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Abstract
A major barrier to the successful management 
of cancer is the development of resistance to 
therapy. Chemotherapy resistance can either 
be an intrinsic property of malignant cells 
developed prior to therapy, or acquired follow-
ing exposure to anti-cancer drugs. Given the 
impact of drug resistance to the overall poor 
survival of cancer patients, there is an urgent 
need to better understand the molecular path-
ways regulating this malignant phenotype. In 
this chapter we describe some of the molecu-
lar pathways that contribute to drug resistance 
in cancer, the role of a microenvironment defi-
cient in oxygen (hypoxia) in malignant pro-
gression, and how hypoxia can be a significant 
factor in the development of drug resistance. 
We conclude by proposing potential therapeu-
tic approaches that take advantage of a hypoxic 
microenvironment to chemosensitize therapy-
resistant tumours.
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9.1	 �Drug Resistance in Cancer

9.1.1	 �Intrinsic Drug Resistance

The development of drug resistance in cancer is 
complex and multifactorial; moreover, several 
mechanisms of drug resistance appear to be clini-
cally relevant. Some of these mechanisms oper-
ate at the single cell level and include the 
overexpression of drug efflux proteins such as the 
multidrug resistance protein (MRP1; and related 
MRP2 and MRP3), as well as the P-glycoprotein 
(P-gp) efflux pump [2]; increased levels of  
detoxification and DNA repair enzymes  
such as glutathione-S-transferase (GST) and 
06-alkylguanine DNA alkyltransferase [3, 4]; 
and mechanisms interfering with drug-induced 
apoptosis [1, 5]. Alternatively, drug resistance 
can occur at the multicellular level, where the 
tumour architecture plays an important role. In 
this case, cells can acquire resistance to several 
classes of drugs (multidrug resistance or MDR) 
via multiple mechanisms [6–9].

Cancer cell ‘stemness’ has emerged as a major 
contributor to drug resistance and recurrence. 
Cancer stem cells (CSCs) are capable of limited 
differentiation, self-renewal, and tumourigenicity, 
and exhibit enhanced proliferation [10] and sur-
vival [11] in response to chemotherapy. 
Importantly, resistance of these tumour initiating 
cells to both chemotherapy and radiation therapy 
[12] results in selective enrichment of heteroge-
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neous subpopulations [12, 13]. Acquisition of 
drug resistance in CSCs can arise as a result of 
multiple cell intrinsic mechanisms (Reviewed by 
Abdullah and Chow [14]). Most critically though, 
drug resistance in CSCs is dependent on mainte-
nance of pluripotency, which contributes to 
tumour heterogeneity – a feature of MDR. Recent 
work has additionally highlighted the importance 
of autophagy in conservation of pluripotency [15] 
such that inhibition of autophagy sensitizes 
tumour cells to chemotherapy and thus represents 
a potential strategy to overcome drug resistance 
[16].

9.1.2	 �Role of the Tumour 
Microenvironment in Drug 
Resistance

Until relatively recently, tumour cell intrinsic 
pathways were the focus of mechanistic drug 
resistance studies. Accumulating evidence now 
shows that the tumour microenvironment (TME) 
plays a pivotal role in facilitating acquired drug 
resistance. Contributing to the TME is a network 
of fibroblasts, immune cells, host microbes,  
lymphatics and vasculature [17]. These cellular 
constituents reside within a complex stromal 
scaffolding made up of extracellular matrix 
(ECM) proteins often within an environment 
deficient in oxygen [18]. The TME contributes to 
drug resistance in a multifactorial manner. In the 
following paragraphs we describe some of the 
mechanisms by which elements of the TME can 
mediate drug resistance.

	(a)	 Biomechanical and biophysical properties

Tissue architecture, including cellular organi-
zation, polarity [19] and deposition and composi-
tion of the ECM [20] can regulate apoptotic 
responses to chemotherapy. Relative to normal 
tissue architecture, the ECM of solid tumours is 
often rigid. The biomechanical properties of this 
stiffened ECM regulate and direct malignant  

cellular behaviours [21] including migration and 
invasion [22], dormancy, proliferation and che-
mosensitivity [20]. Increased tumour stiffness is 
predictive of neoadjuvant chemotherapy response 
in breast cancer [23] and is linked to chemoresis-
tance in pancreatic cancer [24, 25]. High intersti-
tial pressure resulting from a rigid ECM in solid 
tumours can also lead to drug resistance by pre-
venting the transport of chemotherapeutic agents 
away from blood vessels (Reviewed by Munson 
and Shieh [26]). Poor delivery of molecules 
resulting from high interstitial pressure and inad-
equate blood perfusion can lead to  a hypoxic 
environment and a deficit in nutrients such as glu-
cose. Glucose deprivation was shown to induce 
resistance to doxorubicin and etoposide in 
Chinese hamster ovary cells, as well as human 
colon and ovarian cancer cell lines [27–29]. 
Similarly, changes in the pH of the tumour micro-
environment resulting from increased anaerobic 
respiration and decreased removal of toxins 
cause alterations in cell membrane permeability, 
which in turn can limit cellular uptake of chemo-
therapeutic agents [30, 31].

Biomechanical properties of the ECM can 
also be altered by neoplastic progression. For 
example, tumour cell expression of the intra-
cellular protein tyrosine kinase focal adhesion 
kinase (FAK) regulates local tissue fibrosis and 
promotes an immunosuppressive TME associ-
ated with therapy resistance in pancreatic duc-
tal adenocarcinoma [25]. Indeed, stromal 
depletion has been utilized as an approach to 
enhance delivery of chemotherapeutic agents 
to desmoplastic tumours and has been success-
ful at improving survival in mouse studies  
[32, 33].

	(b)	 Host microbiome

The potential role of the microbiome in the 
modulation of therapy responses in cancer is an 
area of investigation that has received a great deal 
of attention in recent years [34], but is still a rela-
tively new concept. It is becoming evident that 
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gaining an understanding of pharmacomicro-
biomics, the study of interactions between host 
microbes and drugs, is important to implement-
ing effective cancer treatments [35]. While much 
of the work currently under way focuses on pro-
moting a favourable intestinal microbiome for 
successful immune therapy [36], there is also evi-
dence that intratumoural bacteria metabolize che-
motherapeutic agents and thus contribute to 
chemoresistance [37].

	(c)	 Immune microenvironment

Tumours are described as wounds that do not 
heal [38] and tumour-promoting inflammation is 
now widely accepted as a hallmark of cancer 
[39]. The tumour immune microenvironment 
(TiME) is dynamic and consists of innate and 
adaptive immune cells as well as humoral factors 
that are largely immunosuppressive [40]. Immune 
cells within the tumour microenvironment are 
functionally distinct from their counterpart 
immune cells of the adjacent normal stroma and 
are often described as being pro-tumourigenic. 
These tumour promoting immune cells within the 
TME negatively influence responses to radiother-
apy and chemotherapy (Reviewed by Medler 
et  al. [41]), in part by preventing tumour cell 
apoptosis [42]. Myeloid cells, including tumour 
associated macrophages (TAMs), neutrophils 
and myeloid-derived suppressor cells (MDSCs) 
are well-studied immune cells contributing to 
chemoresistance (Reviewed by Cotechini et  al. 
[43]). However, cells of the adaptive immune 
system, including B cells and CD4+ T cells, also 
contribute to chemoresistance and radioresis-
tance in part by regulating the mobility and anti-
tumour functions of cytotoxic CD8+ T cells 
(CTL) [44–46].

An important signalling axis regulating 
immune cell activity and, in particular, CD8+ 
cytotoxic T cell responses, is the immune check-
point Programmed Death Receptor 1 (PD-1)/
Programmed Death Ligand 1 (PD-L1). PD-1 is a 
monomeric transmembrane receptor present on 

activated T cells, B cells, dendritic cells, NK cells 
and monocytes. Binding of PD-1 to its cognate 
ligands, PD-L1 or PD-L2, renders T cells hypore-
sponsive to antigen stimulation and manifests as 
inhibition of proliferation and dampened effector 
(cytotoxic) functions [47–49]. PD-L1 is 
expressed by many different cell types, including 
epithelial cells, B cells, T cells, monocytes and 
antigen presenting cells [50]. Importantly, tumour 
cells from various cancers including breast, 
colorectal, ovarian, bladder and lung cancers, as 
well as glioblastomas, lymphomas, melanomas 
and leukemias express PD-L1, and expression of 
this immune checkpoint is predictive of poor 
clinical prognosis [51–59].

There is recent evidence from our work [60] 
and that of others [61], that the PD-1/PD-L1 sig-
nalling axis is bi-directional and that reverse sig-
nalling endows tumour cells with enhanced 
resistance to conventional anti-cancer drugs. In 
vitro work from Azuma and colleagues revealed 
that PD-L1 overexpressing mouse mastocytoma 
(B7-H1/P815) cells are resistant to PD-1+ CTL-
mediated killing as well as to Fas and drug-
mediated apoptosis [61]. Using in vitro and in 
vivo approaches, we recently discovered that 
PD-1/PD-L1 signalling endows human and 
mouse prostate and breast cancer cells with resis-
tance to conventional chemotherapeutic agents 
likely via signalling through PI3K-AKT-mTOR 
and MEK-ERK pathways [60]. Importantly, our 
group has also shown that hypoxia induces 
PD-L1 expression in murine and human tumour 
cells leading to immune escape [158]. Hypoxia is 
a characteristic of solid tumours and occurs as a 
result of an imbalance between oxygen consump-
tion and oxygen availability [62]. While a reduc-
tion in the local amount of oxygen can be initially 
detrimental to rapidly-proliferating cells, tumour 
cells adapt to hypoxia by activating oxygen sen-
sitive transcription factors (described below). 
Tumour cells co-opt physiological adaptations to 
hypoxia in order to evade immune destruction 
and survive radiotherapy and chemotherapy.
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9.2	 �Hypoxia and Malignant 
Progression

9.2.1	 �HIF-1: A Mediator of Hypoxia-
Induced Malignant 
Phenotypes

The most well characterised transcription factor 
responsible for many cellular adaptations to 
hypoxia is the hypoxia-inducible transcription 
factor (HIF), a dimeric protein consisting of a 
constitutively active subunit (HIF-1β) as well as 
an oxygen-sensitive  subunit (HIF-1α) [63]. 
Under well-oxygenated conditions, HIF-1α is 
unstable and rapidly degraded. HIF-1α is hydrox-
ylated by the oxygen-dependent enzyme prolyl 
hydroxylase domain 2 (PHD2) and interacts with 
the von Hippel-Lindau tumour suppressor pro-
tein (pVHL). This interaction leads to the recruit-
ment of E3 ubiquitin ligase that mediates the 
polyubiquitination of HIF-1α, which ultimately 
leads to the proteasomal degradation of HIF-1α 
[64, 65]. HIF-1α is also hydroxylated by factor 
inhibiting HIF-1 (FIH-1), which prevents binding 
of its coactivator p300/CBP and inhibits tran-
scriptional activity [66, 67]. Due to the oxygen 
requirement for PHD2 activity, hypoxia prevents 
the hydroxylation of HIF-1α, thereby allowing it 
to bind to HIF-1β and mediate the transcription 
of hypoxia-inducible genes [63].

Many HIF-1 gene targets encode proteins 
involved in promoting tumour growth and malig-
nant phenotypes such as angiogenesis, glucose 
metabolism, ECM remodelling, epithelial-to-
mesenchymal transition, cell survival, and prolif-
eration [68]. Glucose transporter 1 (glut-1) is a 
HIF-1 target gene and is involved in regulation of 
glucose uptake [69]. HIF-1 regulates angiogene-
sis by activating various genes, most notably vas-
cular endothelial growth factor (VEGF), a master 
regulator of neo-vessel formation [70], as well as 
genes that mediate endothelial cell and pericyte 
proliferation, migration, adhesion, and matura-
tion, vascular permeability and vasoactivity [71]. 
Despite activation of angiogenesis in response to 
hypoxia, blood vessels within the TME are tortu-
ous and leaky and do not function in a normal 
capacity [72]. Hypoxia is also a central regulator 

of lymphatic vessel formation or lymphangio-
genesis [73]. In addition to the presence of lym-
phatic vessels being associated with 
lymphogenous spread of disease, recent work 
examining lymphatic vessel density (LVD) in 
human melanoma revealed a positive correlation 
between LVD and the presence of immunosup-
pressive factors within the TME and tumour-
draining lymph nodes [74]. Taken together, 
hypoxia enables tumour growth by promoting the 
classical hallmarks of cancer [39, 75].

9.2.2	 �Hypoxia and Radioresistance

As early as the 1950s, radiobiologists were 
aware that hypoxia within solid tumours reduces 
the efficacy of radiation therapy [76]. Gray and 
colleagues discovered that tumour cells were 
three times more sensitive to radiation under nor-
moxic conditions compared to those in anoxia 
[76, 77]. Successful radiotherapy depends on the 
presence of relatively high levels of oxygen 
required for the generation of free radicals that 
cause irreversible DNA damage, and hence 
tumour cell death [78]. To overcome hypoxia-
induced radio-resistance, studies have focused 
on developing therapeutics that function to 
increase oxygen delivery via improving blood 
flow, mimicking oxygen or targeting and destroy-
ing hypoxic cells [79]. Studies combining frac-
tionated radiotherapy with oxygen mimetics 
such as 2-nitroimidazoles, or use of cytotoxic 
agents that specifically target hypoxic cells have 
shown increased tumour cell killing during 
radiotherapy [80]. However, despite decades of 
strong evidence revealing that modification of 
hypoxia is clinically efficacious in radiotherapy, 
it has yet to become a standard of care [81]. 
Similarly, it was discovered that many chemo-
therapeutic agents (e.g. carmustine and alkylat-
ing agents) display reduced cytotoxicity toward 
hypoxic tumour cells, as these drugs also require 
oxygen for maximal activity [82]. These early 
observations led to the development of novel 
chemotherapeutic bioreductive agents which are 
cytotoxically active only under limited levels of 
oxygen [82].
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9.2.3	 �Hypoxia and Cancer 
Metastasis

Studies have demonstrated that hypoxia within 
the tumour mass is an independent marker of a 
poor prognosis for patients with various types of 
cancers such as carcinoma of the cervix [83], soft 
tissue sarcoma [84], carcinoma of the head and 
neck [85], cutaneous melanoma [86] and pros-
tatic adenocarcinoma [87, 88]. In some of the 
above studies, disease-free survival for patients 
with tumours having median pO2 values of less 
than 10  mmHg was found to be significantly 
lower than for patients with tumours having 
higher pO2 values. Moreover, clinical studies 
now have provided evidence that low tumour 
oxygen levels are associated with increased 
tumour growth and metastasis [83, 84] and with 
biochemical relapse and recurrence of prostate 
cancer following radiotherapy [89].

Local tumour hypoxia is a serious impediment 
to the successful treatment of cancer in part as a 
result of hypoxia-mediated acquisition of malig-
nant phenotypes that promote the spread of 
tumour cells. Experimental evidence in support 
of hypoxia having a direct stimulatory effect on 
metastasis was initially provided by the work of 
Hill and co-workers using various cell lines [90–
93]. Their earlier studies demonstrated that expo-
sure of mouse fibrosarcoma cells to hypoxia 
induces DNA over-replication and selects for 
tumour cell variants with increased metastatic 
potential [92]. More recently, we and others 
showed that hypoxia (both in vitro and in vivo) 
rapidly and transiently increases the invasiveness 
and metastatic potential of various tumour cell 
lines [90, 91, 93–99]. Our studies linked the 
hypoxia-mediated invasive ability of tumour cells 
to elevated expression of metastasis-associated 
molecules such as the urokinase plasminogen 
activator receptor (uPAR: a cell surface glycopro-
tein necessary for tumour cell invasion through 
the extracellular matrix) and the plasminogen 
activator inhibitor  1 as well as with decreased 
expression of tissue inhibitor of metalloprotein-
ases 1 [95, 100, 101]. In support of these observa-

tions, Rofstad et  al. reported that hypoxia 
promotes lymph node metastasis in human mela-
noma xenografts by up-regulating uPAR expres-
sion [102].

The above-mentioned hypoxia-associated 
tumour intrinsic mechanisms contributing to 
metastasis are often described as ‘seed factors’ 
[103] in relation to Stephen Paget’s ‘Seed and 
Soil’ hypothesis [104]. It is becoming evident 
that the metastatic niche is an important factor to 
consider when discussing metastasis and meta-
static potential since this fertile soil contributes 
to the metastatic microenvironment (MME). 
Similar to the TME, the MME is a hypoxic, 
immunosuppressive milieu consisting of dysreg-
ulated cellular and acellular components. 
Metastatic tumour cells often exhibit organotro-
pism with respect to dissemination to secondary 
sites. For example, breast cancer frequently 
metastasizes to the lungs. There is evidence, 
using human breast cancer cells and metastatic 
murine models, that HIF-1 orchestrates meta-
static programs driving lung-specific metastasis 
through various mechanisms [105]. In general, 
the MME favours seeding and outgrowth of dis-
seminated metastatic tumour cells and thus con-
tributes to malignancy. However, it is also 
important to consider the role of the pre-meta-
static niche. This unique microenvironment is 
established prior to the dissemination of tumour 
cells and is primed by transformed cells within 
the primary neoplasm to enable colonization of 
metastatic cells. Indeed, recent work has shown 
that factors secreted by hypoxic tumour cells 
support the establishment of an immunosuppres-
sive pre-metastatic niche [106, 107].

9.2.4	 �Role of Hypoxia in Autophagy

Autophagy  – a cell-intrinsic process of ‘self-
eating’ that maintains cellular homeostasis  – is 
regulated by numerous stimuli and pathways, one 
of which is hypoxia [108]. Both HIF-1-dependent 
and HIF-1-independent mechanisms are known 
to control this process [109]. HIF-1-independent 
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pathways tend to be activated in more severe 
hypoxic conditions, and work in concert with 
other cell stressors such as metabolic stress and 
nutrient starvation [109]. One important HIF-1α-
independent pathway of hypoxia-induced 
autophagy is the unfolded protein response 
(UPR). Rouschop et  al. demonstrated that 
hypoxia activates transcription of microtubule-
associated protein 1 light chain 3β (MAP1LC3B) 
and autophagy-related gene 5 (ATG5) in multiple 
tumour cell lines via the UPR [110]. MAP1LC3B, 
encoding microtubule-associated protein light 
chain 3 (LC3B), and ATG5 are important for 
autophagosome formation and thus play impor-
tant roles in autophagic processes. Similar results 
were shown by Rzymski et al., who reported that 
autophagy-related gene 4 acts on MAP1LC3B 
transcription by directly binding to a cyclic AMP 
(cAMP) response element binding site in the pro-
moter [111]. Both studies indicate that the 
increased transcriptional activation of 
MAP1LC3B leads to a replenishment of the 
LC3B pool, thus prolonging autophagy and 
allowing cells to survive through extended peri-
ods of hypoxia [110, 111]. There is also evidence 
that 5’-AMP-activated protein kinase (AMPK) 
regulates hypoxia-induced autophagy. In a study 
of androgen-dependent prostate cancer, it was 
discovered that hypoxia and androgen depriva-
tion lead to activation of autophagy through 
AMPK and a mechanism partially mediated by 
Beclin-1 [112]. Similarly, Papandreou et  al., 
showed that hypoxia increases autophagy in 
tumour cells via activation of AMPK, in a man-
ner independent of HIF-1 and its target genes 
[113]. Recent studies have also shown an emerg-
ing role for micro-RNAs (miR) in regulating 
hypoxia-induced autophagy. For example, 
expression of miR-96, which can either promote 
or inhibit autophagy, is increased in response to 
hypoxia in prostate cancer cells [114].

Activation of autophagic processes provides a 
survival advantage to cancer cells subjected to 
hypoxic stress. HIF-1-dependent mechanisms of 
hypoxia-induced autophagy are thought to 
require the expression of Bcl-2/adenovirus E1B 
19 kDa interacting protein 3 (BNIP3) as well as a 

similar protein, BNIP3L (also known as Nix) 
[115, 116]. It has been proposed that these mole-
cules lead to autophagy by releasing Beclin-1 (a 
key mediator of autophagy) from Bcl-2/Beclin-1 
or Bcl-XL/Beclin-1 complexes [117]. Tracy et al. 
showed that hypoxia-induced autophagy was 
dependent on HIF-1-mediated activation of 
BNIP3 [118]. HIF-1 has also been shown to 
induce autophagy via activation of miR-210, 
leading to a downregulation of Bcl-2 [119]. 
HIF-1 also stimulates autophagy in hypoxia via 
the p27-E2F1 pathway in esophageal cancer cells 
[120]. It is important to note that there is some 
controversy regarding whether hypoxia-induced 
autophagy is a cell survival or a cell death-
inducing mechanism [121]. However, in the con-
text of hypoxia-induced drug resistance in cancer 
cells, autophagy acts as a survival mechanism.

9.3	 �Mechanisms of Hypoxia-
Induced Drug Resistance

As stated previously, many chemotherapeutic 
agents exhibit reduced cytotoxicity toward 
hypoxic tumour cells as such drugs often require 
oxygen for maximal activity [82]. Regardless of 
the oxygen requirement for anti-cancer drug 
activity, studies have also revealed that pre-
incubation of certain human and non-human 
tumour cell lines under hypoxia alters their phe-
notype such that they transiently increase their 
resistance to drugs such as etoposide, and doxo-
rubicin [4, 122–127]. Some explanations sug-
gested for this form of resistance have included 
the upregulated expression of glucose- and 
oxygen-regulated proteins, DNA over-
replication, cell cycle arrest, altered cellular 
metabolism, increased drug efflux pumps and 
greater genetic instability [82].

Various hypoxia-inducible genes with well-
established roles in resistance to anticancer 
agents have been identified. For example, func-
tional HIF-1 target hypoxia response elements 
(HREs) have been identified in genes encoding 
the multidrug resistance 1 protein (MDR1/
ABCB1) and breast cancer resistance protein 
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(Bcrp/ABCG2), which are members of the ATP-
binding cassette (ABC) transporter family that 
confer resistance through active efflux of a wide 
range of anti-cancer agents [128, 129]. As 
observed for most HRE-containing genes, 
increased HIF-1 binding activates the MDR1 or 
Bcrp gene promoters, resulting in increased 
expression of these drug transporters under 
hypoxic conditions [130].

Chemotherapeutic agents can trigger tumour 
cell death through the induction of pro-apoptotic 
pathways. However, it is important to recognise 
that tumour cells that have undergone drug-
induced DNA damage can also be eliminated via 
other forms of programmed cell death such as 
autophagy, mitotic catastrophe, and necrosis 
[131]. Moreover, certain anti-cancer drugs are 
known to induce senescence in tumour cells 
[132–137], and drug-induced senescence and 
mitotic catastrophe may, in fact, be more promi-
nent than apoptosis [132, 136]. Senescence is 
characterized by an irreversible arrest of the cell 
cycle and can be induced by various stresses 
including telomere dysfunction, oxidative dam-
age, DNA damage, and aberrant expression of 
oncogenic proteins such as Ras [138]. Senescence 
is categorized as either replicative senescence, a 
physiological process triggered to limit the life 
span of non-malignant cells, or accelerated 
senescence, associated with a rapid onset of ter-
minal proliferation arrest in response to cell dam-
age such as drug- or radiation-induced DNA 
damage [138]. A study from our laboratory 
revealed that hypoxia-induced resistance to anti-
cancer drugs is associated with decreased tumour 
cell senescence and that it requires HIF-1 activity 
[139]. While there is evidence that hypoxia can 
inhibit replicative senescence by increasing 
telomerase activity [140–143], it is doubtful that 
increased telomerase activity accounts for the 
hypoxia-mediated resistance to drug-induced 
senescence. It is rather likely that a lack of drug-
induced senescence in hypoxic tumour cells is 
indirectly a result of hypoxia-triggered inhibition 
of DNA damage, as evidenced by another study 
from our group [144]. In that study we demon-
strated that hypoxia prevents etoposide-induced 

DNA damage in cancer cells through a still to be 
characterised mechanism involving HIF-1α 
[144].

As mentioned previously, hypoxia is an 
important driver of autophagy. Although autoph-
agy has been shown to have both pro-apoptotic 
and pro-survival roles in tumour cells, there is a 
link between hypoxia-induced autophagy and 
drug resistance [121]. As a protective response 
against chemotherapy- and radiotherapy-induced 
apoptosis, tumour cells undergo autophagic pro-
cesses that degrade damaged cellular components 
[145]. For example, in response to cisplatin, gli-
oma cell lines stimulate protective autophagic 
responses via up-regulation of AMPK and subse-
quent down-regulation of mammalian target of 
rapamycin (mTOR) [146]. It was subsequently 
revealed that hypoxia amplifies cisplatin-induced 
autophagy in a HIF-1-dependent manner and that 
inhibiting a crucial autophagy mediator, ATG5, 
restored sensitivity to cisplatin in lung cancer 
cells [147]. Similar results were observed in non-
small cell lung cancer cells, where inhibition of 
LC3B restored cisplatin sensitivity under hypoxic 
conditions [145]. Hepatocellular carcinoma cells 
cultured in hypoxia also exhibited increased 
resistance to cisplatin, epirubicin, gemcitabine 
and mitomycin via hypoxia-mediated autophagic 
processes [148]. Furthermore, bladder cancer 
cells exposed to gemcitabine exhibit increased 
autophagy, which is augmented by hypoxia in a 
manner dependent on the HIF-1α/BNIP3/
Beclin-1 signaling pathway [149]. The anti-
cancer effects of other drugs, including pacli-
taxel, were also shown to be decreased under 
hypoxic conditions in a manner dependent on 
HIF-1 and autophagy [150, 151]. A study by 
Notte et al. showed that taxol induces the UPR in 
hypoxic breast cancer cells, and that upregulation 
of ATF4 leads to hypoxia-induced autophagy, as 
well as increased resistance to taxol [152].

While hypoxia-induced autophagy mediates 
resistance to conventional chemotherapeutic 
agents, there is also evidence that hypoxia-
induced autophagy mediates resistance to anti-
angiogenic agents in a HIF-1α/AMPK dependent 
manner [153], as well as resistance to ionizing 
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radiation via the HIF-1α/miR-210/Bcl-2 pathway 
[119, 154].

In addition to the tumour-cell intrinsic mecha-
nisms of hypoxia-mediated drug resistance 
described above, there are also tumour-cell 
extrinsic factors contributing to therapy resis-
tance. The recent successes of immune therapy 
combined with the recognition that tumour-
associated inflammation is a potentiator of 
malignant progression have led to recent explo-
ration of links between hypoxia, the TiME and 
drug resistance. For example, hypoxic niches 
within the TME harbour CSCs [155], and thus 
contribute to cellular heterogeneity and drug 
resistance. In addition, hypoxia-induced release 
of macrophage chemoattractants results in 
recruitment of TAMs to the TME. These myeloid 
cells subsequently release factors that promote 
tumour cell survival and amplify resistance to 
therapy [156]. In addition, chemotherapy- and 
radiotherapy-induced immunogenic cell death, 
which is characterized by antigen-specific 
immune responses against dead-cell antigens, is 
hindered by the presence of TAMs [157]. 
Cytotoxic CD8+ T cell responses against tumour 
antigens are dampened by checkpoint molecules 
expressed on immune cells and tumour cells 
within the TME [41]. Our group discovered that 
hypoxia is an important driver of PD-L1 expres-
sion in various human and mouse tumour cells. 
We found that HIF-1α-induced expression of 
PD-L1 results in resistance to CTL-mediated tar-
get cell lysis thus enabling immune escape [158]. 
Work by Noman and colleagues revealed that 
HIF-1α binds directly to the HRE in the proximal 
promoter of the PD-L1 gene and results in 
increased PD-L1 expression on various immune 
cells including macrophages, MDSCs and den-
dritic cells [159]. In addition, our more recent 
work describes a novel mechanism by which 
reverse signalling of PD-1/PD-L1 confers che-
moresistance to tumour cells [60]. Thus, hypoxia 
within the TME drives an immunosuppressive 
phenotype, limits cytotoxicity, and promotes 
chemoresistance, which altogether potentiate 
malignancy and promote metastasis.

9.4	 �Therapeutic Opportunities

9.4.1	 �Nitric Oxide Mimetic Agents

There is evidence that cellular adaptations to 
hypoxia, such as the acquisition of malignant 
properties by tumour cells, are in part a conse-
quence of a hypoxia-mediated inhibition of the 
nitric oxide/cyclic guanosine monophosphate 
(cGMP) signalling pathway [96, 97, 160–165]. 
The generation of nitric oxide results from the 
conversion of L-arginine into L-citrulline [166–
168] (Fig. 9.1). This reaction is catalyzed by the 
enzyme nitric oxide synthase (NOS), of which 
there are three known isoforms: NOS-1, -2, and -3. 
Production of nitric oxide depends on the avail-
ability of several co-factors and co-substrates, 
including nicotinamide adenine dinucleotide 
phosphate (NADPH), flavin adenine dinucleotide 
(FAD), tetrahydrobiopterin, and oxygen [166, 
169–171]. Consequently, the process of endoge-
nous nitric oxide production is complex. Moreover, 
in the absence of oxygen, as it is the case in solid 
tumours, endogenous production of nitric oxide is 
limited [170, 171]. Under well-oxygenated condi-
tions, nitric oxide generated by NOS binds to and 
activates soluble guanylyl cyclase (sGC), which in 
turn catalyzes the conversion of guanosine tri-
phosphate (GTP) into cGMP. The latter is a known 
regulator of ion channel  conductance,  glycoge-
nolysis, and apoptosis. It also causes smooth mus-
cle  relaxation and vasodilation. An important 
function of cGMP is the activation of protein 
kinase G (PKG), a serine/threonine-specific 
kinase  that phosphorylates  a number of biologi-
cally important targets.

Limited availability of cGMP under hypoxia 
leads to decreased activation of PKG and reduced 
protein phosphorylation, an important aspect of 
cellular adaptations to hypoxia. Our research has 
revealed that pharmacological inhibition of NOS, 
soluble guanylyl cyclase, or PKG in well oxy-
genated tumour cells results in the acquisition of 
phenotypes similar to those induced by hypoxia, 
such as increased invasive and metastatic ability 
[96, 97], as well as drug resistance [162, 172]. 
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Furthermore, pharmacological activation of solu-
ble guanylyl cyclase with various nitric oxide 
mimetic agents, such as glyceryl trinitrate (GTN; 
nitroglycerin), diethylenetriamine nitric oxide 
adduct (DETA-NO) and sodium nitroprusside, 
blocks the acquisition of malignant properties in 
tumour cells exposed to hypoxia [96, 97, 158, 
162, 172]. A similar inhibition of hypoxia-
induced acquisition of malignant phenotypes is 
achieved by direct activation of PKG using the 
non-hydrolysable cGMP analogue, 8-bromo-
cGMP [96, 97, 172].

There is evidence that nitric oxide signalling 
interferes with tumour cell adaptations to hypoxia 
by inhibiting HIF-1α accumulation [173–175]. 
While high concentrations (>1  μM) of nitric 
oxide are capable of stabilizing HIF-1α during 
normoxic conditions, low concentrations of nitric 
oxide (<400 nM) have been reported to facilitate 
HIF-1α degradation thereby impairing HIF-1 sig-
nalling [176]. There is also evidence that under 
mildly hypoxic conditions inhibition of mito-
chondrial respiration by nitric oxide leads to a 
redistribution in intracellular oxygen and activa-
tion of the PHD enzymes responsible for HIF-1α 
degradation [174].

Thus, it appears that tumour cell adaptations 
to hypoxia are tightly regulated by nitric oxide 
and HIF-1 activity. These observations have led 
to the design of studies aimed at determining 
whether nitric oxide mimetic agents can delay 
disease progression or chemosensitize tumours in 
the clinical setting. We completed a phase II trial 
on prostate cancer patients with biochemical 
recurrence showing that continuous transdermal 
delivery of low doses (0.03 mg/h) of GTN may 
be effective at delaying disease progression 
[177]. This finding revealed that activation of 
nitric oxide signalling may have cancer inhibi-
tory properties independent of potential chemo-
sensitizing effects. Yasuda et  al. reported 
improved response rates to vinorelbine plus cis-
platin therapy in lung cancer patients treated with 
GTN for angina pectoris compared with patients 
without angina who did not use GTN [178]. This 
observation prompted subsequent studies to 
determine therapeutic benefits associated with 
clinical use of nitric oxide mimetics as adjuvants 
to chemotherapy. A Phase II trial involving 
patients with previously untreated stage IIIB/IV 
non-small-cell lung cancer revealed that, com-
pared with patients treated with a placebo trans-

Fig. 9.1  Generation of 
nitric oxide (NO) and 
the NO/cGMP signalling 
pathway. NO is 
produced during the 
conversion of L-arginine 
into L-citrulline in an 
oxygen-dependent 
reaction catalyzed by 
nitric oxide synthase 
(NOS). Nitric oxide 
activates soluble 
guanylyl cyclase (sGC), 
which in turn leads to 
the activation of protein 
kinase G (PKG) and the 
phosphorylation of 
target proteins. 
Inhibition of this 
pathway due to hypoxia 
leads to adaptive 
responses
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dermal patch, transdermal delivery of GTN 
combined with vinorelbine and cisplatin was 
associated with significantly increased response 
rate and median time to progression [178]. A 
follow-up study revealed a lower incidence of 
cells immunoreactive for HIF-1α, P-gp, and 
vascular endothelial growth factor (VEGF), in 
lung adenocarcinomas from GTN treated patients 
relative to tumours from non-treated patients 
[179].

9.4.2	 �Checkpoint Inhibitors

Interfering with the PD-1/PD-L1 signalling axis 
using monoclonal antibodies has shown promis-
ing and unprecedented results for many types of 
cancers [180]. At the time of writing, there were 
two US Food and Drug Administration-approved 
anti-PD-1 therapies (Nivolumab and 
Pembrolizumab) and three anti-PD-L1 therapies 
(Atezolizumab, Durvalumab and Avelumab) for 
treatment of patients with melanoma, non-small 
cell lung cancer, metastatic urothelial bladder 
cancer, renal cell carcinoma, Hodgkin’s lym-
phoma, advanced gastroesophageal cancer, meta-
static colorectal cancer, hepatocellular carcinoma 
and Merkle cell carcinoma [181]. It is important 
to note, however, that most of these checkpoint 
inhibitors have not yet been approved for use as 
first-line therapy and, as such, patients will have 
received, or will concurrently be receiving, 
standard-of-care chemotherapy and radiotherapy. 
In addition, despite the successes of immune 
therapy, only a fraction of patients has shown 
durable responses. Therefore, targeting addi-
tional mechanisms of drug resistance may be 
important for achieving higher response rates in 
individuals receiving checkpoint blockade ther-
apy. One such approach could involve simultane-
ous inhibition of HIF-1α  in combination with 
PD-L1/PD-1 blockade. The findings from our 
own work and those of others discussed above 
call upon additional studies to elucidate the 
mechanism(s) behind the hypoxia-driven PD-L1 
expression and its significance in cancer develop-
ment. It is important to note that PD-L1 expres-
sion is known to be driven by several oncogenic 

pathways [50] of which hypoxia is an important 
regulator.

9.5	 �Conclusion

Here we have outlined tumour-cell intrinsic and 
extrinsic (microenvironmental) mechanisms by 
which hypoxia contributes to malignancy and 
drug resistance. It is clear that tumour hypoxia is 
an impediment to the successful management of 
cancer. An important challenge in developing 
successful therapeutic options to mitigate 
hypoxia-induced acquisition of malignant pheno-
types is to identify therapies that selectively tar-
get hypoxic tumour cells and/or other cells in the 
tumour microenvironment that contribute to the 
acquisition of malignant phenotypes. 
Furthermore, identifying patients likely to 
respond to treatment and mechanisms of hypoxia-
induced drug resistance is  critical. Important 
also  is the need to identify and to better under-
stand what role, if any, hypoxia might have in 
patients that fail to respond to therapy. Thus, it is 
evident that more basic research is required  to 
determine mechanisms by which hypoxia is asso-
ciated with development of resistance to therapy. 
While relying on basic, pre-clinical research to 
inform and guide drug development and clinical 
trials is important, it is also worth noting that 
adopting a bedside-to-bench approach is an 
invaluable translational opportunity and will be 
beneficial in the design of strategies to overcome 
drug resistance.
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