
Structure-Preserving Certificateless
Encryption and Its Application

Tao Zhang, Huangting Wu, and Sherman S. M. Chow(B)

Department of Information Engineering, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong

sherman@ie.cuhk.edu.hk

Abstract. Certificateless encryption (CLE) combines the advantages
of public-key encryption (PKE) and identity-based encryption (IBE) by
removing the certificate management of PKE and the key escrow problem
of IBE. In this paper, we propose structure-preserving CLE schemes.
Structure preservation enables efficient non-interactive proof of certain
ciphertext properties, thus supporting efficient modular constructions of
advanced cryptographic protocols with a simple design.

As an illustration, we propose a structure-preserving group signature
scheme with certified limited (CL) opening from structure-preserving
CLE. CL opening allows a master certifier to certify openers. The opener
who is the designated one for a group signature can open it (i.e., revoke
its anonymity). Neither the certifier nor any non-designated openers can
perform the opening. The structure-preserving property of our scheme
can also hide who is the designated opener among a list of possibilities.

Keywords: Structure-preserving cryptography ·
Certificateless encryption

1 Introduction

Structure-preserving cryptography is a promising paradigm which enables mod-
ular designs of advanced cryptographic protocols, due to its compatibility with
efficient non-interactive zero-knowledge proof over the same structure, such as
Groth-Sahai proof [21]. Abe et al. [3] constructed structure-preserving signa-
ture (SPS) schemes which sign on a vector of group elements. They also used
SPS to design concurrently-secure group signatures among other applications.
Camenisch et al. [10] proposed the first CCA-secure structure-preserving encryp-
tion (SPE) scheme. Specifically, their integrity check before the final step in the
decryption algorithm does not hash the ciphertext, which is often required in
other CCA-secure scheme and its presence may hinder its compatibility with

S. S. M. Chow—Supported by General Research Funds (CUHK 14210217) of the
Research Grants Council, Hong Kong.

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 1–22, 2019.
https://doi.org/10.1007/978-3-030-12612-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_1

2 T. Zhang et al.

Groth-Sahai proof. SPE found applications in joint computation of cipher-
text [10].

Many studies have been carried out on basic primitives which are structure-
preserving; yet, despite the numerous applications of identity-based encryption
(IBE), (fully) structure-preserving IBE (SP-IBE) has never been studied. SP-
IBE requires the public parameters, the plaintext, the ciphertext, and the user
identity, consists of only group elements. The user identity is of a particular
interest. For existing pairing-based IBE schemes, the user identity ID is not
a group element, but consists of integers or bits. Usually, these schemes hash
ID to a group element or to an exponent, which kills the original structure
of the identity. A notable exception is proposed by Libert and Joye [25], where
everything except the user identity consists of only group element. Such a scheme
found applications in group signature with message-dependent opening.

It is well known that any IBE construction implies an implicit signature
scheme. One may wonder if any of the existing SPS schemes feature a signature
which can be used as a decryption key for a certain SP-IBE scheme. In other
words, any valid signature can recover the ephemeral session key in the SP-IBE
scheme, by pairing up the signature (as a user decryption key) with the cipher-
text. However, to the best of the authors’ knowledge, existing SPS signatures
cannot be used for this purpose. The reason is that the verification equation
requires the computation of a pairing term where both of its input comes from
the signature. From another perspective, if one is going to generate a ciphertext
such that it is decryptable by such a decryption key, the pairing will involve
an unknown term since the decryption key is unknown to the encryptor. In this
paper, towards enriching the class of structure-preserving cryptographic schemes,
we move our focus to structure-preserving certificateless encryption (SP-CLE).

Certificateless encryption (CLE), introduced by Al-Riyami and Paterson [5],
strikes a balance between IBE and public-key encryption (PKE). In traditional
PKE, an encryptor needs to verify a certificate which ensures that a given public
key belongs to the recipient. This requires a public-key infrastructure to support
the storage and distribution of the certificates. The sender also needs to verify the
certificate before encrypting. To overcome this weakness of PKE, IBE provides
another solution in which every identity string can be mapped to a public key via
a publicly computable function. The corresponding private decryption key can
only be generated by the key generation center (KGC). Such kind of key-escrow
is inherent and introduces serious security concerns. CLE removes key-escrow
by requiring both the partial decryption key from the KGC and a user secret in
decryption. Yet, unlike PKE, CLE does not need any infrastructure to authenti-
cate users’ public keys. In contrast, implicit certification is ensured by the KGC
since decryption would be impossible without the partial decryption key.

In the CLE formulation of Al-Riyami and Paterson [5], a user can compute
and release its user public key before it obtains its partial decryption key from
the KGC. Such formulation implies the existence of both PKE and IBE [18].
Indeed, CLE can be constructed generically from IBE and PKE. Baek, Safavi-
Naini, and Susilo [6] formulated an alternative CLE notion in which a user must

Structure-Preserving Certificateless Encryption and Its Application 3

obtain its partial decryption key from the KGC before it can compute its user
public key. Such formulation no longer implies IBE. Consequently, Baek et al.
constructed CLE from Schnorr signatures and ElGamal PKE. This gives us hope
in designing SP-CLE without first designing SP-IBE.

Another distinctive feature of CLE is its security under strong decryption [5].
A strong decryption oracle can provide correct decryption even when the public
key of a user is replaced by the adversary, without requiring the adversary to
surrender the decryption key corresponding to the replaced public key. This level
of security has important applications in complete non-malleability [7,14]. Many
CLE schemes, under either formulation [5,6], rely on the random oracle to simu-
late the strong decryption oracle. Dent et al. [19] proposed the first CLE scheme
featuring strong decryption in the standard model. Yet, Groth-Sahai proof can-
not prove about its ciphertext well-formedness due to the presence of a hash.

Our Contribution. We propose the first SP-CLE schemes over groups with bilin-
ear map e : G × H → GT . We first present a construction encrypting plaintexts
in GT which is secure against chosen-plaintext attacks (CPA). Then, we extend
it to support message space of G (or H). Finally, we show how to extend it for
security against replayable chosen-ciphertext attacks (RCCA). Our proofs do
not rely on random oracles; yet, they are proven in the generic group model.

To illustrate the application of SP-CLE, we then build a (partially) structure-
preserving group signature scheme with certified limited (CL) opening from our
SP-CLE. We defer the relevant introduction and motivation to Sect. 5.

2 Preliminaries

2.1 Bilinear Group

For bilinear group context G = (G,H,GT , e, p, g, h), G,H, and GT are groups of
prime order p, where g and h are random generators for G and H respectively.
A bilinear map e : G × H → GT is a non-trivial and efficiently computable
pairing function such that, for all u ∈ G, v ∈ H, a, b ∈ Z, e(ua, vb) = e(u, v)ab.
In Type-I groups, G = H. For Type II, there exists an efficient mapping from
G to H but not the other way around. For Type III, there exists no efficient
mapping between G and H. This paper uses Type-III groups which is the most
efficient.

2.2 Groth-Sahai Proof System

Groth and Sahai [21] proposed several instantiations for efficient NIZK proof
of knowledge, for statements about group elements satisfying a pairing product
equation. Their proof system (called Groth-Sahai proof hereinafter) consists of
four algorithms GS = (Setup, Prove, Verify, Extract). Setup(1λ) generates the
common reference string crs and the extraction key ek. Prove() takes in a witness
and a statement to generate a proof of the statement w.r.t. the witness. We use
the notation PoK to refer to a proof. Verify() outputs 1 on a valid proof.

4 T. Zhang et al.

GS uses a commitment scheme (Commit() with commitment key ck) as a
building block, committing the witness to prepare for an NIZK proof of knowl-
edge. The remaining algorithm Extract() extracts the hidden element from a
proof with the extraction key ek. The commitment key ck is publicly accessible,
and the extraction key ek is only accessible to a knowledge extractor.

2.3 Structure-Preserving Signature

A signature scheme is a tuple of four algorithms (Setup, KeyGen, Sign, Verify).
It is structure preserving [3] if the verification key, the messages, and the signa-
tures consist of only group elements, and the verification algorithm only evaluates
pairing product equations of the form

∏
i

∏
j e(Gi,Hj)aij = 1GT

, where Gi ∈ G

and Hj ∈ H are group elements forming the verification key, the message(s), and
the public parameters, aij ∈ Zp are constants, and the element 1GT

is the identity
element in GT . An SPS is existentially unforgeable under chosen-message attack
(EUF-CMA) if no probabilistic polynomial-time (PPT) adversary can output a
valid forgery (M,σ), given the public parameters param, the verification key vk,
and a signing oracle for adversarially chosen messages but M is never queried. If
the signing oracle can only be queried once, the scheme is called one-time secure.

3 Definitions of Certificateless Encryption

We follow Baek et al.’s formulation [6,31], where the user public key can only
be generated after the user has interacted with the KGC. We add one algorithm
SetUserSec() which is executed by a user and include a partial user public key
ppk as part of the input of Issue, an algorithm executed by the KGC for the user.
These changes have been discussed in the seminal work [5]. A benefit is that the
CLE scheme can reach trust level 3 named by Girault [20] as a traditional PKI.
The CLE definition in this paper consists of seven algorithms (Setup, MKeyGen,
SetUserSec, Issue, UKeyGen, Enc, Dec):

– Setup(1λ) → param. This algorithm takes in a security parameter 1λ and
outputs the parameter param. We assume param is an implicit input to all
other algorithms.

– MKeyGen() → (mpk,msk). The KGC runs this algorithm. It generates the
master public-private key pair. The KGC publishes the master public key
mpk and keeps the master secret key msk in private.

– SetUserSec(mpk, ID) → (ppk, uk). A user takes as input the master public
key mpk and its own identity ID, and outputs a partial user public key ppk
and a user secret value uk.

– Issue(msk,mpk, ID, ppk) → psk. The KGC takes in the master public-private
key pair, a user identity ID, and a user partial public key ppk to generate the
user partial secret key psk for ID.

– UKeyGen(mpk, ppk, psk, uk) → (upk, usk). With respect to the master public
key mpk and a partial public key ppk, the user uses its partial secret key psk

Structure-Preserving Certificateless Encryption and Its Application 5

and user secret value uk to generate the user public-private key pair (upk, usk).
The user publishes the user public key upk and keeps the full private key usk
in private.

– Enc(mpk, upk, ID,M) → C. This algorithm takes in the master public key
mpk, the user public key upk, and an identity ID, to encrypt a plaintext M .

– Dec(mpk, upk, usk, C) → M . This deterministic algorithm takes in the master
public key, the user public-private key pair, and a ciphertext to recover the
plaintext M , or the error symbol ⊥ when C is invalid.

A CLE scheme is said to be correct if for any integer λ, param ← Setup(1λ),
(mpk,msk) ← MKeyGen(param), any string ID, (ppk, uk) ← SetUserSec(mpk, ID),
psk ← Issue(msk,mpk, ID, ppk), (upk, usk) ← UKeyGen(mpk, ppk, psk, uk),
any message M , and C ← Enc(mpk, upk, ID,M), we have M ←
Dec(mpk, upk, usk, C).

A CLE scheme is said to be structure-preserving if the encryption and decryp-
tion algorithms only operate on group elements. In other words, all elements in
mpk, upk, and usk, the identity ID, the message M to encrypt, and the ciphertext
C to be produced, are all group elements. We call a CLE scheme to be partially
structure-preserving if some elements in ID, M , or C are not group elements,
e.g., ID in Libert and Joye [25] and M and C in our basic scheme.

We consider two kinds of adversaries. Type-I adversary AI models the mali-
cious users who can replace the public key of a victim user to other “unauthenti-
cated” public keys since there is no certificate. Type-II adversary AII models an
honest-but-curious KGC who can obtain partial decryption keys for the users,
but cannot replace the user public key for any user. Obviously, these two types
of adversaries cannot collude. We first describe the oracles available to AI/AII :

– Replace Public Key. The adversary submits ID and a user public key upk′

to this oracle, which replaces the previous user public key of ID to upk′.
– Extract Partial Secret Key. The adversary submits an identity ID to this

oracle. This oracle returns the partial secret key psk generated for ID.
– Extract Full Private Key. The adversary supplies an identity ID to this

oracle. This oracle returns the full private key usk generated for ID.
– Strong Decrypt. The adversary supplies an identity ID and a ciphertext C.

This oracle creates a full private key usk for ID if it is not previously generated,
decrypts C with usk even if upk of ID used in C has been replaced, and sends
the plaintext to the adversary.

– Weak SV Decrypt. The adversary supplies an identity ID, a user secret
uk′, and a ciphertext C to this oracle. This oracle creates usk′ for ID with the
real psk and uk′, and decrypts C. The oracle returns the plaintext result.

Definition 1 (IND-CPA security against Type-I adversary). A CLE
scheme is indistinguishable under chosen-plaintext attacks (IND-CPA secure)
against Type-I adversary if AdvIND-CPA

AI
is negligible.

Setup. The challenger C executes Setup() and publishes param.

6 T. Zhang et al.

Master Key Generation. C runs MKeyGen(), sends mpk to AI , and keeps msk
private.

Query Phase. The adversary AI first makes registration queries for a polyno-
mial number of identities {IDi}q

i=1. C runs pski ← Issue(msk,mpk, IDi, ppki) and
(upki, uski) ← UKeyGen(mpk, pski), and publishes upki for i ∈ [1, q]. Then, AI

can make Replace Public Key, Extract Partial Secret Key, and Extract
Full Private Key queries on any registered identity, but AI cannot request for
the partial or full private key of an identity ID after replacing its upk.

Challenge. AI submits an identity ID∗ and two messages M0,M1 to C. C aborts
this game if any of the following events happen.

– AI made Extract Full Private Key query on ID∗.
– AI made both Replace Public Key query and Extract Partial Secret

Key query on ID∗.

C then randomly picks b
$← {0, 1} and gives C∗ = Enc(mpk, upk∗, ID∗,Mb) to AI .

Guess. AI receives C∗ and outputs a bit b′. If b′ = b, AI wins the game. The
advantage of AI in this game is AdvIND-CPA

AI
= Pr[b′ = b] − 1

2 .

Definition 2 (IND-CPA security against Type-II adversary). A CLE
scheme is IND-CPA secure against Type-II adversary if AdvIND-CPA

AII
defined

below is negligible.

Setup. The challenger C executes Setup() and publishes param.

Master Key Generation. The challenger C runs the algorithm (mpk,msk) ←
MKeyGen(param), publishes mpk, and sends msk to AII .

Query Phase. AII and C interact in the same way as in the experiment in
Definition 1 except for the following differences. First, C sends psk to AII . Second,
AII can create new pski for IDi by itself. Third, AII can only make Extract
Full Private Key queries in this game.

Challenge and Guess. These two phases are the same as in the experiment in
Definition 1. The advantage of AII in this game is AdvIND-CPA

AII
= Pr[b′ = b] − 1

2 .
The indistinguishability under chosen-ciphertext attacks (IND-CCA secu-

rity) games for SP-CLE against Strong Type-I and Strong Type-II adversaries
are similar to the experiments in Definitions 1 and 2 respectively, except that
in Query Phase, the adversaries can make Strong Decrypt and Weak SV
Decrypt queries on ciphertexts of its choice except C∗. The advantage of AI and
AII in IND-CCA game are defined as AdvIND-CCA

AI
and AdvIND-CCA

AII
respectively.

For replayable CCA (RCCA) security [11], decryption oracle returns replay if
the decryption result is M0 or M1 after the challenge phase.

Structure-Preserving Certificateless Encryption and Its Application 7

4 A Specific Construction of SP-CLE

4.1 Intuition

Instead of using an SPE generically to perform encryption, we rely on the
pairings computed in the SPS verification for encryption or decryption. In our
scheme, a receiver generates and sends his partial public key ppk to the KGC. The
KGC creates a structure-preserving signature on the receiver identity together
with the partial public key. The receiver then publishes a part of the signature
together with his partial public key while keeping the remaining signature parts.

A general verification algorithm of an SPS consists of a series of pairing
product equations of the form

∏m
i=1

∏n
j=1 e(Gi,Hj)aij = 1GT

, where Gi ∈ G for
i ∈ [1,m], Hj ∈ H for j ∈ [1, n], and aij ∈ {−1, 0, 1}. The group elements Gi

and Hi are from the verification key of SPS, the signature being verified, or the
message. The exponents aij indicate whether they should be on the left or the
right side of the equation (1 or −1), or should not appear at all (0).

We divide the set {(Gi,Hj)}(i,j) into two indices sets: K which contains the
pairings used in encryption by the sender to construct a session key (or for
hiding the plaintext); and K which contains the rest of the pairing that are
used in decryption to recover the session key. To encrypt a plaintext M , the
pairings e(Gi,Hi) for (i, j) ∈ K and some randomness rij

$← Zp together form
a session key as

∏
(i,j)∈K e(Gi,Hj)aij ·rij . The ciphertext also contains elements

exponentiated with the randomness rij ({x, y, z} in our concrete scheme below).
The remaining pairings in set K can be used in the decryption algorithm to pair
up the ciphertext elements and the decryption key to recover the session key.

Whether a pairing should be put in the session key, included in the other
ciphertext elements, or used in decryption privately as part of the decryption
key, depends on whether the input of a pairing function is public or not.

We start with the basics. To make our exposition concrete, we consider the
SPS scheme due to Abe et al. [4]. We chose to build our SP-CLE based on this
SPS for its optimality. The verification key of the SPS scheme is the master
public key which should be public. This contains (g, h, U, Ṽ1, Ṽ2,W1,W2). The
message vector signed by SPS contains a user identity and a (partial) user public
key Dα. Both elements are public. The signature (R̃, S̃, T) contributes to the only
parts which can be private. Now, we classify the pairings in the SPS verification.
A similar classification has also been done in the literature [32] for a different
purpose (delegating computations of pairings).

(1) Both elements in a pairing are public: This type of pairing includes public
key-public key pairs and message-public key pairs. The involved elements
are available to the encryptor, so we use all of them in the session key. In
our scheme, these include e(W1, h), e(ID, Ṽ1), e(Dα, Ṽ2), and e(g, h), where
Dα is a user-chosen public key. Our scheme also includes an additional term
e(Dα, h) to ensure that only the user but not the KGC (who can recreate the
SPS signature) can decrypt. Looking ahead, our scheme publishes R̃ from
the signature, so e(W2, R̃) and e(U, R̃) eventually belong to this type (see
“both private” below).

8 T. Zhang et al.

(2) One of the elements in a pairing is public: This type of pairing includes
public key-signature pairs and message-signature pairs. In our scheme, that
is e(g, S̃). The public element can be used to embed randomness r in the
ciphertext in the form of Gr

i or Hr
j . In our scheme, such elements include g

(and R̃ below).
(3) Both elements in a pairing are private: The private elements (from the SPS

signature) are part of the user private key. This type of pairing includes only
signature-signature pairs. In our scheme, e(T, R̃) “originally” belongs to this
type. As both of the elements are private, the encryptor has no way to know
what is the SPS signature (i.e., user private key) obtained by the intended
decryptor. We thus publish R̃ as part of the user public key (which is not
allowed in the IBE setting). We remark that such treatment is not possible
for IBE since the user public key in IBE should be purely derived from the
identity instead of any random choice made by the KGC during user private
key generation.

Such a choice (over T) is due to multiple reasons. Firstly, R̃ is created as a
random term which by itself does not relate to the private signing key in any way.
It is intuitively safer to publish it instead of T which is a term created from the
private signing key on top of some public information like identity. Moreover,
R̃ is the term which “glues up” two equations in the SPS verification. If the
adversary chose to manipulate this term, it needs to deal with two equations.
From the efficiency perspective, publishing R̃ minimizes the number of public-
private pairings, which reduces the ciphertext size.

With R̃ published in our scheme, this makes e(T, R̃) becomes the type of
“one being public”. As discussed, the ciphertext in our scheme thus includes the
term R̃ to embed the ciphertext randomness. Also, e(W2, R̃) and e(U, R̃) in the
pairing-product equations become the type of “both being public”, and hence
these pairing terms appear in the session key.

4.2 CPA-Secure SP-CLE Scheme

We construct our CPA-secure SP-CLE scheme called CLE0 based on an existing
structure-preserving signature scheme of Abe et al. [4].

Setup(1λ) → param. Choose a bilinear group context G = (G, H, GT , e, p, g, h),
and output param = G.

MKeyGen(param) → (mpk,msk). The KGC randomly picks u, v1, v2, w1, w2
$← Z

∗
p

where u �= −w2, and computes U = gu, Ṽ1 = hv1 , Ṽ2 = hv2 , W1 = gw1 , and
W2 = gw2 . The master key pair is

mpk = (U, Ṽ1, Ṽ2,W1,W2), msk = (u, v1, v2, w1, w2).

This key pair is just the one for the SPS scheme by Abe et al. [4] with the
message space of G2 ×H. Specifically, U is for the H part of the message space,

Structure-Preserving Certificateless Encryption and Its Application 9

and (Ṽ1, Ṽ2) is for G
2. Note that e(g, h) and e(W1, h) can be pre-computed,

especially when W1 is never used as is except in e(W1, h).

SetUserSec(mpk) → (ppk, uk). A user randomly picks α
$← Zp, computes Dα =

gα and D̃α = hα, and sets ppk = Dα and uk = D̃α.

Issue(msk,mpk, ID, ppk) → psk. For ID ∈ G and ppk = Dα ∈ G, the KGC

randomly chooses r
$← Z

∗
p and computes

R̃ = hr, S̃ = hw1−r·w2 · R̃−u, T = (g · ID−v1 · D−v2
α)

1
r ,

Output psk = (R̃, S̃, T) as the partial secret key.
We remark that (R̃, S̃, T) forms a signature on (ID,Dα, R̃) ∈ G

2 ×H for the
SPS scheme by Abe et al. [4] which can be verified with the equations below:

e(W2, R̃)e(g, S̃)e(U, R̃) = e(W1, h), e(T, R̃)e(ID, Ṽ1)e(Dα, Ṽ2) = e(g, h).

Note that the first equation can be simplified to e(W2 · U, R̃)e(g, S̃) = e(W1, h).
Different from the underlying signature scheme, we expect the signature to

sign on an element R̃ of itself. This remains secure in the generic group model.

UKeyGen(mpk, ppk, psk, uk) → (upk, usk). A user parses psk as (R̃, S̃, T) and set
the key pair as

upk = (Dα, R̃), usk = (D̃α, S̃, T) (recall: ppk = Dα and uk = D̃α).

As R̃ is a part of upk, it can be replaced by an adversary. Our scheme thus also
requires the KGC to “implicitly certify” R̃ during partial secret key generation.

Enc(mpk, upk, ID,M) → C. To encrypt M ∈ GT , the sender randomly picks

x, y, z
$← Zp, and computes

K = {e(W2, R̃)e(U, R̃)/e(W1, h)}x{e(ID, Ṽ1)e(Dα, Ṽ2)/e(g, h)}y/e(Dα, h)z,

C0 = M · K, Cg = gx, CR = R̃y, Cz = gz.

Output the ciphertext C = (C0, Cg, CR, Cz).
(Note that K = {e(W2U, R̃)/e(W1, h)}x{e(ID, Ṽ1)/e(g, h)}ye(Dα, Ṽ y

2 /hz).)

Dec(mpk, upk, usk, C) → M/⊥. Parse C as (C0, Cg, CR, Cz). Output

M = C0 · e(Cg, S̃)e(T,CR)e(Cz, D̃α).

Analysis. Correctness. Recall that Dα = gα, D̃α = hα, C0 = M · K, and

K = e(W2, R̃)xe(U, R̃)xe(W1, h)−x · e(ID, Ṽ1)ye(Dα, Ṽ2)ye(g, h)−y · e(Dα, h)−z.

10 T. Zhang et al.

Hence, the decryption algorithm proceeds as below.

C0 · e(Cg, S̃)e(T,CR)e(Cz, D̃α)

= M · K · e(Cg, S̃)e(T,CR)e(Cz, D̃α)

= M · e(W2, R̃)xe(U, R̃)xe(W1, h)−xe(ID, Ṽ1)ye(Dα, Ṽ2)ye(g, h)−ye(Dα, h)−z

e(Cg, S̃)e(T,CR)e(Cz, D̃α)

= M · e(W2, R̃)xe(U, R̃)xe(W1, h)−xe(Cg, S̃)

e(ID, Ṽ1)ye(Dα, Ṽ2)ye(g, h)−ye(T,CR) · e(Dα, h)−ze(Cz, D̃α)

= M · e(W2, R̃)xe(U, R̃)xe(W1, h)−xe(g, S̃)x

e(ID, Ṽ1)ye(Dα, Ṽ2)ye(g, h)−ye(T, R̃)y · e(gα, h)−ze(gz, hα)

= M · (e(W2, R̃)e(g, S̃)e(U, R̃)e(W1, h)−1)x

(e(T, R̃)e(ID, Ṽ1)e(Dα, Ṽ2)e(g, h)−1)y = M.

The second last equality holds because (R̃, S̃, T) is a signature which satisfies
the verification equations mentioned when we describe Issue().

Efficiency. We first start with some basic observations of our scheme. The user
private key consists of 3 elements in base groups. The ciphertext consists of 3
group elements in base groups and 1 group element in the target group. The
decryption algorithm needs 3 pairings and 4 multiplications in the target group.

Comparison with the Generic Approach. It is mandatory to compare the
performance of our proposed scheme with the folklore approach of building a
CLE scheme “with certificate” [12]. Specifically, one can build a CLE scheme
from any SPS and SPE schemes in the following way. A user publishes an SPE
public key with an SPS signature on it as his public key. An encryptor encrypts to
the user using the SPE public key only if the SPS signature is verified successfully.

Instantiating this idea with the SPS due to Abe et al. [4] used in our concrete
construction, we can see that the user public key will then consists of at least 3
elements from the SPS (and at least 1 element from the SPE public key as the
CLE partial user public key). In contrast, for our concrete construction, the user
public key consists of only 2 elements in base groups, which is much shorter.

The explicit certificate verification step in the folklore approach using the
same SPS scheme as ours will require 3 multiplications in the target group and 5
pairings. While the complexity of the actual encryption steps depends on which
SPE scheme is used to instantiate this idea, the number of pairings involved is
already larger than what our proposed scheme requires. Our encryption algo-
rithm takes 5 exponentiations and 2 multiplications in base groups, 2 exponen-
tiations and 4 multiplications in the target group, and 3 pairing computations.

Theorem 1. CLE0 is CPA-secure against Type-I and Type-II adversaries in the
generic group model (without any isomorphism between the two base groups).

To prove that CLE0 is CPA-secure against Type-I and Type-II adversaries,
we replace the challenge ciphertext component C∗

0 with a random element in GT

Structure-Preserving Certificateless Encryption and Its Application 11

and show that the adversaries cannot distinguish this simulation with the real
scheme in the generic group model. The detailed proof is in the full version.

4.3 A Variant CLE Scheme for M ∈ G

This part proposes an SP-CLE scheme CLE1 encrypting M ∈ G building on top
of CLE0. Based on the technique of encrypting group elements in the partially
structure-preserving IBE scheme [25], we present a generic way to transform a
scheme encrypting plaintexts in GT to a scheme encrypting plaintexts in G or H.

Setup(1λ) → param. The KGC runs param0 ← CLE0.Setup(1λ), picks Gi
$← G

for i ∈ [1, l] where l is suitably large1, and outputs param = (param0, {Gi}l
i=1).

MKeyGen() → (mpk,msk). The KGC runs (mpk0,msk0) ← CLE0.MKeyGen
(param0) and outputs the master key pair mpk = (mpk0, {Gi}l

i=1), msk = msk0.

SetUserSec(mpk) → (ppk, uk). A user runs (ppk, uk) ← CLE0.SetUserSec
(mpk0), and sets ppk, uk as its partial public key and the user secret value respec-
tively.

Issue(msk,mpk, ID, ppk) → psk. For a user ID ∈ H, the KGC runs psk0 ←
CLE0.Issue(msk0,mpk0, ID, ppk) and outputs the partial secret key psk = psk0.

UKeyGen(mpk, ppk, psk, uk) → (upk, usk). The user computes its own user public-
private key pair as (upk, usk) ← CLE0.UKeyGen(mpk0, psk0, ppk, uk).

Enc(mpk, upk, ID,M) → C. To encrypt M ∈ G, randomly choose τk ∈ {0, 1} for
k = 1, 2, · · · , l, and compute

C0 = M ·
l∏

j=1

G
τj

j , Ck,M ← CLE0.Enc(mpk0, upk, ID, e(Gk, h)τk) ∀k ∈ {1, 2, · · · , l}.

Output C = (C0, {Ck,M}l
k=1) as the ciphertext (where {Ck,M} are still in GT).

Dec(mpk, upk, usk, C) → M/⊥. Parse C as (C0, {Ck,M}l
k=1). For k = 1, 2, · · · , l,

compute Mk = CLE0.Dec(mpk0, upk, usk, Ck,M) and find τk such that Mk =
e(Gk, h)τk . Output M = C0∏l

k=1 G
τk
k

as the plaintext.

The scheme CLE1 also supports plaintexts from H. If we choose H̃k ∈ H for
integer k ∈ [1, l] as part of the master public key, and encrypt the plaintext as
M ·

∏l
k=1 H̃τk

k , we can then encrypt plaintext in H.

Correctness. The correctness of CLE1 follows from the correctness of CLE0,
which ensures that Mk can be calculated correctly. Thus, there is at most one
series {τk}l

k=1 such that Mk = e(Gk, h)τk for all k ∈ [1, l], and this series can
cancel the term

∏l
k=1 Gτk

k in C0 to obtain the plaintext M . More details can be
seen from the correctness analysis in our CCA-secure extension presented below,
which also encrypts messages in the base group (H).
1 In the partially structure-preserving IBE scheme [25], this represents the bit-length

of the identity. In our scheme, ID is a group element, so l belongs to poly(λ).

12 T. Zhang et al.

Theorem 2. The SP-CLE scheme CLE1 is IND-CPA secure if CLE0 is IND-
CPA secure.

The proof is deferred to the full version.

4.4 RCCA-Secure Extension

Now we propose an RCCA-secure SP-CLE scheme CLE2 with message space H,
which uses a one-time SPS scheme OT S and a simulation-sound NIZK proof
system GS as building blocks, following the idea of transforming CPA-secure
IBE to CCA-secure PKE [9]. We use the SPS scheme proposed by Abe et al. [2]
as OT S (which is also used in an CCA-secure SPE scheme by Libert et al. [27]).

Our RCCA-secure SP-CLE is derived from CLE1. Intuitively, the encryptor
generates an OT S key pair (ovk, osk), binds ovk with the session key, provides
extra elements computed from osk (which can be simulated without osk with
the “trapdoor” in param), and proves everything is faithfully constructed using
osk. We add a Groth-Sahai proof of the validity of the ciphertext embedding the
plaintext as a witness. When simulating Strong Decrypt oracle, the challenger
can extract the plaintext even for an identity with replaced user public key.

Setup(1λ) → param. Run the two algorithms param1 ← CLE1.Setup(1λ) and
paramOTS ← OT S.Setup(1λ, 1), and set up GS to generate a common reference

string crs. Randomly choose ui
$← Zp for i ∈ [1, 4] to compute Ui = gui , H̃i = hui ,

and output the public parameter param = (param1, paramOTS , crs, {Ui, H̃i}4i=1).

MKeyGen(param) → (mpk,msk). The KGC runs the algorithm (mpk1, msk1) ←
CLE1.MKeyGen(param1), and outputs the master public-private key pair as mpk =
(mpk1, {Ui, H̃i}4i=1), msk = msk1. The one-time public key ovk for OT S of our
choice [2] consists of 4 group elements in H. The elements {Ui, H̃i}4i=1 are for
binding ovk with a ciphertext. Generally, i can be in the range [1, k] where k is
the number of elements contained in ovk of the one-time SPS scheme.

SetUserSec(mpk) → (ppk, uk). A user runs (ppk, uk) ← CLE1.SetUserSec
(mpk1), and sets (ppk, uk) as its partial public key and the user secret value
respectively.

Issue(msk,mpk, ID, ppk) → psk. For a user with identity ID ∈ H, the KGC
outputs the partial secret key psk ← CLE1.Issue(msk1,mpk1, ID, ppk).

UKeyGen(mpk, psk, ppk, uk) → (upk, usk). The user computes its own user public-
private key pair as (upk, usk) ← CLE1.UKeyGen(mpk, psk, ppk, uk).

Enc(mpk, upk, ID,M) → C. To encrypt M ∈ G, the sender randomly picks

τk
$← {0, 1} and xk, yk, zk

$← Zp for k ∈ [1, l]. The set {xk, yk, zk, τk} will be
used as the internal randomness for CLE1.Enc(). The sender also runs (ovk,
osk) ← OT S.KeyGen(paramOTS) of Abe et al.’s one-time SPS scheme [2] which
the exponent {ai} for i ∈ [1, 4] such that ovk = (ha1 , ha2 , ha3 , ha4) are available.
For the ease of presentation, we use (Ã1, Ã2, Ã3, Ã4) to represent ovk.

Structure-Preserving Certificateless Encryption and Its Application 13

Finally, the sender computes

(C0, {Ck,M}l
k=1) ← CLE1.Enc(mpk1, upk, ID,M ; {xk, yk, zk, τk}),

(C ′
k,0, Ck,g, Ck,R, Ck,z) ← Ck,M ,

Ck,0 = C ′
k,0 ·

4∏

i=1

e(Ui, Ãi)−xk for k ∈ [1, l],

Ca,i = H̃ai
i for i ∈ [1, 4],

π = PoK{(M, {xk, yk, zk, τk}l
k=1, {ai}4i=1) :

(C0, {(C ′
k,0, Ck,g, Ck,R, Ck,z)}l

k=1)

← CLE1.Enc(mpk1, upk, ID,M ; {xk, yk, zk, τk}l
k=1)

∧l
k=1 C0 = M ·

l∏

j=1

G
τj

j ∧4
i=1 Ca,i = H̃ai

i

∧l
k=1 Ck,0 = C ′

k,0 ·
4∏

i=1

e(Ui, Ãi)−xk},

σ ← OT S.Sign(osk, C0).

Output (C0, {Ãi, Ca,i}4i=1, {Ck,0, Ck,g, Ck,R, Ck,z}l
k=1, π, σ) as the ciphertext.

Dec(mpk, upk, usk, C) → M/⊥. The decryptor first performs the following checks.

1. Parse the ciphertext C as specified in the output of the algorithm Enc().
2. Verify the equations e(g, Ca,i) = e(Ui, Ãi) for i ∈ [1, 4].
3. Verify the signature σ using OT S.Verify((Ã1, Ã2, Ã3, Ã4), C0, σ).
4. Verify the proof π using the GS.Verify() algorithm.

If any one of the four equations does not hold, or either σ or π does not pass
the verification, output ⊥. Otherwise, for k ∈ [1, l], compute

Mk = Ck,0 · e(Ck,g, S̃ ·
4∏

i=1

Ca,i)e(T,Ck,R)e(Ck,z, D̃α).

Find τk such that Mk = e(Gk, h)τk . Finally, output M = C0∏l
i=1 G

τk
i

.

Correctness. For k ∈ [1, l],

Ck,0 · e(Ck,g, S̃ ·
4∏

i=1

Ca,i)e(T,Ck,R)e(Ck,z, D̃α)

=Mk · e(W2, R̃)xke(U, R̃)xk ·
4∏

i=1

e(Ui, Ãi)−xk · e(W1, h)−xk

· e(ID, Ṽ1)yke(Dα, Ṽ2)yke(g, h)−yke(Dα, h)−zk

· e(Ck,g, S̃ ·
4∏

i=1

Ca,i)e(T,Ck,R)e(Ck,z, D̃α)

14 T. Zhang et al.

=Mk · e(W2, R̃)xke(U, R̃)xk ·
4∏

i=1

e(Ui, Ãi)−xk · e(W1, h)−xk · e(Ck,g, S̃ ·
4∏

i=1

Ca,i)

· e(ID, Ṽ1)yke(Dα, Ṽ2)yke(g, h)−yk · e(T,Ck,R) · e(Dα, h)−zk · e(Ck,z, D̃α)

=Mk · (e(W2, R̃)e(U, R̃) ·
4∏

i=1

e(Ui, Ãi)−1 · e(W1, h)−1 · e(g, S̃ ·
4∏

i=1

Ca,i))xk

· (e(ID, Ṽ1)e(Dα, Ṽ2)e(g, h)−1 · e(T, R̃))yk · e(gα, h)−zk · e(gz, hα) = Mk.

With correct Mk, τk such that Mk = e(Gk, h)τk can be correctly recovered. With
all Mk for k ∈ [1, l], M = C0∏l

i=1 G
τk
i

can be correctly recovered as in Sect. 4.3.

Theorem 3. The SP-CLE scheme CLE2 is RCCA-secure against Strong Type-I
and Strong Type-II adversaries if CLE1 is CPA-secure against Type-I and Type-
II adversaries.

The proof is deferred to the full version.

Remark. A fully structure-preserving CLE scheme would be an overkill for
our application as it does not need to hide the ciphertext and prove about its
validity. Also, our application will apply yet another signature on top of the
CLE ciphertext (with other parts) such that any rerandomization of the CLE
ciphertext will invalidate the signature, so CLE2 only aimed for RCCA-security.

Nevertheless, AppendixA outlines how to use the trick of Libert and Joye [25]
for converting GT values into base group elements in the ciphertext of our CLE1.

5 Group Signatures with Certified Limited Opening

We use our SP-CLE (in Sect. 4) as a building block to construct an example
application, a group signature scheme with certified limited (CL) opening, a
generalization of message-dependent opening [30]. Due to the page limit, we
present the formal definitions in the full version.

Group signature is a privacy-oriented signature scheme where the verifier can
be convinced that a given signature is signed by a group member, but not exactly
whom. Since perfect anonymity may be abused, group signatures come with an
opening mechanism such that the group manager, or in general, an opening
authority (OA), can use a secret key to reveal the true signer of a signature.

When there is purported abuse, we want to identify the signer of the suspi-
cious signatures. In traditional group signatures, it means all signatures must
be opened, which is undesirable for honest users. The notion of traceable signa-
tures (TS) [1,23] extends that of the group signatures to mitigate this problem.
In TS, when a group member is classified as a misbehaving one. A user-specific
tracing trapdoor can be generated (by the group manager or the OA). Every
one with this user-specific trapdoor can check if a signature is actually signed by
the misbehaving user, or trace [13] the signatures generated by the misbehaving

Structure-Preserving Certificateless Encryption and Its Application 15

user. TS can be regarded as a group signature scheme with signer-dependent
opening. Subsequently, Sakai et al. [30] proposed the notion of group signature
with message-dependent opening (GS-MDO). In GS-MDO, apart from the OA,
there is another entity called the admitter. The admitter can generate a message-
dependent opening key. The real signer of a group signature signing on a given
message can be revealed only when both the master opening key (of the OA)
and the message-dependent opening key (provided by the admitter) are used.

Difficulty in Construction. GS-MDO schemes are often constructed by IBE
since GS-MDO implies its existence (or precisely, identity-based key encap-
sulation) [30]. Existing schemes not relying on the pairing-based Groth-Sahai
proof are either not that efficient [26] or is proven secure in the random oracle
model [28]; however, typical pairing-based IBE schemes encrypt messages in the
target group, which are not compatible with Groth-Sahai proof that a correct
message (the signer identity in the case of GS-MDO) has been encrypted.

Consequently, the original work of Sakai et al. [30] proposed to use k-resilient
IBE to construct GS-MDO which remains secure only when adversary obtains
no more than a predefined bound of k message-dependent opening keys. Later,
Ohara et al. [28] proposed a GS-MDO scheme with unbounded MDO in the
random oracle model. A subsequent work of Libert and Joye [25] describes an
unbounded GS-MDO scheme in the standard model by proposing an IBE scheme
which encrypts messages in the base group. This IBE scheme is partially struc-
ture preserving in the sense that the identity is still a bit-string instead of a group
element. In an IBE-based GS-MDO scheme, the identity used in IBE is the same
as the message to be signed. So this scheme [25] is not structure-preserving and
cannot sign on group elements. Potential higher applications of GS-MDO thus
cannot hide yet prove about the message with another Groth-Sahai proof.

Certified Limited Opening. We consider an alternative way of limiting the
opening power which we call certified limited (CL) opening. CL opening features
an entity called a master certifier, who certifies openers case by case depending
on the context. For example, consider the application of group signatures for sign-
ing on votes in electronic voting. The government can be the master certifier, and
the openers can be those overseeing different districts/counties/provinces/states.
When issuing a group signature, the group member can designate an opener
during the signing process. The opener who is the designated one for a group
signature can open it (i.e., revoke the anonymity of the signature). Neither the
certifier nor any non-designated openers can perform opening.

CL opening is a variant of MDO which removes the reliance of a single
opening authority and minimizes the disturbance of honest users. Moreover,
it decouples the criteria of opening from the message being signed. In many
applications, the need for opening may not be originated from the message itself.
We can assign the openers depending on the applications. Consider the e-voting
scenario again, where the voting software in one of the voting booths could be
compromised. We can set the opener to be the authorities overseeing different

16 T. Zhang et al.

booths. If some anomaly happen with a particular booth, say, the candidate is
set to be an adversarially-chosen set under the hood, independent of what is
the vote cast by the voters; only the signatures in the concerned booth will be
opened, and only the affected voters will be asked to cast a correct vote again.

CL opening also simplifies the opening process. The existing MDO function-
ality [25,30] requires the master opening key and the message-dependent key as
inputs. That means the two parties holding the corresponding keys must cooper-
ate in an honest manner. In our formulation, the master certifier and the opening
authority interact once such that latter will get the opening key of limited power,
instead of performing joint decryption in every opening. Dealing with a single
key also allows an easier zero-knowledge proof for the opening correctness.

5.1 Our Group Signature Scheme with Certified Limited Opening

We build our group signature scheme with CL opening using SP-CLE. In a
nutshell, the signing algorithm uses SP-CLE to encrypt the identity of the signer
with respect to a SP-CLE user. In this way, we can realize new privacy-enhancing
features easily thanks to the preserved structures. In particular, since the identity
and the user public key in our SP-CLE scheme are both group elements, one
can include an additional proof about them to preserve the opener privacy. For
example, it can hide who is the designated opener among a list of possibilities.

Due to our formulation of the underlying SP-CLE scheme, our resulting group
signature scheme with CL opening can be considered as weaker than group
signatures with MDO since the message in the latter does not require prior
“certification” from any party. However, in case the message domain is small,
one can obtain MDO from CL opening by assigning an opener for each possible
message. Also, as argued above, we decouple the message to be signed from
the context of the opening. More importantly, from the technical perspective,
since SP-IBE does not exist, it is unclear how to “upgrade” the existing GS-
MDO schemes such that we can sign on a group element, while retaining the
MDO functionality. On the other hand, our group signature scheme with CL
opening is partially structure-preserving, in the sense that it can sign on group
element as a message (and the public-key and the identity of the opener are also
group elements, due to our SP-CLE). It can then sign on an encryption of vote
(for privacy) when the resulting ciphertext consists of only group elements, and
further allow a zero-knowledge proof of the message being encrypted and signed.
For example, the zero-knowledge proof can be proving that the vote is a valid
choice among the possible candidates. With the group structure preserved, the
encrypted votes can also be homomorphically-processed (when the underlying
encryption is homomorphic) such that only the aggregate results will be revealed.

Finally, as a generic construction, future constructions of SP-CLE in the
original formulation can be directly plugged into our proposed design.

Structure-Preserving Certificateless Encryption and Its Application 17

5.2 Construction

Design Overview. We follow the two-level signature construction [8] and use
two SPS instances and one SP-CLE instance. The group manager generates
an SPS signature certID on an identity ID and a verification key vkID for an
SPS scheme as part of the user private key for ID. The user with identity ID
generates another SPS signature σ′ on a message M , then proves the relation of
(ID, vkID, certID) and that of (M,σ′) without revealing ID, vkID, certID, nor σ′.

To implement the certified limited opening feature using SP-CLE, the KGC
(as the master certifier) interacts with an SP-CLE user (as an opener). After
they interact in the SP-CLE key-issuing process, the opener obtains a public-
private key pair. Suppose the identity of the opener is E, the user public key pkE

will be published, and the user private key oskE will be kept secret. The signer
uses pkE to encrypt ID, then generates a proof showing that this ciphertext is
well-formed. All the proofs and this ciphertext are output as the group signature.
The party holding oskE can decrypt the ciphertext to obtain ID.

Syntax. Our definition extends the one by Sakai et al. [30]. We replace the
input of the TrapGen algorithm from a message M with an identifier E and an
opener public key, and only require the output of TrapGen but not the “master”
opening key in the Open algorithm. We also split the key generation into Setup,
MKeyGen, and Issue. A detailed definition can be found in the full version.

Our Construction. We use an our CLE scheme for M ∈ G CLE , two SPS
schemes SPSG and SPS, and a GS-proof system GS as the building blocks to
construct a structure-preserving group signature with certified limited opening.
As Groth-Sahai proof is rerandomizable, we use a structure-preserving one-time
signature OT S to enforce CCA-anonymity.

This scheme also achieves the “hidden identity” features as in hidden identity-
based signatures [17,24] since its opening mechanism can directly recover the
signer identity without relying on the existence of any membership database.

Setup(1λ) → param. Choose a Type III bilinear group G = (G,H,GT , e, p, g, h)
which is suitable for CLE , SPSG, and SPS. Generate the common reference
string crs for GS. Output param = (G, crs).

MKeyGen() → (mpk,msk). Generate the key-pair for the underlying structure-
preserving primitives as follows.

1. (vkG, skG) ← SPSG.KeyGen().
2. (mpkCLE ,mskCLE) ← CLE .MKeyGen().

Output the master public-private key pair mpk = (vkG,mpkCLE), msk = skG

to the KGC, and output the master opening key ok = mskCLE to the master
certifier.

Issue(msk, ID) → uskID. A user with identity ID and the KGC interactively
compute a certificate as part of the user secret key for the user.

18 T. Zhang et al.

1. The user runs (vkID, skID) ← SPS.KeyGen(), sends (ID, vkID) to the KGC.
2. The KGC runs certID ← SPSG.Sign(skG, (ID, vkID)), sends certID to the user.

The user sets uskID = (skID, vkID, certID) as user private key.

TrapGen(mpk, ok, E) → (pkE , oskE). The master certifier and an opener runs
this protocol such that the opener will get an opening key for an identity E ∈ H.

1. The opener first runs (ppkE , ukE) ← SetUserSec(mpkCLE , E).
2. The master certifier runs pskE ← CLE .Issue(mskCLE ,mpkCLE , E, ppkE) and

(upkE,CLE , uskE,CLE) ← CLE .UKeyGen(mpkCLE , ppkE , pskE , uskE), where ok
is parsed as mskCLE .

3. The master certifier outputs uskE,CLE as the certified limited opening key
oskE , and publishes upkE,CLE as pkE for identity E.

Sign(mpk, uskID, pkE , E,M) → σ. The input E is the identity of the opener, and
pkE is the public key of the opener generated by the algorithm TrapGen. To sign
on a message M ∈ H by uskID, a user performs the following steps.

1. (ovk, osk) ← OT S.KeyGen(),
2. σ′ ← SPS.Sign(skID, (M,E, ovk)).
3. C ← CLE .Enc(mpkCLE , pkE , E, ID).
4. Run GS.Prove() to generate the proof

π = PoK{(vkID, certID, ID, σ′) : 1 ← SPS.Verify(vkID, (M,E, ovk), σ′)
∧ 1 ← SPSG.Verify(vkG, (ID, vkID), certID)
∧ C ← CLE .Enc(mpkCLE , pkE , E, ID)}.

5. σ′′ ← OT S.Sign(osk, (C, π)).

Output σ = (π,C,E, ovk, σ′′) as the group signature.

Verify(mpk,M, σ) → 1/0. The verifier parses σ as (π,C,E, ovk, σ′′). If the algo-
rithm OT S.Verify(ovk, (C, π), σ′′) outputs 1 and GS.Verify() outputs 1 for π
(i.e., π is a valid proof), the verifier outputs 1 and accepts the group signature σ;
Otherwise, the verifier outputs 0.

Open(mpk, pkE , oskE , σ) → ID/⊥. An opener parses mpk as (vkG, mpkCLE) and
σ as (π,C,E, ovk, σ′′). It returns ⊥ if 0 ← Verify(mpk,M, σ). Otherwise, it
computes ID ← CLE .Dec(mpkCLE , pkE , pskE , C) and outputs ID.

Theorem 4. The proposed group signature scheme with certified limited opening
provides traceability, anonymity, and is existentially unforgeable against adap-
tive chosen-message attack (EUF-CMA secure) if GS is an non-interactive zero-
knowledge proof, CLE is CPA/CCA secure, SPSG and SPS are both EUF-CMA
secure, and OT S is one-time secure (only for CCA-anonymity).

Structure-Preserving Certificateless Encryption and Its Application 19

The proof is deferred to the full version.

Remarks. Two specific steps of Sign(), namely, σ′ ← SPS.Sign(skID,
(M,E, ovk)) and C ← CLE .Enc(mpkCLE , pkE , E, ID) merit more discussion. With
the use of SPS, our group signature scheme can sign on group element M ∈ H.
With our SP-CLE, pkE and E are both group elements. It is thus easy to use
Groth-Sahai proof to, say prove that the opener is among one of a known list of
n openers.

6 Conclusion

We propose a series of structure-preserving certificateless encryption schemes by
extending an existing structure-preserving signature scheme. We illustrate their
applications in group signature with certified limited opening. We leave it as a
future work to use our structure-preserving certificateless encryption scheme for
other accountable privacy features, e.g., escrowed linkability [16] in which two
anonymous signatures from the same signer can only be linked by the one who
owns the private key (in our structure-preserving certificateless encryption).

Our scheme supports typical application of CLE except “encrypt to the
future” [15,22,29]. We leave it as an open problem to devise an SP-CLE under
the original formulation [5]. Another future work is to propose a generic way to
construct SP-CLE from any SPS scheme, without any step verifying an SPS in
the encryption algorithm. A challenge is to generically “upgrade” the complexity
assumption required for the SPS to its decisional variant required by SP-CLE.

A Towards Removing GT Elements from the Ciphertext

Recall that in our basic scheme (Sect. 4.2)

K = {e(W2, R̃)e(U, R̃)/e(W1, h)}x{e(ID, Ṽ1)e(Dα, Ṽ2)/e(g, h)}y/e(Dα, h)z.

We include the following terms in the ciphertext such that
∏4

i=1{e(Ci, C̃i)} = K.

C1 = ((W2 · U)x)r1 , C̃1 = R̃1/r1 , C2 = (IDy)r2 , C̃2 = Ṽ
1/r2
1 ,

C3 = (Dα
y)r3 , C̃3 = Ṽ

1/r3
2 , C4 = (W1

x/gy/Dα
z)r4 , C̃4 = h1/r4 .

K can be recovered by e(Cg, S̃)e(T,CR)e(Cz, D̃α) as in the decryption algorithm.
The idea of encryption/decryption is still about encoding/recovering the bits

{τj} in C0 = M ·
∏l

j=1 G
τj

j (Sect. 4.3). Roughly, the trick [25] has two steps.
First, we replicate K into l versions by different randomness. Second, we replicate
the master public key and the private key into two versions based on different
generators. To encode τj = 0, both encryption and decryption should use the
first version of the corresponding key. Similarly, τj = 1 takes the second version.

20 T. Zhang et al.

References

1. Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-trapdoor anony-
mous tags for traceable signatures. Int. J. Inf. Secur. 12(1), 19–31 (2013)

2. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36362-7 20

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

4. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 37

5. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40061-5 29

6. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption with-
out pairing. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 134–148. Springer, Heidelberg (2005). https://doi.org/10.1007/
11556992 10

7. Barbosa, M., Farshim, P.: Relations among notions of complete non-malleability:
indistinguishability characterisation and efficient construction without random ora-
cles. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 145–163.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5 10

8. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

9. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

10. Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure
preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25385-0 5

11. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

12. Chow, S.S.M.: Certificateless encryption. In: Identity-Based Cryptography. Cryp-
tology and Information Security Series, vol. 2, pp. 135–155. IOS Press (2008)

13. Chow, S.S.M.: Real traceable signatures. In: Jacobson, M.J., Rijmen, V., Safavi-
Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 92–107. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-05445-7 6

14. Chow, S.S.M., Franklin, M.K., Zhang, H.: Practical dual-receiver encryption -
soundness, complete non-malleability, and applications. In: The Cryptographer’s
Track at the RSA Conference (CT-RSA), pp. 85–105 (2014)

https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1007/11556992_10
https://doi.org/10.1007/11556992_10
https://doi.org/10.1007/978-3-642-14081-5_10
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-642-25385-0_5
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-642-05445-7_6

Structure-Preserving Certificateless Encryption and Its Application 21

15. Chow, S.S.M., Roth, V., Rieffel, E.G.: General certificateless encryption and timed-
release encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008.
LNCS, vol. 5229, pp. 126–143. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85855-3 9

16. Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and
its applications. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp.
175–192. Springer, Heidelberg (2006). https://doi.org/10.1007/11958239 12

17. Chow, S.S.M., Zhang, H., Zhang, T.: Real hidden identity-based signatures. In:
Financial Cryptography and Data Security (FC), pp. 21–38 (2017)

18. Dent, A.W.: A brief introduction to certificateless encryption schemes and their
infrastructures. In: Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS, vol.
6391, pp. 1–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
16441-5 1

19. Dent, A.W., Libert, B., Paterson, K.G.: Certificateless encryption schemes strongly
secure in the standard model. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp.
344–359. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-
1 20

20. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991). https://doi.org/10.1007/
3-540-46416-6 42

21. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

22. Kasamatsu, K., Matsuda, T., Emura, K., Attrapadung, N., Hanaoka, G., Imai,
H.: Time-specific encryption from forward-secure encryption. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 184–204. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32928-9 11

23. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 34

24. Kiayias, A., Zhou, H.: Hidden identity-based signatures. IET Inf. Secur. 3(3), 119–
127 (2009)

25. Libert, B., Joye, M.: Group signatures with message-dependent opening in the
standard model. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 286–
306. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 15

26. Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature scheme
with message-dependent opening. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 8

27. Libert, B., Peters, T., Qian, C.: Structure-preserving chosen-ciphertext security
with shorter verifiable ciphertexts. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 247–276. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54365-8 11

28. Ohara, K., Sakai, Y., Emura, K., Hanaoka, G.: A group signature scheme with
unbounded message-dependent opening. In: ACM SIGSAC Symposium on Infor-
mation, Computer and Communications Security (AsiaCCS), pp. 517–522. ACM
(2013)

29. Paterson, K.G., Quaglia, E.A.: Time-specific encryption. In: Garay, J.A., De Prisco,
R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15317-4 1

https://doi.org/10.1007/978-3-540-85855-3_9
https://doi.org/10.1007/978-3-540-85855-3_9
https://doi.org/10.1007/11958239_12
https://doi.org/10.1007/978-3-642-16441-5_1
https://doi.org/10.1007/978-3-642-16441-5_1
https://doi.org/10.1007/978-3-540-78440-1_20
https://doi.org/10.1007/978-3-540-78440-1_20
https://doi.org/10.1007/3-540-46416-6_42
https://doi.org/10.1007/3-540-46416-6_42
https://doi.org/10.1007/978-3-642-32928-9_11
https://doi.org/10.1007/978-3-540-24676-3_34
https://doi.org/10.1007/978-3-319-04852-9_15
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-662-54365-8_11
https://doi.org/10.1007/978-3-662-54365-8_11
https://doi.org/10.1007/978-3-642-15317-4_1

22 T. Zhang et al.

30. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group sig-
natures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing
2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36334-4 18

31. Sun, Y., Zhang, F., Baek, J.: Strongly secure certificateless public key encryption
without pairing. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.)
CANS 2007. LNCS, vol. 4856, pp. 194–208. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-76969-9 13

32. Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch pairing delegation. In: Miyaji, A.,
Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75651-4 6

https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-540-76969-9_13
https://doi.org/10.1007/978-3-540-76969-9_13
https://doi.org/10.1007/978-3-540-75651-4_6

	Structure-Preserving Certificateless Encryption and Its Application
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Group
	2.2 Groth-Sahai Proof System
	2.3 Structure-Preserving Signature

	3 Definitions of Certificateless Encryption
	4 A Specific Construction of SP-CLE
	4.1 Intuition
	4.2 CPA-Secure SP-CLE Scheme
	4.3 A Variant CLE Scheme for M G
	4.4 RCCA-Secure Extension

	5 Group Signatures with Certified Limited Opening
	5.1 Our Group Signature Scheme with Certified Limited Opening
	5.2 Construction

	6 Conclusion
	A Towards Removing GT Elements from the Ciphertext
	References

