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Abstract. Robustness is a notion often tacitly assumed while work-
ing with encrypted data. Roughly speaking, it states that a cipher-
text cannot be decrypted under different keys. Initially formalized in
a public-key context, it has been further extended to key-encapsulation
mechanisms, and more recently to pseudorandom functions, message-
authentication codes and authenticated encryption. In this work, we
motivate the importance of establishing similar guarantees for functional
encryption schemes, even under adversarially generated keys. Our main
security notion is intended to capture the scenario where a ciphertext
obtained under a master key (corresponding to Authority 1) is decrypted
by functional keys issued under a different master key (Authority 2).
Furthermore, we show there exist simple functional encryption schemes
where robustness under adversarial key-generation is not achieved. As
a secondary and independent result, we formalize robustness for digital
signatures – a signature should not verify under multiple keys – and
point out that certain signature schemes are not robust when the keys
are adversarially generated.

We present simple, generic transforms that turn a scheme into a robust
one, while maintaining the original scheme’s security. For the case of
public-key functional encryption, we look into ciphertext anonymity and
provide a transform achieving it.

Keywords: Robustness · Functional encryption · Signatures ·
Anonymity

1 Introduction

Cryptographic primitives, such as encryption and signature schemes, provide
security guarantees under the condition, often left implicit, that they are “used
correctly”. Fatal examples of cryptographic misuse abound, from weak key gener-
ation to nonce-reuse. This reliance on operational security has attracted attack-
ers, who can for instance impose faulty or backdoored random number generators
to erode cryptographic protections. At the same time, the social usage of tech-
nology leans towards a more open environment than the one in which historic
primitives were designed: keys are generated by one party, shared with another,
certified by third... These two observations raise new interesting questions, which
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have only recently been addressed in the cryptographic literature. For instance,
if Alice generates keys that she is using, but doesn’t share, can an adversary
(observing Alice or influencing her in some way) nevertheless generate a differ-
ent set of keys, which would allow decryption (maybe only partial)? Intuitively
this should not be the case, but it was not until the seminal work of Abdalla, Bel-
lare and Neven [1], that this situation was formally analysed. They introduced
the notion of robustness, which ensures that a ciphertext cannot be decrypted
under multiple keys.

Is robustness desirable? Imagine a scenario where users within a network
exchange messages by broadcasting them, and further encrypt them with the
public key of the recipient to ensure confidentiality. If this is the case, we usually
assume that there is only one receiver, by arguing that no other members apart
from the intended recipient can decrypt the ciphertext and obtain a valid (non-
⊥) plaintext. But if the adversary can somehow tamper with the key generation
process, she may “craft” keys that behave unexpectedly for some messages, or
design alternative keys that give at least some information on some of the mes-
sages.

Farshim et al. [12] refined the original definition of robustness, by covering
the cases where the keys are adversarially generated, under a master notion
called “complete robustness”. Mohassel addressed the question in the context
of key-encapsulation mechanisms [19]. More recently, Farshim et al. also defined
robustness for symmetric primitives [13], motivated by the security of oblivi-
ous transfer protocols [9] or message authentication codes. Further extensions of
their security notions found applications in novel password-authenticated key-
exchange protocols described by Jarecki et al. [17] or (fast) message-franking
schemes [16]. The above line of work, however, leaves open several questions.
Indeed, to the best of our knowledge there has been no notion of robustness
defined for digital signatures [15], functional signatures [7] or functional encryp-
tion [6,20]. Yet, some existing schemes seem to be vulnerable to attacks that a
proper notion of robustness would prevent.

Consider digital signature schemes (DS), that are used to authenticate elec-
tronic documents. The textbook notion, capturing the existential unforgeability
of a DS ensures that an adversary, interacting with one signing oracle, cannot
forge a signature (for a message he did not previously query). On the other
hand, a real-world scenario is placed in a multi-user context, where it is often
assumed (but not necessarily proven) that a signature can only be verified under
the issuer’s key.

Example 1: Consider a practical situation where a clerk has acquired a digital
signature for daily use, with a third party generating the pairs of keys. Even if the
scheme remains unforgeable according to the classical definition, we do not have
formal guarantees that two pairs of keys—(sk, pk) and (sk′, pk′)—generated by
the third party (potentially malicious), cannot be used to produce a signature
σ for some chosen message M , verifiable under both pk and pk′—something
completely undesirable in practice. To be fully explicit with our example, let
us suppose one pair of keys (pk, sk) is given to the clerk and the second pair
(pk′, sk′), is issued by the third party and is covertly used by a local/global
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security agency. When needed (and if needed), an operator can issue a signature
(using sk′) for the message: “I attest [...] is true.” which can later be verified
under pk, thus having baleful consequences for the clerk.

To give a flavour of a signature scheme where such an attack is feasible,
consider the one obtained from a toy version of the Boneh–Boyen scheme [4].
The construction is pairing-based and can be summarized as follows: (1) key-
generation samples two group generators g1 ∈ G1 and g2 ∈ G2, both of prime
order p, and publishes as a public key (g1, g2, gx

2 , e(g1, g2))—for a uniformly sam-
pled x over Zp—keeping x as a secret key. To sign the message M , one computes
σ ← g

1/(x+M )
1 . A robustness attack against this simple signature scheme exploits

the randomness in choosing the secret keys, observing that for a different pair
(pk′, sk′), one can choose g′

1 ≡ gt
1 (mod p) and then can set x′ ≡ t(x + M ) − M

(mod p) such that σ ≡ g′
1
1/(x′+M ).

The above example provides the intuition that robustness has practical con-
sequences. As expected, under correct key generation, standard unforgeability
does imply robustness. But it fails in a malicious setting. Fortunately, we can pro-
vide a trivial construction that generically transforms any unforgeable signature
scheme into a completely robust one (allowing for adversarial, yet well-formed
keys). As we prove in Sect. 4.1, the natural idea of including the public key (or
a collision-resistant hash of it) in the signature is indeed sufficient.

Speaking roughly about robustness as the property of a ciphertext of not
being decryptable under multiple keys, then, when it comes to decryption, an
FE scheme trivially does not exhibit this property. The reason resides in the bro-
ken symmetry to the way decryption works in symmetric/public-key schemes.
Through its purpose, a functional ciphertext can be decrypted under multiple
keys [6,20]. In this respect, an adversary holding multiple functional keys (which
is not a restriction by itself) will be able to decrypt under multiple keys. There-
fore, defining robustness in terms of decryption itself is fallacious. Instead, an
appropriate definition should ensure the FE ciphertext can be decrypted only by
the intended set of receivers.

Example 2: Consider a simple use case of a functional encryption scheme
for the “inner product” function (IP FE) [2,3]. From a technical perspec-
tive, suppose the ciphertext is generated by encrypting a plaintext M as
C ← FE.Enc(mpk,M ;R). If msk is somehow corrupted1 to msk′, then is it possi-
ble that performing decryption under sk′

y reveals a different plaintext M ′ �= M ?
Intuitively, if the functional encryption scheme meets robustness, we expect that
no ciphertext can be decrypted under functional keys issued by a different master
secret keys.

As a concrete scenario, consider a Computer Science (CS) department’s reg-
istry, which holds the marks obtained by each student in the Crypto course,
the final grade being computed as a weighted average of the stored marks (i.e.
homework counts 30%, midterm 20% and final 50%). A priori established con-
fidentiality rules ask that a clerk should not have access to the marks, but still,
1 There are several scenarios leading to such corruption, including memory corruption.
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it must be possible to compute the final grade. Therefore, considering the set of
marks as the vector x and the weights as y , one can use an IP FE scheme, to
obtain the final grade, its formula mapping to x� · y . In order to achieve this,
for each course: (1) the course leader encrypts the marks; (2) later, the clerk
obtains a new key sky (depending on the established course weights), and uses
it to obtain the final average. A failure to guarantee robustness could result in
decryption to succeed, but the final average being incorrect (and possibly under
the control of an adversary). To illustrate this, consider the (bounded-norm)
IP FE scheme instantiated from ElGamal and introduced in [2]: encrypting a
plaintext under mpk = (gs1 , . . . , gsn)—where msk = s = (s1, . . . , sn)—is done as
follows: C←$ (g−r, gr·s1+x1 , . . . , gr·sn+xn), for r sampled uniformly at random
in Zp. If an attacker wishes to obtain the same C, then r remains the same, but
it can use different s′ and x′, implicitly changing the value of msk. As expected,
even if FE.KDer is correct, and the queried key is indeed issued for the vector y ,
the final decrypted result corresponds to x′� · y rather than to x� · y .

Our contributions. We begin by motivating and defining the notion of robust
signature schemes under honest and adversarial keys, denoted as strong (SROB)
and complete (CROB) robustness (Sect. 3.1). A natural question is whether exist-
ing schemes already possess a form of robustness: we show that while SROB is
indeed typically guaranteed, it is not the case of CROB, thus providing a separa-
tion between the two security concepts. Fortunately, there exist a simple generic
transform, in the standard model, that turn a SROB signature scheme into a
CROB one (Sect. 4.1).

In Sect. 3.2, we define robustness for functional encryption in a multi-
authority context. The strongest security notion we propose (FEROB) is
intended to capture adversaries able to generate the keys and the randomness
used during encryption and key-derivation, while remaining as simple as possible.
As regards the generic transforms, we provide them in the public and private-
key paradigms Sect. 4.2. The case for private-key FE schemes [8,18] relies on
right-injective PRGs and collision-resistant PRFs, concepts that we review in
Sect. 2. Finally, in the original spirit of the security notion we consider, we dis-
cuss anonymity for the context of functional encryption schemes.

2 Preliminaries

Notations. We denote the security parameter by λ ∈ N
∗ and we assume it

is implicitly given to all algorithms in the unary representation 1λ. An algo-
rithm is equivalent to a Turing machine. Algorithms are assumed to be ran-
domized unless stated otherwise; PPT stands for “probabilistic polynomial-
time,” in the security parameter (rather than the total length of its inputs).
Given a randomized algorithm A we denote the action of running A on input(s)
(1λ, x1, . . . ) with uniform random coins r and assigning the output(s) to (y1, . . . )
by (y1, . . . )←$ A(1λ, x1, . . . ; r). When A is given oracle access to some proce-
dure O, we write AO. For a finite set S, we denote its cardinality by |S| and
the action of sampling a uniformly at random element x from X by x←$ X.
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We define [k] := {1, . . . , k}. A real-valued function Negl(λ) is negligible if
Negl(λ) ∈ O(λ−ω(1)). We denote the set of all negligible functions by Negl.
Throughout the paper ⊥ stands for a special error symbol, while || denotes con-
catenation. For completeness, we recall below definitions for the more important
concepts to be used throughout the paper.

2.1 (Right-Injective) Pseudorandom Generators

Definition 1. A pseudorandom generator PRG : {0, 1}n → {0, 1}n+� takes as
input a random seed s of length n and outputs a pseudorandom binary string of
length n+�. We require a negligible advantage for any PPT adversary A against
the PRG security experiment defined in Fig. 1:

AdvPRGA,PRG(λ) := 2 · Pr
[
PRGA

PRG(λ) = 1
]

− 1 ∈ Negl(λ).

Right-Injective PRGs. We will make use of length-doubling, right-injective
PRGs, where the right-injectivity condition is defined as

R2 = R′
2 =⇒ s = s′

for R1||R2 ← PRG(s) and R′
1||R′

2 ← PRG(s′). Such constructions can be achieved
assuming the existence of one-way permutations, as shown by Yao [21].

2.2 (Collision-Resistant) Pseudorandom Functions

The notion of a pseudorandom function (PRF), introduced in the seminal work
of Goldreich, Goldwasser, and Micali [14], is a foundational building block in
theoretical cryptography. A PRF is a keyed functionality guaranteeing the ran-
domness of its output under various assumptions. PRFs found applications in
the construction of both symmetric and public-key primitives.

Definition 2. A PRF is a pair of PPT algorithms (PRF.Gen,PRF.Eval) such
that:

– sk←$ PRF.Gen(1λ): is the randomized procedure that samples a secret key sk,
given as input the unary version of the security parameter.

– y ← PRF.Eval(sk,M ): is the deterministic procedure that outputs y, corre-
sponding to the evaluation of M under sk.

We require the advantage of any PPT adversary A in the PRF security experi-
ment defined in Fig. 1 to be negligible:

AdvPRF
A,PRF(λ) := 2 · Pr

[
PRFA

PRF(λ)
] − 1 ∈ Negl(λ).

Collision-Resistant PRFs. We make use of collision-resistant PRFs [13]. The
collision-resistance property is defined over both the secret-keys and the inputs:

PRF.Eval(sk,M ) = PRF.Eval(sk′,M ′) =⇒ (sk,M ) = (sk′,M ′).

Such constructions can be obtained for instance from key-injective PRFs via
the GGM construction - see for instance [10, Appendix C] and length-doubling
right-injective PRGs.
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Fig. 1. Experiments defining pseudorandomness for PRGs (left) and PRFs (middle).
Anonymity for public-key functional encryption is defined on the right.

2.3 Functional Encryption

Definition 3 (Functional Encryption Scheme - Public-Key Setting).
A functional encryption scheme FE in the public-key setting consists of a tuple
of PPT algorithms (Setup, Gen, KDer, Enc, Dec) such that:

– pars←$ FE.Setup(1λ): we assume the existence of a Setup algorithm producing
a set of public parameters which are implicitly given to all algorithms. When
omitted, the output of FE.Setup is ∅.

– (msk,mpk)←$ FE.Gen(1λ) : takes as input the unary representation of the
security parameter λ and outputs a pair of master secret/public keys.

– skf ←$ FE.KDer(msk, f): given the master secret key and a function f , the
(possibly randomized) key-derivation procedure outputs a corresponding skf .

– C←$ FE.Enc(mpk,M ): the randomized encryption procedure encrypts the
plaintext M with respect to mpk.

– FE.Dec(skf ,C): decrypts the ciphertext C using the functional key skf in order
to learn a valid message f(M ) or a special symbol ⊥, in case the decryption
procedure fails.

A functional encryption scheme is s-IND-FE-CPA-secure if the advantage
of any PPT adversary A against the IND-FE-CPA-game defined in Fig. 2 is
negligible:

Advs-IND-FE-CPA
A,FE (λ) := 2 · Pr

[
s-IND-FE-CPAA

FE(λ) = 1
] − 1 ∈ Negl(λ).

Similarly we say that it is adaptive IND-FE-CPA-secure if

AdvIND-FE-CPA
A,FE (λ) := 2 · Pr

[
IND-FE-CPAA

FE(λ) = 1
] − 1 ∈ Negl(λ).
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s-IND-FE-CPAA
FE(λ):

b ←$ {0, 1}
L ← ∅
(M0,M1; state)←$ A(1λ)
(mpk,msk) msk←$ FE.Gen(1λ)
C ∗ ←$ FE.Enc(msk,Mb)
b′ ←$ AC∗,KDermsk(·),Encmsk(·)(1λ, state)

b′ ←$ AC∗,KDermsk(·),mpk(1λ, state)
if ∃skf ∈ L s.t. f(skf ,M0) �= f(skf ,M1)

return 0
return b = b′

Proc. KDermsk(f):
L ← L ∪ {f}
skf ←$ FE.KDer(msk, f)
return skf

IND-FE-CPAA
FE(λ):

b ←$ {0, 1}
L ← ∅
(mpk,msk) msk←$ FE.Gen(1λ)

(M0,M1)←$ AKDermsk(·),FE.Encmsk(·)(1λ)

(M0,M1)←$ AKDermsk(·),mpk(1λ)
C ∗ ←$ Enc(msk,Mb)
b′ ←$ AKDermsk(·),Encmsk(·)(1λ)

b′ ←$ AC∗,KDermsk(·),mpk(1λ, state)
if ∃skf ∈ L s.t. f(skf ,M0) �= f(skf ,M1) :

return 0
return b = b′

Proc. KDermsk(f):
L ← L ∪ {f}
skf ←$ FE.KDer(msk, f)
return skf

Fig. 2. The selective and adaptive indistinguishability experiments defined for a func-
tional encryption scheme. The difference between the private-key and the public set-

tings are marked in boxed lines of codes, corresponding to the latter notion.

Functional encryption can be defined in a private-key setting: the master
secret key msk is used to encrypt the plaintext M , as there is no mpk.

Anonymity. We define the classical notion of anonymity to the context of
functional encryption and its security experiment in Fig. 1 (right). We point
out that usually, in an FE scheme, a central authority answers key-derivation
queries from a potential set of users U , therefore it is unnatural to assume that a
user does not know from whom it received the functional key. What we want to
ensure is that an adversary A �∈ U cannot tell which central authority has issued
a ciphertext, without interacting with the key-derivation procedures, otherwise
the game becomes trivial. As an easy consequence, anonymity makes sense only
in the context of public-key FE, as for a private scheme, the adversary uses
encryption oracles to obtain a ciphertext. Thus, anonymity requires that a PPT
bounded adversary can tell which mpk was used to encrypt a ciphertext only with
negligible probability: AdvANON

A,FE (λ) := 2 · Pr
[
ANONA

FE(λ) = 1
] − 1 ∈ Negl(λ).

3 Robustness: Definitions, Implications and Separations

Robustness guarantees hardness in finding ciphertexts (resp. signatures) gener-
ated under adversarial, but well-formed keys, decryptable (resp. verifiable) under
multiple secret (resp. public) keys. As stated in the introductory part, this prop-
erty is often tacitly presumed, but almost as often left without a proof. In this
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work, we capture two levels of strengths of an adversary: strong robustness mod-
els the case where the keys are honestly generated and the adversary is agnostic of
their actual values, the interaction being interfaced through decryption/signing
oracles. A related, stronger notion, dubbed complete robustness gives an adver-
sary the ability to generate keys (not necessarily honestly). In this work, we
restrict to the cases where the keys are malicious, but well-formed2.

We commence by presenting the security definition for digital signatures in
Sect. 3.1, and then for functional encryption in Sect. 3.2.

3.1 Warm-Up: Robustness for Digital Signatures

The case for digital signatures is treated with respect to two security notions,
which we denote strong and complete robustness. The winning condition remains
the same in both experiments: that of obtaining a signature/message pair in
such a way that it verifies under both public keys. In the SROB experiment, two
signing oracles under sk1, sk2 are given to the adversary, while a CROB adversary
generates its intrinsic keys for accomplishing essentially the same break.

SROBA
DS(λ):

(pk1, sk1)←$ Gen(1λ)
(pk2, sk2)←$ Gen(1λ)
(M , σ)←$ ASignsk1

(·),Signsk2
(·)(1λ, pk1, pk2)

if Ver(pk1, σ,M ) = 1 ∧
Ver(pk2, σ,M ) = 1:

return 1
return 0

CROBA
DS(λ):

(pk1, pk2, σ,M )←$ A(1λ)
if pk1 = pk2 :

return 0
if Ver(pk1, σ,M ) = 1 ∧

Ver(pk2, σ,M ) = 1:
return 1

return 0

Fig. 3. Games defining strong robustness SROB (left) and complete robustness CROB
(right) for a digital signature scheme DS. We assume a negligible probability of sampling
pk1 = pk2 in the SROB game.

Definition 4 (SROB and CROB Security). Let DS be a digital signature
scheme. We say DS achieves complete robustness if the advantage of any PPT
adversary A against the CROB game depicted in Fig. 3 (right side) is negligible:
AdvCROB

A,DS (λ) := Pr
[
CROBA

DS(λ) = 1
]
. SROB-security is defined similarly, the

SROBA
DS(λ) game being defined in Fig. 3 (left side).

Notice the difference to the classical unforgeability game where the adversary
obtains signatures issued under the same secret key. We prove any EUF-scheme
is implicitly strong-robust, and show there exist signature schemes that fail to
achieve complete robustness (thus providing a separation between the two).

2 We may assume that malformed keys would be easily recognisable and rejected.
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Proposition 1. Let DS be a CROB-secure digital signature scheme. Then DS
is also SROB-secure, the advantage of breaking the strong robustness game being
bounded as follows: AdvSROB

A,DS (λ) ≤ AdvCROB
A′,DS (λ).

Proof (Proposition 1). Suppose DS is not SROB-secure. Let A be a PPT adver-
sary that wins the SROB game with advantage at most εSROB. We construct a
PPT adversary A′ against the CROB game as follows: (1) sample two pairs of
keys (sk1, pk1), (sk2, pk2) using Gen(1λ); (2) A′ publishes pk1, pk2 and constructs
the signing oracles Signsk1(·) and Signsk2(·); (3) A′ runs A w.r.t. signing oracles
and public-keys to obtain (M , σ); (4) A′ constructs the tuple (pk1, pk2, σ, M )
and outputs it. We obtain that AdvSROB

A′,DS (λ) ≤ AdvCROB
A,DS (λ). ��

Algorithm A′
A(λ, pk1,Signsk1(·)):

(pk2, sk2)←$ Gen(1λ)
build Signsk2(·)
(M , σ)←$ ASignsk1

(·),Signsk2
(·)(pk1, pk2)

if M ∈ Signsk1(·).SignedMessages()
abort

return (M , σ)

Fig. 4. The reduction A′ in Lemma 1.

Of interest, is a minimal level of
robustness achieved by any digital sig-
nature scheme, and as it turns out,
SROB is accomplished.

Lemma 1. Any EUF-secure digital
signature scheme DS is SROB-secure.
The advantage of breaking the SROB
game is bounded by the advan-
tage of breaking the EUF game:
AdvSROB

A,DS (λ) ≤ 2 · AdvEUF
A′,DS(λ).

Proof (Lemma 1). Let A be a PPT adversary against the strong robustness
game. Let A′ stand for an adversary against the unforgeability of the digital
signature. We assume without loss of generality that A: (1) never queries a
“winning” message M to the second signing oracle after it has been signed by
the first oracle (since it can check it right away) and (2) it never queries a
“winning” message M to the first oracle after it has been signed by the second
oracle (for the same reason). We present the reduction in Fig. 4 and describe it
below:

1. The EUF game proceeds by sampling (sk1, pk1) and builds a signing oracle
Signsk1(·).

2. The reduction A′ is given pk1 and oracle access to the Signsk1(·). A′ samples
uniformly at random (sk2, pk2) via DS.Gen and constructs a second signing
oracle Signsk2(·).

3. A′ runs A w.r.t. the two (pk1, pk2) and the corresponding signing oracles
Signsk1(·),Signsk2(·). A′ keeps track of the queried messages to each oracle.

4. A returns a pair (σ,M ) which verifies under both public keys with probability
εSROB, s.t. M has been queried to either Signsk1 or Signsk2 but not to both.

5. A′ returns (σ,M ). If M ∈ Signsk1(·).SignedMessages(), A′ aborts and runs A
again. With probability 1

2 , M was not queried before to Signsk1(·). The tuple
(σ,M ) wins the EUF game w.r.t. (pk1, sk1) with probability ≥ 1

2 · εSROB.
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Thus, the reduction (Fig. 4) shows the advantage of breaking SROB is bounded
by advantage breaking EUF, which completes the proof. ��

We also show a separation between the SROB and CROB, by pointing to a
signature scheme that is not CROB secure (but already SROB).

Proposition 2. There exist DS schemes that are not CROB-secure.

Proof (Proposition 2). We provide a simple counterexample as follows. Consider
the digital signature scheme in [5]:

– Gen: selects uniformly at random g1 ←$ G1, g2 ←$ G2 and (x, y)←$ Z
2
p. Set

sk ← (x, y) and pk ← (g1, g2, gx
2 , gy

2 , e(g1, g2)), where e : G1 × G2 → GT is a
pairing3.

– Sign: given a message M , sample r ←$ Zp and compute σ ← g
1/(x+M+yr)
1 .

Note that with overwhelming probability, x + M + yr �= 0 mod p, where p is
the order of G1. The signature is the pair (σ, r).

– Verify: check that e
(
σ, gx

2 · gM2 · (gy
2 )r

) ?= e(g1, g2).

To win the CROB game, an adversary A proceeds as follows:

1. A samples a key-pair: sk←$ (x, y); pk ← (g1, g2, gx
2 , gy

2 , e(g1, g2)) and a mes-
sage M ∈ Zp.

2. A samples r ←$ Zp and computes σ under sk1. Since g′
1 can be written as

gt
1, A sets t, x′, y′ such that 1/(x + M + yr) = t/(x′ + M + y′r) (equate the

exponents to obtain the same σ corresponding to M ). This can be done by
assigning random values to x′, y′ and setting t ← (x′ +M +y′r)/(x+M +yr).

3. A sets sk′ ←$ (x′, y′); pk′ ← (g′
1, g

′
2, g

′x′
2 , g′y′

2 , e(g′
1, g

′
2)), for some uniformly

sampled generator g′
2 ←$ G2.

4. Finally, observe that (σ, r) verifies under (sk1, pk1) through the correctness of
the signature scheme, but also under (pk2, sk2), since

e
(
g

t/(x′+M+y′r)
1 , g′x′

2 · g′M
2 · (g′y′

2 )r
)

= e(gt
1, g

′
2).

A halts and returns (pk, pk′, (σ, r),M ). Note that A runs in probabilistic
polynomial time. ��

3.2 Robustness for Functional Encryption

As discussed in the motivational part of Sect. 1, robustness should be considered
as a security notion achieved by a functional encryption scheme. In what follows,
we define it for the public/private key settings. We stress about the existence of
essentially two major paths one can explore. A first stream of work would study
the meaning of robustness in a single-authority context.

3 See for instance [5] for the definition and usage of a cryptographic pairing.
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Multi-Authority Setting. A second path is placed in a multi-authority
context—that is, assuming there exist multiple pairs (msk,mpk). Aiming for
a correct definition, one property that should be guaranteed is that a ciphertext
should not be decryptable under two (or more) functional keys issued via differ-
ent master secret keys. Stated differently, if msk1 produces skf1 and msk2 �= msk1
produces skf2 for two functionalities f1, f2, we do not want that C (say encrypted
under mpk1) to be decrypted under skf2 (it already decrypts under skf1 with
high probability due to the correctness of the scheme). We follow the lines of
Definition 4, and propose two new flavours of robustness, corresponding to the
cases where the adversary has oracle access to the (encryption, if in a private
key setting case), key-derivation and decryption oracles. The security experi-
ments are depicted in Fig. 5. The difference between the two paradigms may
seem minor (for our purpose), but in fact having a public master key confers a
significant advantage when it comes to deriving a generic transform for achieving
complete robustness, as detailed in Sect. 4. In what follows, we will explore the
multi-authority path, since it naturally maps to our motivational examples.

Intermediate Notions. Intermediate notions considering robustness under
adversarially generated keys introduced in [12]—such as full-robustness or mixed
robustness—do not generalize well to functional encryption (or attribute-based
encryption). The notion we consider, namely FEROB is in fact the generalization
of KROB (key-less robustness), as introduced for PKE by Farshim et al. [12].

Definition 5 (SROB and FEROB Security for FE). Let FE be a functional
encryption scheme. We say FE achieves functional robustness if the advantage
of any PPT adversary A against the FEROB game defined in Fig. 5 (bottom) is
negligible: AdvFEROB

A,Pub/PrvFE(λ) := Pr
[
FEROBA

Pub/PrvFE(λ) = 1
]

. SROB-security is

defined similarly, the SROBA
Pub/PrvFE(λ) game being defined in Fig. 5 (top).

As stated in the algorithmic description of the security experiment, an adver-
sary against the strongest notion of FEROB attempts to find colliding cipher-
texts, which decrypt under two msk-separated keys skf 1, skf 2.

Lemma 2 (Implications). Let FE denote a functional encryption scheme. If
FE is FEROB-secure, then it is also SROB-secure.

Proof (Lemma 2). We prove the implication holds in both the public and private
key settings:

Public-Key FE. We take the contrapositive. For a scheme FE, we assume the
existence of an adversary A winning the SROB-game with non-negligible advan-
tage εSROB. A reduction A′ that wins the FEROB game is built as follows: (1)
A′ samples uniformly at random (msk1,mpk1,msk2,mpk2); (2) the corresponding
oracles for key-derivation are built; (3) A runs with access to the aforementioned
oracles, returning (C, skf1 , skf2). If A outputs a winning tuple, then A′ wins the
FEROB game by releasing the messages and the randomness terms used to con-
struct (C, skf1 , skf2). Hence, AdvSROB

A,FE (λ) ≤ AdvFEROB
A′,FE (λ).
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SROBA
PubFE(λ):

L1 ← ∅
L2 ← ∅
(mpk1,msk1)←$ Gen(1λ)
(mpk2,msk2)←$ Gen(1λ)
(C , skf1 , skf2)←$

←$ A

⎛
⎜⎜⎜⎜⎜⎜⎝KDermsk1(·),
KDermsk2(·)

⎞
⎟⎟⎟⎟⎟⎟⎠
(mpk1,mpk2)

if skf1 ∈ L2 ∨ skf2 ∈ L1:
return 0

if Dec(C , skf1) �= ⊥ ∧
Dec(C , skf2) �= ⊥:

return 1
return 0

KDermski(f):
skf ←$ KDer(mski, f)
Li ← Li ∪ {(skf , f)}
return skf

Encmpki(M ):
C ←$ Enc(mpki,M )
return C

SROBA
PrvFE(λ):

L1 ← ∅
L2 ← ∅
msk1 ←$ Gen(1λ)
msk2 ←$ Gen(1λ)
(C , skf1 , skf2)←$

←$ A

⎛
⎜⎜⎜⎜⎜⎜⎝

Encmsk1(·),
Encmsk2(·),
KDermsk1(·),
KDermsk2(·)

⎞
⎟⎟⎟⎟⎟⎟⎠
(1λ)

if skf1 ∈ L2 ∨ skf2 ∈ L1:
return 0

if Dec(C , skf1) �= ⊥ ∧
Dec(C , skf2) �= ⊥:

return 1
return 0

KDermski(f):
skf ←$ KDer(mski, f)
Li ← Li ∪ {(skf , f)}
return skf

Encmski(M ):
C ←$ Enc(mski,M )
return C

FEROBA
PubFE(λ):

(mpk1,msk1,R1,M1, f1,Rf1 ,

mpk2,msk2,R2,M2, f2,Rf2)←$ A(1λ)
C1 ←$ Enc(mpk1,M1;R1)
C2 ←$ Enc(mpk2,M2;R2)
if C1 = C2 ∧ mpk1 �= mpk2:

skf1 ←$ KDer(msk1, f1;Rf1)
skf2 ←$ KDer(msk2, f2;Rf2)
if Dec(C , skf1) �= ⊥ ∧

Dec(C , skf2) �= ⊥:
return 1

return 0

FEROBA
PrvFE(λ):

(msk1,R1,M1, f1,Rf1 ,

msk2,R2,M2, f2,Rf2)←$ A(1λ)
C1 ←$ Enc(msk1,M1;R1)
C2 ←$ Enc(msk2,M2;R2)
if C1 = C2 ∧ msk1 �= msk2:

skf1 ←$ KDer(msk1, f1;Rf1)
skf2 ←$ KDer(msk2, f2;Rf2)
if Dec(C , skf1) �= ⊥∧

Dec(C , skf2) �= ⊥:
return 1

return 0

Fig. 5. We introduce FEROB and SROB in the context of FE schemes defined both
in the public and private key setting. For the SROB games, we give the oracles imple-
menting Enc and KDer procedures, mentioning that each query to the latter oracle
adds an entry of the form (f, skf ) in the corresponding list Li—where i ∈ {1, 2} stands
for the index of the used master keys.

Private-Key FE. We take the contrapositive. For a scheme FE, we assume
the existence of an adversary A winning the SROB-game with non-negligible
advantage εSROB. A reduction A′ that wins the FEROB game is built as follows:
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(1) A′ samples uniformly at random (msk1,msk2); (2) A′ constructs the encryp-
tion and key-derivation oracles under the two keys; (3) A′ runs A with these
oracles, records the random coins used and obtains (C, skf1 , skf2). Finally A′

wins the FEROB game by issuing the FEROB tuple, using the random coins
used to derive the functional keys and the ciphertext and therefore we have:
AdvSROB

A,FE (λ) ≤ AdvFEROB
A′,FE (λ). ��

Proposition 3 (Separations). There exist functional encryption schemes in
the public/private-key setting that are not FEROB-secure.

Proof (Proposition 3). As sketched in Sect. 1, a DDH instantiation for the FE
scheme of [2] is not FEROB-secure. The adversary is built upon the idea pre-
sented in the introduction and is shown in Fig. 6. Given that any public-key
functional encryption scheme can be trivially converted into one in the private-
key setting simply by making mpk private, we obtain an FE scheme for the inner
product functionality in the private-key setting that is not FEROB-secure.

FEROB adversary AFEROB
FE (λ):

1. (gs, s, r,x,y, ∅
gs′

, s′, r,x′,y, ∅)←$ Gen(1λ)
such that r · si + xi = r · s′

i + x′
i and s �= s′

2. observe that Enc(gs,x) = (g−r, gr·s1+x1 . . . , gr·sn+xn) =
(g−r, gr·s′

1+x′
1 . . . , gr·s′

n+x′
n) = Enc(gs′

,x′)
3. sky ← s� · y
4. sk′

y ← s′� · y
5. Dec(C , sky) = y� · x �= ⊥
6. Dec(C , sk′

y) = y� · x′ �= ⊥

Fig. 6. A FEROB adversary against the DDH instantiation of the bounded-norm inner
product scheme in [2].

��

4 Achieving Robustness via Generic Transforms

4.1 Robust Digital Signatures

We put forward a generic transform similar in spirit to the original work of
Abdalla, Bellare, and Neven [1] in the context of digital signatures. For a digi-
tal signature scheme, we benefit from the fact that pk acts as an “immutable”
value to which one can easily commit to, while signing a message. Thus, check-
ing if a message verifies under another public key implicitly breaks the binding
property of the commitment scheme. For simplicity, we use a hash instead of a
commitment scheme.
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Gen(1λ):
(sk, pk)←$ DS.Gen(1λ)
pk ← pk
sk ← sk
return (sk, pk)

Setup(1λ):
K ← H.Gen(1λ); H ← HK ; return H

Sign(sk,M ):
sk ← sk
σ1 ←$ DS.Sign(sk,M )
σ2 ← H(pk)
σ ← (σ1, σ2)
return σ

Ver(pk, σ,M ):
pk ← pk
(σ1, σ2) ← σ
return DS.Ver(pk, σ1) = 1 ∧

σ2
?= H(pk)

Fig. 7. A generic transform that turns any digital signature scheme DS into one that
is, in addition, CROB-secure. The (publicly available) collision-resistant hash function
H can be based on claw-free permutations in the standard model, as shown in the
seminal work of Damg̊ard [11]. It is used as a commitment to the public-key.

Lemma 3. Let DS be an EUF-secure digital signature scheme. Let H denote a
collision-resistant hash function. The digital signature DS obtained through the
transform depicted in Fig. 7 is CROB-secure.

Proof (Lemma 3). We prove both the unforgeability and the complete robustness
of the newly obtained construction:

Unforgeability. Assume the existence of a PPT adversary A against DS. We
build an adversary A′ against the EUF of the underlying DS. The unforgeability
experiment EUF for DS samples (pk, sk) and constructs a signing oracle under
sk, which is given to A′. A′ is given a collision resistant hash function H and
builds its own signing oracle Sign; when queried, Sign returns the output of Sign
concatenated to the value of H(pk). When A replies with (σ,M ), it must be
the case that Ver(pk, σ,M ) passes, which breaks EUF for DS. Thus we conclude
that: AdvEUF

A,DS
(λ) ≤ AdvEUF

A′,DS(λ).

CROB. To show robustness, we rely on the collision-resistance of H. The CROB
game in Fig. 3 specifies that the adversary A against the CROB game finds
pk1 �= pk2 such that Ver passes. The latter implies H(pk1) = H(pk2), trivially
breaking the collision-resistance of H, giving us: AdvCROB

A,DS
(λ) ≤ AdvCR

A′,H(λ). ��

4.2 Achieving Robustness for Functional Encryption

The ABN Transform [1] Adapted to Public-Key FE. As for the case of
digital signatures, one can reuse the elegant idea rooted in the binding property
of a commitment scheme. Concretely, we start from a FE scheme, encrypt the
plaintext, and post-process the resulting ciphertext through the use of a public-
key encryption scheme. The transform consists in committing to the two public
keys (corresponding to FE and PK) and encrypting the resulting decommitment
together with the output of FE.Enc under pk. For decryption, in addition to the
functional key, the secret key sk4 is needed to recover the decommitment from
4 sk is common to all users querying a skf .
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the “middle” part of the ciphertext. A key difference to the ABN transform
is rooted in the innate nature of FE: we cannot encrypt the plaintext under
pk, as this would break indistinguishability. For space reasons, we defer such a
construction to the full version of this work.

Simple Robustness Transforms in the Public-Key Setting. A simpler
idea makes use of a collision-resistant hash function and simply appends the
hash of mpk||C to the already existing ciphertext.

Gen(1λ):
(mpk,msk)←$ FE.Gen(1λ)
mpk ← mpk
msk ← msk
return (msk,mpk)

Enc(mpk,M ):
mpk ← mpk
C1 ←$ FE.Enc(mpk,M )
C2 ←$ H(mpk||C )
C ← (C1,C2)
return C

KDer(msk, f):
msk, ← msk
skf ←$ FE.KDer(msk, f)
skf ← skf

return skf

Setup(1λ):
K ← H.Gen(1λ); H ← HK ; return H

Dec(skf ,C ):
skf ← skf

(C1,C2) ← C
if H(mpk||C1) �= C2 :

return ⊥
return FE.Dec(skf ,C1)

Fig. 8. Generic transform that turns an FE scheme into a FEROB scheme FE.

Lemma 4. Let FE be an IND-FE-CPA-secure functional encryption scheme in
the public setting and let H denote a collision-resistant hash function. The func-
tional encryption scheme FE obtained through the transform depicted in Fig. 8 is
FEROB-secure, while preserving the IND-FE-CPA-security.

Proof (Lemma 4). Robustness. To show the transform achieves FEROB, we
argue that if an adversary concludes with (mpk1,R1,M1,mpk2,R2,M2, . . .) such
that FE.Enc(mpk1, M1; R1) = FE.Enc(mpk2, M2; R2), then the adversary is
essentially able to find two tuples such that H(mpk1||FE.Enc(mpk1,M1; R1)) =
H(mpk2||FE.Enc(mpk2,M2; R2)) which cannot happen with non-negligible prob-
ability down to the collision-resistance of H.

Indistinguishability. The proof follows easily down to the indistinguishability
of the underlying scheme FE: during the challenge phase, the reduction will be
given the C∗ corresponding to Mb (chosen by A); after appending H(C∗||mpk),
the adversary will be given C∗. Also, that the reduction can answer all the
functional key-derivation queries the adversary makes. Hence the advantage in
winning the IND-FE-CPA game against FE is bounded by the advantage of
winning the IND-FE-CPA game against FE.
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FEROB Transform in the Private-Key FE Setting. In this part, we pro-
vide a similar generic transform for turning any FE scheme into one that is
FEROB-secure, in the private-key framework.

Gen(1λ):
R←$ {0, 1}λ

R1||R2 ← PRG.Eval(R)
msk ← FE.Enc(1λ;R1)
sk ← R2

msk ← (msk, sk)
return msk

Enc(msk,M ):
(msk, sk) ← msk
C1 ←$ FE.Enc(msk,M )
C2 ←$ PRF.Eval(sk,C1)
C ← (C1,C2)
return C

KDer(msk, f):
(msk, sk) ← msk
skf ←$ FE.KDer(msk, f)
skf ← (skf , sk)
return skf

Dec(skf ,C ):
(skf , sk) ← skf

(C1,C2) ← C
if PRF.Eval(sk,C1) �= C2 :

return ⊥
return FE.Dec(skf ,C1)

Fig. 9. A generic transform that turns a FE scheme in the private-key setting into a
FEROB-secure scheme FE.

Lemma 5. Let FE be an IND-FE-CPA functional encryption scheme in the
private-key setting. Let PRG denote a right-injective length doubling pseudoran-
dom generator from {0, 1}|1λ| to {0, 1}2·|1λ| and PRF a collision-resistant PRF.
The functional encryption scheme FE obtained through the transform depicted
in Fig. 9 is FEROB-secure, while preserving IND-FE-CPA-security.

Proof (Lemma 5). Robustness. Assuming the FEROB adversary A outputs
(msk1,R1,M1, f1,Rf1 , msk2,R2,M2, f2,Rf2) such that FE.Enc(msk1,M1;R1) =
FE.Enc(msk2,M2;R2), we argue that:
– C2 = PRF.Eval(sk1,C1) = PRF.Eval(sk2,C1). Down to the collision-resistance

(over both keys and inputs) property of the PRF, it results that sk1 = sk2.
– the Gen function makes use of a right injective pseudorandom generator. Since

the right half is exactly sk1(= sk2), through the injectivity property, it must
be the case that the seed R used to feed the PRG is the same.

– since the randomness R is the same for both cases, it results that the random
coins used by FE.Gen are the same, implying that msk1 = msk2.

– finally, we obtain that msk1 = msk2, which is not allowed in the robustness
game.

Therefore, the advantage of breaking the FEROB game is bounded by the union
bound applied on the collision-resistance of the PRF and right-injectivity of the
PRG: AdvFEROB

A,FE
(λ) ≤ AdvINJ

A′,PRG(λ) + AdvCR
A′′,PRF(λ).

IND-FE-CPA-security. The reduction proceeds via one game hop:

– Game0: is the game, where the adversary runs against the scheme depicted
in Fig. 9—the output of the PRG is the expected one.
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– Game1: based on the pseudorandomness property of the PRG, we change
the output to a truly random string, ensuring independence between msk
and sk. The distance to Game0 is bounded by the pseudorandomness advan-
tage against PRG. We now show the advantage of an adversary winning the
IND-FE-CPA experiment against FE in this setting is negligible.

Assume the existence of a PPT adversary A against the IND-FE-CPA of FE. We
build an adversary A′ against the IND-FE-CPA of the underlying FE scheme.
The IND-FE-CPA experiment samples a bit b′, the key msk and constructs a
key-derivation oracle KDer under msk, which is given to A′. The reduction then
proceeds as follows:

1. A′ chooses uniformly at random sk to key the PRF utility.
2. A′ builds the FE.Enc oracle and the FE.KDer oracle by querying the given

FE.Enc,FE.KDer. The PRF is evaluated under sk.
3. A′ runs A, obtains a tuple (M0,M1) and gets back the encryption of Mb′ (say

C∗) by querying FE.Enc(msk,Mb′). A′ computes the corresponding C∗, which
is passed to A.

4. finally, A returns a bit b, which constitutes the output of A′.

Analysis of the Reduction. The correctness of the reduction follows trivially. Thus
we conclude that in Game1, the probability of winning is:

Pr[GameA
1 (λ) ⇒ 1] ≤ AdvIND-FE-CPA

A′,FE (λ).

For the analysis, we also include the fact that the transition between Game0 and
Game1 is bounded as follows:

Pr[GameA
0 (λ) ⇒ 1] − Pr[GameA

1 (λ) ⇒ 1] ≤ AdvPRGA′′,PRG(λ).

We apply the Union Bound and conclude:

AdvIND-FE-CPA
A,FE

(λ) ≤ AdvIND-FE-CPA
A′,FE (λ) + AdvPRGA′′,PRG(λ).

��

5 Anonymity and Robustness

Interestingly, FEROB does not imply anonymity as defined in Fig. 1 (right) for
the public-key case. And based on FEROB ⇒ SROB, it follows that SROB
does not imply anonymity in a generic fashion. Therefore, we have the following
separation:

Proposition 4. There exist FEROB transforms for public-key functional
encryption that do not ensure anonymity (as defined in Fig. 1).

Proof (Proposition 4). We consider the scheme in Fig. 8 and observe that
the anonymity game can be easily won as follows: an adversary, given two
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master public keys and the ciphertext C ← (C1,C2), decides the issuer by
checking whether H(C1||mpk1)

?= C2 or H(C1||mpk2)
?= C2, via the publicly

available H. ��
Finally, we give a generic construction of an anonymous FEROB scheme.

Reaching both anonymity and robustness for FE is non-trivial: on one hand,
we expect the ciphertext to be “robust” w.r.t. a sole authority (mpk), but the
“link” should not be detectable when included in the ciphertext (anonymity).
Therefore, we attempt to embed such a link in the functional key. Our solution
ensures FEROB through the means of a collision-resistant PRF with keys K
generated on the fly. An independent functional key to compute the PRF value
is issued via a second FE supporting general circuits, while the PRF key K is
encrypted under the additional mpk.

Gen(1λ):
(mpk,msk)←$ FE.Gen(1λ)
(mpk′,msk′)←$ FE′.Gen(1λ)
mpk ← (mpk,mpk′)
msk ← (msk,msk′)
return (msk,mpk)

Enc(mpk,M ):
(msk,msk′) ← msk
(mpk,mpk′) ← mpk
C1 ←$ FE.Enc(mpk,M )
K ←$ K
C2 ← PRF(K ,mpk)
C3 ←$ FE′.Enc(mpk′,K )
C ← (C1,C2,C3)
return C

KDer(msk, f):
msk ← msk
skf ←$ FE.KDer(msk, f)
skg ←$ FE′.KDer(msk′, CPRF(·,mpk))
skf ← (skf , skg)
return skf

Dec(skf ,C ):
(skf , skg) ← skf

(C1,C2,C3) ← C
if FE.Dec(skg,C3) �= C2 :

return ⊥
return FE.Dec(skf ,C1)

Fig. 10. A generic transform that converts an FE scheme into a FEROB scheme FE,
without ensuring anonymity. Here CPRF denotes the circuit that computes the PRF
value, where mpk is hard-coded in the circuit.

Theorem 1. Let FE′ be an ANON-secure functional encryption scheme sup-
porting (at least) one functional-key for general circuits and PRF denote a
collision-resistant PRF. Given an ANON, IND-FE-CPA-secure scheme FE, the
functional encryption scheme obtained from the transform in Fig. 10 is FEROB-
secure while preserving the original scheme’s security guarantees.

Proof (Theorem 1). Robustness. FEROB follows from the collision resistance
of the PRF: if an adversary A is able to find (K ,C1), (K ′,C1) such that
PRF(K ,C1) = PRF(K ′,C1), then A wins the collision resistance game against
the PRF.
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Indistinguishability. Follows from the IND-FE-CPA-security of the under-
lying scheme. For any adversary A against the IND-FE-CPA-security of the
scheme FE in Fig. 10, we build the reduction A′ that wins the IND-FE-CPA
game against FE. When A sends the challenge tuple (M0,M1), A′ obtains C1

from IND-FE-CPA challenger, samples its own K s, msk′,mpk′ and computes
C2,C3, which are forwarded to A. Whenever A makes a functional key query
for f , then A′ forwards two functional queries for f and for CPRF(·,mpk), a cir-
cuit that is designed to compute C2 (the PRF value) over the encrypted K .
Thus, whenever A returns b, A′ returns the same bit and wins under the same
advantage.

Anonymity. Follows from the anonymity of the underlying FE scheme. We use a
hybrid argument. We start from a setting corresponding to b = 0 in the ANONA

FE
game (Game0).

– Game1: in Game1, we change C3 from FE′.Enc(mpk0,K ) to
FE′.Enc(mpk1,K ), based on the ANON property of FE′, the hop between
the two games being bounded by AdvANON

A,FE′ (λ).
– Game2: we change C1 from FE.Enc(mpk0,M ) to FE.Enc(mpk1,M ), based

on the anonymity of the underlying FE scheme, the distance to the previ-
ous game being bounded by AdvANON

A,FE (λ). Implicitly, in Game2, the reduc-
tion updates the value of the PRF from PRF(K ,FE.Enc(mpk0,C1)) to
PRF(K ,FE.Enc(mpk1,C1)).

Finally observe that Game2 maps to the setting where b = 1 in the anonymity
game for the FE scheme. Therefore, AdvANON

A,FE
≤ AdvANON

A1,FE′(λ) + AdvANON
A2,FE (λ). ��
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