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Abstract. EPID signatures are used extensively in real-world systems
for hardware enclave attestation. As such, there is a strong interest in
making these schemes post-quantum secure. In this paper we initiate the
study of EPID signature schemes built only from symmetric primitives,
such as hash functions and PRFs. We present two constructions in the
random oracle model. The first is a scheme satisfying the EPID signature
syntax and security definitions needed for private hardware attestation
used in Intel’s SGX. The second achieves significantly shorter signatures
for many applications, including the use case of remote hardware attesta-
tion. While our EPID signatures for attestation are longer than standard
post-quantum signatures, they are short enough for applications where
the data being signed is large, such as analytics on large private data sets,
or streaming media to a trusted display. We evaluate several instantia-
tions of our schemes so that the costs and benefits of these constructions
are clear. Along the way we also give improvements to the zero-knowledge
Merkle inclusion proofs of Derler et al. (2017).

1 Introduction

Enhanced Privacy ID, or EPID, signatures allow members of a group to anony-
mously sign messages on behalf of the group, with the added property that
a group manager can revoke the credentials of a misbehaving or compromised
group member [15,36].

In recent years, EPID signatures have become an important privacy mech-
anism in real-world systems, most prominently in trusted hardware attestation
such as Intel’s SGX. Attestation is a process by which a hardware enclave run-
ning on a client device proves the authenticity of its execution environment to a
remote party. EPID lets the client device attest without revealing its identity to
the remote party. However, EPID signatures used today are not post-quantum
secure [15]. An adversary with a quantum computer could subvert the attestation
process and break a hardware enclave’s security in the worst possible way.

In light of the above, there is strong interest in developing post-quantum
secure EPID signatures. One way to do so is to construct an EPID signature
scheme using only symmetric primitives, which are believed to be post-quantum
secure. This is analogous to constructing a standard signature scheme from hash
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functions [9,16,20,43,44] to obtain a signature scheme whose post-quantum secu-
rity is virtually assured.

Can we build efficient and secure EPID signatures from symmetric primi-
tives? Bellare et al. [6] give a generic construction of a group signature [21], a
related primitive, from a standard signature scheme, public-key encryption, and
a non-interactive zero-knowledge (NIZK) proof. In this generic construction, the
group manager adds a member to the group by signing that member’s public
key. The member can then sign messages anonymously by first using the private
key to sign the message, and then computing a NIZK proof of knowledge of both
this signature and the group manager’s signature on the corresponding public
key. This NIZK proof is the member’s group signature. With some work, their
framework can be adapted to support the EPID group signature definition of
Brickell and Li [15] and to only use symmetric primitives. The NIZK can be
built from the “MPC in the Head” technique of Ishai et al. [3,30,35] using ran-
dom oracles, and the standard signature scheme can also be built from one-way
functions and collision-resistant hashing [9,20,31,43]. Camenisch and Groth [17]
give such a scheme from one-way functions and NIZKs. However, without careful
optimization, this generic approach leads to very inefficient signatures due to the
need for NIZK proofs on complex circuits (the proof size and prover time of these
NIZKs is proportional to the number of multiplication gates in the arithmetic
circuit representing the statement).

1.1 Our Contributions

We construct an EPID signature scheme from symmetric primitives, and take a
significant step towards reducing the signature size.

Towards this goal, we build two signature schemes. Our first construction
greatly reduces the size of the NIZK statement in the signature by using PRFs
instead of signatures wherever possible. In particular, we are able to replace the
inner group member’s signature in the generic approach with a PRF evaluation.
Our construction does not treat the given primitives as a black-box and performs
best when instantiated with NIZK-friendly PRFs and CRHFs. In particular, we
evaluate the scheme using the LowMC cipher [2], also including a comparison to
AES to show the benefit of choosing the right instantiations for our primitives.

Next, we show how to significantly improve our EPID signature by adapting
it to the specific real-world use case where signature verification requires an inter-
action with the group manager to ensure that the signer has not been revoked.
We take advantage of this structure to dramatically reduce the signature size by
moving many heavy verification steps outside of the NIZK, without compromis-
ing anonymity or affecting security. This significantly shrinks the signature size
over the first construction.

Along the way, we develop a technique for proving membership in a Merkle
tree, without revealing the leaf location, using a third preimage resistant hash
function (Sect. 5.4). This also provides an improvement to the recent post-
quantum accumulators of Derler et al. [24].
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Performance and Use Cases. In Sect. 5 we discuss options for instantiating
our schemes, and measure the sizes of the resulting signatures under different
security assumptions. For the circuit sizes needed inside NIZKs in our construc-
tion, ZKB++ [20] provides the most efficient proofs. We report sizes for both
the Random Oracle and Quantum Random Oracle models [11] (using the Fiat-
Shamir [27] and Unruh [48] transforms, respectively), and find that our second
signature scheme, designed for attestation, can support groups of over a million
members with 3.45 MB signatures at 128-bit post-quantum security. While these
signatures are not short, it is important to keep in mind that several megabytes of
traffic for attestation is quite acceptable for many applications of trusted hard-
ware, especially where the data transfer needs of the higher-level application
dwarf the size of the attestation.

One example is the case of analytics over large private data sets, an area
of heavy investment, both in terms of research and financial resources [29,51].
In this setting, nodes in a distributed network (or the server in a client-server
setting) provide a single remote attestation and then exchange a great deal of
data. As the quantity of data transferred exceeds millions of database records,
the size of the initial attestation ceases to present a major bottleneck.

The case of digital rights management (DRM), for which hardware enclaves
such as Intel SGX seem particularly well-suited [22], is another setting where
the size of our signatures are acceptable. Consider the common situation where
a content provider wishes to stream a movie (easily a few gigabytes in size) to
a subscriber while preventing redistribution or unauthorized viewing of copy-
righted content [50,52]. The few additional megabytes of an attestation do not
matter next to a film or television series several hundred times its size.

1.2 Additional Related Work

Trusted Hardware and Attestation. Hardware enclaves, particularly Intel’s
SGX [22], have recently been used for a variety of security applications [28,
45]. One of the primary cryptographic components of SGX is its use of direct
anonymous attestation, a primitive introduced by Brickell et al. [14]. The EPID
attestation mechanism currently in use by SGX, is due to Brickell et al. [15,36].

Group Signatures. Anonymous attestation and EPID signatures bear a great
deal of similarity to group signatures. Group signatures [21] allow members of
a group to anonymously produce signatures on behalf of the group, with the
added restriction that a group manager has the power to police the behavior of
members, e.g. by revoking their group credentials or stripping their anonymity.
The most frequently used definitions of group signatures are described by Bellare
et al. [6,7]. Subsequent work on group signatures has led to various schemes, for
example, those of Lysyanskaya and Camenisch [18,19], Boneh et al. [10,12], and
a scheme of Groth [34]. These constructions are not post-quantum secure.

Post-quantum Signatures and Proofs. Lattice-based cryptography is a pop-
ular candidate for post-quantum security. Lattice group signatures were intro-
duced by Gordon et al. [33] and extended in several subsequent works [39–42].
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The resulting group signatures are shorter than the ones developed here, but
rely on qualitatively stronger post-quantum assumptions.

Another set of post-quantum tools come from the “MPC in the Head” tech-
nique [35] for zero-knowledge proofs. This idea has been extended by ZKBoo [30],
ZKB++ [20], and Ligero [3]. In particular, Chase et al. use ZKB++ to construt
two post-quantum signature schemes Fish and Picnic [20]. The recent develop-
ment of zk-STARKS [8] opens another avenue to post-quantum zero-knowledge
proofs. In concurrent work, El Bansarkhani and Misoczki [4] describe a stateful
group signature scheme based on hash functions. Their work features small sig-
nature sizes but large keys. Derler et al. [24] and Katz et al. [37] also concurrently
study post-quantum group and ring signatures from symmetric primitives.

2 Preliminaries

Notation. Let x ← F (y) denote the assignment of the output of F (y) to x,
and let x ←R S denote assignment to x of a uniformly random element sampled
from set S. We use λ to refer to a security parameter and sometimes omit it if
its presence is implicit. The notation [k] represents the set of integers 1, 2, ..., k,
and ∅ denotes the empty set. We use AH to denote that A has oracle access to
some function H. A function negl(x) is negligible if for all c > 0, there is an x0

such that for any x > x0, negl(x) < 1
xc . We omit x if the parameter is implicit.

We use f(x) ≈ g(x) to mean that for two functions f, g, |f(x) − g(x)| < negl(x).
PPT stands for probabilistic polynomial time. We use the notation FuncA,B〈a, b〉
to refer to a protocol Func between parties A and B with inputs a and b, respec-
tively. Finally, we allow algorithms to output ⊥ to indicate failure.

Proof Systems. We briefly review the definitions of proof systems that we will
need in later sections. The main notion we will use is that of a non-interactive
zero knowledge proof of knowledge in the random oracle model. We use the
definitions of [26], which modify prior commom reference string-based definitions
of non-interactive zero-knowledge for use in the Random Oracle Model.

Definition 1 (Non-interactive Proof System). A non-interactive proof sys-
tem Π for a relation R consists of prover algorithm that on input x,w outputs a
proof π and a verifier algorithm that on input x, π outputs a bit b. We say that
(P, V ) is correct and sound if it satisfies the following properties:

– (x,w) ∈ R → V (x, P (x,w)) = 1
– (x,w) /∈ R → Pr[V (x, P ∗(x,w)) = 1] < negl for any (potentially cheating)

prover P ∗.

For convenience and clarity of notation, we use P (public(·), private(·), R) to
indicate that the public parts of the input to a prover P for relation R correspond
to the statement x and that the private parts correspond to the witness w.

The zero-knowledge property [32] informally requires that a proof reveals
nothing about (x,w) except that (x,w) ∈ R. Formally, we model this property
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by describing a simulator that can provide a legitimate proof given only x and
not w [5].

Extractability, informally, is a strengthening of the soundness property that
requires any acceptable proof to have an extractor algorithm that can efficiently
recover w with high probability given the ability to interact with the prover.
We refer to Bellare and Goldreich [5] for a full definition. Simulation-sound
extractability [34,46,47] further strengthens the extractability requirement of
proofs of knowledge to enable extracting a witness even after seeing many sim-
ulated proofs.

EPID Signatures. We construct our EPID signature to match the syntax and
security requirements as defined by Brickel and Li [15]. In this section we state
the EPID syntax and sketch security requirements. Full definitions and security
games appear in the full version of this paper. First, anonymity must ensure that
the group manager colluding with any number of group members cannot uncover
the identity of the signer. In particular, we do not want the group manager to
have a tracing key that lets it compromise a group member’s identity from a
signature. Nevertheles, we will later briefly explain how to extend our scheme to
achieve traceability, if desired.

Second, we want a revocation property where a group manager can revoke a
user’s ability to sign by either:

– adding a revoked user’s leaked signing key to a revocation list KEY-RL, or
– adding a revoked user’s EPID signature to a revocation list SIG-RL.

A user is revoked if its key is included in the list KEY-RL, or if any of its signatures
are included in the list SIG-RL.

With this setup, we define the syntax and security properties for an EPID
signature scheme as follows.

Definition 2 (EPID Signature). An EPID signature scheme G involving a
group manager M and n group members, parties P1 to Pn, consists of algorithms
Init, Join, GPSign, GPVerify, RevokeKey and RevokeSig:

– (gsk, gpk) ← Init(1λ): This algorithm takes as input a security parameter 1λ

and outputs a key pair (gsk, gpk).
– 〈certi, (ski, certi)〉 ← JoinM,Pi

〈(gsk, gpk), gpk〉: This is a protocol between the
group manager and a group member Pi where each party has its keys as input,
and both parties get party Pi’s certificate as output. Pi also gets its secret key
ski as an output.

– ⊥/sig ← GPSign(gpk, ski, certi,m,SIG-RL): This algorithm takes as input the
public key, a signature revocation list SIG-RL, and party Pi’s secret key and
certificate. The output is an EPID signature sig.

– 1/0 ← GPVerify(gpk,m,KEY-RL,SIG-RL, sig): This algorithm verifies an
EPID signature sig on a message m given the group public key and
key/signature revocation lists KEY-RL, SIG-RL. It outputs 1 to accept the sig-
nature and 0 to reject it.
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– KEY-RL ← RevokeKey(gpk,KEY-RL, ski): This algorithm adds a secret key ski

to a key revocation list, so signatures created with this key will no longer be
accepted.

– SIG-RL ← RevokeSig(gpk,KEY-RL,SIG-RL,m, sig): This algorithm adds a sig-
nature sig to a signature revocation list, so signatures created with the same
key as sig will no longer be accepted.

The algorithms must satisfy Correctness, Anonymity, and Unforgeability.
For correctness, we require that if a group member has successfully completed

the Join procedure and neither its key nor any of its signatures have been revoked,
then that group member’s signatures should successfully verify.

We define anonymity via the Anonymity game. Informally, the property of
being Anonymous requires that signatures in G hide the identity of the signer
against any coalition of group members (including the group manager) except the
signer herself. The definition of anonymity also implies notions of unlinkability
between a signer and her signatures. The game allows the adversary to create
users, sign messages, and corrupt users of its choosing before attempting to
distinguish which of two uncorrupted users produced a signature on a challenge
message of the adversary’s choice.

Finally, we define unforgeability. Our unforgeability game consists of an
adversary who can add arbitrary parties to a group and corrupt arbitrarily many
members of a group. Security holds if this adversary cannot forge the signature
of an uncorrupted party on a message of its own choosing.

3 Post-quantum EPID Signatures

In this section we describe and prove the security of our first post-quantum EPID
signature scheme. Our construction uses a standard signature scheme where each
group member has its own key pair and a certificate from the group manager.
Instead of signature keys, however, we construct our scheme so that each group
member has a unique PRF secret key that will be used to issue EPID signatures.
As we will see, this leads to significant savings over the general framework of
Bellare et al. [6]. We still need a signature scheme for the group manager to
produce certificates, but the NIZK proof is done over a circuit that verifies a
single signature (the group manager’s) along with a few evaluations of the PRF.
An overview of the construction is as follows. Each member generates its own
secret key sk for a PRF f . During the join procedure it obtains a challenge c
from the group manager, sends t = f(sk, c) to the manager, and obtains back a
signature σ on t. To sign a message, the member first reveals t′ = (f(sk, r), r)
for random r and then a signature of knowledge, where the proof witness is sk
consistent with t′ as well as σ, i.e. a signature on f(sk, c∗) for some c∗. Including
t′ in the clear is used for signature revocation. Note that signatures need to be
verified relative to the same signature revocation lists under which they were
signed.

Collision Resistant PRF. We state and prove security of our scheme using
a function f : K × X → Y that is both a secure PRF and a collision resistant
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function. In fact, it suffices that f be collision-resistant on the keyspace, meaning
that for a target input x ∈ X chosen by the adversary, it should be hard to find
k0 
= k1 ∈ K such that f(k0, x) = f(k1, x). We explain how to construct an
MPC-friendly function with this property in Sect. 5.

Construction 1 (EPID Signature). Our EPID signature scheme G = (Init, Join,
GPSign, GPVerify, RevokeKey, RevokeSig) with security parameter λ uses a signa-
ture scheme S = (Keygen, Sign, Verify), a proof system Π = (P, V ), and a PRF
f that also serves as a collision-resistant hash function.

– Init(1λ): Group manager M runs Keygen(1λ) to get (gpk, gsk) and outputs
this tuple (gpk is published and gsk kept secret).

– JoinM,Pi
〈(gsk, gpk), gpk〉:

– Group manager M sends challenge ci to member Pi.
– Pi chooses ski ←R {0, 1}λ and sends tjoini = f(ski, ci) back to M.
– M produces signature σi = Sign(gsk, (tjoini , ci)), and constructs certi =

(tjoini , ci, σi), sending a copy to Pi. If the signature scheme is stateful, then
algorithm Join must maintain a counter that is incremented for every user
who joins the group.

– The group member’s private key is ski and both parties get copies of certi.
– GPSign(gpk, ski, certi, m, SIG-RL): Compute the following and output sig:

– r ←R {0, 1}λ\ci

– t ← (f(ski, r), r)
– π ← P

(
public(λ,m, gpk, t,SIG-RL, KEY-RL), private(ski, certi), R1

)

– sig ← (t, π).
We define the relation R1 in the proof of knowledge π for (sk∗

i , cert
∗
i ) to be

true when the following statements hold:
– t = (f(sk∗

i , r), r)
– r 
= c∗

i

– Verify(gpk, (tjoin∗
i , c∗

i ), σ
∗
i ) = 1

– tjoin∗
i = f(sk∗

i , c
∗
i )

– for each sigj ∈ SIG-RL, tsigj 
= (f(sk∗
i , rsigj ), rsigj )

– GPVerify(gpk, m, KEY-RL, SIG-RL, sig):
– Verify proof π: check V ((λ,m, gpk, t,SIG-RL, KEY-RL), π) = 1.
– For each skj ∈ KEY-RL, check that t 
= (f(skj , r), r).
– Check that sig /∈ SIG-RL.
– Output 1 if all of the above checks return 1; otherwise, output 0.

– RevokeKey(gpk, KEY-RL, ski): Return KEY-RL ∪ {ski}.
– RevokeSig(gpk, KEY-RL, SIG-RL, m, sig): return SIG-RL ∪ {sig} if

GPVerify(gpk, m, KEY-RL, SIG-RL, sig) = 1. Otherwise, return SIG-RL.

Revocation. Although the difference between the two forms of revocation does
not affect our scheme’s security, the effect of revocation differs in practice depend-
ing on whether a group member is revoked by key or by signature. A revocation
by key renders all signatures, past or future, invalid for that user, whereas a



258 D. Boneh et al.

revocation by signature only applies to future signatures because past signa-
tures need to be verified with respect to the SIG-RL in place at the time of
signing. This does not matter for the purposes of the security game because the
attempted forgery is always the last signature produced in the game. For the
same reason, the decision to include the check that sig /∈ SIG-RL during GPVerify
does not affect security for the purpose of the proof and can be omitted. We
include it only to better capture behavior that may be expected of revocation
in practice.

Traceable Signatures. Our approach can also be used to achieve traceability.
Traceability requires that the group manager have the power to learn the iden-
tity of a signer. We presented our scheme without a tracing property in order
to guarantee a stronger anonymity property against the group manager, but a
similar approach could be used to achieve traceability. The group manager could
give each group member a signed secret token sk′′

i , and every signature would
include the token t′ = (f(sk′′

i , r′), r′), for a newly picked random r′, along with
a proof of knowledge of a signature on sk′′

i . Now the group manager can trace a
signature by trying to reconstruct t′ with the value of sk′′

i for each signer, but
anonymity will still hold against any other group member.

Camenisch and Groth [17] give a traceable group signature scheme from one-
way functions and NIZKs. Although their scheme can be instantiated under
the same assumptions as ours, they (loosely speaking) include a commitment
to a credential for each group member in their public key and give a proof of
knowledge that a signature corresponds to one of those credentials. By avoiding
this cost, our scheme shrinks both the public key size and signature size by a
factor O(N). Our public key can also be published at group initialization time
before any members have joined the group.

Security Theorems. We now state our various theorems regarding the security
of our scheme and give a brief intuition to justify them. Proofs are deferred to
the full version of this paper. Correctness follows almost immediately from the
construction with the caveat that we must ensure that the revocation checks do
not accidentally cause a signature from a legitimate key to be rejected.

Theorem 3. Assuming the correctness of signature scheme S and proof system
Π and the pseudorandomness of f , G is a correct EPID signature scheme.

Anonymity follows from the zero-knowledge and pseudorandomness proper-
ties of the primitives used in our construction. Intuitively, the scheme achieves
anonymity against the group manager by having each group member generate
its own PRF secret key sk, and from all other parties because the signatures are
zero-knowledge signatures of knowledge.

Theorem 4. Assuming that Π is a zero-knowledge proof system and that f is
a PRF, G is an anonymous EPID signature scheme.

The high level intuition for unforgeability is as follows. If the adversary A
has not obtained a signature from the group manager on t = f(sk, c) then it
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cannot produce a PoK of valid signature on t by unforgeability of the group
manager’s signature scheme and soundness of the PoK. Second, if A does not
know sk for some t = f(sk, c) that has been signed, then even though it sees
many f(sk, r), r inside signatures it cannot produce f(sk, c∗) on a fresh c∗ by
the security of the PRF. (Note that even if it were able to do this it has to
actually learn sk to forge a signature as otherwise it breaks PoK extractability).
Finally, collision-resistance of the PRF ensures that A who has a signature on
f(sk, c) for revoked sk cannot find sk′ 
= sk and r such that f(sk′, c) = t and
f(sk′, r) 
= f(sk, r).

Theorem 5. Assuming that Π is a zero knowledge proof of knowledge proof sys-
tem with simulation-sound extractability, S is an unforgeable signature scheme,
that f is a PRF, and that f is additionally a collision-resistant hash function,
G is an unforgeable EPID signature scheme.

4 Practical Post-quantum Signatures for Attestation

Attestation schemes (such as that used in Intel SGX [22,36]) involve interac-
tion with an attestation service on every attestation, among other reasons to
obtain an updated revocation list. In the case of SGX, this attestation service is
also the group manager. In this section, we present a significantly smaller post-
quantum EPID-like signature scheme appropriate for this setting where frequent
interaction with the group manager is allowed.

The main bottleneck for signature size in our first construction was including
verification of the group manager’s signature on a group member’s certificate
inside the PoK (i.e. this contributed the most to arithmetic complexity). We
remove this signature in our new scheme by making each group member’s cer-
tificate a leaf in a Merkle tree. The group manager signs only the root, providing
each group member an inclusion proof during Join. The signature on the root
can be public as it leaks nothing about the identity of a member. Signers now
only need to include the Merkle inclusion proof inside the proof of knowledge
instead of a hash-based signature. The verification of an inclusion proof requires
a much smaller circuit.

This modification has several implications for security. As a new Merkle tree
root will need to be published each time a group member joins, this reduces
the size of anonymity sets. In an extreme case the group manager could issue
a sequence of Merkle roots where each tree only included a valid credential for
one group member, uniquely identifying the member’s signatures.

Fortunately, the continuing contact between group members and the group
manager enforced by attestation in practice enable effective mitigations for these
concerns. Group members can periodically “re-join” the group to update the
Merkle root relative to which they provide membership proofs, thereby increasing
the size of their anonymity sets. In practice, we can ensure that subsequent
Merkle roots issued by the group manager only ever add new credentials to the
group and never omit previous ones by using a Merkle consistency proof such
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as the one proposed by the Certificate Transparency standard [38] and proven
secure by Dowling et al. [25]. We model the Merkle trees used in our proofs
as accumulators with zero-knowledge membership proofs and discuss how we
instantiate this primitive with an improved construction in Sect. 5.

4.1 Definitions

In this section we define accumulators and EPID-like signatures for attestation.
We begin with a special case of the formalization of accumulators by [23].

Definition 6 (Accumulator). A static accumulator is a tuple of efficient algo-
rithms (AGen, AEval, AWitCreate, AVerify, AProveCon, ACheckCon) which are
defined as follows:

– AGen(1λ): This algorithm takes a security parameter λ and returns a public
key pk∧.

– AEval(pk∧,X ): This deterministic algorithm takes a key pk∧ and a set X to
be accumulated and returns an accumulator ΛX .

– AWitCreate(pk∧, ΛX ,X , xi): This algorithm takes a key pk∧, an accumulator
ΛX , the set X , and a value xi. It returns ⊥ if xi /∈ X and a witness witxi

for
xi otherwise.

– AVerify(pk∧, ΛX , witxi
, xi): This algorithm takes a public key pk∧, an accu-

mulator ΛX , a witness witxi
, and a value xi. It returns 1 if witxi

is a witness
for xi ∈ X and 0 otherwise.

We require accumulators to be correct, meaning that AVerify will accept an
honestly generated witness for xi ∈ X . We also require a soundness property
dubbed collision-freeness, formally defined below.

Definition 7 (Collision Freeness). An accumulator is collision free if for all
PPT adversaries A, we have that

Pr[AVerify(pk∧, Λ∗,wit∗xi
, x∗

i ) = 1 ∧ x∗
i /∈ X ∗|

pk∧ ← AGen(1λ, Λ∗), Λ∗ ← Evalr∗(pk∧, X ∗), (wit∗xi
, x∗

i , X ∗) ← A(pk∧, Λ∗)] ≤ negl(λ)

The setting of EPID signatures for attestation largely leaves the security def-
initions of Sect. 3 unaffected up to changes in syntax, so we present the updated
syntax in the full version and omit statements of the security definitions. The
only notable changes are that (1) in both security games the adversary can now
choose to have a group member run the new GARejoin at any time it chooses, and
(2) signatures are only indistinguishable for two signatures produced relative to
the same accumulator.

4.2 EPID Signature Construction II

The full construction of the modified EPID signature scheme appears below.
Structurally similar to the construction in Sect. 3, the main changes involve the
introduction of a post-quantum accumulator and the resulting restructuring of
what needs to be proven inside/outside the proof of knowledge π, as described
informally at the beginning of this section.
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Construction 2 (EPID Signature for Attestation). Our EPID signature scheme
for attestation GA = (GAInit, GAJoin, GARejoin, GASign, GAVerify, GARe-
vokeKey, GARevokeSig) with security parameter λ uses a signature scheme
S = (Keygen, Sign, Verify), a proof system Π = (P, V ), a PRF f that also
serves as a collision-resistant hash function, and an accumulator Ac =
(AGen, AEval, AWitCreate, AVerify).

– GAInit(1λ): Group manager M runs Keygen(1λ) to get (pkgp, skgp) and runs
AGEN(1λ), to get pk∧. It outputs public key gpk = (pkgp, pk∧) and secret key
gsk = skgp.

– GAJoinM,Pi
〈(gsk, gpk,X ), gpk〉:

– Group manager M sends challenge ci to member Pi.
– Pi picks ski ←R {0, 1}λ and sends tjoini = f(ski, ci) back to M.
– M defines xi = (tjoini , ci), sets X = X ∪ xi, sets Λ = AEval(pk∧,X ),

and produces signature σ∧ = Sign(gsk, Λ). Next, M creates witxi
=

AWitCreate(pk∧, Λ,X , xi) and constructs certi = (xi,witxi
), sending a

copy to Pi along with Λ and σ∧.
– The group member’s private key is ski and both parties get copies of certi,

Λ, and σ∧.
– GARejoinM,Pi

〈(gsk, gpk,X , Λ, σ∧), (gpk, certi)〉:
– Pi sends certi to M.
– First, M verifies the signature in certi, aborting in case of failure. Then

it creates a new witxi
= AWitCreate(pk∧, Λ,X , xi) and constructs the

updated certi = (xi,witxi
), sending a copy to Pi along with Λ and σ∧.

– Pi updates its values of certi, Λ, and σ∧.
– GASign(gpk, ski, certi,m,SIG-RL, Λ, σ∧) : Compute the following and out-

put sig:
– Verify(pkgp, σ∧, Λ) (abort if it outputs 0)
– r ←R {0, 1}λ\ci

– t = (f(ski, r), r)
– π = P (public(λ,m, gpk, t,SIG-RL, KEY-RL, Λ), private(ski, certi), R2)
– sig = (t, π, Λ, σ∧).

We define R2 as a relation in the proof of knowledge of (sk∗
i , cert

∗
i ) such that

the following statements hold:
– t = (f(sk∗

i , r), r)
– r 
= c∗

i

– AVerify(pk∧, Λ,wit∗xi
, (tjoin∗

i , c∗
i ))

– tjoin∗
i = f(sk∗

i , c
∗
i )

– for each sigj ∈ SIG-RL, tsigj 
= (f(sk∗
i , rsigj ), rsigj )

– GAVerify(gpk, m, KEY-RL, SIG-RL, sig):
– Verify signature σ∧: check Verify(pkgp, σ∧, Λ) = 1
– Verify proof π: check V ((λ,m, gpk, t,SIG-RL, KEY-RL, Λ), π) = 1.
– For each skj ∈ KEY-RL, check that t 
= (f(skj , r), r).
– Check that sig /∈ SIG-RL.
– If all of the above checks return 1, output 1. Else, output 0.

– GARevokeKey(gpk, KEY-RL, ski): Return KEY-RL ∪ ski.
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– GARevokeSig(gpk, KEY-RL, SIG-RL, m, sig): If GAVerify(gpk, m, KEY-RL,
SIG-RL, sig) = 1, return SIG-RL ∪ sig. Otherwise, return SIG-RL.

Security Theorems. Correctness and anonymity proofs for GA are almost
completely unchanged from our standard EPID signature scheme, so we only
state the corresponding theorems. The only proof that needs some tweaking is
that of unforgeability, which we sketch in the full version of this paper.

Theorem 8. Assuming the correctness of signature scheme S, proof system Π,
and accumulator Ac, as well as the pseudorandomness of f , GA is a correct
EPID signature scheme.

Theorem 9. Assuming that Π is a zero-knowledge proof system and that f is
a PRF, GA is an anonymous EPID signature scheme.

Theorem 10. Assuming that Π is a proof system for zero-knowledge proofs
of knowledge with simulation-sound extractability, S is an unforgeable signature
scheme, that f is a PRF, that f is additionally a collision-resistant hash function,
and that Ac is a collision-free (sound) accumulator, GA is an unforgeable EPID
signature scheme.

5 Instantiation of Protocols

We have now described and proven the security of our constructions, but the
post-quantum security of each construction relies on the existence of post-
quantum secure instantiations of the various primitives required. In particular
we require a PRF that is also a collision-resistant hash function, a signature
scheme, zero knowledge proofs of knowledge (ZKPoKs), and an accumulator. In
this section we describe options for instantiating each primitive under different
security assumptions about the underlying ciphers used and report the signature
sizes of our instantiated schemes in both the Random Oracle (RO) and Quantum
Random Oracle (QRO) models [11].

5.1 Zero Knowledge Proofs of Knowledge

In principle, standard symmetric primitives (AES, SHA) suffice for post-
quantum security so long as we double our security parameters. However, our
schemes uses these primitives in a non-black box manner by running them inside
of a ZKPoK. In particular, the following ZKPoKs contribute significantly to sig-
nature sizes:

1. ZKPoK of a PRF key k such that f(k, r) = t, for a PRF that is collision-
resistant on its key space.

2. ZKPoK of a signature σ on a message m such that Verify(m,σ) = 1 for a
post-quantum signature scheme S = (Keygen, Sign, Verify).

3. ZKPoK of membership of element xi in accumulator Λ for set X .
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We restrict our choice of ZKPoK proof system to those systems which rely
only on symmetric primitives. This includes works following the “MPC in the
Head” approach of Ishai et al. [35] – ZKBoo [30], ZKB++ [20], and Ligero [3] –
as well as zk-STARKs [8]. Although Ligero and zk-STARKs offer proofs asymp-
totically sublinear in the size of the circuit to be proven, a preliminary analy-
sis suggested that, for our relatively small proof circuits, ZKB++ provides the
smallest signature sizes in practice without requiring heavy computing costs for
the signer. Moreover, ZKB++ has proofs of security in both the Random Ora-
cle and Quantum Random Oracle models, whereas Ligero and zk-STARKs only
have proofs in the classical RO model. As such, we choose to instantiate our
signatures and measure signature size using ZKB++ as our underlying ZKPoK.

In ZKB++ [20], the underlying statement to be proven is represented as an
arithmetic circuit over GF(2), and the proof size is proportional to the multiplica-
tive complexity (i.e., number of AND gates) in the circuit. The most important
practical consideration in signature schemes is signature size; therefore our main
criterion in instantiating the PRF and outer signature scheme is to minimize
their multiplicative complexity over GF(2).

5.2 PRF and Collision-Resistant Hash Function

Recently the ciphers LowMC [2] and MiMC [1] have been proposed as alter-
natives to AES that have significantly lower multiplicative complexity as arith-
metic circuits over finite fields.1 Although relatively new and less extensively
studied, these ciphers were shown to resist statistical cryptanalytic attacks, sim-
ilar to other state-of-the-art designs. A number of works have already proposed
using LowMC as the best candidate to-date for instantiating ciphers inside
ZKB++-style proofs [20,24]. The most recent public version of the LowMC
cipher with parameters set for 128-bit post-quantum security (256-bit key, 256-
bit block size) involves only 1374 AND gates, a significant improvement over the
7616 AND gates in AES-256 [2].

Derler et al. [24] also suggest using the LowMC round function in the sponge
framework (as described in [1]) to construct a collision-resistant hash function
with low multiplicative complexity. However, since only a collision-resistant com-
pression function on a fixed message length is needed (rather than full-blown
indifferentiability from a random oracle), we propose applying the much sim-
pler Davies-Meyer transformation to the LowMC cipher. Collision resistance of
Davies-Meyer is proved in the ideal cipher model [13], which is only marginally
stronger than the security assumption underlying the sponge transformation.
Given an ideal cipher E(k, x) on equal sized key and message space, the Davies-
Meyer compression function is H(m1||m2) = E(m1,m2) ⊕ m2. For a collision-
resistant PRF we would use F (k, x) = E(k, x) ⊕ x; as long as E is a PRF then
F is also a PRF. Note that the multiplicative complexity of F is the same as E.

1 LowMC optimizes multiplicative complexity over GF(2) while MiMC optimizes com-
plexity over larger finite fields. In ZKB++ the underlying circuit is represented in
GF(2), which is why we prefer LowMC.
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To obtain a PRF that is collision-resistant only on its keyspace we can rely on a
slightly weaker assumption than the ideal cipher model. The ideal cipher model
assumes that E with any key is indistinguishable from a random permutation,
whereas we only need to assume there is an explicit fixed key kfix on which
E(kfix, ·) is indistinguishable from a random permutation. Then we can define
Π(y) = E(kfix, y), and define F ′(k, x) = Π(E(k, x)) ⊕ E(k, x). (The inner eval-
uation of E(k, x) ensures the PRF property while Π(y) ⊕ y is collision resistant
as a special case of Davies-Meyer).

5.3 Post-quantum Signature Scheme

Choices for post-quantum signatures that do not rely on stronger lattice
assumptions include Merkle signatures [43], Goldreich’s stateless signatures [31],
SPHINCS signatures [9], or the Fish signatures of Chase et al. [20]. The recent
literature on post-quantum signatures has focused on optimizing signature size.
When using signatures outside of proofs (in our construction of EPID signatures
for attestation) we propose using SPHINCS, which has the smallest signature
size. However, since our main EPID signature construction involves verifying
the group manager’s post-quantum signature inside a ZKPoK, there we care
about optimizing the arithmetic multiplicative complexity of signature verifica-
tion rather than the signature size.

We examine two options for instantiating the group manager’s signature
scheme for signatures used inside a ZKPoK: one using stateful Merkle signatures,
and other using Goldreich’s stateless signatures.

Stateful Merkle Signatures. The signer runs a signature setup that generates
a large number of one-time signature (OTS) keypairs. We would use Lamport
signatures from one-way functions (instantiated with LowMC) for the OTS. The
Lamport signature private key consists of 256 pairs of pseudorandom 256-bit
strings the public key consists of the 256 pairs of outputs generated by applying
the one-way function to each private key string. The signer finalizes the setup by
computing a Merkle tree (using a 2-to-1 collision resistant compression function)
over the OTS public keys at the leaves of the tree and publishing the root as the
public verification key. Signing a message involves singing the message with one
of the leaf OTS keys and proving membership of this OTS key in the Merkle
tree. The signer needs to maintain state to ensure that no OTS key is used more
than once. The stateful requirement is not prohibitive in the setting of managing
a group of trusted hardware platforms. The preprocessing of a tree of up to 230

members would take under a day on modern commodity hardware and would
require the server to use only several GB of storage.

Stateless Goldreich Signatures. Instead of maintaining state in the Merkle signa-
ture scheme above, the signer could choose an OTS key at random. This requires
squaring the size of the tree to make collisions unlikely. For a group of 230 mem-
bers storing a tree of size 260 keys would be prohibitively expensive. However,
Godlreich’s scheme provides a way to generate this tree pseudorandomly from a
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small seed. In this scheme, the signer pseudorandomly generates an OTS keypair
for each node of the tree, which can be done by evaluating a PRF on the index
of the tree node. The OTS public key at the root of the tree is the overall public
key. The OTS key pair on each node of the tree is used to sign the hash of the
public keys on each of its two child nodes. To sign a message a random leaf is
selected and the signature includes the OTS signatures along the path from this
leaf to the root, where each signature signs either a child public key or the actual
message at the leaf.

5.4 Reducing Circuit Size for Membership Proofs

As mentioned in Sect. 4, we will use Merkle trees to instantiate our accumulators.
A recent work of Derler et al. [24] points out, however, that the circuit used to
verify standard Merkle inclusion proofs differs based on the path from the Merkle
root to the leaf xi. The dependence arises based on whether the hash at depth
j of the tree becomes the left or right input of the hash at depth j − 1. This
dependence of the AVerify circuit on i must be removed in order to generically
create a zero-knowledge inclusion proof with some zero-knowledge proof system.
They suggest a modification to the standard inclusion proof that allows the same
circuit to verify inclusion regardless of the index i whose inclusion is proven. The
idea is as follows: suppose xi resides in a subtree rooted at internal node a and
that a has sibling and parent nodes b and c, respectively. At each level of the
Merkle tree, instead of simply calculating h(a, b) and only comparing the result
to the root, they evaluate the expression c = h(a, b) ∨ c = h(b, a) and reject
the inclusion proof if it is not satisfied. This allows the construction of a circuit
AVerify’ with a fixed ordering of inputs to each hash function, since as long as
one ordering of inputs matches the node at the next level of the tree, correctness
will hold. The cost of this transformation is an extra hash evaluation, an equality
check, and a logical OR for each level of the tree.

We propose a solution that eliminates the need for equality checks at each
level of the tree and replaces the OR with an XOR, allowing smaller and more
efficient zero-knowledge membership proofs. Our idea is to replace the hash
function h already used in computing the merkle root with a modified function
h′(x, y) = h(x, y) ⊕ h(y, x). Using h′ in place of h proves that the input xi is a
dth preimage of the merkle root for a tree of depth d without any dependence
on the position i of xi among the tree’s leaves. Of course, h′ is trivially neither
collision-resistant nor second preimage resistant, as a swapping of the inputs
x and y results in the same output. Below we prove that h′ provides a third
preimage resistance property and helps build the inclusion proofs we desire.

Definition 11 (Third Preimage Resistance). We say a hash function H
defined over (M, T ) is third preimage resistant if given a random m = a||b ∈ M
(with |a| = |b|) and a different m′ = b||a ∈ M such that H(m) = H(m′), it is
difficult to find an m′′ ∈ M such that H(m′′) = H(m) = H(m′).



266 D. Boneh et al.

Lemma 12. Assuming the hash function h : M × M → M is a random func-
tion, the hash function h′(x, y) = h(x, y)⊕h(y, x) for x, y ∈ M is third preimage
resistant, provided x 
= y.

Proof. h′(x, y) admits a trivial collision h′(y, x). We argue it is hard to find
any other collision unless x = y (since h′(x, x) = 0 for all x). To find a
third preimage of h′(x, y) an adversary must produce w, z such that either
h′(w, z) = h′(x, y) and either w 
= x or z 
= y. Since h is a random function
and (x, y), (y, x), (w, z), (z, w) are all distinct tuples, h(x, y), h(y, x), h(w, z),
and h(z, w) will all be independently random strings. The probability that
h(x, y)⊕h(y, x) = h(w, z)⊕h(z, w) is therefore negligible in the length |x|+ |y|.
Therefore no efficient adversary can find a third preimage for h′. �

In order to replace h with h′ in our merkle tree construction and retain
security for the circuit AVerify’, we only need to show that we will have no leaves
x||y in the accumulator such that x = y. Fortunately, since the elements in the
accumulator for our particular case are challenge/response pairs (f(ski, ci), ci)
that serve as group member credentials (where f is collision-resistant and a
PRF), the probability that x = y is negligible in our setting.

Practically, our new circuit AVerify’ reduces the number of equality checks
inside a ZKPoK from 2 log2(N) (where N is the group size) to 1. Additionally,
log2(N) OR gates are replaced with XORs which do not increase proof size.

5.5 Signature Sizes

As discussed above, we instantiate our signatures using LowMC, Merkle signa-
tures (inside the ZKPoK), SPHINCS signatures (outside the ZKPoK), ZKB++,
and Merkle tree accumulators with our modified membership proof circuit.

Figure 1 shows the sizes for our modified EPID signatures for various group
sizes under (1) the assumption that LowMC is and ideal cipher and (2) the
assumption that LowMC with a public fixed key is a random permutation.
Figure 2 presents the same information, but uses the Unruh transform [48]
instead of the Fiat-Shamir transform [27] to make the ZKB++ proof nonin-
teractive. The Fiat-Shamir transform is proven secure in the Random Oracle
model but only sometimes retains security in the Quantom Random Oracle
model [11,49]. As visible from the figures, groups of size up to 220 could use post-
quantum signatures of size 6.74 MB (3.45 MB in RO model) under our scheme,
a sufficiently small size for attestation in applications with heavy data transfer
requirements. For comparison, the same signatures instantiated with AES-256
would require 33.8 MB (16.9 MB in RO model), meaning the choice of LowMC
enables a 5× improvement in signature size.

For comparison, our signature sizes are smaller than the recent ring signa-
tures of Derler et al. [24], which require at least 10.4 MB (5.26 MB in RO Model)
for signatures in a ring of 220 members2, despite providing a more elaborate
2 This size represents an optimized version of the ring signatures instantiated assuming

LowMC is an ideal cipher. The original Derler et al. paper claimed slightly larger
signatures of size 11.88 MB (8 MB in RO Model) for this ring size.
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Signature Sizes in RO Model

Group Size Ideal Cipher Random Permutation

27 1.37MB 2.28MB
210 1.85MB 3.21MB
220 3.45MB 6.31MB
230 5.05MB 9.41MB
240 6.65MB 12.5MB

Fig. 1. Signature sizes for construction II under various security assumptions on
LowMC, using Fiat-Shamir [27] to make proofs of knowledge noninteractive.

Group Size Ideal Cipher Random Permutation

27 2.64MB 4.45MB
210 3.59MB 6.30MB
220 6.74MB 12.5MB
230 9.89MB 18.6MB
240 13.0MB 24.8MB

Signature Sizes in QRO Model

Fig. 2. Signature sizes for construction II under various security assumptions on
LowMC, using the Unruh transform [48] to make proofs of knowledge noninteractive.

functionality. The improvement comes from our new accumulator membership
proofs, as the accumulator constitutes the most costly component of both con-
structions. Note that subsequent to our paper, the Derler et al. paper has been
updated with new results that shrink their signatures by a factor of 2. Their
techniques can reduce signature sizes in our construction II as well.

Our general-purpose EPID signatures require 216.82 MB for signatures in a
group of size 230 assuming LowMC is an ideal cipher (110.81 MB in QRO Model),
a much larger value than the variation designed for attestation. This motivates
the question of how to generalize the specialized version of our construction to
apply to a wider range of use-cases, which we leave as an open problem.

6 Conclusion

We presented a general-purpose post-quantum EPID signature scheme as well
as a construction of a specialized variant designed for trusted hardware enclave
attestation. We also gave an analysis of the concrete sizes of our signatures based
on the best possible instantiations with current tools and showed that our sig-
natures for attestation can achieve sizes acceptable for use in some applications.

EPID signatures play an important role in modern trusted hardware. Making
them post-quantum secure is an important goal, and we hope this work will spur
further research on this question that will further reduce the signature size.
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