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Abstract. Seminal results by Luby and Rackoff show that the 3-round
Feistel cipher is secure against chosen-plaintext attacks (CPAs), and
the 4-round version is secure against chosen-ciphertext attacks (CCAs).
However, the security significantly changes when we consider attacks
in the quantum setting, where the adversary can make superposition
queries. By using Simon’s algorithm that detects a secret cycle-period in
polynomial-time, Kuwakado and Morii showed that the 3-round version
is insecure against quantum CPA by presenting a polynomial-time dis-
tinguisher. Since then, Simon’s algorithm has been heavily used against
various symmetric-key constructions. However, its applications are still
not fully explored.

In this paper, based on Simon’s algorithm, we first formalize a suffi-
cient condition of a quantum distinguisher against block ciphers so that
it works even if there are multiple collisions other than the real period.
This distinguisher is similar to the one proposed by Santoli and Schaffner,
and it does not recover the period. Instead, we focus on the dimension
of the space obtained from Simon’s quantum circuit. This eliminates the
need to evaluate the probability of collisions, which was needed in the
work by Kaplan et al. at CRYPTO 2016. Based on this, we continue the
investigation of the security of Feistel ciphers in the quantum setting. We
show a quantum CCA distinguisher against the 4-round Feistel cipher.
This extends the result of Kuwakado and Morii by one round, and follows
the intuition of the result by Luby and Rackoff where the CCA setting
can extend the number of rounds by one. We also consider more practical
cases where the round functions are composed of a public function and
XORing the subkeys. We show the results of both distinguishing and key
recovery attacks against these constructions.
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1 Introduction

A block cipher is an important cryptographic primitive that is widely adopted in
various secure communication protocols and security products. A block cipher is
a pseudo-random permutation (PRP), i.e. it takes a key as input and provides
distinct permutations that cannot be distinguished from a random permutation
for distinct key inputs.

Designing an efficient block cipher is a long-term challenge in symmetric-key
cryptography. One of the most popular approaches is to use the Feistel network,
in which an n-bit state is divided into n/2-bit halves denoted by ai and bi, and
the state is updated by iteratively applying the following two operations;

bi+1 ← ai ⊕ FKi
(bi), ai+1 ← bi,

where FKi
is a keyed function taking a subkey Ki as input. The construction

is known as the Luby-Rackoff construction. In this paper, we call it Feistel-
F to make the name consistent with other constructions. The diagram of the
construction is drawn in the left of Fig. 1. Luby and Rackoff [19] proved that when
FKi

is a pseudo-random function (PRF), 3-round and 4-round Feistel ciphers
are PRPs up to O(2n/4) queries against chosen-plaintext attacks (CPAs) and
chosen-ciphertext attacks (CCAs), respectively. Luby and Rackoff also showed
the tightness of the number of rounds by demonstrating efficient attacks against 2
and 3 rounds in the corresponding attack models.

While the provable security bounds derived by Luby and Rackoff are attrac-
tive, using a PRF for FKi

requires significant implementation costs, and this
is often practically infeasible. To design a block cipher for practical usage, the
subkey space is often limited to {0, 1}n/2, and FKi

(bi) is defined as

bi+1 ← ai ⊕ F (Ki ⊕ bi), ai+1 ← bi,

where F is a public function. In this paper, we call this construction Feistel-KF.
See the middle figure of Fig. 1. Feistel-KF includes a lot of practical designs,
e.g. DES [20] and Camellia [1], where the function x �→ F (Ki ⊕x) is not a PRF,
and generic attacks on this construction have been widely studied, e.g. impossible
differential attacks [15], meet-in-the-middle attacks [10,12], dissection attacks [5]
and division property [24].

It is also possible to inject a subkey Ki ∈ {0, 1}n/2 outside the F function as

bi+1 ← ai ⊕ F (bi) ⊕ Ki, ai+1 ← bi.

We call this construction Feistel-FK, which is illustrated on the right of Fig. 1.
This construction provides implementation advantages and can be seen in several
lightweight designs e.g. Piccolo [22], Simon [2] and Simeck [25].

The discussion so far is about the classical computation setting, while the
security of symmetric-key schemes against quantum computers has become
active recently. Owing to less mathematical structure in symmetric-key schemes
than public-key schemes, there was a belief that simply doubling the key size in
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Fig. 1. Our target constructions.

order to resist the exhaustive key search by Grover’s algorithm [9] is sufficient to
protect symmetric-key schemes from quantum computers. However, Kuwakado
and Morii [16] demonstrated that, by exploiting Simon’s algorithm [23], the Feis-
tel ciphers can be distinguished from a random permutation only in polynomial-
time of the output size under the assumption that the adversary can make
quantum superposition queries. Since then, many polynomial-time attacks using
Simon’s algorithm have been proposed e.g. key recovery against Even-Mansour
construction [17], forgery on various CBC-like MACs [14], and cryptanalysis of
AEZ [3]. Moreover, Leander and May [18] showed a clever method to combine
Grover’s and Simon’s algorithms to recover the key against the FX construction.
See also [21].

The attack model that adversaries can make quantum queries is worth inves-
tigating. This model is a natural extension of the classical attack models, and
theoretically interesting. Any symmetric scheme broken in this model should not
be implemented on a quantum computer. Moreover, the threat of this attack
model becomes significant if an adversary has access to its white-box implemen-
tation. Because arbitrary classical circuit can be converted into quantum one,
the adversary can construct a quantum circuit from the classical source code
given by the white-box implementation.

There are several attacks on Feistel ciphers in the quantum setting. Besides
the first work in [16], a meet-in-the-middle attack in the quantum setting was
discussed in [11] and appending key-recovery rounds by applying the algorithm
by Leander and May [18] was discussed in [7,8,11]. However, the following impor-
tant issues have not been discussed by the previous work.

– Security analysis of Feistel ciphers against chosen-ciphertext adversaries is
missing. In the classical setting, the tight bound of the number of rounds is
known for the Feistel-F construction, and clarifying the number of rounds that
can be attacked in the quantum setting leads us a deeper understanding of
the Feistel-F construction. Furthermore, the quantum setting assumes strong
power of adversaries, hence considering CCAs is more reasonable. We note
that there are results in a CCA setting on Feistel ciphers with a specific key
scheduling function called 2 key- or 4 key-alternation Feistel ciphers and their
variants [4,6], however, we are considering more general constructions.
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– Discussion on practical constructions is missing. Although the Luby-Rackoff
construction is a good object to study theoretical aspects of the Feistel
ciphers, in general, it cannot be implemented efficiently in practice. There-
fore, the analyses of practical constructions like Feistel-KF and Feistel-FK
are needed. Again, we are interested in general constructions that do not rely
on a specific key scheduling function.

Our Contributions. In this paper, we further investigate the security of the
Feistel ciphers against quantum adversaries. In particular, we show CCA distin-
guishers that can distinguish more rounds than the previous CPA distinguishers.
In addition, we extend the distinguishers to key recovery attacks for the practical
constructions, i.e. Feistel-KF and Feistel-FK.

We start with several fundamental observations about Simon’s algorithm that
detects a secret cycle-period in polynomial-time. The usage of Simon’s algorithm
in the previous work can be classified into two types; the first type uses Simon’s
algorithm for key recovery attacks, namely, the recovered secret cycle-period
corresponds to the key of the construction such as [17] and [14], whereas the
second type uses Simon’s algorithm for distinguishers, e.g. to distinguish the
construction from an ideal one [16,21] or to distinguish the right key guess from
wrong key guesses [7,8,11,18].

We observe that, for the second type, recovering the secret cycle-period is not
necessary as long as a non-ideal behavior is detected. If we follow [14] to recover
the secret cycle-period by using Simon’s algorithm, one has to derive the upper
bound on the probability of a collision other than the period. However, there are
cases where obtaining the upper bound is non-obvious, and it may be difficult
to prove it in attacks on complicated constructions. This motivates us to relax
the requirement of recovering the period in Simon’s algorithm. Technically, we
focus on the property that the dimension of the space spanned by the vectors
in Simon’s algorithm, instead of the exact period s. Namely, the dimension of
the space is at most � − 1 if the target function has a period s, where {0, 1}� is
the domain of the function evaluated by Simon’s algorithm. This modification
eliminates the need to derive the upper bound on the probability of a collision
other than the period s. Note that Santoli and Schaffner pointed out a similar
observation [21], and we are dealing with a general class of block ciphers, and
we also formalize a sufficient condition so that the distinguisher works.

We then apply the above observations to attack several Feistel ciphers. For
the Feistel-F construction, we show that a cycle-period can be formed for 4
rounds in the CCA setting. This leads to a 4-round polynomial-time CCA dis-
tinguisher, which is 1-round longer than the CPA distinguisher by Kuwakado and
Morii [16]. The attack is then extended to the practical constructions; Feistel-KF
and Feistel-FK. For Feistel-KF, although the distinguisher is the same as the one
for Feistel-F, we can now discuss the key recovery attack owing to the practi-
cal size of the secret key. We obtain 7-round key recovery attacks that recover
7n/2-bit key with O(23n/4) complexity. For Feistel-FK, the CCA distinguisher
is extended to 6 rounds and we obtain 9-round key recovery attacks that recover
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Table 1. Comparison of the number of attacked rounds in various settings. “Dist.”
and “KR” denote distinguisher and key recovery attack, respectively. Superscript P

denotes that the attack complexity is only a polynomial of the function’s output size,
while the others require exponential complexity.

Construction Classic-CPA Classic-CCA Quantum-CPA Quantum-CCA

Dist. KR Dist. KR Dist. KR Dist. KR

Feistel-F 2 [19] - 3 [19] - 3P [16] - 4P Ours -

Feistel-KF 5 [10] 6 [10] 5 [10] 6 [10] 5 [11]
3P [16]

6 [11] 4P Ours 7 Ours

Feistel-FK - - - - 5P Ours 8 Ours 6P Ours 9 Ours

9n/2-bit key with O(23n/4) complexity. In addition, the CPA distinguisher is
extended to 5 rounds and we obtain 8-round key recovery attacks that recover
8n/2-bit key with O(23n/4) complexity. A comparison of the number of attacked
rounds is given in Table 1. Note that Table 1 focuses on attacks with complexity
at most O(2n), and it does not include attacks with higher complexities. Also,
we consider only general constructions, so it does not include attacks against
constructions with a particular key scheduling function such as [4,6].

Paper Outline. This paper is organized as follows. Section 2 describes prelimi-
naries. Section 3 introduces previous works. Section 4 explains the formalization
of a distinguishing technique that relaxes Simon’s algorithm. Section 5 presents
our CCA distinguisher against the 4-round Feistel-F constructions. The attack
is then applied to chosen-ciphertext key-recovery attacks on Feistel-KF con-
structions in Sect. 6. Section 7 explains distinguishing and key-recovery attacks
against Feistel-FK constructions in both CCA and CPA settings. We conclude
the paper in Sect. 8.

2 Preliminaries

2.1 Notation

For a positive integer n, let {0, 1}n be the set of all n-bit strings. Let Perm(n) be
the set of all permutations on {0, 1}n, and let Func(n) be the set of all functions
from {0, 1}n to {0, 1}n. For bit strings a and b, a ‖ b denotes their concatenation.
We also regard a and b as binary vectors, and let |a| be the dimension of the
vector a. When |a| = |b|, we denote their inner product as a · b. In this paper, e

denotes Napier’s number. For a finite set X , we write X
$← X for the process of

sampling an element uniformly from X and assigning the result to X.

2.2 Simon’s Algorithm

In this section, we describe Simon’s algorithm [23] that is used in our quantum
algorithms. Throughout this paper, we assume that readers have basic knowledge
about quantum computation. Simon’s algorithm can solve the following problem.
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Problem 1. Given a function f : {0, 1}n → {0, 1}n, assume that there exists a
period s ∈ {0, 1}n\{0n} such that for any distinct x, x′ ∈ {0, 1}n, it holds that
f(x) = f(x′) ⇔ x′ = x ⊕ s. The goal is to find the period s.

We assume that Simon’s algorithm has access to the quantum oracle Uf , which is
defined as Uf |x〉 |z〉 = |x〉 |z ⊕ f(x)〉. We use the Hadamard transform H⊗n that
is applied on n-qubit state |x〉 and gives H⊗n |x〉 = 1√

2n

∑
y∈{0,1}n(−1)x·y |y〉.

Simon proposed a circuit Sf that computes vectors that are orthogonal to s by
using the quantum oracle Uf . Sf is described as (H⊗n ⊗ In) · Uf · (H⊗n ⊗ In)
and works as follows:

1. We first apply the Hadamard transform H⊗n on the first n qubits of 2n-qubit

state |0n〉 |0n〉 to obtain the state
1√
2n

∑
x |x〉 |0n〉.

2. Then, we apply the unitary operator Uf to obtain the state 1√
2n

∑
x |x〉 |f(x)〉.

3. Finally, we apply the Hadamard transform H⊗n on the first n qubits to obtain
the state

1
2n

∑

x,y

(−1)x·y |y〉 |f(x)〉 . (1)

As we assume that f satisfies f(x) = f(x′) ⇔ x′ = x ⊕ s, we have |y〉 |f(x)〉 =
|y〉 |f(x ⊕ s)〉 for each y and x. Therefore, Eq. (1) is described as

1
2n

∑

x∈V,y

(
(−1)x·y + (−1)(x⊕s)·y) |y〉 |f(x)〉 ,

where V is a linear subspace of {0, 1}n of dimension n−1 that partitions {0, 1}n

into cosets V and V + s. The vector y such that y · s ≡ 1 (mod 2) will satisfy
(−1)x·y + (−1)(x⊕s)·y = 0. Thus, we will obtain a random vector y such that
y · s ≡ 0 (mod 2) by measuring the first n qubits. By repeating this routine that
obtains a random vector y for O(n) times, with a high probability, we obtain
n − 1 linearly independent such vectors, and then the period s can be recovered
by solving the system of linear equations.

We note that, in Simon’s algorithm, we assume that the function f has a
period s. In latter sections, we will use the circuit Sf to a function f that may
not have any period, or may have multiple periods.

2.3 Kaplan et al.’s Observation

To apply Simon’s algorithm, the function f has to satisfy f(x) = f(x′) ⇔ x′ =
x ⊕ s. We call this property Simon’s promise. If f does not satisfy this property
and has other collisions in addition to s, then there is no guarantee that Simon’s
algorithm works. However, Kaplan et al. showed that Simon’s algorithm can find
s even if f has partial periods, where the partial period is defined as t = s such
that f(x) = f(x ⊕ t) holds for some x [14].
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More precisely, suppose that a function f : {0, 1}� → {0, 1}m satisfies only
the condition that f(x) = f(x′) ⇐ x′ = x⊕s for any distinct x, x′ ∈ {0, 1}�. Since
now the counter condition f(x) = f(x′) ⇒ x′ = x⊕s does not always hold, there
may exist partial periods of f . Intuitively, if there exist many partial periods
t1, t2, . . . which are very close to complete periods (i.e., Prx [f(x) = f(x ⊕ tj)]
is close to 1 for each j), then it becomes hard to recover s. To describe this
intuition formally, Kaplan et al. introduced the parameter ε(f, s) defined as

ε(f, s) = max
t∈{0,1}�\{0�,s}

Pr
x

[f(x) = f(x ⊕ t)] . (2)

This shows the maximum probability of partial periods of f . Notice that if f is
a constant function, then ε(f, s) = 1 and s cannot be recovered. On the other
hand, if f satisfies Simon’s promise, then ε(f, s) = 0. The following theorem
about the success probability of Kaplan et al.’s observation was proved.

Theorem 1 ([14]). If ε(f, s) ≤ p0 for some positive number p0 < 1, the proba-
bility that Simon’s algorithm returns s after c� queries is at least 1−(2(1+p0

2 )c)�.

This theorem shows that we still obtain s with O(�) quantum queries and the
complexity does not increase significantly.

3 Previous Works

3.1 Quantum Distinguisher Against the 3-Round Feistel Cipher

Here we review the distinguishing algorithm of the 3-round Feistel cipher by
Kuwakado and Morii [16]. Kuwakado and Morii considered the case where FKi

in Fig. 1 is a random permutation, and we write Pi for FKi
.

Let FP3 denote the encryption algorithm of the 3-round Feistel cipher, where
random permutations P1, P2, P3

$← Perm(n/2) are used as internal functions.
FP3 takes a plaintext (a, b) ∈ ({0, 1}n/2)2 as input and outputs a ciphertext
(c, d) ∈ ({0, 1}n/2)2, where

c = b ⊕ P2(a ⊕ P1(b)),
d = a ⊕ P1(b) ⊕ P3(b ⊕ P2(a ⊕ P1(b))).

Figure 2 illustrates FP3.
Kuwakado and Morii considered the following problem.

Problem 2. Let O : {0, 1}n → {0, 1}n be either FP3 or a random permutation
Π

$← Perm(n). Given access to the quantum oracle UO : |x〉 |y〉 �→ |x〉 |y ⊕ O(x)〉,
where x, y ∈ {0, 1}n, the goal is to distinguish the two cases.

Let α0, α1 ∈ {0, 1}n/2 be arbitrary distinct constants. For β ∈ {0, 1} and
x ∈ {0, 1}n, Kuwakado and Morii used (x, αβ) as the plaintext (a, b). When O
is FP3, the lower half c of the ciphertext is described as

c = αβ ⊕ P2(x ⊕ P1(αβ)).
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Fig. 2. The 3-round Feistel cipher with Pi
$← Perm(n/2) being used as the internal

function.

x

α0/α1

Fig. 3. FP3(x, αβ) and the lower half c
of the ciphertext.

x

α0/α1

Fig. 4. P2(x ⊕ P1(αβ)).

Figure 3 illustrates c. Then, we see that c ⊕ αβ = P2(x ⊕ P1(αβ)) holds, which
is illustrated in Fig. 4. If we change the value of β, i.e., if we let β to β ⊕ 1,
we see that the input value of P2 remains the same value by changing x to
x ⊕ P1(α0) ⊕ P1(α1). Thus, we can construct a function fO(β ‖ x) that has the
period 1 ‖ P1(α0) ⊕ P1(α1) by defining fO as

fO : {0, 1} × {0, 1}n/2 → {0, 1}n/2

(β ‖ x) �→ c ⊕ αβ , where (c, d) = O(x, αβ). (3)

Note that fO can also be evaluated in quantum superpositions. We can realize
the unitary operator UfO : |x〉 |y〉 �→ |x〉 |y ⊕ fO(x)〉 which makes O(1) quantum
queries to UO. If O is FP3, then the function fO is described as

fO(β ‖ x) = αβ ⊕ P2(x ⊕ P1(αβ)) ⊕ αβ

= P2(x ⊕ P1(αβ)),

and the following lemma holds.

Lemma 1. If O is FP3, the function fO satisfies fO(β ‖ x) = fO(β′ ‖ x′) ⇔
β′ ‖ x′ = (β ‖ x) ⊕ (1 ‖ P1(α0) ⊕ P1(α1)) for any x, x′ ∈ {0, 1}n/2 such that
x = x′. That is, fO has the period s = 1 ‖ (P1(α0) ⊕ P1(α1)).

For completeness, a proof is presented in [13].
Lemma 1 guarantees that the function fO defined in Eq. (3) satisfies Simon’s

promise if O is FP3, and we can recover the period s by applying Simon’s
algorithm to fO. Define a unitary operator SfO by SfO = (H⊗n/2+1 ⊗ In/2) ·
UfO · (H⊗n/2+1 ⊗ In/2). The quantum distinguisher by Kuwakado and Morii
works as follows.

1. Measure the first n/2 + 1 qubits of SfO |0n+1〉 to obtain the vector y ∈
{0, 1}n/2+1.
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2. Repeat Step 1 until we obtain n/2 linearly independent vectors. If obtained,
compute s by solving the system of linear equations.

3. Choose β ∈ {0, 1} and z ∈ {0, 1}n/2 randomly, and compute fO(β ‖ z) and
fO((β ‖ z) ⊕ s). If fO(β ‖ z) = fO((β ‖ z) ⊕ s), then output “O is FP3,”
otherwise output “O is Π.”

If O is FP3, we obtain the period s in Step 2 with a high probability and it passes
the test in Step 3. On the other hand, according to [16], if O is Π, with a high
probability, Simon’s algorithm returns a random string s′, and the probability
that fO(β ‖ z) = fO((β ‖ z) ⊕ s′) is about 2−n/2. Therefore, the distinguisher
above returns a correct answer by making O(n) quantum queries.

Remark 1. We need to truncate outputs of O for constructing the function fO,
since we use only the lower n/2 bits of the output of O. However, the oracle
may return outputs of which the lower and upper parts are entangled, and it
is not trivial to truncate such outputs without destroying the entanglement, as
pointed out by Kaplan et al. [14]. To solve this problem, Hosoyamada and Sasaki
showed how to simulate truncation of outputs of the oracles without destroying
quantum entanglements [11], and the same technique can be used in our case.

3.2 Key Recovery Attacks Against the Feistel-KF Construction

Next, we introduce the idea of the key recovery attacks against the Feistel-KF
construction by Hosoyamada and Sasaki [11], and Dong and Wang [8]. They com-
bined the quantum distinguisher against the 3-round Feistel cipher (see Sect. 3.1)
with the Grover search. The attack is a quantum chosen-plaintext attack, and
recovers the keys of the r-round Feistel cipher in time Õ(2(r−3)n/4).

Attack Idea. Given the quantum encryption oracle of the r-round Feistel-KF
construction, run the following procedures (on a quantum circuit).

1. Implement a quantum circuit which
– takes the intermediate state value after the first (r − 3) rounds and the

subkeys for the first (r − 3) rounds as input,
– computes the plaintext by decrypting the first (r − 3) rounds,
– makes a quantum query of the computed plaintext to the oracle,
– and returns the oracle output.

The input and output of this circuit correspond to those of the last 3 rounds.
We denote this circuit by E , which is depicted in Fig. 5.

2. Guess the subkeys of the first (r − 3) rounds.
3. For each guess, check its correctness with the following procedure.

(a) Apply the 3-round distinguisher to E .
(b) If the distinguisher returns that “this is a random permutation”, then

judge that the guess is wrong. Otherwise judge that the guess is correct.

Attack Complexity. The total length of the subkeys of the first (r − 3) rounds is
((r − 3)n/2) bits. Thus the exhaustive search of the first (r − 3) rounds can be
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Fig. 5. Construction of E in the key recovery attack against the r-round Feistel-KF
construction. The ciphertext corresponds to the output of the 3-round Feistel-KF con-
struction which takes (Kr−2, Kr−1, Kr) as subkeys and (x, αβ) as input.

done in time O(
√

2(r−3)n/2) by using the Grover search. Moreover, the 3-round
distinguisher in the third step runs in time O(n) for each subkeys guess. The
running time of the attack is O(

√
2(r−3)n/2) × O(poly(n)) = Õ(2(r−3)n/4).

Although how to formally combine the Grover search and the 3-round dis-
tinguisher is non-trivial, the technique developed by Leander and May [18] guar-
antees that those can be combined. See the previous papers [8,11] for details.

4 Relaxing Simon’s Algorithm

This section presents quantum distinguishers that are based on the relaxed ver-
sion of Simon’s algorithm [23]. In a nutshell, we discuss that it is enough to
obtain several vectors that are orthogonal to the period, and thus we eliminate
the need to recover the actual period. This is similar to the one by Santoli and
Schaffner [21], while we are dealing with a general class of block ciphers, and we
also formalize a sufficient condition so that the distinguisher works.

In more detail, instead of using the period for the basis of the distinguisher,
we focus on the dimension of the space spanned by the vectors y1, y2, . . . that are
obtained by using Sf (recall that Sf is defined in Sect. 2.2). If f has the non-zero
period s, then the dimension is at most |s|−1, since the vectors y1, y2, . . . are all
orthogonal to the period s. On the other hand, as we prove in Theorem 2 below,
if the function f does not have any period, the dimension of the space spanned
by the vectors y1, y2, . . . can reach |s| with a high probability. In other words,
we can distinguish f by checking the dimension of the space spanned by the
vectors y1, y2, . . . without computing the actual period s. Thus, there will not
be a problem if there are several partial periods or periods other than s because
our distinguisher does not need the period s.
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Note that this technique works only if we do not need the value of s. This
technique cannot be applied to the key recovery attacks on Even-Mansour con-
struction and forgery attacks on authentication and authenticated encryption
schemes since the goal of these attacks needs s [14].

Below we formally explain how our distinguisher works. Let O : {0, 1}n →
{0, 1}n be either an encryption scheme EK or a random permutation Π

$←
Perm(n), and suppose that the quantum oracles of O and O−1 are given. Our
goal is to distinguish whether O = EK or O = Π. In what follows, when we
use the symbol π for a permutation, we consider that π is a fixed (or constant)
permutation.

Settings. Our distinguisher can be applied when there is a function family {fπ :
{0, 1}� → {0, 1}m}π∈Perm(n) that satisfies the following conditions:

1. There is a (classical) algorithm A that makes black-box access to π, π−1, and
computes fπ. That is, for each permutation π, Aπ,π−1

computes fπ(x) if x
is given as input. We assume that A makes O(1) queries and runs in time
O(poly(�,m)).

2. For the encryption scheme E and any key K, fEK has a period, i.e., there
exists s ∈ {0, 1}� such that fEK (x ⊕ s) = fEK (x) holds for all x (note that s
depends on K).

Moreover, informally we expect that fΠ has no period with a high probability
when Π is a random permutation. Note that the first condition implies that we
can make a quantum circuit that realizes the unitary operator UfO : |x〉 |z〉 �→
|x〉 |z ⊕ fO(x)〉 by making O(1) quantum queries to O and O−1, since any clas-
sical deterministic algorithm can be converted to a corresponding quantum algo-
rithm.

Description of the Distinguisher. Let SfO be the unitary operator that is defined
as in Sect. 2. Recall that SfO = (H⊗� ⊗Im) ·UfO · (H⊗� ⊗Im). Our distinguisher
is described in Algorithm 1.

Analysis of the Distinguisher. Our distinguisher always returns the correct
answer if O = EK , since by assumption, fEK has a period for any K, and
thus the dimension of the space spanned by Y becomes strictly less than �. Our
distinguisher fails only if O = Π and the dimension of the space spanned by Y
becomes less than �. Below we analyze the failure probability, assuming that η
(the number of iterations in Step 2) is sufficiently large.

Algorithm 1. Distinguisher without recovering the period
1. Prepare an empty set Y.
2. For 1 ≤ i ≤ η, do:
3. Measure the first � qubits of SfO |0�+m〉 and add the obtained vector y to Y.
4. End For
5. Calculate the dimension d of the vector space spanned by Y.
6. If d = �, then output “O is Π.” If d < �, output “O is EK .”



402 G. Ito et al.

The failure probability increases if the distribution of y in Step 3 is highly
biased. Moreover, we obtain a vector y which is orthogonal to a partial period
t of fΠ with a high probability in Step 3 if Prx

[
fΠ(x) = fΠ(x ⊕ t)

]
is large

(i.e., t is close to a complete period) by definition of SfO . To capture how much
the distribution of y is biased under the condition that random permutation Π
matches a fixed permutation π, we introduce a parameter επ

f defined as

επ
f = max

t∈{0,1}�\{0�}
Pr
x

[fπ(x) = fπ(x ⊕ t)] . (4)

We expect that, if π is chosen uniformly at random, this parameter επ
f is small

on average.
Now take a small constant 0 ≤ δ < 1 arbitrarily and say that a permutation

π is irregular if επ
f > 1 − δ, i.e., επ

f is relatively large. In addition, define the set
of irregular permutations irrδf as

irrδf = {π ∈ Perm(n) | επ
f > 1 − δ}. (5)

Our intuition is that the failure probability becomes small if PrΠ [Π ∈ irrδf ] is
sufficiently small, and actually the following theorem holds.

Theorem 2. Let � and m be positive integers that are O(n). Assume that we
have a quantum circuit with O(poly(�,m)) qubits which computes fO by making
O(1) queries to O, and runs in time T = T (�,m). Then, our distinguisher makes
O(η) quantum queries, runs in time O(ηT + �3), and distinguishes EK from Π
with probability at least

1 − 2�/eδη/2 − Pr
Π

[Π ∈ irrδf ]. (6)

A proof is presented in [13]. This theorem guarantees that we can distinguish
EK from Π if 2�/eδη/2 and PrΠ [Π ∈ irrδf ] are small. In later sections, we apply
the above theorem with η = 2�/δ, in which case we have 2�/eδη/2 = (2/e)�.

If we use the technique by Kaplan et al. (Theorem 1) to analyze a success
probability of a distinguisher, we have to upper bound the parameter ε(fEK , s)
that depends on the real construction EK , which may become hard if EK has
a complex structure. On the other hand, our technique (Theorem 2) requires
only upper bounds of the terms that are not related to the real construction.
Thus our technique makes analysis of a distinguisher easier than the technique
by Kaplan et al. We remark that the probability evaluation in the ideal case that
is similar to the last term of Eq. (6) is needed in the previous works [7,14,16] as
well.
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Fig. 6. The 4-round Feistel-F construction. Fi ∈ Func(n/2).

5 Quantum Distinguishing Attacks Against Feistel-F

In this section, we present our distinguisher against the 4-round Feistel-F con-
struction with quantum chosen-ciphertext attacks. Based on this, we present
in Sect. 6 quantum distinguishing attacks and key recovery attacks against the
Feistel-KF construction.

We write FKi
as Fi. Note that Fi is still a keyed function and the absence of

Ki does not imply that it is a keyless function. Let FF4 denote the encryption
algorithm of the 4-round Feistel-F construction, and FF−1

4 denote its decryption
algorithm. Figure 6 illustrates FF4. Let F1, . . . , F4 ∈ Func(n/2) be the round
functions of Feistel-F. FF4 takes a plaintext (a, b) ∈ ({0, 1}n/2)2 as input and
outputs a ciphertext (c, d) ∈ ({0, 1}n/2)2, where FF4 : (a, b) �→ (c, d) is

c = a ⊕ F1(b) ⊕ F3(b ⊕ F2(a ⊕ F1(b))),

d = b ⊕ F2(a ⊕ F1(b)) ⊕ F4

(
a ⊕ F1(b) ⊕ F3(b ⊕ F2(a ⊕ F1(b)))

)
.

The decryption FF−1
4 : (c, d) �→ (a, b) is defined as

a = c ⊕ F3(d ⊕ F4(c)) ⊕ F1

(
d ⊕ F4(c) ⊕ F2(c ⊕ F3(d ⊕ F4(c)))

)
,

b = d ⊕ F4(c) ⊕ F2(c ⊕ F3(d ⊕ F4(c))).

Let Π
$← Perm(n) be a random permutation and Π−1 be the inverse per-

mutation of Π. Π takes a plaintext (a, b) ∈ ({0, 1}n/2)2 as input and outputs a
ciphertext (c, d) ∈ ({0, 1}n/2)2, and Π−1 takes a ciphertext (c, d) as input and
outputs a plaintext (a, b).

Given the quantum oracles of O and O−1, where O is either the 4-round
Feistel-F FF4 or a random permutation Π

$← Perm(n), our goal is to distinguish
the two cases. We now construct the function fO to use Algorithm 1. We first fix
two arbitrary distinct constants α0, α1 ∈ {0, 1}n/2, and we define the function
fO as

fO : {0, 1} × {0, 1}n/2 → {0, 1}n/2

(β ‖ x) �→ b ⊕ αβ , where (c, d) = O(x, αβ),

(a, b) = O−1(c, d ⊕ α0 ⊕ α1).

That is, fO is obtained by first encrypting (x, αβ) to obtain the ciphertext (c, d),
then decrypting (c, d ⊕ α0 ⊕ α1) to obtain the plaintext (a, b), and we define fO

as b ⊕ αβ .
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fO(β x)

Fig. 7. The function fO with FF4 and FF−1
4 , where O is FF4.

Zβ x

fO(β x)

Fig. 8. A circuit that is equivalent to fO.

If O is FF4, then by connecting FF4 and FF−1
4 , our function fO can be

illustrated as in Fig. 7. We observe that F4 has no effect on the computation of
fO, and F1 in FF−1

4 does not contribute to fO. They are shown in gray in Fig. 7.
We see that Fig. 7 is equivalent to Fig. 8, and the function fO is described as

fO(β ‖ x) = α0 ⊕ α1 ⊕ F2(x ⊕ F1(αβ))

⊕ F2

(
x ⊕ F1(αβ) ⊕ F3(αβ ⊕ F2(x ⊕ F1(αβ)))

⊕ F3(αβ ⊕ α0 ⊕ α1 ⊕ F2(x ⊕ F1(αβ)))
)
. (7)

Our main observation is the following lemma.

Lemma 2. If O = FF4, fO satisfies fO(β ‖ x) = fO(β ⊕ 1 ‖ x ⊕ F1(α0) ⊕
F1(α1)). That is, fO has the period s = 1 ‖ F1(α0) ⊕ F1(α1).

Proof. Let Zβ‖x = x ⊕ F1(αβ) (See Fig. 8). We prove the lemma based on two
claims. The first claim is that Zβ‖x already has the period s = 1 ‖ F1(α0) ⊕
F1(α1), and the second claim is that the subsequent computation of fO does not
depend on β nor x.

First, Zβ‖x has the period s, since

Z(β‖x)⊕s = x ⊕ F1(α0) ⊕ F1(α1) ⊕ F1(αβ⊕1)
= x ⊕ F1(αβ)
= Zβ‖x.
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We next show that the subsequent computation of fO does not depend on β
nor x. If we describe fO in Eq. (7) by using Zβ‖x, then we obtain

fO(β ‖ x) = α0 ⊕ α1 ⊕ F2(Zβ‖x)

⊕ F2

(
Zβ‖x ⊕ F3(αβ ⊕ F2(Zβ‖x)) ⊕ F3(αβ ⊕ α0 ⊕ α1 ⊕ F2(Zβ‖x))

)
.

Now this is equivalent to

fO(β ‖ x) = α0 ⊕ α1 ⊕ F2(Zβ‖x)

⊕ F2

(
Zβ‖x ⊕ F3(α0 ⊕ F2(Zβ‖x)) ⊕ F3(α1 ⊕ F2(Zβ‖x))

)
(8)

since {αβ , αβ ⊕ α0 ⊕ α1} = {α0, α1}. We see that fO depends on Zβ‖x that has
the period s = 1 ‖ F1(α0) ⊕ F1(α1), and hence the lemma follows. ��

Therefore, we can construct a distinguisher against the 4-round Feistel-F
construction by using the function fO. From Theorem 2, the success probability
of the distinguisher with measuring (2n + 4) times is 1 − (2/e)n/2+1 − PrΠ [Π ∈
irr

1/2
f ], where we use δ = 1/2 and η = 2n + 4.

It is clear that PrΠ [Π ∈ irr
1/2
f ] is a small value, since it is highly unlikely

that fO obtained from a random permutation has periods. In [13], we present
experimental results for small values of n to show that PrΠ [Π ∈ irr

1/2
f ] is indeed

a small value.

6 Quantum Attacks Against Feistel-KF

The distinguisher in the previous section can obviously be applied to the 4-round
Feistel-KF construction, and we can distinguish it from random permutations
in polynomial time. Similarly to the previous key recovery attacks against the
Feistel-KF [8,11] construction (see Sect. 3.2), our 4-round distinguisher can be
combined with the Grover search to develop key recovery attacks. Our new key
recovery attack recovers the keys of the r-round Feistel-KF construction in time
Õ(2(r−4)n/4) in the quantum CCA setting.

Attack Idea. Our attack idea is almost the same as that of the previous attacks [8,
11], except that our attack uses not only the encryption oracle but also the
decryption oracle. Given the quantum encryption and decryption oracles of the
r-round Feistel-KF construction, run the following procedures (on a quantum
circuit).

1. Implement a quantum circuit E that takes the intermediate state value after
the first (r − 4) rounds and the subkeys for the first (r − 4) rounds as input,
and computes the last 4 rounds, in the same way as the first step of the attack
idea in Sect. 3.2.

2. Implement a quantum circuit D that computes the inverse of E . That is,
implement a quantum circuit which
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– takes the ciphertext and the subkeys for the first (r − 4) rounds as input,
– makes a quantum decryption query of the ciphertext to the oracle to

obtain the plaintext,
– computes the intermediate state value after the first (r − 4) rounds from

the plaintext and the subkeys for the first (r − 4) rounds,
– and returns the intermediate state.

3. Guess the subkeys of the first (r − 4) rounds.
4. For each guess, check its correctness with the following procedure.

(a) Apply the 4-round distinguisher to E and D.
(b) If the distinguisher returns that “this is a random permutation”, then

judge that the guess is wrong. Otherwise judge that the guess is correct.

Attack Complexity. The length of the first (r − 4)-round subkeys is ((r − 4)n/2)
bits in total. Thus the exhaustive search on the first (r − 4) rounds can be
done in time O(

√
2(r−4)n/2) by using the Grover search. Moreover, the 4-round

distinguisher in the fourth step runs in time O(n) for each candidate subkeys.
Therefore the running time of the attack becomes O(

√
2(r−4)n/2)×O(poly(n)) =

Õ(2(r−4)n/4).
Our new attack reduces the time complexity Õ(2(r−3)n/4) of the previous

attacks to Õ(2(r−4)n/4), by using our new CCA 4-round distinguisher instead of
the previous CPA 3-round distinguisher by Kuwakado and Morii. Our attack is
a chosen-ciphertext attack unlike that the previous attacks are chosen-plaintext
attacks, since our 4-round distinguisher is a CCA distinguisher.

7 Quantum Attacks Against Feistel-FK

In Sect. 7.1, we show a quantum distinguishing attack against Feistel-FK. Based
on this, we present in Sect. 7.2 a key recovery attack. The main difference from
the previous sections is that the number of the distinguishable rounds increases.
In Sect. 7.3, we present a quantum chosen-plaintext attack.

7.1 Distinguishers Against Feistel-FK

We present our distinguisher against the 6-round Feistel-FK construction with
quantum chosen-ciphertext attacks. This attack is based on the distinguisher
against the 4-round Feistel-F construction described in Sect. 5. We increase the
number of rounds by adding the first and last rounds, and this is possible because
we can compute the output of the first F function and the last F function in
encryption (or decryption) without knowing the subkeys.

Let (a, b) ∈ ({1, 0}n/2)2 denote a plaintext and (c, d) ∈ ({1, 0}n/2)2 denote a
ciphertext. Let FFK6 : (a, b) �→ (c, d) denote the encryption algorithm of the 6-
round Feistel-FK construction, and FFK−1

6 : (c, d) �→ (a, b) denote its decryption
algorithm. Figure 9 illustrates the 6-round Feistel-FK construction.
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b

a

K1 K2 K3 K4 K5 K6

FFFFFF

Fig. 9. The 6-round Feistel-FK construction.

Fig. 10. The function fO with FFK6 and FFK−1
6 , where O is FFK6. c′ = c ⊕ α0 ⊕ α1

and d′ = d ⊕ F (c) ⊕ F (c ⊕ α0 ⊕ α1).

Given the quantum oracles of O and O−1, we define the function fO as

fO : {0, 1} × {0, 1}n/2 → {0, 1}n/2

(β ‖ x) �→ a ⊕ F (b) ⊕ αβ

where (c, d) = O(αβ ⊕ F (x), x),

(a, b) = O−1(c ⊕ α0 ⊕ α1, d ⊕ F (c) ⊕ F (c ⊕ α0 ⊕ α1)).

If O is FFK6, then our function fO can be illustrated as in Fig. 10. We
observe that the F functions shown in gray in Fig. 10 and the subkeys K6 have
no effect on the computation of fO. By connecting FFK6 and FFK−1

6 , we obtain
Fig. 11 that is equivalent to Fig. 10. If we replace αβ with αβ ⊕ K1 and Fi(x)
with F (x)⊕Ki+1 in Fig. 7, we see that Fig. 7 is equivalent to Fig. 11. Therefore,
from Eqs. (7) and (8), the function fO is described as
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b

K2K3K4K5

K1

K1

K2 K3 K4 K5

F F FFFFFF

fO(β x)

Fig. 11. A circuit that is equivalent to Fig. 10.

fO(β ‖ x)
= α0 ⊕ α1 ⊕ F (x ⊕ F (αβ ⊕ K1) ⊕ K2)

⊕ F
(
x ⊕ F (αβ ⊕ K1) ⊕ K2 ⊕ F

(
α0 ⊕ F (x ⊕ F (αβ ⊕ K1) ⊕ K2) ⊕ K3

)

⊕ F
(
α1 ⊕ F (x ⊕ F (αβ ⊕ K1) ⊕ K2) ⊕ K3

))

and it has the period s = 1 ‖ F (α0 ⊕ K1) ⊕ F (α1 ⊕ K1).
Therefore, we can construct a distinguisher against the 6-round Feistel-FK

construction by using the function fO. From Theorem 2, the success probability
of the distinguisher with measuring (2n + 4) times is 1 − (2/e)n/2+1 − PrΠ [Π ∈
irr

1/2
f ], where we set δ = 1/2 and η = 2n + 4. Note that PrΠ [Π ∈ irr

1/2
f ] is a

small value, as it is unlikely that fO obtained from a random permutation has
periods.

7.2 Key Recovery Attacks Against Feistel-FK

Similarly to the key recovery attacks against the Feistel-KF construction in
Sect. 6, the distinguisher introduced above can be combined with the Grover
search to develop key recovery attacks. We can recover keys of the r-round
Feistel-FK construction in time Õ(2(r−6)n/4) in the quantum CCA setting.

Our attack idea follows the attack against the Feistel-KF construction in
Sect. 6. Recall that the attack in Sect. 6 guesses the first (r − 4)-round subkeys
since a 4-round distinguisher is available. On the other hand, as for the Feistel-
FK construction, we can use the 6-round distinguisher in Sect. 7.1 instead of the
4-round distinguisher. Hence it is sufficient to guess only the first (r − 6)-round
subkeys (instead of the first (r − 4)-round subkeys) when we attack the Feistel-
FK construction. The time complexity of our attack becomes Õ(2(r−6)n/4), since
the Grover search on the first (r−6)-round subkeys ( (r−6)n

2 bits in total) requires
O(

√
2(r−6)n/2) = O(2(r−6)n/4) evaluations.

7.3 Quantum CPA Attacks Against Feistel-FK

We can also construct a distinguisher and recover the key of the Feistel-FK
construction in the quantum CPA setting. As in Sect. 7.1, we can construct
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a 5-round distinguisher by following the 3-round distinguisher in Sect. 3.1 and
by computing the output of the first F function and the last F function in
encryption. Specifically, we use (αβ ⊕ F (x), x) as the input of the oracle O
and use d ⊕ F (c) ⊕ αβ as the output of the function fO(β ‖ x), where (c, d) =
O (αβ ⊕ F (x), x). This function has the period s = 1 ‖ F (α0⊕K1)⊕F (α1⊕K1).

Combined with the 5-round distinguisher, we can recover the subkeys of the
r-round Feistel-FK construction as in Sect. 6. The time complexity of our key
recovery attack is Õ(2(r−5)n/4), since the Grover search on the first (r−5)-round
subkeys ( (r−5)n

2 bits in total) requires O(
√

2(r−5)n/2) = O(2(r−5)n/4) evaluations.

8 Concluding Remarks

In this paper, we first formalized a distinguishing algorithm against block ciphers
that does not recover the period. We then considered quantum chosen-ciphertext
attacks against Feistel ciphers. We gave a new quantum CCA distinguisher
against Feistel ciphers that can distinguish more rounds than the previous CPA
distinguishers. Our quantum CCA distinguishers can distinguish the 4-round
Feistel-F and Feistel-KF constructions, and the 6-round Feistel-FK construc-
tion, from random permutations in polynomial-time of the output size. Moreover,
we extended the distinguishers to key recovery attacks for the Feistel-KF and
Feistel-FK constructions. Our quantum CCA key recovery attacks against the r-
round Feistel-KF and Feistel-FK constructions recover keys in time Õ(2(r−4)n/4)
and Õ(2(r−6)n/4), and quantum CPA key recovery attacks against the r-round
Feistel-FK constructions recover keys in time Õ(2(r−5)n/4), respectively.

There are interesting open questions. First, we still do not know the tight
bound on the number of rounds that we can distinguish the Feistel-F construc-
tion. From the result of Kuwakado and Morii, we know that the 3-round con-
struction can be distinguished with quantum CPA, and this paper shows that
the 4-round construction can be distinguished with quantum CCA. However,
there is a possibility that these rounds can be extended, and deriving the tight
number of rounds remains as a challenging question. Improving the complex-
ity or extending the number of rounds of the attacks against Feistel-KF and
Feistel-FK constructions is also an interesting question.
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