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Chapter 10
Circular RNAs as Potential Biomarkers 
and Therapeutic Targets for Metabolic 
Diseases

Mohamed Zaiou

Abstract  Epidemiological studies provide evidence of a continuous rise in  
metabolic diseases throughout industrialized countries. Metabolic diseases are 
commonly associated with different abnormalities that hold a key role in the emer-
gence and progression of frequent disorders including diabetes mellitus (DM), non-
alcoholic fatty liver disease (NAFLD), obesity, metabolic syndrome and cardiovas-
cular diseases. The burden of metabolic diseases is believed to arise through 
complex interaction between genetic and epigenetic factors, lifestyle changes and 
environmental exposure to triggering stimuli. The diagnosis and treatment of meta-
bolic disorders continue to be an overwhelming challenge. Thus, the development 
of novel biomarkers may enhance the accuracy of the diagnosis at an early stage of 
the disease and allow effective intervention. Over the past decade, progress has been 
made in exploring the potential role of noncoding RNAs (ncRNAs) in the regulation 
of gene networks involved in metabolic diseases. A growing body of evidence now 
suggests that aberrant expression of circular RNAs (circRNAs) is relevant to the 
occurrence and development of metabolic diseases. Accordingly, circRNAs are pro-
posed as predictive biomarkers and potential therapeutic targets for these diseases. 
As the field of circRNAs is rapidly evolving and knowledge is increasing, the pres-
ent paper provides current understanding of the regulatory roles of these RNA spe-
cies mainly in the pathogenesis of DM, NAFLD and obesity. Furthermore, some of 
the limitations to the promise of circRNAs and perspectives on their future research 
are discussed.
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10.1  �Introduction

Metabolic diseases refer to different disorders including diabetes mellitus (DM), 
obesity, metabolic syndrome, dyslipidemia, and non-alcoholic fatty liver disease 
(NAFLD) [1]. These generally occur when metabolism processes fail. The patho-
genesis of metabolic diseases and their chronic complications involve multiple 
molecular processes and pathways. Early studies using different models revealed 
that metabolic diseases arise through a complex interplay between genetics, epi-
genetics, environment, and/or lifestyle factors (nutrition, lack of exercise, etc.) and 
obesity [2–4]. However, their exact etiology remains partially elucidated.

Despite intensive research into most aspects of metabolic diseases, their causes 
are still poorly known and only a few effective drugs are available for accurate treat-
ment. Nonetheless, the effectiveness of the current therapy could be improved if it 
could be implemented at early stage of the disease and targeted to the right subjects 
who may actually benefit from it. Such an ideal therapy cannot be achieved unless 
it is combined with predictive biomarkers to guide the treatment. Hence, the search 
for additional clinically relevant drugs as well as potential biomarkers with precise 
prognostic and diagnostic value is becoming increasingly important in the field of 
metabolic diseases.

Recent years have witnessed increasing interest in studying noncoding RNAs 
(ncRNAs) including long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and 
circular RNAs (circRNAs), which are considered as important epigenetic regulators 
of many physiological processes. Huge efforts have been made to use these RNA 
molecules as predictive biomarkers for several diseases including metabolic disor-
ders [5–9]. Nowadays, the landscape of miRNAs is by far the most characterized in 
relation to metabolic diseases whereas the role of circRNAs has not yet been pre-
cisely defined.

CircRNAs belong to the ever-growing world of ncRNA molecules. They are 
covalently closed single-stranded molecules generated from precursor mRNA back-
splicing [10, 11] and can originate from different genomic regions. The lack of the 
typical terminal 5′ cap and 3′ polyadenylated tail renders circRNAs more stable and 
resistant to RNase R digestion compared to the linear RNA counterparts [12–14]. 
With respect to their biogenesis, detailed mechanisms have not been fully eluci-
dated. Several possible models have been proposed including direct back-splicing 
with ALU and inverted repeats complementation, exon lariat, and RNA binding 
protein mediated models [15, 16].

Over the past few years, high throughput technologies have enabled a significant 
breakthrough in discovery of circRNAs. Today, thousands of circRNAs have been 
identified and annotated. Based on their genomic location, circRNAs can be classi-
fied into at least three types with distinct regulatory functions across multiple mam-
malian cells and species: (1) exonic circular RNAs (ecircRNAs); (2) circular intronic 
RNAs (ciRNAs); and (3) exon-intron circular RNAs (EIciRNAs) [11]. EcircRNAs 
appear to be the most abundant RNAs accounting for over 80% of the already 
known circRNAs. Moreover, the application of highly sophisticated bioinformatics 
tools has helped create several circRNA databases with searching and browsing 
functions [17].
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CircRNAs are highly represented in the eukaryotic transcriptome, evolutionary 
conserved across species, and often show tissue or development stage-specific 
expression patterns [12, 18–21] suggesting their functional relevance [18, 19, 22, 
23]. Interestingly, earlier studies indicated that the expression of a circular RNA 
does not correlate with the expression of its cognate linear mRNA [24]. In some 
cases, circRNAs can be more abundantly expressed than their associated linear 
mRNA isoform [25] while in other situations no circRNA can be detected despite 
high levels of mRNA expression [22, 23, 26]. The striking expression differences 
between circRNAs and their mRNA counterparts suggest that the production of 
circRNAs is a highly orchestrated process [23]. As to their potential functions, 
research is still limited and challenging. Studies have reported that some circRNAs 
may act as a sponge for miRNAs via competition with miRNA/mRNA binding or 
they may interact with RNA-binding proteins (RBPs) or regulate genes at the tran-
scriptional and posttranscriptional levels [11, 27–30]. With these possible functions, 
specific circRNAs may control essential biological processes and contribute to the 
pathogenesis of diverse diseases including metabolic disorders [31–33]. However, 
the exact regulatory mechanisms by which these molecules may carry out these 
roles are not known. Thus, a more comprehensive understanding of how circRNAs 
function and what characteristics they should have to interact with other players to 
orchestrate gene expression in health and diseases states may lay the foundation for 
the development of RNAs-based diagnostic and therapeutic interventions for com-
plex metabolic diseases. Below I will discuss the most important published studies 
of circRNAs in DM, NAFLD and obesity. CircRNAs that are most likely to be 
involved in some of these disorders as well as their putative functions are summa-
rized in Table 10.1.

10.2  �CircRNAs and Metabolic Diseases

10.2.1  �DM

DM is a multiple-etiology metabolic disorder characterized by chronic hyperglyce-
mia resulting from defects in secretion and/or insulin action [34]. Defects in insulin-
mediated uptake of glucose can trigger pathogenic signals including mitochondrial 
dysfunction, oxidative stress, hypertension, inflammation and dyslipidemia. 
Additionally, diabetic patients with chronic hyperglycemia are more likely to suffer 
from many life-limiting and life-threatening complications, such as macrovascular-
related stroke, heart disease, peripheral artery disease and/or microvascular-related 
retinopathy, neuropathy, nephropathy and cancer [35–37]. A major concern with 
these diabetic complications is that the number of DM cases and associated mortal-
ity are constantly increasing globally while the effectiveness of current treatments is 
limited, and this represents a heavy socioeconomic burden. Thus, identification of 
novel biomarkers that reflect or predict insulin-secretion dysfunction in individuals 
could transform the way we deal with diabetes, allowing for early prevention and 
guided therapy as a step toward precision medicine [38].
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Over the last decade, efforts have been made to understand the disruption of 
mRNA-miRNA-lncRNA interaction networks under diabetic conditions [39]. More 
recently, scientists have shifted their research focus to circRNAs, hoping to develop 
these molecules as new biomarkers for early detection and management of diabetes. 
In this respect, the most well-known endogenous circRNA related to diabetes in the 
literature is CDR1as/ciRS-7 (a natural antisense transcript of CDR1) [19, 28]. 
Overexpression of this circRNA leads to improved insulin production and secretion 
in mouse β-cells [40]. By acting as a miR-7 sponge [20], CDR1as promotes islet 
β-cell proliferation and insulin secretion in diabetes via inhibiting miR-7 and 
enhancing Myrip and Pax6 expression [40]. These encouraging data suggest that the 
CDR1as/miR-7axis could serve as a potential therapeutic target for the treatment of 
diabetes. Similarly, another study reported that CDR1as and circHIPK3 silencing in 
wild-type animal models causes defective insulin secretion and lower islet cell pro-
liferation [41]. By performing microarray and confirming the data by qRT-PCR, 
Zhao and colleagues measured the differential expression of circRNAs in the 
peripheral blood of pre-diabetes and T2DM patients compared to matched control 

Table 10.1  Relevant circular RNAs associated with metabolic diseases

Circular RNA Expression Potential function and phenotype Ref

Diabetes
CDR1as/cirRS-7 ↑ Improves insulin secretion by sponging miR7 [40]
Hsa_circ_0054633 ↑ Associated with prediabetes and T2DM in peripheral 

blood cells
Potential biomarker for T2DM

[42]

CircRNA-HIPK3 ↑ Promotes retinal vascular disorders by blocking 
miR-30a-3p function
Control of key b-cell functions by sequestering 
miR-124-3p/miR-138-3p

[44]
[41]

CircRNA-0005015 ↑ Involved in diabetes retinopathy by acting as 
miR-519d-3p sponge

[45]

CircANKRD36 ↑ Correlated with inflammation in T2DM patient 
peripheral blood leukocytes
Potential biomarker for screening chronic 
inflammation in T2DM patients

[104]

Hsa-
circRNA11783–2

↓ Related to both coronary artery disease and T2DM in 
peripheral blood

[105]

NAFLD
CircRNA-0046367 ↑ Inhibits hepatic steatosis by preventing hepatotoxicity 

of lipid peroxidation
[68]

CircRNA-0046366 ↑ Inhibits hepatic steatosis through miR-34a/PPARα 
signaling

[69]

CircScd1 ↓ Affects steatosis of NAFLD via JAK2/STAT5 
signaling pathways

[71]

Obesity
CirRS-7 ↓ Levels decreased in pancreatic islets of ob/ob and db/

db mice
[41]

Ref reference number, T2DM type 2 diabetes mellitus
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subjects. The most significantly upregulated circRNA was hsa_circ_0054633 
(Table 10.1) implying its potential as diagnostic biomarker for prediabetes and type 
2 diabetes mellitus (T2DM) in the clinical setting [42]. Circular RNAs have also 
been investigated in diabetic vascular complications, which are a major cause of 
mortality among patients with diabetes [43]. In this context, Shan et al. reported that 
circHIPK3 was significantly induced in the retinas of patients with diabetes [44]. 
The same study group showed that depletion of circHIPK3 in a mouse model for 
diabetic retinopathy alleviated the retinal disorder [44]. Mechanistically, circHIPK3 
competitively binds different miR-30 isoforms to restore the expression of their 
target genes including VEGF, FDZ4 and WNT2 which are involved in cell viability, 
proliferation and migration. In a more recent study, Zhang and colleagues identified 
circ_0005015 as the most significantly upregulated circRNA in plasma, vitreous 
samples and fibrovascular membranes of diabetic retinopathy patients [45]. 
Furthermore, the authors demonstrated that siRNA-mediated silencing of 
circ_0005015 significantly reduced human retinal vascular endothelial cell prolif-
eration, migration and tube formation. Additional analyses revealed that 
circ_0005015 acted as an endogenous miR-519d-3p sponge to sequester and inhibit 
miR-519d-3p, thus facilitating retinal endothelial angiogenic function [45]. 
Together, these findings suggest that circ_0005015 may be considered as an ideal 
candidate biomarker for monitoring diabetic retinopathy. CircRNA_000203 is an 
additional circular transcript linked to diabetes. Tang and colleagues found that cir-
cRNA_000203 was upregulated in the diabetic mouse myocardium and in angioten-
sin (Ang) II-induced mouse cardiac fibroblasts [46]. In fact, circRNA_000203 could 
specifically increase the expression of fibrosis-associated genes (Col1a2, Col3a1) 
and α-SMA in cardiac fibroblasts via inhibiting the interaction of miR-26b-5p with 
the target genes. Therefore, circRNA_000203 might serve as a potential target for 
prevention and treatment of cardiac fibrosis in diabetic cardiomyopathy [46].

All of the above-mentioned findings suggest that the circRNAs-miRNAs-
mRNAs regulatory axis could be a useful therapeutic target for the pathogenesis of 
diabetes and its complications. However, much more remains to be learned about 
the biology of circRNAs in diabetes and their beneficial clinical application appears 
to be a future endeavor.

10.2.2  �NAFLD

Non-alcoholic fatty liver disease is emerging as the most common cause of chronic 
liver disease worldwide. It is a multifaceted disorder that ranges from the simple 
accumulation of triglycerides in hepatocytes (hepatic steatosis) to steatosis with 
inflammation, non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis, which 
may evolve towards cirrhosis and hepatocellular carcinoma [47–50]. The preva-
lence of NAFLD has been estimated to be between 25% and 45% of the general 
population [51, 52] and 70–90% among patients with obesity, DM or metabolic 
syndrome [53–55].

10  Circular RNAs and Metabolic Diseases
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Although the pathophysiology of NAFLD has not been fully elucidated, recent 
investigations have brought forward evidence that this disorder may be caused by a 
plethora of factors including hepatic lipid accumulation, adipose tissue and mito-
chondrial dysfunction, a high fat diet, obesity, a chronic inflammatory state, insulin 
resistance, and genetic and epigenetic factors [56–58]. NAFLD is clinically impor-
tant because fatty liver can progress to steatohepatitis in many patients and lead to 
liver cirrhosis and hepatocellular carcinoma. There is also growing evidence that in 
patients with NAFLD, hepatic steatosis is closely linked with obesity and the meta-
bolic syndrome [59], which have been well-established as complex metabolic dis-
eases with substantial heterogeneity. It is therefore important to identify biomarkers 
that may enable earlier prediction and diagnosis of NAFLD and to provide efficient 
treatment and better management.

An ongoing research effort is attempting to identify biological targets and signals 
closely associated with NAFLD. Some studies have indicated that miRNAs may 
have a potential role in this hepatic chronic disease [60]. Indeed, several processes 
relevant to the development and progression of NAFLD were found to be related to 
miRNAs [61, 62]. For instance, miR-34 is upregulated in NAFLD and has the 
potential to be a biomarker for diagnosis of this disorder [63, 64]. Several attempts 
have been made to translate miRNAs findings to clinical practice. In this sense, 
Regulus Therapeutics and AstraZeneca have started the development of RG-125, a 
GalNAc-conjugated anti-miR targeting microRNA-103/107 for the treatment of 
NASH in pre-diabetes and T2DM patients [65]. Hence, these encouraging findings, 
combined with the ongoing progress in the field of ncRNAs research, are expected 
to yield new insights into the pathogenesis of NAFLD.

The circRNA family has also become a key area of focus for research in 
NAFLD. There is now increasing evidence linking circRNAs to the pathogenesis of 
NAFLD even though studies in this respect have only just begun. Previous reports 
have established that the expression of PPARα and associated signaling pathways 
are inhibited by PPAR1 in patients with NAFLD [66, 67] but the underlying mecha-
nism is not clear. Regarding circRNAs and hepatic steatosis, Guo and colleagues 
[68] found that circRNA_0046367 was significantly decreased in high-fat-induced 
hepatic steatosis [68]. Subsequently, the authors demonstrated that the decrease in 
circRNA_0046367 expression led to miR-34a/PPARα interaction and lipid peroxi-
dative damage, while circRNA_0046367 normalization by intrahepatic overexpres-
sion prevented this interaction and therefore reduced steatosis [68]. In a different 
study, the same authors identified another circRNA, circRNA_0046366, whose 
expression was also decreased during free fatty acid-induced hepatocellular steato-
sis and its upregulation abolished the miR-34a-dependent inhibition of PPARα sig-
naling, leading to a marked reduction in triglyceride levels and suppression of 
hepatocytes steatosis [69]. These findings suggest that the circRNA_0046367/miR-
34a/PPARα and circRNA_0046366/miR-34a/PPARα axes play an important role in 
the pathogenesis of NAFLD [68, 69]. As circRNA_0046367 and circRNA_0046366 
have the same target, it would be of interest to examine whether or not these two 
circRNAs act in synergy and if their transcripts display significant sequence simi-
larities. In another study, the same group used the same model of NAFLD to show 
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that circRNA_021412 is also associated with hepatic steatosis through the  
circRNA_021412/miR-1972/LPIN1 signaling cascade [70] (Table 10.1). Finally, in 
a recent study, Li et al. reported that the expression of circScd1 was significantly 
lower in NAFLD tissues than control groups whereas its over-expression promoted 
steatosis of NAFLD via JAK2/STAT5 signaling [71].

Together, the above pioneering studies suggest that circRNAs are potentially 
involved in NAFLD and have the potential to serve as useful tools for the develop-
ment of diagnostic and interventional pharmacology. However, as mentioned ear-
lier, circRNA data are still lacking functional evidence and their underlaying 
mechanisms are still awaiting elucidation. Therefore, further carefully designed 
prospective studies to emphasize and validate the potential use of circRNAs as 
NAFLD biomarkers are warranted.

10.2.3  �Obesity

Obesity is another chronic metabolic disorder affecting adults and children in devel-
oped and developing countries [72]. Genetic predisposition, epigenetics, environ-
ment, and lifestyle preferences such as diet and low physical activity play crucial 
roles in excess body fat development and obesity [73, 74]. Obesity is known to be 
the main risk factor for several disorders including T2DM, cardiovascular disease, 
hypertension, coronary heart disease, and certain types of cancers [75, 76]. Due to 
the considerable impact of obesity on human health, it is therefore essential to 
develop new strategies with potential for early diagnosis and effective treatment.

While the involvement of miRNAs in the physiological processes of obesity has 
been closely studied [8, 77, 78], the role of circRNAs remains poorly elucidated. To 
the best of our knowledge, no groundbreaking studies have ever examined the 
potential link between circRNAs and obesity in humans. However, examination of 
the potential impact of circRNAs on diverse metabolic processes and a review of 
examples in the literature, suggest that circRNAs may play a role in the pathogen-
esis of obesity. For instance, based on the above studies revealing a significant asso-
ciation between circRNA expression and diabetes and NAFLD, and the fact that 
both are complications of obesity, it is conceivable that circRNAs may also contrib-
ute to the development of obesity. In addition, the antisense non-coding RNA in the 
INK4 locus (ANRIL), a complex gene with many reported linear and circular iso-
forms (circANRIL), is generated by the 9p21 locus has polymorphisms that have 
been associated with increased risk of developing cardiometabolic disease, includ-
ing type 2 (obesity-related) diabetes and manifestations of atherosclerosis such as 
coronary artery disease [79–81]. Furthermore, a previous study by Murray et  al. 
reported that lower level of CpG methylation within the promoter of ANRIL at birth 
is associated with increased cardiovascular risk [82] and adiposity [83] in later 
childhood. Carrara and colleagues hypothesized in their recent review that ANRIL 
could be a genomic site of environmental epigenetic influence on obesity [84]. An 
additional example that would argue in favor of a possible implication of circRNAs 
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in obesity was shown by Li et  al. when they attempted to identify the potential  
circRNAs associated with adipogenesis and lipid metabolism [85]. The authors ana-
lyzed the expression profile of these RNA molecules in subcutaneous adipose 
tissues of large White pig and Laiwu pig using RNA sequencing technology and 
bioinformatic methods. Among the differentially expressed circRNAs, they identi-
fied circRNA_11897 as the most significantly downregulated while circRNA_26852 
was the most significantly upregulated. Subsequent analysis revealed that subcuta-
neous miR-27a and miR-27b-3p are targets for circRNA_11897 and subcutaneous 
miR-874 and miR-486 are targets for circRNA_26852 [85]. These target genes are 
enriched in pathways associated with adipocyte differentiation and lipid metabo-
lism. Since miR-874 and miR-486 were shown to be targets of circRNA_26852, the 
authors hypothesized that circRNA_26852 may play a role in adipogenic differen-
tiation and lipid metabolism through these miRNAs [85]. On the other hand, since 
miR-27a is known to promote lipolysis [86] and inhibit adipocyte differentiation by 
targeting PPARγ [87], it is reasonable to assume that circRNA_11897, which binds 
miR-27a and miR-27b-3p and consequently provokes upregulation of their target 
genes, may be implicated in the regulation adipogenic differentiation and lipid 
metabolism. The fact that several miRNAs have been shown to be involved in the 
processes of adipogenesis and obesity [8, 88] and lipid metabolism [89, 90], and 
considering the existing regulatory link and the dynamic interplay between different 
circRNAs and miRNAs, it is possible to assume that circRNAs may also be part of 
the complex machinery that orchestrates the regulation of genes associated with 
obesity. Obesity has been reported to induce a decline in the activity and the amount 
of PPARγ [91] and an upregulation of miR-130b and miR-138 levels. Considering 
that miR-130b is known to target 3′-UTR and certain sequences within the coding 
region of PPARγ [92], while miR-138 indirectly inhibits the expression of PPARγ 
[93], it is possible that the obesity-associated decline in PPARγ expression may be 
due to a decline in the expression of yet unknown circRNAs, that normally act as 
miRNA sponges to target miR-130b. There are reports in the literature that may sup-
port this scenario. In a previous study, Deng et al. observed that miR-548 can be 
regulated by the PPARγ gene, a heart-protective factor shown to be downregulated 
in acute myocardial infarction (AMI) [94]. Subsequently, when Deng et al. explored 
the expression profile of circRNAs comparing plasma expression of circRNAs in 
AMI patients with healthy volunteers, they identified circRNA_081881, which con-
tained seven competitive binding sites for miR-548 as the most significantly down-
regulated circRNA in AMI.  The authors concluded that circRNA_081881 may 
regulate PPARγ expression by functioning as a competing endogenous RNA 
(ceRNA) of miR-548 [94].

Collectively, these hypotheses and speculative scenarios are proposed for the 
purpose of serving as basic framework for further understanding of circRNAs in 
obesity and providing investigators with potential research directions that may be 
used for generating new hypotheses for further studies on circRNAs. Finally, as 
circRNAs research continues, it is expected that new information on the role of 
these molecules will arise in the field of metabolic diseases. It is hoped that this 
information will bring evidence for the potential role of circRNAs in metabolic 
diseases.
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10.3  �Conclusions and Future Perspectives

Even though circRNAs are increasingly being recognized to play critical regulatory 
roles in the development of metabolic diseases, the lack of their large exploration 
and characterization may delay their consideration for clinical settings. In this 
respect, many concerns are left for their potential future studies. The analytical 
approaches used in the identification and prediction of circRNAs are still part of a 
relatively new field of investigation, thus, their sensitivity and specificity require 
improvement. Furthermore, lack of prospective studies, poor study design and com-
plicated statistical analyses could impede the translation of circRNA results to pre-
clinical and clinical trials, thus, limiting the success of prospective biomarkers. The 
complex interplay of circRNAs with networks involving transcription factors, 
mRNA, miRNAs, RBPs and metabolic pathways makes it difficult to evaluate the 
functions of these RNA molecules under complex metabolic diseases. It should also 
be noted that circRNAs as transcriptional and posttranscriptional regulators them-
selves undergo extensive regulation from their biogenesis to the effects that they 
exert on their target molecules and pathways. Therefore, interpretation of such com-
plex data could be enhanced by deploying systems biology approaches to refine our 
understanding of circRNAs dynamic and provide insights into their potential regu-
latory circuits in metabolic disorders. Another limitation that may generate huge 
incoherencies in circRNA results within a group of patients with metabolic diseases 
is drug use and other treatment modalities not taken in consideration. Using the 
example of miRNAs, previous studies reported that statins [95, 96], anticoagulation 
[97], and antiplatelet drugs [98] can affect quantification of these RNAs in blood 
samples and therefore should be taken in account. Regarding the patients with meta-
bolic disease, thiazolidinedione drugs are frequently used for patients with impaired 
fasting glucose tolerance while abdominal obesity can be treated with a variety of 
lower calorie diets along with regular exercise [99]. Hence, drugs as well as con-
founding parameters should be also taken in account when examining circRNAs in 
patients with diabetes, NAFLD, obesity, and metabolic syndrome, as these may 
impact the disease through these RNA species. Metabolic diseases represent a clus-
ter of disorders such as T2DM, insulin resistance, metabolic syndrome, NAFLD 
and hypercholesterolemia, which could be linked by numerous metabolic pathways. 
The interplay between these clinical situations is challenging. Thus, although each 
of these disorders has different physiological and clinical symptoms, it would be 
important to identify a signature or set of markers including circRNAs, shared by all 
disorders constituting metabolic diseases. This idea proses that, rather than relying 
on a single circRNA biomarker for disease diagnosis, one can use a group of disease-
relevant biomarkers which will likely be more accurate and efficient in predicting a 
complex phenotype. Another type of circRNA that has not been well explored in 
metabolic diseases is circRNA found within exosomes (exo-circRNAs). The pres-
ence of abundant circRNAs within exosomes was firstly reported by Li and col-
leagues [100] and a web-accessible database (http://www.exoRBase.org), exoRBase, 
a resource containing all available long RNAs (circRNA, lncRNA and mRNA) 
derived from RNA-seq data of human blood exosomes, has been recently con-
structed [101].

10  Circular RNAs and Metabolic Diseases
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With respect to metabolic diseases, many questions remain uncertain. For 
instance, what is the role of exo-circRNAs in metabolic disorders? What is their 
origin? Are they horizontally transferred via exosome vehicles to recipient cells as 
in the case of mRNAs [102]? In studies of cancer, Li et al. [100] observed that the 
abundance of tumor-derived exo-circRNAs in the serum of patients with colorectal 
cancer was correlated with tumor mass. They also found that the expression profile 
of exo-circRNAs in cancer serum was significantly different from that in normal 
serum. More importantly, a recent study revealed that treatment of lean mice with 
exosomes isolated from obese mice induced glucose intolerance and insulin resis-
tance in mice [103]. Hence, future studies should aim for answering these questions 
in order to understand the origin, mode of secretion, target cells and organs of exo-
circRNAs. This knowledge may help us to gain more insights into the function of 
circRNAs in the field of metabolic diseases. With respect to the epigenetic regula-
tion of complex metabolic diseases by ncRNAs, there are only a few published data 
associating the dysregulation of circRNAs with genes involved diabetes and 
NAFLD, as mentioned above. Unfortunately, no data are yet available on the poten-
tial implication of circRNAs in obesity and metabolic syndrome. Likewise, no 
reports are available on the potential link between circRNAs and the chronic low-
grade inflammation associated with diabetes, obesity and the metabolic syndrome 
apart from one report indicating an association between circANKRD36 and inflam-
mation in patients with T2DM [104]. All of these pertinent questions represent 
important issues that must be solved in future investigative attempts to fully under-
stand the role of circRNAs in the pathogenesis of metabolic diseases.

In summary, although the existing studies support a possible association between 
circRNA molecules and metabolic diseases, it is too early to consider and develop 
these molecules as sensors and biomarkers for metabolic disorders as claimed by 
existing reports. Further research in this area is worthwhile and new powerful strate-
gies should be employed to uncover the full biological relevance of circRNAs and 
their potential therapeutic applications.
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