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Abstract. In this paper, we propose a new technique to perform sev-
eral homomorphic operations in one bootstrapping call over a multi-value
plaintext space. Our construction relies on the FHEW-based gate boot-
strapping; we analyze its structure and propose a strategy we call multi-
value bootstrapping which allows to bootstrap an arbitrary function in
an efficient way.

The security of our scheme relies on the LWE assumption over the
torus. We give three possible applications: we first describe how to effi-
ciently evaluate an arbitrary boolean function (LUT) and combine LUTs
in circuits. We also explain how to apply our procedure to optimize
the circuit bootstrapping from (Asiacrypt’2017) which allows to com-
pose circuits in a leveled mode. And we finally present a simple method
which makes use of the multi-value bootstrapping to evaluate a encrypted
neural network. We have implemented the proposed method and were
able to evaluate an arbitrary 6-to-6 LUTs under 1.6 s. Our implemen-
tation is based on the TFHE library but can be easily integrated into
other homomorphic libraries based on the same structure, such as FHEW
(Eurocrypt’2015). The number of LUT outputs does not influence the
execution time by a lot, e.g. evaluation of additional 128 outputs on the
same 6 input bits takes only 0.05 more seconds.

Keywords: LWE-based FHE · Multi-value bootstrapping ·
Homomorphic LUT

1 Introduction

Fully homomorphic encryption (FHE) allows to perform arbitrary computations
directly over encrypted data. The first FHE scheme has been proposed by Gen-
try [16]. The construction relies on a technique called bootstrapping , which han-
dles noise increase in FHE ciphertexts. This construction theoretically enables
to execute any computation directly over encrypted data but remains slow in
practice. Several works ([6,15,18,19,22] for example) followed Gentry’s initial
proposal and contributed to further improve FHE efficiency.
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Fully homomorphic encryption schemes are divided in two types of construc-
tions. The first one is based on Gentry’s initial proposal, where basically the
bootstrapping procedure consists of the evaluation of the decryption circuit at
gate level. In this case, the operations remain slow but their design allows to pack
data efficiently using batching techniques. The second one is based on the Gentry,
Sahai and Waters Somewhat homomorphic scheme [17] proposed in 2013 which
supports branching programs with polynomial noise overhead and determinis-
tic automata logic. Alperin-Sheriff and Peikert [3] improved the bootstrapping
by implementing an efficient homomorphic arithmetic function, showing that
boolean function and Barighton circuit can be avoided in bootstrapping. In 2015,
Ducas and Micciancio [14] gave a construction of bootstrapping with NAND
gate evaluation, named FHEW, and suggested extension for larger gates. They
provided an implementation for their scheme taking less than a second per boot-
strapping on a single core. Biasse and Riuz [4] adapted the FHEW construction
for arbitrary gates. Recently, Chillotti, Gama, Georgieva and Izabachène [10,12]
also improved the bootstrapping procedure and provided a construction named
TFHE. Their implementation [13] runs in less than 13ms for any binary gate
and 26 ms for the MUX gate. They also proposed new techniques for the TFHE
toolbox which allow to pack data and compose bootstrapped gates in a leveled
mode with a new procedure they called circuit bootstrapping. Recently, Bon-
noron, Ducas, and Fillinger [5] introduced a FHEW-based type scheme which
allows to perform more computation per bootstrapping call. They implemented
their method for the evaluation of a 6-to-6 bit LUT in about 10 s.

Our multi-value bootstrapping is built from the same line of scheme as the
FHEW bootstrapping. In order to explain our contribution, we first review its
basic construction and give later a more detailed description. The FHEW-based
boostrapping algorithms are implemented via an homomorphic accumulator
which evaluates the linear part of decryption function followed by a non-linear
part. Given an LWE ciphertext of m and GSW encryptions of the secret key,
we want to homomorphically evaluate a known arbitrary function f on m where
f : Zt → Zt. We define F = f ◦ r where r is the rounding function which
corresponds to the final non-linear step of the ciphertext c decryption function.
We write F : ZT → ZT . To be as clear as possible, we depict the bootstrap-
ping algorithm in three steps: Setp (1) the input ciphertext of m is rescaled
modulo T and the operations are mapped over a cyclic group G. We explain
later how G is constructed; Step (2) the accumulator ACC is computed using
blind shift operations in G which uses encryptions of the secret key; Step (3) a
test polynomial TVF is then applied to ACC and an LWE ciphertext of f(m) is
extracted. Here TVF encodes the possible output values of the function f , i.e.
the correspondence between the message m encoded in the input ciphertext and
the output ciphertext of f(m). Note that the test polynomial TVF can also be
applied before the blind shift operations.

Our Contribution. In this work, we show how to construct and chose TVF in
order to optimize the evaluation of arbitrary functions in one bootstrapping
call. In order to do so, we analyze the structure of FHEW-based bootstrapping
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algorithms and make a comparison in term of noise overhead output and
modularity, i.e. the functions they allow to evaluate. To be efficient, our solu-
tion should output a small noise while being able to ‘statistically’ encode all the
possible values of the function. As a first proof concept and for sake of compar-
ison, we implement a 6-to-6 LUT which runs in 1.6 s for a concrete security of
about 128 bits (asserted using the estimator from [1]) compared to a timing of
about 10 s at a security level of about 100 bits for the implementation of [5].
Our construction makes it possible to evaluate several arbitrary functions on
the same set of inputs by calling only once the main subroutine of the TFHE
bootstrapping. The name multi-value is derived from many-valued logic which
is a propositional calculus with more than two values. We give examples of pos-
sible applications of our procedure in this paper: we explain how to efficiently
compose homomorphic LUTs and we give an idea on how to optimize the cir-
cuit bootstrapping proposed in Sect. 4 of [12] which can be used to compose
circuits in a leveled mode. We finally show an application to the homomorphic
evaluation of a neural network where the linear part is evaluated using a gen-
eralization of the key-switching procedure and the non-linear part is evaluated
with our multi-value bootstrapping.

Our Technique and Comparisons to Other Works. In previous constructions,
except [13], test polynomial TVF is integrated at the end, after the accumulator
is computed, we have ACC ·TVF

1. In the TFHE gate bootstrapping of [13], the
test polynomial TVF is embedded in the accumulator from the very start when
the accumulator is still noiseless and, at step 2 the accumulator is TVF ·ACC. This
allows to save a factor

√
N , where N is the dimension. On the other end, they

are only able to encode two possible values in TFHE gate bootstrapping. A naive
idea for computing multi-value input function f would be to decompose f into
p Mux gate functions and then combine the results of the p gate bootstrapping
calls, but this method is quite inefficient. To optimize this naive construction, we
define a common factor TV

(0)
F which is shared between all the p calls. The most

expensive part is made once for the p calls. Then the specification with respect
to the 2-value functions is made at the end using a second test polynomial TV(1)

F .
This last step consists only of a multiplication by constant polynomial, which
is much cheaper than p blind rotations. We manage to decrease the output
ciphertext noise by choosing a low-norm second-stage test polynomials when
compared to previous methods integrating the test polynomial at the end.

Organization of the Paper. We first describe the high level structure of FHEW
based bootstrapping algorithms and provide a comparison between the different
scheme in the literature. Then, our preliminary section reviews the mathemat-
ical backgrounds for LWE and GSW encryption over the torus and gives the
building blocks from the TFHE framework [13] used in our constructions. In
Sect. 3, we present the optimized multi-value bootstrapping together with test

1 In this paragraph only the evaluation order of an expression matters and is used for
a better illustration.
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polynomial factorization. In Sect. 4, we present applications to the homomorphic
evaluation of arbitrary functions and describe our implementation results for the
case of a 6-to-6 LUT function. Finally, we explain how to apply the multi-value
bootstrapping and extended keyswitching to optimize the circuit bootstrapping
from [12] and to evaluate a encrypted neural network system.

2 Preliminaries

Notation. The set {0, 1} is written as B. The set of vectors of size n in E
is denoted En, and the set of n × m matrices with entries in E is noted
Mn,m(E). The real torus R mod 1 is denoted T. TN [X] denotes the Z-module
R[X]/(XN + 1) mod 1 of torus polynomials, here N is a fixed power of 2 inte-
ger. The ring Z[X]/(XN + 1) is denoted R. The set of polynomials with binary
coefficients is denoted BN [X].

2.1 High Level Structure of FHEW-based Bootstrapping

We first describe the high level structure of the FHEW-based bootstrapping
algorithms. The procedure can be split in three steps we detail below. We explain
later how schemes in this line can be instanciated using this formalism. Figure 1
gives a schematic overview of the bootstrapping steps.

1. In the first step, the coefficients (a, b) of input LWE ciphertext c = (a, b) are
mapped to ZT . A cyclic multiplicative group G, where ZT � G, is used for
an equivalent representation of ZT elements. The group G contains all the
powers of X: X0, . . . , XT−1 and T is defined as the smallest integer verifying
XT mod Φ(X) = 1 where Φ(X) is the quotient polynomial defining the input
Ring-LWE scheme. Most of the times Φ(X) is the T -th cyclotomic polynomial.

2. In this step, the message m encrypted as c = (a, b) is transformed to an
intermediary GSW encryption of Xm. Message m ∈ ZT is obtained from
c = (a, b) using the linear transformation b−a·s ≡ m (i.e. the linear part of the
decryption algorithm). Given encryptions of Xsi one can homomorphically
apply linear mapping ϕ to c. We obtain the so-called accumulator ACC which
contains an encryption of Xϕ(c) ∈ G.

3. At the third step, a test polynomial TVF ∈ G is multiplied to ACC. The
test polynomial encodes output values of a function F for each possible input
message m ∈ ZT . Here F is a function from ZT to ZT . It finally extracts an
LWE encryption of F (m) from TVF ·ACC (or from ACC·TVF if TVF is applied
after computing the accumulator) with a modified noise. As input message m
is a noised version of the actual message encrypted in c = (a, b) function F
is a composition of a ‘payload’ function f : Zt → Zt and a rounding function
r : ZT → Zt.

For example, in [5], step (1) corresponds to a modulus switching from
Q to T = pq, step (2) computes the accumulator operation in the groups
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G = {1, . . . , Xp − 1} and G = {1, . . . , Y q − 1} for primes p and q and recomposes
the result in the circulant ring Z[Z]/(Zpq − 1); at step (3), a test polynomial
(encoding F (x) = f(�tx/pq	) where f is an arbitrary function) is applied to
the accumulator and a LWE ciphertext of f(m) is extracted, where the extrac-
tion is implemented by the trace function. In [13], G is the multiplicative group
{1,X, . . . ,X2N−1} where N is a power of 2. Function f implements a rounding
(i.e. torus most significant bit extraction); step (1) does the rounding from T to
Z2N and the test polynomial is applied before the computation of the accumu-
lator ACC; step (2) computes ACC ∈ G with a blind rotation; step (3) extracts
LWE(f(m)) by extracting the constant coefficient of TVF ·ACC. Our multi-value
bootstapping is instanciated using [13].

Fig. 1. Structure of the bootstrapping Algorithm. Setp (1): The ciphertext of m is
rescaled modulo T and the operations are mapped over the cyclic group G where
G = 〈X〉 is the group of T -th roots of unity associated to the cyclotomic polynomial
ΦT (X) (for example). Step (2): the accumulator ACC is computed using blind shift
operations in G which uses encryptions of the secret key in the powers of X. Step
(3): a test polynomial is applied to ACC, it can also be applied before blind shift
operations, and an LWE ciphertext of f(m) is extracted from ACC using the encoding
of an alternative representation of f over ZT .

2.2 Backgrounds on TFHE

In this work, we will use the torus representation from [10] of the LWE encryption
scheme introduced by Regev [21] and the ring variant of Lyubashevsky et al. [20].

Distance, Norm and Concentrated Distribution. We use the �p distance for
torus elements. By abuse of notation, we denote as ‖x‖p the p-norm of the
representative of x ∈ T

k with all its coefficients in
]− 1

2 , 1
2

]
. For a torus poly-

nomial P (X) modulo XN + 1, we take the norm of its unique representative
of degree ≤ N − 1. A distribution on the torus is concentrated iff its sup-
port is included in a ball of radius 1

4 of T except with negligible probability.
In this case, we can define the usual notion of expectation and variance over
T. Let N (0, σ2) be a normal distribution centered in 0 and of variance σ2.
We denote κ(ε) = mink{PrX←N (0,σ2) [|X| > k · σ] < ε}. In this case, we have
PrX←N (0,σ2) [|X| > k · σ] = erf(k/

√
2). For example, for ε = 2−64 (this paper),

we can take κ(ε) > 9.16 and for ε = 2−32, we can take κ(ε) > 6.33.
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A real distribution X is said σ-subgaussian iff for all t ∈ R, E(exp(tX)) ≤
exp(σ2t2/2). If X and X ′ are two independent σ and σ′ subgaussian variables,
then for all α, γ ∈ R, αX + γX ′ is

√
α2σ2 + γ2σ′2-subgaussian. All the errors in

this document will follow subgaussian distributions. In what follows, we review
TFHE for encryption of torus polynomial elements.

TRLWE Samples. To encrypt a message μ ∈ TN [X], one picks a Gaussian
approximation of the preimage of ϕ−1

s (μ) over the Ω-probability space of all
possible choices of Gaussian noise. If the Gaussian noise α is small, we can
define the expectation and the variance over the torus. The expectation of ϕs(c)
is equal to μ and its variance is equal to the variance of α. We refer to [10] for
a more complete definition of the Ω-probability space.

Definition 2.1 (TRLWE). Let M be a discrete subspace of TN [X] and μ ∈ M
a message. Let s ∈ BN [X]k a TRLWE secret key, where each coefficient is chosen
uniformly at random. A TRLWE sample is a vector c = (a, b) of TN [X]k+1 which
can be either :

– A trivial sample: a = 0 and b = μ. Note that this ciphertext is independent
of the secret key.

– A fresh TRLWE sample of μ of standard deviation α: a is uniformly cho-
sen in TN [X]k and b follows a continuous Gaussian distribution of standard
deviation α centered in μ + s · a and of variance α2.

– Linear combination of fresh or trivial TRLWE samples.

We define the phase ϕs(c) of a sample c = (a, b) ∈ TN [X]k × TN [X] under
key s ∈ BN [X]k as ϕs(c) = b − s • a. Note that the phase function is a linear
(kN + 1)-lipschitzian function from TN [X]k+1 to TN [X]. We say that c is a
valid TRLWE sample iff there exists a key s ∈ BN [X]k such that the distribution
of the phase ϕs(c) is concentrated over the Ω-space around the message μ, i.e.
included in a ball of radius < 1

4 around μ. Note that c =
∑p

j=1 rj · cj is a valid
TRLWE sample if c1, . . . , cp are valid TRLWE samples (under the same key) and
r1, . . . , rp ∈ R. We also use the function msg() defined as the expectation of the
phase over the Ω-space. If μ is in M, one can decrypt a TRLWE sample c under
secret key s with small noise (smaller that the packing radius) by rounding its
phase to the nearest element of the discrete message space M. We also use the
function error Err(·) of a sample defined as the difference between the phase
and the message of the sample. We write Var(Err(X)) the variance of the error
of X and ‖Err(X)‖∞ its amplitude. When X is a normal distribution we have
‖Err(X)‖∞ ≤ κ(ε) · Var(Err(X)) with probability 1 − ε.

Given p valid and independent TRLWE samples c1, . . . , cp under key s, if
c =

∑p
i=1 ei · ci, then msg(c) =

∑p
i=1 ei · msg(ci) with ‖Err(c)‖∞ ≤ ∑p

i=1 ‖ei‖1 ·
‖Err(ci)‖ and Var(Err(c)) =

∑p
i=1 ‖ei‖22 · Var(Err(ci)).

The TRLWE problem consists of distinguishing TRLWE encryptions of 0 from
random samples in TN [X]k × TN [X]. When N = 1 and k is large, the TRLWE
problem is the Scalar LWE problem over the torus and the TRLWE encryption
is the LWE encryption over the torus. We denote it TLWE. When N is large and
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k = 1, the TRLWE problem is the LWE problem over torus polynomials with
binary secrets. In addition, the TLWE and the TRLWE correspond to the Scale
invariant variants defined in [7,9,11] and to the Ring-LWE from [20]. We refer
to Sect. 6 of [10] for more details on security estimates on the LWE problem of
the torus.

TRGSW Samples. We define a gadget matrix that will be used to decompose
over ring elements and to reverse back. Other choices of gadget basis are also
possible.

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/Bg · · · 0
...

. . .
...

1/B�
g · · · 0

...
. . .

...

0 · · · 1/Bg

...
. . .

...

0 · · · 1/B�
g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ M(k+1)�,k+1(TN [X]).

A vector v ∈ TN [X]k+1 can approximately be decomposed as DecH,β,ε(v) =
u where u ∈ R(k+1)�, s.t. ‖u‖∞ ≤ β and ‖u · H − v‖∞ ≤ ε. We call β ∈ R>0

the quality parameter and ε ∈ R>0 the precision of the decomposition. In this
paper, we use the gadget H where the decomposition in base Bg is a power of 2.
We take β = Bg/2 and ε = 1/2B�

g.

Definition 2.2 (TRGSW Sample). Let � and k ≥ 1 be two integers and
α ≥ 0 be a noise parameter. Let s ∈ BN [X]k be a TRLWE key, we say that
C ∈ M(k+1)�,k+1(TN [X]) is a fresh TGSW sample of μ ∈ 
/H⊥ with standard
deviation α iff C = Z + μ · H where each row of Z ∈ M(k+1)�,k+1(TN [X]) is a
TRLWE sample of 0 with Gaussian standard deviation α. Reciprocally, we say
that an element C ∈ M(k+1)�,k+1(TN [X]) is a valid TRGSW sample iff there
exists a unique polynomial μ ∈ 
/H⊥ and a unique key s such that each row of
C−μ ·H is a valid TRLWE sample of 0 under the key s. We call the polynomial
μ the message of C.

Since a TRGSW sample consists of (k + 1)� TRLWE under the same secret
key, the definition of the phase, message, error, norm and variance and the result
on the sum of TRLWE samples can easily be extended for TRGSW samples.

External Product. We review the module multiplication of the messages of
TRGSW and TRLWE samples from [8,10]. This operation is called external
product operation and is defined as: � : TN [X]k+1 × M(k+1)�,k+1(TN [X]) →
TN [X]k+1. The operation � has the following property:
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Theorem 2.3 (Homomorphic module multiplication). If A is a valid
TRGSW sample of μA and b is a valid TRLWE sample of μb. Then, if ‖Err(A �
b)‖∞ ≤ 1

4 , A � b is a valid TRLWE sample of μA · μb.
We have Var(Err(A � b)) ≤ (k + 1)�Nβ2Var(Err(A)) + (1 + kN)‖μA‖22ε2 +

‖μA‖22Var(Err(b)) where β and ε are the parameters used in the decomposition
Dech,β,ε()̇.

Assumption 2.4 (Independence heuristic). All the previous results rely on
the Gaussian Heuristic: all the error coefficients of TRLWE or TRGSW samples
of the linear combinations we consider are independent and concentrated. In
particular, we assume that they are σ-subgaussian where σ is the square-root of
their variance.

2.3 TFHE Gate Bootstrapping

We review the TFHE gate bootstrapping and the key-switching procedure
from [10,12]. The TFHE gate bootstrapping changes the noise of the LWE input
to bring it to a fix noise; it can also change the dimension of the ciphertexts.
We specify with an under-bar the input parameters and with an upper-bar the
output parameters when needed.

Definition 2.5. Let K ∈ B
n, K̄ ∈ B

k
N and α be a noise parameter. We

define the bootstrapping key BKK→K̄,α as the sequence of n TGSW samples
BKi ∈ TGSWK̄,α(Ki).

TFHE Gate Bootstrapping. The ternary Mux gate takes three boolean values
c, d0, d1 and returns Mux(c, d0, d1) = (c ∧ d1) ⊕ ((1 − c) ∧ d0). We also write
Mux(c, d0, d1) = c?d1 : d0.

The controlled Mux gate, CMux takes in input samples d0,d1 of messages
μ0, μ1, a TRGSW sample C of a message bit m and returns a TRLWE sample of
message μ0 if m = 0 and μ1 if m = 1. Lemma 2.6 gives the error propagation of
CMux.

Lemma 2.6. Let d0,d1 be TRLWE samples and C ∈ TRGSWs(m) where mes-
sage m ∈ {0, 1}. Then, msg(CMux(C,d1,d0)) = msg(C)?msg(d1) : msg(d0) and
we have: Var(Err(CMux(C,d1,d0))) ≤ max(Var(Err(d0)),Var(Err(d1))) + ϑ(C)
where ϑ(C) = (k + 1)�Nβ2Var(Err(C)) + (1 + kN)ε2.

The gate bootstrapping from [12] also uses the BlindRotate algorithm. Assum-
ing c = (a1, . . . , ap, b) is a LWE ciphertext under secret key s, Algorithm 1 com-
putes the blind rotation of v by the phase of c.

Theorem 2.7. Let α > 0 ∈ R be a noise parameter, K ∈ B
n be a TLWE

secret key and K ∈ BN [X]k be its TRLWE interpretation. Given one sample
c ∈ TRLWEK(v) with v ∈ TN [X], p + 1 integers a1, . . . , ap, b ∈ Z/2NZ, and p
TRGSW ciphertexts C1, . . . ,Cp where each Ci ∈ TRGSWK,α(si) for si ∈ B the
BlindRotate algorithm outputs a sample ACC ∈ TRLWEK(X−ρ ·v) where ρ = b−∑p

i=1 aisi such that Var(Err(ACC)) ≤ Var(Err(c))+p(k+1)�Nβ2ϑC +p(1+kN)ε2

where ϑC = α2.
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Algorithm 1. BlindRotate
Input: A TRLWE sample c of v ∈ TN [X] with key K.
1: p + 1 int. coefficients a1, . . . , ap, b ∈ Z/2NZ

2: p TRGSW samples C1, . . . , Cp of s1, . . . , sp ∈ B with key K
Output: A TRLWE sample of X−ρ.v where ρ = b − ∑p

i=1 si.ai mod 2N with key K
3: ACC ← X−b • c
4: for i = 1 to p
5: ACC ← CMux(Ci, X

ai · ACC,ACC)
6: return ACC

TRLWE-to-TLWE Sample Extraction. Given one TRLWE sample of message μ ∈
TN [X] the SampleExtract procedure allows to extract a TLWE sample of a single
coefficient of polynomial μ. Indeed, a TRLWE ciphertext of message μ ∈ TN [X]
of dimension k under a secret key K ∈ BN [X] can alternatively be seen as N
TLWE ciphertexts whose messages are the coefficients of μ. It is of dimension
n = kN and the secret key K is in B

n, where Ki =
∑N−1

j=0 KN(i−1)+j+1X
j .

Functional Key-Switching. The functional key-switching procedure allows to
switch between different parameter sets and between scalar and polynomial mes-
sage space. It allows to homomorphically evaluate a morphism from Z-module
T

p to TN [X]. We recall in Algorithm 2 the functional keyswitching algorithm
(from Sect. 2.2 of [12]) where the morphism f is public; we adapt its definition
to be able to use other decomposition basis of the key than the decomposition
in base 2.

Algorithm 2. TLWE-to-TRLWE public functional key-switch
Input: p TLWE samples c(z) = (a(z), b(z)) ∈ TLWEK(μz) for z = 1, . . . , p, a public

R-lipschitzian morphism f from T
p to TN [X], KSi,j ∈ TRLWEK( Ki

basej
), where base

is an integer.
Output: A TRLWE sample c ∈ TRLWEK(f(μ1, . . . , μp))
1: for i ∈ [[1, n]] do

2: Let ai = f(a
(1)
i , . . . , a

(p)
i )

3: Let ãi be the closest multiple of 1/baset to ai (i.e. ‖ãi − ai‖∞ < base−(t+1))
4: Binary decompose each ãi =

∑t
j=1 ãi,j · base−j where ãi,j ∈ ZN [X] and each of

its coefficient is in {0, . . . , base − 1}.
5: end for
6: return (0, f(b(1), . . . , b(p))) − ∑n

i=1

∑t
j=1 ãi,j × KSi,j

Theorem 2.8 (Public functional key-switch). Given p TLWE samples c(z) under
the same key K of μz with z = 1, . . . , p, a public R-lipschitzian morphism f from
T

p to TN [X], and a family of samples KSi,j ∈ TRLWEK,γ( Ki

basej
) with standard

deviation γ and where base is an integer, Algorithm2 outputs a TRLWE sam-
ple c ∈ TRLWEK(f(μ1, . . . , μp)) with Var(Err(c)) ≤ R2Var(Err(c)) + ntNϑKS +
nNbase−2(t+1), where ϑKS = γ2 is the variance of the error of KS.



New Techniques for Multi-value Input Homomorphic Evaluation 115

For p = 1 and f the identity function, we retrieve the classical key-switching
where the KSi,j is a sample TLWEs,γ(ci · base−j) for i ∈ [[1, n]] and j ∈ [[1, t]].
In this case, the output is a TLWE sample c of the same input message μ1 and
secret s, with Var(Err(c)) ≤ Var(Err(c)) + ntγ2 + nbase−2(t+1).

We are now ready to recall the TFHE gate bootstrapping in Algorithm3.
The TFHE gate bootstrapping algorithm takes as inputs a constant μ ∈ T, a
TLWE sample of x · 1

2 with x ∈ B, a bootstrapping key and returns a TLWE
sample of x · μ with a controlled error.

Algorithm 3. TFHE gate bootstrapping
Input: A constant μ ∈ T, a TLWE sample c = (a, b) ∈ TLWEK,η(x · 1

2
) with x ∈ B,

a bootstrapping key BKK→K̄,α =
(
BKi ∈ TRGSWK̄,α(Ki)

)
i∈[[1,n]]

where K̄ is the

TRLWE interpretation of K̄.
Output: A TLWE sample c̄ = (ā, b̄) ∈ TLWEK̄,η̄(x · μ)
1: Let μ̂ = 1

2
μ ∈ T (Pick one of the two possible values)

2: Let b = �2Nb� and ai = �2Nai� ∈ Z for each i ∈ [[1, n]]

3: Let TVF := (1 + X + · · · + XN−1) · X
N
2 · μ̂ ∈ TN [X]

4: ACC ← BlindRotate((0, v), (a1, . . . , an, b), (BK1, . . . ,BKn))
5: Return (0, μ̂) + SampleExtract(ACC)

Lines 1 to 4 compute a TRLWE sample of message Xϕ · v where ϕ is the
phase of c (actually an approximated phase because of rescaling in line 2). The
SampleExtract extracts its constant coefficient (μ̂ if x = 1 and −μ̂ if x = 0)
encrypted in a TLWE sample. The final addition allows to either obtain a TLWE
sample of 0 or a TLWE sample of 2 · μ̂ = μ. The error of the output ciphertext is
obtained from the combination of the output error of Theorem2.7 and the error
of the SampleExtract procedure. An internal cumulated error δ is introduced in
line 2 by the rescaling. We have δ ≤ h+1

4N where h is the number of non-zero
coefficients of TLWE secret key K and 4N comes from the rescaling by 2N and
rounding of (a, b) coefficients. This error does not influence the output.

Theorem 2.9 (TFHE gate boostrapping). Let K ∈ B
n and K̄ ∈ B

kN be
two TLWE secret keys, K̄ ∈ BN [X]k be the TRLWE interpretation of K̄ and
α > 0 ∈ R a noise parameter. Let BKK→K̄,α be a bootstrapping key, i.e n samples
BKi ∈ TRGSWK̄,α(Ki) for i ∈ [[1, n]]. Given a constant μ ∈ T and a sample
c ∈ T

n+1, Algorithm3 outputs a TLWE sample c̄ ∈ TLWEK̄(μ̄) where μ̄ = 0 if
|ϕK(c)| < 1

4 − δ and μ̄ = μ if |ϕK(c)| > 1
4 + δ. We have Var(Err(c̄)) ≤ n(k + 1)

�Nβ2ϑBK + n(1 + kN)ε2 where ϑBK is Var(Err(BKK→K̄,α)) = α2.

3 Multi-value Bootstrapping

In the previous section, we recall the bootstrapping procedures based on an
auxiliary GSW scheme. Instead of the bootstrapping procedures where only a
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‘re-encryption’ of input ciphertext is made, we explain here how to bootstrapp
an arbitrary function of the input message. For example in [10] the arbitrary
function was the rounding (or modulus switching) of ciphertext decryption func-
tion. Recall, G = 〈X〉 is the group of powers of X where X is a 2N -th root of
unity. This corresponds to the cyclotomic polynomial Φ2N (X) = XN + 1 defin-
ing the TRLWE ciphertext polynomials. The bootstrapping procedure consists
of a linear step where an approximate phase m ∈ Z2N of the input ciphertext
c is computed followed by a non-linear step described by the following relation,
here R(X) ∈ ZN [X] is a polynomial with zero-degree coefficient equal to zero:

TVF (X) · Xm ≡ F (m) + R(X) mod Φ2N (X) (1)

To ease the exposition, only the plaintext counterpart is presented. The
BlindRotate procedure is used to obtain ACC which encrypts the phase m in
the form of a power of X. This new representation is then multiplied by a test
polynomial TVF , for a function F : Z2N → Z2N . In the zero-degree coefficient
of the resulting polynomial the evaluation of function F in point m is obtained.
Several possibilities to evaluate relation (1) exist. Hereafter we present 3 different
ways to perform this evaluation and discuss their advantages and drawbacks.

TVF (X ) · Xm – The first one is to start the BlindRotate procedure with TVF

already encoded in ACC. The main advantage is that the output noise is inde-
pendent of the test polynomial and is the lowest possible. The drawback is that
only one function can be computed per bootstrapping procedure. This is how
TVF is encoded in the bootstrapping of [10].

Xm · TVF (X ) – Another possibility is to integrate TVF after the BlindRotate
procedure is performed. In this case, one can use several test polynomials and
thus, compute several functions in the same input. This is how TVF is encoded
in the bootstrapping of [4,5,14]. The main drawback is that output ciphertext
noise depends on test polynomial coefficient values.

TV(0) (X ) · Xm · TV(1)
F (X ) – Finally, we can split test polynomial TVF into

two factors, with a first-phase factor TV (0) and a second-phase factor TV(1)
F (X)

test polynomials. The first-phase factor TV(0) does not depend on the evaluated
function F . Thus, as in the previous case, using different second-phase test poly-
nomials we are able to evaluate several functions on the same input. Another
condition when performing the factorization is to obtain the second-phase fac-
tors with low-norm coefficients. This is needed in order to obtain small noise
increase in output ciphertexts. We conclude that this new evaluation technique
allows to leverage the best of the first two possibilities.

The test polynomial is specific to a function f we want to evaluate. As the
phase m is a noised version of the message of the input c, it should be rounded
before function f is applied to. We have F = f ◦ round, where the function F is
a composition of a rounding function and the “payload” function.

In the next subsection, we give a possible way to factorize test polynomials.
Afterwards, we examine an updated version of Algorithm3 which implements a
bootstrapping procedure where the test polynomials are split.
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3.1 Test Polynomial Factorization

Hereafter, we examine the conditions a function F should verify and we introduce
a “half-circle” factorization of the test polynomial.

Theorem 3.1. Let F : Z2N → Z2N be a function to be evaluated in a bootstrap-
ping procedure using relation (1). Function F must satisfy relation F (m+N) =
−F (m) for 0 ≤ m < N .

Proof. Let P (X) be a polynomial from ZN [X]. Multiplying it by XN gives the
initial polynomial with negated coefficients, i.e. P (X) · XN ≡ −P (X) ∈ ZN [X].
This is due to relation XN = −1 defining cyclotomic polynomial Φ2N (X), i.e.
the negacyclic property of the ring ZN [X]. If we apply this observation to the
left-hand side of Eq. (1) we have:

TVF (X) · X(m+N) ≡ −TVF (X) · Xm mod Φ2N (X), 0 ≤ m < N

Respectively, the right-hand side must satisfy the condition F (m+N) = −F (m)
for 0 ≤ m < N .

In what follows we restrict Eq. (1) to values of m belonging to ZN . In this
way, the condition F (m + N) = −F (m) is automatically verified.

Half-Circle Polynomial Bootstrapping. Let TVF be a test polynomial defined as
TVF =

∑N−1
i=0 tiX

i, where t0 = F (0) and ti = −F (N − i) for 1 ≤ i < N . Thus,
TVF equals to F (0) − ∑N−1

i=1 F (i) · XN−i. It is straightforward to see that the
relation TVF ·Xm = F (m)+R(X) mod Φ2N (X) is satisfied for any 0 ≤ m < N .

The test polynomial TVF must be factored into two polynomials such that
the first one TV(0) does not depend on the evaluated function F . We did not
mentioned earlier but the factorization can be fractional. Let τ denote the least
common multiple of the factorization such that TV (0), TV

(1)
F ∈ ZN [X]:

τ · TV (0) · TV
(1)
F ≡ TVF mod Φ2N (X)

We define the first-phase test polynomial as TV (0) =
∑N−1

i=0 Xi and τ = 1/2.
Let second-phase test polynomial be TV

(1)
F =

∑N−1
i=0 t′i · Xi. Polynomials

TV(0) and TV
(1)
F being factors of TVF we have:
∑

i

ti · Xi ≡ 1/2 ·
∑

i

t′i · Xi ·
∑

i

Xi mod Φ2N (X)

Using the fact that XN = −1, we obtain the following system of linear equations
with N unknowns t′i, 0 ≤ i < N :

∑

0≤i≤k

t′i −
∑

k<i<N

t′i = 2tk, 0 ≤ k < N (2)
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Theorem 3.2. The system of linear equation (2) admits an analytical solution
given by: t′0 = t0 + tN−1 and t′k = tk − tk−1 for k ≥ 1.

Proof. Observe that two consecutive tk−1 and tk differ only by t′k element sign.
Computing their difference, we have 2 · (tk − tk−1) =

∑
0≤i≤k t′i − ∑

k<i<N t′i −∑
0≤i≤k−1 t′i +

∑
k−1<i<N t′i = 2t′k. The case for t′0 is equivalently proved except

that for t0 and tN−1 only the sign of t′0 is the same.

Property 1. Suppose that function F has the same output value for consecutive
points N − k and N − k + 1, thus F (N − k) = F (N − k + 1). Observe that
t′k = tk − tk−1 = −F (N − k) − F (N − k + 1) = 0. We deduce that the second-
phase test polynomial coefficient t′k is zero in this case. More generally, this
test polynomial has exactly s non-zero coefficients where s is the number of
transitions of function F , i.e. s = |{F (k) �= F (k + 1) : 0 ≤ k < N}|.

The test polynomial factorization introduced earlier can be graphically inter-
preted as follows:

1. The first-phase test polynomial divides the torus in two parts. The bootstrap-
ping with test polynomial τ · TV (0) returns +τ for first half-circle [0, 1/2[ of
torus and −τ for the other part.

2. The second-phase test polynomial builds a linear combination of such half-
circles, thus the half-circles from step 1 are rotated by Xi and scaled by
t′i.

Example. We give in Fig. 2 an example over T of the previously explained proce-
dure. We ignore the coefficient τ in this illustration. On the top torus circle are
denoted values returned by the first-phase test polynomial, i.e. test polynomial
values projected on torus circle. The second-phase test polynomial has 3 terms
and is equal to t′aXa + t′bX

b + t′cX
c. The 3 bottom torus circles denote the lin-

ear mapping performed by each monomial of the second-phase test polynomial.
Summing up these terms gives a torus circle values illustrated on the rightmost
part of the figure. Observe the negacyclic property of cyclotomic polynomial
XN + 1 on the torus circles from the fact that symmetric output values are
negated.

Function Evaluation with Rounding. Let f be a function from Zt to Zq for
t < 2N and q ≤ 2N . Let r be a rounding function which takes as input a
message from Z2N and outputs a rounded message belonging to Zt. Function
r is defined as r (m) = �m · t/2N	. This function corresponds to the rounding
performed on TLWE ciphertext phase in order to obtain the plaintext message.

Test polynomial TVf◦r =
∑

i ti for the composed function f ◦ r is defined
as: t0 = f ◦ r(0) and tk = −f ◦ r(N − k) for 1 ≤ k < N . Building the system
of linear equation (2) and using explicit solution given in Theorem3.2 we can
deduce the coefficients for second-phase test polynomial.
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Fig. 2. Illustration of the high-level strategy for the multi-value bootstrapping

Proposition 1 (Second-phase test polynomial norm). Let f be a function
from Zs to Zq and let TV

(1)
f◦r be the corresponding second-phase test polynomial.

The squared norm of this polynomial is given by:
∥
∥
∥TV

(1)
f◦r

∥
∥
∥
2

2
≤ s · (q − 1)2.

Proof. (Number of non-zero coefficients) From the definition of the rounding
function r we have r(k) = l for any k such that l·2N/t ≤ k < (l+1)·2N/t. Without
loss of generality we suppose here that t divides 2N . Composed function f ◦ r,
denoted by F , has the same output value for 2N/t consecutive input messages
from Z2N , i.e. F (k) = f ◦ r(k) = f(l) for l · 2N/t ≤ k < (l + 1) · 2N/t. Using
Property 1 we deduce that the TV

(1)
f◦r polynomial is sparse and has exactly s

non-zero coefficients. Let S, |S| = s, be the set of indexes of non-zero coefficients,
we have TV

(1)
f◦r =

∑
i∈S t′iX

i.
(Coefficient range) Each non-zero coefficient t′i, i ∈ S, is defined as the differ-

ence between consecutive output values of function f ◦r, or equivalently function
f . Refer to Theorem 3.2 and TVf◦r definition. We have (t′i)

2 ≤ (f(k) − f(k′))2

for any k, k′ ∈ Zt. As function f is defined over Zq relation 0 ≤ f(.) ≤ q − 1
is verified. We deduce (t′i)

2 ≤ (q − 1)2. Combining these results we obtain the
bound expression:

∥
∥
∥TV

(1)
f◦r

∥
∥
∥
2

2
=

∥
∥
∥
∥
∥

∑

i∈S

t′iX
i

∥
∥
∥
∥
∥

2

2

=
∑

i∈S

(t′i)
2 ≤ s · (q − 1)2

3.2 Optimized Multi-value Bootstrapping

In this subsection we focus on multi-value bootstrapping procedure for Torus
FHE where the 2N -th cyclotomic polynomial XN + 1 defines TRLWE samples.
We assume that first and second phase test polynomials, TV (0), TV

(1)
F ∈ ZN [X],

together with scale factor τ verifying condition (3) are given.

τ · TV (0) (X) · Xm · TV
(0)
F (X) ≡ F (m) + R(X) mod Φ2N (X) (3)
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Algorithm 4 illustrates the steps of optimized bootstrapping procedure using
split test polynomials. It takes as input a ciphertext encrypting a message m/2N,
m ∈ Z2N , and outputs a ciphertext encrypting F (m) ∈ Z2N . Test polynomial
TV (0) belongs to ZN [X]. It is mapped to TN [X] by multiplication with 1/2N ∈ T

and with scale factor τ (algorithm step 2). There is not need to map second-
phase test polynomial to TN [X] because in step 4 a linear transformation of ACC
by TV

(1)
F is performed.

Algorithm 4. Multi-value bootstrapping algorithm
Input: A TLWE sample c = (a, b) ∈ TLWEK,η(μ) where μ = m/2N, m ∈ Z2N

Input: First, second phase test polynomials TV (0), TV
(1)

F ∈ ZN [X] and scale factor τ
Input: A bootstrapping key BKK→K̄,α =

(
BKi ∈ TRGSWK̄,α(Ki)

)
i∈[[1,n]]

where K̄ is

the TRLWE interpretation of K̄.
Output: A TLWE sample c̄ ∈ TLWEK̄,η̄(F (m)/2N)
1: Let b = �2Nb� and ai = �2Nai� ∈ Z2N for each i ∈ [[1, n]]
2: Let v ← TV(0) · 1/2N · τ ∈ TN [X]
3: ACC ← BlindRotate((0, v), (a1, . . . , an, b), (BK1, . . . ,BKn))

4: ACC ← TV
(1)
F · ACC

5: Return c̄ = SampleExtract(ACC)

Theorem 3.3. Given a TLWE input ciphertext c of message μ = m/2N, m ∈
Z2N , first-phase TV(0) ∈ ZN [X], second-phase TV

(1)
F ∈ ZN [X] test polyno-

mials, factorization factor τ verifying condition (3) and a valid bootstrapping
key BKK→K̄,α = (BKi)i∈[[1,n]], Algorithm4 outputs a valid TLWE ciphertext c̄
of message F (m)/2N with error distribution variance verifying: Var(Err(c)) ≤∥
∥
∥TV(1)

F

∥
∥
∥
2

2

(
n(k + 1)�Nβ2ϑBK + n(1 + kN)ε2

)
where ϑBK is the variance of boot-

strapping key Var(Err(BKK←K̄,α)) = α2.

Proof. (Correctness) The first 3 lines of Algorithm 4 compute a TRLWE cipher-
text of message Xb−aK · TV (0) · 1/2N · τ . Line 4 applies a linear transformation
to it and message τ/2N · Xb−aK · TV (0) · TV

(1)
F is obtained. Input message μ

is a multiple of 1/2N on the torus so we have b − aK = μ · 2N . Recall that
τ ·TV (0) ·TV

(1)
F ·Xm ≡ F (m)+ . . . for any m ∈ Z2N and m = μ ·2N . Thus, ACC

at line 5 contains an encryption of a polynomial whose zero-degree coefficient
is F (m)/2N. The SampleExtract function from the last line extracts from ACC a
TLWE sample of message F (m)/2N.

(Error Analysis) The error analysis for this method follows from the error
analysis of the TFHE gate bootstrapping. It adds one multiplication by a con-
stant polynomial TV

(1)
F and gives the following variation of error distribution:

Var(Err(c)) ≤
∥
∥
∥TV

(1)
F

∥
∥
∥
2

2

(
n(k + 1)�Nβ2ϑBK + n(1 + kN)ε2

)
.
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Theorem 3.4. Under the same hypothesis as in Theorems 2.8 and 3.3, when
given a correct input ciphertext c of message μ, m = μ · 2N ∈ Z2N , the multi-
value bootstrapping of Algorithm4 followed by the classical key-switching outputs
a ciphertext c̄ of message F (m)/2N with error distribution variance:

Var(Err(c)) ≤
∥
∥
∥TV(1)

F

∥
∥
∥
2

2

(
n(k + 1)�Nβ2ϑBK + n(1 + kN)ε2

)
+

ntϑ2
KS + n2−2(t+1) (4)

where ϑBK and ϑKS are respectively the variances of bootstrapping and key-
switching keys error distributions.

Multi-output Version. In many cases one needs to evaluate several functions
over the same encrypted message. The naive way is to execute bootstrapping
Algorithm 4 several times for each function. Remark that for equal first-phase
test polynomials TV (0) Algorithm 4 performs the same computations up to line 3.
Thus, until second-phase test polynomial integration into the accumulator. By
repeating steps 4–5 for several second-phase test polynomials TV

(1)
F1

, . . . ,TV
(1)
Fq

the bootstrapping algorithm outputs encryptions of messages F1(m), . . . , Fq(m).
Figure 3 is a schematic view of the bootstrapping procedure which evaluates
several functions over same input message.

Fig. 3. Multiple output multi-value bootstrapping overview. Test polynomials
TV

(1)
F1

, . . . ,TV
(1)
Fq

correspond to q functions evaluated over message μ encrypted in the
input ciphertext.

4 Homomorphic LUT

In this section, we show how to use the multi-value bootstrapping introduced
earlier to homomorphically evaluate r-bit LUT functions over encrypted data.
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4.1 Homomorphic LUT Evaluation

A boolean LUT is a function defined as f : Zr
2 → Z

q
2. At first we focus on single-

output LUTs, i.e. the case q = 1. Afterwards we show how to efficiently evaluate
multi-output LUTs. It is straightforward to see an equivalent formulation for f
over the ring of integers modulo 2r using F : Z2r → Z2 and the linear mapping
φ (m0, . . . ,mr−1) =

∑r−1
j=0 mj ·2j from Z

r
2 to Z2r . We have F ◦φ (m0, . . . ,mr−1) ≡

f (m0, . . . ,mr−1) for any (m0, . . . ,mr−1) ∈ Z
r
2. The multi-value bootstrapping is

used to evaluate LUT function F as follows. We encode integers over the torus as
multiples of 1/2r+1. Only the first half-circle of torus is used for input and output
message spaces. In this way any function can be evaluated using bootstrapping
procedure - refer to restrictions from Theorem3.1. Full message space is used
for the input j/2r+1 for j ∈ Z2r and only the first 2 elements are used for the
output messages j/2r+1 for j ∈ Z2. Test polynomial factorization described in
previous section is used. Recall, the first-phase test polynomial TV(0) is

∑
i Xi

and scaling factor is τ = 1/2. The second-phase test polynomial is computed
using Theorem 3.2 for LUT function F composed with a rounding function.

From Proposition 1 this test polynomial norm verifies relation
∥
∥
∥TV

(1)
F◦r

∥
∥
∥
2

2
≤ 2r.

4.2 LUT Circuits

A naive solution for multi-output LUT evaluation is to map Z
q
2 to Z2q . Doing so,

we would be able evaluate functions F : Z2r → Z2q where q ≤ r. The drawback
of this method appears when we need to compose LUTs into a circuit and evalu-
ate it. A reverse mapping from Z2q to Z

q
2 would be needed. It will be an overkill

to use another function to extract bits from Z2q messages, because it implies
to use another multi-value bootstrapping. Let F (�) : Z2r → Z2 be a multi-value
input function computing the �-th output bit of LUT function f : Z

r
2 → Z

q
2,

� = 1, . . . , q. Each of these functions, F (1), . . . , F (q), is evaluated as described
previously. Note that the expensive blind rotate part from the bootstrapping is
performed once. Only the multiplication by second-phase test vector and sample
extract is done for each evaluated function. Figure 4 illustrates intermediary steps
for interfacing LUTs. Firstly, ciphertexts encrypting messages m1, . . . ,mr ∈ B

obtained from several bootstrapping procedures are combined together into a
multi-value message m using the linear transformation φ. Note that this trans-
formation is performed in the output key space of the bootstrapping procedure
under the secret key K. Next, a key-switching procedure is performed and a
ciphertext of the same message m under the secret K is obtained. This ciphertext
is fed into the next bootstrapping and the process can be repeated. It is possi-
ble to reorder the linear mapping evaluation and the key-switching, i.e. perform
key-switching directly after the bootstrapping and evaluate the linear mapping
afterwards. Besides the fact that r times more key-switching procedures are per-
formed the noise increase will also be larger. Actually, the linear map evaluation
noise increase is multiplicative compared to the additive key-switching noise. In
the next subsection, we describe implementation in more details.
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Fig. 4. LUT composition into circuits. On top are shown executed algorithms and at
the bottom obtained ciphertexts.

4.3 Implementation Details and Performance

We implement the previous method for r = 6. The parameters of samples are:

– TLWE – n = 803, noise standard deviation 2−20 and h = 63 (TLWE key
non-zero coefficient count),

– TRLWE – N = 214 and noise standard deviation 2−50,
– TRGSW – decomposition parameters � = 23 and Bg = 26.

To estimate the security, we used the lwe-estimator script2 from [1] which
includes the recent attacks on small LWE secrets [2]. We found that our instances
achieve at least 128 bits of security which is better than to the concrete secu-
rity level (about 100 bits) of the 6-to-6 LUT implementation of [5]. The key-
switch parameters are t = 4 and decomposition base 24. We have implemented
the multi-value bootstrapping technique proposed above on-top of the TFHE
library [13] and a test implementation is available in the torus generic branch.
Several modifications were performed in order to support 64-bit precision torus.
Approximate sample sizes are: TLWE 6.3 kB, TRLWE 256 kB and the TRGSW
2 MB. As for the keys we have: multi-value bootstrapping key <2GB and the
switching key ≈6GB. The key sizes can be reduced using a pseudo-random num-
ber generator as in [10]. Our experimental protocol consisted in: (i) a 6 bit multi-
value message is encrypted, (ii) parameters (i.e. second-phase test polynomials)
for several LUTs are generated randomly, (iii) the multi-value bootstrapping
is executed on this encrypted message (several ciphertexts encrypting boolean
messages are obtained), (iv) a weighted sum is used to build a new multi-value
message ciphertext from 6 of the output boolean messages obtained previously,
(v) finally a key-switching procedure is performed in order to regain the boot-
strapping input parameter space. We executed the algorithms on a single core
of an Intel Xeon E3-1240 processor running at 3.50 GHz. The bootstrapping and
switching keys are generated in approximatively 66 s. Multi-value bootstrapping
on 6 bit words with 6 boolean outputs runs in ≈1.57 s with the bit combina-
tion plus key-switching phase and in under 1.5 sec. without the key-switching.
For comparison the gate bootstrapping from TFHE library takes 15 ms on the
same machine. We did not observed a significant increase in the execution time

2 Available at https://bitbucket.org/malb/lwe-estimator. Our estimation were per-
formed using commit 76d05ee.

https://bitbucket.org/malb/lwe-estimator
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when the number of LUT outputs augments. For example computing 128 dif-
ferent functions on the same input message increased the execution time only
by 0.05 s, almost for free! We shall note that the combination and key-switching
was performed a single time in this last experiment.

4.4 Further Applications

We present here possible applications of the multi-value bootstrapping. We do
not implement them but give a brief overview on the multi-bootstrapping could
be used and leave the model analysis and teh implementation for a future inde-
pendent work. The first one concerns the optimization of the circuit bootstrap-
ping from [12, Sec. 4.1] which allows to compose circuits in a leveled mode by
turning a TLWE sample into a TRGSW sample. The first step of the circuit boot-
strapping consists to � TFHE gate bootstrapping calls on the same TLWE input
sample. Here each bootstrapping call is associated to a different test polynomial.
We can apply the multi-value bootstrapping to optimize this step: since the LWE
input sample is the same, the idea is to perform Algorithm 1 only once for the �
bootstrapping calls, and to adapt the output using corresponding test polynomi-
als TV(1)

F as in Subsect. 3.2. We then obtain the � desired outputs. This allows to
save a factor � in one of the circuit bootstrapping phases. The second one relates
to homomorphic evaluation of neural networks. Our multi-value bootstrapping
can also be used to homomorphically evaluate a neural network. Assume neu-
rons x1, . . . , xp inputs and output y are encrypted as TLWE ciphertexts. The
computational neuron network functionality is defined by two functions, a linear
function f : T

p �→ T and an activation function g : T �→ T. The result is a
TLWE sample of y = g(f(x1, . . . , xp)). Function f is usually implemented as an
inner-product. We can compute the inner-product between p neuron inputs and
a fixed weight vector using a functional key-switch, and afterwards extract the
TLWE encryption from the TRLWE key-switch output. Note that the public func-
tional key-switch allows to compute up to N inner-products. Thus, using a single
key-switch procedure we can compute all the linear functions of a whole neural
network layer! Afterwards, using our multi-value bootstrapping, we compute a
TLWE sample of g(.) which is not an arbitrary function. Usually a threshold
function is used for g. In this particular case, the multi-value bootstrapping can
be more efficiently instantiated than for an arbitrary function.

5 Conclusion

We introduced a bootstrapping procedure based on TFHE scheme with split test
polynomials which can be used to evaluate multi-value functions and increase
the evaluation efficiency of multi-output functions. We notice that this method
(the test polynomial split trick) can be easily adapted to other FHEW-based
bootstrapping algorithms. We show how to apply the multi-value bootstrapping
to execute arbitrary LUT functions on encrypted data and implement the eval-
uation of a 6-to-6 LUT which takes under 1.6 s; the evaluation of additional
outputs on the same input comes at virtually no cost.
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of learning with errors. In: STOC, pp. 575–584 (2013)

8. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 8

9. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–
536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 20

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based
E-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–
265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 16

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption library, August 2016. https://tfhe.github.io/tfhe/

14. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-319-22174-8_7
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1007/978-3-319-70694-8_14
https://tfhe.github.io/tfhe/
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24


126 S. Carpov et al.

15. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption (2012).
https://eprint.iacr.org/2012/144

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, vol. 9,
pp. 169–178 (2009)

17. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

18. Halevi, S., Shoup, I.V.: Helib - an implementation of homomorphic encryption,
September 2014. https://github.com/shaih/HElib/

19. Lepoint, T.: FV-NFLlib: library implementing the Fan-Vercauteren homomorphic
encryption scheme, May 2016 https://github.com/CryptoExperts/FV-NFLlib

20. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93 (2005)

22. SEAL. Simple encrypted arithmetic library. https://sealcrypto.codeplex.com/

https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-642-40041-4_5
https://github.com/shaih/HElib/
https://github.com/CryptoExperts/FV-NFLlib
https://doi.org/10.1007/978-3-642-13190-5_1
https://sealcrypto.codeplex.com/

	New Techniques for Multi-value Input Homomorphic Evaluation and Applications
	1 Introduction
	2 Preliminaries
	2.1 High Level Structure of FHEW-based Bootstrapping
	2.2 Backgrounds on TFHE
	2.3 TFHE Gate Bootstrapping

	3 Multi-value Bootstrapping
	3.1 Test Polynomial Factorization
	3.2 Optimized Multi-value Bootstrapping

	4 Homomorphic LUT
	4.1 Homomorphic LUT Evaluation
	4.2 LUT Circuits
	4.3 Implementation Details and Performance
	4.4 Further Applications

	5 Conclusion
	References




