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Abstract Two-dimensional (2D) diffraction gratings are playing an increasingly
important role in the optics community due to their promising dispersion proper-
ties in two perpendicular directions. However, conventional 2D diffraction gratings
often suffer from wavelength overlapping caused by high-order diffractions, and
producing diffraction gratings with nanometer feature size still remains a challenge.
In recent years, 2D quasi-periodic diffraction gratings have emerged that seek to
suppress high-order diffractions, and to be compatibility with silicon planar process.
This chapter reviews the optical properties of 2D quasi-periodic gratings comprised
of quasi-triangle array of holes, and details the effects of hole shape and location dis-
tribution on the high-order diffraction suppression. It is also discuss the feasibility of
various nanofabrication techniques for highvolumemanufacturing2Dquasi-periodic
gratings at the nanoscale.

2.1 A Quick Tour of Diffraction Gratings

Diffraction gratings composed of periodic structures are simple and fundamental
optical elements that separate incident light into its constituent wavelength com-
ponents. The dispersive feature of diffraction gratings makes them attractive for
fundamental studies and photonics applications in spectroscopy, microscopy, and
interferometry [1–4]. Actually, since Joseph von Fraunhofer laid the foundation of
diffraction gratings about 200 years ago, diffraction grating has been the most suc-
cessful single optical device, and has found promising applications in widely diverse
areas of physics, chemistry, biology, and engineering. For more details, one can see
[5]. Among them, some related work on absorption and emission line spectroscopy
investigations has been awarded Nobel Prizes [6].
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2.1.1 Grating Equation

Various diffraction gratings with different configurations have been developed, they
can be divided into two broad categories, reflection and transmission types [6, 7].
The former utilizes diffracted light on the same side of the grating normal, and
can be further classified as plane and concave types. The latter utilizes diffracted
light cross over the grating normal. The angle of diffraction measured from the
grating normal can be quantitatively described by a simple expression, the well-
known grating equation [6]

sin θm � (mλ − d sin θi )/d, (2.1)

where d represents the grating period, λ is the incident light wavelength, θi denotes
the angle between the incident light direction and the normal to the grating surface,
andm is an integer known as the order of the diffracted light. Compared to the reflec-
tion gratings, transmission gratings are much simpler to use in monochromator and
spectrometer. This is because they have higher figure error tolerances, smaller weight
and size, wider bandwidth and easy-to-fabricate grating profiles, and greatly simplify
the alignment at the expense of lower diffraction efficiency [8]. For most practical
applications, only the generated +1st or−1st diffraction order is needed to realize the
unique light dispersion. The resolving power R of a planar diffraction grating is the
ability to separate and distinguish adjacent spectral lines in the constituent spectrum
as a function of wavelength. It can be expressed as [6]

R � λ/�λ � mN , (2.2)

where N is the total number of grooves illuminated on the grating surface.

2.1.2 Overlapping of Diffraction Orders

Compared with a prism, one major disadvantage of planar diffraction gratings is that
they suffer from higher-order diffraction contamination and limited free-spectral
range due to the diffractive nature of planar periodic structures. When the bandwidth
of the incident light is large enough, the grating equation can be fulfilled by an
infinite set of wavelength values, i.e., light with wavelength λ in order m is always
diffracted at the same angle as light with wavelength λ/2 in order 2m, and as light
of wavelength λ/3 in order 3m, etc. The free spectral range is the bandwidth in a
given order for which overlap of bandwidth from an adjacent order does not occur.
It is equal to λ1/m, where λ1 is the short-wave end of the band, indicating that the
free spectral range is longer for lower order. Actually, this is one reason that only the
generated ±1st diffracted orders are needed in many applications.
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2.1.3 High Order Diffraction Suppression for 1D Gratings

Traditionally, there are two possible ways to avoid the so-called overlapping of
diffraction orders at a particular wavelength λ. One is to properly choose the planar
grating period D ∈ (λ, 2λ), which presents the major drawback of the wavelength
range being limited to (D, D/2). The other way is to use sinusoidal gratings with
continuous relief [9]. However, the fabrication of continuous-relief diffractive optical
elements is not compatible with the well-established silicon planar process, and still
remains a challenge for mass production [10, 11].

Over the past decade, several methods have also been proposed to realize high
order diffraction suppression for 1D gratings. In particular, Cao et al. proposed a
binary grating composed of sinusoidal-shaped apertures to realize sinusoidal ampli-
tude transmission at one direction [12]. After that, some new types of so-called
single-order diffraction gratings, such as quantum-dot-array diffraction gratings [13],
quasi-sinusoidal diffraction transmission gratings [14], modulated groove position
diffraction gratings [15], zigzag diffraction transmission gratings [16], and trape-
zoidal transmission function [17], have been further developed. The key idea of all
thesework is tomimic a sinusoidal amplitude transmission function along one dimen-
sion by special structures. Single-order transmission diffraction gratings based on
line-structure with rough edges [18] and dispersion engineered all-dielectric meta-
surfaces [19] have also been proposed. Besides, the order-sorting method using PbSe
array detector [20] and thin films [21] have also been used to reduce the influence of
higher-order diffractions.

2.2 Two-Dimensional Periodic Gratings

Thousands of papers have been published on various aspects of diffraction gratings,
and most of them are devoted to 1D diffraction gratings consisting of a large number
of equally spaced slits on an opaque screen. In recent years, two-dimensional (2D)
diffraction gratings with complete order (periodic) structures have also received
much attention due to their ability to simultaneously separate incident light into its
constituent wavelength components in two perpendicular directions [22–27]. For
example, in nearly all kinds of microscopes, 2D diffraction gratings are often used
to calibrate the xy-plane [26]. In grating interferometry, 2D diffraction gratings are
used to improve reconstruction of the wavefront phase [27].

Similar to the 1Dcase, 2Dperiodic structures also suffer fromhigher-order diffrac-
tions due to the diffractive nature of 2D structures. In order to get further insight into
this, we begin our analysis from diffractions of a large number of identical and same
oriented holes, as shown in Fig. 2.1. We denote the coordinate systems of the hole
plane and the diffraction plane by (ξ, η) and (x, y), respectively. The coordinates of
the hole center are (ξ1, η1), (ξ2, η2), . . . , (ξN , ηN ). We calculate the far-field diffrac-
tion pattern of N holes with area A by Fraunhofer diffraction formula [9, 33]
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Fig. 2.1 Schematic of the
2D structures comprised of a
large number of identical and
same oriented holes

U (p, q) � C
∑

n

e−ik(pξn+qηn )
¨

A

e−ik(pξ ′+qη′)dξ ′dη′. (2.3)

Here C � √
P/(λR), P is the power density incident on the hole array, R is the

distance between the hole array plane and the observation plane, λ is the incident
light wavelength, k � 2π/λ is thewave vector in free space, and p � x/R, q � y/R.

From (2.3), the diffraction intensity pattern of a large number of holes in Fig. 2.1
can be expressed as

I (p, q) � I 0(p, q) ·
∣∣∣∣∣

N∑

n�1

e−ik(pξn+qηn )

∣∣∣∣∣

2

� I 0(p, q) ·
M∑

m�1

N∑

n�1

e−ik[p(ξn−ξm )+q(ηn−ηm )], (2.4)

where I 0(p, q) is the intensity distribution arising from a single hole and the remain-
ing part denotes the interference effects of different holes. When we consider the
effect of a large number of holes, we should obtain quite different results depend-
ing on whether the holes are distributed regularly or irregularly. When the holes are
distributed irregularly, terms with different values of m and n will fluctuate rapidly
between +1 and −1, and in consequence the sum of such terms will have zero mean
value. Each remaining term (m� n) has the value unity. Hence the total intensity isN
times the intensity of the light diffracted by a single hole: I (p, q) ∼ N I 0(p, q). The
results are quite different when the holes are distributed regularly since the termswith
m �� n will give appreciable contributions. For example, for some two dimensional
array of holes, the phases of all the terms for which m �� n are exact multiple of 2π ,
their sum I (p, q) will be equal to N (N − 1), and so for large N will be of the order
of N 2.

Therefore, the locations of holes can be designed to create constructive inter-
ference leading to a subwavelength focus of prescribed size and shape [28–31].
The quasi-periodic distributed holes with special shape can acquire rich degrees of
freedom (spatial position and geometric shape of holes) to realize complex function-
alities, which are not achievable through periodic features of conventional grating
with limited control in geometry. Thus, the suppression of high-order diffractions
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can be realized by the destructive interference of light from quasi-periodic array with
specific distribution and specific shape of the holes. At the same time, the 1st order
diffraction efficiency can be increased by the constructive interference of lights from
the different holes.

2.3 Two-Dimensional Quasi-Periodic Gratings

In this section, the effects of the quasi-periodic grating structure parameters on the
diffraction property will be evaluated. From (2.3) and (2.4), the diffraction intensity
pattern of the quasi-triangle array with periods Pξ and Pη in Fig. 2.2 can be expressed
as

I (p, q) � sin2
(
Nξ /2 · kp2Pξ /2

) · sin2(NηkqPη/2
) · cos2(kp2Pξ /4 + kqPη/4

)
(
Nξ /2

)2 · sin2(kp2Pξ /2
) · N 2

η · sin2(kqPη/2
)

·
∣∣∣∣∣∣
C
¨

A

eik(pξ+qη)dξ dη

∣∣∣∣∣∣

2

·
∣∣∣∣
∫

ρ(s) · e−ikpsds

∣∣∣∣
2

� I1(p, q) · I2(p, q) · I3(p), (2.5)

where s is the hole location deviation from the triangle lattice point along ξ axis,
the holes are randomly shifted by s according to probability distribution function
ρ(s). Here, the hole location along η axis is fixed since we usually focus on the
diffraction property along one direction. And the triangle array is selected rather
than square array due to the more spacing between any two adjacent holes than the
square one with the same period and hole size. There are three parts in (2.4). The

first part I1(p, q) � sin2(Nξ /2·kp2Pξ /2)·sin2(NηkqPη/2)·cos2(kp2Pξ /4+kqPη/4)

(Nξ /2)
2·sin2(kp2Pξ /2)·N 2

η ·sin2(kqPη/2)
, only depends

on Pξ , Pη, Nξ and Nη. It is the interference effect resulting from the triangle array.

Fig. 2.2 Schematic of the quasi-triangle array gratings
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The second part I2(p, q) �
∣∣∣∣C

˜
A
eik(pξ+qη)dξ dη

∣∣∣∣
2

denotes the effect of a single

hole, and depends on the hole shape and size. It should be noted that the third

part, I3(p) �
∣∣∣∣
∫

S
ρ(s) · e−ikpsds

∣∣∣∣
2

, is introduced by the location deviation of holes.

Equation (2.4) shows that the geometric shape and spatial position of holes can be
optimized to manipulate the diffraction intensity pattern I (p, q).

Next we investigate effects of the hole shape and size on the diffraction intensity
pattern. Here we only consider some simple shapes with less sides since the com-
plicated structures are difficult to be theoretically analyzed and precisely fabricated.
Wewill discuss quasi-period gratings of circles, rectangles, and hexagons in Fig. 2.2.

2.3.1 Two-Dimensional Quasi-Triangle Array of Circular
Holes

Firstly two-dimensional gratings of circular holes, which are the simplest will be
discussed shape and easiest to be fabricated [32]. At the same time, the simplest
uniform distribution of hole location will be selected. That is to say, the holes are
shifted by s from the lattice points along the ξ axis according to the probability
distribution ρ(s) � 1/(2a), |s|≤ a, where a is the shift range of circle holes along
the ξ axis. From (2.5), for the quasi-triangle array of Nξ Nη circular holes with the
radius r, the diffraction intensity pattern in the Fraunhofer diffraction is given by

I (p, q) � sin2
(
Nξ /2 · kp2Pξ /2

) · sin2(NηkqPη/2
) · cos2(kp2Pξ /4 + kqPη/4

)
(
Nξ /2

)2 · sin2(kp2Pξ /2
) · N 2

η · sin2(kqPη/2
)

· I0 ·
[
2J1(kr

√
p2 + q2)

kr
√
p2 + q2

]2

· sinc2(kpa/π ). (2.6)

Here I0 � P/(λR)2 · (Nξ Nη · πr2)2 is the peak irradiance of the diffraction pattern
and J1 is the first order Bessel function of the first kind.

And the intensity along x axis is

I (p) � I0 ·
[

sin(kpPξ Nξ /4)

Nξ · sin(kpPξ /4)

]2

·
[
2J1(kpr )

kpr

]2

· sinc2(kpa/π ). (2.7)

Equation (2.7) shows that the diffraction intensity along the x axis depends on the
parameters of radius r and random range a. As described above, we can design r
to make the first zero crossing of J1 fall at some order diffraction such as the 2nd
or 3rd order diffraction along x axis, and thus make it disappear. The third part
I3(p) � sinc2(kpa/π ), is introduced by the location deviation of holes. It should be
noted that the normalized sinc has zero crossings occurring periodically at non-zero
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integers. Thus we can optimize a to make these zero crossings of sinc2(kpa/π ) fall
at even order diffractions.

Now we investigate the dependence of all order diffractions on the radius r and
random range a. According to (2.7), the m-th order diffraction intensity along the ξ

axis is

I (m) � I0 ·
[
2J1(2πmr/Pξ )

2πmr/Pξ

]2

· sinc2(2ma/Pξ ). (2.8)

In the real spectral measurement, only the adjacent diffractions (such as the 2nd
and 3rd order diffractions) will overlap the 1st order diffraction. The higher order
diffractions are usually very small and have little effects on the 1st order diffraction.
Thus we pay the utmost attention to the structure parameters which lead to the
vanishing of the 2nd and 3rd order diffractions. According to (2.8), the 2nd and 3rd
order diffractions simultaneously disappear as (r/Pξ , a/Pξ ) take some special values:
(0.203, 1/4), (0.305, 1/6), (0.305, 1/3), (0.372, 1/4). Considering the fabrication
tolerance, we select r/Pξ � 0.203 and a/Pξ � 0.25 since the smallest spacing√
(Pξ − 2a)2 + (Pη/2)2 − 2r � 0.3011Pξ (for Pξ � Pη) of arbitrary adjacent holes

is the largest one in the four cases of (r/Pξ , a/Pξ ). Here, it should be noted that the
sinc function with a/Pξ � 0.25 eliminates not only the 2nd order diffraction but
also all the even order diffractions since it has periodic zero crossings.

Figure 2.3 presents the diffraction intensity pattern of r/Pξ � 0.203 and a/Pξ �
0.25 according to (2.6) and (2.7). As expected, Fig. 2.3a shows that the 0th and 1st
order diffractions are kept along x axis, and high order diffractions disappear. Insets
in Figs. 2.3b show clearly intensity distributions of the 0th and 1st order diffractions.
The diffraction intensity along x axis in Fig. 2.3b presents clearly the complete
suppression of the 2nd, 3rd 4th and 6th order diffractions. The 5th order diffraction
of 5.370×10−5 is as low as 0.02% of the 1st order diffraction of 0.2637. As a result,
it will be submerged in the background noise, i.e., it will decay to a negligible value
in real experimental measurements.

In order to verify the validity of the theoretical analysis, the diffraction intensity
pattern of the quasi-triangle array of 301× 301 circular holes is simulated, according
to (2.6) from Fraunhofer approximation. The locations of holes are determined by
generating uniformly distributed pseudorandomnumbers. The two-dimensional grat-
ing has the period. Pξ � Pη � 10 μm and the area 3.01mm × 3.01mm. Figure 2.4
shows that there exist the 0th and 1st order diffractions along x axis, and the 2nd,
3rd, 4th and 6th order diffractions disappear. Insets in Figs. 2.4b show clearly inten-
sity distributions of the 0th and 1st order diffractions. The 5th order diffraction of
5.273 × 10−5 is as low as 0.02% of the 1st order diffraction of 0.2638. These agree
very well with the theoretical results. Different from the theoretical results, the noise
is introduced between any adjacent diffraction. Fortunately, the noise ismuch smaller
than the 5th order diffraction and can be submerged in the background noise.

In order to further confirm the feasibility of the high order diffraction suppression
of our theoretical predictions, a binary transmission grating comprised of quasi-
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Fig. 2.3 a The far-field
diffraction intensity pattern
of the quasi-triangle array of
circular holes. b The
diffraction intensity along
the x axis

Fig. 2.4 a The far-field
diffraction intensity pattern
of the quasi-triangle array of
90,601 circular holes. b The
diffraction intensity along
the x axis

triangle array of 4000 × 4000 circular holes over area of 4 cm × 4 cm on a glass
substrate was fabricated for the visible light region by laser write lithography. Firstly,
the chromium layer with thickness of 110 nm was deposited onto the soda glass with
2.286 mm thickness with an electron beam evaporation system, and 500 nm thick
AZ1500 photoresist was spin coated onto the chrome layer. Secondly, GDSII data
of the designed binary gratings were imported into DESIGN WRITE LAZER 2000
(Heidelberg Instruments Mikrotechnik GmbH). Laser exposure and resist develop-
ment were performed to pattern the binary gratings onto the resist. The exposure
wavelength is 413 nm and the exposure power is 80 mW. After that, wet etching
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Fig. 2.5 Microphotograph of the fabricated quasi-triangle array of circular holes

Fig. 2.6 .

technique was used to transfer the resist pattern onto the chrome layer. Finally, the
residual resist was removed by using plasma ashing followed by acetone rinse.

The microphotograph of the fabricated structure is illustrated in Fig. 2.5. Periods
2Pξ and Pη of the quasi-triangle array along the x and y axes are respectively 20μm
and 10μm.The hole diameter is 0.406Pξ ≈ 4μm. It is shown clearly that the spacing
between any two adjacent holes is larger than 0.3011Pξ ≈ 3μm. The experimental
setup for optical demonstration is shown in Fig. 2.6. A collimated laser beams from
Sprout (Lighthouse Photonics) with the wavelength of 532 nmwas used to illuminate
the two-dimensional grating, and the far-field diffraction pattern from the grating is
focused by a lens and then recorded on a charge coupled device (CCD) camera
(ANDOR DU920P-BU2) with 1024 × 256 pixels.

The measurement results were performed at low temperature of −85 °C, the
results are shown in Fig. 2.7. It is clearly shown that only the 0th and the 1st orders
exist along the x axis, which agrees well with the theoretical and simulation results.
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Fig. 2.7 a The far-field
diffraction intensity pattern
of the quasi-triangle array of
circular holes. b The
diffraction intensity along
x axis

The 5th order diffraction (theoretical value 5.37 × 10−5) cannot be observed, which
is submerged in the background noise of 5 × 10−4. The 1st order diffraction effi-
ciencies is 23.99%, which is a little smaller than the theoretical value of 26.37%.
The difference between experimental and theoretical values may be attributed to the
fabrication and measurement errors.

In the above discussions, it has been assumed that the size and shape of holes are
perfect. In practice, the size of fabricated holes can be a little larger or smaller than
the designed target and the shape cannot be perfectly round. Thus the diffraction
pattern will not be the same as the designed one. Numerical simulation based (2.5)
is carried out and we obtain the 2nd, 3rd, 4th and 5th diffraction intensities versus
the hole size in Fig. 2.8. The vertical grey dot line denotes the optimized diameter
2r � 4.0656μm. Figure 2.8 shows that the 2nd and 4th order diffraction intensities
are always zeros regardless of whether the hole diameter deviate the optimized value
or not. This is because the disappearance of the even order diffractions result from
zero crossings of the normalized sinc function,which is from the location randomness
of holes. As 2r ∈ (3.6, 4.8)μm, the 3rd order diffraction intensity will not be larger
than 5 × 10−4, even though it increases with the deviation of hole diameter from
the optimized value. Similarly, the 5th order diffraction intensity is smaller than
3 × 10−4 as 2r ∈ (3.25, 4.9)μm. Therefore, the quasi-periodic two-dimensional
grating comprised of circular holes can, at least, tolerate ±10% deviation of hole
size. This large tolerance makes our structure can be easily fabricated by the current
planar silicon technology.

2.3.2 Two-Dimensional Quasi-Triangle Array of Rectangular
Holes

Two-dimensional gratings of rectangular holes will now be discussed. The holes are
shifted by s along the ξ axis (Fig. 2.2b) according to the probability distribution
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Fig. 2.8 The 2nd, 3rd, 4th
and 5th order diffraction
intensities versus the hole
diameter

ρ(s) � (π/Pξ ) · cos(2πs/Pξ ), |s|≤ Pξ /4, where 2Pξ is the period of the triangle
array along the ξ axis [33].

For the quasi-triangle array of Nξ Nη rectangular holes of sides 2a � Pξ /2 and
2b � Pη/2 as shown in Fig. 2.2b, the diffraction intensity pattern is [33]

I (p, q) � sin2
(
Nξ /2 · kp2Pξ /2

) · sin2(NηkqPη/2
) · cos2(kp2Pξ /4 + kqPη/4

)
(
Nξ /2

)2 · sin2(kp2Pξ /2
) · N 2

η · sin2(kqPη/2
)

· I0 · ( sin kpa
kpa

)2(
sin kqb

kqb
)2 · cos2(kpPξ /4)

(1 − kpPξ /2/π )2(1 + kpPξ /2/π )2
. (2.9)

Here I0 � P/(λR)2 · (Nξ Nη · 4ab)2 is the peak irradiance of the diffraction pattern.
Figure 2.9 presents the diffraction intensity pattern according to (2.6). As

expected, the 0th and 1st order diffractions are kept along x axis, and the high-order
diffractions disappear. The logarithm of diffraction intensity along x axis in Fig. 2.9b
presents clearly the complete suppression of the high order diffractions. Insets in
Fig. 2.9 show the intensity distributions of the 0th and 1st order diffractions, respec-
tively. From Fig. 2.9, one can see that the diffraction pattern of the quasi-triangle
array of rectangular holes along x axis is the same as that of the ideal sinusoidal
transmission grating.

Numerical simulation based on (2.9) is carried out to evaluate the diffraction
property of the quasi-triangle array of 100,000 rectangular holes. The logarithm of
diffraction intensity along x axis is shown in Fig. 2.10, and high-order diffraction is
much less than the noise of 10−5 between 0th and 1st diffraction (red dash line in
Fig. 2.10), which agrees well with the theoretical prediction of (2.9) and Fig. 2.9.

A binary transmission grating comprised of quasi-triangle array of rectangular
holes was fabricated and tested by the above described process and setup. Figure 2.11
presents the recorded diffraction pattern and it is obvious that high order diffractions
of the quasi-triangle array of rectangular holes are effectively suppressed. The diffrac-
tion intensity along x axis in Fig. 2.11b is almost the same as the ideal sinusoidal
transmission gratings. The ratio of 1st order diffraction intensity to the 0th order
diffraction intensity is 73.56% and much larger than the theoretical prediction and
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Fig. 2.9 The far-field
diffraction intensity pattern
of the quasi-triangle array of
rectangular holes. b The
diffraction intensity along
x axis. Insets: the 0th and 1st
order diffractions. (Reprinted
from [33])

Fig. 2.10 The diffraction
intensity along x axis of the
quasi-triangle array with
100,000 rectangular holes.
(Reprinted from [33])

numerical value 25%. This is because the CCD is saturated by the 0th order diffrac-
tion intensity. In addition, the red vertical lines in Fig. 2.11a are crosstalk along
y direction due to our one-dimension CCD.

Now we focus on the complete suppression of high order diffractions along the
x axis. As Nξ is large enough, the intensity according to (2.9) along the x axis is
given by [33]

I (p) � I0 · sinc2(Nξkp8a/π )

(1 − kp2a/π )2(1 + kp2a/π )2 cos2(kp4a)

�
{

I0, p � 0
1
4 I0, p � ±π

2ka

(2.10)

Equation (2.10) demonstrates that the quasi-triangle array of infinite rectangular
holes can generate the same diffraction pattern as sinusoidal transmission gratings
along the x axis. Only three diffraction peaks (the 0th order and +1st/−1st orders)
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Fig. 2.11 a The far-field
diffraction intensity pattern
of the quasi-triangle array of
rectangular holes. b The
diffraction intensity along
the ξ axis. (Reprinted from
[33])

appear on the x-y plane. The above theoretical results are scalable from X-ray to far
infrared wavelengths.

To obtain physical insight into the diffraction property of the quasi-triangle array
of rectangular holes, the average transmission function along ξ axis is calculated by
integrating the probability distribution over η axis [33]

T (ξ ) �
Pξ /4∫

|ξ |−Pξ /4

ρ(s)ds � 1

2
(1 + cos(

2π

Pξ

ξ )). (2.11)

Equation (2.11) shows that the quasi-triangle array of infinite rectangular holes has
the same transmission function along the ξ axis as sinusoidal transmission gratings.
It is the average diffractive effect similar to sinusoidal grating that eliminates high-
order diffractions.

We can also understand the suppression of high-order diffractions by the inter-
ference weakening or strengthening. It is known that diffraction peaks is from the
constructive interference of lights from the different holes. The interference of lights
fromdifferent rectangular holes is controlled by the hole position. The desired diffrac-
tion pattern only containing the 0th order and +1st/−1st order diffractions can be
tailored by the location distribution of holes according to some statistical law.

2.3.3 Two-Dimensional Quasi-Triangle Array of Hexagonal
Holes

A grating with the quasi-triangle array of hexagonal holes to completely compressed
the 2nd, 3rd, 4th, 5th and 6th order diffractions along x axis will now be addressed.
The holes are shifted by s from the lattice points along the ξ axis according to the
probability distribution ρ(s) � 1/(2a), |s|≤ a, where a is the shift range of circle
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Fig. 2.12 The far-field
diffraction intensity pattern
of the quasi-triangle array of
hexagonal holes

holes along the ξ axis. From (2.5), the diffraction intensity pattern I (p, 0) can be
described as

(2.12)

I (p, 0) � sin2
(
NξkpPξ /2

)

N 2
ξ · sin2 (

kpPξ /2
)

·
(
sin(kp(a2 + a1)/2) · sin(kp(a2 − a1)/2)

kp(a2 + a1)/2 · kp(a2 − a1)/2

)2

· sinc2(kpa/π ).

Then the m-order diffraction intensity along x axis is

I (m) � sinc2
(
m(a2 + a1)

Pξ

)
· sinc2

(
m(a2 − a1)

Pξ

)
sinc2(

2ma

Pξ

). (2.13)

Equation (2.13) shows that the m-order diffraction intensity I (p, 0) is the product
of three normalized sinc functions and depends on a, a1 and a2. Thus we can set
m(a2+a1)

Px
� n1,

m(a2−a1)
Px

� n2, and 2ma
Px

� n3 to suppress three kinds of the 2nd, 3rd,
and 5th order diffractions.

In order to validate the theoretical analysis, numerical simulation for the case of
a � 1/10, a1 � 1/12 and a2 � 5/12, has the lowest noise due to the smallest a. is
carried out to evaluate the diffraction property of the quasi-triangle array with 100 ×
100 hexagonal holes. As expected, the distribution of the diffraction intensity shown
in Fig. 2.12 only has the 0th and ±1st order diffractions along x axis, and the 2nd,
3rd, 4th, 5th and 6th order diffractions are completely suppressed. Different from the
theoretical results, the noise is introduced due to the shift of the hole position. The
7th order diffraction of 7.473 × 10−6 is almost submerged in the noise, and as low
as 0.003% of the 1st order diffraction of 0.2426.

A binary transmission grating comprised of hexagonal holes was fabricated and
tested by the above described process and setup. The diffraction property is shown
in Fig. 2.13. The 2nd, 3rd, 4th, 5th and 6th order diffractions disappear along x axis.
This quantitatively agrees with the theoretical and simulation results. The 1st order
diffraction efficiency is 24.65%, which is a little different from the theoretical value
of 24.26%. The difference may result from the fabrication and measurement errors.
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Fig. 2.13 The far-field
diffraction intensity pattern
of the quasi-triangle array
with hexagonal holes. b The
diffraction intensity along
the x axis
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As expected, Fig. 2.13 also shows that the 7th order diffraction is submerged in
background noise.

2.3.4 Comparison of Three Types of Gratings

Table 2.1, summarizes the second part I2(p, 0) and I3(p) of (2.3), I2(p, 0) is the
envelope line of the diffraction intensity pattern [9] and I3(p) is introduced by the
location deviation of holes. I2(p, 0) only depends on one structure parameter for
circular or rectangular holes, which can make the 2nd or even order diffractions
zeros. Fortunately, for the hexagonal hole, I2(p, 0) is the product of two normalized
sinc functions depending on the two parameters a2 and a1, and thus has two kinds
of zero crossings, which can make both even and the 3rd, 6th, …, order diffractions
simultaneously disappear.

In other words, three types have their advantages and disadvantages. Two-
dimensional quasi-triangle array of circular holes the enough deviation tolerance
of hole size and the relatively large spacing of adjacent holes, which make our grat-
ing much easy to be fabricated than the rectangular or hexagonal holes. While it only
can completely suppress the 3rd and even order diffractions. The gratings composed
of rectangular holes with the special location probability distribution can completely
all the 2nd and higher order diffractions. However, the small gap from the probability
distribution and the right angle of hole make the fabrication difficult. The hexagonal
hole is the balance of the circular and rectangular holes. The complete suppression
of 2nd, 3rd, 4th, 5th and 6th order diffractions by the quasi-triangle array of the
hexagonal holes was demonstrated theoretically and experimentally. The 7th order
diffraction is as low as 2.2 × 10−5 of the 1st order, which can easily be submerged
in the background noise in real applications. At the same time, the smallest gap of
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Table 2.1 The impact of the shape of the holes on the diffraction pattern

Shape I2(p, 0) ρ(s) I3(p)

r

(
2J1(krp)

/
krp

)2 1/(2a), |s|≤ a,
a � Pξ /4

sinc2(kpa/π ),
a � Pξ /4

22a

2b sinc2(kpa2/π ) ρ(s) � (π/Pξ ) ·
cos(2πs/Pξ ),|s|≤
Pξ /4

cos2(kpPξ /4)
(1−kpPξ /2/π )2(1+kpPξ /2/π )2

12a

22a

2b

sinc2( kp(a2+a1)2π ) ·
sinc2( kp(a2−a1)

2π )

1/(2a), |s|≤ a,
a � Pξ /10

sinc2(kpa/π ),
a � Pξ /10

the hexagonal holes is larger than that of the rectangular gap, and thus the grating of
hexagonal holes is easier to fabricate than the rectangular one.

2.4 Future Outlook for the Fabrication Method

Since the first diffraction grating was invented by the American astronomer David
Rittenhouse in 1785 [6], great efforts have been devoted to the fabrication of high
quality diffraction gratings [34, 35]. Until now, the difficulty in fabricating diffrac-
tion grating with nanometer feature size is still the major obstacle of advancing the
dispersion performance. Various fabrication techniques, including mechanical rul-
ing, interference lithography, e-beam lithography, laser beam lithography and nano-
imprinting lithography, have been intensively studied to further reduce the feature
size of diffraction grating.

2.4.1 The Mechanical Ruling Method

The first high quality diffraction grating was mechanically ruled [6]. After being
polished carefully, the substrates (optical glass or fused silica) are coated with a
thick aluminum or gold film. Such an Al or Au film acts as a functional material in
the ruling process. Thousands of extremely fine and shallow grooves are faithfully
produced by the ruling diamond with special shape in the cross section. For a ruled
gratingwith 1000 grooves permmand active area of 300× 300mm2, the total groove
number is 3.0 × 105, and the total length of these grooves is as large as 90 km. Thus,
the ruling process is time consuming and the ultra-precision ruling engine may take
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above one month to work. Now only a few ruling engine are still operating for planar
echelle gratings greater than 300 mm in width [36, 37].

2.4.2 Interference Lithography

Since the invention of the laser in the 1960s, interference lithography has proven to be
an extremely useful technique. The principle of traditional interference lithography
is simple, when two mutually coherent plane waves with same wavelength and equal
intensity interfere each other, sinusoidal interference fringes will be produced and
recorded by photoresist on the substrate.

The spatial resolution of interference lithography is fundamentally governed by
the working wavelength due to the diffraction limit. Hence, to produce gratings and
grids with feature sizes below 100 nm, shorter working wavelengths (deep ultravi-
olet and extreme ultraviolet spectral ranges) are required [38]. Several interference
lithography methods have been proposed and developed, including Lloyd’s mirror
interferometer [39], amplitude division interferometers [40], grating-based interfer-
ence lithography [41], etc.

Interference lithography has the advantage of generating high resolution periodic
patterns over large area with extremely simple optical systems, large process latitude
and large depth-of-focus. Also, no photomask is needed, one can easily manipulate
the grating period by adjusting the angle between the two intersecting beams. A typ-
ical example of successful use of interference lithography is provided by MIT space
nanotechnology laboratory, where thousands of X-ray transmission gratings have
been produced by interference lithography with wavelength of 351.1 nm [42]. By
carefully selecting the number of interfering beamormultiple exposures, interference
lithography can produce 2D periodic arrays with arbitrary shaped nanomotifs. How-
ever, interference lithography is limited to patterning period features only, and the
spatial-period of the grating is fundamentally governed by the working wavelength
due to the diffraction limit.

2.4.3 Electron Beam Lithography

Electron beam lithography is a well-established lithographic technique for creating
arbitrarily shaped patterns with resolution in the nanometer range. At present, in
semiconductor industry, electron beam lithography is often used to expose mask
patterns for optical lithography tools below 45 nm technology node. In some cases,
it is also used for advanced prototyping of integrated circuits due to its flexibility and
high resolution.

For larger exposure latitude, the commercial e-beam writer acceleration voltage
is taken to be 100 kV. The size of the focused electron beam, which is an important
factor directly influencing the resolution, can be reduced to round 1 nm at the expense
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of very low writing speed. Feature size below 5 nm is theoretically possible by
exposing a thin (<30 nm) resist, but rarely demonstrated [43]. The actual patterning
resolution is considerably larger and is limited mainly by the well-known proximity
effect [44]. As charged particles, electrons undergo forward and backward scattering
events when they penetrate through the resist into the substrate, resulting so-called
proximity effect, i.e., unwanted dose to take place in the regions adjacent to those
exposed by the focused electron beam.

Electron beam lithography is a promising approach for patterning 2D quasi-
periodic gratings with high line density and high fidelity. In particular, it is conve-
nient to perform pattern transfer from electron beam resist to a variety of materials.
Obtaining high-quality grating patterns is always not straightforward, even using a
state-of-the-art electron beam system. As a rule of thumb, for the 1D periodic grat-
ings, the size of the focused electron beam can be one-sixth of the grating period for
the purpose of higher writing speed. While for the 2D quasi-periodic gratings, this
size should shrink to one-twelfth of the grating period to ensure sharp corners.

The drawback of the serial electron beam lithography is less practical in mass
production due to the serial and slow scanning nature. To overcome this limita-
tion, high-throughput multiple beam electron beam lithography, which is based on
massively-parallel focused electron beams that can individually beam switched on
and off, is now being developed.

2.4.4 Laser Beam Lithography

Laser beam lithography is performed by tightly focusing a laser beam instead of
electron beam into a photoresist layer. Similar to serial electron beam lithography,
the focused laser beam scans the patterned area to generate photoresist patterns pixel
by pixel. On one hand, regarding the lithography costs, the less expensive laser beam
lithography is now widely used for patterning mask above 45 nm technology node
of semiconductor industry. On the other hand, it is also a powerful and widely used
tool for the mask-free fabrication on various substrate materials.

Laser beam lithography is more flexible than the counterpart of electron beam
lithography. For example, electron beam lithography must be performed on electri-
cally conductive substrates with vacuum condition, while laser beam lithography is
compatible with electrically insulating substrates and is performed under atmosphere
condition. Furthermore, one-step laser beam lithography is capable of producing
continuous-relief micro-structure with surface relief precision below 100 nm, which
can be employed to increase the diffraction efficiency of the micro-optical elements.

In general, the spot size of the focused laser beam is fundamentally limited by
the so-called Abbe’s law, and is given by ≈1.22 λ/NA, where NA is the numerical
aperture of the light exposure system. This constitutes a major fabrication challenge
in achieving sub-diffraction or nanometer resolution at visible wavelengths. To over-
come this limitation, in recent years, numerous method have reported on how the
resolution of laser direct writing scales into nanometer dimension [45–48]. Remark-
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ably, feature size as small as 9 nm has been achieved by three-dimensional optical
beam lithography [48].

2.4.5 Nano-imprint Lithography

As stated above, the processes of mechanical ruling, electron beam lithography and
laser beam lithography are serial and hence less practical in high-volume production,
and interference lithography is limited to period structures.

Since the first paper was published by Chou et al. [49], nano-imprint lithography,
a nanomolding technique to transfer the topography of a template into a substrate,
has spurred extensive research by many academic groups. It is now considered as a
candidate for next generation lithography by the International Technology Roadmap
for Semiconductors (ITRS) roadmap [50, 51], due to its potential for simple, large-
area, high-throughput, high-resolution patterning. It also offers a promising way to
replicate master gratings.

In nano-imprint lithography, the first and themost important step is the fabrication
of master gratings on silicon or quartz substrates. Typically, electron beam lithog-
raphy or laser beam lithography is used to pattern master gratings due to its ability
to generate arbitrary structure with fine features, followed by inductively coupled
plasma reactive ion etching to transfer the resist patterns onto the substrate. Once the
master grating is fabricated, it can be replicated repeatedly by nano-imprint lithogra-
phy. The cost-effective imprinting can be performed by the thermal curing method,
ultraviolet visible assisted method and injection moulding method, yielding a resist
mask [52]. It should be noted that the template on a transparent substrate such as
quartz or glass must be used for the ultraviolet visible assisted method, and the use
of the transparent substrate make optical alignment of the substrate feasible. In addi-
tion, based on this ultraviolet visible transparent template, step and flash imprint
lithography that performed at low pressure and room temperature has been devel-
oped at wafer-scale [53]. After imprinting, anisotropic oxygen plasma ashing is used
to remove the residual thin resist layer. The resist pattern is further transferred into
a hard material by lift-off process, electroplate process or plasma process.

2.5 Conclusion

In conclusion, the optics community has witnessed great progress over the past
200 years in the development of one-dimensional diffraction gratings. In recent
years, two-dimensional diffraction gratings with two duty cycles in two perpendic-
ular directions are playing an increasingly important role in the optics community.
Most previous work on two-dimensional grating diffraction is for 2D periodic struc-
tures, which result in so-called high-order diffraction contamination and limited
free-spectral range. To overcome this limitation, 2D quasi-periodic gratings com-
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prised of quasi-triangle array of holes have been proposed, and the effects of hole
shape (circular, rectangular and hexagonal) and location distribution on the high-
order diffraction suppression have been investigated analytically, numerically, and
experimentally. These three types of quasi-periodic diffraction gratings have been
demonstrated to be robust in suppressing high-order diffractions, and have their
advantages and disadvantages.

While the demand for diffraction gratings is widespread, producing a large supply
of high quality diffraction gratings at low cost and high speed still remains a chal-
lenge. Even the best-established optical lithography can meet the stringent technical
conditions of gradual reduction in the minimum dimension of integrated circuits,
following the well-known Moore’s law, it cannot be applied to produce diffraction
gratings. This is because the optical lithography tool is very expensive. Mechanical
ruling, interference lithography, electron beam lithography and laser beam lithog-
raphy have been successfully used to fabricate diffraction gratings. However, inter-
ference lithography tool with high throughput and low cost is limited to period
structures, and the other methods suffer from low yield. Advances in nano-imprint
lithography have made possible the high-volume production of 2D quasi-periodic
gratings with nanostructures. In nano-imprint lithography, electron beam lithography
or laser beam lithography is used to exposure various predesigned patterns of master
gratings in a maskless process, taking advantage of their high resolution and ability
to create patterns of arbitrary geometry. The replication process of using imprinting
lithography is used for high volume manufacturing of the daughter gratings, taking
advantage of its high resolution, low cost, high speed, high process latitude and pro-
cess robustness. The development of gratings nanofabrication process will allow the
proposed quasi-periodic diffraction gratings to find a wide variety of applications in
areas as diverse as spectral analysis, imaging and microscopy and interferometry.
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