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Abstract. In this paper, we introduce a new framework for con-
structing public-key encryption (PKE) schemes resilient to joint post-
challenge/after-the-fact leakage and tampering attacks in the bounded
leakage and tampering (BLT) model, introduced by Damg̊ard et al. (Asi-
acrypt 2013). All the prior formulations of PKE schemes considered leak-
age and tampering attacks only before the challenge ciphertext is made
available to the adversary. However, this restriction seems necessary,
since achieving security against post-challenge leakage and tampering
attacks in its full generality is impossible, as shown in previous works. In
this paper, we study the post-challenge/after-the-fact security for PKE
schemes against bounded leakage and tampering under a restricted yet
meaningful and reasonable notion of security, namely, the split-state leak-
age and tampering model. We show that it is possible to construct secure
PKE schemes in this model, tolerating arbitrary (but bounded) leak-
age and tampering queries; thus overcoming the previous impossibility
results.

To this end, we formulate a new notion of security, which we call
entropic post-challenge IND-CCA-BLT secure PKE. We first define a
weaker notion called entropic restricted post-challenge IND-CCA-BLT
secure PKE, which can be instantiated using the (standard) DDH
assumption. We then show a generic compiler from our entropic restricted
notion to the entropic notion of security using a simulation-extractable
non-interactive zero-knowledge argument system. This requires an
untamperable common reference string, as in previous works. Finally,
we demonstrate the usefulness of our entropic notion of security by giv-
ing a simple and generic construction of post-challenge IND-CCA-BLT
secure PKE scheme in the split-state leakage and tampering model. This
also settles the open problem posed by Faonio and Venturi (Asiacrypt
2016).
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1 Introduction and Related Works

Traditionally, cryptographic schemes have been analyzed assuming that an
adversary only have black-box access to the underlying functionality, and in no
way is allowed to manipulate the internal state of the functionality. Leakage and
tamper-resilient cryptography studies on designing secure protocols and prim-
itives against an adversary who goes way beyond black-box access to protocol
algorithms and gets information by directly accessing/tampering the memory or
the internal computations of the system. These physical attacks can be broadly
categorized into passive and active attacks. In case of passive attacks, the adver-
sary tries to recover information via some side-channel attacks that include tim-
ing measurements, power analysis, electromagnetic measurements, microwave
attacks, memory attacks and many more [15,17,18]. In case of active attacks, the
adversary can modify the secret data/key of a targeted cryptographic scheme by
applying various physical attacks, and later violate the security of the primitive
by observing the effect of such changes at the output. These classes of attacks are
called memory tampering attacks or related key attacks (RKA). These attacks
can be launched both in software or hardware, like, injecting faults in the device,
altering the internal power supply or clock of the device, or shooting the chip
with a laser etc.

The formal study of security of cryptosystems, in particular block ciphers,
against related key attacks was initiated by Bellare and Kohno [3]. In their
setting, the adversary can continuously tamper with the secret key of the cryp-
tosystem by choosing tampering functions from a restricted class of functions.
One might hope to provably resist a cryptosystem against arbitrary efficiently
computable tampering functions. Unfortunately, this type of unrestricted tam-
pering is shown to be impossible by Gennaro et al. [13], without making further
assumptions, like self-destruct mechanism, where the device simply blows up and
erases all its intermediate values (including the secret key) after an tampering
attempt is detected by the device. One useful line of research is to investigate
the security of cryptosystems against restricted classes of tampering attacks. In
most of these schemes, it is assumed that the secret key belongs to some finite
field, and the allowed modifications consists of linear or affine functions, or all
polynomial of bounded degree applied to the secret key.

Another interesting line of research was initiated in Asiacrypt 2013 by
Damg̊ard et al. [8], which is called the model of bounded tampering. In this model,
the adversary is allowed to make a bounded number of tampering queries, how-
ever, there is no further restriction on the functions, unlike the previous works.
Note that this model of bounded unrestricted tampering is orthogonal to the
model of continuous but restricted tampering model of [3]. In [8], the authors
showed a construction of signature scheme (in the random oracle model) and
public-key encryption scheme (in the standard model) in the bounded leakage
and tampering (BLT) model, where, apart from bounded unrestricted tamper-
ing, the adversary is also allowed to obtain bounded leakage from the secret
key of the cryptosystem. Faonio and Venturi [12] later improved the state-of-
the-art for the construction of signature schemes (in the standard model) and
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PKE scheme (without involving pairings and zero-knowledge proofs) in the BLT
model.

In all the above constructions of PKE schemes [8,12], the adversary is allowed
to make only pre-challenge tampering queries. In other words, the adversary can
specify a bounded number (say τ) of tampering queries Ti (i ∈ [τ ]) before the
challenge phase, and gets access to the tampered decryption oracle Dec(˜ski, ·),
where ˜ski = Ti(sk). However, after receiving the challenge ciphertext, the adver-
sary is not allowed to make even a single tampering query. This severely restricts
the meaning and applicability of the existing security notions and that of the
resulting constructions of the cryptographic primitives satisfying these notions.
In particular, this means that even if the adversary tampers with the secret
key/memory only once, the secrecy of all the previously encrypted messages
before that tampering attempt cannot be guaranteed. However, note that, this
is not a limitation of the existing security notions or the constructions. Indeed,
as shown in [16,20], tolerating post-challenge (also called after-the-fact) tamper-
ing in it full generality is impossible. In particular, the adversary could simply
overwrite the secret key depending on the bit b that is encrypted in the chal-
lenge ciphertext c∗, and thus gain some advantage in guessing the value of b
by asking additional decryption queries. We refer the reader to [8, Sect. 4.4] for
the detailed attack. The above impossibility result holds even if the adversary
is allowed to make even a single post-challenge tampering query followed by a
single decryption query (with respect to the original secret key). Similar impos-
sibility result is known to hold for the setting of leakage as well, in the sense
that even if the adversary obtains a single bit of leakage in the post-challenge
phase, this is enough to completely break the security of the PKE scheme. This
is because the adversary can simply encode the decryption function with the
challenge ciphertext and the two challenge messages in the leakage function and
obtain exactly the bit b that the challenger tries to hide.

Halevi and Lin [16] addressed this issue of after-the-fact leakage, and defined
an appropriate security model, namely the split-state leakage model (more on
this below), and showed how to construct semantically-secure PKE scheme under
this restricted security model. This was later extended to handle CCA security
under the same split-state leakage model in [5,23]. However, note that, for the
case of tampering, there are no suitable security notions or definitions to handle
post-challenge tampering. This definitional problem was acknowledged in the
prior works [8,12]. However, no solution to this issue was offered. Indeed it
is mentioned in [12] that “it remains open how to obtain CCA security for
PKE against “after-the-fact” tampering and leakage, where both tampering and
leakage can still occur after the challenge ciphertext is generated”.

1.1 Our Contributions and Techniques

In this work, we study post-challenge/after-the-fact leakage and tampering
attacks in the context of public-key encryption. As discussed above, achiev-
ing resilience to post challenge tampering attack in its most general form is
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impossible. To this end, we formulate an appropriate security model that avoids
the impossibility result shown in [8], and at the same time enables secure and
efficient construction of PKE schemes in our new model. Our approach to the
solution is modular in nature and is also surprisingly simple. In particular, we
show how to effectively (and in a non-trivial way) combine together the appro-
priate works from the domain of leakage and tamper-resilience to arrive at our
current solution. We discuss more on this below.

Split-State Leakage and Tampering Model: We draw the motivation of
our work from that of Halevi and Lin [16]. To take care of after-the-fact leakage,
the authors in [16] considered the split-state leakage model, where the secret
key of the cryptosystem is split into multiple disjoint parts, and the adversary
can observe (arbitrary) bounded leakage from each of these parts, but in an
independent fashion. In order to take care of leakage and tampering jointly, we
consider the split-state leakage and tampering model. Similar to the split-state
leakage model, this model also considers the case where the secret key is also split
into multiple disjoint parts (in our case only two, and hence optimal) and the
adversary can obtain independent leakages from each of these parts. In addition,
the adversary is also allowed to tamper each of the secret key components/parts
independently. Note that, the split-state tampering model is already a very useful
and widely used model and it captures bit tampering and block-wise tampering
attacks, where the adversary can tamper each bit or each block of the secret key
independently. The split-state tampering model is also well studied in the context
of non-malleable codes [1,10,11], where similar type of impossibility results hold.
We then proceed to construct our PKE scheme in this model. Lastly, one may
note that, in the post-challenge setting in the context of a PKE scheme, the
adversary may specify a tampering function to be an identity function and get
the challenge ciphertext decrypted under the original secret keys (even in split-
state model), and trivially win the security game. To avoid this, we enforce the
condition that, when the adversary queries the (tampered) decryption oracle
with the challenge ciphertext, the tampered keys need to be different from the
original secret key. In other words, the post-challenge tampering functions must
not be identity functions with respect to the challenge ciphertext1.

Entropic Restricted Post-challenge IND-CCA-BLT PKE: We first for-
mulate a new notion of entropic restricted post-challenge IND-CCA-BLT-secure
PKE scheme. Our notion can be seen as an entropic version of the notion of
restricted (pre-challenge) IND-CCA-BLT secure PKE of Damg̊ard et al. [8],
augmented with post challenge leakage and tampering queries. The definition of
restricted IND-CCA-BLT-security [8] says that the adversary is given access to a
restricted (faulty) decryption oracle, i.e., it is allowed to query only valid cipher-
texts to the tampered decryption oracles (as opposed to any arbitrary ciphertexts
as in the full fledged IND-CCA-BLT security game). Note that, in the definition

1 However, note that, the tampering functions may be identity functions with respect
to ciphertexts c �= c∗, where c∗ is the challenge ciphertext. This also emulates access
to the (original) decryption oracle to the adversary.
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of [8], the adversary is allowed to make only pre-challenge leakage and tam-
pering queries. Our notion of entropic restricted post-challenge IND-CCA-BLT
security captures the following intuition: Suppose we sample a message M from a
high min-entropy distribution. Given a ciphertext encrypting M , and even given
(bounded) leakage from the secret key and access to a restricted (tampered)
decryption oracle (even if both leakage and tampering happens after observ-
ing the challenge ciphertext), the message M still retains enough min-entropy
in it. We then show that the cryptosystem of Boneh et al. [4] (referred to as
BHHO cryptosystem) satisfies our entropic restricted notion. The main idea of
our construction is the leakage to tamper reduction for the BHHO cryptosystem
as shown in [8]. Note that, using leakage to simulate tampering is non-trivial,
since for each tampered secret key the adversary can make polynomially many
(tampered) decryption oracle queries. Hence the amount of key-dependent infor-
mation that the adversary receives cannot be simulated by a small amount of
(bounded) leakage. However, as shown in [8], in case of BHHO cryptosystem
for each (pre-challenge) tampering query it is possible to simulate polynomially
many decryption queries under it by just leaking a single group element, thus
reducing tampering to leakage. We use similar ideas and show that the BHHO
cryptosystem with appropriate parameters satisfy our entropic restricted notion
of security, even if leakage and tampering is allowed in the post-challenge phase.
We note that, the work of Faonio and Venturi [12] gives a comparatively efficient
construction of IND-CCA-BLT secure PKE scheme compared to the work of
Damg̊ard et al. [8]. Both these constructions rely on projective almost-universal
hash-proof system (HPS) as a common building block, and we observe that on
a high level, our entropic post-challenge BLT security relies on the statistical
soundness property of the HPS. However, we choose to start with the construc-
tion of Damg̊ard et al. [8] due to its simplicity.

Entropic Post-challenge IND-CCA-BLT PKE: Next, we show how
to upgrade the entropic restricted post-challenge IND-CCA-BLT security to
entropic post-challenge IND-CCA-BLT security. In the entropic notion, the
adversary can query arbitrary ciphertexts to the (tampered) decryption oracles,
as opposed to the entropic restricted notion, where the adversary can only query
well-formed (valid) ciphertexts to the oracle. The adversary also has access to the
normal (non-tampered) decryption oracle Dec(sk, ·) both in the pre- and post-
challenge phase as in the IND-CCA security game. The transformation follows
the classical paradigm of converting a CPA-secure PKE to a CCA-secure one by
appending to the ciphertext a zero knowledge argument proving the knowledge of
the plaintext. Similar transformation was shown in [8] for converting a restricted
IND-CCA-BLT secure PKE scheme to a full fledged IND-CCA-BLT secure PKE
scheme in the context of pre-challenge leakage and tampering. We observe that
the same transformation goes through in the context of post-challenge leakage
and tampering as well, and also when the PKE scheme is entropic.

Upgrading to Full Fledged (Non-entropic) Security: We then show how
to compile such an entropic post-challenge IND-CCA-BLT secure PKE scheme
to a full-fledged post-challenge IND-CCA-BLT secure PKE scheme. For this, we
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resort to our split-state leakage and tampering restriction2. On a high level, our
construction bears similarity with the construction of [16], although the PKE
scheme of [16] was only proven to be CPA secure against leakage attacks. We
appropriately modify their construction to prove our scheme to be CCA-secure
and resilient to joint leakage and tampering attacks. To make the construction
more modular, we first show how to construct post-challenge IND-CCA-BLT
secure key encapsulation mechanism (KEM) and later show how to compile it
to a full-fledged PKE scheme.

On a high level, to generate an encapsulated symmetric key, we generate a
key pair (vk, sk) of a strong one-time signature (OTS) scheme. We then use
two instances of the entropic scheme to encrypt two random strings x1 and
x2 independently, with the verification key vk as the label/tag to generate two
ciphertexts c1 and c2 respectively. The ciphertext c = (c1, c2) is then signed using
the OTS scheme to generate a signature, say, σ. Finally, we apply a seedless
2-source extractor to both x1 and x2 to generate the encapsulated key. We then
output the final ciphertext c = (vk, c1, c2, σ). On a high level, the security of the
entropic scheme guarantees that both the strings x1 and x2 still retain enough
average min-entropy even after chosen-ciphertext leakage and tampering attacks
(even in the post-challenge phase). In addition, the split-state model ensures that
the strings are independent. At this point, we can use an average-case seedless
2-source extractor to extract a random encapsulation key from both the strings.
The trick of generating a key pair of an OTS and setting the verification key
vk as a tag/label while encrypting, ensures that, a tag cannot be re-used by
an adversary in a decryption or tampering query, hence preventing “mix-and-
match” attacks (In fact, to re-use that tag, the adversary essentially has to forge
a signature under vk).

Compiling to a Post-challenge IND-CCA-BLT PKE: Finally, we show
how to construct a IND-CCA-BLT secure PKE from a IND-CCA-BLT secure
KEM as above. One natural idea to achieve this is to use standard hybrid encryp-
tion technique, where a symmetric-key encryption (SKE) scheme is used to
encrypt the message using the derived encapsulation key. However, we point
out, that unlike in standard PKE or even in leakage-resilient PKE settings, this
transformation needs a little careful analysis in the context of tampering. This
is because the adversary can also ask decryption queries with respect to the
tampered keys, and the security of the challenge ciphertext should hold even
given these tampered decryption oracle responses. This is not directly guar-
anteed by standard hybrid encryption paradigm. However, we leverage on the
security guarantee of our KEM scheme and show that it is indeed possible to
argue the above security. In particular, our KEM scheme guarantees that the
average min-entropy of the challenge KEM key K∗ is negligibly close to an uni-
form distribution over the KEM key space, even given many tampered keys
K = ( ˜K1, · · · , ˜Kt). So, in the hybrid, we can replace the key K∗ with a uniform
random key. This implies that, with very high probability, K∗ is independent
2 For our construction the secret key is split into only two parts/splits, which is the

optimal.
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of the tampered key distribution, and hence any function of the tampered keys
(in particular decryption function). We can then rely on the (standard) CCA
security of the SKE to argue indistinguishability of the challenge messages.
Finally, combining all the above ideas together, we obtain the full construction
of a post-challenge IND-CCA-BLT secure PKE scheme, thus solving the open
problem posed by Faonio and Venturi [12] (Asiacrypt 2016).

Lastly, we note that, it is instructive to compare our approach of constructing
post-challenge leakage and tamper-resilient PKE construction with that of Liu
and Lysyanskaya [19]. We observe that the framework of [19] instantiated with a
non-malleable extractor, would already produce a scheme with security against
post-challenge tampering. However, their model is not comparable with ours
in the following sense. In particular, the framework of [19] considers securing
any (deterministic) cryptographic functionality against leakage and tampering
attacks, where the leakage and tampering functions apply only on the memory
of the device implementing the functionality, and not on its computation. This
is because the construction of [19] relies on a (computationally secure) leakage-
resilient non-malleable code, which allow only leakage and tampering on the
memory of the device. However, in our model, we allow the adversary to leak from
the memory and also allow to tamper with the internal computations (modeled
by giving the adversary access to tampered decryption oracles). In this sense,
our model is more general, as it also considers tampering with the computation.
However, a significant feature of the framework of [19] is that, it considers the
model of continual leakage and tampering (in split-state), whereas our model
considers bounded leakage and tampering (as in [8]) in split-state.

1.2 Organization

The rest of the paper is organized as follows. In Sect. 2, we provide the nec-
essary preliminaries required for our constructions. In Sect. 3, we give our def-
inition of entropic post-challenge IND-CCA-BLT secure PKE schemes and its
restricted notion. In Sect. 3.2, we show our construction of entropic restricted
post-challenge IND-CCA-BLT secure PKE and show the transformation from
the entropic restricted notion to the entropic notion in Sect. 3.3. In Sect. 4, we
present the security definition of post-challenge IND-CCA-BLT secure KEM
scheme and show a generic compiler from entropic post-challenge IND-CCA-
BLT secure PKE scheme to a post-challenge IND-CCA-BLT secure PKE scheme
in the standard model. Section 5 shows the generic transformation from such
a KEM scheme to a full fledged IND-CCA-BLT secure PKE scheme secure
against post-challenge leakage and tampering attacks. Finally Sect. 6 concludes
the paper.

2 Preliminaries

2.1 Notations

For n ∈ N, we write [n] = {1, 2, · · · , n}. If x is a string, we denote |x| as the

length of x. For a set X , we write x
$←− X to denote that element x is chosen
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uniformly at random from X . For a distribution or random variable X, we denote
x ← X the action of sampling an element x according to X. When A is an
algorithm, we write y ← A(x) to denote a run of A on input x and output y;
if A is randomized, then y is a random variable and A(x; r) denotes a run of A
on input x and randomness r. An algorithm A is probabilistic polynomial-time
(PPT) if A is randomized and for any input x, r ∈ {0, 1}∗; the computation of
A(x; r) terminates in at most poly(|x|) steps. For a set S, we let US denote the
uniform distribution over S. For an integer α ∈ N, let Uα denote the uniform
distribution over {0, 1}α, the bit strings of length α. Throughout this paper, we
denote the security parameter by κ. Vectors are written in boldface. Given a
vector x = {x1, · · · , xn}, and some integer a, we write ax to denote the vector
(ax1 , · · · , axn). Let D1 and D2 be two distributions on a finite set S. We denote
by

∣

∣D1 −D2

∣

∣ the statistical distance between them. For random variables X, Y ,
we denote min-entropy (conditional min-entropy) of X as H∞(X) (˜H∞(X|Y ))
respectively. We assume that the reader is familiar with the results related to
(conditional) min- entropy, and we refer to the full version of our paper [6]
for these definitions. We denote a distribution supported on {0, 1}n with min-
entropy k to be an (n, k)-source.

2.2 Two Source Extractors

In this section, we give an overview of two-source extractors [7,21,22] and their
generalization, which will be required for our work.

Definition 1 (Seedless 2-source Extractor). A function Ext2 : {0, 1}n ×
{0, 1}n → {0, 1}m is a seedless 2-source extractor at min-entropy k and error ε
if it satisfies the following property: If X and Y are independent (n, k)-sources, it
holds that

∣

∣ (Ext2(X,Y ) − Um)
∣

∣ < ε. where Um refer to a uniform m-bit string.

Definition 2 (Average-case Seedless 2-source Extractor). A function
Ext2 : {0, 1}n × {0, 1}n → {0, 1}m is an average-case seedless 2-source extractor
at min-entropy k and error ε if it satisfies the following property: If for all ran-
dom variables X,Y ∈ {0, 1}n and Z, such that, conditioned on Z, X and Y are
independent (n, k)-sources, it holds that

∣

∣ ((Ext2(X,Y ), Z) − (Um, Z))
∣

∣ < ε.

Lemma 1 [16]. For any δ > 0, if Ext2 : {0, 1}n ×{0, 1}n → {0, 1}m is a (worst-
case) (k − log 1

δ , ε)-2-source extractor, then Ext2 is an average-case (k, ε + 2δ)-
2-source extractor.

2.3 True Simulation Extractable Non-interactive Zero Knowledge
Argument System

In our construction, we require the notion of (same-string) true-simulation
extractable non-interactive zero knowledge argument system (tSE-NIZK) first
introduced in [9] and also its extension to support labels/tags. This notion is
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similar to the notion of simulation-sound extractable NIZKs [14] with the differ-
ence that the adversary has oracle access to simulated proofs only for true state-
ments, in contrast to any arbitrary statement as in simulation-sound extractable
NIZK argument system. In particular, we require the standard properties of
completeness, soundness and composable zero-knowledge. Additionally, we also
require the existence of another PPT extractor Ext which extracts a valid witness
from any proof produced by a malicious prover P∗, even if P∗ has previously
seen some simulated proofs for true statements. We refer the reader to the full
version of our paper [6] for the formal definition of tSE-NIZK. For our purpose,
it is sufficient to rely on the (weaker) notion of one-time strong true simulation
extractability, where the adversary can query the simulation oracle SIMtk(.)
only once. Dodis et al. [9] showed how to generically construct tSE-NIZK argu-
ment systems supporting labels starting from any (labeled) CCA-secure PKE
scheme and a (standard) NIZK argument system.

3 Entropic Post-challenge IND-CCA-BLT Secure PKE

In this section, we introduce the definition of entropic post-challenge IND-
CCA-secure PKE resilient to both pre- and post-challenge bounded leakage and
tampering (BLT) attacks. In Sect. 3.1, we define a relaxation of our entropic
notion, which we call entropic restricted post-challenge IND-CCA BLT secure
PKE. We show that a variant of the cryptosystem of Boneh et al. [4] with
appropriate parameters, satisfies our entropic restricted notion of security (see
Sect. 3.2). Finally, in Sect. 3.3, we show a generic transformation from our
entropic restricted notion to the full-fledged entropic post-challenge IND-CCA-
BLT secure PKE scheme. Before defining these notions, we explain the working
of the leakage oracle and the tampering oracle.

The Leakage Oracle. In order to model key leakage attacks, we assume that
the adversary may access a leakage oracle Oλ

sk(.), subject to some restrictions.
The adversary can query this oracle with arbitrary efficiently computable (poly-
time) leakage functions f and receive f(sk) in response, where sk denotes the
secret key. The restriction is that the output length of f must be less than
|sk|. Specifically, following the works of [2,9], we require the output length of
the leakage function f to be at most λ bits, which means the entropy loss of
sk is at most λ bits upon observing f(sk). Formally, we define the bounded
leakage function family Fbbd(κ). The family Fbbd(κ) is defined as the class of all
polynomial-time computable functions: f : {0, 1}|sk| → {0, 1}λ, where λ < |sk|.
We then require that the leakage function submitted by the adversary should
satisfy that f ∈ Fbbd(κ).

The Tampering Oracle. To model related key attacks, the adversary is given
access to a tampering oracle. Let TSK denote the class of functions from SK to
SK, where SK is the secret key space. The adversary may query the tampering
oracle with arbitrary functions of its choice from TSK and the number of such
queries is bounded (say t ∈ N). In the ith tampering query (i ∈ [t]), the adversary
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chooses a function Ti ∈ TSK and gets access to the (tampered) decryption ora-
cle Dec(˜ski, ·), where ˜ski = Ti(sk). The adversary may ask polynomially many
decryption queries with respect to the tampered secret key ˜ski. In other words,
the adversary gets access to information through decryption oracle executed on
keys related to the original secret key, where the relations are induced by the
tampering functions. If the encryption scheme supports labels, i.e., it is a labeled
encryption scheme, the adversary gets access to the (tampered) decryption ora-
cle Dec(˜ski, ·, ·), where the third coordinate is a placeholder for labels. Also,
the adversary gets access to the (tampered) decryption oracle both in the pre-
and post-challenge phases. Another (obvious) restriction that is imposed on the
tampering functions is that: In the post-challenge phase, when the adversary
gets access to the (tampered) decryption oracles with respect to the challenge
ciphertext c∗, it should be the case that Ti(sk) �= sk, i.e., the post-challenge tam-
pering functions Ti should not be identity functions with respect to the challenge
ciphertext3.

Definition 3 (Entropic Post-challenge IND-CCA-BLT Secure PKE).
Our definition of entropic post-challenge IND-CCA-BLT secure PKE can be seen
as an entropic version of the notion of IND-CCA-BLT secure PKE introduced in
[8], augmented with post challenge leakage and tampering queries. Informally,
our definition captures the intuition that if we start with a message M with
high min-entropy, the message M still looks random to an adversary who gets
to see the ciphertext, some leakage information (even if this leakage happens
after observing the ciphertext), and access to the tampering oracle (both in pre-
and post-challenge phase) as defined above.

Formally, we define two games- “real” game and a “simulated” game. For
simplicity, we assume the message is chosen from Uk, i.e, the uniform distribution
over k bit strings. In general, it can be chosen from any arbitrary distribution as
long as the message has min-entropy k. Let (λpre, λpost) and (tpre, tpost) denote
the leakage bounds and the number of tampering queries allowed in the pre- and
post-challenge phases respectively.

The “real” game. Given the parameters
(

k, (λpre, λpost), (tpre, tpost)
)

and
a labeled encryption scheme E-BLT = (E-BLT.SetUp,E-BLT.Gen,E-BLT.Enc,
E-BLT.Dec), the real game is defined as follows:

0. Sampling: The challenger chooses a random message m
$←− Uk.

1. SetUp: The challenger runs params ← E-BLT.SetUp(1κ) and sends params
to the adversary A. The public parameters params are taken as (implicit)
input by all other algorithms.

2. Key Generation: The challenger chooses (sk, pk) ← E-BLT.Gen(params)
and sends pk to A. Set Lpre = Lpost = 0.

3 When Ti(sk) = sk, and the adversary gets access to the tampering oracle with
respect to c∗, it is emulating the scenario when it gets decryption oracle access with
respect to sk on c∗, which is anyway disallowed in the IND-CCA-2 security game.
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3. Pre-challenge Leakage: In this phase, the adversary A makes a pre-
challenge leakage query, specifying a function fpre(.). If Lpre+|fpre(sk)| ≤ λpre,
then the challenger replies with fpre(sk), and sets Lpre = Lpre+ |fpre(sk)|. Oth-
erwise, it ignores this query.

4. Pre-challenge Tampering queries: The adversary A may adaptively ask
at most tpre number of pre-challenge tampering queries. In the ith tampering
query (i ∈ [tpre]), the adversary chooses Ti ∈ TSK , and gets access to the
decryption oracle E-BLT.Dec(˜skθ, ·, ·)4 (where 1 ≤ θ ≤ i). In other words, the
decryption oracle may be queried with any of the tampered keys obtained till
this point. We assume that, the total number of decryption oracle queries be
q(k), for some polynomial q(k). Note that, when Tθ(sk) = sk, A gets access
to the (normal) decryption oracle.

5. Challenge: In this phase, the adversary submits a label (as a bit-string) L∗.
The challenger encrypts the message m chosen at the beginning of the game
as c∗ ← E-BLT.Enc(pk,m,L∗) and sends c∗ to A.

6. Post-challenge Leakage: In this phase, the adversary A makes a post-
challenge leakage query, specifying a function fpost(.). If Lpost + |fpost(sk)| ≤
λpost, then the challenger replies with fpost(sk), and sets Lpost = Lpost +
|fpost(sk)|. Otherwise, it ignores this query.

7. Post-challenge Tampering queries: The adversary A may adaptively ask
tpost number of post-challenge tampering queries. In the jth tampering query
(j ∈ [tpost]), the adversary chooses Tj ∈ Tsk, and gets access to the decryption
oracle E-BLT.Dec(˜skρ, ·, ·) (1 ≤ ρ ≤ j). We assume that, the total number of
decryption oracle queries be q′(k), for some polynomial q′(k). However, here
we impose the restriction that: A is not allowed to query the pair (c∗, L∗) to
the (tampered) decryption oracle(s) E-BLT.Dec(˜skρ, ·, ·).

Note that all these queries can be made arbitrarily and adaptively in nature.
We denote the message m chosen at the onset of this game as M rl to empha-
size that it is used in the real game. Let the sets Qpre and Qpost contain
the tuples of the form

{

(m̃i1 , (ci1 , Li1)), · · · , (m̃iq(κ) , (ciq(κ) , Liq(κ)))
}tpre

i=1
and

{

(m̃j1 , (cj1 , Lj1)), · · · , (m̃jq(κ) , (ciq′(κ)
, Liq′(κ)

))
}tpost

j=1
respectively, for some poly-

nomials q(κ) and q′(κ). Let Lpre and Lpost be the random variables correspond-
ing to the pre- and post-challenge leakages. We define the view of the adversary
A in the real game as Viewrl

E-BLT,A(κ) = (rand,Lpre, Qpre, c
∗,Lpost, Qpost), where

rand denotes the random coins used by the adversary in the game. Finally, we
denote by (M rl,Viewrl

E-BLT,A) the joint distribution of the message M rl and A’s
view in a real game with M rl.

The “simulated” game: In the simulated game, we replace the challenger
from above by a simulator Simu that interacts with A in any way that it sees fit.

4 Recall when we write Dec(˜skθ, ·, ·), the second coordinate is the placeholder for
ciphertexts input by the adversary; whereas the third coordinate is the placeholder
for labels.
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Simu gets a uniformly chosen message Msm as input and it has to simulate the
interaction with A conditioned on M sm. We denote the view of the adversary
in the simulated game by Viewsm

Simu,A(κ) = (randsm,Lsm
pre, Q

sm
pre, c

sm,Lsm
post, Q

sm
post).

Now, we define what it means for the encryption scheme ER-BLT to be entropic
restricted post-challenge (bounded) leakage and tamper-resilient.

Definition 4 (Entropic restricted post-challenge IND-CCA-BLT secu-
rity). Let

(

k, (λpre, λpost), (tpre, tpost)
)

be parameters as stated above, let TSK be
the family of allowable tampering functions. A public key encryption scheme is
said to be entropic restricted post-challenge IND-CCA-BLT secure with respect
to all these parameters if there exists a simulator Simu, such that, for every PPT
adversary A the following two conditions hold:

1. (M rl,Viewrl
E-BLT,A(κ)) ≈c (Msm,Viewsm

Simu,A(κ)), i.e, the above two ensembles
(indexed by the security parameter) are computationally indistinguishable.

2. The average min-entropy of the message M sm given Viewsm
Simu,A(κ) is

˜H∞(M sm | Viewsm
Simu,A(κ)) ≥ k − λpost − F(tpost).

where F(tpost) denotes the entropy loss due to post-challenge tampering queries,
and the tampering functions come from the class TSK .5

Intuitively, even after the adversary sees the encryption of the message, pre-
and post-challenge leakages and the output of the (tampered) decryption oracle
both in the pre- and post-challenge phase, the message M sm still retains its initial
entropy, except for the entropy loss due to post-challenge leakage and tampering.

3.1 Entropic Restricted Post-challenge IND-CCA-BLT Secure PKE

We now define the notion of entropic restricted post-challenge IND-CCA-BLT
secure PKE (denoted by ER-BLT), which is a relaxation of the notion of the
entropic post-challenge IND-CCA-BLT secure PKE. The difference between the
two notions is with respect to the working of (tampered) decryption oracle, as
defined in the real game in Definition 3. In particular, in our entropic restricted
notion of security, the adversary cannot make pre- and post-challenge decryption
queries with respect to the original secret key (unlike the entropic notion in
Sect. 3) and working of the (tampered) decryption oracle is modified as follows:

Modified Decryption Oracle: In the restricted post-challenge IND-CCA-
BLT security game, the adversary is not given full access to the tampering
oracle. Instead, the adversary is allowed to see the output of the (tampered)
decryption oracle for only those ciphertexts c, for which he already knows
the plaintext m and the randomness r used to encrypt it (using the original
5 In our construction, we will show that F(tpost) = tpost log p, i.e., for each post-

challenge tampering query we have to leak only one element of the base group
G of prime order p. This single element is sufficient to simulate polynomially many
(modified) decryption queries with respect to each tampering query.
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public key). This restricts the power of the adversary to submit only “well-
formed” ciphertexts to the tampering oracle. In particular, in the ith tampering
query the adversary chooses a function Ti ∈ TSK and gets access to a (modi-
fied) decryption oracle ER-BLT.Dec∗(˜ski, ·, ·), where ˜ski = Ti(sk). This oracle
answers polynomially many queries of the following form: Upon input a pair
(m, r) ∈ M × R, (where M and R are the message space and randomness
space of the PKE respectively), compute c ← ER-BLT.Enc(pk,m; r) and output
a plaintext m̃ = ER-BLT.Dec(˜ski, c) under the current tampered key.
The real and simulated game for the above entropic restricted post-challenge
IND-CCA-BLT game, apart from the above restrictions, is identical to the real
and simulated games of the entropic post-challenge IND-CCA-BLT secure PKE
as defined in Definition 3. In particular, using the same notations from Defini-
tion 3, we denote the view of the adversary in the entropic restricted game as
Viewrl

ER-BLT,A(κ) = (rand,Lpre, Qpre, c
∗,Lpost, Qpost), where Qpre and Qpost contain

answers to the (tampered) decryption oracle queries as described above with
respect to the tampered secret keys.

3.2 Construction of Entropic Restricted Post-challenge
IND-CCA-BLT Secure PKE

In this section, we show how to construct a CCA-2 secure entropic restricted
post-challenge PKE secure against bounded leakage and tampering (BLT)
attacks. We show that a variant of the encryption scheme proposed by Boneh
et al. (referred to as BHHO cryptosystem from herein) [4] is entropic restricted
post-challenge IND-CCA-BLT secure. It was shown in [8] that the (modified)
BHHO cryptosystem is a restricted (pre-challenge) IND-CCA-BLT secure PKE.
However, we observe that the same variant of the BHHO cryptosystem with the
parameters appropriately modified satisfies our new notion of entropic security,
even when the adversary is given post-challenge leakage and access to (restricted)
tampering oracle (even in the post-challenge phase).

– ER-BLT.SetUp(1κ): Choose a group G of prime order p with generator g. Set
params := (G, g, p). All the algorithms take params as implicit input.

– ER-BLT.Gen(params): Sample random vectors x, α ∈ Z
�
p; compute gα =

(g1, · · · , g�), and h =
∏�

i=1 gxi
i . Set sk := x = (x1, · · · , x�) and pk := (h, gα )

– ER-BLT.Enc(pk,m): Sample r ← Zp, and return c := (gr
1, · · · , gr

� , hr · m)
– ER-BLT.Dec(sk, c): Parse c as (c1, · · · , c�, d) as sk as (x1, · · · , x�)., and out-

puts m ← d/
∏�

i=1(g
r
i )xi

It is easy to verify the correctness of the above cryptosystem.

Theorem 1. Let κ ∈ N be the security parameter, and assume that the DDH
assumption holds in group G. The BHHO cryptosystem is entropic restricted
post-challenge IND-CCA-

(

k, (λpre, λpost), (tpre, tpost)
)

-BLT secure, where

λpre + λpost ≤
(

� − 2 − tpre − tpost
)

log p − ω(log κ) and (tpre + tpost) ≤ � − 3.
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Proof. Before proceeding with the proof of the above theorem, we prove a lemma
(Lemma 2) that essentially shows that the BHHO cryptosystem is entropic
leakage-resilient with respect to pre- and post-challenge leakage, i.e., it satisfies
the notion of entropic restricted post-challenge IND-CCA-

(

k, (λ′
pre, λ

′
post), (0, 0)

)

-
BLT security (the adversary has no access to the tampering oracle), for appro-
priate choice of parameters. We then prove the above theorem by using Lemma 2
and showing a leakage to tamper reduction to take care of pre- and post-challenge
tampering queries.

Lemma 2. The BHHO cryptosystem described above is entropic restricted post-
challenge IND-CCA-

(

k, (λ′
pre, λ

′
post), (0, 0)

)

-BLT secure, where

λ′
pre + λ′

post ≤
(

� − 2
)

log p − ω(log κ)

Proof. To prove Lemma 2 we need to describe a simulator, whose answers to
the adversary are indistinguishable from the real game, and at the same time
leave enough min-entropy in the message m. The main idea of the proof follows
from the observation that the BHHO cryptosystem can be viewed as a hash
proof system (HPS) (see [6] for the definition of HPS), with DDH-like tuples as
valid ciphertexts, and non-DDH tuples as invalid ciphertexts. In the real game,
the challenger samples a valid ciphertext (along with a witness) and proceeds
as in the original construction, whereas in the simulated game a random invalid
ciphertext is sampled. The indistinguishability of the real and simulated games
is implied by the subset membership problem. The left-over hash lemma then
guarantees uniformity of the challenge message. For details of the proof, please
refer to the full version of our paper [6].

We now proceed to prove our main theorem. Let us assume that there exists
an adversary A that breaks the entropic restricted post-challenge IND-CCA
(

k, (λpre, λpost), (tpre, tpost)
)

-BLT security with non-negligible advantage. We con-
struct an adversary A′ against the entropic restricted post-challenge IND-CCA
(

k, (λ′
pre, λ

′
post), (0, 0)

)

-BLT security, with the same advantage. The main idea
behind this proof is leakage to tamper reduction. For each tampering query made
by the adversary, the reduction simply leaks a single group element from Zp, and
simulates polynomially many decryption queries under that tampered key using
the leaked element. Hence, the reduction has to leak (tpre + tpost) log p bits in all.
We appropriately set the parameters of BHHO to ensure that the message still
has enough min-entropy, even given the responses of the tampering oracle. We
refer the reader to the full version [6] for the detailed proof.

3.3 The General Transformation

In this section, we show a general transformation from an entropic-restricted
post-challenge IND-CCA-BLT secure PKE to an entropic post-challenge IND-
CCA-BLT secure PKE scheme (see Fig. 1). Let ER-BLT = (ER-BLT.SetUp,
ER-BLT.Gen,ER-BLT.Enc,ER-BLT.Dec) be an entropic restricted post-challenge
IND-CCA-

(

k, (λpre, λpost), (tpre, tpost)
)

-BLT secure PKE scheme, and let
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Π = (Gen,P,V) be a one-time strong tSE-NIZK argument system supporting
labels for the following relation:

RER-BLT = {(m, r), (pk, c) | c = ER-BLT.Enc(pk,m; r)}
Let E-BLT = (E-BLT.SetUp′,E-BLT.Gen′,E-BLT.Enc′,E-BLT.Dec′) be an entropic
post-challenge IND-CCA-BLT secure PKE.

Theorem 2. Let ER-BLT be an entropic-restricted post-challenge IND-CCA-
(

k, (λpre, λpost), (tpre, tpost)
)

-BLT secure PKE scheme, Π be a one-time strong
tSE NIZK argument system supporting label for the relation RER-BLT, then
the above encryption scheme E-BLT is an entropic post-challenge IND-CCA-
(

k, (λpre, λpost), (tpre, tpost)
)

-BLT secure PKE scheme.

Define the encryption scheme E-BLT as follows:

1. E-BLT.SetUp (1κ): Obtain params ER-BLT.SetUp(1κ), and sample
(crs, tk, ek) Gen(1κ). Set params := (params, crs)

2. E-BLT.Gen (params ): Obtain (pk, sk) ER-BLT.Gen(params); set pk = pk,
and sk = sk.

3. E-BLT.Enc (pk, m, L): On input the public key pk, a message m and

a label L , sample r
$ R, and compute c ER-BLT.Enc(pk, m; r), π

P(crs, L, (m, r), (pk, c)). Output c = (c, π)

4. E-BLT.Dec (sk, c , L): Parse c as c =(c, π). Check if V(crs, L, (pk, c), π) = 1. If
not output , else output m = ER-BLT.Dec(sk, c)

Fig. 1. Entropic post-challenge IND-CCA-BLT PKE scheme E-BLT

Proof Sketch. We now give an intuitive proof sketch of the above theorem. Infor-
mally, the zero-knowledge argument enforces the adversary to submit to the
(tampered) decryption oracle only valid ciphertexts, for which he knows the
corresponding plaintext (and the randomness used to encrypt it). The plaintext-
randomness pair (m, r) (which acts as a witness) can then be extracted using the
extraction trapdoor of the tSE-NIZK argument system, thus allowing to reduce
entropic IND-CCA BLT security to entropic restricted IND-CCA BLT security.
Since the extraction trapdoor is never used in the real encryption scheme, the
adversary neither gets any leakage from it, nor gets to tamper with it. This
essentially makes the (tampered) decryption oracle useless and the adversary
learns no additional information from the decryption oracle access. The proof
also relies on the fact that the CRS is untamperable, a notion that is used in all
the previous works [8,12]. This can be achieved by (say) hard-coding the CRS
in the encryption algorithm. The detailed proof of this theorem can be found in
the full version [6] of our paper.
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4 Post-challenge IND-CCA-BLT Secure KEM
in Split-State Model

In this section, we present our construction of post-challenge IND-CCA-BLT
secure Key Encapsulation Mechanism (KEM) in the (bounded) split-state leak-
age and tampering model. Note that, achieving security against post-challenge
leakage and tampering in its most general form is impossible as already shown
in [8,16,20], even if a single bit of leakage is allowed or the adversary is allowed
to ask even a single tampering query after receiving the challenge ciphertext.
To this end, we resort to the 2-split-state leakage and tampering model. In this
model, the secret key of the KEM scheme is split into two disjoint parts, and
the adversary can ask arbitrary (pre- and post-challenge) leakage and tamper-
ing queries on each of these two parts independently. However, the adversary is
allowed to adaptively ask leakage/tampering functions depending on the answers
of the previous queries. The tampering queries allow the adversary to have access
to the tampered decryption oracle. The adversary also gets access to the (stan-
dard) decryption oracle by specifying the tampering functions to be identity
functions. Finally, the adversary has to guess whether the challenger KEM key
is a randomly sampled key or a real key. Due to space constraints, we refer the
reader to the full version [6] for the formal definition and the security model for
IND-CCA-BLT secure KEM.

4.1 Construction of Post-challenge IND-CCA-BLT Secure KEM

We now show the construction of our post-challenge/after-the-fact IND-CCA-
BLT secure KEM scheme KEM = (KEM.Setup,KEM.Gen,KEM.Encap,
KEM.Decap) (see Fig. 2).
The main ingredients required for our construction are as follows:

– An entropic post-challenge IND-CCA-BLT-secure PKE scheme E-BLT =
(E-BLT.Setup,E-BLT.Gen,E-BLT.Enc,E-BLT.Dec), that encrypts ν bit mes-
sages, and supports labels. Also, assume that E-BLT is entropic with respect
to parameters (λpre, λpost, tpre, tpost) (refer to Definition 3).

– A (ϑ, ε) average-case (seedless) 2-source extractor Ext2 : {0, 1}ν × {0, 1}ν →
{0, 1}u, with ε = 2−u−ω(log κ) (see Sect. 2.2 for its definition).

– A strong one-time signature (OTS) scheme SS = (SS.Gen,SS.Sig,SS.Ver),
with message space poly(κ) (see [6] for the definition of OTS).

Design Rationale: On a high level, to generate an encapsulated symmetric key,
first we generate a key pair (vk, sk) of a one-time signature (OTS) scheme. We
then use an entropic post-challenge IND-CCA-BLT secure PKE scheme (E-BLT)
to encrypt two random strings x1 and x2 independently with the verification
key vk as the label/tag, and generate a signature on both the ciphertexts c1
and c2. The security of E-BLT guarantees that both the strings x1 and x2 still
have enough average min-entropy after chosen-ciphertext leakage and tampering
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attacks (even in the post-challenge phase). In addition, the split-state model
ensures that the two strings are independent. Hence, we can use an average-case
seedless 2-source extractor to extract a random encapsulation key from both the
strings. The trick of generating a key pair of an OTS and setting the verification
key vk as a tag/label while encrypting, ensures that, a tag cannot be re-used
by an adversary in a decryption or tampering query (In fact, to re-use that tag,
the adversary essentially has to forge a signature under vk). The formal proof
of our construction will follow this intuition, expect for one condition related
to adaptivity of the adversary. The adversary may chose leakage and tampering
functions from the two parts of the secret key after it saw the encapsulated
key which was itself derived from the two parts, hence causing a circularity in
the argument. This leap is handled in our proof using complexity leveraging.
In particular, if the size of the extracted encapsulation key has u bits, then the
adaptivity can only increase the advantage of the adversary by a factor at most
2u. We set our parameters appropriately to handle this gap.

Theorem 3. Let E-BLT be an entropic post-challenge IND-CCA-BLT-secure
PKE scheme with parameters (λpre, λpost, tpre, tpost) and encrypting ν bit mes-
sages and supporting labels. Also, let Ext2 be a (ϑ, ε) average-case (seedless)
2-source extractor with parameters mentioned above, and let SS be a strong
one-time signature scheme supporting polynomial sized message space. Then the
KEM scheme KEM is IND-CCA secure with respect to pre- and post-challenge
leakage λ′

pre and λ′
post respectively, and pre- and post-challenge tampering t′pre and

t′post respectively, in the bounded split-state leakage and tampering model, as long
as the parameters satisfy the following constraints:

λ′
pre ≤ λpre, λ′

post ≤ min(λpost − u, ν − t′
post log p − ϑ − 1), t′

pre ≤ tpre and t′
post ≤ tpost.

We refer the reader to the full version [6] for the detailed proof of the above
theorem.

5 Post-challenge IND-CCA-BLT Secure PKE in
Split-State Model

In this section, we present our construction of post-challenge IND-CCA-BLT
secure PKE scheme in split-state model, starting from a post-challenge IND-
CCA-BLT secure KEM scheme (as shown in Sect. 4.1) and a (one-time)
symmetric-key encryption scheme. The security model of post-challenge IND-
CCA-BLT secure PKE scheme in split state model is similar to the model of
post-challenge IND-CCA-BLT secure KEM scheme in split state as described in
Sect. 4, with the only difference that the encapsulation and the decapsulation
algorithms are replaced by the encryption and decryption algorithms respec-
tively. The secret key of the PKE is also split into two parts, as in the KEM
scheme, and the adversary can query ask arbitrary pre- and post-challenge leak-
age and tampering queries, provided they act independently on the secret key
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Define the key encapsulation scheme KEM as follows:

1. KEM.Setup(1κ) : On input 1κ, run E-BLT.SetUp to get params. Set par :=
params.

2. KEM.Gen(par) : The key generation consists of two subroutines–

KEM.Gen1 and KEM.Gen2, where KEM.Genj on input par, samples
(pkj , skj) E-BLT.Gen(par), for j = 1, 2. It outputs the public key as
pk = (pk1, pk2), and the secret key is sk = (sk1, sk2).

3. KEM.Encap(pk) : On input the public key pk, do the following:
– Run (vk, ssk) .Gen(1κ), where vk and ssk are the verification and

signing keys of the strong OTS scheme respectively.
– Choose x1, x2

$− {0, 1}ν and compute c1 E-BLT.Enc(pk1, x1, vk) and
c2 E-BLT.Enc(pk2, x2, vk), where vk is the label.

– Compute σ .Sign(ssk, (c1, c2)) and k = Ext2(x1, x2).
Output the ciphertext-key pair (c = (vk, c1, c2, σ), k)

4. KEM.Decap(sk, c) : On input the secret key sk and the ciphertext c do:
– Parse c as c = (vk, c1, c2, σ) and sk = (sk1, sk2).
– Run SS.Ver(vk, (c1, c2), σ). If the verification fails, the ciphertext is invalid

and return .
– Run xj E-BLT.Decj(skj , cj) for j = {1, 2}.
– Run KEM.Comb(x1, x2): Compute k = Ext2(x1, x2).

Fig. 2. Post-challenge IND-CCA-BLT-secure KEM scheme KEM.

parts and are bounded in length or number as before. Besides, he can ask arbi-
trary pre- and post-challenge decryption queries, with the obvious restriction
that in the post-challenge phase the decryption queries are never asked on the
challenge ciphertext. The challenge phase is replaced by the standard indistin-
guishability style definition for PKE scheme. The PKE scheme BLT consists of
the following algorithms BLT = (BLT .Setup,BLT .Gen,BLT .Enc,BLT .Dec).
We refer the reader to [6] for the detailed model.

5.1 Construction of Post-challenge IND-CCA-BLT Secure PKE

We now show the construction of our post-challenge/after-the-fact IND-CCA-
BLT secure PKE scheme BLT = (BLT .Setup,BLT .Gen,BLT .Enc,BLT .Dec).
The main ingredients of our construction are:

1. A 2-split-state IND-CCA-
(

k, (λ′
pre, λ

′
post), (t

′
pre, t

′
post)

)

-BLT secure KEM
KEM = (KEM.Setup,KEM.Gen,KEM.Encap,KEM.Decap) (please refer to
[6] for the definition) with output space {0, 1}∗ × {0, 1}u.

2. (One-time) symmetric encryption scheme ϕ = (SKE .KG,SKE .Enc,SKE .Dec)
encrypting ω bit messages, with key space {0, 1}u. (please refer to [6] for its
definition).
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Construction: The construction of our 2-split-state PKE scheme BLT proceeds
as follows:

1. BLT .Setup(1κ): Run par ← KEM.Setup(1κ). Set params := par.
2. BLT .Gen(params): Run (pk, sk) ← KEM.Gen(par). Recall that public key

pk = (pk1, pk2) and sk = (sk1, sk2). Set pk′ = pk and sk′ = sk.
3. BLT .Enc(pk′,m): On input a message m ∈ {0, 1}ω, run (c0, k) ← KEM.

Encap(pk′). Then it computes c1←SKE .Enc(k,m), and output the ciphertext
c=(c0, c1).

4. BLT .Dec(sk′, c): Parse c = (c0, c1). Run k ← KEM.Decap(sk′, c0), and out-
puts the message m = SKE .Dec(k, c1).

Theorem 4. The encryption scheme BLT is post-challenge IND-CCA-
(

k, (λ′′
pre, λ

′′
post), (t

′′
pre, t

′′
post)

)

-BLT secure as long as the parameters satisfies:

λ′′
pre ≤ λ′

pre, λ′′
post ≤ λ′

post and t′′pre ≤ t′pre, t′′post ≤ t′post

We refer the reader to the full version [6] for the detailed proof.

6 Conclusion

In this work, we study after-the-fact leakage and tampering in the context of
public-key encryption schemes. To this end, we define an entropic post-challenge
IND-CCA-BLT security and show how to construct full-fledged post-challenge
IND-CCA-BLT secure PKE schemes under the split-state restriction. It is inter-
esting to find other meaningful and realizable after-the-fact definitions of security
for leakage and tampering. Besides, it will be interesting to define an appropriate
framework for after-the-fact continuous leakage and tampering attacks, and port
our construction in this setting.
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9. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 35

10. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

11. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–
452 (2010)

12. Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage
and tamper resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10031, pp. 877–907. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53887-6 32

13. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 15

14. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

15. Halderman, J.A., et al.: Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM 52(5), 91–98 (2009)

16. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19571-6 8

17. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

18. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-319-60055-0_18
https://doi.org/10.1007/978-3-319-60055-0_18
https://eprint.iacr.org/2018/883
https://doi.org/10.1007/978-3-642-42045-0_8
https://doi.org/10.1007/978-3-642-42045-0_8
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-19571-6_8
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9


Public Key Encryption Resilient to Post-challenge Leakage 43

19. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

20. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J.
Comput. 41(4), 772–814 (2012)

21. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random
sources. J. Comput. Syst. Sci. 33(1), 75–87 (1986)

22. Vazirani, U.V.: Strong communication complexity or generating quasi-random
sequences from two communicating semi-random sources. Combinatorica 7(4),
375–392 (1987)

23. Zhang, Z., Chow, S.S., Cao, Z.: Post-challenge leakage in public-key encryption.
Theor. Comput. Sci. 572, 25–49 (2015)

https://doi.org/10.1007/978-3-642-32009-5_30

	Public Key Encryption Resilient to Post-challenge Leakage and Tampering Attacks
	1 Introduction and Related Works
	1.1 Our Contributions and Techniques
	1.2 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Two Source Extractors
	2.3 True Simulation Extractable Non-interactive Zero Knowledge Argument System

	3 Entropic Post-challenge IND-CCA-BLT Secure PKE
	3.1 Entropic Restricted Post-challenge IND-CCA-BLT Secure PKE
	3.2 Construction of Entropic Restricted Post-challenge IND-CCA-BLT Secure PKE
	3.3 The General Transformation

	4 Post-challenge IND-CCA-BLT Secure KEM in Split-State Model
	4.1 Construction of Post-challenge IND-CCA-BLT Secure KEM

	5 Post-challenge IND-CCA-BLT Secure PKE in Split-State Model
	5.1 Construction of Post-challenge IND-CCA-BLT Secure PKE

	6 Conclusion
	References




