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Aurélie Bauer1, Henri Gilbert1,2, Guénaël Renault1,3(B), and Mélissa Rossi4,5

1 ANSSI, Paris, France
{aurelie.bauer,henri.gilbert,guenael.renault}@ssi.gouv.fr

2 UVSQ, Versailles, France
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Abstract. NewHope is a suite of two efficient Ring-Learning-With-Error
based key encapsulation mechanisms (KEMs) that has been proposed to
the NIST call for proposals for post-quantum standardization. In this
paper, we study the security of NewHope when an active adversary
takes part in a key establishment protocol and is given access to an ora-
cle, called key mismatch oracle, which indicates whether her guess of the
shared key value derived by the party targeted by the attack is correct
or not. This attack model turns out to be relevant in private key reuse
situations since an attacker may then be able to access such an oracle
repeatedly – either directly or using faults or side channels, depending
on the considered instance of NewHope. Following this model we show
that, by using NewHope recommended parameters, several thousands of
queries are sufficient to recover the full private key with high probability.
This result has been experimentally confirmed using Magma CAS imple-
mentation. While the presented key mismatch oracle attacks do not break
any of the designers’ security claims for the NewHope KEMs, they pro-
vide better insight into the resilience of these KEMs against key reuse. In
the case of the CPA-KEM instance of NewHope, they confirm that key
reuse (e.g. key caching at server side) should be strictly avoided, even
for an extremely short duration. In the case of the CCA-KEM instance
of NewHope, they allow to point out critical steps inside the CCA trans-
form that should be carefully protected against faults or side channels
in case of potential key reuse.
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1 Introduction

The insecurity of the main asymmetric cryptosystems (RSA, (EC)DLP) in front
of a potential quantum computer has led the crytographic community to investi-
gate new quantum resistant primitives. In 2016, NIST has initiated a process to
develop and standardize one or more public-key cryptographic algorithms which
are supposed to be quantum safe. Cryptosystems based on lattices represent one
of the most promising directions for such systems.

Key Encapsulation Mechanisms (or KEMs) are one of the most important
asymmetric cryptographic primitives. The NIST call specifically asks for quan-
tum resistant KEM proposals in order to replace number theory based Diffie-
Hellman key establishment protocols, which can be broken in the quantum
computation model. Potential candidates for post quantum key establishment
include the ones based on the lattice based Ring Learning With Errors Problem
(Ring-LWE) introduced in [7,22]. Recently, Google conducted real life TLS
experiments [6] with a Ring-LWE based key exchange scheme: the NewHope-
Usenix system [6]. While these experiments show the efficiency of NewHope-
Usenix, the specification of the reconciliation step of the system is rather com-
plex. The technicality of this step requires a large fraction of the algorithm
description in the original paper [1]. This issue together with possible intel-
lectual property right considerations led the designers to introduce a simplified
new variant initially named NewHope-Simple [25] where the reconciliation-based
approach of NewHope-Usenix is replaced by an encryption-based approach.
Thanks to the combined use of encoding and compression techniques, the per-
formance price to pay for this new version in terms of bandwith overhead is
quite marginal. Now NewHope-Simple has been transformed into NewHope, a
suite of two candidate KEM mechanisms of the NIST call for proposals [23]
named NewHope-CPA-KEM and NewHope-CCA-KEM, in short CPA-KEM and
CCA-KEM. Both mechanisms are encryption-based: they rely upon an auxiliary
probabilistic public key encryption allowing to encrypt a 256-bit data named
CPA-PKE, that is not submitted to the NIST call for proposals as a standalone
mechanism.

NewHope-CPA-KEM, that is nearly identical to NewHope-Simple, is only
claimed to be a passively secure KEM. It can be viewed as the CPA-PKE
encryption of a hashed secret random value ν followed by hashing ν on both
sides. Unlike CPA-KEM, CCA-KEM is claimed to be secure with respect to
adaptively chosen ciphertext attacks. It is derived from CPA-PKE in a less
straightforward manner, by applying a variant of the Fujisaki-Okamoto trans-
form [11]. An essential feature of this transform is that the encryption of ν is
derandomized: this allows the decrypting party Alice to re-encrypt the decryp-
tion result, check that the result matches the received ciphertext, and use this
test to prevent information leakages on the private key in active attacks where
“dishonestly” derived ciphertext values are sent by an adversary.

While the specification of CPA-KEM and CCA-KEM does not formally pre-
vent re-using the same CPA-PKE (public key, private key) pair in multiple key
establishments, the design rationale section of the NewHope specification requires
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that such key pairs be never cached and that a fresh key pair be generated at
each key establishment1. In the case of CPA-KEM, one of the main reasons for
this requirement is that, unlike the classical Diffie-Hellman key establishment,
the original Ring-LWE based KEM with reconciliation is known to be vulnera-
ble to a practical active attack in a key reuse situation as shown in [10]. Despite
not being based on the reconciliation paradigm, CPA-KEM shares sufficiently
many features with its predecessor for being conjectured also vulnerable to sim-
ilar attacks. In the case of CCA-KEM, this requirement to reuse private keys
could be justified by the fact that no real perfect forward privacy can be offered
if private keys are not ephemeral2.

Motivation

With its strong performance and its Ring-LWE based security, NewHope is a
high profile candidate of the NIST competition. There is a good chance for it
to be implemented in the future for Internet protocols. So, studying its security
under several attacker models is important.

In this paper, we investigate the resilience of the CPA-KEM and CCA-KEM
versions of NewHope in a misuse situation where the same key pair is reused for
multiple key establishment by the private key owner – who will be referred to as
Alice in the sequel. Note that Alice is also the party who initiates the two-round
key establishment in both schemes. We use the generic name of key mismatch
oracle to refer to the private key recovery attack models we are considering, that
are closely inspired from the adversary model considered in [10]. While slightly
less powerful than a CCA attack against an encryption based KEM where a
decryption oracle is available, attacks using a key mismatch oracle still belong
to the active attack category. Their common feature is that the adversary is
assumed to be able: (1) to actively interact with Alice by performing multiple
KEM establishment where Alice uses the same key pair, (2) to produce each
time a guess on the resulting secret key derived by Alice and (3) to access a
binary oracle that indicates whether this guess is valid or not.

Our study is motivated by the belief that an in-depth understanding of the
security offered by candidate KEM mechanisms submitted to the NIST call for

1 The single potential exception to this requirement is the publicseed part of the public
key, whose caching “for say a few hours” seems to be considered by the designers as a
viable alternative in situations where the preferred solution of a systematic renewal
would turn out to be prohibitively expensive.

2 On the other hand this requirement is not fully in line with the former observation,
in the NewHope-Usenix paper, that “One could enable key caching with a transfor-
mation from the CPA-secure key establishment to a CCA-secure key establishment
[...]”. Given the performance advantage that may be provided by key caching at
server side in certain applications, one can wonder whether it will be strictly fol-
lowed in practice in all deployments of CCA-KEM if strong cryptanalytic arguments
in favour of this conservative choice are not developed during the evaluation of the
candidates to the NIST call.
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proposals in key reuse situations is a useful part of their cryptanalytic evalua-
tion, even for those candidates for which key reuse is considered as a misuse of
the mechanism. Having an accurate estimate of the number of queries to the key
mismatch oracle and of the complexity of the private key recovery really helps to
assess the possible danger3. We focus here on a case study of the NewHope candi-
date KEMs. An advantage of this choice is that previous work on reconciliation-
based Ring-LWE schemes such as [10] can be partly leveraged. However, as
will be seen in the sequel, the fact that the NewHope suite is encryption-based
and is using encoding techniques induces substantial differences and non-trivially
complicates the cryptanalysis. To the best of our knowledge, no investigation of
attacks against a scheme without reconciliation in a key mismatch oracle model
was published so far.

Previous Work

The danger of accessing a key mismatch oracle within some key agreement pro-
tocols in a key share reuse context has been already exposed several times.
Early examples showing the vulnerability of some standardized Diffie-Hellman
key agreement protocols in such a context were introduced in [20]. The potential
danger of a somewhat related type of attack, namely so-called reaction attacks
against PKE schemes [13], where an adversary can submit a chosen ciphertext
to the legitimate private key owner and access a binary information about her
reaction (whether the decryption succeeds or fails for instance), is probably even
better known. Bleichenbacher’s attack against RSA PKCS#1 of Crypto’98 [4]
can been viewed as an early reaction attack. In 1999, Hall, Goldberg and Schneier
presented reactions attacks against several PKE schemes [13]. In the particular
case of lattice based cryptography, several notes on the vulnerability of NTRU to
reaction attacks and its protection against such attacks were published [14,15].
In 2003, Howgrave-Graham et al. proposed a reaction attack on NTRUEncrypt
that leverages decryption failures [17]. A recent example of reaction attack is Guo
et al.’s key recovery attack on the code-based PKE QC-MDPC [12]. It is thus
natural that NSA, in 2015, warns NIST Post-Quantum candidates against active
attacks [19]. Few times later, the first concrete attacks on a Ring-LWE based
key establishment leveraging a key mismatch oracle was proposed by Fluhrer [10]
(see also [8,9]).

These attacks rely on the fact that the reconciliation step can be exploited
by an active adversary to retrieve some information on the secret static key.
Despite the warnings issued in [19], certain NIST candidates are vulnerable
to active attacks. Indeed, it is shown in [3] that the secret key of the NIST

3 A similar need to investigate the resilience of candidate algorithms in misuse sit-
uations was encountered in the framework of the CAESAR competition aimed at
selecting authenticated encryption primitives. In that competition, much analysis
was conducted on the resistance of candidates to key recovery attacks in misuse
cases such as nonce or decryption-misuse and this provided quite useful information
for the algorithms selection process.



276 A. Bauer et al.

candidate HILA5 can be recovered in the key mismatch oracle setting following
Fluhrer’s approach. In summary, despite the raising awareness of the cryptogra-
phy research community that key mismatch oracle attacks threaten many lattice
based KEMs in case of key reuse, relatively few examples of such attacks have
been published so far.

About the side channel protection of NewHope, no dedicated countermeasure
has been proposed for NewHope so far, but in [21] a side channel protection for
a similar scheme has been proposed. This paper describes a provably first-order
secure masking scheme and its integration into a CCA conversion.

Our Contribution

In the following, we evaluate the security of NewHope when the attacker gets
access to a key mismatch oracle. We concretely explain how the attacker can
have access to such an oracle in different scenarios with the CPA-KEM and the
CCA-KEM. We first introduce a straightforward way to recover such an oracle
in the CPA-KEM. The adversary enters a key establishment with Alice, derives
from her guess on the shared key produced by Alice a guess on the resulting
session key she produces, and attempts to initiate a session with Alice under
this guessed session key. The success or failure of this protected communication
attempt provides the desired key mismatch oracle4.

Then, at the end of the paper, we elaborate other scenarios on the CCA ver-
sion which require side channels. Indeed, the CCA-KEM version induces major
extra differences with formerly analyzed reconciliation-based schemes, that also
deserve being analyzed. Because of the CCA transform, a key mismatch ora-
cle cannot be accessed directly. But we show that for unsufficiently protected
implementations, simple faults or side channels could bypass this transform and
provide the desired key mismatch oracle. While unprotected versions of CCA-
KEM are extremely efficient, its implementations must be very carefully pro-
tected against any key mismatch oracle leakage if key pairs are potentially reused.
This might eventually come with a cost in terms of performance. This study may
help the developers to protect the algorithms against a possible key mismatch
oracle leakage.

The core of this work is the description of a new attack on NewHope using
the key mismatch oracle. Even if the existence of previous work attacks (see
[8,10]) casts suspicion on the resistance of NewHope CPA-KEM against active
attacks in the same key-reuse setting, one has to take into account substantial
differences between the reconciliation-based paradigm of the original NewHope
and the encryption-based paradigm of CPA-KEM. Because of these differences,
the detail of Fluhrer’s attack [10] is not really inspiring for mounting an attack
and any direct transposition attempt would be hopeless. Finding an efficient way
4 It is worth noticing that the same direct access to a key mismatch oracle remains

feasible if the KEM exchange is embedded in an authenticated key establishment
protocol, under the sole condition that the adversary is the owner of a valid authen-
tication (or signature) key.
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of deriving information on the secret key from the key mismatch oracle with a
low number of queries induces several issues. The main difficulty is to retrieve
enough leakages after the application of the encoding and compression functions.
We investigated how to leverage these functions in order to find a simple way
to instantiate the oracle and identified precise elements in the polynomial ring
that can be used by the adversary to recover the secret. Finally, we had to take
into account the fact that NewHope coefficients are in [−8, 8].

We experimented our attack with a Magma CAS proof of concept. Under
NewHope parameters, we were able to recover exactly the secret S with on aver-
age 16, 700 queries for NewHope1024 which corroborates the expected perfor-
mance of the model.

Paper Outline

In Sect. 2 we introduce some notation and describe the NewHope CPA scheme.
In Sect. 3, we describe the notion of key mismatch oracle and how practical it can
be for the CPA-KEM. In Sect. 4, we detail our attack using the key mismatch
oracle. In Sect. 4.4, we present our experiments. In Sect. 5, we show how the key
mismatch oracle can be retrieved with side channels with the CCA-KEM. Finally,
in Sect. 6, we summarize our results and discuss future research.

2 Preliminaries

2.1 Notations

Let q be a prime number in N and let Zq denote the ring elements Z/qZ. Depend-
ing on the context, the elements in Zq can be equivalently represented as integers
in {0, . . . , q−1} or in {−( q−1

2 ), . . . , ( q−1
2 )}. In the following, the notation R refers

to the polynomial ring Zq[x]/(xN + 1) with N a power of 2. If P belongs to R,
it is a polynomial of degree (N − 1) with coefficients P[i] belonging to the set
Zq. Such elements can also be represented as vectors whose i-th coordinate is
the coefficient related to xi. In the sequel we use either the polynomial notation
or the vectorial one. For readability, bold capital letters are used to refer to
elements in R and bold lowercase letters will refer to compressed elements, i.e.
elements in R with small coefficients.

Let us define Ga as the centered Gaussian distribution of standard deviation a
and ψk the centered binomial distribution of parameter k. Its standard deviation
is

√
k/2. One may sample from ψk for integer k > 0 by computing

∑k
i=1 bi − b′

i,
where the bi,b′

i ∈ {0, 1} are uniform independent bits.

Property 1. The elements generated according to a centered binomial distribu-
tion ψk of parameter k are in the interval [−k, k]. Thus, the coefficients of the
small elements drawn from R in NewHope are in [−8, 8].
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In the figures and algorithms, the notation $←− D means picking an element
in R having all its coefficients generated at random according to distribution
D. The notation coin←−−− D means using a coin ∈ {0, ..., 255}32 as a seed to pick a
pseudorandom element in R having all its coefficients according to distribution
D. This is generally done using a hash function like SHAKE-128. In the paper
we refer several times to Sign(a) with a ∈ Z by using the convention that it is
defined as positive when a ≥ 0 and as negative when a < 0. If x ∈ R, the integer
�x� is defined as �x + 1

2� ∈ Z.

2.2 NewHope

NewHope [23,25] is a RING-LWE based key establishment scheme derived from
NewHope-Usenix [1], that is simplified because it does not use the reconcilia-
tion anymore. In this section, we describe NewHope, where we omit some details
(e.g. the so-called NTT transform or the encoding of the messages) to simplify
the presentation. This does not imply any loss of generality for our attack. To
ease the understanding, we will describe the CPA-KEM version of NewHope in
this section as the key mismatch oracle can be easily derived. We will present the
CCA-KEM later in Sect. 5 when we present some ways to access a key mismatch
oracle.

The polynomial ring R used in NewHope has the following parameters:
(N, q) = (1024, 12289) or (N, q) = (512, 12289). The coefficients of the small
elements drawn from R follow a centered binomial distribution ψN

k with k = 8.

The standard deviation is a =
√

8
2 = 2. We decided to focus on explaining the

attack for N = 1024. Indeed, for N = 512 there is twice less redundancy and
the attack is easier. Thus, we fix N = 1024. These elements will be seen as vec-
tors of size N with integer components. We denote s = 1536 which is such that
q = 8s + 1. The aim of the system is to share a key of size 256 bits following the
exchange mechanism outlined below and represented in Fig. 1.

A public value A ∈ R is derived from a published seed. Four specific functions
are introduced: Encode, Decode, Compress and Decompress. They are described
in Algorithms 1, 2, 3 and 4. Note that we partly deviate from the notation of
the original specification of these algorithms, since we use the parameter s (the
original description is in [25]). The following paragraphs describe these functions.

Compress and Decompress. The function Compress (Algorithm 3) takes as input
a vector C in R and applies on each of its component a modulus switching
to obtain an element c in Z8[x]/(xN + 1). Compressing a vector C essentially
means keeping the 3 most significant bits of each coefficient. The function Decom-
press (Algorithm 4) shifts the bits of the input c ∈ [0, 8[N to place them among
the most significant bits. These functions are not the inverse of each other.

Encode and Decode. The Encode function takes a n-bit input ν where n =
N/4 and creates an element K ∈ R which stores 4 times the element ν. The
redundancy is used by the function Decode to recover ν with a noisy K.

NewHope Key Encapsulation Mechanism. Let us now describe this scheme.
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Fig. 1. Simplified NewHope

1. Setup: Alice generates 2 small secrets S and E in R. She sends B = AS + E
to Bob.

2. Key Encapsulation: From a random coin acting as a seed, Bob derives 3 small
secrets S′, E′ and E′′ in R and a random element νB of size n which will be the
encapsulated key. He computes U = AS′ + E′. He encodes νB into a redun-
dant element K of R using the algorithm Encode (Algorithm 1). Bob uses
Compress (Algorithm 3) to compress C = BS′ +E′′ +K into an element with
very small coefficients as described above. He sends (c = Compress(C),U) to
Alice. He deduces the shared secret as μB = SHAKE-256(32, νB).

3. Key Decapsulation: Alice decompresses c with Decompress into C′ (Algo-
rithm4). She computes C′ − US which is close to

C − US = ES′ + E′′ + K − E′S. (1)

Algorithm 1. Key Encoding
1 function Encode(ν ∈ {0, 1}n)
2 k ← 0
3 for i := 0 to n − 1 do
4 Ki ← νi.4s
5 Ki+n ← νi.4s
6 Ki+2n ← νi.4s
7 Ki+3n ← νi.4s

8 end
9 Return k

Algorithm 2. Key Decoding
1 function Decode(K ∈ R)
2 ν ← 0
3 for i := 0 to n − 1 do

4 t ← ∑3
j=0

∣
∣
∣
∣ Ki+jn − 4s

∣
∣
∣
∣

5 if t < q then νi ← 1 else νi ← 0

6 end
7 Return ν
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Algorithm 3. Compression
1 function Compress(C ∈ R)
2 for i := 0 to N − 1 do

3 c[i] ←
⌈

8.C[i]
q

⌋
mod 8

4 end
5 Return c

Algorithm 4. Decompression
1 function Decompress(c ∈ [0, 8[N )
2 for i := 0 to N − 1 do

3 C’[i] ←
⌈

q.c[i]
8

⌋

4 end
5 Return C’

Since ES′ +E′′ −E′S is small, she recovers an estimated value νA of νB with
a decoding algorithm called Decode(Algorithm 2). From νA, she can deduce
μA = SHAKE-256(32, νA).

Since S,S′,E,E′,E′′ are small, Alice and Bob get the same key μ = μB = μA

with high probability.

Remark 1. This Section presented NewHope-CPA-KEM which is the target
Sect. 4’s analysis. However a PKE called NewHope-CPA-PKE has been intro-
duced in [23]. The slim difference lies on the fact that νB becomes the encrypted
message. The CCA security of the CCA version, called NewHope-CCA-KEM
relies on the CPA security of NewHope-CPA-PKE (see Sect. 5).

3 The Key Mismatch Oracle

This section introduces the notion of key mismatch oracle and a way to access it
in the CPA version. We will always consider a malicious active adversary, Eve,
who acts as Bob. Her messages, key and intermediate values will be denoted as
mE , μE and νE instead of mB , μB and νB .

Remark 2. One might wonder how a malicious Alice can recover Bob’s secret in
a case of key reuse by Bob. In NewHope, this can be done with 2 queries, see the
full version of our paper [2].

The goal of the adversary is to recover Alice’s static private keys S and E by
using the following oracle several times. We will focus on recovering the secret
S. E can be derived from S with E = B − AS.

Definition 1 (key mismatch oracle). A key mismatch oracle is an oracle that out-
puts a bit of information on the possible mismatch at the end of the key encap-
sulation mechanism.

In the NewHope context, the key mismatch oracle is the oracle that takes any
message mE and any key hypothesis μE as input and outputs the following

O1(mE , μE) =

{
1 if (μA =) Decapsulation

(
mE ,S

)
= μE

−1 otherwise
(2)
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Such an oracle should leak information on secret S because its output is
clearly correlated to the value of S. However, this oracle is less powerful than a
CCA decryption oracle against CPA-PKE. Indeed, the only information given is
a bit representing the possible key mismatch. The difficulty is to choose appropri-
ate (mE , μE) to retreive information of a small part of S. In Sect. 4, we present
how to recover the secret S from such an oracle.

The simplest way to access such an oracle is when the CPA-KEM is imple-
mented with static secrets. In other words, Alice will keep her secrets S and E
for several key establishment requests. We consider that Eve does not necessar-
ily follow the scheme specification. She can “cheat” and generate a message mE

that is not derived from a coin or from random small secrets S′,E′ and E′′. By
definition, the CPA version of NewHope is passively secure, an attacker using a
key mismatch oracle is outside of the security assumptions5. This has been well
highlighted in paragraph 2.3, Section No key caching of the original paper
of NewHope-Usenix. However an implementation of NewHope which allows
misuse cases (see [24]) cannot be completely excluded. Thus it is important to
precisely evaluate such a threat and consider the following attack model.

Attack Model 1. Alice will accept any syntactically correct message mE and
always try to use the corresponding shared key for communicating. When she
derives the shared key, either she is able to decrypt messages exchanged after
that with Eve (and thus Eve deduces that the shared key is the same) or she
will notify Eve that something went wrong with the key agreement. Eve will then
deduce that the key is different. In both cases, Eve gets the desired key mismatch
oracle.

In Sect. 5, we show how to get access to such an oracle with side channels in
the CCA framework.

4 Attack on NewHope with Key Mismatch Oracle

We assume here that Eve, the attacker, has access to O1, a key mismatch oracle as
defined in Sect. 3. Let us now explain how she proceeds to recover Alice’s static
secret key S following Attack Model 1.

5 While key reuse is against the designers’ requirements of the NIST submission
NewHope, as expressed in the footnote in the design rationale on p. 16, this
requirement does not seem to be formally reflected in the algorithm description
of Sect. 1.2. This section indeed defines separate algorithms for key pairs generation,
(en/de)capsulation, but does not state that a pair shall be used only once. Thus,
though running NewHope with key reuse represents a misuse situation, analyzing
the security of this scheme in this situation is definitely much more relevant question
than considering variations in the formal specification of NewHope and investigating
resulting weaknesses.
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4.1 Rewriting the Key Mismatch Oracle

The use of the key mismatch oracle obviously leaks information on Alice’s secret
key S. But the task of recovering S entirely seems much more complicated. Indeed
as defined in Sect. 3, the only information provided by the key mismatch oracle is
a bit representing the success or mismatch of the key agreement. The difficulty
for Eve is to choose appropriate (mE , μE) pairs to get useful information on
small parts of S.

In a first step, Eve simplifies her part of the protocol in such a way that
the knowledge of the key mismatch oracle output bit O1(mE , μE) can be easily
exploited. To do so, she can fix for instance μE such that:

νE = (1, 0, . . . , 0) and thus μE = SHAKE-256(32, νE). (3)

The value of νE = (1, 0, . . . , 0) has not been arbitrarily chosen; as we will see
later, the 0 in positions 1 to n − 1 will help the success rate of the attack
(see Proposition 3). From now on, the value of μE is fixed according to Eq. (3).
Moreover, when replacing mE by its definition: mE = (c,U), the oracle O1 can
be reformulated using the oracle O2 defined below.

Definition 2. Let us introduce oracle O2 such that O2(c,U) = O1

(
(c,U), μE

)
.

With this new definition, Eve can adapt the values of c and U to leverage Oracle
O2 and retrieve information on S. In other words, since μE is fixed, the inputs
(c,U) are the degrees of liberty for finding S.

From Alice’s side, the link between νA and S passes through the functions
Decode, Decompress (see the figures in full version of our paper [2].) and the
element K′: νA = Decode(k′) = Decode(C − US) = Decode(Decompress(c) −
US). Thus, from the definition of the Decode algorithm, the value of νA[i], the
i-th component of νA, is deduced from the following sign computation:

Sign

( 3∑

j=0

∣∣∣∣ (Decompress(c) − U · S)[i + nj] − 4s

∣∣∣∣ −q

)
(4)

We recall here that 0 is positive by convention.
The problem for Eve is that she is unable to know the number of errors that

will occur at the end of the decryption computations and the positions in which
they appear. Indeed, the key mismatch oracle only gives one bit of information
corresponding either to mismatch or success. If there is a mismatch, Eve knows
that at least one bit of νA is different from νE but she can not determine which
one (or which ones). Therefore, in order to mount an effective attack, Eve needs
to restrict all these different possibilities by making the following hypothesis:

Hypothesis 1. For i from 1 to n − 1, the component νA[i] is equal to 0.

If Hypothesis 1 is verified, any failure in the communication comes from a
single error in νA located in the very first component νA[0]. Indeed, in that case,
the success of the exchange only depends on the first computed value νA[0]. In
particular, if we assume this hypothesis, the oracle O2 depends only on the νA[0]
and we obtain the following result.
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Lemma 1. Under Hypothesis 1, the initial oracle O2 can be rewritten as

O2(c,U) = Sign

( j=3∑

j=0

∣∣∣
∣ (Decompress(c) − US)[0 + nj] − 4s

∣∣∣
∣ −q

)

For mounting her attack, Eve has to find pairs (c,U) that

1. target the smallest number of bits of S
2. verify Hypothesis 1

For item 1, since the Decode algorithm takes coefficients of S four by four,
the size of the smallest target is a quadruplet of coefficients of S. Actually, for a
given quadruplet of integers � = (�0, �1, �2, �3) and a target index k (i.e. an index
corresponding to the components of S that Eve wants to retrieve), by taking

U = sx−k and c =
3∑

j=0

(
(�j + 4) mod 8

)
· xnj (5)

one can prove (see in Proposition 1) that Eve targets the quadruplet
(
S[k +

nj]
)
j=0···3. Indeed, the element x−k will “rotate” S in order to target

(
S[k +

nj]
)
j=0···3 and c is induced by the quadruplet � = (�0, �1, �2, �3) that can vary.
About item 2, with this choice of (c,U), the Hypothesis 1 has good chances to

be verified because the coefficients of c outside from the set {k +nj| j = 0 · · · 3}
are 0. So, the same coefficients of C − US have good chances to be small.
Then, Alice is likely to derive 0 for these coefficients of νA. However, it is not
always verified and this will impact the attack’s success rate. We will discuss
and compute this probability later in Proposition 3.

We can now introduce O3, a reformulation of O2 depending on target index
k and the quadruplet � (see Eq. 5):

O3(k, �) = O2

(
sx−k,

3∑

j=0

(
(�j + 4) mod 8

)
· xnj

)

This formulation of the key mismatch oracle is more convenient in order to
explain how Eve will gather information on S from instantiations of �. The
following proposition shows a first result in this direction.

Proposition 1. Final oracle. Let us assume that Hypothesis 1 is verified. Let
k be a target index (k ∈ [0, n − 1]). For a given integer quadruplet � in [−4, 3]4,
the (c,U) explicited in Eq. 5 is such that

O3(k, �) = Sign

( j=3∑

j=0

∣∣∣
∣ �j − S[k + nj]

∣∣∣
∣ −8

)

Proof. The proof is given in the full version of our paper [2].

In the next section, we explain how to effectively use the form O3 of the key
mismatch oracle to extract the secret S.
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4.2 Recovering Very Small Coefficients of S

Let us recall that the secret S is a polynomial in Zq[x]/(xN +1) with coefficients
in [−8, 8], it can be seen as a vector of N components S[i]. Eve will recover
the coefficients of the secret S four by four. Let k be the index of the targeted
quadruplet [S[k],S[k +n],S[k +2n],S[k +3n]]. The index k goes from 0 to n−1
and for each fixed k, Eve will call the oracle O3(k, �) with several appropriate
value of � until she gets the secret values.

For simplicity, let us now fix the index k and denote Sj = S[k + nj].
The following proposition and corollary describe an algorithm that, when

iterated (see Corollary 1), allows to recover Sj for j from 0 to 3.

Proposition 2. Let us fix j in [0, 3]. Under Hypothesis 1, if Sj is in [−3, 2]
and (Si)i�=j ∈ [−4, 4], there exists a probabilistic algorithm A which recovers the
value Sj in 8 queries to oracle O3 with a success probability depending on the
distribution of (Si)0≤i≤3.

Corollary 1. Under Hypothesis 1, if Sj is in [−3, 2] and (Si)i�=j ∈ [−4, 4], there
exists a probabilistic algorithm A′ which recovers the value Sj with an average
number of queries to oracle O3 depending on the distribution of (Si)0≤i≤3.

In the sequel of this section, we give the proof of Proposition 2 by first pre-
senting the construction of the algorithm and then by introducing a method to
assess the success rate. We refer the reader to the full version of our paper [2]
for the proof of Corollary 1.

Proof of Proposition 2

Description of A. Let us prove the proposition by focusing on the secret S0

and by explaining how it can be recovered in 8 queries to oracle O3. The process
will then be exactly the same for the three other values S1, S2 and S3.

The first step consists in taking the 3 values �1, �2, �3 at random inside the
interval [−4, 3]. Knowing that all Sj are fixed, the quantity

∑3
j=0 |�j − Sj | − 8

can thus be expressed by fv(�0) =
∣∣�0 − S0

∣∣ + v − 8 with v =
∑3

i=1 |�j − Sj | a
fixed unknown constant (since all Sj are unknown). Let us now see how fv(�0)
behaves when �0 varies, see Fig. 2 for an illustration.

We now assume that one makes 8 queries to the oracle O3: one for each value
of �0 varying inside [−4, 3]. Such queries imply having access to Sign

(
fv(�0)

)

∀�0 ∈ [−4, 3]. The analysis can thus be split in 2 cases:

1. If (v − 8) ≥ 0 then all queries to oracle 1 obviously lead to “positive signs”.
It is quite clear when one looks at Fig. 2.

2. If (v − 8) < 0, two subcases occur
– In some cases, there exists two possible values τ1 < τ2 such that the

function |�0 − S0| + (v − 8) goes from a positive value to a negative one
at point τ1 and then from a negative value to a positive one at point τ2.
We call this case the favorable case. Figure 3 provides a good illustration.
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0
S0

(v − 8)

0

Fig. 2. If v − 8 ≥ 0

0
τ1 τ2S0

v − 8

0

Fig. 3. If v − 8 > 0

0
τ2S0

v − 8

0

Fig. 4. If v − 8 � 0

�0 −4 · · · τ1 − 1 τ1 τ1 + 1 · · · τ2 − 1 τ2 τ2 + 1 · · · 3
O + · · · + + - · · · - + + · · · +

– If (v−8) < 0 and v 	 8, only one change of sign will occur in the interval
[−4, 3]. Figure 4 provides a good illustration.

Figure 3 illustrated what happens in the favorable case. Around S0, the trace
has a slope equal to + or −1. Because of the symmetry, the value S0 can simply
be recovered by:

S0 =
τ2 + τ1

2
. (6)

If we are not in the favorable case, two such values τ1 and τ2 do not exist.
This means that the constant v is not appropriate.

Termination of A. For any S0 ∈ [−3, 2], A has a non zero success probability.
Indeed, no matter the values of (S1, S2, S3) in [−4, 4]3, the 3-uple (�1, �2, �3) ∈
[−4, 3]3 defined by

(
�1 = S1 − 2 · Sign(S1), �2 = S2 − 2 · Sign(S2), �3 = S3 − 3 · Sign(S3)

)

is at least one of the choices inducing a favorable case. Actually, one can check
that this choice implies that v = 7. Thus v − 8 = −1 which always gives a
favorable case for finding S0 ∈ [−3, 2].

Table 1. Success probability of A for (Sj)1≤j≤3 following ψ4 distribution

S0 −3 −2 −1 0 1 2

Probability (%) 14 27 39 39 27 14
Expected number of iterations (1/probability) 7.1 3.7 2.6 2.6 3.7 7.1

Success Probability. A precise probabilistic study on the (Sj)1≤j≤3 to assess
the success rate of algorithm A is detailed in the full version of our paper [2]. In
Table 1, one can find the probability of success assuming that S1, S2, S3 follow
a binomial distribution ψ4. The expected number of iterations is the average
amount of tries before recovering the secret. 
�
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Example 1. Let us suppose that Si = [0,−2, 1,−1]. For (�1, �2, �3) = (2,−2,−1),∑3
j=0 |�j − Sj | − 8 = |�0 − S0| − 2. If we query the sign of the latter for �0 =

−4,−3,−2,−1, 0, 1, 2, 3, we get: +, +, +, -, -, -, +, +. We can conclude that
S0 = 1−1

2 = 0. Whereas, for (�1, �2, �3) = (−2, 0, 1),
∑3

j=0 |�j − Sj | − 8 = |�0 −
S0|−5. The sign for �0 = −4,−3,−2,−1, 0, 1, 2, 3 becomes: -, -, -,-, -, -, -, -. We
cannot conclude anything on S0.

At the end of this section, with Corollary 1, we know that if S is generated
with coefficients following the ψ4 distribution and if Hypothesis 1 is verified,
there exist an algorithm that recovers each coefficient of S that is in [−3, 2] (i.e.
almost 96% of the coefficients). If a coefficient of S is not in [−3, 2], no favorable
case will appear and the coefficient will not be found. In the next section, we
adapt this method for NewHope.

4.3 Recovering S for NewHope Parameters

In this section, we describe a way to recover S for NewHope parameters, i.e.
when the binomial parameter is 8. According to Property 1, the coefficients of
S[k] are in [−8, 8]. This is outside from the hypothesis made in Proposition 2.
Indeed, the coefficients S[k] should lie in [−3, 2]. One can make the following
change in order to fit with Proposition 2 hypothesis: S1 = S

2 . In order to target
S1 instead of S, one can change U from Eq. 5 to be the following U = s

2x−k.
Let us wrap up the attack into the following Proposition.

Proposition 3. There exists a probabilistic algorithm B which recovers
NewHope secret S with high probability using an average of 18, 500 queries for
N = 1024.

Proof. Let k ∈ [0, n − 1]. The distribution of probabilities for S[k] is in Table 2.

Case 1: S[k] belongs to {−8,−7,5,6,7,8}. The probability of this case is
around 1%. In that case, at most one change of sign will always happen. Then,
only the sign of S[k] can be recovered and a brute force should be done at the
end of the attack to distinguish among the possible values. For N = 1024, on
average 10 coefficients out of 1024 will not be found. When a positive value is
not found, it has 8/10 chances to be a 5. At the end of the attack, a bruteforce
step evaluating B − AS and taking account of the probabilities can be done.

Table 2. Distribution ψ8 (note that the probability is the same for negative values)

S[k] 0 1 2 3 4 5 6 7 8

Probability (×216) 12870 11440 8008 4368 1820 560 120 16 1
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0τ1 τ2S[k]
2

0

Fig. 5. When S[k] mod 2 = 0

0τ1 τ2S[k]
2

0

Fig. 6. When S[k] mod 3 = 1

Case 2: S[k] belongs to {−6, ...,4}. In that case, S1[k] belongs in the inter-
val [−3, 2]. The attack is the one from Proposition 2 with a different secret
S1[k]=S[k]

2 . However, the results will not be as accurate as before. We will show
that there is a subtelty that allows Eve to recover the exact value of S[k].
There are 2 possible results depending on S[k] mod 2:

– If S[k] mod 2 = 0, then S1[k] ∈ {−3,−2,−1, 0, 1, 2}. Proposition 2 allows Eve
to recover S1. In other words, Eve will recover a succession of signs where
an odd number of (−) occurs (see Fig. 5). She will then be able to recover
S[k]
2 = τ1+τ2

2 and then S[k].
– If S[k] mod 2 = 1 then S1[k] ∈ {−2.5,−1.5,−0.5, 0.5, 1.5}. In a favorable case

of Proposition 2, the situation will be different. As in Fig. 6, the number of
(−) is then even.

Wrap Up. Here is a procedure to recover S[k].

Case 1. If the number of (−) is odd, then S[k] is even and S[k] = 2 τ1+τ2
2 = τ1+τ2

Case 2. If the number of (−) is even, then S[k] = 2
⌊

τ1+τ2
2

⌋
+ 1

Case 3. If at most one change of sign occur, the procedure is restarted.

If the number of restarts is too large (say, ≥ M), the procedure is stopped
and the coefficient, placed in a bruteforce set, is found at the end of the attack.

Table 3. Average number of queries

Value −6 −5 −4 −3 −2 −1 0 1 2 3 4 −8, −7, 5, 6, 7 or 8

Average queries 33 33 19 20 16 17 17 15 22 20 38 M

Number of Queries. The amount of queries is derived with the same technique
as in the full version of our paper [2]. See Table 3 for the average number of
queries. Let us set the threshold M to 50, to get the total average number of
queries, we compute the expected number of queries for S[k] (≈18) and multiply
it by N = 1024.
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Success Probability. The success probability depends only on Hypothesis 1
with S1, which becomes the following for S.

Hypothesis 2. ∀i, k ∈ [1, n − 1]
∑j=3

j=0

∣∣∣
∣

S[k+i+nj mod N ]
2 + 4

∣∣∣
∣≥ 8

Hypothesis 2 is true with a probability 94.6% for N = 1024. Indeed, to com-
pute this probability, one can check whether each quadruplet verifies it. Only a
few unlikely quadruplet (e.g. [8, 8, 8, 8]) do not verify the hypothesis. 
�

4.4 Experimental Results

We implemented a proof of concept with Magma CAS [5]6. We coded
NewHope according to its parameters and used the key mismatch oracle for the
attack. We worked on a basic optimization of the number of queries. We ran
1000 experiments and recovered more than 95% of the secret keys in an average
time of 30 minutes per key and 16,700 queries. We still think that the number
of queries and the time can be better optimized.

5 Accessing the Key Mismatch Oracle with the CCA
Version of NewHope

In order to be protected against active attacks, the CPA-KEM of NewHope has
been transformed according to the Hofheinz, Hövelmanns and Kiltz CCA trans-
formation [16] which is a variant of the Fujisaki-Okamoto transformation [11].
The CCA security is then based on the CPA security of the PKE. The CCA
transformation of the algorithms defining this version of NewHope is detailed
in Algorithms 5, 6 and 7. These algorithms use the underlying CPA-PKE of
NewHope as defined in Sect. 1.2.1 of [23].

Algorithm 5. NewHope CCA-
KEM Key Generation
1 function NewHope CCA-KEM.Gen()
2 (pk, sk) ← NewHope-CPA-PKE.Gen()

3 s ← {0, ..., 255}32

4 return (pk, s̄k = (sk||pk||SHAKE-256(32, pk)||s)

Algorithm 6. NewHope-CCA-
KEM Encapsulation
1 function NewHope-CCA-KEM-Encaps(pk)

2 coin ← {0, ...255}32

3 µ ← SHAKE-256(32, coin) ∈ {0, ..., 255}32

4 K||coin′||d ←
SHAKE-256(96, µ||SHAKE-256(32, pk)) ∈
{0, ..., 255}32+32+32

5 c ←NewHope-CPA-PKE.Encrypt(pk, µ; coin′)
6 ss ← SHAKE-256(32, K||SHAKE-256(32, c||d))
7 return (c̄ = c||d, ss)

One can note the main security measure in Algorithm 7 where the instruction
in red corresponds to a double encryption to check if the message mB has been
honestly generated.
6 The Magma code can be found at https://www.di.ens.fr/∼mrossi/.

https://www.di.ens.fr/~mrossi/
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More precisely, in the key mismatch oracle, the message mB can be adjusted
by the attacker but with this CCA version of NewHope, Eve must follow the
protocol and generate mE according to a seed called coin′ that is derived from
μE and another seed called coin (a 32-byte random integer). Then, Alice will
derive coin′ to check if μE was computed following the protocol. Then, a key
mismatch will come from the following oracle

O4(coin, μE) =

{
1 if Dec(Enc(mA, coin),S) = μE

−1 otherwise
(7)

This oracle is less convenient than O1 because with an honest behaviour, the
error probability is claimed to be lower than 2−213 in the NIST specification
(paragraph 4.2.7 of [23]). In the sequel, we point at critical steps inside the CCA
transform that let Eve access oracle O1 using side channel or fault attacks.

On Using Side Channel or Fault Attack

When the attacker has access to a device implementing Alice’s side of the
exchange, the attack model should take into account situations where some algo-
rithmic security measures may be bypassed by using hardware attacks.

Power Analysis. Here we consider that Eve is able to make a power analysis
during the verification step of Alice decapsulation algorithm.

Algorithm 7. NewHope-CCA-KEM Decapsulation
1 function NewHope-CCA-KEM.Decaps (c̄, s̄k)

2 c||d ← c̄ ∈ {0, ..., 255}NEWHOPE CPAPKE CIPHERTEXTBYTES+32

3 sk||pk||h||s ← s̄k ∈ {0, ..., 255}32+32+32+32

4 µ′ ← NewHope-CPA-PKE.Decrypt(c, sk)

5 K′||coin′′|d′ ← SHAKE-256(96, µ′||h) ∈ {0, ..., 255}32+32+32

6 if c =NewHope-CPA-PKE.Encrypt(pk, µ′; coin′′) and d = d′
7 then fail ← 0 else fail ← 1 end if

8 K0 ← K′
9 K1 ← s

10 return ss = (SHAKE-256(32, Kfail||SHAKE-256(32, c||d))

Attack Model 2. We assume that Alice has done the CCA key generation.
Eve sends messages mE with a wrong coin. Alice will then reject any messages
me because the verification is never passed. Eve, the attacker, is able to make a
power analysis during the verification step of Alice’s decapsulation algorithm.

With a power analysis, Eve can easily get the desired key mismatch oracle with
a low number of traces.

A first idea would be to target the computation of d = d′ with differential
power analysis. The following code corresponds to NewHope-CCA-KEM verifica-
tion step where a = (c, d), b = (NewHope-CPA-PKE.Encrypt(pk, μ′; coin′′), d′)
and len = 17/8 · N + 32.
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∗ Name : v e r i f y
∗ Desc r ip t i on : Compare two arrays for equa l i t y in constant time .
∗ Arguments :
∗ const unsigned char ∗a : po in te r to f i r s t byte array
∗ const unsigned char ∗b : po in te r to second byte array
∗ s i z e t l en : l ength o f the byte arrays
∗ Returns 0 i f the byte arrays are equal , 1 otherwise
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int v e r i f y ( const unsigned char ∗a , const unsigned char ∗b , s i z e t l en )
{

u in t64 t r ;
s i z e t i ;
r = 0 ;

for ( i =0; i<l en ; i++)
r |= a [ i ] ˆ b [ i ] ;

r = (−r ) >> 63 ;
return r ;

}

This naive method actually works well in practice for an unprotected scheme
because when d = d′, r is ored with 0 during 17/8 · N iterations and when
d = d′, r is ored with arbitrary values during 17/8 · N iterations. With a single
trace analysis, the equality d = d′ can be verified. One would argue reasonably
that unprotected schemes are always vulnerable. The main aim of [21] is to
propose a countermeasure to such an attack for a similar scheme which uses the
CCA transform. It is an open problem, in this protected context, to extend this
approach to a second order power analysis attack. A more realistic model relies
on an invasive attack, this is what we present in the sequel.

Single Fault Attack. We consider inserting a fault during the computation of the
verification step which cancels the CCA transform. The attack model becomes:

Attack Model 3. We assume that Alice has done the CCA key generation.
Eve, the attacker, is able to set the value r to 0 in the verification step of Alice’s
decapsulation algorithm.

If Eve is able to set the value r to 0 anytime during the check d = d′, she
can bypass the reencryption and the mismatch will appear only if d = d′. Then
oracle O1 becomes accessible. Indeed, Eve can thus send any message mE . Alice
derives a wrong coin′ but the verification is skipped with the fault. If d = d′,
Alice derives the shared key for initiating a communication. If d = d′, Alice
will notice Eve that the key agreement failed. Eve will then deduce that the
key is different. This vulnerability has been underlined in Sect. 3.6 of [21] for a
similar scheme. But no countermeasure has been added to protect against this
single fault attack, which can practically be induced by a laser. Countermeasures
should have thus to be considered (see [18]), what may impact the efficiency of
the verification.

6 Conclusion

The resilience of NIST post-quantum candidate algorithms in misuse situations
is worth being investigated. It will help developers to propose implementations
with countermeasures tightly designed to ensure the security in extreme contexts
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(e.g. smart card, IoT) without decreasing too much the efficiency. In this paper,
we describe an active attack against NewHope-CPA-KEM with (public, private)
key pair reuse. This clearly confirms that if the designers’ caveat against any
private key reuse (e.g. temporary caching) is not strictly followed, this results
in a practical, low complexity, key recovery attack. Our study indeed indicates
that setting an upper limit of a few hundreds on the number of authorized key
reuses would not be conservative enough, and already expose private keys to
significant information leakages. While unprotected versions of CCA-KEM are
extremely efficient, implementations of this scheme must be very carefully pro-
tected against any key mismatch oracle leakage if key pairs are potentially reused.
As explained in this paper, this is particularly true for countermeasures against
fault attacks. This might eventually come with a cost in terms of performance.
This consideration may become even more important if one considers second
order side channel or combined attacks, which could be a sequel of this work.
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