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Abstract. Group signatures allow users of a group to sign messages
anonymously in the name of the group, while incorporating a tracing
mechanism to revoke anonymity and identify the signer of any message.
Since its introduction by Chaum and van Heyst (EUROCRYPT 1991),
numerous proposals have been put forward, yielding various improve-
ments on security, efficiency and functionality. However, a drawback of
traditional group signatures is that the opening authority is given too
much power, i.e., he can indiscriminately revoke anonymity and there
is no mechanism to keep him accountable. To overcome this problem,
Kohlweiss and Miers (PoPET 2015) introduced the notion of accountable
tracing signatures (ATS) - an enhanced group signature variant in which
the opening authority is kept accountable for his actions. Kohlweiss and
Miers demonstrated a generic construction of ATS and put forward a
concrete instantiation based on number-theoretic assumptions. To the
best of our knowledge, no other ATS scheme has been known, and the
problem of instantiating ATS under post-quantum assumptions, e.g., lat-
tices, remains open to date.

In this work, we provide the first lattice-based accountable tracing sig-
nature scheme. The scheme satisfies the security requirements suggested
by Kohlweiss and Miers, assuming the hardness of the Ring Short Integer
Solution (RSIS) and the Ring Learning With Errors (RLWE) problems.
At the heart of our construction are a lattice-based key-oblivious encryp-
tion scheme and a zero-knowledge argument system allowing to prove
that a given ciphertext is a valid RLWE encryption under some hidden
yet certified key. These technical building blocks may be of independent
interest, e.g., they can be useful for the design of other lattice-based
privacy-preserving protocols.

1 Introduction

Group signature is a fundamental cryptographic primitive introduced by Chaum
and van Heyst [12]. It allows members of a group to anonymously sign messages
on behalf of the group, but to prevent abuse of anonymity, there is an opening
authority (OA) who can identify the signer of any message. While such a tracing
mechanism is necessary to ensure user accountability, it grants too much power to
the opening authority. Indeed, in traditional models of group signatures, e.g., [2,
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3,7,8,22,23,52], the OA can break users’ anonymity whenever he wants, and we
do not have any method to verify whether this trust is well placed or not.

One existing attempt to restrict the OA’s power is the proposal of group
signatures with message-dependent opening (MDO) [51], in which the OA can
only identify the signers of messages admitted by an additional authority named
admitter. However, this solution is still unsatisfactory. Once the OA has obtained
admission to open a specific message, he can identify all the users, including
some innocent ones, who have ever issued signatures on this specific message.
Furthermore, by colluding with the admitter, the OA again is able to open all
signatures.

To tackle the discussed above problem, Kohlweiss and Miers [24] put for-
ward the notion of accountable tracing signatures (ATS), which is an enhanced
variant of group signatures that has an additional mechanism to make the OA
accountable. In an ATS scheme, the role of the OA is incorporated into that
of the group manager (GM), and there are two kinds of group users: traceable
ones and non-traceable ones. Traceable users are treated as in traditional group
signatures, i.e., their anonymity can be broken by the OA/GM. Meanwhile, it
is infeasible for anyone, including the OA/GM, to trace signatures generated
by non-traceable users. When a user joins the group, the OA/GM first has to
determine whether this user is traceable and then he issues a corresponding
(traceable/nontraceable) certificate to the user. In a later phase, the OA/GM
reveals which user he deems traceable using an “accounting” algorithm, yielding
an intriguing method to enforce his accountability.

As an example, let us consider the surveillance controls of a building, which
is implemented using an ATS scheme. On the one hand, the customers in this
building would like to have their privacy protected as much as possible. On the
other hand, the police who are conducting security check in this building would
like to know as much as they can. To balance the interests of these two parties,
the police can in advance narrow down some suspects and asks the OA/GM to
make these suspected users traceable and the remaining non-suspected users
non-traceable. To check whether the suspects entered the building, the police
can ask the OA/GM to open all signatures that were used for authentication at
the entrance. Since only the suspects are traceable, the group manager can only
identify them if they indeed entered this building. However, if a standard group
signature scheme (e.g., [1–3,6]) were used, then the privacy of innocent users
would be seriously violated. In this situation, one might think that a traceable
signature scheme, as suggested by Kiayias, Tsiounis and Yung [22], would work.
By requesting a user-specific trapdoor from the OA/GM, the police can trace all
the signatures created by the suspects. However, this only achieves privacy of
innocent users against the police, but not against the group authorities. In fact,
in a traceable signature scheme, the OA/GM has the full power to identify the
signers of all signatures and hence can violate the privacy of all users without
being detected. In contrast, if an ATS scheme is used, then the OA/GM must
later reveal which user he chose to be traceable, thus enabling his accountability.
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In [24], besides demonstrating the feasibility of ATS under generic assump-
tions, Kohlweiss and Miers also presented an instantiation based on number-
theoretic assumptions, which remains the only known concrete ATS construc-
tion to date. This scheme, however, is vulnerable against quantum computers
due to Shor’s algorithm [53]. For the sake of not putting all eggs in one basket,
it is therefore tempting to build schemes based on post-quantum foundations. In
this paper, we investigate the design of accountable tracing signatures based on
lattice assumptions, which are currently among the most viable foundations for
post-quantum cryptography. Let us now take a look at the closely related and
recently active topic of lattice-based group signatures.

Lattice-based group signatures. The first lattice-based group signature
scheme was introduced by Gordon, Katz and Vaikuntanathan in 2010 [19]. Sub-
sequently, numerous schemes offering improvements in terms of security and
efficiency have been proposed [9,11,25,27,29,33,46,49]. Nevertheless, regarding
the supports of advanced functionalities, lattice-based group signatures are still
way behind their number-theoretic-based counterparts. Indeed, there have been
known only a few lattice-based schemes [27,30,31,34,35] that depart from the
BMW model [2] - which deals solely with static groups and which may be too
inflexible to be considered for a wide range of real-life applications. In partic-
ular, although there was an attempt [30] to restrict the power of the OA in
the MDO sense, the problem of making the OA accountable in the context of
lattice-based group signatures is still open. This somewhat unsatisfactory state-
of-affairs motivates our search for a lattice-based instantiation of ATS. As we
will discuss below, the technical road towards our goal is not straightforward:
there are challenges and missing building blocks along the way.

Our Results and Techniques. In this paper, we introduce the first lattice-
based accountable tracing signature scheme. The scheme satisfies the security
requirements suggested by Kohlweiss and Miers [24], assuming the hardness of
the Ring Short Integer Solution (RSIS) problem and the Ring Learning With
Errors (RLWE) problem. As all other known lattice-based group signatures, the
security of our scheme is analyzed in the random oracle model. For a security
parameter λ, our ATS scheme features group public key size and user secret
key size ˜O(λ). However, the accountability of the OA/GM comes at a price: the
signature size is of order ˜O(λ2) compared with ˜O(λ) in a recent scheme by Ling
et al. [35].

Let us now give an overview of our techniques. First, we recall that in an
ordinary group signature scheme [2,3], to enable traceability, the user is sup-
posed to encrypt his identifying information and prove the well-formedness of
the resulting ciphertext. In an ATS scheme, however, not all users are traceable.
We thus would need a mechanism to distinguish between traceable users and
non-traceable ones. A possible method is to let traceable users encrypt their
identities under a public key (pk) such that only the OA/GM knows the under-
lying secret key (sk), while for non-traceable users, no one knows the secret key.
However, there seems to be no incentive for users to deliberately make themselves
traceable. We hence should think of a way to choose traceable users obliviously.
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An interesting approach is to randomize pk to a new public key epk so that
it is infeasible to decide how these keys are related without the knowledge of
the secret key and the used randomness. More specifically, when a user joins
the group, the OA/GM first randomizes pk to epk and sends the latter to the
user together with a certificate. The difference between traceable users and non-
traceable ones lies in whether OA/GM knows the underlying secret key. Thanks
to the obliviousness property of the randomization, the users are unaware of
whether they are traceable. Then, when signing messages, the user encrypts his
identity using his own randomized key epk (note that this “public key” should
be kept secret) and proves the well-formedness of the ciphertext. Several ques-
tions regarding this approach then arise. What special kind of encryption scheme
should we use? How to randomize the public key in order to get the desirable
obliviousness? More importantly, how could the user prove the honest execution
of encryption if the underlying encryption key is secret?

To address the first two questions, Kohlweiss and Miers [24] proposed the
notion of key-oblivious encryption (KOE) - a public-key encryption scheme in
which one can randomize public keys in an oblivious manner. Kohlweiss and
Miers showed that a KOE scheme can be built from a key-private homomorphic
public-key encryption scheme. They then gave an explicit construction based on
the ElGamal cryptosystem [17], where epk is obtained by multiplying pk by a
ciphertext of 1. When adapting this idea into the lattice setting, however, one
has to be careful. In fact, we observe that an implicit condition for the underlying
key-private public-key encryption scheme is that its public key and ciphertext
should have the same algebraic form1, which is often not the case for the schemes
in the lattice setting, e.g., [18,50]. Furthermore, lattice-based encryption schemes
from the Learning with Errors (LWE) problem or its ring version RLWE often
involve noise terms that grow quickly when one performs homomorphic opera-
tions over ciphertexts. Fortunately, we could identify a suitable candidate: the
RLWE-based encryption scheme proposed by Lyubashevsky, Peiker and Regev
(LPR) [42], for which both the public key and the ciphertext consist of a pair
of ring elements. Setting the parameters carefully to control the noise growth
in LPR, we are able to adapt the blueprint of [24] into the lattice setting and
obtain a lattice-based KOE scheme.

To tackle the third question, we need a zero-knowledge (ZK) protocol for
proving well-formedness of the ciphertext under a hidden encryption key, which
is quite challenging to build in the RLWE setting. Existing ZK protocols from
lattices belong to two main families. One line of research [4,5,36,37,40,43]
designed very elegant approximate ZK proofs for (R)LWE and (R)SIS relations
by employing rejection sampling techniques. While these proofs are quite effi-
cient and compact, they only handle linear relations. In other words, they can
only prove knowledge of a short vector x satisfying y = A · x mod q, for pub-
lic A and public y. This seems insufficient for our purpose. Another line of
research [13,28,29,32,33,35] developed decomposition/ extension/permutation

1 This condition is needed so that epk can be computed as pk · enc(1) (multiplicative
homomorphic) or pk + enc(0) (additive homomorphic).
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techniques that operate in Stern’s framework [55]. Although Stern-like pro-
tocols are less practical than those in the first family, they are much more
versatile and can even deal with quadratic relations [28]. More precisely, as
demonstrated by Libert et al. [28] one can employ Stern-like techniques to prove
knowledge of secret-and-certified A together with short secret vector x satisfying
y = A · x mod q. Thus, Libert et al.’s work appears to be the “right” stepping
stone for our case. However, in [28], quadratic relations were considered only in
the setting of general lattices, while here we have to deal with the ring setting,
for which the multiplication operation is harder to express, capture and prove in
zero-knowledge. Nevertheless we manage to adapt their techniques into the ring
lattices and obtain the desired technical building block.

As discussed so far, we have identified the necessary ingredients - the LPR
encryption scheme and Stern-like ZK protocols - for upgrading a lattice-based
ordinary group signature to a lattice-based accountable tracing signature. Next,
we need to find a lattice-based ordinary group signature scheme that is compati-
ble with the those ingredients. To this end, we work with Ling et al.’s scheme [35],
that also employs the LPR system for its tracing layer and Stern-like techniques
for proving knowledge of a valid user certificate (which is a Ducas-Micciancio
signature [14,15] based on the hardness of the Ring Short Integer Solution (RSIS)
problem). We note that the scheme from [35] achieves constant-size signatures,
which means that the signature size is independent of the number of users. As
a by-product, our signatures are also constant-size (although our constant is
larger, due to the treatment of quadratic relations).

A remaining aspect is how to enable the accountability of the OA/GM. To
this end, we let the latter reveal the choice (either traceable or non-traceable) for
a given user together with the randomness used to obtain the randomized public
key. The user then checks whether his epk was computed as claimed. However,
the OA/GM may claim a traceable user to be non-traceable by giving away
malicious randomness and accusing that the user had changed epk by himself. To
ensure non-repudiation, OA/GM is required to sign epk and the users’ identifying
information when registering the user into the group. This mechanism in fact
also prevents dishonest users from choosing non-traceable epk by themselves.

The obtained ATS scheme is then proven secure in the random oracle model
under the RSIS and RLWE assumptions, according to the security requirements
put forward by Kohlweiss and Miers [24]. On the efficiency front, as all known
lattice-based group signatures with advanced functionalities, our scheme is still
far from being practical. We, however, hope that our result will inspire more
efficient constructions in the near future.

2 Background

Notations. For a positive integer n, define the set {1, 2, . . . , n} as [n], the set
{0, 1, . . . , n} as [0, n], and the set containing all the integers from −n to n as
[−n, n]. Denote the set of all positive integers as Z

+. If S is a finite set, then

x
$←− S means that x is chosen uniformly at random from S. Let a ∈ R

m1 and
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b ∈ R
m2 be two vectors for positive integers m1,m2. Denote (a‖b) ∈ R

m1+m2 ,
instead of (a�,b�)�, as the concatenation of these two vectors.

2.1 Rings, RSIS and RLWE

Let q ≥ 3 be a positive integer and let Zq = [− q−1
2 , q−1

2 ]. In this work, let us
consider rings R = Z[X]/(Xn + 1) and Rq = (R/qR), where n is a power of 2.

Let τ be the coefficient embedding τ : Rq → Z
n
q that maps a ring element

v = v0 + v1 · X + . . . + vn−1 · Xn−1 ∈ Rq to a vector τ(v) = (v0, v1, . . . , vn−1)�

over Z
n
q . When working with vectors and matrices over Rq, we generalize the

notations τ in the following way. For a vector v = (v1, . . . , vm)� ∈ Rm
q , define

τ(v) = (τ(v1)‖ · · · ‖τ(vm)) ∈ Z
mn
q .

For a = a0 + a1 · X + . . . + an−1 · XN−1 ∈ R, we define ‖a‖∞ = maxi(|ai|).
Similarly, for vector b = (b1, . . . , bm)� ∈ Rm, we define ‖b‖∞ = maxj(‖bj‖∞).

We now recall the average-case problems RSIS and RLWE associated with the
rings R,Rq, as well as their hardness results.

Definition 1 ([38,39,48]). Given a uniform matrix A = [a1|a2| · · · |am] over
R1×m

q , the RSIS∞
n,m,q,β problem asks to find a ring vector b = (b1, b2, . . . , bm)�

over Rm such that A · b = a1 · b1 + a2 · b2 + · · · + am · bm = 0 over Rq and
0 < ‖b‖∞ ≤ β.

For polynomial bounded m,β and q ≥ β · ˜O(
√

n), it was proven that the
RSIS∞

n,m,q,β problem is no easier than the SIVPγ problem in any ideal in the ring
R, where γ = β · ˜O(

√
nm) (see [26,38,48]).

Definition 2 ([41,42,54]). For positive integers n,m, q ≥ 2 and a probability

distribution χ over the ring R, define a distribution As,χ over Rq×Rq for s
$←− Rq

in the following way: it first samples a uniformly random element a ∈ Rq, an
error element e ←↩ χ, and then outputs (a, a·s+e). The target of the RLWEn,m,q,χ

problem is to distinguish m samples chosen from a uniform distribution over
Rq × Rq and m samples chosen from the distribution As,χ for s

$←− Rq.

Let q ≥ 2 and B = ˜O(
√

n) be positive integers. χ is a distribution over R which
efficiently outputs samples e ∈ R with ‖e‖∞ ≤ B with overwhelming probability
in n. Then there is a quantum reduction from the RLWEn,m,q,χ problem to
the SIVPγ problem and the SVPγ problem in any ideal in the ring R, where
γ = ˜O(

√
n · q/B) (see [10,26,41,47]). It is shown that the hardness of the RLWE

problem is preserved when the secret s is sampled from the error distribution χ
(see [10,41]).

2.2 Decompositions

In this work, we employ the decomposition technique from [32]. For any positive
integer B, let δB := 	log2 B
 + 1 = �log2(B + 1)� and the sequence B1, . . . , BδB ,
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where Bj = 	B+2j−1

2j 
, for any j ∈ [δB ]. Then there is a decomposition procedure
that on input v ∈ [0, B], it outputs idecB(a) = (a(1), a(2), . . . , a(δB))� ∈ {0, 1}δB

satisfying (B1, B2, . . . , BδB ) · idecB(a) = a.
In [35], the above decomposition procedure is also utilized to deal with poly-

nomials in the ring Rq. Specifically, for B ∈ [1, q−1
2 ], define the injective function

rdecB that maps a ∈ Rq with ‖a‖∞ ≤ B to a ∈ RδB with ‖a‖∞ ≤ 1, which works
as follows.

1. Let τ(a) = (a0, . . . , an−1)�. For each i, let σ(ai) = 0 if ai = 0; σ(ai) = −1 if
ai < 0; and σ(ai) = 1 if ai > 0.

2. ∀i, compute wi = σ(ai) · idecB(|ai|) = (wi,1, . . . , wi,δB )� ∈ {−1, 0, 1}δB .
3. Form the vector w = (w0‖ . . . ‖wn−1) ∈ {−1, 0, 1}nδB , and let a ∈ RδB be

the vector such that τ(a) = w.
4. Output rdecB(a) = a.

When working with vectors of ring elements, e.g., v = (v1, . . . , vm)� such that
‖v‖∞ ≤ B, then we let rdecB(v) = (rdecB(v1)‖ · · · ‖rdecB(vm)) ∈ RmδB . Now,
∀m,B ∈ Z

+, we define matrices HB ∈ Z
n×nδB as

HB =

⎡

⎢

⎣

B1 . . . BδB

. . .
B1 . . . BδB

⎤

⎥

⎦
.

Then we have
τ(a) = HB · τ(rdecB(a)) mod q.

For simplicity reason, when B = q−1
2 , we will use the notation rdec instead of

rdec q−1
2

, and H instead of H q−1
2

.

2.3 A Variant of the Ducas-Micciancio Signature Scheme

We recall the stateful and adaptively secure version of Ducas-Micciancio signa-
ture scheme [14,15], which is used to enroll new users in our construction.

Following [14,15], throughout this work, for any real constants c > 1 and
α0 ≥ 1

c−1 , define a series of sets Tj = {0, 1}cj of lengths cj = 	α0c
j
 for j ∈ [d],

where d ≥ logc(ω(log n)). For each tag t = (t0, t1, . . . , tcj )
� ∈ Tj for j ∈ [d],

associate it with a ring element t(X) =
∑cj

k=0 tk · Xk ∈ Rq. Let c0 = 0 and then
define t[i](X) =

∑ci−1
k=ci−1

tk · Xk and t[i] = (tci−1 , . . . , tci−1)� for i ∈ [j]. Then

one can check t = (t[1]‖t[2]‖ · · · ‖t[j]) and t(X) =
∑j

i=1 t[i](X).
This variant works with the following parameters.

– Let n,m, q, k be some positive integers such that n ≥ 4 is a power of 2,
m ≥ 2�log q� + 2, and q = 3k. Define the rings R = Z[X]/(Xn + 1) and
Rq = R/qR.

– Let the message dimension be ms = poly(n). Also, let � = 	log q−1
2 
 + 1, and

m = m + k and ms = ms · �.
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– Let integer β = ˜O(n) and integer d and sequence c0, . . . , cd be as above.
– Let S ∈ Z be a state that is 0 initially.

The public verification key consists of the following:

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F ∈ R1×�
q ; F1 ∈ R1×ms

q ; u ∈ Rq

while the secret signing key is a Micciancio-Peikert [44] trapdoor matrix R ∈
Rm×k

q .
When signing a message m ∈ Rms

q , the signer first computes m = rdec(m) ∈
Rms , whose coefficients are in the set {−1, 0, 1}. He then performs the following
steps.

– Set the tag t = (t0, t1 . . . , tcd−1)� ∈ Td, where S =
∑cd−1

j=0 2j ·tj , and compute

At = [A|A[0] +
∑d

i=1 t[i]A[i]] ∈ R
1×(m+k)
q . Update S to S + 1.

– Choose r ∈ Rm with ‖r‖∞ ≤ β.
– Let y = F0 · r + F1 · m ∈ Rq and up = F · rdec(y) + u ∈ Rq.
– Employing the trapdoor matrix R, produce a ring vector v ∈ Rm+k with
At · v = up over the ring Rq and ‖v‖∞ ≤ β.

– Return the tuple (t, r,v) as a signature for the message m.

To check the validity of the tuple (t, r,v) with respect to message m ∈ Rms
q ,

the verifier first computes the matrix At as above and verifies the following
conditions:

{

At · v = F · rdec(F0 · r + F1 · rdec(m)) + u,

‖r‖∞ ≤ β, ‖v‖∞ ≤ β.

He outputs 1 if all these three conditions hold and 0 otherwise.

Lemma 1 ([14,15]). Given at most polynomially bounded number of signature
queries, the above variant is existentially unforgeable against adaptive chosen
message attacks assuming the hardness of the RSISn,m,q, ˜O(n2) problem.

2.4 Stern-Like Zero-Knowledge Argument of Knowledge

The statistical zero-knowledge arguments of knowledge (ZKAoK) presented in
this work are Stern-like [55] protocols. In particular, they are Σ-protocols in
the generalized sense defined in [4,20] (where 3 valid transcripts are needed
for extraction, instead of just 2). Stern’s protocol was originally proposed in
the context of code-based cryptography, and was later adapted into the lattice
setting by Kawachi et al. [21]. Subsequently, it was empowered by Ling et al. [32]
to handle the matrix-vector relations where the secret vectors are of small infinity
norm, and further developed to design various lattice-based schemes. Libert et
al. [27] put forward an abstraction of Stern’s protocol to capture a wider range
lattice-based relations.
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2.5 Key-Oblivious Encryption

We next recall the definitions of key-oblivious encryption (KOE), as introduced
in [24]. A KOE scheme consists of the following polynomial-time algorithms.

Setup(λ): On input the security parameter λ, it outputs public parameter pp.
pp is implicit for all algorithms below if not explicitly mentioned.

KeyGen(pp): On input pp, it generates a key pair (pk, sk).
KeyRand(pk): On input the public key pk, it outputs a new public key pk′ for

the same secret key.
Enc(pk,m): On inputs pk and a message m, it outputs a ciphertext ct on this

message.
Dec(sk, ct): On inputs sk and ct, it outputs the decrypted message m′.

Correctness. The above scheme must satisfy the following correctness require-
ment: For all λ, all pp ← Setup(λ), all (pk, sk) ← KeyGen(pp), all pk′ ←
KeyRand(pk), all m,

Dec(sk,Enc(pk′,m)) = m.

Security. The security requirements of a KOE scheme consist of key randomiz-
ability (KR), plaintext indistinguishability under key randomization (INDr), and
key privacy under key randomization (KPr). Details of these requirements are
referred to [24] or the full version of this paper.

2.6 Accountable Tracing Signatures

An ATS scheme [24] involves a group manager (GM) who also serves as the
opening authority (OA), a set of users, who are potential group members. As a
standard group signature scheme (e.g. [2,3]), GM is able to identify the signer
of a given signature. However, if GM is able to do so, there is an additional
accounting mechanism that later reveals which user he chose to trace (traceable
user). Specifically, if a user suspects that he was traceable by group manager
who had claimed non-traceability of this user, then the user can resort to this
mechanism to check whether group manager is honest/accountable or not. An
ATS scheme consists of the following polynomial-time algorithms.

Setup(λ): On input the security parameter λ, it outputs public parameter pp.
pp is implicit for all algorithms below if not explicitly mentioned.

GKeyGen(pp): This algorithm is run by GM. On input pp, GM generates group
public key gpk and group secret keys: issue key ik and opening key ok.

UKeyGen(pp): Given input pp, it outputs a user key pair (upk, usk).
Enroll(gpk, ik, upk, tr): This algorithm is run by GM. Upon receiving a user public

key upk from a user, GM determines the value of the bit tr ∈ {0, 1}, indicating
whether the user is traceable (tr = 1) or not. He then produces a certificate
cert for this user according to his choice of tr. GM then registers this user to
the group and stores the registration information and the witness wescrw to
the bit tr, and sends cert to the user.
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Sign(gpk, cert, usk,M): Given the inputs gpk, cert, usk and message M , this algo-
rithm outputs a signature Σ on this message M .

Verify(gpk,M,Σ): Given the inputs gpk and the message-signature pair (M,Σ),
this algorithm outputs 1/0 indicating whether the signature is valid or not.

Open(gpk, ok,M,Σ): Given the inputs gpk, ok and the pair (M,Σ), this algo-
rithm returns a user public key upk′ and a proof Πopen demonstrating that
user upk′ indeed generated the signature Σ. In case of upk′ = ⊥, Πopen = ⊥.

Judge(gpk,M,Σ, upk′,Πopen): Given all the inputs, this algorithm outputs 1/0
indicating whether it accepts the opening result or not.

Account(gpk, cert, wescrw, tr): Given all the inputs, this algorithm returns 1 con-
firming the choice of tr and 0 otherwise.

Correctness. The above ATS scheme requires that: for any honestly generated
signature, the Verify algorithm always outputs 1. Furthermore, if the user is
traceable, then Account algorithm outputs 1 when tr = 1, and the Open algorithm
can identify the signer and generate a proof Πopen that will be accepted by the
Judge algorithm. On the other hand, if the user is non-traceable, then the Account
algorithm outputs 1 when tr = 0, and the Open algorithm outputs ⊥.

Remark 1. There is a minor difference between the syntax we describe here and
that presented by Kohlweiss and Miers [24]. Specifically, we omit the time epoch
when the user joins the group, since we do not consider forward and backward
tracing scenarios as in [24].

Security. The security requirements of an ATS scheme consist of anonymity
under tracing (AuT), traceability (Trace), and non-frameability (NF), anonymity
with accountability (AwA) and trace-obliviousness (TO). Details of these require-
ments are referred to [24] or the full version of this paper.

3 Key-Oblivious Encryption from Lattices

In [24], Kohlweiss and Miers constructed a KOE scheme based on ElGamal cryp-
tosystem [17]. To adapt their blueprint into the lattice setting, we would need
a key-private homomorphic encryption scheme whose public keys and cipher-
texts should have the same algebraic form (e.g., each of them is a pair of ring
elements). We observe that, the LPR RLWE-based encryption scheme, under
appropriate setting of parameters, does satisfy these conditions. We thus obtain
an instantiation of KOE which will then serve as a building block for our ATS
construction in Sect. 4.



566 S. Ling et al.

3.1 Description

Our KOE scheme works as follows.

Setup(λ): Given the security parameter λ, let n = O(λ) be a power of 2 and
q = ˜O(n4). Also let � = 	log q−1

2 
 + 1. Define the rings R = Z[X]/(Xn + 1)
and Rq = R/qR. Let the integer bound B be of order ˜O(

√
n) and χ be a

B-bounded distribution over the ring R. This algorithm then outputs public
parameter pp = {n, q, �, R,Rq, B, χ}.

KeyGen(pp): Given the input pp, this algorithm samples s ←↩ χ, e ←↩ χ� and

a $←− R�
q. Set pk = (a,b) = (a,a · s+ e) ∈ R�

q ×R�
q and sk = s. It then returns

(pk, sk).
KeyRand(pk): Given the public key pk = (a,b), it samples g ←↩ χ, e1 ←↩ χ� and

e2 ←↩ χ�. Compute

(a′,b′) = (a · g + e1, b · g + e2) ∈ R�
q × R�

q.

This algorithm then outputs randomized public key as pk′ = (a′,b′).
Enc(pk′, p): Given the public key pk′ = (a′,b′) and a message p ∈ Rq, it samples

g′ ∈ χ, e′
1 ∈ χ� and e′

2 ∈ χ�. Compute

(c1, c2) = (a′ · g′ + e′
1, b′ · g′ + e′

2 + 	q/4
 · rdec(p)) ∈ R�
q × R�

q.

This algorithm returns ciphertext as ct = (c1, c2).
Dec(sk, ct): Given sk = s and ct = (c1, c2), the algorithm proceeds as follows.

1. It computes

p′′ =
c2 − c1 · s

	q/4
 .

2. For each coefficient of p′′,
– if it is closer to 0 than to −1 and 1, then round it to 0;
– if it is closer to −1 than to 0 and 1, then round it to −1;
– if it is closer to 1 than to 0 and −1, then round it to 1.

3. Denote the rounded p′′ as p′ ∈ R�
q with coefficients in {−1, 0, 1}.

4. Let p′ ∈ Rq such that τ(p′) = H·τ(p′). Here, H ∈ Z
n×n�
q is the decomposition

matrix for elements of Rq (see Sect. 2.2).

3.2 Analysis

Correctness. Note that

c2 − c1 · s = b′ · g′ + e′
2 + 	q/4
 · rdec(p) − (a′ · g′ + e′

1) · s

= e · g · g′ + e2 · g′ − e1 · s · g′ + e′
2 − e′

1 · s + 	q/4
 · rdec(p)
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where s, g, g′, e, e1, e2, e′
1, e

′
2 are B-bounded. Hence we have:

‖e ·g ·g′ +e2 ·g′ −e1 ·s ·g′ +e′
2 −e′

1 ·s‖∞ ≤ 3n2 ·B3 = ˜O(n3.5) ≤
⌈ q

10
⌉

= ˜O(n4).

With overwhelming probability, the rounding procedure described in the Dec
algorithm recovers rdec(p) and hence outputs p. Therefore, our KOE scheme is
correct.

Security. The security of our KOE scheme is stated in the following theorem.

Theorem 1. Under the RLWE assumption, the described key-oblivious encryp-
tion scheme satisfies: (i) key randomizability; (ii) plaintext indistinguishability
under key randomization; and (iii) key privacy under key randomization.

The proof of Theorem1 is deferred to the full version of this paper.

4 Accountable Tracing Signatures from Lattices

In this section, we construct our ATS scheme based on: (i) The Ducas-Micciancio
signature scheme (as recalled in Sect. 2.3); (ii) The KOE scheme described in
Sect. 3; and (iii) Stern-like ZK argument systems. Due to space restriction, the
details of our Stern-like ZK protocol are deferred to the full version.

4.1 Description of Our ATS Scheme

We assume there is a trusted setup such that it generates parameters of the
scheme. Specifically, it generates a public matrix B for generating users’ key
pairs, and two secret-public key pairs of our KOE scheme such that the secret keys
are discarded and not known by any party. The group public key then consists
of three parts: (i) the parameters from the trusted setup, (ii) a verification key
of the Ducas-Micciancio signature, (iii) two public keys of our KOE scheme such
that the group manager knows both secret keys. The issue key is the Ducas-
Micciancio signing key, while the opening key is any one of the corresponding
secret keys of the two public keys. Note that both the issue key and the opening
key are generated by the group manager.

When a user joins the group, it first generates a secret-public key pair (x, p)
such that B·x = p. It then interacts with the group manager, who will determine
whether user p is traceable or not. If the user is traceable, group manager sets
a bit tr = 1, randomizes the two public key generated by himself, and then
generates a Ducas-Micciancio signature σcert on user public key p and the two
randomized public keys (epk1, epk2). If the user is non-traceable, group manager
sets a bit tr = 0, randomizes the two public key generated from the trusted setup,
and then generates a signature on p and epk1, epk2. If it completes successfully,
the group manager sends certificate cert = (p, epk1, epk2, σcert) to user p, registers
this user to the group, and keeps himself the witness wescrw that was ever used
for randomization.
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Once registered as a group member, the user can sign messages on behalf of
the group. To this end, the user first encrypts his public key p twice using his two
randomized public keys, and obtains ciphertexts c1, c2. The user then generates
a ZKAoK such that (i) he has a valid secret key x corresponding to p; (ii) he
possesses a Ducas-Micciancio signature on p and epk1, epk2; and (iii) c1, c2 are
correct ciphertexts of p under the randomized keys epk1, epk2, respectively. Since
the ZKAoK protocol the user employs has soundness error 2/3 in each execution,
it is repeated κ = ω(log λ) times to make the error negligibly small. Then, it is
made non-interactive via the Fiat-Shamir heuristic [16]. The signature then con-
sists of the non-interactive zero-knowledge argument of knowledge (NIZKAoK)
Πgs and the two ciphertexts. Note that the ZK argument together with double
encryption enables CCA-security of the underlying encryption scheme, which is
known as the Naor-Yung transformation [45].

To verify the validity of a signature, it suffices to verify the validity of the
argument Πgs. Should the need arises, the group manager can decrypt using his
opening key. If a user is traceable, the opening key group manager possesses can
be used to correctly identify the signer. However, if a user is non-traceable, then
his anonymity is preserved against the manager.

To prevent corrupted opening, group manager is required to generate a
NIZKAoK of correct opening Πopen. Only when Πopen is a valid argument, we
then accept the opening result. Furthermore, there is an additional accounting
mechanism for group manager to reveal which users he had chosen to be trace-
able. This is done by checking the consistency of tr and the randomized public
keys in user’s certificate with the help of the witness wescrw.

We describe the details of our scheme below.

Setup(λ): Given the security parameter λ, it generates the following public
parameter.

– Let n = O(λ) be a power of 2, and modulus q = ˜O(n4), where q = 3k for
k ∈ Z

+. Let R = Z[X]/(Xn + 1) and Rq = R/qR.
Also, let m ≥ 2�log q� + 2, � = 	log q−1

2 
 + 1, ms = 4� + 1, and m = m + k
and ms = ms · �.

– Let integer d and sequence c0, . . . , cd be described in Sect. 2.3.
– Let β = ˜O(n) and B = ˜O(

√
n) be two integer bounds, and χ be a B-bounded

distribution over the ring R.
– Choose a collision-resistant hash function HFS : {0, 1}∗ → {1, 2, 3}κ, where

κ = ω(log λ), which will act as a random oracle in the Fiat-Shamir heuris-
tic [16].

– Choose a statistically hiding and computationally binding commitment
scheme from [21], denoted as COM, which will be employed in our ZK argu-
ment systems.

– Let B $←− R1×m
q , a(0)1

$←− R�
q, a(0)2

$←− R�
q, s−1, s−2 ←↩ χ, e−1, e−2 ←↩ χ�.

Compute

b(0)
1 = a(0)1 · s−1 + e−1 ∈ R�

q; b(0)
2 = a(0)2 · s−2 + e−2 ∈ R�

q.
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This algorithm outputs the public parameter pp:

{n, q, k,R,Rq, �,m,ms,m,ms, d, c0, · · · , cd,

β,B, χ,HFS, κ,COM,B, {a(0)i ,b(0)
i }i∈{1,2}}.

pp is implicit for all algorithms below if not explicitly mentioned.

GKeyGen(pp): On input pp, GM proceeds as follows.

– Generate verification key

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F ∈ R1×�
q ; F1 ∈ R1×ms

q ; u ∈ Rq

and signing key R ∈ Rm×k
q for the Ducas-Micciancio signature from Sect. 2.3.

– Initialize the Naor-Yung double-encryption mechanism [45] with the key-
oblivious encryption scheme described in Sect. 3.1. Specifically, sample
s1, s2 ←↩ χ, e1, e2 ←↩ χ�, a(1)1

$←− R�
q, a

(1)
2

$←− R�
q and compute

b(1)
1 = a(1)1 · s1 + e1 ∈ R�

q; b(1)
2 = a(1)2 · s2 + e2 ∈ R�

q.

Set the group public key gpk, the issue key ik and the opening key ok as follows:

gpk = {pp,A, {A[j]}d
j=0,F,F0,F1, u,a(1)1 ,b(1)

1 ,a(1)2 ,b(1)
2 },

ik = R, ok = (s1, e1).

GM then makes gpk public, sets the registration table reg = ∅ and his internal
state S = 0.

UKeyGen(pp): Given the public parameter, the user first chooses x ∈ Rm such
that the coefficients are uniformly chosen from the set {−1, 0, 1}. He then
calculates p = B · x ∈ Rq. Set upk = p and usk = x.

Enroll(gpk, ik, upk, tr): Upon receiving a user public key upk from a user, GM
determines the value of the bit tr ∈ {0, 1}, indicating whether the user is
traceable. He then does the following:

– Randomize two pairs of public keys (a(tr)1 ,b(tr)
1 ) and (a(tr)2 ,b(tr)

2 ) as described
in Sect. 3.1. Specifically, sample g1, g2 ←↩ χ, e1,1, e1,2 ←↩ χ�, e2,1, e2,2 ←↩ χ�.
For each i ∈ {1, 2}, compute

epki = (a′
i,b

′
i) = (a(tr)i · gi + ei,1, b(tr)

i · gi + ei,2) ∈ R�
q × R�

q. (1)

– Set the tag t = (t0, t1 . . . , tcd−1)� ∈ Td, where S =
∑cd−1

j=0 2j ·tj , and compute

At = [A|A[0] +
∑d

i=1 t[i]A[i]] ∈ R
1×(m+k)
q .

– Let m = (p‖a′
1‖b′

1‖a′
2‖b′

2) ∈ Rms
q .
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– Generate a signature σcert = (t, r,v) on message rdec(m) ∈ Rms - whose
coefficients are in {−1, 0, 1} - using his issue key ik = R. As in Sect. 2.3, we
have r ∈ Rm, v ∈ Rm+k and

{

At · v = F · rdec(F0 · r + F1 · rdec(m)) + u,

‖r‖∞ ≤ β, ‖v‖∞ ≤ β.
(2)

Set certificate cert and wescrw as follows:

cert = (p,a′
1,b

′
1,a

′
2,b

′
2, t, r,v), wescrw = (g1, e1,1, e1,2, g2, e2,1, e2,2).

GM sends cert to the user p, stores reg[S] = (p, tr, wescrw), and updates the state
to S + 1.

Sign(gpk, cert, usk,M): To sign a message M ∈ {0, 1}∗ using the certificate
cert = (p,a′

1,b
′
1,a

′
2,b

′
2, t, r,v) and usk = x, the user proceeds as follows.

– Encrypt the ring vector rdec(p) ∈ R�
q whose coefficients are in {−1, 0, 1}

twice. Namely, sample g′
1, g

′
2 ←↩ χ, e′

1,1, e
′
1,2 ←↩ χ�, and e′

2,1, e
′
2,2 ←↩ χ�. For

each i ∈ {1, 2}, compute ci = (ci,1, ci,2) ∈ R�
q × R�

q as follows:

ci,1 = a′
i · g′

i + e′
i,1; ci,2 = b′

i · g′
i + e′

i,2 + 	q/4
 · rdec(p).

– Generate a NIZKAoK Πgs to demonstrate the possession of a valid tuple ζ of
the following form

ζ = (p,a′
1,b

′
1,a

′
2,b

′
2, t, r,v,x, g′

1, e
′
1,1, e

′
1,2, g

′
2, e

′
2,1, e

′
2,2) (3)

such that
(i) The conditions in (2) are satisfied.
(ii) c1 and c2 are correct encryptions of rdec(p) with B-bounded randomness

g′
1, e

′
1,1, e

′
1,2 and g′

2, e
′
2,1, e

′
2,2, respectively.

(iii) ‖x‖∞ ≤ 1 and B · x = p.
This is achieved by running our Stern-like ZK protocol. The protocol is
repeated κ = ω(log λ) times and made non-interactive via Fiat-Shamir heuris-
tic [16] as a triple Πgs = ({CMTi}κ

i=1,CH, {RSPi}κ
i=1) where the challenge

CH is generated as CH = HFS(M, {CMTi}κ
i=1, ξ) with ξ of the following form

ξ = (A,A[0], . . . ,A[d],F,F0,F1, u,B, c1, c2) (4)

– Output the group signature Σ = (Πgs, c1, c2).

Verify(gpk,M,Σ): Given the inputs, the verifier performs in the following man-
ner.

– Parse Σ as Σ =
(

{CMTi}κ
i=1, (Ch1, . . . , Chκ), {RSP}κ

i=1, c1, c2
)

.
If (Ch1, . . . , Chκ) �= HFS

(

M, {CMTi}κ
i=1, ξ

)

, output 0, where ξ is as in (4).
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– For each i ∈ [κ], run the verification phase of our Stern-like ZK protocol to
verify the validity of RSPi corresponding to CMTi and Chi. If any of the
verification process fails, output 0.

– Output 1.

Open(gpk, ok,M,Σ): Let ok = (s1, e1) and Σ = (Πgs, c1, c2). The group man-
ager proceeds as follows.

– Use s1 to decrypt c1 = (c1,1, c1,2) as in the decryption algorithm from
Sect. 3.1. The result is p′ ∈ Rq.

– He then searches the registration information. If reg does not include an
element p′, then return ⊥.

– Otherwise, he produces a NIZKAoK Πopen to show the knowledge of a tuple
(s1, e1,y) ∈ Rq × R�

q × R�
q such that the following conditions hold.

⎧

⎪

⎨

⎪

⎩

‖s1‖∞ ≤ B; ‖e1‖∞ ≤ B; ‖y‖∞ ≤ �q/10�;
a(1)1 · s1 + e1 = b(1)

1 ;
c1,2 − c1,1 · s1 = y + 	q/4
 · rdec(p′).

(5)

Since the conditions in (5) only encounter linear secret objects with bounded
norm, we can easily handled them using the Stern-like techniques. There-
fore, we are able to have a statistical ZKAoK for the above statement.
Furthermore, the protocol is repeated κ = ω(log λ) times and made non-
interactive via the Fiat-Shamir heuristic, resulting in a triple ΠOpen =
({CMTi}κ

i=1,CH, {RSP}κ
i=1), where CH ∈ {1, 2, 3}κ is computed as

CH = HFS

(

{CMTi}κ
i=1,a

(1)
1 ,b(1)

1 ,M,Σ, p′). (6)

– Output (p′,ΠOpen).

Judge(gpk,M,Σ, p′,Πopen): Given all the inputs, this algorithm does the follow-
ing.

– If Verify algorithm outputs 0 or p′ = ⊥, return 0.
– This algorithm then verifies the argument ΠOpen with respect to common

input (a(1)1 ,b(1)
1 ,M,Σ, p′), in the same way as in the algorithm Verify. If

verification of the argument Πopen fails, output 0.
– Else output 1.

Account(gpk, cert, wescrw, tr): Let the certificate be cert = (p,a′
1,b

′
1,a

′
2,b

′
2, t,

r,v) and witness be wescrw = (g1, e1,1, e1,2, g2, e2,1, e2,2) and the bit tr, this
algorithm proceeds as follows.

– It checks whether (t, r,v) is a valid Ducas-Micciancio signature on the mes-
sage (p,a′

1,b
′
1,a

′
2,b

′
2). Specifically, it verifies whether cert satisfies the condi-

tions in (2). If not, output 0.



572 S. Ling et al.

– Otherwise, it then checks if (a′
1,b

′
1) and (a′

2,b
′
2) are randomization of

(a(tr)1 ,b(tr)
1 ) and (a(tr)2 ,b(tr)

2 ) with respect to randomness (g1, e1,1, e1,2) and
(g2, e2,1, e2,2), respectively. Specifically, it verifies whether the conditions
in (1) hold. If not, output 0.

– Else output 1.

4.2 Analysis of Our ATS Scheme

Efficiency. We first analyze the efficiency of our scheme from Sect. 4.1 in terms
of the security parameter λ.

– The bit-size of the public key gpk is of order O(λ · log3 λ) = ˜O(λ).
– The bit-size of the membership certificate cert is of order O(λ·log2 λ) = ˜O(λ).
– The bit-size of a signature Σ is determined by that of the Stern-like
NIZKAoK Πgs, which is of order O(λ2 · log3 λ) · ω(log λ) = ˜O(λ2).

– The bit-size of the Stern-like NIZKAoK Πopen is of order O(λ · log3 λ) ·
ω(log λ) = ˜O(λ).

Correctness. For an honestly generated signature Σ for message M , we first
show that the Verify algorithm always outputs 1. Due to the honest behavior of
the user, when signing a message in the name of the group, this user possesses
a valid tuple ζ of the form (3). Therefore, Πgs will be accepted by the Verify
algorithm with probability 1 due to the perfect completeness of our argument
system.

If an honest user is traceable, then Account(gpk, cert, wescrw, 1) will output 1,
implied by the correctness of Ducas-Micciancio signature scheme and honest
behaviour of group manager. In terms of the correctness of the Open algorithm,
we observe that c1,2 − c1,1 · s1 =

(b(tr)
1 − a(tr)1 ·s1) ·g1 ·g′

1 + e1,2 ·g′
1 − e1,1 ·s1 ·g′

1 + e′
1,2 − e′

1,1 ·s1 + 	q/4
 · rdec(p),

denoted as ẽ + 	q/4
 · rdec(p). In this case, tr = 1, b(tr)
1 − a(tr)1 · s1 = e1, and

‖ẽ‖∞ ≤
⌈

q
10

⌉

. The decryption can recover rdec(p) and hence the real signer due to
the correctness of our key-oblivious encryption from Sect. 3.1. Thus, correctness
of the Open algorithm follows. What is more, Πopen will be accepted by the Judge
algorithm with probability 1 due to the perfect completeness of our argument
system.

If an honest user is non-traceable, then again Account(gpk, cert, wescrw, 1) will
output 1. For the Open algorithm, since b(0)

1 − a(0)1 · s1 = a(0)1 · (s−1 − s1) + e−1,
then we obtain

c1,2 − c1,1 · s1 = a(0)1 · (s−1 − s1) · g1 · g′
1 + ẽ + 	q/4
 · rdec(p),

where ‖ẽ‖∞ ≤
⌈

q
10

⌉

. Observe that a(0)1
$←− R�

q, and s−1 �= s1 with overwhelming
probability. Over the randomness of g1, g

′
1, the decryption algorithm described
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in Sect. 3.1 will output a random element p′ ∈ Rq. Then, with overwhelming
probability, p′ is not in the registration table and the Open algorithm outputs ⊥.
It then follows that our scheme is correct.

Security. In Theorem 2, we prove that our scheme satisfies the security require-
ments of accountable tracing signatures, as specified by Kohlweiss and Miers.

Theorem 2. Under the RLWE and RSIS assumptions, the accountable tracing
signature scheme described in Sect. 4.1 satisfies the following requirements in the
random oracle model: (i) anonymity under tracing; (ii) traceability; (iii) non-
frameability; (iv) anonymity with accountability; and (v) trace-obliviousness.

The proof of Theorem 2 is deferred to the full version of this paper.
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