)

Check for
updates

Error Detection in Monotone
Span Programs with Application
to Communication-Efficient
Multi-party Computation

Nigel P. Smart’2(®) and Tim Wood"2

1 University of Bristol, Bristol, UK
2 KU Leuven, Leuven, Belgium
{nigel.smart,t.wood}@kuleuven.be

Abstract. Recent improvements in the state-of-the-art of MPC for
non-full-threshold access structures introduced the idea of using a
collision-resistant hash functions and redundancy in the secret-sharing
scheme to construct a communication-efficient MPC protocol which is
computationally-secure against malicious adversaries, with abort. The
prior work is based on replicated secret-sharing; in this work we extend
this methodology to any LSSS implementing a Q2 access structure. To
do so we need to establish a folklore property of error detection for such
LSSS and their associated Monotone Span Programs. In doing so we
obtain communication-efficient online and offline protocols for MPC in
the pre-processing model.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a
function on their combined secret inputs so that all parties learn the output
of the function and no party can learn anything that cannot be inferred from
the output and their own inputs alone. As a field it has recently received a
lot of attention and has been explored in a variety of contexts: for example,
private auctions [12], secure statistical analysis of personal information [10] and
protection against side-channel attacks in hardware [8,33,34].

Most MPC protocols fall into one of two broad categories: garbled circuits,
and linear-secret-sharing-scheme-based (LSSS-based) MPC. The garbled-circuit
approach, which began with the work of Yao [36], involves some collection of
parties “garbling” a circuit to conceal the internal circuit evaluations, and then
later a single party or a collection of parties jointly evaluating the garbled cir-
cuit. By contrast, the LSSS-based approach involves using a so-called linear
secret-sharing scheme, in which the parties: “share” a secret into several shares
which are distributed to different parties, perform computations on the shares,
and then reconstruct the secret at the end by combining the shares to deter-
mine the output. LSSS-based MPC is traditionally presented in the context of
© Springer Nature Switzerland AG 2019

M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 210-229, 2019.
https://doi.org/10.1007/978-3-030-12612-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_11

Error Detection in Monotone Span Programs 211

information-theoretic security, although many modern practical protocols that
realise LSSS-based MPC often make use of computationally-secure primitives
such as somewhat-homomorphic encryption (SHE) [23] or oblivious transfer
(OT) [30]. In this paper, we focus on computationally-secure LSSS-based MPC.

An access structure for a set of parties defines which subsets of parties are
allowed to discover the secret if they pool their information. Such quorums of
parties are often called qualified sets of parties. An access structure is called Qy
(for £ € N) if the union of any set of £ unqualified sets of parties is missing at
least one party. We discuss this in some detail later, but for now the reader can
think of an (n,t)-threshold scheme where ¢ < n/¢ which is where a subset of
parties is qualified if and only if it is of size at least t + 1. Computationally-
secure L.SSS-based MPC has recently seen significant, efficient instantiations
for full-threshold access structures [7,22,23,30], which is where the protocol is
secure if at least one party is honest, even if the adversary causes the corrupt
parties to run arbitrary code (though this behaviour may cause the protocol to
abort rather than provide output to the parties). In the threshold case similar
efficient instantiations are known, such as the older VIFF protocol [20] which
uses (essentially) information-theoretic primitives only.

While protocols providing full-threshold security are an important research
goal, in the real world such guarantees of security do not always match the use-
cases that appear. Different applications call for different access structures, and
not necessarily the usual threshold examples. For example, a company may have
four directors (CEO, CTO, CSO and CFO) and access may be granted in the
two combinations (CEO and CFO) or (CTO and CSO and CFO). In such a
situation it may be more efficient to tailor the protocol to this structure, rather
than try to shoe-horn the application into a more standard (i.e. full-threshold)
structure. Indeed, while it is possible that a computation can be performed in
a full-threshold setting and then the outputs distributed in accordance with
the access structure, such a process requires all parties to participate equally
in the computation, which may not be feasible in the real world, especially if
the computing parties are distributed over a wide network, and susceptible to
outages if the total number of parties is large.

Most LSSS-based MPC protocols split the computation into two parts: an
offline phase, in which parties interact using “expensive” public-key cryptogra-
phy to lay the groundwork for an online phase in which only “cheap” information-
theoretic primitives are required. The online phase is where the actual circuit
evaluation takes place. For the access structures considered in this work, namely
Q, structures, the offline phase is almost as fast as the online phase. Thus the
goal here is to minimize the cost of communication in both phases.

Realising MPC for different access structures has been well studied: shortly
following the advent of Shamir’s secret-sharing scheme [9,35], the first formal
MPC - as opposed to 2PC — protocols [5,15,26] were constructed, with varying
correctness guarantees for different threshold structures. These works were devel-
oped by Hirt and Maurer [27], and then Beaver and Wool [3] for general access
structures, culminating in Maurer’s relatively more recent work [32]. In this last

212 N. P. Smart and T. Wood

work it is shown that passively-secure information-theoretic MPC is possible if
the access structure is Qs, and full active security (without requiring abort) is
possible if the access structure is Q3. The latter has seen various optimisations
in the literature, for example [21], making use of packed secret sharing to obtain
a bandwidth-efficient perfectly-secure protocol.

In recent work [31], Keller et al. show that by generalising a method of Araki
et al. [1,25] communication-efficient computationally-secure MPC with abort
can be realised for Qs access structures, if replicated secret-sharing is used. The
methodology in [1,25,31] uses the explicit properties of replicated secret-sharing
so as to authenticate various shares. This enables active security with abort
to be achieved relatively cheaply, albeit at the expense in general of the pre-
deployment of a large number, depending on the access structure, of symmetric
keys to enable the generation of pseudo-random secret sharings (PRSSs) in a
non-interactive manner. A disadvantage of replicated sharing is the potentially
larger (than average) memory footprint needed for each party per secret, and
consequently there is still a relatively large communication cost involved when
the parties need to send shares across the network. In this work we extend this
prior work to produce a protocol for any LSSS that supports the Qs access
structure.

1.1 Authentication of Shares

Many of practical MPC protocols begin with a basic passively-secure (a.k.a.
semi-honest or honest-but-curious) protocol, in which corrupt parties execute
the protocol honestly but try to deduce anything they can about other par-
ties’ data from their own data and the communication tapes. Such passively-
secure protocols for Qs access structures are highly efficient, and are information-
theoretically secure. The passively secure protocols are then augmented to obtain
active security with abort by using some form of “share authentication”; in
this security setting, corrupt parties may deviate arbitrarily from the protocol
description but if they do so the honest parties will abort the protocol.

At a high level, modern actively-secure LSSS-based MPC protocols combine:

1. A linear (i.e. additively homomorphic) secret sharing scheme;
2. A passive multiplication protocol; and
3. An authentication protocol.

The communication efficiency of the computation (usually an arithmetic or
Boolean circuit) depends heavily on how authentication is performed.

In the full-threshold SPDZ protocol [23] and its successors, e.g. [22,30],
authentication is achieved with additively homomorphic message authentication
codes (MACs). For each secret that is shared amongst the parties, the parties
also share a MAC on that secret. Since the authentication is additively homomor-
phic and the sharing scheme is linear, this means that the sum (and consequently
scalar multiple) of authenticated shares is authenticated “for free” by perform-
ing the addition (or scalar multiplication) on the associated MACs. More work

Error Detection in Monotone Span Programs 213

is required for multiplication of secrets, but the general methodology for doing
these operations on shared secrets is now generally considered “standard” for
MPC in this setting.

One important branch of this authentication methodology contributing sig-
nificantly to their practical performance is the amortisation of verification costs
by batch-checking MACs, a technique developed in [6,23], amongst other works.
A different approach to batch verification for authentication of shares, in the
case of Qy access structures, was introduced by Furakawa et al. [25], in the
context of the three-party honest-majority setting, i.e. a (3,1)-threshold access
structure. This work extended a passively-secure protocol of Araki et al. [1] in
the same threshold setting. This approach dispenses with the MACs and instead
achieves authentication of shares using a collision-resistant hash function when
authenticating an open-to-all operation, and uses redundancy of the underlying
secret sharing scheme in an open-to-one operation. Their protocol can be viewed
as a bootstrapping of the passively-secure protocol of Beaver and Wool [3], with
an optimised sharing procedure (highly tailored to the (3,1)-threshold access
structure), to provide a communication-efficient actively-secure protocol (with
abort). By using a hash function they sacrifice the information-theoretic security
of Beaver-Wool for computational security, and also use computationally-secure
share generation operations to improve the offline phase.

The above protocols for replicated sharing in a (3, 1)-threshold access struc-
ture of [1,25] simultaneously reduce the number of secure communication chan-
nels needed and the total number of bits sent per multiplication. Recent work
[31] has shown that these techniques can be generalised from (3, 1)-threshold to
any Qs access structure, using replicated secret-sharing. Both [25] and [31] make
use of the fact that replicated sharing provides a trivial method to authenticate
a full set of shares; i.e. it somehow offers a form of error-detection.

A recent protocol due to Chida et al. [16] also considers actively-secure
honest-majority MPC and makes use of MACs. In their work, the communica-
tion cost is a constant number of elements per multiplication, but the messages
are broadcast, so this cost is linear in the number of parties. Our protocol also
has linear overhead, but following the methodology of [31], the total number
of uni-directional channels is reduced and so the asymptotic cost is lower (for
threshold access structures). The benefit of the Chida protocol is that there is
no offline processing, and the total cost of active computation is less than ours
(they achieve roughly twice the cost of passive multiplication as opposed to our
roughly threefold cost). However, if one is interested purely in online times then
our protocol is more efficient than that of Chida et al.

1.2 Owur Contribution

While the replicated secret-sharing of [31] offers flexibility in being able to realise
any access structure, unfortunately it can require an exponentially-large number
of shares to be held by each party for each shared secret. As threshold access
structures illustrate, using a general MSP may enable the same access structure
to be realised in a more efficient manner, which motivates our work in this area.

214 N. P. Smart and T. Wood

The two main contributions of this work are as follows:

— Showing we can get authentication of shares almost for free for any MSP
realising Qs access structures. Assuming an offline phase which produces
Beaver triples, this gives us active security with abort, at the cost of replacing
information-theoretic with computational security.

— We also provide, in the full version, a generic way to reduce the amount
of communication required for the passive multiplication subprotocol in the
offline phase for multiplicative MSPs.

Thus we generalise the online phase of [31] to arbitrary MSPs, hence allowing
the benefits of that work to be achieved without necessarily requiring the cost of
replicated secret sharing. Whereas many of the previous protocols are optimised
for access structures on specific numbers of parties, or use specific secret-sharing
schemes, our optimisation of the passive online multiplication is generic in the
sense that it only uses the Qs nature of the access structure for authentication:
[25] and [31] are special cases of our optimisation.

Our contribution, then, is not so much our full MPC protocol as it is the
mechanism for an actively-secure multiplication in the Qs setting. Viewing the
protocol in this more modular sense allows us to separate the LSSS from the
actual multiplication and thus allows us to reduce the search for finding an
efficient MPC protocol for a given Qs access structure to finding an LSSS with
a small total number of shares.

To conclude this section, we briefly remark how our work relates to the cor-
respondence between LSSSs and linear codes. Cramer et al. [19] showed how the
correspondence between linear secret-sharing schemes and linear codes reveals
an efficient method by which qualified parties can correct any errors in a set
of shares for some secret. The ability to do so requires the access structure to
be Qs, since if this holds then a strongly-multiplicative LSSS realising it allows
honest parties to correct any errors introduced by the adversary. This is not a
direct connection to error-correction codes since such LSSSs do not necessarily
allow unique decoding of the entire share vector: it is only the component of the
share vector corresponding to the secret that is guaranteed to be correct. In our
work we show that if the access structure is Q5 then any LSSS realising it allows
honest parties to agree on whether or not the secret is correct: thus we obtain
a form of error-detection. This reveals why the protocols above (viz., [25,31])
are able to perform the error-detection causing abort. This result seems to be
folklore — but we could find no statement or proof in the literature to this effect,
and so we prove the required properties here.

2 Preliminaries

2.1 Notation

Let F denote a finite field; we write F = F, for ¢ some prime power if F is the

field of ¢ elements. We write r & F to mean that r is sampled uniformly at

Error Detection in Monotone Span Programs 215

random from F. Vectors are written in bold and are taken to be column vectors.
We denote by 0 a vector consisting entirely of zeros of appropriate dimension,
determined by the context, and similarly by 1 a vector consisting entirely of
ones. For a vector x we write the i*" component as x;, whereas x’ denotes the
i*™® vector from a sequence of vectors. We use the notation e’ for the i*" standard
basis vector (defined by e} := d;; where ;; is the Kronecker delta). We denote
by [n] the set U ;{i}, and by P the complete set of parties, which we take to
be {Pi}icln)- Given some set S, a subset of some larger set S’, we write a ¢ S
to indicate that element a is in S’ \ S; in general, S’ will be implicit, according
to context. We define the function supp : F™ — 2% via s — {i € [m] : s; # 0}.
We use the notation A C B to mean that A is a (not necessarily proper) subset
of B, contrasted with A C B where A is a proper subset of B. We write A and
k for the statistical and computational security parameters respectively.

Given a vector space V C F¢, we denote by V- the orthogonal complement;
that is, V+ = {w € F? : (v,w) = 0}, where (v,w) = v -w is the standard inner
product. From basic linear algebra, (V+)+ = V. For a matrix M € F™*4 we
write M T for the transpose. If M is a matrix representing a linear map F¢ — F™,
then im(M ") = ker(M)* by the fundamental theorem of linear algebra.

2.2 Access Structures, MSPs, LSSSs and Linear Codes

Access Structures: Fix P = {P;}ic[, and let I' C 2% be a monotonically
increasing set, i.e. I' is closed under taking supersets: if Q € I' and Q" 2O Q
then Q' € I'. Similarly, let A C 2% be a monotonically decreasing set, i.e. A is
closed under taking subsets: if U € A and U’ C U then U’ € A. We call the
pair (I', A) a monotone access structure if ' N A = @. If A =27\ I', then we
say the access structure is complete. In this paper, we will only be concerned
with complete monotone access structures and so this is assumed throughout
without qualification. The sets in I', usually denoted by @, are called qualified,
and the sets in A, usually denoted by U, are called unqualified. Partial ordering
is induced on I' and A by the standard subset relation denoted by “C”: we
write I'~ for the set of minimally qualified sets where minimality is with respect
to “C: I'm={Q e ': ifQ € I'and Q' C Q then Q' = Q}; similarly, AT
denotes the set of mazimally unqualified sets where maximality is with respect
to “C AT ={Ue€A: ifU € Aand U C U’ then U’ =U}.

An access structure is said to be Qy (resp. Qs) if the union of no two (resp.
three) sets in A is the whole of P. A consequence of this is that in a Qo access
structure, the complement of a qualified set is unqualified, and vice versa.

In an (n,t)-threshold access structure, any set of ¢ + 1 parties is qualified,
whilst any set of ¢ or fewer parties is unqualified. Thus '~ contains (tfl) sets
in total. The term full threshold refers to an (n,n—1)-threshold access structure.
For an arbitrary complete monotone access structure, the set of minimally qual-
ified sets together with the set of maximally unqualified sets uniquely determine
the entire structure. The dual access structure I'™* of an access structure I is
defined by I'* := {Q € 2% : 2P\ Q ¢ I'}. Cramer et al. [19] showed that an
access structure I is Q5 if and only if I'™* C I

216 N. P. Smart and T. Wood

Linear Secret Sharing Schemes: An LSSS is a method of sharing secret data
amongst parties. It consists of three multi-party algorithms: Input, Open, and
ALF (affine linear function), allowing parties to provide secret inputs, reveal (or
open) secrets, and compute an affine linear function on shared secrets. In a prac-
tical sense, this means that the parties can add secrets, multiply by scalars, and
add public constants to a shared secret, all by local computations. In this work
we consider, as examples, the three most well-known secret-sharing schemes:
Shamir; replicated, also known as CNF-based (conjunctive-normal-form-based);
and DNF-based (disjunctive-normal-form-based). We will use the term additive
sharing to mean that a secret s takes the value s = Y " | s; where s; is held by
P; and the s;’s are uniformly random subject to the constraint that they sum
to s.

An LSSS is called multiplicative if the whole set of parties P can compute
an additive sharing of the product of two secrets by performing only local com-
putations. If the product is to be kept as a secret and used further in the com-
putation, it is usually necessary for the parties to engage in one or more rounds
of communication to convert the additive sharing into a sharing in the LSSS
being used. A secret-sharing scheme is called strongly multiplicative if, for any
U € A, the parties in P \ U can compute an additive sharing of the product
of two secrets by local computations. Such schemes offer robustness, since the
adversary, corrupting an unqualified set of parties, cannot prevent the honest
parties from reconstructing the desired secret. Cramer et al. [18] showed that
any (non-multiplicative) LSSS realising a Qs access structure can be converted
to a multiplicative LSSS for the same access structure so that each party holds at
most twice the number of shares it held originally. There is currently no known
construction to convert an arbitrary Qs LSSS to a strongly multiplicative LSSS
with only polynomial blow-up in the number of shares each party must hold
[18,19].

Monotone Span Programs: Span programs, and monotone span programs
specifically, were introduced by Karchmer and Wigderson [29] as a model of
computation. It has been shown that MSPs have a close relationship to secret-
sharing schemes, as discussed informally below.

Definition 1. A Monotone Span Program (MSP), denoted by M, is a quadru-
ple (F, M, e,v) where F is a field, M € F™*4 is a full-rank matriz for some m
and d < m, € € F¢ is an arbitrary non-zero vector called the target vector, and
Y 1 [m] = P is a surjective “labelling” map of rows to parties. The size of M is
defined to be m, the number of rows of the matrixz M.

Typically, € = e! or € = 1, but it can be an arbitrary non-zero vector: changing
it simply changes how the vector x is selected, and corresponds to performing
column operations on the columns of M, which does not change the access struc-
ture the MSP realises by results of Beimel et al. [4]. Some definitions of MSP do
not require that M have full rank, since if this is not the case, one can iteratively
remove any columns which are linearly dependent on preceding columns without

Error Detection in Monotone Span Programs 217

changing the access structure M computes. We make this assumption for the
sake of simplicity later on.

We say that the row-map 1) defines which rows are “owned” by each party.
Given a set S C P, we denote by Mg the submatrix of M whose rows are
indexed by the set {i € [m] : ¥(i) € S}, and similarly sg is the subvector of s
whose entries are indexed by the same. Later, we will somewhat abuse notation
by denoting again by Mg, where now S C [m], the submatrix whose rows are
indexed by S. Context will determine which matrix we mean since the indexing
set is either a set of parties, or a set of row indices. If s € F™, then we call sg a
qualified subvector of s if Q € I', and an unqualified subvector otherwise. An MSP
M is said to compute an access structure I' if it holds that @ € I' if and only if
I AQ € F™ (i.e. depending on Q) such that M T -A% = & and 9 (supp(A?)) C Q.
In other words, € € Im(Mg) if and only if @ is qualified. Note that we write
@ to show that this vector is associated to the set @; compare with)\8, which

is the subvector of A? whose co-ordinates are indexed by @, to be consistent
with the notation above. This means that the parties in the set) “own” rows
of the matrix M which can be combined in a public, known linear combination
encoded as the vector)\Q, to obtain the target vector e.

Monotone Span Programs induce LSSSs in the following way: Sample x < F?
subject to (x,&) = s, the secret. Now let s = M - x and for each i € [m], give s;
(that is, the i*® co-ordinate) to party 1 (i). Thus party P; has the vector S{P}-
We call x the randomness vector since x is chosen uniformly at random, subject
to (x,&) = s, to generate s := M - x, the share vector. The co-ordinates of s are
precisely the shares of the secret which are distributed to parties according to
the mapping 1. We say that a share vector s encodes a secret s if s = M - x
for some x where (x,e) = s. An MSP is called ideal if ¢ is injective; since it is
surjective by definition, an ideal MSP is an MSP for which v is bijective — i.e.
each party receives exactly one share.

The associated access structure for an MSP is such that € is contained in
the linear span of the rows of M owned by any qualified set of parties, and also
so that e is not in the linear span of the rows owned by any unqualified set of
parties. It is well known that, given a monotone access structure (I, A), there
exists an MSP M computing it [24,28,29].

In more detail: A qualified set of parties) € I" can compute the secret from
the qualified subvector sg because by construction of M there is a publicly-
known recombination vector A associated to this set @ such that ¥ (supp(A)) C Q
and M "X = e. Note that while ¥(supp(\)) C @Q, this subset of @ must still be
qualified — it just may be the case that not all of the parties’ shares are required to
reconstruct the secret (for example, if multiple parties hold the same share). Since
Y (supp(A)) C Q, we have (A, s) = (Ag,sqg), so given sg the parties can compute
(Xog,sq@), and since (Ag,sg) = (A,8) = (A M -x) = (MTA,x) = (e,x) = s,
they can thus determine the secret.

Conversely, for any unqualified set of parties U € A, again by construction
of M we have that € ¢ im(M,}), which is equivalent to each of the following
three statements:

218 N. P. Smart and T. Wood

— e & ker(My)*
— 3 k € ker(My) such that (e,k) # 0
— 3k € F? such that My -k = 0 with (e, k) =1

From the last statement, we can see that for any secret s, for any randomness
vector x € F? encoding it — i.e. where (x, &) = s — for any other secret s’ € F we
have Myx = Myx+0 = Myx+ My ((s' —s)-k) = My(x+ (s’ — s) - k). Thus if
x encodes the secret s, then the randomness vector x + (s’ — s) - k encodes s’ by
linearity of the inner product, but the share vectors held by parties in U are the
same. Thus the set of shares received by an unqualified set of parties provides
no information about the secret.

In this work we show that for any MSP computing any Qs access structure,
there exists a matrix N such that for any vector e # 0 for which ¢ (supp(e)) & I',
we either have N-e # 0, or N-e = 0 and (e,&) = 0. The matrix N is essentially
the parity-check matrix of the code generated by the matrix M of the MSP and
turns out to be very useful for efficiently detecting cheating behaviour.

2.3 MPC

Network: We assume secure point-to-point channels. When broadcasting shares
but we do not assume broadcast channels: in this context we mean an honest
party sends the same element to each other party over the given secure channel.

Security Model: Our protocols are modelled and proved secure in the Universal
Composability (UC) framework introduced by Canetti [13] and we assume the
reader is familiar with it. We assume static corruptions by the adversary, meaning
that the adversary corrupts some set of parties once at the beginning of the
protocol. We will usually denote the set of parties the adversary corrupts by
A C P. We assume the adversary is active, meaning that the corrupted parties
may execute arbitrary code determined by the adversary, and additionally we
allow the protocol to abort prematurely — i.e. the protocols are actively-secure
with abort. The protocol is secure against a computationally bounded adversary,
who must find a collision of the hash function to cheat without causing the
protocol to abort.

Pre-processing: Many modern MPC protocols split computation into two
phases, the offline or pre-processing phase and the online phase. In the offline
phase, the parties engage in several rounds of communication to produce data
which can then be used in the online phase. The purpose of doing this is that the
pre-processing can be done at any time prior to the execution of the online phase,
can be made independent of the function to be computed, and may use expen-
sive public-key primitives, in order to allow the online phase to use only fast
information-theoretic primitives. In our protocol design, we follow this model,
although we only require symmetric-key primitives throughout since the access
structure is Qs.

Hash Authentication: The work of Furakawa et al. [25] is in the three-party
honest majority case. A secret is additively split into three parts, and each party

Error Detection in Monotone Span Programs 219

Hash API

The hash API implemented via the hash function H : F* — {0,1}" consists of the
following three algorithms:

— H.Initialise(): the hash function is initialised.

— H.Update(s): the hash function is updated with the vector s.

— H.Output(): the hash function is evaluated and output provided.

Fig. 1. Hash API

is given a different set of two of them. To open a secret, each party sends to one
other party the share that party is missing, symmetrically. This suffices for all
parties to obtain all shares, but does not ensure that the one corrupt party sent
the correct share. This is where the hash evaluation comes in: after a secret is
opened, all parties update their hash function locally with all three shares (the
two they held and the one they received); after possibly many secrets are opened,
the parties broadcast (here meaning each party sends to the other two parties
over a secure channel) the outputs of their hash evaluations and compare what
they received with what they computed themselves. If any hashes differ, they
abort. This process ensures that the shares held by all parties are consistent,
even though each party need only send one share to one party per opening. If
many shares are opened in the execution of the protocol (as is the case in SPDZ-
like protocols, since every multiplication requires two secrets to be opened),
this significantly reduces communication overhead, at the cost of cryptographic
assumptions for the existence of a collision-resistant hash function. This was
generalised to any replicated scheme Qo LSSS by Keller et al. [31].

In our work, we apply similar techniques to Furukawa et al. and Keller et al.
to the problem of opening values to parties, but in a significantly more general
case. We achieve this by proving the folklore results that say an LSSS is error-
detecting if and only if it is Qs. Our protocol will use the “standard” hash
function API given in Fig. 1; in brief, our methods are as follows:

— If single party P; is required to learn a secret, all the other parties send all
of their shares to P;, and then P, performs an error-detection check on the
shares received, telling all parties to abort if errors are detected.

— If all parties are required to learn a secret, the parties engage in a round
of communication in which not all parties need to communicate with each
other. The parties reconstruct a view of what they think other parties have
received, even if they have not communicated with all other parties. After
opening possibly many secrets, each party calls Output on the hash function,
broadcasts their output, and checks every other party’s hash value against
their own; we will see that this process authenticates the secrets.

In the next two sections we outline why the methodologies for the two cases are
correct. The proof of security of our protocol can be found in the full version.

220 N. P. Smart and T. Wood

3 Opening a Value to One Party

In this section, we show that for an LSSS realising a Qs access structure, if
the share vector s for some secret s is modified with an error vector e with
unqualified support then s + e is either no longer a valid share vector (i.e. is not
in im(M)), or the error vector encodes 0, and so by linearity s + e also encodes
s. In our MPC protocol, this will provide an efficient method by which a party
to whom a secret is opened (by all other parties sending that party all of their
shares) can check whether or not the adversary has introduced an error. The
procedure of opening to a single party is necessary in order for the parties to
provide input and obtain output in an actively-secure manner.

Lemma 1. For any MSP M = (F, M, e,) computing a Qo access structure I,
for any vector s € F™,

s & im(M), or

I' =
Vlsupp(s)) ¢ {s € im(M) and s = Mx for some x € F* where (x,&) = 0.

Proof. If ¢(supp(s)) & I" then P\ ¢(supp(s)) € I" since the access structure is
Q. Thus there is at least one set Q € I' where Q C P \ ¢(supp(s)) for which
s; = 0 for all ¢ € [m] where ¥(i) € Q (i.e. sg = 0), by definition of supp.

Recall that for a qualified set @) of parties to reconstruct the secret, they
take the appropriate recombination vector A (which has the property that
Y(supp(X)) C Q) and compute s = (A, s). For this particular @ and correspond-
ing recombination vector A, we have (X,s) = (Ag,sqg) since ¥ (supp(A)) C @Q,
and (Ag,sq) = (Ag,0) = 0 by the above, so the secret is 0.

If s € im(M) then every set @Q € I' must compute the secret as 0 by the
definition of MSP (though note that it is not necessarily the case that sg = 0
for all @ € I'). Thus the share vector s is in im(M) and encodes the secret s = 0.

Otherwise, s ¢ im(M), and we are done. O

We now show that if the adversary (controlling an unqualified set of parties)
adds an error vector e to a share vector s, the resulting vector ¢ :== s + e
will either not be a valid share vector, or will encode the same secret as s (by
linearity). Adding in an error e that does not change the value of the secret
can be viewed as the adversary re-randomising the shares he holds for corrupt
parties.

Lemma 2. Let M = (F,M,e,v) be an MSP computing Qs access structure
I' and ¢ = s + e be the observed set of shares, given as a valid share vector s
encoding secret s, with error e. Then there exists a matriz N such that

Y(supp(e)) € I' = either e encodes the error e =0, or N -c # 0

Proof. Let N be any matrix whose rows form a basis of ker(M ") and suppose
e € F™. By the fundamental theorem of linear algebra, ker(M ") = im(M)L, so
s € im(M) if and only if N -s = 0. Since t(supp(e)) € I', then by Lemma 1 we
have that either e & im(M), or e € im(M) and e = 0.

If e € im(M) then e = 0 and we are done, whilst if e ¢ im(M) then N-e # 0.
In the latter case, since s € im(M) we have N -s = 0 and hence N - ¢ =
N-s+e)=N-s+N-e=0+N-e#0. O

Error Detection in Monotone Span Programs 221

The matrix NV is usually called the cokernel of M, and can be viewed as the
parity-check matrix of the code defined by generator matrix M. The method to
open a secret to a single party P; is then immediate: all parties send their shares
to P;, who then concatenates the shares into a share vector s and computes NV -s.
Since the adversary controls an unqualified set of parties, if N -s = 0 then by
Lemma 2 the share vector s encodes the correct secret. In this case, P; recalls
any recombination vector A and computes the secret as s = (A, s), and otherwise
tells the parties to abort.

4 Opening a Value to All Parties

To motivate our procedure for opening to all parties and to show that it is
correct, we first discuss the naive method of opening shares in a semi-honest
protocol, then show how to reduce the communication, and then explain how to
obtain a version which is actively-secure (with abort).

To open a secret in a passively-secure protocol, all parties can broadcast
all of their shares so that all parties can reconstruct the secret. This method
contains redundancy if the access structure is not full-threshold since proper
subsets of parties can reconstruct the secret by definition of the access structure.
This implies the existence of “minimal” communication patterns for each access
structure and LSSS, in which parties only communicate sufficiently for every
party to have all shares corresponding to a qualified set of parties.

When bootstrapping to active security, we see that the redundancy allows
verification of opened secrets: honest parties can check all other parties’ broad-
casted shares for correctness. When reducing communication with the aim of
avoiding the redundancy of broadcasting, honest parties must still be able to
detect when the adversary sends inconsistent or erroneous shares. In particular,
parties not receiving shares from the adversary must also be able to detect that
cheating has occurred in spite of not directly being sent erroneous shares.

To achieve this, in our protocol each party will receive enough shares from
other parties to determine “optimistically” all shares held by all parties — that
is, reconstruct the entire share vector — and then all parties will compare their
reconstructed share vectors. To amortise the cost of comparison, the parties will
actually update a local collision-resistant hash function each time they recon-
struct a new share vector and will then compare the final output of the hash
function at the end of the computation, when output is required. This, in essence,
is the idea behind the protocols of Furakawa et al. [25] and Keller et al. [31] that
are tailored to replicated secret-sharing.

To fix ideas, consider the case of Shamir’s scheme: a set of ¢ + 1 distinct
points determines a unique polynomial of degree at most ¢ that passes through
them. This fact not only enables the secret to be computed using ¢ + 1 shares,
but additionally enables determining the entire polynomial (the coefficients of
which are the share vector for the scheme) and consequently all other shares.

222 N. P. Smart and T. Wood

For some LSSSs it is not the case that any qualified set of parties have enough
information to reconstruct all shares’.

To allow the parties to perform reconstruction, each party is assigned a set
of shares that it will receive, which we encode as a map q : P — 2["™! defined as
follows: for each P; € P, define q(F;) to be a set S; C [m] such that:

— ker(Mg,) = {0}; that is, the kernel of the submatrix M restricted to the rows
indexed by S;, is trivial; and

— 7Y{P;}) C S;, where 1! denotes the preimage of the row-map ; that is,
each party includes all of their own shares in the set .S;.

These sets are used as follows. Each P; receives a set of shares, denoted by sé(Py

for a given secret. Then in order to reconstruct all shares, P; tries to find x* such
that s;(Pi) = Mycp,) - x* and then computes s* = M - x* as the reconstructed
share vector, which is then used to update the hash function (locally). Trivially,
we can take q(P;) = [m] for all P; € P, which corresponds to broadcasting all
shares; however, better choices of q result in better communication efficiency. In
the full version we give a somewhat-optimised algorithm for finding a “good”
map g for a given MSP. We remark that finding the map q is not always as
straightforward as it is for replicated secret-sharing in which each party must
obtain precisely all the shares it does not have; for many LSSSs, this is overkill:
for example, Shamir sharing only requires receiving ¢ shares from other parties,
not all n — 1 other shares it does not possess.

If such an x* does not exist then it must be because the adversary sent one or
more incorrect shares, because sg(P) should be a subvector of some share vector.
In this case, the party or parties unable to reconstruct tell all parties to abort.

If such an x* does exist for each party then the adversary could still cause
different parties to reconstruct different share vectors (and thus output different
secrets), but then the hashes would differ and the honest parties would abort. The
first condition, ker(Mg,) = {0}, ensures that if all parties follow the protocol,
they all reconstruct the same share vector, since there are multiple possible share
vectors for a given secret, otherwise an honest execution may lead to an abort.

Indeed, the only thing the adversary can do without causing abort — either
immediately or later on when hashes are compared — is to change his shares so
that his shares combined with the honest parties’ shares form a valid share vector.
Intuitively, one can think of this as the adversary re-randomising the shares
owned only by corrupt parties, which is not possible in Shamir or replicated
secret-sharing, but is in DNF-based sharing, and in general is possible if and
only if the LSSS admits non-trivial share vectors with unqualified support.

More formally, we have the following lemma that shows that if all parties can
reconstruct share vectors and the share vectors are consistent, then the adversary
cannot have introduced an error.

! In the full version we provide a formal description of MSPs in which all qualified
sets of parties can reconstruct the entire share vector and explain how such MSPs
are “good” for our protocol.

Error Detection in Monotone Span Programs 223

Protocol Iopening

For each P; € P, the parties decide on some A¢, which is any recombination vector
such that supp(A") C q(P;). See Section 4 for the definition of q. We denote by H’
the hash function updated locally by P; which will be initialised as in Figure 5, at
the start of the MPC protocol. If at any point a party receives the message Abort,
it runs the subprotocol Abort.

OpenTo(i):
If ¢ = 0, the secret s encoded via share vector s, is to be opened to all, otherwise it
is to be opened only to player P;.

If i = 0 then each P; € P does the following:
1. Retrieve from memory the recombination vector AJ.
For each P, € P, for each k € q(P), if (k) = P; then send sy to Pp.
For each k € q(P;), wait to receive sy from party (k).
Concatenate local and received shares into a vector denoted by sz p € Fla®l,

(Locally) output s = <>‘2(Pj)’sé(}>j)>'

Solve Mqcpy) - x) = si(P.) for x7. If there are no solutions, run Abort.
Execute H’.Update(Mx”).

NS vk

If ¢ # 0, the secret encoded via share vector s is to be opened to party P;. The
parties do the following:
1. Each P; € P\ {P;} sends s{p;} to P;, who concatenates local and received
shares into a vector s.
2. Party P; computes N -s; if it is equal to 0, P; (locally) outputs s = (A%, s), and
otherwise runs Abort.

Verify: Each P; € P does the following;:
1. Compute h' := H'.Output().
2. Send R’ to all other parties P; € P\ {P;} over pair-wise secure channels.
3. Wait for h? from all other parties P; € P\ {P;}.
4. If h? # h' for any j, run Abort.

Abort: If a party calls this subroutine, it sends a message Abort to all parties and
aborts. If a party receives a message Abort, it aborts.

Broadcast: When P; calls this procedure to broadcast a value s,
1. Party P; sends the secret s to all other players over pair-wise secure channels.
2. When party P; receives the share, it executes H”.Update(s).

Fig. 2. Protocol IIopening

Lemma 3. Let g : P — 2™ be defined as above and let qu(i denote the sub-
vector of shares received by party P; for a given secret. Suppose it is possible for
each party P; € P to find a vector x* such that Sz(Pi) = Mq(pi)xi; let s* := M -x*

224 N. P. Smart and T. Wood

for each i € [n]. If s* = s7 for all honest parties P; and Pj, then the adversary
did not introduce an error on the secret.

Proof. The existence of q follows from the fact that “at worst” we can take
q(P;) = [m] for all P; € P. There is a unique x* solving sg(Pi) = My(p,) - x" (not
a priori necessarily the same for all parties) because ker(Mq(p,)) = {0} for all
P; € P by the first requirement in the definition of q.

Let A denote the set of corrupt parties. Since A is unqualified, the honest
parties form a qualified set @ = P \ A since the access structure is Qs.

Each honest party uses their own shares in the reconstruction process by the
second requirement in the definition of q, so if s* = s’ for all honest parties
P; and P;, then in particular they all agree on a qualified subvector defined by
honest shares — i.e. SZQ = sjé for all honest parties P; and P;. Thus some qualified
subvector of the share vector is well defined, which uniquely defines the secret
by definition of MSP. g

Functionality Fprep

The functionality maintains a list Value of secrets that it stores. The set A indexes
the corrupt parties (unknown to the honest parties).

Triples: On input (Triple, Nr) from all parties, the functionality does the following:
1. For ¢ from 1 to Nr:
(a) Sample a’, b’ £ F and compute share vectors a’ and b’.
(b) Send (a%y,b%) to the adversary.
(c) Receive a subvector of shares &4 from the adversary.
(d) Compute a vector ¢' = M - x% such that (x,&) = a’ - b* and ¢’y = &,. If
no such vector c' exists, set an internal flag Abort to true and continue.
2. Wait for a message OK or Abort from the adversary.
3. If the response is OK and the internal flag Abort has not been set to true, for
each honest P; € P, send (a"{Pi}, bipi}, cipi})é\g to each honest party P;, and
otherwise output the message Abort to all honest parties and abort.

Fig. 3. Functionality Fprep

As mentioned in the introduction, our results in the last two sections are
somewhat analogous to the result of Cramer et al. [19, Theorem 1] which roughly
shows that for a strongly multiplicative LSSS implementing a Qs access struc-
ture, honest parties can always agree on the correct secret (when all parties
broadcast their shares). In Fig. 2 we present the methods we use to open secret
shared data in different situations.

5 MPC Protocol

We are now ready to present our protocol to implement the MPC functional-
ity offering active security with abort as given in Fig.4. We present the online

Error Detection in Monotone Span Programs 225

Functionality Fupc

Initialise: On input Init from all parties, the functionality initialises the array
Value[]. Accept a message OK or Abort from the adversary; if the message is OK
then continue, and otherwise send the message Abort to all parties and abort.

Input: On input (Input,id, z) from party P; and (Input,id, L) from all other parties,
where id is a fresh identifer, the functionality sets Value[id] := z.

Add: On input (Add,idq,id2,ids) from all parties, if ids is a fresh identifier and
Value[idi] and Value[ids] have been defined, the functionality sets Value[ids] :=
Value[id1] + Value[idz].

Multiply: On input (Multiply, idi,id2, id3) from all parties, if ids is a fresh identifier
and Value[id,] and Value[id2] have been defined, the functionality waits for a message
OK or Abort from the adversary. If the adversary sends the message Abort, send
the message Abort to all parties and the adversary and abort, and otherwise set
Value[ids] := Value[id1] - Valuelidz].

Output: On input (Output,id,) from all parties, if Value[id] has been defined, the
functionality does the following:

— If ¢ = 0, send Valuelid] to the adversary and wait for a signal OK or Abort
in return. If it signals Abort, send the message Abort to all parties and the
adversary and abort, and otherwise send Value[id] to all parties. If not aborted,
wait for another signal OK or Abort. If the adversary signals Abort, send the
message Abort to all parties and the adversary and abort.

— Ifi # 0 and P; is corrupt, then the functionality sends Value[id] to the adversary
and waits for the adversary to signal OK or Abort. If it signals Abort, send the
message Abort to all parties and abort.

— If i # 0 and P; is honest, the functionality waits for the adversary to signal
OK or Abort. If it signals Abort, send the message Abort to all parties and the
adversary and abort, and otherwise send Value[id] to P;.

Fig. 4. Functionality Fupc

method here, leaving the offline method for the full version. Our offline method is
much more scalable than [31] since the dependence on replicated secret-sharing
is removed. The offline method implements the functionality given in Fig. 3. Our
online protocol, in Fig.5, makes use of the opening protocol Iopening given in
Fig. 2 earlier. The majority of our protocol uses standard MPC techniques for
secret-sharing. In particular, the equation the parties compute for the multipli-
cation is a standard application of Beaver’s circuit randomisation technique [2],
albeit for a general LSSS.

Correctness of our input procedure follows from the input method given in
the non-interactive pseudo-random secret-sharing protocol of [17]. In particular
for party P; to provide an input s in a secret-shared form s, the parties will first
take a secret-sharing r of a uniformly random secret r — which is some a or b

226 N. P. Smart and T. Wood

Protocol ITypc

Note that this protocol calls on procedures from ITopening in Figure 2. If a party
never receives an expected message from the adversary, we assume the receiving
party signals Abort to all other parties and aborts.

Initialise: The parties do the following:
1. Each P; € P executes H'.Initialise().
2. The parties call Fprp, with input (Triple, N7) get Np triples.
3. The parties agree on a public sharing of the secret 1, denoted by u.
4. Each party has one random secret opened to them for every input they will
provide to the protocol: the parties do the following;:

(a) Retrieve from memory a sharing r of a uniformly random secret r, obtained
first or second random secret from a Beaver triple. (The secret used may
neither be used again for input nor used in a multiplication.)

(b) Run OpenTo(i) on r so that P; obtains 7.

Input: For party P; to input secret s,

1. Party P; retrieves a secret r from memory, corresponding to a share vector r
established during Initialise for inputs, and all parties P; € P retrieve their
shares r(p}.

2. Party P; executes Broadcast to open ¢ := s — r.

3. Each party P; € P computes s{p;} := €-uyp;} +I{p;}.

Add: To add secrets s and s’, with corresponding share vectors s and s’, for each
P; € P party P; computes s{p,} +S{p,}-

Multiply: To multiply secrets s and s’, with corresponding share vectors s and s/,
each P; € P does the following:
1. Retrieve from memory the shares (a;p,},byp,3,cp,3) of a triple (a,b,c) ob-
tained in Initialise.
2. Compute s{p,} —ajp,} and s'{Pi} —bip;y}.
Run OpenTo(0) on s — a and s’ — b to obtain (publicly) s — a and s’ — b.
4. If the parties have not aborted, compute the following as the share of the
product c(p;y + (s —a) -s{p,y + (s = b) -sgpy — (s —a)- (s —b) - ugp,;.

w

OutputTo(i): If ¢ = 0, the secret s, encoded via share vector s, is to be output to
all parties, so the parties do the following:

1. Run Verify.

2. If the parties have not aborted, run OpenTo(0) on s.

3. If the parties have not aborted, run Verify again.

4. If the parties have not aborted, all parties (locally) output s.
If P; € P, the secret s encoded via share vector s is to be output to party P;, so
the parties do the following:

1. Run Verify.

2. If the parties have not aborted, run OpenTo(%) on s.

3. If P; has not aborted it (locally) outputs s.

Fig. 5. Protocol IIupc

Error Detection in Monotone Span Programs 227

from a Beaver triple — and open it by calling OpenTo(:). Then P; determines
the encoded secret (using any recombination vector) and broadcasts € := s — r.
The parties compute the share vector as s := ¢ - u + r where u is a pre-agreed
sharing of 1, which may be the same vector used to compute all inputs, by which
we mean that for ¢ € [m], party (i) computes s; := € - u; + r;. Since this r is
uniformly random by assumption, it hides the input s in the broadcast of €. This
is proved formally in our simulation proof.

We have the following proposition, which we prove in the full version under
the UC framework of Canetti [14]. Here we use (IImpc||IIopening) to mean simply
that the union of the procedures from both protocols are used.

Proposition 1. The protocol (IIympc||Iopening) securely realises Fupc for a Qs
access structure in the presence of a computationally-bounded active adversary,
corrupting any unqualified set of parties, in the Fprep-hybrid model, assuming the
existence of a collision-resistant hash function and point-to-point secure chan-
nels.

We note that since we do not use MACs, we can also instantiate our protocol
over small finite fields?, or indeed using a LSSS over a ring. The latter will hold
as long as the reconstruction vectors can be defined over the said ring. By taking
a ring such as Z/23?7Z we thus generalise the Sharemind methodology [11] to an
arbitrary Qs structure. Also note that we can extend Fprep in a trivial way so
as to obtain other forms of pre-processing such shares of bits etc. as in [22].

Acknowledgements. We thank for the anonymous reviewers for their helpful com-
ments and remarks. This work has been supported in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contract No. N66001-15-C-4070, and by EPSRC via grant EP/N021940/1.

References

1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp.
805-817. ACM Press, October 2016

2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420-432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_34

3. Beaver, D., Wool, A.: Quorum-based secure multi-party computation. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 375-390. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054140

4. Beimel, A., Gél, A., Paterson, M.: Lower bounds for monotone span programs. In:
36th FOCS, pp. 674-681. IEEE Computer Society Press, October 1995

2 If using a small ring/finite field we simply need to modify the sacrificing stage in the
triple production process; no changes are needed for the online phase at all.

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/BFb0054140

228

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

N. P. Smart and T. Wood

Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1-10. ACM Press, May 1988

Ben-Sasson, E., Fehr, S.; Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663—-680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_39

Bendlin, R., Damgard, 1., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169-188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4_11

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASTACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326-343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45608-8_18

Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979
National Computer Conference, vol. 48, pp. 313-317 (1979)

Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Students
and taxes: a privacy-preserving social study using secure computation. Cryptology
ePrint Archive, Report 2015/1159 (2015). http://eprint.iacr.org/2015/1159
Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192-206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5_13

Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325-343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4_20

Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143—202 (2000)

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067

Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11-19. ACM Press, May 1988
Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993,
pp- 34-64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_2
Cramer, R., Damgard, 1., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342-362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7-19

Cramer, R., Damgard, 1., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316-334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6_22

Cramer, R., et al.: On codes, matroids and secure multi-party computation from
linear secret sharing schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp- 327-343. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_20
Damgard, 1., Geisler, M., Krgigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC

https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
http://eprint.iacr.org/2015/1159
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-642-03549-4_20
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/11535218_20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

Error Detection in Monotone Span Programs 229

2009. LNCS, vol. 5443, pp. 160-179. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1_10

Damgard, 1., Ishai, Y., Krgigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445-465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5_23

Damgard, 1., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority — or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1-18. Springer, Heidelberg (2013). https://doi.org/10.1007 /978-3-642-40203-6_1
Damgard, 1., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643-662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_38

van Dijk, M.: Secret key sharing and secret key generation. Ph.D. thesis, Eindhoven
University of Technology (1997)

Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 225—
255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_8
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218-229. ACM Press, May 1987

Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in
secure multi-party computation (extended abstract). In: Burns, J.E., Attiya, H.
(eds.) 16th ACM PODC, pp. 25-34. ACM, August 1997

Tto, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: Proceedings of IEEE Global Telecommunication Conference (Globe-
com 1987), pp. 99-102 (1987)

Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in
Complexity Theory, pp. 102-111 (1993)

Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830-842. ACM Press, October
2016

Keller, M., Rotaru, D., Smart, N.P., Wood, T.: Reducing communication channels
in MPC. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp.
181-199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_-10
Maurer, U.M.: Secure multi-party computation made simple. Discrete Appl. Math.
154(2), 370-381 (2006)

Nikova, S., Rijmen, V., Schléffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292-321 (2011)
Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 764-783. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6_37

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)

Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162-167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-98113-0_10
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37

	Error Detection in Monotone Span Programs with Application to Communication-Efficient Multi-party Computation
	1 Introduction
	1.1 Authentication of Shares
	1.2 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Access Structures, MSPs, LSSSs and Linear Codes
	2.3 MPC

	3 Opening a Value to One Party
	4 Opening a Value to All Parties
	5 MPC Protocol
	References

