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Chapter 9
Metabolic Biomarkers in Nematode 
C. elegans During Aging

Sumino Yanase, Takamasa Ishii, Kayo Yasuda, and Naoaki Ishii

Abstract  Changes in energy metabolism occur not only in diseases such as cancer 
but also in the normal development and aging processes of various organisms. These 
metabolic changes result to lead to imbalances in energy metabolism related to cel-
lular and tissue homeostasis. In the model organism C. elegans, which is used to 
study aging, an imbalance in age-related energy metabolism exists between mito-
chondrial oxidative phosphorylation and aerobic glycolysis. Cellular lactate and 
pyruvate are key intermediates in intracellular energy metabolic pathways and can 
indicate age-related imbalances in energy metabolism. Thus, the cellular lactate/
pyruvate ratio can be monitored as a biomarker during aging. Moreover, recent 
studies have proposed a candidate novel biomarker for aging and age-related 
declines in the nematode C. elegans.
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9.1  �Introduction

In mammalian p53-mutated cancer cells, glycolysis is used predominantly for 
energy production while aerobic mitochondrial respiration is downregulated, a sec-
ondary metabolic change known as the Warburg effect [1]. Recent studies have 
revealed that the mammalian tumor suppressor p53 directly regulates oxygen con-
sumption through transcriptional targets such as the SCO2 gene, which encodes an 
assembly protein for the synthesis of cytochrome c oxidase (COX) in the mitochon-
drial respiration chain complex and is associated with changes in glycolytic activity 
in mice and human cancer cells [2]. Moreover, mammalian p53 regulates the glyco-
lytic enzyme phosphoglycerate mutase (PGM) and the mitochondrial gatekeeper 
pyruvate dehydrogenase kinase (Pdk2) through post-transcriptional control [3, 4]. 
Likewise, we recently investigated whether the mammalian p53 ortholog CEP-1 in 
a model organism Caenorhabditis elegans (C. elegans) is associated with metabolic 
transition in the cells [5, 6]. Unlike tumorigenesis in mammals, impaired p53/CEP-1 
extends the lifespan through an age-related imbalance in energy metabolism in C. 
elegans [7, 8]. The age-related imbalance in energy metabolism shows that lactate 
levels and consequently the lactate/pyruvate (L/P) ratio decrease during aging in 
wild-type adult. However, this phenomenon is different in cep-1 mutants. 
Interestingly, changes in the L/P ratio during aging have also been observed in a 
mutant premature aging model in C. elegans [9]. Thus, classical energy metabolism 
and the inherent changes in metabolite levels are re-evaluated based on the cellular 
balance during aging and age-related diseases, and some metabolites could be high-
lighted as novel biomarkers [9, 10]. Here, we review the change in energy metabo-
lism during aging in C. elegans and discuss the potential biomarkers in aging and 
age-related disorders in organisms.

9.2  �Metabolism During Development and Aging in C. 
elegans

In the life cycle of C. elegans, there are normally four larval (L1-L4) and adult 
stages, as well as a facultative diapause ‘dauer’ larval stage. Dauer larvae do not 
feed despite being active [11, 12]. In the energy metabolism of C. elegans, the tri-
carboxylic acid (TCA) cycle is preferentially used for cell growth and proliferation 
during the L2 to L4 stages; subsequently, both higher tolerance to anoxia and greater 
protection against reactive oxygen species (ROS) are observed in young adult 
worms [12–14]. It is likely that the developmental characteristics of energy metabo-
lism are associated with an invariant number of somatic cells, except the adult germ 
line, after somatic cell division. Marked reductions in oxygen consumption and 
metabolic rate have been seen in wild-type animals of 10-day-old and above [15]. 
These reductions are consistent with the gradual decay of muscle function seen in 
the adult stage, as revealed by pharyngeal pumping and locomotion rates [16, 17]. 
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Recently, we showed that expression of the encoding mammalian COX assembly 
protein SCO2 gene homolog sco-1 gene increases according to age in wild-type C. 
elegans [8]. However, as previously reported, adenosine triphosphate (ATP) and 
oxygen consumption levels are significantly reduced during aging in the adult stages 
[15, 18, 19]. These results suggest that mitochondrial components, such as COX, 
are damaged by mitochondrial ROS during the aging process, and consequently 
aerobic glycolysis is utilized preferentially rather than the TCA cycle [20].

On the other hand, we showed the age-dependent increases in the expression 
levels of pck-1 gene encoding a phosphoenolpyruvate carboxykinase (known as 
PEPCK or PCK1 in mammals), which regulates gluconeogenesis [21], and sir-2.1 
gene encoding a C. elegans sirtuin (also known as NAD+-dependent histone deacet-
ylase), which is induced upon caloric restriction [22, 23] in wild-type C. elegans 
[8]. These observations indicate an acceleration of gluconeogenesis and calorie 
restriction during normal aging. Indeed, lactate levels and the consequent L/P ratio 
decreased in aged wild-type C. elegans.

9.3  �Hypoxia-Induced Metabolism and Aging in Nematode

The pck-1 gene is related to an important role involved in unique energy production 
even in anaerobic environments during various life cycles of many parasitic inverte-
brates. Although C. elegans is a free-living nematode, it also possesses the PEPCK-
succinate pathway, which is an anaerobic mitochondrial fermentation pathway for 
energy production during the parasitic stage of Ascaris species, which are mamma-
lian intestinal roundworms [10, 24, 25]. In fact, starved and incubated C. elegans 
can normally survive for a few hours by utilizing carbohydrate stores under anoxic 
conditions [10, 26]. C. elegans PCK-1 regulates several metabolic processes associ-
ated with cataplerosis, which is the removal of intermediate metabolites from path-
ways, such as gluconeogenesis and PEPCK-succinate pathways in anaerobic 
environments [21, 27]. Our previous report also found the upregulation of gluco-
neogenesis rather than the anaerobic metabolic pathway during aging in C. elegans 
due to the increased expression of pck-1 and sir-2.1 genes, reduction in mitochon-
drial respiration, and decreased L/P ratio [8, 28].

9.4  �Metabolic Changes in a Nematode Model of Premature 
Aging

According to the free radical theory of aging, the accumulation of ROS as by-
products of mitochondrial metabolism is associated with lifespan determination and 
aging in various organisms [29, 30]. Almost all mitochondrial oxygen consumption 
is efficiently coupled to the production of ATP; however, a small part of the oxygen 
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consumed is reduced by wayward electrons to produce potentially toxic ROS. Indeed, 
mitochondria are the primary source of ROS in cells [31]. It is estimated that ~0.1% 
of the oxygen utilized by cells is only partially reduced and is leaked as a kind of 
ROS, e.g., superoxide anion (O2

.-) [32]. In C. elegans, lifespan is closely related to 
the concentration of environmental oxygen [33] and the continuous exposure to the 
hyperoxia accelerates senescence so that the levels of intracellular ROS increase in 
animals [34–36].

The mev-1 gene encodes a large subunit of the enzyme succinate dehydrogenase 
cytochrome b, which is a component of complex II in the mitochondrial electron 
transport chain. Mutation of the gene causes an increase in mitochondrial O2

.- pro-
duction and consequently shortenes the lifespan of C. elegans [37]. Mitochondrial 
electron transport chain transfers reducing equivalents from NADH (in complex I) 
and FADH2 (in complex II) in the form of electron flow through complexes III and 
IV. In the four complexes, which are connected with CoQ and cytochrome c (Cyt c), 
protons (H+) are pumped from the matrix into the intermembrane space to establish 
an electrochemical gradient and subsequently drive ATP synthase to generate ATP. 
When flow to oxygen as the final acceptor of electrons is restricted because of a 
higher H+ gradient or inhibition at the complexes, the chance of electron leakage 
increases. The leaked electrons from complexes I and III are transferred to molecu-
lar oxygen in the mitochondria and consequently cause the generation of O2

.-. 
Mitochondrial manganese superoxide dismutase (Mn SOD) catalyzes the conver-
sion of O2

.- into hydrogen peroxide (H2O2) in the matrix (Fig. 9.1) [38]. In mev-1 
mutant, O2

.- production increases at complex I rather than at complexes II and III, 
and the lactate levels and L/P ratio are markedly higher than in the wild-type [9]. 
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Fig. 9.1  Schematic of electron and H+ transport in the electron transport chain of mitochondrial 
OxPhos. Four complexes are connected to CoQ, Cyt c and other molecules included in the chain. 
Electrons leak mainly from complexes I and III during the higher H+ gradients
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These observations suggest that mev-1 animals preferentially utilize glycolysis 
instead of using the TCA cycle and subsequently the electron transport chain in 
mitochondria for production of cellular energy. Interestingly, a recent study has 
demonstrated that p53/CEP-1 inactivation rescues the shortened lifespan of the 
mev-1 mutant [39]. Despite overproduction of ROS by mitochondria in the mev-1 
mutant, however, we observed increases in the expression of COX assembly protein-
encoding sco-1 gene, which is a target of p53/CEP-1 and associated with regulation 
of mitochondrial respiration (unpublished data). Thus, the levels of cellular metabo-
lites such as lactate and pyruvate, which are key intermediates in the cellular energy 
metabolic pathways, correlate with a switch from mitochondrial respiration to gly-
colysis in energy metabolism during aging [8, 9].

9.5  �Metabolism of Mutants Related to the Longevity in C. 
elegans

9.5.1  �Metabolism in Reduced ins/IGF-1 Signaling

Intracellular ROS levels are regulated via an insulin/insulin-like growth factor-1 
(ins/IGF-1) signaling pathway [40, 41], which determines longevity and resistance 
to oxidative stress in C. elegans [42–44]. Through the DAF-16 transcription factor 
[45, 46], which is the C. elegans homolog of the mammalian forkhead transcription 
factor class O (FoxO) and activated downstream of the ins/IGF-1 signaling pathway, 
target genes such as those related to antioxidants, mitochondrial respiration, and 
protein repair systems are regulated during normal aging (Fig. 9.2) [47, 48]. Thus, 
not only antioxidant systems containing SOD and catalase but also intracellular 
ROS levels containing mitochondrial O2

.- are modulated via the ins/IGF-1 signaling 
pathway and are related to determining the lifespan of C. elegans [35, 43, 44, 52].

Many previous studies have demonstrated that the quantity of ATP production in 
both long-lived mutants with genes age-1 (encoding a homolog of the catalytic 
subunit of mammalian phosphatidylinositol 3-OH kinase) and daf-2 (encoding a 
homolog of the mammalian insulin receptor) [40, 41, 53], which inactivates ins/
IGF-1 signaling, is increased compared with wild-type C. elegans [45, 54–57]. In 
addition, the mutants consistently show lower respiratory rates despite increased 
ATP concentrations [58–62]. That is, a reduction in the metabolic rate is required to 
extend the lifespan of C. elegans [60]. These observations suggest the possibility 
that worms with reduced ins/IGF-1 signaling preferentially utilize aerobic glycoly-
sis and gluconeogenesis through glyoxylate shunt, which is not present in mam-
mals, rather than mitochondrial respiration in the cells [20]. Intracellular ROS as 
by-products of the ATP production process in the mitochondrial respiratory chain 
are efficiently removed due to the higher activities of antioxidant enzymes such as 
SOD and catalase in age-1 and daf-2 mutants [58, 63].
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9.5.2  �Metabolism Related to Mitochondrial Respiratory Chain

Mutations of the clk-1 gene (encoding a homolog of the yeast COQ7/CAT5, a com-
ponent of mitochondrial respiratory chain) in C. elegans, show slowing of develop-
mental and physiological processes, including growth, pharyngeal pumping rate, 
defecation cycle and aging [64]. In the yeast Saccharomyces cerevisiae, mutations 
of the coq7 gene prevent the biosynthesis of ubiquinone (coenzyme Q or CoQ), a 
lipid-soluble component of the electron transport chain required for mitochondrial 
respiration and gluconeogenesis [65, 66]. The mildly reduced mitochondrial respi-
ration of long-lived clk-1 mutants in C. elegans suggests that longevity is promoted 
by an age-dependent decrease in mitochondrial function [55, 67]. However, aged 
clk-1 mutants also retain substantial elevation in ATP levels compared with wild-
type animals. Interestingly, energy production and oxygen consumption appear to 
be uncoupled in clk-1 mutants [55]. Dietary withdrawal of coenzyme Q from 
Escherichia coli (E. coli) extends the lifespan of not only wild-type but also clk-1 
mutant adults [68]. Similar results were reported in COQ7-deficient mice [69]. 
These findings suggest that mitochondrial coenzyme Q regulates the coupled mito-
chondrial respiration and generation of ROS that substantially contribute to the 
lifespan extension in various aerobic organisms.
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Fig. 9.2  Schematic model of the ins/IGF-1 signaling pathway associated with aging in C. elegans. 
As shown in the schematic, other signals, for instance mammalian NF-E2-related factor (Nrf) 
ortholog SKN-1 up-regulated by the p38 mitogen-activated protein kinase (MAPK) signaling 
pathway, plays an important role in fine-tuning molecular compensation among sod-genes during 
normal aging [49–51]
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9.5.3  �p53/CEP-1 Dependent Energy Metabolic Regulation

In contrast, the C. elegans cep-1 mutant shows increased ATP levels throughout 
aging without increased oxygen consumption compared with wild-type, as well as 
increases in lactate levels and the consequent L/P ratio depending on age. These 
results suggest the compensatory and preferential use of glycolysis to generate ATP 
rather than mitochondrial oxidative phosphorylation (OxPhos) related to the 
impaired p53/CEP-1, which resembles the energy metabolism seen in mammalian 
cancer cells. In addition, this implies that the unique anaerobic metabolism related 
to the PCK-1 in C. elegans activates the generation of ATP, as described in Sect. 9.3 
[8]. Wild-type p53/CEP-1 supplements a component in COX, which is damaged by 
mitochondrial ROS during normal aging, through the target sco-1 gene encoding a 
COX assembly protein in C. elegans. Moreover, a recent report shows that p53 with 
SIRT6 regulates gluconeogenesis by the promoting of nuclear exclusion of FoxO1 
transcription factor, which mediates the activation of PCK1 [70]. Therefore, we 
conclude that impaired p53/CEP-1 leads to a metabolic imbalance during the aging 
process and mainly involves PCK1-mediated gluconeogenesis. It also has the poten-
tial for metabolic regulation of lifespan in mammalian post-mitotic cells after dif-
ferentiation, for example, in somatic cells of C. elegans [8].

9.6  �Homeostatic Control of Energy Balance in Caloric 
Restriction

Caloric restriction (CR) and fasting has been shown to extend lifespan and postpone 
age-related decline in various organisms from yeast to mammals. Indeed, C. elegans 
mutants with a slower pharyngeal pumping rate (e.g., eat-2, clk-1 mutants) and a 
reduced bacterial food intake live significantly longer than the wild-type. The long 
lifespans of animals with mutations in the eat-2 gene, which encodes a nicotinic 
receptor subunit, do not require the activity of DAF-16 transcription factor down-
stream of ins/IGF-1 signaling, and show no reduction in metabolic rate [71, 72]. 
Moreover, several recent studies revealed that a few transcription factors in C. ele-
gans are closely associated with these phenomena (Fig. 9.3) [73, 74]. CR activates 
a mammalian basic leucine zipper transcription factor NF-E2-related factor 2 (Nrf2) 
homolog SKN-1, which signals the peripheral tissues to increase metabolic activity 
in a pair of ASI neurons in the head of C. elegans [73]. The transcription factor 
PHA-4, which is a homolog of the mammalian FoxA transcription factors family, 
has an important role in regulating the expression of superoxide dismutases-
encoding sod-genes in head and tail neurons and intestinal cells, particularly in 
response to fasting, and lead to the regulation of glucagon production and glucose 
homeostasis [74]. Thus, mitochondrial ROS production as a trade-off for a tempo-
rary higher metabolic rate in peripheral cells consequently induces the expression of 
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sod-genes, and ultimately enhances longevity-mediated ‘mitohormesis’ in C. 
elegans.

Mitochondrial hormesis, or more simply mitohormesis, is a hypothetical concept 
that involves hormetic extension of lifespan [75]. In C. elegans, reduced glucose 
availability promotes ROS production as a side effect of the mitochondrial respira-
tion, and causes induced antioxidant activity, thus increasing oxidative stress resis-
tance and lifespan. The lifespan extension due to reduced glucose is abolished in the 
disruption of the aak-2 gene, which encodes a homolog of mammalian AMP-
activated protein kinase (AMPK) in C. elegans. AMPK activation leads to a decrease 
in the mammalian target of rapamycin (mTOR) activity [76]. Therefore, AAK-2 
activated by a higher AMP/ATP ratio in cells under CR conditions, such as reduced 
glucose, functions independently of the ins/IGF signaling pathway to extend lifes-
pan due to the decrease in mTOR signaling [77].

On the other hand, recent studies have proposed the hypothesis that CR extends 
lifespan at least in part by increasing the levels of ketone bodies in various organ-
isms, including nematodes and rodents [78]. The ketone bodies, β-hydroxybutyrate 
(βHB) and the oxidized forms, which were first found in the ketonuria in diabetes 
mellitus, are produced by a reversal of the β-oxidation pathway in the metabolism 
of fatty acids and also during reduced carbohydrate intake such as starvation and 
fasting. Feeding βHB, which is a histone deacetylase (HDAC) inhibitor, extends the 
lifespan of C. elegans depending on the longevity signals of ins/IGF-1 and p38 
MAPK cascade [79]. Thus, reduced glucose intake induces activation of alternative 
energy metabolic pathways and subsequently changes in the levels of cellular 
metabolites containing ketone bodies, which are related to longevity. Therefore, the 
cellular levels could act as metabolic biomarkers to enable understanding of indi-
vidual energy conditions associated with aging and age-related decline.
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Fig. 9.3  Schematic model of crosstalk of transcriptional factors related to caloric restriction in C. 
elegans
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9.7  �Conclusions

Several genetic mechanisms of aging and lifespan have been clarified to date using 
the nematode C. elegans and are consistent, at least in part, among various organ-
isms. However, the aging process is highly complex due to crosstalk between 
genetic signaling pathways. Recently, the various roles of mitochondria in the sev-
eral signaling pathways associated with age-related functions, including energy 
metabolism, free radical production and apoptosis in aerobic organisms, have been 
specifically highlighted. In addition, mitochondrial dysfunction during aging is a 
trigger that induces many age-related changes in energy metabolism. Therefore, 
identification of these changes among cellular metabolites could help to estimate 
the condition of an individual and classify age-related disorders such as cancer, 
diabetes, sarcopenia, and neurodegenerative diseases in aging humans. The cellular 
levels of these metabolites could be used as genetic-dependent metabolic biomark-
ers to understand the individual energy conditions associated with aging and age-
related declines. The unique ability of energy metabolism pathways in C. elegans 
might function under both aerobic and anaerobic conditions during aging. The use 
of model organisms contributes to our understanding of not only the mechanisms of 
aging but also cellular metabolic changes during aging and age-related decline in 
health.
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