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Abstract. At Asiacrypt 2014, Sun et al. proposed a MILP model [20] to
search for differential characteristics of bit-oriented block ciphers. In this
paper, we improve this model to search for differential characteristics of
GIFT [2], a new lightweight block cipher proposed at CHES 2017. GIFT
has two versions, namely GIFT-64 and GIFT-128. For GIFT-64, we find
the best 12-round differential characteristic and a number of iterative
4-round differential characteristics with our MILP-based model. We give
a key-recovery attack on 19-round GIFT-64. For GIFT-128, we find a
18-round differential characteristic and give the first attack on 23-round
GIFT-128.

Keywords: GIFT · Differential cryptanalysis ·
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1 Introduction

In recent years, research on lightweight block ciphers has received a lot of atten-
tions. Lightweight block ciphers are widely used in Internet of things and wire-
less communication because their structures are simple and they can be run in
low-power environment. Many lightweight block ciphers such as PRESENT [5],
CLEFIA [17], LED [10], PRINCE [6], SIMON and SPECK [3] have been pub-
lished in last decades. GIFT [2] is a new lightweight block cipher proposed by
Banik et al. at CHES 2017, which is designed to celebrate 10 years of PRESENT.
GIFT has an SPN structure which is similar to PRESENT. It has two versions,
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namely GIFT-64 and GIFT-128, whose block sizes are 64 and 128, and the round
numbers are 28 and 40 respectively.

Many classical cryptanalysis methods could be converted to mathematical
optimization problems which aims to achieve the minimal or maximal value of
an objective function under certain constraints. Mixed-integer Linear Program-
ming (MILP) is the most widely studied technique to solve these optimization
problems. One of the most successful applications of MILP is to search for differ-
ential and linear trails. Mouha et al. first applied MILP method to count active
S-boxes of word-based block ciphers [12]. Then, at Asiacrypt 2014, Sun et al.
extended this technique to search for differential and linear trails [20], whose
main idea is to derive some linear inequalities through the H-Representation
of the convex hull of all differential patterns and linear bias of S-box. Xiang
et al. [21] introduced a MILP model to search for integral distinguisher, Sasaki
et al. [16] and Cui et al. [7] gave the MILP-based impossible differential search
model independently. There are many MILP-based tools proposed already, such
as MILP-based differential/linear search model for ARX ciphers [8], MILP-based
conditional cube attacks [11] on Keccak [4], etc.

Our Contributions

The designers of GIFT provided many analysis result about GIFT in [2]. They
use MILP to compute the lower bounds for the number of active S-boxes in
differential cryptanalysis firstly. Then they presented round-reduced differential
probabilities. For GIFT-64, they provided a 9-round differential characteristic
with probability of 2−44.415 and they expected that the differential probability of
13-round GIFT-64 will be lower than 2−63. For GIFT-128, they provided a 9-
round differential probability of 2−47 and they expected that the differential
probability of 26-round GIFT-128 will be lower than 2−127. The designers did
not present actual attack on GIFT in [2].

In this paper, we generalize an efficient two-stage MILP-based model inspired
by Sun et al.’s two-stage model [18]. Our model includes two interactive sub-
models, denoted as outer-MILP and inner-MILP part. The outer-MILP part
obtains the minimal active S-boxes, namely, the truncated differential. Then
the inner-MILP part produces the differential characteristic with maximal prob-
ability, the differential characteristic should match the truncated differential.
With our two-stage model, we find some 12-round differential characteristics of
GIFT-64, some of the differential characteristics are iterative. Moreover, using
a 12-round differential characteristic with probability of 2−60, we give an attack
on 19-round reduced GIFT-64 (out of 28 full rounds) with time complexity 2112,
memory complexity 280 and data complexity 263.

In addition, we also improved our search model to find differential character-
istics of GIFT-128. Firstly, the algorithm solves a sub-MILP-model to obtain an
acceptable differential characteristic with small number of rounds. The output
difference of a sub-MILP-model should be served as input difference of the fol-
lowing sub-MILP-model. The sub-MILP-model is iterated until the probability
of the whole differential characteristic is higher than the given bound. Using
our algorithm, we find some new differential characteristics, including a new 18-
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round differential characteristic with probability 2−109. We give the first attack
on 23-round GIFT-128 (out of 40 full rounds) with the 18-round differential
characteristic. All of the source code is uploaded to GitHub (https://github.
com/zhuby12/MILP-basedModel).

The summary of differential analysis of GIFT is shown in Table 1.

Table 1. Summary of cryptography analysis on GIFT

Type Rounds Time Memory Data Source

GIFT-64 Integral 14 296 263 263 [2]

GIFT-64 MitM 15 2120 28 264 [2]

GIFT-64 MitM 15 2112 216 264 [14]

GIFT-64 Differential 19 2112 280 263 Ours

GIFT-128 Differential 23 2120 286 2120 Ours

2 Preliminaries

2.1 Description of GIFT

GIFT has an SPN structure which is similar to PRESENT. It has two versions,
namely GIFT-64 and GIFT-128, whose block sizes are 64 and 128 and round
numbers are 28 and 40 respectively. Both versions have a key length of 128 bits.

Each round of GIFT consists of three steps: SubCells, PermBits and
AddRoundKey. The round function of GIFT-64 is shown in Fig. 1. Similarly,
GIFT-128 adopts thirty-two 4-bit S-boxes for each round.
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SubCells. Both versions of GIFT use the same invertible 4-bit S-box, which
is the only nonlinear component of the algorithm. The action of this S-box in
hexadecimal notation is given in Table 2.

Table 2. Sbox of GIFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

GS(x) 1 a 4 c 6 F 3 9 2 d b 7 5 0 8 e

PermBits. The bit permutation used in GIFT-64 and GIFT-128 are given in
Table 3.

AddRoundKey. The round key RK is extracted from the key state. A round
key is first extracted from the key state before the key state update.

For GIFT-64, two 16-bit words of the key state are extracted as the round key
RK = U ||V . U and V are XORed to b4i+1 and b4i of the cipher state respectively.
bi represents the i-th bit of the cipher state. ui and vi represent the i-th bit of
U and V.

U ← k1, V ← k0

b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi,∀i ∈ {0, · · · , 15}
For GIFT-128, four 16-bit words of the key state are extracted as the round
key RK = U ||V . U and V are XORed to b4i+2 and b4i+1 of the cipher state
respectively.

U ← k5||k4, V ← k1||k0

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi,∀i ∈ {0, · · · , 31}
The key state for two versions are updated as follows,

k7||k6|| · · · ||k1||k0 ← k1 ≫ 2||k0 ≫ 12|| · · · ||k3||k2

Round Constants. For both versions of GIFT, a single bit “1” and a 6-bit
constant C = {c5, c4, c3, c2, c1, c0} are XORed into the cipher state at bit position
n-1,23,19,15,11,7,3 respectively in each round. For GIFT-64, n-1 is 63 and for
GIFT-128, n-1 is 127. {c5, c4, c3, c2, c1, c0} are initialized to “0”, and they are
updated as follow:

(c5, c4, c3, c2, c1, c0) ← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1)



376 B. Zhu et al.

Table 3. Specifications of GIFT bit permutation

GIFT-64 i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P64(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P64(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P64(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P64(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

GIFT-128 i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P128(i) 0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P128(i) 4 37 70 103 100 5 38 71 68 101 6 39 36 69 102 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P128(i) 8 41 74 107 104 9 42 75 72 105 10 43 40 73 106 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P128(i) 12 45 78 111 108 13 46 79 76 109 14 47 44 77 110 15

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

P128(i) 16 49 82 115 112 17 50 83 80 113 18 51 48 81 114 19

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

P128(i) 20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

P128(i) 24 57 90 123 120 25 58 91 88 121 26 59 56 89 122 27

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

P128(i) 28 61 94 127 124 29 62 95 92 125 30 63 60 93 126 31

2.2 Notations

Kj
i The j-th bit of the i-th round key

ΔP The differential in the plaintext
ΔXi

S The differential in the output of the i-th round’s Sbox
ΔXi

P The differential in the output of the i-th round’s Permutation
ΔXi

K The differential in the output of the i-th round’s AddKey
ΔXi

S,P,K ΔXi
S or ΔXi

P or ΔXi
K

ΔXi
S,P,K{m} The m-th bit of ΔXi

S,P,K

ΔXi
S,P,K{ml-mt} The (mt-ml+1) bits totally from the ml-th bit to the mt-th bit

of ΔXi
S,P,K

3 Related Works

3.1 Mouha et al.’s Framework for Word-Oriented Block Ciphers

Mouha et al. [12] introduced MILP model to count the number of differentially
active S-boxes for word-oriented block ciphers.

Definition 1. Consider a differential characteristic state Δ consisting of n
bytes Δ = (Δ0,Δ1, . . . ,Δn−1). Then, the difference vector x = (x0, x1, . . . , xn−1)
corresponding to Δ is defined as

xi =
{

0 if Δi = 0,
1 otherwise.

(1)
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Based on Definition 1, Mouha et al. translated the XOR operation and the
linear transformation to linear inequalities as follows:

– Equations describing the XOR operation: Suppose the input difference
vector for the XOR operation be (x⊕

in1, x
⊕
in2) and the corresponding output

difference vector be x⊕
out. The following constraints will make sure that when

x⊕
in1, x⊕

in2 and x⊕
out are not all zero, then there are at least two of them are

nonzero: {
x⊕
in1 + x⊕

in2 + x⊕
out ≥ 2d⊕

d⊕ ≥ x⊕
in1, d⊕ ≥ x⊕

in2, d⊕ ≥ x⊕
out

(2)

where d⊕ is a dummy variable taking values in {0, 1}.
– Equations describing the linear transformation: Assume linear trans-

formation L transforms the input difference vector (xL
1 , xL

2 , . . . , xL
m−1) to

the output difference vector (yL
1 , yL

2 , . . . , yL
m−1). Given the differential branch

number BD. The following constraints can describe the relation between the
input and output difference vectors, they should be subject to:

{∑m−1
i xL

i +
∑m−1

i yL
i ≥ BDdL

dL ≥ xL
i , dL ≥ yL

i , i ∈ {0, ...,m − 1} (3)

where dL is a dummy variable taking values in {0, 1}.

3.2 Sun et al.’s Framework for Bit-Oriented Block Ciphers

At Asiacrypt 2014, Sun et al. [20] extended Mouha et al.’s framework [12] to bit-
oriented ciphers. For bit-oriented ciphers, Mouha et al.’s descriptions of XOR
operation and linear transformation are also suitable.

Definition 2. Consider a differential characteristic state Δ consisting of n bits
Δ = (Δ0,Δ1, . . . ,Δn−1). Then, the difference vector x = (x0, x1, . . . , xn−1) cor-
responding to Δ is defined as

xi =
{

0 if Δi = 0,
1 if Δi = 1.

(4)

Based on Definition 2, Sun et al. translated the S-box operation to linear
inequalities as follow:

– Equations describing the S-box operation: Suppose (x0, . . . , xw−1) and
(y0, . . . , yv−1) are the input and output bit-level differences of an w×v S-box.
A is a dummy variable taking values in {0,1} to describe whether the S-box
is active or not. A = 1 holds if and only if x0, x1, . . . , xw−1 are not all zero.
The following constraints should be obeyed:

{
A − xi ≥ 0, i ∈ {0, . . . , w − 1}∑w−1

i xi − A ≥ 0
(5)



378 B. Zhu et al.

3.3 Valid Cutting-Off Inequalities from the Convex Hull of S-Box

The convex hull of a set Q of discrete points in R
n is the smallest convex that

contains Q. A convex hull in R
n can be described as the common solutions of a

set of finitely many linear equalities and inequalities.
Suppose p = (x, y) = (x0, . . . , xw−1, y0, . . . , yv−1) is a differential pattern of

a w × v S-box, in which x is the input differential vector and y is the output
differential vector. If we treat a differential pattern of a w×v S-box as a discrete
point in R

w+v, then we can get a set of finitely discrete points which includes
all possible differential patterns of the S-box. We can describe this definite set
with the following inequalities:

⎧⎨
⎩

α0,0x0 + . . . + α0,w−1xw−1 + β0,0y0 + . . . + β0,v−1yv−1 + γ0 ≥ 0
. . .
αn,0x0 + . . . + αn,w−1xw−1 + βn,0y0 + . . . + βn,v−1yv−1 + γn ≥ 0

(6)

This is called the H-Representation of a w × v S-box, in which α and β are
constant. With the help of SageMath [1], hundreds of linear inequalities can
be derived by the differential distribution table of a S-box. But the inequali-
ties is redundant in general, for example, the number of inequalities of GIFT
S-box given by SageMath is 237. Because the efficiency of the MILP optimizer is
reduced radically when the amount of linear inequalities increase, adding all of
the inequalities to the MILP model will make the model insolvable in practical
time.

In order to minimize the number of the set of inequalities, Sasaki et al.
raised a MILP-based reduction algorithm in [15] to find the optimal combination
with minimal number of linear inequalities from hundreds of inequalities in the
H-representation of the convex hull. The algorithm considers each impossible
pattern in the DDT of S-box. An impossible pattern should be excluded from
the solution space by at least one inequality. Under these constraints, we can
minimize the number of inequalities by using MILP optimizer.

4 MILP-Based Model to Search Differential
Characteristic for GIFT-64

4.1 MILP-Based Two-Stage Algorithm to Search for Differential
Characteristic

Two-stage search strategy to find differential characteristics of block ciphers is
used in [9,13,18]. In the first step, truncated differential characteristics with
minimal active S-box will be found. Then, concrete differential characteristics
matching the truncated differential characteristic can be found in a subroutine
algorithm. In previous works, one first chose a prespecified threshold of the num-
ber of active S-box. However, it is possible that the characteristic with the highest
probability do not have the minimal number of active S-box. In this section, we
propose Algorithm 1 to search for the best or better differential characteristic.
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Algorithm 1. MILP-based differential characteristic searching algorithm
Require: r-round block cipher; valid cutting-off inequalities from the convex hull of

the S-box; Mr is the minimal number of active S-boxes in all of the r-round dif-
ferential characteristics.

Ensure: The highest probability; differential characteristics with high probability.
1: Define MPr = 2−64 as the initial differential probability of GIFT-64.
2: In the Outer-MILP part, construct a model M1 describing the differential behavior

of the cipher. The target value of M1 is a truncated differential characteristic, which
active S-boxes number is minimum in current solution space. Define Mrbound = Mr
as the lower bound of the number of active S-box in M1.

3: Solve the model M1 using an MILP optimizer.
4: if A feasible solution T D is found in M1, save it to a file. then
5: ♦ begin of Inner-MILP part
6: Construct a MILP model M2 describing the differential behavior of the cipher

and add the truncated differential characteristic T D as a constraint to M2.
The objective function of M2 is the differential characteristic with maximal
probability.

7: Solve the model using an MILP optimizer. If a feasible solution x is found, save
x and its probability Pr to the file. If Pr > MPr, set MPr equal to Pr.

8: ♦ end of Inner-MILP part
9: end if

10: Remove the truncated differential T D from the feasible region of M1.
11: Solve M1 again. If a new solution T D is found and its active S-boxes number is

equal to Mr, save it and go to step 5. Else go to step 12.
12: If the number of active S-boxes of is more than Mr and less than Mr + 3, set

Mrbound equal to Mrbound + 1, go to step 5. If a new solution T D is not found or
the number of active S-boxes of T D is greater than or equal to Mr + 3, return
MPr and the collection of solution x.

Algorithm 1 does not need the predefined threshold and could get the charac-
teristic with highest probability definitely. Algorithm1 includes two interactive
sub-models, denoted as outer-MILP part and inner-MILP part. The two stages
are interactive. In the outer-MILP part, the objective function is the minimal
active S-boxes. When a solution is found in the outer-MILP part, the truncated
differential that contains the information of the positions of active S-boxes will
input the inner-MILP part as constraints. In the inner-MILP part, it produces
the differential characteristic with maximal probability that matches the trun-
cated differential. Then the algorithm goes to the outer-MILP part with the
truncated differential removed from its feasible region.

In addition, the maximal probability of the derived differential characteristic
is also used to reduce the feasible region of the outer-MILP part dynamically.
In details, if a differential characteristic with larger probability could be found
in the next loops, the number of active S-boxes produced in outer-MILP part
must be lower than a certain bound. The bound is dynamically computed by
the current maximal probability. When the outer-MILP part is infeasible, the
algorithm returned.
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We apply Algorithm1 to search for differential characteristics for GIFT-64,
and get some interesting results.

4.2 Search for Differentials of GIFT-64

Algorithm 1 needs two convex hulls about the S-box in the outer-MILP part
and the inner-MILP part respectively. First, we compute the H-representation
of convex hull of differential patterns of S-box in AppendixA. Using SageMath,
237 inequalities are produced in the H-Representation of the convex hull of
GIFT S-box, then after selecting inequalities by the method introduced in [15],
we get 21 inequalities. Second, we study the convex hull of differential patterns
with probabilities of the S-box. Sun et al. introduced the differential distribution
probability of S-box to MILP-model in [19]. Since, for GIFT S-box, there are 4
possible probabilities, i.e. 1, 2−1.415, 2−2, 2−3, we need three extra bits (p0, p1, p2)
to encode the differential patterns with probability. The new differential pattern
is (x0, x1, x2, x3, y0, y1, y2, y3; p0, p1, p2) ∈ F

8+3
2 which satisfies Eq. 7.

⎧⎪⎪⎨
⎪⎪⎩

(p0, p1, p2) = (0, 0, 0), if Prs[(x0, x1, x2, x3) → (y0, y1, y2, y3)] = 1 = 2−0

(p0, p1, p2) = (0, 0, 1), if Prs[(x0, x1, x2, x3) → (y0, y1, y2, y3)] = 6/16 =2−1.415

(p0, p1, p2) = (0, 1, 0), if Prs[(x0, x1, x2, x3) → (y0, y1, y2, y3)] = 4/16 = 2−2

(p0, p1, p2) = (1, 0, 0), if Prs[(x0, x1, x2, x3) → (y0, y1, y2, y3)] = 2/16 = 2−3

(7)
Then the objective function is changed to minimize

∑
(3×p0+2×p1+1.415×p2).

We implement the Algorithm 1 to search for differential characteristics for
GIFT-64. In the Outer-MILP part of the Algorithm1, the objective function is
to minimize active S-boxes. We get the tight bound of number of active S-boxes

Table 4. 12-round differential characteristic with probability 2−59

Round Differential-1 Probability

Input 0c00 0000 0060 0000 1

1st round 0000 0000 0000 4020 2−4

2nd round 0005 0000 0005 0000 2−8

3rd round 0000 0000 2020 0000 2−14

4th round 0050 0000 0050 0000 2−18

5th round 0000 0000 0000 2020 2−24

6th round 0005 0000 0005 0000 2−28

7th round 0000 0000 2020 0000 2−34

8th round 0050 0000 0050 0000 2−38

9th round 0000 0000 0000 2020 2−44

10th round 0000 0000 0005 000a 2−49

11th round 0080 0000 0000 0001 2−54

12th round 1008 0000 0002 2000 2−59
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Table 5. 4-round differential characteristic with probability 2−20

Round Differential-1 Probability

Input 0000 0000 0000 1010 1

1st round 0000 000a 0000 000a 2−6

2nd round 0000 0000 0000 0101 2−10

3rd round 000a 0000 000a 0000 2−16

4th round 0000 0000 0000 1010 2−20

for 11-round and 12-round reduced GIFT-64, which are 22 and 24 respectively.
Using the Algorithm 1, we find many 12-round differential characteristics. The
highest probability of 12-round differential characteristic is 2−59, the 12-round
differential characteristic with highest probability is shown in Table 4. Meanwhile
we get dozens of differential characteristics with probability 2−60.

We observe that some of 12-round characteristics are iterative. As a result, we
get eight 4-round differential characteristics with probability 2−20 totally. These
4-round characteristics are iterative, namely, their input states are identical to
their output states. One of them is shown in Table 5, and these characteristics
can be extended to more rounds. So we get one of 12-round differential charac-
teristics cycled by three 4-round differential characteristics with probability 2−60

in Table 6. A 13-round characteristic with probability 2−64 can also be generated
by adding another round at the beginning of 12-round differential characteristic.
Note that the designers of GIFT claimed that the differential probability of 13-
round GIFT-64 will be lower than 2−63. Our result does not violate the claim,
however the gap is very small.

4.3 Attack on 19-Round GIFT-64

Using the 12-round differential characteristic with probability 2−60 in Table 6,
we could launch a key-recovery attack against 19-round GIFT-64. We choose
this differential characteristic because its active bits in the head and tail is less
than others. As shown in Table 7, we add three rounds at its beginning and
four rounds at the end of the differential characteristic. Therefore, we can attack
19-round GIFT-64. According to the key schedule, the round key used in 1-
st, 2-nd, 16-th, 17-th, 18-th and 19-th round corresponds to (k1, k0), (k3, k2),
(k7 ≫ 6, k6 ≫ 4), (k1 ≫ 8, k0), (k3 ≫ 8, k2) and (k5 ≫ 8, k4) in initial key
state (k7, k6, k5, k4, k3, k2, k1, k0), respectively.

Data Collection

Since GIFT-64 does not have whitening key layer at the beginning, after the
P permutation of the first round, we could build 2n structures. Each structure
traverses the sixteen bits undetermined in ΔX1

P , i.e. the bit labeled by “?” in
ΔX1

P of Table 7, thus it can generate 216×2−1 = 231 pairs obeying the differential.
Therefore, 2n structures can generate 2n × 231 = 2n+31 pairs.
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Table 6. 12-round differential characteristic with probability 2−60

Round Differential Probability

Input 0000 0000 0000 1010 1

1st round 0000 000a 0000 000a 2−6

2nd round 0000 0000 0000 0101 2−10

3rd round 000a 0000 000a 0000 2−16

4th round 0000 0000 0000 1010 2−20

5th round 0000 000a 0000 000a 2−26

6th round 0000 0000 0000 0101 2−30

7th round 000a 0000 000a 0000 2−36

8th round 0000 0000 0000 1010 2−40

9th round 0000 000a 0000 000a 2−46

10th round 0000 0000 0000 0101 2−50

11th round 000a 0000 000a 0000 2−56

12th round 0000 0000 0000 1010 2−60

Table 7. 19-round differential attack on GIFT-64

ΔP ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX1
S ?000 0?00 00?0 000? ?000 0?00 00?0 000? ?000 0?00 00?0 000? ?000 0?00 00?0 000?

ΔX1
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? ???? ???? ????

ΔX1
K 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? ???? ???? ????

ΔX2
S 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0?0? 10?0 0?0? 10?0

ΔX2
P 0000 0000 0000 1??? 0000 0000 0000 0000 0000 0000 0000 1??? 0000 0000 0000 0000

ΔX2
K 0000 0000 0000 1??? 0000 0000 0000 0000 0000 0000 0000 1??? 0000 0000 0000 0000

ΔX3
S 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000

ΔX3
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

ΔX3
K 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

4th round input 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

.

.

.

.

.

.

15th round output 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

ΔX16
S 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000 ???? 0000

ΔX16
P 0000 0000 0000 0?0? 0000 0000 0000 ?0?0 0000 0000 0000 0?0? 0000 0000 0000 ?0?0

ΔX16
K 0000 0000 0000 0?0? 0000 0000 0000 ?0?0 0000 0000 0000 0?0? 0000 0000 0000 ?0?0

ΔX17
S 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ????

ΔX17
P ?000 ?000 ?000 ?000 0?00 0?00 0?00 0?00 00?0 00?0 00?0 00?0 000? 000? 000? 000?

ΔX17
K ?000 ?000 ?000 ?000 0?00 0?00 0?00 0?00 00?0 00?0 00?0 00?0 000? 000? 000? 000?

ΔX18
S ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX18
P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX18
K ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX19
S ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX19
P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX19
K ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

For such a pair, it has an average probability of 2−16 to meet the differential
in 4-th round in Table 7. Then, the pair encrypted with the right key will obey
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the differential after 15th round with probability of 2−60. While the pair with a
wrong key will obey it with a random probability of 2−64. Therefore, with the
right key guess, 2n+31 ×2−16 ×2−60 = 2n−45 pairs will obey the differential after
15th round. Here we choose n = 47. So the data complexity is 247 × 216 = 263.

Key Recovery

When processing the key recovery, the guessing key bits include: k3
1, k2

1, k1
1, k0

1,
k3
0, k2

0, k1
0, k0

0 in 1st round, k12
3 , k12

2 , k4
3, k4

2 in 2nd round; k6
7, k8

6, k14
7 , k0

6 in 16th
round, k15

1 , k14
1 , k13

1 , k12
1 , k3

0, k2
0, k1

0, k0
0 in 17th round, as well as all 64 key bits

in 18th, 19th round. Totally, we construct 280 counters for the possible values of
the 80 key bits above. The whole attack procedure is a guess and filter approach.
Guess two key bits k0

1, k0
0, then we can partially encrypt the plaintexts.

Table 8. Round keys of GIFT-64

Round Key bit

1st round k15
1 , k14

1 , k13
1 , k12

1 , k11
1 , k10

1 , k9
1 , k

8
1, k

7
1 , k

6
1 , k

5
1, k

4
1 , k

3
1, k

2
1, k

1
1 , k

0
1

k15
0 , k14

0 , k13
0 , k12

0 , k11
0 , k10

0 , k9
0 , k

8
0, k

7
0 , k

6
0 , k

5
0, k

4
0 , k

3
0, k

2
0, k

1
0 , k

0
0

2nd round k15
3 , k14

3 , k13
3 , k12

3 , k11
3 , k10

3 , k9
3 , k

8
3, k

7
3 , k

6
3 , k

5
3, k

4
3 , k

3
3, k

2
3, k

1
3 , k

0
3

k15
2 , k14

2 , k13
2 , k12

2 , k11
2 , k10

2 , k9
2 , k

8
2, k

7
2 , k

6
2 , k

5
2, k

4
2 , k

3
2, k

2
2, k

1
2 , k

0
2

16th round k5
7 , k

4
7, k

3
7 , k

2
7 , k

1
7, k

0
7 , k

15
7 , k14

7 , k13
7 , k12

7 , k11
7 , k10

7 , k9
7, k

8
7, k

7
7 , k

6
7

k3
6 , k

2
6, k

1
6 , k

0
6 , k

15
6 , k14

6 , k13
6 , k12

6 , k11
6 , k10

6 , k9
6, k

8
6 , k

7
6, k

6
6, k

5
6 , k

4
6

17th round k7
1 , k

6
1, k

5
1 , k

4
1 , k

3
1, k

2
1 , k

1
1, k

0
1, k

15
1 , k14

1 , k13
1 , k12

1 , k11
1 , k10

1 , k9
1 , k

8
1

k15
0 , k14

0 , k13
0 , k12

0 , k11
0 , k10

0 , k9
0 , k

8
0, k

7
0 , k

6
0 , k

5
0, k

4
0 , k

3
0, k

2
0, k

1
0 , k

0
0

18th round k7
3 , k

6
3, k

5
3 , k

4
3 , k

3
3, k

2
3 , k

1
3, k

0
3, k

15
3 , k14

3 , k13
3 , k12

3 , k11
3 , k10

3 , k9
3 , k

8
3

k15
2 , k14

2 , k13
2 , k12

2 , k11
2 , k10

2 , k9
2 , k

8
2, k

7
2 , k

6
2 , k

5
2, k

4
2 , k

3
2, k

2
2, k

1
2 , k

0
2

19th round k7
5 , k

6
5, k

5
5 , k

4
5 , k

3
5, k

2
5 , k

1
5, k

0
5, k

15
5 , k14

5 , k13
5 , k12

5 , k11
5 , k10

5 , k9
5 , k

8
5

k15
4 , k14

4 , k13
4 , k12

4 , k11
4 , k10

4 , k9
4 , k

8
4, k

7
4 , k

6
4 , k

5
4, k

4
4 , k

3
4, k

2
4, k

1
4 , k

0
4

As the middle values of right pairs should obey ΔX2
S{0} = 0, ΔX2

S{2} = 0,
ΔX2

S{3} = 1, the (plaintext, ciphertext) pairs can be filtered with a probability
of 2−3. Similarly, guessing ki

1, k
i
0, i = 1, 2, 3 and partially encrypt, corresponding

conditions in ΔX2
S{5, 7}, ΔX2

S{8, 10, 11}, ΔX2
S{13, 15} can filter the pairs with

2−2, 2−3 and 2−2. Totally 1st round provide a filtering probability of 2−10.
Similarly, the encryption at 2-nd, 16-th, 17-th, 18-th round can filter the

pairs with probability 2−6, 2−8, 2−8, 2−48 while all 32 key bits in 19th round
need to be guessed. Thus, 2−2 pairs will be left for a random key, while 4 pairs
should be left for a right key.

The time complexity is 22 × 231+47 × 232 = 2112, the data complexity is 263

and the memory complexity is 280.
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5 Improved MILP-Based Method to Find Differential for
GIFT-128

GIFT-128 adopts 128 bits state and has thirty-two 4-bit S-boxes in each round.
The variables and constrains are twice as many as GIFT-64. The designers of
GIFT [2] gives 9-round differential characteristics of GIFT-128. We test Algo-
rithm1 on 9-round GIFT-128 and obtain the designers’ conclusion. But it costs
days to solve. In this section, we devise a segmented MILP-based method to
search for longer differential characteristics for GIFT-128.

Suppose we aim to find a r-round differential characteristic for a block
cipher. We first divide it as ri-round (i = 1, 2, ..., t) sub-ciphers and

∑t
1 ri = r.

We choose probability thresholds for r1-round, r2-round,...,rt-round ciphers as
Pr1 , Pr2 , ..., Prt , so that the probability pri for ri-round sub-cipher should be
larger than Pri . Choose a threshold value Ptarget for r-round. If pr1pr2 . . . prt is
larger than Ptarget, an acceptable solution is found.

As shown in Fig. 2, for ri-round sub-cipher, the input state are fixed as the
output state of the differential characteristic Di−1 of ri−1-round sub-cipher, and
construct the MILP model Mri . If Mri is feasible, we continue to construct
Mri+1 for ri+1-round sub-cipher; else, we remove Di−1 from Mri−1 , and solve
it again. The search terminates until we find the differential characteristics of
r1-round,r2-round,...,rt-round sub-ciphers that could be connected to produce a
r-round differential characteristic.

Infeasible

ri

feasible

1r 1ri

Add input constrain

feasible

Add input constrain

Infeasible

i

Fig. 2. The framework of our search algorithm

We apply this model to search for differential characteristics for GIFT-128. It
is indeed a heuristic and empirical process. For GIFT-128, it is time consuming
to solve a more than 6-round MILP model. In order to keep the efficiency, we
choose ri < 6. Pri is chosen more flexible. According to the designers’ analysis in
[2], for 3/4/5-round GIFT-128, the numbers of minimum active S-boxes are 3,
5, and 7, respectively. The length of the sub-cipher can neither be too short nor
be too long. If the number of rounds is smaller than 2, this sub-MILP-model is
unnecessary to solve. On the other hand, if the number of rounds is bigger than
6 or 7, it costs too much time to solve the sub-model that we cannot bear. We do
not want the probability of ri-round differential characteristic of GIFT-128 to be
much smaller than the highest one. So Pri are chosen according to the minimum
active S-boxes of ri-round GIFT-128. In this section, we choose Pri=3 = 2−30,
Pri=4 = 2−40 and Pri=5 = 2−50 to act as the exact lower bound of differential
probability of each sub-model.
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We use this model and the strategies above choosing parameters to search
for differential characteristics for GIFT-128. We list some results in Table 9. The
12-round and 14-round differential characteristics are shown in AppendixC.

Table 9. Probabilities of some differential characteristics of GIFT-128

Round Parameters for ri Probability Source

9 – 2−47 [2]

12 r1 = r2 = r3 = r4 = 3 2−62.415 Ours

14 r1 = r2 = 4 and r3 = 6 2−85 Ours

18 r1 = r2 = r3 = 4 and r4 = 6 2−109 Ours

The 18-round characteristic, shown in Table 10 is constructed by the con-
nection of the following three 4-round differential characteristics and a 6-round
differential characteristic:

(0000 0000 7060 0000 0000 0000 0000 0000)
4−round, 2−12
−−−−−−−−−−−→ (0020 0000 0010 0000 0000 0000 0000 0000)

(0020 0000 0010 0000 0000 0000 0000 0000)
4−round, 2−29
−−−−−−−−−−−→ (0000 0000 0000 0011 0000 0000 0000 0000)

(0000 0000 0000 0011 0000 0000 0000 0000)
4−round, 2−32
−−−−−−−−−−−→ (0000 0000 0a00 0a00 0000 0000 0000 0000)

(0000 0000 0a00 0a00 0000 0000 0000 0000)
6−round, 2−36
−−−−−−−−−−−→ (0000 0100 0020 0800 0014 0404 0002 0202)

Table 10. 18-round differential characteristic of GIFT-128

Round Input Difference Probability

Input 0000 0000 7060 0000 0000 0000 0000 0000 1

1st 0000 0000 0000 0000 0000 0000 00a0 0000 2−5

2nd 0000 0010 0000 0000 0000 0000 0000 0000 2−7

3rd 0000 0000 0800 0000 0000 0000 0000 0000 2−10

4th 0020 0000 0010 0000 0000 0000 0000 0000 2−12

5th 0000 0000 0000 0000 4040 0000 2020 0000 2−17

6th 0000 5050 0000 0000 0000 5050 0000 0000 2−25

7th 0000 0000 0000 0000 0000 0000 0a00 0a00 2−37

8th 0000 0000 0000 0011 0000 0000 0000 0000 2−41

9th 0008 0000 0008 0000 0000 0000 0000 0000 2−47

10th 0000 0000 0000 0000 2020 0000 1010 0000 2−51

11th 0000 5050 0000 0000 0000 5050 0000 0000 2−61

12th 0000 0000 0a00 0a00 0000 0000 0000 0000 2−73

13th 0000 0000 0011 0000 0000 0000 0000 0000 2−77

14th 0090 0000 00c0 0000 0000 0000 0000 0000 2−83

15th 1000 0000 0080 0000 0000 0000 0000 0000 2−89

16th 0010 0000 0000 0000 0000 0000 8020 0000 2−94

17th 0000 0000 8000 0020 0000 0050 0000 0020 2−101

18th 0000 0100 0020 0800 0014 0404 0002 0202 2−109
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With the 18-round differential characteristic, we can add three rounds at its
beginning and two rounds at the end to attack 23-round reduced GIFT-128. The
attack procedure is similar to Subsect. 4.3. The time complexity is 2120 which is
bounded by the data complexity and the memory complexity is 286 bits to store
the key counters.

6 Conclusion

In this paper, first, we design a more efficient MILP-based differential search
model. Using this model, we give a 12-round differential characteristic with prob-
ability 2−60 and get the first 19-round key-recovery attack on GIFT-64. Second,
we improve our MILP-based model for block ciphers with large state size. With
this model, we give 18-round differential characteristic with probability 2−109

and obtain the first 23-round key-recovery attack on GIFT-128.
MILP can efficiently find high-probabilistic differential characteristics when

attacking algorithms whose permutation layer will not cause diffusion. In the
future work, we can try to apply heuristic method to constrain global variables,
so as to find a higher probability differential characteristics.

A Difference Distribution Table (DDT) of GIFT S-Box

See Table 11.

Table 11. DDT of GIFT S-box

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2

2 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0

3 0 0 0 0 0 2 2 0 2 0 0 2 2 2 2 2

4 0 0 0 2 0 4 0 6 0 2 0 0 0 2 0 0

5 0 0 2 0 0 2 0 0 2 0 0 0 2 2 2 4

6 0 0 4 6 0 0 0 2 0 0 2 0 0 0 2 0

7 0 0 2 0 0 2 0 0 2 2 2 4 2 0 0 0

8 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4

9 0 2 0 2 0 0 2 2 2 0 2 0 2 2 0 0

a 0 4 0 0 0 0 4 0 0 2 2 0 0 2 2 0

b 0 2 0 2 0 0 2 2 2 2 0 0 2 0 2 0

c 0 0 4 0 4 0 0 0 2 0 2 0 2 0 2 0

d 0 2 2 0 4 0 0 0 0 0 2 2 0 2 0 2

e 0 4 0 0 4 0 0 0 2 2 0 0 2 2 0 0

f 0 2 2 0 4 0 0 0 0 2 0 2 0 0 2 2
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B Some 4-Round Iterative Differential Characteristics of
GIFT-64

See Table 12.
Table 12. 4-round iterative differential characteristics

Round Input difference Probability

Input 0005 0000 0005 0000 1

1st 0000 0000 2020 0000 2−6

2nd 0050 0000 0050 0000 2−10

3rd 0000 0000 0000 2020 2−16

4th 0005 0000 0005 0000 2−20

Input 0000 000a 0000 000a 1

1st 0000 0000 0000 0101 2−4

2nd 000a 0000 000a 0000 2−10

3rd 0000 0000 0000 1010 2−14

4th 0000 000a 0000 000a 2−20

Input 0000 00a0 0000 00a0 1

1st 0101 0000 0000 0000 2−4

2nd a000 0000 a000 0000 2−10

3rd 0000 0000 1010 0000 2−14

4th 0000 00a0 0000 00a0 2−20

Input 0000 0000 0101 0000 1

1st 00a0 0000 00a0 0000 2−6

2nd 1010 0000 0000 0000 2−10

3rd 0000 a000 0000 a000 2−16

4th 0000 0000 0101 0000 2−20

Input 0000 0202 0000 0000 1

1st 0000 0500 0000 0500 2−4

2nd 0202 0000 0000 0000 2−10

3rd 0000 5000 0000 5000 2−14

4th 0000 0202 0000 0000 2−20

Input 0000 1010 0000 0000 1

1st 0000 0a00 0000 0a00 2−6

2nd 0000 0101 0000 0000 2−10

3rd 0a00 0000 0a00 0000 2−16

4th 0000 1010 0000 0000 2−20

Input 0000 0050 0000 0050 1

1st 0000 0000 0000 0202 2−6

2nd 0000 0005 0000 0005 2−10

3rd 0000 0000 0202 0000 2−16

4th 0000 0050 0000 0050 2−20

Input 0500 0000 0500 0000 1

1st 2020 0000 0000 0000 2−6

2nd 5000 0000 5000 0000 2−10

3rd 0000 2020 0000 0000 2−16

4th 0500 0000 0500 0000 2−20
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C 12-Round and 14-Round Differential Characteristics
of GIFT-128

See Tables 13 and 14.

Table 13. 12-round differential characteristic

Round Input Difference Probability

Input 0000 0000 7060 0000 0000 0000 0000 0000 1

1st 0000 0000 0000 0000 0000 0000 00a0 0000 2−5

2nd 0000 0010 0000 0000 0000 0000 0000 0000 2−7

3rd 0000 0000 0800 0000 0000 0000 0000 0000 2−10

4th 0020 0000 0010 0000 0000 0000 0000 0000 2−12

5th 0000 0000 0000 0000 4040 0000 2020 0000 2−17

6th 0000 5050 0000 0000 0000 5050 0000 0000 2−25

7th 0000 0000 0a00 0a00 0000 0000 0000 0000 2−37

8th 0000 0000 0011 0000 0000 0000 0000 0000 2−41

9th 0090 0000 0000 0000 0060 0000 0000 0000 2−47

10th 1000 0000 0000 0000 0000 0000 0000 2000 2−52

11th 0000 0004 0000 0002 0000 0000 8000 0000 2−57

12th 0000 0000 0404 0020 0200 0010 0101 0000 2−62.415

Table 14. 14-round differential characteristic

Round Input Difference Probability

Input 0000 0000 0000 0000 0000 0706 0000 0000 1

1st 0000 0000 0000 0000 0000 0a00 0000 0000 2−5

2nd 0000 0000 0000 0100 0000 0000 0000 0000 2−7

3rd 0000 0000 0000 0000 0008 0000 0000 0000 2−10

4th 0000 0000 0000 0000 0000 2000 0000 1000 2−12

5th 0000 0404 0000 0202 0000 0000 0000 0000 2−17

6th 0000 0000 0505 0000 0000 0000 0505 0000 2−25

7th 00a0 00a0 0000 0000 0000 0000 0000 0000 2−37

8th 1100 0000 0000 0000 0000 0000 0000 0000 2−41

9th 6000 0000 0000 0000 0000 0000 c000 0000 2−47

10th 0000 0000 2000 0020 0000 0000 0000 0000 2−51

11th 0041 0000 0000 0000 0014 0000 0000 0000 2−55

12th 9000 0000 0000 c000 0000 0000 3000 1000 2−66

13th 0000 0000 0002 0000 0000 0000 8000 0088 2−77

14th 0000 0001 0040 0020 0000 0012 0010 0003 2−85
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