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Abstract. Privacy-preserving Verifiable (outsourced) Computation
(PVC) is a hopeful primitive that enables a resource-constrained client
to outsource expensive and sensitive workloads to powerful but possibly
untrusted servers and to verify the correctness of the returned results.
Specifically, the privacy property is of significance for this type of prim-
itive. Then, how to provide the privacy property has become a cen-
tral interest of many researchers. At ACM-ASIACCS 2010, Atallah and
Frikken introduced a new hardness assumption called the Secret Hiding
assumption (SH), which includes the Weak SH assumption (WSH) and
Strong SH assumption (SSH). Moreover, for the outsourcing of the mul-
tiplication of large-scale matrices, the authors constructed two concrete
PVC protocols whose privacy is based on the decisional-WSH assump-
tion and decisional-SSH assumption, respectively.

Until our work, to the best of our knowledge, there is no paper
that precisely explored the hardnesses of the WSH assumption and SSH
assumption. Thus, in this paper, we first propose an analysis method,
using the rank distribution of the matrix as the basic strategy, to evalu-
ate the hardnesses of two problems corresponding to the decisional-WSH
assumption and decisional-SSH assumption. Unfortunately, our analysis
can efficiently break the decisional-WSH assumption and decisional-SSH
assumption for a wide range of parameters with overwhelming proba-
bility. Then we employ the idea of the above analysis for breaking the
SH assumption to similarly break the privacy of Atallah and Frikken’s
PVC protocols. The results show that the adversary’s advantages are
non-negligible. Finally, we present some detailed experimental results to
support our theoretical argument.

Keywords: Privacy-preserving verifiable (outsourced) computation ·
Indistinguishability · Rank · Linear relation

1 Introduction

1.1 Background

Privacy-preserving Verifiable (outsourced) Computation (PVC), characterized
by four properties [8], i.e., correctness, security, privacy and efficiency, has
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attracted many researchers from the cryptography and information security com-
munity. Various protocols [2–6,8,9,15,16] have been proposed to solve the prob-
lems related to the outsourcing of computations on general and specific functions.
In particular, for those protocols, privacy is a significant property guaranteeing
that the information hidden in the data structure related to the input and output
of the outsourced computation cannot be revealed to any unauthorised entity
who has access to the data. The analysis of privacy is based on the notion of
indistinguishability (see [7] about this notion). This implies that the input and
output data are semantically hidden to the unauthorised entity.

To construct the PVC protocols for outsourcing expensive linear algebraic
computations, at ACM-ASIACCS 2010, Atallah and Frikken [2] introduced a new
hardness assumption called the Secret Hiding assumption (SH) (see Sect. 2.1).
Specifically, the authors presented two concrete versions, i.e., the Weak SH
assumption (WSH) and the Strong SH assumption (SSH), respectively. The
WSH assumption, informally, states that it is hard to distinguish (with knowing
the prime p) between the uniform distribution over Z

n×m
p and the distribution

χ(p)n×m that outputs the matrix with λ + 1 rows [Σλ
j=1a1,j · kjr . . . Σλ

j=1am,j · kjr]
and λ rows uniformly distributed over Z

m
p , where n = 2 · λ + 1, where λ ∈ N+,

m ∈ N+ (e.g., m = 2 · λ + 1), ∀r ∈ {1, . . . , λ + 1}kr is chosen from Z
∗
p uniformly

at random, and ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , λ}ai,j is chosen from Zp uniformly at
random. The SSH assumption is similar to the WSH assumption, and it states
that the uniform distribution over Z

n×m
p is computationally indistinguishable

from the distribution χ(p)n×m that outputs the matrix with λ + e + 1 rows
[Σλ

j=1a1,j · kjr . . . Σλ
j=1am,j · kjr] and λ + e+ 1 rows uniformly distributed over Z

m
p ,

where n = 2 · λ + 2 · e + 2, where e ∈ N+ (e.g., e = λ). To validate the plausible
hardnesses of the above assumptions, Atallah and Frikken provided a proof to
show that the SH assumption (i.e., the WSH assumption) implies the existence
of one-way functions. This means that proving the SH assumption is at least as
hard as proving P �= NP [2].

Based on the SH assumption, Atallah and Frikken [2] proposed two con-
crete PVC protocols for efficiently outsourcing the multiplication of large-scale
matrices (see Sect. 2.3). Specifically, these two provably private protocols can
be seen as the ingenious extensions of Shamir’s secret sharing [14], and they
are always regarded as the typical work in the PVC community. Atallah and
Frikken first introduced a protocol based on the WSH assumption under the
two non-colluding servers model (denoted by AF-PVCtwo). In this warm-up pro-
tocol, a client needs to generate λ and 2 · λ + 1 pairs of matrices for each server,
respectively. The servers perform O(λ) matrix multiplications. Then, the authors
developed a protocol based on the SSH assumption under the single server model
(denoted by AF-PVCsingle). In this main protocol, a client must create 4 · λ + 2
pairs of matrices for the single server, and this server also perform O(λ) matrix
multiplications. Furthermore, the authors provided a method to make the proto-
col under the single server model hold the security (i.e., the property related to
the integrity verification). Of course, there exist some other researchers who are
also interested in the SH assumption. For example, Laud and Pankova [12] tried
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to construct a PVC protocol for outsourcing solutions of linear programming
problems based on the SSH assumption.

1.2 Our Contributions

Atallah and Frikken have given some theoretical consequences related to the
SH assumption, but whether the SH problem corresponding to the assumption
is a hard problem is still a worthwhile research area, particularly when the
assumption is proposed for applications in the concrete real-world scenarios.
In this paper, we present some rigorous analyses, targeting the SH problem and
the Atallah-Frikken PVC Protocols for matrix multiplication, as follows:

– We present the decisional and search variants of the SH problem in Sect. 2,
which are more standard problems when compared with the originals.

– We propose an analysis, discussed in Sect. 3, to break the decisional variant
of the SH assumption (including the WSH assumption and SSH assumption)
in a wide range of parameters. Our precise analysis focusing on evaluating
the rank of a matrix shows that the decisional-SH problem (including the
decisional-WSH problem and decisional-SSH problem) is not a hard problem,
and the given SH distribution χ(p)n×m can be distinguished from the uniform
distribution over Z

n×m
p with overwhelming probability.

– We invoke the idea of the analysis for solving the decisional-SH problem to
undermine the privacy of AF-PVCtwo and AF-PVCsingle in Sect. 3. Our analyses
running in polynomial-time take advantage of the distinctions between the
rank distributions of two types of given ciphertext matrices (see Theorems 7
and 8 for the two types of ciphertext matrices). The success probabilities
of the analyses are close to 1, which shows that neither of those protocols
is private against passive eavesdropping (i.e., a ciphertext-only attack (COA)
(see Definition 3)) and also a chosen-plaintext attack (CPA) (see Definition 4).

– We implement the simulation experiments on our theoretical analyses for
solving the decisional-SH problem and breaking the privacy of AF-PVCtwo

and AF-PVCsingle. The experimental results, presented in Sect. 4, confirm our
analyses, which demonstrates that the decisional-SH problem is not a hard
problem for a wide range of parameters, and AF-PVCtwo and AF-PVCsingle

are not semantically private PVC protocols.

1.3 Organization of the Rest of the Paper

The remainder of the paper is organized as follows. Section 2 introduces the deci-
sional and search versions of the SH assumption (including the WSH assumption
and SSH assumption), the Atallah and Frikken’s theoretical exploration on the
SH assumption, the PVC protocols AF-PVCtwo and AF-PVCsingle and the for-
mal definition of privacy. Section 3 describes the adversary’s strategy and the
detailed theoretical analyses for solving the decisional-SH problem and break-
ing the privacy of AF-PVCtwo and AF-PVCsingle. Section 4 gives some detailed
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experimental verifications about our theoretical analyses in Sect. 3. The paper
is concluded in Sect. 5 with a direction for future research.

Notation: Throughout the paper, we generally do math modulo p for some
prime p. We denote by bold lower-case letters vectors over Z

n
p for n ≥ 2, and by

bold upper-case letters matrices over Z
n×m
p for n, m ≥ 2, where Zp is a finite

field of size p. We refer a set of elements from a row or a column of a matrix to as
a vector. We denote by xi,j the individual element in the ith row and jth column
of a matrix X. For any integer n, we denote the set {1, . . . ,n} by [n]. We denote
a security parameter by λ ∈ N+. We denote the transpose of x by xT, the rank of
a matrix X by rank(X), and the minimum of two values by min(·, ·). We denote
the class of polynomial functions in λ by poly(λ), and some unspecified negligible

function in λ by negl(λ). We use x $←− Ψ to denote the operation of uniformly
sampling an element x from a finite set Ψ . For some probability distribution χ,
x ← χ refers to sampling x according to χ.

2 Preliminaries

In this section, we recall the SH assumption, AF-PVCtwo and AF-PVCsingle pro-
posed by Atallah and Frikken at ACM-ASIACCS 2010 [2]. We also present the
formal definition of privacy for the PVC protocol.

2.1 The SH Assumption

We first describe the probability distribution χ(p)n×m that results from the
following steps, where n ∈ {2 ·λ+1, 2 ·λ+2 · e+2} and m = poly(λ) ≥ 2, where
e ∈ N+.

1. Choose a uniformly random matrix A $←− Z
m×λ
p , where each element ai,j

$←− Zp

for i ∈ [m] and j ∈ [λ]. Choose � = λ + 1 (resp. � = λ + e + 1) distinct values

k1, . . . , k�
$←− Z

∗
p.

2. For r ∈ [λ + 1] (resp. r ∈ [λ + e + 1]), compute dr = (A · kr)T, where
kr = [krk2r . . . kλ

r ]T. Obtain � = λ + 1 (resp. � = λ + e + 1) row vectors
d1, . . . ,d�, where dr = [Σλ

j=1a1,j · kjr . . . Σλ
j=1am,j · kjr] for r ∈ [λ + 1] (resp.

r ∈ [λ + e + 1]).

3. For r ∈ [λ] (resp. r ∈ [λ + e + 1]), choose ur
$←− Z

m
p . Obtain τ = λ (resp.

τ = λ + e + 1) row vectors u1, . . . ,uτ .
4. Combine the � = λ + 1 (resp. � = λ + e + 1) row vectors d1, . . . ,d� with

the τ = λ (resp. τ = λ + e + 1) row vectors u1, . . . ,uτ to generate an n × m
matrix R. Choose a random permutation of the set [n] to permute the rows
of R. The permuted matrix is the final matrix.

Then, we present the WSH problem and SSH problem as follows:
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Definition 1 (WSH Problem). Let n = 2 · λ + 1 and m = poly(λ) ≥ 2.
The WSH distribution χ(p)n×m for a given prime p is the set of the permuted
matrices, where each matrix includes λ + 1 row vectors d1, . . . ,dλ+1 and λ row
vectors u1, . . . ,uλ.

– The decisional-WSH problem is: For some fixed prime p and given arbitrar-
ily many samples (i.e., a polynomial number of samples) from Z

n×m
p , to

computationally distinguish whether these samples are distributed uniformly
or whether they are distributed as χ(p)n×m.

– The search-WSH problem is: For some fixed prime p and given n samples from
the distribution χ(p)m (i.e., a sample from χ(p)n×m), to find k1, . . . , kλ+1

(or A).

Definition 2 (SSH Problem). Let n = 2 · λ + 2 · e+ 2 and m = poly(λ) ≥ 2,
where e ∈ N+. The SSH distribution χ(p)n×m for a given prime p is the set
of the permuted matrices, where each matrix includes λ + e + 1 row vectors
d1, . . . ,dλ+e+1 and λ + e + 1 row vectors u1, . . . ,uλ+e+1.

– The decisional-SSH problem is: The description of this problem is the same
as that of the decisional version in Definition 1.

– The search-SSH problem is: The description of this problem is the same as
that of the search version in Definition 1. The aim is to find k1, . . . , kλ+e+1

(or A).

According to Atallah and Frikken’s opinion, the WSH assumption denotes
that no polynomial-time adversary solve the decisional and search WSH prob-
lem, and the SSH assumption means that no polynomial-time adversary can solve
the decisional and search SSH problem. Specifically, the decisional-WSH assump-
tion and the decisional-SSH assumption state that the distribution χ(p)n×m is
computationally indistinguishable from the uniform distribution over Z

n×m
p for

n ∈ {2 · λ + 1, 2 · λ + 2 · e+ 2}. Then, this implies that, for any polynomial-time
adversary A, we have

AdvA,SH(p,n,m) def=
∣
∣SucA,SH(p,n,m) − 1

2

∣
∣ ≤ negl(λ) , (1)

where SH is either the WSH distribution or the SSH distribution,
SucA,SH(p,n,m) denotes the probability of A’s successful guess employing some
adversary’s strategy for the distribution of the sample X from Z

n×m
p , and

AdvA,SH(p,n,m) denotes the advantage of A’s guess for the distribution. Note
that, A’s guess for the sample X ∈ Z

n×m
p can be based on the following experi-

ment:

1. b $←− {0, 1}.

2. If b = 1 then X ← χ(p)n×m else X $←− Z
n×m
p .

3. If A(X) = b then A wins else A loses.
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2.2 Atallah-Frikken Theorems Related to the SH Assumption

For the above WSH assumption and SSH assumption, Atallah and Frikken intro-
duced some associated consequences below.

Lemma 1 ([2], Lemma 1). Given a set of � special row vectors d1, . . . ,d�,
where � < λ + 1, this set of row vectors is distributed identically to a set of �
uniformly random row vectors from Z

m
p .

Theorem 1 ([2], Corollary 2). Consider a (λ + 1) × m matrix that includes
λ + 1 randomly permuted rows consisting of � special row vectors d1, . . . ,d� and
λ + 1 − � uniformly random row vectors from Z

m
p , where � < λ + 1. This type of

matrix is distributed identically to the uniformly sampled matrix from Z
(λ+1)×m
p .

Theorem 2 ([2], Theorem 6). Consider an n × m matrix sampled from
χ(p)n×m, where n = 2 · λ + 2 · e+ 2. Choose a set of λ + 1 row vectors from this
matrix uniformly at random. The probability that all the λ + 1 row vectors come
from the λ + e + 1 special row vectors d1, . . . ,dλ+e+1 is negligible in λ.

In [2], Atallah and Frikken did not prove the WSH assumption and SSH
assumption from first principles, but the authors confirmed the hardness of the
WSH problem and proposed the following theorem.

Theorem 3 ([2], Theorem 9). Assume that the decisional-WSH assumption
holds, the function that outputs an n×m matrix by invoking the generation steps
of the distribution χ(p)n×m is a one-way function, where n = 2 · λ + 1.

Actually, from Theorem 3, the difficulty for distinguishing between the uni-
form distribution over Z

n×m
p and the distribution χ(p)n×m shows the lower bound

of the difficulty for finding k1, . . . , kλ+1 (or A). This means that the hardness of
the decisional-WSH problem implies the hardness of the search-WSH problem.
We refer to [2] for more details.

2.3 Atallah-Frikken PVC Protocols for Matrix Multiplication

Since decisional version is more handy for applications, Atallah and Frikken pro-
posed two PVC protocols AF-PVCtwo and AF-PVCsingle based on the plausible
hardnesses of the decisional-WSH problem and decisional-SSH problem, respec-
tively. Specifically, these protocols consist of a tuple of Probabilistic Polynomial-
Time (PPT) algorithms PVC = (KeyGen,ProbGen,Compute,ResuGen), where
KeyGen is a private-key generation algorithm, ProbGen a problem generation
algorithm that produces some ciphertext inputs for an outsourced function,
Compute a function computation algorithm that is run by the server to pro-
duce some ciphertext outputs of the outsourced function, and ResuGen a result
generation algorithm that produces the real output. The details of these two
protocols are as follows:

The Two-Server Case: Given a security parameter λ, the matrix size v =
poly(λ), the size of the message space p = poly(λ) and the degree of a polynomial
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h = λ. For two v × v matrices M1,M2 ∈ Z
v×v
p , a quadruple of PPT algorithms

AF-PVCtwo is defined by

1. AFT.KeyGen(1λ): Choose a uniformly random matrix A $←− Z
2·v2×h
p , 2 · λ + 1

distinct values k1, . . . , k2·λ+1
$←− Z

∗
p and a random permutation θ of the set

[2 · λ + 1]. Output a fresh key sk = (A, {k1, . . . , k2·λ+1}, θ).
2. AFT.ProbGen(sk,M1,M2): Run A · k to obtain a vector d that involves

2 · v2h-degree polynomials, where k = [k k2 . . . kh]T, where k is an inde-
terminate. Use these h-degree polynomials to mask each element of M1

and M2, and generate two ciphertexts C1 and C2. Specifically, ∀i, j ∈ [v],
i′ ∈ [2 · v2] ci,j = Σh

s=1ai′,s · ks + mi,j. For r ∈ [2 · λ + 1], let k = kr and
compute C1(kr) and C2(kr). This implies that ci,j(kr) = Σh

s=1ai′,s · ksr + mi,j.

Choose 2 · λ uniformly random matrices B1, . . . ,B2·λ
$←− Z

v×v
p and create

λ pairs (B1,B2), . . . , (B2·λ−1,B2·λ). A client sends a set of matrix pairs
U(1) = {(C1(k1),C2(k1)), . . . , (C1(kλ),C2(kλ))} to the first server. More-
over, the client permutes the 2 · λ + 1 matrix pairs of the set U(2) =
{(C1(kλ+1),C2(kλ+1)), . . . , (C1(k2·λ+1), C2(k2·λ+1)), (B1, B2), . . . , (B2·λ−1,

B2·λ)} using θ, and sends the permuted set U(2) to the second server.
3. AFT.Compute(U(1),U(2)): The products of all matrix pairs in U(1) and U(2) are

computed by those two servers and put in two sets Q(1) and Q(2), respectively.
These two sets Q(1) and Q(2) are sent back to the client.

4. AFT.ResuGen(sk,Q(1),Q(2)): Based on θ, choose some matrices from Q(1) and
Q(2), which correspond to M1 and M2. Interpolate these matrices to find the
real result of M1 · M2.

The Single-Server Case: Given a security parameter λ, the matrix size v =
poly(λ), the size of the message space p = poly(λ) and the degree of a polynomial
h = λ. For two v × v matrices M1,M2 ∈ Z

v×v
p , a quadruple of PPT algorithms

AF-PVCsingle is defined as

1. AFS.KeyGen(1λ): Choose a uniformly random matrix A $←− Z
2·v2×h
p , 2 · λ + 1

distinct values k1, . . . , k2·λ+1
$←− Z

∗
p and a random permutation θ of the set

[4 · λ + 2]. Output a fresh key sk = (A, {k1, . . . , k2·λ+1}, θ).
2. AFS.ProbGen(sk,M1,M2): Run A ·k to obtain a vector d that includes 2 · v2

h-degree polynomials, where k = [k k2 . . . kh]T, where k is an indeterminate.
Use these h-degree polynomials to mask each element of M1 and M2, and
generate two ciphertexts C1 and C2. Specifically, ∀i, j ∈ [v], i′ ∈ [2 · v2]ci,j =
Σh

s=1ai′,s · ks + mi,j. For r ∈ [2 · λ + 1], let k = kr and compute C1(kr) and
C2(kr), where ∀i, j ∈ [v], i′ ∈ [2 · v2]ci,j(kr) = Σh

s=1ai′,s · ksr + mi,j. Choose

4 · λ + 2 uniformly random matrices B1, . . . ,B4·λ+2
$←− Z

v×v
p and create

2 · λ + 1 pairs (B1,B2), . . . , (B4·λ+1,B4·λ+2). A client permutes the 4 · λ + 2
matrix pairs of the set U = {(C1(k1),C2(k1)), . . . , (C1(k2·λ+1), C2(k2·λ+1)),
(B1,B2), . . . , (B4·λ+1,B4·λ+2)} using θ, and sends the permuted set U to a
server.
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3. AFS.Compute(U): The products of all matrix pairs in U are computed by the
server and put in a set Q. The set Q is sent back to the client.

4. AFS.ResuGen(sk,Q): Based on θ, choose some matrices from Q, which corre-
spond to M1 and M2. Interpolate these matrices to find the real result of
M1 · M2.

For AF-PVCsingle, Atallah and Frikken introduced a method to verify the
result returned from a server who is lazy or malicious. This verification algo-
rithm is a probabilistic verification process that means successfully detecting a
cheating server with non-negligible probability. Since our work focuses on the
privacy property of the PVC protocol, we refer to [2] for more details about the
verification process.

2.4 Privacy Definition

According to [2], a property of AF-PVCtwo and AF-PVCsingle, from an informal
ciphertext indistinguishability statement, is that it is infeasible for any passive
PPT adversary A to computationally distinguish the ciphertexts over two dis-
tinct inputs. Specifically, a ciphertext is a set of matrix pairs (i.e., U(1),U(2),U).
This computational problem is linked to the notion of privacy against passive
adversary. Based on different attack models, two formal definitions are given
below.

Definition 3 (Privacy Against Passive Eavesdropping). For a PVC pro-
tocol PVC = (KeyGen,ProbGen,Compute,ResuGen), the following experiment
associated with a PPT eavesdropping adversary A is considered:

Experiment Expind-priv
coa

A [PVC, λ]:

((M1(0),M2(0)), (M1(1),M2(1))) ← A(1λ);
sk ← KeyGen(1λ);
b $←− {0, 1};
Ub ← ProbGen(sk,M1(b),M2(b));
b′ ← A((M1(0),M2(0)), (M1(1),M2(1)),Ub);
If b′ = b, output 1; else, output 0,

where Ub is called a challenge ciphertext. The computation of Ub is done by
the performer of the experiment. Then, we define the advantage of A in the
experiment above as follows:

Advind-priv
coa

A (PVC, λ) =
∣
∣
∣Pr[Expind-priv

coa

A [PVC, λ] = 1] − 1
2

∣
∣
∣ .

PVC is IND-COA private if, for any A, there exists a negligible function negl
such that

Advind-priv
coa

A (PVC, λ) ≤ negl(λ) .

Definition 4 (Privacy Against A Chosen-Plaintext Attack). For a PVC
protocol PVC = (KeyGen,ProbGen,Compute,ResuGen), the following experiment
associated with a PPT adversary A is considered:

Experiment Expind-privA [PVC, λ]:
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((M1(0),M2(0)), (M1(1),M2(1))) ← APrivProbGen(KeyGen(1λ),·,·)(1λ);
sk ← KeyGen(1λ);

b $←− {0, 1};
Ub ← ProbGen(sk,M1(b),M2(b));
b′ ← APrivProbGen(KeyGen(1λ),·,·)((M1(0),M2(0)), (M1(1),M2(1)),Ub);
If b′ = b, output 1; else, output 0,

where the oracle PrivProbGen(KeyGen(1λ),M1,M2) asks ProbGen(KeyGen(1λ),
M1,M2) to obtain a set of matrix pairs U and send it back. The output
from PrivProbGen(KeyGen(1λ),M1,M2) is probabilistic. Then, we can define the
advantage of A in the experiment above as follows:

Advind-privA (PVC, λ) =
∣
∣
∣Pr[Expind-privA [PVC, λ] = 1] − 1

2

∣
∣
∣ .

PVC is IND-CPA private if, for any A, there exists a negligible function negl such
that

Advind-privA (PVC, λ) ≤ negl(λ) .

Remark 1. From Katti et al.’s work [11], privacy against passive eavesdropping
is equivalent to IND-COA privacy. If a PVC protocol satisfies IND-CPA privacy
based on Definition 4, it must also satisfy IND-COA privacy based on Definition 3.
However, if a PVC protocol does not satisfy IND-COA privacy, it also does not
satisfy IND-CPA privacy.

In [2], Atallah and Frikken gave the detailed proofs for privacy of AF-PVCtwo

and AF-PVCsingle and the following theorems.

Theorem 4 ([2], Theorem 5). Assume that the two servers do not collude and
the decisional-WSH assumption holds. Then, AF-PVCtwo is IND-CPA private.

Theorem 5 ([2], Sect. 4.5.3). Assume that the decisional-SSH assumption
holds. Then, AF-PVCsingle is IND-CPA private.

3 Breaking the Decisional-SH Assumption

In this section, we first present a rigorous analysis for breaking the decisional-
WSH assumption and decisional-SSH assumption. Then, we show how the anal-
ysis for solving the decisional-SH problem extends naturally to AF-PVCtwo and
AF-PVCsingle, thus demonstrating that both of them are not IND-COA private.

3.1 Adversary’s Strategy

For the decisional-WSH problem (resp. decisional-SSH problem) in Definition 1
(resp. Definition 2), if a polynomial-time adversary A wants to solve this problem
with non-negligible advantage, she must employ some unexpected strategy. In
general, the adversary’s direct strategy is that she tries to find a set that involves
� special row vectors d1, . . . ,d� efficiently and evaluate the distinction between
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the set of � special row vectors and a set of � uniformly random vectors over
Z
m
p . As stated in Theorem 1, any set of λ + 1 row vectors that include at least

one uniformly random vector over Z
m
p is distributed identically to the set of

λ + 1 uniformly random vectors over Z
m
p . This implies that A needs to find at

least � = λ + 1 special row vectors d1, . . . ,dλ+1. However, Atallah and Frikken
argued that A is unlikely to find d1, . . . ,dλ+1 with significant probability (e.g.,
Theorem 2)1.

Then, we take a step back and consider such a question: if we sample a
matrix from a distribution which is either the WSH distribution (resp. the SSH
distribution) or uniformly random, what type of factor about this matrix do we
need to analyze and evaluate? We believe that one of the important factors is
the rank of a matrix. This means that the adversary’s strategy can be based on
the analysis for the rank of a matrix. From this point of view, we propose an
adversary’s strategy that proceeds in two steps.

Strategy Overview: Let X be an n×m matrix that is sampled from a distribu-
tion which is either the WSH distribution (resp. the SSH distribution) χ(p)n×m

or the uniform distribution over Z
n×m
p .

1. Compute the rank of X, denoted by rank(X).
2. Check whether rank(X) is below some value ε ≤ min(n,m) or not below this

value. If rank(X) is below ε, X is sampled from χ(p)n×m; otherwise, X is
sampled from the uniform distribution over Z

n×m
p .

Why the Rank-Based Analysis Works? The idea of the proposed strategy is
remarkably simple. It focuses on a distinguishing problem about the distributions
of ranks of matrices from those two distributions. Specifically, the value ε can be
seen as a threshold rank that is the critical factor of the proposed strategy. To
motivate why computing the rank of a matrix is useful for solving the decisional-
WSH problem and decisional-SSH problem, we list the following two facts:

– Fact 1: Consider an n×m matrix X over Z
n×m
p . W.l.o.g. assume that n ≤ m.

If there are � < n linearly dependent row vectors in X, all the n row vectors
of X are linearly dependent. This implies that the rank of X must be below
n (i.e., rank(X) < n).

– Fact 2: Consider an n × m matrix X sampled from the uniform distribu-
tion over Z

n×m
p . W.l.o.g. assume that n ≤ m. With high probability, the

n row vectors of X are linearly independent, and the rank of X is n (i.e.,
rank(X) = n).

Specifically, based on Linial and Weitz’s work [13] (see Eq. (2)), we verify
the Fact 2 concretely. To implement this verification, we choose parameters
p > 4 · λ + 2, n = 2 · λ + 1 and m ≥ n, and compute the results on the prob-
abilities of the full-row-rank matrices for different parameters. The verification

1 In Sect. 5, we show that d1, . . . ,dλ+1 can be found (with overwhelming probability)
by employing our adversary’s strategy. Here, we want to show that these vectors are
unlikely to be found without using our adversary’s strategy.
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results show that the probability of a uniformly random matrix having rank n is
nearly 1, i.e., Pr[rank(X) = n] ≈ 1, which can show the rank distribution of the
uniformly random matrices over Z

n×m
p . For more details about the verification

results, we refer the reader to the full version of our paper.

Pr[rank(X) = z] =
1

p(n−z)·(m−z)
·
z−1∏

i=0

(1 − pi−n) · (1 − pi−m)
1 − pi−z

(2)

According to Fact 1 and Fact 2, if the matrices sampled from some distri-
bution over Z

n×m
p always have some linearly dependent row vectors, the ranks

of these matrices are always below the matrix sizes, and the rank distribution is
distinguished from the rank distribution of the uniformly random matrices over
Z
n×m
p with non-negligible advantage.

Then, based on the above analysis, if A employs the proposed strategy to solve
the decisional-WSH problem and decisional-SSH problem, the crux is that whether
there are λ+1 linearly dependent special row vectors d1, . . . ,dλ+1 and what is the
probability that d1, . . . ,dλ+1 are linearly dependent. Assume that d1, . . . ,dλ+1

must be linearly dependent, then the rank of a matrix sampled from χ(p)n×m can
leak information about the matrix structure. In what follows, we focus on exploring
the linear relation of the λ+1 special row vectorsd1, . . . ,dλ+1 and give the answer.

3.2 Analysis for the Decisional-SH Assumption

To show the linear relation of the λ + 1 special row vectors d1, . . . ,dλ+1, we
consider a set of the transposes of the λ + 1 vectors [(d1)T . . . (dλ+1)T] as the
product of two matrices A · K, where A is an m × λ uniformly random matrix
where the ith column is ai for i ∈ [λ], and K is a λ× (λ+1) matrix where the rth

column is kr = [kr k2r . . . kλ
r ]T for r ∈ [λ + 1]. Specifically, according to Fact 2,

our following analysis focuses on the case with high probability that the vectors
a1, . . . ,aλ are linearly independent2.

Lemma 2. Consider an m × (λ + 1) matrix (A · K). Assume that m =
poly(λ) > λ, and the column vectors a1, . . . ,aλ are linearly independent. Then,
rank(A · K) < min(m, λ + 1), which implies that the special row vectors
d1, . . . ,dλ+1 are linearly dependent.

Proof. The result in this lemma is immediate, actually. For the formal proof, we
refer the reader to the full version of our paper.

According to Eq. (2), the probability that the column vectors a1, . . . ,aλ are
linearly independent (i.e., rank(A) = λ) is Πλ−1

i=0 (1−pi−m). Then, the probability
that the row vectors d1, . . . ,dλ+1 are linearly dependent is also Πλ−1

i=0 (1−pi−m).
Specifically, if p is a large prime (e.g., p > 4 ·λ+2), the row vectors d1, . . . ,dλ+1

are likely to be linearly dependent.
Then, based on the proposed adversary’s strategy and Lemma2, we show our

main analysis results for solving the decisional-WSH problem and decisional-SSH
problem.
2 In the full version of our paper, we will present an analysis that also considers the

case that the vectors a1, . . . , aλ are linearly dependent.
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Lemma 3. Consider a sample X from either the WSH distribution (resp.
the SSH distribution) χ(p)n×m or the uniform distribution over Z

n×m
p , where

n ∈ {2 · λ + 1, 2 · λ + 2 · e + 2}. Assume that m > 2 ·λ (resp. m > 2 · λ + e + 1),
and p is a large prime, e.g., p > 4 · λ + 2. Let ϕ = Πλ−1

i=0 (1 − pi−m). Let η =
Pr[rank(X) = z], where the probability is for the case that X is uniformly ran-
dom, and z = min(n,m). If rank(X) < min(n,m), the probability that X is sam-
pled from χ(p)n×m satisfies Pr[X ← χ(p)n×m|rank(X) < min(n,m)] ≥ 1

1+ 1−η
ϕ

,

and if rank(X) = min(n,m), the probability that X is uniformly random satisfies

Pr[X $←− Z
n×m
p | rank(X) = min(n,m)] ≥ 1

1+ 1−ϕ
η

.

Proof. For the detailed proof, we refer the reader to the full version of our paper.

In Lemma 3, since p is a large prime, we can obtain Pr[X ← χ(p)n×m|rank(X)

< min(n,m)] ≈ 1 and Pr[X $←− Z
n×m
p |rank(X) = min(n,m)] ≈ 1.

Theorem 6. Let ϕ = Πλ−1
i=0 (1 − pi−m). Let η = Pr[rank(X) = z] denote the

probability that the rank of any n × m uniformly random matrix X is z, where
z = min(n,m), where n ∈ {2 · λ + 1, 2 · λ + 2 · e + 2}. Assume that m > 2 · λ
(resp. m > 2 · λ + e + 1), and p is a large prime, e.g., p > 4 · λ + 2. Then there
exists an adversary A running in polynomial-time t for solving the decisional-
WSH problem (resp. decisional-SSH problem) with

AdvA,SH(p,n,m) ≥ 1
2 · (ϕ + η) − 1

2 ,

where t is used to compute the rank of a matrix. Specifically, since p is a large
prime, A has advantage AdvA,SH(p,n,m) ≈ 1

2 in solving the decisional-WSH
problem (resp. decisional-SSH problem).

Proof. Let Unif(Zn×m
p ) denote the uniform distribution over Z

n×m
p . The adver-

sary A has access to an oracle that is either χ(p)n×m or Unif(Zn×m
p ). She calls the

oracle arbitrarily many times (i.e., a polynomial number of times) to obtain sam-
ples of the form Xi and uses the rank-based adversary’s strategy to evaluate each
sample. If rank(Xi) < min(n,m),A outputs χ(p)n×m. If rank(Xi) = min(n,m),A
returns Unif(Zn×m

p ).
We first look at the probability distribution of the rank of Xi when the

oracle that A has access to is Unif(Zn×m
p ). In this case it’s easy to see that

Pr[rank(Xi) = min(n,m)] = η and Pr[rank(Xi) < min(n,m)] = 1 − η.
If the oracle is χ(p)n×m, as discussed earlier, we have Pr[rank(Xi) =

min(n,m)] ≤ 1 − ϕ and Pr[rank(Xi) < min(n,m)] ≥ ϕ.
Thus, based on Lemma 3, we obtain the success probability (see Sect. 2.1)

SucA,SH(p,n,m)
= Pr[A(X) = b|rank(X) < min(n,m)] · Pr[rank(X) < min(n,m)]+

Pr[A(X) = b|rank(X) = min(n,m)] · Pr[rank(X) = min(n,m)]
= Pr[X ← χ(p)n×m|rank(X) < min(n,m)] · Pr[rank(X) < min(n,m)]+

Pr[X $←− Z
n×m
p |rank(X) = min(n,m)] · Pr[rank(X) = min(n,m)]

≥ ϕ
ϕ+1−η · 1−η+ϕ

2 + 1
2 · η = 1

2 · ϕ + 1
2 · η

.
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This means that AdvA,SH(p,n,m) ≥ 1
2 · ϕ + 1

2 · η − 1
2 . Specifically, when p is a

large prime, the value of ϕ is close to 1. Moreover, as discussed in Sect. 3.1, η
is also close to 1 if p is not a small prime. Then, AdvA,SH(p,n,m) is close to 1

2 ,
which confirms our theorem.

Theorem 6 demonstrates that we can break the decisional-WSH assumption
and decisional-SSH assumption efficiently for a wide range of parameters. The
final result contradicts Atallah and Frikken’s result in Eq. (1). However, this does
not imply that we can solve the search-WSH problem and search-SSH problem
efficiently, which shows the inaccuracy of Theorem 3.

3.3 Analysis for AF-PVCtwo and AF-PVCsingle

Now we want to present the formal analysis for privacy of AF-PVCtwo and
AF-PVCsingle. Specifically, it is straightforward to use the idea of the analysis
for the decisional-WSH assumption and decisional-SSH assumption to under-
mine the privacy of AF-PVCtwo and AF-PVCsingle. This means that an adversary
A employs the rank-based strategy to evaluate a given ciphertext matrix. Note
that, our analysis is based on the IND-COA experiment (see Definition 3), where
an eavesdropping adversary A running in polynomial-time has non-negligible
advantage to show that both protocols are not IND-COA private (and thus not
IND-CPA private).

Lemma 4. Given a uniformly random matrix A ∈ Z
2·v2×λ
p where the ith column

is ai for i ∈ [λ], a λ × n matrix K where the rth column is kr = [kr k2r . . . kλ
r ]T

for r ∈ [n], and a 2 · v2 × n matrix S where the elements of the ith column si
are the same as the corresponding elements of the jth column sj for i, j ∈ [n],

where si
$←− Z

2·v2
p

3. Let p be a large prime (e.g., p > 4 · λ + 2), v = poly(λ) >
√

λ
2 and n ∈ {λ + 1, 2 · λ + 1}. Assume that the column vectors a1, . . . ,aλ, si

are linearly independent. Then, for the 2 · v2 × n matrix (A · K + S), we have
rank(A · K + S) = λ + 1.

Proof. For the formal proof, we refer the reader to the full version of our paper.

Corollary 1. Consider two 2 · v2 × n matrices (A · K + S) and (A · K + Z),
where the definitions of A,K and S are in Lemma 4, and Z is a 2 · v2 × n

zero matrix. Let v = poly(λ) >
√

λ
2 and n ∈ {λ + 1, 2 · λ + 1}. Then the

probability Pr[rank(A · K + S) = λ + 1] = Πλ
i=0(1 − pi−2·v2), and the probability

Pr[rank(A · K + Z) < λ + 1] = Πλ−1
i=0 (1 − pi−2·v2) for the case that the vectors

a1, . . . ,aλ, si are linearly independent.

Proof. We again refer the reader to the full version of our paper for the detailed
proof.
3 For column vectors s1, s2, . . . , sn, since s1 = s2 = · · · = sn,S = [s1 s1 . . . s1], where

s1
$←− Z

2·v2
p .
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Based on Lemma 4 and Corollary 1, we present the following theorems of
breaking the privacy of AF-PVCtwo and AF-PVCsingle.

Theorem 7. The protocol AF-PVCtwo does not satisfy IND-COA privacy based
on Definition 3 under the condition that the size of the message space p is a large
prime (e.g., p > 4 ·λ+2) and the matrix size v >

√
λ. Specifically, the advantage

of an PPT adversary A for breaking the privacy of this protocol is close to 1
2 .

Proof. According to Definition 3, for the experiment Expind-priv
coa

A [AF-PVCtwo,
λ], an PPT adversary A chooses two pairs of v × v matrices (M1(0),M2(0)),

(M1(1),M2(1)). Specifically, (M1(0),M2(0))
$←− Z

v×v
p × Z

v×v
p , and (M1(1),M2(1))

are two zero matrices. The challenge ciphertext is the matrix set Ub that comes
from the second server (i.e., U(2)

b ). A flattens out each pair of matrices of Ub

into a list of 2 · v2 values to generate a (2 · λ + 1) × 2 · v2 matrix Eb. Eb involves
either all rows of the matrix (A ·K+S)T or all rows of the matrix (A ·K+Z)T,
where the descriptions of the transposes of these two matrices are in Corollary 1.
For winning the experiment in Definition 3, A employs a PPT distinguisher D
based on the proposed adversary’s strategy as follows:

Distinguisher D:

– For the case rank(Eb) = 2 · λ + 1,A outputs b′ = 0.
– For the case rank(Eb) < 2 · λ + 1,A outputs b′ = 1.

The positive integer 2 ·λ+1 is regarded as the threshold rank. If Advind-priv
coa

A
(AF-PVCtwo, λ) is non-negligible, then AF-PVCtwo is not IND-COA private. In
what follows, we show this result by considering a large prime p (e.g., p > 4·λ+2)
and a matrix size v >

√
λ.

Pr[Expind-priv
coa

A [AF-PVCtwo, λ] = 1]
= Pr[Eb = E0|rank(Eb) = 2 · λ + 1] · Pr[rank(Eb) = 2 · λ + 1]

+ Pr[Eb = E1|rank(Eb) < 2 · λ + 1] · Pr[rank(Eb) < 2 · λ + 1]
.

Specifically, from Corollary 1, we obtain
⎧

⎪⎨

⎪⎩

Pr[rank(Eb) = 2 · λ + 1|Eb = E0] =
∏λ

i=0
(1 − pi−2·v2) ·

∏2·λ
i=0

(1 − pi−2·v2)

Pr[rank(Eb) < 2 · λ + 1|Eb = E1] ≥
∏λ−1

i=0
(1 − pi−2·v2)

.

Thus, we have

Pr[Expind-priv
coa

A [AF-PVCtwo, λ] = 1]

≥ 1
2 ·

λ∏

i=0

(1 − pi−2·v2) ·
2·λ∏

i=0

(1 − pi−2·v2) + 1
2 ·

λ−1∏

i=0

(1 − pi−2·v2)

= 1
2 ·

λ−1∏

i=0

(1 − pi−2·v2) · ((1 − pλ−2·v2) ·
2·λ∏

i=0

(1 − pi−2·v2) + 1)

.
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Since p is a large prime, as discussed earlier, we can obtain
Pr[Expind-priv

coa

A [AF-PVCtwo, λ] = 1] ≈ 1. This means that Advind-priv
coa

A
(AF-PVCtwo, λ) ≈ 1

2 � negl(λ).

Theorem 8. The protocol AF-PVCsingle does not satisfy IND-COA privacy based
on Definition 3 under the condition that the size of the message space p is a large

prime (e.g., p > 4 · λ + 2) and the matrix size v >
√

3·λ+1
2 . Specifically, the

advantage of an PPT adversary A for breaking the privacy of this protocol is
close to 1

2 .

Proof. The proof follows a similar procedure to that for Theorem7. For the
experiment Expind-priv

coa

A [AF-PVCsingle, λ] in Definition 3, an PPT adversary A
also chooses two pairs of v×v matrices (M1(0),M2(0)) and (M1(1),M2(1)), where

(M1(0),M2(0))
$←− Z

v×v
p × Z

v×v
p , and (M1(1),M2(1)) are two zero matrices. The

challenge ciphertext is the matrix set Ub. A flattens out each pair of matrices of
Ub into a list of 2 ·v2 values to generate a (4 ·λ+2)×2 ·v2 matrix Eb. Eb includes
either all rows of the matrix (A ·K+S)T or all rows of the matrix (A ·K+Z)T.
To win the experiment in Definition 3, A employs a PPT distinguisher D̂ based
on the proposed adversary’s strategy as follows:

Distinguisher D̂:

– For the case rank(Eb) = 3 · λ + 2,A outputs b′ = 0.
– For the case rank(Eb) < 3 · λ + 2,A outputs b′ = 1.

The positive integer 3 ·λ+2 is regarded as the threshold rank. If Advind-priv
coa

A
(AF-PVCsingle, λ) is non-negligible, then AF-PVCsingle is not IND-COA private. In
what follows, we show this result by considering a large prime p (e.g., p > 4·λ+2)

and a matrix size v >
√

3·λ+1
2 .

Pr[Expind-priv
coa

A [AF-PVCsingle, λ] = 1]
= Pr[Eb = E0|rank(Eb) = 3 · λ + 2] · Pr[rank(Eb) = 3 · λ + 2]

+ Pr[Eb = E1|rank(Eb) < 3 · λ + 2] · Pr[rank(Eb) < 3 · λ + 2]
.

Specifically, from Corollary 1, we have
⎧

⎪⎨

⎪⎩

Pr[rank(Eb) = 3 · λ + 2|Eb = E0] =
∏λ

i=0
(1 − pi−2·v2) ·

∏3·λ+1

i=0
(1 − pi−2·v2)

Pr[rank(Eb) < 3 · λ + 2|Eb = E1] ≥
∏λ−1

i=0
(1 − pi−2·v2)

.

Then, we can obtain

Pr[Expind-priv
coa

A [AF-PVCsingle, λ] = 1]

≥ 1
2 ·

λ∏

i=0

(1 − pi−2·v2) ·
3·λ+1∏

i=0

(1 − pi−2·v2) + 1
2 ·

λ−1∏

i=0

(1 − pi−2·v2)

= 1
2 ·

λ−1∏

i=0

(1 − pi−2·v2) · ((1 − pλ−2·v2) ·
3·λ+1∏

i=0

(1 − pi−2·v2) + 1)

.
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Since p is a large prime, as discussed earlier, the above success probability
Pr[Expind-priv

coa

A [AF-PVCsingle, λ] = 1] ≈ 1. This implies that the adversary’s
advantage Advind-priv

coa

A (AF-PVCsingle, λ) ≈ 1
2 � negl(λ).

3.4 Discussion

In order to make the readers fully understood our rank-based analyses, we
present some concrete discussions below.

Parameters: The parameter choice is significant for our analyses of solving the
decisional-SH problem and breaking the privacy of AF-PVCtwo and AF-PVCsingle.

First, for the size of the message space p, it should be set as a large prime
that is at least larger than λ, e.g., p > 4 · λ + 2. On the one hand, as shown
in Sect. 3.1, if p is large enough, with high probability, the vectors from an
uniformly random matrix are linearly independent. This is necessary for our
analyses. On the other hand, if a client wants to outsource the multiplication of
some matrix pair (M1,M2) ∈ Z

v×v
p ×Z

v×v
p to a powerful server, then the message

space of each element in these two matrices should be large, which makes the
client hard to run the expensive computation. Otherwise, there is no need to
do the outsourcing, and the client can carry out the computation locally. This
means that the decisional-SH problem and the feasible protocols AF-PVCtwo and
AF-PVCsingle with a suitable large parameter p are the targets of our analyses.

Second, for the matrix size v (resp. the matrix size m involved in the

decisional-SH problem), it should satisfy v >
√

λ (see Theorem 7) or v >
√

3·λ+1
2

(see Theorem 8) (resp. m > 2 · λ or m > 2 · λ + e + 1 for e ∈ N+ (see The-
orem 6)4). On the one hand, for an n × 2 · v2 (resp. n × m) matrix, where
n ∈ {2 · λ + 1, 4 · λ + 2 (resp. 2 · λ + 2 · e + 2)}, since the rank of the matrix is
dependent on min(n, 2 · v2 (resp. m)), if v (resp. m) does not satisfy the above
condition, the rank-based adversary’s strategy no longer has any effect. This
means that our analyses cannot solve the decisional-SH problem and break the
privacy of AF-PVCtwo and AF-PVCsingle. On the other hand, if a client wants
to outsource the multiplication of some matrix pair to a powerful server, a key
requirement is that these two matrices should be large-scale, which makes the
outsourcing practical. If the matrix size does not satisfy the above condition, e.g.,
v ≤ √

λ, the amount of work performed by the client for the outsourcing may
be not substantially cheaper than performing the computation on its own. This
implies that the outsourcing may be impractical. Therefore, this demonstrates
that our analyses focus on the meaningful decisional-SH problem and protocols
AF-PVCtwo and AF-PVCsingle.

Adversary’s Cost: The cost of our analyses is generated by computing the
rank of a matrix. We can employ any existing algorithm for obtaining the rank
of a matrix. In general, for a matrix from Z

n×m
p with rank z ≤ min(n,m), using

Gaussian elimination, we may compute the rank of the matrix in O(z · n · m)

4 2 · v2 is equivalent to m.
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field operations and storage of n ·m field elements [17]. Of course, the rank of a
matrix can be computed probabilistically by invoking the blackbox approaches,
e.g., the Wiedemann method [10,18]. More concretely, if our analyses employ
the blackbox method, for a matrix from Z

(2·λ+1)×(2·λ+1)
p with rank 2 ·λ, we need

to take Õ(2 · λ · (2 · λ + 1)2) time and use Õ(2 · λ + 1) storage to obtain the rank
of this matrix, where we employ the “soft − Oh” (i.e., Õ) notation to suppress
log factors.

4 Experimental Verifications

In order to give the reader a glance at the practical results of our analyses
for solving the decisional-SH problem and breaking the privacy of AF-PVCtwo

and AF-PVCsingle. We implemented our analyses in Sect. 3 and reported the
adversary’s advantages and costs.

4.1 Setup

Hardware and Software: We conducted the real example experiments on
a Lenovo ThinkStation (Intel(R) Xeon(R) E5-2620, 24 hyperthreaded cores at
2.00 GHz, 8 GB RAM at 2.00 GHz), on Windows (Windows 7, x64 64). Our
implementations are single-threaded. We used the NTL library [1] version 10.5.0
for the field operations over Zp and the matrix operations.

Parameters Choice: In our implementations we covered λ = 80, 128, 192
and 256 privacy. These selections lead to the parameters in Table 1, where
e = λ,n ∈ {2 · λ + 1, 2 · λ + 2 · e + 2}, m ∈ {2 · λ + 1, 3 · λ + 1} for
n = 2 · λ + 1 and m ∈ {3 · λ + 1, 4 · λ + 2} for n = 2 · λ + 2 · e + 2, p > 4 · λ + 2,

v = 
√λ + 1� for n = 2 · λ + 1 and v = 

√

3·λ+1
2 + 1� for n = 2 · λ + 2 · e + 25,

and h = λ.

Table 1. The used parameters for our analyses

λ e n m v p h

80 N/A 161 161, 241 10 353, 401 80

80 322 241, 322 12

128 N/A 257 257, 385 13 631, 701 128

128 514 385, 514 15

192 N/A 385 385, 577 15 809, 907 192

192 770 577, 770 18

256 N/A 513 513, 769 17 1069, 1187 256

256 1026 769, 1026 21

5 n = 4 · λ + 2.
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4.2 Results and Timings

The experimental results are presented in Tables 2, 3, 4 and 5. Specifically, the
adversary’s advantages and timings for solving the decisional-WSH problem and
decisional-SSH problem are shown in Tables 2 and 3, and the adversary’s advan-
tages and timings for breaking the privacy of AF-PVCtwo and AF-PVCsingle are
reported in Tables 4 and 5. To obtain these results, we compute the advantages
that the adversaries answer correctly in the whole experiment process (i.e., 200
experiments). Note that, for each experiment of solving the decisional-WSH
problem (resp. the decisional-SSH problem), a fresh sample from either the dis-
tribution χ(p)n×m or the uniform distribution over Z

n×m
p is used for the guess.

For each experiment of breaking the privacy of AF-PVCtwo (resp. AF-PVCsingle),
a fresh key sk used by AF-PVCtwo (resp. AF-PVCsingle) is generated to complete
the matrix masking. Moreover, for each timing in the tables, the value is the
average value over 200 experiments.

Table 2. Results on the decisional-WSH problem

(n,m, p) AdvA,WSH(p,n,m) Timing (second)

(161, 161, 353) 0.495 0.725

(161, 241, 353) 0.495 0.998

(161, 161, 401) 0.500 0.723

(161, 241, 401) 0.500 0.997

(257, 257, 631) 0.500 2.843

(257, 385, 631) 0.500 4.646

(257, 257, 701) 0.495 2.832

(257, 385, 701) 0.500 4.633

(385, 385, 809) 0.500 9.304

(385, 577, 809) 0.500 15.253

(385, 385, 907) 0.500 9.284

(385, 577, 907) 0.500 15.137

(513, 513, 1069) 0.500 21.558

(513, 769, 1069) 0.500 35.944

(513, 513, 1187) 0.500 21.629

(513, 769, 1187) 0.500 35.997

As reported in Tables 2, 4 and 5, all the experimental results about the adver-
sary’s advantage are in accord with the analyses of Theorems 6, 7 and 8, and
demonstrate that there exists a PPT adversary algorithm that (almost) always
succeeds in guessing the distribution of a given sample or the bit b in the eaves-
dropping indistinguishability experiment (see Definition 3). For the results in
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Table 3. Results on the decisional-SSH problem

(n,m, p) AdvA,SSH(p,n,m) Timing (second)

(322, 241, 353) 0.005 2.543

(322, 322, 353) 0.500 3.843

(322, 241, 401) 0.010 4.447

(322, 322, 401) 0.495 3.746

(514, 385, 631) 0.030 9.610

(514, 514, 631) 0.500 15.348

(514, 385, 701) 0.050 9.476

(514, 514, 701) 0.495 14.253

(770, 577, 809) 0.025 30.900

(770, 770, 809) 0.495 46.268

(770, 577, 907) 0.040 30.098

(770, 770, 907) 0.500 46.374

(1026, 769, 1069) 0.040 71.009

(1026, 1026, 1069) 0.500 109.091

(1026, 769, 1187) 0.020 71.436

(1026, 1026, 1187) 0.500 108.871

Table 4. Results on AF-PVCtwo

(n, v, p) Advind-priv
coa

A (AF-PVCtwo, λ) Timing (second)

(161, 10, 353) 0.500 0.854

(161, 10, 401) 0.495 0.849

(257, 13, 631) 0.500 3.549

(257, 13, 701) 0.500 3.648

(385, 15, 809) 0.500 11.064

(385, 15, 907) 0.500 10.336

(513, 17, 1069) 0.500 23.037

(513, 17, 1187) 0.500 22.666

Table 3, when n = m, the adversary’s advantages validate the analysis in Theo-
rem 6, which is based on the fact that m > 3 · λ + 1. However, when n > m, the
adversary’s advantages are close to 0. This is because the rank of a given matrix
from one of those two distributions is dependent on m if m ≤ 3 · λ + 1. Then, in
this case, the proposed rank-based strategy is invalid for distinguishing the SSH
distribution from the uniform distribution over Z

n×m
p , and the adversary must

guess randomly.
Moreover, the timings of all the example experiments in Tables 2, 3, 4 and 5

show that our rank-based analyses for solving the decisional-SH problem and
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Table 5. Results on AF-PVCsingle

(n, v, p) Advind-priv
coa

A (AF-PVCsingle, λ) Timing (second)

(322, 12, 353) 0.500 2.976

(322, 12, 401) 0.500 3.026

(514, 15, 631) 0.500 11.499

(514, 15, 701) 0.500 11.509

(770, 18, 809) 0.500 36.407

(770, 18, 907) 0.500 34.566

(1026, 21, 1069) 0.500 82.436

(1026, 21, 1187) 0.500 83.199

breaking the privacy of AF-PVCtwo and AF-PVCsingle are really efficient. Specif-
ically, for some small matrix sizes (e.g., (n,m) = (161, 161) in Table 2), our
analyses take less than a second.

5 Conclusions

In this paper, we propose an efficient analysis method for solving the decisional-
WSH problem and decisional-SSH problem introduced by Atallah and Frikken
[2]. Specifically, the strategy of our analysis takes advantage of the rank distribu-
tion of the matrix to distinguish between the samples from the WSH distribution
(resp. the SSH distribution) χ(p)n×m and the samples from the uniform distri-
bution over Z

n×m
p . The adversary’s advantage of our analysis on a wide range of

parameters is close to 0.5. Moreover, we employ a similar approach to break the
privacy of AF-PVCtwo and AF-PVCsingle. The analysis results show that both
protocols are not IND-COA private.

Solving the Search Variant of the SH Problem? Our rank-based analysis
can break the decisional-WSH assumption and decisional-SSH assumption, but
this does not implies that we can also break the search versions efficiently. Actu-
ally, for breaking the search-WSH assumption and search-SSH assumption, our
rank-based analysis may be regarded as a preprocessing step. To check whether
a row of a matrix sampled from χ(p)n×m is a row vector from d1, . . . ,d� or from
u1, . . . ,uτ , the adversary first replaces the row that needs to be tested by a row
vector chosen from Z

m
p uniformly at random, and then computes the rank of

the matrix where the tested row has been replaced. According to our analysis in
Sect. 3.2, if the obtained rank increases (compared with the rank of the matrix
sampled from χ(p)n×m), this implies that the tested row is from the row vectors
d1, . . . ,d�. The above procedure can be run at most n − 1 times (with over-
whelming probability) to reveals all the vectors d1, . . . ,d�. However, this result
is not equivalent to finding k1, . . . , k� (or A). Therefore, how to break the search
variant of the SH assumption efficiently is an interesting open problem.
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