crosses). In our example, the action PRV A(X) has two actions in
its range, namely A1 is visit patient and action A2 is do nothing. Obviously,
other actions could also be included in the model, e.g., diet related actions or
obtaining a more accurate scale.

C(X)

g0

S(X)W (X)

g1
LT (X,X ′)C(X ′)

ga

Util

A(X)

Fig. 2. Retaining water example with action and utility nodes in grey

In our example, the condition of patients and A1 influence the utility. For
example, patients with a chronic heart failure might tend to retain water. In
case water retention is detected early on, treatment is easier. However, if this
water retention remains undetected, water can also retain in the lung, which can
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lead to a pulmonary edema, making a treatment more costly. More importantly,
pulmonary edema is an acute life-threatening condition. In addition to the con-
dition of patients, A1 also influences the utility as a doctor, with limited time,
visiting a patient is expensive. Thus, one always needs to consider that alerting
the doctor too early generates unnecessary costs and alerting the doctor too late
can have serious consequences for the patient.

4.2 Maximum Expected Utility

To select the best action, we define queries and expected utility on a PDecM.

Definition 5. Given a PDecM G, a query term Q, and events E, the expression
P (Q|E, s) denotes a probability query w.r.t. PG. Given an assignment a for
actions, the expression U(Q,E,a) refers to a utility w.r.t. UG. The expected
utility of G is defined by

eu(G|a) =
∑

v∈range(rv(Gu))

P (v|a) · U(v,a) (1)

The inner part of the summation in Eq. (1) calculates a belief state P (v|a) and
combines it with corresponding utilities U(v,a). By summing over all randvars
from Gu, one obtains a scalar representing the expected utility. LVE allows for
exactly computing an expected utility. Based on expected utility, we define the
MEU as follows.

Definition 6. Given a PDecM G, the MEU problem is given by

meu[G] =
(

arg max
a

eu(G|a),max
a

eu(G|a)
)

(2)

Equation (2) suggest a naive algorithm defining how to calculate the MEU,
namely by iterating over all possible action configurations, computing an
expected utility for each configuration using LVE, an iteration that one can-
not avoid if asking for an exact solution. The action assignment that maximises
the expected utility is selected. As the utility value is a scalar, the expected
utility w.r.t. configurations can be easily compared. Therefore, we also can eas-
ily determine configurations whose expected utility lie within an ε margin. In
case different actions lie within an ε margin, the actions are hardly discriminable
w.r.t. utilities.

The action PRV in Gex has two possible actions. By setting A(X) = A1,
we turn on A1. By setting A(X) = A2, we turn on A2. Thus, in our example
to calculate the MEU, we need to iterate over two action assignments. For each
expected utility, we obtain a scalar, allowing us to easily compare them and
return the action with the MEU and the actual expected utility value. If all
patients behave the same, we only need to iterate over two actions. In case we
obtain different evidence for lets say two groups of patients, X1 and X2, we
need to iterate over the actions for both groups. Hence, we would need to iterate
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over {A(X1) = A1, A(X2) = A1}, {A(X1) = A2, A(X2) = A1}, {A(X1) =
A1, A(X2) = A2}, and {A(X1) = A2, A(X2) = A2}. In general, we need to
iterate over rn actions, where r is the number of actions in the range of an action
PRV and n the number of different groups. Assuming, we have ten patients in
two groups and two possible actions. Solving the MEU in a lifted way, we need
to iterate over 22 = 4 actions. Without the lifting idea, we would need to iterate
over 210 = 1024 actions. Therefore, solving the MEU problem in a lifted way
makes the problem manageable.

4.3 How to Model Utilities in a Medical Context

For decision support in a medical context, the model has to take into account the
prevalence, i.e., the probability, of the diseases or health related problems to be
identified. The prevalence does not only depend on the value of data but also on
the source of data. For example, to identify a coronary heart diseases the preva-
lence is higher if the data comes from a chest pain unit compared to examinations
from general practice [16]. In this context, the knowledge of the sensitivity and
specificity of the analytical model and the prevalence is very important. Ideally,
the model should inform the physician about its sensitivity and specificity to
clarify the probability of a false positive result for each patient regarding the
pre/post test probability. These information can help to plan further treatment
and diagnostic decisions. The aim of the model should be to avoid unnecessary
examinations and thus costs. Further, decision making should not unsettle the
patient on the one hand, but on the other hand detect serious conditions timely.

As PDecMs can model different influences, we can take prevalence into
account. Thus, we need to model different PRVs for different sources, which then
depending on the value of the test results, having different impact on the condi-
tion of a patient. Further, there are two different kinds of queries for PDecMs,
namely utility and probability queries. Thus, we can also state marginal queries.
Having marginal queries, we can also query the current belief of the condition
of a patient as well as the condition of a patient after an action, i.e., treatment
or test, is performed.

5 Solving the MEU Problem and Answer Multiple
Marginal Queries Efficiently

In this section, we recapitulate LJT [3] to answer queries for PMs and introduce
meuLJT to solve the MEU problem and answer multiple marginal queries using
PDecMs efficiently.

5.1 Lifted Junction Tree Algorithm

LJT provides efficient means to answer queries P (Qi|E), with Qi ∈ Q a set of
query terms, given a PM G and evidence E, by performing the following steps:
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(i) Construct an first-order junction tree (FO jtree) J for G.
(ii) Enter E in J .
(iii) Pass messages.
(iv) Compute answer for each query Qi ∈ Q.

We first define an FO jtree and then go through each step. To define an FO
jtree, we define parameterised clusters (parclusters), nodes of an FO jtree.

Definition 7. A parcluster C is defined by ∀L : A|C. L is a set of logvars, A
is a set of PRVs with lv(A) ⊆ L, and C a constraint on L. We omit (∀L :) if
L = lv(A). A parcluster Ci can have parfactors φ(Aφ)|Cφ assigned given that
(i) Aφ ⊆ A, (ii) lv(Aφ) ⊆ L, and (iii) Cφ ⊆ C holds. We call the set of assigned
parfactors a local model Gi.
An FO jtree for a PM G is J = (V,P) where J is a cycle-free graph, the nodes
V denote a set of parclusters, and P is a set of edges between parclusters. J must
satisfy the following properties: (i) A parcluster Ci is a set of PRVs from G. (ii)
For each parfactor φ(A)|C in G, A must appear in some parcluster Ci. (iii) If a
PRV from G appears in two parclusters Ci and Cj, it must also appear in every
parcluster Ck on the path connecting nodes i and j in J (running intersection).
The separator Sij of edge i − j is given by Ci ∩ Cj containing shared PRVs.

LJT constructs an FO jtree using a first-order decomposition tree, enters
evidence in the FO jtree, and to distribute local information of the nodes through
the FO jtree, passes messages through an inbound and an outbound pass. To
compute a message, LJT eliminates all non-separator PRVs from the parcluster’s
local model and received messages. After message passing, LJT answers queries.
For each query, LJT finds a parcluster containing the query term and sums out
all non-query terms in its local model and received messages.

LT (X,X ′),
C(X),
C(X ′)

{g1}

C2

W (X),
C(X),
S(X)

{g0}

C1

C(X)

Fig. 3. FO jtree for Gex (local models under the parclusters)

Figure 3 shows an FO jtree of Gex with the local models of the parclusters and
the separators as labels of edges. During the inbound phase of message passing,
LJT sends messages from C1 to C2 and for the outbound phase a message from
C2 to C1. If we would like to know whether S(bob) holds, we query P (S(bob)) for
which LJT can use parcluster C1. LJT sums out C(X), W (X), and S(X) where
X �= bob from C1’s local model G1, {g0}, combined with the received messages.
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5.2 meuLJT

Now, we introduce meuLJT to solve the MEU problem. For now, we restrict a
PDecM G to have at most one utility PRV and one utility parfactor. The basic
step of meuLJT are similar to LJT, namely:

(i) Construct an FO jtree J for G.
(ii) Enter evidence and actions in J .
(iii) Pass messages.
(iv) Compute answer queries.

LT (X,X ′),
C(X),
C(X ′)

{g1}

C2

W (X),
C(X),
S(X)

{g0}

C1

A(X),
C(X),
Util

{ga}

C3

C(X) C(X)

Fig. 4. FO jtree for the PDecM Gex (local models under the parclusters)

Let us now develop an idea about how meuLJT solves the lifted MEU prob-
lem. Figure 4 shows an FO jtree for the PDecM Gex. Compared to the FO jtree
from Fig. 3, we see an additional parcluster C3 with the utility parfactor. To con-
struct the FO jtree, meuLJT treats the utility parfactor as any other parfactor.
Including utility parfactors in the parcluster definition is straight forward. Using
the FO jtree, meuLJT distributes local information by message passing. To cal-
culate the probability messages, meuLJT also performs a message pass. During
the message pass, meuLJT excludes utility parfactors as they do not influence
the probability distributions and we only have one utility parfactor and one util-
ity PRV. Hence, during the inbound pass, C2 receives a message over C(X) from
C1 and an empty message from C3. For the outbound pass C2 sends messages
over C(X) to C1 and C3. To calculate utilities, utility parfactors need to know
the probability distributions, which is distributed by message passing also to
parclusters with utility parfactors. Now, meuLJT can use C1 and C2 to answer
marginal queries and C3 to answer expected utility queries. Given new evidence
or a new action assignment meuLJT has to recompute messages. Hence, for each
action assignment meuLJT can answer the expected utility query and efficiently
answer multiple marginal queries, e.g., of the condition of patients.

In our example, we have two action sequences {A(X) = A1} and {A(X) =
A2}, if all patients behave the same. To calculate the MEU, meuLJT has to
iterate over all action sequences and calculate the corresponding expected utility.
For the first action sequence, meuLJT enters {A(X) = A1} as evidence in the
FO jtree from Fig. 4. After the message pass, meuLJT uses C3 to answer the
expected utility query for action {A(X) = A1}. C3 received the current belief



140 M. Gehrke et al.

state during message passing and has the current action due to the evidence.
Thus, all required information to calculate the expected utility are present.

For the second action sequence, meuLJT enters {A(X) = A2} as evidence
in the FO jtree from Fig. 4. Normally meuLJT would need to perform a new
message pass, but the evidence does not change any calculations of the prob-
ability messages in this case. Thus, meuLJT can reuse the already performed
message pass. Hence, meuLJT can directly use C3 to answer the expected utility
query for action {A(X) = A2}. C3 received the current belief state during mes-
sage passing and has the current action due to the evidence. Thus, all required
information to calculate the expected utility are present. Having the expected
utility for both actions, meuLJT selects the action with the MEU. In case, we
have more actions or have more groups of patients, meuLJT has more action
sequences to iterate over. In general, as long as we only have one action PRV
and one utility PRV, and both occur only in a utility parfactor, meuLJT can
reuse the message pass and thereby, prevent redundant calculations.

All in all, meuLJT directly reasons over all patients instead of reason over
each patient individually. Additionally, meuLJT can provide alerts based on
observations of each patient. Apsel and Brafman [1] extend C-FOVE to solve
MEU queries, which significantly outperforms the propositional case. Braun and
Möller [2] show that LJT outperforms GC-FOVE, an extension to C-FOVE,
for multiple queries. Therefore, meuLJT is well-suited to support lifted decision
making and answering multiple marginal queries.

6 Conclusion

We present meuLJT to support lifted decision making by calculating a solution to
the MEU problem efficiently. Areas like health care benefit from the lifting idea
for many patients and the support of different kinds of queries. By extending the
underlying model with action and utility nodes, complete health care processes
including treatments can be modelled. Additionally, by maximising the expected
utility, meuLJT can calculate the best action.

The next step is to extend meuLJT and the underlying problem to the tem-
poral case. Further, we investigate whether, for our application, evidence can
reduce the MEU problem roughly from a POMDP to an MDP.
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3. Braun, T., Möller, R.: Parameterised queries and lifted query answering. In: IJCAI,
pp. 4980–4986 (2018)

https://doi.org/10.1007/978-3-319-46073-4_3


Lifted Maximum Expected Utility 141
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Abstract. This paper presents an overview of the usability engineering
process for the development of a personalised clinical decision support
system for the management of type 1 diabetes. The tool uses artificial
intelligence (AI) techniques to provide insulin bolus dose advice and car-
bohydrate recommendations that adapt to the individual. We describe
the role of human factors and user-centred design in the creation of
medical systems that must adhere to international standards. We focus
specifically on the formative evaluation stage of this process. The pre-
liminary analysis of data shows promising results.

Keywords: Artificial intelligence · Usability · Safety · Human factors

1 Introduction

In 2006, a patient accidentally received over four hours a dose of the chemother-
apy drug fluorouracil that should have been administered over four days, and
the consequences were fatal [21]. It has been argued [32] that this mistake was
just one of many errors caused by usability issues with healthcare technology
and the need for safety systems. In this case, the nurse had to determine the
dose by a complex calculation, and the mental effort involved meant that the
error was not detected.

Most people with type 1 diabetes (T1D) have to perform multivariate dose
calculations several times a day, in a variety of contexts that might affect cog-
nitive load. Many use mobile decision support tools to assist with the process
[24,25], but these typically use simple formulae based on a limited set of param-
eters.

This paper describes how human factors are being considered in the design
and evaluation of a more sophisticated system. PEPPER (Patient Empowerment
through Predictive PERsonalised decision support) [16] is a tool that takes into
account multiple parameters as input and uses artificial intelligence to offer dose
advice. The design of the system involves users at every stage of the development
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to ensure that it meets their needs. It uses multiple techniques to maximise
usability, minimise errors, and increase acceptance of recommendations by users.

1.1 Healthcare Technology Acceptance

Poor usability has long been identified as one of the barriers contributing to the
lack of adoption of intelligent personal guidance systems for diabetes manage-
ment [4,16]. Additional factors can affect the acceptance of healthcare technology
more broadly [10] (see Fig. 1), even when benefits are backed by robust evidence.
The attitude of patients impacts the perception of health care practitioners and
also their willingness to accept innovations.

Fig. 1. Technology acceptance model [10].

There are related issues surrounding trust in applied artificial intelligence
(AI). Public discussion of such topics is growing and not all perceptions are
positive. There have been concerns regarding loss of control [12] and scepticism
towards systems that replace human decision making [15] for example.

1.2 The PEPPER System

PEPPER is a research project funded by the European Union (EU) Horizon
2020 Framework [16]. It aims at creating a portable personalised decision support
system, to provide bolus dose advice that is highly tailored towards the needs of
individuals. The design has a dual architecture to accommodate treatment either
by multiple daily injections (MDI) or continuous subcutaneous insulin infusion
(CSII) through a patch-pump [9]. Most of the input is collected wirelessly, as
shown in Fig. 2, by continuous glucose monitor (CGM), physical activity monitor
and capillary glucose monitor. The latter is included to calibrate the CGM or
in case CGM data is unavailable. Additional data such as food intake, alcohol
consumption and hormonal cycles are input through the smartphone (for MDI)
or a pump. Carbohydrate intake is the only mandatory manual input, because
most people find such interactions tedious [3,25].

The information gathered by the handset is processed by a case-based rea-
soning [1] (CBR) module to determine a personalised insulin recommendation
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Fig. 2. The PEPPER system architecture.

that adapts over time, depending on outcomes. The key concept that underpins
the PEPPER system is that CBR solves new problems in much the same way
as a human does, based on past history, but with much greater accuracy, espe-
cially when informed by the diversity of data that can now be harvested via
wearable technology. A second model-based reasoning (MBR) module is used to
maximise safety [17]. The computer model generates predictive glucose alarms,
automatic insulin suspension, carbohydrate recommendations, and fault diagno-
sis. The development of PEPPER uses an iterative methodology, integrated with
clinical validation and formative usability evaluation. Methods for the latter are
described in the next section.

1.3 User-Centred Design

The usability engineering process for medical software is more rigorous than
that for other domains because of the need to consider safety and hazards. This
requirement is encapsulated by standards such as International Electrotechnical
Commission (IEC) 62366 [19], which is recognised by, and similar to, the guid-
ance offered by the U.S. Food and Drug Administration (FDA) [34]. Both proto-
cols emphasise the importance of conducting a user-centred design to determine
tasks and frequently used functions, as well as identifying risks and use-related
errors, prioritised by severity of harm. Some of the terminology varies however.
For example, the terms “usability engineering” and “human factors engineering”
are used interchangeably [20].

One of the shortcomings of the IEC standard is that it offers very little advice
about how to evaluate technology in context, a crucial consideration for mobile
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devices. This is particularly applicable to the design and evaluation of medical
devices, which might be used under adverse conditions. For example, a person
with T1D may need to interact with technology when hypoglycaemic. Their
interaction could therefore be affected by associated symptoms such as shakiness
or blurred vision. One way to gain an understanding of people’s experiences and
the real scenarios of use is to employ “situated methods” [29]. Similar methods
are therefore included in the protocol described here.

One feature that can play a crucial role in addressing the usability of intelli-
gent systems is data visualisation. Research of its application to diabetes man-
agement is scarce [3]. Yet people with T1D need to be comfortable with interpret-
ing mathematical data in order to manage their condition. An effective interface
should allow people to feel in control for decisions such as whether to accept dose
advice or not. We also conjecture that meaningful visual feedback helps devel-
oping positive health beliefs regarding the efficacy of AI to improve glycaemic
outcomes.

1.4 Paper Scope

The contribution of this paper is to outline a usability evaluation protocol that
adheres to the international standard for medical software [19]. Due to space
limitations, we are unable to include the details of all stages of this protocol. We
have therefore chosen to include the specifics of the method and results for the
formative evaluation stage only, in Sects. 2.3 and 3.3 respectively. The remaining
parts of Sects. 2 and 3 give an overview of the rest of the process in order to put
the formative step into context. The results from these stages will be published
separately.

2 Methods

Table 1 presents the usability engineering process used for PEPPER. The table
is a refinement of the IEC 62366 standard [19]. As such, it comprises four stages
each with its relevant steps. Definitions of the terms in uppercase can be found on
the International Electrotechnical Commission Online Browsing Platform (OBP)
[22] and the International Organization for Standardization [18] and are therefore
elided here. This structure follows an existing example of a usability engineer-
ing project for a graphical user interface published in [20] (p. 29), however our
interpretation differs in the mixed methods it employs.

Each of the four stages in the usability engineering process is outlined in
Sects. 2.1 to 2.4 below. The heavy weighting given to formative evaluation in the
standard is reflected by the emphasis given to Sect. 2.3.

2.1 User Research

In the first stage, three methods are employed for the user research: interviews,
focus groups and questionnaires. Participants are clinicians from the project
team and adult T1D subjects. This part of the process is used to define the user
classes, user characteristics and use environment.
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Table 1. PEPPER usability engineering process.

USER research 1. Prepare USE SPECIFICATION: focus groups,
interviews, surveys

Analysis 2. Identify characteristics for SAFETY: TASK analysis,
document review

3. Identify HAZARDS and HAZARDOUS SITUATIONS

4. Identify and describe HAZARD-RELATED USE
SCENARIOS

5. Select USE SCENARIOS for SUMMATIVE
EVALUATION

Iterative design and
FORMATIVE
EVALUATION

6. Establish USER INTERFACE SPECIFICATION

7. Establish USER INTERFACE (UI) EVALUATION plan

Phases 1: Analytical study. Phase 2: Empirical lab study.
Phase 3: Contextual study

8. Perform UI design, implementation and FORMATIVE
EVALUATION

SUMMATIVE 9. Perform SUMMATIVE EVALUATION: repeat Phase 2

2.2 Analysis

This stage comprises four steps, with two overall goals. First, to analyse the data
gathered in user research stage in order to develop the user interface specification
required for the next stage. Second, to anticipate unintended use of the system
and to evaluate risk accordingly. The steps are:

– Identify characteristics for safety to determine tasks that users are expected
to perform.

– Identify hazards and hazardous situations for each individual project, validate
each one, and collate the results into a risk management file.

– Identify hazard-related use scenarios to determine tasks that users are not
intended to perform.

– Select hazard-related use scenarios for summative evaluation according to
probability of occurrence and severity of harm.

The design of the task model is informed both by the user research and rel-
evant literature. Key tasks are verified with users and modelled in a suitable
framework. The unintended task scenarios are collated by examining user man-
uals and public databases [14,33], which give information about safety incidents
and recalls.
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2.3 Iterative Design and Formative Evaluation

This stage forms the heart of the process described in this paper. Once the user
interface specification is designed. It is formatively evaluated and the interface
is iteratively redeveloped. The stage consists of the following steps:

Establish User Interface Specification. Results of the task analysis are
converted to a user requirements document.

Establish UI Evaluation Plan. Standard techniques for the formative usabil-
ity evaluation can be grouped into three phases. Two involve users, either in
controlled or natural settings, and the third does not involve users, but instead
engages usability experts. The process defined here employs all three methods in
separate phases, interleaved with design and redevelopment steps in accordance
with the iterative development methodology.

Phase 1: Analytical Study. Three procedures were chosen for this phase:
heuristic evaluation, keystroke-level model (KLM) [27] and competitive analysis.
Conducting more than one procedure will ensure meaningful results given that
heuristic evaluation is subjective whereas KLM is quantitative. All procedures
were implemented by dual-domain experts: computer scientists familiar with
both standard human interface evaluation methods and T1D. Such participants
are aware of dangers such as hypoglycaemia and hyperglycaemia and have been
shown to find a significantly higher percentage of usability errors than usability
experts [13].

Phase 2: Empirical Laboratory Study. The purpose of this study was to
measure the performance of the system with regard to the usability goals of
simplicity, effectiveness, efficiency, and satisfaction. The system was tested in
one-to-one sessions, each one lasting two hours. During each session, investigators
gave participants the same series of 13 scenarios to perform as in the KLM
evaluation. The scenarios were evaluated using quantitative metrics as displayed
in Table 2. The participants’ behaviour was audio recorded, and the interaction
of their hands on the device was video recorded.

Table 2. Usability metrics

Measurement Attribute

Percentage of tasks solved Effectiveness

Percentage of users able to complete a given task Effectiveness

Number of clicks/touches to solve task Efficiency

Time taken to solve tasks Efficiency

Number of errors per task Simplicity

Type of error (e.g. precision error - missed target, response error –
user clicks multiple times, affordance error – wrong icon or incorrect
gesture, mode error etc.)

Simplicity
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Phase 3: Empirical Contextual Study. The PEPPER situated study was
closely based on an existing method [29]. It lasted four weeks, involved 15 par-
ticipants and included auto-ethnography, an initial interview, a diary study and
a contextual group meeting. The diary study formed the heart of this usabil-
ity study. Its purpose was used to understand the day-to-day user experience
with PEPPER over a period of several weeks. The goal was to see how con-
text affects the use of the technology and also to understand which features
may affect motivation, either positively or negatively. Participants were asked
to make diary entries each time they used the PEPPER bolus advisor and they
were also phoned at weekly intervals. The final step is an observational study of
the group in a social setting at an informal location such as a cafe. The purpose
is to validate the findings from the prior steps and to observe discourse about
the experience.

Perform UI Design, Implementation and Formative Evaluation. Mun-
zer’s nested model [26] has been selected to conduct a user-centred design of
visualisations of the patient’s recorded data. This is preceded by an expert review
of competitor data visualisation methods. Tufte’s accessible complexity criteria
[11] were adopted for this purpose. The results were used to inform the creation
of multiple designs. These were evaluated in a participatory design workshop
to create a single a wireframe for implementation in the first prototype. Once
the interface was implemented, it undergoes the evaluation, according to the
pre-defined plan.

2.4 Summative Evaluation

This final stage of the process comprises usability testing against the same usabil-
ity goals, and using the same methods as in Phase 2 to ensure that the scores
have improved. The risk management file is updated so that appropriate control
measures exist to mitigate all hazard-related use scenarios.

3 Results

These methods were applied to the PEPPER handset. For reasons of space,
we present limited preliminary results for the first two stages in Table 1: user
research and analysis, focusing instead on the results of the iterative design and
formative evaluation stage. The results of the last stage: summative evaluation,
will be published once the study has concluded.

3.1 User Research

Two rounds of interviews were conducted, followed by three focus groups, where
patients completed questionnaires. The end-users of the PEPPER system fall
into four classes:

1. Patient (MDI);
2. Patient (CSII);



Usability Engineering in Intelligent Decision Support System 149

3. Clinician responsible for revision;
4. Clinician monitoring the personal health record.

The latter two classes may overlap, but the others do not. Patient inclusion and
exclusion criteria were determined from the clinical protocol. In addition, system
developers monitoring some aspects of the interface are another class of users,
but this class is not included in the study.

User characteristics were also recorded, not simply demographics but also
susceptibilities of this population that might affect the ability to interact with the
system, such as visual impairment. The use environment includes all contexts,
such as storage, methods of conveyance, noise, and lighting conditions.

3.2 Analysis

Data analysed from the user research (focus groups, interviews and surveys) was
used to create 13 use case scenarios for formative and summative evaluations,
see Table 3. For the more complicated tasks, Unified Modelling Language (UML)
descriptions were also developed.

Table 3. Scenarios

Number Scenario

1 Open the application on the smartphone (MDI)/turn on the device (CSII)

2 Calibrate the continuous glucose meter using the Bluetooth capiliary meter

3 Locate and state the most recent bolus in the last 12 h

4 Locate and state the most recent carbohydrate intake in the last 12 h

5 Request bolus advice, for the following situation:

(a) 45 g of carbohydrates

(b) Medium meal absorption

(c) Low intensity, non–aerobic past exercise

(d) No planned exercise

(e) No hormone cycle info

(f) Low alcohol consumption

(g) Not stressed, good mood

6 Accept or reject the bolus advice

7 Record 65 g of carbohydrates without requesting bolus advice

8 Record a 3 Insulin Unit bolus without requesting bolus advice

9 Locate and state the current blood glucose level

10 Locate and state the average blood glucose level for the past week

11 Locate and state the percentage of time have you spent in a ‘high’ blood
glucose state over the past week

12 Locate and state the highest BG value in the last 12 h

13 Locate and state the total bolus over the last 12 h
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Hazard analysis was documented and categorised according to severity and
likelihood. Examples include water damage to the handset and loss of commu-
nication from sensors.

3.3 Iterative Design and Formative Evaluation

Elaborated results of this stage and corresponding steps are presented below. It
includes the specification of user interface, the evaluation plan, and PEPPER
design.

Establish User Interface Specification. The results of this step are embod-
ied in the user requirements manual. The document was shared with the other
project members.

Establish UI Evaluation Plan. This step comprises three phases: analytics
study, empirical laboratory study and empirical contextual study.

Phase 1: Analytical Study. Includes (a) heuristic evaluation, (b) keystroke-
level model (KLM), and (c) competitive analysis.

(a) Heuristic Evaluation. For the heuristic evaluation, three experts con-
ducted the evaluation independently. In total 11 heuristics were used (Table 4).
The heuristic with prefix Z was derived from Zhang et al. [35], heuristics with
prefix B were derived from Bertini et al. [5], and heuristics with the prefix D were
derived from Tufte [11] and Thimbleby [32]. Heuristics were specifically chosen
in order to facilitate the analysis of medical devices, where there is a particular
focus on safety, and to include more accessibility considerations specifically for
people with diabetes susceptible to visual defects as a result of their condition.

Table 4. Heuristics

ID Heuristics

Z6 Informative feedback

B1 Visibility of system status and losability/findability of the device

B2 Match between system and the real world

B3 Consistency and mapping

B4 Good ergonomics and minimalist design

B5 Ease of input, screen readability and glanceability

B6 Flexibility, efficiency of use and personalisation

B7 Aesthetic, privacy and social conventions

B8 Realistic error management

D1 Safe and efficient numerical data entry

D2 Clear and meaningful numerical data visualization
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Each heuristic was given a score based on Nielsen’s Severity Ranking Scale
[28]. A summary of evaluators’ results is shown in Table 5. Data were analysed
both quantitatively and qualitatively. The former comprised computation of the
mean and standard deviation of the severity of violation for each heuristic. The
latter consisted of a thematic analysis of the comments provided by evaluators
in relation to each sub-heuristic with mean violation above a given threshold.
Results were presented to the evaluators at a debriefing session to develop rec-
ommendations on how improving the prototype to mitigate the problems that
have been identified prior to user testing. The list of the recommendations is
given in AppendixA.

Table 5. Pepper application heuristic evaluation results.

Severity Ranking (0–4)

Heuristic Evaluator 1 Evaluator 2 Evaluator 3 Average STDev

Z6 0.50 0.50 0.00 0.33 0.29

B1 2.00 1.00 2.50 1.83 0.76

B2 1.67 0.67 1.33 1.22 0.51

B3 0.00 0.00 1.00 0.33 0.58

B4 0.50 0.50 0.00 0.33 0.29

B5 0.40 0.40 0.80 0.53 0.23

B6 1.67 0.67 1.33 1.22 0.51

B7 1.33 0.67 1.67 1.22 0.51

B8 2.50 1.00 2.00 1.83 0.76

D1 1.75 2.00 1.50 1.75 0.25

D2 0.67 0.33 0.00 0.33 0.33

(b) Keystroke-Level Model (KLM). Keystroke level modelling (KLM) was
used to examine a selected set of scenarios of the PEPPER system (Table 3).
Since KLM was not designed for touch-screen devices it was adapted using a more
modern variant (Touch level modelling (TLM) [30]) to evaluate the handsets.

For the evaluation, a single expert conducted the tasks to provide a baseline
of ideal timings for comparison with the results of Phase 2.

The results of the handset evaluation are in Table 6. Tasks with zero touches
are tasks that require viewing an item on the home screen. Task 2 and task 5
were classified as inefficient tasks due to the high number of touches whereas
Task 10 and Task 11 were classified as unclear as it is not obvious to the user
that they have to touch the filter icon. For Task 2, the expert recommended
allowing manual calibration without using the Bluetooth and as for Task 5 the
recommendation was to reduce the number of parameters and touches. The
expert also suggested that the statistics screen should be updated automatically.
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Table 6. TLM results.

Task Time (sec) Touches

1 2.11 3

2 14.42 9

3 2.40 0

4 2.40 0

5 11.36 30

6 0.70 2

7 3.85 7

8 3.66 6

9 2.40 0

10 4.80 6

11 4.80 6

12 2.40 0

13 3.60 0

(c) Competitive Analysis. For the competitive analysis, the following proce-
dure was used to conduct an analysis of competitor products:

1. Identify competitors for handset;
2. Determine a key set of tasks that are possible for both PEPPER and com-

petitors;
3. Perform heuristic evaluation of each system and compare results;
4. Execute the selected set of tasks on each system and record the interactions

using the KLM/TLM method.

The Cellnovo handset [8] was identified as the most appropriate competitor
to the PEPPER handset with a set of similar tasks, and therefore, an additional
heuristic evaluation was conducted on Cellnovo using the same heuristics as the
PEPPER evaluation (Table 4). The results are compared in Table 7. Both devices
score highly for all heuristics. However, it can be seen that PEPPER scores worse
than Cellnovo in heuristics B1, B4 and D1. These issues were therefore addressed
in the final recommendations.

Finally, the KLM/TLM evaluation was conducted on both Cellnovo and
PEPPER handsets. Comparison of summary scores are given in Table 8. Not
all of the tasks in the model could be executed on the Cellnovo device, therefore
the results are limited to those than could be done. It is clear from this that
PEPPER scores better than Cellnovo in all but 2 tasks: 10 and 13. These tasks
are therefore improved in the final recommendations.
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Table 7. Heuristic evaluation of Cellnovo handset versus PEPPER handset (in sec).

Heuristic Cellnovo PEPPER

Average

Z6 0.92 0.33

B1 1.75 1.83

B2 2.00 1.22

B3 1.13 0.33

B4 0.25 0.33

B5 1.30 0.53

B6 2.00 1.22

B7 1.50 1.22

B8 2.00 1.83

D1 1.19 1.75

D2 1.08 0.33

Table 8. Estimated time per task of Cellnovo handset versus PEPPER handset
(in secs).

Task ID 1 3 4 5 9 10 12 13

PEPPER 2.11 2.40 2.40 11.36 2.40 4.80 2.40 3.60

Cellnovo 2.10 2.70 2.70 51.10 2.40 1.80 2.51 2.51

Phase 2: Empirical Laboratory Study. Fifteen patients were enrolled in the
handset study: seven in Spain and eight in the UK. Four clinicians participated
in the server study. Videos were analysed for each of the participants. Three out
of the 15 files were corrupted so the results reported concerned the 12 remaining
participants only using the metrics from Table 2.

– Percentage of tasks solved. The majority of tasks were solved by all of
the users.

– Percentage of users able to complete a given task. The majority of
users were able to solve all of the tasks.

– Number of clicks/touches to solve task. The tasks that stand out as
requiring too much interaction are 2 and 5.

– Time taken to solve tasks. The tasks that stand out as taking too much
time are 2 and 5.

– Number of errors per task. Significant errors occurred on Tasks 2, 7, and
13.

– Type of error. All error types have been recorded and documented in a
spreadsheet. Most errors were navigational, but some were numeric. A more
comprehensive analysis remains to be performed.
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The SUS questionnaire was used to assess the users’ satisfaction [6]. The SUS
scores were excellent for the handset (74.3%) as seen in Fig. 3. Video data analysis
showed there were few errors and most tasks were completed, showing high
simplicity and effectiveness respectively. Inefficient tasks were identified from
the average times. Think-aloud comments contributed to the recommendations
for redesign.

Fig. 3. SUS score.

Phase 3: Empirical Contextual Study. Early findings show that partic-
ipants liked the system; more specifically, PEPPER encouraged them to be
more diligent about logging their food diary and physical activity. The system
also allowed them to visualise the repercussions of their diet on their glucose
level. One participant reported that PEPPER made him/her aware of some inci-
dents of hypoglycemia that they did not know of before the incidents happened
during the night. Participants also reported trusting the recommendations and
alarms. However, PEPPER makes them constantly aware of their condition, and
concerned about glucose targets. They also thought that there were too many
parameters required for the CBR model. These preliminary results have impor-
tant implications for developers of AI self-management systems for diabetes and
other conditions.

Perform UI Design, Implementation, and Formative Evaluation. Five
paper prototypes were initially produced, influenced by existing devices and
apps. Paper prototypes were then used to obtain feedback and suggestions for
improvement, and to prompt discussion amongst participants in a participatory
design workshop. Feedback was used to present the refined designs (Fig. 4).

3.4 Summative Evaluation

The final step of the usability engineering process is scheduled to be implemented
during the year 2019. The results of the evaluation will be published.
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Fig. 4. Revised PEPPER dashboard.

4 Discussion

The research so far has suggested further research questions, including:

– How is data visualisation useful in developing trust and increasing acceptance
of the bolus advice? For example, confidence might grow if a user can easily
see that the safety system intervenes to recommend corrective action when
one is moving towards hypoglycemia.

– How is adherence affected by context? For instance, one individual with expe-
rience of a similar system [7] reported removing the device during a music
festival to avoid the data being viewed by the clinician. This points to privacy
questions in the relationship between patient and clinician.

We also believe that there is a future need for domain-specific resources to
assist with user-centred design of AI for diabetes decision support. For example,
verification, validity and security are all research priorities for socially acceptable
AI [31]. Therefore, there could be some merit in publishing a validated, definitive
core task model, verified using formal techniques [2,23]. Similarly, empirically
validated heuristics to support safety in medical mobile devices are lacking. For
example, there is a trade-off between speed and safety; digit-based keypads are
fast but may lead to larger mistakes than five-key interfaces. Standards and
guidance exist to help prevent numerical errors, and these could inform such
domain-specific heuristics.
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Some of the user requirements are beyond the scope of this project. For
example, one suggestion was to design an interface for manual input that adapts
according to context and individual behaviour patterns, but this is not achievable
in the timescale. There was also a demand for explanations to be provided for the
bolus advice, as this might also engender trust in AI. This proposal is not feasible
in the study however, since it would compromise the double-blind methodology.

5 Conclusion

In this paper we have given an overview of how our project is conducting a pro-
cess that adheres to international standards for consideration of human factors
in the design of a medical device. We have also proposed a method in which a
situated study can be incorporated into standards, to fill a perceived gap around
evaluation of systems in context. Finally, the results of the formative evaluation
stage has been presented.
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research and innovation programme under grant agreement No. 689810. We thank
all partners of the PEPPER consortium, in particular clinical teams in UK and Spain
who conducted the Phase 2 of the formative usability evaluation. Ethical approval has
been obtained from the relevant authorities for all elements involving users.

Appendix A

The following section of this report document the notable and agreed issues and
recommendations against each heuristic during a debrief with the evaluators. In
some cases, issues listed by the evaluator for a particular heuristic have been
relocated to a more suitable heuristic following the debrief.

Z6 - Informative Feedback
Average score: 0.33
Standard deviation: 0.29
Result: No usability issues
Issue: Activity monitor connection is not informative.
Recommendation: Provide feedback and information on the connection status
of the activity monitor.

B1 - Visibility of System Status and Losability/Findability of the
Device
Average score: 1.83
Standard deviation: 0.76
Result: Minor usability issue
Issue: Network, activity monitor and CGM status are not clearly indicated.
Recommendation: Include clear indications of connection status for network,
activity monitor and CGM on the status bar.
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B2 - Match Between System and Real World
Average score: 1.22
Standard deviation: 0.51
Result: Cosmetic problem only
B2.1 Issue: Ambient temperature location on the Get Bolus Advice interface
is not intuitive.
B2.1 Recommendation: Relocate ambient temperature to the other category.
B2.2 Issue: The location of obtaining a capillary blood glucose reading is not
intuitive.
B2.2 Recommendation: Include the ability to obtain a capillary blood glucose
reading from the main menu and calibration interfaces.
B2.3 Issue: The application interface is always in portrait orientation.
B2.3 Recommendation: Appropriate landscape interfaces should be included.
For example, changing the visualizations on the dashboard when in landscape
orientation.
B2.4 Issue: The Android back button (bar at the bottom) interfaces with the
interface due to full screen mode.
B2.4 Recommendation: Change PEPPER to a non-full screen application for
MDI users on the handset or ensure that this bar does not interfere with the
PEPPER interface.

B3 - Consistency and Mapping
Average score: 0.33
Standard deviation: 0.58
Result: No usability issues
Issue: The target blood glucose thresholds do not match what actually happens,
stating that the lowest/highest possible value is invalid.
Recommendation: Investigate and correct the target blood glucose thresholds
to ensure the valid range displayed to the user is correct or that valid inputs are
accepted.

B4 - Good Ergonomics and Minimalist Design
Average score: 0.33
Standard deviation: 0.29
Result: No usability issues
Issue: The application has a mixture of light and dark interfaces.
Recommendation: Use a consistent colour palette throughout the interfaces.

B5 - Ease of Input, Screen Readability and Glanceability
Average score: 0.53
Standard deviation: 0.23
Result: Cosmetic problem only
B5.1 Issue: The abbreviation IU needs clarifying.
B5.1 Recommendation: Change the abbreviation IU to Units (based on clin-
ician advice).
B5.2 Issue: The menu can only be accessed from the dashboard interface.
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B5.2 Recommendation: Replace the home button with the menu option on
all interfaces.
B5.3 Issue: The CGM cannot be automatically calibrated from the capillary
blood glucose meter.
B5.3 Recommendation: Add a calibration option which obtains the blood
glucose reading from the capillary blood glucose meter and automatically cali-
brates the CGM.

B6 - Flexibility, Efficiency of Use and Personalisation
Average score: 1.22
Standard deviation: 0.51
Result: Cosmetic problem only
B6.1 Issue: No ability to customise the application.
B6.1 Recommendation: Add some degree of customisation. For example,
quick links and custom colour palettes.
B6.2 Issue: The keyboard overlaps input fields on the Get Bolus Advice inter-
face.
B6.2 Recommendation: Remove the next option from the keyboard when
inputting on the Get Bolus Advice interface, instead include the done button to
close the keyboard.
B6.3 Issue: Some interfaces use number pickers rather than a keyboard for data
entry. For consistency and speed these should all be keyboard inputs.
B6.3 Recommendation: Replace number pickers with appropriate keyboards,
limiting the characters/digits to only valid inputs.

B7 - Aesthetic, Privacy and Social Conventions
Average score: 1.22
Standard deviation: 0.51
Result: Cosmetic problem only
B7.1 Issue: There are some harsh edges on the interface.
B7.1 Recommendation: Use the Android material design features to soften
the edges, for example z-index.
B7.2 Issue: The applications lock screen does not provide security in its present
state.
B7.2 Recommendation: The lock screen is not needed as the phone has its
own lock screen. On the CSII version, the tap the Xs should be replaced by a
personalised PIN to prevent unauthorized use.
B7.3 Issue: The application does not indicate that data has been transmitted
successfully.
B7.3 Recommendation: Include an interface of data sent to the PEPPER
server application, perhaps on the Events interface.

B8 - Realistic Error Management
Average score: 1.83
Standard deviation: 0.76
Result: Minor usability issues
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Issue: The application does not provide any undo functionality for adding
boluses/meals.
Recommendation: Include the ability to undo the previous bolus/meal input.

D1 - Safe and Efficient Numerical Data Entry
Average score: 1.75
Standard deviation: 0.25
Result: Minor usability issues
D1.1 Issue: Not all inputs are validated to ensure safe data entry.
D1.1 Recommendation: Clinically approved thresholds should be introduced
for all inputs. For example, carbohydrates on the Get Bolus Advice interface.
D1.2 Issue: There is no ability to obtain a blood glucose reading from the
capillary blood glucose meter on the Get Bolus Advice interface in the event of
CGM failure.
D1.2 Recommendation: Add the option to obtain a capillary blood glucose
reading via Bluetooth on the Get Bolus Advice interface. Performing this task
should be mandatory if the application has not received data from the CGM
recently.

D2 - Clear and Meaningful Numerical Data Visualization
Average score: 0.33
Standard deviation: 0.33
Result: No usability issues
D2.1 Issue: Some of the text is small and difficult to read.
D2.1 Recommendation: Introduce a minimum text size to ensure the infor-
mation is clear. Additionally display more information when clicking on the
carbohydrate/bolus/activity on the dashboard with a large text size and precise
underlying data.
D2.2 Issue: Bolus and carbohydrate values on the dashboard can overlap if
input within a small time interval.
D2.2 Recommendation: Merge overlapping data on the dashboard visualiza-
tion (carbs and bolus) and indicate that this is multiple inputs and provide the
user the ability to tap to view details.
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Abstract. Accurately determining pain levels in children is difficult,
even for trained professionals and parents. Facial activity provides sensi-
tive and specific information about pain, and computer vision algorithms
have been developed to automatically detect Facial Action Units (AUs)
defined by the Facial Action Coding System (FACS). Our prior work
utilized information from computer vision, i.e., automatically detected
facial AUs, to develop classifiers to distinguish between pain and no-
pain conditions. However, application of pain/no-pain classifiers based on
automated AU codings across different environmental domains results in
diminished performance. In contrast, classifiers based on manually coded
AUs demonstrate reduced environmentally-based variability in perfor-
mance. In this paper, we train a machine learning model to recognize
pain using AUs coded by a computer vision system embedded in a soft-
ware package called iMotions. We also study the relationship between
iMotions (automatically) and human (manually) coded AUs. We find
that AUs coded automatically are different from those coded by a human
trained in the FACS system, and that the human coder is less sensitive
to environmental changes. To improve classification performance in the
current work, we applied transfer learning by training another machine
learning model to map automated AU codings to a subspace of manual
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AU codings to enable more robust pain recognition performance when
only automatically coded AUs are available for the test data. With this
transfer learning method, we improved the Area Under the ROC Curve
(AUC) on independent data from new participants in our target domain
from 0.67 to 0.72.

Keywords: Automated pain detection · Transfer learning ·
Facial action units · FACS

1 Introduction

In the classic model of machine learning, scientists train models on a collected
dataset to accurately predict a desired outcome and then apply learned models
to new data measured under identical circumstances to validate performance.
Given the notable variation in real world data, it is tempting to apply learned
models to data collected under similar but non-identical circumstances. However,
performance in such circumstances often deteriorates due to unmeasured factors
not accounted for between the original and new datasets. Nevertheless, knowl-
edge can be extracted in these scenarios. Transfer learning, or inductive transfer
in machine learning parlance, focuses on using knowledge gained from solving
one problem to improve performance on a different but related problem [1]. The
present paper describes application of transfer learning to the important clinical
problem of automated pain detection in children.

Accurate measurement of pain severity in children is difficult, even for trained
professionals and parents. This is a critical problem as over-medication can result
in adverse side-effects, including opioid addiction, and under-medication can lead
to unnecessary suffering [2].

The current clinical gold standard and most widely employed method of
assessing clinical pain is patient self-report [3]. However, this subjective method
is vulnerable to self-presentation bias. Consequently, clinicians often distrust
pain self-reports, and find them more useful for comparisons over time within
individuals, rather than comparisons between individuals [4]. Further, infants,
young children, and others with communication/neurological disabilities do not
have the ability or capacity to self-report pain levels [3,5,6]. As a result, to
evaluate pain in populations with communication limitations, observational tools
based on nonverbal indicators associated with pain have been developed [7].

Of the various modalities of nonverbal expression (e.g., bodily movement,
vocal qualities of speech), it has been suggested that facial activity provides the
most sensitive, specific, and accessible information about the presence, nature,
and severity of pain across the life span, from infancy [8] to advanced age [9].
Moreover, observers largely consider facial activity during painful events to be
a relatively spontaneous reaction [7].

Evaluation of pain based on facial indicators requires two steps: (1) Extrac-
tion of facial pain features and (2) pain recognition based on these features. For
step (1), researchers have searched for reliable facial indicators of pain, such as
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anatomically-based, objectively coded Facial Action Units (AUs) defined by the
Facial Action Coding System (FACS) [10,11]. (Visualizations of facial activa-
tion units can also be found at https://imotions.com/blog/facial-action-coding-
system/). However, identifying AUs traditionally requires time intensive offline
coding by trained human coders, limiting application in real-time clinical set-
tings. Recently, algorithms to automatically detect AUs [11] have been devel-
oped and implemented in software such as iMotions (imotions.com) allowing
automatic output of AU probabilities in real-time based on direct recording of
face video. In step (2), machine learning algorithms such as linear models [5],
SVM [12], and Neural Networks [13] have been used to automatically recognize
pain based on facial features.

Although a simple machine learning model based on features extracted by
a well-designed algorithm can perform well when training and test data have
similar statistical properties, problems arise when the data follow different dis-
tributions, as happens, for example, when videos are recorded in two different
environments. We discovered this issue when training videos were recorded in
an outpatient setting and test videos in the hospital. One way to deal with this
problem is to use transfer learning, which discovers “common knowledge” across
domains and uses this knowledge to complete tasks in a new domain with a model
learned in the old domain [14]. In this work, we show that features extracted from
human-coded (manual) AUs are less sensitive to domain changes than features
extracted from iMotions (automated) AU codings, and thus develop a simple
method that learns a projection from automated features onto a subspace of
manual features. Once this mapping is learned, future automatically coded data
can be transformed to a representation that is more robust between domains. In
this work, we use a neural network model to learn a mapping from automated
features to manual features, and another neural network model to recognize pain
using the mapped facial features.

To summarize, our contributions of this work include demonstrating that:

– Manually/automatically coded AUs can be used to successfully recognize clin-
ical pain in videos with machine learning.

– Environmental factors modulate the ability of automatically coded AUs to
recognize clinical pain in videos.

– Manually coded AUs (especially previously established “pain-related” ones)
can be used to successfully recognize pain in videos with machine learning
across different environmental domains.

– Automatically coded AUs from iMotions do not directly represent or correlate
with AUs defined in FACS.

– Transfering automated features to the manual feature space improves auto-
matic recognition of clinical pain across different environmental domains.

This work was presented at the Joint Workshop on Artificial Intelligence in
Health and a shorter version of this paper appeared in the proceedings [15].

https://imotions.com/blog/facial-action-coding-system/
https://imotions.com/blog/facial-action-coding-system/
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2 Methods

2.1 Participants

One hundred and forty-three pediatric research participants (94 males, 49
females) aged 12 [10, 15] (median [25%, 75%]) years old and primarily Hispanic
(78%) who had undergone medically necessary laparoscopic appendectomy were
videotaped for facial expressions during surgical recovery. Videos were subse-
quently categorized into two conditions: pain and no-pain. Participating chil-
dren had been hospitalized following surgery for post-surgical recovery and were
recruited for participation within 24 h of surgery at a pediatric tertiary care cen-
ter. Exclusion criteria included regular opioid use within the past six months,
documented mental or neurological deficits preventing study protocol compli-
ance, and any facial anomaly that might alter computer vision facial expression
analysis. Parents provided written informed consent and youth gave written
assent [16]. The local institutional review board approved the research protocol.

Table 1. Numbers of samples at different pain levels in each visit.

Pain level 0 1 2 3 4 5 6 7 8 9 10

V1 16 12 18 28 31 26 26 19 24 15 11

V2 4 18 24 40 21 23 16 13 14 8 4

V3 166 17 3 1 0 0 0 0 0 0 0

2.2 Experimental Design and Data Collection

Data were collected over three visits (V): V1 within 24 h after appendectomy; V2
within the calendar day after the first visit; and V3 at a follow-up visit 25 [19, 28]
(median [25%, 75%]) days postoperatively when pain was expected to have fully
subsided. Data were collected in two environmental conditions: V1 and V2 in
hospital and V3 in the outpatient setting. At every visit, two 10-second videos (60
frames per second at 853× 480 pixel resolution) of the face were recorded while
manual pressure was exerted at the surgical site for 10 seconds (equivalent of a
clinical examination). During hospital visits (V1, V2), participants were lying in
the hospital bed with the head of the bed raised. In the outpatient lab in V3,
they were seated in a reclined chair. Participants rated their pain level during
manual pressure using a 0–10 Numerical Rating Scale, where 0 = no-pain and
10 = worst pain ever. For classification purposes, and following convention used
by clinicians for rating clinically significant pain [17], videos with pain ratings of
0–3 were labeled as no-pain, and videos with pain ratings of 4–10 were labeled
as pain. Two hundred and fifty-one pain videos were collected from V1/2, 160
no-pain videos were collected from V1/2, and 187 no-pain videos were collected
from V3. The numbers of samples collected for different pain levels and visits
are shown in Table 1. Note that all V3 data are labeled as no-pain and there are
only 4 pain ratings over 1 in V3. In contrast, the majority of no-pain data in V1
and V2 are ratings of 2 and 3. Figure 1 “All Data” demonstrates the distribution
of pain and no-pain videos across environmental conditions.
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Fig. 1. Data domain illustration. The area of category is not proportional to the num-
ber of samples.

Fig. 2. FACS names (descriptions) of 20 AUs coded by iMotions. AUs 1–7 and 43 are
upper face AUs, and the others are lower face AUs.

2.3 Feature Extraction

For each 10-second video sample we extracted AU codings per frame to obtain a
sequence of AUs. This was done both automatically by iMotions software (www.
imotions.com) and manually by a FACS trained human in a limited subset. A
second trained human independently coded a subset of the videos coded by the
first human. We then extracted features from the sequence of AUs.

Automated Facial Action Unit Detection: The iMotions software inte-
grates Emotient’s FACET technology (www.imotions.com/emotient), formally
known as CERT [18]. In the described work, iMotions software was used to pro-
cess videos to automatically extract 20 AUs as listed in Fig. 2 and three head
pose indicators (yaw, pitch and roll) from each frame. The values of these codings
represent estimated log probabilities of AUs, ranging from −4 to 4.

Manual Facial Action Unit Detection: A trained human FACS AU coder
manually coded 64 AUs (AU1-64) for each frame of a subset (54%) of videos and
labeled AU intensities (0–5, 0 = absence). In order to evaluate the reliability of

www.imotions.com
www.imotions.com
www.imotions.com/emotient


Automated Pain Detection in Facial Videos of Children 167

the manual codings, we had another trained human coder code a subset (15%)
of videos coded by the first human.

Feature Dimension Reduction: The number of frames in our videos was
too large to use full sequences of frame-coded AUs. To reduce dimensionality,
we applied 11 statistics (mean, max, min, standard deviation, 95th, 85th, 75th,
50th, 25th percentiles, half-rectified mean, and max-min) to each AU over all
frames as in [5] to obtain 11 × 23 features for automatically coded AUs, and
11× 64 features for manually coded AUs. We call these automated features and
manual features, respectively. The range of each feature was rescaled to [0, 1] to
normalize features over the training data.

2.4 Machine Learning Models

Neural Network Model to Recognize Pain with Extracted Features: A
neural network with one hidden layer was used to recognize pain with extracted
automated or manual features. The number of neurons in the hidden layer was
twice the number of neurons in the input layer, and the Sigmoid activation
function σ(x) = 1/(1 + exp(−x)) was used with batch normalization for the
hidden layer. The output layer used Softmax activation and cross-entropy error.

Neural Network Model to Predict Manual Features with Automated
Features: A neural network with the same structure was used to predict manual
features from automated features, except that the output layer was linear and
mean squared error was used as the loss function.

Model Training and Testing: Experiments were conducted in a participant-
based (each participant restricted to one fold) 10-fold cross-validation fashion.
Participants were divided into 10 folds, and each time 1 fold was used as the test
set, and the other 9 folds together were used as the training set. We balanced
classes for each participant in each training set by randomly duplicating samples
from the under-represented class. One out of nine participants in the training
sets were picked randomly as a nested-validation set for early stopping in the
neural network training. A batch size of 1/8 the size of training set was used.

We then examined the receiver operating characteristic curve (ROC curve)
which plots True Positive Rate against False Positive Rate as the discrimination
threshold varies. We used Area under the Curve (AUC) to evaluate classification
performance. We considered data from three domains (D) as shown in Fig. 1: (1)
D1 with pain and no-pain both from V1/2 in hospital; (2) D2 with pain from
V1/2 in hospital and no-pain from V3 from outpatient lab; and (3) All data, i.e.,
pain from V1/2 and no-pain from V1/2/3. The clinical goal was to be able to
discriminate pain levels in the hospital; thus evaluation on D1 (where all samples
were from the hospital bed) was the most clinically relevant evaluation.
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Table 2. AUC for classification with SEM (standard error of the mean).

Train on Test on Automated Manual Automated
“pain” features

Manual
“pain” features

All D1 0.61 ± 0.006 0.66 ± 0.006 0.63 ± 0.007 0.69± 0.006

D1 D1 0.58 ± 0.014 0.62 ± 0.008 0.61 ± 0.008 0.65± 0.008

D2 D1 0.57 ± 0.005 0.67 ± 0.007 0.62 ± 0.004 0.7± 0.006

All D2 0.9 ± 0.005 0.79 ± 0.007 0.88 ± 0.005 0.8 ± 0.003

D1 D2 0.69 ± 0.011 0.68 ± 0.008 0.73 ± 0.012 0.73 ± 0.01

D2 D2 0.92 ± 0.01 0.79 ± 0.009 0.9 ± 0.007 0.8 ± 0.005

3 Analysis and Discussion

Data from 73 participants labeled by both human and iMotions were used
through Sects. 3.1 to 3.5, and data from the remaining 70 participants using
only automated (iMotions) AU codings were included for independent test set
evaluation in the results section.

3.1 Automated Classifier Performance Varies by Environment

Using automated features, we first combined all visit data and trained a clas-
sifier to distinguish pain from no-pain. This classifier performed well in general
(AUC = 0.77 ± 0.011 on All data), but when we looked at different domains,
the performance of D1 (the most clinically relevant in-hospital environment) was
inferior to that on D2, as shown in data rows 1 and 4 under the “Automated”
column in Table 2.

There were two main differences between D1 and D2, i.e., between V1/2
and V3 no-pain samples. The first was that in V1/2, participants still had some
pain and their self-ratings were greater than 0, while in V3, no-pain ratings were
usually 0 reflecting a “purer” no-pain signal. The second difference was that V1/2
occurred in the hospital with patients in beds and V3 videos were recorded in an
outpatient setting with the participant sitting in a reclined chair. Lighting was
also inherently different between hospital and outpatient environments. Since
automated recognition of AUs is known to be sensitive to facial pose and lighting
differences, we hypothesized that added discrepancy in classification performance
between D1 and D2 was mainly due to the model classifying on environmental
differences between V1/2 and V3. In other words, when trained and tested on
D2, the classifier might distinguish “lying in hospital bed” vs “more upright in
outpatient chair” as much as pain vs no-pain (this is similar to a computer vision
algorithm doing well at recognizing cows by recognizing a green background).

In order to investigate this hypothesis and attempt to improve classification
on the clinically relevant D1, we trained a classifier using only videos from D1.
Within the “Automated” column, row 2 in Table 2 shows that performance on
automated D1 classification does not drop much when D2 samples are removed
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from the training set. At the same time, training using only D2 data results in
the worst classification on D1 (row 3), but the best classification on D2 (last
row) as the network is able to exploit environmental differences (no-pain+more
upright from V3, pain+lying-down from V1/2).

Figure 3(b) (LEFT) shows ROC curves of within and across domain tests for
models trained on automated features in D2. The dotted (red) curve corresponds
to testing on D2 (within domain) and the solid (blue) curve corresponds to
testing on D1 (across domain). The model performed well on within domain
classification, but failed on across domain tasks.

3.2 Classification Based on Manual AUs Are Less Sensitive
to Environmental Changes

We also trained a classifier on manual AUs labeled by a human coder. Interest-
ingly, results from the classifier trained on manual AUs showed less of a difference
in AUCs between domains, with a higher AUC for D1 and a lower AUC for D2
relative to those with automated AUs (see Table 2 “Manual” and “Automated”
columns). Overall, manual AUs appeared to be less sensitive to changes in the
environment, reflecting the ability of human labelers to consistently code AUs
without being affected by lighting and pose variations.

When we restricted training data from All to only D1 or only D2 data, classi-
fication performance using manual AUs went down, likely due to the reduction in
training data, and training with D2 always gave better performance than train-
ing with D1 on both D1 and D2 test data, which should be the case since pain
and no-pain samples in D2 are more discrepant in average pain rating. These
results appear consistent with our hypothesis that human coding of AUs is not as
sensitive as machine coding of AUs to environmental differences between V1/2
and V3.

Figure 3(b) (MIDDLE) displays ROC curves for manual features. As dis-
cussed above, in contrast to the plot on the left for automated features, manual
coding performance outperformed automated coding performance in the clin-
ically relevant test in D1. The dotted (red) curve representing within-domain
performance is only slightly higher than the solid (blue) curve, likely due in part
to the quality difference in no-pain samples in V1/2 and V3, and also possi-
bly any small amount of environmental information that the human labeler was
affected by. Note that ignoring the correlated environmental information in D2
(i.e., pain faces were more reclined and no-pain faces were more upright) resulted
in a lower numerical performance on D2 but does not likely reflect worse classi-
fication of pain but instead the failure to “cheat” by using features affected by
pose angle to classify all upright faces as “no-pain.”

3.3 Restricting Manual AUs to Those Associated with Pain
Improves Classification

In an attempt to reduce the influence of environmental conditions to fur-
ther improve performance on D1, we restricted the classifier to the eight AUs
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(a) Training with D1

(b) Training with D2

(c) Training with All

Fig. 3. ROC curves for classification on D1 and D2 using automated features (left),
manual features (middle) and pain-related manual features (right), when the model is
trained on (a) D1, (b) D2 and (c) All data. The dotted (red) lines are ROCs when
the machine is able to use environment information to differentiate pain and no-pain
conditions, and the solid (blue) lines show the machine’s ability to discriminate between
pain and no-pain based on AU information alone. The straight (yellow) line graphs the
performance of random chance. (Color figure online)

consistently associated with pain: 4 (Brow Lowerer), 6 (Cheek Raiser), 7 (Lid
Tightener), 9 (Nose Wrinkler), 10 (Upper Lip Raiser), 12 (Lip Corner Puller),
20 (Lip Stretcher), and 43 (Eyes Closed) [19,20] as illustrated in Fig. 4 to obtain
11 (statistics) ×8 (AUs) features. Pain prediction results using these “pain” fea-
tures are shown in the last two columns in Table 2. Results show that using
only pain-related AUs improved classification performance of manual features.
However, it did not seem to help as much for automated features.
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Fig. 4. Illustration of eight “pain-related” facial AUs.

Fig. 5. Correlation matrix of AU pairs from automated and manual codings using All
data.

Similarly, Fig. 3(b) (RIGHT) shows that limiting manual features to use only
pain-related AUs further improved D1 performance when training with D2. We
also employed PCA on pain-related features and found that performance in the
hospital domain was similar if using four or more principal components.

In Fig. 3(a) and (c) we show ROC curves similar to Fig. 3(b) except with
different training data. These curves correspond to row 2 and 5 (a), or 1 and 4
(c), under “Automated,” “Manual,” and “Manual ‘Pain’ Features” in Table 2.

3.4 iMotions AUs Are Different Than Manual FACS AUs

Computer Vision AU automatic detection algorithms have been pro-
grammed/trained on manual FACS data. However, we demonstrate differential
performance of AUs encoded automatically versus manually. To understand the
relationship between automatically encoded v. manually coded AUs, we com-
puted correlations between binarized automatically coded AUs and manually
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Fig. 6. Correlations of AU pairs from two of (1) iMotions; (2) human 1; and (3) human
2 on a subset of the data.

Fig. 7. Self-correlation matrices of AU pairs from iMotions or humans.

coded AUs at the frame level as depicted in Fig. 5. The FACS names corre-
sponding to AU numbers are listed in Fig. 2, in which AUs 1, 2, 4, 5, 6, 7, 43
are upper face AUs and all others are lower face AUs. If two sets of AUs were
identical, the diagonal of the matrix (marked with small centered dots) should
yield the highest correlations, which was not the case. For example, manual AU
6 was highly correlated with automated AU 12 and 14, but had relatively low
correlation with automated AU 6.

The correlation matrix shows that not only is our first human coder less
affected by environmental changes, the AUs she coded are not in agreement
with the automated AUs. Our second trained human coder (human 2) shows a
better correlation with the coding of human 1 than between each human and
iMotions, shown in Fig. 6 (LEFT). The correlation between each of the humans
and the software on the same subset is shown in Fig. 6 (MIDDLE, RIGHT). This
likely explains the reduced improvement by restricting the automated features
model to “pain-related AUs” as these have been determined based on human
FACS coded AUs (Fig. 8).
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Fig. 8. Self-correlation matrices of AU pairs from iMotions or humans with “pain”
AUs arranged together at the top left corner.

Table 3. AUC (and SEM) with transferred automated features.

Train on Test on All features “Pain” features 7 PCs 4 PCs 1 PC

All D1 0.61± 0.009 0.63± 0.009 0.68± 0.006 0.69± 0.008 0.65± 0.009

D1 D1 0.62± 0.009 0.64± 0.014 0.66± 0.012 0.67± 0.011 0.65± 0.009

D2 D1 0.58± 0.011 0.59± 0.01 0.66± 0.008 0.68± 0.006 0.66± 0.009

All D2 0.82± 0.009 0.82± 0.009 0.76± 0.009 0.75± 0.012 0.7± 0.01

D1 D2 0.69± 0.009 0.71± 0.013 0.7± 0.015 0.71± 0.015 0.69± 0.011

D2 D2 0.88± 0.011 0.86± 0.006 0.76± 0.013 0.74± 0.01 0.7± 0.009

The self-correlation matrices between AUs in iMotions and the human coder
are shown in Fig. 7. AUs coded by iMotions show higher correlations (between
different iMotions coded AUs) than AUs coded by humans. Some human AU
codings were also correlated, which is expected since specific AUs often occur
together (e.g., AU 1 and 2 for inner and outer brow raiser and AU 25 and 26 for
lips part and jaw drop) and other AUs tend to occur together in pain. This latter
correlation of pain AUs is more evident in Fig. 4 which shows the same content
as Fig. 7 except that in Fig. 4 the eight pain-related AUs are put together at the
upper left corner to highlight their higher correlations. Interestingly, higher cor-
relations within the pain AUs for iMotions coding was observed but the pattern
is different.

3.5 Transfer Learning via Mapping to Manual Features
Improves Performance

We have shown that manual codings are not as sensitive to domain change.
However, manual coding of AUs is very time-consuming and not amenable to
an automated real-time system. In an attempt to leverage manual coding to
achieve similar robustness with automatic AUs, we utilized transfer learning
and mapped automated features to the space of manual features. Specifically,
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Fig. 9. ROC curves for classification on two domains using our transfer learning model
(left) and plot of average model output pain score (with error bars indicating standard
deviation) over true pain level (right).

we trained a neural network model to estimate manual features from automated
features using data coded by both iMotions and a human. Separate models were
trained to predict: manual features of 64 AUs, manual features of the eight pain-
related AUs, and principal components (PCs) of the manual features of the eight
pain-related AUs. PCA dimensionality reduction was used due to insufficient
data for learning an accurate mapping from all automated AUs to all manual
AUs.

Once the mapping network was trained, we used it to transform the auto-
mated features and trained a new network on these transformed data for pain/no-
pain classification. The 10-fold cross-validation was done consistently so that
the same training data was used to train the mapping network and the pain-
classification network.

In Table 3, we show classification AUCs when the classification model was
trained and tested with outputs from the prediction network. We observed that
when using All data to train (which performed best), with the transfer learning
prediction network, automated features performed much better in classification
on D1 (0.68–0.69 compared to 0.61–0.63 in Table 2). Predicting four principal
components of manual pain-related features yielded the best performance in our
data. Overall, the prediction network helped in domain adaptation of a pain
recognition model using automatically extracted AUs.

Figure 9 (LEFT) plots the ROC curves on two domains using the transfer
learning classifier trained and tested using four predicted features. The model
performed well in across-domain classification. Compared to Fig. 3(c) (LEFT),
the transferred automated features showed properties more similar to manual
features (Fig. 3(c) (RIGHT)), with smaller differences between performance on
the two domains and higher AUC on the clinically relevant D1. Table 3 shows
numerically how transfer learning helped automated features ignore environmen-
tal information in D2 like humans, and learn pure pain information that can be
used in classification on D1.

Within-domain classification performance for D1 was also improved with
the prediction network. These results show that by mapping to the manual
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feature space, automated features can be promoted to perform better in pain
classification.

Figure 9 (RIGHT) plots output pain scores of our model tested on D1 versus
0–10 self-reported pain levels. The model output pain score increases with true
pain level, indicating that our model indeed reflects pain levels.

     Classification

Classification Classification

     PCA    Regression

     Regression

Automated features (11x23)

Manual pain-related features (11x8) 

pain/no pain class

4 features

2

6

1

4

3
5

Fig. 10. Illustration of machine learning models. 1/2 are classifications using auto-
mated/manual pain features, in which 2 does better than 1. 3–4 can be done to reduce
feature dimensions while maintaining performance. 6–2 and 5–4 are our transfer learn-
ing models, training a regression network to map automated features to a subspace of
manual pain features before classification.

4 Results

In the previous section we showed that in Fig. 10 classification with pain-related
pain features (2) performed better than automated features (1) on D1, which was
the clinically relevant classification. We also found that applying PCA to manual
features (3–4) does not change performance on D1 much. Thus, we introduced a
transfer learning model to map automated features first to manual pain-related
features (or the top few principal components of them), and then used the trans-
ferred features for classification (6–2 or 5–4). We obtained similar results to
manual features on D1 with the transfer learning model (5–4) mapping to four
principal components of manual features.

Table 2 shows that without our transfer learning method, training on all data
and restricting to pain-related AUs results in the best performance using auto-
mated features for D1. And cross-validation results in Table 3 shows that with our
method, using all data and predicting four PCs yielded the best performance for
D1. With these optimal choices of model structure and training domain before
and after transfer learning, we show the benefits of transfer learning in two
experiments.
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Fig. 11. ROC Curves for classification on NEW test domains D1 and D2 using our
transfer learning model (left) and plot of average model output pain score (with error
bars indicating standard deviation) over true pain level (right).

4.1 Test on New Subjects with only iMotions AU Codings

In this section we report on the results from testing our transfer learning method
on a new separate dataset (new participants), which contained only automated
features. We trained two models, with and without transfer learning, using all
the data in Sect. 3 labeled by both iMotions and humans, and tested the model
on this new dataset only labeled by iMotions D1, D2. (We use italicized domain
names to indicate that this is independent test data D1, D2.) Our model with
transfer learning (AUC = 0.72±0.002) performed better than the model without
it (AUC = 0.67 ± 0.002) on D1 with a p-value= 1.33e − 45 in a one-tailed two-
sample t-test.

Similar to Fig. 9, in Fig. 11 we plot ROC curves for classification on the NEW
test dataset (LEFT) and output pain scores at 0–10 pain levels (RIGHT) using
our transfer learning model.

In Fig. 12, we show a scatter plot of neural network output pain scores using
transferred automated features versus those using original automated features,
as well as pain score distributions, separately for training (All Data from Sect. 3)
and test (D1 from NEW test data in the current section), pain and no-pain. We
can see for original automated features scores, no-pain samples from D1 are
distributed very differently from no-pain in All data domain used for training
and fall mostly in the range of the pain class. Results using transfer learning do
not appear to have this problem.

4.2 Test with Masked Pain and Faked Pain

As another test of the effect of our transfer learning model, we looked at results
of classifying whether participants are in pain or not from videos where children
were asked to fake pain when they were not really in pain as well as when they
were asked to suppress visual expressions of pain when they were in pain.

Although facial expressions convey rich and objective information about pain,
they can be deceptive because people can inhibit or exaggerate their pain dis-
plays when under observation [21]. It has been shown that human observers dis-
criminate real expressions of pain from faked expressions only marginally better
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Fig. 12. Scatter plot and distributions of pain scores (transfer learning vs original)
using original iMotions features (on the x-axis) and transferred iMotions features (on
the y-axis).

than chance [21,22]. Children can also be very good at suppressing pain, but
not fully successful in faking expressions of pain [23]. In this section we discuss
performance of masked and faked pain in machine learning models trained to
distinguish genuine pain and no-pain.

In addition to the data described in Sect. 2.2, we recorded videos of “masked
pain” in V1 and V2 by asking participants to suppress pain during the 10-second
manual pressure, and videos of “faked pain” during V3 by asking participants
to fake the worst pain ever during manual pressure. As in Sect. 2.2, we asked
participants to rate their true pain level during manual pressure with a number
from 0 to 10. We then labeled masked-pain videos with pain ratings of 4–10 as
masked-pain and faked-pain videos with pain ratings of 0–3 as faked-pain, and
discarded other samples. This ensured that in masked-pain videos participants
actually experienced pain and in faked-pain videos participants in fact felt no
pain. One hundred and seventeen masked-pain samples and 116 faked-pain sam-
ples were collected. The distribution of the four classes within the three visits is
shown in Fig. 13.

Using the best models before and after transfer learning trained to distin-
guish between genuine pain and no-pain described above, the masked and faked
pain samples were processed to obtain pain labels. The results are shown in
Fig. 14. We can see that without transfer learning (LEFT), most masked-pain
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Fig. 13. Distribution of four classes in three visits. The area of category is not propor-
tional to the number of samples.

Fig. 14. Bar graph showing classification of real-pain, masked-pain, faked-pain and
no-pain. The area of bars shows the distribution of predicting pain and no-pain.

data were classified as real-pain and most faked-pain as no-pain. This appeared
to be the case because the AU features coded automatically were sensitive to
environmental factors, and during training the machine learned to discrimi-
nate between genuine pain and no-pain by recognizing environmental differences
between them. At test time, since masked-pain is in the same environmental
domain as real-pain and faked-pain is in the similar environment as no-pain,
they are assigned to the corresponding classes. In contrast, with transfer learn-
ing (Fig. 14 (RIGHT)), masked-pain was mostly classified as no-pain and faked-
pain as real-pain. This might be because automated features were transferred to
ignore the difference between the two classes caused by environmental change,
and the machine can only use differences in facial actions to complete the clas-
sification task. Humans’ attempts to mask pain are to mimic no-pain faces and,
similarly, humans’ attempts to fake pain are to mimic pain faces. The machine
in this way classifies pain and no-pain according to expressed facial actions.

5 Conclusion

In the present work we recognized differences in classifier model performance
(pain vs no-pain) across domains that reflect environmental differences as well
as differences reflecting how the data were encoded (automatically v. manu-
ally). We demonstrate that manually coded facial features are more robust than
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automatically coded facial features to environmental changes which allow us to
obtain the best performance on our target data domain. We then introduced a
transfer learning model to map automated features first to manual pain-related
features (or principal components of them), and then used the transferred fea-
tures for classification (6-2 or 5-4 in Fig. 10). This allowed us to leverage data
from another domain to improve classifier performance on the clinically relevant
task of automatically distinguishing pain levels in the hospital. Further, we were
able to demonstrate improved classifier performance on a separate, new data set.

6 Future Work

Planned future work:

1. Classification of real-pain, masked-pain, faked-pain, and no-pain using
machine learning, and comparison to human judgments.

2. Classification of genuine expression and non-genuine expression using machine
learning, and comparison to human judgments.

3. Using transfer learning to improve fusion analysis of video features and
peripheral physiological features in [24].

4. Multidimensional pain assessment such as pain catastrophizing and anxiety
based on facial activities.
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Abstract. Accurately determining pain levels in children is difficult,
even for trained professionals and parents. Facial activity and electro-
dermal activity (EDA) provide rich information about pain, and both
have been used in automated pain detection. In this paper, we discuss
preliminary steps towards fusing models trained on video and EDA fea-
tures respectively. We compare fusion models using original video fea-
tures and those using transferred video features which are less sensitive
to environmental changes. We demonstrate the benefit of the fusion and
the transferred video features with a special test case involving domain
adaptation and improved performance relative to using EDA and video
features alone.

Keywords: Automated pain detection · Domain adaptation · EDA ·
Facial action units · GSR · FACS

1 Introduction

Accurate pain assessment in children is necessary for safe and efficacious pain
management. Under-estimation can lead to patient suffering and inadequate
care, while over-estimation can lead to overdosing of pain medication, which
may predispose other issues, including opioid addiction [1]. The most widely
used method of assessing clinical pain is patient self-report [2]. However, this
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method is subjective and vulnerable to social and self-presentation biases and
requires substantial cognitive, linguistic, and social competencies [2]. Objective
pain estimation is required for appropriate pain management in the clinical set-
ting.

In previous work, features extracted from facial action units (AUs) and elec-
trodermal activity (EDA) signals have both been used to automatically detect
pain events using machine learning methods, and transfer learning techniques
have been applied to environmentally sensitive features like facial AU features
for domain adaptation tasks [3–6]. In this work, we design a machine learning
model that utilizes both facial and EDA features to recognize pain. We trained a
unimodal model using either facial or EDA features to give pain scores, and then
trained another fusion model using scores from the two models. We also applied
transfer learning [6] to transfer video features into a domain-robust space, and
analyzed the fusion model using transferred video features combined with EDA
features. We observed performance improvement in a domain adaptation task
with the fusion method.

An earlier and shorter version of this work was presented at the Joint Work-
shop on Artificial Intelligence in Health and appears in the proceedings [7].

2 Methods

2.1 Participants

Forty-two pediatric research participants (30 males, 12 females) aged 13 [10,
15] (median [25%, 75%]) years and primarily Hispanic (79%) who had under-
gone medically necessary laparoscopic appendectomy were recruited for a study
examining automated assessment of children’s post-operative pain using video
and wearable biosensors. Children and their parents provided assent and parental
consent prior to study evaluations [8].

2.2 Experimental Design and Data Collection

Data were collected over 3 visits (V): (V1) within 24 h after appendectomy in
hospital; (V2) in hospital one calendar day after V1; and (V3) a follow-up visit
in an outpatient lab up to 42 days postoperatively. At each visit, videos (60
fps at 853 × 480 pixel resolution) of the participant’s face and EDA responses
(using Affectiva Q sensor) were recorded while manual pressure was exerted at
the surgical site for 10 s (equivalent of a clinical examination). During hospital
visit (V1, V2) data collections, participants were lying in a hospital bed with the
head of the bed raised. In V3, they were seated in a reclined chair. Participants
rated their pain level using a 0–10 Numerical Rating Scale, where 0 = no pain and
10 = worst pain ever. Following convention for recognizing clinically significant
pain [9], videos and EDA with ratings of 0–3 were labeled as no-pain, and videos
and EDA with ratings of 4–10 were labeled as pain. We obtained 22 pain samples
from V1, 8 pain and 8 no-pain samples from V2, and 22 no-pain samples from
V3. The data distribution is illustrated in Fig. 1.
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Fig. 1. Data distribution over three visits and two environmental domains.

2.3 Feature Extraction and Processing

Video Features: Each 10-second video during pressure was processed with
iMotions software which automatically estimates the log probabilities of 20 AUs
(AU 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 28, 43) and
3 head pose indicators (yaw, pitch and roll) from each frame. We then applied
11 statistics (mean, max, min, standard deviation, 95th, 85th, 75th, 50th, 25th
percentiles, half-rectified mean, and max-min) to each AU over all frames to
obtain 11 × 23 features.

EDA Features: EDA signals were trimmed to 30 s (10 s before, during, and
after pressure was exerted at the surgical site respectively), smoothed by a
0.35 Hz FIR low pass filter, down-sampled to 1 Hz, and normalized with z-score
normalization. We then applied timescale decomposition (TSD) with a standard
deviation metric, and computed the mean, SD, and entropy of each row of each
TSD to obtain a feature vector of length 90 [5].

Transferred Video Features: In [6], we collected videos from 73 children over
3 visits and had a human expert code videos along with iMotions, and then used
the data to learn a mapping from iMotions features to human features. The
mapped iMotions features gained the domain robustness property of human
features. In this paper, we processed video features through the learned model
to get domain-robust transferred video features.

2.4 Machine Learning Models

Support Vector Machine (SVM): A linear SVM was used to obtain a pain
score as well as a pain prediction for each sample using transferred video features
or video/EDA features after PCA. The number of principal components was
chosen using cross-validation and the box constraint is set to 1. Inputs were
normalized with z-score normalization over the full dataset as in [5].

Linear Discriminant Analysis (LDA): LDA was used to differentiate
between pain and no-pain using output pain scores from the SVMs. Inputs were
either one single pain score from one SVM, or a fusion of pain scores from both
SVMs.
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Fig. 2. Graph of model hierarchy.

Neural Networks: Neural Networks with one hidden layer were used to map
iMotions features to the human feature subspace. The number of hidden neurons
was 506, twice the number of input features. Batch normalization and sigmoid
activation were used for the hidden layer. The output layer used the linear acti-
vation function and mean squared error as the loss function.

2.5 Evaluation Metrics

Our primary objective was to classify pain in the hospital setting. For this reason
we used V2 (in hospital pain vs no-pain) as test data.

We use classification accuracy to quantify performance of the model. Classi-
fication accuracy reflects the percentage of correctly classified trials for a given
learned threshold. We also report sensitivity and specificity along with overall
accuracy to indicate whether the model is better at detecting pain or no-pain. In
order to measure how well the classifiers are able to separate pain and no-pain
classes, we also use AUC (Area under the ROC curve) which is insensitive to
the classification threshold. It measures the area under the curve that plots hit
rate vs false alarm rate as the threshold is moved over all possible values. An
AUC of 1 reflects perfect separation and an AUC of 0.5 reflects no separation.

3 Results and Discussion

3.1 Performance Using Video/EDA Features

We first used V1 pain and V3 no-pain samples to train an SVM for classification,
following 1 ⇒ 3 and 2 ⇒ 4 in Fig. 2. Table 1 shows that SVM performance
on V2 was good for EDA (accuracy = 0.75), but suboptimal for video features
(accuracy = 0.5). The AUC for video was 0.66, which is higher than random,
implying that the model learned a function output, or score, that correlated with
pain self-report scores, but failed to find an appropriate classification threshold.
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Table 1. Performance for classification on V2.

Video EDA Video+EDA Video-V2 EDA-V2 Video+EDA-V2

Acc 0.5 0.75 0.56 0.69 0.71 0.84

Sensitivity 0.75 0.75 0.87 0.62 0.62 0.84

Specificity 0.25 0.75 0.25 0.75 0.80 0.83

AUC 0.66 0.80 0.88 − − −

In a separate experiment, we trained an SVM with V1 pain and V3 no-pain
data, and tested the model with V1 pain and V3 no-pain data. The classifica-
tion accuracy was 0.8 for video features, much higher than performance tested
on V2 pain and no-pain. We hypothesize that the observed difference was due
to iMotions feature sensitivity to environmental differences between V1/2 (in
hospital) and V3 (in outpatient lab). When training with V1 pain and V3 no-
pain, the classifier learns the difference between the hospital environment of V1
and outpatient lab environment of V3, but in testing, such difference no longer
exists between the two classes in V2, so the classification fails. This problem has
previously been discussed in [6].

One solution to this problem was to use V2 to train the model. However, with
only 16 data points in V2, results had large variance. Likewise, training with
V1/3 and V2 data together did not improve V2 performance. Consequently, we
needed to solve the domain adaptation problem which learns a model from a
source domain (V1/3) and applies it on a different target domain (V2).

3.2 Fusion of Video and EDA

We hoped to improve performance on V2 by combining video and EDA features.
Our first simple attempt at fusion was to fit an LDA model to distinguish between
pain v. no-pain using the output pain scores from each of the SVM models trained
with video and EDA features respectively (1, 2 ⇒ 5, 6 ⇒ 7, 8 ⇒ 9 in Fig. 2).
However, this method performed poorly (accuracy = 0.56 under “Video+EDA”
column in Table 1) compared to using EDA features alone. Nevertheless, the
AUC of this model was 0.88, higher than the AUCs of both video and EDA alone,
showing potential for the fusion model. In the next section, we demonstrate a
method that better adjusts the decision boundary of the fusion model to get a
higher classification accuracy.

3.3 Training with V2 Scores

Through fusion, our LDA classifier involved only two inputs: video and EDA
SVM pain scores. In such structure, the SVM models can be regarded as encoders
or feature extractors. Since the dimensionality of features was greatly reduced
by the SVM, it became feasible to train a classifier using only V2 samples.
Relative to Fig. 2, we thus trained 1,2 with V1/3, and 7,8 with V2 data using
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Fig. 3. Scatter plot and distributions for EDA and video pain scores output by SVM
models, grouped by data domain and class.

cross-validation. The accuracy using video scores alone as LDA inputs was 0.69,
much higher than 0.5, showing the benefit of training on target domain V2,
even if the features, V2 scores, were obtained from a model trained on V1/3.
Finally, with a fusion of SVM output scores for video and EDA, we achieved a
comparative best accuracy of 0.84.

It should be noted that we performed leave-one-sample-out cross-validation
on V2 samples in order to train and test both on V2, so AUCs were not mea-
surable.

To better understand our problem, we plot EDA SVM output scores versus
video SVM output scores in Fig. 3 for data points from two domains (V1/3 and
V2) and two classes (pain and no-pain). We also plot score distributions for EDA
and video along corresponding axes. These scores were obtained by SVM trained
on V1/3 domain. We can see that for both EDA and video features, pain and
no-pain classes are well-separated on V1/3. However, for video features, no-pain
on V2 drifts towards pain and will clearly be classified as pain if the threshold
differentiating pain and no-pain on V1/3 is used. This supports our hypothesis
that the video SVM model learned to classify “in hospital” versus “in outpatient
lab” instead of pain versus no-pain during training with V1/3 data, so that V2
no-pain test data are classified by their “in hospital” properties.

As we can see from the video score plot, if we adjust the classification thresh-
old based on V2 pain scores, we obtain improved performance (Table 1 “Video-
V2”). The scatter plot on the other hand explains why we should benefit from
the fusion of EDA and video since the optimal decision boundary that partitions
the two distributions is oblique, which means the decision model should weight
both dimensions.
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Table 2. Performance for classification on V2 (transfer learning).

TF EDA TF+EDA TF-V2 EDA-V2 TF+EDA-V2

Acc 0.81 0.75 0.75 0.76 0.71 0.80

Sensitivity 0.87 0.75 0.87 0.77 0.62 0.81

Specificity 0.75 0.75 0.62 0.75 0.80 0.78

AUC 0.81 0.80 0.88 − − −
TF-V123 EDA-V123 TF+EDA-V123

Acc 0.81 0.73 0.86

Sensitivity 0.87 0.86 0.87

Specificity 0.75 0.59 0.84

AUC − − −

3.4 Transfer Learning for Video Features

We introduced a transfer learning method in [6] to map automated video fea-
tures to a subspace of manual pain-related video features which loses sensitivity
to domain changes while keeping necessary information to recognize pain. We
applied the same method to the video features in our experiment and show the
results in Table 2 under “TF” (TF = transferred video feature). Accuracy using
video features on target domain V2 improved from 0.5 to 0.81 with transfer
learning when the SVM model was trained on source domain V1/3. Unlike origi-
nal video features, in the plot of score distribution for transferred video features
in Fig. 4, no-pain (V2) is distributed similarly to no-pain (V1/3), showing the
domain robustness of video features after transfer learning.

3.5 Fusion of Transferred Video and EDA

We then combined transferred video and EDA as we did in Sect. 3.2, following
1, 2 ⇒ 5, 6 ⇒ 7, 8 ⇒ 9 in Fig. 2 where we replaced video by transferred video.
The accuracy is 0.75 under “TF+EDA”, no higher than using TF or EDA alone,
but the AUC (0.88) beats both (Table 2).

In Sect. 3.3 we retrained the LDA model on V2 to improve accuracy. Since
transferred video features and EDA features are both invariant to domain
changes, we did not have to exclude V3 during training. Instead we could leave
one sample in V2 test data out at each iteration, use the remaining V2 samples
and all V1/3 samples together for training, and produce a decision for each V2
sample. The accuracy of this fusion model was 0.86. To compare with Table 1,
we also report accuracies training LDA with V2 in Table 2. The accuracies are
slightly lower than training with V1-3 together, possibly due to decreased train-
ing sample size.
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Fig. 4. Scatter plot and distributions for EDA and transferred video pain scores output
by SVM models, grouped by data domain and class.

4 Conclusion

We present preliminary results using a fusion approach to automatically detect
pain in children. While the results demonstrate improvement with our domain
adaptation fusion methodology over approaches using video, transferred video,
or EDA features alone, we believe these results can be further improved by
tailoring the two modalities to be more sensitive to their relative benefits and
limitations.
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Abstract. In the fight against cancer, cancer registries are an impor-
tant tool. At the heart of these registries is the data collection and cod-
ing process. This process is ruled by complex international standards
and numerous best practices, which can easily overwhelm (coding) oper-
ators. In this paper, a system assisting operators in the interpretation of
best medical coding practices and a short evaluation are presented. By
leveraging the arguments used by the coding experts to determine the
best coding option, the proposed system answers coding questions from
operators and provides a partial explanation for the proposed solution.

Keywords: Interpretation of best practices ·
Interpretive case-based reasoning · Coding standards ·
Cancer registries · User assistance · Decision support

1 Introduction

There are numerous cancer registries around the world collecting data about
cancers diagnosed and/or treated in a given area. This data is used to mon-
itor cancer (incidence rates, survival rates, etc.) and to evaluate cancer care
(diagnosis, treatment, etc.). To produce comparable data, common definitions
(e.g. terminologies like the International Classification of Diseases (ICD)) and
coding practices [5] have to be followed. However, the broadness and complex-
ity of these standards make the work of the medical staff in charge of coding
(operators) more difficult.

c© Springer Nature Switzerland AG 2019
F. Koch et al. (Eds.): AIH 2018, LNAI 11326, pp. 190–198, 2019.
https://doi.org/10.1007/978-3-030-12738-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12738-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-12738-1_14


Interpretation of Best Medical Coding Practices by Case-Based Reasoning 191

The aim of this research is to address this complexity, by assisting both
operators and coding experts in the interpretation of coding best practices.

As an illustrating example, let us consider the case denoted by exmpl of a
particular woman. In 2016, multiple pulmonary opacities were discovered within
her right lung. A CT scan indicated no mediastinal adenopathy.1 A histological
analysis of a sample identified the morphology2 of the cancer as adenocarci-
noma. The TTF1 marker test was positive. After further testing, another tumor
is found in the ovaries. An operator might wonder which topography3 should
be coded (lung or ovaries?) and can request help. For the Luxembourg National
Cancer Registry (NCR), operators ask their questions using an online ticketing
system. With free text description provided by operators, coding experts pro-
vide a solution, i.e. an answer with their reasoning in the form of a motivated
argument.

Section 2 describes an approach to assist the data collection process for can-
cer registries and how case-based reasoning (CBR [1]) is applied. In Sect. 3, a
prototype and preliminary results are discussed. Section 4 presents a conclusion
and points out what further efforts need to be undertaken in the future.

2 Case-Based Interpretation of Best Practices

This article summarizes the work presented in [9] and adds a description of the
developed prototype and some preliminary results.

2.1 Preliminaries

RDFS4 is a knowledge representation language of the semantic web. SPARQL
(See footnote 4) is a query language for RDFS web.

A case (srce, sol(srce)) is composed of two parts: (1) srce is a problem
given by a question (i.e. a subject) and a patient record, and (2) sol(srce) a
solution for the problem srce.

The question indicates the subject (incidence date, topography, tumor
nature, etc.). In the example, the question is about the topography.

The patient record represents the data from the hospital patient record
(patient features, tumors, exams, treatments, etc.) needed to answer the ques-
tion. The relevant data depends on the subject and is defined by coding experts.
The patient record is represented by an RDFS graph [3] (see Fig. 1). Body
parts and cancer morphologies use classes from the SNOMED Clinical Terms5

ontology.

1 An adenopathy is an enlargement of lymph nodes, likely due to cancer.
2 The morphology describes the type and behavior of the cells that compose the tumor.
3 The topography is the location where the tumor originated.
4 https://www.w3.org/TR/rdf-schema/ and https://www.w3.org/TR/sparql11-

query.
5 https://bioportal.bioontology.org/ontologies/SNOMEDCT.

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/sparql11-query
https://www.w3.org/TR/sparql11-query
https://bioportal.bioontology.org/ontologies/SNOMEDCT
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The solution contains the answer to the question and the most important
arguments in favor of (pros) and against (cons) this answer. In the example,
the answer is to consider the topography to be the ovaries. The presence of
multiple pulmonary opacities is an argument in favor, as they are indicative of a
lung metastasis and thus the tumor is unlikely to have originated in the lungs.

srce

Female

"02/06/2016"

examTypeBiopsy

findingMorphology

certain

snmifre:M-81403

concernsPatient
a

hasExam
examDate

examType

hasFinding

findingType

modifier

regarding a

Fig. 1. Short patient record in RDFS. This graph represents a woman with a single
biopsy (exam), identifying the tumor as adenocarcinoma (which is coded as M-8140/3).
The circles represent blank nodes.

The arguments have two uses. They help explain the answer to operators
and serve as a reminder for coding experts. They are also used in the proposed
approach during the retrieval step. Three types of arguments will be considered:
strong pros, weak pros and weak cons. The difference between a strong and
a weak argument comes from their reliability for a given conclusion. A strong
argument is considered to be a sufficient justification for an answer, unlike a
weak argument which is more of an indication or clue. It can be noted that there
are no strong cons in the source cases. Indeed, such an argument would be an
absolute argument against the given answer. Formally, an argument is a function
that associates a Boolean to a case and is stored as a SPARQL ASK query. The
following shows an argument arg, followed by an explanation:
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arg(case) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ASK {
case concernsPatient ?patient .
?patient hasExam ?exam morpho .
?exam morpho hasFinding ?finding .
?finding findingType findingTypeFindMorphology .
?finding modifier certain .
?finding regarding [ a snmifr:M-81403 ] .
?patient hasExam ?exam ttf .
?exam ttf hasFinding ?finding .
?finding findingType findingTypeFindTTF1Marker .
?finding present yes .

}

arg says that a TTF1 positive adenocarcinoma is in favor of a primitive lung
cancer. The argument checks that the morphology of the tumor is of type adeno-
carcinoma and that the tumor is positive for the TTF1 marker. This argument
applies for the example described in the introduction, i.e. arg(exmpl) = TRUE.

2.2 Global Architecture

The proposed approach uses a 4-R cycle (retrieve, reuse, revise, retain) adapted
from [1] and four knowledge containers [8] (case base, domain knowledge,
retrieval knowledge, adaptation knowledge), as shown in Fig. 2.

tgt retrieve reuse

reviseretain

Knowledge base

RK CB DK AK

(srce, sol(srce))

sol(tgt)

(tgt′, sol(tgt′))

(tgt′, sol(tgt′))

Fig. 2. Adapted 4-R cycle and knowledge containers for the proposed approach.

2.3 Retrieve

The proposed approach relies on arguments to find similar cases. Indeed, similar
answers should be based on similar reasoning and thus the same arguments
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should apply. Our method checks the applicability of arguments from source
cases on the target problem tgt and uses this to determine the preferred source
case to solve tgt. This preference relation is denoted by the preorder �tgt. The
comparison between two source cases i and j relies on three criteria, Cs for
strong arguments, Cw for weak arguments and Cdist for patient records.

An argument arg is applicable for a case c if the preconditions of the argu-
ment are met in the patient record of c. For the argument arg described in the
preliminaries, arg applies for a case if the patient record contains at least two
exams, one identifying the morphology as adenocarcinoma and another exam
reporting a TTF1 positive tumor. Formally an argument arg is applicable for a
case c if arg(c) = TRUE.

For the criterion Cs, the source case with more applicable strong arguments
is preferred. Formally, Cs is met if Δsi,j > 0, where Δsi,j is defined as

Δsi,j = N sp(srcei, tgt) − N sp(srcej, tgt)

and N args(srce, tgt) denotes the number of arguments of type args of a the
source case srce which are applicable for a case tgt, i.e.

N args(srce, tgt) = |{a ∈ args(srce) | a(tgt) = TRUE}|
and args ∈ {sp, wp, wc} is an argument type. sp(srce) is the set of strong pros,
wp(srce) the set of weak pros and wc(srce) the set of weak cons of srce.

For the criterion for weak arguments Cw, a combination of pros and cons is
used. Intuitively, if more weak pros and less weak cons are applicable, the source
case is preferred. Formally, Cw is met if Δwi,j > 0, where Δwi,j is defined as

Δwi,j = λp ∗ (N wp(srcei, tgt) − N wp(srcej, tgt))

− λc ∗ (N wc(srcei, tgt) − N wc(srcej, tgt))

where λp and λc are two nonnegative coefficients that are currently fixed to
λp = 3 and λc = 2. When more data are available, these parameters values will
be reevaluated.

For the criterion Cdist, a graph edit distance between patient record RDFS
graphs is used [4]. Formally, Cdist is met if Δdisti,j ≥ 0, where Δdisti,j is defined as

Δdisti,j = dist(srcej, tgt) − dist(srcei, tgt)

The three criteria are considered lexicographically, first Cs, then Cw and finally
Cdist (see [9]). srcei is preferred over srce2, i.e srcei �tgt srcej, ifq

Δsi,j > 0 or (Δsi,j = 0 and (Δwi,j > 0 or (Δwi,j = 0 and Δdisti,j ≥ 0)))

2.4 Reuse

Once an appropriate source case has been found, the solution associated to the
source case is copied: sol(tgt) := sol(srce). The arguments that do not apply
to the target problem, if any, are removed.
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2.5 Revise and Retain

The newly formed case (tgt, sol(tgt)) can be reviewed by a coding expert, to
modify the answer, the arguments and/or the patient record. A coding expert
may choose to remove unnecessary information from the patient record, removing
unwanted specificity. Thus, (tgt, sol(tgt)) is substituted by (tgt′, sol(tgt′)),
where tgt′ is more general than tgt. (tgt′, sol(tgt′)) is a generalized case that
has a larger coverage than (tgt, sol(tgt)) [6].

3 Prototype and Preliminary Results

The prototype designed for the NCR serves as a ticketing system, where oper-
ators ask coding questions and experts provide answers. It assists operators in
structuring questions, making it easier for the NCR and coding experts to find
similar questions later. For topography questions, it will also provide a tentative
answer. This answer is calculated using the approach described in [9]. All the
answers are reviewed by experts. The prototype presents itself as a single page

Fig. 3. Example of a solved case. The top displays the new question asked and the
provided solution. The bottom displays the source case used to solve the new question.
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application built using Angular6 with a backing REST API built with Go (See
footnote 6) and the Gin framework.7 The data is stored in a triple store Apache
Jena and exposed as a SPARQL endpoint using Apache Fuseki.8 Figures 3 and
4 show screenshots of the prototype.

Fig. 4. Form used to describe coding questions and patient records. The French labels
for body parts and morphologies are taken from the SNMIFRE (a French translation
of SNOMED, http://bioportal.lirmm.fr/ontologies/SNMIFRE).

The prototype was tested internally, to perform a first assessment of its
usability and utility. Some old cases concerning the topography were formalized
and coded, with some domain knowledge. For the arguments, great care was
given during modeling in order to make them more broadly applicable. Then
new questions were presented to the system, and the proposed solution com-
pared with the expected ones. While the prototype answered every question,
not all of them were correct. The main reasons for the difference were the small
amount of cases (15 originally, however the case base will be enriched by routine
usage) and the simple reuse method used at this stage. Indeed, as the argu-
ments have been formalized to be more general, some of the provided answers
might be slightly incorrect (e.g. answering upper lung lobe instead of lower lung
lobe). Despite this, as the prototype displays the reused source case, an opera-
tor should be able to make the necessary adaptation to the provided solution.
For the questions concerning other subjects, the prototype relies entirely on the
coding experts to provide answers.

6 https://angular.io.
7 https://golang.org, https://github.com/gin-gonic/gin.
8 https://jena.apache.org/ and https://jena.apache.org/documentation/fuseki2/.

http://bioportal.lirmm.fr/ontologies/SNMIFRE
https://angular.io
https://golang.org
https://github.com/gin-gonic/gin
https://jena.apache.org/
https://jena.apache.org/documentation/fuseki2/
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To the best of our knowledge, few other research attempts to use arguments
in the context of the retrieval process. The closest method found is a work by
McSherry [7]. The proposed approach creates explanations afterwards, using
the closest source case to provide the conclusion and the closest source case
with the opposite conclusion to compute which attributes favor the conclusion
and which attributes do not. Unlike our approach, each argument is linked to
a single attribute. Thus they cannot show how the combination of attributes
might influence a given outcome.

4 Conclusion

Recently there has been a growing interest for case-based reasoning applica-
tions in health sciences [2]. In this paper, an approach to assist operators in
the interpretation of best medical coding practices has been proposed. This app-
roach is based on discussions with operators and coding experts on actual coding
problems. A dozen tricky problems were discussed in detail, among a hundred
simpler problems. The coding questions asked by the operators are compared
to previous questions and solved by reusing the pros and cons of previously
given solutions. The results discussed are only preliminary and a more thorough
evaluation, including the operators and coding experts, is planned.

At the moment the reasoning process is only partial. Arguments are only a
part of a more complex reasoning process. The formalization of this process and
the eventual integration of the coding standards remains an interesting avenue
for future work.

After the prototype has been validated and improved by routine usage, a
second version will be designed that is less domain-dependent. The objective is
to build a generic system for argumentative case-based reasoning using semantic
web standards.

Acknowledgments. The authors wish to thank the anonymous reviewers of the Joint
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Abstract. Advance care planning, which includes clarifying and doc-
umenting goals of care and preferences for future care, is essential for
achieving end-of-life care that is consistent with the preferences of dying
patients and their families. Physicians document their communication
about these preferences as unstructured free text in clinical notes; as
a result, routine assessment of this quality indicator is time consum-
ing and costly. In this study, we trained and validated a deep neural
network to detect documentation of advanced care planning conversa-
tions in clinical notes from electronic health records. We assessed its
performance against rigorous manual chart review and rule-based regu-
lar expressions. For detecting documentation of patient care preferences
at the note level, the algorithm had high performance; F1-score of 92.0
(95% CI, 89.1–95.1), sensitivity of 93.5% (95% CI, 90.0%–98.0%), pos-
itive predictive value of 90.5% (95% CI, 86.4%–95.1%) and specificity
of 91.0% (95% CI, 86.4%–95.3%) and consistently outperformed regular
expression. Deep learning methods offer an efficient and scalable way to
improve the visibility of documented serious illness conversations within
electronic health record data, helping to better quality of care.

Keywords: Deep learning · End-of-life care · Palliative care ·
Natural language processing · Clinical notes · Electronic health records

1 Introduction and Related Work

To ensure that patients receive care that is consistent with their goals, clinicians
must communicate with seriously ill patients about their treatment preferences.
More than 80% of Americans say they would prefer to die at home, if possible.
Despite this, 60% of Americans die in acute care hospitals and 20% die in an
Intensive Care Unit (ICU) [1]. Advance care planning, which includes clarifying
c© Springer Nature Switzerland AG 2019
F. Koch et al. (Eds.): AIH 2018, LNAI 11326, pp. 199–212, 2019.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12738-1_15&domain=pdf
http://orcid.org/0000-0001-7207-8526
http://orcid.org/0000-0003-2090-2039
https://doi.org/10.1007/978-3-030-12738-1_15


200 I. Chien et al.

and documenting goals of care and preferences for future care, is essential for
achieving end-of-life care that is consistent with the preferences of seriously ill
patients and their families. Inadequate communication is associated with more
aggressive care near the time of death, decreased use of hospice and increased
anxiety and depression in surviving family members [2–5]. Several studies have
demonstrated the potential of advanced care planning to improve end-of-life out-
comes (e.g., reducing unintended ICU admissions and increasing hospice enroll-
ment). In the absence of explicit goals of care decisions, clinicians may provide
clinical care [6] that does not provide a meaningful benefit to the patient [7] and,
in the worse case, interferes with the treatment of other patients [6]. For these
reasons, it is recommended that care preferences are discussed and documented
in the EHR within the first 48 h of an ICU admission [8,9].

In recent years a consensus has emerged that such conversations are an essen-
tial component of practice and must be monitored to improve care quality. How-
ever, the difficulty of retrieving documentation about these conversations from
the electronic health record has limited rigorous research on the prevalence and
quality of clinical communication. For example, the National Quality Forum
(NQF) recommends that goals of care be discussed and documented in the EHR
within the first 48 h of an ICU admission, especially for frail and seriously ill
patients. This was one of only two Centers for Medicare and Medicaid Services
recommended palliative care quality measures for the Medicare Hospital Inpa-
tient Quality Reporting program [10]. Yet, despite widespread support, routine
assessment of this and similar quality measures have proven nearly impossi-
ble because the information is embedded as non-discrete free-text within clin-
ical notes. Manual chart review is time-consuming and expensive to scale [11–
13]. Consequently, many end-of-life quality metrics are simply not assessed, and
their impact on distal and important patient outcomes have been insufficiently
evaluated.

The emergence of omnipresent EHRs and powerful computers present novel
opportunities to apply advanced computational methods such as natural lan-
guage processing (NLP) [14] to assess end-of-life quality metrics including doc-
umentation of ACP. NLP enables machines to process or “understand” natural
language in order to perform tasks like extracting communication quality embed-
ded as non-discrete free-text within clinical notes [15].

Two main approaches to NLP information extraction exist. Rule-based
extraction uses a pre-designed set of rules [14], which involves computing curated
rules specified by experts, resulting in algorithms that detect specific words or
phrases. This approach works well for smaller defined sets of data such as when
searching for all the brand names of a generic medication (e.g., if X is present,
then Y = 1). However, rule-based approaches fail when the desired information
appears in a large variety of contexts within the free text [16].

Recent advances in machine learning coupled with increasingly powerful com-
puters have created an opportunity to apply advanced computational methods,
such as deep learning, to assess the content of free-text documentation within
clinical notes. Such approaches possess the potential to broaden the scope of
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research on serious illness communication, and when implemented in real-time,
to change clinical practice.

In contrast to rule-based methods, deep learning does not depend upon pre-
defined set of rules. Instead, these algorithms learn patterns from a labeled set
of free-text notes and apply them to future datasets [16]. A deep learning-based
approach works well for tasks for which the set of extraction rules is very large,
unknown, or both. In deep learning, algorithms can learn feature representations
that aid in interpreting varied language.

In this study, we used deep learning [17] to train models to detect documenta-
tion of serious illness conversations, and we assess the performance of these deep
learning models against manual chart review and rule based regular expression.

2 Data

2.1 Data Source

We derived our sample from the publicly available ICU database, Multi Param-
eter Intelligent Monitoring of Intensive Care (MIMIC) III, developed by the
Massachusetts Institute of Technology (MIT) Lab for Computational Physiol-
ogy and Beth Israel Deaconess Medical Center (BIDMC) [18]. It is a repository of
de-identified administrative, clinical, and survival outcome data from more than
58,000 ICU admissions at BIDMC from 2001 through 2012. Between 2008 and
2012, the dataset also included clinical notes associated with each ICU admission.
The Institutional Review Board of the BIDMC and MIT have approved the use of
the MIMIC-III database by any investigator who fulfills data-user requirements.
The study was deemed exempt by the Partners Institutional Review Board.

2.2 Cohort

The study population included adult patients (age ≥18) who were admitted to
the medical, surgical, coronary care, or cardiac surgery ICU. The training and
validation set included physician notes from patients who died during the hos-
pital admission to ensure that we would have sufficient examples of documenta-
tion of care preferences. We excluded patients who did not have physician notes
within the first 48 h because these patients either died shortly after admission
or transferred out of the ICU.

2.3 Clinical Domains

Our main outcome was to identify documentation of care preferences within
48 h of an ICU admission in seriously ill patients. We aimed to detect the
binary absence or presence of any clinical text that fit specified documenta-
tion of domains: patient care preferences (goals of care conversations or code
status limitations), goals of care conversations, code status limitations, fam-
ily communication (which included communication or attempt to communicate
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with family that did not result in documented care preferences), and full code
status. Domains were chosen by board-certified, experienced palliative care clin-
icians through a lengthy and iterative process. They determined categories that
are both relevant to widespread existing palliative care quality measures and
interesting to future research questions. The specifications of each domain are
outlined (Table 1).

Table 1. Clinical domain specifications.

Domain Documentation example

Patient care preferences Fulfills criteria for goals of care conversations
and/or code status limitations

Goals of care conversations Explicitly shown preferences about the patient’s
goals, values, or priorities for treatment and
outcomes. Does NOT include presumed full code
status or if obtained from other sources

Code status limitations Explicitly shown preference of patient’s care
restricting the invasive care. Includes taken over
preference from previous admission

Communication with family Explicit conversations held during ICU stay
period with patients or family members about
the patient’s goals, values, or priorities for
treatment and outcomes

Full code status Explicitly or implicitly shown preference for full
set of invasive care including intubation and
resuscitation. Includes presumed full code status
or if obtained from other sources

2.4 Annotation

We developed a set of abstraction guidelines to ensure reliable abstraction
between annotators. Each annotator identified clinical text that fit specified
communication domains and labeled the portions of text identified for a domain,
with no restrictions on length of a single annotation.

A gold standard dataset, considered to contain true positives and true neg-
atives, was developed through manual annotation by a panel of four clinicians.
Annotation was done using PyCCI, a clinical text annotation software developed
by our team. Each note was annotated by at least two clinicians and annota-
tions were then validated by a third clinician. Similar to previously published
chart abstraction studies performed for this measure, the abstraction team had
real-time access to a US board certified hospice and palliative medicine attend-
ing physician-expert reviewer, met weekly, and used a log to document common
questions and answers to facilitate consistency [11,19].
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The clinician coders manually annotated an average of 239 notes each (SD,
196), for a total of 641 notes. Each note contained an average of 1397 tokens
(IQR, 1004-1710). The inter-rater reliability among the four clinician annotators
was kappa >0.65 at the note level for each domain. The performance of each
clinician coder was varied–for example, they identified documentation of care
preferences with a sensitivity ranging from 77–92% (in comparison to the final
gold standard).

3 Methods

3.1 Pre-processing

Annotated notes were pre-processed for both rule-based regular expression and
neural network methods. First, texts were cleaned to remove any extraneous
spaces, lines, or characters. Each cleaned note was tokenized, which means it was
split into identifiable elements–in this case, words and punctuation. We used the
Python module spaCy in order to tokenize intelligently, based on the structure
of the English language [20]. Labels were associated with individual tokens and
datasets were split out by domain, as each method was run separately.

3.2 Regular Expression

Our baseline model is a simple regular expression based on pre-curated rules
for each domain. AppendixA shows the rules used for each domain. These rules
are keywords that the regular expression program identifies as belonging to its
corresponding domain, taking into account varieties in punctuation and case.
To create the regular expression library, we identified tokens that were sensitive
and specific for each prediction task. We calculated sensitivity by evaluating the
proportion of a token’s total number of occurrences that were labeled for each
domain. We evaluated specificity by evaluating what proportion of a token’s
total number of occurrences were in a note that was in an unlabeled note for each
domain. A board-certified clinician used these data points–sensitivity, specificity,
frequency that each token appeared on the labeled text and frequency in texts
outside of the domain–and their clinical knowledge to generate a list of terms
that could likely be generalized.

Regular expressions identify patterns of characters exactly as they are spec-
ified in a set of rules. If text in the note matches a keyword in the regular
expression library for the domain, it is labelled as positive for that concept. This
method acts as a baseline to compare our algorithm against. We used a regular
expression program, ClinicalRegex, also developed by our lab [30]. ClinicalRegex
is easily accessible and intuitive to navigate, which makes it an efficient choice for
groups that are not able to employ computer scientists. We have chosen to com-
pare our deep learning methods against an easily understandable and accessible
method to illustrate the benefits of more complex methods.
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3.3 Artificial Neural Network

Deep learning involves training a neural network to learn data representation
and fulfill a specified task. We trained algorithms to identify clinical text doc-
umentation of serious illness communication. During the training process, the
neural network learns to identify and categorize tokens (individual words and
symbols) as belonging to each of the pre-specified domains and maximizes prob-
ability across predicted token labels [21].

The specific neural network used, NeuroNER, was developed by Dernoncourt
et al. for the purpose of named-entity recognition [22]. NeuroNER has been
evaluated for use in the de-identification of patient notes [21]. It allows for each
token to be labelled only with a single label. However, tokens in our study were
often associated with multiple labels. For example, a sentence could indicate that
both communication with family occurred and that goals of care were discussed.
In order to allow for multi-class labelling, a separate, independent model was
trained per domain. For each domain, the data set was split up into randomized
training and validation sets, with 70% (449 notes) of the set in training, and
30% (192 notes) in validation.

With the parameters derived from this training process, the model is run
on the validation data set to examine its performance on a data set it was not
specifically tuned to fit. Performance on the validation set also determines when
training converges, indicating that the model is optimally trained. Training con-
verges when there has been no improvement on the validation set performance
in ten epochs. The neural network ultimately determines domain labels for each
token. From the predicted token-level results, a note-level classification is deter-
mined by the presence or absence of labelled tokens by domain in each note.
We used Tensorflow version 1.4.1 and trained our models on a NVIDIA Titan X
Pascal GPU. Below are the hyperparameters selected for our use:

– character embedding dimension: 25
– character-based token embedding LSTM dimension: 25
– token embedding dimension: 100
– label prediction LSTM dimension: 100
– dropout probability: 0.5.

For our experiments, we were able to compare our gold standard labels,
derived from manual annotation by clinicians as described in Sect. 2.4, to the
predicted output to evaluate the performance of the neural network and the
regular expression method.

4 Results

4.1 Evaluation Metrics

Algorithm performance was determined at two levels: token-level and note-level,
referring to the binary absence or presence of a label at these levels. Token-level
results are more specific and allow accurate identification of relevant text within
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clinical notes. Note-level results allow determination of whether documentation
of communication occurred. At both of these levels, we calculated the following
metrics: sensitivity, specificity, positive predictive value, accuracy, and F1-score.
The F1-score is the harmonic average of positive predictive value and sensitivity.
It allows us to determine the success of our algorithm both in identifying true
positives as well as true negatives.

The 95% confidence intervals for all metrics were determined via bootstrap-
ping [23]; each trained network model was validated for 1,000 trials in addition to
the reported performance point. During each trial, a validation set of 192 notes
was created by random sampling with replacement of the original validation set
of 192 unique notes. This creates an approximate distribution of performance
for the model. In basic bootstrap technique, the 2.5th and 97.5th percentiles of
the distributions for each metric are taken as the 95% confidence interval [24].

4.2 Performance

Table 2 summarizes the performance of the regular expression method and
Table 3 summarizes the performance of the neural networks in identifying doc-
umentation of serious illness communication at the note level, for each clinical
domain, on the validation set. Figure 1 displays a comparison in the F1-scores
for each domain. For identification of documentation of patient care preferences,
the algorithm achieved an F1-score of 92.0 (95% CI, 89.1–95.1), with 93.5%
(95% CI, 90.0%–98.0%) sensitivity, 90.5% (95% CI, 86.4%–95.1%) positive pre-
dictive value and 91.0% (95% CI, 86.4%–95.3%) specificity. For identification
of family communication without documentation of preferences, the algorithm
achieved an F1-score of 0.91 (95% CI, 0.87–0.94), with 90.7% (95% CI, 86.0%–
95.9%) sensitivity, 90.7% (95% CI, 86.5%–94.8%) positive predictive value and
92.5% (95% CI, 89.2%–97.8%) specificity. Token-level performance is displayed
in AppendixB.

At the note-level, we have been able to achieve high accuracy for all domains
and see that in the validation set, the neural network outperforms the regular
expression method in every domain for F1-score, significantly so in identifying
patient care preferences, goals of care conversations, and communication with
family. These domains contain more complex and diverse language, which are
successfully identified by the neural network. A static library is not able to
capture the diversity in these domains, necessitating the use of machine learning.

4.3 Error Analysis

A review of documentation that the neural networks identified as serious illness
conversations that was not labeled serious illness conversations in the gold stan-
dard (false positives) showed that the algorithm identified documentation that
clinician coders missed. Though our gold standard was rigorously reviewed and
validated, there still remains room for human error. Comparing the identified
text from the neural network and regular expression methods, we found that
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Table 2. Performance (%) of the regular expression method on the validation data
set.

Domain F1-score Accuracy Sensitivity Positive predictive value Specificity

Patient care preferences 76.0 78.6 70.7 82.3 86.0

Goals of care conversations 37.2 57.8 26.1 64.9 87.0

Code status limitations 94.3 96.4 98.3 90.6 95.5

Communication with family 43.6 67.7 27.9 100.0 100.0

Full code status 90.9 88.5 84.6 98.2 96.8

Table 3. Performance (%) of the neural networks on the validation data set. Values
in parentheses are 95% confidence intervals.

Domain F1-score Accuracy Sensitivity Positive
predictive
value

Specificity

Patient care
preferences

92.0
(89.1–95.1)

92.2
(89.6–95.1)

93.5
(90.0–98.0)

90.5
(86.4–95.1)

91.0
(86.4–95.3)

Goals of care
conversations

85.7
(80.4–90.3)

89.1
(85.6–92.4)

85.1
(78.4–91.5)

86.3
(80.0–93.0)

91.5
(87.7–95.7)

Code status
limitations

95.9
(93.0–98.7)

97.4
(95.8–99.2)

98.3
(96.9–100.0)

93.5
(89.2–97.7)

97.0
(95.0–98.9)

Communication
with family

90.7
(87.4–93.9)

91.7
(89.1–94.4)

90.7
(86.0–95.9)

90.7
(86.5–94.8)

92.5
(89.1–95.9)

Full code status 98.5
(97.5–99.4)

97.9
(96.6–99.2)

100.0
(100.0–100.0)

97.0
(95.1–98.9)

93.5
(89.2–97.7)

Fig. 1. Comparison between the F1-score of the regular expression method and neural
networks by domain.

as expected, the neural network was able to identify complex and unique lan-
guage that the regular expression method was not. Doctors employ diverse and
non-standardized language in clinical notes; we require more flexible and exten-
sible methods in order to efficiently process this information. Static libraries
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cannot capture the full complexity of language without sacrificing sensitivity or
specificity–they must be curated such that library terms are not too broad and
they are not able to utilize context. All note-level identification can be traced to
the detection of specific words with examples of text for each method provided
in AppendixC.

4.4 Effect of Training Set Size

In order to determine how smaller training sets related to the performance of the
trained algorithms, we trained multiple networks with varying number of notes.
We plotted training dataset size against algorithm performance for 8 sample sizes
(Fig. 2). The performance seemed to plateau at around 200 notes (around 250,000
tokens), which suggests that annotation efforts can be efficiently leveraged to
generalize the models to varied health systems.

Fig. 2. Neural network performance on validation set for detection of note-level docu-
mentation of patient care preferences by number of notes used for training.

5 Discussion and Future Work

We describe a novel use of deep learning algorithms to rapidly and accurately
identify documentation of serious illness conversations within clinical notes.
When applied to identifying documentation of patient care preferences, our algo-
rithm demonstrated high sensitivity (93.5%), positive predictive value (90.5%)
and specificity (91.0%), with a F1-score of 92.0. In fact, we found that deep
learning outperformed individual clinician coders both in terms of identifying
the documentation and in terms of its many-thousands-time-faster speed.

Existing work has shown that machine learning can extract structured enti-
ties like medical problems, tests and treatments from clinical notes [25,26], and
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unstructured image-based information in radiology, pathology and opthamology
[27–29]. Our study extends this line of work and demonstrates that deep learning
can also perform accurate automated text-based information classification.

Up until now, extracting goals of care documentation nested within free-text
clinical notes has relied on labor-intensive and imperfect manual coding [11].
Using the capabilities of deep learning as demonstrated in this paper would
allow for rapid audit and feedback regarding documentation at the system and
individual practitioner level. This would result in significant opportunities for
quality improvement that are currently not being met. Deep learning models
could also improve patient care in real-time by broadening what is available at
the point of care in the EHR. For example, clinicians could view displays of all
documented goals of care conversations, or be prompted to complete documen-
tation that was not yet available.

Important limitations must be noted. Deep learning algorithms only detect
what is documented. It is not fully understood to what extent documentation
reflects the actual content of a patient-clinician conversation surrounding serious
illness care goals. However, documentation is the best proxy we have to under-
stand and to track these conversations. This is also a single institution study,
which may limit its generalizability. Future work will involve the investigation of
how extensible models are to clinical notes from different health system. Varia-
tions in EHR software and the structure of clinical notes in different institutions
makes it essential to further train and validate our methods using data from
multiple healthcare systems. This should be imminently possible, as our learn-
ing curve suggested that the neural network needed to train on as few as 200
clinician coded notes to perform well. Future research should also focus on opti-
mizing deep neural networks to further improve performance, and on determining
the feasibility of operationalizing this algorithm across institutions.

6 Conclusion

This is the first known report of employing deep learning, to our knowledge, to
identify serious illness conversations. The potential of this technology to improve
the visibility of documented goals of care conversations within the EHR and for
quality improvement has far reaching implications. We hope such methods will
become an important tool for evaluating and improving the quality of serious
illness care from a population health perspective.
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A Regular Expression Library

Domain Keywords

Patient care
preferences

goc, goals of care, goals for care, goals of treatment, goals for
treatment, treatment goals, family meeting, family discussion,
family discussions, patient goals, dnr, dni, dnrdni, dnr/dni,
DNI/R, do not resuscitate, do-not-resuscitate, do not intubate,
do-not-intubate, chest compressions, no defibrillation, no
endotracheal intubation, no mechanical intubation, shocks, cmo,
comfort measures

Goals of care
conversations

goc, goals of care, goals for care, goals of treatment, goals for
treatment, treatment goals, family meeting, family discussion,
family discussions, patient goals

Code status
limitations

dnr, dni, dnrdni, dnrdni, DNIR, do not resuscitate,
do-not-resuscitate, do not intubate, do-not-intubate, chest
compressions, no defibrillation, no endotracheal intubation, no
mechanical intubation, shocks, cmo, comfort measures

Communication
with family

Explicit conversations held during ICU stay period with patients
or family members about the patient’s goals, values, or priorities
for treatment and outcomes

Full code status full code

B Token-Level Performance

See Table 4.

Table 4. Performance (%) of the neural network on the validation data set at the
token-level.

Domain F1-score Accuracy Sensitivity Positive
predictive
value

Specificity

Patient care
preferences

76.0 99.6 75.8 75.2 99.8

Goals of care
conversations

70.4 99.6 70.0 69.9 99.8

Code status
limitations

76.3 99.8 72.7 80.5 99.9

Communication
with family

68.2 99.7 62.0 76.4 99.9

Full code status 90.9 99.8 88.3 93.6 99.8
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C Examples of Identified Text

Below are examples of correctly identified serious illness documentation by the
neural network and regular expression methods in the validation dataset. Cor-
rectly identified tokens are bolded. Typographical errors are from the original
text. Each cell includes an example of identified tokens in the same text and an
example of documentation identified by the neural network that was missed by
the regular expression method, if relevant.

Domain Neural network Regular expression

Goals of care

conversations

Hypercarbic resp failure: family meet-

ing was held with son/HCP and

in keeping with patients goals

of care, there was no plan for

intubation. Family was brought in

and we explained the graveness of

her ABG and her worsened mental

status which had failed to improve

with BiPAP. Family was comfort-

able with removing Bipap and

providing comfort care including

morphine prn

family open to cmo but pt wants

full code but also doesn’t want

treatment or to be disturbed

Hypercarbic resp failure: family

meeting was held with son/HCP and

in keeping with patients goals of

care, there was no plan for intuba-

tion.Family was brought in and we

explained the graveness of her ABG

and her worsened mental status which

had failed to improve with BiPAP.

Family was comfortable with remov-

ing Bipap and providing comfort care

including morphine prn

family open to cmo but pt wants full

code but also doesn’t want

treatment or to be disturbed

Code status

limitations

CODE: DNR/DNI, confirmed

with healthcare manager who

will be discussing with official

HCP

CODE: DNR/DNI, confirmed with

healthcare manager who will be

discussing with official HCP

Communication

with family

Dr. [**First Name (STitle) **] from

neurosurgery held family meet-

ing and explained grave progno-

sis to the family

lengthy discussion with the son

who is health care proxy he

wishes to pursue comfort

measures due to severe and

unrevascularizable cad daughter

is not in agreement at this time

but is not the proxy due to

underlying psychiatric illness

Dr. [**First Name (STitle) **] from

neurosurgery held family meeting

and explained grave prognosis to the

family

lengthy discussion with the son who

is health care proxy he wishes to

pursue comfort measures due to

severe and unrevascularizable cad

daughter is not in agreement at this

time but is not the proxy due to

underlying psychiatric illness

Full code status Code: FULL; Discussed with

daughter and HCP who says

that patient is in a Hospice

program with a “bridge” to

DNR/DNI/CMO, but despite

multiple conversations, the

patient insists on being full code

CODE: Presumed full

Code: FULL; Discussed with daugh-

ter and HCP who says that patient is

in a Hospice program with a “bridge”

to DNR/DNI/CMO, but despite mul-

tiple conversations, the patient insists

on being full code

CODE: Presumed full
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Generating Reward Functions Using IRL
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Abstract. Cancer screening can benefit from individualized decision-
making tools that decrease overdiagnosis. The heterogeneity of cancer
screening participants advocates the need for more personalized meth-
ods. Partially observable Markov decision processes (POMDPs), when
defined with an appropriate reward function, can be used to suggest opti-
mal, individualized screening policies. However, determining an appro-
priate reward function can be challenging. Here, we propose the use of
inverse reinforcement learning (IRL) to form rewards functions for lung
and breast cancer screening POMDPs. Using experts (physicians) ret-
rospective screening decisions for lung and breast cancer screening, we
developed two POMDP models with corresponding reward functions.
Specifically, the maximum entropy (MaxEnt) IRL algorithm with an
adaptive step size was employed to learn rewards more efficiently; and
combined with a multiplicative model to learn state-action pair rewards
for a POMDP. The POMDP screening models were evaluated based on
their ability to recommend appropriate screening decisions before the
diagnosis of cancer. The reward functions learned with the MaxEnt IRL
algorithm, when combined with POMDP models in lung and breast
cancer screening, demonstrate performance comparable to experts. The
Cohen’s Kappa score of agreement between the POMDPs and physi-
cians’ predictions was high in breast cancer and had a decreasing trend
in lung cancer.

Keywords: Cancer screening ·
Maximum entropy inverse reinforcement learning ·
Partially-observable Markov decision processes

1 Introduction

Annually, millions of people undergo screening for disease prevention and surveil-
lance. From these tests, physicians aim to make decisions based on the patient’s
past results and most current observations, determining a subsequent action
(e.g., further diagnostic testing, increased monitoring, following regular screening
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schedules, etc.) that optimizes early detection of health problems while balanc-
ing other (pragmatic) concerns (e.g., patient quality of life, resource utilization,
cost). Choosing the “best” next step and tailoring screening for each person is
challenging: selecting an action of benefit in the immediate future may not be
optimal over the long-term, given the particulars of an individual (i.e., a locally
greedy approach vs. a global optimization).

Sequential decision making methods provide a potential solution. Such
approaches can integrate and analyze multiple sources of patient data, while
handling issues related to temporal credit assignment. In particular, partially
observable Markov decision processes (POMDPs) have been applied to cancer
screening (e.g., breast, colorectal, prostate [20]) to determine policies based on
patients’ risk factors and prior screening results. Markedly, POMDP models
used in medicine typically use a reward function adopted from cost-effectiveness
studies [20] or are posed in terms of quality-adjusted life years (QALYs). While
such functions are informative about general populations, they do not necessar-
ily reflect how an experienced clinician would make a decision, especially given a
specific individual’s medical history and preferences. Indeed, little work has been
done in designing reward functions that emulate experts’ decision processes.

Here, we propose using the Maximum Entropy Inverse Reinforcement Learn-
ing (MaxEnt IRL) algorithm [26] to establish reward functions from retrospec-
tive screening data, learning how an expert physician may select a given action
based on observed test results. We use an adaptive step size to expedite the
convergence rate of MaxEnt IRL. Importantly, we present how to use the Max-
Ent IRL learned rewards to generate state-action pair rewards that can be used
in POMDPs. We demonstrate this work using two real-world clinical datasets
for lung and breast cancer screening, mimicking how clinicians made decisions
regarding patients. We evaluate the resultant POMDP policies using the Max-
Ent IRL reward functions, comparing model performance to experts’ actions. We
conclude that the MaxEnt IRL algorithm is an efficient and accurate method in
estimating sensible reward functions for cancer screening.

2 Background

Although Markov decision processes (MDPs) and POMDPs are used in a num-
ber of domains, their application in healthcare is limited and few strategies exist
for estimating the associated reward functions that drive agent behavior in clin-
ical settings. Taken from the perspective of epidemiological and health services
research, different cost and patient benefit metrics are frequently adapted for
optimization. Classic examples include: Bennet et al. [5], who proposed a cost-
effectiveness metric based on the cost required to obtain one unit of outcome
change (CPUC); Hauskrecht et al. [12], who designed a reward model that com-
bines economic cost and patient quality of life measures; and Tusch et al. [22],
who predicated rewards on 30-day mortality risk for a surgical procedure. In con-
trast, we take advantage of growing amounts of longitudinal data, using recorded
information and actions from electronic health records (EHRs) and other obser-
vational data sources, to learn a POMDP reward function that imitates expert
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physicians’ behavior for desired health outcomes. Specifically, IRL is proposed
for this task.

Briefly, IRL addresses the problem of obtaining a reward function given an
agent’s optimal behavior over time towards a stated goal. A reward function for
the environment is unknown and is hence learned through empirical investiga-
tion of sensory inputs (i.e., observations) that progressively change the agent’s
selection of different actions. Two families of IRL algorithms exist: (1) linear
programming (LP) methods [1,18]; and (2) probabilistic IRL algorithms [4,26].
While potentially more computationally complex, probabilistic IRL approaches
have two advantages: they guarantee a unique solution for deterministic MDPs;
and compared to LP methods, they can handle stochasticity in the data [23].
Vroman et al. [4] developed a maximum likelihood IRL algorithm using clus-
ters of experts’ data trajectories to characterize different intentions. Applying
the maximum likelihood IRL algorithm to each cluster subsequently derives a
reward function representing the experts’ behavior. Ziebart et al. [25,26] describe
a probabilistic IRL algorithm that employs the principle of maximum entropy,
dealing with noise and imperfect behavior as it normalizes globally over behav-
iors. In this approach, demonstrated for modeling routing preferences of vehicle
drivers, behaviors with higher rewards are exponentially preferred by the algo-
rithm when learning the reward function. Here, we build on and adapt this
approach to obtain reward functions for cancer screening POMDPs.

3 Materials and Methods

3.1 NLST Dataset

The National Lung Screening Trial (NLST) is a multi-site randomized controlled
trial that demonstrated a 20% mortality reduction in lung cancer screening using
low-dose computed tomography (LDCT) relative to plain chest radiography [17].
For this work, we used data from the NLST’s LDCT arm, comprising approxi-
mately 25,500 participants that underwent three annual screenings and follow-
up post screening. We further filter this dataset to those subjects who had a
reported pulmonary nodule based on imaging. Unfortunately, preprocessing of
the NLST data is not straightforward, as longitudinal tracking of the nodules
was not considered at the time of the study. Thus, to use imaging-related infor-
mation, we made the assumption that an imaging finding in individuals with
only one reported nodule and in the same anatomical location over time is the
same nodule across the three screening points of the trial. This criterion fur-
ther constrained our dataset to 5,402 LDCT subjects. From this subgroup, we
learned a reward function, then trained and tested a POMDP. Note that for the
reward function we made use of the recorded diagnostic follow-up variables (e.g.,
recommendation for other procedures) to inform actions.

3.2 Athena Dataset

The Athena Breast Health Network [10] is a University of California (UC)-wide
initiative around breast cancer screening and treatment. The effort started in



216 P. Petousis et al.

2009 and includes women who underwent breast screening at five academic med-
ical centers. The portion available at our institution (UCLA) consists of 49,244
patients, with follow-ups of up to 4.8 years; this subset represents 96,515 screen-
ing and diagnostic mammograms (MGs), and 2,713 diagnostic biopsies. MG
results are reported as Breast Imaging Reporting and Data System (BI-RADS)
scores [9]. We selected patients with initial risk (Gail) scores, four consecutive
screenings, valid BI-RADS scores, and biopsies results per breast side (i.e., left,
right). 2,095 patients with left breast MGs and 2,036 patients with right breast
MGs (4,131 total cases, 4,099 after pre-processing) were used in this study.

3.3 Partially Observable Markov Decision Processes

An MDP is represented by a tuple of states, actions, rewards, action-dependent
state transition dynamics (i.e., transition probabilities), and a discount factor.
A POMDP is an extension to MDPs with two additional components: observa-
tions and state-dependent observation dynamics (i.e., observation probabilities).
The state of the agent in POMDPs is partially observable. As such, its state
is modeled as a probability distribution over the states, called the belief state,
which is updated over time based on the observations experienced by the agent.

We designed and evaluated two separate POMDPs for lung and breast cancer
screening. Each model consists of three states and two actions. The observations
of each POMDP are domain based: in the lung model, they represent findings
obtained from LDCT imaging studies, including nodule size, consistency, loca-
tion, and margins; in the breast model, they represent BI-RADS scores derived
from MG interpretations. Given the nature of each dataset, both the lung and
breast models have a horizon of three and four years, respectively, with 6-month
and 1-year epochs. Each epoch represents time points for which we have infor-
mation on the cancer status of patient (diagnosed with cancer or not). Tran-
sition and observation probabilities for each POMDP model are learned using
the expectation maximization (EM) algorithm, for learning dynamic Bayesian
networks, from each dataset. Both models were solved using the QMDP approx-
imation solver [21].

Lung Cancer Screening POMDP. Figure 1 (left) depicts the lung POMDP,
illustrating the state space and allowed transitions between states, as well as the
observations of each state. The state space consists of three states: the no-cancer
(NC) state that represents any case with no suspicious abnormalities (i.e., no pul-
monary nodules >4 mm). The uncertain (U) state that represents any case with
a noted finding (i.e., nodules 4 mm or larger) but not yet a lung cancer. Lastly,
the invasive-cancer (IC) state is any case with a confirmed lung cancer diagno-
sis through the use of additional diagnostic tests. The IC state is terminal such
that any individual who enters it leaves the screening process for treatment. An
LDCT action implies continuation of screening, whereas an intervention action
refers to any diagnostic procedure (e.g., thoracotomy, biopsies, diagnostic CT,
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Fig. 1. Left. The lung POMDP; NC: no-cancer state; U: uncertain state; IC: invasive
cancer state. LDCT and intervention observations can be observed in each state. Right.
The breast POMDP; NC: non-cancer state; B: benign state; MA: malignant cancer state.
MG and intervention observations can be observed in each state.

positron emissions tomography (PET) scan). Observations represent LDCT find-
ings (nodule size, consistency, margins, and anatomic location) and the occur-
rence of an intervention. To generate initial belief states for each individual in
our dataset we used the Tammemägi PLCOM2012 model with demographic and
clinical features at baseline to predict the risk of cancer. Demographic features
used include age, education, race, and body mass index. Clinical features used
were COPD, family history of lung cancer, personal history of cancer, smoking
status, smoking intensity, and duration of smoking.

Breast Cancer Screening POMDP. The breast POMDP model also con-
sists of three states: the no-cancer (NC) state in which no abnormalities are seen,
the benign (B) state in which benign breast disease diagnosis follows the MG,
and the malignant (MA) cancer state in which the disease is confirmed through
biopsy. MA is similarly a terminal state in which the patient leaves the screen-
ing process for treatment. Figure 1 (right) shows the breast cancer screening
POMDP, transitions, observations (BI-RADS scores 1, 2, 3, 4A, 4B, 4C, 5), and
actions. Though an intervention (biopsy in the breast cancer context) is possible
after each MG, in practice biopsies are only performed after an MG of BI-RADS
4 or higher. For an initial belief, we used the patient’s Gail score. The Gail score
is an absolute risk estimate derived using age, age at menarche, age at first birth,
the number of first-degree relatives with breast cancer, the number of previous
breast biopsies, and race.

3.4 Maximum Entropy IRL

In IRL, the reward function, r, is assumed to be a linear combination of feature
vectors fs and weights θ (θT is the transpose of θ):
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r(τ ; θ) = θT fτ =
∑

s∈τ

θT fs (1)

A feature count, (fτ ), is the sum of feature vectors of the states visited along
a trajectory, where fs represents binary vectors indicating state values. Inputs
to the MaxEnt IRL algorithm are an MDP and a set of trajectories (D) [3].
A path or a trajectory (τ) represents the sequence of states (s) and ensuing
actions followed by an agent in an MDP. For example, in the NLST dataset, a
trajectory comprises three epochs (i.e., the three annual screening exams) with
state-action pairs describing the lung cancer states and the actions taken (e.g.,
NC-LDCT, U-LDCT, and IC-IBiopsy). The probability of a trajectory occurring in
our set of trajectories is proportional to the exponential of the reward/cost of
the trajectory [7]:

p(τ ; θ) ∝ exp (r(τ ; θ)) (2)

As such, trajectories of equal reward are equally likely to be executed by the
expert, whereas trajectories of less reward are less likely. The probability distri-
bution over paths with maximum information entropy is parameterized over θ.
Z(θ) is the partition function, where Z(θ) =

∑
τ∈D exp r(τ ; θ).

p(τ ; θ) =
1

Z(θ)
exp (r(τ ; θ)) (3)

The log likelihood of the trajectories (loss function) is shown in Eq. 4, M is the
number of trajectories:

L =
1
M

∑

τ∈D

r(τ ; θ) − log
∑

τ∈D

exp (r(τ ; θ)) (4)

This loss function is convex for a linear reward function and a deterministic
MDP. To update θ we use a gradient descent function, where η represents the
learning rate:

θi+1 = θi + η∇θL (5)

The gradient ∇θL represents the difference of feature expectations and sum over
state visitation frequencies multiplied with feature vectors:

∇θL = f̃ −
∑

si

Dsi
fsi

(6)

A feature expectation, (f̃), is defined as the average of all feature counts across
all trajectories. The frequency of state visitation, Dsi

, can be computed using a
dynamic programming algorithm; see [3,7] for more information regarding this
algorithm. The pseudocode of the MaxEnt IRL algorithm can be found in [7].



Generating Reward Functions Using IRL for Cancer Screening 219

3.5 Adaptive Step Size

To improve the convergence of the MaxEnt IRL algorithm, we introduce an
adaptive learning rate approach for the update rule of the gradient descent. The
idea behind making the step size adaptive is to calculate the inner product of
∇θL, the gradient, in the current step, i.e., ∇θLi with ∇θLi−1, its value from
the previous step. If the two are in the same direction then the step size can be
increased, otherwise it is decreased. Following [15] we define the learning rate
η = α

(t+A)α , where t is dependent on the gradient inner product (which becomes
the dot product in higher dimensions); α and A are constants. The role of t is
to regulate the learning rate:

ti+1 = max(ti + f(〈−∇θLi,∇θLi−1〉), 0) (7)

In this definition, f(·) represents the following sigmoidal function where f(x) =
fmin + fmax−fmin

1− fmax
fmin

exp− x
ω

. In the above expressions, α, A, fmin, fmax, and ω are

user-defined constants obtained from [15]. With fmin < 0, fmax > 0, and ω > 0.

Fig. 2. Left. The state MDP; NC: non-cancer state; U/B: uncertain or benign state;
I/MA: invasive or malignant cancer state, respectively for the lung and breast models.
Right. The action MDP; LDCT/MG: state after a LDCT or MG; I: state after an
intervention (e.g., biopsy); +R(·): rewards experienced by the agent in each state.

3.6 Computation of Rewards

We assumed that given the outcome of a known cancer diagnosis for each indi-
vidual over time, partial observability was no longer a problem while training,
so learning the rewards of state-action pairs of an MDP instead of a POMDP
was sufficient and computationally more efficient. However, the MaxEnt IRL
algorithm computes the rewards of each state of an MDP, not state-action pair
rewards (r(s, a)). To estimate rewards for each state-action pair combination,
we designed two MDPs:
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1. A state MDP model. The states of this MDP are the states depicted in Fig. 2,
for the lung and breast models. The transition matrix of the state MDP is
the same transition matrix used in its respective POMDP model.

2. An action MDP model. In the action MDP, the states are defined by the
previous action of the agent. These states model the options for screening
(e.g., continue annual screening) and intervention (e.g., biopsy), in which the
agent enters after performing each action. The action MDP transition model
represents the probability of transitioning from the LDCT/MG state to the I
state.

Figure 2 demonstrates the two MDPs. A combinatorial design decision inspired
by [13] was used to learn state-action pair rewards. State-action pair rewards are
computed using a multiplicative model shown in Eq. 8:

R(s, a) = R(s) · R(a) (8)

4 Evaluation and Results

A stratified 5-fold cross validation study design was used to evaluate the POMDP
models built from the NLST and the Athena datasets. The training set of each
fold is used to learn the transition and observation matrices of the POMDPs, as
well as the rewards using the MaxEnt IRL algorithm.

Table 1. The rewards for each state (R(NC), R(U/B), R(IC/MA)) and action
(R(LDCT/MG), R(I)) computed using the MaxEnt IRL algorithm, for one of the folds
of the 5-fold cross validation, with an adaptive step size.

Normalization R(NC) R(U/B) R(IC) R(LDCT/M) R(I)

Lung cancer

None 83.530 127.410 −835.730 497.610 −427.530

By range 0.080 0.120 −0.800 0.540 −0.460

[0,1] 0.950 1.000 0.000 1.000 0.000

[−1,1] 0.910 1.000 −1.000 1.000 −1.000

Breast cancer

None −37.930 103.950 −571.420 −0.840 −1179.820

By range −0.050 0.150 −0.800 −0.001 −0.999

[0,1] 0.790 1.000 0.000 1.000 0.000

[−1,1] 0.580 1.000 −1.000 1.000 −1.000
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4.1 Comparison of MaxEnt IRL with and Without Adaptive Step
Size

Table 1 shows the reward value of each state and action as well as different
normalizations of these rewards computed using the MaxEnt IRL algorithm
with an adaptive step size. We compare the MaxEnt IRL with and without
the adaptive step size and assess the speed of convergence. Figure 3 depicts the
computed rewards for states and actions for the lung POMDP over the number
of iterations of gradient descent in the MaxEnt IRL algorithm, with and without
an adaptive step size. A similar convergence trend is observed with the breast
POMDP. As shown, the adaptive step size method converges to the correct
solution more quickly than the standard MaxEnt IRL implementation. For the
evaluation of the two models we use a reward function derived from rewards
normalized in the [−1,1] range.

4.2 Lung and Breast POMDP Results

We used the longitudinal observations from the NLST and Athena datasets as
input to POMDPs such that each sequential observation updates the belief state
of the agent. The belief state of the POMDP, at each epoch, is then used to select
the next (optimal) action, with the objective of early detection of cancer. The
POMDP models can suggest to continue screening (i.e., MG, LDCT) or to per-
form an intervention (i.e., biopsy or diagnostic imaging). If an intervention is
performed, the individual is removed from further consideration. Evaluation of
the POMDP is posed as a binary problem: if the POMDP suggests continued
screening (LDCT/MG) then the patient is classified as a negative cancer; if it
suggests an intervention, then the patient is classified as a positive cancer. Based
on this definition, if the model suggests a LDCT/MG and the patient did not
have a confirmed diagnosis of cancer in a given epoch, it is considered a true
negative (TN); if the patient had a confirmed diagnosis of cancer then it is a false
negative (FN). Conversely, if the model suggests an intervention and the patient
did not have cancer in a given epoch, then it is considered a false positive (FP); if
the patient had a diagnosis of cancer then it is considered a true positive (TP).
Performance metrics were estimated for each epoch of the screening process.
Any subject diagnosed with cancer is removed from the subsequent epoch. The
POMDP models are compared against the equivalent physician decisions (rec-
ommendations) at each epoch, applying a similar framework for TN/FN/FP/TP
to the experts, given the known cancer outcomes from each dataset (e.g., if the
physicians suggested an LDCT/MG and the patient did not have a confirmed
diagnosis of cancer, it is considered a true negative, etc.). Table 2 shows the per-
formance of the lung and breast POMDPs and the corresponding performance
of physicians on the same dataset. Notably, both POMDP models show per-
formance comparable to experts. The lung cancer screening model has worse
performance in terms of recall in the first and third screening epochs, but an
improved performance in terms of recall and false positive rate in the second
screening and post-screening. The breast cancer screening model demonstrates
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(a) Lung cancer states’ rewards. (b) Lung cancer states’ rewards.

(c) Lung cancer actions’ rewards. (d) Lung cancer actions’ rewards.

(e) Breast cancer states’ rewards. (f) Breast cancer states’ rewards.

(g) Breast cancer actions’ rewards. (h) Breast cancer actions’ rewards.

Fig. 3. State and action rewards computed using the MaxEnt IRL and normalized by
range. Left: Using an adaptive step size. Right: Without using an adaptive step size.
The adaptive step size MaxEnt IRL algorithm converges to a solution significantly
faster than the MaxEnt IRL without an adaptive step size.
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excellent recall (as do the expert physicians) but slightly worse false positive
rate. The Cohen’s kappa coefficient of agreement was used to assess the con-
cordance between the POMDP models and physicians. The kappa score of the
lung POMDP and physicians decreases over time due to the large number of
false positives. A large portion of different cases are classified as false positives
between the lung POMDP and physicians. The breast POMDP has a high kappa
score demonstrating strong agreement with physicians in terms of false positives
and true positives. For both lung and breast models, the variance of kappa per
screening is less than 0.03.

Table 2. Left: The lung and breast POMDPs performance per epoch. Right: The
physicians performance at each epoch. Metrics used for this evaluation are the true
positive rate (TP ), false negative rate (FN), false positive rate (FP ) true negative
rate (TN), precision (P ), and recall (R). NCs: no-cancer cases. Cs: cancer cases. Kappa:
Cohen’s kappa score (coefficient of agreement), variance of kappa for all scores: < 0.03.

POMDP Physicians Kappa

Lung cancer

TN

rate

FP

rate

FN

rate

TP

rate

Precision Recall TN

rate

FP

rate

FN

rate

TP

rate

Precision Recall

Training NCs: 3960, Cs: Scr1, 2, 3= 130, 68, 86; Pst-Scr= 78

Scr 1 0.48 0.52 0.02 0.98 0.05 0.98 0.48 0.52 0.00 1.00 0.06 1.00 0.42

Scr 2 0.34 0.66 0.02 0.98 0.02 0.98 0.34 0.67 0.05 0.95 0.02 0.95 0.29

Scr 3 0.24 0.76 0.01 0.99 0.03 0.99 0.21 0.79 0.00 1.00 0.03 1.00 0.05

Pst-Scr 0.25 0.75 0.07 0.93 0.02 0.93 0.22 0.78 0.14 0.86 0.02 0.86 0.05

Testing NCs: 990, Cs: Scr1, 2, 3= 32, 17, 21; Pst-Scr= 20

Scr 1 0.48 0.52 0.04 0.96 0.05 0.96 0.48 0.52 0.00 1.00 0.06 1.00 0.42

Scr 2 0.35 0.65 0.02 0.98 0.02 0.98 0.33 0.67 0.05 0.95 0.02 0.95 0.30

Scr 3 0.25 0.75 0.05 0.95 0.03 0.97 0.21 0.79 0.00 1.00 0.03 1.00 0.07

Pst-Scr 0.25 0.75 0.07 0.93 0.02 0.93 0.22 0.78 0.14 0.86 0.02 0.86 0.06

Breast cancer

Training NCs: 2808, Cs: Scr1, 2, 3, 4= 370, 68, 27, 5

Scr 1 0.99 0.01 0.01 0.99 0.96 0.99 0.99 0.01 0.01 0.99 0.95 0.99 1.00

Scr 2 0.99 0.01 0.01 0.99 0.70 0.99 0.99 0.01 0.01 0.99 0.73 0.99 0.97

Scr 3 0.98 0.02 0.03 0.97 0.40 0.97 0.99 0.01 0.03 0.97 0.43 0.97 0.95

Scr 4 0.98 0.02 0.00 1.00 0.09 1.00 0.98 0.02 0.00 1.00 0.10 1.00 0.92

Testing NCs: 703, Cs: Scr1, 2, 3, 4= 93, 17, 7, 1

Scr 1 0.99 0.01 0.01 0.99 0.96 0.99 0.99 0.01 0.01 0.99 0.99 0.99 1.00

Scr 2 0.99 0.01 0.01 0.99 0.70 0.99 0.99 0.01 0.01 0.99 0.74 0.99 0.97

Scr 3 0.99 0.01 0.03 0.97 0.40 0.97 0.99 0.01 0.03 0.97 0.44 0.97 0.95

Scr 4 0.98 0.02 0.00 1.00 0.09 1.00 0.98 0.02 0.00 1.00 0.10 1.00 0.91

5 Discussion

POMDPs, through the use of beliefs and a hidden state space, can overcome
some of the limitations seen in other sequential decision making models used
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in cancer screening. For instance, given the uncertainty in diagnosing lung and
breast cancer from imaging studies, we modeled a hidden cancer state space in
three parts [19]: no-cancer, benign/indeterminate, and malignant/invasive can-
cer. Modeling the cancer state space with an additional state rather than a
binary state space allows the distinction of lower risk individuals (i.e., no abnor-
malities) – who constitute a large portion of screening cases and thus result in
highly imbalanced datasets – over medium (i.e., benign growth) and high risk
individuals (i.e., malignant abnormality).

Driven by the need to define the reward function in these screening POMDPs,
we explored the use of the MaxEnt IRL algorithm towards generation of state-
action reward pairs. As noted earlier, cost and utility estimation are frequently
adopted as reward functions in healthcare models. [11] uses the National Statis-
tical services’ costs of procedures to define reward functions, while QALYs and a
lifetime mortality risk model [16] are common alternative approaches. However,
cost has certain limitations as it does not generalize to the whole population
equally, and does not reflect the importance of quality outcomes. Additionally,
QALY data are scarce, and arguably expensive to collect [16]. In contrast, a
reward function learned using the MaxEnt IRL algorithm aims to maximize the
objective of state-action trajectories. In this work, we used the MaxEnt IRL algo-
rithm to generate reward functions for lung and breast cancer screening POMDP
models using experts retrospective decisions. We improved the speed and accu-
racy of convergence of the gradient descent optimization of the MaxEnt IRL
algorithm using an adaptive step size. Moreover, we introduced a multiplicative
model for representing state-action pairs as products of state rewards and action
rewards. The multiplicative model has the advantage to clearly demonstrate the
difference in utility between rewards of different actions, which is what drives
decision recommendation. Rewards are thus learned based on the state-visitation
frequency of each trajectory. In this context, states with fewer visitations across
each trajectory earn the lowest reward (e.g., invasive or malignant cancer state),
which is why only cancer and non-cancer cases with a complete trajectory are
used to learn rewards in our framework. Modeling the expert’s decisions with
the MaxEnt IRL algorithm resulted in reward functions for the POMDP models
with performance comparable to experts. We noticed that when using aggres-
sive reward functions (i.e., identifying all cancer cases), the true positive rate
exceeded physicians’ true positive rate but at the expense of a higher false posi-
tive rate, which in clinical practice can translate into higher costs and unneces-
sary psychological burden on the patient. Including more observational variables,
derived from medical images, in the screening process can overcome this trade-
off between true positive and false positive rate. The overall true positive rate
and false positive rate using our learned reward functions in the POMDPs is
comparable to experts. Nonetheless, in some cases the experts had false nega-
tive cases, which is also captured by our approach. When compared with other
machine learning algorithms at the baseline of the lung and breast paradigms
the POMDP models demonstrate improved performance.
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The kappa coefficient of agreement between the POMDP models and physi-
cians is constantly high for the breast POMDP model, illustrating the discrim-
inatory capability of BI-RADS score as an imaging observation. In our lung
cancer screening model, kappa gradually decreased over ensuing epochs, sug-
gesting variability in the interpretation of LDCT imaging observations between
the POMDP and the physicians. The lung POMDP is not fully replicating physi-
cians’ decision making patterns despite its overall performance being comparable
to experts. When it comes to early cancer prediction (e.g., predicting screening
3 cancer from screening 1) the lung POMDP outperforms physicians, suggest-
ing that the model and reward function are discriminating in a different way
between positive and negative cases. Error analysis of the lung POMDP false
positives shows a different subset from the physicians.

MaxEnt IRL also handles partial trajectories, making it suitable for screen-
ing processes in which individuals diagnosed with the disease exit the screen-
ing process for treatment. Relative to other IRL methods, MaxEnt IRL has
the advantage of handling ambiguity by using a probabilistic model of behav-
ior that exponentially prefers trajectories of higher reward [7,26]. MaxEnt IRL
can also be used to transfer knowledge between datasets, tasks or domains by
reusing learned weights (i.e., transfer learning). The only “partial” trajectory
cases employed, in this analysis, are individuals diagnosed with cancer across
the horizon of the screening process.

The first limitation of using MaxEnt IRL in this study is the fact that more
than one combination of rewards can define the same problem. To overcome this,
a policy iteration algorithm can be used rather than value iteration algorithm to
learn optimal policies, as the policy space is finite in comparison to the rewards
space (hence the policy iteration algorithm is guaranteed to optimally converge).
A second limitation is the assumption that reward functions are only based on
state visitation frequencies. The utility of screening recommendations is subjec-
tive and defined by different factors such as cost, quality of life, and patient
satisfaction. To assess the quality of these reward functions a comparison of
suggested recommendations with patient satisfaction could be used.

Other limitations are around assumptions about the nature of our datasets.
While lung and breast cancer screening tests occurred roughly at one year inter-
vals, we assumed that screening occurs annually (i.e., at fixed frequency). More-
over, data imbalance is a function of time, as at each screening point the number
of cancer and non-cancer cases changes (i.e., at the outset of a screening period,
more cancers are found at the beginning of a dataset). We did not account
for this dynamic nature of the dataset during training. Given the small num-
ber of cancer cases across each screening point of both datasets, we utilized a
stratified 5-fold cross-validation to obtain an unbiased estimate of model per-
formance. Similarly, other temporal studies have used a k-fold cross validation
to assess model performance [2,6,8,14,19,24]. To simplify modeling, our lung
POMDP model considered only cases reporting a single pulmonary nodule over
the course of the trial; this represents only a subset of the screened individuals, as
many subjects have more than one such finding. A more concrete analysis would
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include cases with multiple nodules over time. However, it was not possible to
ascertain the history of individual nodules in patients with multiple nodules as
tracking of the nodules was not considered at the time of the study. Lastly, for
the Athena dataset, in breast cancer screening, patients with BI-RADS 1, 2, or
3 rarely undergo biopsy, thus the true FN rate is likely underestimated. Future
work involves the exploration of MaxEnt IRL in transfer learning between other
datasets and domains, by reusing learned weights.
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4. Babeş-Vroman, M., Marivate, V., Subramanian, K., Littman, M.: Apprenticeship
learning about multiple intentions. In: Proceedings of the 28th International Con-
ference on Machine Learning, ICML 2011, pp. 897–904 (2011)

5. Bennett, C.C., Hauser, K.: Artificial intelligence framework for simulating clinical
decision-making: a Markov decision process approach. Artif. Intell. Med. 57(1),
919 (2013). https://doi.org/10.1016/j.artmed.2012.12.003

6. Burnside, E.S., et al.: Probabilistic computer model developed from clinical data
in national mammography database format to classify mammographic findings.
Radiology 251(3), 663–672 (2009). https://doi.org/10.1148/radiol.2513081346

7. Chelsea Finn: Deep RL Bootcamp Lecture 10B Inverse Reinforcement Learning -
YouTube (2017). https://www.youtube.com/watch?v=d9DlQSJQAoI&t=1012s

8. Cuaya, G., et al.: A dynamic Bayesian network for estimating the risk of falls from
real gait data. Med. Biol. Eng. Comput. 51(1–2), 29–37 (2013). https://doi.org/
10.1007/s11517-012-0960-2

9. D’Orsi, C.J.: ACR BI-RADS Atlas: Breast Imaging Reporting and Data System.
American College of Radiology, Reston (2013)

10. Elson, S., Hiatt, R., Anton, C.: The Athena breast health network: developing a
rapid learning system in breast cancer prevention, screening, treatment, and care.
Breast Cancer Res. Treat. 140, 417–425 (2013). https://doi.org/10.1007/s10549-
013-2612-0

https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1109/TMM.2016.2589160
http://arxiv.org/abs/1602.00374
https://matthewja.com/pdfs/irl.pdf
https://matthewja.com/pdfs/irl.pdf
https://doi.org/10.1016/j.artmed.2012.12.003
https://doi.org/10.1148/radiol.2513081346
https://www.youtube.com/watch?v=d9DlQSJQAoI&t=1012s
https://doi.org/10.1007/s11517-012-0960-2
https://doi.org/10.1007/s11517-012-0960-2
https://doi.org/10.1007/s10549-013-2612-0
https://doi.org/10.1007/s10549-013-2612-0


Generating Reward Functions Using IRL for Cancer Screening 227

11. Goulionis, J.E., Vozikis, A., Benos, V.K., Nikolakis, D.: On the decision rules of
cost-effective treatment for patients with diabetic foot syndrome. ClinicoEconomics
Outcomes Res. 2(1), 121–126 (2010). https://doi.org/10.2147/CEOR.S11981

12. Hauskrecht, M., Fraser, H.: Planning treatment of ischemic heart disease with
partially observable Markov decision processes. Artif. Intell. Med. 18(3), 221–244
(2000). https://doi.org/10.1016/S0933-3657(99)00042-1

13. Hauskrecht, M., Milos, H.: Dynamic decision making in stochastic partially observ-
able medical domains: Ischemic heart disease example. In: Keravnou, E., Gar-
bay, C., Baud, R., Wyatt, J. (eds.) AIME 1997. LNCS, pp. 296–299. Springer,
Heidelberg (1997). https://doi.org/10.1007/bfb0029462

14. Van der Heijden, M., Velikova, M., Lucas, P.J.F.: Learning Bayesian networks for
clinical time series analysis. J. Biomed. Inform. 48, 94–105 (2014). https://doi.
org/10.1016/j.jbi.2013.12.007

15. Klein, S., Pluim, J.P., Staring, M., Viergever, M.A.: Adaptive stochastic gradient
descent optimisation for image registration. Int. J. Comput. Vis. 81(3), 227–239
(2009). https://doi.org/10.1007/s11263-008-0168-y

16. Maillart, L.M., Ivy, J.S., Ransom, S., Diehl, K.: Assessing dynamic breast cancer
screening policies. Oper. Res. 56(6), 1411–1427 (2008). https://doi.org/10.1287/
opre.1080.0614

17. National Lung Screening Trial Research Team, et al.: Reduced lung-cancer mor-
tality with low-dose computed tomographic screening. N. Engl. J. Med. 365(5),
395–409 (2011). https://doi.org/10.1056/NEJMoa1102873

18. Ng, A.Y., Russell, S.: Algorithms for inverse reinforcement learning. In: Proceed-
ings of the Seventeenth International Conference on Machine Learning, pp. 663–670
(2000). https://doi.org/10.2460/ajvr.67.2.323

19. Petousis, P., Han, S.X., Aberle, D., Bui, A.A.: Prediction of lung cancer incidence
on the low-dose computed tomography arm of the National Lung screening trial: a
dynamic Bayesian network. Artif. Intell. Med. 72, 42–55 (2016). https://doi.org/
10.1016/j.artmed.2016.07.001

20. Schaefer, A.J., Bailey, M.D., Shechter, S.M., Roberts, M.S.: Modeling medical
treatment using Markov decision processes. In: Brandeau, M.L., Sainfort, F.,
Pierskalla, W.P. (eds.) Operations Research and Health Care, pp. 597–616.
Springer, Heidelberg (2005). https://doi.org/10.1007/1-4020-8066-2 23

21. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics (2006). https://doi.org/10.
1145/504729.504754

22. Tusch, G.: Optimal sequential decisions in liver transplantation based on a POMDP
model. In: ECAI, pp. 186–190 (2000)

23. Vroman, M.C.: Maximum likelihood inverse reinforcement learning. Ph.D. thesis
(2014)

24. Watt, E.W., Bui, A.A.T.: Evaluation of a dynamic Bayesian belief network to
predict osteoarthritic knee pain using data from the osteoarthritis initiative. In:
AMIA 2008 Symposium, pp. 788–92 (2008). http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=2656041&tool=pmcentrez&rendertype=abstract

25. Ziebart, B.: Modeling purposeful adaptive behavior with the principle of max-
imum causal entropy. Ph.D. thesis (2010). http://www.cs.cmu.edu/∼bziebart/
publications/thesis-bziebart.pdf

26. Ziebart, B.D., Maas, A., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse rein-
forcement learning. In: AAAI Conference on Artificial Intelligence, pp. 1433–1438
(2008)

https://doi.org/10.2147/CEOR.S11981
https://doi.org/10.1016/S0933-3657(99)00042-1
https://doi.org/10.1007/bfb0029462
https://doi.org/10.1016/j.jbi.2013.12.007
https://doi.org/10.1016/j.jbi.2013.12.007
https://doi.org/10.1007/s11263-008-0168-y
https://doi.org/10.1287/opre.1080.0614
https://doi.org/10.1287/opre.1080.0614
https://doi.org/10.1056/NEJMoa1102873
https://doi.org/10.2460/ajvr.67.2.323
https://doi.org/10.1016/j.artmed.2016.07.001
https://doi.org/10.1016/j.artmed.2016.07.001
https://doi.org/10.1007/1-4020-8066-2_23
https://doi.org/10.1145/504729.504754
https://doi.org/10.1145/504729.504754
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2656041&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2656041&tool=pmcentrez&rendertype=abstract
http://www.cs.cmu.edu/~bziebart/publications/thesis-bziebart.pdf
http://www.cs.cmu.edu/~bziebart/publications/thesis-bziebart.pdf


Deep Learning Architectures for Vector
Representations of Patients and Exploring
Predictors of 30-Day Hospital Readmissions
in Patients with Multiple Chronic Conditions

Muhammad Rafiq1(&) , George Keel1 , Pamela Mazzocato1 ,
Jonas Spaak1,2 , Carl Savage1 , and Christian Guttmann1,3,4

1 Department of Learning, Informatics, Management and Ethics (LIME),
Medical Management Centre, Karolinska Institutet, 171 65 Stockholm, Sweden

{muhammad.rafiq,george.keel,pamela.mazzocato,

jonas.spaak,carl.savage,christian.guttmann}@ki.se
2 Department of Clinical Sciences, Danderyd University Hospital,

Karolinska Institutet, 182 88 Stockholm, Sweden
3 Tieto Sweden AB, Fjärde Bassängvägen 15, 115 83 Stockholm, Sweden

4 Nordic Artificial Intelligence Institute, Hälsingegatan 45,
113 31 Stockholm, Sweden

Abstract. This empirical study of a complex group of patients with multiple
chronic concurrent conditions (diabetes, cardiovascular and kidney diseases)
explores the use of deep learning architectures to identify patient segments and
contributing factors to 30-day hospital readmissions. We implemented Convo-
lutional Neural Network (CNN) and Recurrent Neural Network (RNN) on
sequential Electronic Health Records data at the Danderyd Hospital in Stock-
holm, Sweden. Three distinct sub-types of patient groups were identified:
chronic obstructive pulmonary disease, kidney transplant, and paroxysmal
ventricular tachycardia. The CNN learned about vector representations of
patients, but the RNN was better able to identify and quantify key contributors
to readmission such as myocardial infarction and echocardiography. We suggest
that vector representations of patients with deep learning should precede pre-
dictive modeling of complex patients. The approach also has potential impli-
cations for supporting care delivery, care design and clinical decision-making.

Keywords: 30-day hospital readmissions � Multiple Chronic Conditions �
Deep learning

1 Introduction

Machine learning (ML) algorithms, particularly deep neural networks for sequential
Electronic Health Records (EHR) data, have been extensively applied in the past
decade to inform clinical decision making. However, the unstructured nature of EHR
poses a challenge in its implementation, even more so if implemented for complex
patients such as patients with Multiple Chronic Conditions (MCCs). The prevalence of
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patients with MCCs is increasing worldwide. In Sweden, patients with MCCs con-
stitute 56.3% among adults between 35 to 75 years of age [1]. A prevalence study in
Sweden found that 55% of the patient population had MCCs [2]. Similarly, in a
population based longitudinal study in Stockholm, Sweden it was found that 33.6% of
the participants had developed MCCs over a 3 years period [3]. In the US, the
prevalence of patients with MCCs has increased from 21.8% in 2001 to 26.0% in 2010
[4]. The increasing number of concurrent chronic conditions are directly associated
with the increase in health care costs [5]. In the US, the average per capita Medicare
costs for patients with MCCs increased by 108.2% and 117.6% for concurrent 2 and 3
chronic conditions, respectively [6].

One such group of patients with MCCs is patients with concurrent diagnoses of
cardiovascular and chronic kidney diseases and diabetes, hereinafter referred to as
MCC patients. This triad of diseases constitutes a huge burden of disease around the
world [7] due to high health care utilization [8]. MCC patients are complex due to the
underlying pathophysiological mechanisms, conflicting treatment guidelines for each
individual disease, and lack of studies [9, 10]. This makes it challenging for clinicians
to treat MCC patients optimally.

Clinicians have been using deep neural networks such as Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN) together with patients’
medical histories and demographics (e.g. age and gender) to gain insights into the EHR
data and tailor treatments according to individual patient needs. Sequential and time-
dependency features in patients’ journeys such as diagnoses and clinical procedures are
increasingly being utilized in ML algorithm development to ensure accuracy and
generalizability [11]. However, interpretation of the results obtained from deep neural
networks is difficult. Practitioners tend to use simpler models as they have better
interpretability, even though they are less accurate than modern ML algorithms [12].
This tradeoff between accuracy and interpretability of the model is not an optimal
solution and researchers are developing modern ML algorithms that have both better
accuracy and interpretability [13].

The aim of this study is to demonstrate how diagnosis and procedure codes con-
tribute towards predicting 30-day hospital readmissions for MCC patients, and to
explore MCC patients’ sub-types through vector representations.

Our contribution through this study is three-fold: Firstly, based on the data obtained
from one of the busiest tertiary hospitals in the Nordic countries, we demonstrate the
effectiveness of deep learning architectures in the exploration of descriptive analytics
for MCC patients. More specifically, we explore patterns in vector representations of
patients and identify the contributors to 30-day hospital readmissions in terms of
diagnoses and procedures. Secondly, the use of the Word2Vec model in conjunction
with CNN places the MCC patients’ records in EHR in sequential order for the entire
care episode. This output can be fed into any type of deep neural architecture and used
for making exploratory analysis and predictions. Thirdly, by applying the deep neural
network architectures of CNN and RNN on real patient data set we demonstrate how
these algorithms developed in one setting can be generalized and implemented in
another setting.

Deep Learning Architectures for Vector Representations of Patients 229



2 Related Work

Hospital readmissions prediction, a key measure to assess quality of health care
delivery [14–16], has increasingly become the focus of ML applications. This
increasing focus is motivated by the highly incurred costs due to hospital readmissions
[17] and their negative effect on the quality of patients’ lives [18]. According to one
estimate, the unplanned hospital readmissions cost $17.9 billion per year to the US
health care system [19]. A recent estimate suggests that the costs related to hospital
readmissions is around $26 billion per year for the US health care system [20].

Traditionally, demographics are used to predict hospital readmissions, but the use
of other EHR variables is increasing with ML applications. A recent systematic review
of models predicting hospital readmissions found that among the twenty-eight types of
predictive risk variables, mostly comorbidity, demographics, and social variables were
used [21]. Of the seventy-three unique predictive models, forty-five used socio-
demographic variables, and only fourteen and sixteen used diagnoses and procedures
respectively [21]. Among the twenty-two models related to cardiovascular diseases,
only four used diagnoses together with the socio-demographic variables [22–25], seven
used procedures with the socio-demographics variables [26–32], and none of them used
diagnoses and procedures simultaneously. Two models used diagnoses and procedures
simultaneously, but they were used to predict all-cause hospital readmissions [33, 34].

Most of the existing models for hospital readmissions prediction make use of the
conventional ML algorithms such as logistic regression, support vector machines, and
k-nearest neighbors [20, 21]. One potential limitation of the conventional approaches is
that time duration and temporality are not taken into account which are an important
aspect of building accurate prediction models. Ignoring temporality in prediction
models based on EHR can lead to sub-optimal results [35].

RNNs have been recently implemented in health care to address issues of unequal
time duration and temporality [11]. CNN and RNNs have been used to predict mor-
tality [36], clinical events [35], diagnoses [37, 38], and clinical intervention [39]. CNN,
a variant of RNN among others that are well known for capturing underlying structures
in sequential data, have been applied in many fields such as speech recognition [40],
natural language processing [41] and text classification [42]. Deep neural networks
have also been recently implemented to predict hospital readmissions [20, 43]. How-
ever, only a few studies have implemented deep neural networks for exploratory and
descriptive analysis of complex patients with MCCs [44].

3 Methods

3.1 Study Design

In this empirical study, we implemented two different types of RNNs to learn about
vector representations of patients and factors contributing to 30-day hospital read-
missions for MCC patients.
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The literature has widely used 30-day hospital readmission as a performance
measurement [14–16]. All the hospital admissions occurring within 30 days of the
previous admission were considered as 30-day hospital readmissions regardless of the
cause. Since readmissions shortly after hospital discharge add to clinical and financial
burden [14, 45], we chose the measure as an initial metric in our exploration of
predictive analytics for clinical planning and care coordination around MCC patients.
Hospital readmissions can be either acute or non-acute depending on the patient’s
clinical condition and the treatment requirements. Even though acute readmissions are
more expensive than non-acute, both types were considered for this study regardless of
the underlying clinical reasons. Similarly, exploring MCC patients’ sub-types through
patient representations was chosen because it plays an important role in helping health
care process analysis and operational improvement.

Experiment 1
In experiment 1, we implemented a CNN model complemented with the Word2Vec
feature embedding in an unsupervised way, i.e. MCC patients readmitted within 30
days were not labelled and the algorithm learned the inherent structure from the EHR
data. The study follows the approach developed by Zhao et al. [46].

We implemented the Word2Vec model that takes the patients’ diagnoses (ICD
codes) and procedure codes as input (in the form of a text corpus) and produced words
in the form of output vectors. The Word2Vec model placed the ICD codes and pro-
cedures in their respective clusters. For MCC patients, the ICD codes and procedures
were observed in a temporal order and they were organized into sequences. The
Word2Vec model was trained on these sequences, and arrays of sequences were
produced that were later fed into the CNN model in the form of a stacked matrix. The
same hyper-parameters from Zhao et al. [46] were used.

The CNN model was trained on the learned sequences for MCC patients in the
Word2Vec model. Inputs for MCC patients (p) were developed as an embedding
matrix (Xp 2 Rnp x d), where np is the number of records for MCC patients and d is the
embedding dimension for MCC patients’ diagnosis and procedure codes. A 1D con-
volution was applied over sequential dimension of the matrix. K filters were used in
varying lengths of 2 to 5 to capture sequential variations. The filters looked for the
presence of a specific pattern in the MCC patients’ data. Max pooling layers were used
that transformed user outputs from each filter to real numbers [46].

After the model was trained on MCC patients, a predominant single representation
of MCC patients’ sequential encounters was obtained which was further used to cluster
MCC patients’ vector representations. Various clustering algorithms were explored to
group MCC patients’ vector representations after learning the powerful sequential
representation from the CNN model. Both feature based clustering (K-Means) and
t-Distributed Stochastic Neighbor Embedding (tSNE) were used to cluster the MCC
patients’ vector representations.

Experiment 2
In experiment 2, we implemented the REverse Time AttentIoN (RETAIN) model, a
variant of RNN, to identify the contributors of 30-day hospital readmissions for MCC
patients. The study follows the approach developed by Choi et al. [35].
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Using the RETAIN model we identified the predictors among diagnosis and pro-
cedure codes by assigning a significant portion of prediction to the attention weight
generation process. EHR data is stored in such a way that every visit is recorded for
each patient at a particular time and all the events that occur are recorded as multiple
variables for each visit. The RETAIN model uses weights both for visits and for all the
events occurring at a single visit, i.e. visit-level and variable-level weights. The visit
level attention weights tackle the effect of each patient’s visit embedding and variable
level attention weights tackle each activity/event at a visit. For this purpose, RETAIN
uses a model with two RNNs, i.e. RNNa and RNNb, in a backwards direction to
generate attention vectors. We used different hyper-parameters compared to Choi et al.
[35], as shown in Table 1.

3.2 Data Collection

The study was conducted at an Integrated Multidisciplinary Clinic (HND-centrum) at a
tertiary academic medical hospital, Danderyd University Hospital (DSAB), in Stock-
holm, Sweden. DSAB is one of the largest Emergency Hospitals (approximately 500
beds) in northern part of Stockholm, Sweden, and provides health services for
approximately 650,000 people in eleven municipalities, mainly focused on internal
medicine, cardiology, orthopedics, obstetrics and gynecology, and surgery and urology.
The hospital is engaged in academic medical training and research, and is the first
hospital in Sweden to open an Integrated Multidisciplinary Clinic to treat patients with
MCCs of diabetes, cardiovascular and kidney diseases. Patients who were registered at
the HND-centrum served as the participants of the study. We also included all patients
that were referred to but not admitted to HND-centrum. These patients were included
because they were the closest match of the patients registered at HND-centrum. These
patients had to fulfil the inclusion criteria to be registered at the HND-centrum.

EHR data were obtained for all patients (n = 610) who were registered at the HND-
centrum at DSAB between November 2010 and January 2017, and included personal
identification numbers, visit dates, visit types, ICD diagnoses codes, clinical procedures
codes, mortality dates, DRG codes, hospital admission dates and hospital discharge
dates. All the data was anonymized before any preprocessing and patients were given a
unique patient identification number. All the rows with missing values in the inpatient
visits, outpatient visits and ICD codes columns were removed. Since the focus of this
article was to develop HND patients’ representations and identify predictors of 30-day

Table 1. Comparison of hyper-parameters used in RETAIN and Experiment 2.

Hyper-parameter REATIN Experiment 2

Size of visit embeddings, hidden layer for RNNa and RNNb 128 4
Regularization for final classifier weight, input embedding
weight, a generating weights, and b generating weights

0.0001 0.00001

Number of epochs 10 500
Training, validation and test split ratio 0.75:0.1:0.15 0.6:0.2:0.2
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hospital readmissions based only on the ICD codes (that would represent the disease
progression for HND patients) and procedure codes, cleaned columns with patient
identification numbers, ICD codes (diagnoses) and procedure codes were used in the
subsequent analyses. The EHR data contained multiple entries of visits dates for the
same patient on the same day, and therefore all the duplicate rows were removed. The
index dates for 30-day hospital readmission were extracted from the data.

4 Results

The majority of MCC patients were between 70 and 80 years old. In total, 3,200
hospital admissions were observed in the selected period, the majority (87.5%) of
which were acute hospital admissions (n = 2,801). A total of 76 diagnoses and 59
procedures were fed into the model to develop the sequence vector.

4.1 Experiment 1: CNN for Vector Representations of MCC Patients
with 30-Day Hospital Readmissions

A total of 268 MCC patients with 30-day hospital readmissions were selected. The
most significant ICD codes and procedures that contributed to the 30-day hospital
readmissions were identified as shown in Table 2.

Table 2 shows that MCC patients readmitted to hospital within 30 days mostly had
essential hypertension, diabetes mellitus type 2, and chronic kidney diseases stage 3
and 4 as the key contributors. Similarly, the most significant procedures that MCC
patients experienced were patient conferences, echocardiography, coronary angiogra-
phy, telemetry monitoring, and distant consultations. Since MCC patients are a niche
group selected through very strict inclusion and exclusion criteria, it is not surprising

Table 2. Salient contributors (diagnoses and procedures) of 30-day hospital readmissions.

No ICD code (diagnoses) Procedures

1 I109 (essential hypertension) Patient conference
2 E118 (diabetes mellitus type2) Pacemaker control and reprogramming
3 N183 (chronic kidney disease stage 3) Patient information and teaching
4 I259 (chronic ischemic heart disease) Transthoracic Doppler

echocardiography
5 I509 (heart failure) Telemetry monitoring
6 N184 (chronic kidney disease stage 4) Unplanned admission for end of life

care
7 E119 (diabetes mellitus without

complications)
Patient information and teaching

8 E117 (non-insulin-dependent diabetes) Coronary angiography
9 Z921 (long term use of anticoagulants) Use of interpreter
10 E785 (hyperlipidemia, unspecified) Distant consultation
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that the model identified the contributors shown in Table 2, because these are the most
frequent ICD codes and procedures among the selected MCC patients. However, the
order of the contributions is noteworthy as they are ordered from most relevant to the
least relevant.

Based on MCC patients’ vector representations learned by the model, further
exploration of the readmitted MCC patients was conducted. Distinct sub-types were
identified by t-SNE clustering as shown in Fig. 1. Patients in cluster 1 appear to diverge
most from the others.

In order to study what differentiates the three clusters from each other, we identified
events most common to each cluster. Table 3 presents the key features for each cluster
in terms of diagnoses and procedures that the MCC patients experienced (direct output
from the model).

As shown in Table 3, Cluster 1 is distinct from Cluster 2 and 3. It was found that
MCC patients in cluster 1 had Chronic Obstructive Pulmonary Disease (COPD),
labelled with the ICD code R060 (Dyspnea), and required bronchodilation and
spirometry more frequently. This indicates that MCC patients with concomitant COPD
are more likely to be readmitted within 30 days.

MCC patients in Cluster 2 have had a kidney transplant (ICD code Z940) and went
through several team visits and team conferences, illustrating the complex nature of
their conditions.

Lastly, patients in Clusters 3 had paroxysmal ventricular tachycardia (ICD code
I472) and repeatedly required control and reprogramming of their pacemaker or
defibrillator, and hence were more likely to be readmitted within 30 days.

Fig. 1. t-SNE visualization of MCC patients’ clusters. Each cluster represents sub-types within
MCC patients who were readmitted within 30 days of their previous hospital admission.
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As we can see from the results in experiment 1, the model identified the most
relevant contributing factors to 30-day hospital readmission among MCC patients, and
the salient features of the clusters. However, the interpretation of the results can be very
tricky because the contributing factors were not quantified or labelled as positive or
negative. Thus, we aimed for a more explanatory model in experiment 2.

4.2 Experiment 2: RETAIN for MCC Patients with 30-Day Hospital
Readmissions

Given the temporal sequences of MCC patients’ diagnoses and procedures, we
attempted to identify factors that contributed to 30-day hospital readmission. The same
number of patients with 30-day hospital readmissions (n = 268) were included. We
were able to attain Validation and Test accuracy of 0.900 and 0.794 respectively with
RETAIN, which was better than the AUC of 0.8705 obtained by Choi et al. [35].

Table 4 shows results obtained from the RETAIN model in terms of contributions
of the diagnoses and procedures to 30-day hospital readmissions and overall risk of
readmission for MCC patients (direct output from the model). The contribution scores
range between the lowest and highest values of −0.5 and 1.5 respectively. The overall
risk score is calculated between 0 (no risk) and 1 (absolute risk). Table 4 shows
readmission risk scores for three MCC patients and the contribution scores, either
positive or negative, of each ICD code and procedure. The contribution scores show
how each diagnosis and procedure contributed to the final prediction score (the con-
tribution scores are added and put through the sigmoid function in the model).

Table 3. Salient features of clusters of MCC patients with 30-day hospital readmissions.

Cluster 1 Cluster 2 Cluster 3

E117, N185, I350, I259,
I109, E119, Cystoscopy,
Information and teaching
directed at patients, sampling
(non-specific), R060,
Arterial puncture, N409,
Arterial puncture,
Spirometry before and after
bronchodilation,
Exercise ECG standard,
Spirometry before and after
bronchodilation

N183, E107, Distant
consultation, Z940, L979,
N184, E117, I350, Patient
conference, Team visit,
Z940, Patient conference,
E107, L979, Team visit,
Z921, E117, L979, Patient
conference

N183, E117, N184, Control
and reprogramming of the
pacemaker or defibrillator
(AICD), E119, I109, N185,
I509, Patient conference,
Information and teaching
directed at patients, N183,
I472, Control and
reprogramming of the
pacemaker or defibrillator
(AICD)

E117 = type 2 diabetes mellitus with multiple complications, N185 = chronic kidney disease
stage 5, I350 = non-rheumatic aortic valve stenosis, I259 = nonspecific chronic ischemic heart
disease, I109 = type 1 diabetes mellitus without complications, R060 = dyspnea, N409 = benign
prostatic hyperplasia, N183 = chronic kidney disease stage 3, E107 = type 1 diabetes mellitus
with multiple complications, Z940 = kidney transplant, L979 = non-pressure chronic ulcer of
unspecified part of lower leg, N184 = chronic kidney disease stage 4, Z921 = long term use of
blood thinning agents, E119 = type 2 diabetes mellitus without complications, I509 = unspeci-
fied heart failure, I472 = ventricular tachycardia
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As we can see in Table 4, RETAIN determined the 30-day hospital readmission
risk score for each individual MCC patient based on the diagnoses and procedures in
their respective past medical encounters. In contrast to the results obtained from
experiment 1, RETAIN assigned each diagnosis and procedure its specific contribution
score and determined the overall risk of 30-day hospital readmission. Each contribution
can either negatively or positively affect the overall risk of readmission.

Table 4. Contributions of the diagnosis and procedure codes in predicting 30-day hospital
readmissions for MCC patients at each successive patient visit.

Visit
No.

MCC patient 1 MCC patient 2 MCC patient 3

1 I489B: 0.353787 E107: −0.055551 E119: 0.651345
2 Z950: 1.018832 Allogenic red cell

transfusion: 0.104865
Patient conference:
0.846334

3 I472: 0.638967 G473: 2.641692 Information and
teaching directed at
patients: 1.341413

4 Control and reprogramming of
the pacemaker or defibrillator:
−0.009479

Z921: 1.971326 Z921: 0.978889

5 Preoperative assessment:
0.073104

I489B: 0.557335 Patient conference:
0.196036

6 E785: 1.050597 I219: 0.019547 Distant consultation:
0.082917

7 I489B: 0.294173 I501: 0.006919 E119: 0.604113
8 G473: −0.223236 Telemetry

monitoring: 0.004798
E669: 0.070579

9 Telemetry monitoring:
−0.030263

Transthoracic
Doppler
echocardiography:
−0.087382

N183: 0.365141

10 – Coronary
angiography:
−0.042835

Orthostatic test:
−0.021256

11 – – Distant consultation:
0.014503

12 – – I109: −0.029082
Overall risk score: 0.952125 Overall risk score:

0.992927
Overall risk score:
0.992786

I489B = unspecified atrial fibrillation and atrial flutter, Z950 = presence of cardiac pacemaker,
I472 = ventricular tachycardia, E785 = unspecified hyperlipidemia, G473 = sleep apnea,
E107 = type 1 diabetes mellitus with multiple complications, Z921 = long term use of blood
thinning agents, I219 = unspecified acute myocardial infarction, I501 = left ventricular failure,
E119 = type 2 diabetes without complications, E669 = unspecified obesity, N183 = chronic
kidney disease stage 3, I109 = essential hypertension
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MCC patient 1 in Table 4, likely belonging to Cluster 3 in experiment 1 because
the patient had paroxysmal ventricular tachycardia (ICD I472), required reprogram-
ming and controlling of the pacemaker or defibrillator, and preoperative assessment
among other procedures. We can see that paroxysmal ventricular tachycardia diagnosis
increased the risk of readmission (0.638967) while the procedure for control and
programming of the pacemaker reduced the risk of readmission (–0.009479). Other
notable contributions for MCC patient 1 were preoperative assessment and telemetry
monitoring which increased (0.073104) and decreased (−0.030263) the risk for 30-day
hospital readmission respectively.

MCC patient 2 had coagulation disorder (ICD code Z921) and acute myocardial
infarction (ICD I219) in the past, and also required a blood transfusion among other
things. We can see in Table 4 that a myocardial infarction and blood transfusion
contributed positively to the readmission score (0.019547 and 0.104865 respectively),
whereas echocardiography and coronary angiography reduced the risk of readmission
(−0.087382 and −0.042835 respectively). Similarly, we can see the contributing factors
and scores for MCC patient 3. For example, other than the three common diagnoses
underlying the MCC condition, the patient had obesity (ICD code E669), which pos-
itively contributed to 30-day hospital readmission (0.070579).

5 Discussion

5.1 Effectiveness of CNN and RNN for MCC Patients

Both the CNN and RNN used in this study identified the most salient predictors for
30-day hospital readmissions among MCC patients. Experiment 1 demonstrated that
various distinct sub-types exist among MCC patients readmitted within 30 days, and
MCC patients with COPD, kidney transplant and paroxysmal ventricular tachycardia
are at higher risk of readmission within 30 days. Experiment 2 demonstrated that the
model was able to identify contribution scores for diagnoses and procedures such as
myocardial infarction and echocardiography, and overall 30-day hospital readmission
risks for individual MCC patients.

Experiment 1 also demonstrated that patient conferences preceded 30-day hospital
readmissions among MCC patients. Control and reprogramming of pacemakers,
telemetry monitoring and distant consultations were also associated with the 30-day
hospital readmissions. But, experiment 1 was not able to demonstrate the quantitative
contribution, either positive or negative, of the diagnoses and procedures to 30-day
hospital readmissions. However, this challenge associated with interpretation of results
obtained from deep neural networks is common, and some models have been applied in
health care to address this issue [35, 47].

In experiment 2, we demonstrated that RETAIN was better able to quantify the
individual contributions of diagnoses and procedures to 30-day hospital readmissions,
both in terms of either causing (positive contribution) or preventing (negative contri-
bution) readmissions. These contributions were determined for individual patients
considering the sequence and timing of the previous MCC patients’ visits as shown in
Table 4. In coming studies we aim to explore how the RETAIN model is affected by
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adding more variables to the MCC patients’ sequential records, such as demographics,
medications, laboratory values, number of visits, and length-of-stay.

5.2 Sub-typing and Vector Representations of MCC Patients

This study suggests that vector representations of patients and sub-typing among
complex patients, such as MCC patients, by the type of health care encounters, like
hospital readmissions, is as important as sub-typing patients by age and gender. This
nontraditional approach to sub-typing makes it more robust and useful in practice. Sub-
typing complex patients by the type of health care encounters enables us to have a
deeper look at the sub-types as it adds up the possibility to include temporal aspects of
the patients’ encounters. The recently developed robust deep learning architectures
have made it easier to include more variables from the EHR in predictive analytics and
at the same time produce robust results.

Vector representations of patients are a road map in disease progression [48–50]
that can identify key disease patterns among complex chronic patients. Patients with
MCCs are difficult to treat because there are no clear guidelines for such patients.
Majority of these guidelines are developed mostly based on the individual diseases.
Vector representations of patients through deep learning architectures can be useful in
identifying the unique patients that possess uniform and distinct features. These unique
patients require unique approaches that need to be followed in their treatment
processes.

Sub-typing patients, and hence identifying specific medical journeys for complex
patients may enhance clinicians’ ability to make optimal care decisions. Researchers
are identifying sub-types among patients with single medical conditions, such as dia-
betes. These sub-types have unique features and require that they are treated differently.
For instance, a recent study performing cluster analysis of diabetic patients found five
different clusters with unique characteristics and risk profiles [51]. Patients with MCCs
are stronger candidates for sub-typing since they have a combination of complex
medical conditions and the underlying unique characteristics. Among patients with
MCCs, the utilization of time aware and temporal variables may provide an opportunity
to explore sub-types of patients with uniform and distinct features.

As demonstrated in this study, robust deep learning algorithms such as CNN and
RNN have been proposed to learn typical vector representations of complex patients,
and stratify them into suitable sub-types that can help clinicians in their day-to-day
decision making process during disease and operational management. Such algorithms
may improve the risk assessment for 30-day hospital readmissions and help clinicians
and health care managers in planning their daily operations in an optimal manner.

5.3 Practical Implications for MCC Patients and Health Care in General

The CNN and RNN used in this study have the potential to positively influence
practical decisions around MCC patients and optimize resource utilization. The models
can be used to inform clinicians about high consumers of care, and develop process
maps and clinical pathways for unique clusters among MCC patients and complex
chronic patients in general.
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Patients with MCCs have implications for health care costs [5]. Identification of
high consumers of care is a priority issue for decision makers and plays a key role in
the treatment and hospital resource planning. Among patients with MCCs, health care
costs are differently associated with individual patients since they have different
underlying conditions, as we have shown in this study. Therefore, it is imperative that
some of the sub-types will incur more health care costs than the others. Deep learning
architectures may help clinicians and health care managers to identify such costly
patients with MCCs. Clinicians and health care managers can then develop individually
tailored strategies and may help in reducing health care costs. For instance, by iden-
tifying patients with greater risks of being readmitted within 30 days, clinicians can
develop preventative strategies to reduce the risk of readmissions. Similarly, the hos-
pital can plan well in advance by better allocation of health care resources. The models
can also be used in the development of individually tailored preventative and cost
reducing strategies for different groups of patients with complex chronic conditions
other than MCC patients.

This study has practical implications for some of the areas of knowledge repre-
sentation in health care such as organization of knowledge for the management of
MCC patients, computer based knowledge representation, development of knowledge
based systems, diagnostic problem solving methodologies, and treatment and hospital
resources planning.

Our study has implications for the organization of knowledge for the management
of MCC patients. Deep learning architectures can prove to be useful in the development
of process maps and clinical pathways. Such process maps and clinical pathways can
be useful in the identification of sequential events happening in patients with a specific
group of MCCs and also for the underlying specific sub-types. Since these architectures
can learn the predominant sequential representations of health encounters throughout
patients medical history, these underlying learned representations can be visualized into
process maps and clinical pathways. These individually tailored process maps may
prove to be useful in the development of clinical practice guidelines for patients with
MCCs.

Our study also has implications for predictive analytics methodologies in clinical
practice in general. The models implemented in this study have predictive potential and
can be used to identify MCC patients’ sub-types for which prediction models can be
developed. These models can predict both clinical and healthcare operations man-
agement outcomes such as mortality, cardiovascular events, length-of-stay, and hos-
pital readmissions. For instance, if clinicians are able to classify patients into a
particular cluster that follows a specific sequence of treatment events, they would be
able to stream patients into a sequential care process, or if not, into a more customized
process [52]. In our future studies, we intend to improve the current models and
potentially develop a predictive decision support model for clinicians at HND-centrum.

Lastly, our study serves as a preliminary step in the development of knowledge
based systems and heterogeneous software applications integration in health care. The
predictive models developed on the basis of the deep learning architectures in this study
can be incorporated into interactive analytics tools for patients with MCCs where
clinicians could review individual MCC patient’s risk scores for selected outcomes.
The tool can also provide a visualized overview of a patient’s past medical history and
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encounters. Once we have improved and developed a predictive decision support
model, we aim to develop such interactive analytics tool that can help clinicians and
health care managers alike in their day to day activities. The tool will support clinicians
in visualizing MCC patients’ past medical history and their predominant clinical
processes, and also predict various clinical outcomes. The tool will also help health
care managers in health care operations management activities.

6 Limitations/Methodological Considerations

This study reports the findings based on ICD codes and procedures only for a relatively
small sample size of MCC patients. Therefore, prediction score accuracy might be low.
We aim to increase the sample size and refine the models’ parameters in order to
increase accuracy. Factors that might be important for predicting readmissions e.g.
laboratory values were not considered due to the design of this study. We intend to
include more variables for the development of a predictive decision support model for
MCC patients. Some ICD codes and procedures are also inherently associated with
certain already-made clinical decisions. In the future, we will carefully select diagnosis
and procedure codes relevant for specified research questions, for instance using
directed acyclic graphs. Lastly, since this study was conducted on MCC patients’ data
obtained from a single hospital, the generalizability of the findings to other settings
may be limited.

7 Conclusion

Temporal data on ICD codes and procedures appears to be valuable for personalized
disease management strategies for MCC patients. In this study, three distinct sub-types
of MCC patients with increased risk for 30-day hospital readmission were identified i.e.
MCC patients with chronic obstructive pulmonary disease, kidney transplant, and
paroxysmal ventricular tachycardia. We suggest that temporal vector representations of
patients and sub-typing with deep neural networks such as CNN and RNN are useful in
the development of predictive analytics tools for patients with MCCs.

In the future, we plan to explore the application of deep neural networks in the
development of prediction models for MCC patients that can be used to predict both
clinical and healthcare operations management outcomes. We also aim to make the
results easily accessible for clinicians and other health care professionals by developing
interactive analytics tools.
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