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Preface

Topics in Modal Analysis & Testing represents one of eight volumes of technical papers presented at the 37th IMAC, A
Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics and held in
Orlando, Florida, January 28-31, 2019. The full proceedings also include volumes on Nonlinear Structures & Systems;
Dynamics of Civil Structures; Model Validation and Uncertainty Quantification; Dynamics of Coupled Structures; Special
Topics in Structural Dynamics & Experimental Techniques; Rotating Machinery, Optical Methods & Scanning LDV
Methods; and Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing.

Each collection presents early findings from experimental and computational investigations on an important area within
structural dynamics. Topics in Modal Analysis represents papers on enabling technologies for modal analysis measurements
and applications of modal analysis in specific application areas.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Cincinnati, OH, USA Michael L. Mains
Lexington, MA, USA Brandon J. Dilworth
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Chapter 1 )
Modern Modal Testing: A Cautionary Tale Gkt

James C. Akers, Kim D. Otten, Joel W. Sills, and Curtis E. Larsen

Abstract Over the past 50 years, great advances have happened in both analytical modal analysis (i.e., finite element
models and analysis) and experimental modal analysis (i.e., modal testing) in aerospace and other fields. With the advent
of more powerful computers, higher performance instrumentation and data acquisition systems, and powerful linear modal
extraction tools, today’s analysts and test engineers have a breadth and depth of technical resources only dreamed of by our
predecessors. However, some observed recent trends indicate that hard lessons learned are being forgotten or ignored, and
possibly fundamental concepts are not being understood. These trends have the potential of leading to the degradation of the
quality of and confidence in both analytical and test results. These trends are a making of our own doing, and directly related
to having ever more powerful computers, programmatic budgetary pressures to limit analysis and testing, and technical
capital loss due to the retirement of the senior demographic component of a bimodal workforce. This paper endeavors to
highlight some of the most important lessons learned, common pitfalls to hopefully avoid, and potential steps that may be
taken to help reverse this trend.

Keywords Analytical modal analysis - Bimodal workforce - Experimental modal analysis - Finite element analysis -
Finite element model - Lessons learned - Modal testing - Retirement

1.1 Introduction

Analytical modal analysis (i.e., finite element modelling and analysis) and experimental modal analysis (i.e., modal testing)
have advanced greatly over the past 50 years. Today’s powerful computers, high performance instrumentation and data
acquisition systems (DAQ’s), and powerful linear modal extraction tools can provide today’s modal test/analysis engineer
the technical resources needed to competently tackle most, if not all, linear structural issues. However, even with this breadth
and depth of technical resources, today’s modal test/analysis engineer is still only as good as their technical expertise. For us
“seasoned veterans” this technical expertise was gained during the course of 30+ years of working and study in the aerospace
field and through the exceptional mentoring we received from many senior knowledgeable professionals. It was through this
exceptional mentoring that we were able to leverage the expertise of the “seasoned veterans” that came before us and avoid
making many poor (and quite frankly simple/unwise) mistakes. It is said “Good judgement comes from experience, and
experience comes from bad judgement [1].” Unfortunately, or maybe fortunately, organizations do not have the luxury of
being able to allow their engineers to make bad judgements. That said, recent trends observed in both individual engineers
and in engineering organizations indicate the hard lessons learned over the past 50 years are being forgotten or ignored,
and possibly fundamental concepts are not being understood. These troubling trends have the potential of leading to the
degradation in the quality of and confidence in both analytical and test results and increase risk to the project. If this happens
the credibility and efficacy of our engineering profession will come into question and missions may potentially suffer.

To some extent, these problems are a making of our own doing. With the advent of modern portable high power computers
and user friendly automated software, it is relatively easy for a novice engineer to generate a computer aided-design (CAD)
model of a structure, auto mesh it to generate a finite element model (FEM), and perform static and modal analysis
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(i.e., compute stresses, strains, modal frequencies, and mode shapes). Also a novice engineer can collect test data (i.e.,
force, acceleration, and strain time histories), post process it, and extract modal parameters (i.e., modal frequencies, mode
shapes, and modal damping). In a work force where there are ample seasoned engineering professionals helping to guide
and mentor less experienced novice engineers to avoid common pitfalls and reinforce the underlying engineering theoretical
concepts, these modern capabilities are a true asset. Even in organizations that have a bimodal workforce where there are
mostly very seasoned and very novice engineers, ample mentoring can help to make up for the shortfall of not having many,
if any, mid-career engineers. However in organizations where the current and foreseeable programmatic budgetary pressures
are limiting the amount of analysis and testing, combined with their technical capital loss due to the retirement of their senior
seasoned professionals, which curtails much needed mentoring, the early career novice engineers are left “not knowing what
they don’t know”. While the focus of this paper is on aerospace engineers performing modal/vibration testing or performing
analysis with FEM’s, the concerns discussed here apply to many engineering disciplines. The goal of this paper is to provide
early career novice engineers with some key concepts to help avoid the most common pitfalls, and to provide both them
and everyone in their organization potential steps for ensuring their organization’s technical expertise remains viable and the
aerospace engineering profession remains vibrant and relevant.

1.2 Pitfall #1: Confusing Computer Jockeys and Engineers

As engineers we must understand the key fundamental physics based concepts that underpin our analysis and testing and
realize that software and hardware are tools, not crutches to make up for our lack of understanding. We must be able to
not only provide results, but be able to verify and validate those results. Being able to make “simple back of the envelope
calculations” is of paramount importance to provide sanity checks. This is even more critical in today’s work environment
where engineers are increasingly operating as an “army of one” and the double checks and fact checking that occurred in
the past are happening less and less frequently, if at all. If you can draw the free body diagram of a single degree of freedom
(SDOF) oscillator, derive its equation of motion, solve for its impulse response function, solve for the frequency response
function, be able to plot these functions and understand them, you are 90% of the way to understanding most vibration
problems. The old adage “Keep It Simple and Straightforward” (KISS) is as relevant today as in the past. Start simply in
your analysis/testing and only add complexity as needed. Don’t confuse complexity for sophistication. Many times the most
sophisticated solution method is the simplest. Remember, we went to the Moon on FEM’s having only centerline grid points
and beam elements, more commonly referred to as “ball-stick models.” The Saturn V launch vehicle was initially modeled
in this manner during the Apollo program [2, 3]. Somehow million degree of freedom (DOF) FEM’s were not required (and
neither was the Internet).

1.3 Pitfall #2: Too Much Blind Faith in FEM’s

“All MODELS ARE WRONG BUT SOME ARE USEFUL [4].” This blind faith is the direct result of having extremely
powerful computers allowing relatively novice engineers to generate CAD models that look exactly like the hardware and
in turn using auto mesh features to generate FEM’s that look exactly like the hardware. “Pretty pictures do not a good
model make.” This has led some decision makers to believe that accurate CAD models and FEM’s can be accomplished
with inexperienced (a.k.a. inexpensive) engineers. This is simply not true. A finely meshed FEM does not guarantee it
accurately captures the structural characteristics (i.e., load paths) of the actual hardware. It only means the same modelling
assumptions have been made many, many, many times and if these assumptions are incorrect then the resulting FEM will
still be inaccurate. Also there is a current trend of using the stress FEM as the loads FEM. The stress FEM has very fine
meshing to accurately capture the intricacies of stress fields around joints and fasteners. The loads FEM does not require as
fine a meshing since it is intended to capture the structural dynamic properties and needs to allow reasonable modal analysis
run times. The validity of CAD models and FEM’s is highly dependent upon the proficiency and experience of the engineer
generating them. The engineer generating the FEM needs to use the appropriate elements instead of simply relying on auto-
meshing that picks element types based upon ease of meshing instead of the behavior of the underlying structure. Similarly,
the FEM automatic single point constraint (AUTOSPC) feature should be avoided so the engineer is forced to understand
what DOF are constrained and unconstrained in the FEM and why. Remember that until a FEM has been “grounded” to
test data (i.e., correlated to static and modal test data), its accuracy/validity is uncertain. Incorporation of static test results
into a FEM correlation to obtain the correct stiffness is half the battle—never forget the dynamic side of the equation
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(i.e., square root (k/m)). For modal testing pretest analysis, this means having a healthy skepticism of the FEM accuracy
and always incorporating margin into test preparations (e.g., skewing shakers to help ensure that all Target Modes will be
adequately excited, instrumentation at the boundary to verify the boundary conditions during testing, using engineering
judgement along with such tools as iterative kinetic energy to select instrumentation locations).

1.4 Pitfall #3: Confusing Being Busy with Being Productive

Avoid confusing being busy with being productive. People naturally want to feel that they are making progress towards
reaching their end goal and it is natural to assume that if they are busy doing something instead of being “idle”, then they are
surely making progress. Not true. Take the necessary time to plan, prioritize, and define the objectives, goals, and success
criteria of the task. This will allow you to focus your time and resources to give you the highest probability of successfully
completing your task. Note there are no certainties and you must realize that you do not control everything. Hence, we can
only speak of probabilities and likelihoods of success.

1.5 Pitfall #4: Avoid Rushing to Analyze

It is very tempting when first given a model or data to want to jump right in and start performing your analysis. See Pitfall
#3. However, it is important to perform “sanity checks” on any models or data prior to performing any analysis in order
to avoid working for weeks only to discover it was all for naught because of either a faulty model or corrupted data. Be
skeptical of FEM’s provided to you and perform your own standard model checks, especially if the previous FEM analysis
resides in a different version of software than you are using because default settings can change [5]. Be sure the FEM has
been validated to match the CAD or as-built hardware. A FEM is not valid just because it has been “correlated” to modal
parameters extracted from a modal test or results from a static stiffness test. Taking the time to match the FEM to the CAD
or as-built hardware is absolutely critical for accurately capturing the load paths and being able to predict internal loads [6].
Moreover, when the FEM matches the CAD or as-built hardware, 90-95% of the model correlation effort is achieved. If the
FEM does not accurately represent the CAD or as-built hardware, the model correlation effort, while being inaccurate, most
likely will also be extremely difficult and time consuming and probably lead to unmet requirements and schedule constraints.
Be sure you understand the units the FEM is in and the data units. Even though it is the twenty-first century, many FEM’s
generated and used by US companies still have mass in units of slinches and slugs and acceleration data can be in units of
in/s or g’s. Don’t forget frequencies can be in units of rad/s or Hz. When doing your checks, if you are off by a factor of
9.8, this is probably an acceleration units issue and if you are off by a factor of 6.3 (i.e., 27), this is probably a frequency
units issue.

Similarly be skeptical of data provided to you, and if possible, perform time-domain and frequency domain data quality
checks as appropriate. Ask questions to the entity providing the data for poof of its validity. For example, if time history data
has been supplied and has either been clipped or is in the noise floor of the data acquisition system that was used to record
it, blindly post processing it into spectra will lead to very misleading spectra, which is not self-evident.

Take time throughout your analysis to perform intermediate checks. With today’s software it is very easy to plot results
and generate tabular listings, which provide quick and insightful checking methods. For example if you are filtering time
histories, be sure to compare the frequency response function of the filter to the Power Spectral Density (PSD) computed on
broadband random white noise that has been passed through it to verify the filter. It is very easy in to design filters that have
very tight passbands, but are numerically unstable. It is of critical importance to be able to compute “back of the envelope”
calculations for providing at least cursory sanity checks of analytical results. Some technical references to consider are listed
in [7-24]. Documenting these intermediate and final checks constitute the important portion of your analysis report that
verifies the validity of your analysis results. At the end of the day, it is your name and reputation that is on the line, and
it only takes one or two bad analyses to give you a negative reputation in your organization, which can be very hard to
overcome.
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1.6 Pitfall #5: Avoid Rushing to Test

Setting up a modal test and performing it, can be both a very exhilarating and stressful time. It involves physical exertion
(e.g., moving shakers, mounting accelerometers, running cabling, being in an unfamiliar locale), upper management and
programmatic personnel being present to “witness” the testing (i.e., looking over your shoulder, being in a fish bowl), and
having a very limited time window to accomplish it. Because of this, it is very natural to want to start collecting data as
quickly as possible, and in turn to start extracting modal parameters as quickly as possible. However, as with analysis, it is
important to take time to verify the test setup and the validity of the data being collected. Be sure the DAQ has anti-aliasing
filtering engaged and operating. With the advent of faster and faster computers, a common misconception going around is
that you can sample so fast that aliasing is no longer an issue. Not true. Aliasing will always be present whatever the sampling
rate is and once the recorded time histories have been corrupted by aliasing it is impossible to correct them. Take the time
to perform time-domain and frequency-domain data quality checks during testing to verify the health of the channels and
validity of the test setup.

Time domain checks should include visual inspection of the time histories, looking for data dropouts, digitization error
(i.e., full scale setting of the DAQ set too high), clipping (i.e., full scale setting of the DAQ set too low), adequately capturing
peaks in the frequency range of interest, and impulsive spikes indicating rattling and/or impacting taking place. Computing
standard statistics such as mean, standard deviation, kurtosis, and crest factor on random excitation test runs provide a quick
and useful check to determine if nonlinear behavior is present [25]. Keep in mind that crest factors (i.e., peak divided by
standard deviation) during vibration testing can reach as high as 5 or more. However, extremely high crest factors and kurtosis
may indicate impulsive spikes in the time histories of channels going bad or measuring significant rattling/impacting in the
test article. It is important to monitor channels in real time as they are being acquired to check for underflow, overflow,
excessive mean, signal drift, and impulsive spikes. If the DAQ generates an automatic channel fault log (i.e., dead channel,
overflow, underflow, etc.) take advantage of this important feature.

Frequency domain checks should include verifying the drive point frequency response function (FRF) has the expected
phase angle behavior (i.e., for a force to acceleration FRF if the accelerometer has the same orientation as the load cell the
phase angle stays between —180° and —360° over the desired frequency range). Check the input excitation force PSD and
compare the response PSD’s to their ambient background levels to verify the excitation has sufficient frequency bandwidth
and level. Check the coherence plots to verify there are linear relationships between input excitation forces and responses
confirming the adequacy of the input excitation force level. Check the FRF for excessive hashiness, indicating either too
low an input excitation force level and/or nonlinear behavior in the test article. Are the FRF resonance peaks symmetric
and well-shaped or are they tipped to the right or left (i.e., “shark fin” pattern) that indicates nonlinear behavior in the
test article? PSD or Fast Fourier Transform (FFT) waterfall plots (also called spectrograms) are a very useful tool for
determining if test article is behaving nonlinearly or its structural dynamics are time varying, which may indicate degradation
of its structural health (i.e., damage is occurring). Keep in mind that PSD or FFT waterfall plots computed on sine sweep
data may have subharmonic or super harmonic components that are due to the nonlinear behavior of the input excitation.
While electrodynamic shakers can be predominantly linear, as they are driven to higher force levels they will also become
nonlinear due to large displacement of their alignment flexures. Hydraulic shakers, which have the advantage of being
able to provide higher force levels at lower cost than electrodynamic shakers, typically have significantly higher nonlinear
behavior than electrodynamic shakers given the same drive signal. However, pre-distorting a hydraulic shaker’s drive signal
can significantly reduce the amount of total harmonic distortion in the force it generates.

Be sure to instrument the support structure the test article is mounted to in order to verify/measure the test boundary
conditions. This is true for both modal and vibration testing. While floors, strongbacks, slip tables, and expander heads may
be very stiff, they typically do exhibit some flexing or rigid body motion during testing. Without this boundary condition
information, deflections in the support structure cannot be seen in the extracted test mode shapes and any subsequent FEM
model correlation will erroneously attribute support structure flexibility/dynamics to the test article.

Acquiring ambient background levels at least at the beginning and end of each test day, and prior to each new test
configuration (e.g., moving of shakers or accelerometers, reconfiguring the test article) is vital in being able to understand
the ambient background level and to verify the health of the test setup. Having the ambient background level will also help
determine minimum input excitation levels, which avoids wasting time performing modal testing with input excitation levels
being too low. Keep in mind that if the response signals are in the noise floor, no amount of averaging is going to clean
them up. Many times high ambient background levels are due to florescent lighting, heating, ventilation, and air conditioning
(HVAC) running, and pumps and motors operating in adjacent rooms. Turning these off or testing when they are not in
operation can significantly drop the ambient background levels. This is why many modal tests, since they need to measure
very low level responses, are conducted during off-shift hours and/or on weekends.
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Once a preliminary set of FRF have been computed, if possible extract an operating deflection shape at a frequency
well below the lowest resonance peak frequency and animate this with your Test Display Model (TDM). This provides a
quick visual check that the accelerometers have been setup correctly (i.e., location, orientation, sensitivity). It is strongly
recommended that all of these checks be done at the start of the modal test to verify the validity of the entire test
setup. If these checks are not first completed, typically what happens is that errors are discovered a few at a time over
the course of several test runs. This in turn quickly leads to a bookkeeping headache of having to go back, if possible,
and correct not only the original test data, but all of the post processed results generated from that corrupted test data
(i.e., FRF, mode shapes, etc.).

Perform low level random or sine sweep characterization test runs before and after any high level modal or vibration
testing to monitor the structural health of the test article. This is necessary in order to be able to determine if observed shifts
in the FRF resonance peaks at different input excitation levels is due to a permanent change in the test article (e.g., damage,
settling) or is due to nonlinear behavior (e.g., joints breaking free and slipping). These pre and post characterization test runs
also answer the important question of whether the modal/vibration test affected the structural health/characteristics of the
test article.

When performing a modal hammer survey, start with the softest hammer tip and only go onto stiffer/harder tips if needed to
obtain the desired frequency bandwidth. Stiffer/harder tips excite higher frequencies and more strongly excite nonlinearities
in the test article, which degrades the FRF, and produces responses with higher peak responses, which eats up dynamic range
on the DAQ.

1.7 Pitfall #6: Lack of Documentation

For both the analyst and test engineer it is vital to keep a running log of your work. For the analyst this can be a running
summary memo that documents your daily work, which should include the models used, the results generated, file locations,
and important findings. For the test engineer this can be a test log, which includes the data acquisition and post processing
parameters, channel table, test run log, and file locations. Photo document (including labels) as you go throughout the test.
There is NO excuse with the proliferation of excellent digital cameras and cell phone cameras to NOT have an abundance of
photographic evidence. Generating quick look memos/reports after each major testing phase helps to keep all stakeholders
informed as to testing status/progress. Start writing the draft of the test report and test presentation as you go during the test
so that key results, lessons learned, and key insights are captured. These drafts should be 90% complete by the end of the
test. It is very difficult to remember details sometimes even days later, let alone weeks after a test has wrapped up. For both
the analyst and test engineer, this documentation forms the foundation of your personal technical encyclopedia of technical
knowledge and accomplishments, which you can draw and build upon as your career progresses. You typically will encounter
many similar tasks throughout your career, and your technical encyclopedia will be an invaluable asset to you.

1.8 Pitfall #7: Designing Only for Design Loads

Hardware needs to be designed for all of the environments it will be exposed to, which includes not only design loads (i.e.,
maximum expected flight environment (MEFL)), but also testing loads, which in the case of vibration qualification testing
may be MEFL +3 dB [26]. Ideally the associated upper test tolerance (e.g., for random vibration testing the acceleration
PSD test tolerance is 43 dB) should also be included in the design so that if the achieved test level exceeds the nominal test
level, which often occurs, testing does not need to be suspended while an analytical assessment of the hardware is made.
In addition the hardware needs to be designed so that it can be mounted for testing, which means discussions with the test
lab and the designer of the test fixturing. Many times the test fixture is nothing more than an adapter plate that goes from
the bolt-hole pattern of the hardware to the bolt-hole pattern of the slip table/expander head of the facility shaker. For more
complicated test fixturing, verify the test fixture does not introduce unwanted dynamics during testing (i.e., the integrated
hardware and fixture have modes different from the fixed-base hardware over the test frequency range). Modes introduced by
the test fixture have two detrimental effects. First, is that these modes may produce narrowband vibration environments that
significantly exceed what the hardware can withstand. Second, is that the test fixture acts as a lowpass filter and attenuates
the vibration environment the hardware sees above the frequencies of these modes and therefore leads to under testing. For
force limited vibration testing, the hardware mounting tabs need to not only meet stiffness requirements, but also need to be
of sufficient size to properly interface with the load cells used to measure the total amount of force going into the test article.
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1.9 Pitfall #8: Modal Analysis Not Accounting for Out-of-Band Dynamics

Residual vectors, or equivalently a mode acceleration approach, need to be included in any analysis until they are shown
to be unnecessary to account for structural dynamics that lie out-of-band the frequency band of interest. Not accounting for
structural dynamics either below or above the frequency range of interest can lead to wildly inaccurate FEM results. In modal
testing pretest analysis where initial shaker locations and orientations are selected, residual vectors are needed to account for
potentially significant compliance in the test article at the shaker drive points. Not including residual vectors can erroneously
lead the modal test engineer to over predict how well the target modes will be excited and therefore lead to poorly choosing
the initial modal shaker locations and orientations, which in turn will lead to major changes in the shaker setups during the
modal test and possibly not being able to meet schedule or excite all target modes.

If possible, consider the real environments used do derive the design loads. Do the real environments have significant
frequency content outside the frequency range of the design loads? Is the type of design load conservative with respect to
the time-domain characteristics of the real environments (i.e., is the environment random and stationary or is it transient)?
Does the analysis produce results that are conservative enough, but not too conservative, to account for out-of-band energy
and differences between the real environment type and that of the design loads?

1.10 Pitfall #9: Asking for Help or Seeking Advice Is a Sign of Weakness

A common misconception is that asking for help or advice is a sign of weakness and incompetence. Not true. No one knows
everything, especially newer and less experienced engineers. Even the more experienced “seasoned” engineers fall into this
category, but they typically understand what questions to ask. Always understand that you “do not know what you don’t
know”. Asking colleagues to look over your work or asking for advice is an expected and welcomed behavior in a healthy
organization. Senior engineers want to share their experience, knowledge, and insights. Unfortunately, due to current and
foreseeable budgetary pressures, novice engineers are many times not being paired directly with senior engineers leading to
the novice engineers not having a naturally occurring “apprenticeship” period early in their careers. Therefore, unfortunately
the burden falls on the novice engineers to actively seek out the advice of their senior colleagues. Apprenticeship is important
and needs to once again become a norm in engineering. Make that connection!

1.11 Pitfall #10: Stove Piping: Separating Analysts and Test Engineers

This is quite a common practice that leads to tension and potential disconnects between the analysis and testing
groups/personnel, diminishes the technical prowess/capability of the organization, and adds risk to programs. Having analysts
supporting testing provides them with the much needed access to the actual hardware and the ability to gain a deeper
appreciation/understanding for the assumptions/simplifications they have incorporated into their FEM. It also provides
analysts the opportunity to see firsthand the challenges the test engineer faces conducting vibration/modal testing (e.g.,
mounting instrumentation and shakers, obtaining valid/quality test data, extracting modal parameters, etc.) The analyst also
gains insight into the fundamental structural dynamic characteristics of the hardware in its test configuration. Likewise,
test engineers performing analysis gain an appreciation of the work that went into generating the FEM’s, particularly the
assumptions about joints and connections, which heavily influence the modal characteristics. The test engineers also gain
insight into the challenges associated with the complexity and sophistication of the analytical work. I encourage you, if given
the opportunity, to do both test and analysis work. It will only make you a more experienced and knowledgeable engineer
and technically strengthen your organization.

Another related poor practice is not having interdisciplinary teams (i.e., “Tiger Teams™) incorporated into programs,
particularly at their start. Tiger Teams cover all aspects of a piece of hardware including: design, analysis, testing, operation,
and decommissioning. This unfortunate practice is again partly due to current budgetary pressures and the misconception
that Tiger Teams are more costly. While it is true that Tiger Teams may cost more during the initial phase of a program, they
actually reduce the overall program cost by helping to ensure a good initial design and a well laid out plan for the subsequent
analysis, testing, operation, and decommissioning are developed. Starting with a poor initial design can be very costly to
remedy, especially the later in the program its shortfalls are identified. If you are presented with an opportunity to serve on a
Tiger Team, do so! This will help you develop the ability to effectively communicate and work with other disciplines, which
is critical to both a program’s and organization’s success.
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1.12 Pitfall #11: Test Is a Four Letter Word

Due to a combination of current budgetary pressures and decision makers becoming less technically knowledgeable,
there is tremendous schedule pressure to reduce the amount of analysis and especially the amount of testing. A common
misconception is that testing increases a program’s cost, which is not accurate [27]. However, because a test has a well-
defined resource allocation (i.e., cost, personnel, and schedule), this makes it very easy for decision makers to believe that
cutting testing will save the program time and money. Unfortunately testing provides information about the hardware that is
simply not available from unverified and unvalidated FEM’s. Hence the residual risk in the FEM, which many times is not
well understood, must be carried along and typically results in having to incorporating higher uncertainty factors. Many times
these high uncertainty factors in turn lead to predicted negative structural margins, which leads to redesign or de-scoping the
hardware’s performance.

If possible, piggyback “mini-modal” hammer or base drive modal tests onto existing planned component and subassembly
vibration tests to gain insight early in the program. Not only will this allow these FEM’s to be test correlated, but it serves as
a vital check on the design and identifies problems early when they are less costly and time consuming to fix. Always try to
implement the philosophy of build from the foundation UP, not from the final configuration top DOWN. However, be careful
of not falling prey to “tests of opportunity” and the “something is better than nothing” approach, where short cuts are taken
due to lack of funding and schedule resulting in tests being poorly planned and executed. Decision makers may see “tests of
opportunity” providing risk reduction to the program, when in reality their results may be at best confusing and most likely
misleading.

Because of this current environment, engineers need to not only communicate to decision makers the who, what, when,
and where, but most importantly be able to succinctly explain why the modal or vibration test is needed and the value they
bring to the program in terms of reducing risk (i.e., increasing confidence the system will satisfactorily perform given the
program’s risk profile). Risk, schedule, and cost is the language of decision makers and engineers need to be comfortable
and proficient in talking in these terms. Being able to succinctly convey essential concepts in easily understandable language
is critical to the success of both you, your organization, and the project/program you are working on. Be able to advocate for
the “right” test and to convey the associated risk with a “test of opportunity”. Always have a “30 second elevator” speech
in the back of your mind ready to go. You can be pulled into high level meetings at a moment’s notice, and none of the
attendees may have any technical knowledge in your area.

1.13 Pitfall #12: Unrealistic Success Criteria

Whether it be for an analysis task or for a modal/vibration test, if at all possible define the success criteria at the very
beginning and get agreement from all stakeholders. Along with the success criteria identify the receivables, task scope, task
schedule (i.e., milestones), and the deliverables. For modal pretest analysis the success criteria includes proper selection of
the Target Modes, excitation methods (i.e., shaker and hammer) and locations, test DOF set (i.e., ASET-NASTRAN analysis
set of constrained boundary DOF) and the associated TDM, types of instrumentation, DAQ other computer resources,
and the format the modal test results will be delivered to the customer. If modal shakers will be used, this also includes
the coordination of how these shakers will be supported/suspended during the modal test, which many times is the most
challenging aspect of any modal test. Always leave a little margin in the test schedule (i.e., success oriented) because no
test goes exactly according to plan and tasks always take longer than expected. A too aggressive test schedule can result in
needing to support long testing hours, which leads to increased stress, which leads to sleep deprivation, which leads to the
test team making mistakes, which leads to testing delays, which leads back to long testing hours. Not a good situation.

Sometimes there really are no firm requirements. You have been called in by the Customer, who only knows that they
have a problem, but they don’t know the cause nor have they seen it before, but need it fixed rapidly. If possible acquire data
during operation when the problem is occurring. Be mindful the cause of the problem may be spatially and/or temporally
separated from the part that is failing. In the case of electronic components, even though failure occurred during a vibration
fatigue test, the cause of the failure can be due damage incurred during the preceding thermal test [20, 21].

Many times the Customer has a testing requirement levied upon them from a company or program, but they themselves
do not fully understand nor appreciate the effort needed to meet this requirement. As the test engineer, you provide that vital
role of “technical requirements translator” informing the Customer of the type and scope of testing that is required and how
this fits into the overall test/analysis program requirements. Be sure to account for this in your work estimate, because this
can take significant time (e.g., need to support review panels and technical meetings).

Modal testing extremely large hardware may also require a forced response analysis to ensure the selected excitation
method and locations can produce response levels throughout the test article that are “significantly” above the ambient
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background. The ambient background is a combination of the ambient vibration levels in the test article, sensor and
DAQ noise and signal drift, and the ambient electromagnetic environment. As stated earlier in Pitfall #5, this may require
performing the modal test during off-shift hours and/or on weekends. It may also require using a greater number of exciters
(e.g., modal shakers), larger exciters, or instrumentation that is more sensitive. Understanding both the ambient background
and the test article’s modal damping characteristics are critical in this assessment.

In all pretest analysis, there needs to be a healthy dose of skepticism and some conservatism added because the pretest
analysis is based upon an uncorrelated FEM and assuming perfect test boundary conditions. The selection of the test
DOF needs to be done judiciously and sparingly because more instrumentation does not guarantee better self-orthogonality
(ORTHO)/cross-orthogonality (XORTHO), in fact in many cases it causes significant degradation. Also more instrumentation
requires longer installation and removal time, more effort during testing to keep them healthy and functioning, extra cost to
purchase/rent the extra instrumentation and the associated DAQ channels, and incurs the extra burden of handling larger
sized files. Always, as a final check of the selected test DOF, display the Target Modes (i.e., select modes of interest that
contain the fundamental characteristics of the test article needed to achieve a well-correlated FEM) with the TDM. The TDM
should only contain the grid points where instrumentation is installed. If the TDM display of the Target Modes does not make
intuitive sense, then the test DOF set (i.e., ASET) needs to be further revised.

1.14 Conclusion

The advancements made in both analytical and experimental modal analysis in the aerospace field is beyond amazing. This
is an exciting time for college students studying to go into and new engineers entering this field. This paper, by identifying
12 specific pitfalls, will hopefully serve as a guide to both groups to help ensure they have a successful career by pointing
out some of the most common pitfalls and misconceptions. Well informed, their energy, enthusiasm, and drive will lead to
the aerospace engineering profession remaining viable, vibrant, and relevant.

References
1. Brown, R.M.: Alma Mater. Random House Publishing Group, New York (2001)
2. Grimes, P.J., McTigue, L.D., Riley, G.F,, Tilden, D.L.: Advancements in Structural Dynamic Technology Resulting from Saturn V Programs.

NASA-CR-1539, Volume I (1970)
3. Grimes, PJ., McTigue, L.D., Riley, G.F., Tilden, D.L.: Advancements in Structural Dynamic Technology Resulting from Saturn V Programs.
NASA-CR-1539, Volume II (1970)
4. Box, G.E.P.: Robustness in the strategy of scientific model building. In: Launer, R.L., Wilkinson, G.N. (eds.) Robustness in Statistics. Academic
Press, New York (1979)
5. Rose, T.: Your model is wrong. NESC Loads & Dynamics Technical Discipline Team Face to Face (2018)
6. Kabe, A.: Mode survey tests and mode shape orthogonality checks. NESC Loads & Dynamics Technical Discipline Team Face to Face (2018)
7. Avallone, E.A., Baumeister III, T.: Marks’ Standard Handbook for Mechanical Engineers, 9th edn. McGraw-Hill, New York (1987)
8. Bayer, W.H.: CRC Standard Mathematical Tables, 24th edn. CRC Press, Boca Raton, FL (1974)
9. Beer, EP,, Johnston Jr., E.R.: Mechanics of Materials. McGraw-Hill, New York (1981)
10. Bendat, J.S., Piersol, A.G.: Engineering Applications of Correlation and Spectral Analysis. John Wiley & Sons, New York (1980)
11. Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures, 2nd edn. John Wiley & Sons, New York (1986)
12. Blevins, R.D.: Formulas for Natural Frequency and Mode Shape. Krieger Publishing, Malabar, FL (1995)
13. Craig Jr., R.R., Kurdila, A.J.: Fundamentals of Structural Dynamics, 2nd edn. John Wiley & Sons, New York (2006)
14. Ewins, D.J.: Modal Testing: Theory, Practice and Application, 2nd edn. Research Studies Press LTD., Philadelphia, PA (2000)
15. Greenwood, D.T.: Principles of Dynamics. Prentice-Hall, Englewood Cliffs, NJ (1965)
16. Harris, C.M.: Shock and Vibration Handbook, 3rd edn. McGraw-Hill, New York (1987)
17. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1991)
18. McConnell, K.G.: Vibration Testing Theory and Practice. John Wiley & Sons, New York (1995)
19. Oppenheim, A.V., Willsky, A.S.: Signals & Systems, 2nd edn. Prentice Hall, Englewood Cliffs, NJ (1997)
20. Steinberg, D.S.: Vibration Analysis for Electronic Equipment, 3rd edn. John Wiley & Sons, New York (2000)
21. Steinberg, D.S.: Preventing Thermal Cycling and Vibration Failures in Electronic Equipment. John Wiley & Sons, New York (2001)
22. University of Massachusetts: Lowell “Modal Space”. https://www.uml.edu/Research/SDASL/Education/Modal-Space.aspx
23. Wirsching, PR., Paez, T.L., Ortiz, K.: Random Vibrations: Theory and Practice. John Wiley & Sons, New York (1995)
24. Young, W.C.: Roark’s Formulas for Stress and Strain, 6th edn. McGraw-Hill, New York (1989)
25. Bendat, J.S.: Nonlinear Systems Techniques and Applications. John Wiley & Sons, New York (1998)
26. NASA-STD-7001B. Payload Vibroacoustic Test Criteria, 11 Nov 2017
27. Juranek, J.B., Wright, C.P.: Improving Efficiency in Space Vehicle Assembly, Integration, and Test (AI&T). 30th Aerospace Testing Seminar,
March 2017


https://www.uml.edu/Research/SDASL/Education/Modal-Space.aspx

Chapter 2 )
Vibration Testing of Laparoscopic Surgical Instruments Under Gkt
Varying Grip Pressures

Andrew R. Hutchins, Sabino Zani Jr., Roberto J. Manson, and Brian P. Mann

Abstract Many devices use vibration to provide sensory cues to a human user. In applications, such as smart phones,
the vibratory sensory cue is somewhat simple and needs only to exceed a known threshold to signal the user; however,
applications that require an individual to control or manipulate an instrument while being given a vibratory sensory cue must
also consider the excitation, whose primary purpose is to provide vibrotactile feedback, which can alter the user’s ability
to properly control or maneuver the instrument. Another consideration for many handheld instruments is that a user’s grip
pressure can drastically alter the instrument’s dynamic response. To this end, predicting the instrument’s response is made
difficult, because the relationships between grip pressure and the equivalent interfacial damping and stiffness is complex. To
address this research gap, this paper explores the idea of performing experimental vibration tests on a laparoscopic instrument
while being held at varying grip pressures. This research is motivated by the idea of providing vibratory feedback through
laparoscopic surgical instruments. A gap in the literature exists in understanding how surgeon grip characteristics impact the
optimal frequency for which this excitation should be supplied. Results from this study indicate that excitation frequencies
should be greater than 175 Hz for both weak and strong grip configurations. Lower frequencies result in a larger amplitude
response at the instrument tip for all grip pressures, which could result in patient harm as the instrument tip oscillates
uncontrollably.

Keywords Laparoscopic surgery - Haptic interface - Grip force - Vibrotactile feedback - Vibration testing

2.1 Introduction

The number of minimally invasive surgical cases worldwide (ex. laparoscopic surgery) continue to increase as these
procedures have added benefits such as less post-operative pain, faster recovery, lower morbidity rates, and less trauma
[1]. One of the primary drawbacks associated with laparoscopic surgery is the lack of haptic feedback to surgeons that is
relied upon during open surgery techniques (i.e. tissue palpation). The design of laparoscopic instrumentation limits the
amount of haptic feedback, particularly tactile feedback. To address this concern, there have been attempts at adding haptic
capabilities to laparoscopic instruments; however, an important step before simply adding vibrotactile capabilities to surgical
instrumentation is to study the fundamental vibration response of the instrument from various types of excitation. This is
essential as the instrument tip should be located at a node, while the handle at an anti-node to ensure that the tip is not
moving uncontrollably inside of the patient and that the surgeon can perceive the feedback, respectively. To address this
research gap, this study involved a vibration test of a laparoscopic instrument while being held at varying grip pressures and
simultaneously being excited by a vibrating motor located at the instrument handle. Grip forces were measured by using a
series of force sensors attached to the instrument handle and the instrument response was measured at both the handle and at
the instrument tip using uniaxial accelerometers. Results from this study have implications, not only in surgery, but also for
many hand-held tools or instruments with haptic interfaces.
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2.2 Background

Much research and medical device development has addressed the need of adding haptic capabilities to laparoscopic surgery
instrumentation. Most of this prior work, however, has primarily focused on either surgeon perception of added haptics [2] or
performance of surgeons at tasks with haptic interfaces added to instrumentation during training [3, 4]. Some prior research
has investigated the impact of adding pneumatic actuators at the instrument handle to communicate instrument jaw contact
force to the surgeon [5]. In this study, the authors found that novice surgeons greatly reduced their average and peak gripping
force when the pneumatic actuators were activated. These foundational studies provide evidence that the addition of haptics
in laparoscopic surgery could expedite surgeon learning and result in useful technologies that could be implemented into live
procedures but fail to investigate the mechanics of laparoscopic instrumentation under vibratory excitation.

As full control of surgical instrumentation is essential in providing optimal patient care, surgical tools equipped with haptic
interfaces should be designed in such a manner that the instrument tips are located at nodes when vibrotactile feedback is
activated. Likewise, to maximize human perception from a signal, instrument handles should be at anti-nodes. To this end,
experimental vibration tests should be performed for all surgical instruments that have haptic interfaces to better understand
the impact of varying grip pressures on tip and handle response.

2.3 Analysis

The experimental setup included an Endo Dissect laparoscopic surgery instrument (Medtronic plc, Dublin, Ireland), a 2.7 mm
vibrating motor, five FlexiForce™ sensors (Tekscan, Inc., Boston, MA), and two piezoelectric accelerometers (Handle:
J352C34, Tip: 352C42, PCB Piezotronics, Inc., Depew, NY). The FlexiForce™ sensors were calibrated using a handheld
force gauge (DFG35-10, Omega Engineering, Norwalk, CT). Data acquisition for the force sensors and accelerometers was
made using a National Instruments USB-6251 and MATLAB 2018B. Figure 2.1 shows an image of the Endo Dissect with
the force sensors, vibrating motor, and accelerometers affixed to the instrument. The force sensors were attached at contact
points along the instrument handle to measure the contact force of each finger. An electronically controlled resistance box
(ohmSOURCE 0OS-250, IET Labs, Inc., Westbury, NY) was connected in series with the vibrating motor and was used to
control the motor frequency.

The instrument amplitude response was measured at both the handle and tip under varying motor frequencies and grip
pressures for 10 s at each iteration. Frequency responses at the tip and handle were then extracted from the Fast Fourier
Transform of the accelerometer data, along with the voltage amplitude at those frequencies. Finally, the amplitude responses
of the tip and handle were compared (Fig. 2.2) to determine the frequency ranges where a small response occurs at the tip,
but a somewhat larger response occurs at the handle, i.e. to ensure vibrotactile feedback.

In observing Fig. 2.2, it can be seen that for frequencies greater than 175 Hz the amplitude at the tip is lower than that
of the handle. This finding indicates that for laparoscopic surgical instruments with a haptic interface, the vibratory motor
should rotate at these higher frequencies to ensure that the tip of the instrument is static while the handle is vibrating.

Figure 2.3 illustrates the gripping forces for each of the contact points on the instrument handle as a function of the motor
frequency. The weak grip configuration resulted in a more consistent gripping force for each finger, while the strong grip
configuration was more unpredictable. Further tests are warranted for testing gripping pressures of surgeons to determine
the distribution of contact pressure from each finger along the instrument handle and how varying gripping styles impact the
frequency response at the instrument tip and handle. Preliminary results from Figs. 2.2 and 2.3 indicate that the tip and handle

Fig. 2.1 Experimental setup of the Endo Dissect with five FlexiForce™ A101 sensors attached at the handle, a vibrating motor attached at the
handle, and two PCB Piezotronics accelerometers attached at the handle and tip
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Fig. 2.2 Normalized amplitude response vs. vibration motor frequency plots for the instrument tip and handle response at varying grip pressures.
Response is normalized by the squared frequency to ensure constant amplitude across frequency sweeps
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Fig. 2.3 Average contact force from each finger for the weak and strong grip trials across all frequencies tested. Error bars indicate standard
deviations

responses are comparable regardless of grip pressure; however, as indicated near 285 Hz in the strong grip configuration, a
larger-amplitude response may be a factor to consider when holding the instrument with an increased grip force.

2.4 Conclusion

This study involved vibration tests on a laparoscopic surgical instrument held at varying grip pressures and excited by a
motor with a rotating mass imbalance. Results from this study indicate that lower frequencies should be avoided when
providing excitation to laparoscopic instruments to ensure that handle response exceeds tip response, leading to an increase in
instrument control and providing an decreased risk to patients. Further work is being completed to test excitation waveforms
with the plan to train a neural network to alter the motor frequency in real-time using grip pressure. Additionally, we will be
testing the grips of multiple surgeons at to determine the optimal grip configuration and motor frequency combination.
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Chapter 3 )
Combined Qualification Vibration Testing and Fixed Base Modal e
Testing Utilizing a Fixed Based Correction Method

James P. Winkel, Vicente J. Suarez, and James C. Akers

Abstract Vibration testing spaceflight hardware is a vital, but time consuming and expensive endeavor. Traditionally modal
tests are performed at the component, subassembly, or system level, preferably free-free with mass loaded interfaces or
fixed base on a seismic mass to identify the fundamental structural dynamic (modal) characteristics. Vibration tests are
then traditionally performed on single-axis slip tables at qualification levels that envelope the maximum predicted flight
environment plus 3 dB and workmanship in order to verify the spaceflight hardware can survive its flight environment. These
two tests currently require two significantly different test setups, facilities, and ultimately reconfiguration of the spaceflight
hardware. The vision of this research is to show how traditional fixed-base modal testing can be accomplished using vibration
qualification testing facilities, which not only streamlines testing and reduces test costs, but also opens up the possibility
of performing modal testing to untraditionally high excitation levels that provide for test-correlated finite element models
to be more representative of the spaceflight hardware’s response in a flight environment. This paper documents the first
steps towards this vision, which is the comparison of modal parameters identified from a traditional fixed-based modal
test performed on a modal floor and those obtained by utilizing a fixed based correction method with a large single-axis
electrodynamic shaker driving a slip table supplemented with additional small portable shakers driving on the slip table and
test article. To show robustness of this approach, the test article chosen is a simple linear weldment, whose mass, size, and
modal parameters couple well with the dynamics of the shaker/slip table. This paper will show that all dynamics due to the
shaker/slip table were successfully removed resulting in true fixed-base modal parameters, including modal damping, being
successfully extracted from a traditional style base-shake vibration test setup.

Keywords Modal testing - Pretest analysis - Model updating - Base-shake - Environmental testing - Fixed base

3.1 Introduction

Testing spaceflight hardware is a vital, but time consuming and expensive endeavor. Traditional dynamic test methods
presently require two separate tests; the first, a modal test performed on a seismic mass, and the second, a flight level
verification test performed on a shaker table. The vision of this research is to combine two separate structural dynamic
tests required for space hardware verification into one, which would allow performing modal testing to untraditionally high
excitation levels that could approach flight levels.

Several different methods have been proposed to extract fixed base modes from structures mounted on shake tables [1-9].
Authors of this paper were able to be involved with utilizing one of these methods developed by ATA Engineering, which
utilizes the shake table accelerations as references when calculating the Frequency Response Functions (FRFs) [8, 9]. It is
the intent of this research to start where these two papers left off and further advance utilization of these methods.

Currently only the first stage of a multi-phase research effort has been completed. This paper discusses the test setup, trade
studies performed prior to the testing on the shaker table, describing the challenges and lessons learned thus far, and finally
disclosing the plan for completing the remaining two phases of the research effort. In the next phase, the primary objective
will be to process all the data collected in the first phase and formulate a test plan that incorporates any necessary changes. In
the third and final phase, the plan will be to carry out high level vibration testing and extracting fixed based modal parameters
from this same test.
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3.2 Simple Beam Pathfinder Study

As a pathfinder to verify that the methodology of using accelerations as references to remove base motion was being properly
implemented, a simple free-free beam was used [10]. The setup of this simple free-free beam involved a 27 square 6061-T6
aluminum hollow rectangular cross-section beam that was 8777 long and had a wall thickness of 0.125// thick. As shown in
Fig. 3.1, the beam was suspended from a 1 ton overhead crane hanging over 12 ft. above the top of the beam. A thin nylon
string was used directly tied to the top of the beam. In between the string and the chain of the hoist, a rubber bungee
cord was added to isolate any modes from the crane influencing the beam as well as lower the rigid body suspension
modes of the beam to frequencies much lower than the flexible body mode frequencies to simulate a free-free boundary
condition.

The beam was divided into six equal sections and seven uniaxial accelerometers were placed along the beam in each of the
two lateral beam directions. A single uniaxial accelerometer was placed at the top of the beam oriented in the axial direction
to be able to measure motion along the beams axial direction. This totaled up to 15 channels of accelerometer data for the
test. A small impact hammer with a white vinyl tip was utilized for the excitation. A total of ten impacts were collected at
each of the 15 accelerometer measurement locations.

The method was exercised to verify that the modal parameters of this simple beam with the following three restrained
boundary conditions: pinned at one end, pinned at both ends, and pinned at the ends as well as in the middle, could be
extracted from its free-free modal hammer survey. A finite element model (FEM) was generated utilizing 2D beam elements
with a total four boundary conditions, the free-free boundary conditions of the test and the three restrained boundary
conditions. The first four FEM modal frequencies and mode shapes of the four boundary conditions were computed and
compared to the modes extracted using the fixed-base method and are shown in Fig. 3.2.

Time histories were post processed into frequency response functions (FRF) by concatenating the impact hammer data
into one long time history file depending upon the specific locations needed to extract the desired boundary condition. For
example, in simulating the boundary condition of the beam being pinned at both ends, the impact time histories for the X
(lateral) directions at both end location were concatenated together. Then the time histories were post processed using drive
point accelerations at those impact locations as references. The Hv FRF method was utilized due to the fact that the noise
level on the reference accelerometer and response accelerometer was equal in magnitude. Comparisons of the FEM and
extracted fixed-base frequencies and a visual inspection of the FEM and extracted fixed-base mode shapes was performed
and are shown in Fig. 3.2. Figure 3.3 illustrates the cross orthogonality comparison between the FEM and test results for
these different boundary conditions. This study verified that a fixed-base correction technique, in this specific case using drive
point accelerometers as references, could be used somewhat effectively to extract modal parameters for different boundary
conditions from a free-free modal test. It was definitely more difficult to extract clean modes shapes when the boundary
conditions the test data was being corrected to became more complicated. Thus, when trying to simulate the pinned-pinned-
pinned condition, while the deformation shapes and frequencies appeared to be correct, the cross-orthogonality was not as
clean. More work is planned to be done using this data to help make more significant conclusions. It is the hope that prior to
using any other fixed based correction techniques on the shaker slip table, these techniques can first be applied to this simple
free-free beam data.

Fig. 3.1 Simple beam pathfinder setup
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Fig. 3.2 Simple beam pathfinder fixed based correction mode shape and frequency comparison

There were a few challenges encountered with the setup of this pathfinder study that if it were redone would be avoided.
The test article had a symmetric square cross-section meaning that there were two lateral bending modes at each resonant
frequency, which were aligned with the axes of the cross-section and therefore occurring in orthogonal planes to each other.
The closely spaced and highly similar mode shapes made it much more difficult to extract the modes cleanly. The second
was that running all the accelerometer cables taped down the length of the beam created a significant amount of mass loading
and additional damping. This study is far from being fully completed and the hope is to spend more time with this data going
forward.

3.3 Test Article Selection

For the first stage of this research, development of an appropriate test article along with all the infrastructure needed to
perform the modal testing was the first step. Initially, it was planned that a test article would be designed and fabricated that
would meet the following requirements: simple design and fabrication, behave linearly, have sufficient weight to influence
the current shaker table dynamics, and have its fundamental lowest frequency modes in the same frequency range as most
aerospace structures. Shortly into the process, it became clear that meeting all these requirements would be cost prohibitive
and would exceed the first stage schedule constraints. As a compromise, an existing magnesium bookend used in the
dynamics lab was chosen because it would meet the first three requirements. However, unfortunately its lowest fundamental
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Fig. 3.3 Simple beam pathfinder fixed based correction cross-orthogonality comparison
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Fig. 3.4 Selected test article

modes are significantly higher in frequency than typical aerospace test articles. At the time it was felt that this limitation
would not be an issue for the first stage of this research effort.

The magnesium bookend weighed 217 Ib and was expected to behave extremely linear since it was a fully welded
magnesium structure. The bookend utilized 3/8 in. diameter fasteners in a 4 in. x 4 in. square hole pattern to hold it down to
the floor. More detailed information on the article can be seen in Fig. 3.4.

3.4 FEM Construction and Sensor Pretest Trade Study

A FEM of this magnesium bookend was created to support this research effort. Three different FEMs of the bookend were
generated using three different modeling techniques traditionally utilized in modeling aerospace structures. The first, and
most simple, modelling technique was to model the bookend using 2D shell elements over the entire bookend, which is
typically done in aerospace loads FEMs, and is shown in Fig. 3.5 and will be referred to throughout this paper as the Simple
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Fig. 3.5 Simple 2D shell FEM

-.

Fig. 3.6 Solid 3D FEM

2D Shell FEM. The advantages of this type of FEM are it is the simplest FEM to generate, analyze, modify, and it has the
shortest solution run times. The disadvantage of this modeling technique is that simple features such as holes and welds are
not taken into account and there is a lot of duplication of mass at the joints, which was especially the case due to the extreme
thickness of the plates.

The second modelling technique utilized was to automesh the CAD representation of the bookend using 3D solid
tetrahedral elements, which has the advantage that very fine detail can be accurately captured. The obvious disadvantages
of this technique is that solution run times are significantly longer and trying to modify or troubleshoot the FEM can be
extremely cumbersome given the number of elements and nodes that are internal to the outer surface and not easily sorted
out. The bookend FEM utilizing this second modelling technique is shown in Fig. 3.6 and will be referred to as the Solid 3D
FEM.

The final modelling technique used is a hybrid approach where the starting point was the simple 2D shell FEM and then
making modifications to eliminate the overlapping elements at joints and adding in more detail to capture details such as
holes and welds. Element offsets and RBE2 spider elements are utilized the make this added detail possible. The advantages
of this modeling technique is it allows for the increased accuracy of the mass distribution and stiffness changes without going
to the full extreme of solid elements. However, the disadvantage is it is the most difficult and time consuming FEM to create.
The bookend FEM utilizing this third modelling technique is shown in Fig. 3.7 and will be referred to throughout this paper
as the Complex 2D Shell FEM.

At this point, the reader may be wondering why three different FEMs were created for this research. It was done as a
side study to allow test engineers to ability to investigate which finite element modeling technique would most closely match
the real dynamics of the bookend. In the process of finding out the answer to this, test engineers could also look into which
FEM modeling technique would be the most efficient to utilize in modal pretest analyses which are done to see how many
accelerometers are required to independently capture the target modes. Modal pretest analysis was performed utilizing a

customized set of MATLAB-based test DOF selection tools that draw extensively upon ATA Engineering’s IMAT" software
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Fig. 3.8 FEM modal frequencies and shape profiles

packages. A simple CBUSH spring was attached to the top of the bookend representing the test verified axial stiffness of a
bungee cord that would be used to hold the bookend suspended in the subsequent modal survey. The first nine elastic body
modes for each FEM (i.e. the six rigid body suspension modes were excluded) were used as target modes in these pretest
analyses (Fig. 3.8).

An initial set 34 test DOF was utilized the pretest analysis of each FEM. This set was based upon engineering judgement
to give the pretest analysis a good starting point for capturing the shape and mass distribution of the target mode set. The
Iterative Residual Kinetic Energy (IRKE) was utilized to identify additional test DOF resulting in a total of 2500 test DOF.
Then a down selection algorithm created by ATA engineering was utilized to incrementally remove test DOF to achieve a
minimal test DOF set that met the following criteria (numbered by designated importance):

. <5% frequency difference between TAM and FEM for target modes

. <5% on off diagonal of the Self-Orthogonality Matrices

. >90% on the diagonal values and <10% on off diagonal of the Cross-Orthogonality Matrices

. >80% on the diagonal values Psuedo-Orthogonality Matrices (Used to establish upper bound only)

O R

The summary tables for each of the pretest analysis of each FEM is shown Table 3.1. There are two tables shown for
each FEM with the Upper Bound being where the Pseudo-Orthogonality criteria is no longer met and the Lower Bound
being where the Self-Orthogonality criteria is no longer met. The optimal set of test DOF is between these two bounds and
is usually much closer to the Lower Bound.

This study shows that the use of 3D tetrahedral solid elements is not conducive to this type of sensor selection approach. It
should be made clear that for the Solid 3D FEM, the only test DOF the computer was allowed to select were on the external
surface. This was done due to the fact that accelerometers cannot be placed inside the test article. It is understood that a 2D
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Table 3.1 FEM pretest analysis comparisons
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Shell elements exhibit similar issues in that the test DOF selected are technically on the center line of each surface and can
also not be selected, however, all the mass of the FEM is distributed to those same nodes in a 2D shell element. With a solid
3D element, the mass is distributed in a much finer fashion and much more difficult to capture using limited instrumentation.
Both the Simple and complex 2D shell FEMs do a reasonable job of selecting an optimized set of test DOF, with the Simple
2D Shell FEM doing a slightly better job.

After seeing these results, it was questioned about whether the appropriate DOF selection method was being utilized or
not. Therefore a simple plan to evaluate other DOF selection processes was created and carried out. The flow chart shown in
Fig. 3.9 describes this process.

After finishing this process on all three FEMs, the results clearly showed that the IRKE selection method outperformed
the Effective Independence selection method. The other finding was that no matter the method used, the solid 3D FEM
always required much higher DOF counts to achieve results within the stated guidelines above. This study served as a good
confirmation that the standard way the engineers had been doing pretest sensors selections for past modal test was indeed the
most efficient way to do them.

The final step was to utilize the Simple 2D Shell FEM, which in the studies above showed the best ability to predict an
optimal sensor set, to finalize the number and location of the sensors. A set of 75 DOF was selected which met the overall
majority of the pretest guidelines were met and can be seen in detail in Fig. 3.10.
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Fig. 3.9 Pretest analysis methodology evaluation flow chart
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Fig. 3.10 Simple 2D shell FEM final pretest results
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3.5 Bookend Free-Free Modal Test and Model Correlation

The test article was suspended from a soft bungee cord displayed in Fig. 3.11 that resulted in a bounce mode at 3 Hz and
all of the remaining suspension modes (e.g. first and second pendulum modes) below 3 Hz so that all suspension modes are
more than two orders of magnitude below the first flexible body mode.

An impact mallet with a hard black vinyl tip was utilized to excite the structure. This tip was able to produce high quality
excitation with good coherence up to 1400 Hz shown in Fig. 3.12. However, the FRFs seem to hold their quality of 2300 Hz.
Because this is not an actual test of flight hardware, it was considered acceptable to ignore the guidelines in this specific case
and use the modal parameters extracted up to 2300 Hz.

Now that test results had been obtained, it was possible to determine the answers to the new few questions about which
FEM construction technique would best predict the actual test results without model updating and the FEM engineers should
continue to utilize going forward in the research.

1. Which model is the most accurate correlation without any model updating?

2. Is modeling in so much detail with the Complex 2D Shell FEM required or what subset of modeling features are really
necessary?

3. Which model would be the “best” to use? “Best” meaning a good balance of both accuracy of the hardware while also
being user friendly.

The Solid 3D FEM was not able to be included fully in this part of the study because the reduced mass and stiffness
matrices generated using the chosen set of DOF was so insufficient, it corrupted the cross-orthogonality matrices. However,
the frequency comparison for the Solid 3D FEM was generated for reference in Fig. 3.13.

One can see the results in Fig. 3.13 that the Complex 2D Shell FEM does the best job predicting the real test results when
considering it can be better utilized in a pretest sensor effort. The Solid 3D FEM, as expected, does a very decent job in
predicting the results. It only slightly over predicts the stiffness of the test article. The Simple 2D Shell FEM under predicts
the stiffness of the model and thus is simulating a test article that is too flexible.

In a normal modal testing effort, test engineers would probably not see a need to update anything with either the Complex
2D Shell FEM or the Solid 3D FEM. However, in this research effort it was desired to know what features in the Complex
2D Shell FEM were really necessary. By starting with the Complex 2D Shell FEM and slowly removing one complicated
feature after another, it was revealed that really only one complex feature, the spider RBE2 elements connecting the plates
together, is necessary in making any 2D shell FEM most accurately simulate real test results. In Fig. 3.14, one can observe
the comparison between the starting Complex 2D Shell FEM to the much simpler correlated version.

Fig. 3.11 Bookend free-free modal test setup
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Fig. 3.13 Test vs. FEM correlation results for different FEM modeling techniques

All of the other element offsets and thickness variations that were input to try and capture the true geometry did not seem
to make a significant impact, and in some cases, introduced inaccuracies into the FEM. The strain energy plots were a helpful
indicator of this inaccuracy which would show discontinuities in the strain energy contour plots at these modeling features.
When using this updated much simpler version of the Complex 2D shell model, one can see in Fig. 3.15, that the higher off
diagonal value in the cross-orthogonality matrix was actually being generated due to these complicated modeling features.

Based on everything taken into account during these studies, it appears that the best FEM to use throughout the entire
process would be the updated 2D complex FEM where the only complexity is the RBE2 spider at each of the joints. This
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Fig. 3.14 Complex 2D shell FEM transition to simpler 2D shell FEM
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Fig. 3.15 Updated FEM cross-orthogonality comparison

updated complex 2D FEM is actually not much complicated to construct over the simple 2D FEM. It gives the best predictions
without any model updating even occurring which means the technique can be trusted more without the presence of test data.
Finally, it allows for a very accurate pretest sensor analysis to be performed. From this point on in the research, only the
updated 2D complex FEM will be utilized. It will be referred to as the test article FEM from this point on as well.

3.6 Multi-shaker Support Setup

In order to correctly utilize the fixed based correction methods, one basic requirement must always be met. There must
be an independent uncorrelated excitation source for every shape that is attempting to be removed. The expectation, based
on past studies performed by ATA Engineering [7] on a shaker table, was that the removal of the shaker slip table motion
would require at least seven external portable shakers. This meant that engineers would need to come up with structural
supports to hold the portable shakers. The main design requirements of these supports were that they needed to allow for
easy maneuvering of the shakers, allow for adequate height clearances over the slip table, and be cost effective to fabricate.
The lab has relied on catwalks spanning over the large shakers that run on tracks at the edges of the building. It was decided
to utilize the same tracks and wheel system for this new test capability. The final product displayed in Fig. 3.16 consists of
S6 x12.5 standard steel I-Beams and manual 1 ton plain trollies attached to 1 ton hand chain hoists which run along the axis
of the I-beams. In past experience on fixed based modal testing, engineers have learned that hand chain hoists are the best
option to accurately position the shakers due to their ability to pull large lengths of chain and only move the shakers up or
down fractions of an inch. They do not jolt up or down like other electronic cable wenches or chain hoists that have been
previously used. Beam clamps were placed on either end of the trolley to hold it stationary once the shakers were located.
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Fig. 3.17 Shaker support attachments

To support attachment of the portable shakers to these hoists, a standard lifting hardware setup was created. This lifting
hardware setup, shown in Fig. 3.17, consisted of (order from shaker to hoist): swivel hoist rings fastened to the four corners
of the portable shaker trunnions, four-leg cable bridles, and finally a bungee cord link along with a loosely fitted safety strap.
The loosely fitted lifting strap was put in place because the bungee cord links were not load tested. Therefore, to ensure
safety, the lifting straps would not allow the shakers to fall if the bungees were to break. Normally, turnbuckles would be
used between the swivel hoist rings and the four-leg cable bridles so that the shaker orientation could be accurately set,
however, the lab did not own enough of these for this research and a decision was made to not utilize them in this first phase.
Looking back, they would have been helpful to have and are strongly suggested to be used in the future.

3.7 Traditional Fixed Based Modal Test

The test article FEM that was correlated using the free-free test data documented in previous sections was constrained at
all the fastener locations using RBE2 spiders. The modal analysis was performed to identify the target modes that would be
extracted in the fixed based testing. Figure 3.18 shows the frequencies, associated modal effective mass, and the deformation
shapes of the selected target modes.
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Fig. 3.18 Bookend fixed based target modes
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Fig. 3.19 Bookend fixed based modal testing pretest results

It was decided in an attempt to keep things simple to only go after the first seven modes which allowed engineers to reduce
the required instrumentation on the test article from 75 to 53. The final sensor locations can be seen in Fig. 3.19 which also
includes the pretest Cross-Orthogonality matrix and frequency differences between the reduced TAM and full FEM shapes.

It was important to the engineers performing the research to have a good baseline of fixed based modal parameters using
the traditionally accepted fixed based approach of testing on a seismic mass modal floor. The lab has a 10 ft. x 10 ft. square
modal floor that has a 477 x 4/ square hole pattern. The test article was bolted down to the modal floor using 3/8// diameter
fasteners that were all torqued to 20 ft. 1b. To be able to accurately capture the modal floor response, accelerometers were
installed on the modal floor near the four corners of the test article. Impact hammer testing using a modal mallet with a
black vinyl tip was utilized to excite the test article on the modal floor. Impacts were taken on the test article top in all
three directions as well as at all four modal floor accelerometer locations. All data was processed using the impact hammer
measured force as the reference. The end result of this testing was that the seven target modes were successfully able to be
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Table 3.2 Fixed based testing cross-orthogonality matrix and frequency comparison
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Fig. 3.20 Stability plot from fixed based modal test results

extracted from the testing and it showed that significant model updating to the boundary conditions should be performed.
[lustrated in Table 3.2, the RBE2 spider element modeling technique fixing the base of the test article was much too stiff.

The model updating work was chosen to be delayed so that the testing efforts could continue. When looking into the
extracted mode shapes, it was discovered that the modal floor was flexing slightly along with the test article. This was
completely unexpected as all testing done in the past on the modal floor had never yielded results where the floor appeared to
be excited along with the test article. Most aerospace test articles have fundamental resonances well below 400 Hz. However,
the fundamental mode of this test article was 400 Hz. The fixed base correction approach would now have to be applied on
the modal floor to remove its influence on the test article, an unexpected challenge that would eliminate the ability to use
these results as the baseline in the study. The other thing observed was that the frequency response functions appeared to be
“bent” over thus the CMIF was also “bent” over as shown in Fig. 3.20. The pole estimates were generating several of the
same poles just slightly shifted over in frequency also displayed in Fig. 3.20. This is usually a sign that non-linear behavior
exists. The only explanation to explain this behavior was that the bookend coming up off the floor. The interface stiffness
in the vertical up direction is much less than in the vertical down direction where the bookend is in contact with the modal
floor. The torqued down 3/8// bolts are the only thing creating the stiffness in the up vertical direction.
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Fig. 3.21 Modal floor multi-shaker layout

At this point, because the modal floor had not reacted as expected and the test article base appeared to be exhibiting
non-linear behavior, an adjustment to the test plan was made. In attempting to address the first challenge of the modal floor
flexing, multi-shaker testing on the modal floor was planned out where test engineers would utilize the labs four small
portable shakers, exciting three on the modal floor and one on the test article. Refer to Fig. 3.21 for more clarification.

The reason for choosing three shakers on the floor was to allow for the best ability to excite the deformation shapes
observed in the extracted fixed based test shapes. There appeared to be three main deformations of the modal floor
accelerometers. These deformations can be defined as:

1. All four accelerometers deforming in phase along Z axis
2. 80001Z+ and 80002Z+ deforming out of phase relative to 80003Z+ and 80004Z+ along Z axis
3. 80001Z+ and 80004Z+ deforming out of phase relative to 80002Z+ and 80003Z+ along Z axis

Ideally, test engineers would have liked to drive vertically downward along Z-axis with all three floor shakers. However,
it was not possible to drive right next to the test articles vertically because the shaker trunnions would be contacting the test
article. Thus to create enough space to allow the shakers to stay clear of the test articles, 45° mounting blocks were used to
allow the shakers to drive downward at a 45° angle.

The shakers relied on analog filters to bandpass limit the excitation frequency between 200 and 2000 Hz. Through previous
testing experience, these analog filters have been utilized to at least limit the lower frequency range as much as possible to
minimize shaker bouncing to protect them against over stroking when suspended. The frequency response functions shown
in Fig. 3.22 using the three floor shakers as references and the four modal floor accelerometers as references clearly show
dynamic response in the floor taking place.

Using the three shaker drive points as references, new FRFs were generated that would remove the motion of the modal
floor from the test article. This was completed using two different approaches. First, the FRFs were calculated using the
shaker forces as references, then the references were switched out using the Structural Modification Using (Frequency)
Response Function (SMURF) approach that was coded into the IMAT software by Kevin Napolitano of ATA Engineering.
This technique rearranges the FRF matrix by replacing the current references with new references through a partial inversion
of the FRF matrix [11]. The second approach used, referred to as Drive Point (DP in Table 3.3), was simply using the shaker
drive point accelerometers as references in the formulation of the FRFs. Modes were extracted from the FRF created from
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Fig. 3.22 Frequency response functions of modal floor accelerometers (responses)/modal floor shakers (references)

Table 3.3 Fixed based modal frequency comparison table

Uncorrected| SMURF Corrected [DP Accels Corrected
Freq (Hz) | Freq (Hz)| % Diff |Freq (Hz)| % Diff
394 401 2% 400 1%

452 463 3% 461 2%

698 709 2% 706 1%
1089 1098 1% 1095 1%
1275 1282 1% 1279 0%

both correction techniques and compared back to the uncorrected modal parameters. This showed that the effect of the floor
compliance (although minimal) was successfully able to be removed using either technique utilized.

More testing was desired to be performed with the shakers on the modal floor to allow engineers to determine if more
torque on the fasteners would help reduce the effect of the non-linear behavior at the base of the bookend, but due to time
restraints, it was decided to move onto the shaker slip table testing and if time permitted at the end, the test article could be
returned to the modal floor to investigate that further.

3.8 Shaker Slip Table Modal Test

The bookend with its instrumentation installed was transferred as a unit onto the shaker slip table interface next. The shaker
support beams and shakers were then positioned into place around the shaker slip table. The lab didn’t own the quantities of
portable shakers and signal generators required to perform the objectives of this slip table test. The plan was put into place to
get a short term rental of the shakers from The Modal Shop and supplement the current signal generators currently owned by
the lab by renting the extra LAN-XI 3160 modules from Bruel and Kjaer. The shaker layout was first setup to allow for the
removal of the six rigid body modes of the slip table from the test article. The large electrodynamic shaker was disconnected
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Fig. 3.23 Shaker slip table multi-shaker layout

from the slip table to start off with. It was intended to utilize the large shaker as one of the independent excitation sources
in this first stage of the research, but time did not allow for it. It is planned to be utilized in testing going forward in this
research investigation. For the first tests, the slip table oil was turned on to allow for free motion. The layout of the shakers
and instrumentation can be seen in Fig. 3.23.

The shakers were analog band pass limited from 15 to 800 Hz. They were all run at the same forcing level with the
exception of the shaker on the test article which was too small to achieve the same force level. In addition, multi-shaker data
was also taken with the slip table oil off. Test engineers made the decision early on to take data on as many different test
configurations as they could think of during the rental period of the shakers and extra LAN-XI modules. This put on hold
any data processing and review until after all the testing was complete. This was definitely not the ideal way to carry this out,
but it was extremely important to test engineers to get data on as many different configurations as they could think of while
they had the equipment available.

After all the multi-shaker testing was completed, additional test configurations were collected on the shaker table utilizing
impact hammer testing at all the drive point accelerometer locations. This was done to see if in the data processing, all the
impacts could be concatenated and then processed as if they were all performed in the same test. It was desired to see if this
testing would generate similar results to the multi-shaker testing. Another test configuration that was performed was to move
all the accelerometers positioned on the slip table next to the test article as opposed to the edges of the slip table. This was
done to see if better results could be obtained by only removing motion close to the test article as opposed to the entire slip
table interface. In all 85 different tests, shaker and impact hammer, were carried out during this first phase of the research
effort.

3.9 Future Work

It is important that the reader understand that this work was simply the first phase of what potentially could be a three phased
research effort. The first goal of the second phase will be to process and analyze all the collected data from the test runs
performed in this first phase and be able to determine what test configurations worked best at removing the base motion on
the slip table. There is a concern about the test article chosen being too stiff and not really accurately simulating traditional
aerospace structures. The stiffer the test article, the more modes the slip table will have influencing the test article base. Very
preliminary investigation into the data shows that the final slip table rigid body mode occurs almost 150 Hz below the first
test article mode. For every additional mode in the slip table above the last rigid body mode another shaker would need to be
added to remove that influence from the test article. This concern might turn out to drive a test article change to one that is
more representative of a realistic aerospace structure. Another concern that needs to be sorted out before going much further
is if torqueing the fasteners down higher than the typical NASA standard would help linearize the base of the bookend. Once
these current unknowns are sorted out and the findings of the data documented, then engineers would like to develop a test
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approach for utilizing the large electrodynamic shaker as one of the independent uncorrelated inputs into the shaker slip
table. The first step would be to try this at low levels of excitation. If this works, then it would be desired to increase the drive
level of the large electrodynamic shaker and see if it would be possible to shake at flight random vibration test levels while
exciting fixed based modes at the same time. Most of this described testing work would be carried out in the third phase of
the research.

3.10 Summary

Based on the limited data that has been reviewed and processed up to the point of writing this paper, there is confidence that
several fixed based correction options can be employed on the vast array of test data collected during this initial phase of
the research effort. The trade studies performed on the simple beam were invaluable in helping get started in utilizing these
methods and developing the basic understanding. More will be done with that test data to further enhance the understanding
of the fixed based correction methods and their limitations. The trade studies performed utilizing different techniques of
constructing FEMs was extremely helpful to first reassure test engineers that the pretest sensor selection methods they had
been utilizing are the most efficient in addition to defining the best modeling technique that will be utilized going forward
on this research. Finally, the lessons learned in setting up the infrastructure to support multiple shakers and driving them in a
MIMO test effort will translate outside of this research study into all MIMO testing the lab performs in the future. Engineers
understand that they have simply started to scratch the surface with this testing of what could be possible going forward and
that a lot of work still remains in the process.
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Chapter 4 M)
Pressure Stiffened Modal Correlation of a Cylindrical et
Pressure Vessel

Emily A. Jewell and Isam Yunis

Abstract Acoustoelastic structures are a complex dynamic system that exhibit modal coupling between a structure and
its enclosed acoustic fluid. Common structures that exhibit this phenomenon in the aerospace industry are pressure vessels
such as a solid rocket boosters or advanced solid rocket motors. When a structural analyst simulates the structural modes of
these pressure vessels with shell finite elements, they often apply an internal pressure force in their model to represent the
acoustic fluid. In a model free of boundary conditions, the application of this internal pressure force produces modal results
that ground some rigid body modes, often going from six to three zero-frequency modes. Therefore, since the finite element
modal simulation inappropriately grounds the structure and thus is unable to accurately predict the rigid body modes, it calls
into question whether the elastic or flexible modes predicted by the same modal analysis are accurate. This paper presents
an experimental study to address this question by designing, analyzing, fabricating, and testing a simple cylindrical pressure
vessel. A free-free steel cylindrical pressure vessel was modeled with finite elements and modal tested with and without
pressure. Modal tap testing was used to extract the structural response and compute frequency response functions which
were compared to analytical results to discern the accuracy of the predicted elastic modes of the pressure vessel.

Keywords Acoustics - Modal analysis - Acoustoelasticity - Pressure vessel - Fluid-structure interaction

4.1 Introduction

Structural dynamicists rely on modal analysis to accurately characterize and simulate complex elastic systems. Pressure
vessels pose a secondary challenge towards these simulations due to acoustoelastic effects generating a coupled response
between the structure and the enclosed acoustic fluid [1]. Two common aerospace structures susceptible to these effects are
solid rocket boosters and advanced solid rocket motors. During launch, thrust or pogo oscillations can be produced in these
boosters and motors as the propellant experiences an acoustic excitation that couples with the booster’s structural response.
This results in vibrations throughout the structure which pose strong loadings on electronic and avionics systems located on
the booster, as well as to the attached rocket, cargo, or crew [2]. In several severe cases, these thrust oscillations have resulted
in complete rocket failures [2, 3]. It is therefore critical to design these aerospace structures to efficiently dampen or diminish
such oscillations [4, 5]. At the backbone of the solution strategies for oscillation characterization and mitigation is a finite
element modal analysis of the flight structure free of fixed boundary conditions, hereafter denoted as free-free.

Modal analysis is typically performed on rocket booster or motor models with an internal pressure force to represent the
acoustic effects of the propellant within the structure. In general, a free-free analysis of a structure results in six rigid body
modes (mode shapes with frequency of 0 Hz) corresponding to unrestricted motion in the three degrees of translation and
three degrees of rotation that govern motion of all 3-D structures. However, when the pressurized structure’s free-free modal
analysis is performed, the six rigid body modes are raised and no longer occur at zero frequency, suggesting an unrealistic
grounding of the system due to pressure-stiffening. Nonetheless, the elastic or flexible modes from these models are still
commonly used by analysts for acoustoelastic modal coupling analysis of the structure. Thus, since the rigid body modes
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cannot be accurately predicted by the finite element modal analysis, it is unknown whether the flexible modes are accurate
and should be used for further analysis. To answer this question, an acoustoelastic structure was designed, fabricated, and
modal tested with and without pressure to discern the true elastic modes of the structure. These results were then compared
to finite element results to determine whether free-free modal analysis models give accurate results for pressure vessels and
similar acoustoelastic structures. For this paper, the finite element models were produced in Femap and analyzed with MSC
Nastran.

4.2 Design of Pressure Vessel Using Finite Elements

A small pressure vessel was desired so that it could be easily analyzed, fabricated, certified, and tested at NASA’s Langley
Research Center (LaRC). Design requirements for the vessel were imposed by both the researchers and LaRC safety codes.
Requirements created by the former included having the first flex mode in bending, a frequency shift of approximately
10% between the unpressurized and pressurized test cases of the structure, ensuring the structure would not yield at this
analytically chosen pressure level, and simulating a reduction in the quantity of rigid body modes from six to three or fewer.
For the first requirement, the first flex mode was specified as a bending mode to encourage the designed structure to be
similar dynamically to a solid rocket booster or advanced solid rocket motor. For the second requirement, a large frequency
shift between the pressurized and unpressurized cases allowed for greater fidelity when experimentally evaluating the mode
frequencies of the structure.

Design requirements posed by LaRC were in accordance with LPR 1710.40 M (Internal Langley Research Center Pressure
Systems Handbook) and ASME Section VIII—Div 1 & 2 (ASME’s Boiler and Pressure Vessel Code). Key requirements
included, material certifications for all components, detailed part, assembly, and weld drawings, weld inspections and
certifications, finite element stress analysis at Maximum Allowable Working Pressure (MAWP), and a hydrostatic proof
test.

4.2.1 Final Acoustoelastic Structure Design

The final pressure vessel geometry is shown in Fig. 4.1 and was a 50.8 mm (2 in.) outer diameter, 315 mm (12.4 in.) long
cylinder with flat, 19 mm (0.75 in.) thick end caps. The tube of the vessel was 1.24 mm (0.049 in.) thick. Both the end caps
and tube were Low-Alloy Steel and modeled with finite elements properties for AISI 8630 with a yield strength of 310 MPa
(45,000 psi). The endcaps were welded to the tube with 4.4 mm (0.175 in.) welds in accordance with ASME Section VIIIL.

To pressurize the system, both a fill and relief valve were added to the system. They were placed at opposite endcaps to
balance the system. The valves were sized to be fail safe when connected to a standard, 20.68 MPa (3000 psi) gaseous N»
K-bottle (GN2). The total mass of the system unpressurized was approximately 2.0 kg (4.5 1b).

The finite element model (FEM) used for stress analysis of the pressure vessel is shown in Fig. 4.2, with 6.4 mm (0.25 in.)
NPT holes in the endcaps at the valve connections. The model was made of NASTRAN CQUAD4 elements with 40 elements
circumferentially, and 90 elements axially. The end caps use the same 40 circumferential grids and 9 radial elements.

Fig. 4.1 Final manufactured pressure vessel with pressure system components attached. The fill valve and K-bottle connection are shown on the
right, the pressure vessel centered, and the relief valve to the left

Fig. 4.2 FEM of pressure vessel used for static stress analysis
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4.2.2 Finite Element Results for Comparison

To discern the pressure vessel geometry, linear modal analysis was performed on various pressure vessel models. The
structure depicted in Figs. 4.1 and 4.2 was selected since it had both the first elastic mode in bending, and an approximate
10% shift in frequency between pressurized and unpressurized mode frequencies that did not yield the structure. The FEM
used for this modal analysis differed from Fig. 4.2 by having elements covering both valve holes and by representing the
fill and relief valves by point mass elements connected with RBE3 elements to the vessel. This mesh can be seen on mode
displacement plots in Fig. 4.3.

Results from modal analysis of the structure are presented in Table 4.1. The table contains the modal frequencies for the
first ten modes of the structure for the unpressurized, 2.00 MPa (290 psi), and 1.38 MPa (200 psi) cases, with corresponding
percent shift in frequency from the unpressurized case. For all three pressurization levels, the first six modes are the rigid
body modes, then Modes 7 and 8 are bending modes, and Modes 9 and 10 are shell modes. There was no discernable
difference in the mode shapes with any of the trial pressures. It should be noted that the 2.00 MPa pressurization case was the
designed pressurization case for the experiment, since it gave a 9% shift in frequency. Results for the lower 1.38 MPa case are
also presented in Table 4.1 for redundancy in comparing error between experimental results and predicted analysis results.
Also, after the pressurization levels were determined through modal analysis, a static analysis was performed pressurizing
the structure to the desired level to verify that the pressure vessel would not yield.

Table 4.1 also reveals that the bending modes do not shift in frequency between the pressurized and unpressurized cases.
This is expected since pressurizing the structure should stress the end caps and ovalize the shell walls. Since the bending
motion is independent of the pressure expansion of the system, the bending modal frequencies should remain consistent
whether the system is pressurized or unpressurized. Therefore, only the first shell modes, Modes 9 and 10, are deemed
significant and were the basis for comparison between the finite element results and experimental results.

Mode 7 Mode 8 Mode 9 Mode 10

Fig. 4.3 Displacement plots of first four flex mode shapes with no internal pressure

Table 4.1 FEM predictions for modal frequencies of unpressurized and pressurized cases

Mode # Unpressurized (Hz) Pressure 1.38 MPa (Hz) % Shift Pressure 2.00 MPa (Hz) % Shift
1 1.78E—03 13.67 10° 16.46 10°
2 5.49E—03 1.98 104 2.39 10*
3 6.16E—03 1.98 104 2.39 10*
4 7.41E—03 0.02 102 0.04 107
5 7.83E—03 5.12 10* 6.16 10*
6 8.74E—03 5.12 10* 6.16 10*
7 1129 1129 0 1129 0

8 1129 1129 0 1129 0

9 1659 1760 6 1804 9
10 1659 1760 6 1804 9




34 E. A. Jewell and 1. Yunis

7537
7081
6626,
6170
5714
5259
4803.
4348
3892. |
3436

2981,
2525,
2070

1614
1158
7028
247.2

Fig. 4.4 Finite element static stress analysis of pressure vessel at 2.76 MPa (400 psi) internal pressure with element thicknesses depicted. Scaling
in psi

4.2.3 Required Pressure System Testing and Results

Before the pressure vessel could be modally tested at LaRC, the vessel needed to pass several system tests in accordance
with LPR 1710.4 M. This included a 100% visual weld inspection, finite element stress analysis at MAWP, and a hydrostatic
test. The MAWP needed to have a minimum factor of safety (FoS) on the stress of 3.5 per ASME Section VIII. Due to the
100% visual only inspection on the weld, and no radiographic, magnetic particle, liquid penetrant, or ultrasonic inspection,
a weld efficiency factor of 0.7 also needed to be applied to FoS calculation. Using the material yield strength of 310 MPa, an
internal pressure of 2.76 MPa (400 psi) gave a maximum stress of 52.0 MPa (7540 psi) at the red region depicted in Fig. 4.4,
giving a FoS of 4.18, above the required 3.5. Thus 2.76 MPa was safely deemed MAWP, and again it can be noted since the
experimental pressure was selected as 2.00 MPa, the structure will not yield during testing.

A hydrostatic proof test was then performed at 1.5 times the MAWP, or 4.14 MPa (600 psi), as required by ASME Section
VIII. Images of the test set-up are presented in Fig. 4.5. After passing this test, the vessel was approved for modal testing.

4.3 Modal Test of Acoustoelastic System

To modal test the structure, the pressure vessel was instrumented with 12 uniaxial accelerometers and 2 tri-axial
accelerometers as shown in Fig. 4.6. Accelerometers 1, 4, 7, and 10 were mounted 90° from each other and 38 mm (1.5 in.)
from the fill valve endcap. Accelerometers 2, 5, 8, and 10 were 90° from each other and at the midplane of the vessel.
Accelerometers 3, 6, 9, and 12 were 90° from each other and 38 mm (1.5 in.) from the relief valve endcap. Accelerometers
13 and 14 were tri-axial and mounted on the valves.

The complete modal test set-up is depicted in Fig. 4.7. The free-free boundary condition was simulated by suspending
the vessel on two bungees connected near the fill and relief valves, with bungee frequencies all <5 Hz. An instrumented test
hammer with a brass tip was used for all tap testing. In total, four modal tap tests were conducted on the system as follows:
(1) Unpressurized (2) 2.00 MPa (3) 1.38 MPa (4) Unpressurized.

For Cases 2 and 3, the K-bottle and hose were connected to the structure to maintain pressurization throughout the duration
of the test. It is expected that this hose connection may shift the bending mode frequencies of the system but not the shell
modes, the modes of interest.
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Fig. 4.5 In the top image, complete hydrostatic proof test set-up with pressure gauges to the left and the designed pressure vessel clamped in the
background on the right, circled in red. In the bottom image, a close view of the pressure vessel being vented initially during the hydrostatic proof
test as the vessel fills with water at a low pressure

Fig. 4.6 Accelerometer numbers and locations on pressure vessel. Fill valve on the right, relief valve on the left. Accelerometers 10 (radially
patterned with 1, 4 and 7), 11 (with 2, 5, and 8), and 12 (with 3, 6, and 9) are not shown

4.3.1 Modal Tap Test Results

For Case 1, drive points were at Accelerometers 4, 5, 8 and 9 to capture both the bending and shell elastic modes. For Cases
2, 3, and 4, the drive point was at Accelerometer 8 since only the shell modes were desired, as discussed in Sect. 2.2. Figure
4.8 presents the Frequency Response Function (FRF) of all four cases. Examining this plot makes it clear that the bending
modes are in fact impacted by the additional boundary condition imposed on the system by the hose connection since the
bending mode frequency decreased from 1156 Hz for the Unpressurized Case 1 and 4, to approximately 1140 Hz. However,
the shell modes are still distinct and dominant peaks between 1600 and 1700 Hz. Table 4.2 presents a summary of the results
for all four cases including the estimated frequency and damping as derived by circle-fitting the drive point FRF in the region
of resonance. From Table 4.2, it is evident that Cases 1 and 4 gave nearly identical results, confirming that the structure did
not change by the pressurization process. Therefore, Case 1 is what is referred to as the unpressurized case going forward.
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Fig. 4.7 In the left image, complete test set-up with K-bottle, bungee suspended pressure vessel, and data acquisition system. In right image, test
article being pressured via the K-bottle connection

FRF of Unpressurized and Pressurized Modal Tests
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Fig. 4.8 Overlay of modal test FRFs for all four pressurization cases
Tabl? 4.2 Summary Of. shell Pressure First shell mode
bending mode frequencies and Case | (MPa) frequency (Hz) Damping (%)
estimated damping from
circle-fitted results for all four ! 0 1619 0.16
cases 2 2.00 1745 0.38

3 1.38 1710 0.17

4 0 1618 0.16

4.4 Comparison of Experimentally Measured and Simulated Flex Modes

The MSC Nastran modal frequencies (predicted modes) and experimentally measured modal frequencies (measured modes)
were first compared for the unpressurized case and are presented in Table 4.3. Initial percent error calculations between both
mode shapes and methods are presented in Column 5.

The FEM was then correlated to the unpressurized case by adding the accelerometer mass to the valves, 0.5 g (1e—3 Ib)
per accelerometer, shifting and correcting the thickness of the endcaps to match the machined pressure vessel, and reducing
the cylinder tube thickness from 1.24 mm (0.049 in.) to 1.23 mm (0.0485 in.), accounting for the smallest allowable machined
part tolerance. These corrections gave predicted modes identical to measured modes, 1156 Hz and 1619 Hz respectively and
a Final Difference Percent Error of 0% as shown in Column 6.
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Table 4.3 Finite element analysis predicted and experimentally measured modal frequencies for unpressurized structure

Mode # Mode description Predicted frequency (Hz) Measured frequency (Hz) Initial difference (%) Final difference (%)
7 Bending 1129 1156 —2.34 0.0
9 Shell 1659 1619 2.47 0.0

Table 4.4 Correlated FEM predictions for modal frequencies of unpressurized and pressurized cases

Mode # Unpressurized (Hz) Pressure 1.38 MPa (Hz) % Shift Pressure 2.00 MPa (Hz) % Shift
1 2.25E—03 14.24 10° 17.15 105
2 5.03E—03 2.09 10* 2.51 10*
3 5.92E—03 2.09 10* 2.51 10*
4 7.07E—03 0.06 102 0.09 103
5 7.57E—03 5.47 10* 6.59 10*
6 8.88E—03 5.47 10* 6.59 10*
7 1156 1156 0 1156 0

8 1156 1156 0 1156 0

9 1619 1724 6 1769 9
10 1619 1724 6 1769 9

Table 4.5 Final results comparing correlated FEM predicted and experimentally measured modal frequencies

Case Pressurization (MPa) Predicted mode frequency (Hz) Measured mode frequency (Hz) % Error
1 0 1619 1619 0.00
2 2.00 1769 1745 1.38
3 1.38 1724 1710 0.82

Modal analysis was then re-performed on the updated FEM and final results for all three pressure cases are given in
Table 4.4. Ultimately, the predicted first shell mode frequencies are 1619 Hz for the unpressurized case, 1769 Hz for the
2.00 MPa case, and 1724 Hz for the 1.38 MPa psi case.

4.4.1 Predicted Versus Measured Shell Mode Frequencies

Table 4.5 presents a summary comparing MSC Nastran first shell modes from the correlated model to the experimental
results. Percent errors were found to be 1.38% for the 2.00 MPa case, and 0.82% for the 1.38 MPa. An alternative comparison
is examining the difference in the frequency shift due to pressure stiffening. This percent error calculation gives the error
between the predicted frequency shift (e.g., for 2.00 MPa, 150 Hz) to the measured frequency shift (e.g., for 2.00 MPa,
126 Hz). This yields a frequency difference percent error shift of 16.0% for the 2.00 MPa case, and 13.3% for the 1.38 MPa
case. These larger error values in the difference are likely due to small uncertainties in pressurization measurements during
test due to the resolution of the pressure gauges. Therefore, even though finite element models for free-free pressure vessels
yield unrealistic rigid body modes, Nastran is still able to reasonably predict the structural modes of the pressurized and
unpressurized structure.

4.5 Conclusion

By designing, analyzing, fabricating, and testing a cylindrical pressure vessel, it was discerned that MSC Nastran can
accurately predict pressurized and unpressurized flex modes of acoustoelastic shell structures, despite the rigid body modes
being inaccurately predicted. A simple pressure vessel was designed and certified following ASME Section VIII Boiler and
Pressure Vessel Code, and then modal tap tested to determine the structure’s frequencies with and without internal pressure.
Comparing these test results to a correlated finite element simulation revealed that the predicted and measured modes differed
by less than 2% error. Therefore, pressurized flexible modes may be used for dynamic analysis of rockets even though the
rigid body modes exhibit grounding.
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Chapter 5 )
Pretest Analysis for Modal Survey Tests Using Fixed Base et
Correction Method

Peter Kerrian and Kevin L. Napolitano

Abstract A fixed base correction method that uses acceleration constraint shapes as references to transform flexible or
dynamically active boundary conditions into fixed boundaries has been recently implemented for modal tests. The method
uses test data directly to generate constraint shapes associated with accelerometer measurements at the test article and test
fixture interface that are then used as references when calculating corrected fixed base frequency response functions (FRFs).
The main challenge with the method is that at least one disturbance source, such as a modal shaker, must be applied to the
boundary structure for each constraint shape used, so it is advantageous to understand how many constraint shapes may
be required to fix a boundary for test planning purposes. This paper outlines a procedure that uses multipoint constraint
equations in an analysis model of an integrated test article and its test fixture to determine the number of exciters necessary
to apply the fixed base correction method. The method is verified by comparing mode shapes of the fixed base test article to
the system model with a number of multipoint degrees of freedom constrained.

Keywords Modal testing - Vibrations - Base-shake - Environmental testing - Fixed base - Constraint shapes

Nomenclature

CS Constraint shape

DOF Degree of freedom

DP Drive point

FB Fixed base

FEA Finite element analysis

FEM Finite element model

FRF Frequency response function

H CS from SVD of FRF matrix

MAC Modal assurance criteria

MPC Multipoint constraint

PSMIF Power spectral mode indicator function
RV Residual vectors

SC CS from SVD of shape coefficients
SMURF  Structural modification using frequency response functions
SVD Singular value decomposition

5.1 Introduction

Modal tests are performed to validate analysis models of structures, and it is important to support a test article using fixtures
that allow an engineer to focus his time and effort on updating the analysis model instead of the supports. Oftentimes,
however, inadequate boundary condition fixtures are used in modal surveys because the design and manufacture of a proper
boundary condition may be too expensive for a program. Engineers then spend great effort and expense during the model
correlation task modeling and correlating the test fixture instead of the analysis model, and errors in modeling of the test
fixture propagate to the updated analysis model.
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Recently, a fixed base correction method has been implemented that uses acceleration constraint shapes as references
when calculating frequency response functions (FRFs) to transform flexible or dynamically active boundary conditions into
fixed boundaries [ 1-4]. In this method, the number of exciters mounted to the boundary must be equal to or greater than the
number of constraint shape references. Usually, the number and location of exciters on the boundary are determined in an
ad hoc manner. However, as the implementation of the method has progressed, there have been requests to test structures on
more complicated boundary conditions such as static test fixtures which, while being very good for their purpose of providing
static loads, are not very good at providing a solid interface for modal surveys.

Unfortunately, applying the fixed base correction method directly to FRFs generated from an analysis model does not
result in accurate fixed base correction estimates due to modal truncation. Although residual vectors can be used to estimate
the response of out-of-band modes, they are still not accurate enough to result in accurate fixed base corrections. This
paper outlines a pretest analysis procedure that can be utilized to determine the number of exciters used to generate
constraint shapes. To account for the error, an improved method was developed that integrates the constraint shapes into
the finite element analysis (FEA) as multipoint constraints (MPC) during the modal eigenvalue solution. The resulting
synthesized fixed base FRFs from the full system model reproduce the true fixed base corrected FRFs significantly better
than the coordinate transformation method. The efficacy of including more constraint shapes on reducing the error of modal
frequencies is also investigated.

5.2 Motivation and Example Structure

Research using accelerations as references to fix degrees of freedom in modal tests has been widely published [5]. Recently,
the method has been extended by fixing constraint shapes of structure boundaries instead of individual physical degrees of
freedom [6—11]. For either method, a partial inversion of the FRF matrix is performed to utilize the accelerations or constraint
shapes as references. Accurately accounting for the residual vectors is essential because shifts in the fixed based modal
frequencies result from shifts in the antiresonances of the original FRF set. During testing of the structure, the response
transducers measure the entire response of the system, including the modes in frequency range of interest as well as the
residual vectors from modes outside of the target mode set. However, when an engineer performs a pretest analysis to
identify target and secondary modes, the residual vectors are not included and thus the calculated fixed base FRFs do not
match the true fixed base FRFs.

To demonstrate these challenges, a representative rectangular aerospace test article, shown in Fig. 5.1, with eight attached
substructures was developed, and an octagonal static test cell with cross I-beam support was underdesigned to provide a
sufficient amount of base motion. The test article was attached to the static test cell with 204 stiff spring elements. The fixed
base FEA model was solved for the fixed base modes with the degrees of freedom (DOFs) of the spring elements on the static
test cell fixed. The primary target modes for the modal survey were identified as all modes below 50 Hz, and secondary target
modes were identified as all modes below 100 Hz. Table 5.1 contains the modal frequencies and effective mass fractions for
primary and secondary target modes. For the orientation of the test article, the X and Z axis are in plane, and the Y axis is out
of plane and follows the length of the test article. Target modes with low effective mass fractions are attributed to primarily
substructure modes. The primary bending modes of the overall test article are located at 31.2 and 37.3 Hz. The vertical mode
of the test article at 116 Hz was intentionally temporarily excluded from this pretest analysis in order to gauge accuracy of
the method when a mode with significant effective mass fraction is excluded.

The FEA model was solved for the modes of the test article attached to the static test cell, which would be representative
of the test configuration. Two shaker locations were selected on opposite sides on the top of the test article. An additional
12 shaker locations, 8 vertical and 4 lateral, were selected on the static test cell that would be used for the fixed base
correction method. FRFs were synthesized from the mode shapes between all 14 shaker locations. Following the structural
modification using frequency response functions method (SMURF), a partial FRF matrix inversion was performed using the
12 shaker DOFs to make the drive point acceleration references. The resulting FRF associated with the two shaker forces
on the structure should correspond to fixed base FRF. Power spectral modal indicator functions (PSMIFs) were computed
from the test article drive points FRFs for both the true fixed based FRFs (blue curve) and the synthesized fixed base FRFs
from the full system model (red curve) and are shown in Fig. 5.2. Performing the FRF matrix inversion on the system modes
did not accurately obtain the fixed base FRFs because the residual terms from higher frequency modes were not included,
as would be in the measured test FRFs. The FEA model was resolved for the mode shapes and residual vectors for all the
shaker locations. New FRFs were synthesized with the residual vectors and the process was repeated to obtain an updated
fixed base PSMIF for the system. As shown in Fig. 5.2, the PSMIF calculated with the residual vectors, plotted in green, was
a significant improvement in representing the true fixed base PSMIF over the full system model without the residual vectors.
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Fig. 5.1 FEM of test article attached to the static test cell

Table 5.1 Primary target modes and secondary modes

41

MODE |FREQ EFFECTIVE MASS FRACTION MODE | FREQ EFFECTIVE MASS FRACTION
No. |[Hz] | X | Y | Z | RX| RY | RZ |MAX No. | [Hz] | X | Y | Z | RX| RY | RZ [MAX
1 13.33(0.00| 0.01{ 0.00{ 0.00{ 0.00{ 0.00 0.01| « 24 50.91| 0.00( 0.00{ 0.07| 0.00{ 0.00] 0.00{ 0.07
2 14.29(0.01] 0.00{ 0.00{ 0.00] 0.00{ 0.00] 0.01 % 25 52.43(0.06( 0.00( 0.00] 0.00] 0.00| 0.00| 0.06
3 14.33(0.00] 0.06{ 0.00{ 0.00| 0.00{ 0.00] 0.06 § 26 53.46|0.00|0.01| 0.00] 0.00{0.00] 0.00{ 0.01
4 16.04(0.00] 0.00{0.16| 0.07| 0.00{ 0.00] 0.16 > 27 67.74| 0.00{ 0.00] 0.00] 0.00{ 0.00] 0.00{ 0.00
5 17.95[0.28] 0.00{0.00{ 0.00| 0.00{ 0.25] 0.28 g 28 68.27| 0.00{ 0.00] 0.00) 0.00{ 0.00] 0.00{ 0.00
7, 6 17.99( 0.00] 0.00{ 0.00{ 0.00| 0.26| 0.00] 0.26 g 29 82.79| 0.00( 0.00] 0.00] 0.00{ 0.00] 0.00{ 0.00
% 7 18.55(0.00] 0.00{0.01| 0.02]| 0.00{ 0.00] 0.02 8 30 83.04| 0.00( 0.00| 0.00] 0.00{ 0.00] 0.00{ 0.00
(@) 8 19.37| 0.00/ 0.01 0.00| 0.00] 0.00/ 0.00[ 0.01| ? 31 89.98| 0.00( 0.00| 0.00] 0.00{ 0.34| 0.00 0.34
E 9 19.94| 0.00] 0.00] 0.00] 0.00] 0.00| 0.00] 0.00 32 |116.08|0.00|0.60(0.00{0.00]|0.00({0.00] 0.60
) 10 | 21.46(0.00(0.00(0.00]0.00]0.11) 0.00] 0.11 33 | 118.93(0.00{0.00{0.00{0.00{0.00{0.00{ 0.00
gJD 11 | 21.66|0.03]0.00)0.00{0.00]0.00{0.03| 0.03 34 [119.49/0.00{0.00{0.00{0.00]0.00{0.00] 0.00
E 12 | 21.76|0.00{ 0.04)| 0.00{0.00] 0.00{0.00] 0.04 35 |120.86/0.00]0.01|0.00{0.00]0.00{0.00] 0.01
- 13 | 23.05|0.00{0.00]0.00(0.00]0.21|0.00{ 0.21 36 |121.36/0.00|0.00(0.00{0.00]0.00({0.00] 0.00
a 14 | 24.41)0.02|0.00]0.00(0.00| 0.00{0.00{ 0.02 37 |132.43|0.00|0.00{0.00{0.00]0.00({0.00] 0.00
O 15 | 24.65|0.00|0.00|0.03|0.00|0.00{0.00{ 0.03 38 |134.01|0.00{0.00{0.00{0.00]0.00({0.00] 0.00
E 16 | 25.55|0.00{0.00]|0.00(0.00|0.00({0.00] 0.00
- 17 | 28.60|0.00|0.06| 0.00( 0.00| 0.00({0.00] 0.06
Q- 18 | 28.71{0.04(0.00(0.00] 0.00| 0.00| 0.00 0.04
19 | 31.17)0.00{0.00)0.53|0.75]|0.00{0.00{ 0.75
20 | 37.27(0.48]0.00(0.00|0.00| 0.00{0.70] 0.70
21 | 40.46(0.00]0.01{0.00|0.00] 0.00{0.00] 0.01
22 | 48.57(0.00]|0.00{0.09|0.14| 0.00{0.00] 0.14
23 | 49.92(0.00]0.00{0.00| 0.00| 0.00{ 0.00] 0.00
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Fig. 5.2 Fixed base PSMIF comparison of true fixed base model (blue), full model (red), and full model with residual vectors (green)

However, the residual vectors calculated from the FEA model are an estimate, and the errors between the true and synthesized
FRFs, especially the antiresonances, are accentuated during the partial matrix inversion, which leads to the discrepancies in
the PSMIFs.

5.3 Constraint Shape Calculation

The motion of a boundary interface between two structures can be represented by a linear combination of basis vectors, also
known as constraint shapes. The first step in calculating constraint shapes for a test article attached to a static test cell is
determining the set DOFs at the interface, {xp}. The entire static test cell could be included in {xps} to completely remove
the motion of the test cell. However, the complexity of the constraint shapes required to represent this motion would be
challenging to capture with a finite number of shakers attached to the static test cell. As a result, the subset of DOFs in {xp}
should be sufficiently large to capture the motion at the test article interface with the static test cell. For this pretest analysis
example, {xp} included DOFs fixed for the fixed base solution, as well as rings of adjacent nodes inside and outside the
original set, for a total of 1911 DOFs.

Figure 5.3 contains images of the FEM showing both the set of DOFs included in the constraint shape calculation and the
connection interface between the test article and the static test cell. Nodes in blue correspond to the direct connection points,
while nodes in red are adjacent nodes. The test article is attached with stiff springs.

Two potential methods that can be used to calculate the constraint shape of the full system model using singular value
decomposition (SVD) are studied here. The first method is to calculate the constraint shapes directly from the shape
coefficients at the interface between the test article and the static test cell. The shape coefficient matrix [¢] is partitioned
down to the matrix [¢p], which contains the shape coefficients for the DOFs in {xp}. The second method is to synthesize the
FRFs [Hp] between the shaker locations on the test article and the interface DOFs contained in {xg} and perform the SVD
on the matrix [Hpg].

[¢5] = [U[Z1[V]" or [Hp] = [UI[Z][V]? (5.1)
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Fig. 5.3 (a) FEM nodes contained in constraint shape DOF set, {xp}; the blue nodes correspond to direct attachment to the test article and the red
nodes are adjacent nodes; (b) connection between test article and static test cell floor

Table 5.2 Si.ngular values from Shape coefficient FRF matrix

shap§ coefficients and FRE N |onp/o1 |Sum % of total | 6,/01 | Sum % of total

matrix methods
1 1.00 24.79% 1.00 40.41%
2 [1.00 49.47% 0.60 64.86%
3 1098 73.75% 0.30 76.99%
4 1048 85.52% 0.21 85.54%
5 1025 91.76% 0.20 93.82%
6 [0.24 97.81% 0.12 98.86%
7 10.01 98.12% 0.01 99.28%
8 10.01 98.43% 0.01 99.62%
9 10.01 98.74% 0.00 99.75%
10 [0.01 99.00% 0.00 99.83%
11 [0.01 99.20% 0.00 99.89%
12 0.01 99.36% 0.00 99.93%
13 [0.01 99.52% 0.00 99.95%
14 10.01 99.68% 0.00 99.96%
15 [0.00 99.75% 0.00 99.97%

The constraint shapes for either method are defined by the columns of the left singular vector ([y] = [U]). The singular
values of [X] can be normalized to the maximum singular value to the relative contribution of each constraint shape to the
overall motion of the interface DOFs and assist in determining the number of constraint shapes required to eliminate all of
the interface motion. If a limited number of constraint shapes can completely represent the motion of the interface, then the
method will be 100% effective. Either method is acceptable to calculate the constraint shapes. The difference between the
two is that the shape methods favors the motion of the interface, while the FRF matrix method favors the motion of the base
excited by the shakers.

For the pretest analysis example, the full system model produced 31 modes below 100 Hz. Constraint shapes were
calculated via both methods. Table 5.2 contains a listing of the ratio of the singular values to the first singular value, and the
ratio of the sum of the N singular values to the total sum of singular values. The cumulative sum percent total describes what
percentage of the total motion of the interface DOFs is captured by constraint shapes 1 to N. Table 5.2 also demonstrates that
with 15 constraint shapes, all but 0.25% of the interface motion is captured by the subset of constraint shapes.

A cross modal assurance criteria (MAC) was calculated to compare the constraint shapes generated from the shape
coefficient method and the FRF matrix method. As shown in Table 5.3, the rigid body modes comprise the first six for
each method but with a different order. The primary difference is that the Z-lateral shape from the FRF method contains an
RX rocking component resulting in the lower MAC Value.



44

Table 5.3 Cross-MAC table between shape and FRF matrix constraint shapes

Cross MAC Table

FRF Matrix Constraint Shapes

P. Kerrian and K. L. Napolitano

Shape Coefficient Constraint Shapes

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 [Test

MACtg 1.000 | 0.605 [ 0.300 [ 0.211 ) 0.205 | 0.125 | 0.010 | 0.008 | 0.003 | 0.002 [ 0.001 | 0.001 | 0.000 ( 0.000 | 0.000 | 0.000 |CRS
1 1.000 0.99 1.00
2 0.996 0.88 0.94
3 0.980 1.00 1.00
4 0.475 1.00 1.00
5 0.252 0.89 0.94
6 0.244 1.00 1.00
7 0.013 0221 0.77 0.88
8 0.012 0.85 0.92
9 0.012 0.79 0.89
10 0.010 0.77] 0.23 0.88
11 0.008 0.63] 0.79
12 0.007 0.83 0.91
13 0.007 0.76 0.23 0.87
14 0.006 0.41

15 0.003
16 0.002 0.53 0.73
FEM CRS 1.00 | 1.00| 1.00] 094| 1.00| 094| 088| 088| 099| 0.95]| 087| 0.91 0.73 ]| 0.48 0.79

Table 5.4 contains plots of the first 12 constraint shapes calculated via the shape coefficient method. The first 6 correspond
to the rigid body modes of the interface. The next 6, and all subsequent constraint shapes not shown, are flexible motion of
the static test cell floor plates. The first 6 flexible shapes have two antinodes on each of the four sides and have primarily
vertical deformation, which would make them easy to constrain with two vertical shakers on each side. The higher order
constraint shapes have significantly more complicated deformation patterns, implying nonphysical motion that is an artifact
of the SVD.

5.4 Application of Constraint Shape to Frequency Response Function Calculation

The constraint shapes can be applied to the FRF matrix to remove the interface motion in the following procedure. First, the
mode shapes from the full model are used to synthesize the FRF matrix, [H], which includes the interface DOFs, {xp}, and
the shaker DOFs, {x;}.

The constraint shapes, [ W ], relate the interface DOFs to a set of DOFs associated with each constraint shape, {€}.

{XI } _ |:H11 HIB] {f[}
XB Hp; Hgp | | [»

{xp} = [V]{e}

5.2)

(5.3)

The constraint shapes can be inverted to reduce the interface DOFs to a single DOFs associated with each constraint shape

as

{e} = [W]" {x5}

The FRF matrix can be back expanded in to include the DOFs associated with each constraint shape.

{xl}_[ Hip Hip j|{f1}
e | | WtHp WtHpg || f5

(5.4)

(5.5)
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Table 5.4 Constraint shapes calculated from SVD of mode shape coefficients

Rigid Body Z — Lateral, (0.996)

Rigid Body RX — Rocking, (0.252)

Rigid Body RZ — Rocking, (0.244)

F4 — Flexible Shape, (0.010)

F5

— Flexible Shape, (0.008)

F6 — Flexible Shape, (0.007)
A partial matrix inversion of the FRF matrix can be performed to utilize the constraint shape DOFs as references to
remove the base motion of the interface and obtain the fixed base FRFs.

fB= —(‘P+HBB)T‘P+HBI fi+ (‘IJ+HBB)T€

(5.6)
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Fig. 5.4 PSMIF comparison of fixed base FRFs for true fixed base model (blue), full model (red), and full model with residual vectors (green);
solid lines correspond to FRFs with constraint shapes applied; dashed lines are original curves

The resulting FRF matrix relation is as follows:

| Hi—Hig(YTHpg) Hpr  Hip(WTHgp)' {fl} (5.7)

XI
{XB } Hpr — HBB(‘P+be)T‘I’+HBI HBB(‘I’+HBB)T €

PSMIFs were calculated from the constraint shape corrected fixed base FRFs for the full model solved with and without
residual vectors and are shown in Fig. 5.4. The solid lines correspond to the constraint shape corrected PSMIFs and the
dashed lines were the original PSMIFs from Fig. 5.2. As expected, the constraint shape corrected model with the residual
vectors matches the overall trend of the true fixed base PSMIFs significantly better than the full model without residual
vectors. However, the frequencies of the three primary test article modes between 30 and 50 Hz are still underpredicted by
3-5%. Ultimately, an additional procedure is needed to properly constrain the interface motion and accurately predict the
fixed base FRFs.

5.5 Multipoint Constraint Method

The method developed to predict the fixed base FRFs of a test article attached to a flexible static test cell involves
incorporating the constraint shapes into the eigensolution as MPC equations. The original frequency domain equation motion
solved for the system is

(s2 (M1 + s [C1+ 1K) ) = 1) (5:8)

The physical base DOFs can be generalized to constraint shape DOFs utilizing the constraint shapes calculated from the
SVD of either the shape coefficients or the FRF matrix, and the associated null space.
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{xp) = [\y N(lI/T)] [Gﬂ (5.9)

A transformation matrix, [77], is defined that relates the internal test article degrees of freedom, {x;}, and the boundary
degrees of freedom, {xp}, to the generalized constraint shape DOFs.

X7
) XI _ 10 0 .
x_{xg}_liO\I’N(lI/T)} : =Tx (5.10)
N

The transformation matrix can be applied to the mass, damping, and stiffness matrices as well as the force vector.
(Myw, Cow. Kow) =TT (M,C,K)T and fy =T f (5.11)

The new equation of motion for the system with the boundary DOFs reduced to a set of generalized constraint shape
DOFs is

(SZM\L'\L' +sCyy + K\I/\I/) {x} ={fu}. (5.12)

Since the constraint shapes are used as references when calculating FRF, they are moved to the right-hand side of the
equation, which results in the same eigenvalue equation as fixing them in an FEA. By fixing the DOFs associated with
the generalized constraint shapes, the rows and columns associated with the generalized DOFs are eliminated from the
eigensolution and the reduced system model is

(SzM\w +SC¢W+K\W){xw} = {f\y} (5.13)

where

ol = &bl = 7]

In directly applying this equation formalization to the FEA model, MPC equations are calculated that relate the interface
DOFs to the generalized constraint shape DOFs, which are defined as scalar points (S-points). One S-point is required for
each interface DOF to include the null set of SVD and to ensure a square MPC constraint matrix. A subset of N—S-points are
fixed to eliminate the motion of the first N constraint shapes.

5.6 Multipoint Constraint Fixed Base Correction Results

FEA models of the full system with the MPC equations applied were solved for all modes up to 100 Hz with residual vectors
for all shaker locations using both the shape coefficient method and the FRF matrix method to calculate the constraint shapes.
Individual modal solutions were solved that incorporated N constraint shapes as MPC equations to examine how the fixed
base FRFs changed as more constraint shapes were included.

Figures 5.5 and 5.6 contain a PSMIF comparison between the true fixed base FRFs and corrected fixed base FRFs for
a different number of constraint shapes for both the shape coefficient method, Fig. 5.5, and the FRF matrix method, Fig.
5.6. For both methods, inclusion of all six rigid body modes sufficiently captures the overall trend of the true fixed base
correction method. Including these six rigid body constraint shapes corresponds to removing 97.8% of the interface motion
for the shape coefficient method and 98.9% of the interface motion for the FRF matrix method. There are two interesting
observations that can be made.

First, for the shape coefficient methods, the true fixed base trend requires six constraint shapes, while the FRF matrix
method only requires five constraint shapes. The modal frequency error is still significant, but the overall trend is correct.
This artifact can be explained because the sixth constraint shape calculated from the FRF matrix method is the Y-vertical
rigid body motion shape. The five previous constraint shapes have already reduced the lateral and rotational interface motion.

Second, the modal frequencies of the MPC models solved with the six rigid body constraint shapes calculated via both
methods are equivalent. A slight discrepancy might be expected because of the difference in the percent of the total interface
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Fig. 5.5 PSMIF comparison for fixed base model, full system model, and MPC models with 1, 5, and 6 constraint shapes derived from the shape
coefficients included in the eigensolution
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Fig. 5.6 PSMIF comparison for fixed base model, full system model, and MPC models with 1, 4, 5, and 6 constraint shapes derived from the FRF
included in the eigensolution



5 Pretest Analysis for Modal Survey Tests Using Fixed Base Correction Method 49

Drive Point Freg R F

80

Phase
g

-360
10"

‘OD o

—FB-DP-X
—FB-DP-Y
—FB-DP-2Z
= =CS5-SC-DPX
-=C5-SC-DPY
- =C5-SC-DPZ |
«CS-H-DP-X | |
----- CS-H-DP-Y

Acceleration/Excitation Force t[inrs?}ﬂbﬁ

102

o 10 20 30 40 50 60 T0 B8O 90 100
Frequency (Hz)

Fig. 5.7 Drive point (DP) FRFs in the X, Y, and Z directions for (1) true fixed base (FB) FRFs, (2) corrected fixed base FRFs calculated from 14
shape coefficient constraint shapes (CS—SC), and (3) corrected fixed base FRFs calculated from 14 FRF matrix constraint shapes (CS-H)

motion encompassed by the six rigid body constraint shapes. However, the frequencies for all models solved with 6-31
constraint shapes for both methods are equivalent, indicating that either constraint shape calculation method is acceptable.
For visualization, Fig. 5.7 shows drive point FRFs for all three directions for the true fixed base model (FB—DP) and models
solved with 14 constraint shapes for both the shape coefficient method (CS—SC-DP) and the FRF matrix method (CS-H-
DP). For all three cases, the curves overlay almost exactly with a minimal frequency shift at the peaks of the FRFs.

With the fixed base FRFs accurately captured, only a minor frequency discrepancy between the true fixed based modes
and the corrected fixed base modes remains. The frequency error can be reduced by including more constraint shapes. Figure
5.8 shows the PSMIFs in the region of the first two primary test article modes between 29 and 40 Hz to compare the true
fixed base modal frequencies to the modal frequency obtained by including an increasing number of constraint shapes. As
expected, the frequency error decreases as more constraint shapes are included. Figure 5.9 shows the percent of true fixed
base modal frequency as a function of number of constraint shapes included in the MPC equation eigensolution. Modes with
low effective mass fractions, those associated with subsystem components, are accurately predicted within 0.2%. Modes 19,
20, and 22 correspond to the three primary peaks observed in the fixed base PSMIFs between 30 and 50 Hz. Inclusion of
only the 6 rigid-body constraint shapes brings all modes to within 1.2%, while inclusion of all 31 constraint shapes reduces
the frequency error to within 0.6%. The remaining percent error is most likely associated with only including the translation
DOFs at the interface in the constraint shape calculation. If all six interface DOFs were included, the frequency error should
be eliminated. The primary reason for only including the translational DOFs in the pretest analysis is the pretest analysis is
designed to identify accelerometer locations for the modal survey tests. The constraint shape accelerometer subset cannot
capture rotational DOFs.

Figure 5.9 can also aid in determining the number of constraint shapes, and ultimately independent shaker locations,
required to apply the pretest analysis. As the trends show, the frequency error does not decrease gradually as more constraint
shapes are included in the solution, but rather decreases in discrete steps. A return-on-investment determination can be made
to identify the decrease in frequency error by including each additional shaker. For example, mode 20 indicates that going
from 12 to 13 constraint shapes reduced the frequency error of that mode 0.27%. Additionally, modes 5 and 25 also decreased
their percent error, which suggests the inclusion of the 13th constraint shape is merited. However, above 19 constraint shapes,
there is little reduction in frequency error, so there is no reason to include additional constraint shapes because the constraint
shapes account for 99.94% of the interface motion.
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Finally, to ensure the accuracy of the model, the process was repeated by including all modes up to 250 Hz in the constraint
shape calculation. The Y-vertical mode of the test article at 116 Hz is now included in the pretest analysis. Figures 5.10 and
5.11 show a comparison of the drive point FRFs up to 100 Hz in the Y direction for a combination of true fixed base FRFs
solved up to 100 and 250 Hz with and without residuals as well as the MPC corrected fixed base FRFs solved with 14
constraint shapes solved and residual vectors. Figure 5.10 shows the imaginary component of the FRFs while Fig. 5.11
shows the magnitude and phase of the FRFs. In Fig. 5.10, both MPC solutions with residual vectors accurately captured the
true fixed base FRFs with minor discrepancies. This indicates that the FEA models only need to be solved to the frequency
of the highest mode of interest, and including residual vectors sufficiently captures the higher frequency content. Figure 5.11
demonstrates the importance of including the residual vectors in the fixed base solution as well. Ignoring the Y vertical mode
at 116 Hz, a comparison of the blue and black solid lines shows the change in the FRF when the residual vectors are included
for modes above 100 Hz. The peaks of the imaginary plots are accurately captured, but the antiresonances in the magnitude
and phase plot are not. The same comparison can be made for solutions up to 250 Hz by comparing the green and red curves.
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Fig. 5.10 Imaginary part of Y-vertical drive point FRF for fixed base (FB) model solved to 100 or 250 Hz with and without residual vectors (RV)

compared to MPC eigensolution with 14 constraint shapes solved to 100 or 250 Hz
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5.7 Formalized Procedure

The formalized procedure of the pretest analysis for modal surveys using the fixed base correction method is as follow:

1.

Nk v

10.
11.
12.
13.

Calculate the fixed base modes of the test article up to a sufficiently high frequency to capture all of the primary and
secondary target modes of the system. Ensure to include residual vectors in the solution.

Calculate the mode shapes for the test configuration consisting of the test article attached to static test cell.

Identify the interface DOFs between the test article and static test cell that will be used in the constraint shape calculation.
Identify potential shaker locations on the test article.

Calculate the constraint shapes using either the shape coefficient method or the FRF matrix coefficient method.
Generate MPC equations relating the interface DOFs to the S-points.

Build and solve the full system model, which includes

* One S-point per interface DOF and
 Fixing the first N-S-points based on the singular values.

. Calculate the frequency difference between fixed base modes and the MPC constrained fixed base modes.

Determine whether more or less constraint shapes are needed to bring frequency difference within an acceptable level.
Repeat steps 7-9 until enough constraint shapes are included to reduce modal frequency errors to desired level.
Synthesize FRFs from the constraint shape corrected mode shapes for all the shaker locations.

Apply the fixed base correction method to the synthesized FRFs.

Compare the test article drive point FRFs for the true and corrected fixed base model to validate model.

5.8 Summary

This paper has presented a formalized pretest analysis procedure that can be utilized for modal survey tests using the fixed
base correction method. The method is based on calculating constraint shapes that capture the relative motion of the interface
between the test article and the static test cell. The constraint shapes are applied as MPC equations in the eigensolution of the
full system model to reduce the relative motion. When the fixed based correction method is applied to FRFs synthesized from
the corrected full system model, the fixed base FRFs are reproduced with only a minor error, less than 1%, in the predicted
modal frequencies.
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Chapter 6 )
Fixing Degrees of Freedom of an Aluminum Beam by Using Gkt
Accelerometers as References

Kevin L. Napolitano

Abstract Modal tests are performed to validate analysis models of structures, and it is important to support a test article use
fixtures that allow an engineer to focus his time and effort on updating the analysis model instead of the supports. Oftentimes,
however, inadequate boundary condition fixtures are used in modal surveys because the design and manufacture of a proper
boundary condition may be too expensive for a program. An alternative approach of creating appropriate boundary conditions
by using accelerations as references to fix degrees of freedom is presented in this paper and is demonstrated using test results
from a tap test on an aluminum beam. Frequency response functions (FRF) are generated directly and indirectly using a
partial inversion of the FRF matrix for several different boundary condition cases using the same set of test data. Modes are
extracted from the resulting FRF and are compared to an analysis model.

Keywords Modal testing - Vibrations - Structural modification - Fixed base - Constraint shapes

6.1 Introduction

Modal tests are performed to validate analysis models of structures, and it is important to support a test article use fixtures
that allow an engineer to focus his time and effort on updating the analysis model instead of the supports. Oftentimes,
however, inadequate boundary condition fixtures are used in modal surveys because the design and manufacture of a proper
boundary condition may be too expensive for a program. Great effort and expense is then spent during the model updating
task accounting for the test fixture instead of the analysis model. Errors from the test fixture model then propagate to the
updated analysis model, degrading the results of the model updating task.

Both modal substructuring and frequency based substructuring methods have been used to help extract fixed base modes
from structures mounted on uncertain boundary conditions. An excellent description of both methods are described in the
following reference [1].

An approach of creating appropriate boundary conditions by using accelerations as references to fix degrees of freedom
is presented in this paper and is demonstrated using test results from a tap test on an aluminum beam. This method is
not new and follows frequency base substructuring techniques [2, 3]. Frequency response functions (FRF) are generated
directly by using accelerations as references when calculating FRF [4] or indirectly using a partial inversion of the measured
acceleration/force FRF matrix for several different boundary condition cases using the same set of test data. In doing so,
modes extracted from the resulting FRF are associated with those same acceleration degrees of freedom fixed.

6.2 Theoretical Background

The derivation of the partial inversion of the FRF matrix [H(w)] is presented here. It is equivalent to the Structural
Modification Using Frequency Response Functions (SMURF) method. An FRF matrix, [H(w)] can be partitioned into two
sets of degrees of freedom, those associated with internal DOF “1”, and those associated with boundary DOF “b”. A subset of
the internal DOF can be further partitioned to DOF where forces are applied, specified by the subscript “f”. In this derivation,
the boundary DOF are assumed to be impacted by a force. Thus, the FRF matrix can be partitioned as follows
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Hereafter, the frequency, (w), will be removed to simplify the equations. The responses or outputs, {a}, are on the left
hand side. The references or inputs, {f}, are on the right hand side, and the FRF matrix, [H], describes their relationship at a
given frequency.

A partial inversion of the FRF matrix can be performed to make the boundary accelerations references and the boundary
forces responses. This is done by rearranging the second row of Eq. (6.1) such that

fo» = —Hpp " Hps fr + Hpp ™' ap (6.2)

Plugging Eq. (6.2) into the top row of Eq. (6.1) yields the following equation

{ a; } _ [Hzf — Hip Hpp =" Hyy H;bebl] { fr } _ |:Hif Hibi| { fr } 6.3)
Jo — Hppy ' Hyp Hpp ™! ap Hyr Hpp | | ap

Many derivations yield the same results for H;y by making the unnecessary assumption that a; = 0. Doing so obscures
quite a bit of useful information. For any linear relationship in the form of {x} = [C]{y}, that the matrix element C,x is equal
to the value of x; due to a unit input at yg, holding all other elements in {y} equal to zero. Thus, there is no reason to enforce
ap = 0 in the derivation and all four elements of [H ] can be used. Each element in has physical meaning.

H ;y is the FRF matrix of outputs ¢; due to unit input forces in f, holding all acceleration DOF in a;, fixed.

H py is the FRF matrix of reaction forces fj, due to unit inputs forces at f;, holding all acceleration DOF in a;, fixed.

H ;yp is the FRF matrix of outputs a; due to unit inputs in ap and not applying forces in f;.

H pp is the FRF matrix of reaction forces fj, due to unit inputs at a, and not applying forces in f;.

Note that this partial matrix inversion is equivalent to techniques described in other frequency based substructuring
techniques. However, it should be noted that the calculation of the matrix [H ] can also be calculated directly by using
both forces f; and ay as references when calculating FRF from time domain data.

6.3 Test Setup

The test setup is shown in Fig. 6.1. A 73.1 in. cylindrical aluminum beam with a diameter of 2 in. was suspended in a
free-free boundary condition with two soft rubber bands. A total of 26 accelerometers were bonded to the beam at 13 equally
spaced locations. The accelerometers were mounted to measure both out of plane axes of the beam. The beam was impacted
at five equally spaced locations along the beam in two axes; 1X+, 1Y+, 4X+,4Y+, 7X+, 7Y+, 10X+, 10Y+, 13X+ and
13Y+.

6.4 Signal Processing

The test data was appended into a single time history file which was then processed to calculate FRF in one of two ways. The
first method used all the force channels as references to calculate baseline FRF matrix [H]. Then the partial matrix inversion
method was used to fix whichever sets of accelerometers were defined for each boundary condition case. The second method
involved using the time histories of different sets of accelerometers directly when calculating FRFs.

Processing the time history data into frequency response functions was complicated by the fact that the aluminum beam
had very low levels of damping. These light levels of damping magnified small errors in the test setup and test conduct to
produce drive point FRF that are physically unrealizable. The phase of all drive-point FRF should stay within a 180° band.
Zeros in all FRF should be associated with a positive phase shift, and poles should be associated with a negative phase shift.
Figure 6.2 presents two example FRF with two different exponential windows applied. The red FRF has a conventional 10%
exponential window, but it has a negative phase shift associated with the zero near 300 Hz. The blue curve has a very drastic
exponential window used in this paper that inputs enough damping into the FRF so that the phase shift is positive. However,
there is still a frequency range from 360 to 510 Hz where the phase is slightly outside the 180° band.



6 Fixing Degrees of Freedom of an Aluminum Beam by Using Accelerometers as References

Fig. 6.1 Aluminum beam test
setup
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Fig. 6.2 Drive point FRF processed with different exponential windows. Red function was processed with 10% exponential window. Blue function

was processed with 0.0001% exponential window

Table 6.1 Signal processing Method Welch
t
parameters Frequency lines 6401
Af/Frame length 0.125 Hz/8 s
Exponential window | 0.0001%

Basis vectors

All force channels

The signal processing parameters used to calculate FRFs are presented in Table 6.1. The parameters were selected to
ensure the phase shift of all drive point FRF was negative for all resonant frequencies for the free-free test case.



56 K. L. Napolitano

]
L
-

=

— Y -\! |
\ !

(1Y+,1¥+) | |

(13X+,13%+) |/

(13Y+,13Y+) |\

! (4X+ 4X+)
(4Y+4Y+) L
(10X+,10X+) |
(10Y+,10Y+)| [
(TX+,TX+) |

—— — =S — = (TY+7Y+) | a:

0 100 200 300 400 500 600 700 BOO

Frequency (Hz)

Acceleration/Excitation Force ((in/s®)1bf)
SM
i f
r

Fig. 6.3 Drive point [A/F] FRF

Since the magnitude of the accelerations is very small at many frequencies, the force channels were used as the basis
vectors since their values are relatively smooth over the entire frequency range [5]. Using forces as basis vectors for
calculating [H] is equivalent to using the H; method. Also, since the basis vectors were the same for both methods, the
FREF results were equivalent whether or not [H ] was calculated with accelerometer references directly, or if Eq. (6.3) was
used.

A plot of the drive point FRF associated with [H] are presented in Fig. 6.3. The phase of the drive point FRF should
be between —180° and 360°, but the phase drifts slightly out of the range in some frequency ranges. This would be an
indication that there is negative damping in the system, which is physically not possible. The cause of the out of band phase
is unknown. It could be the result of the extreme signal processing parameters that were needed process the very lightly
damped aluminum beam, or perhaps a test conduct issue such as misalignment of accelerometers or inconsistency in impact
hammer excitation.

6.5 Test Results

The data was used to generate several different boundary conditions by using different accelerometers as references. The
different cases are shown in Table 6.2. When an accelerometer is used as a reference, its corresponding force is treated as a
response degree of freedom.

A complex mode indicator function (CMIF) all of the resulting FRF for each boundary condition case is presented in
Fig. 6.4. The CMIF functions were generated using all acceleration responses and force references. Note that for the baseline
free-free case, there are four curves with constant lines at low frequency. These correspond to the two lateral and two rotation
lateral rigid body modes of the beam. For the case where the beam is pinned at one end (Node 1 fixed), there are only two
constant lines at low frequency which correspond to the two beam rigid body rotation modes. The first three cases have
repeated modes at each frequency because the structure is symmetric about both axes. This is indicated by the primary and
secondary CMIF curve peaking at the same frequencies.

Mode shapes for Case 4 are presented in Fig. 6.5. Note that the shapes in the “Y” direction are the same as the simply
supported case since the center of the beam is still allowed to move in that direction. However, the modes in the “X” direction
are all fixed at the center (Node 7). Note that mode pairs 2/3 and 6/7 appear to be repeated roots because the center of the
beam is a zero for the simply supported modes.
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Table 6.2 Boundary condition cases

Boundary condition Acceleration reference Force reference

1. Free-Free 1X+, 1Y+, 4X+, 4Y+, 7X+, 7Y+, 10X+,
10Y+, 13X+, 13Y+

2. Hinged at one end 1X4, 1Y+ 4X+, 4Y+, 7X+, 7Y+, 10X+, 10Y+,
13X+, 13Y+

3. Simply Supported 1X4, 1Y+, 13X+, 13Y+ AX+,4Y+,7X+,7Y+,10X+,10Y+

4. Simply Supported plus pinned at center in | 1X+, 1Y+, 7X+, 13X+, 13Y+ 44X+, 4Y+, 7Y+, 10X+, 10Y+

one direction
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Fig. 6.4 Complex Mode Indicator Function for each boundary condition cases

6.6 Acceleration as References

The FRF in the matrix associated with accelerations as both references and responses, Hp, can also be used to extract modes
with the same boundary conditions FRF associated with H;¢. They are oftentimes useful for extracting modes that are not as
well-excited by the applied forces. Note that the mode shape at 454 Hz for Cases 3 and 4 are not as well excited as the other
modes. This is because the forces are applied at Nodes 4, 7, and 10 which are at zeros of those modes. The CMIF of the H
matrix is presented in Fig. 6.6. In this case the 454 Hz modes are clearly observable.

6.7 Reaction Forces

Reaction force FRF at the fixed boundary conditions can also be calculated by viewing the FRF associated with [H bb] and
[H s ] FRF. The drive points of [ H | for boundary condition case 4 is presented in Fig. 6.7. Note that the reaction force is
increasing at low frequencies for the FRF associated with the “X” direction but are leveling off for FRF associated with the
“Y” direction. The reason this occurs is that there are three supporting the “X” direction. If one location moves, the other
two will resist motion to create static reaction forces. The reason the function increases is because a unit acceleration is
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Fig. 6.6 CMIF of [A/A] FRF from boundary case 4

Real

Acceleration/Acceleration ((ln.’sz}n'(lrl.fs2]]

10°

=]
]

10"

Mode Indicator Function

400

Frequency (Hz)

500 600

equivalent to an increasing displacement as frequency decreases. The other direction levels off because there are not enough
fixed points to statically resist motion, so only the rigid body inertia of the beam is resisting the input acceleration.

6.8 Damping Discussion

A table of modal parameters for boundary condition case 4 is presented in Fig. 6.8. Higher levels of damping at the lower
frequencies is due to the effects of the exponential window. There was one anomaly in the test results which was that damping
of the modes near 453 Hz (Modes 7 and 8) was slightly negative. This result was confirmed by performing mode enhancement
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Simply Supported A i Frequancy Response Function : :
1xy, 13xy Fixed %o f i
Mode Test ] _ —T
No. | Freq, Hz | Damp, % ' i
1 28.67 1.058
2 28.95 1.235
3 114.59 0.356
4 115.22 0.299
5 256.93]  0.232
6 257.94]  0.150
7 453.63]  -0.013 T . P N w -
= 45488 el Example enhanced FRF showing increasing phase at resonance.
9 704.67 0.478
10 705.51 0.547

Fig. 6.8 Negative damping example

and spatial filtering to the test data in order to generate an enhanced FRF using the Multivariate Mode Indicator Function
[6] on Mode 8. The enhanced FRF clearly shows an increasing phase which confirms the negative damping estimate. Thus,
while the signal processing parameters were adjusted to remove negative damping from the drive points, it wasn’t enough to
remove negative damping results from the all of the test results.

6.9 Comparison to Analysis Model

Results of a comparison between test measured and analysis frequencies are presented in Fig. 6.9. Measured frequencies
were within 2% for all four boundary condition cases. Overall, the FEM consistently over-predicted frequency. The excellent
correlation between all four cases confirms that using accelerations as references to enforce boundary conditions works.
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Free Suspension Hinge: 1xy Fixed
Mode Test FEM Mode Test FEM
No. | Freq,Hz | Freq, Hz % Diff No. | Freq,Hz | Freq, Hz % Diff
1 64.42 65.52 1.70 1 44.63 45.42 1.76
2 64.53 65.52 1.54 2 44.81 45.42 1.35
3 177.14 180.18 1.71 3 144.15 146.86 1.87
4 177.19 180.18 1.69 4 144.75 146.86 1.45
5 345.18 351.91 1.95 5 299.58 305.31 1.91
6 345.32 351.91 1.91 6 300.58 305.31 1.57
7 565.73 578.81 2.31 7 507.45 519.54 2.38
8 565.85 578.81 2.29 8 509.34 519.54 2.00
9 769.85 787.91 2.35
10 771.39 787.91 2.14
Simply Supported: 1xy, 13xy Fixed Combined: 1xy, 7x, 13xy Fixed
Mode | Test FEM Mode | Test FEM
No. | Freq,Hz | Freq, Hz % Diff No. | Freq,Hz | Freq, Hz % Diff
1 28.67 29.25 2.00 1 28.92 29.25 1.12
2 28.95 29.25 1.01 2 114.63 116.74 1.84
3 114.59 116.74 1.87 3 115.23 116.74 131
4 115.22 116.74 1.32 4 180.00 181.49 0.83
5 256.93 261.76 1.88 5 256.86 261.76 1.91
6 257.94 261.76 1.48 6 453.62 463.13 2.10
7 453.63 463.13 2.10 7 454.56 463.13 1.89
8 454.88 463.13 1.82 8 570.10 581.11 1.93
9 704.67 719.27 2.07 9 704.97 719.27 2.03
10 705.51 719.27 1.95

Fig. 6.9 Comparison of test versus analysis frequencies

6.10 Summary

This paper presents an alternative method of creating proper boundary conditions through testing rather than expensive fixture
hardware. The method is exploits the fact that modes extracted from FRF with acceleration DOF as references results in those
same DOF being fixed. The FRF can be calculated directly using accelerations as references, or they can be calculated by
performing a partial matrix inversion of the FRF matrix. Oftentimes the resulting FRFs associated with accelerations as
references can be used to extract modes as well as measure reaction forces of the test derived boundary conditions.
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Chapter 7 )
Signal Reconstruction from Mobile Sensors Network Using Gkt
Matrix Completion Approach

Soheil Sadeghi Eshkevari and Shamim N. Pakzad

Abstract Bridge system identification is recently studied using mobile sensing network data. As one possible solution, the
data collected by moving sensors are to be mapped to some predefined virtual stationary locations and then, using estimated
stationary data, various system identification methods can be applied. The mapping function, however, has not been studied
thoroughly so far. STRIDEX, which is a recently proposed platform for bridge SID using mobile sensing, assume sinc
function as an estimator for the mapping function. Despite its effectiveness under certain conditions, the function cannot
accurately estimate stationary time responses from mobile data in more realistic cases of moving sensors with random
presence over the bridge. In this paper, an alternative solution based on low-rank matrix completion problem is proposed
and motivations for this choice are discussed. This method attempts to complete the matrix as accurate as possible by
convex optimization, given a sparse matrix of acceleration values with various time and space coordinates. A comprehensive
comparison between sinc and matrix completion approaches is performed and the results are evaluated in terms of the
response prediction accuracy in both time and frequency. Results show that the proposed matrix completion signals are a
very good match to the actual signals, while the reconstructed signals using sinc are sometimes not as accurate.

Keywords Signal reconstruction - Matrix completion - Convex optimization - Discrete signal interpolation - Mobile
sensing

7.1 Introduction

Mobile sensing is a relatively new approach for structural health monitoring in which, vibration sensors are attached
to single or multiple mobile carriers and collect data as a function of time and space while moving over a structure.
The approach has some significant advantages compared to the traditional stationary sensing paradigm, e.g., more spatial
information, less maintenance costs, and scalability [1-3]. By advancements of the wireless technologies, wireless sensor
networks are gradually complementing wired sensors and enabling mobile sensors usage more comprehensively [4—6].
Current smartphones already have various types of motion sensing chips embedded in them, which allow the possibility
of crowdsourcing [3]. Many bridges have thousands or hundreds of thousands of daily commuters, each carrying at least
one smartphone that is sensing the vibration of the bridge in real-time. This situation highly motivates researchers to provide
mathematical platforms for utilizing these abundant data for understanding the behavior and characteristics of the bridges.

The data collected by mobile sensors contain bridge vibrations in addition to vibrations from other sources as well, i.e., the
road surface roughness-caused vibrations and the vehicle suspension dynamical response. This disables system identification
(SID) platforms since they are designated to feed in pure structural vibrations. To circumvent this problem, researchers have
taken three main approaches to treat this data: to control sensing conditions such as vehicles speed and the road roughness
intensity [7, 8], to model vehicle bridge interactions in closed-form [9, 10], and to use blind source separation techniques to
extract different components of the original signal [11]. The last approach is able to provide an estimation of the pure bridge
response. In this paper, it is assumed the vibrations collected by moving carriers are either pure or can be extracted.

The main approach for using mobile sensors data for bridge SID is to convert them to the corresponding data of some
virtual stationary sensors as illustrated in Fig. 7.1. In this figure, eight moving sensors are collecting vibration responses
of a beam at different locations and directions. The idea is to estimate stationary responses at virtual fixed sensors from
these eight channels of data. By doing so, these stationary signals can be used in conjunction with a variety of available SID
methods for partial or comprehensive bridge modal identification.
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<—m Mobile sensors

W fixed virtual sensors

Fig. 7.1 Schematic demonstration of signal reconstruction problem

Qin et al. [12] adopted Eigensystem Realization Algorithm (ERA) method for bridge modal identification, using time
signals collected by fixed sensors. In this study, 96 accelerometers are placed on the deck and towers of a bridge and the
method was successful to identify 76 modes. Later, Ren et al. [13] estimated the modal parameters of a steel arch bridge
analytically and experimentally. In this method, wired accelerometers were located statically at various locations of the bridge
and Stochastic Subspace Identification algorithm was deployed to identify parameters. As a significant application of bridge
modal identification methods, Weng et al. [14] conducted a comprehensive monitoring procedure for modal identification of
a cable-stayed bridge, using wireless sensors that were placed fixed on limited locations. In order to enhance the information
collected from the bridge, wireless sensors’ layout was reconfigured repeatedly. This study implicitly demonstrated the main
disadvantage of the stationary sensor networks which is the limitation of the spatial resolution for a fixed sensor network.
These studies mainly were able to estimate low-resolution mode shapes, since the data was limited to certain locations. Kim
et al. [4] alternatively investigated the Golden Gate Bridge using a complex wireless sensor network. The sensing network
complexity indeed resulted in a denser mode shape estimation, however, this enhancement cost both computationally and
financially. More recently, Magalhaes et al. [15] developed a software that can process stationary sensing data in real-time
and results in modal identification outputs. While successful, the method is still limited to the available data from stationary
channels and cannot help higher resolution concern as the other methods. Therefore, a mapping function that interpolates
mobile sensing data to multiple virtual stationary sensing locations plays a key role to bridge the gap existed between mobile
sensing and conventional stationary sensing paradigms.

The problem of mobile sensing turns into two phases: (a) signal reconstruction for stationary nodes given mobile
measurements and (b) further process using available SID methods. Having a reliable transformation from mobile sensors
to virtual stationary ones enables to enhance identified mode shapes resolution by assigning many virtual stationary points.
However, since the mobile sensing paradigm for bridge SID is a relatively fresh topic, there are not extensive studies in the
first phase of the process.

A comprehensive study in this field has been recently done by Matarazzo and Pakzad [16]. Truncated physical model for
dynamic sensor networks was proposed for reformulating the standard equation of motion of a bridge into a reduced modal
state-space representation as shown in Eq. (7.1):

X = Axp—1 +ng

i = QkCxi + v

x1~N (M, V) (7.1)
nk ~ N (0, Q)

vy ~ N (0, R)

where A is the state matrix, C is the observation matrix, x is the state vector which is not observable, and yy is the observation
vector, which is the collected data at the accessible channels as will be called virtual probing locations (VPLs) throughout
this paper. n; and v are systemic and sensing noises respectively, which for simplicity are assumed to be uncorrelated
Gaussian white noise with covariance matrices as Q and R. £2; is the mode shape regression function (MSR). A bridge
sensed by stationary sensors has the term §2; equal to the identity matrix since the observation location is fixed relative to
the modal coordinates. However, if the sensor network is in motion, C matrix has to be time varying. To circumvent this
time-variance, the MSR function is introduced to transform mobile sensing data at each time step to the estimated values
at the VPLs. In [16], the MSR term £2; was approximated using basis functions, specially the sinc function [17]. The idea
is that given a set of measured data s at a certain time, estimated values at another set s, are calculated using the following
transformation:
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s = [s1 S2...SN]T
Sx = [Sx15x2.. -st]T
. 1 . 1 . 1
2= [smc (Asx (s — le)) sinc (Asx (s — sxz)) ...sinc (Asx (s — sx3)) :|N><N

(7.2)

where Asy is the distance between the locations of the destination set sy. The transformation should be performed repeatedly
for every time samples. Intuitively, the sinc basis function interpolates values of unmeasured locations by superimposing
of multiple decaying waves initiated at measured locations and weighted by the magnitude of the measured data. The sinc
interpolation is an accurate estimator of discrete signals with missing values. In fact, the sinc function acts as a window
and results in an interpolation with the same frequency contents as of the original data (band limited by the window). The
function was comprehensively used for bridge modal identification as the primary mapping transformation [1].

Equation (7.2) is tailored to map N mobile measurements to the same number of VPLs. It means that at each time sample,
the number of mobile sensors presented on the bridge should be equal to the number of VPLs. In the case study shown at [1],
the sensing network included six equally spaced mobile sensors that did not leave the beam during the sensing time and a
VPL set of six was assumed as well. In this case, the assumption of equality between the number of VPLs and mobile sensors
is valid; however, this situation may not be always practical since in a real application, the number of moving carriers on the
bridge is not precisely controlled. The sinc mapping equation can be updated to the following format to be more flexible for

more realistic scenarios:

T
s; = [sli §2; ...SJI-] atT =1t
Sx = [5x15:2.. -st]T

2 = [sinc (AISX (si — sxl)) sinc (AISX (s; — sxz)) ...sinc (AISX (si — Sx3)) ]J_XN

(7.3)

In Eq. (7.3), s; is a vector of locations for the available measurements at time #;, which can be different in length for
every time step. However, s is constant since the VPL set does not change over time. This new equation enables mapping
a random number of measured data to a different number of VPLs (for example, 10 or 5 measured values to 8 VPLs). The
approach is able to enhance the resolution of the identified mode shapes by repeatedly changing the location of VPL sets and
superimposing identified modes.

In this study, alternatively, a novel approach for signal reconstruction is proposed, using the idea of matrix completion.
Bridge responses can be represented as a matrix of time and space in which columns stand for the degrees of freedom
(DOFs) and rows correspond to the time steps. Therefore, in a mobile sensing scenario, the matrix is built up sparsely by
mobile measurements as shown in Fig. 7.2. Signal reconstruction attempts to complete this sparse matrix given limited
available observations. After this matrix completion, stationary sensing signals at every location are estimated as the column
vectors of the matrix and can be further used for bridge SID (and other applications that inherently require higher resolution
data, such as damage detection). This can ultimately lead to identifying highly dense mode shapes, as wells as other modal

properties.

time axis

location axis

Fig. 7.2 Tllustration of sparse response matrix
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This approach can handle any randomly collected data over a bridge, e.g., random commuting vehicles and partial length
scanning. If the matrix is low-rank, the completion task can be performed using convex optimization [18, 19]. This method
has been used in prediction of recommendation systems in the field of data science, however its application in structural
health monitoring is novel.

7.2 Matrix Completion

According to the classical matrix completion literature, in order to estimate missing entries of a sparse matrix, the matrix
has to be low-rank or can be accurately approximated with a low-rank matrix [18]. If this assumption holds, the completion
task is a convex optimization problem and is solvable using linear methods, e.g., Gradient Descent [19]. Bridge response at
each physical point (DOF) is a superposition of its modes; however, not all of these modes have the same participation in the
response. As a common practice in structural dynamics, a truncated modal model of a structure yields a sufficiently accurate
response when compared to a full model [20]. In this truncated model, a limited number of modes that have significant
participation factors are included in the analysis. In terms of computational costs, this model is significantly less expensive
since the model order is extremely smaller than the number of DOFs or all the natural modes. This fact shows that the
response of a bridge at every location is dominated by a few time invariant modes. This concept intuitively shows that the
response matrix is a low rank with the rank equal to the number of significant modes.

The problem of matrix completion has been studied and different solutions have been proposed [21-23]. In this study,
the low-rank matrix completion using alternating minimization [19] has been utilized. In this method, the response matrix
of time and space is decomposed into two rectangular matrices with lower dimensions equal to a predetermined rank. The
values of these two matrices are the parameters to be optimized in order to minimize the difference between the actual and
estimated observations. The optimization problem is shown in Eq. (7.4):

. ~ 2
1/1411}191% ||M — dotproduct (P, AB) ||2

A, (7.4)
M = dotproduct (P, M)

where My « n is the response matrix and N is the number of DOFs. Ay « x and Bk x y are two rectangular matrices, K is
the truncation degree which corresponds to the level of desired modal truncation (K < N). P is a binary matrix that activates
observed entries of M. Note that M is a sparse matrix with available entries in space and time coordinates of which moving
sensors were present.

Low-rank matrix completion using alternating minimization is a method that gives best decomposing matrices for a given
data. The original optimization algorithm alternatively takes a gradient step towards the optimal point of the decomposition
matrices, i.e., Ay x k Or Bg x y one at a time to reach the optimality. In this paper, however, both matrices take the gradient
step simultaneously as shown in Algorithm 7.1. The proof of convergence to the optimality for a low-rank matrix is presented
in [19].

Algorithm 7.1: One step minimization for matrix completion

Input M , threshold, and o

Initiate A and B® randomly

err = 1.0, temp = ||M — dotproduct (P, AOBO) ||§

while err > threshold do:
{A"H, B"H} <« {A’, B’} — aVé HM — dotproduct (P, A’B’)H;
err = ||1l7 — dotproduct (P, A’HB’H)”; — temp
temp = ||1l7 — dotproduct (P, A" B'*1) ||§

Return ATBT

el T A o B b
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In this algorithm, a threshold is selected for the residual between two consecutive objective function values. The rate of
gradient is also set as «. P matrix is a matrix of binary values with all zeros except than ones only on at observed coordinates.
That implies that by giving M as the input, P is achievable (P is the activator of the observed entries of the sparse matrix M ).

The method has some primary assumptions that guarantee its convergence: (1) the sampled entries of the matrices should
be enough to ensure the problem is not underdetermined, and (2) the distribution of the observed entries over the matrix
should be uniform and random [18]. The first assumption is physically interpreted that the number of vehicles scanning a
bridge should be sufficiently large. The second one is not exactly achievable in a mobile sensing paradigm since vehicle
measurements plug in the entries of the matrix in a diagonal manner. However, the presence of the vehicles and their
initial locations are reasonably considered as random. Therefore, as a contribution, in this study a semi-random observation
distribution is studied.

7.3 Motivations

In this study, the problem of reconstruction of signals at VPLs from mobile sensor network data is investigated. This is
an important problem, since it makes conventional system identification techniques applicable for the data coming from a
mobile sensing paradigm as well. In particular, this study has the following contributions:

1. A method for accurately reconstructing spatially and temporally varying signal using a limited portion of data available
is proposed.

2. The method is scalable regarding data availability. This means that the method works with any portion of the observable
data (e.g. 0.2% to 2.0% observed entries in the response matrix—the range that works with this algorithm). This flexibility
is achieved by the parameter K which will be discussed later.

3. The method is the first to estimate stationary signals from the data collected by a mobile sensor network that includes
randomly moving carriers (the bridge is not sensed by evenly placed sensors; i.e., mobile sensors commute erratically).

In the next section, a finite element model is built and investigated for the signal reconstruction using two methods: (1)
the sinc function, and (2) the matrix completion. The main advantages of the proposed method are then demonstrated and
discussed.

7.4 Problem Statement

A 2D model of a 500 m long bridge with a single span is modeled in OpenSees. The span supports are fixed and the bridge
is discretized into 5000 DOFs that are equally spaced. The bridge is under ambient random loads at nine equally distanced
points while being monitored. A Rayleigh damping of 2% at the first and eighth modes is included in the model. Modal
analysis of the bridge results in the following natural frequencies for the first four modes: 0.265 Hz, 0.732 Hz, 1.436 Hz,
and 2.373 Hz. By this linear dynamic analysis, the dynamic response at each DOF is calculated to produce a dense response
matrix.

The bridge response is collected in a mobile manner via commuting vehicles within a designated sensing duration. This
data produces a sparse matrix of bridge responses with time and space coordinates. Using this, the objective is to reconstruct
data collected by 20 virtual probing location (VPLs) equally spaced over the bridge. The process is performed using two
methods: (1) the sinc interpolation function, and (2) the matrix completion using convex optimization. Ultimately, by using
these reconstructed signals, modal identification of the bridge can be performed in multiple ways.

In this study, three sensing scenarios with different number of commuting vehicles is investigated. Particularly, the cases
with 50, 100, and 150 (random directions; either left to right or the opposite) scans are considered and both reconstruction
methods are compared. These numbers determine the number of vehicles present on a bridge within the monitoring time
duration. In other words, these three cases simulate three levels of traffic volume on the bridge: low, medium, and high. The
scans mostly contain partial information (a portion of the bridge is scanned by each vehicle). For instance, when the time
slot begins, a vehicle has just 10 DOF remained to exit the bridge, however, this is counted as a scan. In contrast, if a vehicle
enters the bridge within the time slot, but cannot exit in time, it is also a valid scan. Considering this definition, the number
of investigated scans are reasonable. For this bridge, considering its relatively long span, if there are three lanes in each
direction, a simple calculation results in 8, 17, and 25 scans from each lane in 100 s (total monitoring duration) respectively
for three cases of interest.
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In addition, this study assumes that the vehicles flow on the bridge is random. It is the first study that considers this
realistic assumption for the bridge modal identification using mobile sensors’ data. In terms of comparison between results,
both methods are applied for reconstructing stationary signals and the outputs are investigated in both time and frequency.
Time signals have a broad application in damage diagnosis and localization [24, 25] while the frequency representation
of signals is widely used for system identification purposes. Therefore, signal reconstruction quality is evaluated in both
domains.

7.5 Numerical Modeling

The response of the bridge at all DOFs are recorded with the sampling frequency of 50 Hz for 100 s. As a result, the
dimension of the response matrix is 5000 x 5000, with 5000 columns associated with each DOF and 5000 rows for each
time step. This matrix is then sampled according to the time-space coordinates of each vehicle. Computationally, this means
that certain number of secondary diagonals and anti-diagonals of the matrix (from FE model) are selected randomly and the
remaining entries assumed as missing data. This matrix is called the sparse matrix of observations. Note that some of these
random secondary diagonals are very short duration readings, e.g. a vehicle that is leaving the bridge when sensing duration
begins. Thus, the number of readings is not the same as the number of vehicles occupying the bridge at each time. The latter
is in fact not constant since vehicles are randomly leaving and entering the bridge at different times.

The heatmap of the sparse matrices (upper left 1000 x 1000 entries) in three cases are plotted in Fig. 7.3. The horizontal
and vertical axes in the heatmap show spatial and temporal coordinates, respectively. Each diagonal belongs to one scan.
The slopes of diagonals are the same, implying that the velocity of scanning vehicles are the same and equal to 5.0 m/s.
This simplifying assumption is held in this study; however, the vehicles’ speed can be different for each scan. The spatial
responses of the bridge are plotted in two snapshots at times 20 and 30 s and shown in Fig. 7.4. The solid line, which is a
train of weighted impulses, corresponds to the sparse observations available for these two times.

As the first approach, the stationary VPL data are estimated from mobile sensors’ data using Eq. (7.3). Alternatively, the
reconstructed stationary signals for all DOFs including VPLs are achieved using the matrix completion approach. Note that
the latter method hands in all responses by one analysis, while the sinc method needs repetitive reconfiguration of VPLs to
reproduce estimations for all DOFs (5(2)80 = 250 VPL sets needed). This does not necessarily mean that the sinc method is
computationally more costly, since the computational effort for each VPL set is less than the optimization process for the
matrix completion. However, the need for VPL reconfiguration before each analysis results in a two-step process, which is
more complex than the single step solution of the matrix completion.

7.6 Comparing Methods

After generating the sparse matrix of responses, both stationary signal reconstruction methods (the sinc and the matrix
completion) are applied. In order to apply the first method, two parameters should be given, the number of VPLs and the
eccentricity. In this study, with no loss of generality, 20 VPLs with no eccentricity (symmetrically located over the bridge) are
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Fig. 7.3 Heatmap of observed data (shaded lines indicate the observed entries). (a) 50 scans, (b) 100 scans, (¢) 150 scans
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assumed. In the second method however, no such assumptions are needed. In turn, this method needs the rank of estimated
decomposing matrices (K) to be guessed in advance. In this study, this parameter for each of three cases is selected by trying
different values and choosing the best one in terms of performance.

Reconstructed time signals from both methods on four VPL locations (VPLs 4, 8, 12, and 16 that are located at DOFs
1000, 2000, 3000, and 4000) are compared with the actual stationary signals determined from the FE model and are presented
in Figs. 7.5, 7.6, 7.7, 7.8, 7.9 and 7.10. As explained, cases A, B, and C are presenting three level of data availability. To
express the level of sparsity of the matrix, observation rate is calculated as the number of observed entries divided by the
total number of entries. In cases A, B, and C with 50, 100, 150 available mobile scans, this rate equals 0.565%, 0.904%, and
1.428%, respectively. For these cases, K values are set as 6, 12, 18, which yield the most accurate estimates while keeping
the complexity low.

Figures 7.5, 7.7, and 7.9 show that the sinc method is not desirably accurate in estimating unobserved signals. In fact, the
method is exclusively exact in the neighborhood in which some observed data exist. This is obvious from Eq. (7.2) since a
reconstructed signal is mostly affected by the closest observed data. In addition, Eq. (7.2) is originally proposed for cases in
which: (a) the number of observed entries per time step is constant, and (b) this number is always equal to the number of
VPLs. Both of these conditions are violated in a scenario of random scanning. In contrast, from Figs. 7.6, 7.8, and 7.10, the
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Fig. 7.6 Actual vs. matrix completion reconstructed signals at different VPLs (case A). (a) VPL 4, (b) VPL 8, (¢) VPL 12, (d) VPL 16

matrix completion method favorably reconstructs signals, with almost exact solutions. A comparison between approximated
time signals from both methods demonstrates that the matrix completion method yields a uniform accuracy over the time,

counter to the sinc method.
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By comparing results of three cases, it is clear that the stationary signal estimations of the sinc method do not improve
by adding more observations, while the matrix completion approach leads to results that are more accurate, e.g., comparing

Figs. 7.6b and 7.8b. Note that all time signal plots here are presented over one fifth of the monitoring duration for more

clarity.
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Figures 7.11,7.12,7.13 and 7.14 show the power spectral density (PSD) functions of the reconstructed and actual signals.
The frequency range is selected as 0—10 Hz. In Fig. 7.11, all three signals (the sinc and the matrix completion estimated
signals vs. the actual signal) show peaks at the same frequencies. However, the matrix completion signal fits more exactly
over lower frequencies (i.e. 0-6 Hz). In addition, in Fig. 7.11, PSD of the sinc method shows a large peak at the fifth natural
mode, which is not detectable at the location of VPL 4 (DOF 1000). Despite its relevance to the fifth mode, this additive
content is an error in signal reconstruction and does not belong to the actual signal collected at this VPL. In contrast, the
matrix completion method is more successful to follow the actual frequency contents.

A comparison between three cases in PSD figures (e.g., Fig. 7.12) yield that the accuracy of the matrix completion method
is highly enhanced as the number of observations increases. For instance, the matrix completion result in Fig. 7.12a does
not successfully capture frequency contents of the actual signal over 6-10 Hz. Moreover, the first peak is weakly extracted
as well. These two issues, however, are addressed when 100 or 150 scans are considered (case B and case C shown in
Fig. 7.12b and c, respectively). In fact, by increasing the observations, the sinc method is not influenced as much in the
frequency domain, while the matrix completion approach is significantly improved. In the matrix completion approach, there
is a trade-off between the data availability and the desired accuracy. For example, if the SID purpose is limited to a few first
modes, a limited number of observed data is sufficient, e.g., case A.

In the matrix completion method, K (the rank of the response matrix) is correlated to the number of modes included in the
approximated signals. For instance, K = 6 is assumed for case A, and from Fig. 7.12a one can realize that the first six modes
are estimated accurately, while higher modes are not included as much. However, K has to be in a balance with the data
availability. For instance, K > 6 yields worse results for case A since there is not enough observation to tune the parameters
of the decomposing matrices.

It has been shown in [1] that the estimated VPL signals resulted from the sinc method under some conditions (constant
number of moving nodes and permanent presence of sensors) are suitable for bridge SID purposes. However, in this study,
it is shown that if these conditions do not hold, the estimations are not as accurate, particularly for the time signals, while
the matrix completion method results in very exact estimations on both time and frequency. These time signals correspond
to different locations of the structure and are intensively useful for damage localization purposes.
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Table 7.1 Accuracy of reconstructed signals

73

PSD residual Time signal residual
VPL sinc matrix completion sinc matrix completion
4 5317.1 90.3 1575.1 84.4
8 1505.5 24.5 1173.9 148.8
case A)
12 1517.6 33.1 1173.8 86.8
16 3020.7 394 1044.7 45.9
22279.3 1.5 31309 13.1
8 4975.0 3.7 1916.4 21.2
case B)
12 4327.8 12.0 1763.8 51.6
_____________________ 6 49020886 3
37037.9 1.4 3923.1 9.6
8 14505.0 6.3 2665.0 21.9
case C)
12 12390.0 11.0 2713.7 28.8
16 20292.0 5.0 2852.4 21.8

Table 7.1 presents the residuals between the actual VPL signals and the estimated ones from either of the investigated
methods. The residual is the second norm of the difference between actual and estimated vectors of time or frequency.
Table 7.1 shows that as the observation availability grows (case A to case C), the time and frequency residuals reduce in the
matrix completion approach. However, this trend is not detectable in the results of the sinc approach (in fact, the trend is
the opposite). These numerical measures support the conclusion that the matrix completion approach outperforms the sinc
approach significantly.
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7.7 Conclusion

In this study, a novel method for estimating bridge vibration responses at fixed locations from vibrations measured by
moving sensors was proposed. The procedure is based on the idea of low-rank matrix completion problem and is solvable by
convex optimization algorithms. Previously, the sinc interpolation function was introduced for the same purpose; therefore,
in this study, the performances of these two were compared. A finite element model of a 500 m (5000 DOF) long single
span bridge was build and three levels of data availability (observed responses) were considered. In particular, both time
and frequency representations of the reconstructed signals at four virtual probing locations were compared with the actual
stationary sensed data from FE model. Two assumptions were held to simulate a more realistic sensing scenario: (1) vehicles
randomly enter and exit the bridge with random directions, and (2) at the beginning of the monitoring duration, multiple
vehicles are randomly present. The most significant observations are as follows:

— Matrix completion approach estimates significantly better time signal reconstruction at all three levels of data availability
considered in this study. This promising ability is highly effective for damage localization methods that mainly rely on
responses at certain locations.

— The proposed method is superior in terms of the accuracy of the power density estimation (PSD) of the responses,
compared to the sinc function. This feature potentially enables more accurate system identification analyses from data
reconstructed by the matrix completion method.

— In terms of the scalability, the proposed method is more desired since its performance enhances as the data availability
grows. This property was not observed in the sinc method.

— Matrix completion approach is a one-step algorithm and yields a complete estimation of response signals at all DOFs
included in the model, while the sinc method needs to be repeated multiple times to reach the same level of spatial
information.

The sinc approach was originally proposed for a sensing scenario in which at every time step, the number of available
moving sensors on the bridge is equal to the number of preset VPLs. This condition, however, was not held in this study since
more general scenarios were of interest (random presence and commute of moving sensors). As a result, it was observed that
the sinc method lost accuracy when the number of moving observations surpassed the number of VPLs. These imply that the
proposed method (matrix completion) is a more robust solution for the problem of stationary signal reconstruction from data
collected by a mobile sensor network.
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Chapter 8 M)
All Vibration Is a Summation of Mode Shapes et

Brian Schwarz, Patrick McHargue, Jason Tyler, and Mark Richardson

Abstract This paper expands on the ideas presented in two previous papers (Schwarz et al., Curve fitting analytical mode
shapes to experimental data, IMAC XXXIV, 2014; Schwarz and Richardson, Linear superposition and modal participation,
IMAC XXXII, 2014). Here, we again show with examples how all vibration, whether it is represented in the form of time
waveforms, frequency spectra, or ODS’s, can also be represented as a summation of mode shapes. The title of this paper is
actually a universal law which is used for all modal analysis,

Fundamental Law of Modal Analysis (FLMA): All vibration is a summation of mode shapes.

The modal parameters of a structure can be obtained in two ways,

1. Experimental Modal Analysis (EMA): Extracting EMA mode shapes by curve fitting a set of experimentally derived
time waveforms or frequency spectra that characterize the structural dynamics

2. Finite Element Analysis (FEA): Solving for the FEA mode shapes from a set of differential equations that characterize
the structural dynamics

In this paper, it will be shown how the benefits of analytical FEA mode shapes can be combined with experimental data
to yield more robust dynamic models (Richardson and Richardson, Using photo modeling to obtain the modes of a structure,
Proceedings of the International Modal Analysis Conference, 2008; Richardson, Sound Vib Mag, 2005). FEA mode shapes
will be used to “decompose” and then “expand” experimental data to include DOFs that cannot or were not determined
experimentally (Schwarz et al., Using mode shapes for real time ODS animation, IMAC XXXIII, 2015).

A unique advantage of this approach is that only mode shapes themselves are required. Modal frequency and damping
are not required. Another unique advantage is that mode shapes from an FEA model with free-free boundary
conditions and no damping can be used.

It usually requires a great deal of skill and effort to modify an FEA model and its boundary conditions so that its modal
frequencies and mode shapes accurately match EMA modal frequencies and mode shapes. In addition, adding accurate
damping to an FEA model is usually so difficult that damping is left out of the model altogether. The approach presented
here circumvents both of these difficulties.

Keywords Auto power spectrum (APS) - Cross power spectrum (XPS) - Frequency response function (FRF) - Operating
deflection shape (ODS) - Experimental modal analysis mode shape (EMA mode shape) - Finite element analysis mode
shape (FEA mode shape) - Modal assurance criterion (MAC) - Shape difference indicator (SDI) - Multi-input
multi-output (MIMO) modeling and simulation
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8.1 Introduction

A mode of vibration is a mathematical representation of a structural resonance. When forces are applied and therefore
energy is trapped within the boundaries of a structure, it will resonate. Any structure which is made out of one or more
elastic materials will exhibit resonant vibration.

Resonant vibration can be thought of as a mechanical amplifier. That is, when forces are applied to a structure, some of
its modes will readily absorb the energy causing the structure to resonate with excessive levels of deformation. This causes
premature failure of bearings and gears, and material fatigue and failure.

Each mode is defined by three distinct parts; a ratural frequency, a damping or decay constant, and a mode shape.
A mode shape represents the “standing wave deformation” of the structure at the natural frequency of a resonance. This
standing wave behavior is caused when energy becomes trapped within the material boundaries of the structure, and must be
absorbed by the damping mechanisms that are present.

Both EMA and FEA are based upon the FLMA. FLMA is assumed by all of the curve fitting methods that are used to
extract EMA mode shapes from experimental data.

8.1.1 Modal Testing

All structural dynamic response data is initially acquired as multiple time waveforms. Using the FFT algorithm, each time
waveform is transformed into its corresponding Fourier spectrum without loss of information. The Fourier spectra of multiple
time waveforms can be further processed into a variety of frequency domain functions, including Auto and Cross spectra,
FRFs, Transmissibility’s, and ODS FRFs. All of these frequency functions preserve the structural dynamics originally
captured in the time waveforms.

All modal testing is based on the FLMA, namely that all vibration data in the form of either time waveforms or frequency
spectra is a summation of resonance curves, each curve due to a mode of vibration.

8.1.2 Curve Fitting

Multiple time waveforms or frequency spectra defined for different DOFs (motions at different points in different directions)
are needed to extract EMA mode shapes from experimental data.

An Operating Deflection Shape (ODS) is the data at the same sample from two or more time waveforms or frequency
spectra that characterize the vibration of a machine or structure.

ODS data over a span of time or frequency samples is then “curve fif” to estimate the modal parameters of each resonance
[6]. The curve fitting process involves matching an analytical parametric model to the experimental data, usually in a “least-
squared-error” sense. In other words, the unknown modal parameters of the analytical model are estimated in a manner
which minimizes the difference between the experimental data and the analytical model over a band of samples.

8.2 Expanding Experimental Data

In this paper, it will be shown with two examples how analytical FEA mode shapes can be used to “expand” order-based
ODS’s and experimental time waveforms to include DOFs that were not determined experimentally [4]. Unlike the “curve
fitting” used to extract EMA mode shapes, in this process the unknown participation of each mode shape in the experimental
data is determined by a different “least-squared-error” process. The participation of each mode is then used to “expand” the
data to include the original DOFs plus extra DOFs calculated from the DOFs of the mode shapes.

The following examples are used to illustrate shape decomposition and expansion,
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1. Order-based ODS’s of a rotating machine are decomposed and expanded from a few experimentally derived DOFs to
1000’s of DOFs

2. The sinusoidal response time waveforms of a structure are decomposed and expanded to include twice as many DOFs as
the original data

These examples illustrate the combined use of FEA mode shapes and experimental data to create more robust structural
dynamic models, which in turn can be used in further structural dynamics applications.

In these examples only FEA mode shapes are used to decompose and expand the experimental data.

8.3 Expanding Order-Based ODS’s

In a rotating machine, the dominant forces are applied at multiples of the machine running speed, called orders. An order-
based ODS is assembled from the peak values at one of the orders in a set of output-only frequency spectra. Auto spectra,
Cross spectra, or ODS FRFs can be calculated from output-only data that is acquired while the machine is running. When
displayed in animation on a 3D model of the machine, an order-based ODS is a convenient way of visualizing distributed
vibration levels caused by unmeasured internal forces. These distributed vibration levels can be represented as a summation
of resonances and can be used for monitoring the health of the machine.

In this example, it is shown how modes participate differently at different operating speeds in an order-based ODS
of a rotating machine. The modal participation is then used to expand the order-based ODS’s, and they become a valid
representation of the ODS for both the measured and un-measured DOFs of the machine.

Experimental ODS data was obtained from the rotating machine shown in Fig. 8.1. In Fig. 8.2 the model shows the eight
tri-axial accelerometers used to acquire operating data, one on each bearing block and three on each side of the base plate.
When post-processed, the accelerometer data provided ODS’s with 24 DOFs, thus defining 3D motion on the machine at
eight points.

The machine was supported on four rubber mounts (one under each corner), so its rigid body motion participated
significantly in its ODS’s. Six rigid-body and four flexible-body FEA mode shapes were obtained from an FEA model
of the base plate and bearing blocks. These ten mode shapes were used to expand the experimental ODS’s.

One of the rigid-body mode shapes is shown in Fig. 8.3, and a flexible-body mode shape is shown in Fig. 8.4. These FEA
mode shapes have 1938 DOFs in them, including the 24 DOFs of the eight accelerometers.

A comparison display of a 1938-DOF expanded ODS versus its original 24-DOF experimental ODS is shown in Figs. 8.5,
8.6 and 8.7. Each of these Figure contains an expanded versus an original ODS at a different machine speed. The expanded
ODS is displayed on the left and the 24-DOF ODS is displayed on the right in each Figure. The participation bar charts on

Fig. 8.1 Variable speed rotating machine
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Fig. 8.2 Model of the rotating machine showing accelerometers
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Fig. 8.4 First flexible mode of base plate and bearing block

the right side of each Figure show the participation of each FEA mode shape in each ODS. The bars show that the rigid-body
modes dominate each ODS, but they participate differently at each speed.
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The SDI (shape difference indicator [3]) is also shown in the shape comparison display. SDI values range between O and 1.
A value of “I” means the two shapes are identical. The high SDI values in Figs. 8.5, 8.6 and 8.7 indicate that at each speed,
the expanded ODS closely matches the 24-DOF ODS; (0.87 at 985 RPM), (0.91 at 1440 RPM), (0.94 at 2280 RPM).

Complex valued modal participations were used to curve fit the normal FEA mode shapes to the complex experimental
ODS data.
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The high SDI values in Figs. 8.5, 8.6 and 8.7 verify that even complex valued ODS data can be accurately represented
as a summation of normal mode shapes.

8.4 Expanding Sinusoidal Responses

In this second example, MIMO modeling and simulation was used to calculate simulated responses to two sinusoidal
excitation forces applied to the Jim Beam structure shown in Fig. 8.8. The forces were applied at points 5 and 15 in the
Z-direction on the top plate of the beam, that is at DOFs 5Z and 15Z. Two cases were simulated,

1. Two 500 Hz In-Phase sinusoidal excitation forces
2. Two 500 Hz Out-of-Phase sinusoidal excitation forces

The sinusoidal In-Phase and Out-of-Phase force time waveforms are shown in Figs. 8.9a, b. Each time waveform contains
5000 samples. The cursor values in Fig. 8.9a show that the two forces are In-Phase with one another. The cursor values in
Fig. 8.9b show that the two forces are Out-of-Phase with one another.

Four of the EMA mode shapes with frequencies surrounding 500 Hz are displayed in Figs. 8.10a—d. These modes are
expected to participate in the response of the Jim Beam at 500 Hz. The 493 Hz mode is nearest to 500 Hz, so it should
dominate the sinusoidal response. We will see that in fact it does dominate the response, but depending on the phases of the
excitation forces, other modes will also participate in the response.

The MAC values between 10 of the EMA and FEA mode shapes of the beam are shown in Fig. 8.11. MAC values above
0.9 indicate that two mode shapes are co-linear. That is, two shapes lie on the same straight line (have the same shape) but
they may be scaled differently.

The frequencies of the FEA and EMA modes are listed in Figs. 8.12a, b. Notice that the frequency of each FEA mode
shape is much less than the frequency of the corresponding EMA mode shape with which it has a high MAC value. The
frequency differences will not matter however, because only the FEA mode shapes are used to decompose and expand the
time waveforms.
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Fig. 8.12 (a) FEA modal frequencies. (b) EMA modal frequencies

8.4.1 Response to In-Phase Forces

In Fig. 8.13, the simulated response of the Jim Beam structure to two In-Phase forces is displayed on the left. These responses
were calculated using the EMA mode shapes, which were used to synthesize FRFs, which then were multiplied by the Fourier
spectra of the forces to obtain Fourier spectra of the response DOFs of the Jim Beam. The Fourier spectra of the responses
were then inverse Fourier transformed to obtain the response time waveforms displayed on the upper right of Fig. 8.13. The
MIMO modeling and simulation process is depicted in Fig. 8.14.

The FEA mode shapes were then curve fit to the simulated responses and used to expand them from 99 to 315 DOFs.
The expanded response time waveforms are displayed on the lower right in Fig. 8.13. The time-based ODS at the current
Line cursor position in the simulated responses is displayed on the left-hand model, and the expanded ODS from the same
cursor position is displayed on the right-hand FEA model.

The MAC bar between the two time-based ODS’s (simulated and expanded) is also displayed in the upper right corner
of the ODS display. This MAC value of 0.95 indicates that the two ODS’s are nearly co-linear, meaning that they are
essentially the same shape.

In Fig. 8.15, the two blocks of response time waveforms are correlated using MAC and SDI [3]. The upper graph is the
MAC values between each sample of the simulated time waveforms versus the same sample of the expanded time waveforms.
The lower graph is the SDI values between the same samples in each data block of time waveforms. Both MAC and SDI
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indicate that the data at the same sample was nearly identical in both data blocks. Not all samples are shown, but this was

true for all 5000 samples of both time waveforms.

8.5 Modal Participation in Responses to In-Phase Forces

Figures 8.16a, b show the participation of the EMA and FEA mode shapes in two time-based ODS’s taken from the simulated
and expanded waveforms shown in Fig. 8.13. The simulated responses were calculated using MIMO simulation and the EMA
mode shapes, while the expanded responses were calculated by curve fitting the simulated responses with FEA mode shapes.
These results show that both the EMA and FEA mode shapes participate in the simulated and expanded ODS’s in a similar

way. Mode #5 dominates each ODS, but modes #4, #6 and #7 also participate in each ODS.

Shape Participation
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Fig. 8.16 (a) EMA mode shape participation in the ODS’s. (b) FEA mode shape participation in the ODS’s
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Fig. 8.17 Simulated vs. expanded response to out-of-phase forces

The mode shapes of modes #4 and #6 are in-phase with the two In-Phase excitation forces at DOFs 5Z and 15Z, so
they also participate in the ODS’s. However, the mode shapes of modes #5 and #7 are out-of-phase with the two In-Phase
excitation forces at DOFs 5Z and 15Z. Yet both of these mode shapes also participate in the ODS’s. How can this be true?

The only explanation for the participations of modes #5 and #7 shown in Fig. 8.16a, b is that even though these two mode
shapes are out-of-phase with the two In-Phase excitation forces at DOFs 5Z and 15Z, these mode shapes sum fogether in a
manner which contributes to the ODS’s, with mode #5 still dominating both ODS’s.

8.5.1 Response to Out-of-Phase Forces

In Fig. 8.17, the simulated response of the Jim Beam structure to two Out-of-Phase forces is displayed on the left. These
responses were calculated using the MIMO simulation depicted in Fig. 8.14 and the EMA mode shapes, which were used to
synthesize FRFs, which then were multiplied by the Fourier spectra of the forces. The Fourier spectra of the responses were
then inverse Fourier transformed to obtain the response time waveforms displayed on the upper right of Fig. 8.17.

The FEA mode shapes were then used to expand each sample of the simulated response time waveforms. Those expanded
responses are displayed on the lower right in Fig. 8.17. The time-based ODS at the current Line cursor position in the
simulated responses is displayed on the left-hand model, and the ODS from the same cursor position in the expanded
responses is displayed on the right-hand FEA model.

The MAC bar between the two time-based ODS’s (simulated and expanded) is also displayed in the upper right corner
of the ODS display. This MAC value of 0.96 indicates that the two ODS’s are nearly co-linear, meaning that they are
essentially the same shape.

In Fig. 8.18, the two blocks of response time waveforms are correlated using MAC and SDI [3]. The upper graph is the
MAC values between each sample of the simulated time waveforms versus the same sample of the expanded time waveforms.
The lower graph is the SDI values between the same samples in each data block of time waveforms. Both MAC and SDI
indicate that the data at the same sample was nearly identical in both data blocks. Not all samples are shown, but this was
true for all 5000 samples of both time waveforms.

8.5.2 Modal Participation in Responses to Out-of-Phase Forces

Figure 8.19a, b show the participation of the EMA and FEA mode shapes in two time-based ODS’s taken from the simulated
and expanded response data blocks shown in Fig. 8.17. The simulated responses were calculated using the EMA mode
shapes, and the expanded responses were calculated by curve fitting the ten FEA mode shapes to the simulated responses.
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Fig. 8.18 Correlation of simulated and expanded time waveforms

These results clearly show that both the EMA and FEA mode shapes participate in the response ODS’s in a similar way. In
this case, because its mode shape is in-phase with the two Out-of-Phase excitation forces at DOFs 5Z and 15Z, mode #5
dominates the response, and there is very little participation from the other modes.

8.6 Conclusions

In a previous paper [1] it was also shown how mode shapes can be used to decompose and expand a set of FRFs, Cross
spectra, and ODS FRFs. In those cases, it was demonstrated that frequency domain vibration functions can be accurately
decomposed into a summation of resonance curves by curve fitting them with a set of mode shapes, one frequency at a time.
These participations of mode shapes at each frequency were then used to construct an expanded set of measurements using
all of the DOFs of the mode shapes.

In this paper, the same procedure was used to decompose and then to expand several order-based ODS’s, and to expand
simulated sinusoidal response time waveforms. Both of these examples illustrated how the free-free FEA mode shapes of a
machine or structure can be used to decompose and expand data according to the following law,

Fundamental Law of Modal Analysis (FLMA): All vibration is a summation of mode shapes.

This decomposition and expansion using FEA mode shapes offers some important advantages,

¢ Real-world time or frequency vibration data can be accurately curve fit using FEA mode shapes

¢ Normal mode shapes derived from an FEA model with free-free boundary conditions and no damping can be curve fit
to real-world vibration data that includes real-world damping and boundary conditions

* FEA normal mode shapes can be used to curve fit complex valued vibration data

It usually requires a great deal of skill and effort to modify an FEA model and its boundary conditions so that its modal
frequencies and mode shapes accurately match EMA modal frequencies and mode shapes. Adding accurate damping to an
FEA model is usually so difficult that damping is left out of the model altogether. The approach used here circumvents both
of these difficulties.
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Fig. 8.19 (a) EMA mode shape participation in the ODS’s. (b) FEA mode shape participation in the ODS’s

Experimental vibration data always includes both real world boundary conditions and real-world damping.

B. Schwarz et al.

It was shown in the first example that complex ODS data can be accurately decomposed and expanded using the normal

mode shapes of the bearing blocks and base plate of a rotating machine. These normal mode shapes were derived from a
relatively simple FEA model with free-free boundary conditions and no damping.

Normal modes can be used to expand complex vibration data because the modal participation factors used to decompose
and expand the complex data are also complex valued.

In the second example, normal mode shapes were used to decompose and expand real valued time waveforms. Curve

fitting FEA mode shapes to this data yielded an unexpected participation of the mode shapes when two In-Phase sine wave
forcing functions were applied to the top two corners of the Jim Beam structure.
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The intuitive belief that the mode with natural frequency closest to a sinusoidal forcing frequency should dominate the
vibration response turned out to be true, but it was found that other modes also participate in a response based on their mode
shapes, not their frequencies.

Applying this approach to any vibration data that is acquired directly from a machine or structure can provide the necessary
information for continuously monitoring its resonant properties. Furthermore, this decomposition and expansion capability
is useful for creating the resonant properties of un-measured or un-measureable portions of a machine or structure.

This combined use of a simplified FEA model and a small amount of experimental data means that less time and expense
are required to obtain meaningful data for use in machinery and structural health monitoring, and for more quickly diagnosing
and mitigating noise and vibration problems.
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Chapter 9 M)
Modal Testing Using the Slinky Method Gkt

Brian Schwarz, Patrick McHargue, and Mark Richardson

Abstract Conventional broad-band modal testing is done by acquiring a single-reference or multiple-reference set of FRFs
and curve-fitting them to obtain modal parameters. Since a (fixed) reference sensor is required throughout the data acquisition
process, testing a large structure requires that a (potentially) long wire be used to connect the reference sensor to the
acquisition system.

In a previous paper (McHargue et al., ODS & modal testing using a transmissibility chain, IMAC XXXVI, 2017), a new
modal testing method was introduced which does not require the use of a fixed reference sensor. This method is based on the
calculation of a series of Transmissibility’s, called a TRN chain. This method has several important advantages,

1. Excitation forces need not be acquired
2. Only two response sensors are required for data acquisition
3. The two sensors can be physically close to one another throughout data acquisition

Since the excitation forces need not measured, data for calculating a TRN chain can be acquired from an operating
machine, or during any test where excitation is provided by impacting or by using one or more shakers.

A Slinky test is a unique way of acquiring a TRN chain. In a Slinky test, one sensor is merely “hopped over” the other
sensor with each new acquisition, as shown in Fig. 9.3. As the two sensors are moved over the surface of the structure in this
manner, a “chain” of Transmissibility’s is calculated from the acquired data.

A TRN chain can be “seeded” with an Auto spectrum, Cross spectrum, Fourier spectrum, or FRF to yield a single-
reference set of measurements, from which experimental modal parameters can be extracted. A Slinky test is much faster,
easier, and less costly than a conventional modal test.

Keywords Transmissibility chain (TRN chain) - Fourier spectrum (DFT) - Auto power spectrum (APS) - Cross power
spectrum (XPS) - Frequency response function (FRF) - Operating deflection shape (ODS) - Experimental modal analysis
mode shape (EMA mode shape) - Operational modal analysis mode shape (OMA mode shape) - Modal assurance criterion
(MAC) - Shape difference indicator (SDI)

9.1 Introduction

To obtain the experimental ODS’s or mode shapes of a machine or structure, each degree-of-freedom (DOF) of a shape must
contain the correct magnitude and phase relative to all other DOFs. If all sensor data is simultaneously acquired, each
shape will contain the correct relative magnitudes and phases. However, simultaneous acquisition requires that all sensors be
connected to a multi-channel acquisition system so that all of the data can be acquired from all channels at once.
Experimental ODS’s and mode shapes are obtained from a set of cross-channel measurements where a fixed reference
sensor is used throughout the test. For large test articles, the wire from the reference sensor to the acquisition system could
be very long. In a roving impact test, the wire from the instrumented hammer to the acquisition system could also be long.

B. Schwarz - P. McHargue - M. Richardson ()
Vibrant Technology, Inc., Centennial, CO, USA
e-mail: mark.richardson @vibetech.com

© Society for Experimental Mechanics, Inc. 2020 93
M. L. Mains, B. J. Dilworth (eds.), Topics in Modal Analysis & Testing, Volume 8, Conference Proceedings of the Society for
Experimental Mechanics Series, https://doi.org/10.1007/978-3-030-12684-1_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12684-1_9&domain=pdf
mailto:mark.richardson@vibetech.com
https://doi.org/10.1007/978-3-030-12684-1_9

94 B. Schwarz et al.

The Product of two Transmissibilitys is
another Transmissibility

TRN(3:1) = TRN(3:2) x TRN(2:1)
The Inverse of TRN(2:1)is TRN(1:2)

TRN(1:2) = (1/TRN(2: 1))

Fig. 9.1 Transmissibility properties

Operational modal parameters (frequencies damping, and mode shapes) are typically obtained by curve fitting a single
reference set of output-only Cross spectra or ODS FRFs. An experimental modal model (a set of mode shapes containing
the mass, stiffness and damping properties of the structure) is typically obtained by curve fitting a single reference set of
calibrated FRFs.

9.1.1 Cross-channel Measurements

An output-only Cross spectrum is a cross-channel frequency-based measurement defined as the Fourier spectrum of one
response multiplied by the complex conjugate of the Fourier spectrum of the other response. An FRF is a frequency-
based cross-channel measurement defined as the Fourier spectrum of a structural response (in displacement, velocity, or
acceleration units) divided by the Fourier spectrum of an excitation force that caused the response. An ODS FRF is a
frequency-based cross-channel measurement defined as the Auto spectrum of a vibration response together with the phase
between the response and a reference response.

Transmissibility is a frequency-based cross-channel measurement defined as the Fourier spectrum of a vibration response
divided by the Fourier spectrum on another response, as shown in Fig. 9.1.

9.2 Transmissibility Properties

Transmissibility has two unique properties that make it useful for recursive post-processing of response data from a Slinky
test.

1. The Transmissibility between DOF 1 and DOF 2 multiplied by the Transmissibility between DOF 2 and DOF 3 equals
the Transmissibility between DOF 1 and DOF 3
2. The Inverse of the Transmissibility between DOF 1 and DOF?2 is the Transmissibility between DOF 2 and DOF 1

These two Transmissibility properties are shown in Fig. 9.2, and are used to post-process the data in a TRN chain of
measurements.

9.3 Slinky TRN Chain Measurement

In a Slinky test, data is acquired in a chain fashion as depicted in Fig. 9.3. The three measurements shown in Fig. 9.3 are
made with two sensors (for example accelerometers), and a 2-channel acquisition system.
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Slinky Transmissibility Test

TRN3:1 = TRN2:1 x (1/ )

TRN4:1 = TRN3:1 x TRN4:3

TRN4:2 3
- Force

{unmeasured)

Fig. 9.2 Slinky test

Transmissibility TRN (2:1) is the Fourier spectrum of the response at DOF 2
(point & direction) divided by the Fourier spectrum of the responses at DOF 1
(point & direction)

FFT(2
TRN(2:1) = ( )/FFT(I) —L e

Fig. 9.3 Transmissibility

Not only is the equipment required to do a Slinky test much less costly, but this method can be used to test any sized
test article, especially large ones.

The sensor data used in the denominator of a Transmissibility is called the Input, and the sensor data used in the
numerator is called the Qutput. The test procedure depicted in Fig. 9.3 is as follows;

e Attach sensors to points 1 and 2

* Acquire vibration data from points 1 and 2. Designate point I as Input and point 2 as Output
e Calculate TRN(2:1)

* Move the sensor from point 1 to point 3

* Acquire vibration data from points 2 and 3. Designate point 3 as Input and point 2 as Output
e C(Calculate TRN(2:3)

e Move the sensor from point 2 to point 4

* Acquire vibration data from points 3 and 4. Designate point 3 as Input and point 4 as Output
e Calculate TRN(4:3)

In a Slinky test, only one sensor must be moved between acquisitions. Either sensor can be moved between
acquisitions. Hopping one sensor over the other is not necessarily required.

Regardless of how the TRN chain is acquired and calculated, it can always be post-processed into a single-reference TRN
chain using the two unique properties of Transmissibility’s shown in Fig. 9.2. It is also shown in Fig. 9.3 how the TRN chain
is post-processed to yield a single-reference TRN chain.
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TRN(4:1) = TRN(4:3) x TRN(3: 1)
TRN(5:1) = TRN(5:4) x TRN(4: 1)
TRN(6:1) = TRN(6:5) x TRN(5:1)

Fig. 9.4 TRN chain from two sensors

Fig. 9.5 TRN chain benefits

9.4 Benefits of a TRN Chain

A TRN chain can be measured using a pair of uni-axial sensors or a pair of tri-axial sensors as described in Fig. 9.4. Using
two tri-axial sensors will capture the 3D motion of a machine or structure at each test point, thus yielding ODS’s and mode
shapes that describe its 3D motion.

The benefits of TRN chain testing are summarized in Fig. 9.5. Its greatest benefit is in acquiring data from operating
machines or vehicles where the excitation forces cannot be measured. Also, since acquisition of the excitation force (or
forces) is not required, any artificial excitation forces can be provided, either by impacting at a fixed DOF or by providing
steady state excitation with one or more shakers.

9.5 Seeding a TRN Chain

Once a TRN Chain has been calculated for all points and directions (DOFs) on the test article, it can be “seeded” using either
an Auto spectrum, Cross spectrum, Fourier spectrum, or an FRF to yield a single reference set of measurements from which
ODS’s and mode shapes can be extracted.

¢ Seeding with an Auto spectrum yields a single reference set of ODS FRFs

¢ Seeding with a Cross spectrum yields a single reference set of Cross spectra

¢ Seeding with a Fourier spectrum yields a single reference set of Fourier spectra
¢ Seeding with an FRF yields a single reference set of FRFs
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XPS(3:20) = XPS(4:20) x TRN(3: 4)
XPS(2:20) = XPS(3:20) x TRN(2:3)
XPS(1:20) = XPS(2:20) x TRN(1:2)
XPS(5:20) = XPS(4:20) x TRN(5: 4)
XPS(6:20) = XPS(5:20) x TRN(6: 5)

Fig. 9.6 Seeding with a cross spectrum

FRF(3:20) = FRF(4:20) xTRN(3: 4)
FRF(2:20) = FRF(3:20) x TRN(2:3)
FRF(1:20) = FRF(2:20) xTRN(1:2)
FRF(5:20) = FRF(4:20) xTRN(5:4)
FRF(6:20) = FRF(5:20) xTRN(6:5)

Fig. 9.7 Seeding with an FRF

that the reference DOF of the Cross spectrum or FRF of the seed can be from anywhere on the machine or structure.

97

A TRN chain is seeded with a Cross spectrum in Fig. 9.6, and the same chain is seeded with an FRF in Fig. 9.7. Notice

The only requirement for seeding a TRN chain is that the Qutput DOF of the seed be the same as one of the Output

DOF:s s of the chain.

9.6 Round Trip Simulations

To demonstrate the Slinky testing method, two round trip simulations are used,

WD AW =

Slinky test of an aluminum plate using fwo uni-axial accelerometers
Slinky test of the Jim Beam using two tri-axial accelerometers

In both simulations, the following steps were carried out,

. Experimental FRFs are acquired by impact testing the structure

. The FRFs are used to calculate responses of the structure to random excitation
. A TRN chain is calculated from the random responses

. The TRN chain is seeded with an FRF

. The single-reference FRFs are compared with the original FRFs
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Fig. 9.9 Experimental FRFs from the Jim Beam

9.6.1 Experimental FRFs

To provide the simulated response data, each structure was first impact tested to obtain a single-reference set of FRFs that
characterized its dynamic properties. A roving impact test was performed on the aluminum plate with an accelerometer
attached at one corner (DOF 1Z). The plate was impacted at 30 points (DOFs 1Z to 30Z), and 30 FRFs were calculated
between each impact DOF and the fixed reference DOF 1Z. Several FRFs from the aluminum plate are shown in Fig. 9.8.

A roving accelerometer test was performed on the Jim Beam. A model of the Jim Beam is shown in Fig. 9.14. It was
impacted at one corner of the top plate (DOF 15Z) throughout the test. A tri-axial accelerometer was moved from point 1
to point 33 between acquisitions of data. Ninety-nine FRFs were calculated, each FRF between the impact DOF and the 3D
motion at each point on the beam. Several experimental FRFs for the Jim Beam are shown in Fig. 9.9.
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Fig. 9.10 MIMO modeling and simulation

9.7 MIMO Modeling and Simulation

Using its FRFs as its dynamic model, random excitation of each structure was simulated by calculating its responses to a
random excitation force. This calculation was done using the FRF matrix-based MIMO modeling and simulation depicted
in Fig. 9.10. The MIMO calculations depicted in Fig. 9.10 were used to calculate random responses to random excitation
on both the aluminum plate and the Jim Beam. The following steps were used to calculate time domain waveforms due to a
random excitation force,

1. A sequence of ten random time waveforms was created as a simulated force input to each structure

2. The experimental FRFs were multiplied by the Fourier spectrum of the Input force to obtain the Fourier spectrum of each
response Output

3. The Fourier spectrum of each Output was Inverse transformed to obtain the time waveform of a random response

This process is referred to as Multi-Input Multi-Output (MIMO) Modeling and Simulation. The Fourier spectrum of
the random Input and the Fourier spectra of several Outputs are shown in Fig. 9.11. These spectra each have 10,000 samples
in them. The original random force signal was created with 20,000 samples, enough samples to calculate Transmissibility’s
with 1000 samples each, using 10 spectrum averages to remove the random noise from the data. Each time window of 2000
samples also had a Hanning window applied to it before transforming it to a Fourier spectrum. A Hanning window must be
applied to the time waveforms to minimize the effect of the non-periodic random signals on the Fourier spectra.

9.8 Slinky Test of the Aluminum Plate

A Slinky test using a pair of uni-axial accelerometers was simulated on the aluminum plate by “simultaneously acquiring”
its random response from a pair of points at a time. Each pair of responses was used to calculate one Transmissibility. This
test is depicted in Fig. 9.12.

The plate has a (5 by 6) grid of 30 numbered test points shown in Fig. 9.12. A TRN chain of 29 Transmissibility’s was
calculated between each successive pair of grid points on the plate. Some of the Transmissibility’s are displayed in Fig. 9.13.

It must be emphasized that the peaks in a Transmissibility are not resonance peaks. A Transmissibility is a different
complex waveform than an FRF. Transmissibility’s cannot be curve fit using an FRF-based curve fitting method.
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Fig. 9.11 Fourier spectra of excitation force and MIMO responses
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Fig. 9.12 Test points on the plate

9.8.1 Seeding the TRN Chain with an FRF

The TRN chain of 29 Transmissibility’s was seeded with FRF 15Z:1Z. This FRF is between Roving DOF (15Z) and the
Reference DOF (1Z). Seeding the TRN chain with FRF 15Z:1Z yielded a set of FRFs with reference DOF (1Z), some of
which are shown in Fig. 9.14.
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Fig. 9.14 FRFs from seeding the plate TRN chain

A TRN chain can be seeded with any FRF, provided that the Roving DOF of the seed matches one of the DOFs in the
TRN chain.

FRF 15Z:1Z was chosen as the seed so that the resulting single-reference set of FRFs would have reference DOF (1Z),
hence they could be numerically compared with the original experimental FRFs that were used to calculate the random
response of the plate.
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Fig. 9.15 Correlation of experimental and slinky FRFs for the plate

9.8.2 Comparing Experimental and Slinky FRFs of the Plate

To confirm the accuracy of the simulated Slinky test on the aluminum plate, the FRFs calculated by seeding the Slinky TRN
chain were numerically compared with the original experimental FRFs. The results are shown in Fig. 9.15. The two sets of
FRFs are numerically compared at each frequency sample using the SDI metric [2]. Like the MAC metric [3], SDI has values
between 0 and 1. MAC measures the co-linearity of two shapes. SDI measures the difference between two shapes.

An SDI value of “1” for a sample means that the ODS (complex values of the FRFs) in one set of FRFs equals the values
of the FRFs for the same sample in the other set. An SDI value above 0.90 at a sample indicates a strong correlation between
the two sets of FRFs for that sample. It is clear from Fig. 9.15 that the round-trip simulation yielded FRFs with reference
DOF 1Z that closely correlated at all frequencies with the original experimental FRFs that were used to create the random
responses of the plate.

9.9 Slinky Test of Jim Beam

A Slinky test using a pair of tri-axial accelerometers was simulated on the Jim Beam by “simultaneously acquiring” its 3D
random responses at pairs of points. In this example six channels of data were “simultaneously acquired” from each pair of
points to simulate a test using ¢ri-axial accelerometers. Three responses from each point (in the X, Y, and Z directions) were
used to calculate Transmissibility’s. Each Transmissibility was calculated between a pair of response DOFs, therefore, five
Transmissibility’s were calculated between each pair of points.

The same random force that was used to excite the aluminum plate was also applied to the Jim Beam, but it was applied
at DOF 15Z, as shown Fig. 9.16. Ninety-nine experimental FRFs where used to model the dynamics of the Jim Beam using
the MIMO response calculation, depicted in Fig. 9.10.

A TRN chain of 160 Transmissibility’s was calculated between each successive pair of points on the Jim Beam. Five
Transmissibility’s were computed for each of the 32 pairs of points. A portion of the TRN chain is shown in Fig. 9.17.

9.9.1 Seeding the TRN Chain with an FRF

The TRN chain of 160 Transmissibility’s was seeded with FRF 4Z:157Z. This FRF is between Roving DOF (4Z) and the
Reference DOF (15Z). Seeding the TRN chain with FRF 4Z:15Z yielded a set of FRF's with reference DOF (15Z), some
of which are shown in Fig. 9.18.

A TRN chain can be seeded with any FREF, provided that the Roving DOF of the seed matches one of the DOFs in the
TRN chain.
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Fig. 9.17 TRN chain for Jim Beam

9.9.2 Comparing Experimental and Slinky FRFs of the Jim Beam

To confirm the accuracy of the simulated Slinky test on the Jim Beam, the FRFs calculated by seeding the Slinky TRN chain
were numerically compared with the original experimental FRFs. The results are shown in Fig. 9.19. The two sets of FRFs
are numerically compared at each frequency sample using the SDI metric [2]. SDI has values between 0 and 1.

An SDI value of “1” for a sample means that the ODS (complex values of 99 FRFs) in one set equals the values of the 99
FRFs for the same sample in the other set. An SDI value above 0.90 at a sample indicates a strong correlation between the
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two sets of FRFs for that sample. Except for a few samples at low frequencies, it is clear from Fig. 9.19 that the round-trip
simulation yielded FRFs with reference DOF 15Z that closely correlated at all frequencies with the original experimental

FRFs.

9.10 Conclusion

In this paper, a new testing method was introduced which is based on the measurement of a chain of Transmissibility’s called

a TRN chain. Using this new method, any machine or structure, large or small, can be tested with as little as two uni-axial

response sensors, a 2-channel acquisition system, and two short wires from the sensors to the acquisition system.
Moreover, this method can be used to test running machinery or large structures such as bridges and buildings because

only the responses are measured. The excitation forces do not have to be measured.
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Using a conventional broad-band testing method, a single reference set of measurements is required to obtain
experimental ODS’s or mode shapes. This means that one sensor must remain fixed throughout the data acquisition process.
Consequently, the fixed reference sensor(s) must be connected by wire to the acquisition system, and this wire could be very
long.

It was shown with two examples how a TRN chain is calculated from the simulated random responses of the structures.
The aluminum plate example illustrated testing with two uni-axial accelerometers, and the Jim Beam example illustrated
testing with two tri-axial accelerometers. In both cases, single-reference sets of FRFs were obtained by seeding each TRN
chain with an FRF seed. In both cases, the resulting FRFs closely correlated at all frequencies with the set of experimental
FRFs that were used to create the responses of the structures to a random force input.

Two unique properties of Transmissibility’s make the post-processing of arny TRN chain a straightforward calculation.

The Slinky testing method makes the measurement of a TRN chain even easier. This simple process of hopping one
sensor over the other means that only one sensor must be moved between acquisitions. In fact, it does not matter which
one of the sensors is moved, if each Transmissibility is labeled with the correct Input (denominator) and Output (numerator)
DOFs.

A drawback of this testing approach is that experimental noise, either in the seed of in some of the Transmissibility’s, will
propagate through the post-processing of the TRN chain. Noise propagated through the post-processing could explain the
low SDI values at some frequencies in Fig. 9.19. However, using more spectrum averages (only 10 were used) in the TRN
chain and seed calculations will reduce the noise in the results.
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Chapter 10 )
Numerical and Experimental Modal Analysis of a Cantilever Gkt
Beam Axially Loaded by a Tendon Which Is Attached in a Single

Spanwise Location
Vaclav Ondra and Branislav Titurus

Abstract It has been recently proposed to incorporate a tendon in a rotorcraft blade to introduce a means of controlling
its dynamics properties. This has been shown as an effective resonance avoidance mechanism that should allow rotorcraft
to operate with shape adaptive blades or with variable rotor speed, thereby increasing their performance and efficiency.
In the previous studies, the tendon was attached to the blade’s tip, passed freely through its whole body and was fixed at
the root of the blade. The tendon was therefore free to vibrate unrestrictedly inside the blade. This, despite delivering the
required changes to dynamics, may not be the most optimal and viable design. In this paper, a modification of this concept
is investigated. Unlike in the previous studies, the tendon does not pass freely through the blade, but it is connected to it in a
single spanwise location using a mechanical attachment. This coupled blade-tendon system is studied both numerically and
experimentally. The blade is modelled as the Euler-Bernoulli beam, the tendon as a taut string, and the attachment point as
a concentrated mass. The boundary and connectivity conditions are used to ensure the required coupling between the beam
and the tendon. Free vibration analysis is conducted using a boundary value problem solver and a bench-top experiment
is used for validation of the numerical results. The variation of modal properties with the applied tendon tension and the
location of the attachment point is investigated. It is found that many features observed in the previous studies, such as the
frequency shift and frequency loci veering, are still exhibited by the modified system, but they are manifested under different
loading conditions. In this way, the attachment points may influence the ability to control the beam’s dynamic properties.
The implications of these phenomena for the application of an active tendon in rotorcraft are discussed.

Keywords Coupled beam-tendon system - Theoretical and experimental modal analysis - Axially loaded beam -
Frequency reduction - Frequency loci veering

10.1 Introduction

Recently, it has been proposed to incorporate a tendon in a rotorcraft blade to introduce a means of controlling its
dynamics properties [1]. A simplified, non-rotating model of this mechanism was investigated in [2—4] both numerically
and experimentally. It was found that the beam-tendon system exhibits reduction in the beam natural frequencies due to a
tendon-induced axial force as well as veering between beam-dominated and tendon-dominated modes. These findings were
further numerically examined in [5] for rotating pre-twisted beams. It was shown that although the rotation has a significant
effect on the tendon, the tendon is still able to influence the modal characteristics of the blade significantly. Moreover, it has
been discussed in [6] that the active tendon concept can serve as a resonance avoidance mechanism by allowing the rotorcraft
to operate with shape adaptive blades or with variable rotor speed, thereby increasing their performance and efficiency. In
all these previous studies, the tendon was attached to the blade’s tip, passed freely through its whole body and was fixed at
the root of the blade. The tendon was therefore free to vibrate unrestrictedly inside the blade, which, despite delivering the
required changes to dynamics, may not be the most optimal and viable design. In this paper, a modification of this concept is
investigated whereby the tendon does not pass freely through the blade, but it is connected to it in a single spanwise location
using a mechanical fixture instead.

Free vibration of beams and tendons (cables, strings) have been extensively studied, because they are two essential
structural elements that are frequently used in many engineering applications. There is an overwhelming number of studies
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that focus on different aspects of beam and string modelling, application and testing [7-10]. However, very few studies of
coupled beam-tendon systems can be found in literature. To the best knowledge of the authors, a similar system has been
considered only in a handful of studies. For instance, a string-beam system has been used as a representation of an optic
cable coupler in [11] and its bifurcation and chaotic dynamics mathematically investigated in [12]. In these studies, however,
the axial tension of the string had no influence on the beam so that the beam dynamics could be considered separately from
the string.

The objective of this paper is to study the free vibration of a non-rotating beam-tendon system where the coupling between
the beam and the tendon is realised at the tip and a single spanwise location. Due to this coupling, the vibration of the
beam and tendon must be considered simultaneously as they influence each other. The paper is organised as follows: in
Sect. 10.2 the theoretical model of the system is presented and the numerical procedure used to obtain the modal properties
is briefly described. The effect of an attachment point and its location on the modal properties and structural stability are
then experimentally and numerically investigated in Sect. 10.3. Finally, in Sect. 10.4, the main findings are summarised,
and potential implications to the application of an active tendon concept as a vibration control method in rotorcraft are
discussed.

10.2 Theoretical Model

The considered system can be seen in Fig. 10.1. The system consists of a straight hollow cantilever beam with a double
sectional symmetry that is axially loaded by a tendon. The rectangular cross-section is used in the present numerical and
experimental studies. The tendon is attached at the tip of the beam and fixed (clamped) at the same place as the beam. Unlike
in the previous studies, the beam and the tendon are also connected in, generally, several spanwise locations using attachment
fixtures such as the one schematically shown in Fig. 10.1b. It is assumed that each attachment point ensures the equality of
the beam and tendon displacements while the slope of the tendon is different on each side of the attachment. In addition, the
attachment fixture is assumed to be friction-free, i.e. the magnitude of tension P is not changed when passing through the
fixture. Each attachment fixture has a mass m; and is placed at the distance L; from the clamp. Although there is no limit on
the number and locations of the attachments, this paper investigates a beam-tendon system with a single attachment fixture
only.
The equations of motion describing the beam-tendon system are

EIw"” + Pw' +mi = F, (10.1a)
—Pw/ + m, =0, (10.1b)

where E1 is the bending rigidity of the beam, P is the applied force which is transmitted by the tendon so it acts as an axial

force at the tip of the beam, m is the mass per meter of the beam, m;, is the mass per meter of the tendon, F is the distributed
excitation force that is only applied to the beam, w(¢, x) and w(, x) are vertical displacements of the beam and the tendon,
respectively, ¢ is time, x is an independent spatial variable measured along the span of the beam, O=29 /ot and ()) = 9/9x.
While these two equations are fully uncoupled, the beam and the tendon interact with each other through the tip mass and
attachment fixtures.

x=0 beam(E,,m,w) tendon (Pm,w;) attachment fixture distributed force (F)
a 1 [T 2 | i | N | b

Fig. 10.1 Coupled beam-tendon system: (a) description of the system, and (b) idealisation of the attachment fixture
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This interaction is captured by the following boundary and connectivity conditions—the beam-tendon system is fixed at
one end (x = 0)

w =0, (10.2a)
w =0, (10.2b)
wy = 0. (10.2¢)
and free at the other end (for x = Ly)
Elwy, =0, (10.3a)
—Elwy — Pwy +mywy + Pw,y =0, (10.3b)
WiIN = WN. (10.3¢)

where my is the tip mass. The origin of these boundary conditions is discussed in detail in [4] where they were also

experimentally validated. In addition, for every attachment point (forx = L; wherei =1,2,..., N — 1),
wl(R) _ wfljr)lv (10.4a)
wi'® = wi ' ®, (10.4b)
ETw/® = Erw. "™, (10.4¢)
—ETw"® — Pui/® 4 Puy'® = —ETwip"™ = Pwip'™ + Puygny™ +mii), (10.4d)
wy = w;, (10.4¢)
wfl(_;')+1) = wflfr)lv (10.4f)

where the superscripts oER) and oEL) mark the right and left side of the i interval, respectively. The first four equations ensure

the connectivity of beam’s displacements, slopes, moments and shear forces, respectively, on each side of the attachment
fixture while the last two equations ensure the same displacement of the beam and the tendon.

In order to evaluate the modal properties (natural frequencies and mode shapes) of the beam-tendon system, an assumption
of the normal mode is used. A solution of any given dependent variable is expressed as a multiplication of the time-invariant
mode shape and the time-varying harmonic function of the constant frequency in the following form

w(t, x) = W(x)e, we(t, x) = Wi(x)e. (10.5)

Substituting the normal mode forms into the partial differential equations (PDEs) allows one to eliminate time and rewrite the
PDE:s into a system of first order ordinary differential equations (ODEs) that, together with the boundary conditions (BCs),
define a boundary value problem. This boundary value problem can then be solved by a Matlab bvp4c solver [13] for
unknown natural frequencies w and corresponding mode shapes components W (x) and W;(x). This solver is very versatile
since it uses a collocation method but may suffer from a decreased numerical performance if an appropriate starting guess is
not provided.

10.3 Numerical and Experimental Results

In this section, numerical and experimental results are presented. The experimental set-up used can be seen in Fig. 10.2. A
similar experimental set-up to test the beam-tendon system with no attachment fixtures was already used in [3, 4]. It consists
of a cantilever beam-tendon system that is gravity-loaded using the masses placed on the hanging platform, and hardware
required for experimental modal analysis. As in the previous studies, one attachment point was required at the clamp to
ensure the same total length of the beam and the tendon. Unlike in the previous studies, the attachment fixture ensuring the
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Tendon attachment

Fig. 10.2 The experimental set-up with the attachment pointin L; = 0.5L

same displacements of the beam and the tendon, was placed either in the middle of the beam, i.e. L1 = 0.5L, or close to the
tip in L1 = 0.9L. The intermediate attachment point was cut out from plexiglass while the one in the clamp was realised
using magnets.

Experimental modal analysis and the estimation of the modal parameters were conducted in the same way as in [4]. The
measurement was repeated twice—by increasing the amount of the weight plates in two-kilogram increments from 2 to 50 kg
and subsequently by decreasing the mass back to 2 kg. The natural frequencies extracted from these two measurements were
averaged to obtain the frequency-loading diagrams presented.

The computed frequency-loading diagrams are also shown. The parameters used in the theoretical model are not the same
as in [4] because both the beam and the tendon were slightly different than in the previous experiments. The parameters used
were EI = 157.79Nm?, m = 0.2911kgm~!, m; = 0.011kgm™", my = 0.0062kg, m; = 0.001kg and L = I m.

10.3.1 System with the Attachment Point in 0.5L

The frequency-loading diagram of the system with one intermediate attachment point which is located in L1 = 0.5L can be
seen in Fig. 10.3. The correlation between the numerical and experimental results is comparable to [4]. It can be seen that the
first two beam-dominated modes match the experimental results very well, while the third and fourth mode exhibit constant
offsets from the experimental results. These offsets can be attributed to the known issue of the Euler-Bernoulli theory which
causes increasingly over-predicted natural frequencies of higher modes. The offset of the beam-dominated modes does not
seem to have any significant effect on the tendon-dominated modes. The level of the correlation between the experimental
and numerical values of natural frequencies of the tendon-dominated modes, which increase rapidly with increasing weight,
is very good. It is important to note that for the second tendon-dominated mode, the experimental values hint the presence of
the two modes that are very close to each other while the computed results predict two modes with the same frequency. This
can be easily explained by an imperfection or slight asymmetry in the experiment set-up which causes one half of the tendon
to be slightly longer than the other one, thereby causing a slight shift of its natural frequencies. Alternatively, it is possible
that the tension in one part of the tendon, presumably the one closer to the tip, is slightly lower, which can also cause a shift
between the natural frequencies. The slight decrease of the tension in the second part of the tendon might be also caused
by friction in the attachment fixture. Regardless of this imperfection, the rate of increase of the natural frequencies of the
tendon-dominated modes with the applied load match very well to the computed one.

The comparison of the computed results with and without the attachment fixture made in Fig. 10.3 reveals several
interesting phenomena. It can been seen that while the two sets of beam-dominated modes almost coincide with each
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Fig. 10.3 Comparison of the computed and experimentally measured frequency-loading diagrams for the system with a single attachment point
in 0.5L, and the mode shapes for P = 300 N. The x beam-dominated mode is marked by “xB”, while the x" tendon-dominated mode intrinsic
to the left and right part of the tendon are marked by “xT-L” and “xT-R”, respectively

other, only every second tendon-dominated frequency locus of the system with the one attachment point coincides with
some frequency locus of the system without the attachment. Although some of the natural frequencies coincide, the mode
shapes of these modes are different due to the attachment fixture. The natural frequencies coincide because the length of the
tendon’s segment in the system with the attachment is exactly halved, leading to twice as high natural frequencies of any
given mode compared to the system with no attachment. The rate of increase of the frequency loci is however the same. Due
to a larger number of the tendon-dominated modes for the system without the attachment, more veering regions can be seen.
In addition, it can be noticed that the veering regions of the two systems are different. For the system with the attachment
point, there is always a frequency locus passing through the veering region while there is no such locus for the system with
no attachment. The locus, which passes through the veering regions unaffected, belongs to one of the pair of the tendon-
dominated modes that share the same natural frequency when away from this veering region. This phenomenon can also
be observed in the experimental data between 400N and 500N at about 400 Hz. From the numerical results, it is possible
to determine which tendon-dominated mode (left or right) veers and which passes through the veering region unaffected.
However, since the mechanism is not yet theoretically fully understood, it is not further discussed and should be a subject of
further investigation.

The modes shapes of the system can be seen in the right part of Fig. 10.3. Although the attachment point is not displayed,
its position can be deduced from these modes shapes. The first fourth bending modes that are dominated by the motion of the
beam (marked as xB) are present. Then, the mode shapes that are intrinsic to the left part of the tendon (marked as xT-L) can
be seen. In these modes, the deflection of the beam and the right part of the tendon is minimal and the mode shape is localised
to the left part of the tendon. On contrary, the modes of the right part of the tendon (marked as xT-R) are only localised in the
right part of the tendon. It should be noted that many more vibration modes exist for very low tendon tensions (e.g. P < 50N
in the frequently-loading diagram). However, due to the need to provide a reliable starting guess to the numerical solver used
and the closeness of the natural frequencies of these modes, it was not possible to map this region comprehensively.
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10.3.2 System with the Attachment Point in 0.9L

The frequency-loading diagram of the system with one intermediate attachment point which is located in L1 = 0.9L can
be seen in Fig. 10.4. The correlation between the numerical and experimental results is very similar to Fig. 10.3. The first
two beam-dominated modes match the experimental results very well, while the third and fourth mode exhibit constant
offsets, which can be again attributed to a limitation of the Euler-Bernoulli theory. The level of correlation between the
experimental and numerical values of the natural frequencies of the tendon-dominated modes, which increase rapidly with
increasing applied force, is very good. Unlike in Fig. 10.3, none of the experimentally acquired tendon-dominated frequency
loci indicates the presence of two natural frequencies close to each other. This is given by the fact that the two parts of
the tendon are very different in their length, and therefore possess very different natural frequencies. It can be seen from
the comparison of the computed results with and without the attachment fixture made in Fig. 10.4 that two sets of tendon-
dominated natural frequencies do not coincide. The tendon-dominated natural frequencies of the system with the attachment
are slightly higher than the natural frequencies of the system without the attachment. This is caused by the fact that they are
mainly driven by the left part of tendon, which is only slightly shorter than the full length of the tendon. However, the rate of
increase of the frequency loci is again the same.

The modes shapes of the system can be seen in the right part of Fig. 10.4. In this case, no modes dominated by the right
part of the tendon are shown, because their natural frequency is outside the investigated frequency region for P = 300 N.
The location of the attachment point can be again easily deduced from to the same displacements of the beam and the tendon.

In order to investigate the veering between the tendon-dominated and beam-dominated modes, two veering regions have
been measured in detail. The detailed measurements have been conducted using the stepped-sine excitation procedure [14]
with a fine frequency resolution and small weight increments. The measured frequency response functions (FRFs), identified
natural frequencies and computed frequency loci can be seen in Fig. 10.5. From Fig. 10.5a and c the presence of veering
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Fig. 10.4 Comparison of the computed and experimentally measured frequency-loading diagrams for the system with a single attachment point
in 0.9L, and the mode shapes for P = 300 N. The x™ beam-dominated mode is marked by “xB”, while the x tendon-dominated mode intrinsic
to the left part of the tendon are marked by “xT-L”
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Fig. 10.5 Two veering regions of the beam-tendon system with a single attachment point placed in 0.9L (the measured frequency response
functions are shown in red, the identified natural frequencies in blue, and the computed frequency loci in green)

between the second beam-dominated mode (2B) and first tendon-dominated mode (1T-L) is clear. This veering region is very
wide (the minimal separation of the natural frequencies is approximately 5 Hz), and the region is spread over approximately
80 N. There is also an anti-resonance between the two peaks. The computed frequency loci match the measured results very
well too. In contrast, the presence of the veering between the third tendon-dominated mode (3T-L) and third beam-dominated
mode (3B) is not so obvious from the measured data in Fig. 10.5b and d. Although 0.5 kg increments (approximately 5 N)
of the applied load have been used, the veering region cannot be identified from the experimental results alone. Only when
considered in conjunction with the computed frequency loci, the veering region can be identified in the experimental data
as well. This veering region is very narrow (the minimal separation of the natural frequencies is approximately 1 Hz) and
the veering takes place over approximately 20 N. Moreover, there is no anti-resonance observed between the peaks. The
computed frequency loci in Fig. 10.5d does not match the measured data accurately. However, this is solely caused by the
offset of the beam-dominated frequency locus, while the size and shape of the veering region seem to match the experimental
data well.

10.3.3 Stability of the System with One Attachment Point

It has been shown that the correlation between the computed and experimentally measured results is very good when
considered globally in terms of the frequency-loading diagrams and locally in terms of the veering regions. In this section,
the stability of the beam-tendon system with a single attachment point is discussed.

The stability loss due to divergence of the beam occurs when the lowest natural frequency drops to zero due to the applied
axial force [15—17]. The frequency locus of the first mode in the region of experimental loading is shown in Fig. 10.6. Three
system configurations are considered. These are the configuration without the attachment point as in [4], with the attachment
point in 0.5L as in Fig. 10.3 and with the attachment point in 0.9L as in Fig. 10.4. It can be seen that although the match with
the experiment data is not perfect, the trends and mutual relations between the three configurations were captured correctly
by the computational model. The frequency locus of the system with no attachment point exhibits the steepest decrease with
the increasing applied force, while the attachment point located in 0.5L leads to the modest decrease. This indicates that
the frequency locus of the former configuration reaches the zero frequency before the latter system. Consequently, these
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Fig. 10.6 The detail of the frequency-loading diagram in the proximity of the first bending mode for three system configurations
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Fig. 10.7 Stability of the beam-tendon system with a single attachment point, normalised by the critical force of the system without an attachment
point P

experimental and computational results suggest that the critical force of the system without an attachment point is lower than
the critical force of the system with an attachment point.

This observation is confirmed in Fig. 10.7 using the frequency loci computed up to the critical force. Apart from the
configurations investigated so far, three more locations of the attachment points (in 0.1L, 0.4L and 0.6L) are shown. It can
be seen that for any placement of the attachment point, the critical force is higher than for the system with no attachment
point. It is also clear that the critical force of the system with the attachment point in 0.5L is significantly higher than for any
other considered system. Furthermore, although the frequency loci of the systems with the attachment points in 0.4 and 0.6
are different from each other, the critical force of these systems is the same. The same can be said for the systems with the
attachment points placed in 0.1L and 0.9L.

It is suggested that the critical force of the systems with the attachment points placed in 0.1L and 0.9L is lower and closer
to the critical force of the system with no attachment point, because the length of the longest active part of the tendon (in
both cases equal to 0.9L) is almost the same as the full length of the tendon (L) in the system with no attachment points.
In contrast, in the systems with the attachment points in 0.4L and 0.6 the longest active part of the tendon is shorter (equal
to 0.6L) and hence the critical force is higher. For the shortest length of the tendon achievable using a single attachment
point (0.5L) the critical force is at its maximum as seen in Fig. 10.7. Therefore, it appears that the longest active part of the
tendon is a major factor influencing the stability of the coupled beam-tendon system with a single attachment fixture. This
conclusion is in line with an intuitive interpretation of the limit cases—when the attachment point in either very close to the
clamp or very close to the tip, the coupled beam-tendon system is practically the same as the system with no attachment
point and therefore the critical forces of these two system should be the same.
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10.4 Discussion

In comparison to the beam-tendon system with no attachment fixtures investigated in [3, 4], the main findings can be
summarised in the following remarks

* The attachment points divide the tendon into segments with higher natural frequencies whose rate of change is however
the same.

e The number of tendon-dominated modes and veering regions in the considered frequency region is lower, and the mode
shapes are different.

» The stability of the system depends on the position of the attachment point. However, the critical force is always higher
than the critical force of the system with no attachment point.

Although the presence of the attachment fixture(s) may seem to be a minor modification to the beam-tendon system,
it might have arguably significant implications with regards to the application of the active tendon concept as a means of
resonance avoidance in rotorcraft [6]. For instance

e It should be possible to adjust the natural frequencies of the tendon-dominated modes by specific placement of the
attachment fixtures such that these frequencies are out of excitation regions while the beam’s natural frequency reduction
capability remains.

* Since the critical force is higher, the active tendon concept can operate over a wider range of loading.

e Opverall, the attachment points seem to be an important design element which significantly increases the design space, and
should therefore be considered for future improvements of the concept.

Overall, the correlation between the experimental and computed results presented in this paper is very good. Therefore,
the developed theoretical model with a single attachment point can be considered to be successfully validated. In the future,
the numerical and experimental studies for several attachment points should be conducted. In addition, the application of the
beam-tendon system with attachment points for resonance avoidance in rotorcraft should be investigated.

10.5 Conclusion

The numerical and experimental model of the coupled beam-tendon system has been presented in this paper. A number of
system’s configurations, and vibration and stability analyses have been shown. It has been found that all features observed
for the system with no attachment points, such as the changes of the natural frequencies of the beam-dominated modes and
the frequency loci veering, are still exhibited by the coupled system. However, they are manifested under different loading
conditions due to the changes in the natural frequencies of the tendon-dominated modes. In addition, while the stability of
the system depends on the position of the attachment point, the critical force is always higher than for the system with no
attachment. With regards to the future application of the active tendon concept in rotorcraft, it can be concluded that the
attachment fixtures are an important design element which should be further investigated in subsequent studies.
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Chapter 11 )
Designing a Modal Test Plan Based on Finite Element Gkt
Method Results

Yan Cao and Liu Jinming

Abstract This chapter introduces some principles and methods for designing modal test plans based on finite element
method (FEM) results. The number of points in FEM is closed, generally in the thousands. From the FEM results, many
orders of modal frequencies and vibration shapes can be obtained. However, in a modal test, only the foremost orders are
concerned; thus, the number of measured points is limited, generally in the tens. There are 2—4 exciting points for a multi
input multi output (MIMO) test, whereas 1 exciting point is practical for a single input single output (SIMO) test when the
modes are not closed. When the number of foremost orders and measured points are fixed, it is not practical to automatically
compute the position of the total measured points from the FEM results for several reasons. First, the computing work is very
complex and time-consuming. Second, for the best mathematical results, some key points may be lost and some points that
cannot be measured are included. Most importantly, none of these point are able to construct a regular plane, so the result
is unacceptable aesthetically. The practical approach is to design an initial plan in which the position is measured manually
according to common experience and the space is evenly distributed. By computing the maximum value of the un-diagonal
elements of the modal assurance criterion (MAC) matrix and observing the modal shape animation of the simplified results,
some measured positions can be modified. If some points need to be deleted in the initial base, this task can be completed
automatically by dividing all measured positions into two groups: points that are allowed to be deleted and points that cannot
be deleted. After the positions of all measurements are fixed, the number of exciting points and their positions can be obtained
automatically according to the exciting energy distribution of different orders in each position.

Keywords FEM - Modal test - Exciting points - GVB - MvMIF

11.1 Introduction

In production design, dynamic analysis using the finite element method (FEM) is necessary. The FEM results generally need
to be verified by a modal test. If there is an obvious discrepancy between the modal test and the FEM results, then the FEM
model will be optimized until the error is acceptable. Furthermore, one important parameter—the damping ratio—cannot be
obtained from FEM analysis. It can only be estimated based on previous experience or identified from the modal test.

If FEM results exist, the modal test plan can be constructed based on the FEM results. This chapter describes some
principles to simplify the grids to make them suitable for modal tests. In addition, the preferred methods for exciting points
and pure normal test designs will be discussed.

11.2  Simplifying Grids

From the FEM results, many orders of modal frequencies and vibration shapes can be obtained. However, in a modal test,
only the foremost order modes are considered. The measured points are limited and generally number in the tens or hundreds.
Therefore, the FEM grids need to be simplified with a larger size that is suitable for modal tests.
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The simplified process can be completed manually for the following reasons:

. To retain the key points: If some key points are lost, then the test object cannot be shown correctly.

. To ensure that the simplified grids are evenly distributed: The planes of the constructed grids should be acceptable from
an aesthetic viewpoint.

. To avoid the points that cannot be measured.

4. To avoid the time-consuming computation of automatic simplification.

o =

w

An example is given to illustrate the simplification process. In Fig. 11.1, an FEM grid with 6307 points is shown. In
Fig. 11.2, a simplified grid with 426 points for a modal test is shown.

From the FEM result, each mode’s vibration shape in the simplified grid can be obtained. Figure 11.3 shows the modal
assurance criterion (MAC) matrix and Table 11.1 shows the matrix values for the FEM. Figure 11.4 shows the MAC matrix
and Table 11.2 shows the matrix values for the simplified grid.

Fig. 11.1 FEM grid

Fig. 11.2 Simplified grid
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Fig. 11.3 MAC matrix for FEM

Table 11.1 MAC matrix values for FEM
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Table 11.2 MAC matrix values for the simplified grid
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The MAC matrix can be used to verify the simplification effect. If the mode frequency distribution is considered, a pole
weighted MAC (pwMAC) matrix [1] can be used to replace the MAC matrix.

By computing the maximum value of un-diagonal elements in the MAC matrix, a different test plan can be evaluated.
Smaller maximum values are better. In this way, the further deletion of some points can be completed automatically.

11.3 Exciting Points Selection

After grid simplification, the number of measured points is reduced. For a modal test plan, the exciting positions should be
chosen. For a multi input multi output (MIMO) test, between 2 and 4 exciting points is sufficient. When the modes are not
closed, 1 exciting point is adequate for a single input single output (SIMO) test. For each grid point, there are three directions
to excite. However, only the direction direct to the grid plan is considered.

To select the exciting points automatically, an index of exciting points should be defined. The index will reflect the least
exciting energy of one mode among all modes.

The frequency response function (FRF) between the exciting point and response point is as follows [2]:

- Pir®;
Hij (o) = A (11.1)
Y ; my (0} — &? + j280r)

Here, i is the exciting point, j is the response point, r is the mode order, ¢ is the vibration shape, and 7 is the total mode
number. For each mode, the vibration shape is first normalized with the max modulus of vibration shape as 1.

For a SIMO test, the index of i exciting points is the minimum of |¢;.|, r = 1, 2, - - - n. The exciting point with the
maximum index should be chosen to avoid a loss of mode.

For a MIMO test, define E, as the maximum of |¢;.|, i = 1, 2, - - - m. Here, m is the total number of exciting points. The
index of the MIMO test is the minimum of E,, r = 1, 2, - - - n. The exciting points of m with the maximum index should be
chosen to avoid a loss of mode.
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11.4 Pure Normal Test

One type of ground vibration test of plane is the pure normal mode test. In this test, a number of exciters are used at the same
harmonic frequency, which is one mode’s frequency. By adjusting each exciter’s amplitude and direction, the pure normal
mode will be excited out with a precise modal shape.

For a MIMO test, a multivariate mode indicator function (MvMIF) [3] can determine the exciting force vector and
construct the pure normal mode FRF.

For the FEM result, the FRF matrix is known as Hy x ,, where ¢ is the response point number and p is the exciting point
number. The exciting position is assumed to be fixed. In the FEM result, the mode damping ratio is zero. The damping ratio
can also be given according to experience.

The real exciting force vector is F, x 1, [|[F|| = 1 and the response function is (HF)4 x 1. Thus, the force vector F will
satisfy Eq. (11.2):

FTHT  HreaiF
min Real"Real = (11.2)

FT (HRTealHReal + Hljr;mgHImag) F

In the pure mode frequency, the matrix can be defined as follows:

A= H{,  Hrea (11.3)
B = Hy, 4 Himag (11.4)
From Eq. (11.2), there is:
AF = (A+ B) FA (11.5)
Thus:
Fl(A+ By 'AF =2 (11.6)

By singular value decomposition (SVD) method, singular values are obtained:
(A+B)'aA=UsuT (11.7)

Here, S is a real positive diagonal matrix with elements from large to small and U is the unified real matrix. Furthermore,
UUT = [, where [ is the unified matrix.

Let vector F), » 1 be the last column of matrix U. Then, A equals the smallest element of S.

Given the different positions of exciting points, different A values will be obtained. Lower XA values are better.

11.5 Conclusion

FEM results can be used to design mode tests that verify the FEM model. The grid simplification can be conducted manually.
The maximum values of un-diagonal elements of a MAC or pwMAC matrix can evaluate the simplified grids.

Using an index of exciting points, the selection of exciting points for SIMO or MIMO can be completed automatically.
The exciting direction should be chosen as direct to the grid plan.

In a pure normal mode test design, the number of shakers and the corresponding locations of shakers can be determined
by the A value of MVMIF. The force vector appropriation can be calculated by SVD with an FRF matrix.
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Chapter 12
Maximizing the Quality of Shape Extractions from Base Shake Gkt
Modal Tests

Kevin L. Napolitano

Abstract The promise of extracting fixed base modes from structures mounted on shake tables is enticing since doing so
allows a testing organization to save a considerable amount of schedule and money by reducing two traditionally separate
tests into one. Oftentimes, however, the modal analysis results are not of high quality because the test planning and conduct
of base shake environmental tests are not conducive to performing a high-quality modal survey.

This paper will discuss test planning and test conduct methods that can be used to maximize chances for successfully
extracting high-quality mode shapes from structures mounted on shake tables. These methods are the same for any modal
survey test; sensors should be placed to adequately observe and differentiate modes of a structure, and the excitation must be
long enough in duration to adequately define high-quality frequency response functions (FRFs). Finally, methods to separate
closely spaced modes by using multiple references, either with multiple-degree-of-freedom shake tables or a single-axis base
shake test supplemented with modal shakers, will be discussed.

Keywords Modal testing - Vibrations - Base shake - Environmental testing - Fixed base - Constraint shapes

12.1 Introduction

There has been considerable literature discussing how to extract fixed base modes from structures mounted on shake tables
[1-9]. Recently, methods have been developed to extract fixed base modes from structures mounted on flexible shake tables.
One method applies a constraint equation to measured mass-normalized mode shapes to generate fixed base modes [10]. A
second method uses base accelerations as well as constraint shapes as references to calculate frequency response functions
(FRFs) associated with a fixed base [11].

However, in many cases these correction techniques are not required. In these cases, poor-quality modal results are often
due to a perceived belief by a program that a modal test will take too much time or effort to conduct, and that “good enough”
results can be obtained by analyzing frequency domain results from the environmental test itself. The reality, however, is that
high-quality modal test results can be obtained with little extra on-site effort if the modal test engineer can advocate for a few
small (or in some cases, more significant) changes in the base shake test. The modal test setup effort can also be performed
in parallel with the environmental test setup effort to help reduce schedule.

The objective of this paper is to provide the modal test engineer an outline of potential changes that they can advocate for
in order to obtain high-quality modal results. Potential pretest analysis and test conduct adjustments to environmental tests
will be discussed that can help a program extract high-quality modal information efficiently.

12.2 Pretest Analysis

The objective of aerospace-quality modal tests of structures mounted on shake tables is to extract fixed base modes, and
pretest analysis usually involves selecting accelerometer locations and exciter locations. There are several documents that
describe how to define target modes of a structure either through identifying high effective mass modes and/or identifying
all modes to a given frequency range. NASA-HDBK-7005 [12] is one such document.
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12.3 Accelerometer Selection

With the deployment of high-quality 24-bit data acquisition systems where the dynamic range of a measurement is
determined more by the noise floor of the sensor than the acquisition system, accelerometer sensitivity is becoming less
important to the point where one accelerometer type, such as accelerometers with 5 or 10 mV/g sensitivity, can be used for
both base shake environmental tests and modal tests. Using the same accelerometers for both the environmental test and the
modal survey test is therefore an easy way for a program to reduce cost and schedule.

Oftentimes, however, a test article instrumented for environmental testing will not be adequate for a modal test. Ideally,
one would want to instrument the test article for a modal test and then select additional accelerometer locations to ensure
that a test article is also instrumented for environmental testing.

The reality, however, is that the modal test most often plays a secondary role in the testing effort, and the modal test
engineer is given two options: supplement the current set of accelerometers with a minimal number of modal accelerometers
or make do with the current set of environmental accelerometers.

The first option is ideal, and the modal test engineer should advocate for supplementing the environmental accelerometers
with additional accelerometers to ensure a high-quality modal survey can be conducted. This can be done manually or by
using automated sensor selection methods [13] that help the user up-select from a baseline set of sensors to many more
sensors than are necessary to ensure all target modes are observable. An automated down-selection method such as a genetic
algorithm [14] or an iterative static condensation method can then be used to minimize the number of added sensors needed
to achieve pretest analysis goals.

If adding additional sensors is not allowed, then the engineer should still run the pretest analysis with the current set of
sensors to understand what to expect during the modal test.

Sometimes, however, the number of sensors in the environmental test is much larger than necessary to achieve good
modal results. If this is the case, then a further down-selection analysis can be performed to remove as many environmental
accelerometers as practicable while still achieving the pretest analysis goals. Doing this will help the modal test engineer
perform a modal analysis with a reasonable set of sensors, which will help obtain modal analysis results in a timely manner.

The last item to consider with accelerometer selection is ensuring that the assumptions associated with a fixed base test,
namely that the base is fixed, can be verified by mounting additional sensors to the shaker table to ensure the six-degree-of-
freedom rigid body motion of the table can be characterized. It is very important for the modal test engineer to advocate for
the addition of these sensors. It is also advantageous to verify that the connection between the test article and the shaker table
is fixed by sets of accelerometers near the interface on both the structure side and the table side.

12.4 Exciter Selection

Exciter selection is a key feature for the success of a modal survey test for two reasons. The first reason is that exciters must
be able to excite modes of interest. The second reason is that combinations of shakers must be able to differentiate modes
that are closely spaced in frequency.

Most base shake tests only use the base shaker itself to excite the structure, and FRFs are calculated using a base
accelerometer that is in-line with the shaker as a reference degree of freedom. The advantage of using the base shaker is
that it will automatically excite all the high effective mass modes associated with the drive direction of the shaker. The
disadvantage is that it will not be able to help the modal analysis engineer differentiate closely spaced modes. One way to
help separate closely spaced modes is to measure high-resolution FRF so peaks that are close together can be differentiated.
That said, closely spaced modes are best separated by exciting the structure with multiple references. Six-degree-of-freedom
shaker tables are excellent in this respect because there are six independent references that are guaranteed mathematically to
excite all the high effective mass modes of a test article.

The modal test engineer has a few choices to add multiple excitation sources to a standard single-axis shaker table:

1. Use the base shaker and additional modal shakers mounted to the test article to excite the structure. In this case, one can
use the base shaker drive point accelerometer and the modal shaker forces as references when calculating fixed base FRF.

2. Secure the shaker table to the ground and use modal shakers to excite the structures. One can usually secure the shaker
table to the ground by simply turning off the oil that allows the table to slide.

3. Perform multiple tap tests while the shake table is secured.
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As with any planned modal survey, trial exciter locations can be assessed with the analysis model [15] to determine
whether all target modes can be observed and separated in the FRF data.

12.5 Test Conduct

Too often, modal analysis results from base shake tests are poor because FRFs are calculated from environmental test data
which is inappropriate for a modal test. Random vibration tests are usually too short in duration and result in either too few
frames of data to calculate high-quality FRFs or frequency spacing too wide to adequately define peaks in FRFs. The sweep
rate for sine-sweep tests is also usually too fast, leading to the same FRF quality and frequency spacing issues.

12.6 Test Duration

It is therefore important for the modal test engineer to advocate for an excitation duration that is conducive to calculating
high-quality FRFs. This can be accomplished easily by persuading the environmental testing technician to run a separate
low-level characterization run for an extended period of time. Although each modal test is different, it is usually a good idea
to excite the structure with at least 10 min of random data or perform sine sweeps at a rate of at most 3 min per decade.

Although other excitation techniques can be applied to a base shaker, technicians who run shaker tables usually only apply
a true random, sine-sweep, or sine-dwell excitation. Therefore, it is most efficient to use these types of excitations for the
modal test.

12.7 Signal Processing

The modal test engineer should also advocate for time-history data to be collected for all sensors. If the facility cannot deliver
time-history data, serious consideration should be given to supplementing the test facility’s shaker control data acquisition
system with a separate acquisition system that can export time-history data. The sensors required for shaker control can be
then routed into both data acquisition systems.

The time-history data should be used to calculate FRFs. Doing so will enable the modal test engineer to process the test
data with different parameters in order to calculate the highest-quality FRFs practicable. Both random and sine-sweep test
data can be processed using a Hanning Window with overlap processing. The frame length and overlap processing percentage
can be adjusted to find an optimal result. Usually, both are dependent on the level of inherent damping in the structure. Lower
modal damping leads to longer frame lengths and higher overlap percentage.

If time-history data cannot be delivered, then the percentage chance for a successful test diminishes greatly. The next best
option is to have the test facility deliver complex spectra data. The modal test engineer can then calculate FRFs by dividing
the complex spectra of the response channels by the complex spectra data of the drive point accelerometers.

It should be noted that many facilities have unique signal processing algorithms that use nonstandard methods for
calculating complex spectra from sine-sweep tests. One example is the widespread use of a Hilbert transform of the sinusoidal
sweep time-history data to calculate the complex frequency response. It should be noted that because the Hilbert transform
envelopes the response, the complex spectral data will result in artificially high damping calculations whenever a mode does
not reach full resonant response.

12.8 Mode Shape Calculation

Standard modal analysis techniques can be used to calculate mode shape parameters from the resulting FRFs. Once the fixed
base modes are calculated, they can be compared to analysis modes using conventional mode shape independence and mode
shape completeness measures such as test self-orthogonality and test—finite element model cross-orthogonality calculations.
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It is also important to view the test-measured mode shapes to verify the assumption that the modes are actually fixed base
modes. One can also compare the imaginary part of the FRF-associated accelerometers on the shake table with the imaginary
part of the FRFs associated with accelerometers on the structure. Ideally, there are several orders of magnitude difference
between them.

12.9 Summary

The promise of extracting fixed base modes from structures mounted on shake tables is enticing since doing so allows a
testing organization to save a considerable amount of schedule and money by reducing two traditionally separate tests into
one.

This paper has discussed test planning and test conduct methods that can be used to maximize chances for successfully
extracting high-quality mode shapes from structures mounted on shake tables. These methods are the same as for any modal
survey test; sensors should be placed to adequately observe and differentiate modes of a structure, and the excitation must
be long enough in duration to adequately define high-quality frequency response functions. As always, assumptions of base
fixity should be verified at the completion of the modal test.
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New Approaches to Inverse Structural Modification Theory et
Using Random Projections

Prasad Cheema, Mehrisadat M. Alamdari, and Gareth A. Vio

Abstract In many contexts the modal properties of a structure change, either due to the impact of a changing environment,
fatigue, or due to the presence of structural damage. For example during flight, an aircraft’s modal properties are known to
change with both altitude and velocity. It is thus important to quantify these changes given only a truncated set of modal data,
which is usually the case experimentally. This procedure is formally known as the generalised inverse eigenvalue problem.
In this paper we experimentally show that first-order gradient-based methods that optimise objective functions defined over
a modal are prohibitive due to the required small step sizes. This in turn leads to the justification of using a non-gradient,
black box optimiser in the form of particle swarm optimisation. We further show how it is possible to solve such inverse
eigenvalue problems in a lower dimensional space by the use of random projections, which in many cases reduces the total
dimensionality of the optimisation problem by 80-99%. Two example problems are explored involving a ten-dimensional
mass-stiffness toy problem, and a one-dimensional finite element mass-stiffness approximation for a Boeing 737-300 aircraft.

Keywords Inverse eigenvalue problems - Modal analysis - Random projections - Particle swarm optimisation - Finite
element analysis

13.1 Introduction

Eigenvalue problems are common in the engineering context [1, 2]. As such, they have been used in a plethora of applications
such as in analysing the state matrix of an electronic power system [3], in studying the aeroelastic instability for wind turbines
[4], for determining the spectral radius of Jacobian matrices [5], and in the operational modal analysis of a structures [6].
The most common eigenvalue problem, known as the direct or forward problem involves determining the impact of a known
set of modifications to a group of matrices, either by computing the eigenvalues, eigenvectors, singular values, or singular
vectors of the group of matrices. The direct problem is well studied, and is the subject of many elementary courses in linear
algebra, but the inverse problem is much more complex.

The inverse problem tries to find or infer a particular type of modification which was applied to a set of matrices, from
a larger set of possible modifications, using mainly spectral information [7]. It is clear that this problem would be trivial if
all the spectral information of the system before and after any modifications were known (that is, we are not dealing with
a truncated modal system), or if the desired modifications were completely unstructured (that is, they are allowed to be any
value). Thus in order to strive for more physical, and mathematical solutions we often try to restrict the group of possible
matrices for the inverse eigenvalue problem. In a recent review article, Chu [8] devised a collection of 39 possible inverse
eigenvalue problems. These problems were roughly categorized based on their: paramterisation, underlying structure, and
the partiality of the system description (that is, whether or not we have complete modal information). A summary of the most
common kinds of inverse eigenvalue problems are given in Fig. 13.1, where the following terminology is used:

e MVIEP: Multivariate inverse eigenvalue problem
e LSIEP: Least square inverse eigenvalue problem

* PIEP: Parameterised inverse eigenvalue problem

* SIEP: Structured inverse eigenvalue problem
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Fig. 13.1 An overview of some of the general classes of inverse eigenvalue problems as defined by Chu [8]

* PDIEP: Partially described inverse eigenvalue problem
» AIEP: Additive inverse eigenvalue problem
* MIEP: Multiplicative inverse eigenvalue problem

In this paper we aim to explore AIEPs which have a highly general parameterisation, in order to demonstrate the potential
capabilities of random projections for the inverse eigenvalue problem.

In order to solve for the AIEP we shall define an optimisation problem. Although there are many optimisation procedures
available for solving such problems, a particle swarm optimiser (PSO) is used in this paper. PSO is an optimisation procedure
first introduced by Eberhart and Kennedy in 1995 [9]. It is a stochastic, population-based optimisation procedure modeled
on the observed behaviour of animals which exhibit swarm-like tendencies, such in the social behaviour of birds or insects.
Because of this PSO, tries to mimic swarm-like behaviour with each particle having access to both: a personal best solution,
and access to the global optimum, thereby enabling the sharing of information across the swarm. This introduces the idea of
the classic exploration-exploitation trade-off since the particles are either allowed to exploit the current global optimum, or
explore further if their local optimum is far away from the current global [9, 10].

PSO is used in this paper to perform the optimisation for two main reasons. Firstly, to the knowledge of the authors, it
has not previously been used in the context of this problem (AIEP), hence there is novelty in doing so. Secondly, it is a
known black-box, gradient-free optimiser which makes it simple to work with since there is no requirement to compute the
Jacobian, or calculate analytical gradients [10]. Moreover as we shall demonstrate experimentally, gradient step sizes are
required to be very small in the inverse eigenvalue problem, with the issue exacerbating in higher dimensions. PSO as an
algorithm has been successfully used in many different areas, including but not limited to reactive power and voltage control
problems [11], in the study of material degradation for aeroelastic composites [12], composites structures with robustness
[13], and in the optimum design of Proportional-Integral-Derivative (PID) control [14] which additionally helps in justifying
its potential to work well in this context.

Regardless, of the choice of optimiser, all optimisation procedures are known to suffer from the curse of dimensionality,
and since structural problems are generally able to grow without bound in terms of degrees of freedom (for example, a
finite element model can keep growing in the number of elements), it is important to devise methods which can help reduce,
or at least limit the rate of growth of these dimensions. Random projections have recently emerged as a powerful method
to address the problem of dimensionality reduction [15]. This is because theory (in particular the Johnson—Lindenstrauss
lemma) suggests that certain classes of random matrices are able to preserve Euclidean distances to within a tolerable error
bound in the lower dimensional space [16]. As a result, random projections have been used successfully to reduce the
dimensionality of the underlying optimisation problem, consequently allowing for optimisation to be performed in this lower
dimensional space [17-19].
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Thus, it is ultimately the aim of this paper to explore the impact of random projections and how they may be used in
connection with the PSO algorithm for the generalised inverse eigenvalue problem of an additive nature. In the following
sections we demonstrate experimentally that gradient-based approaches lose accuracy in even moderate step sizes, and clarify
the theory that we shall use from random projections to help in lowering the dimensionality of the underlying optimisation
problem. Lastly we showcase a gamut of positive results on a 10 dimensional (meaning a matrix of size 10) toy problem, and
1 dimensional finite element model based on aircraft data for the Boeing 737-300 aircraft.

13.2 Background and Methodology

13.2.1 The Generalised Eigenvalue Problem

Ultimately it is the aim of this paper to use particle swarm optimisation (PSO) in order to try and solve the generalised inverse
eigenvalue problem, with the use of random projections. We thus commence by formalising the notion of the generalised
eigenvalue problem here.

Suppose we have the generalised eigenvalue problem as shown in Eq. (13.1), which represents an undamped mechanical
vibration system.

Mx + Kx = 0 (13.1)

where M, K € RV*¥ ‘and x € R¥. The eigensystem for Eq. (13.1) defines the following set of eigenvalue, eigenvector
pairs: A = {(A;,vi)|i =1,..,N;v; € RN x e R}. Furthermore we assume that the eigenvalue problem is perturbed via the
addition of some arbitrary matrices we denote as A € (RV*N RN*N) That is, from here onwards whenever the A symbol
is written in isolation, in a bold-type font it denotes a 2-tuple of perturbation matrices of the system, thatis, A := (AM, AK),
where AM € RV*N and AK € RV*V,

(M + AM)X + (K + AK)x = 0 (13.2)

The eigenpairs for the modified system shown in Eq. (13.2) may be represented via the following set of eigenpairs:
B={(oj,w)]i=1,.,N;w; € RN, s e R}. However, if both the initial and modified systems are full rank systems, then it
would be trivial to obtain the AM and AK matrices. Thus for this paper we assume that we only have access to a truncated
eigensystem for the modified system. That is, we only have access to some subset of the pairs: C C B, where |[C| =n < N.
Thus our objective function in the search for the optimal A matrices reflects this, in Eq. (13.3).

AM*, AK* = argmin(||o ], — 01, (A)]13), (13.3)

where || - ||% denotes the square of the standard 2-norm, ¢ ¥ denotes the desired eigenvalues, and & refers to the eigenvalues as
calculated from applying the A matrices (clarified in the prior paragraph in reference to set B). As is made clear in Eq. (13.3),
we only consider the first » < N dimensions, since we are dealing with a reduced set of eigenvalues.

In this paper we propose investigating the solutions for the objective function shown in Eq. (13.3) via PSO. We aim to
use a non-gradient based, black-box optimisation since a first order perturbation analysis of the modified eigenvalues seem
to suggest that for higher dimensional problems the step-sized used by gradient-based approaches may become prohibitively
small. We establish this idea by first developing Lemma 13.2.1 as follows.

Lemma 13.2.1 Suppose we have the two following generalised eigenvalue problems,

AMv = Kv (13.4)
O+ 82 (M + AM) (v + 8v) = (K + AK)(v + 8v), (13.5)

where A perturbations are controlled system inputs, and the § perturbations are a consequence of applying A. Then,

_ V] (AK =3 AM)v;

S\
' VZTAMV,'

) (13.6)
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if M and K are Hermitian.

Proof By expanding Eq. (13.5), removing higher order terms (that is, keeping only linear terms), and considering the ith
eigenvalue-eigenvector pairs we arrive at,

Kév; + AKv; = A;Mév; + A Myv; + A; AMy;. (13.7)

Since M and K are Hermitian it implies that that the eigenvectors of Eq. (13.4) are mutually M-orthogonal. Moreover
since they are assumed diagonalisable, these eigenvectors form a complete basis. Hence we can express each perturbation
vector, v; as a sum of the eigenvectors of Eq. (13.4). As an equation this is,

N
Svi=Y vk, (13.8)
k=1

for some arbitrary constants ¢ € R. Thus, substituting Eq. (13.8) into Eq. (13.7), and using Eq. (13.4):

N N
Z MMy + AKv; = LM Z CkVik + SAMv; + A; AMv;. (13.9)
k=1 k=1

Finally, left multiplying Eq. (13.9) by v;r, and re-arranging results in,

v (AK — 4, AM)v;
Sh = ! T
\& AMyv;

’

since the eigenvectors v; are M-orthogonal. O

Corollary 13.2.1 Suppose we have the two following standard eigenvalue problems,

Av = Kv (13.10)
A+ 80+ 8v) = (K + AK) (Vv + 8v). (13.11)
Then,
vl AKy;
Shi = ! T (13.12)
Vi Vi

if K is Hermitian.

Proof The proof follows similarly from repeating the steps shown in Lemma 13.2.1, in the absences of the M and AM
matrices. O

Note that in Eqgs. (13.6) and (13.12), it is not necessarily true that V;-r AMyv; = 1 since each eigenvector v; is only
orthogonal with respect to the M matrix, and not AM. A similar argument may be made with the K and AK matrices. In
addition, Eqgs. (13.6) and (13.12) make clear how the perturbation matrices, A, impact the changes in the eigenvalues, A, up
to a linear approximation (since in the derivation the higher order effects were ignored). As a result this relationship may be
used in better understanding gradient-based relationships for eigenvalue problems. That is, we may use these to analyse the
potential accuracy and or quality of gradient-based approaches for such problems. An investigation of these ideas is made
clear in Fig. 13.2.

Equation (13.13) is used order to calculate the percentage errors for the |AdA1| values in Fig. 13.2, where 8)\1 refers to
the change in first eigenvalue as obtained from Eq. (13.6), and §A; is obtained using Eqs. (13.1) and (13.2), which refers to
the benchmark correct value.

[ASAL|y == E(ASAL])

82T — 82|
=E (13.13)
SAl
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Fig. 13.2 Plots describing how the average magnitudes of the elements (defined by Eq. (13.14)) inside the AM and A K matrices affect the AdX|
term, defined in Eq. (13.13). (a) Different p magnitudes plotted against | A8, term as a percentage error. (b) A zoomed-in version of subplot (a)
to more clearly show the cases of p = 1/10 and p = 1/100

In order to calculate the size of terms inside the A matrices, Eq. (13.14) is used, where U/ refers to the uniform distribution,
the i, j = 1,...,d indices refer to each term in the matrix, and d = 1, ..., 20 defines the dimensionality (size) of the
matrices. Through this definition there are d> degrees of freedom inside the matrix at any time.

A;; ~ p-U[o,1], (13.14)

The value of d changes because we are considering the effect of dimensionality on the quality of the linear step size, SA.
Moreover the scalar p € {1/100, 1/10, 1, 10} defines the magnitude of the terms in the A matrices. Thus p in a practical
sense (that is, in reference to a gradient-based optimisation algorithm) can be interpreted as the step size of the algorithm.

From Fig. 13.2 it can be seen that as the average magnitude of the elements inside the A matrices increase, the absolute
difference between the theoretical A value, and those calculated via Eq. (13.6), that is, 8)»1;, becomes larger. Even when
the average step size takes value p = 1/100, there appears to be a bias in the magnitude of the error, which is made clear in
the zoomed in subplot of Fig. 13.2b. Moreover as the dimensionality of the A matrices increase, the |AdA1| errors appear to
increase slightly. Hence in summary as this experimental analysis of Eq. (13.6) seems to suggest, gradient based methods are
potentially difficult to implement. In particular, it would appear that we would require p < 1/100 at a minimum, and that
this value would need to continually decrease as dimensionality increases. For this reason, we opt to explore the viability
of particle swarm optimisation as a means for optimisation since it is a non-gradient based approach, and gradient-based
approaches seem to require very small step sizes for accurate gradients.

13.2.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a stochastic, evolutionary optimisation first proposed by Kenedy and Eberhart[9].
The algorithm works by generating an array of candidate particles (the swarm) across an objective space. Within this space
each particle searches for the global optimum through the sharing of information within the swarm in a classic exploration-
exploitation trade-off. This is clarified in Egs. (13.15) and (13.16).

vf“ = a)vf‘ +ciri(pi — x;‘) + cora(pe —X,k) (13.15)

R R T (13.16)
where o denotes step size, w controls the particle’s inertia, c¢; and ¢, (known as the acceleration coefficients) are constants
which control the degree of the exploration-exploitation trade-off, p; and pg are the local optima, and global optimum, for
each, and across all particles respectively (that is each particle stores their own local optimum, but shares knowledge of the
current global optimum), and rq, 2 ~ U(0, 1). In this way, every particle is made aware of the current global optimum, and
explores the objective space accordingly (as specified through the ¢; and ¢, constants).
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Empirical studies in PSO theory have shown that the correct choice of inertia weight is critical in ensuring convergent
behaviour of the algorithm [10]. Prior investigations have suggested that the choice of inertia is driven by the acceleration
coefficients through: 2w > (c1 + ¢2) — 2. This region describes the set of all ¢, and ¢, values which guarantee convergent
behaviour based on the spectral analysis of the matrix describing the PSO dynamics [20]. However this inequality should
be only be taken as a rough guide since it was derived assuming the PSO system has one particle, and one dimension.
Empirically however, Eberhart and Shi suggest using values of @ = 0.7298 and ¢; = ¢ = 1.49618 for good convergent
behaviour in general [21].

13.2.3 Random Embedding

An aim of this paper is to explore the capability of random projections to reduce the underlying dimensionality of the
generalised eigenvalue problem. In particular, we propose an extremely general parameterisation of the AM, and AK
matrices, and explore whether or not it is possible to solve this problem in a lower dimensional space. The lowest dimensional
space in which the problem may be solved completely is known as the effective dimension, and is denoted by d,. In particular
the following definition is used to strictly define the notion of d,, where Definition 13.2.1 is based on Definition 1 of Wang
etal. [17].

Definition 13.2.1 (Effective Dimension) Suppose there exists a linear subspace 7 C R?, where dim(7) = d, < D. A
function f : R? — R is said to have effective dimensionality d,, if d, is the smallest integer such that Vx € 7 and
xt e T+ c RP, where T@®T+ = RP, we have f(x +x1) = f(x).

A simple example to clarify this definition for the reader may be seen if we define the following function: f(x1,x2) =
x% + x%, where, f : R — R,andx;,x» € R. In this example, although the original space of f is assumed to be 10-
dimensional, one may easily observe that it has an effective dimension of 2 (that is, d, = 2), since it clearly only makes
use of 2 dimensions, of the 10 possible dimensions it has access to. The remaining 8 dimensions are ineffective dimensions.
Unfortunately, in practice we never really know the actual value of d,, but we either know or assume from prior knowledge
that our problem may have a lower dimensional representation. In other words, in practice we only ever know or use d € Z
dimensions in total, where D > d > d,, and thus our random embedding generally occurs via random matrices with
dimensionality D x d.

Although the notion of effective dimensionality is developed, it does not explain how such random projections to lower
dimensional spaces should occur. Ideally when projecting to a lower dimensional space we desire ||T (x; — x;)|| ~ [|(x; —
xj)||, where T : R" — R™ is some linear operator. That is, we aim to reduce the dimensionality of a set of points in some
Euclidean space, which approximately retains these pair-wise distances measures in this new, lower-dimensional subspace. A
bound on the degree of distortion that occurs to the original space when we project to a lower dimensional space is famously
shown through the Johnson-Lindenstrauss (JL) Lemma [16], stated in Lemma 13.17.

Lemma 13.2.2 (Johnson-Lindenstrauss Lemma) For any 0 < ¢ < 1, and for any integer n, let k be such that

1
k>4 1
T g2/2-¢£3/3 og(n)

Then for any set X of n points in RY, there exists a linear map f : R — R* such thatVx; € X,
(1= o)l =211 < I1F @) = fEDIP < (1 +e)llxi — x5 (13.17)

In effect the JL Lemma tells us that the quality of the projection down to some dimension k, is a function of some allowable
error tolerance, ¢, and the amount of points involved in the projection n. In particular the relative Euclidean distances will be
distorted by a factor of no more than (1 &£ ¢), where ¢ € (0, 1). Note that this makes no reference to the initial dimension of
the points existed in before the projection occurred.

Although the JL Lemma is used commonly with large datasets, we are only working with individual, possibly high-
dimensional points, which are used as inputs into functions used in an objective function. Thus in the case of random
projections of data points into functions we also must consider the effective dimension d,. Theorem 2 of Wang et al.[17]
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implies that no matter the degree of distortion which may occur, there shall always exist a solution in this lower dimensional
space. This theorem is restated here in order to self-contain the paper.

Theorem 13.2.1 (Wang’s Existence Theorem) Assume we are given a function f : RP — R with effective dimensionality
d, and a random matrix A € RP*d iy independent entries sampled according to N'(0, 1), where d > d,. Then with
probability 1, for any x € RP, there exists a y € R? such that f(x) = f(Ay).

That is, we should always be able to find some y such that f(x) = f(Ay), where A € RP*? is some random matrix.
And thus the distortion of the projection as predicted by the JL Lemma is not as important of a factor if we can ensure
d > d,, since with a good enough optimisation algorithm, if there exists a x* € R? which is optimal, then there exists a
y* € R such that f(x*) = f(Ay*). In practice however we may by chance select some d < d,, and so in these cases it may
become informative to use JL Lemma as a guide to assist in understanding the degree of distortion which did indeed occur
by projecting into this new subspace.

In order to ensure that the point-wise distances in this new subspace abides by the JL Lemma we consider random matrices
of the form: A; ; ~ N (0, 1/ V/d). This is simply a scaled version of the random Gaussian matrices proposed by Wang et al.
in Theorem 2, but a Gaussian matrix of this form is known to better preserves distance properties in this new subspace [16].

An issue which may occur when trying to use random embeddings for the purpose of optimisation is that the optimisation
bounds which are defined in the larger D-dimensional space may be violated in the lower d-dimensional space. Thus, it is
suggested to use a convex projection method to ensure that any variables y € R¢ fall the into bounding constraints defined
by variables x € RP. This idea is shown in Fig. 13.3.

Assuming that the feasible set for x is defined with box constraints, denoted by X := [—c, c]? where ¢ € RT, a simple
way to ensure that Ay maps to the range defined by X may be achieved through a least squares method [17]. Mathematically,
we define: py (Ay) = argmin, ||z — Ay| |%, where Ay € R?,z € X,and py : RP — X denotes projection. This least squares
method effectively drops the perpendicular from points outside the bounding box, X', which can be located arbitrarily in R?,
towards the nearest point on the boundary of X. This is made clear in Fig. 13.3.

13.3 Results

13.3.1 Ten-Dimensional Toy Problem

In this section the results of applying the combination of PSO and random embedding for inverse eigenvalue problems in
structural engineering are explored. We begin by considering the 10 degree of freedom (DoF) system defined in Eqs. (13.18)
and (13.19). The stiffness matrix is based on that of Sivan and Ram [22], with the mass matrix being modified from a diagonal
of ones to allow for a more complex scenario.

NS . Y
I 2 200
= o
)= ©
=~ | X D=2 66\'0

Fig. 13.3 Need to perform a convex projection [17]
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200 =10 =20 =5 =5 =10 0 0 =50 —-50
-10100 0 0O O O -20 —10 —-20 —10
—-20 0 300 —40 =30 -60—-10 0 —20 —10
-5 0 —40 400 —30 —40 =50 —20 —10 =70
K — -5 0 -30-30150-10 =5 -5 =20 O (13.18)
-10 0 —-60-40-10250 0 O O -80
0 -20-10-50 =5 0 120 -5 O -10
0 -10 0 -20-5 0 =5 250 O -100
-50-20-20-10-20 0 O O 350 —40
-50-10 -10 =70 0 —80 —10 —100 —40 400

M = diag(l, ..., 10) (13.19)

The first two eigenvalues of the generalised eigenvalue problem defined through these particular mass and stiffness
matrices are given in Eq. (13.20).

A = (10.99, 19.12) (13.20)

Our aim for this problem will be to find some AM and A K matrices which will transform the system eigenvalues into
those specified by Eq. (13.21).

A* = (2.00, 5.00) (13.21)

In particular we shall work to minimise the objective function defined previously in Eq. (13.3) in order to find the
associated the A* matrices. We assume without loss of generality that the A matrices are upper triangular, and real valued
since the underlying M and K matrices are Hermitian and so are by definition symmetric. That is, it suffices to perturb only
the upper (or lower) triangular portion of the M and K matrices. This means that for each of AK € R? and AM € R?,
there are D(D + 1)/2 free parameters. In this way the amount of free parameters grows on the order of O(D?). We thus
use random projections to reduce the effect of this quadratic complexity. One convergence was run for a random projection
which reduced the overall dimensional size by an order of magnitude, and another was reducing it by a factor of a half.
Convergence results are shown in Fig. 13.4.

From Fig. 13.4a, it would appear that the initial rate of decrease of the random embedding space is slightly faster than
the full dimensional space. However, as Fig. 13.4a then further suggests, although a low dimensional space may give a
faster initial convergence rate, if the dimensionality reduction is too great, the optimisation routine can become plateau after
a certain amount of iterations. This is seen in Fig. 13.4a as the random embedding space remains at approximately 10°
after iteration 9. Thus it is clear that with this level of dimensionality reduction (for this particular problem), decreasing the
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==yRandom Embedding (50)
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Fig. 13.4 A comparison of the convergence rates between the full-dimensional optimisation problem, and the reduced dimension problem. (a)
The average convergence rates of a 110 dimensional space and a 10 dimensional space. (b) The average convergence rates of a 110 dimensional
space and a 50 dimensional space
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Table 13.1 How the distortion error effects the corresponding dimension of the mapped subspace, for n = 110 in accordance with the JL Lemma

Distortion error (%) 10 30 70 100
Dimension 4029 523 143 112

dimensions by an order of magnitude seems to introduce a bias into the optimisation problem. It is conjectured that this is
because the value of ‘10’ lies well below the effective dimension (the d, value) for this problem. This hypothesis is supported
if we examine the same optimisation problem but instead reduce the exploration space to 50 dimensions as in the case of
Fig. 13.4b. We notice that not only do we have the faster initial decrease in optimisation rate, but also we converge to better
values, faster.

The reader may additionally notice that in Fig. 13.4a the 110 dimensional space reaches values as low as 107°, but in
Fig. 13.4b it apparently stalls at 10°. However this is only due to the truncation of the plotting, since at has been hinted
at approximately iteration 98 the full dimensional space starts to decrease its magnitude value again. But this only serves
to demonstrate the notion within a 100 iteration limit the random projection has allowed to the optimisation to converge
better values, significantly faster on average. Indeed, the full dimensional space will eventually reach values as low as 107°,
however this toy problem suggests that on average it will not be as fast. Also note that since Fig. 13.4b does not exhibit the
same bias problems as in Fig. 13.4a, it would appear that 10 < d, < 50. Hence although we have not been able to determine
the effective dimension, we can infer a range of existence for it.

Also important to take note off is that for this problem the JL. Lemma is not readily applicable since this 110 dimensional
space is too low for the Lemma to take practical significance. In particular, if we set n = 110 and assume error values of
£ €1{0.1,0.3,0.7, 1.0} we arrive at Table 13.1.

From Table 13.1 we see that for our toy problem, for an initial dimension of 110, the sufficient dimension to guarantee
no more than a 10% error in the Euclidean distances between points in the new space is 4029 >> 110 > 50. This number
seems unreasonable because in lower dimensions the bounds predicted by the JL Lemma are not tight. That is these bounds
serve give an idea of sufficiency. Consequently by inspecting the mathematical equation of this bound, if the initial number of
points is relatively low (as is the case for this toy example) we will not achieve a practically meaningful answer. However an
important takeaway from the JL. Lemma is that its formulation makes no reference to the initial dimension of projection, only
the number of points considered, and so whether or not we began with 110 points, or 110''9 points, the sufficient dimension
to guarantee no more than a 10% error between points after a random embedding is 110 < 4029 << 110'1%, Thus in this
case it can be concluded that the initial n = 110 value is too small for the JL Lemma to be directly useful.

13.3.2 One-Dimensional Boeing-737 Finite Element Problem

Here we shall explore how the PSO algorithm coupled with random embeddings may be exploited to assist in solving
a truncated version of the generalised inverse eigenvalue problem for a 1D Boeing 737-300 (B737) Finite Element (FE)
problem. In particular the model used to analyse the B737 plane is outlined in Fig. 13.5. This model is based upon one found
in Theory of Matrix Structural Analysis [23].

In Fig. 13.5 it is assumed that the total wing mass is uniformly distributed over the wing span of length 2L, and
its mass is 2M,,. Moreover the total mass of the fuselage is 2M . The wing elements are approximated as being finite
element beam structures and have flexural stiffness given by EI, with the effects of shear deformations and rotary inertia
neglected. Assuming only two FE nodes were used in this model, then the one element FE beam matrix for this problem
is outlined in Eq. (13.22), where R denotes the mass ratio between the fuselage and the wing, that is, R = Mr/M,,, and
q= [wl, g L W2, gi]T In order to estimate a value for R the parameters for a B737 where obtained from literature, and
summarised in Tables 13.4, 13.5, and 13.6. In order for the FE model to increase its accuracy more nodes must used, which
involves constructing a large block matrix using the elements defined in Eq. (13.22).

12 symmetric ;g + R symmetric
EI | 6L 412 17 L?
— 210 105 —
L3|-12 —6L 12 M A RSN q=0 (13.22)
6 2L? —6L 4L? _13L —L? 1L 12

420 140 210 105
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Fig. 13.5 Frontal views of the 1D Boeing 737-300 model which shall be used in the inverse eigenvalue problem. Images based upon Przemieniecki
[23]. (a) Frontal view of 1D Boeing 737-300 model showing the fuselage mass, and the wings. (b) Frontal view of the 1D point-mass FE
discretisation of the Boeing 737-300 model

As per the recommendation of Przemieniecki [23] the modal analysis of this structure may be separated into its symmetric
and asymmetric counterparts, since this wing is symmetric around its fuselage centre. In order to enforce a symmetric
condition, the second row and column of Eq. (13.22) needs to be removed since it represents a degree of rotational freedom
of the fuselage mass. For symmetry the fuselage mass is only allowed the move in a translational sense (up an down), and
as such should not have any gradient (that is, not be able to rotate about some axis). The opposite is true in the case of
anti-symmetry where instead the first row and column of the mass and stiffness matrices were removed, since in the case of
asymmetry, the fuselage is allowed to rotate about an axis and thus have a defined gradient. Note that although doing this will
not dramatically change the eigenvector response of the full system (if they are scaled properly), it can shift the eigenvalues
appreciably.

In order to assess the validity of this symmetric—asymmetric separation, Figs. 13.6 and 13.7 representing the modal
responses were constructed. Firstly, the mode shapes are consistent with those formulated by Przemieniecki [23], and clearly
there exists symmetry and asymmetry for the two shapes. Moreover we notice that the effect of the fuselage mass does have
an appreciable albeit small effect on the symmetric modes, and no visible effect on the asymmetric modes, which agrees with
Przemieniecki’s analysis, and general intuition. This is because the removal of the first row and columns of the elemental
beam matrix results also removes the R variable. Notice also that in both cases (symmetric and asymmetric) there is an
unconstrained mode, which mathematically exists due to the FE model having no fixed boundary conditions.

In order to simplify analysis only the symmetric bending mode cases are considered, since as Fig. 13.6a demonstrates,
it takes into account the effect of the B737 model through the R variable. As before with the toy example, without loss of
generality we aim to formulate the A matrices as upper triangular matrices, and perform the random embedding on these
upper triangular matrices. However, different to the former case is that due to the reformulation of the problem as an FE
model, it is now possible to arbitrarily grow the dimensionality of the problem by increasing the amount of elements of the
FE model so that the optimisation problem can grow arbitrarily large, allowing for a more rigorous analysis of the potential
usefulness and effects of random projections.

The first three non-dimensional symmetric-mode frequency values of the system under investigation are given in
Table 13.2. The frequency values given are non-dimensionalised according to A></M,,L/(EI), and R = 0 refers to the
base-line reference (if the aircraft purely consisted of beam elements and no fuselage mass), whereas R = 1.35 refers to
the B737 aircraft parameters, which are the values we will use in the optimisation procedure. As was mentioned earlier, the
existence of the fuselage mass does indeed alter the eigenvalues in an appreciable manner. For the optimisation problem,
we aim to alter the first three non-dimensional frequencies of the symmetric bending mode to become: w = [2, 7, 22]. That
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Fig. 13.6 Symmetric bending modes for the 1D B737 FE model. (a) The first two symmetric bending modes (modes 1 and 2). (b) The second

two symmetric bending modes (modes 3 and 4)
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Fig. 13.7 Asymmetric bending modes for the 1D B737 FE model. (a) The first two asymmetric bending modes (modes 1 and 2). (b) The second

two asymmetric bending modes (modes 3 and 4)

Table 13.2 First three non-dimensional symmetric-mode frequency values, of the FE model aircraft, non-dimensionalised by A2/M,,L/(EI),

where R = M /M,, is the fuselage-to-wing mass ratio

Frequency number R=0 R=135
1 0 0

2 5.59 4.09

3 30.23 23.36

is we would like the following mapping to occur between the eigenvalues, [O, 4.09, 23.36] A [2, 7, 22]. This is why only
the first three eigenvalues are shown in Table 13.2. Note however any number of eigenvalues may be used, and that from a
physical point of view, it does not necessarily make sense to be transforming the first eigenvalue from ‘0’ to ‘2’ since this
changes the constraints of the system (as ‘0’ represents rigid body motion). However, the emphasis of this paper is to explore
PSO as applied to inverse structural eigenvalue problems in parallel with random projections, and so the objective functions
were chosen arbitrarily.

The convergence behaviour for this optimisation problem is shown in Fig. 13.8. In all three cases we note extremely
similar behaviour as compared to the toy example. That is, convergent behaviour in the lower dimensional space is initially
and consistently much faster in the sense that (faster in the sense that with less iterations, the random embedding method
tends to have a much lower objective function magnitude). Eventually however, the full dimensional space does tend to
approach similar values to the random embedding but this is to be expected, since the full system always perfectly describes
the problem, and the problem at hand also does seem to possess a very low effective dimensionality, implying that the
optimisation procedure may not need to actively explore all possible dimensions. That is, although the full dimensional
space seems high, the particle swarm doesn’t need to explore it fully to obtain a good solution. Regardless of the conjectured
advantages of this particular problem, the random projection assists in the notion of faster convergence behaviour across all
areas.
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Fig. 13.9 An extreme example showcasing the convergence of a 100 element discretisation resulting in 40,602 free parameters. A dimension
reduction of 99.3% was used

In order to explore the capabilities of random embedding even further, it was applied to a case of a 100 element model
for the aircraft. This resulted in a large search space of 40,602 free parameters to explore for optimisation. It was proposed
to reduce the dimensionality of the problem by 99.3% resulting in a random embedding space of only 300 free parameters.

In addition to this, the total amount of particles used in the swarm was reduced by a factor 2 (from 500 to 250). The result of
this is shown in Fig. 13.9.



13 New Approaches to Inverse Structural Modification Theory Using Random Projections 139

Table 13.3 How the distortion error effects the corresponding dimension of the mapped subspace, for n = 40,602 in accordance with the JL
Lemma

Distortion error (%) 10 30 50 70 100

Dimension 9096 1180 510 325 255

From Fig. 13.9 once again extremely similar behaviour can be observed as in the previous problems. That is, the lower
dimensional space is able to achieve much lower objective function magnitudes, a lot more rapidly. Moreover in this example,
it was shown to be able to do this not only in less iterations, but also with less overall particles. In addition, the overall
converged solution of this lower dimensional space is much better than the full dimensional solution which simply found it
very difficult on average to converge to good values due to the enormous search space. The full dimensional solution could
only converge on the order of 10° on average, whereas the reduced dimension solution is able to converge to a value on the
order of 102 on average.

Thus as this paper has consistently demonstrated, through the use of random embedding we are able to significantly
increase the speed and quality of convergence of a PSO optimiser, in terms of using less overall particles, coupled with less
total iterations, ultimately leading to greater overall computational efficiency, in less total time. Note in this case we say ‘a’
solution since the inverse eigenvalue problem with incomplete modal information is in a well known ill-conditioned problem
and there does exist many locally optimal solutions. However the main purpose of this paper was not to explore the ability to
achieve the global optima (which for the inverse eigenvalue problem, may not necessarily even be the best solution depending
on context), but to analyse the applicability of using random projections alongside PSO in order to study the efficiency of an
underlying optimisation procedure in the field of structural engineering.

A further point of discussion for the extremely high dimensional problem explored in Fig. 13.9 is to consider the level
of distortion that has occurred to the original surface when projecting down to a surface which has 99.3% less overall
dimensions. Table 13.3 summarises the relationship for n = 40,602 for the JL Lemma. Here we note that for a 70%
average discrepancy between the pairwise Euclidean distances of the points in the new lower dimensional space, 325
dimensions are sufficient, which is comparable to what was used in Fig. 13.9. Thus the geometry between adjacent points
in this new subspace are most likely significantly different to what was in the original high dimensional space. Regardless
however, it was nevertheless possible to converge to extremely good values suggesting that even though there may be a
large geometric distortion, d, < 300. And thus by Theorem 13.2.1 there exists a solution (or several), which we are able
to find due to the strength of the black-box PSO algorithm. Note however that if we did not opt to reduce the dimensions
by 99.3%, but by a factor of &~ 80% we could still optimise with 9096 dimensions and achieve no more than 10% error
in the pairwise Euclidean distances between points. However the surface distortion issue does not appear to be a huge
problem given that the problem has a low underlying effective dimension, and a good optimiser is used (as is the case
of PSO).

Lastly it is important for the reader to note that the solutions obtained in this paper will be nonphysical. This is because
the A matrices are assumed to be full rank, upper-triangular matrices, without physical constraints applied to them (apart
from symmetry being enforced via the upper-triangular nature of A). In order to enforce complete physicality of the solution
it would be necessary to place constraints in the search space (either through equality and or inequality constraints). This
idea has been explored partly by previous authors [22, 24], but it remains an open question in the case of truncated modal
systems. Nevertheless, although it would be trivial to place constraints on the systems explored in this paper, it remains that
the purpose of this paper is to explore the viability of dimensionality reduction for structural vibration problems, of which the
results appear to be extremely promising. The placement of constraints would not allow the justified exploration of spaces
as high approximately 40,000 in the case of 1D FE model structures.

13.4 Conclusion

Random projection is a popular technique used to reduce the dimensionality of a problem. It has been demonstrated in
this paper that by using random projections we were able to successfully perform optimisation in this lower dimensional
space which resulted in much faster overall convergence, faster in the sense that on average less iterations were required
to achieve much better results. This was demonstrated on an example 10-dimensional toy problem, as well as on a 1-D FE
model of a Boeing 737-300 aircraft. Moreover the existence of a moderately small effective dimension was predicted to exist
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for generalised inverse eigenvalue problems which have Hermitian matrices. Moreover it was demonstrated experimentally
that gradient-based approaches for performing optimisation for eigenvalue problems may necessitate prohibitively small
step sizes, which tends to suggest that non-gradient, black-box optimisation methods may be preferred for these types of
problems.

Appendix: Boeing 737-300 Data and Formulation

An overview of the data used in modeling the 1D FE model B737 structure is presented in this section, as well as a the
technical diagram used to extract some of its lengths (Tables 13.4, 13.5, and 13.6).

The equations used for estimating the fuselage and wing masses are available from Roskam [26], in particular the
Equations used below refer to Eqs. (15.46), and (15.49) in Roskam. All terms of the below equations are defined in this
reference. An overview of the physical dimensions of the aircraft is shown in Fig. 13.10.

A \® 1007 /c\ 7%
A 0.758 1170.0035 0.0064 0.04 0.49
Wying = 0.036S;; wa (C082 A) q A < cos A ) (N Way) (13.23)
Weasclage = 0.0528}086(1\]2 Wg)O 17T L7001 (L p)=0072,0241 4y (13.24)
Wpress =119+ (VprPS) (13.25)

Table 13.4 General Flight

. ‘ Parameters Value Units
Parameters, available from Jane’s - - 5 P
all the World’s Aircraft [25] Cruise velocity 725.43 Us
Cruise altitude 30,000 ft
Air density at cruise | 8.91x10™* | slugs/ft®
Dynamic pressure 234.44 1b/ft?

Ultimate load factor | 5.7 -
Design gross weight | 109,269.60 | 1b

Table 13.5 F u§elage . Parameters Value Units

Parameters, available from Jane’s h S P

all the World’s Aircraft [25] Lengt 105.54 |ft
Depth 12.33 | ft
Wet area 4104.80 | ft?
Tail length 15.89 | ft

Cabin A pressure 8.00 |Pa

Table 13.6 Wing Parameters,

; Parameters Value Units
available from Jane’s all the W 1133.90 |2
World’s Aircraft [25] ctarea : t

Weight of fuel in wing 35,640.00 |1b
Aspect ratio 9.16 |-
Wing sweep at 25% MAC 25.00 | Degrees

Thickness-to-chord ratio 8.00 |-
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737-300. (b) Side and front views of a Boeing 737-300



142 P. Cheema et al.

References

—

. Bathe, K.J., Wilson, E.L.: Solution methods for eigenvalue problems in structural mechanics. Int. J. Numer. Methods Eng. 6(2), 213-226
(1973)
2. Elishakoff, I.: Some questions in eigenvalue problems in engineering. In: Numerical Treatment of Eigenvalue Problems Vol. 5/Numerische
Behandlung von Eigenwertaufgaben Band 5, pp. 71-107. Springer, Berlin (1991)
3. Lima, E.E.S., Fernandes, L.F.J.: Assessing eigenvalue sensitivities [power system stability]. In: Power Engineering Society Summer Meeting,
2000. IEEE, vol. 3, pp. 1958-vol. IEEE, Piscataway (2000)
4. Hansen, M.H.: Aeroelastic instability problems for wind turbines. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 10(6),
551-577 (2007)
5. Day, J.D.: Run time estimation of the spectral radius of Jacobians. J. Comput. Appl. Math. 11(3), 315-323 (1984)
6. Sun, M., Makki Alamdari, M., Kalhori, H.: Automated operational modal analysis of a cable-stayed bridge. J. Bridg. Eng. 22(12), 05017012
(2017)
7. Chu, M., Golub, G., Golub, G.H.: Inverse Eigenvalue Problems: Theory, Algorithms, and Applications, vol. 13. Oxford University Press,
Oxford (2005)
8. Chu, M.T.: Inverse eigenvalue problems. SIAM Rev. 40(1), 1-39 (1998)
9. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, 1995 (MHS’95), pp. 39-43. IEEE, Piscataway (1995)
10. Van den Bergh, F.,, Engelbrecht, A.P.: A convergence proof for the particle swarm optimiser. Fund. Inform. 105(4), 341-374 (2010)
11. Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A particle swarm optimization for reactive power and voltage control
considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232-1239 (2000)
12. Vishwanathan, A., Cheema, P., Vio, G.: Multi-particle swarm optimization used to study material degradation in aeroelastic composites
including probabalistic uncertainties. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2458-2464. 1IEEE, Piscataway (2017)
13. Vishwanathan, A., Cheema, P, Vio, G.A., et al.: Robust optimisation of time-varying aeroelastic composite structures using multi-particle
swarm optimization. In: 17th Australian International Aerospace Congress: AIAC 2017, p. 599. Engineers Australia, Royal Aeronautical
Society, London (2017)
14. Gaing, Z.-L.: A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers.
19(2), 384-391 (2004)
15. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 245-250. ACM, New York (2001)
16. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26(189-206), 1 (1984)
17. Wang, Z., Hutter, F., Zoghi, M., Matheson, D., de Feitas, N.: Bayesian optimization in a billion dimensions via random embeddings. J. Artif.
Intell. Res. 55, 361-387 (2016)
18. Gardner, J.R., Kusner, M.J., Xu, Z.E., Weinberger, K.Q., Cunningham, J.P.: Bayesian optimization with inequality constraints. In: Proceedings
of ICML, pp. 937-945 (2014)
19. Krummenacher, G., McWilliams, B., Kilcher, Y., Buhmann, J.M., Meinshausen, N.: Scalable adaptive stochastic optimization using random
projections. In Advances in Neural Information Processing Systems, pp. 1750-1758 (2016)
20. Van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176(8), 937-971 (2006)
21. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000
Congress on Evolutionary Computation, 2000, vol. 1, pp. 84-88. IEEE, Piscataway (2000)
22. Sivan, D.D., Ram, Y.M.: Mass and stiffness modifications to achieve desired natural frequencies. Commun. Numer. Methods Eng. 12(9),
531-542 (1996)
23. Przemieniecki, J.S.: Theory of Matrix Structural Analysis. Courier Corporation, Chelmsford (1985)
24. Olsson, P., Lidstrom, P.: Inverse structural modification using constraints. J. Sound Vib. 303(3-5), 767-779 (2007)
25. Taylor, J.W.R.: Jane’s All the World’s Aircraft: Founded in 1909 by Fred T. Jane. Macdonald and Janes’s, London (1976)
26. Raymer, D.P.: Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics, Inc., Reston, 21 (1999)
27. Boeing.: 737 Airplane characteristics for airport planning. Technical report, 09 (2013)



Chapter 14 )
Modal Analysis of Wind Turbine Blades with Different Test Setup <o
Configurations

E. Di Lorenzo, S. Manzato, B. Peeters, V. Ruffini, P. Berring, P. U. Haselbach, K. Branner, and M. M. Luczak

Abstract Modal testing of large structures such as wind turbine blades poses several challenges. Applied test setup
configuration, test specimen mounting and measurement equipment are known to affect the test results. This paper presents a
comparison study of the modal tests of nominally identical 14.3 m long blades. Blade A was supported in free-free boundary
conditions and tested with the Experimental Modal Analysis using accelerometers. Blade B was clamped to a concrete block
and tested with Operational Modal Analysis and strain gauges. The modes and corresponding natural frequencies obtained
from both test cases were compared and correlated with the numerical models of the blades.

Keywords Experimental modal analysis - Operational modal analysis - Strain modal analysis - Wind turbine blade -
Structural dynamics identification

14.1 Introduction

Wind turbine blades are tested according to the IEC-64100-23 standard for certification purposes [1]. The test program shall
compose mass, centre of gravity and natural frequencies, static tests, fatigue load tests and post fatigue static tests. The static
tests are undertaken to verify the blade’s ability to resist the ultimate design loads and to relate blade properties, strains and
deflections arising from the applied loads. Fatigue tests should ensure that the blade stiffness does not significantly changes
throughout the test and thus, the blade will be reaching the designed lifetime of 20 (according to IEC-64100-1-ed4) years.
Dynamic tests are limited to the identification of the first and second flapwise natural frequencies, and of the first edgewise
one. Tests aimed at damping and mode shapes estimation are only optional. However, a deeper understanding of the dynamic
behavior of these structures is crucial to better analyze stability problems and failure modes, especially considering the
continuing trend to further increase the size, complexity and flexibility of the blades [2].

In addition, the results from a modal test can also be used to validate numerical Finite Element (FE) models to a high
degree of accuracy. These models are normally property of the manufacturer of the blade, and for this reason a proper
validation is not always possible. In the case discussed in this paper, the FE model is available since it was generated by
using DTU’s in-house software, which allowed performing a full validation and updating of the model [3].

An extensive measurement campaign was performed at DTU Wind Energy, where a comparison study was carried out
on two nominally identical wind turbine blades that were tested in different configurations. For the first test, a blade was
supported in free-free boundary condition. Two shakers were used for excitation, and several accelerometers to record the
responses at several locations. The data were processed according to the principles of Experimental Modal Analysis (EMA)
to identify natural frequencies, modal damping and mode shapes, thus exceeding standard certification requirements.

As a second step, a second blade (nominally identical to the first one) was clamped to a concrete block and a “pull and
release test” was performed. Operational Modal Analysis (OMA) was then applied to the strain gauge data used to acquire
the structural response at several locations along the blade. Finally, Strain-based Modal Analysis was used to estimate the
modal parameters.
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The structure of the paper is as follows: First, the two test setups will be described in greater detail. Afterwards, the results
and the challenges related to both will be analyzed. Finally, the correlation with the FE model will be discussed in both cases.

14.2 Test Setups

The object of the study is a 14.3 m long wind turbine blade made of glass fiber reinforced plastics. Multiple modal tests were
carried out to identify the most reliable and time-efficient technique for estimating the modal parameters of the structure
under test.

During the first test, the blade was suspended by two elastic chords to reproduce free-free boundary conditions in order
to validate the numerical model, as shown in Fig. 14.1. For an optimal excitation of the blade, both edgewise and flapwise
directions were excited at two locations: one approximately 4.5 m from the blade root at the suction side (flapwise direction),
and one at 8§ m from the root on the leading edge (edgewise direction), similarly to the approach adopted in [4].

The structure was excited first with a modal hammer weighing 1 kg with a soft tip to ensure a good excitation between
3 and 150 Hz. In a successive test, a pair of electrodynamic shakers was used in a Multiple-Input Multiple-Output (MIMO)
set-up. Both connections between the shakers and the blade were instrumented with load cells in order to get measurements
of the applied forces. Finally, a dense grid of 120 measurement points was defined to cover the entire surface of the blade, and
the set of 15 available triaxial accelerometers was distributed over 15 equidistant cross sections ranging from the root to the
tip of the blade. Afterwards, the 15 accelerometers were moved to a different location along the airfoil, and the measurements
were repeated for 8 different locations. The test geometry with the locations of all accelerometers is also shown in Fig. 14.1.

A second test on a nominally identical blade has been performed by instrumenting the structure with 76 strain gauges in
order to measure the deformation in several locations during a pull and release test. In this case the blade was clamped to
a rigid block through the circular interface plate in a flapwise configuration (Fig. 14.2), and then pulled towards the floor.
The applied force and displacements were measured through a reel cable extensometer. Once the blade tip had reached the
desired displacement, it was released, and the free vibration response recorded. Afterwards, the measurements from the 76
strain gauges present on the blade were imported into Simcenter Testlab for further processing.

Specifically, Strain-based Modal Analysis [5] was applied, and the results in terms of modal parameters have been
compared to numerical results. The strain gauges location is also shown in Fig. 14.2. The gauges used in the experiment

Fig. 14.2 View of the wind turbine blade setup during the pull and release test instrumented with strain gauges (left); test geometry by using strain
gauges in clamped conditions (right)
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were HBM strain gauges type 10/350 LY 11 with resistance of 350 €2 & 0.35%. This type of strain gauges has built in
ability to compensate the change of elongation with changing temperatures. Owing to such solution, there was no need of
application of dummy strain gauge that would measure the temperature changes in the system, as done in the past. The
devices of this type are applicable for strain measurement in one direction—they are denominated as linear strain gauges.

14.3 Hammer vs. Shaker FRF Testing in Free-Free Boundary Conditions

The choice of the excitation when performing a modal test is a crucial step. Several considerations need to be taken into
account, especially when testing big structures such as wind turbine blades. In the case of this study, since it was necessary
to move the sensors (e.g. accelerometers) from one run to the next, it was fundamental to ensure the repeatability of the
excitation source so that all data could be processed together and yield global results. Hammer excitation repeatability
depends on the user ability to apply consistently the same impact. Shaker excitation is based on the definition of a reference
force profile that can be reproduced with high levels of accuracy, and for this reason should be preferred to the hammer
excitation.

During the free-free boundary conditions tests, both excitation modes were applied. Figure 14.3 shows the Driving Point
Frequency Response Functions (FRFs) measured during the eight runs with hammer and shaker excitation in both directions.
The FRFs in the edgewise direction are very repeatable regardless of the excitation technique. However, the impact testing
results show a higher variability, especially at higher frequencies. The noise level was also higher overall than the one
obtained by using the shaker excitation. On the other hand, the flapwise results show very poor repeatability with shaker
excitation. This is because, during the tests, the shaker was often detaching from the blade because of blade oscillation. The
issue could have been solved by using a fixed connection between the shaker and the blade, but it was necessary to use glue
to avoid damaging the blade with fixed mechanical connections. In this case, consistently exciting with the hammer was
much simpler.

Driving Point - Edgewise - mpact | Driving Point - Edgewise - Shake

Driving Point - Flapwise - Shaker |3

20000

Fig. 14.3 Repeatability analysis: Driving Point FRF over the eight measurement runs for Hammer (left) and Shaker (right) excitation in both
Edgewise (Top) and Flapwise (Bottom) direction
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Fig. 14.4 Modal Assurance Criterion matrix for the modal vectors estimated from impact and shaker tests

The FRFs collected in both cases (hammer and shaker testing) were used for estimating the modal parameters of the wind
turbine blade by using Simcenter Testlab and the Polymax algorithm [6]. Very low discrepancies are present with respect to
the natural frequency identification, whereas more uncertainty characterizes the damping estimates. The differences can be
associated to the signal-to-noise ratio, which is lower in the hammer case than in the shaker case.

The mode shapes extracted from the hammer and shaker tests show very good match up to 150-160 Hz, as shown in the
Modal Assurance Criterion (MAC) matrix in Fig. 14.4. MAC values close to 100% on the main diagonal confirm that modal
vectors from impact and shaker excitation are nearly identical. Low values of the off-main diagonal terms confirm the modes
are well discriminated.

14.4 Correlation with FE Model

The numerical Finite Element (FE) model developed in [3] was used for pre-test analysis and for correlation purposes.
The model was generated by using the commercial software MSC Patran and DTU Wind Energy in-house software Blade
Modeling Tool (BMT). As the experimental grid was derived from the numerical model, no geometric correlation is required
as the measurement points were defined to coincide with a node in the FE model. Consequently, the Modal Assurance
Criterion between the numerical and experimental could be calculated without further interpolations, and the results are
displayed in Fig. 14.5. A good correlation is observed for the first 13 modes, while at higher frequencies, as is generally the
case, the model and the experiments start to diverge, as shown in Table 14.1. This is expected observation, as the estimated
mode shapes turn from global at lower frequencies towards more local at higher frequency. It is possible to improve the mode
shape correlation by increasing the number of measurement locations.

In general, very good agreement was found between all modes with a dominant flapwise direction, with errors between
the natural frequencies ranging between 1% and 5%. On the other hand, larger discrepancies (with errors around 10%) were
observed for the modes in the edgewise and torsional directions. Before drawing further conclusion, it will be necessary to
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CTgr‘:ga:l‘(‘); arielsﬁt:b‘;ftween et Mode No. | Test (Hz) | FEM (Hz) | MAC | Freq. error (%)

and simulation Zesults 1 4.05 4.13 0.98 2.14
2 10.96 987 098 | —9.91
3 11.80 1136 097 |-3.71
4 21.65 20.81 098 | —3.86
5 29.98 2689 096 | —1031
6 34.28 3286 097 | —4.16
7 43.30 3725 092 | —13.98
8 48.93 4576 091 |—6.49
9 58.00 4985 092 | —14.06
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1 66.84 60.82  |0.86 | —9.00
12 80.00 7175 087 | —1031
13 86.41 83.19 069 |—3.73
14 100.10 9678  |0.66 | —3.32
15 11140 10980 053 |—1.44
16 13359 11073 059 |—17.11

try to include in the FE model the elastic cords used to suspend the blade. The blade support configuration applied in the
test is best available approximation of the free-free boundary conditions. In reality it introduces an observable constraint of
the Degree Of Freedom (DOF) by adding stiffness in the edgewise direction. Indeed, the natural frequencies are consistently
lower in this direction, so adding the stiffness of the bungees in FE model is expected to bring the numerical and experimental
results closer. In general, the good correlation between the global modes at low frequencies gives confidence in the general
validity of the model and the general assumption, and an update of the material properties is not deemed necessary at this
stage. In Fig. 14.6, a comparison of some of the mode pairs is given. It is important to notice how the correlation is possible
not only for the first bending and torsional modes (where the MAC values are very close to 100%), but also for higher order

mode shapes.
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Mode No. 9: 2" Edgewise Bending (58 —49.85 Hz), Mode No. 11: 6th Flapwise Bending (66.8 — 60.8 Hz),
MAC=0.92 MAC=0.86

Mode No. 12: 2™ Torsion (80 — 71.75 Hz), Mode No. 14: Higher order mode (100.1 — 96.78 Hz),
MAC=0.87 MAC=0.66

Fig. 14.6 Examples of experimental (left) and numerical (right) identified mode shapes

14.5 Strain-Based Operational Modal Analysis

Modal analysis and testing has traditionally been associated with the use of standard displacement sensors (e.g. accelerom-
eters, laser vibrometers). The use of deformation measurement with strain sensors has gained increased attention in recent
years and both academia and industry have started to investigate the advantages which could derive from the use of strain
gauges for modal analysis purposes. Strain gauges have been commonly used for static load testing in several application
fields, e.g. automotive, aerospace, mechanical. Furthermore, in the wind turbine blade testing they are used for fatigue testing
and lifetime prediction and these tests are needed for the certification of the blade. Re-using data from the fatigue test for
other objectives, e.g. modal characterization of the structure, would therefore be highly advantageous and cost-effective.

In its first formulation, the Strain-based Modal Analysis [5] was applied in cases in which the input force is well-known
and Frequency Response Functions (FRFs) can be calculated. In this work the step further consists in applying the technique
to an operational environment in which the input is unknown. This means moving from Experimental Modal Analysis (EMA)
to Operational Modal Analysis (OMA) [7].

In order to obtain the strain modal formulation, one can start with the fundamental theory of modal analysis. Modal theory
states that the displacement on a given coordinate can be approximated by the summation of a n number of modes, as shown
in Eq. (14.1).

u(t) =y ¢iqi(t) (14.1)

i=1

where u(?) is the displacement response in x direction, ¢; is the ith displacement vibration mode and g; is the generalized
modal coordinate. For small displacements, given the theory of elasticity, the strain/displacement relationship is given by Eq.
(14.2).
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&y = 0 u (14.2)
0x

Similarly the same relationship exists between the strain vibration modes and the displacement modes (Eq. 14.3).

d

vi= (14.3)

Taking into account the last two relationships, Eq. (14.1) can be rewritten as Eq. (14.4).

e(t) =Y viqi(t) (14.4)

i=1

Furthermore, the relationship between the generalized modal coordinate g and the input force F is explicated in Eq. (14.5),
where mj, ¢; and k; are the ith modal mass, modal damping and modal stiffness and w is the excitation frequency.

Substituting Eq. (14.5) into Eq. (14.4), the relationship between a force input and a strain output in terms of displacement
and strain modes is represented in Eq. (14.6).

gi = @Lambda: ¢; F. with @Lambda; = (—a)zmi +joc + k,») (14.5)

n
g = Z ¥; @Lambda; " ¢; F (14.6)

i=1

Finally, Eq. (14.7) represents the Strain Frequency Response Function (SFRF) in the matrix form.

[H] =" @Lambda;" {y:} {¢;} = (V] [@Lambda) ' [¢]" (14.7)

i=1

The matrix [H?] has N; columns which correspond to the number of excitation points (or the number of inputs) and N,
rows which are the number of strain gauge measurement points (or the number of output measurements).
Few considerations need to be taken into account with respect to the strain modal theory. In fact:

— The SFRF matrix is not symmetric and, as consequence, there is no reciprocity in strain modal analysis;

— Any column of the SFRF matrix contains all information about the strain modes, whereas any row contains information
about the displacement mode;

— In order to obtain the strain mode shapes, a fixed excitation points needs to be used and the strain responses should be
measured;

— By using roving impact hammer testing the displacement mode shapes can be obtained;

— The similarity of the strain modal formulation and the displacement modal formulation means that the same identification
can be used for both techniques.

One of the main advantages with respect to classical accelerometers-based modal analysis is related with the ability to
obtain both strain mode shapes and displacement mode shapes with the same type of sensor, which is not achievable with the
use of accelerometers. On the other hand several disadvantages needs also to be mentioned. It is, in fact, harder to instrument
because the sensors need to be bonded to the structure surface and they are usually not reusable. Furthermore, when compared
to accelerometers, a worse signal-to-noise ratio is achieved.

In this work, the input cannot be measured, and the Operational Modal Analysis technique was used to estimate the modal
parameters, more specifically, Operational Polymax was employed. The main hypothesis for applying OMA was respected
as the data was acquired during the pull-release test in which the blade was free to oscillate.

The recording of the strain gauges was then used to calculate the strain auto- and cross-spectra that serve as input for the
Operational Polymax algorithm.
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14.6 Pull-Release Test Results

Several tests were performed by varying the load at which the wind turbine blade was subjected. The load was applied
through a load clamp attached close to the blade tip. Four different runs at the following force levels were recorded: 1.50,
2.17,2.65 and 3.17 kN.

In total, 76 strain gauges were attached to the blade. More specifically, 12 sections from the blade root to the blade tip
were instrumented with four or eight strain gauges per section. The test geometry is shown in Fig. 14.1.

Time data were acquired with 200 Hz sampling frequency and post-processed in order to be able to derive the strain mode
shapes by using Operational Polymax. An exponential window with 10% exponent was applied to the strain gauge time
histories to calculate their auto- and cross-spectra, with a frequency resolution of 0.195 Hz. Figure 14.7 shows the acquired
time histories for three different points (left) and the calculated cross-power spectra for the same points (right). Figure 14.8
shows the comparison of the calculated auto-power spectra for the same measured point at the four different force levels.
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Fig. 14.7 Strain gauges time history for three measured points during pull-release test (left); Calculated cross-powers for the same points (right)
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Fig. 14.8 Auto-powers related to the point at 9.75 m from the root section at different force levels (1.50, 2.17, 2.65 and 3.17 kN)
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Table 14.2 Results of correlation analysis between test and simulation results in clamped conditions

Pull-release test @1.50 kN Pull-release test @2.17 kN Pull-release test @2.65 kN Pull-release test @3.17 kN FEM
2.15 2.15 2.15 2.14 2.38
4.56 4.56 4.56 4.55 4.20
7.14 7.14 7.15 7.14 7.35

14.20 14.23 14.20 14.20 12.59

Fig. 14.9 First flapwise strain mode shape: 2.15 Hz (left); first edgewise strain mode shape: 4.56 Hz (right)

It is clearly visible that the first modes could be easily identified in terms of natural frequencies and damping ratios (listed
in Table 14.2 for all four load cases). On the other hand, it is not straightforward to proceed with the direct comparison
of strain mode shapes with the FE model results, and requires further work. The first flapwise and the first edgewise strain
mode shapes are reported for completeness in Fig. 14.9. Only the natural frequencies are reported in the present study, and
compared with each other by applying a clamping condition at the root of the FE model, which was validated by the free-free
test results. The match in terms of natural frequencies values is very good, as shown in Table 14.2, where the FE resonance
frequencies are listed in the last column.

14.7 Conclusions

The research presented in this paper focuses on the use of different setup configurations to achieve the objective of estimating
the modal properties of a wind turbine blade. It has been demonstrated that very good results could be achieved in the two
tested configurations: free-free boundary conditions with the use of classical accelerometers-based Experimental Modal
Analysis (EMA) and with different input excitations (e.g. hammer, shaker), and strain-based Operational Modal Analysis
(OMA) during a pull-release test. The latter is a test which is normally done for fatigue purposes, but the acquired signals
could be reused for enriching the available modal properties information and for improving the quality of the numerical
models, as both cases yielded a comparably good correlation with the blade Finite Element model. Still, several challenges
need to be tackled. Further studies will concern the development of a proper strategy for comparing the strain mode shapes
with the FE modes.
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Chapter 15 )
Modal Excitation of Circular Rotating Structures Using et
an Innovative Electromagnetic Device

Thomas Hoffmann, Martin Jahn, Lars Panning-von Scheidt, and Jorg Wallaschek

Abstract Metallic structures like circular plates or turbine discs feature special mode shapes that can be classified by nodal
diameters and nodal circles. It is often desirable to experimentally examine just one mode shape with its distinct nodal
diameter and nodal circle. To excite just one mode shape at a certain eigenfrequency the circumferential spectrum of the
excitation force must not have other frequency content than the desired frequency and additionally have to resemble the
mode shape itself. A device capable of creating such a single mode shape excitation has not existed yet. Here, a patented
device is presented which is able to excite a single distinct mode shape of a rotating metallic circular structure. To achieve
this the device features a toroidal horseshoe electromagnet with a variable gap geometry. By using the variable gap geometry
and variable inductor current any modeshape of a metallic circular rotating structure can be excited. It is also possible to
excite a combination of modeshapes by linear superposition of the necessary gap geometries. A brief explanation of the
device is given followed by experimental results.

Keywords Harmonic excitation - Cyclic symmetry - Travelling wave - Electromagnetic excitation - Turbine disc

Nomenclature

A Area

B Magnetic flux density
1 Current

k Wavenumber

I,h Length

N Coil windings

ND Nodal diameter

Rn  Magnetic resistance
Un Magnetomotive force
Ko  Magnetic constant

ur  Relative permeability
0 Circumferential angle
T Dimensionless time

15.1 Introduction

The blades of turbines or compressors of gas- and steam turbines or aircraft engines vibrate during operation. Inhomo-
geneities of the flow excite those vibrations. In particular resonance vibrations affect the durability of the blades negatively.
This happens through high cycle fatigue or low cycle fatigue during high vibration amplitudes. To avoid this, it is necessary
to know the vibrational behaviour of the blades very well. In this paper a patented [1] device for the excitation of rotating

T. Hoffmann (P<) - M. Jahn - L. Panning-von Scheidt - J. Wallaschek
Institute of Dynamics and Vibration Research, Faculty of Mechanical Engineering, Leibniz University Hannover, Hannover, Germany
e-mail: hoffmann @ids.uni-hannover.de

© Society for Experimental Mechanics, Inc. 2020 153
M. L. Mains, B. J. Dilworth (eds.), Topics in Modal Analysis & Testing, Volume 8, Conference Proceedings of the Society for
Experimental Mechanics Series, https://doi.org/10.1007/978-3-030-12684-1_15


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12684-1_15&domain=pdf
mailto:hoffmann@ids.uni-hannover.de
https://doi.org/10.1007/978-3-030-12684-1_15

154 T. Hoffmann et al.

Fig. 15.1 Mode shapes of a plate clamped at the inner ring with different nodal diameters (ND) and nodal circles (NC) [4]. (a) ND = 0, NC = 0;
(b) ND=0,NC =1;(¢c) ND =1,NC =0;(d) ND =1, NC = 1;(e) ND =2, NC =0; (f) ND =02, NC =1

circular structures like turbine discs is presented which solves key issues present in current excitation devices. Although the
background of the authors lies clearly in the field of turbine blade dynamics, the device can also be used for other areas
where a well defined spatial excitation is needed.

15.1.1 Dynamics of Cyclic Symmetric Structures

The vibration of cyclic symmetric structures like homogeneous circular plates or ideal turbine discs can be described by
special characteristics called nodal diameters and nodal circles. Nodal diameters are lines through the center of a circular
structure with zero vibration amplitude whereas nodal circles are concentric circles with zero vibration amplitude. In the
case of a rotational symmetric plate each mode shape can be described by BESSEL FUNCTIONS [2]. In [3] the mode shapes
and eigenfrequencies for different configurations of circular plates are given. Figure 15.1 shows the first six modeshapes of
a circular plate fixed at the inner ring. The nodal diameters and nodal circles can be seen clearly by blue diameters or circles.
Turbine discs are not rotational symmetric but rather cyclic symmetric. The structure can be divided circumferentially into
identical sectors. The smallest possible sector for cyclic symmetry of a turbine disc is equal to the pitch angle between two
blades. Besides, a cyclic symmetric structure shows principally the same modeshapes as rotational symmetric structures that
can be classified by nodal diameters and nodal circles. Typically, only the nodal diameters are of interest. For a turbine disc
each nodal diameter features infinite local blade modes at different eigenfrequencies. Two different blade mode shapes for
nodal diameter ND = 4 for a generic turbine blading is depicted in Fig. 15.2. Typically, when the turbine disc rotates, the
excitation profile that results in a certain nodal diameter vibration is fixed in the inertial system. In the rotating system the
blade vibration will form a travelling wave that rotates against the discs direction of rotation.
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Fig. 15.2 Nodal diameter ND = 4 vibrations of the first (left) and second (right) blade bending modes of a turbine disc

15.1.2 Electromagnetic Excitation

The excitation force profile to excite travelling wave modes of rotating circular structures can be described as circumferen-
tially periodic. It can be formulated by the FOURIER series [5]

o0
Fg = Z Fgo, cos(EOip + VE0,). (15.1)
i=0

It describes the spatial force around the circumference with coordinates ¢ = Q. It consists of a sum of harmonic terms
with frequency EO;2 and phase {gp,. Devices for the excitation of rotating structures are usually designed to excite
only certain frequencies E O; to generate a well defined state of excitation. A widely used method is to use a set of fixed
permanent magnets near the structure which act a force on the structure everytime it passes near the magnets. A variable
number of magnets can be used. An example of this for the excitation of turbine blades can be found in [6]. The rotating
blades are excited by a magnetic force pulse when a blade passes a magnet. If a set of magnets is split up evenly around
the circumference the base harmonic of the excitation force is equal the number of magnets. Another example can be found
in [7]. But beside the base harmonic many other harmonics get excited which is usually undesirable. This is because of the
on-off nature of the excitation force profile when the structure rotates over the magnet. For clarification, the force over time
and the corresponding spectrum for such an excitation configuration is shown in Fig. 15.3. By the rule mentioned above the
base harmonic should have a period or wavenumber of k = 1 which corresponds to ND = 1 because the structure passes
a single magnet. But caused by the peak-like excitation of the single magnet all other harmonics get also excited as can be
seen in the spectrum. There are two main disadvantages caused by this: Firstly, not only the desired nodal diameter ND = 1
is excited but also all other nodal diameters which can negatively affect the measurements. Secondly, the energy of the
excitation is not only transferred to the desired nodal diameter but rather split between all excited nodal diameters which can
result in difficult to measure signal amplitudes. Instead of using permanent magnets electromagnets can also be used to excite
the structure. Even non-magnetic materials can be excited by magnets using eddy currents [8]. The underlying problems of
exciting unwanted nodal diameters caused by a peak like force signal still persists. In conjunction with electromagnets the
described problems can be fully avoided by using a non-rotating structure [9, 10]. In this case a turbine blading is analysed
where a single blade always stays on top of one electromagnet. Another example can be found in [11]. But by using a non-
rotating structure some effects that only occur under rotation can not be considered like spin softening or stress stiffening.
In particular for turbine blading tests the lack of centrifugal force can be problematic for testing damping structures like
shrouds or underplatform dampers. For this reasons the excitation of a rotating structure is to be favoured. When using a set
of permanent- or electromagnets an unwanted heating of the structure occurs. Eddy currents induced by large spatial gradients
of the magnetic fields can lead to the melting of structures rotating in a unsteady magnetic field [8]. The more unsteady the
magnetic field is, the lager are the eddy currents and the heating. The electromagnetic excitation device presented in this
paper solves all of the mentioned problems. It can be used to excite only the desired nodal diameter and furthermore does
not induce strong eddy currents in the structure.
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Fig. 15.3 Time series and spectrum of the magnetic flux density for an excitation with a single permanent magnet
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15.2 The Electromagnetic Excitation Device
15.2.1 Electromagnetic Force
The electric energy stored in the field of an electromagnet such as Fig. 15.4 is
1, 1 B?
W= LI = Al (15.2)
2 2 popr

with magnetic flux density B, cross sectional area A of the core, length of the magnetic circuit / and permeability e [12].
Energy is stored in the iron part of the electromagnet (core and yoke) and the air gap. The energy stored in the gap is much
higher because ptiron = foMr.Iron >> Mair- By moving the yoke the energy distribution between the iron part and air part of
the magnetic circuit changes and the electromagnetic force can be derived as

dw 1 B?
F = = A. (15.3)
diar - 2 1o
The magnetic flux density can be expressed as
o U
B= = " (15.4)
A ARnp

with the magnetomotive force Uy, and the magnetic resistance Ry,. For a coil the magnetomotive force is Uy = N1 with the
number of coil windings N and current /. The magnetic resistance of the air gap is

l .
Rmar= ™ . (15.5)
MO Mr, Air A
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The magnetic resistance of the iron core can be neglected because (on >> Kair- By inserting Eqgs. (15.4) and (15.5)
in (15.3) the following relationship for the electromagnetic force is obtained:

1 A
F = ZMO(NI)Z 5 (15.6)
lAir

The electromagnetic force is inversely dependent on the length of the air gap. This equation can now be used to design
the desired force to excite structures. In general either the excitation current / or the air gap /a;r can be varied. Because of
the need to be able to excite a travelling wave of the rotating structure the air gap has to be varied. By varying solely the
excitation current uniformly without any air gap change only a nodal diameter ND = 0 excitation could be created. For the
electromagnetic force F to be a purely monoharmonic function,'

F = Fsin(x) + F (15.7)

the air gap function can be derived from Eq. (15.6) as

1 A
Ian(t) = NI ~ _ o 15.8
Air(7) \/2 Fsin(t) + F Ho ( )

The resulting air gap over the dimensionless time variable can be seen in Fig. 15.5 for k=35 periods per 2w. Again, an air
gap with this function will produce the desired strictly monoharmonic force in the structure. The spectrum of this function
has, beside the offset, frequency content on every multiple of the basic harmonic k = 5 with descending amplitude. As the
force is proportional to the inverse square of the air gap F ~ l;izr and proportional to the square of the magnetic flux density
F ~ B?, the magnetic flux density is proportional to the inverse of the air gap

1
B ~ . (15.9)
Lnir
As the inverse operation will not change the spectrum qualitatively, the spectrum of Fig. 15.5 is also valid for the to be
measured magnetic flux density.
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Fig. 15.5 Function of the air gap Eq. (15.8) and its spectrum

IThe offset F is necessary as the electromagnetic force must be always positive.
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Fig. 15.6 Section view of the excitation device

15.2.2 Design

The device is designed to excite a travelling wave of a rotating circular structure. A sectional view of the device is shown in
Fig. 15.6. It consists of a circular base ring with a u-shape section which acts as the core of the electromagnet. It resembles
a toroidal horseshoe magnet. Mounted on the base ring are an inner- and an outer profile ring with variable height % (¢).
The height profile is milled and has to be modified for each desired excitation. The profile ring construction helps to lower
manufacturing costs as for new profiles only the rings have to be milled rather than the whole device. Above the device the
structure to be excited rotates. The profile ring height and the air gap are related through

Inir(¢) = ho — h(p) (15.10)

with kg being the distance between base ring and structure which is shown here for clarity. Here the former nondimensional
coordinate T of Eq. (15.8) is transformed into the circumferential angle by

T— NDy (15.11)

with the to be excited nodal diameter ND. The base ring as well as the profile rings are of ferroelectric material of high
permeability to guide the magnetic field. The magnetic field is induced by the field coil consisting of N windings of enameled
copper wire. The coil is driven by a constant or variable current /. The magnetic flux is guided by the device and closes
through the air gap and the structure acting a force on the structure. The profile rings are oriented and fixed on the base ring
by dowel pins. It is important that the phase of the milled height function & (¢) which is derived from the air gap function
by Eq. (15.10) on the profile rings is aligned to ensure proper operation. The device can not only produce a monoharmonic
excitation force as shown as an example in Eq. (15.8) but rather any excitation profile by simply calculating the needed air
gap from the desired force function as shown above. It is also not limited to excite a nodal diameter denoted by integers. By
using a harmonic excitation current in conjunction with the variable gap geometry arbitrary non-integer excitation periods
over one revolution can be generated by superposition of a spatial variable gap geometry and a temporal variable excitation
current [5]. Photographs of the actual device are shown in Fig. 15.7. The demonstrator has a diameter of 330 mm but can be
scaled arbitrarily. On the left the assembled structure can be seen with the explained components. On the top right of the left
picture is a port for the coil connection. On the right picture the variable profile height with k = 5 periods and the separate
base- and profile ring can be seen clearly.
The device is covered by the patent DE102017114153.7 [1].
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Fig. 15.7 Photographs of the device

Fig. 15.8 Test setup for measuring the magnetic flux density

15.3 Experimental Results

The goal of this section is to measure the magnetic flux density of the device with profile rings with wavenumber k = 5
and variable excitation current and to assess the measured signal spectra. The test setup is shown in Fig. 15.8. The device
is mounted on the MORTIMER test rig of the institute. The steel measurement beam is mounted to the shaft of the test rig.
Fixed to the beam are two HALL effect sensors, one directly above each profile ring. The signals are transferred by a slip ring
to the signal conditioning. The signal conditioning consists of an analog amplifier and an anti aliasing filter of 4th order. The
HALL effect sensors are a priori calibrated by a HELMHOLTZ coil pair.

The median free magnetic flux density during one turn is shown in Fig. 15.9a. Note that the constant excitation current
causes a large offset which is substracted here, as it does only cause a static deflection of the structure which is usually
not of any interest and eliminated by a high-pass filter. Curves are shown for constant excitation currents of 1 and 10 A.
As expected, the magnetic flux density is higher for a higher current. The magnetic flux density on the outer ring is always
smaller than on the inner ring. This is because the outer ring has a larger surface than the inner ring, therefore the magnetic
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Fig. 15.9 Measurements of the magnetic flux density of the device for different excitation currents. (a) Magnetic flux density during one turn
for excitation currents of 1 and 10 A. (b) Peak amplitudes of the magnetic flux density power spectrum for wavenumber k=35. (¢) Magnetic flux
density power spectrum for excitation current of 10 A. (d) Magnetic flux density power spectrum for excitation current of 1 A
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flux density has to be smaller. The noise on the signals (for example dominant on the first peak of the yellow curve) is mainly
introduced by the inverter of the driving motor and can be reduced through averaging. It can already be seen that the shape of
the curves are of harmonic nature with k = 5 periods per turn. Also, a harmonic content with k = 1 period per turn can be
seen especially in the larger curve. This is due to alignment imperfections of the measurement beams rotation axis relative
to the exciter normal axis. With better alignment this harmonic content vanishes. For this reason, the excited wavenumber of
the profile rings has to be chosen as k = 5 to not be impacted by the alignment imperfections with &k = 1. The amplitude
of around 10 mT agrees well with conducted magnet field simulations which will be published in future. For further insights,
the power spectra are analysed. Figure 15.9c shows WELCHSs power spectrum estimate (reference 1 - 1072 mT) of the angle-
series of the magnetic flux density for 10 A excitation current shown in Fig. 15.9a (yellow and purple plot, plot colours are
corresponding). From now on, the spectral lines will be denoted by their wavenumber which, from the point of view of the
circular structure to be excited equals to the nodal diameter. For spectrum averaging to reduce noise, 20 revolutions of the
beam are measured. The main harmonic content comes with wavenumber k = 5, as expected. Also k = 1 is notable as it is
caused by misalignment of the beam as discussed above. Furthermore, due to the calculated waveform of the magnetic flux
density which is proportional to the inverse square root of a sine Eq. (15.9), notable harmonic content with wavenumbers
k = 10 and k = 15 is also present (also compare to the spectrum of Fig. 15.5). It is expected that this spectrum of the
magnetic flux density causes a force spectrum which is purely monoharmonic due to Eq. (15.3). The signal peaks (k = 5
and k = 10) do have a signal to noise ratio of about 20 dBm which equals to 1(1)0 and the next signal peak (k = 15) has
a signal to noise ratio of 15 dBm. This value can be improved by proper shielding of the electronic equipment as it is only
caused by interfering electric fields of the test setup. The power spectrum estimate for an excitation current of 1 A is depicted
in Fig. 15.9d. As the useful signal decreases, the signal to noise ratio also declines so the higher wavenumber k=15 is not
visible any more. For k = 10 the signal to noise ratio is 5 dBm and for £ = 10 it remains 20 dBm. But again, this is due to
the electronic equipment and is not a flaw in the concept of the device. For clarity only the spectra for excitation currents of
1 and 10 A are shown. The behaviour of all other excitation levels can be seen in Fig. 15.9b where the peak power levels for
each excitation level for wavenumber k = 5 is depicted. Except for I=1 A, =9 A and I=10 A the peak values of the outer
ring are always lower than the inner ring. This is the expected behaviour as the magnetic flux density should be higher at
the ring with smaller surface. For the lowest excitation current the misbehaviour is due to a low signal to noise ratio, for the
higher excitation currents it is most likely caused by a feedback effect of the beams stronger magnetisation. Fitted functions
of order 2 are plotted revealing a quadratic behaviour between the power of the magnetic flux density and the excitation
current. This equals a linear dependency between the magnetic flux density and the current which is in accordance with
Eq.(15.4).

15.4 Conclusions

A electromagnetic device for the excitation of travelling wave modes of rotating structures has been presented. With this
device it is for the first time possible to excite a rotating structure like circular blades or turbine discs exactly in the desired
modeshapes and nodal diameters without disturbances. The disadvantage of existing excitation concepts explained above,
the occurrence of higher harmonic, interfering excitation frequencies, can be completely avoided with the device. It has
been shown that the measured magnetic flux density distribution fulfils the predictions. In particular the spectra of the
magnetic flux densities promise to achieve the desired properties of the excitation force. It is both possible to create purely
monoharmonic excitation forces and any other arbitrary excitation force functions. It is for the first time possible to resemble
nodal diameter excitations for rotating structures which are typically used in simulation tools like finite element programs.
Therefore, the device can play an important part in validating simulation tools and improve the process of simulation-heavy
design chains like for gas turbines.
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Chapter 16 M)
Modal Analysis of a 7 DoF Sweet Pepper Harvesting Robot et

Tobias F. C. Berninger, Sebastian Fuderer, and Daniel J. Rixen

Abstract Modal Analysis is a well-established key tool used to analyze the dynamic behavior of a structure. A robot
manipulator consists of mechanical structures, like the body links between the joints and gears, and mechatronic components,
like motors and their control system. The dynamic behavior of all subcomponents making up the robot arm are individually
well understood. However, their respective influence on the dynamic behavior of the entire robot system is still a matter of
research. Understanding the dynamics of the manipulator and setting up a validated model of its full dynamics is essential,
in order to devise proper control strategies. One specific challenge comes from the fact that the vibration properties (modes,
damping and frequencies) depend on the overall pose and thus change during the operation of the robot. Further, non-
linearities from the joints and the action of the joint controller can significantly influence the dynamics of the system. In this
paper, the influence of these effects on the overall dynamic behavior of a 7 DOF robot manipulator developed for automated
sweet pepper harvesting is analyzed, using Modal Analysis.

Keywords Robotics - Dynamics of the TCP - Structural dynamics - Modal analysis - Complex modes

16.1 Introduction

In order to achieve high precision of the tool center point (TCP) of a robot manipulator during rapidly changing and highly
dynamic motions, high-fidelity models of the robot system are needed. These models can be used either to predict and
improve insufficiencies of a new manipulators design during the development phase or to apply model predictive control
techniques to further improve the overall dynamics of the system. Experimental Modal Analysis (EMA) can not only be
used to validate and tune already existing models, but can also provide a deeper insight into the manipulators’ dynamics to
determine which subcomponent contributes to the overall dynamics of the system; and would therefore need a high level of
attention in order to achieve an accurate model of the entire system.

Usually the structural dynamics of a robot manipulator are modeled by focusing on its joints. In most cases, the joint
dynamics are incorporated by adding spring-damper-systems between the robot links [2—4]. These models are then further
refined by having a more detailed look at the transmission system [5], especially by including more accurate friction models
[6, 7]. The structural dynamics of the links are usually omitted, or only accounted for by adding a simple spring-damper-
system for every link [8].

This work aims to experimentally analyze the dynamic behavior of a typical robot manipulator. While the main goal is to
acquire a better understanding of the structural dynamics of a robot arm, we also try to provide a closer look at the general
application of an EMA on a robot manipulator. In Sect. 16.2, the overall experimental setup is explained. Section 16.3 goes
into detail about preliminary tests to choose the correct hammer tip, measurement bandwidth and time window. Experiments
to assess the repeatability of measurements, non-linearities, influence of the joint controller on the measurements and overall
dynamics are performed. Finally, a detailed measurement of the dynamics of the TCP during a significant pose change is
carried out. An EMA of the CROPS robot for three different poses is performed and discussed in Sect. 16.4.

Similar works can already be found in the literature. Behi and Tesar [9] used EMA for parametric identification of an 4
DOF model of a Cinncinati Miacron T3-776 robot. 2 DOF to model the main joints of the robot and 2 DOF to include the
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Break Stator

Harmonic Drive

Fig. 16.1 The 2nd generation of the CROPS harvesting robot [1]. (a) CROPS robot in 9 DOF configuration. (b) CROPS drive unit

dynamics of its ground plate. In [10] an EMA was performed on an academic 3 DOF robot arm with two flexible beams as
links, which is consequently quite different to a typical industrial manipulator. The analysis is presented for two different
poses, which show a significant difference in eigenfrequencies and mode shapes. For this academic robot, the structural
dynamics of the links appear to have a much larger influence on the overall dynamics of the robot arm then its joints. Vu
et al. [11] did a spectrum analysis of vibration measurements during operation of a grinding robot arm, which also showed
a significant change of eigenfrequencies caused by the change of pose during operation. For the same robot, an EMA was
performed in [12]. In [13] an EMA was carried out on a Mitsubishi RV-3AL robot, which is mounted on a MetraLLabs X3
mobile platform. The analysis was used to tune an existing flexible multi body simulation.

For the work presented here, the second generation of the CROPS robot is used as an example. The robot was developed
by the Chair of Applied Mechanics at the TU Munich in 2014 during the European project “Clever Robots for Crops”
for autonomous sweet pepper harvesting [14]. The manipulator, Fig. 16.1, is carried by one large prismatic joint for vertical
movement and consists otherwise of rotary joints [15]. The design of the joints is modular and are otherwise similar to typical
robot joints, utilizing a harmonic drive gear and a break on the motor side, Fig. 16.1b [1]. Thanks to the modular design, the
robot can be assembled in a 7 or 9 DOF configuration. Here, the 7 DOF assembly is used, Fig. 16.2. The robot has three
large rotary joints to position the TCP and three small rotary joints at the end for its rotation, making it quite similar to most
industrial robot arms; with the first DOF being the large prismatic joint at the base of the manipulator.

16.2 Experimental Setup

For the dynamic analysis, the CROPS robot changes its pose from a completely stretched out position to a retracted pose,
while also rotating around the z-axis of the inertial coordinate system, Fig. 16.2. The vertical position of joint 1 will be kept
the same for all tests. The EMA and all other tests is performed on these two poses and a third one half-way through the pose
change. The joint angles of the poses are:

Pose 1: 92 = 00, 93 = 00, 94 = 00, 96 =0°.
Pose 2:  6p =45°, 63 =—-30° 04=-75° O = —45°.
Pose 3: 6, =90°, 63 = —60°, 64 = —150°, 6¢ = —90°.

All tests rely on frequency response measurements performed using a PCB impact hammer and Kistler triax acceleration
sensors with 100 mV /g sensitivity and 6 g of weight. Since the first modes are expected to be within the 100 Hz range,
it would be possible to use sensors with less bandwidth and higher sensitivity. However, higher sensitivity sensors usually
weigh considerably more and will worsen the added mass effect [16], making the chosen sensors a good compromise between
weight and sensitivity. Impact locations are near the TCP and on the link between the third and fourth joint, Fig. 16.2a. Since
there are a lot of different excitation points and measurement runs, a PCB impact hammer with 0.3 kg mass is preferred to
an excitation by a shaker for the sake of convenience. For data acquisition a Siemens LMS system with 24 channels is used,
allowing seven triax sensors to be used at the same time per measurement run. One measurement run is performed per link
and joint of the CROPS robot, resulting in 11 measurement runs and overall 77 points, each with three measured directions.
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Fig. 16.2 CROPS robot in 7 DOF configuration. (a) First pose with joint numbers and excitation forces. (b) Second pose with measurement
points. One color per measurement run. (¢) Third pose
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Fig. 16.3 First measurements after an F -impact to setup the EMA. (a) Auto power spectrum of the hammer tip force measurement with rubber
(blue line), vinyl (orange line), and metal (green line). (b) Time signal of sensor a;z. (¢) Driving point FRF at the TCP (blue line) and coherence
(orange line)

The main sensors used to interpret the different tests are located near the TCP (aj) and between joint three and four (a),
Fig. 16.2b. The EMA is performed within the LMS Impact Testing software using the PolyMax-Algorithm [17], all further
post processing is done using Matlab.

16.3 Preliminary Tests

16.3.1 Hammer Tip, Time Window and Bandwidth

To choose a suitable hammer tip for this application, three different hammer tips made of rubber, vinyl and metal are tested
by examining the corresponding auto power spectrum of the hammer force measurement, Fig. 16.3a. The metal tip is able to
excite the longest frequency range, but with the least energy below 100 Hz. It will also often cause nearby sensors to reach
overload. The rubber tip induces the most energy into the frequency range of interest, but falls under —10 dB right after it. In
order to have some margin to also analyze a higher frequency range, the vinyl tip is chosen. The time signal of sensor a; in z-
direction after an impact on the TCP in the same direction, Fig. 16.3b, shows that a measurement of 2 s provides a good signal-
to-noise ratio without having to apply any special windowing and results in an acceptable frequency resolution of 0.5 Hz. A
first driving point measurement at the TCP in z-direction after five averages using this setup is shown in Fig. 16.3c. The coher-
ence never drops under 0.95 over the entire frequency range, indicating a very good measurement. The first mode appears to
be around 10 Hz, making the frequency resolution just about sufficient. The bandwidth for the measurements is maintained
at 1024 Hz, but all following plots will be zoomed in on the 200 Hz range, since all modes of interest are in this area.
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Fig. 16.4 Driving point measurements of the TCP in z-direction to test repeatability and temperature influence. (a) Comparison between the
reference (blue line), after a significant pose change on the same day (orange line) and after 1 day (green line). (b) Comparison between the
reference (blue line) and after 30 min of operation (orange line)

16.3.2 Repeatability and Temperature Influence

Considering that a robot arm is a rather complex system, the first area of interest is the repeatability of measurements. To
test this, a reference driving point measurement of the TCP is obtained in all three poses. Afterwards, the robot is moved
into a different position, back into the initial one of the reference and the measurement is repeated. For a third test, the robot
is again moved into a different position and is kept there. After 1 day, the measurements are repeated for all three positions.
The breaks are engaged during all measurements. Figure 16.4a depicts the results for the first pose and shows a very good
match between the FRF’s obtained, which is also true for the other two poses.

Since the joints heat up during operation and might cause a change in the dynamics of the robot arm, a similar test is
performed. A reference driving point measurement is again taken in the same way and compared to the same measurement
after 30 min of operation, which causes the joints 2—4 to significantly heat up. The results are shown in Fig. 16.4b. A slight
displacement of the FRF’s in the higher frequency range is noticeable, but overall no significant difference is found.

16.3.3 Non-linearities and Influence of the Joint Controller

A simple way to check for non-linearities in a system is to obtain the same FRF twice, once with a low level of input force
and once with a high level. This is done in Fig. 16.5a, in the same way as before and with brakes engaged. A higher amount
of damping is clearly visible for the FRF obtained with a high level of force, especially for the higher frequency modes. The
same effect can be observed for the FRF’s measured in the other two poses. This non-linear behavior is probably caused
by the friction present within the joint gears. Since the breaks are engaged on the motor shaft, the harmonic drives are
theoretically able to deform and have an impact on the dynamic behavior of the robot arm.

Finally, the influence of the joint controller is tested by comparing driving point FRF’s of the TCP taken with engaged
breaks, to FRF’s taken while the joint controller is holding the respective pose, Fig. 16.5b. The controller seems to only effect
the damping of two specific modes around 40 and 100 Hz. This seems to be consistent with observation made during the
EMA in Sect. 16.4, since deformation of the motor joint axes only occurs significantly in these modes. This effect can only
be observed in pose 1.
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Fig. 16.6 Campbell diagram of the TCP in z-direction for different poses

16.3.4 Influence of the Pose on the TCP Dynamics

To get a first grasp on the influence of the pose on the manipulators overall dynamics, the driving point FRF of the TCP is
measured for 60 poses by starting with pose 1 and increasing the joint angles in increments of

Al =1.5°, Aby=—1.0°, Afs=-25° Abg=—15°,

going through pose 2 to 3. The breaks are again engaged for every measurement. The results are plotted in a Campbell-like
diagram, which depends on the pose instead of rotational speed, Fig. 16.6. By just looking at the diagram without considering
the findings of the EMA in Sect. 16.4, it is already clear that the dynamics depend considerably on the pose of the robot arm.
The first mode at 10 Hz barely changes its frequency, but loses almost a decade of amplitude after passing the second pose.
The second mode starts at 13 Hz and increases to 20 Hz without loosing amplitude. The third one starts at 40 Hz and changes
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the most in frequency, while also loosing and gaining amplitude in between. A new mode appears right below the third one
half way between pose 2 and 3, while the third mode looses rapidly in amplitude and makes a right curve.

These measurements underline the importance of high-fidelity models that can accurately depict these changes in
dynamics, since the performance of higher level control techniques are usually very dependent on the quality of their
underlying models.

16.4 Experimental Modal Analysis

Finally, the EMA is performed. A good way to check the quality of an EMA is, to examine the synthetisation of the measured
FRF’s. In Fig. 16.7 the FRF’s from impact F}, to sensor a; are compared to their respective synthetisations in z- and x-
direction. Both show a very good match in phase and amplitude, which is also the case for most other measured FRF’s.

The resulting mode shapes are depicted in Fig. 16.8. The first mode is a horizontal bending mode in the x-y-plane at 8.6 Hz
which is not visible in the Campbell diagram (Fig. 16.6), since it cannot be excited by an impact in z-direction. The main
cause for this mode is the bending of the link between joint 1 and 2 and the “C”-shaped link between joint 2 and 3. The rest
of the arm behaves almost completely rigidly for this mode and no bending of the joints can be observed. Mode 2 at 10 Hz is
the first bending mode in vertical direction, but once again there is no actual bending of the robot arm involved. This mode
is caused by the bending of the large beam of the prismatic joint 1, which consequently tilts the entire arm downwards. This
also explains why this mode doesn’t change its frequency but only looses amplitude in the Campbell diagram (Fig. 16.6): By
gradually retracting the robot arm, the leverage of its weight on the large vertical beam of joint 1 decreases as well. Mode
3 at 13.6 Hz looks very similar to mode 2 and yields a very high MAC of 91% in comparison, but is mainly caused by an
additional deformation of the “C”-shaped link between joint 2 and 3, while the rest of the robot arm again behaves rigidly.
Mode 4 and 5 look like the second horizontal bending mode and both have a vibration node near the small link between joint
5 and 6. The difference between them again being the bending of the “C”-shaped link for mode 5. Mode 6 at 42 Hz is the
second bending mode in vertical direction and is actually the first mode which involves the bending of some joints around
their motor axis and could actually be observed by the joint controller test in Fig 16.5b. Consequently, this is the first mode
that effectively can be influenced by the joint controller, which seems to add some damping to the mode. Mode 7 and 8 are
the third bending modes in the horizontal and vertical direction respectively, both having a vibration node at the link between
joint 3 and 4 and at the small link between joint 5 and 6. Mode 9 is the first torsional mode around the y-axis. The mode
shapes of pose 2 and 3 behave similarly, are difficult to depict on paper and add nothing substantial to the discussion, which
is why they are omitted form this paper.

Performing the same analysis using the impact point F> generally yields the same mode shapes and eigenfrequencies
as impact point F; but shows consistently higher phase scatter for the modes of all poses. Complex modes are consistent
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Fig. 16.7 FRF synthetisation using PolyMax. FRF from Fj; to a;; (blue line) and ay, (orange line) with their respective synthetisation (dotted
lines)
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Fig. 16.8 Modeshapes, eigenfrequencies and modal damping for pose 1. (a) Mode 1, 8.6 Hz, 2.4%. (b) Mode 2, 10 Hz, 2.8%. (¢) Mode 3, 13.6 Hz,
2.7%. (d) Mode 4, 28.8 Hz, 5.8%. (e¢) Mode 5, 36.6 Hz, 4.5%. (f) Mode 6, 42.3 Hz, 4.1%. (g) Mode 7, 51 Hz, 6.7%. (h) Mode 8, 68 Hz, 6.4%. (i)
Mode 9, 78.2 Hz, 2.7%

with a continuous system with discrete damping points [16], which a robot manipulator ultimately is, since the robot usually
consists of lightly damped metal links that are connected by its joints, which concentrate most of the damping within them
through their gears and transmission system. One explanation might be that the F> hit between the big joints 3 and 4 has
less leverage on them than F; and therefore activates more damping. This could also explain the non-linear behavior found
in Fig. 16.5a.

16.5 Conclusions

This work has shown that a detailed EMA can be performed reliably on a robot manipulator using hammer impacts.
Section 16.3 has shown that the repeatability of the measurements, even after large pose changes over multiple days, is
very good and that the effect of the temperature due to the heating of the joint motors is insignificant. The results were used
to point out structural weaknesses of the CROPS robot, which in this case is mainly the “C”-shaped link between joints 2
and 3. The analysis in Sect. 16.4 showed that the links between the joints have a major effect on the overall dynamics of the
robot, namely the eigenfrequencies and mode shapes; while the joints are mainly responsible for the damping of the system
and consequently, its non-linear behavior during varying impact forces at the TCP.

While these findings cannot be used to make statements about the dynamic behavior of robot manipulators in general,
they at least suggest that the current common practice of only modeling the joints and neglecting the structural dynamics of
the links is probably not enough to accurately predict the dynamic behavior of most manipulators over multiple poses, as
illustrated by Fig. 16.6. A small correlation could be found between the action of the joint controller and increased damping
of the corresponding modes, as well as between impact location and complexity of modes; this might be due to the localized
non-linear damping inside of the joints. Since there are only minor indications of these two effects in this rather complex
system, it is not possible to draw any decisive conclusions. For this reason, a simple joint test rig will be modified, in order
to be able to take a more precise look at the interaction between the structural dynamics of the link, the robot joint and the
joint controller.
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Chapter 17 )
Characterizing Dynamics of Additively Manufactured Parts Gkt

Gary Adkins, Clayton Little, Peter Meyerhofer, Garrison Flynn, and Kyle Hammond

Abstract Additive manufacturing (AM) presents engineers and manufacturers with unprecedented design freedom com-
pared to conventional manufacturing techniques. This freedom comes with its own challenges. The wide variety of AM
techniques, machines, and design geometries introduces difficulties in building consistent parts with known material
properties. Of particular interest is the anisotropic nature introduced in the AM process. While AM is being adopted for
applications in a variety of industries, the uncertainties introduced in manufacturing are slowing its implementation for
critical parts such as structural members and jointed elements. As part of the ongoing effort to alleviate these issues, this
paper aims to quantify the dynamic response of AM parts built using a variety of build orientations and internal structures.
Multiple parts with theoretically identical external geometries are excited by a shake table while high-speed data are collected
using digital image correlation (DIC). A finite element model is developed and calibrated using the DIC data to characterize
the material property changes due to selection of build orientation and internal structures.

Keywords Digital image correlation - Finite element model - Fused deposition modeling - Lattice structure - Modal
analysis

17.1 Introduction

Additive manufacturing (AM), commonly called 3D printing, has the potential to revolutionize manufacturing, both in terms
of design and production. AM is the process of building objects layer by layer, whereas conventional methods involve
removing material from a larger bulk piece, or casting an object in a mold. This additive technique greatly expands the
design geometries feasible by allowing internal structures that were once prohibitively difficult or expensive to produce.
AM emerged in the 1980s and at first developed slowly for several reasons including high cost of equipment, the need for
specialized personnel training, and, most critically, the lack of industry standards for process parameters and performance
measures. Time has alleviated the first two difficulties, as equipment costs have fallen dramatically with the expiration
of fundamental patents and further improvements in technology, while the growth of the maker community, coupled with
interest at many universities, has built a community of people experienced in the use of AM [1]. However, defining the
performance of AM parts and creating a comprehensive set of manufacturing standards is a more complicated problem.
Iterations of the same AM part may look nearly identical on the outside, yet have highly variable and uncertain mechanical
properties.

G. Adkins
Mechanical Engineering, College of Engineering, lowa State University, Ames, 1A, USA

C. Little
Mechanical Engineering, College of Engineering, Rice University, Houston, TX, USA

P. Meyerhofer
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA

G. Flynn (?<) - K. Hammond
Los Alamos National Laboratory, Los Alamos, NM, USA
e-mail: garrison@lanl.gov

© Society for Experimental Mechanics, Inc. 2020 171
M. L. Mains, B. J. Dilworth (eds.), Topics in Modal Analysis & Testing, Volume 8, Conference Proceedings of the Society for
Experimental Mechanics Series, https://doi.org/10.1007/978-3-030-12684-1_17


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12684-1_17&domain=pdf
mailto:garrison@lanl.gov
https://doi.org/10.1007/978-3-030-12684-1_17

172 G. Adkins et al.

17.1.1 Additive Manufacturing Background
17.1.1.1 Types of Additive Manufacturing

AM techniques have been developed for a diverse array of materials including polymers, ceramics, metals, and composites.
Polymer AM techniques include methods such as solidifying a resin using light or heat, melting plastic powder with a laser,
binding plastic powders together with an adhesive, and extruding a plastic wire through a heated print head [2]. This last print
technique, known as fused deposition modeling, is one of the cheapest and most versatile polymer printing options, making
it a popular choice among hobbyists and professionals alike [1]. Metal AM has largely remained the province of industry and
academia, primarily due to the far greater equipment and material costs involved. Metallic AM techniques generally work
by fusing or melting metal powders, and vary primarily in the means by which the melting is accomplished [2]. Selective
laser sintering uses a laser to fuse together selected areas of a bed of heated powdered metal in an inert atmosphere, and
repeats the process layer by layer to create the desired part geometry [3]. Selective laser melting and electron beam melting
operate similarly, but employ a more powerful laser or an electron beam to completely melt the powder. Laser engineered net
shaping eschews a powder bed in favor of firing the metal dust directly into the laser beam using a nozzle. Ballistic particle
manufacturing goes a step further, spraying molten metal directly from a nozzle [2].

17.1.1.2 Opportunities of Additive Manufacturing

AM allows designers and engineers to employ novel part geometries that would be costly or impossible to manufacture using
conventional methods. Of particular interest are internal lattice structures, which emulate the porosity of natural materials,
for example bird beaks. Manufacturing with such lattice structures results in products that are far lighter than bulk materials
while maintaining much of their strength [4], which is particularly valuable for applications in aerospace [5]. Furthermore,
AM offers manufacturers the opportunity to implement a distributed production environment. Rather than manufacturing all
parts at a large central factory and then shipping those parts to their destinations, AM enables adoption of a nodal approach;
sending out designs to satellite locations and printing them on-site. This more direct distribution method could dramatically
reduce costs by trimming supply chains. For example, the ability to produce parts on demand would be of particular benefit
in remote areas, which often face long wait times to receive even simple parts for maintenance and repairs. AM also reduces
the consumption of materials by requiring only the amount of material directly used in the part to be consumed. In contrast,
conventional bulk manufacturing requires removal of a significant amount of material from the bulk piece to achieve the
desired part geometry. While this overrun can be recycled and repurposed, doing so generally requires shipping it off-site,
whereas any unused AM material can be reused immediately with little to no reprocessing needed. This efficient material
use also leads to greater energy efficiency for AM manufacturing [6].

17.1.1.3 Defining and Refining Additive Manufacturing Material Performance

Since the inception of AM, researchers have endeavored to characterize the mechanical behavior of AM parts. Due to the
essentially infinite variety of possible design geometries it is not practical to elucidate every property of every possible
combination of build parameters. Instead, researchers seek to identify broad trends as specific variables are altered [7].
Campanelli et al. demonstrated that greater part density yields greater compressive strength [8], while Yan et al. found that
smaller lattice unit cells for a given level of porosity also increases compressive strength [9], confirming earlier work by
Santorinaios et al. [10]. Multiple studies have shown that mechanical performance varies widely depending on the type of
unit cell used to form a lattice [11-15]. Other design factors such as build orientation [16], particle size of the metal powder
used [17], power and tracking speed of the laser [18, 19], and post-build processing [16, 20] also have significant impacts on
the material qualities of the part produced. The majority of the research performed, to the best of the team’s knowledge, to
differentiate the mechanical qualities of AM parts has focused on static tensile and compressive tests, leaving something of
a void in knowledge about the dynamic behavior of such parts.

Modal analysis, the systematic examination of an object’s dynamic behavior within the frequency domain, can effectively
evaluate additional mechanical properties of AM parts. West et al. demonstrated the use of modal analysis for determining
the yield strength of AM parts [21]. Furthermore, modal analysis is a commonly accepted means of detecting damage in
conventionally manufactured materials [22] and can likely be expanded to AM materials [23]. Modal analysis can also be
a fast and cost effective method for assessing the quality of mass produced AM parts by comparing an individual part’s
resonant frequencies to those of an ideal template part [23, 24].
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17.1.2 Digital Image Correlation Background

Digital Image Correlation (DIC) employs cameras and unique speckle patterns to quantify slight displacements of specimens
during testing, resulting in a highly accurate record of a part’s displacement and strain fields [25]. This record is then used to
extract mode shapes and relevant frequencies. Extraction of full field strain measurements and modal responses using the DIC
algorithm proceeds as follows [26]. A visible, usually planar, surface of the specimen is covered in a speckle pattern, which
must be highly contrasting, detailed and aperiodic. After images are taken, the software divides the speckle area into subsets,
each of which has a unique intensity signature. A shape function is used as an approximate spatial filter, which is moved over
the whole specimen area in search of the best match. That best match provides the displacement estimate. Smaller subsets
(requiring more and/or smaller speckles) permit the computation of displacements at higher spatial resolution. Secondary
quantities like strain, velocity and acceleration can be calculated from displacement, and time histories from video support
the use of Fourier methods.

DIC with one camera allows for 2D imaging and the addition of a second stereo camera allows for 3D imaging. 2D
imaging is generally cheaper and easier to set up, but limits analysis to in-plane motion. For more general displacements
across multiple degrees of freedom the 3D option is preferable. DIC can be used to perform non-destructive testing of lattice
structures in AM parts [20]. This technique has proven to be particularly useful for the early detection of points of failure in
AM parts, an important step forward in quality control [27].

17.1.3 Objectives

The wide range of processes included in AM along with a variety of machines for each process, a multitude of parameters
that can be varied on each machine when creating nominally identical parts, and a virtually infinite selection of internal part
geometries lead to high levels of uncertainty in material properties. While efforts have been made to quantify AM mechanical
properties by static testing, much uncertainty remains regarding effects on dynamic response. Full-field measurements
from DIC have been proven useful for characterizing mechanical properties from dynamic tests [28] for both isotropic
and orthotropic materials [29].

This paper seeks to advance the knowledge of anisotropic build effects on dynamic behavior of AM parts, employing DIC
and modal analysis along with systematic comparison to numerical models of part dynamics. Selection of print parameters,
including build orientation and internal lattice is first discussed followed by details of the DIC set up and experimental
methodology. Development of the accompanying finite element model is presented next. Effective bulk properties of the AM
parts are determined through calibration of the model to experimentally measure modal frequencies. Finally, a discussion of
the print parameter effects is provided with accompanying recommendations for further investigation.

17.2 Methodology

17.2.1 Design of Test Specimens

Test specimens used for the series of experiments herein are built with ABSplus-P340 polymer using a uPrint SE Plus [30],
or with 316L stainless steel using a Concept Laser M2, which is a direct metal laser sintering machine [31]. The parts are
designed to be rectangular cantilevers with high aspect ratio cross-sections to obtain relatively large displacements normal
to the largest face and provide a wide, flat surface convenient for DIC speckling. Three solid ABS parts are printed with the
dimensions shown in Fig. 17.1. Each part is built in a different orientation, as shown in Fig. 17.2. That is, all three parts in
this set have the same outer geometry, but have their build layers oriented in different Cartesian directions.

A second set of three ABS parts is printed with internal lattices. Each lattice is a 2D cell pattern printed along the build
orientation, as shown in Fig. 17.3. Thus the second set of parts corresponds to the same build orientations as in Fig. 17.2, with
lattices oriented vertically with respect to the base plate. The lattices are only built in the cantilever section of each part—the
base is left solid. The 2D cell pattern consists of 1.5 mm square holes separated by 1 mm solid walls, and surrounded by a
1 mm thick external wall. Figure 17.4 shows the outer dimensions of the lattice ABS set, which are increased from that of
the solid ABS parts to allow for the internal lattice structures.
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A third set of parts is built in solid steel. These parts are built with the same geometry as the solid ABS parts (Fig. 17.1),
except they are 3 mm thick instead of 4 mm, and have a 5 mm fillet instead of 4 mm. The three steel parts are also built in
the same orientations as the three solid ABS parts (Fig. 17.2).
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Fig. 17.4 Lattice ABS part dimensions

Fig. 17.5 Part mounted to shake
table with speckle pattern applied
for DIC

17.2.2 Digital Image Correlation Experimental Setup

The parts were excited by the translational oscillations of a shaker table using the Shaker Control software from Bruela &
Kjaer Sound and Vibration Measurement. The shaker table was oriented so that the large face of the part oscillated normal
to the imaging plane. Parts are secured to the shaker table with 4 mm bolts, as seen in Fig. 17.5. The bolts are torqued to
1.75 Nm. Parts were tested with a random excitation over select frequency ranges. Measurements for out of plane modes
were collected in the following ranges: mode 1 at 20—-100 Hz, etc. mode 2 100-500 Hz, mode 3 500-1000 Hz. Measurements
for the torsional mode were collected between 20 and 500 Hz. The amplitude of the excitation was 0.5 g>/Hz in the chosen
range, with no excitation outside the range.

A speckle pattern is applied to the face of the parts using speckles approximately 1 mm in diameter (Fig. 17.5).
Displacement data was collected using two cameras for 3D DIC as shown in Fig. 17.6. The cameras are Photron AX200
Mini models with 35 mm lenses. The image capture software is Vic Snap and the image processing software used is Vic-3D,
both produced by Correlated Solutions, Inc. A light source was placed between the cameras and the cameras were positioned
about 0.5 m from the part on the shaker table.
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Fig. 17.6 The camera and part setup for DIC measurements. The shake table axis of excitation is towards and away from the cameras

The first step in operating the cameras was to set the focus. The apertures of both cameras were fully opened while live-
imaging the part to narrow the depth of field so that the focus was as precise as possible. Next, calibration was performed
at 1024 x 1024 resolution using a target plate associated with the software: holding the plate at different angles allows the
software to calculate the location of the cameras in space. To ensure best results the calibration score, a measure of the
deviation from a perfect match between the image pairs, was maintained below 0.1.

The part was replaced on the shaker table for data acquisition, and the camera resolution was set to 384 x 896. Once
the shaker table was turned on and operating at steady state a set of frames was recorded in Vic Snap and sent to Vic 3D
for processing. The frame rates selected were dependent on the predicted frequency of the target mode: 750 fps for a target
frequency of ~100 Hz, 1500 fps for ~300 Hz, 3000 fps for ~1000 Hz. The software extracts displacement histories of
approximately 900 points, in all 3 degrees of freedom.

The 2-dimensional DIC calculation is completed as follows. Each subset of the speckled area of the samples has a unique
intensity pattern Fj(x,y) in the reference image (the first image of the series). The intensity pattern in the deformed image
is Gi(x,y,s) where s is the translation vector relative to the reference location of the subset [26]. The translation vector s is
varied and an error metric summed over all pixels in the subset is calculated (Eq. 17.1). The value of s that minimizes x2is
taken to be the best estimate of the subset displacement between the reference and deformed images.

K= (Gi(x,y,9) = Fi (x, ) (17.1)

To calculate the mode shapes and frequencies, the displacement of each point is input to a fast Fourier transform. The
displacement magnitudes in the frequency domain are averaged over all points to produce the final power frequency spectrum.
The maximum average amplitude was typically about 0.1 mm for the lowest mode, against a noise floor in the frequency
domain of 30 nm.

17.3 Finite Element Model

A baseline finite element model is developed using ABAQUS Finite Element software. Mesh fidelity along the cantilever
cross section was varied between a shell model, a solid model two elements thick, and a solid model four elements thick.
Modes are placed into four distinct classes, out of plane (OOP), torsion (TOR), in plane (IP) and extension (EXT), as shown
in Fig. 17.7. The modal frequencies of the first four OOP modes converge at the solid model two elements thick, justifying
the selection of this mesh for subsequent simulations (Table 17.1). Quadratic elements (C3D20R) are used with 2 x 20
elements for the cantilever cross section and 70 elements along the cantilever length. The inner faces of all four bolt holes
are assumed to be fixed.
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(1]

Fig. 17.7 Mode classes found include (a) out of plane (OOP), (b) torsion (TOR), (¢) in plane (IP), and (d) extension (EXT)

Table 17.1 Results of mesh convergence study

Shell Solid, 2 elements thick Solid, 4 elements thick
OOP 1 (Hz) 160 162 162
OOP 2 (Hz) 1001 1009 1008
OOP 3 (Hz) 2808 2813 2812
OOP 4 (Hz) 5521 5480 5477

Fig. 17.8 Standard directions
assigned to material parameters

Material properties are defined by an elastic orthotropic material model, presented in Eq. (17.2). The €12 equation has
analogues in the 13 and 23 planes, making the matrix symmetric such that only 3 of the 6 Poisson’s ratios are independent.
This model yields a total of 9 independent elastic parameters: E, E>, E3, v2, v13, v23, G2, G13, and G23, corresponding to

the global orientation presented in Fig. 17.8.
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17.4 Results and Discussion

17.4.1 Modal Analysis

Uncertainty in the experimentally measured modal frequencies was estimated by running each experiment three times and
extracting data from the highest point near the local maximum from the raw data on each run. Figure 17.9 illustrates the
extracted modal peaks for three runs. The part for this test is a solid build in a vertical orientation made with ABS plastic,
with a 4 x 40 mm cross-section and a beam length of 140 mm. The shaker table was set to random excitation between 20
and 2000 Hz in the OOP direction. Noise in the measurements is likely caused by ambient vibrations, camera distortion and
possible buoyancy waves from the heat of the lights. Despite the background noise the results of interest are not obscured.
The precision uncertainty was estimated as half the distance between frequency points on the spectrum and then added to the
sample standard deviation to represent the total uncertainty.

The natural frequencies of the first three OOP modes and first torsion mode for the solid ABS parts are given in Table
17.2. The excitation used to obtain the OOP modes was single-axis translational vibration. Such an arrangement minimizes
the bending moment of inertia to get the largest possible displacements for easier observation. However, the torsional modes
could not be excited with the linear shaker available. Therefore the parts were statically torsion loaded and their transient
free responses when released were recorded. Typical DIC images of the first 3 OOP modes are shown in Fig. 17.10. The
cameras were able to detect a coherent mode shape on displacement scales below 1 pwm.

The natural frequencies of the first three OOP modes for the lattice ABS parts are given in Table 17.3. Torsion mode
frequencies were not calculated for these parts due to their large cross-sectional area, which prevented the torsion modes
from being adequately excited and measured.

The natural frequencies for the first three OOP modes, and the first (and, in the DB orientation, second) torsional modes
for the steel parts are given in Table 17.4. For these metal parts, torsional data and OOP data were obtained from the same
experiments. That is, OOP linear shaker excitation was able to excite the torsion modes enough to be detected, whereas
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Fig. 17.9 A comparison of displacement spectra between three nominally identical runs for quantifying measurement uncertainty

Table 17.2 Measured natural

i ies of the solid ABS Orientation

requencies of the soli

parts built in three distinct Mode UR TH DB
orientations OOP 1 (Hz) |47.3£0.9 51.0£0.2 4554+ 0.5

OOP2 (Hz) |308.1+0.6 |323.4+0.2 |284+3
OOP 3 (Hz) | 868 £6 909 £+ 3 848 £ 8
TOR 1 (Hz) | 340 £3 350+ 3 3890 £2
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OoP 1 OO0P 2 OO0OP 3
(298 um) (10.1 pm) (0.209 um)

o

Fig. 17.10 Typical DIC images of the first 3 OOP bending modes, with absolute displacements. Every consecutive peak (yellow/red areas)
alternates between into the page and out of the page, while every purple area is a node

fTable 17.3 gzagléred rrtlatural Orientation

requencies o parts

manufactured with three distinct Mode UR TH DB

lattice orientations OOP 1 (Hz) [102.5+0.7 |99.6£0.7 101.3£0.3
OOP2(Hz) |[650+£3 615+£2 629 £3
OOP3 (Hz) |1793 +£38 1682 + 5 1759 £ 6

fTable 17.4 1}/[tessusrii4 naltturial Orientation

requencies of the stee

parts built in three distinct Mode UR TH DB

orientations OOP1(Hz) [119+£1 120+ 2 116.7 £ 0.1
OOP2 (Hz) |716 £1 729 £ 3 713 +£4
OOP 3 (Hz) [899.5+0.3 |909 £3 780 £ 1
TOR 1 (Hz) |2046 +4 2099.8 £0.8 2040 £ 3
TOR 2 (Hz) | NA NA 24394 +£0.4

this was not the case for the plastic parts (thus the need for static torsion loading for the plastic parts). It is believed that
the two steel torsion modes are visible even in OOP excitation due to reduced torsional damping compared to the plastic
parts.

For the solid ABS parts, the thin orientation is the stiffest in bending (implied by high natural frequency), followed by the
upright and finally the diving board parts. For the lattice ABS parts, the Upright orientation is the stiffest, followed closely
by the Diving Board, and with the Thin orientation least stiff. The solid steel parts had the same pattern of stiffness as the
solid ABS parts; the thin orientation was stiffest, followed closely by the upright part, with the DB part having a significantly
lower stiffness, as reflected by their natural frequencies.

Damping ratio was determined from the specimen response from torsional loading. A Fourier transform was performed
on small windows of the deflection at the two top corners, to capture both the first bending mode (as the corners deflect
together) and the first torsion mode (as the corners deflect out of phase). Results are shown in Table 17.5, and a typical DIC
image of the first torsion mode (amplitude and phase) is shown in Fig. 17.11.

The diving board orientation appears to be more damped than the thin or upright orientations, though this requires
verification. The torsion frequency of the diving board is also significantly higher than the other orientations.



180

Table 17.5 Estimated damping ratios of the first torsion and OOP modes for all parts

G. Adkins et al.

Orientation
Mode UR DB TH
ABS Solid TOR 1 Damping Ratio 0.012 £ 0.004 0.015 £ 0.002 0.009 £ 0.004
ABS Solid OOP 1 Damping Ratio 0.010 £ 0.002 0.020 £ 0.004 0.009 £ 0.001
ABS Lattice TOR 1 Damping Ratio NA NA NA
ABS Lattice OOP 1 Damping Ratio 0.012 £+ 0.001 0.0078 £ 0.0007 0.0075 £ 0.0006
Steel TOR 1 Damping Ratio 0.0016 £ 0.0003 0.0011 £ 0.0006 0.00025 +£ 0.00007
Steel OOP 1 Damping Ratio 0.00025 + 0.00005 0.0017 £ 0.0001 0.0015 £ 0.0001
Amplitude Phase
phi(W) [rad]
A(W) [mm] 0.98
0.0276 }
0.7812
0.02591 E
E 0.5825
0.02423 )
2 0.3837
0.02254 8
5 0.185
0.02085 o
1 -0.01375
0.01916 3
-0.2125
- 0.01747
= _0.4112
4 0.01579
4 -0.61
4 0.0141
0.01241 ~0.8088
0.01072 ~1.008
0.009037 —1.206
0.00735 —1.405
0.005662 —1.604
0.003975 -1.803
0.002288 —2.001
0.0006 22

Fig. 17.11 Typical DIC images of the amplitude (left) and phase (right) of the first torsion mode

17.4.2 Simulations

Ten model input parameters present a significant challenge for inverse analysis. In fact, as the following results show, such
a problem would be ill-posed and have non-uniqueness of solutions for the specific test structures under consideration. To
reduce the model input dimension, a Taguchi orthogonal array subset of the parameter space is simulated in ABAQUS and
the relative contribution of each input parameter to the frequencies of each mode class is evaluated. The Taguchi subset
consists of 128 parameter sets with each parameter having 2 levels. This yields a factor resolution of 5, so primary factor
effects are only confounded with 4-factor interactions or higher. The coefficients of determination for each parameter are
presented in Fig. 17.12.

For all mode shape classes, only three of the input parameters are non-negligible: density and two elastic moduli. This
creates the previously discussed non-uniqueness issue. Only the two stress moduli are considered in the inverse analyses,
since density can be measured empirically (Table 17.6). This reduces the model calibration problem to two dimensions.
Broyden’s method [32] is used to optimize the simulated modal frequencies to the experimental modal frequencies, with
respect to the input elastic and shear moduli. Resulting calibrated values for solid and lattice parts are presented in Table 17.7.
Ranges are provided which correspond to the uncertainty of the experimental data. Percent comparisons of the midpoints are
also calculated, relative to the Upright orientation.
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Fig. 17.12 The significance results from the parametric study. Three of ten parameters are found to have high significance, justifying down
selection for calibration

Table 17.6 Measured densities

UR TH DB
of all parts

p (solid ABS) [kg/m3] |1021.24 |1 992.83 | 1089.44
o (lattice ABS) [kg/m®] |804.71 | 747.07 |777.19
p (solid Steel) [kg/m®] |7922.42 | 7712.43 | 7853.74

Table 17.7 Calibrated elastic parameters for different orientations, internal structure, and material. Percent change is relative to the upright (UR)
configuration

UR TH DB

G (solid ABS) [GPa] Value 0.890-0.921 0.910-0.946 1.282-1.309
% change - +2.48% +43.07%

E (solid ABS) [GPa] Value 2.085-2.262 2.458-2.502 2.069-2.139
% change - +14.10% —3.20%

G (solid Steel) [GPa] Value 85.5-85.4 81.1-80.8 61.6-61.9
% change - —5.36% —27.74%

E (solid Steel) [GPa] Value 187.3-194.0 182.1-195.6 181.5-182.1
% change - —0.95% —4.64%

E (lattice ABS) [GPa] Value 1.966-1.977 1.676-1.734 1.849-1.876
% change - —13.52% —5.53%

Fig. 17.13 Ink impression of the hatch pattern implemented in the uPrint machine

17.4.3 Discussion

The various stiffnesses of the solid ABS parts in different orientations is potentially explained by the layer build process in
the uPrint machine. In general, the print head lays out the boundary of each 2D layer first, then fills the interior with diagonal
hatches, as shown in Fig. 17.13. In the thin orientation, these boundaries are aligned axially on the largest face of the part
(the imaging face), such that axial loads are borne by continuously extruded filaments. In the DB orientation, however, the
build layer boundaries are around the perimeter of this face, and the face is filled with less-stiff diagonal hatches. The upright
orientation is distinct in that axial loads are borne by the fused material between build layers. Such a connection is less stiff
than the continuous filaments of the thin orientation, but apparently stiffer than the diagonal hatches of the DB orientation.
The printing of lattices, which were aligned with the build direction to avoid using support material, introduces very
different anisotropies. It is posited that the anisotropy here is dominated by lattice geometry, not build layer orientation (as is
the case for solid parts). The stiffest lattice orientation is upright, since axial loads are resisted with continuous material. The
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DB orientation is moderately less stiff than upright, and the thin orientation is the least stiff. Excluding the external walls of
the parts (a common element between all three), the DB part has better axial connections than the thin part (Fig. 17.14). If
we were to test the in-plane bending modes, we expect the thin and upright parts to be stronger than the DB part for the same
reason.

The main result of this work with respect to torsion modes and modal damping ratios is that the DB orientation has the
highest torsion frequency, as well as the most damping in both torsion and out of plane modes. If one imagines an oscillating
AM part as laminated sheets rubbing against each other, the DB part has by far the largest sheets, and so the highest friction
loss. Other damping effects may be less significant. The upright part has a slightly higher torsion frequency than the thin
part, and the damping ratios of the two are indistinguishable. The reason for this last observation may be that the thin part
has a larger area of contact between adjacent build layers, producing greater stiffness across them.

17.5 Future Work

A primary goal of future research is to apply the same experimental and analytical methods to metal parts that incorporate
lattice structures, because those geometries are essential for many promising applications. It would also be interesting to
measure the effect of part damage with DIC, either by deliberately introducing flaws into the printed part, or by shaking a
resonant mode with sufficient amplitude to induce fatigue cracks or plastic deformation.

This work did not exploit the capability of DIC to calculate full-field strains in the visible face of the parts. Such strain
data could be paired with ABAQUS simulations to locally calibrate material properties, such that a spatial distribution could
be obtained. This would help model the spatial variation of material properties in metal AM parts, which arise from different
thermal cooling and crystallization rates throughout the build process.
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Chapter 18 M)
How Linear Is a Linear System? Gkt

D. Roettgen, B. Pacini, and B. Moldenhauer

Abstract Often, when testing structures, engineers assume the experimental system only exhibits linear behavior. This
linear assumption means that the modal frequency and damping of the structure do not change with response level. In many
assembled structures, components are connected through bolted joints. These systems behave in a weakly nonlinear fashion
due to frictional contact at these interfaces, but often these structures are still treated linearly at low excitation levels. This
work contains a case study where an assumed linear system exhibits nonlinear behavior. Because of this nonlinearity, if the
force applied to the structure during linear testing is not sufficiently low then the test may capture a nonlinear frequency or
damping instead of the true linear parameters. The errors associated with this linearization causes inaccuracy when simulating
a system response. In particular, a linear substructuring problem is presented in which true linear frequencies and damping
ratios are compared to slightly nonlinear counterparts to observe the error caused in the assembled response. This paper
documents lessons learned and heuristics to be considered when capturing true linear parameters from a weakly nonlinear
structure.

Keywords Linear modal analysis - Nonlinear systems - Structural dynamics - Heuristics - Best practices

18.1 Introduction

Traditional experimental modal analysis transforms a set of measured responses into single degree-of-freedom (DOF) modal
responses. Linear modal analysis is a useful tool for updating finite element models, performing low excitation level system
predictions, and obtaining modal information about a mechanical system (i.e., natural frequencies and mode shapes). Many
industries manufacture mechanical systems assembled using bolted joints. The frictional interfaces that occur due to these
joints often introduce nonlinearity into an otherwise linear system. This type of weakly nonlinear response is often observed
experimentally as a small change in frequency and a large change in damping [1-3]. Often this nonlinearity is overlooked
when predicting system response which can lead to erroneous results.

This work shows the errors that can arise when one assumes linearity of a weakly nonlinear system. This is shown through
an experimental-analytical substructuring when the wrong linear parameters are identified due to a weak nonlinearity. The
assembly of interest contains multiple bolted joints which add nonlinearity to the system. This system was previously tested
to assess the nonlinear response in [3—5] where in [5] the authors completed nonlinear substructuring on the same structure
of interest. In [5] the linear substructuring errors for the system were significantly lower than previous works using similar
techniques. This study documents the methods used to minimize these substructuring errors through the use of nonlinear
theory and testing, providing heuristics and tools to ensure an experimentalist is obtaining the linear dynamics of abreak
system.
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This paper is organized as follows. Section 18.2 details the substructuring example covered in this work. Section 18.3
provides the theory behind the substructuring method used and the tools suggested to obtain true linear parameters of the
system. Section 18.4 steps through a case study on the experimental system. Finally, Section 18.5 contains conclusions from
this study.

18.2 Subcomponent Definitions

The structure of interest consists of five main parts: the nose-beam, plate, cylinder, aft-plate, and tail-beam. The beam is
bolted to the plate which is attached to the cylinder using eight bolts. The aft plug threads into the cylinder and has a flange
that seats on the aft of the cylinder. Finally, the tail is attached to the plug by two bolts. A finite element mesh of the structure
is shown in Fig. 18.1 and the physical hardware is shown in Fig. 18.2.

To complete substructuring predictions for this structure, two subcomponent assemblies were tested. The first, subcompo-
nent A, consists of the nose-beam, plate, cylinder, and aft-plate, with no tail-beam. The second subcomponent, B, consists of
the plate, cylinder, aft-plate and tail-beam. Finally, a finite element model of the cylinder with end plates is used to connect
the two structures. This work stems from [5] where more details on the experimental set-up and substructuring configurations

can be found.
Aft-Plate
/ Tail-Beam

Plate
Nose-Beam

Fig. 18.2 Truth assembly test hardware
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18.3 Theory

This section provides an overview for the theory used in this work. First, the dynamic substructuring theory of the
transmission simulator (TS) method is presented. Second, a nonlinear analysis tool, the Hilbert Transform, is presented
as a means to verify the linear modal parameters extracted from measurements.

18.3.1 Transmission Simulator Method

The Transmission Simulator method was first introduced by Allen and Mayes in [6]. This method provides a quality
experimental model and best simulates the boundary conditions between subcomponents by mass-loading the interface
between subcomponents. In this study, experimental subcomponent A and B are connected by a central cylinder which
acts as a mass-loading of the jointed interface. The theory for the TS method is briefly discussed here for convenience.

First, each subcomponent is written as a set of uncoupled modal equations of motion. Modal parameters w, ¢, and ¢ are
the linear natural frequency, damping ratio, and mode shapes of a subcomponent model. The modal acceleration, velocity
and displacement and external force are represented by ¢, ¢, ¢, and F, respectivly.
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To couple the subcomponents, constraints must be enforced on these equations of motion. The constrains are first written

(18.1)

in the form of Eq. (18.2). Here, x represents physical displacements of each subcomponent, and B is a Boolean matrix such
that the motion of shared DOFs between multiple subcomponents are equal.

Blaxp V=0 (18.2)

Using a modal approximation, this constraint equation can be transformed into modal coordinates as shown in Eq. (18.3).
The constraints have been softened using the pseudo-inverse of the TS shapes as it would be difficult to enforce them strictly
when using measured data [6].

+ qa ~ 1 44
ors O [dm 0 —¢TSj| a5 V=8 a5 V=0 (18.3)
0 ¢rg 0 ¢ —¢rs
qTs qrs

A coordinate transformation ¢ = Ln is used to enforce these constraints on the uncoupled equations of motion. Rewriting
the constraints in terms of the new generalized coordinate is shown in Eq. (18.4).

BLy=0 (18.4)
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Because B is known and because 7 is arbitrary, L must reside in the nullspace of B.

L = null (E) (18.5)

Using the transformation matrix L, the uncoupled equations of motion can be synthesized into a new set of equations of
motion which describe the dynamics of the fully coupled structure. Solving the eigenvalue problem of these equations of
motion provides predictions of linear natural frequencies and modes shapes of the assembled structure. Note, the predictions
of the assembly involve the linear natural frequencies and damping ratios of the subcomponent system. Therefore, if those
are inaccurately measured due to nonlinearity the system level predictions will be inaccurate. This study will explore the
magnitude of such errors when the nonlinearity of the system is activated during linear testing.
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18.3.2 The Hilbert Transform

Low-level testing is used to capture the linear modal parameters of each subcomponent. To ensure the linear test is not
exhibiting any nonlinear behavior the authors implemented the Hilbert Transform, using the process described below [7]. To
use this tool a high-level excitation is performed to obtain ringdown data from the structure. Then, the physical measurements
from this excitation are transformed to a modal response using the mode shape matrix as a spatial filter.

The Hilbert Transform assumes the modal response can be rewritten in an exponential form as shown in Eq. (18.7), where
¥ () is the Hilbert envelope and v;(¢) is the unwrapped phase.

G = Vr (D+iYi () (18.7)

This amplitude and phase can be fit and used to calculate a time varying frequency and damping ratio for the measured
response.

d
wa(t) = d'/; (18.8)
—lw,(t) = dZ’ (18.9)

These values can then be plotted against response amplitude to obtain amplitude dependent relationships for frequency
and dissipation of each mode. At low amplitude levels this relationship will provide the true linear natural frequency and
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damping ratio. Comparing these values to those obtained from linear testing can reveal potential errors if the linear test
exhibits nonlinear behavior.

18.4 Linear Substructuring Tests and Predictions

In this section the linear substructuring predictions from [5] are investigated. The linear predictions are performed with two
sets of data. First, slightly nonlinear modal parameters are used from a low-level modal test. Next, the Hilbert Transform is
used to determine a shaker setting which is low enough to extract true linear parameters. The predictions are updated with
these new parameters in order to highlight the importance of ensuring a linear test is not exceeding linear response levels.

18.4.1 Original Measurements

Low excitation level impact and shaker tests were performed on subcomponents A and B. Linear natural frequencies, damping
values, and mode shapes were obtained using the Synthesize Modes and Correlate (SMAC) [8] program developed by Mayes
and Hensley. The results for substructures A and B are shown Tables 18.1 and 18.2, respectively. Here, the subscript o
represents the parameters found from initial testing (which was performed at slightly nonlinear levels).

Linear substructuring predictions were calculated following Eq. (18.6). There are many realizations of substructuring
predictions to consider. In this case, the target range for predictions was up to 600 Hz. Thus, following general component
mode synthesis heuristics, modes up to 1200 Hz were included in the subcomponent models. This results in 14 modes for
both substructures A and B and only 10 modes for the TS. The predictions from this substructuring exercise are shown in
Table 18.3 and compared to the results obtained from an assembled truth test. Here, errors under 5% are marked in green,
and errors over 5% are marked in red. Note, the frequency error in these predictions is low (under 2%), but the damping
error is high (over 30% on multiple modes). These errors are typical of previous component mode synthesis studies, but in
[5] the authors were trying to observe the nonlinearity in the system damping. Thus, a minimization of this damping error
was desired.

Table 18.1 Subcomponent A original linear parameters

Mode Jn, 0 [Hz] £o [ocr] Shape description

7 128.03 0.38 1st bend of Beam in soft direction

8 170.00 0.28 1st bend of Beam in stiff direction

9 548.36 0.37 Plate axial mode

10 863.75 1.15 (2,0) ovaling of Cylinder

11 878.25 1.11 (2,0) ovaling of Cylinder

12 980.80 0.45 (3,0) ovaling of Cylinder

13 987.70 0.46 (3,0) ovaling of Cylinder

14 1084.20 0.12 2nd bend of Beam in soft direction

Table 18.2 Subcomponent B original linear parameters

Mode Jn, 0 [Hz] £o [ocr] Shape description

7 232.23 0.174 1st bend of Tail in soft direction
8 607.00 0.869 1st bend of Tail in stiff direction
9 879.75 0.996 (2,0) ovaling of Cylinder

10 886.06 1.058 (2,0) ovaling of Cylinder

11 981.82 0.437 (3,0) ovaling of Cylinder

12 990.10 0.390 (3,0) ovaling of Cylinder

13 1148.75 1.406 Plate axial Mode

14 1279.50 0.590 2nd bend of Tail in soft direction
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Table 18.3 Original linear substructuring predictions

Predicted Measured Predicted Measured
Mode fro fa % Diff. o ¢ % Diff. MAC
[Hz] [Hz] [%cr] [%ocr]
7 128.50 128.22 0.22% 0.381 0.276 38.22% 1.00
8 170.30 169.46 0.46% 0.282 0.176 60.53% 0.99
9 232.29 233.37 -0.46% 0.168 0.176 -0.70% 1.00
10 548.37 551.39 -0.55% 0.375 0.245 52.97% 0.99
11 606.18 616.25 -1.63% 0.860 0.426 101.57% 1.00
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Fig. 18.3 Hilbert Transform derived amplitude dependent relationships for frequency and damping ratio

18.4.2 Example Hilbert Transform Analysis

High-level excitations were performed using a windowed sinusoidal excitation technique discussed in [4], previously know
as sine beat excitations [9]. Using the Hilbert Transform as discussed in Sect. 18.3.2 amplitude dependent relations for
frequency and damping ratio were obtained for the first mode of the subcomponent A and are shown in Fig. 18.3. Here, the
blue curve shows the measured amplitude dependent relationship and the purple circular marker shows the assumed linear
results from Sect. 18.4.1. The red line shows the true linear parameter as identified from the testing described in Sect. 18.4.3.
This analysis was repeated for all modes showing a nonlinear response until linear parameters were identified for all modes
used in the substructuring predictions.

18.4.3 Revised Measurements

Updated linear modal parameters were obtained by continually lowering the excitation level until the extracted parameters
were not sensitive to such changes. The final updated parameters for Subcomponents A and B are contained in Tables 18.4
and 18.5. Here, the subscript o represents the original measured linear parameters and the subscript # denotes the updated
parameters. For both subcomponents the frequency error from the original measurements was relatively small (Iess than 1%)
but the damping ratio errors were large (many modes over 50%). This is expected as the amplitude dependence of damping
is usually more sensitive than that of frequency in weakly nonlinear structures.
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Table 18.4 Subcomponent A updated linear parameters

191

Mode Jn, o [Hz] Jn,u [Hz] fn % Error Lo [Pocr] Cu [Yocr] ¢ % Error
7 128.03 129.2 —0.91% 0.384 0.294 30.61%
8 170.00 171.1 —0.64% 0.284 0.170 67.06%
9 548.36 552.0 —0.66% 0.373 0.241 54.77%
10 863.75 867.8 —0.47% 1.149 1.122 2.41%
11 878.25 883.3 —0.57% 1.113 0.930 19.68%
12 980.80 980.8 0.00% 0.451 0.447 0.89%
13 987.70 987.7 0.00% 0.456 0.462 —1.30%
14 1084.20 1031.8 —0.10% 0.123 0.090 37.17%
Table 18.5 Subcomponent B updated linear parameters
Mode fuo [Hz] fru [He] f % Error ¢, [%cr] Cu [%cr] ¢ % Exror
7 232.23 2325 —0.12% 0.174 0.168 3.87%
8 607.00 608.9 —0.31% 0.869 0.415 109.25%
9 879.75 882.5 —0.31% 0.996 1.138 —12.47%
10 886.06 892.4 —0.71% 1.058 0.812 30.35%
11 981.82 981.8 0.00% 0.437 0.448 —2.49%
12 990.10 990 0.01% 0.390 0.393 —0.64%
13 1148.75 1171 —1.90% 1.406 1.075 30.79%
14 1279.50 1284.5 —0.39% 0.590 0.480 22.87%
Table 18.6 Updated linear substructuring predictions
Predicted Measured Predicted Measured
Mode o fa % Diff. Su ¢ % Diff. MAC
[Hz] [Hz] [%cr] [%cr]
7 129.62 128.22 1.09% 0.295 0.276 6.94% 1.00
8 171.47 169.46 1.19% 0.171 0.176 -2.90% 0.99
9 232.56 233.37 -0.35% 0.168 0.176 -4.47% 1.00
10 552.01 551.39 0.11% 0.241 0.245 -1.43% 0.99
11 608.08 616.25 -1.32% 0.415 0.426 -2.56% 1.00

Table 18.6 contains the substructuring predictions using the updated linear subcomponent parameters. The results showed

great improvement in the damping ratio predictions with only one mode having an error higher than 5%. The frequency
errors remained mostly constant. The first two elastic modes increased in error, from below 0.5% error to 1% error, while the
following three modes all decreased in frequency error. This case study shows that it is prudent to ensure that linear testing

is truly linear!

18.5 Conclusions and Remarks

This paper documents lessons learned from a substructuring exercise previously presented in [5]. In this study, the authors
completed experimental-analytical dynamic substructuring predictions at linear levels with very low damping ratio errors.
To achieve this accuracy, the authors performed multiple tests on each subcomponent to assure that the systems were being
tested at low, linear excitation levels. With the original measurements, damping ratio errors as high as 100% were observed.
After using a few heuristics to ensure the quality of the extracted linear model, this error was reduced to under 7%, showing
a drastic improvement.
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It is recommended that, for future test plans, where linear information is desired, test engineers include test points
at high-level and use the Hilbert Transform to determine if the low-level set for linear testing is sufficient for capture
linear structural dynamic behavior. An alternative recommendation to high-level testing would be to make multiple
measurements decreasing the amplitude of excitation in each case until the extracted modal parameters are shown to not
change.

Disclaimer This manuscript has been authored by National Technology and Engineering Solutions of Sandia, LLC. under Contract No. DE-
NAO0003525 with the U.S. Department of Energy/National Nuclear Security Administration. The United States Government retains and the
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Chapter 19 )
An Interpolation Algorithm to Speed Up Nonlinear Modal Gkt
Testing Using Force Appropriation

Michael Kwarta, Matthew S. Allen, and Joseph J. Hollkamp

Abstract Force appropriation testing has long been used for ground vibration testing of aircraft, where it is critical to
estimate the modal parameters and especially damping accurately. Recently, extensions were presented that allow systematic
identification of the nonlinear normal modes (NNMs) of conservative and non-conservative nonlinear structures. While this
method provides accurate results with high confidence, it is unfortunately quite slow and so the structure may be subjected to
significant damage over the course of a test. This work proposes a new approach in which the test is performed more quickly
by simply acquiring measurements near the nonlinear resonance, but without the time consuming tuning required to reach
the resonance precisely. Then, the recently proposed single nonlinear resonant mode method is used to interpolate between
test points in order to estimate the NNM from each set of forced responses. The method is first evaluated numerically
using a reduced model of a curved clamped-clamped beam that exhibits both softening and hardening response due to
geometric nonlinearity. Then the method is employed experimentally to measure the first two NNMs of a curved beam that
was manufactured from plastic using a 3D printer and the results are compared to the traditional tuning approach.

Keywords Nonlinear normal modes - Force appropriation method - Single nonlinear resonant mode method - Nonlinear
modal analysis - Nonlinear frequency response functions

19.1 Single Nonlinear Resonant Mode Method

Frequency response functions of vibrating linear mechanical systems can be expressed as a combination of their linear
normal modes. This is possible because the linear modes are orthogonal and can be used to diagonalize the mass and stiffness
matrices. This principal of superposition, which is an essential property of linear theory, does not strictly apply to nonlinear
systems.

The single nonlinear resonant mode (SNRM) method, which was first proposed in [1], assumes that if (1) most of the
vibration energy is restricted to one nonlinear mode and (2) there are no internal resonances between the modes it might
be possible to predict the motion by simulating a single nonlinear mode and then superimposing the linear response of the
remaining modes, see Eq.(19.1),

.. (_Fiel Ni .
®;®; (—Fi)e' in @, @ (—Fi)ei
X(I)ZRe{”z ] J2 i Z 2 kggz( 2') Q} (19.1)
@y ;= R+ 20w, QT 8+ 2Gwok
ke j

where: € is the forcing frequency; ®;, wo,;, ¢; are the mode shape, natural frequency and modal damping ratio of the i-th
mode, respectively; F is the distribution of a sinusoidal force excitation; j is index of the dominant mode, and Nji, denotes
the number of relevant linear modes. The quantities marked (~) vary with the vibration level. Indeed, the algorithm based
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on SNRM presented in [2] shows that the prediction of nonlinear frequency response function is possible when the NNM
curve is known.

19.2 Nonlinear FRF Interpolation Algorithm Overview

In our work we represented curves in a frequency-velocity plot (v, €2), where v is the magnitude of velocity complex
amplitude at the point of the structure where the maximum displacement occurs and €2 is the aforementioned forcing
frequency. Moreover, in the algorithm used here, we assume that the effective NNM frequency @; can vary from the true
NNM frequency @y, , see Egs. (19.2) and (19.3). The method discussed here also simplifies the model by assuming that the
dominating mode shape ® j does not depend on vibration level. Thus, the proposed algorithm is based on the formulas shown
in Eqgs. (19.2) and (19.3), where the models for magnitude and phase of the complex amplitude of the velocity are presented.

T i iy Nin : - vel
F. @ 6 =v— H( ®;@;FQe' ' S &, BTFQeY o/ ) o0 o
’ ’ o = pt.of max. || — .
\/(‘7)? — Q2+ Q0o k=1 \/(wg’k — Q)2 + (24kwo x2)?2 / | detection
k]
Biin (€2)
—2Ci®;%Q
G(Q; @) =tan(@h— " =0 19.3
( J) (QDJ ) 0)3 _ ( )

In the numerical experiments we conducted, the nonlinear mechanical system behavior was caused by the presence of
nonlinear restoring force (which was a function of the displacement only) in the equation of motion. Values £ 7 were computed
such that the damping matrix is constant, thus ¢; = ;}i“wo, i|@j.

The algorithm proposed here consists of three stages. In the first stage a @; value is assigned to each (v, £2) point measured
during the simulated experiment or laboratory tests. A value of @; was found for each pair of measured (v, ) by using a
nonlinear curve fitting routine to minimize Eq. (19.2). Then, various pairs of (v, @;) are used to fit a polynomial to @; as
a function of velocity, i.e. @; = co + c1v + .... The objective of the third stage is to find a point (v, ws) at which FRF
intersects the NNM curve. At this particular point Eqs. (19.4) and (19.5) hold (see also Fig. 19.1).

®; @ Fe'! (i)
F(U*a Wi C()*) = Uy — H( ~ + Blin(w*)> pt.of max. || = 0 (194)
2{160* deflection
~vel T ~ — . —
;" — — > - wj (vy) = o, j (V) = s (19.5)

Fit to FRF: F = F(v, Q; @;) =0

——& = @(v) + e.g. cubic polynomial

- - - -Estimated NNM curve: @g; = @;(v)
® FRF and NNM intersection: (v, wy)

Forcing Frequency

Velocity Amplitude at Point of Max. Deflection

Fig. 19.1 Plot of interpolated frequency response function, effective NNM frequency @;(v) and estimated NNM curve @y, ;(v). Those three
curves would cross one another at point (v, w,) marked with a filled circle



19 An Interpolation Algorithm to Speed Up Nonlinear Modal Testing Using Force Appropriation 195
19.3 Case Study

To test this method, data points (v, €2) were generated by simulating force appropriation numerically. The test was performed
on the one mode ROM of a curved beam with clamped-clamped boundary conditions excited with an uniformly distributed
sinusoidal force. The beam was 304.8-mm-long, 12.7-mm-wide, 0.508-mm-thick and had a radius of curvature of 11.43 m.
It was constructed of steel with a Young’s modulus of 204 GPa, a mass density of 7860kg/m> and Poisson’s ratio of 0.29.

Figure 19.2 shows results obtained in the first two algorithm stages for two regions along the NNM. Using Eq. (19.2) as
a model function with @; expressed as a cubic polynomial of v the frequency response functions could be recreated and
validated against the true FRF curves measured by carefully tuning the forcing to obtain phase quadrature. As shown in
Fig. 19.2 they were successfully reconstructed when the forcing magnitudes were low enough. The NNM of the system was
then computed using Multi-Harmonic Balance Method (MHB) and is presented in Fig. 19.3, along with the NNM estimated
using the proposed interpolation algorithm and the traditional Force Appropriation Method (FAM).

It is important to note that the only parts of the estimated NNM curve which were successfully found by the algorithm
were shown in the chart and that the solution in the vicinity of the turning point was very far from the test data. Moreover,

a b
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Fig. 19.2 Results of the first two algorithm stages for force magnitudes of (a) 6.7e—5 N (the system exhibits softening at this force level) and (b)
1.3e—3 N (hardening)
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Fig. 19.3 Comparison of the NNM curve computed with the presented algorithm with solutions obtained using the Force Appropriation and
Multi-Harmonic Balance Methods



196 M. Kwarta et al.

it seems that the algorithm successfully finds the NNM points even if the vibration level is high. Simultaneously, it fails in
recreating FRF parts which are close to the nonlinear resonance (see Fig. 19.2b). Further investigation is needed to determine
the causes of this behavior.

19.4 Conclusion and Future Work

We proposed an algorithm based on the single nonlinear resonant mode method which interpolates between a few points
measured on a nonlinear FRF in order to estimate the NNM curve. Such an algorithm could speed up measurements
dramatically.

In the current version of the algorithm we proposed a slight modification to the original SNRM formulation, e.g. we
allowed the effective nonlinear natural frequency to vary from the true NNM frequency. The algorithm succeeded in
finding the NNM curve for a complicated system that exhibits softening and hardening over most of the range of vibration
levels studied. However, it successfully reconstructed the FRFs only for the cases with low forcing magnitudes. Further
investigation is needed to determine the causes of this behavior. The algorithm will also be validated against results from
other tests, including lab experiments on 3D printed plastic curved beams.
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Chapter 20 )
Estimating Applied Loads and Response Accelerations Gkt
on a Dynamic System Using Vibration Data

Eren Kocak, Caner Gengoglu, Biilent Acar, and Kenan Giirses

Abstract Measured infield accelerometer data is very useful when evaluating the structural dynamics of any mechanical
system. Researchers have great difficulty to make measurements from all particular regions where they are interested in due
to shortage of measurement channels and difficulty of instrumentation. Thus the vibrations on the rest of the structure should
be estimated with limited measured data.

In this study a response acceleration estimation method based on input force estimation is employed. For estimation of
applied forces and acceleration data form unmeasured locations of the structure, an accurate model of the system is required.
Thus at first stages of the study, FE model is established and updated using experimental modal analysis results. Having the
accurate dynamic model, vibration measurements of the structure are done under unknown forces to simulate operational
conditions. To estimate applied load location, a state space model (SMM) of the structure is established using updated FE
model. By employing augmented Kalman filter (AKF) approach, the location of the applied force is estimated from candidate
force input locations, and the force signal is reconstructed.

Knowing the force input location and the transfer function (TF) matrix of the structure, response acceleration power
spectral density (PSD) data of the unmeasured locations can be estimated from measured locations. Employing Frequency
Response Functions (FRFs) between excitation and measured location, PSD of the input force is obtained. Using input force
PSD and FRF between excitation and unmeasured location, the unmeasured PSD data can be predicted.

The methodology presented in this study is applied to the GARTEUR structure which is an internationally accepted de
facto model. The FE model of the GARTEUR structure is set up first and subsequently the FE model is verified by modal
tests. In the laboratory tests, GARTEUR structure is excited by impact hammer from an arbitrary location. Using the SMM
of the GARTEUR and AKF approach, the location of the excitation force is estimated from candidate locations. After this
step, PSD for the unmeasured locations are estimated from TF matrix of the structure and measured vibration data. Finally,
both estimated and measured acceleration and force data are compared and satisfactory results are obtained.

Keywords Force data estimation - GARTEUR structure - Augmented Kalman filter - Frequency response function

20.1 Introduction

For engineering structures such as bridges, aeroplanes, missiles, satellite launch vehicles, etc., knowing vibration levels on
many locations on the structure during operational conditions is not an easy task and even impossible. Due to shortage of
measurement channels, difficulties on instrumentation and cost effects drive engineer to find an alternative solution. Thus,
operational vibrations of the whole structure should be estimated using measurement from limited locations.

With current technology, vibration characteristics such as natural frequencies and mode shapes of engineering structures
could be obtained with experimental modal analysis and/or finite element analysis [1, 2]. Any system model that relates force
inputs applied to the structure and obtained response accelerations can be established from the vibration characteristics.
Also, response accelerations on any location of the structure could be calculated with FEM by applying known forces to
know locations. Thus, one can compute response of the structure as long as locations and amplitudes of operational forces
are known. However, for practical cases, measuring the operational loads is very difficult or even impossible. Only available
data at hand is the system model and response measurement from limited locations.

At design process of any mechanical system, levels and frequency range of vibration on critical equipment (such as inertial
measurement unit, seeker, engine, etc.) should be known. Also modal parameters of system such as natural frequencies, mode
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shapes, and modal damping ratios must be available for system identification. For mechanical systems, ground vibration tests
(GVT) can be used to obtain modal parameters of the real accurately. The finite element model of the system can be updated
using GVT results. In engineering applications, it is unpractical to make dynamic measurements from all locations of the
structure. Due to shortage of measurement channels, difficulty of instrumentation, and cost, accelerations of some important
locations cannot be measured directly. Acceleration levels of the unmeasured locations should be estimated using the data of
the measured locations and the accurate system model. Force estimation is an intermediate step for acceleration estimation.
The force estimation process is an inverse process and it has some difficulties due to ill-conditioned nature of the problem
[3]. Other than direct inversion methods for estimation of force, Kalman filter methods can be employed which can be used
to estimate the states of a system [4—8]. In augmented Kalman filter (AKF) method, the input of the system is also treated
as states of some augmented system, and both system states and inputs are estimated simultaneously [4, 5]. In dual Kalman
filter, state estimates and input estimates of the system are computed using two Kalman filters successively [5, 7] Along
with these methods, joint input state (JIS) is also employed in estimation of forces for large engineering structures such as
bridges [7-9]. Also usage of Kalman filter together with finite element methods allows engineers to make estimations for
unmeasured locations using measured ones [10]. By these estimation methods, operational vibration levels of mechanical
structures could be estimated with limited operational measurement data.

In this study a novel approaches based on the finite element (FE) method are proposed for estimation of the acceleration
levels for each particular point on the structure that cannot be instrumented. An accurate system modal is obtained by FE
and modal test. A steady-space model (SSM) is constructed based on accurate FE data. SMM is used with AKF to specify
input location using the test data simulation operation condition. After specify input location, a harmonic unit force was
applied as the simulation of impact load from this location. Therefore, FRF of accelerometer locations were obtained with
linear SSD FE analysis. These FRFs were used to estimate other accelerometer location responses. Finally, estimated and
measured acceleration data are compared, and satisfactory results are obtained.

The methodology presented in this study is proven by test data using the GARTEUR structure which is an internationally
accepted de facto model. To obtain TF between two separate locations on GARTEUR, steps which are given below are
followed:

. Creating FE model of GARTEUR.

. Running linear frequency extraction analysis (modal analysis) of GARTEUR.

. Updating FE model of GARTEUR with experimental modal analysis.

. Obtaining response acceleration data at 19 locations on GARTEUR with time domain, step input free vibration test.

. Specifying input force location by using augmented Kalman filter approach.

. Running frequency domain dynamic analysis with harmonic unit force of updated FE model of GARTEUR.

. Obtaining FRF of between force input point and two interested response locations—in application, one of two location
acceleration responses will not be known, the other one will be known

8. Obtaining estimated acceleration response of specific location

~N NN =

20.2 State Space Modeling of Vibratory Systems

Considering a linear vibratory mechanical system, the equation of motion can be written as follows:
MF (t) + Cqar (t) + Kr (t) = £ (t) (20.1)

In the equation M is the mass matrix, Cq is the damping, and K is the stiffness matrix. Deformations of the physical
locations of the system are denoted in r vector. Applied forces to the system are given in f vector.

Equation of motion written in physical domain can be converted to modal domain. By performing modal analysis, natural
frequencies and mass normalized mode shapes of the system could be obtained. Transition from modal domain to physical
domain could be achieved by the equation below:

r (t) = &y (t) (20.2)

Here @ is the mass normalized mode shape matrix, and v is a vector of modal coordinates.
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Mass, damping, and stiffness matrices can be converted to modal domain form as follows [11]:

M= o"™M® (20.3)
Cq=0TCy@ (20.4)
K = o"K® (20.5)

f=o'f (20.6)

Thus the equation of motion could be written in modal domain:
Mij (t) + Can (t) + Ky (t) = £(t) (20.7)

Here M = I since mode shapes are mass normalized.

A dynamic system can be represented in state space form also. For state space representation of the vibratory system,
inputs are defined as the applied forces. Outputs of the system are taken as displacements, velocities, and accelerations.
States of the system are taken as modal coordinates and derivatives of them. State space equations are given as follows:

x = Ax + Bu

y = Cx + Du (20.8)

n

System states are X = |: j|, the input vector is u = f(t), and displacements, velocities, and accelerations are system

outputs.
For this system the state matrices can be computed as shown [11]:

0 I 0 I
A= -1 -1 = . N
-M K-M Cq4 — diag (w?) — diag (2gjw;)

0
b &)

I ® 0 (20.9)
C= 0o

| — @7 diag (w?) — @7 diag (2gjwy)

0
D=| 0

| &7

By modifying B, C, and D matrices, a system model with reduced number of input and outputs can be established.

20.3 Force Estimation Using Kalman Filter

The system model is established in state space. This step enables usage of Kalman filters for input estimation. Considering
an engineering system in state space the state equations are:

X (t) = Ax(t) + Bu (t) + w (t)

y () = Cx(t) +Du(t) + v (t) (20.10)
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For engineering systems, there will be noise present. In the model the process noise is w(t) which is assumed to have zero
mean with a covariance matrix Q. Since there will be noise form sensors, the measurement noise is added to the system as
v(t). Similar to the process noise, the measurement noise is also assumed to have zero mean. The covariance matrix of the
measurement noise is taken as R.

A Kalman filter can be used to estimate the states of the above system using the input data and the system outputs. However
the problem at hand is to reconstruct the unknown input signal by using measurements form the system. To accomplish this
task, there are some Kalman filter algorithms such as dual Kalman filter and augmented Kalman filter [4, 5]. For dual Kalman
filter, two successive Kalman filters are applied to estimate the inputs and states in an iterative manner [5]. For augmented
Kalman filter approach, the inputs are also treated as states of an augmented system, and one Kalman filter is applied to the
augmented system to estimate the states and the inputs at the same time. [4, 5]

To construct the augmented Kalman filter input is assumed fit the model shown [4]:

) =0+p@ (20.11)

where p(t) is assumed to be a stochastic process with zero mean and covariance matrix S. The augmented states are given as

X . . . .
Xaug = |: :| According to the augmentation of states, the new matrices can be established as follows [4]:
u

HEIHNEN .
y=[cC D]m+v

In this scheme the augmented system matrix is Aaug = [ i|, the augmented output matrix is Caug = [C D], the

process covariance matrix 13[(3 S| and the measurement covariance matrix is [R]. In order to have a stable working

augmented Kalman filter, the augmented system matrix must be observable through the augmented output matrix. This
means enough number of measurements should be taken to estimate given number of input forces.

If there are n number of modes of the vibratory system that are considered when establishing the state space model and
there are m number of inputs and q number of outputs of the system, then the number of states of the augmented system will
be 2n+m. The observability matrix which is (2n+m)xq by 2n+m of the augmented system can be computed as follows:

Caug

CaugAaug
0= CaugAaug2

2n+m
CaugAaug +

If the rank of the observability matrix is equal to the number of states of the augmented system, which means
rank(O) = 2n+m, then the system is observable [12].

20.4 Accelerometer Response Estimation Using Transfer Function of System

The relationship between the unknown inputs x(t) and the measured resp