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Abstract. One of the most prominent PRP-to-PRF designs is trunca-
tion, a method that found renewed interest with the GCM-SIV authen-
ticated encryption scheme. A long line of research (from 1998 to 2018)
shows that truncating an n-bit random permutation to m bits achieves
tight n−m/2 security. However, it appeared that the result was a direct
consequence of a statistical result of Stam from 1978. In this work, we
aim to gain better understanding in the possibilities and impossibilities
of truncation. We take a closer look at the ancient result, observe that it
is much more general, and link it with a generalized truncation function
that uses an arbitrary post-processing function after the evaluation of the
permutation. The main conclusion is that generalized truncation with
any balanced post-processing achieves the same security bound as plain
truncation. For unbalanced post-processing, security degrades gradually
with the amount of unbalancedness. The results in particular exhibit a
use of the Kullback-Leibler divergence for cryptographic indistinguisha-
bility proofs, without resorting to the recently popularized chi-squared
method.
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1 Introduction

The dominant building block for symmetric cryptographic modes is a pseudoran-
dom permutation (PRP), such as AES [22]. However, for many such modes, most
notably stream-based (authenticated) ciphers [24,28,39] and message authen-
tication codes [5,11,16,49], security is determined by the level at which the
underlying primitive behaves like a random function rather than a random per-
mutation. Stated differently, these modes benefit from being instantiated with
a pseudorandom function (PRF) instead of a PRP. Yet, with an extreme abun-
dance in PRP candidates [1–4,13,14,22] (to name a few), and only very few
dedicated PRFs [10,41], people have resorted to generic methods of transform-
ing a PRP into a PRF.

The well-known PRP-PRF switch [7,9,17,30,31] shows that an n-bit PRP
behaves as a PRF up to approximately 2n/2 evaluations. This “birthday bound”
could be inadequate for lightweight block ciphers, and various “beyond birth-
day bound” modes, schemes that achieve security beyond 2n/2 evaluations,
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have appeared. These include the xor of permutations [6,8,18,23,38,42,44–46],
EDM [19,23,40], EDMD [40], and truncation [6,12,25–27,30,47]. We refer to
Mennink and Neves [40,41] for an extensive discussion of the four variants. In
this work, we focus on truncation.

1.1 History of Truncation

Let n,m ∈ N be such that m ≤ n, and let p be an n-bit PRP. Truncation is
defined as simply returning the m leftmost bits of p:

Truncp(x) = leftm(p(x)). (1)

Hall et al. [30], introduced the truncation construction, and demonstrated secu-
rity up to around 2n−m/2 evaluations, but not for the entire parameter spectrum.
Bellare and Impagliazzo [6] gave an improved analysis that demonstrates secu-
rity for a broader selection of n and m. Gilboa and Gueron [25] resolved the
remaining gaps by proving security up to 2n−m/2 evaluations for any choice of
n and m. It turned out, however, that the problem was already solved in 1978
by Stam [47], and that Stam’s bound is stronger than the bounds of [6,25,30]
altogether. Bhattacharya and Nandi [12] transformed Stam’s analysis to the chi-
squared method [23], deriving an identical bound. We elaborate on this upper
bound in Sect. 4.1. Gilboa et al. [27] presented a detailed comparison of the
bounds of Hall et al. [30], Bellare and Impagliazzo [6], Gilboa and Gueron [25],
and Stam [47].

With respect to insecurity, Hall et al. [30] also argued tightness of their
bound by sketching a distinguisher. Gilboa and Gueron [26] presented a formal
derivation of a lower bound, for various choices of n,m, and the number of
evaluations. They showed that the best distinguisher’s success probability is
close to 1 for around 2n−m/2 evaluations. See Sect. 4.1 for the lower bound.

The truncated permutation construction found application as key derivation
function in GCM-SIV [28,29,37], although its use is disputed [15,32].

1.2 Stam’s Bounds

Stam’s 1978 bound [47] is more general than suggested in Sect. 1.1. Intuitively
(a formal treatment of Stam’s bounds is given in Sect. 3), it covers the idea of 2n

possible outcomes being grouped into 2m colors (the number of occurrences per
color not necessarily equal) and measures the distance between sampling with
or without replacement, where the observer learns the color of every sample. In
a later publication in 1986, Stam [48] generalized this result to the case where
the number of colors and the grouping of the outcomes into the colors differs per
sample.

The analysis of Stam is based on the Kullback-Leibler divergence KL(X;Y )
[36] (see Sect. 2.1 for the details), and Pinsker’s inequality [21,34,35] stating that

Δ(X,Y ) ≤
(

1
2
KL(X;Y )

)1/2

, (2)
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where Δ(X,Y ) denotes the statistical distance between X and Y . The exact
same statistical tools were used in the chi-squared method of Dai et al. [23].
However, Dai et al. make an additional step, namely that the Kullback-Leibler
divergence KL(X;Y ) is at most the chi-squared divergence χ2(X;Y ) (see, again,
Sect. 2.1 for the details). In this work, we rely on Stam’s results and perform
analysis at the level of the Kullback-Leibler divergence.

1.3 Generalized Truncation

The goal of this work is to fully understand the implication of Stam’s bounds
to truncation. To do so, we describe a generalized truncation function GTrunc
in Sect. 4. The function generalizes simple truncation by the evaluation of a
post-processing function post : {0, 1}n × {0, 1}n → {0, 1}m after permutation:

GTruncp(x) = post(x, p(x)). (3)

The function is depicted in Fig. 1. It covers plain truncation of (1) by taking the
post-processing function that ignores its first input and evaluates leftm on its
second input.

However, GTrunc is much more general than Trunc. Most importantly, it feed-
forwards its input x to the post-processing function post. This, on the one hand,
gives an adversary more power, but on the other hand, frustrates statistical
analysis as the output function is not purely a post-processing function on the
output of the permutation p. We consider the security of GTrunc for various
types of post-processing functions. In Sect. 4.2 we consider a simplified variant
where post is balanced and no feed-forward is involved, and show security-wise
equivalence of the resulting construction with Trunc. In Sect. 4.3 we consider the
general GTrunc construction with balanced post-processing and link it with the
bounds of Stam [47,48]. The result shows that, in fact, GTrunc achieves the same
level of security as Trunc, regardless of the choice of post-processing function post
(as long as it is balanced). Finally, we extend the result to arbitrary (possibly
unbalanced) post, and derive a security bound that is slightly worse, depending
on the unbalancedness of post. The derivation is based on Stam’s bounds, with in
addition an analysis of the statistical distance between unbalanced and balanced
random samplings with replacement using the Kullback-Leibler divergence.

We comment on the affect of including a pre-processing function pre in Sect. 5.

2 Security Model

Consider two natural numbers n,m ∈ N. We denote by {0, 1}n the set of n-
bit strings. The set func(n,m) denotes the set of all n-to-m-bit functions, and
perm(n) the set of all n-bit permutations. If m ≤ n, the function leftm : {0, 1}n →
{0, 1}m returns the left m bits of its input. We denote by (m)n the falling factorial
m(m − 1) · · · (m − n + 1) = m!/(m − n)!. For a finite set X , x

$←− X denotes the
uniform random drawing of x from X .
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2.1 Statistical Tools

For two distributions X,Y over a finite space Ω, the statistical distance between
X and Y is defined as

Δ(X,Y ) =
1
2

∑
ω∈Ω

∣∣Pr (X = ω) − Pr (Y = ω)
∣∣ (4)

= max
Ω∗⊆Ω

{ ∑
ω∈Ω∗

Pr (X = ω) − Pr (Y = ω)

}
. (5)

The Kullback-Leibler divergence [36] between X and Y is defined as

KL(X;Y ) =
∑
ω∈Ω

Pr (X = ω) log
(
Pr (X = ω)
Pr (Y = ω)

)
, (6)

with the condition that Pr (Y = ω) > 0 for all ω ∈ Ω and the convention that
0 log(0) = 0. Pinsker’s inequality [21,34,35] gives

Δ(X,Y ) ≤
(

1
2
KL(X;Y )

)1/2

. (7)

Remark 1. Dai et al. [23] recently introduced the chi-squared method to cryp-
tography. The chi-squared method also relies on Pinsker’s inequality (7), but in
addition uses that

KL(X;Y ) ≤ χ2(X;Y ), (8)

where

χ2(X;Y ) =
∑
ω∈Ω

(
Pr (X = ω) − Pr (Y = ω)

)2
Pr (Y = ω)

(9)

is the chi-squared divergence [20,43]. What then remains in order to bound
Δ(X,Y ) is an analysis of the chi-squared divergence between X and Y . In our
work, we do not go that far, but instead, stop at the Kullback-Leibler divergence.
(This is no critique on the chi-squared method; in many applications, bounding
χ2(X;Y ) may be easier to do than bounding KL(X;Y )).

2.2 Pseudorandom Functions

A distinguisher D is an algorithm that is given access to an oracle O; it can make
a certain amount of queries to this oracle, and afterwards it outputs b ∈ {0, 1}.
We focus on computationally unbounded distinguishers, whose complexities are
measured by the number of oracle queries only. As usual, a scheme is secure
if it withstands the strongest possible distinguisher, and we can without loss of
generality restrict our focus to deterministic distinguishers. The reason for this is
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that for any probabilistic distinguisher there exists a deterministic distinguisher
with the same success probability.

Let n,m ∈ N such that m ≤ n. Let p ∈ perm(n), and consider a function
F p ∈ func(n,m). We define the pseudorandom function (PRF) security of F p as
a random function against a distinguisher D by

Advprf
F (D) =

∣∣∣Pr
(
DFp

= 1
)

− Pr
(Df = 1

)∣∣∣ , (10)

where the first probability is taken over the random drawing of p
$←− perm(n) and

the second probability over f
$←− func(n,m). (Recall that D is a deterministic

distinguisher).
The definition of PRF security relates to the statistical distance of (4–5) in

the following manner. Let q ∈ N, and consider a deterministic distinguisher D
making q queries. Let X denote the probability distribution of interactions with
F p and Y the probability distribution of interactions with f . Let Ω1 denote the
set of query-response tuples for which distinguisher D outputs 1. Then,

Advprf
F (D) =

∣∣∣∣∣
∑

ω∈Ω1

Pr (X = ω) − Pr (Y = ω)

∣∣∣∣∣ ≤ Δ(X,Y ). (11)

Equality is achieved for distinguisher D that returns 1 for any query-response
tuple in Ω∗, where Ω∗ is the set for which (5) achieves its maximum [12].

Remark 2. The above security model considers F p to be “keyed” with a random
permutation p

$←− perm(n). A standard hybrid argument allows us to transform
all results in this work to a complexity-theoretic setting where p is, instead, a
block cipher E with secret key K, and the distinguisher’s capabilities are also
bounded by a time parameter t.

3 Stam’s Bounds

Consider a finite set of N elements, of M types/colors. Denote the partition of the
N elements into the M colors by A1 ∪· · ·∪AM . For color j, write aj = |Aj | > 0,
such that

a1 + · · · + aM = N. (12)

Let q ∈ N. Denote by X the probability distribution of the obtained colors when
sampling q elements without replacement, and by Y the probability distribution
of the obtained colors when sampling with replacement. Both X and Y have
range {1, . . . , M}q. Stam [47] measures the distance between X and Y , and
proves the following bound1.

1 Note that our definition of distance has a factor 1
2

compared to that of Stam.
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Theorem 1 (Stam’s bound [47, Theorems 2.2 and 2.3]). Let q,N,M ∈ N

such that M ≤ N , and consider the configuration of M colors of color sizes
(a1, . . . , aM ) as in (12). Consider the two distributions X and Y over range
{1, . . . , M}q. We have,

Δ(X,Y ) ≤ 1
2

(
(M − 1)q(q − 1)

(N − 1)(N − q + 1)

)1/2

. (13)

Proof. We include Stam’s proof (in our terminology) for completeness.
Write X = (X1, . . . , Xq) and Y = (Y1, . . . , Yq). Denote, for brevity, Xi =

(X1, . . . , Xi) and Y i = (Y1, . . . , Yi) for i = 1, . . . , q. The Kullback-Leibler diver-
gence (6) can be rewritten as

KL(X;Y ) ≤ KL(X1;Y1) +
q−1∑
i=1

KL(Xi+1;Yi+1 | Xi,Y i), (14)

where

KL(Xi+1;Yi+1 | Xi,Y i) =
∑

ji∈{1,...,M}i

Pr (Xi = ji) ·

M∑
j=1

Pr (Xi+1 = j | Xi = ji) log
(
Pr (Xi+1 = j | Xi = ji)
Pr (Yi+1 = j | Y i = ji)

)
. (15)

We have

Pr (Xi+1 = j | Xi = ji) =
aj − h

N − i
, (16)

Pr (Yi+1 = j | Y i = ji) =
aj

N
, (17)

where h denotes the number of occurrences of j in sample ji. Thus,

KL(Xi+1;Yi+1 | Xi,Y i) (18)

=
M∑

j=1

∑
ji∈{1,...,M}i

Pr (Xi = ji) · aj − h

N − i
· log

(
aj−h
N−i
aj

N

)
(19)

=
M∑

j=1

min{i,aj−1}∑
h=0

Pr
(
HGN

aj
(i) = h

)
· aj − h

N − i
· log

(
aj−h
N−i
aj

N

)
, (20)

where HGN
aj

(i) is a random variable of i hypergeometrically distributed draws
from N elements with aj success elements. We have

Pr
(
HGN

aj
(i) = h

)
· aj − h

N − i
=

(
i

h

)
(aj)h(N − aj)i−h

(N)i
· aj − h

N − i
(21)

=
(

i

h

)
(aj − 1)h(N − aj)i−h

(N − 1)i
· aj

N
(22)

= Pr
(
HGN−1

aj−1(i) = h
)

· aj

N
. (23)
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Note furthermore that

min{i,aj−1}∑
h=0

h · Pr
(
HGN−1

aj−1(i) = h
)

= Ex
(
HGN−1

aj−1(i)
)

=
i(aj − 1)
N − 1

. (24)

We subsequently derive the following for (20), where in the first bounding we
use Jensen’s inequality (log is concave) and in the second bounding we use that
log(α) ≤ α − 1 (for any α > 0):

KL(Xi+1;Yi+1 | Xi,Y i) (25)

=
M∑

j=1

aj

N
·
min{i,aj−1}∑

h=0

Pr
(
HGN−1

aj−1(i) = h
)

· log

(
aj−h
N−i
aj

N

)
(26)

≤
M∑

j=1

aj

N
· log

⎛
⎝min{i,aj−1}∑

h=0

Pr
(
HGN−1

aj−1(i) = h
)

·
aj−h
N−i
aj

N

⎞
⎠ (27)

=
M∑

j=1

aj

N
· log

(
N

aj(N − i)

(
aj − Ex

(
HGN−1

aj−1(i)
)))

(28)

=
M∑

j=1

aj

N
· log

(
N

aj(N − i)

(
aj − i(aj − 1)

N − 1

))
(29)

=
M∑

j=1

aj

N
· log

(
1 +

(N − aj)i
aj(N − 1)(N − i)

)
(30)

≤
M∑

j=1

(
1 − aj

N

)
· i

(N − 1)(N − i)
(31)

=
(M − 1)i

(N − 1)(N − i)
. (32)

The theorem is concluded by combining (7), (14), and (32). ��
It is interesting to note that the bound depends on q, N , and M , but not on

the ai’s. This is caused by the observation that the outcomes are hypergeomet-
rically distributed and that the aj ’s drop out due to concavity of the function
log.

This fact allowed Stam to generalize his result to partitions varying with
i = 1, . . . , q at little effort [48]. More formally, consider a finite set of N elements,
this time with q partitions into Mi types/colors Ai,1∪· · ·∪Ai,Mi

for i = 1, . . . , q.
For color j in sample i, write ai,j = |Ai,j | > 0, such that for all i = 1, . . . , q,

ai,1 + · · · + ai,Mi
= N. (33)

Let q ∈ N. Denote by X the probability distribution of the obtained colors when
sampling q elements without replacement, and by Y the probability distribution
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of the obtained colors when sampling with replacement. Both X and Y have
range

{1, . . . , M1} × · · · × {1, . . . , Mq}. (34)

Stam [48] proves the following bound for the distance between X and Y .

Theorem 2 (Stam’s bound [48, Theorem 1]). Let q,N,M1, . . . ,Mq ∈ N such
that M1, . . . ,Mq ≤ N , and consider the configuration of Mi colors of color sizes
{(ai,1, . . . , ai,Mi

)} for i = 1, . . . , q as in (33). Consider the two distributions X
and Y over range {1, . . . , M1} × · · · × {1, . . . , Mq}. We have,

Δ(X,Y ) ≤ 1
2

(
q−1∑
i=1

2(Mi+1 − 1)i
(N − 1)(N − q + 1)

)1/2

. (35)

Proof. The proof is a straightforward extension of that of Theorem1: the only
differences are that the indices in the summations and summands of (15) are
updated to the new range {1, . . . , M1}× · · ·×{1, . . . , Mq} and color sizes ai+1,j .
In particular, for fixed i ∈ {1, . . . , q}, (31–32) is superseded by

KL(Xi+1;Yi+1 | Xi,Y i) ≤
Mi+1∑
j=1

(
1 − ai+1,j

N

) i

(N − 1)(N − i)
(36)

=
(Mi+1 − 1)i

(N − 1)(N − i)
. (37)

The result then immediately follows. ��
If M1 = · · · = Mq = M (but not necessarily with identical color sizes

{(ai,1, . . . , ai,M )} for every sampling), the bound of Theorem 2 obviously sim-
plifies to that of Theorem 1.

4 Generalized Truncation

We consider a generalization of Trunc of (1) to arbitrary post-processing func-
tion. As before, let n,m ∈ N such that m ≤ n, and p ∈ perm(n). Let
post : {0, 1}n × {0, 1}n → {0, 1}m be an arbitrary post-processing function.
Generalized truncation is defined as

GTruncp(x) = post(x, p(x)). (38)

Generalized truncation is depicted in Fig. 1. For fixed x ∈ {0, 1}n and y ∈
{0, 1}m, we define

post[x]−1(y) = {z ∈ {0, 1}n | post(x, z) = y}. (39)

The differences between GTrunc and Trunc are subtle but quite significant,
depending on the choice of post.
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x p post y\

n

\

n

\

m

Fig. 1. GTrunc of (38) based on n-bit permutation p ∈ perm(n). post is any function.

– The generalized description covers Trunc of (1) by setting post(x, z) =
leftm(z). In Sect. 4.1, we revisit the state of the art on Trunc and re-derive
the best security bound;

– In Sect. 4.2, we consider GTrunc with balanced and x-independent post-
processing, i.e., where the feed-forward of x is discarded, and demonstrate
that its security is equivalent to the security of Trunc;

– In Sect. 4.3, we consider GTrunc with balanced post-processing (not necessarily
discarding the feed-forward). In this case a direct reduction to Trunc seems
impossible but we resort to Stam’s generalized bound of Theorem 2;

– In Sect. 4.4, we consider GTrunc with arbitrary post-processing. Also in this
case, we resort to Theorem 2, but additional analysis is needed to make the
result carry over.

We elaborate on using a pre-processing function in Sect. 5.

4.1 Plain Truncation

We consider the case of plain truncation: Trunc of (1), or equivalently GTrunc of
(38) with post(x, z) = leftm(z).

Truncation first appeared in Hall et al. [30]. It is known to be secure up to
approximately 2n−m/2 queries [6,12,25,30,47]. We describe the bound as a direct
implication of Stam’s bound of Theorem 1. For educational interest, Bhat-
tacharya and Nandi [12] gave a self-contained proof of this result in the chi-
squared method: they derived the exact same bound, which should not come as
surprise in light of Remark 1 in Sect. 2.1.

Theorem 3 (Security of Trunc). Let q, n,m ∈ N such that m ≤ n. Consider
GTrunc of (38) with post(x, z) = leftm(z). For any distinguisher D making at
most q queries,

Advprf
Trunc(D) ≤ 1

2

(
(2m − 1)q(q − 1)

(2n − 1)(2n − q + 1)

)1/2

. (40)

Proof. Fix a deterministic distinguisher D that makes q queries. Let XTruncp

denote the probability distribution of interactions with Truncp for p
$←− perm(n),

and Y f the probability distribution of interaction with f
$←− func(n,m). By (11),

Advprf
Trunc(D) ≤ Δ(XTruncp , Y f ). (41)
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Put N = 2n, M = 2m, and define the M colors by the first m bits of the sampling,
i.e., two elements z, z′ ∈ {0, 1}n have the same color if leftm(z) = leftm(z′).
Consider the samplings X and Y of Sect. 3. Clearly, Δ(X,XTruncp) = 0: in XTruncp

one samples without replacement and only reveals the first m bits of the drawing,
which is equivalent to revealing the color. As all color sets are of equal size
a1 = · · · = a2m = 2n−m, we also have Δ(Y f , Y ) = 0. Thus, by the triangle
inequality,

Advprf
Trunc(D) ≤ Δ(XTruncp , Y f ) = Δ(X,Y ). (42)

The result now immediately follows from Theorem 1. ��

A simple simplification simplifies the bound of Theorem 3 to
((

q
2

)
/22n−m

)1/2.
The bound is known to be tight: Hall et al. [30] already presented a distinguisher
D meeting this bound up to a constant, but their distinguisher did not come with
an exact analysis. Gilboa and Gueron presented a more detailed attack [26], and
we repeat a simplification of their bound.

Theorem 4 (Insecurity of Trunc [26, Proposition 2, simplified]). Let n,m ∈ N

such that m ≤ n. Consider GTrunc of (38) with post(x, z) = leftm(z). There
exists a distinguisher D making q = 2n−m/2−3 queries, such that

Advprf
Trunc(D) ≥ 1

400

(
1 − e−1/306

)
. (43)

4.2 Balanced and x-Independent Post-processing

We consider security of GTrunc in a limited setting where post is independent of
its first input x (post(·, z) is constant for all z) and where it is balanced (the set
post[x]−1(y) is of the same size for all x, y). Already in the original introduction,
Hall et al. [30] remarked that the analysis of Trunc carries over to balanced post-
processing functions, and it also follows immediately from Theorem 1 (with
different color sets, but still all of equal size 2n−m as the function is balanced).
As a bonus, we present an analysis of this case that reduces the security of
GTrunc with balanced and x-independent post to Trunc.

Theorem 5 (Security of GTrunc with balanced and x-independent post).
Let q, n,m ∈ N such that m ≤ n. Consider GTrunc of (38) with balanced and
x-independent post. For any distinguisher D,

Advprf
GTrunc(D) = Advprf

Trunc(D). (44)

Proof. Without loss of generality, consider post : {0, 1}n → {0, 1}m and write
GTruncp as

GTruncp(x) = post ◦ p(x). (45)
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As post is balanced, there exists a balanced function post′ : {0, 1}n → {0, 1}n

such that

post = leftm ◦ post′. (46)

Let p
$←− perm(n), and consider any distinguisher D whose goal it is to distinguish

GTruncp from f
$←− func(n,m). Defining p′ = post′ ◦ p, we obtain that

GTruncp = post ◦ p = leftm ◦ post′ ◦ p = leftm ◦ p′ = Truncp′
, (47)

and thus that

Advprf
GTrunc(D) = Advprf

Trunc(D), (48)

as p′ $←− perm(n) iff p
$←− perm(n) (because post′ is n-to-n and balanced). ��

4.3 Balanced Post-processing

We consider security of GTrunc in a more general setting: post is any balanced
function. We consider this to be the most interesting configuration, as for unbal-
anced post-processing, security decreases (see Sect. 4.4).

Theorem 6 (Security of GTrunc with balanced post). Let q, n,m ∈ N such
that m ≤ n. Consider GTrunc of (38) with balanced post. For any distinguisher
D making at most q queries,

Advprf
Trunc(D) ≤ 1

2

(
(2m − 1)q(q − 1)

(2n − 1)(2n − q + 1)

)1/2

. (49)

Proof. Fix a deterministic distinguisher D that makes q queries. Let XGTruncp

denote the probability distribution of interactions with GTruncp for p
$←− perm(n),

and Y f the probability distribution of interaction with f
$←− func(n,m). By (11),

Advprf
GTrunc(D) ≤ Δ(XGTruncp , Y f ). (50)

Put N = 2n, M = 2m. For ease of reasoning, assume (for now) that the distin-
guisher makes queries x1, . . . , xq. For each query xi (i = 1, . . . , q), define the M
colors by the sets Ai,j := post−1[xi](j) for j ∈ {0, 1}m. The q queries thus define
q partitions of the N elements into M colors Ai,1 ∪ · · · ∪ Ai,M for i = 1, . . . , q.
Consider the samplings X and Y of Sect. 3. Clearly, Δ(X,XGTruncp) = 0 as in
the proof of Theorem 3. As post is balanced, all color sets are of equal size
ai,1 = · · · = ai,M = 2n−m for i = 1, . . . , q. We therefore also have Δ(Y f , Y ) = 0.
Thus, by the triangle inequality,

Advprf
GTrunc(D) ≤ Δ(X,Y ). (51)

We obtain our bound on the remaining distance from Theorem 2. As this
bound holds for any possible distinguisher, and any possible selection of
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inputs x1, . . . , xq, we can maximize over all possible deterministic distinguish-
ers. (Formally, the analysis of Theorem 2 consists of a per-query analysis of
KL(Xi+1;Yi+1 | Xi,Y i), where the derived bound in (37) is independent of the
ai+1,j ’s and thus of the input xi+1.) This completes the proof. ��

It is not straightforward to analyze tightness for the general GTrunc construc-
tion, i.e., to derive a lower bound. As demonstrated by Gilboa and Gueron [26],
the analysis for plain truncation is already highly involved: including a feed-
forward of the input only frustrates the analysis, and influences the per-
query probability of a response to occur (unlike the case of plain Trunc of
Sect. 4.1 and GTrunc without feed-forward of Sect. 4.2). However, it is possi-
ble to argue tightness for a reasonable simplification of GTrunc. In detail, if
post : {0, 1}n × {0, 1}n → {0, 1}m is linear in x, i.e.,

post(x, y) = A · x ⊕ post′(y) (52)

for some matrix A ∈ {0, 1}m×n and arbitrary post′ : {0, 1}n → {0, 1}m, an
adversary can “undo the feed-forward” by deciding to attack

(GTrunc′)p(x) = GTruncp(x) ⊕ A · x (53)
= post′(p(x)). (54)

In this way, it returns to the simpler case of Theorem 5. More involved post-
processing functions, where x is used to transform y (e.g., by rotation or multi-
plication) do not fall victim to this technique.

4.4 Arbitrary Post-processing

We finally consider GTrunc with arbitrary post-processing, where we only assume
that any value y ∈ {0, 1}m occurs with positive probability. Let γ ∈ N ∪ {0} be
such that |post−1[x](y) − 2n−m| ≤ γ for any x ∈ {0, 1}n and y ∈ {0, 1}m. This
value γ measures the unbalancedness of post: for γ close to 0, post is close to a
balanced function.

Theorem 7 (Security of GTrunc with arbitrary post). Let q, n,m ∈ N such
that m ≤ n. Consider GTrunc of (38) with arbitrary post. For any distinguisher
D making at most q queries,

Advprf
Trunc(D) ≤ 1

2

(
(2m − 1)q(q − 1)

(2n − 1)(2n − q + 1)

)1/2

+
(

1
2
q
( γ

2n−m

)2
)1/2

. (55)

Proof. The proof is identical to that of Theorem 6, with one important exception:
post does not need to be balanced, and hence Δ(Y f , Y ) ≥ 0. We will use Pinsker’s
inequality (7) on the chi-squared divergence (9) to bound this term. For any
i = 1, . . . , q, ji−1 ∈ {1, . . . , 2m}i−1, and j ∈ {1, . . . , 2m},

Pr
(
(Y f )i = j | (Y f )i−1 = ji−1

)
= Pr

(
(Y f )i = j

)
=

1
2m

, (56)

Pr
(
Yi = j | Y i−1 = ji−1

)
= Pr (Yi = j) =

ai,j

2n
. (57)
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In particular, for both Y f and Y the drawing of the i-th element is independent
of the first i − 1 samples. From the chi-squared divergence (9), for which we
translate its inductive formula [23] to our setting, we obtain

χ2(Y ;Y f ) ≤
q∑

i=1

2m∑
j=1

(
Pr (Yi = j) − Pr

(
(Y f )i = j

) )2
Pr ((Y f )i = j)

(58)

=
q∑

i=1

2m∑
j=1

1
22n−m

(
ai,j − 2n−m

)2
. (59)

Using that |ai,j − 2n−m| ≤ γ, we can proceed:

χ2(Y ;Y f ) ≤
q∑

i=1

2m∑
j=1

γ2

22n−m
(60)

= q
( γ

2n−m

)2

. (61)

The proof is completed using Pinsker’s inequality (7). ��
The first part of the bound of Theorem 7 is identical to that of Theorem 6,

and the comments on tightness carry over. The second part of the bound comes
from the bounding of Δ(Y f , Y ), and in this bounding we use the estimation
|ai,j − 2n−m| ≤ γ, which is non-tight for most of the choices for (i, j). We see no
way of attacking the scheme with query complexity around (2n−m/γ)2, but it is
reasonable to assume that the security degrades with the bias in the balancedness
of post.

It is interesting to note that, had we used the Kullback-Leibler divergence
(6) instead of the chi-squared divergence (9), we would have derived

KL(Y ;Y f ) ≤ q
(
1 +

γ

2n−m

)
log

(
1 +

γ

2n−m

)
, (62)

which is in turn at most

q
(
1 +

γ

2n−m

) ( γ

2n−m

)
(63)

as log(α) ≤ α − 1 (for any α > 0). In other words, the non-tightness of |ai,j −
2n−m| ≤ γ would have amplified into a slightly worse overall bound. We remark
that this does not contradict (8).

5 Note on Including Pre-processing Function

One might consider generalizing GTrunc of (38) even further to include an arbi-
trary pre-processing function pre : {0, 1}n → {0, 1}n as well:

(GTrunc′)p(x) = post(x, p(pre(x))). (64)
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However, we see no justification for doing so. If pre is balanced, it is necessarily
invertible and one can “absorb” it into p as done in the analysis of Sect. 4.2. If it is
unbalanced, this means that there exist distinct x, x′ such that pre(x) = pre(x′),
and consequently, the evaluations (GTrunc′)p(x) and (GTrunc′)p(x′) use the same
source of randomness:

p(pre(x)) = p(pre(x′)). (65)

This does not immediately lead to an attack, most importantly as post only
outputs m ≤ n bits. If, in particular, m � n, a distinguisher may not note that
the same randomness is employed. Nevertheless, unbalanced pre’s seem to set
the stage for a weaker generalized truncation.
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