
Mitsuru Matsui (Ed.)

 123

LN
CS

 1
14

05

The Cryptographers' Track at the RSA Conference 2019
San Francisco, CA, USA, March 4–8, 2019
Proceedings

Topics in Cryptology –
CT-RSA 2019

Lecture Notes in Computer Science 11405

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Mitsuru Matsui (Ed.)

Topics in Cryptology –

CT-RSA 2019
The Cryptographers’ Track at the RSA Conference 2019
San Francisco, CA, USA, March 4–8, 2019
Proceedings

123

Editor
Mitsuru Matsui
Mitsubishi Electric Corporation
Kamakura, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-12611-7 ISBN 978-3-030-12612-4 (eBook)
https://doi.org/10.1007/978-3-030-12612-4

Library of Congress Control Number: 2019930584

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-12612-4

Preface

The RSA conference has been a major international event for information security
experts since its inception in 1991. It is an annual event that attracts several hundreds of
vendors and over 40,000 participants from industry, government, and academia. Since
2001, the RSA conference has included the Cryptographer’s Track (CT-RSA), which
provides a forum for current research in cryptography. CT-RSA has become a major
publication venue for cryptographers.

This volume represents the proceedings of the 2019 RSA Conference Cryptogra-
pher’s Track, which was held in San Francisco, California, during March 4–8, 2019.
A total of 75 submissions were received for review, of which 28 papers were selected
for presentation and publication. As chair of the Program Committee, I would like to
deeply thank all the authors who contributed the results of their innovative research.

My appreciation also goes to all the members of the Program Committee and their
designated external reviewers who carefully read and reviewed these submissions. The
selection process was a difficult task since each contribution had its own merits. At
least three reviewers were assigned to each submission (four if the work included a
Program Committee member as an author), and the selection process was carried out
with great professionalism and transparency.

The submission process as well as the review process and the editing of the final
proceedings were greatly simplified by the software written by Shai Halevi. I would
like to thank him for his kind support throughout the entire process. In addition to the
contributed talks, the program included a panel discussion moderated by Bart Preneel
on “Cryptography and AI.”

March 2019 Mitsuru Matsui

CT-RSA 2019

RSA Conference Cryptographer’s Track 2019

Moscone Center, San Francisco, California, USA
March 4–8, 2019

Program Chair

Mitsuru Matsui Mitsubishi Electric Corporation, Japan

Program Committee

Josh Benaloh Microsoft Research, USA
Alex Biryukov University of Luxembourg, Luxembourg
Alexandra Boldyreva Georgia Institute of Technology, USA
Joppe Bos NXP, Belgium
David Cash University of Chicago, USA
Jung Hee Cheon Seoul National University, South Korea
Jean-Sébastien Coron University of Luxembourg, Luxembourg
Henri Gilbert ANSSI, France
Helena Handschuh Rambus Cryptography Research, USA
Tibor Jager Paderborn University, Germany
Stanislaw Jarecki University of California at Irvine, USA
Marc Joye OneSpan, Belgium
Florian Kerschbaum University of Waterloo, Canada
Xuejia Lai Shanghai Jiao Tong University, China
Tancrède Lepoint SRI International, USA
Michael Naehrig Microsoft Research, USA
Miyako Ohkubo NICT, Japan
Elisabeth Oswald University of Bristol, UK
Léo Perrin Inria, France
David Pointcheval CNRS and Ecole Normale Supérieure, France
Bart Preneel KU Leuven and iMinds, Belgium
Reihaneh Safavi-Naini University of Calgary, Canada
Kazue Sako NEC, Japan
Peter Scholl Aarhus University, Denmark
Nigel Smart KU Leuven, Belgium and University of Bristol, UK
François-Xavier Standaert Université Catholique de Louvain, Belgium
Takeshi Sugawara The University of Electro-Communications, Japan
Mehdi Tibouchi NTT Corporation, Japan
Huaxiong Wang Nanyang Technological University, Singapore

Additional Reviewers

Masayuki Abe
Mamun Akand
James Bartusek
Carsten Baum
Pascal Bemmann
Ritam Bhaumik
Jan Bobolz
Jie Chen
Hang Cheng
Wonhee Cho
Peter Chvojka
Jan Pieter Denvers
Keita Emura
Prastudy Fauzi
Kai Gellert
Benedikt Gierlichs
Johann Großschädl
Cyprien Delpech de Saint

Guilhem
Chun Guo
Mike Hamburg
Kyoohyung Han
Minki Hhan
Viet Tung Hoang
Seungwan Hong
James Howe
Jingwei Hu
Takanori Isobe
Toshiyuki Isshiki
Jeremy Jean
Jinhyuck Jeong
Shaoquan Jiang

Zhang Juanyang
Saqib Kakvi
Sabyasachi Karati
Andrey Kim
Dongwoo Kim
Duhyeong Kim
Jaeyun Kim
Jiseung Kim
Rafael Kurek
Virginie Lallemand
Joohee Lee
Keewoo Lee
Yang Li
Benoît Libert
Fuchun Lin
Tingting Lin
Ximeng Liu
Yunwen Liu
Yiyuan Luo
Fermi Ma
Mark Marson
Marco Martinoli
Alexander May
Rui Meng
Rebekah Mercer
Yusuke Naito
Sanami Nakagawa
Khoa Nguyen
David Niehues
Ventzi Nikov
Ryo Nishimaki
Sabine Oechsner

Kazuma Ohara
Jiaxin Pan
Louiza Papachristodoulou
Romain Poussier
Emmanuel Prouff
Matt Robshaw
Dragos Rotaru
Vladimir Rozic
Yusuke Sakai
Luan Cardoso dos Santos
Tobias Schneider
André Schrottenloher
Peter Schwabe
Jae Hong Seo
Yongha Son
Koutarou Suzuki
Hiroto Tamiya
Hikaru Tsuchida
Mike Tunstall
Aleksei Udovenko
Rei Ueno
Fre Vercauteren
Giuseppe Vitto
Hendrik Waldner
Qingju Wang
Carolyn Whitnall
Keita Xagawa
Hailun Yan
Donggeon Yhee
Kazuki Yoneyama
Liang Feng Zhang

VIII CT-RSA 2019

Contents

Structure-Preserving Certificateless Encryption and Its Application 1
Tao Zhang, Huangting Wu, and Sherman S. M. Chow

Public Key Encryption Resilient to Post-challenge Leakage
and Tampering Attacks . 23

Suvradip Chakraborty and C. Pandu Rangan

Downgradable Identity-Based Encryption and Applications 44
Olivier Blazy, Paul Germouty, and Duong Hieu Phan

Large Universe Subset Predicate Encryption Based on Static Assumption
(Without Random Oracle) . 62

Sanjit Chatterjee and Sayantan Mukherjee

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme. . . 83
Shai Halevi, Yuriy Polyakov, and Victor Shoup

New Techniques for Multi-value Input Homomorphic Evaluation
and Applications . 106

Sergiu Carpov, Malika Izabachène, and Victor Mollimard

Efficient Function-Hiding Functional Encryption: From Inner-Products
to Orthogonality . 127

Manuel Barbosa, Dario Catalano, Azam Soleimanian,
and Bogdan Warinschi

Robust Encryption, Extended . 149
Rémi Géraud, David Naccache, and Răzvan Roşie

Tight Reductions for Diffie-Hellman Variants in the Algebraic
Group Model . 169

Taiga Mizuide, Atsushi Takayasu, and Tsuyoshi Takagi

Doubly Half-Injective PRGs for Incompressible White-Box Cryptography . . . 189
Estuardo Alpirez Bock, Alessandro Amadori, Joppe W. Bos,
Chris Brzuska, and Wil Michiels

Error Detection in Monotone Span Programs with Application
to Communication-Efficient Multi-party Computation 210

Nigel P. Smart and Tim Wood

Lossy Trapdoor Permutations with Improved Lossiness 230
Benedikt Auerbach, Eike Kiltz, Bertram Poettering, and Stefan Schoenen

Post-quantum EPID Signatures from Symmetric Primitives. 251
Dan Boneh, Saba Eskandarian, and Ben Fisch

Assessment of the Key-Reuse Resilience of NewHope. 272
Aurélie Bauer, Henri Gilbert, Guénaël Renault, and Mélissa Rossi

Universal Forgery and Multiple Forgeries of MergeMAC
and Generalized Constructions . 293

Tetsu Iwata, Virginie Lallemand, Gregor Leander, and Yu Sasaki

Linking Stam’s Bounds with Generalized Truncation. 313
Bart Mennink

Poly-Logarithmic Side Channel Rank Estimation via
Exponential Sampling . 330

Liron David and Avishai Wool

Efficient Fully-Leakage Resilient One-More Signature Schemes 350
Antonio Faonio

MILP-Based Differential Attack on Round-Reduced GIFT 372
Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu

Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers 391
Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki,
and Tetsu Iwata

Automatic Search for a Variant of Division Property Using Three Subsets . . . 412
Kai Hu and Meiqin Wang

Constructing TI-Friendly Substitution Boxes Using
Shift-Invariant Permutations . 433

Si Gao, Arnab Roy, and Elisabeth Oswald

Fast Secure Comparison for Medium-Sized Integers and Its Application
in Binarized Neural Networks. 453

Mark Abspoel, Niek J. Bouman, Berry Schoenmakers,
and Niels de Vreede

EPIC: Efficient Private Image Classification (or: Learning
from the Masters) . 473

Eleftheria Makri, Dragos Rotaru, Nigel P. Smart,
and Frederik Vercauteren

Context Hiding Multi-key Linearly Homomorphic Authenticators 493
Lucas Schabhüser, Denis Butin, and Johannes Buchmann

X Contents

Revisiting the Secret Hiding Assumption Used in Verifiable
(Outsourced) Computation . 514

Liang Zhao

Delegatable Anonymous Credentials from Mercurial Signatures 535
Elizabeth C. Crites and Anna Lysyanskaya

Accountable Tracing Signatures from Lattices. 556
San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu

Author Index . 577

Contents XI

Structure-Preserving Certificateless
Encryption and Its Application

Tao Zhang, Huangting Wu, and Sherman S. M. Chow(B)

Department of Information Engineering, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong

sherman@ie.cuhk.edu.hk

Abstract. Certificateless encryption (CLE) combines the advantages
of public-key encryption (PKE) and identity-based encryption (IBE) by
removing the certificate management of PKE and the key escrow problem
of IBE. In this paper, we propose structure-preserving CLE schemes.
Structure preservation enables efficient non-interactive proof of certain
ciphertext properties, thus supporting efficient modular constructions of
advanced cryptographic protocols with a simple design.

As an illustration, we propose a structure-preserving group signature
scheme with certified limited (CL) opening from structure-preserving
CLE. CL opening allows a master certifier to certify openers. The opener
who is the designated one for a group signature can open it (i.e., revoke
its anonymity). Neither the certifier nor any non-designated openers can
perform the opening. The structure-preserving property of our scheme
can also hide who is the designated opener among a list of possibilities.

Keywords: Structure-preserving cryptography ·
Certificateless encryption

1 Introduction

Structure-preserving cryptography is a promising paradigm which enables mod-
ular designs of advanced cryptographic protocols, due to its compatibility with
efficient non-interactive zero-knowledge proof over the same structure, such as
Groth-Sahai proof [21]. Abe et al. [3] constructed structure-preserving signa-
ture (SPS) schemes which sign on a vector of group elements. They also used
SPS to design concurrently-secure group signatures among other applications.
Camenisch et al. [10] proposed the first CCA-secure structure-preserving encryp-
tion (SPE) scheme. Specifically, their integrity check before the final step in the
decryption algorithm does not hash the ciphertext, which is often required in
other CCA-secure scheme and its presence may hinder its compatibility with

S. S. M. Chow—Supported by General Research Funds (CUHK 14210217) of the
Research Grants Council, Hong Kong.

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 1–22, 2019.
https://doi.org/10.1007/978-3-030-12612-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_1

2 T. Zhang et al.

Groth-Sahai proof. SPE found applications in joint computation of cipher-
text [10].

Many studies have been carried out on basic primitives which are structure-
preserving; yet, despite the numerous applications of identity-based encryption
(IBE), (fully) structure-preserving IBE (SP-IBE) has never been studied. SP-
IBE requires the public parameters, the plaintext, the ciphertext, and the user
identity, consists of only group elements. The user identity is of a particular
interest. For existing pairing-based IBE schemes, the user identity ID is not
a group element, but consists of integers or bits. Usually, these schemes hash
ID to a group element or to an exponent, which kills the original structure
of the identity. A notable exception is proposed by Libert and Joye [25], where
everything except the user identity consists of only group element. Such a scheme
found applications in group signature with message-dependent opening.

It is well known that any IBE construction implies an implicit signature
scheme. One may wonder if any of the existing SPS schemes feature a signature
which can be used as a decryption key for a certain SP-IBE scheme. In other
words, any valid signature can recover the ephemeral session key in the SP-IBE
scheme, by pairing up the signature (as a user decryption key) with the cipher-
text. However, to the best of the authors’ knowledge, existing SPS signatures
cannot be used for this purpose. The reason is that the verification equation
requires the computation of a pairing term where both of its input comes from
the signature. From another perspective, if one is going to generate a ciphertext
such that it is decryptable by such a decryption key, the pairing will involve
an unknown term since the decryption key is unknown to the encryptor. In this
paper, towards enriching the class of structure-preserving cryptographic schemes,
we move our focus to structure-preserving certificateless encryption (SP-CLE).

Certificateless encryption (CLE), introduced by Al-Riyami and Paterson [5],
strikes a balance between IBE and public-key encryption (PKE). In traditional
PKE, an encryptor needs to verify a certificate which ensures that a given public
key belongs to the recipient. This requires a public-key infrastructure to support
the storage and distribution of the certificates. The sender also needs to verify the
certificate before encrypting. To overcome this weakness of PKE, IBE provides
another solution in which every identity string can be mapped to a public key via
a publicly computable function. The corresponding private decryption key can
only be generated by the key generation center (KGC). Such kind of key-escrow
is inherent and introduces serious security concerns. CLE removes key-escrow
by requiring both the partial decryption key from the KGC and a user secret in
decryption. Yet, unlike PKE, CLE does not need any infrastructure to authenti-
cate users’ public keys. In contrast, implicit certification is ensured by the KGC
since decryption would be impossible without the partial decryption key.

In the CLE formulation of Al-Riyami and Paterson [5], a user can compute
and release its user public key before it obtains its partial decryption key from
the KGC. Such formulation implies the existence of both PKE and IBE [18].
Indeed, CLE can be constructed generically from IBE and PKE. Baek, Safavi-
Naini, and Susilo [6] formulated an alternative CLE notion in which a user must

Structure-Preserving Certificateless Encryption and Its Application 3

obtain its partial decryption key from the KGC before it can compute its user
public key. Such formulation no longer implies IBE. Consequently, Baek et al.
constructed CLE from Schnorr signatures and ElGamal PKE. This gives us hope
in designing SP-CLE without first designing SP-IBE.

Another distinctive feature of CLE is its security under strong decryption [5].
A strong decryption oracle can provide correct decryption even when the public
key of a user is replaced by the adversary, without requiring the adversary to
surrender the decryption key corresponding to the replaced public key. This level
of security has important applications in complete non-malleability [7,14]. Many
CLE schemes, under either formulation [5,6], rely on the random oracle to simu-
late the strong decryption oracle. Dent et al. [19] proposed the first CLE scheme
featuring strong decryption in the standard model. Yet, Groth-Sahai proof can-
not prove about its ciphertext well-formedness due to the presence of a hash.

Our Contribution. We propose the first SP-CLE schemes over groups with bilin-
ear map e : G × H → GT . We first present a construction encrypting plaintexts
in GT which is secure against chosen-plaintext attacks (CPA). Then, we extend
it to support message space of G (or H). Finally, we show how to extend it for
security against replayable chosen-ciphertext attacks (RCCA). Our proofs do
not rely on random oracles; yet, they are proven in the generic group model.

To illustrate the application of SP-CLE, we then build a (partially) structure-
preserving group signature scheme with certified limited (CL) opening from our
SP-CLE. We defer the relevant introduction and motivation to Sect. 5.

2 Preliminaries

2.1 Bilinear Group

For bilinear group context G = (G,H,GT , e, p, g, h), G,H, and GT are groups of
prime order p, where g and h are random generators for G and H respectively.
A bilinear map e : G × H → GT is a non-trivial and efficiently computable
pairing function such that, for all u ∈ G, v ∈ H, a, b ∈ Z, e(ua, vb) = e(u, v)ab.
In Type-I groups, G = H. For Type II, there exists an efficient mapping from
G to H but not the other way around. For Type III, there exists no efficient
mapping between G and H. This paper uses Type-III groups which is the most
efficient.

2.2 Groth-Sahai Proof System

Groth and Sahai [21] proposed several instantiations for efficient NIZK proof
of knowledge, for statements about group elements satisfying a pairing product
equation. Their proof system (called Groth-Sahai proof hereinafter) consists of
four algorithms GS = (Setup, Prove, Verify, Extract). Setup(1λ) generates the
common reference string crs and the extraction key ek. Prove() takes in a witness
and a statement to generate a proof of the statement w.r.t. the witness. We use
the notation PoK to refer to a proof. Verify() outputs 1 on a valid proof.

4 T. Zhang et al.

GS uses a commitment scheme (Commit() with commitment key ck) as a
building block, committing the witness to prepare for an NIZK proof of knowl-
edge. The remaining algorithm Extract() extracts the hidden element from a
proof with the extraction key ek. The commitment key ck is publicly accessible,
and the extraction key ek is only accessible to a knowledge extractor.

2.3 Structure-Preserving Signature

A signature scheme is a tuple of four algorithms (Setup, KeyGen, Sign, Verify).
It is structure preserving [3] if the verification key, the messages, and the signa-
tures consist of only group elements, and the verification algorithm only evaluates
pairing product equations of the form

∏
i

∏
j e(Gi,Hj)aij = 1GT

, where Gi ∈ G

and Hj ∈ H are group elements forming the verification key, the message(s), and
the public parameters, aij ∈ Zp are constants, and the element 1GT

is the identity
element in GT . An SPS is existentially unforgeable under chosen-message attack
(EUF-CMA) if no probabilistic polynomial-time (PPT) adversary can output a
valid forgery (M,σ), given the public parameters param, the verification key vk,
and a signing oracle for adversarially chosen messages but M is never queried. If
the signing oracle can only be queried once, the scheme is called one-time secure.

3 Definitions of Certificateless Encryption

We follow Baek et al.’s formulation [6,31], where the user public key can only
be generated after the user has interacted with the KGC. We add one algorithm
SetUserSec() which is executed by a user and include a partial user public key
ppk as part of the input of Issue, an algorithm executed by the KGC for the user.
These changes have been discussed in the seminal work [5]. A benefit is that the
CLE scheme can reach trust level 3 named by Girault [20] as a traditional PKI.
The CLE definition in this paper consists of seven algorithms (Setup, MKeyGen,
SetUserSec, Issue, UKeyGen, Enc, Dec):

– Setup(1λ) → param. This algorithm takes in a security parameter 1λ and
outputs the parameter param. We assume param is an implicit input to all
other algorithms.

– MKeyGen() → (mpk,msk). The KGC runs this algorithm. It generates the
master public-private key pair. The KGC publishes the master public key
mpk and keeps the master secret key msk in private.

– SetUserSec(mpk, ID) → (ppk, uk). A user takes as input the master public
key mpk and its own identity ID, and outputs a partial user public key ppk
and a user secret value uk.

– Issue(msk,mpk, ID, ppk) → psk. The KGC takes in the master public-private
key pair, a user identity ID, and a user partial public key ppk to generate the
user partial secret key psk for ID.

– UKeyGen(mpk, ppk, psk, uk) → (upk, usk). With respect to the master public
key mpk and a partial public key ppk, the user uses its partial secret key psk

Structure-Preserving Certificateless Encryption and Its Application 5

and user secret value uk to generate the user public-private key pair (upk, usk).
The user publishes the user public key upk and keeps the full private key usk
in private.

– Enc(mpk, upk, ID,M) → C. This algorithm takes in the master public key
mpk, the user public key upk, and an identity ID, to encrypt a plaintext M .

– Dec(mpk, upk, usk, C) → M . This deterministic algorithm takes in the master
public key, the user public-private key pair, and a ciphertext to recover the
plaintext M , or the error symbol ⊥ when C is invalid.

A CLE scheme is said to be correct if for any integer λ, param ← Setup(1λ),
(mpk,msk) ← MKeyGen(param), any string ID, (ppk, uk) ← SetUserSec(mpk, ID),
psk ← Issue(msk,mpk, ID, ppk), (upk, usk) ← UKeyGen(mpk, ppk, psk, uk),
any message M , and C ← Enc(mpk, upk, ID,M), we have M ←
Dec(mpk, upk, usk, C).

A CLE scheme is said to be structure-preserving if the encryption and decryp-
tion algorithms only operate on group elements. In other words, all elements in
mpk, upk, and usk, the identity ID, the message M to encrypt, and the ciphertext
C to be produced, are all group elements. We call a CLE scheme to be partially
structure-preserving if some elements in ID, M , or C are not group elements,
e.g., ID in Libert and Joye [25] and M and C in our basic scheme.

We consider two kinds of adversaries. Type-I adversary AI models the mali-
cious users who can replace the public key of a victim user to other “unauthenti-
cated” public keys since there is no certificate. Type-II adversary AII models an
honest-but-curious KGC who can obtain partial decryption keys for the users,
but cannot replace the user public key for any user. Obviously, these two types
of adversaries cannot collude. We first describe the oracles available to AI/AII :

– Replace Public Key. The adversary submits ID and a user public key upk′

to this oracle, which replaces the previous user public key of ID to upk′.
– Extract Partial Secret Key. The adversary submits an identity ID to this

oracle. This oracle returns the partial secret key psk generated for ID.
– Extract Full Private Key. The adversary supplies an identity ID to this

oracle. This oracle returns the full private key usk generated for ID.
– Strong Decrypt. The adversary supplies an identity ID and a ciphertext C.

This oracle creates a full private key usk for ID if it is not previously generated,
decrypts C with usk even if upk of ID used in C has been replaced, and sends
the plaintext to the adversary.

– Weak SV Decrypt. The adversary supplies an identity ID, a user secret
uk′, and a ciphertext C to this oracle. This oracle creates usk′ for ID with the
real psk and uk′, and decrypts C. The oracle returns the plaintext result.

Definition 1 (IND-CPA security against Type-I adversary). A CLE
scheme is indistinguishable under chosen-plaintext attacks (IND-CPA secure)
against Type-I adversary if AdvIND-CPA

AI
is negligible.

Setup. The challenger C executes Setup() and publishes param.

6 T. Zhang et al.

Master Key Generation. C runs MKeyGen(), sends mpk to AI , and keeps msk
private.

Query Phase. The adversary AI first makes registration queries for a polyno-
mial number of identities {IDi}q

i=1. C runs pski ← Issue(msk,mpk, IDi, ppki) and
(upki, uski) ← UKeyGen(mpk, pski), and publishes upki for i ∈ [1, q]. Then, AI

can make Replace Public Key, Extract Partial Secret Key, and Extract
Full Private Key queries on any registered identity, but AI cannot request for
the partial or full private key of an identity ID after replacing its upk.

Challenge. AI submits an identity ID∗ and two messages M0,M1 to C. C aborts
this game if any of the following events happen.

– AI made Extract Full Private Key query on ID∗.
– AI made both Replace Public Key query and Extract Partial Secret

Key query on ID∗.

C then randomly picks b
$← {0, 1} and gives C∗ = Enc(mpk, upk∗, ID∗,Mb) to AI .

Guess. AI receives C∗ and outputs a bit b′. If b′ = b, AI wins the game. The
advantage of AI in this game is AdvIND-CPA

AI
= Pr[b′ = b] − 1

2 .

Definition 2 (IND-CPA security against Type-II adversary). A CLE
scheme is IND-CPA secure against Type-II adversary if AdvIND-CPA

AII
defined

below is negligible.

Setup. The challenger C executes Setup() and publishes param.

Master Key Generation. The challenger C runs the algorithm (mpk,msk) ←
MKeyGen(param), publishes mpk, and sends msk to AII .

Query Phase. AII and C interact in the same way as in the experiment in
Definition 1 except for the following differences. First, C sends psk to AII . Second,
AII can create new pski for IDi by itself. Third, AII can only make Extract
Full Private Key queries in this game.

Challenge and Guess. These two phases are the same as in the experiment in
Definition 1. The advantage of AII in this game is AdvIND-CPA

AII
= Pr[b′ = b] − 1

2 .
The indistinguishability under chosen-ciphertext attacks (IND-CCA secu-

rity) games for SP-CLE against Strong Type-I and Strong Type-II adversaries
are similar to the experiments in Definitions 1 and 2 respectively, except that
in Query Phase, the adversaries can make Strong Decrypt and Weak SV
Decrypt queries on ciphertexts of its choice except C∗. The advantage of AI and
AII in IND-CCA game are defined as AdvIND-CCA

AI
and AdvIND-CCA

AII
respectively.

For replayable CCA (RCCA) security [11], decryption oracle returns replay if
the decryption result is M0 or M1 after the challenge phase.

Structure-Preserving Certificateless Encryption and Its Application 7

4 A Specific Construction of SP-CLE

4.1 Intuition

Instead of using an SPE generically to perform encryption, we rely on the
pairings computed in the SPS verification for encryption or decryption. In our
scheme, a receiver generates and sends his partial public key ppk to the KGC. The
KGC creates a structure-preserving signature on the receiver identity together
with the partial public key. The receiver then publishes a part of the signature
together with his partial public key while keeping the remaining signature parts.

A general verification algorithm of an SPS consists of a series of pairing
product equations of the form

∏m
i=1

∏n
j=1 e(Gi,Hj)aij = 1GT

, where Gi ∈ G for
i ∈ [1,m], Hj ∈ H for j ∈ [1, n], and aij ∈ {−1, 0, 1}. The group elements Gi

and Hi are from the verification key of SPS, the signature being verified, or the
message. The exponents aij indicate whether they should be on the left or the
right side of the equation (1 or −1), or should not appear at all (0).

We divide the set {(Gi,Hj)}(i,j) into two indices sets: K which contains the
pairings used in encryption by the sender to construct a session key (or for
hiding the plaintext); and K which contains the rest of the pairing that are
used in decryption to recover the session key. To encrypt a plaintext M , the
pairings e(Gi,Hi) for (i, j) ∈ K and some randomness rij

$← Zp together form
a session key as

∏
(i,j)∈K e(Gi,Hj)aij ·rij . The ciphertext also contains elements

exponentiated with the randomness rij ({x, y, z} in our concrete scheme below).
The remaining pairings in set K can be used in the decryption algorithm to pair
up the ciphertext elements and the decryption key to recover the session key.

Whether a pairing should be put in the session key, included in the other
ciphertext elements, or used in decryption privately as part of the decryption
key, depends on whether the input of a pairing function is public or not.

We start with the basics. To make our exposition concrete, we consider the
SPS scheme due to Abe et al. [4]. We chose to build our SP-CLE based on this
SPS for its optimality. The verification key of the SPS scheme is the master
public key which should be public. This contains (g, h, U, Ṽ1, Ṽ2,W1,W2). The
message vector signed by SPS contains a user identity and a (partial) user public
key Dα. Both elements are public. The signature (R̃, S̃, T) contributes to the only
parts which can be private. Now, we classify the pairings in the SPS verification.
A similar classification has also been done in the literature [32] for a different
purpose (delegating computations of pairings).

(1) Both elements in a pairing are public: This type of pairing includes public
key-public key pairs and message-public key pairs. The involved elements
are available to the encryptor, so we use all of them in the session key. In
our scheme, these include e(W1, h), e(ID, Ṽ1), e(Dα, Ṽ2), and e(g, h), where
Dα is a user-chosen public key. Our scheme also includes an additional term
e(Dα, h) to ensure that only the user but not the KGC (who can recreate the
SPS signature) can decrypt. Looking ahead, our scheme publishes R̃ from
the signature, so e(W2, R̃) and e(U, R̃) eventually belong to this type (see
“both private” below).

8 T. Zhang et al.

(2) One of the elements in a pairing is public: This type of pairing includes
public key-signature pairs and message-signature pairs. In our scheme, that
is e(g, S̃). The public element can be used to embed randomness r in the
ciphertext in the form of Gr

i or Hr
j . In our scheme, such elements include g

(and R̃ below).
(3) Both elements in a pairing are private: The private elements (from the SPS

signature) are part of the user private key. This type of pairing includes only
signature-signature pairs. In our scheme, e(T, R̃) “originally” belongs to this
type. As both of the elements are private, the encryptor has no way to know
what is the SPS signature (i.e., user private key) obtained by the intended
decryptor. We thus publish R̃ as part of the user public key (which is not
allowed in the IBE setting). We remark that such treatment is not possible
for IBE since the user public key in IBE should be purely derived from the
identity instead of any random choice made by the KGC during user private
key generation.

Such a choice (over T) is due to multiple reasons. Firstly, R̃ is created as a
random term which by itself does not relate to the private signing key in any way.
It is intuitively safer to publish it instead of T which is a term created from the
private signing key on top of some public information like identity. Moreover,
R̃ is the term which “glues up” two equations in the SPS verification. If the
adversary chose to manipulate this term, it needs to deal with two equations.
From the efficiency perspective, publishing R̃ minimizes the number of public-
private pairings, which reduces the ciphertext size.

With R̃ published in our scheme, this makes e(T, R̃) becomes the type of
“one being public”. As discussed, the ciphertext in our scheme thus includes the
term R̃ to embed the ciphertext randomness. Also, e(W2, R̃) and e(U, R̃) in the
pairing-product equations become the type of “both being public”, and hence
these pairing terms appear in the session key.

4.2 CPA-Secure SP-CLE Scheme

We construct our CPA-secure SP-CLE scheme called CLE0 based on an existing
structure-preserving signature scheme of Abe et al. [4].

Setup(1λ) → param. Choose a bilinear group context G = (G, H, GT , e, p, g, h),
and output param = G.

MKeyGen(param) → (mpk,msk). The KGC randomly picks u, v1, v2, w1, w2
$← Z

∗
p

where u �= −w2, and computes U = gu, Ṽ1 = hv1 , Ṽ2 = hv2 , W1 = gw1 , and
W2 = gw2 . The master key pair is

mpk = (U, Ṽ1, Ṽ2,W1,W2), msk = (u, v1, v2, w1, w2).

This key pair is just the one for the SPS scheme by Abe et al. [4] with the
message space of G2 ×H. Specifically, U is for the H part of the message space,

Structure-Preserving Certificateless Encryption and Its Application 9

and (Ṽ1, Ṽ2) is for G
2. Note that e(g, h) and e(W1, h) can be pre-computed,

especially when W1 is never used as is except in e(W1, h).

SetUserSec(mpk) → (ppk, uk). A user randomly picks α
$← Zp, computes Dα =

gα and D̃α = hα, and sets ppk = Dα and uk = D̃α.

Issue(msk,mpk, ID, ppk) → psk. For ID ∈ G and ppk = Dα ∈ G, the KGC

randomly chooses r
$← Z

∗
p and computes

R̃ = hr, S̃ = hw1−r·w2 · R̃−u, T = (g · ID−v1 · D−v2
α)

1
r ,

Output psk = (R̃, S̃, T) as the partial secret key.
We remark that (R̃, S̃, T) forms a signature on (ID,Dα, R̃) ∈ G

2 ×H for the
SPS scheme by Abe et al. [4] which can be verified with the equations below:

e(W2, R̃)e(g, S̃)e(U, R̃) = e(W1, h), e(T, R̃)e(ID, Ṽ1)e(Dα, Ṽ2) = e(g, h).

Note that the first equation can be simplified to e(W2 · U, R̃)e(g, S̃) = e(W1, h).
Different from the underlying signature scheme, we expect the signature to

sign on an element R̃ of itself. This remains secure in the generic group model.

UKeyGen(mpk, ppk, psk, uk) → (upk, usk). A user parses psk as (R̃, S̃, T) and set
the key pair as

upk = (Dα, R̃), usk = (D̃α, S̃, T) (recall: ppk = Dα and uk = D̃α).

As R̃ is a part of upk, it can be replaced by an adversary. Our scheme thus also
requires the KGC to “implicitly certify” R̃ during partial secret key generation.

Enc(mpk, upk, ID,M) → C. To encrypt M ∈ GT , the sender randomly picks

x, y, z
$← Zp, and computes

K = {e(W2, R̃)e(U, R̃)/e(W1, h)}x{e(ID, Ṽ1)e(Dα, Ṽ2)/e(g, h)}y/e(Dα, h)z,

C0 = M · K, Cg = gx, CR = R̃y, Cz = gz.

Output the ciphertext C = (C0, Cg, CR, Cz).
(Note that K = {e(W2U, R̃)/e(W1, h)}x{e(ID, Ṽ1)/e(g, h)}ye(Dα, Ṽ y

2 /hz).)

Dec(mpk, upk, usk, C) → M/⊥. Parse C as (C0, Cg, CR, Cz). Output

M = C0 · e(Cg, S̃)e(T,CR)e(Cz, D̃α).

Analysis. Correctness. Recall that Dα = gα, D̃α = hα, C0 = M · K, and

K = e(W2, R̃)xe(U, R̃)xe(W1, h)−x · e(ID, Ṽ1)ye(Dα, Ṽ2)ye(g, h)−y · e(Dα, h)−z.

10 T. Zhang et al.

Hence, the decryption algorithm proceeds as below.

C0 · e(Cg, S̃)e(T,CR)e(Cz, D̃α)

= M · K · e(Cg, S̃)e(T,CR)e(Cz, D̃α)

= M · e(W2, R̃)xe(U, R̃)xe(W1, h)−xe(ID, Ṽ1)ye(Dα, Ṽ2)ye(g, h)−ye(Dα, h)−z

e(Cg, S̃)e(T,CR)e(Cz, D̃α)

= M · e(W2, R̃)xe(U, R̃)xe(W1, h)−xe(Cg, S̃)

e(ID, Ṽ1)ye(Dα, Ṽ2)ye(g, h)−ye(T,CR) · e(Dα, h)−ze(Cz, D̃α)

= M · e(W2, R̃)xe(U, R̃)xe(W1, h)−xe(g, S̃)x

e(ID, Ṽ1)ye(Dα, Ṽ2)ye(g, h)−ye(T, R̃)y · e(gα, h)−ze(gz, hα)

= M · (e(W2, R̃)e(g, S̃)e(U, R̃)e(W1, h)−1)x

(e(T, R̃)e(ID, Ṽ1)e(Dα, Ṽ2)e(g, h)−1)y = M.

The second last equality holds because (R̃, S̃, T) is a signature which satisfies
the verification equations mentioned when we describe Issue().

Efficiency. We first start with some basic observations of our scheme. The user
private key consists of 3 elements in base groups. The ciphertext consists of 3
group elements in base groups and 1 group element in the target group. The
decryption algorithm needs 3 pairings and 4 multiplications in the target group.

Comparison with the Generic Approach. It is mandatory to compare the
performance of our proposed scheme with the folklore approach of building a
CLE scheme “with certificate” [12]. Specifically, one can build a CLE scheme
from any SPS and SPE schemes in the following way. A user publishes an SPE
public key with an SPS signature on it as his public key. An encryptor encrypts to
the user using the SPE public key only if the SPS signature is verified successfully.

Instantiating this idea with the SPS due to Abe et al. [4] used in our concrete
construction, we can see that the user public key will then consists of at least 3
elements from the SPS (and at least 1 element from the SPE public key as the
CLE partial user public key). In contrast, for our concrete construction, the user
public key consists of only 2 elements in base groups, which is much shorter.

The explicit certificate verification step in the folklore approach using the
same SPS scheme as ours will require 3 multiplications in the target group and 5
pairings. While the complexity of the actual encryption steps depends on which
SPE scheme is used to instantiate this idea, the number of pairings involved is
already larger than what our proposed scheme requires. Our encryption algo-
rithm takes 5 exponentiations and 2 multiplications in base groups, 2 exponen-
tiations and 4 multiplications in the target group, and 3 pairing computations.

Theorem 1. CLE0 is CPA-secure against Type-I and Type-II adversaries in the
generic group model (without any isomorphism between the two base groups).

To prove that CLE0 is CPA-secure against Type-I and Type-II adversaries,
we replace the challenge ciphertext component C∗

0 with a random element in GT

Structure-Preserving Certificateless Encryption and Its Application 11

and show that the adversaries cannot distinguish this simulation with the real
scheme in the generic group model. The detailed proof is in the full version.

4.3 A Variant CLE Scheme for M ∈ G

This part proposes an SP-CLE scheme CLE1 encrypting M ∈ G building on top
of CLE0. Based on the technique of encrypting group elements in the partially
structure-preserving IBE scheme [25], we present a generic way to transform a
scheme encrypting plaintexts in GT to a scheme encrypting plaintexts in G or H.

Setup(1λ) → param. The KGC runs param0 ← CLE0.Setup(1λ), picks Gi
$← G

for i ∈ [1, l] where l is suitably large1, and outputs param = (param0, {Gi}l
i=1).

MKeyGen() → (mpk,msk). The KGC runs (mpk0,msk0) ← CLE0.MKeyGen
(param0) and outputs the master key pair mpk = (mpk0, {Gi}l

i=1), msk = msk0.

SetUserSec(mpk) → (ppk, uk). A user runs (ppk, uk) ← CLE0.SetUserSec
(mpk0), and sets ppk, uk as its partial public key and the user secret value respec-
tively.

Issue(msk,mpk, ID, ppk) → psk. For a user ID ∈ H, the KGC runs psk0 ←
CLE0.Issue(msk0,mpk0, ID, ppk) and outputs the partial secret key psk = psk0.

UKeyGen(mpk, ppk, psk, uk) → (upk, usk). The user computes its own user public-
private key pair as (upk, usk) ← CLE0.UKeyGen(mpk0, psk0, ppk, uk).

Enc(mpk, upk, ID,M) → C. To encrypt M ∈ G, randomly choose τk ∈ {0, 1} for
k = 1, 2, · · · , l, and compute

C0 = M ·
l∏

j=1

G
τj

j , Ck,M ← CLE0.Enc(mpk0, upk, ID, e(Gk, h)τk) ∀k ∈ {1, 2, · · · , l}.

Output C = (C0, {Ck,M}l
k=1) as the ciphertext (where {Ck,M} are still in GT).

Dec(mpk, upk, usk, C) → M/⊥. Parse C as (C0, {Ck,M}l
k=1). For k = 1, 2, · · · , l,

compute Mk = CLE0.Dec(mpk0, upk, usk, Ck,M) and find τk such that Mk =
e(Gk, h)τk . Output M = C0∏l

k=1 G
τk
k

as the plaintext.

The scheme CLE1 also supports plaintexts from H. If we choose H̃k ∈ H for
integer k ∈ [1, l] as part of the master public key, and encrypt the plaintext as
M ·

∏l
k=1 H̃τk

k , we can then encrypt plaintext in H.

Correctness. The correctness of CLE1 follows from the correctness of CLE0,
which ensures that Mk can be calculated correctly. Thus, there is at most one
series {τk}l

k=1 such that Mk = e(Gk, h)τk for all k ∈ [1, l], and this series can
cancel the term

∏l
k=1 Gτk

k in C0 to obtain the plaintext M . More details can be
seen from the correctness analysis in our CCA-secure extension presented below,
which also encrypts messages in the base group (H).
1 In the partially structure-preserving IBE scheme [25], this represents the bit-length

of the identity. In our scheme, ID is a group element, so l belongs to poly(λ).

12 T. Zhang et al.

Theorem 2. The SP-CLE scheme CLE1 is IND-CPA secure if CLE0 is IND-
CPA secure.

The proof is deferred to the full version.

4.4 RCCA-Secure Extension

Now we propose an RCCA-secure SP-CLE scheme CLE2 with message space H,
which uses a one-time SPS scheme OT S and a simulation-sound NIZK proof
system GS as building blocks, following the idea of transforming CPA-secure
IBE to CCA-secure PKE [9]. We use the SPS scheme proposed by Abe et al. [2]
as OT S (which is also used in an CCA-secure SPE scheme by Libert et al. [27]).

Our RCCA-secure SP-CLE is derived from CLE1. Intuitively, the encryptor
generates an OT S key pair (ovk, osk), binds ovk with the session key, provides
extra elements computed from osk (which can be simulated without osk with
the “trapdoor” in param), and proves everything is faithfully constructed using
osk. We add a Groth-Sahai proof of the validity of the ciphertext embedding the
plaintext as a witness. When simulating Strong Decrypt oracle, the challenger
can extract the plaintext even for an identity with replaced user public key.

Setup(1λ) → param. Run the two algorithms param1 ← CLE1.Setup(1λ) and
paramOTS ← OT S.Setup(1λ, 1), and set up GS to generate a common reference

string crs. Randomly choose ui
$← Zp for i ∈ [1, 4] to compute Ui = gui , H̃i = hui ,

and output the public parameter param = (param1, paramOTS , crs, {Ui, H̃i}4i=1).

MKeyGen(param) → (mpk,msk). The KGC runs the algorithm (mpk1, msk1) ←
CLE1.MKeyGen(param1), and outputs the master public-private key pair as mpk =
(mpk1, {Ui, H̃i}4i=1), msk = msk1. The one-time public key ovk for OT S of our
choice [2] consists of 4 group elements in H. The elements {Ui, H̃i}4i=1 are for
binding ovk with a ciphertext. Generally, i can be in the range [1, k] where k is
the number of elements contained in ovk of the one-time SPS scheme.

SetUserSec(mpk) → (ppk, uk). A user runs (ppk, uk) ← CLE1.SetUserSec
(mpk1), and sets (ppk, uk) as its partial public key and the user secret value
respectively.

Issue(msk,mpk, ID, ppk) → psk. For a user with identity ID ∈ H, the KGC
outputs the partial secret key psk ← CLE1.Issue(msk1,mpk1, ID, ppk).

UKeyGen(mpk, psk, ppk, uk) → (upk, usk). The user computes its own user public-
private key pair as (upk, usk) ← CLE1.UKeyGen(mpk, psk, ppk, uk).

Enc(mpk, upk, ID,M) → C. To encrypt M ∈ G, the sender randomly picks

τk
$← {0, 1} and xk, yk, zk

$← Zp for k ∈ [1, l]. The set {xk, yk, zk, τk} will be
used as the internal randomness for CLE1.Enc(). The sender also runs (ovk,
osk) ← OT S.KeyGen(paramOTS) of Abe et al.’s one-time SPS scheme [2] which
the exponent {ai} for i ∈ [1, 4] such that ovk = (ha1 , ha2 , ha3 , ha4) are available.
For the ease of presentation, we use (Ã1, Ã2, Ã3, Ã4) to represent ovk.

Structure-Preserving Certificateless Encryption and Its Application 13

Finally, the sender computes

(C0, {Ck,M}l
k=1) ← CLE1.Enc(mpk1, upk, ID,M ; {xk, yk, zk, τk}),

(C ′
k,0, Ck,g, Ck,R, Ck,z) ← Ck,M ,

Ck,0 = C ′
k,0 ·

4∏

i=1

e(Ui, Ãi)−xk for k ∈ [1, l],

Ca,i = H̃ai
i for i ∈ [1, 4],

π = PoK{(M, {xk, yk, zk, τk}l
k=1, {ai}4i=1) :

(C0, {(C ′
k,0, Ck,g, Ck,R, Ck,z)}l

k=1)

← CLE1.Enc(mpk1, upk, ID,M ; {xk, yk, zk, τk}l
k=1)

∧l
k=1 C0 = M ·

l∏

j=1

G
τj

j ∧4
i=1 Ca,i = H̃ai

i

∧l
k=1 Ck,0 = C ′

k,0 ·
4∏

i=1

e(Ui, Ãi)−xk},

σ ← OT S.Sign(osk, C0).

Output (C0, {Ãi, Ca,i}4i=1, {Ck,0, Ck,g, Ck,R, Ck,z}l
k=1, π, σ) as the ciphertext.

Dec(mpk, upk, usk, C) → M/⊥. The decryptor first performs the following checks.

1. Parse the ciphertext C as specified in the output of the algorithm Enc().
2. Verify the equations e(g, Ca,i) = e(Ui, Ãi) for i ∈ [1, 4].
3. Verify the signature σ using OT S.Verify((Ã1, Ã2, Ã3, Ã4), C0, σ).
4. Verify the proof π using the GS.Verify() algorithm.

If any one of the four equations does not hold, or either σ or π does not pass
the verification, output ⊥. Otherwise, for k ∈ [1, l], compute

Mk = Ck,0 · e(Ck,g, S̃ ·
4∏

i=1

Ca,i)e(T,Ck,R)e(Ck,z, D̃α).

Find τk such that Mk = e(Gk, h)τk . Finally, output M = C0∏l
i=1 G

τk
i

.

Correctness. For k ∈ [1, l],

Ck,0 · e(Ck,g, S̃ ·
4∏

i=1

Ca,i)e(T,Ck,R)e(Ck,z, D̃α)

=Mk · e(W2, R̃)xke(U, R̃)xk ·
4∏

i=1

e(Ui, Ãi)−xk · e(W1, h)−xk

· e(ID, Ṽ1)yke(Dα, Ṽ2)yke(g, h)−yke(Dα, h)−zk

· e(Ck,g, S̃ ·
4∏

i=1

Ca,i)e(T,Ck,R)e(Ck,z, D̃α)

14 T. Zhang et al.

=Mk · e(W2, R̃)xke(U, R̃)xk ·
4∏

i=1

e(Ui, Ãi)−xk · e(W1, h)−xk · e(Ck,g, S̃ ·
4∏

i=1

Ca,i)

· e(ID, Ṽ1)yke(Dα, Ṽ2)yke(g, h)−yk · e(T,Ck,R) · e(Dα, h)−zk · e(Ck,z, D̃α)

=Mk · (e(W2, R̃)e(U, R̃) ·
4∏

i=1

e(Ui, Ãi)−1 · e(W1, h)−1 · e(g, S̃ ·
4∏

i=1

Ca,i))xk

· (e(ID, Ṽ1)e(Dα, Ṽ2)e(g, h)−1 · e(T, R̃))yk · e(gα, h)−zk · e(gz, hα) = Mk.

With correct Mk, τk such that Mk = e(Gk, h)τk can be correctly recovered. With
all Mk for k ∈ [1, l], M = C0∏l

i=1 G
τk
i

can be correctly recovered as in Sect. 4.3.

Theorem 3. The SP-CLE scheme CLE2 is RCCA-secure against Strong Type-I
and Strong Type-II adversaries if CLE1 is CPA-secure against Type-I and Type-
II adversaries.

The proof is deferred to the full version.

Remark. A fully structure-preserving CLE scheme would be an overkill for
our application as it does not need to hide the ciphertext and prove about its
validity. Also, our application will apply yet another signature on top of the
CLE ciphertext (with other parts) such that any rerandomization of the CLE
ciphertext will invalidate the signature, so CLE2 only aimed for RCCA-security.

Nevertheless, AppendixA outlines how to use the trick of Libert and Joye [25]
for converting GT values into base group elements in the ciphertext of our CLE1.

5 Group Signatures with Certified Limited Opening

We use our SP-CLE (in Sect. 4) as a building block to construct an example
application, a group signature scheme with certified limited (CL) opening, a
generalization of message-dependent opening [30]. Due to the page limit, we
present the formal definitions in the full version.

Group signature is a privacy-oriented signature scheme where the verifier can
be convinced that a given signature is signed by a group member, but not exactly
whom. Since perfect anonymity may be abused, group signatures come with an
opening mechanism such that the group manager, or in general, an opening
authority (OA), can use a secret key to reveal the true signer of a signature.

When there is purported abuse, we want to identify the signer of the suspi-
cious signatures. In traditional group signatures, it means all signatures must
be opened, which is undesirable for honest users. The notion of traceable signa-
tures (TS) [1,23] extends that of the group signatures to mitigate this problem.
In TS, when a group member is classified as a misbehaving one. A user-specific
tracing trapdoor can be generated (by the group manager or the OA). Every
one with this user-specific trapdoor can check if a signature is actually signed by
the misbehaving user, or trace [13] the signatures generated by the misbehaving

Structure-Preserving Certificateless Encryption and Its Application 15

user. TS can be regarded as a group signature scheme with signer-dependent
opening. Subsequently, Sakai et al. [30] proposed the notion of group signature
with message-dependent opening (GS-MDO). In GS-MDO, apart from the OA,
there is another entity called the admitter. The admitter can generate a message-
dependent opening key. The real signer of a group signature signing on a given
message can be revealed only when both the master opening key (of the OA)
and the message-dependent opening key (provided by the admitter) are used.

Difficulty in Construction. GS-MDO schemes are often constructed by IBE
since GS-MDO implies its existence (or precisely, identity-based key encap-
sulation) [30]. Existing schemes not relying on the pairing-based Groth-Sahai
proof are either not that efficient [26] or is proven secure in the random oracle
model [28]; however, typical pairing-based IBE schemes encrypt messages in the
target group, which are not compatible with Groth-Sahai proof that a correct
message (the signer identity in the case of GS-MDO) has been encrypted.

Consequently, the original work of Sakai et al. [30] proposed to use k-resilient
IBE to construct GS-MDO which remains secure only when adversary obtains
no more than a predefined bound of k message-dependent opening keys. Later,
Ohara et al. [28] proposed a GS-MDO scheme with unbounded MDO in the
random oracle model. A subsequent work of Libert and Joye [25] describes an
unbounded GS-MDO scheme in the standard model by proposing an IBE scheme
which encrypts messages in the base group. This IBE scheme is partially struc-
ture preserving in the sense that the identity is still a bit-string instead of a group
element. In an IBE-based GS-MDO scheme, the identity used in IBE is the same
as the message to be signed. So this scheme [25] is not structure-preserving and
cannot sign on group elements. Potential higher applications of GS-MDO thus
cannot hide yet prove about the message with another Groth-Sahai proof.

Certified Limited Opening. We consider an alternative way of limiting the
opening power which we call certified limited (CL) opening. CL opening features
an entity called a master certifier, who certifies openers case by case depending
on the context. For example, consider the application of group signatures for sign-
ing on votes in electronic voting. The government can be the master certifier, and
the openers can be those overseeing different districts/counties/provinces/states.
When issuing a group signature, the group member can designate an opener
during the signing process. The opener who is the designated one for a group
signature can open it (i.e., revoke the anonymity of the signature). Neither the
certifier nor any non-designated openers can perform opening.

CL opening is a variant of MDO which removes the reliance of a single
opening authority and minimizes the disturbance of honest users. Moreover,
it decouples the criteria of opening from the message being signed. In many
applications, the need for opening may not be originated from the message itself.
We can assign the openers depending on the applications. Consider the e-voting
scenario again, where the voting software in one of the voting booths could be
compromised. We can set the opener to be the authorities overseeing different

16 T. Zhang et al.

booths. If some anomaly happen with a particular booth, say, the candidate is
set to be an adversarially-chosen set under the hood, independent of what is
the vote cast by the voters; only the signatures in the concerned booth will be
opened, and only the affected voters will be asked to cast a correct vote again.

CL opening also simplifies the opening process. The existing MDO function-
ality [25,30] requires the master opening key and the message-dependent key as
inputs. That means the two parties holding the corresponding keys must cooper-
ate in an honest manner. In our formulation, the master certifier and the opening
authority interact once such that latter will get the opening key of limited power,
instead of performing joint decryption in every opening. Dealing with a single
key also allows an easier zero-knowledge proof for the opening correctness.

5.1 Our Group Signature Scheme with Certified Limited Opening

We build our group signature scheme with CL opening using SP-CLE. In a
nutshell, the signing algorithm uses SP-CLE to encrypt the identity of the signer
with respect to a SP-CLE user. In this way, we can realize new privacy-enhancing
features easily thanks to the preserved structures. In particular, since the identity
and the user public key in our SP-CLE scheme are both group elements, one
can include an additional proof about them to preserve the opener privacy. For
example, it can hide who is the designated opener among a list of possibilities.

Due to our formulation of the underlying SP-CLE scheme, our resulting group
signature scheme with CL opening can be considered as weaker than group
signatures with MDO since the message in the latter does not require prior
“certification” from any party. However, in case the message domain is small,
one can obtain MDO from CL opening by assigning an opener for each possible
message. Also, as argued above, we decouple the message to be signed from
the context of the opening. More importantly, from the technical perspective,
since SP-IBE does not exist, it is unclear how to “upgrade” the existing GS-
MDO schemes such that we can sign on a group element, while retaining the
MDO functionality. On the other hand, our group signature scheme with CL
opening is partially structure-preserving, in the sense that it can sign on group
element as a message (and the public-key and the identity of the opener are also
group elements, due to our SP-CLE). It can then sign on an encryption of vote
(for privacy) when the resulting ciphertext consists of only group elements, and
further allow a zero-knowledge proof of the message being encrypted and signed.
For example, the zero-knowledge proof can be proving that the vote is a valid
choice among the possible candidates. With the group structure preserved, the
encrypted votes can also be homomorphically-processed (when the underlying
encryption is homomorphic) such that only the aggregate results will be revealed.

Finally, as a generic construction, future constructions of SP-CLE in the
original formulation can be directly plugged into our proposed design.

Structure-Preserving Certificateless Encryption and Its Application 17

5.2 Construction

Design Overview. We follow the two-level signature construction [8] and use
two SPS instances and one SP-CLE instance. The group manager generates
an SPS signature certID on an identity ID and a verification key vkID for an
SPS scheme as part of the user private key for ID. The user with identity ID
generates another SPS signature σ′ on a message M , then proves the relation of
(ID, vkID, certID) and that of (M,σ′) without revealing ID, vkID, certID, nor σ′.

To implement the certified limited opening feature using SP-CLE, the KGC
(as the master certifier) interacts with an SP-CLE user (as an opener). After
they interact in the SP-CLE key-issuing process, the opener obtains a public-
private key pair. Suppose the identity of the opener is E, the user public key pkE

will be published, and the user private key oskE will be kept secret. The signer
uses pkE to encrypt ID, then generates a proof showing that this ciphertext is
well-formed. All the proofs and this ciphertext are output as the group signature.
The party holding oskE can decrypt the ciphertext to obtain ID.

Syntax. Our definition extends the one by Sakai et al. [30]. We replace the
input of the TrapGen algorithm from a message M with an identifier E and an
opener public key, and only require the output of TrapGen but not the “master”
opening key in the Open algorithm. We also split the key generation into Setup,
MKeyGen, and Issue. A detailed definition can be found in the full version.

Our Construction. We use an our CLE scheme for M ∈ G CLE , two SPS
schemes SPSG and SPS, and a GS-proof system GS as the building blocks to
construct a structure-preserving group signature with certified limited opening.
As Groth-Sahai proof is rerandomizable, we use a structure-preserving one-time
signature OT S to enforce CCA-anonymity.

This scheme also achieves the “hidden identity” features as in hidden identity-
based signatures [17,24] since its opening mechanism can directly recover the
signer identity without relying on the existence of any membership database.

Setup(1λ) → param. Choose a Type III bilinear group G = (G,H,GT , e, p, g, h)
which is suitable for CLE , SPSG, and SPS. Generate the common reference
string crs for GS. Output param = (G, crs).

MKeyGen() → (mpk,msk). Generate the key-pair for the underlying structure-
preserving primitives as follows.

1. (vkG, skG) ← SPSG.KeyGen().
2. (mpkCLE ,mskCLE) ← CLE .MKeyGen().

Output the master public-private key pair mpk = (vkG,mpkCLE), msk = skG

to the KGC, and output the master opening key ok = mskCLE to the master
certifier.

Issue(msk, ID) → uskID. A user with identity ID and the KGC interactively
compute a certificate as part of the user secret key for the user.

18 T. Zhang et al.

1. The user runs (vkID, skID) ← SPS.KeyGen(), sends (ID, vkID) to the KGC.
2. The KGC runs certID ← SPSG.Sign(skG, (ID, vkID)), sends certID to the user.

The user sets uskID = (skID, vkID, certID) as user private key.

TrapGen(mpk, ok, E) → (pkE , oskE). The master certifier and an opener runs
this protocol such that the opener will get an opening key for an identity E ∈ H.

1. The opener first runs (ppkE , ukE) ← SetUserSec(mpkCLE , E).
2. The master certifier runs pskE ← CLE .Issue(mskCLE ,mpkCLE , E, ppkE) and

(upkE,CLE , uskE,CLE) ← CLE .UKeyGen(mpkCLE , ppkE , pskE , uskE), where ok
is parsed as mskCLE .

3. The master certifier outputs uskE,CLE as the certified limited opening key
oskE , and publishes upkE,CLE as pkE for identity E.

Sign(mpk, uskID, pkE , E,M) → σ. The input E is the identity of the opener, and
pkE is the public key of the opener generated by the algorithm TrapGen. To sign
on a message M ∈ H by uskID, a user performs the following steps.

1. (ovk, osk) ← OT S.KeyGen(),
2. σ′ ← SPS.Sign(skID, (M,E, ovk)).
3. C ← CLE .Enc(mpkCLE , pkE , E, ID).
4. Run GS.Prove() to generate the proof

π = PoK{(vkID, certID, ID, σ′) : 1 ← SPS.Verify(vkID, (M,E, ovk), σ′)
∧ 1 ← SPSG.Verify(vkG, (ID, vkID), certID)
∧ C ← CLE .Enc(mpkCLE , pkE , E, ID)}.

5. σ′′ ← OT S.Sign(osk, (C, π)).

Output σ = (π,C,E, ovk, σ′′) as the group signature.

Verify(mpk,M, σ) → 1/0. The verifier parses σ as (π,C,E, ovk, σ′′). If the algo-
rithm OT S.Verify(ovk, (C, π), σ′′) outputs 1 and GS.Verify() outputs 1 for π
(i.e., π is a valid proof), the verifier outputs 1 and accepts the group signature σ;
Otherwise, the verifier outputs 0.

Open(mpk, pkE , oskE , σ) → ID/⊥. An opener parses mpk as (vkG, mpkCLE) and
σ as (π,C,E, ovk, σ′′). It returns ⊥ if 0 ← Verify(mpk,M, σ). Otherwise, it
computes ID ← CLE .Dec(mpkCLE , pkE , pskE , C) and outputs ID.

Theorem 4. The proposed group signature scheme with certified limited opening
provides traceability, anonymity, and is existentially unforgeable against adap-
tive chosen-message attack (EUF-CMA secure) if GS is an non-interactive zero-
knowledge proof, CLE is CPA/CCA secure, SPSG and SPS are both EUF-CMA
secure, and OT S is one-time secure (only for CCA-anonymity).

Structure-Preserving Certificateless Encryption and Its Application 19

The proof is deferred to the full version.

Remarks. Two specific steps of Sign(), namely, σ′ ← SPS.Sign(skID,
(M,E, ovk)) and C ← CLE .Enc(mpkCLE , pkE , E, ID) merit more discussion. With
the use of SPS, our group signature scheme can sign on group element M ∈ H.
With our SP-CLE, pkE and E are both group elements. It is thus easy to use
Groth-Sahai proof to, say prove that the opener is among one of a known list of
n openers.

6 Conclusion

We propose a series of structure-preserving certificateless encryption schemes by
extending an existing structure-preserving signature scheme. We illustrate their
applications in group signature with certified limited opening. We leave it as a
future work to use our structure-preserving certificateless encryption scheme for
other accountable privacy features, e.g., escrowed linkability [16] in which two
anonymous signatures from the same signer can only be linked by the one who
owns the private key (in our structure-preserving certificateless encryption).

Our scheme supports typical application of CLE except “encrypt to the
future” [15,22,29]. We leave it as an open problem to devise an SP-CLE under
the original formulation [5]. Another future work is to propose a generic way to
construct SP-CLE from any SPS scheme, without any step verifying an SPS in
the encryption algorithm. A challenge is to generically “upgrade” the complexity
assumption required for the SPS to its decisional variant required by SP-CLE.

A Towards Removing GT Elements from the Ciphertext

Recall that in our basic scheme (Sect. 4.2)

K = {e(W2, R̃)e(U, R̃)/e(W1, h)}x{e(ID, Ṽ1)e(Dα, Ṽ2)/e(g, h)}y/e(Dα, h)z.

We include the following terms in the ciphertext such that
∏4

i=1{e(Ci, C̃i)} = K.

C1 = ((W2 · U)x)r1 , C̃1 = R̃1/r1 , C2 = (IDy)r2 , C̃2 = Ṽ
1/r2
1 ,

C3 = (Dα
y)r3 , C̃3 = Ṽ

1/r3
2 , C4 = (W1

x/gy/Dα
z)r4 , C̃4 = h1/r4 .

K can be recovered by e(Cg, S̃)e(T,CR)e(Cz, D̃α) as in the decryption algorithm.
The idea of encryption/decryption is still about encoding/recovering the bits

{τj} in C0 = M ·
∏l

j=1 G
τj

j (Sect. 4.3). Roughly, the trick [25] has two steps.
First, we replicate K into l versions by different randomness. Second, we replicate
the master public key and the private key into two versions based on different
generators. To encode τj = 0, both encryption and decryption should use the
first version of the corresponding key. Similarly, τj = 1 takes the second version.

20 T. Zhang et al.

References

1. Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-trapdoor anony-
mous tags for traceable signatures. Int. J. Inf. Secur. 12(1), 19–31 (2013)

2. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36362-7 20

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

4. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 37

5. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40061-5 29

6. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption with-
out pairing. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 134–148. Springer, Heidelberg (2005). https://doi.org/10.1007/
11556992 10

7. Barbosa, M., Farshim, P.: Relations among notions of complete non-malleability:
indistinguishability characterisation and efficient construction without random ora-
cles. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 145–163.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5 10

8. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

9. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

10. Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure
preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25385-0 5

11. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

12. Chow, S.S.M.: Certificateless encryption. In: Identity-Based Cryptography. Cryp-
tology and Information Security Series, vol. 2, pp. 135–155. IOS Press (2008)

13. Chow, S.S.M.: Real traceable signatures. In: Jacobson, M.J., Rijmen, V., Safavi-
Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 92–107. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-05445-7 6

14. Chow, S.S.M., Franklin, M.K., Zhang, H.: Practical dual-receiver encryption -
soundness, complete non-malleability, and applications. In: The Cryptographer’s
Track at the RSA Conference (CT-RSA), pp. 85–105 (2014)

https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1007/11556992_10
https://doi.org/10.1007/11556992_10
https://doi.org/10.1007/978-3-642-14081-5_10
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-642-25385-0_5
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-642-05445-7_6

Structure-Preserving Certificateless Encryption and Its Application 21

15. Chow, S.S.M., Roth, V., Rieffel, E.G.: General certificateless encryption and timed-
release encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008.
LNCS, vol. 5229, pp. 126–143. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85855-3 9

16. Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and
its applications. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp.
175–192. Springer, Heidelberg (2006). https://doi.org/10.1007/11958239 12

17. Chow, S.S.M., Zhang, H., Zhang, T.: Real hidden identity-based signatures. In:
Financial Cryptography and Data Security (FC), pp. 21–38 (2017)

18. Dent, A.W.: A brief introduction to certificateless encryption schemes and their
infrastructures. In: Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS, vol.
6391, pp. 1–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
16441-5 1

19. Dent, A.W., Libert, B., Paterson, K.G.: Certificateless encryption schemes strongly
secure in the standard model. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp.
344–359. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-
1 20

20. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991). https://doi.org/10.1007/
3-540-46416-6 42

21. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

22. Kasamatsu, K., Matsuda, T., Emura, K., Attrapadung, N., Hanaoka, G., Imai,
H.: Time-specific encryption from forward-secure encryption. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 184–204. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32928-9 11

23. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 34

24. Kiayias, A., Zhou, H.: Hidden identity-based signatures. IET Inf. Secur. 3(3), 119–
127 (2009)

25. Libert, B., Joye, M.: Group signatures with message-dependent opening in the
standard model. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 286–
306. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 15

26. Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature scheme
with message-dependent opening. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 8

27. Libert, B., Peters, T., Qian, C.: Structure-preserving chosen-ciphertext security
with shorter verifiable ciphertexts. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 247–276. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54365-8 11

28. Ohara, K., Sakai, Y., Emura, K., Hanaoka, G.: A group signature scheme with
unbounded message-dependent opening. In: ACM SIGSAC Symposium on Infor-
mation, Computer and Communications Security (AsiaCCS), pp. 517–522. ACM
(2013)

29. Paterson, K.G., Quaglia, E.A.: Time-specific encryption. In: Garay, J.A., De Prisco,
R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15317-4 1

https://doi.org/10.1007/978-3-540-85855-3_9
https://doi.org/10.1007/978-3-540-85855-3_9
https://doi.org/10.1007/11958239_12
https://doi.org/10.1007/978-3-642-16441-5_1
https://doi.org/10.1007/978-3-642-16441-5_1
https://doi.org/10.1007/978-3-540-78440-1_20
https://doi.org/10.1007/978-3-540-78440-1_20
https://doi.org/10.1007/3-540-46416-6_42
https://doi.org/10.1007/3-540-46416-6_42
https://doi.org/10.1007/978-3-642-32928-9_11
https://doi.org/10.1007/978-3-540-24676-3_34
https://doi.org/10.1007/978-3-319-04852-9_15
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-662-54365-8_11
https://doi.org/10.1007/978-3-662-54365-8_11
https://doi.org/10.1007/978-3-642-15317-4_1

22 T. Zhang et al.

30. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group sig-
natures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing
2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36334-4 18

31. Sun, Y., Zhang, F., Baek, J.: Strongly secure certificateless public key encryption
without pairing. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.)
CANS 2007. LNCS, vol. 4856, pp. 194–208. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-76969-9 13

32. Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch pairing delegation. In: Miyaji, A.,
Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75651-4 6

https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-540-76969-9_13
https://doi.org/10.1007/978-3-540-76969-9_13
https://doi.org/10.1007/978-3-540-75651-4_6

Public Key Encryption Resilient
to Post-challenge Leakage
and Tampering Attacks

Suvradip Chakraborty(B) and C. Pandu Rangan

Department of Computer Science and Engineering, Indian Institute of Technology
Madras, Chennai, India

{suvradip,rangan}@cse.iitm.ac.in

Abstract. In this paper, we introduce a new framework for con-
structing public-key encryption (PKE) schemes resilient to joint post-
challenge/after-the-fact leakage and tampering attacks in the bounded
leakage and tampering (BLT) model, introduced by Damg̊ard et al. (Asi-
acrypt 2013). All the prior formulations of PKE schemes considered leak-
age and tampering attacks only before the challenge ciphertext is made
available to the adversary. However, this restriction seems necessary,
since achieving security against post-challenge leakage and tampering
attacks in its full generality is impossible, as shown in previous works. In
this paper, we study the post-challenge/after-the-fact security for PKE
schemes against bounded leakage and tampering under a restricted yet
meaningful and reasonable notion of security, namely, the split-state leak-
age and tampering model. We show that it is possible to construct secure
PKE schemes in this model, tolerating arbitrary (but bounded) leak-
age and tampering queries; thus overcoming the previous impossibility
results.

To this end, we formulate a new notion of security, which we call
entropic post-challenge IND-CCA-BLT secure PKE. We first define a
weaker notion called entropic restricted post-challenge IND-CCA-BLT
secure PKE, which can be instantiated using the (standard) DDH
assumption. We then show a generic compiler from our entropic restricted
notion to the entropic notion of security using a simulation-extractable
non-interactive zero-knowledge argument system. This requires an
untamperable common reference string, as in previous works. Finally,
we demonstrate the usefulness of our entropic notion of security by giv-
ing a simple and generic construction of post-challenge IND-CCA-BLT
secure PKE scheme in the split-state leakage and tampering model. This
also settles the open problem posed by Faonio and Venturi (Asiacrypt
2016).

Keywords: After-the-fact · Post-challenge · Entropic PKE ·
Split-state · Memory tampering · Related-key attacks ·
Bounded leakage and tampering

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 23–43, 2019.
https://doi.org/10.1007/978-3-030-12612-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_2

24 S. Chakraborty and C. P. Rangan

1 Introduction and Related Works

Traditionally, cryptographic schemes have been analyzed assuming that an
adversary only have black-box access to the underlying functionality, and in no
way is allowed to manipulate the internal state of the functionality. Leakage and
tamper-resilient cryptography studies on designing secure protocols and prim-
itives against an adversary who goes way beyond black-box access to protocol
algorithms and gets information by directly accessing/tampering the memory or
the internal computations of the system. These physical attacks can be broadly
categorized into passive and active attacks. In case of passive attacks, the adver-
sary tries to recover information via some side-channel attacks that include tim-
ing measurements, power analysis, electromagnetic measurements, microwave
attacks, memory attacks and many more [15,17,18]. In case of active attacks, the
adversary can modify the secret data/key of a targeted cryptographic scheme by
applying various physical attacks, and later violate the security of the primitive
by observing the effect of such changes at the output. These classes of attacks are
called memory tampering attacks or related key attacks (RKA). These attacks
can be launched both in software or hardware, like, injecting faults in the device,
altering the internal power supply or clock of the device, or shooting the chip
with a laser etc.

The formal study of security of cryptosystems, in particular block ciphers,
against related key attacks was initiated by Bellare and Kohno [3]. In their
setting, the adversary can continuously tamper with the secret key of the cryp-
tosystem by choosing tampering functions from a restricted class of functions.
One might hope to provably resist a cryptosystem against arbitrary efficiently
computable tampering functions. Unfortunately, this type of unrestricted tam-
pering is shown to be impossible by Gennaro et al. [13], without making further
assumptions, like self-destruct mechanism, where the device simply blows up and
erases all its intermediate values (including the secret key) after an tampering
attempt is detected by the device. One useful line of research is to investigate
the security of cryptosystems against restricted classes of tampering attacks. In
most of these schemes, it is assumed that the secret key belongs to some finite
field, and the allowed modifications consists of linear or affine functions, or all
polynomial of bounded degree applied to the secret key.

Another interesting line of research was initiated in Asiacrypt 2013 by
Damg̊ard et al. [8], which is called the model of bounded tampering. In this model,
the adversary is allowed to make a bounded number of tampering queries, how-
ever, there is no further restriction on the functions, unlike the previous works.
Note that this model of bounded unrestricted tampering is orthogonal to the
model of continuous but restricted tampering model of [3]. In [8], the authors
showed a construction of signature scheme (in the random oracle model) and
public-key encryption scheme (in the standard model) in the bounded leakage
and tampering (BLT) model, where, apart from bounded unrestricted tamper-
ing, the adversary is also allowed to obtain bounded leakage from the secret
key of the cryptosystem. Faonio and Venturi [12] later improved the state-of-
the-art for the construction of signature schemes (in the standard model) and

Public Key Encryption Resilient to Post-challenge Leakage 25

PKE scheme (without involving pairings and zero-knowledge proofs) in the BLT
model.

In all the above constructions of PKE schemes [8,12], the adversary is allowed
to make only pre-challenge tampering queries. In other words, the adversary can
specify a bounded number (say τ) of tampering queries Ti (i ∈ [τ]) before the
challenge phase, and gets access to the tampered decryption oracle Dec(˜ski, ·),
where ˜ski = Ti(sk). However, after receiving the challenge ciphertext, the adver-
sary is not allowed to make even a single tampering query. This severely restricts
the meaning and applicability of the existing security notions and that of the
resulting constructions of the cryptographic primitives satisfying these notions.
In particular, this means that even if the adversary tampers with the secret
key/memory only once, the secrecy of all the previously encrypted messages
before that tampering attempt cannot be guaranteed. However, note that, this
is not a limitation of the existing security notions or the constructions. Indeed,
as shown in [16,20], tolerating post-challenge (also called after-the-fact) tamper-
ing in it full generality is impossible. In particular, the adversary could simply
overwrite the secret key depending on the bit b that is encrypted in the chal-
lenge ciphertext c∗, and thus gain some advantage in guessing the value of b
by asking additional decryption queries. We refer the reader to [8, Sect. 4.4] for
the detailed attack. The above impossibility result holds even if the adversary
is allowed to make even a single post-challenge tampering query followed by a
single decryption query (with respect to the original secret key). Similar impos-
sibility result is known to hold for the setting of leakage as well, in the sense
that even if the adversary obtains a single bit of leakage in the post-challenge
phase, this is enough to completely break the security of the PKE scheme. This
is because the adversary can simply encode the decryption function with the
challenge ciphertext and the two challenge messages in the leakage function and
obtain exactly the bit b that the challenger tries to hide.

Halevi and Lin [16] addressed this issue of after-the-fact leakage, and defined
an appropriate security model, namely the split-state leakage model (more on
this below), and showed how to construct semantically-secure PKE scheme under
this restricted security model. This was later extended to handle CCA security
under the same split-state leakage model in [5,23]. However, note that, for the
case of tampering, there are no suitable security notions or definitions to handle
post-challenge tampering. This definitional problem was acknowledged in the
prior works [8,12]. However, no solution to this issue was offered. Indeed it
is mentioned in [12] that “it remains open how to obtain CCA security for
PKE against “after-the-fact” tampering and leakage, where both tampering and
leakage can still occur after the challenge ciphertext is generated”.

1.1 Our Contributions and Techniques

In this work, we study post-challenge/after-the-fact leakage and tampering
attacks in the context of public-key encryption. As discussed above, achiev-
ing resilience to post challenge tampering attack in its most general form is

26 S. Chakraborty and C. P. Rangan

impossible. To this end, we formulate an appropriate security model that avoids
the impossibility result shown in [8], and at the same time enables secure and
efficient construction of PKE schemes in our new model. Our approach to the
solution is modular in nature and is also surprisingly simple. In particular, we
show how to effectively (and in a non-trivial way) combine together the appro-
priate works from the domain of leakage and tamper-resilience to arrive at our
current solution. We discuss more on this below.

Split-State Leakage and Tampering Model: We draw the motivation of
our work from that of Halevi and Lin [16]. To take care of after-the-fact leakage,
the authors in [16] considered the split-state leakage model, where the secret
key of the cryptosystem is split into multiple disjoint parts, and the adversary
can observe (arbitrary) bounded leakage from each of these parts, but in an
independent fashion. In order to take care of leakage and tampering jointly, we
consider the split-state leakage and tampering model. Similar to the split-state
leakage model, this model also considers the case where the secret key is also split
into multiple disjoint parts (in our case only two, and hence optimal) and the
adversary can obtain independent leakages from each of these parts. In addition,
the adversary is also allowed to tamper each of the secret key components/parts
independently. Note that, the split-state tampering model is already a very useful
and widely used model and it captures bit tampering and block-wise tampering
attacks, where the adversary can tamper each bit or each block of the secret key
independently. The split-state tampering model is also well studied in the context
of non-malleable codes [1,10,11], where similar type of impossibility results hold.
We then proceed to construct our PKE scheme in this model. Lastly, one may
note that, in the post-challenge setting in the context of a PKE scheme, the
adversary may specify a tampering function to be an identity function and get
the challenge ciphertext decrypted under the original secret keys (even in split-
state model), and trivially win the security game. To avoid this, we enforce the
condition that, when the adversary queries the (tampered) decryption oracle
with the challenge ciphertext, the tampered keys need to be different from the
original secret key. In other words, the post-challenge tampering functions must
not be identity functions with respect to the challenge ciphertext1.

Entropic Restricted Post-challenge IND-CCA-BLT PKE: We first for-
mulate a new notion of entropic restricted post-challenge IND-CCA-BLT-secure
PKE scheme. Our notion can be seen as an entropic version of the notion of
restricted (pre-challenge) IND-CCA-BLT secure PKE of Damg̊ard et al. [8],
augmented with post challenge leakage and tampering queries. The definition of
restricted IND-CCA-BLT-security [8] says that the adversary is given access to a
restricted (faulty) decryption oracle, i.e., it is allowed to query only valid cipher-
texts to the tampered decryption oracles (as opposed to any arbitrary ciphertexts
as in the full fledged IND-CCA-BLT security game). Note that, in the definition

1 However, note that, the tampering functions may be identity functions with respect
to ciphertexts c �= c∗, where c∗ is the challenge ciphertext. This also emulates access
to the (original) decryption oracle to the adversary.

Public Key Encryption Resilient to Post-challenge Leakage 27

of [8], the adversary is allowed to make only pre-challenge leakage and tam-
pering queries. Our notion of entropic restricted post-challenge IND-CCA-BLT
security captures the following intuition: Suppose we sample a message M from a
high min-entropy distribution. Given a ciphertext encrypting M , and even given
(bounded) leakage from the secret key and access to a restricted (tampered)
decryption oracle (even if both leakage and tampering happens after observ-
ing the challenge ciphertext), the message M still retains enough min-entropy
in it. We then show that the cryptosystem of Boneh et al. [4] (referred to as
BHHO cryptosystem) satisfies our entropic restricted notion. The main idea of
our construction is the leakage to tamper reduction for the BHHO cryptosystem
as shown in [8]. Note that, using leakage to simulate tampering is non-trivial,
since for each tampered secret key the adversary can make polynomially many
(tampered) decryption oracle queries. Hence the amount of key-dependent infor-
mation that the adversary receives cannot be simulated by a small amount of
(bounded) leakage. However, as shown in [8], in case of BHHO cryptosystem
for each (pre-challenge) tampering query it is possible to simulate polynomially
many decryption queries under it by just leaking a single group element, thus
reducing tampering to leakage. We use similar ideas and show that the BHHO
cryptosystem with appropriate parameters satisfy our entropic restricted notion
of security, even if leakage and tampering is allowed in the post-challenge phase.
We note that, the work of Faonio and Venturi [12] gives a comparatively efficient
construction of IND-CCA-BLT secure PKE scheme compared to the work of
Damg̊ard et al. [8]. Both these constructions rely on projective almost-universal
hash-proof system (HPS) as a common building block, and we observe that on
a high level, our entropic post-challenge BLT security relies on the statistical
soundness property of the HPS. However, we choose to start with the construc-
tion of Damg̊ard et al. [8] due to its simplicity.

Entropic Post-challenge IND-CCA-BLT PKE: Next, we show how
to upgrade the entropic restricted post-challenge IND-CCA-BLT security to
entropic post-challenge IND-CCA-BLT security. In the entropic notion, the
adversary can query arbitrary ciphertexts to the (tampered) decryption oracles,
as opposed to the entropic restricted notion, where the adversary can only query
well-formed (valid) ciphertexts to the oracle. The adversary also has access to the
normal (non-tampered) decryption oracle Dec(sk, ·) both in the pre- and post-
challenge phase as in the IND-CCA security game. The transformation follows
the classical paradigm of converting a CPA-secure PKE to a CCA-secure one by
appending to the ciphertext a zero knowledge argument proving the knowledge of
the plaintext. Similar transformation was shown in [8] for converting a restricted
IND-CCA-BLT secure PKE scheme to a full fledged IND-CCA-BLT secure PKE
scheme in the context of pre-challenge leakage and tampering. We observe that
the same transformation goes through in the context of post-challenge leakage
and tampering as well, and also when the PKE scheme is entropic.

Upgrading to Full Fledged (Non-entropic) Security: We then show how
to compile such an entropic post-challenge IND-CCA-BLT secure PKE scheme
to a full-fledged post-challenge IND-CCA-BLT secure PKE scheme. For this, we

28 S. Chakraborty and C. P. Rangan

resort to our split-state leakage and tampering restriction2. On a high level, our
construction bears similarity with the construction of [16], although the PKE
scheme of [16] was only proven to be CPA secure against leakage attacks. We
appropriately modify their construction to prove our scheme to be CCA-secure
and resilient to joint leakage and tampering attacks. To make the construction
more modular, we first show how to construct post-challenge IND-CCA-BLT
secure key encapsulation mechanism (KEM) and later show how to compile it
to a full-fledged PKE scheme.

On a high level, to generate an encapsulated symmetric key, we generate a
key pair (vk, sk) of a strong one-time signature (OTS) scheme. We then use
two instances of the entropic scheme to encrypt two random strings x1 and
x2 independently, with the verification key vk as the label/tag to generate two
ciphertexts c1 and c2 respectively. The ciphertext c = (c1, c2) is then signed using
the OTS scheme to generate a signature, say, σ. Finally, we apply a seedless
2-source extractor to both x1 and x2 to generate the encapsulated key. We then
output the final ciphertext c = (vk, c1, c2, σ). On a high level, the security of the
entropic scheme guarantees that both the strings x1 and x2 still retain enough
average min-entropy even after chosen-ciphertext leakage and tampering attacks
(even in the post-challenge phase). In addition, the split-state model ensures that
the strings are independent. At this point, we can use an average-case seedless
2-source extractor to extract a random encapsulation key from both the strings.
The trick of generating a key pair of an OTS and setting the verification key
vk as a tag/label while encrypting, ensures that, a tag cannot be re-used by
an adversary in a decryption or tampering query, hence preventing “mix-and-
match” attacks (In fact, to re-use that tag, the adversary essentially has to forge
a signature under vk).

Compiling to a Post-challenge IND-CCA-BLT PKE: Finally, we show
how to construct a IND-CCA-BLT secure PKE from a IND-CCA-BLT secure
KEM as above. One natural idea to achieve this is to use standard hybrid encryp-
tion technique, where a symmetric-key encryption (SKE) scheme is used to
encrypt the message using the derived encapsulation key. However, we point
out, that unlike in standard PKE or even in leakage-resilient PKE settings, this
transformation needs a little careful analysis in the context of tampering. This
is because the adversary can also ask decryption queries with respect to the
tampered keys, and the security of the challenge ciphertext should hold even
given these tampered decryption oracle responses. This is not directly guar-
anteed by standard hybrid encryption paradigm. However, we leverage on the
security guarantee of our KEM scheme and show that it is indeed possible to
argue the above security. In particular, our KEM scheme guarantees that the
average min-entropy of the challenge KEM key K∗ is negligibly close to an uni-
form distribution over the KEM key space, even given many tampered keys
K = (˜K1, · · · , ˜Kt). So, in the hybrid, we can replace the key K∗ with a uniform
random key. This implies that, with very high probability, K∗ is independent
2 For our construction the secret key is split into only two parts/splits, which is the

optimal.

Public Key Encryption Resilient to Post-challenge Leakage 29

of the tampered key distribution, and hence any function of the tampered keys
(in particular decryption function). We can then rely on the (standard) CCA
security of the SKE to argue indistinguishability of the challenge messages.
Finally, combining all the above ideas together, we obtain the full construction
of a post-challenge IND-CCA-BLT secure PKE scheme, thus solving the open
problem posed by Faonio and Venturi [12] (Asiacrypt 2016).

Lastly, we note that, it is instructive to compare our approach of constructing
post-challenge leakage and tamper-resilient PKE construction with that of Liu
and Lysyanskaya [19]. We observe that the framework of [19] instantiated with a
non-malleable extractor, would already produce a scheme with security against
post-challenge tampering. However, their model is not comparable with ours
in the following sense. In particular, the framework of [19] considers securing
any (deterministic) cryptographic functionality against leakage and tampering
attacks, where the leakage and tampering functions apply only on the memory
of the device implementing the functionality, and not on its computation. This
is because the construction of [19] relies on a (computationally secure) leakage-
resilient non-malleable code, which allow only leakage and tampering on the
memory of the device. However, in our model, we allow the adversary to leak from
the memory and also allow to tamper with the internal computations (modeled
by giving the adversary access to tampered decryption oracles). In this sense,
our model is more general, as it also considers tampering with the computation.
However, a significant feature of the framework of [19] is that, it considers the
model of continual leakage and tampering (in split-state), whereas our model
considers bounded leakage and tampering (as in [8]) in split-state.

1.2 Organization

The rest of the paper is organized as follows. In Sect. 2, we provide the nec-
essary preliminaries required for our constructions. In Sect. 3, we give our def-
inition of entropic post-challenge IND-CCA-BLT secure PKE schemes and its
restricted notion. In Sect. 3.2, we show our construction of entropic restricted
post-challenge IND-CCA-BLT secure PKE and show the transformation from
the entropic restricted notion to the entropic notion in Sect. 3.3. In Sect. 4, we
present the security definition of post-challenge IND-CCA-BLT secure KEM
scheme and show a generic compiler from entropic post-challenge IND-CCA-
BLT secure PKE scheme to a post-challenge IND-CCA-BLT secure PKE scheme
in the standard model. Section 5 shows the generic transformation from such
a KEM scheme to a full fledged IND-CCA-BLT secure PKE scheme secure
against post-challenge leakage and tampering attacks. Finally Sect. 6 concludes
the paper.

2 Preliminaries

2.1 Notations

For n ∈ N, we write [n] = {1, 2, · · · , n}. If x is a string, we denote |x| as the

length of x. For a set X , we write x
$←− X to denote that element x is chosen

30 S. Chakraborty and C. P. Rangan

uniformly at random from X . For a distribution or random variable X, we denote
x ← X the action of sampling an element x according to X. When A is an
algorithm, we write y ← A(x) to denote a run of A on input x and output y;
if A is randomized, then y is a random variable and A(x; r) denotes a run of A
on input x and randomness r. An algorithm A is probabilistic polynomial-time
(PPT) if A is randomized and for any input x, r ∈ {0, 1}∗; the computation of
A(x; r) terminates in at most poly(|x|) steps. For a set S, we let US denote the
uniform distribution over S. For an integer α ∈ N, let Uα denote the uniform
distribution over {0, 1}α, the bit strings of length α. Throughout this paper, we
denote the security parameter by κ. Vectors are written in boldface. Given a
vector x = {x1, · · · , xn}, and some integer a, we write ax to denote the vector
(ax1 , · · · , axn). Let D1 and D2 be two distributions on a finite set S. We denote
by

∣

∣D1 −D2

∣

∣ the statistical distance between them. For random variables X, Y ,
we denote min-entropy (conditional min-entropy) of X as H∞(X) (˜H∞(X|Y))
respectively. We assume that the reader is familiar with the results related to
(conditional) min- entropy, and we refer to the full version of our paper [6]
for these definitions. We denote a distribution supported on {0, 1}n with min-
entropy k to be an (n, k)-source.

2.2 Two Source Extractors

In this section, we give an overview of two-source extractors [7,21,22] and their
generalization, which will be required for our work.

Definition 1 (Seedless 2-source Extractor). A function Ext2 : {0, 1}n ×
{0, 1}n → {0, 1}m is a seedless 2-source extractor at min-entropy k and error ε
if it satisfies the following property: If X and Y are independent (n, k)-sources, it
holds that

∣

∣ (Ext2(X,Y) − Um)
∣

∣ < ε. where Um refer to a uniform m-bit string.

Definition 2 (Average-case Seedless 2-source Extractor). A function
Ext2 : {0, 1}n × {0, 1}n → {0, 1}m is an average-case seedless 2-source extractor
at min-entropy k and error ε if it satisfies the following property: If for all ran-
dom variables X,Y ∈ {0, 1}n and Z, such that, conditioned on Z, X and Y are
independent (n, k)-sources, it holds that

∣

∣ ((Ext2(X,Y), Z) − (Um, Z))
∣

∣ < ε.

Lemma 1 [16]. For any δ > 0, if Ext2 : {0, 1}n ×{0, 1}n → {0, 1}m is a (worst-
case) (k − log 1

δ , ε)-2-source extractor, then Ext2 is an average-case (k, ε + 2δ)-
2-source extractor.

2.3 True Simulation Extractable Non-interactive Zero Knowledge
Argument System

In our construction, we require the notion of (same-string) true-simulation
extractable non-interactive zero knowledge argument system (tSE-NIZK) first
introduced in [9] and also its extension to support labels/tags. This notion is

Public Key Encryption Resilient to Post-challenge Leakage 31

similar to the notion of simulation-sound extractable NIZKs [14] with the differ-
ence that the adversary has oracle access to simulated proofs only for true state-
ments, in contrast to any arbitrary statement as in simulation-sound extractable
NIZK argument system. In particular, we require the standard properties of
completeness, soundness and composable zero-knowledge. Additionally, we also
require the existence of another PPT extractor Ext which extracts a valid witness
from any proof produced by a malicious prover P∗, even if P∗ has previously
seen some simulated proofs for true statements. We refer the reader to the full
version of our paper [6] for the formal definition of tSE-NIZK. For our purpose,
it is sufficient to rely on the (weaker) notion of one-time strong true simulation
extractability, where the adversary can query the simulation oracle SIMtk(.)
only once. Dodis et al. [9] showed how to generically construct tSE-NIZK argu-
ment systems supporting labels starting from any (labeled) CCA-secure PKE
scheme and a (standard) NIZK argument system.

3 Entropic Post-challenge IND-CCA-BLT Secure PKE

In this section, we introduce the definition of entropic post-challenge IND-
CCA-secure PKE resilient to both pre- and post-challenge bounded leakage and
tampering (BLT) attacks. In Sect. 3.1, we define a relaxation of our entropic
notion, which we call entropic restricted post-challenge IND-CCA BLT secure
PKE. We show that a variant of the cryptosystem of Boneh et al. [4] with
appropriate parameters, satisfies our entropic restricted notion of security (see
Sect. 3.2). Finally, in Sect. 3.3, we show a generic transformation from our
entropic restricted notion to the full-fledged entropic post-challenge IND-CCA-
BLT secure PKE scheme. Before defining these notions, we explain the working
of the leakage oracle and the tampering oracle.

The Leakage Oracle. In order to model key leakage attacks, we assume that
the adversary may access a leakage oracle Oλ

sk(.), subject to some restrictions.
The adversary can query this oracle with arbitrary efficiently computable (poly-
time) leakage functions f and receive f(sk) in response, where sk denotes the
secret key. The restriction is that the output length of f must be less than
|sk|. Specifically, following the works of [2,9], we require the output length of
the leakage function f to be at most λ bits, which means the entropy loss of
sk is at most λ bits upon observing f(sk). Formally, we define the bounded
leakage function family Fbbd(κ). The family Fbbd(κ) is defined as the class of all
polynomial-time computable functions: f : {0, 1}|sk| → {0, 1}λ, where λ < |sk|.
We then require that the leakage function submitted by the adversary should
satisfy that f ∈ Fbbd(κ).

The Tampering Oracle. To model related key attacks, the adversary is given
access to a tampering oracle. Let TSK denote the class of functions from SK to
SK, where SK is the secret key space. The adversary may query the tampering
oracle with arbitrary functions of its choice from TSK and the number of such
queries is bounded (say t ∈ N). In the ith tampering query (i ∈ [t]), the adversary

32 S. Chakraborty and C. P. Rangan

chooses a function Ti ∈ TSK and gets access to the (tampered) decryption ora-
cle Dec(˜ski, ·), where ˜ski = Ti(sk). The adversary may ask polynomially many
decryption queries with respect to the tampered secret key ˜ski. In other words,
the adversary gets access to information through decryption oracle executed on
keys related to the original secret key, where the relations are induced by the
tampering functions. If the encryption scheme supports labels, i.e., it is a labeled
encryption scheme, the adversary gets access to the (tampered) decryption ora-
cle Dec(˜ski, ·, ·), where the third coordinate is a placeholder for labels. Also,
the adversary gets access to the (tampered) decryption oracle both in the pre-
and post-challenge phases. Another (obvious) restriction that is imposed on the
tampering functions is that: In the post-challenge phase, when the adversary
gets access to the (tampered) decryption oracles with respect to the challenge
ciphertext c∗, it should be the case that Ti(sk) �= sk, i.e., the post-challenge tam-
pering functions Ti should not be identity functions with respect to the challenge
ciphertext3.

Definition 3 (Entropic Post-challenge IND-CCA-BLT Secure PKE).
Our definition of entropic post-challenge IND-CCA-BLT secure PKE can be seen
as an entropic version of the notion of IND-CCA-BLT secure PKE introduced in
[8], augmented with post challenge leakage and tampering queries. Informally,
our definition captures the intuition that if we start with a message M with
high min-entropy, the message M still looks random to an adversary who gets
to see the ciphertext, some leakage information (even if this leakage happens
after observing the ciphertext), and access to the tampering oracle (both in pre-
and post-challenge phase) as defined above.

Formally, we define two games- “real” game and a “simulated” game. For
simplicity, we assume the message is chosen from Uk, i.e, the uniform distribution
over k bit strings. In general, it can be chosen from any arbitrary distribution as
long as the message has min-entropy k. Let (λpre, λpost) and (tpre, tpost) denote
the leakage bounds and the number of tampering queries allowed in the pre- and
post-challenge phases respectively.

The “real” game. Given the parameters
(

k, (λpre, λpost), (tpre, tpost)
)

and
a labeled encryption scheme E-BLT = (E-BLT.SetUp,E-BLT.Gen,E-BLT.Enc,
E-BLT.Dec), the real game is defined as follows:

0. Sampling: The challenger chooses a random message m
$←− Uk.

1. SetUp: The challenger runs params ← E-BLT.SetUp(1κ) and sends params
to the adversary A. The public parameters params are taken as (implicit)
input by all other algorithms.

2. Key Generation: The challenger chooses (sk, pk) ← E-BLT.Gen(params)
and sends pk to A. Set Lpre = Lpost = 0.

3 When Ti(sk) = sk, and the adversary gets access to the tampering oracle with
respect to c∗, it is emulating the scenario when it gets decryption oracle access with
respect to sk on c∗, which is anyway disallowed in the IND-CCA-2 security game.

Public Key Encryption Resilient to Post-challenge Leakage 33

3. Pre-challenge Leakage: In this phase, the adversary A makes a pre-
challenge leakage query, specifying a function fpre(.). If Lpre+|fpre(sk)| ≤ λpre,
then the challenger replies with fpre(sk), and sets Lpre = Lpre+ |fpre(sk)|. Oth-
erwise, it ignores this query.

4. Pre-challenge Tampering queries: The adversary A may adaptively ask
at most tpre number of pre-challenge tampering queries. In the ith tampering
query (i ∈ [tpre]), the adversary chooses Ti ∈ TSK , and gets access to the
decryption oracle E-BLT.Dec(˜skθ, ·, ·)4 (where 1 ≤ θ ≤ i). In other words, the
decryption oracle may be queried with any of the tampered keys obtained till
this point. We assume that, the total number of decryption oracle queries be
q(k), for some polynomial q(k). Note that, when Tθ(sk) = sk, A gets access
to the (normal) decryption oracle.

5. Challenge: In this phase, the adversary submits a label (as a bit-string) L∗.
The challenger encrypts the message m chosen at the beginning of the game
as c∗ ← E-BLT.Enc(pk,m,L∗) and sends c∗ to A.

6. Post-challenge Leakage: In this phase, the adversary A makes a post-
challenge leakage query, specifying a function fpost(.). If Lpost + |fpost(sk)| ≤
λpost, then the challenger replies with fpost(sk), and sets Lpost = Lpost +
|fpost(sk)|. Otherwise, it ignores this query.

7. Post-challenge Tampering queries: The adversary A may adaptively ask
tpost number of post-challenge tampering queries. In the jth tampering query
(j ∈ [tpost]), the adversary chooses Tj ∈ Tsk, and gets access to the decryption
oracle E-BLT.Dec(˜skρ, ·, ·) (1 ≤ ρ ≤ j). We assume that, the total number of
decryption oracle queries be q′(k), for some polynomial q′(k). However, here
we impose the restriction that: A is not allowed to query the pair (c∗, L∗) to
the (tampered) decryption oracle(s) E-BLT.Dec(˜skρ, ·, ·).

Note that all these queries can be made arbitrarily and adaptively in nature.
We denote the message m chosen at the onset of this game as M rl to empha-
size that it is used in the real game. Let the sets Qpre and Qpost contain
the tuples of the form

{

(m̃i1 , (ci1 , Li1)), · · · , (m̃iq(κ) , (ciq(κ) , Liq(κ)))
}tpre

i=1
and

{

(m̃j1 , (cj1 , Lj1)), · · · , (m̃jq(κ) , (ciq′(κ)
, Liq′(κ)

))
}tpost

j=1
respectively, for some poly-

nomials q(κ) and q′(κ). Let Lpre and Lpost be the random variables correspond-
ing to the pre- and post-challenge leakages. We define the view of the adversary
A in the real game as Viewrl

E-BLT,A(κ) = (rand,Lpre, Qpre, c
∗,Lpost, Qpost), where

rand denotes the random coins used by the adversary in the game. Finally, we
denote by (M rl,Viewrl

E-BLT,A) the joint distribution of the message M rl and A’s
view in a real game with M rl.

The “simulated” game: In the simulated game, we replace the challenger
from above by a simulator Simu that interacts with A in any way that it sees fit.

4 Recall when we write Dec(˜skθ, ·, ·), the second coordinate is the placeholder for
ciphertexts input by the adversary; whereas the third coordinate is the placeholder
for labels.

34 S. Chakraborty and C. P. Rangan

Simu gets a uniformly chosen message Msm as input and it has to simulate the
interaction with A conditioned on M sm. We denote the view of the adversary
in the simulated game by Viewsm

Simu,A(κ) = (randsm,Lsm
pre, Q

sm
pre, c

sm,Lsm
post, Q

sm
post).

Now, we define what it means for the encryption scheme ER-BLT to be entropic
restricted post-challenge (bounded) leakage and tamper-resilient.

Definition 4 (Entropic restricted post-challenge IND-CCA-BLT secu-
rity). Let

(

k, (λpre, λpost), (tpre, tpost)
)

be parameters as stated above, let TSK be
the family of allowable tampering functions. A public key encryption scheme is
said to be entropic restricted post-challenge IND-CCA-BLT secure with respect
to all these parameters if there exists a simulator Simu, such that, for every PPT
adversary A the following two conditions hold:

1. (M rl,Viewrl
E-BLT,A(κ)) ≈c (Msm,Viewsm

Simu,A(κ)), i.e, the above two ensembles
(indexed by the security parameter) are computationally indistinguishable.

2. The average min-entropy of the message M sm given Viewsm
Simu,A(κ) is

˜H∞(M sm | Viewsm
Simu,A(κ)) ≥ k − λpost − F(tpost).

where F(tpost) denotes the entropy loss due to post-challenge tampering queries,
and the tampering functions come from the class TSK .5

Intuitively, even after the adversary sees the encryption of the message, pre-
and post-challenge leakages and the output of the (tampered) decryption oracle
both in the pre- and post-challenge phase, the message M sm still retains its initial
entropy, except for the entropy loss due to post-challenge leakage and tampering.

3.1 Entropic Restricted Post-challenge IND-CCA-BLT Secure PKE

We now define the notion of entropic restricted post-challenge IND-CCA-BLT
secure PKE (denoted by ER-BLT), which is a relaxation of the notion of the
entropic post-challenge IND-CCA-BLT secure PKE. The difference between the
two notions is with respect to the working of (tampered) decryption oracle, as
defined in the real game in Definition 3. In particular, in our entropic restricted
notion of security, the adversary cannot make pre- and post-challenge decryption
queries with respect to the original secret key (unlike the entropic notion in
Sect. 3) and working of the (tampered) decryption oracle is modified as follows:

Modified Decryption Oracle: In the restricted post-challenge IND-CCA-
BLT security game, the adversary is not given full access to the tampering
oracle. Instead, the adversary is allowed to see the output of the (tampered)
decryption oracle for only those ciphertexts c, for which he already knows
the plaintext m and the randomness r used to encrypt it (using the original
5 In our construction, we will show that F(tpost) = tpost log p, i.e., for each post-

challenge tampering query we have to leak only one element of the base group
G of prime order p. This single element is sufficient to simulate polynomially many
(modified) decryption queries with respect to each tampering query.

Public Key Encryption Resilient to Post-challenge Leakage 35

public key). This restricts the power of the adversary to submit only “well-
formed” ciphertexts to the tampering oracle. In particular, in the ith tampering
query the adversary chooses a function Ti ∈ TSK and gets access to a (modi-
fied) decryption oracle ER-BLT.Dec∗(˜ski, ·, ·), where ˜ski = Ti(sk). This oracle
answers polynomially many queries of the following form: Upon input a pair
(m, r) ∈ M × R, (where M and R are the message space and randomness
space of the PKE respectively), compute c ← ER-BLT.Enc(pk,m; r) and output
a plaintext m̃ = ER-BLT.Dec(˜ski, c) under the current tampered key.
The real and simulated game for the above entropic restricted post-challenge
IND-CCA-BLT game, apart from the above restrictions, is identical to the real
and simulated games of the entropic post-challenge IND-CCA-BLT secure PKE
as defined in Definition 3. In particular, using the same notations from Defini-
tion 3, we denote the view of the adversary in the entropic restricted game as
Viewrl

ER-BLT,A(κ) = (rand,Lpre, Qpre, c
∗,Lpost, Qpost), where Qpre and Qpost contain

answers to the (tampered) decryption oracle queries as described above with
respect to the tampered secret keys.

3.2 Construction of Entropic Restricted Post-challenge
IND-CCA-BLT Secure PKE

In this section, we show how to construct a CCA-2 secure entropic restricted
post-challenge PKE secure against bounded leakage and tampering (BLT)
attacks. We show that a variant of the encryption scheme proposed by Boneh
et al. (referred to as BHHO cryptosystem from herein) [4] is entropic restricted
post-challenge IND-CCA-BLT secure. It was shown in [8] that the (modified)
BHHO cryptosystem is a restricted (pre-challenge) IND-CCA-BLT secure PKE.
However, we observe that the same variant of the BHHO cryptosystem with the
parameters appropriately modified satisfies our new notion of entropic security,
even when the adversary is given post-challenge leakage and access to (restricted)
tampering oracle (even in the post-challenge phase).

– ER-BLT.SetUp(1κ): Choose a group G of prime order p with generator g. Set
params := (G, g, p). All the algorithms take params as implicit input.

– ER-BLT.Gen(params): Sample random vectors x, α ∈ Z
�
p; compute gα =

(g1, · · · , g�), and h =
∏�

i=1 gxi
i . Set sk := x = (x1, · · · , x�) and pk := (h, gα)

– ER-BLT.Enc(pk,m): Sample r ← Zp, and return c := (gr
1, · · · , gr

� , hr · m)
– ER-BLT.Dec(sk, c): Parse c as (c1, · · · , c�, d) as sk as (x1, · · · , x�)., and out-

puts m ← d/
∏�

i=1(g
r
i)xi

It is easy to verify the correctness of the above cryptosystem.

Theorem 1. Let κ ∈ N be the security parameter, and assume that the DDH
assumption holds in group G. The BHHO cryptosystem is entropic restricted
post-challenge IND-CCA-

(

k, (λpre, λpost), (tpre, tpost)
)

-BLT secure, where

λpre + λpost ≤
(

� − 2 − tpre − tpost
)

log p − ω(log κ) and (tpre + tpost) ≤ � − 3.

36 S. Chakraborty and C. P. Rangan

Proof. Before proceeding with the proof of the above theorem, we prove a lemma
(Lemma 2) that essentially shows that the BHHO cryptosystem is entropic
leakage-resilient with respect to pre- and post-challenge leakage, i.e., it satisfies
the notion of entropic restricted post-challenge IND-CCA-

(

k, (λ′
pre, λ

′
post), (0, 0)

)

-
BLT security (the adversary has no access to the tampering oracle), for appro-
priate choice of parameters. We then prove the above theorem by using Lemma 2
and showing a leakage to tamper reduction to take care of pre- and post-challenge
tampering queries.

Lemma 2. The BHHO cryptosystem described above is entropic restricted post-
challenge IND-CCA-

(

k, (λ′
pre, λ

′
post), (0, 0)

)

-BLT secure, where

λ′
pre + λ′

post ≤
(

� − 2
)

log p − ω(log κ)

Proof. To prove Lemma 2 we need to describe a simulator, whose answers to
the adversary are indistinguishable from the real game, and at the same time
leave enough min-entropy in the message m. The main idea of the proof follows
from the observation that the BHHO cryptosystem can be viewed as a hash
proof system (HPS) (see [6] for the definition of HPS), with DDH-like tuples as
valid ciphertexts, and non-DDH tuples as invalid ciphertexts. In the real game,
the challenger samples a valid ciphertext (along with a witness) and proceeds
as in the original construction, whereas in the simulated game a random invalid
ciphertext is sampled. The indistinguishability of the real and simulated games
is implied by the subset membership problem. The left-over hash lemma then
guarantees uniformity of the challenge message. For details of the proof, please
refer to the full version of our paper [6].

We now proceed to prove our main theorem. Let us assume that there exists
an adversary A that breaks the entropic restricted post-challenge IND-CCA
(

k, (λpre, λpost), (tpre, tpost)
)

-BLT security with non-negligible advantage. We con-
struct an adversary A′ against the entropic restricted post-challenge IND-CCA
(

k, (λ′
pre, λ

′
post), (0, 0)

)

-BLT security, with the same advantage. The main idea
behind this proof is leakage to tamper reduction. For each tampering query made
by the adversary, the reduction simply leaks a single group element from Zp, and
simulates polynomially many decryption queries under that tampered key using
the leaked element. Hence, the reduction has to leak (tpre + tpost) log p bits in all.
We appropriately set the parameters of BHHO to ensure that the message still
has enough min-entropy, even given the responses of the tampering oracle. We
refer the reader to the full version [6] for the detailed proof.

3.3 The General Transformation

In this section, we show a general transformation from an entropic-restricted
post-challenge IND-CCA-BLT secure PKE to an entropic post-challenge IND-
CCA-BLT secure PKE scheme (see Fig. 1). Let ER-BLT = (ER-BLT.SetUp,
ER-BLT.Gen,ER-BLT.Enc,ER-BLT.Dec) be an entropic restricted post-challenge
IND-CCA-

(

k, (λpre, λpost), (tpre, tpost)
)

-BLT secure PKE scheme, and let

Public Key Encryption Resilient to Post-challenge Leakage 37

Π = (Gen,P,V) be a one-time strong tSE-NIZK argument system supporting
labels for the following relation:

RER-BLT = {(m, r), (pk, c) | c = ER-BLT.Enc(pk,m; r)}
Let E-BLT = (E-BLT.SetUp′,E-BLT.Gen′,E-BLT.Enc′,E-BLT.Dec′) be an entropic
post-challenge IND-CCA-BLT secure PKE.

Theorem 2. Let ER-BLT be an entropic-restricted post-challenge IND-CCA-
(

k, (λpre, λpost), (tpre, tpost)
)

-BLT secure PKE scheme, Π be a one-time strong
tSE NIZK argument system supporting label for the relation RER-BLT, then
the above encryption scheme E-BLT is an entropic post-challenge IND-CCA-
(

k, (λpre, λpost), (tpre, tpost)
)

-BLT secure PKE scheme.

Define the encryption scheme E-BLT as follows:

1. E-BLT.SetUp (1κ): Obtain params ER-BLT.SetUp(1κ), and sample
(crs, tk, ek) Gen(1κ). Set params := (params, crs)

2. E-BLT.Gen (params): Obtain (pk, sk) ER-BLT.Gen(params); set pk = pk,
and sk = sk.

3. E-BLT.Enc (pk, m, L): On input the public key pk, a message m and

a label L , sample r
$ R, and compute c ER-BLT.Enc(pk, m; r), π

P(crs, L, (m, r), (pk, c)). Output c = (c, π)

4. E-BLT.Dec (sk, c , L): Parse c as c =(c, π). Check if V(crs, L, (pk, c), π) = 1. If
not output , else output m = ER-BLT.Dec(sk, c)

Fig. 1. Entropic post-challenge IND-CCA-BLT PKE scheme E-BLT

Proof Sketch. We now give an intuitive proof sketch of the above theorem. Infor-
mally, the zero-knowledge argument enforces the adversary to submit to the
(tampered) decryption oracle only valid ciphertexts, for which he knows the
corresponding plaintext (and the randomness used to encrypt it). The plaintext-
randomness pair (m, r) (which acts as a witness) can then be extracted using the
extraction trapdoor of the tSE-NIZK argument system, thus allowing to reduce
entropic IND-CCA BLT security to entropic restricted IND-CCA BLT security.
Since the extraction trapdoor is never used in the real encryption scheme, the
adversary neither gets any leakage from it, nor gets to tamper with it. This
essentially makes the (tampered) decryption oracle useless and the adversary
learns no additional information from the decryption oracle access. The proof
also relies on the fact that the CRS is untamperable, a notion that is used in all
the previous works [8,12]. This can be achieved by (say) hard-coding the CRS
in the encryption algorithm. The detailed proof of this theorem can be found in
the full version [6] of our paper.

38 S. Chakraborty and C. P. Rangan

4 Post-challenge IND-CCA-BLT Secure KEM
in Split-State Model

In this section, we present our construction of post-challenge IND-CCA-BLT
secure Key Encapsulation Mechanism (KEM) in the (bounded) split-state leak-
age and tampering model. Note that, achieving security against post-challenge
leakage and tampering in its most general form is impossible as already shown
in [8,16,20], even if a single bit of leakage is allowed or the adversary is allowed
to ask even a single tampering query after receiving the challenge ciphertext.
To this end, we resort to the 2-split-state leakage and tampering model. In this
model, the secret key of the KEM scheme is split into two disjoint parts, and
the adversary can ask arbitrary (pre- and post-challenge) leakage and tamper-
ing queries on each of these two parts independently. However, the adversary is
allowed to adaptively ask leakage/tampering functions depending on the answers
of the previous queries. The tampering queries allow the adversary to have access
to the tampered decryption oracle. The adversary also gets access to the (stan-
dard) decryption oracle by specifying the tampering functions to be identity
functions. Finally, the adversary has to guess whether the challenger KEM key
is a randomly sampled key or a real key. Due to space constraints, we refer the
reader to the full version [6] for the formal definition and the security model for
IND-CCA-BLT secure KEM.

4.1 Construction of Post-challenge IND-CCA-BLT Secure KEM

We now show the construction of our post-challenge/after-the-fact IND-CCA-
BLT secure KEM scheme KEM = (KEM.Setup,KEM.Gen,KEM.Encap,
KEM.Decap) (see Fig. 2).
The main ingredients required for our construction are as follows:

– An entropic post-challenge IND-CCA-BLT-secure PKE scheme E-BLT =
(E-BLT.Setup,E-BLT.Gen,E-BLT.Enc,E-BLT.Dec), that encrypts ν bit mes-
sages, and supports labels. Also, assume that E-BLT is entropic with respect
to parameters (λpre, λpost, tpre, tpost) (refer to Definition 3).

– A (ϑ, ε) average-case (seedless) 2-source extractor Ext2 : {0, 1}ν × {0, 1}ν →
{0, 1}u, with ε = 2−u−ω(log κ) (see Sect. 2.2 for its definition).

– A strong one-time signature (OTS) scheme SS = (SS.Gen,SS.Sig,SS.Ver),
with message space poly(κ) (see [6] for the definition of OTS).

Design Rationale: On a high level, to generate an encapsulated symmetric key,
first we generate a key pair (vk, sk) of a one-time signature (OTS) scheme. We
then use an entropic post-challenge IND-CCA-BLT secure PKE scheme (E-BLT)
to encrypt two random strings x1 and x2 independently with the verification
key vk as the label/tag, and generate a signature on both the ciphertexts c1
and c2. The security of E-BLT guarantees that both the strings x1 and x2 still
have enough average min-entropy after chosen-ciphertext leakage and tampering

Public Key Encryption Resilient to Post-challenge Leakage 39

attacks (even in the post-challenge phase). In addition, the split-state model
ensures that the two strings are independent. Hence, we can use an average-case
seedless 2-source extractor to extract a random encapsulation key from both the
strings. The trick of generating a key pair of an OTS and setting the verification
key vk as a tag/label while encrypting, ensures that, a tag cannot be re-used
by an adversary in a decryption or tampering query (In fact, to re-use that tag,
the adversary essentially has to forge a signature under vk). The formal proof
of our construction will follow this intuition, expect for one condition related
to adaptivity of the adversary. The adversary may chose leakage and tampering
functions from the two parts of the secret key after it saw the encapsulated
key which was itself derived from the two parts, hence causing a circularity in
the argument. This leap is handled in our proof using complexity leveraging.
In particular, if the size of the extracted encapsulation key has u bits, then the
adaptivity can only increase the advantage of the adversary by a factor at most
2u. We set our parameters appropriately to handle this gap.

Theorem 3. Let E-BLT be an entropic post-challenge IND-CCA-BLT-secure
PKE scheme with parameters (λpre, λpost, tpre, tpost) and encrypting ν bit mes-
sages and supporting labels. Also, let Ext2 be a (ϑ, ε) average-case (seedless)
2-source extractor with parameters mentioned above, and let SS be a strong
one-time signature scheme supporting polynomial sized message space. Then the
KEM scheme KEM is IND-CCA secure with respect to pre- and post-challenge
leakage λ′

pre and λ′
post respectively, and pre- and post-challenge tampering t′pre and

t′post respectively, in the bounded split-state leakage and tampering model, as long
as the parameters satisfy the following constraints:

λ′
pre ≤ λpre, λ′

post ≤ min(λpost − u, ν − t′
post log p − ϑ − 1), t′

pre ≤ tpre and t′
post ≤ tpost.

We refer the reader to the full version [6] for the detailed proof of the above
theorem.

5 Post-challenge IND-CCA-BLT Secure PKE in
Split-State Model

In this section, we present our construction of post-challenge IND-CCA-BLT
secure PKE scheme in split-state model, starting from a post-challenge IND-
CCA-BLT secure KEM scheme (as shown in Sect. 4.1) and a (one-time)
symmetric-key encryption scheme. The security model of post-challenge IND-
CCA-BLT secure PKE scheme in split state model is similar to the model of
post-challenge IND-CCA-BLT secure KEM scheme in split state as described in
Sect. 4, with the only difference that the encapsulation and the decapsulation
algorithms are replaced by the encryption and decryption algorithms respec-
tively. The secret key of the PKE is also split into two parts, as in the KEM
scheme, and the adversary can query ask arbitrary pre- and post-challenge leak-
age and tampering queries, provided they act independently on the secret key

40 S. Chakraborty and C. P. Rangan

Define the key encapsulation scheme KEM as follows:

1. KEM.Setup(1κ) : On input 1κ, run E-BLT.SetUp to get params. Set par :=
params.

2. KEM.Gen(par) : The key generation consists of two subroutines–

KEM.Gen1 and KEM.Gen2, where KEM.Genj on input par, samples
(pkj , skj) E-BLT.Gen(par), for j = 1, 2. It outputs the public key as
pk = (pk1, pk2), and the secret key is sk = (sk1, sk2).

3. KEM.Encap(pk) : On input the public key pk, do the following:
– Run (vk, ssk) .Gen(1κ), where vk and ssk are the verification and

signing keys of the strong OTS scheme respectively.
– Choose x1, x2

$− {0, 1}ν and compute c1 E-BLT.Enc(pk1, x1, vk) and
c2 E-BLT.Enc(pk2, x2, vk), where vk is the label.

– Compute σ .Sign(ssk, (c1, c2)) and k = Ext2(x1, x2).
Output the ciphertext-key pair (c = (vk, c1, c2, σ), k)

4. KEM.Decap(sk, c) : On input the secret key sk and the ciphertext c do:
– Parse c as c = (vk, c1, c2, σ) and sk = (sk1, sk2).
– Run SS.Ver(vk, (c1, c2), σ). If the verification fails, the ciphertext is invalid

and return .
– Run xj E-BLT.Decj(skj , cj) for j = {1, 2}.
– Run KEM.Comb(x1, x2): Compute k = Ext2(x1, x2).

Fig. 2. Post-challenge IND-CCA-BLT-secure KEM scheme KEM.

parts and are bounded in length or number as before. Besides, he can ask arbi-
trary pre- and post-challenge decryption queries, with the obvious restriction
that in the post-challenge phase the decryption queries are never asked on the
challenge ciphertext. The challenge phase is replaced by the standard indistin-
guishability style definition for PKE scheme. The PKE scheme BLT consists of
the following algorithms BLT = (BLT .Setup,BLT .Gen,BLT .Enc,BLT .Dec).
We refer the reader to [6] for the detailed model.

5.1 Construction of Post-challenge IND-CCA-BLT Secure PKE

We now show the construction of our post-challenge/after-the-fact IND-CCA-
BLT secure PKE scheme BLT = (BLT .Setup,BLT .Gen,BLT .Enc,BLT .Dec).
The main ingredients of our construction are:

1. A 2-split-state IND-CCA-
(

k, (λ′
pre, λ

′
post), (t

′
pre, t

′
post)

)

-BLT secure KEM
KEM = (KEM.Setup,KEM.Gen,KEM.Encap,KEM.Decap) (please refer to
[6] for the definition) with output space {0, 1}∗ × {0, 1}u.

2. (One-time) symmetric encryption scheme ϕ = (SKE .KG,SKE .Enc,SKE .Dec)
encrypting ω bit messages, with key space {0, 1}u. (please refer to [6] for its
definition).

Public Key Encryption Resilient to Post-challenge Leakage 41

Construction: The construction of our 2-split-state PKE scheme BLT proceeds
as follows:

1. BLT .Setup(1κ): Run par ← KEM.Setup(1κ). Set params := par.
2. BLT .Gen(params): Run (pk, sk) ← KEM.Gen(par). Recall that public key

pk = (pk1, pk2) and sk = (sk1, sk2). Set pk′ = pk and sk′ = sk.
3. BLT .Enc(pk′,m): On input a message m ∈ {0, 1}ω, run (c0, k) ← KEM.

Encap(pk′). Then it computes c1←SKE .Enc(k,m), and output the ciphertext
c=(c0, c1).

4. BLT .Dec(sk′, c): Parse c = (c0, c1). Run k ← KEM.Decap(sk′, c0), and out-
puts the message m = SKE .Dec(k, c1).

Theorem 4. The encryption scheme BLT is post-challenge IND-CCA-
(

k, (λ′′
pre, λ

′′
post), (t

′′
pre, t

′′
post)

)

-BLT secure as long as the parameters satisfies:

λ′′
pre ≤ λ′

pre, λ′′
post ≤ λ′

post and t′′pre ≤ t′pre, t′′post ≤ t′post

We refer the reader to the full version [6] for the detailed proof.

6 Conclusion

In this work, we study after-the-fact leakage and tampering in the context of
public-key encryption schemes. To this end, we define an entropic post-challenge
IND-CCA-BLT security and show how to construct full-fledged post-challenge
IND-CCA-BLT secure PKE schemes under the split-state restriction. It is inter-
esting to find other meaningful and realizable after-the-fact definitions of security
for leakage and tampering. Besides, it will be interesting to define an appropriate
framework for after-the-fact continuous leakage and tampering attacks, and port
our construction in this setting.

Acknowledgments. We acknowledge the reviewers for their helpful comments. The
authors are grateful to the project “Information Security Education and Awareness
Program” of Ministry of Information Technology, Government of India for providing
partial support.

References

1. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, pp. 459–468. ACM (2015)

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00457-5 28

3. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 31

https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31

42 S. Chakraborty and C. P. Rangan

4. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 7

5. Chakraborty, S., Paul, G., Rangan, C.P.: Efficient compilers for after-the-fact leak-
age: from CPA to CCA-2 secure PKE to AKE. In: Pieprzyk, J., Suriadi, S. (eds.)
ACISP 2017. LNCS, vol. 10342, pp. 343–362. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60055-0 18

6. Chakraborty, S., Rangan, C.P.: Public key encryption resilient to post-challenge
leakage and tampering attacks. Cryptology ePrint Archive, Report 2018/883
(2018). https://eprint.iacr.org/2018/883

7. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

8. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: how
to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-42045-0 8

9. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 35

10. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

11. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–
452 (2010)

12. Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage
and tamper resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10031, pp. 877–907. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53887-6 32

13. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 15

14. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

15. Halderman, J.A., et al.: Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM 52(5), 91–98 (2009)

16. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19571-6 8

17. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

18. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-319-60055-0_18
https://doi.org/10.1007/978-3-319-60055-0_18
https://eprint.iacr.org/2018/883
https://doi.org/10.1007/978-3-642-42045-0_8
https://doi.org/10.1007/978-3-642-42045-0_8
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-19571-6_8
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9

Public Key Encryption Resilient to Post-challenge Leakage 43

19. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

20. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J.
Comput. 41(4), 772–814 (2012)

21. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random
sources. J. Comput. Syst. Sci. 33(1), 75–87 (1986)

22. Vazirani, U.V.: Strong communication complexity or generating quasi-random
sequences from two communicating semi-random sources. Combinatorica 7(4),
375–392 (1987)

23. Zhang, Z., Chow, S.S., Cao, Z.: Post-challenge leakage in public-key encryption.
Theor. Comput. Sci. 572, 25–49 (2015)

https://doi.org/10.1007/978-3-642-32009-5_30

Downgradable Identity-Based Encryption
and Applications

Olivier Blazy(B), Paul Germouty, and Duong Hieu Phan

Université de Limoges, XLim, Limoges, France
olivier.blazy@unilim.fr

Abstract. In Identity-based cryptography, in order to generalize one
receiver encryption to multi-receiver encryption, wildcards were intro-
duced: WIBE enables wildcard in receivers’ pattern and Wicked-IBE
allows one to generate a key for identities with wildcard. However, the
use of wildcard makes the construction of WIBE, Wicked-IBE more com-
plicated and significantly less efficient than the underlying IBE. The main
reason is that the conventional identity’s binary alphabet is extended to
a ternary alphabet {0, 1, ∗} and the wildcard ∗ is always treated in a con-
voluted way in encryption or in key generation. In this paper, we show
that when dealing with multi-receiver setting, wildcard is not necessary.
We introduce a new downgradable property for IBE scheme and show
that any IBE with this property, called DIBE, can be efficiently trans-
formed into WIBE or Wicked-IBE.

While WIBE and Wicked-IBE have been used to construct Broad-
cast encryption, we go a step further by employing DIBE to construct
Attribute-based Encryption of which the access policy is expressed as a
boolean formula in the disjunctive normal form.

Keywords: Identity-based Encryption · Attribute-based Encryption

1 Introduction

Identity-based encryption (IBE) is a concept introduced by Shamir in
[Sha84] allowing encrypting for a specific recipient using solely his identity (for
example an email address or phone number) instead of public key. Decryption
is done by using a user secret key for the said identity, obtained via a trusted
authority. This concept avoids the use of Public Key Infrastructure in order
to get a user’s public key securely. This was the main argument to build such
scheme, however a lot of works expose the fact that Identity-based Encryption
schemes can be used to build other primitives like Adaptive Oblivious Transfer
[GH07,BCG16].

The first instantiations of an IBE scheme arose in 2001 [Coc01,BF01,SOK00].
It was only in 2005 in [Wat05], that the first construction, with adaptive secu-
rity in the standard model, was proposed. Adaptive security meaning that an

An extended version of this paper is available on eprint [BGP18].

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 44–61, 2019.
https://doi.org/10.1007/978-3-030-12612-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_3

Downgradable Identity-Based Encryption and Applications 45

adversary may select the challenge identity id∗ after seeing the public key and
arbitrarily many user secret keys for identities of his choice. The concept of IBE
generalizes naturally to hierarchical IBE (HIBE). In an L-level HIBE, hierarchi-
cal identities are vectors of identities of maximal length L and user secret keys
for a hierarchical identity can be delegated. An IBE is simply a L-level HIBE
with L = 1.

From One Receiver to Multi-receiver Setting: Introduction of Wild-
card. As in the case of public-key encryption, passing from one receiver set-
ting to multi-receiver setting is an important step. For this aim, wildcard
IBE (WIBE) was introduced in [ACD+06] where the wildcard symbol (*) is
added in identities to encrypt for a broad range of users at once. Along the
same line, another generalization called WKD-IBE [AKN07] allows joker (*)
symbol in users’ secret keys to decrypt several targeted identities with a sin-
gle key. Many others primitives, namely identity-based broadcast encryption
[AKN07], identity-based traitor tracing [ADML+07], identity-based trace and
revoke [PT11] schemes can be then constructed from WIBE and WKD-IBE.

Is Wildcard Really Necessary for the Multi-receiver Setting? While the
introduction of wildcard is very interesting, it makes the construction of WIBE,
Wicked-IBE more complicated and thus less efficient than the underlying IBE.
Basically the alphabet is extended from a conventional binary alphabet to a
ternary alphabet {0, 1, ∗} and the wildcard ∗ is treated in a special and different
way than {0, 1}. Beside the efficiency, there is often a significant loss in reducing
the security of the WIBE, Wicked-IBE to the underlying IBE.

We are thus interested in the following question: can we avoid wildcard in
considering IBE in multi-receiver setting? This paper gives the positive answer.
We propose a new property for IBE, called downgradable IBE (DIBE). While
keeping the binary alphabet unchanged, we show that downgradable IBE is not
less powerful than the other wildcard based IBE: efficient transformations from
downgradable IBE to wildcard based IBE schemes will be given.

Interestingly, avoiding wildcard helps us to get very efficient constructions.
We simply need to show that the downgradable property can be obtained
from existing constructions. A recent paper [KLLO18] found instantiations for
Wicked-IBE and wildcarded IBE with good improve of the previous schemes,
showing the interest of the research for this subject. Our instantiation of DIBE,
once transformed into WIBE or Wkd-IBE is even more efficient allowing a con-
stant size ciphertext, a master public key linear in the size of the identity (instead
of n2) and is fully secure under the standard assumption DLin. Indirectly our
instantiation also improve the identity-based broadcast encryption, identity-
based traitor tracing, identity-based trace and revoke schemes which rely on
the WIBE and Wicked-IBE.

Toward Efficient Transformations from DIBE to ABE. Attribute-Based
Encryption (ABE), introduced by Sahai and Waters [SW05], is a generalization
of both identity-based encryption and broadcast encryption. It gives a flexible
way to define the target group of people who can receive the message: the target

46 O. Blazy et al.

set can be defined in a more structural way via access policies on the user’s
attributes. While broadcast encryption can be obtained from WIBE, as far as
we know, there is still no generic construction of ABE from any variant of IBE.
We will show a transformation from DIBE to ABE where the access policies is
in DNF.

In the papers [AKN07,FP12], they show how some variant of IBE, WKD-IBE
for the first one and HIBE for the second one, can be used to create broadcast
encryption. ABE encompass the notion of Broadcast Encryption, thus our work
achieves the willing of constructing the complex primitive like ABE from the
much more simple IBE.

1.1 This Work

Downgradable IBE. In this work we introduce the notion of Downgradable
Identity-based Encryption (DIBE). A downgradable IBE is an identity-based
encryption where a user possessing a key for an identity usk[id] can downgrade
his key to any identity ĩd with the restriction that he can only transform 1 into
0 in his identity string. More formally, the set ˜ID = {ĩd|∀i, ˜idi = 1 ⇒ idi = 1}.

From Downgradable IBE to HIBE, WIBE, WKD-IBE. We later show
that our new primitive encompasses other previous primitives, and that it can be
tightly transformed into all of them. We then propose a generic framework, and
an instantiation inspired by [BKP14], and show that thanks to our transform, we
can obtain efficient WIBE, and WKD-IBE. This can be seen as a new method to
design Wildcard-based IBE: one just need to prove the downgradable property
of the IBE and then apply our direct transformation.

Moving to Attribute-Based Encryption. We also show how to generically
transform a Downgradable IBE into an Attribute-based Encryption by using the
properties of the DIBE and associating each attribute to a bit in the identity
bit string. Our instantiation of DIBE lead to a secure ABE scheme with boolean
formula in DNF (Fig. 6).

DIBE

WKD-IBE WIBE HIBE

DNF-ABE

Known
Known, tight

Ours, tight

Fig. 1. Relations between primitives

Downgradable Identity-Based Encryption and Applications 47

1.2 Comparison to Existing Work

We propose a construction of DIBE inspired by the Hash-Proof based HIBE
from [BKP14]. Interestingly, our construction combined with the WKD-DIBE,
Wild-DIBE transformations are way more efficient than the existing WIBE and
WKD-IBE. We compare them in Fig. 2, where we set the number of pattern
and the size of the identity to the same value n, qk correspond to the number
adversary’s key derivation queries. � is the number of bits of identity that a user
is allow to delegate a key to (e.g. his height in the hierarchical tree). A more
detailed comparison can be found in Sect. 7. The improvements both in term
of security and efficiency make those schemes now more suitable for practical
applications.

Name pk usk C assump. Loss
WKD [AKN07] (n + 1)n + 3 n + 2 2 BDDH O(qnk)

our WKD-DIBE 4n + 2 3n + 5 5
DLin (any

k −MDDH)
O(qk)

WIBE [BDNS07] (n + 1)n + 3 n + 1 (n+1)n+2 BDDH O(n2qnk)

our Wild-DIBE 4n + 2 3n + 5 5
DLin (any

k −MDDH)
O(qk)

Fig. 2. Efficiency comparison between our transformations and previous schemes

1.3 Open Problems

We managed to create an efficient Ciphertext Policy Attribute-based Encryption
for boolean formula in DNF. This improve our knowledge of the relation Between
IBE and ABE. But finally how close IBE and ABE are? Is it possible to extend
efficiently our idea to fit other/any kind of access structure.

2 Definitions

2.1 Notation

– If x ∈ BSn, then |x| denotes the length n of the vector. Further, x
$← BS

denotes the process of sampling an element x from set BS uniformly at ran-
dom.

– If A ∈ Z
(k+1)×n
p is a matrix, then A ∈ Z

k×n
p denotes the upper matrix of A

and then A ∈ Z
1×k
p denotes the last row of A.

– We are going to define a relation � between two strings s, t of the same length
�, such that s � t if and only if ∀i ∈ �1, ��, s[i] ≤ t[i]. As an extension, given
a set S of strings of length � and a similarly long string t, we are going to say
that t � S, if there exists s ∈ S such that t � s. One has to pay attention
that � is not total, for example, 10 and 01 can not be compared. Similarly,
we define a relation �∗ between two strings s, t of the same length �, such
that s �∗ t if and only if ∀i ∈ �1, ��, s[i] � t[i] ∨ s[i] = ∗.

48 O. Blazy et al.

– Games. We use games for our security reductions. A game G is defined by
procedures Initialize and Finalize, plus some optional procedures P1, . . . ,Pn.
All procedures are given using pseudo-code, where initially all variables are
undefined. An adversary A is executed in game G if it first calls Initialize,
obtaining its output. Next, it may make arbitrary queries to Pi (according to
their specification), again obtaining their output. Finally, it makes one single
call to Finalize(·) and stops. We define GA as the output of A’s call to Finalize.

2.2 Pairing Groups and Matrix Diffie-Hellman Assumption

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input
1K returns a description (G1,G2,GT , q, g1, g2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order q for a λ-bit prime q, g1 and g2
are generators of G1 and G2, respectively, and e : G1 × G2 is an efficiently
computable (non-degenerated) bilinear map. Define gT := e(g1, g2), which is a
generator in GT .

We use implicit representation of group elements as introduced in [EHK+13].
For s ∈ {1, 2, T} and a ∈ Zp define [a]s = ga

s ∈ Gs as the implicit representation
of a in Gs. More generally, for a matrix A = (aij) ∈ Z

n×m
p we define [A]s as

the implicit representation of A in Gs. Obviously, given [a]s ∈ Gs and a scalar
x ∈ Zp, one can efficiently compute [ax]s ∈ Gs. Further, given [a]1, [a]2 one can
efficiently compute [ab]T using the pairing e. For a, b ∈ Z

k
p define e([a]1, [b]2) :=

[a�b]T ∈ GT .
We recall the definition of the matrix Diffie-Hellman (MDDH) assumption

[EHK+13].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-
bution if it outputs matrices in Z

(k+1)×k
p of full rank k in polynomial time.

We assume the first k rows of A $← Dk form an invertible matrix. The Dk-Matrix
Diffie-Hellman problem is to distinguish the two distributions ([A], [Aw]) and
([A], [u]) where A $← Dk, w $← Z

k
p and u

$← Z
k+1
p .

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let
Dk be a matrix distribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-
Hellman (Dk-MDDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries D,

AdvDk,GGen(D)
:= |Pr[D(G, [A]s, [Aw]s) = 1] − Pr[D(G, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G $← GGen(1λ), A $← Dk,w
$← Z

k
p,u

$← Z
k+1
p .

This assumption is Random Self Reducible.

Downgradable Identity-Based Encryption and Applications 49

2.3 Identity-Based Key Encapsulation

We now recall syntax and security of IBE in terms of an ID-based key encapsu-
lation mechanism IBKEM. Every IBKEM can be transformed into an ID-based
encryption scheme IBE using a (one-time secure) symmetric cipher.

Definition 3 (Identity-based Key Encapsulation Scheme). An identity-
based key encapsulation (IBKEM) scheme IBKEM consists of four PPT algo-
rithms IBKEM = (Gen,USKGen,Enc,Dec) with the following properties.

– The probabilistic key generation algorithm Gen(K) returns the (master) pub-
lic/secret key (mpk,msk). We assume that mpk implicitly defines a message
space M, an identity space ID, a key space K, and ciphertext space CS.

– The probabilistic user secret key generation algorithm USKGen(msk, id)
returns the user secret-key usk[id] for identity id ∈ ID.

– The probabilistic encapsulation algorithm Enc(mpk, id) returns the symmetric
key sk ∈ K together with a ciphertext C ∈ CS with respect to identity id.

– The deterministic decapsulation algorithm Dec(usk[id], id,C) returns the
decapsulated key sk ∈ K or the reject symbol ⊥.

For perfect correctness we require that for all K ∈ N, all pairs (mpk,msk)
honestly generated by Gen(K), all identities id ∈ ID, all usk[id] generated by
USKGen(msk, id) and all (sk,C) output by Enc(mpk, id):

Pr[Dec(usk[id], id,C) = sk] = 1.

The security requirements for an IBKEM we consider here are indistinguisha-
bility and anonymity against chosen plaintext and identity attacks (IND-ID-CPA
and ANON-ID-CPA). Instead of defining both security notions separately, we
define pseudorandom ciphertexts against chosen plaintext and identity attacks
(PR-ID-CPA) which means that challenge key and ciphertext are both pseudo-
random. Note that PR-ID-CPA trivially implies IND-ID-CPA and ANON-ID-CPA.
We define PR-ID-CPA-security of IBKEM formally via the games given in Fig. 3.

Fig. 3. Security games PR-ID-CPAreal and PR-ID-CPArand for defining PR-ID-CPA-
security.

50 O. Blazy et al.

Definition 4 (PR-ID-CPA Security). An identity-based key encapsulation
scheme IBKEM is PR-ID-CPA-secure if for all PPT A, Advpr-id-cpaIBKEM (A) :=
|Pr[PR-ID-CPAA

real ⇒ 1] − Pr[PR-ID-CPAA
rand ⇒ 1]| is negligible.

3 Downgradable Identity-Based Encryption

In this section we introduce the notion of Downgradable Identity-Based Encryp-
tion. There is a lot of different variant of IBE in the nowadays, add another one
seems to be not useful but we stress that our is not here to be used as a simple
scheme but as a key pillar to create ABE from IBE. Also in Sect. 4 we explain
the relations between different variant of IBE and how DIBE can be transformed
into them. For simplicity we are going to express in term of Key Encapsulation,
as it can then be trivially transformed into an encryption.

Definition 5 (Downgradable Identity-Based Key Encapsulation Sch-
eme). A Downgradable identity-based key encapsulation (DIBKEM) scheme
DIBKEM consists of five PPT algorithms DIBKEM = (Gen,USKGen,Enc,Dec,
USKDown) with the following properties.

– The probabilistic key generation algorithm Gen(K) returns the (master) pub-
lic/secret key (mpk,msk). We assume that mpk implicitly defines a message
space M, an identity space ID, a key space K, and ciphertext space CS.

– The probabilistic user secret key generation algorithm USKGen(msk, id)
returns the user secret-key usk[id] for identity id ∈ ID.

– The probabilistic encapsulation algorithm Enc(mpk, id) returns the symmetric
key sk ∈ K together with a ciphertext C ∈ CS with respect to identity id.

– The deterministic decapsulation algorithm Dec(usk[id], id,C) returns the
decapsulated key sk ∈ K or the reject symbol ⊥.

– The probabilistic user secret key downgrade algorithm USKDown(usk[id], ĩd)
returns the user secret-key usk[ĩd] as long as ĩd � id.

For perfect correctness we require that for all K ∈ N, all pairs (mpk,msk)
honestly generated by Gen(K), all identities id ∈ ID, all usk[id] generated by
USKGen(msk, id) and all (sk,C) output by Enc(mpk, id):

Pr[Dec(usk[id], id,C) = sk] = 1.

We also require the distribution of usk[ĩd] from USKDown(usk[id], ĩd) to be
identical to the one from USKGen(msk, ĩd).

The security requirements we consider here are indistinguishability and
anonymity against chosen plaintext and identity attacks (IND-ID-CPA and
ANON-ID-CPA). Instead of defining both security notions separately, we
define pseudorandom ciphertexts against chosen plaintext and identity attacks
(PR-ID-CPA) which means that challenge key and ciphertext are both pseudo-
random. We define PR-ID-CPA-security of DIBKEM formally via the games given
in Fig. 4.

Downgradable Identity-Based Encryption and Applications 51

Fig. 4. Security games PR-ID-CPAreal and PR-ID-CPArand for defining PR-ID-CPA-
security for DIBKEM.

Definition 6 (PR-ID-CPA Security). A downgradable identity-based key
encapsulation scheme DIBKEM is PR-ID-CPA-secure if for all PPT A,
Advpr-id-cpaDIBKEM(A) := |Pr[PR-ID-CPAA

real ⇒ 1] − Pr[PR-ID-CPAA
rand ⇒ 1]| is negli-

gible.

We stress the importance of the condition: (¬(id∗ � QID)). This is here to
guarantee that the adversary did not query an identity that can be downgraded
to the challenge one, as this would allow for a trivial attack.

4 Transformation to Classical Primitives

Here, we are going to show how a Downgradable IBE relates to other primitives
from the same family. Note that there is notions generalizing WIBE and WKD-
IBE called WW-IBE described in [ACP12] and SWIBE described in [KLLO18]
but their instantiation lead to not practical schemes. We can note that HIBE and
WIBE have been linked in [AFL12]. In our work we are motivated in achieving
a fully secure HIBE which would be inefficient using their construction.

4.1 From DIBE to WIBE

Wildcard Identity-Based Encryption is a concept introduced in [ACD+06]. The
idea is to be able to encrypt message for serveral identities by fixing some identity
bits and letting others free (symbolized by the ∗). Thus only people with identity
matching the one used to encrypt can decrypt. We say that id matches id′ if ∀i
idi = id′

i or id′
i = ∗. Detailed definitions are included in the full version.

We are now given a DIBKEM(Gen,USKGen,Enc,Dec,USKDown), let us show
how to build the corresponding Wild-IBKEM.

As with all the following constructions, the heart of the transformation will
be to use a DIBKEM for identity of size 2� to handle identities of size �.

Let’s consider an identity wid of size �, we define id = φ(wid) as follows:

id[2i, 2i + 1] =

⎧
⎨

⎩

01 if wid[i] = 0
10 if wid[i] = 1
00 otherwise.

52 O. Blazy et al.

Now we can define:

– WIBE.Gen(K): Gen(K), except that instead of defining ID as strings of size 2�,
we suppose the public key define WID of enriched identities of size �.

– WIBE.USKGen(sk, id) = USKGen(sk, φ(id)).
– WIBE.Enc(mpk, id) = Enc(mpk, φ(id)).
– WIBE.Dec(usk[id], îd,C) checks if îd � id, then computes usk[φ(îd)] =
USKDown(usk[φ(id)]). Returns Dec(usk[φ(îd)], îd,C) or rejects with ⊥.

4.2 From DIBE to HIBE

Hierarchical Identity-Based Encryption is a concept introduced in [GS02]. The
idea of this primitive is to introduce a hierarchy in the user secret key. A user
can create a secret key from his one for any identity with prefix his own identity.
Detailed definitions are included in the full version.

This time, we are going to map the identity space to a bigger set, with joker
identity that can be downgraded to both 0 or 1.

Let’s consider an identity hid of size �, we define id = φ(hid) as follows:

id[2i, 2i + 1] =

⎧
⎨

⎩

01 if hid[i] = 0
10 if hid[i] = 1
11 otherwise(hid[i] = ⊥).

Now we can define:

– HIB.Gen(K): Gen(K), except instead of defining ID as strings of size 2�, we
suppose the public key define HID of enriched identities of size �.

– HIB.USKGen(sk, id) = USKGen(sk, φ(id)). It should be noted that in case of
an DIBKEM, some identities are never to be queried to the downgradable
IBKEM: those with 00 is 2i, 2i + 1, or those with 11 at 2i, 2i + 1 and then a
0 (this would correspond to punctured identities).

– HIB.USKDel(usk[id], id ∈ BSp, idp+1) = USKDown(usk[φ(id)], φ(id||idp+1)). By
construction we have φ(id||idp+1) � φ(id).

– HIB.Enc(mpk, id) = Enc(mpk, φ(id)).
– HIB.Dec(usk[id], id,C) returns Dec(usk[φ(id)], φ(id),C) or the reject symbol ⊥.

4.3 From DIBE to Wicked IBE

The paper [AKN07] presents a variant of Identity-based Encryption called
Wicked IBE (WKD-IBE). A wicked IBE or wildcard key derivation IBE is a
generalization of the concept of limited delegation concept by Boneh-Boyen-Goh
[BBG05].

This scheme allows secret key associated with a pattern P = (P1, . . . , Pl) ∈
{{0, 1}∗ ∪{∗}}l to be delegated for a pattern P ′ = (P ′

1, . . . , P
′
l′) that matches P .

We say that P ′ match P if ∀i ≤ l′ P ′
i = Pi or Pi = ∗ and ∀l′ + 1 ≤ i ≤ l Pi = ∗.

Here again, we are going to map the identity space to a bigger set.

Downgradable Identity-Based Encryption and Applications 53

Let’s consider an identity id of size �, we define id = φ(wkdid) as follows:

id[2i, 2i + 1] =

⎧
⎨

⎩

01 if wkdid[i] = 0
10 if wkdid[i] = 1
11 if wkdid[i] = ∗

Now we can define:

– WKDIB.Gen(K): Gen(K), except instead of defining ID as strings of size 2�, we
suppose the public key define WKDID of enriched identities of size �.

– WKDIB.USKGen(msk, id) = USKGen(msk, φ(id)). It should be noted that
in case of an WKD-DIBE, some identities are never to be queried to the
downgradable IBE: those with 00.

– WKDIB.USKDel(usk[id], id, id′) = USKDown(usk[φ(id)], φ(id), φ(id′)).
– WKDIB.Enc(mpk, id) = Enc(mpk, φ(id)).
– WKDIB.Dec(usk[id], id,C) returns Dec(usk[φ(id)], φ(id),C) or the reject symbol

⊥.

Remark 7. It can be noted, that all those transformations end up using 4 bits
instead to encode a ternary alphabet. So there is a bit wasted in every given
transformation. This could easily be avoided by using a more convoluted encod-
ing, however this is already enough to show the link between the construction;
also, this allows to build a scheme both wicked and wildcarded.

4.4 From Wicked IBE to DIBE

We can easily transform a Wicked IBE scheme into DIBE by using only identity
made of 0 and ∗. In fact the element 1 of the DIBE play the role of the ∗ of the
Wicked IBE. Morally a DIBE can be seen as a Wicked IBE where the patterns
are made of only 2 distinct elements instead of 3.

5 ABE

In this section, we consider Attribute Based Encryption (ABE) and present a
transformation from DIBE to ABE. We recall the definition and the security
requirement:

Definition 8 (Attribute-based Encryption). An Attribute-based encryp-
tion (ABE) scheme ABE consists of four PPT algorithms ABKEM =
(Gen,USKGen,Enc,Dec) with the following properties.

– The probabilistic key generation algorithm Gen(K) returns the (master) pub-
lic/secret key (pk, sk). We assume that pk implicitly defines a message space
M, an Attribute space AS, and ciphertext space CS.

– The probabilistic user secret key generation algorithm USKGen(sk,A) that
takes as input the master secret key sk and a set of attributes A ⊂ AS and
returns the user secret-key usk[A].

54 O. Blazy et al.

– The probabilistic encryption algorithm Enc(pk,F,M) returns a ciphertext C ∈
CS with respect to the access structure F.

– The deterministic decryption algorithm Dec(usk[A],F,A,C) returns the
decrypted message M ∈ M or the reject symbol ⊥.

For perfect correctness we require that for all K ∈ N, all pairs (pk, sk) generated
by Gen(K), all access structure F, all set of attribute A ⊂ AS satisfying F, all
usk[A] generated by USKGen(sk,A) and all C output by Enc(pk,F,M):

Pr[Dec(usk[A],F,A,C) = M] = 1.

Like before, we encompass the classical security hypotheses for an ABE, with
a PR-A-CPA one as described in Fig. 5.

Fig. 5. Security games PR-A-CPAreal and PR-A-CPArand for defining PR-A-CPA-
security.

Definition 9 (PR-A-CPA Security). An identity-based key encapsulation
scheme ABKEM is PR-A-CPA-secure if for all PPT A, AdvPR-A-CPAABKEM (A) :=
|Pr[PR-A-CPAA

real ⇒ 1] − Pr[PR-A-CPAA
rand ⇒ 1]| is negligible.

In a usual notion of (ciphertext-policy) ABE, a key is associated with a set A of
attributes in the attribute universe U , while a ciphertext is associated with an
access policy F (or called access structure) over attributes. The decryption can
be done if A satisfies F. We can see that IBE is a special case of ABE where
both A and F are singletons, that is, each is an identity in the universe U .

In this paper, we confine ABE in the two following aspects. First, we restrict
the universe U to be of polynomial size in security parameter; this is often called
small-universe ABE (as opposed to large-universe ABE where U can be of super
polynomial size.). Second, we allow only DNF formulae in expressing policies (as
opposed to any boolean formulae, or equivalently, any access structures).

Our idea for obtaining a (small-universe) ABE scheme for DNF formulae from
any DIBE scheme is as follows. For simplicity and wlog, we set the universe as

Downgradable Identity-Based Encryption and Applications 55

U = {1, . . . , n}. We will use DIBE with identity length n. For any set S ⊆ U , we
define idS ∈ {0, 1}n where its i-th position is defined by

idS [i] :=

{
1 if i ∈ S

0 if i �∈ S
.

To issue an ABE key for a set A ⊆ U , we use a DIBE key for idA. On the other
hand, to encrypt a message M in ABE with a DNF policy F =

∨k
j=1(

∧
a∈Sj

a),
where each attribute a is in U , we encrypt the same message M in DIBE each
with idSj

for all j ∈ [1, k]; this will result in k ciphertexts of the DIBE scheme.
Note that k is the number of OR, the disjunction, in the DNF formula.

Decryption can be done as follows. Suppose A satisfies F. Hence, we have
that there exists Sj (defined in the formula F) such that Sj ⊆ A. We then derive
a DIBE key for idSj

from our ABE key for A (which is then a DIBE key for
idA); this can be done since Sj ⊆ A implies that any positions of 1 in idSj

will
also contain 1 in idA (and thus the derivation is possible). We finally decrypt the
ciphertext associated with idSj

to obtain the message M . We summarize this
transformation in Fig. 6.

Fig. 6. ABE from DIBE

We have the following security theorem for the above ABE scheme. The
proof is very simple and is done by a straightforward hybrid argument over
k ciphertexts of DIBE. Note that the advantage definition for ABE is defined
similarly to other primitives and is captured in The full version.

Theorem 10. The above ABE from DIBE is pr-a-cpa secure under the pr-id-cpa
security of the DIBE scheme used. In particular for all adversaries A, we have
that AdvPR-A-CPAABE (A) ≤ k · Advpr-id-cpaDIBE (A) where k is the number of OR in the
DNF formula (associated to the challenge ciphertext).

56 O. Blazy et al.

Proof. We prove our transformation via a sequence of games beginning with the
real game for the pr-a-cpa security of the ABE and ending up with a game where
the ciphertext of the ABE is uniformly chosen at random e.g. a game where
adversary’s advantage is reduce to 0.

Let A be an adversary against the pr-a-cpa security of our transformation.
Let C be the simulator of the pr-a-cpa experience.

Game G0: This is the real security game.
Game G1.1: In this game the simulator generates correctly every ciphertexts

but the first one. The first ciphertext is replaced by a random element of the
ciphertext space. G1.1 is indistinguishable from Game 0 if the pr-id-cpa security
holds for the DIBE used.

AdvG0,G1.1(A) ≤ Advpr-id-cpaDIBE (A)

Game G1.i: This game is the same than the game G1.i−1 but the i-th cipher-
text is replaced by a random element of the ciphertext space. G1.i is indistin-
guishable from G1.i−1 if the pr-id-cpa security holds for the DIBE used.

AdvG1.i−1,G1.i(A) ≤ Advpr-id-cpaDIBE (A)

Game G1.k: in this game all ciphertexts are random elements, G1.k is indis-
tinguishable from G1.k−1 if the pr-id-cpa security holds for the DIBE used.

AdvG1.k−1,G1.k(A) ≤ Advpr-id-cpaDIBE (A)

At this point our current game G1.k has for challenge encryption only random
elements. This means that an adversary has no advantage in winning this game.
We finally end up with the advantage of A in winning the original security game:

AdvPR-A-CPAABE (A) ≤ AdvG0,G1.k(A)

≤
k∑

i=1

AdvG1.i−1,G1.i(A)

≤ k × Advpr-id-cpaDIBE (A)

��

6 Instantiation

Theorem 11. Under the Dk-MDDH assumption, the scheme presented in
Fig. 7 is PR-ID-CPA secure. For all adversaries A there exists an adversary
B with T(A) ≈ T(B) and AdvDIBKEM,Dk

(B)PR-ID-CPA(A) ≤ (AdvDk,GGen(B) +
2qk(AdvDk,GGen(B) + 1/q)1.

The proof is detailed in the full version.

1 We recall that qk is the maximal number of query to the Eval oracle.

Downgradable Identity-Based Encryption and Applications 57

Fig. 7. A downgradable IBE based on MDDH. For readability, the user secret key is
split here between usk for the decapsulation, and udk used for the downgrade operation.

Remark 12. This instantiation respect the formal definition of DIBKEM of
Sect. 3. However for efficiency purpose one can remark that for realizing WIBE
or ABE the user’s secret keys does not need to be rerandomize during the dele-
gation phase since it will not be used by another user. It introduce the concept of
self-delegatable-only scheme. Thus we can avoid the heavy elements T ,S,E of
the user secret keys, the self-delegetable-only scheme is describe in Fig. 7 when
removing the gray parts.

7 Efficiency Comparison

In this section we compare the schemes obtained by using our instantiation of
DIBE (see Sect. 6) and our transformations described in the Sect. 4. We end up

58 O. Blazy et al.

with the most efficient scheme for full security in the standard model and under
classical hypothesis for WIBE, WKD-IBE and of similar efficiency for HIBE.

In the example of WIBE and WKD-IBE given below the parameters will
grow exponentially in the number of query from the adversary, where our will
be only linear. This is a parameter to take into account because the size of the
keys for the same security will depend on this security loss (Fig. 8).

To compare efficiency in a simple way, we choose to consider the case where
the number of pattern is maximal e.g. the size of pattern is equal to 1, thus the
number of pattern is n which is the length of the identity. The value qk correspond
to the number of derivation key oracle request made by the adversary2.

Name pk usk C assump. Sec Loss

WKD [AKN07] n + 4 n + 2 2 BDDH
Sel.

standard
O(nqk)

WKD [AKN07] (n + 1)n + 3 n + 2 2 BDDH
Full

standard O(qnk)

WKD-DIBE 4n + 2 3n + 5 5
DLin (any

k −MDDH)
Full

standard O(qk)

SWIBE [KLLO18] n + 4 2n + 3 4 ROM Full O((n + 1)(qk + 1)n)

WIBE [BDNS07] (n + 1)n + 3 n + 1 (n+1)n+2 BDDH
Full

standard O(n2qnk)

Wild-DIBE 4n + 2 3n + 5 5
DLin (any

k −MDDH)
Full

standard
O(qk)

Fig. 8. Efficiency comparison between our transformations and previous schemes

Efficiency Comparison for HIBE. The Fig. 9 compares the HIBE built via
our DIBE. Our instantiation of DIBE inherit its efficiency from the HIBE from
[BKP14], except we need to artificially double the size of the identities. Here �
is the number of free bits in an identity (the ones to delegate). Note that for the
case of root of the hierarchy e.g. the user with an empty bit string as identity,
� = n.

It should be noted, that while we rely on the same underlying principle, our
security reduction does not need handle ⊥ symbol as [BKP14], which allows to
circumvent the worrisome parts of their proofs.

Efficiency Comparison for ABE. Our instantiation leads to a very efficient
ABE scheme. This scheme would be one of the most practical. However we
achieve ABE where the access structure has to be a boolean formula in the DNF
which is less general than allowing any kind of access structure (which is done
in others practical schemes).

Figure 10 presents a non exhaustive comparison of our ABE schemes with
efficient ones. They are all full secure under the classical assumption DLin. U is
the size of the universe of attributes. m is the number of attributes in a policy. t
is the size of an attribute set, and T is the maximum size of t (if bounded). R is
2 In the original version of [AKN07] they include an element in the ciphertext to turn

their scheme into an encryption scheme. Since our scheme is a Key Encapsulation
Mechanism we remove this element when comparing both schemes.

Downgradable Identity-Based Encryption and Applications 59

Name pk usk C assump. Loss

HIBE [BBG05] n + 4 2 + � 5 DLin
sel.

O(n · qk)
HIBE [BKP14] 2n + 1 11� + 5 5

DLin (any
k −MDDH)

O(n)

H-DIBE 4n + 2 11n + 5 5
DLin (any

k −MDDH)
O(qk)

Fig. 9. Efficiency comparison between our transformations and HIBE schemes

Name pk sk C pairing exp G exp Gt Reduction Loss
[OT10] 4U + 2 3U + 3 7m + 5 7m + 5 0 m O(qk)
[LW12] 24U + 12 6U + 6 6m + 6 6m + 9 0 m O(qk)

[CGW15] 6UR + 12 3UR + 3 3m + 3 6 6m 0 O(qk)
[Att16]

scheme 10
6UR + 12 3UR + 6 3m + 6 9 6m 0 O(qk)

[Att16]
scheme 13

96(M + TR)2 +
log(UR)

3UR + 6 3m + 6 9 6m 0 O(qk)

Our DNF-
ABE

4U + 2 3U + 3 3k + 2 13 0 0 O(qk)

Fig. 10. Efficiency comparison of practical CP-ABE schemes

the maximum number of attributes multi used in one policy (if bounded). qk is
again the number of all the key queries made by the adversary during security
game. For our scheme, k is the number of OR, the disjunction, in the associated
DNF formula.

Acknowledgements. This work was supported in part by the French ANR: IDFIX
(ANR-16-CE39-0004) Project.

References

[ACD+06] Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G.,
Smart, N.P.: Identity-based encryption gone wild. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol.
4052, pp. 300–311. Springer, Heidelberg (2006). https://doi.org/10.1007/
11787006 26

[ACP12] Abdalla, M., De Caro, A., Phan, D.H.: Generalized key delegation for
wildcarded identity-based and inner-product encryption. IEEE Trans. Inf.
Forensics Secur. 7(6), 1695–1706 (2012)

[ADML+07] Abdalla, M., Dent, A.W., Malone-Lee, J., Neven, G., Phan, D.H., Smart,
N.P.: Identity-based traitor tracing. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 361–376. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71677-8 24

[AFL12] Abdalla, M., Fiore, D., Lyubashevsky, V.: From selective to full secu-
rity: semi-generic transformations in the standard model. In: Fischlin,
M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 316–333. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 19

https://doi.org/10.1007/11787006_26
https://doi.org/10.1007/11787006_26
https://doi.org/10.1007/978-3-540-71677-8_24
https://doi.org/10.1007/978-3-642-30057-8_19
https://doi.org/10.1007/978-3-642-30057-8_19

60 O. Blazy et al.

[AKN07] Abdalla, M., Kiltz, E., Neven, G.: Generalized key delegation for hier-
archical identity-based encryption. In: Biskup, J., López, J. (eds.)
ESORICS 2007. LNCS, vol. 4734, pp. 139–154. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74835-9 10

[Att16] Attrapadung, N.: Dual system encryption framework in prime-order
groups via computational pair encodings. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 591–623. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53890-6 20

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.
org/10.1007/11426639 26

[BCG16] Blazy, O., Chevalier, C., Germouty, P.: Adaptive oblivious transfer and
generalization. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10032, pp. 217–247. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 8

[BDNS07] Birkett, J., Dent, A.W., Neven, G., Schuldt, J.C.N.: Efficient chosen-
ciphertext secure identity-based encryption with wildcards. In: Pieprzyk,
J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586,
pp. 274–292. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73458-1 21

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 13

[BGP18] Blazy, O., Germouty, P., Phan, D.H.: Downgradable identity-based
encryption and applications. Cryptology ePrint Archive, Report
2018/1176 (2018). https://eprint.iacr.org/2018/1176

[BKP14] Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption
from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 23

[CGW15] Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order
groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 20

[Coc01] Cocks, C.: An identity based encryption scheme based on quadratic
residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS,
vol. 2260, pp. 360–363. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45325-3 32

[EHK+13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic
framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 8

[FP12] Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with
sublinear ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 225–242. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30057-8 14

[GH07] Green, M., Hohenberger, S.: Blind identity-based encryption and sim-
ulatable oblivious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-76900-2 16

https://doi.org/10.1007/978-3-540-74835-9_10
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-662-53890-6_8
https://doi.org/10.1007/978-3-662-53890-6_8
https://doi.org/10.1007/978-3-540-73458-1_21
https://doi.org/10.1007/978-3-540-73458-1_21
https://doi.org/10.1007/3-540-44647-8_13
https://eprint.iacr.org/2018/1176
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-30057-8_14
https://doi.org/10.1007/978-3-540-76900-2_16
https://doi.org/10.1007/978-3-540-76900-2_16

Downgradable Identity-Based Encryption and Applications 61

[GS02] Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 34

[KLLO18] Kim, J., Lee, S., Lee, J., Oh, H.: Scalable wildcarded identity-based
encryption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018.
LNCS, vol. 11099, pp. 269–287. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98989-1 14

[LW12] Lewko, A., Waters, B.: New proof methods for attribute-based encryp-
tion: achieving full security through selective techniques. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 12

[OT10] Okamoto, T., Takashima, K.: Fully secure functional encryption with
general relations from the decisional linear assumption. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 11

[PT11] Phan, D.H., Trinh, V.C.: Identity-based trace and revoke schemes. In:
Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 204–221.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24316-
5 15

[Sha84] Shamir, A.: Identity-based cryptosystems and signature schemes. In:
Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–
53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-
7 5

[SOK00] Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing.
In: SCIS 2000, Okinawa, Japan, January 2000

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11426639 27

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 7

https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/978-3-319-98989-1_14
https://doi.org/10.1007/978-3-319-98989-1_14
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-24316-5_15
https://doi.org/10.1007/978-3-642-24316-5_15
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_7

Large Universe Subset Predicate
Encryption Based on Static Assumption

(Without Random Oracle)

Sanjit Chatterjee and Sayantan Mukherjee(B)

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

{sanjit,sayantanm}@iisc.ac.in

Abstract. In a recent work, Katz et al. (CANS’17) generalized the
notion of Broadcast Encryption to define Subset Predicate Encryption
(SPE) that emulates subset containment predicate in the encrypted
domain. They proposed two selective secure constructions of SPE in
the small universe settings. Their first construction is based on q-type
assumption while the second one is based on DBDH. Both achieve con-
stant size secret key while the ciphertext size depends on the size of the
privileged set. They also showed some black-box transformation of SPE
to well-known primitives like WIBE and ABE to establish the richness
of the SPE structure.

This work investigates the question of large universe realization of
SPE scheme based on static assumption without random oracle. We pro-
pose two constructions both of which achieve constant size secret key.
First construction SPE1, instantiated in composite order bilinear groups,
achieves constant size ciphertext and is proven secure in a restricted ver-
sion of selective security model under the subgroup decision assumption
(SDP). Our main construction SPE2 is adaptive secure in the prime order
bilinear group under the symmetric external Diffie-Hellman assumption
(SXDH). Thus SPE2 is the first large universe instantiation of SPE to
achieve adaptive security without random oracle. Both our constructions
have efficient decryption function suggesting their practical applicabil-
ity. Thus the primitives like WIBE and ABE resulting through black-box
transformation of our constructions become more practical.

1 Introduction

The notion of Identity-Based Encryption (IBE) [7] was generalized by Katz
et al. [21] to Predicate Encryption (PE). PE emulates a predicate function
R : X × Y → {0, 1} in the encrypted domain in the following sense. A key
SK associated with key-index x can decrypt a ciphertext CT associated with
data-index y if R(x, y) = 1. In such a generalized view, IBE evaluates an
equality predicate. Attribute-Based Encryption (ABE) [18] is another example
of predicate encryption that emulates boolean function in the encrypted domain.

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 62–82, 2019.
https://doi.org/10.1007/978-3-030-12612-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_4

Large Universe Subset Predicate Encryption 63

One can view Broadcast Encryption (BE) [8] as a simpler form of ABE where
the predicate evaluated is disjunction in the form of membership checking.

Katz et al. [20] recently introduced another primitive called Subset Predicate
Encryption (SPE) that allows checking for subset containment in the encrypted
domain. More formally, in an SPE, a key SK associated with a key-index set Ω
can decrypt a ciphertext CT associated with data-index set Θ if Ω ⊆ Θ. There
is an obvious connection between BE and SPE in the sense that both encrypt
for a privileged set Θ. However, unlike BE, the KeyGen in SPE takes input a set
of identities Ω allowing a subset based testing during decryption. It is trivial to
achieve subset containment check through multiple membership checks.

Thus, one may be tempted to use an efficient BE instantiation [8] to con-
struct a small-universe SPE. In such an instantiation, KeyGen of SPE would
simply be a concatenation of output of KeyGen of BE for each x ∈ Ω i.e.
SKΩ = (SKx1 , . . . ,SKxk

) where Ω = (x1, . . . , xk). However, such a realization of
SPE suffers from an obvious security issue. Given a ciphertext CTΘ, an unpriv-
ileged user having secret key SKΩ (for Ω �⊆ Θ), can easily derive a valid key by
stripping the SKΩ as long as Ω ∩ Θ �= φ.

In their work, Katz et al. [20] discussed and then ruled out a few generic tech-
niques to construct small-universe SPE from Inner-Product Encryption (IPE),
Wildcard Identity-Based Encryption (WIBE) and Fuzzy Identity-Based Encryp-
tion (FIBE) due to the reason of inefficiency. They proposed two dedicated
SPE constructions in the small universe settings. Both the constructions achieve
constant-size secret key while the ciphertext size depends on the cardinality of
the privileged set it is intended to. Informally speaking, their first construc-
tion utilized the inversion exponent technique [9] and the second one utilized
the commutative blinding technique [6]. However, both the constructions were
proven only selectively secure. The security of the first construction is based on
a non-static assumption (q-BDHI) whereas the security of second construction
is based on a static assumption (DBDH). The second construction of [20] can
be easily modified to achieve selective security in large universe setting in the
random oracle model.

Given the above results of [20], the main open question in the context of
SPE is the following. Can we realize an adaptively secure SPE in the large
universe setting without random oracle where security is based on some static
assumption? In this paper we answer this question in the affirmative. In addition,
we also ask whether one can achieve an SPE with constant-size ciphertext. On
this front this paper reports some partial success through a trade-off in the
security model.

We start with a rather obvious observation. Recall the connection between
SPE in small universe and public key broadcast encryption mentioned above.
In a similar vein, Identity-Based Broadcast Encryption (IBBE) can be seen as
a special case of large-universe SPE. In particular, the KeyGen of IBBE always
takes a singleton set as input. However, trivially extending the KeyGen of IBBE
to that of SPE may be problematic. The security model of IBBE has a natural
restriction that the intersection of challenge identity set and the set of identities

64 S. Chatterjee and S. Mukherjee

compromised in the key extraction phase must be null. On the other hand, the
corresponding natural restriction in the context of SPE would be that none of
the set of identities queried in the key extraction phase should be a subset of
the challenge identity set.

A constant-size ciphertext IBBE was proposed in [14] based on q-type
assumption in the random oracle model. Recently, Gong et al. [17] proposed
integration of [14] and Déjà Q [26] towards selective secure IBBE with constant-
size ciphertext under static subgroup decision assumptions. However, unlike the
IBBE KeyGen that encodes a single identity, the KeyGen in SPE encodes a set
Ω into a secret key of constant-size. We notice that the KeyGen of [17] can be
tweaked appropriately to generate a constant-size secret key corresponding to a
set. This way we arrive at our first construction SPE1, a constant-size ciphertext
SPE in the large universe setting without random oracle.

The security reduction, closely follows that of [17]. However, the reduction
faces additional hurdles in order to properly simulate KeyGen of SPE. In the usual
IBBE scenario, for a challenge ciphertext CTΘ∗ , adversary is not allowed to make
secret key queries on x ∈ Θ∗. In case of SPE, however, it is possible to have some
x ∈ Ω ∩ Θ∗. In other words, the simulator in our SPE security argument should
be able to answer for key extraction queries which were naturally ruled out in
IBBE security model considered in [17].

Our Déjà Q based security argument is able to achieve the following – (i)
the effect of the terms encoding x ∈ (Θ∗ ∩ Ω) gets nullified naturally and
(ii) takes into consideration of the effect of availability of admissible Aggregate
function [15] to adversary. This, however, comes with a restriction on the KeyGen
queries (also due to the Déjà Q approach). Informally speaking, we need the sets
that are queried for key extraction: (Ω1,Ω2, . . . ,Ωq) to be cover-free sets i.e. for
any i ∈ [q], Ωi \ (

⋃
j∈[q]\{i} Ωj) �= φ.

While pairing-based adaptive secure IBBE achieving constant size secret key
as well as ciphertext remains still as an open problem; our above result indicates
the limitations of the available techniques to argue even selective security for
constant size ciphertext SPE.

Our main construction (SPE2) achieves adaptive security in the prime order
groups under SXDH with constant-size secret key. This construction resembles
IBBE structure of [22] which extended JR-IBE [19] to achieve an efficient tag-
based IBBE construction. We tweak the KeyGen algorithm of their IBBE1 [22]
to realize adaptive secure SPE in the large universe settings. Again, the non-
triviality lies in the security argument. Precisely, in the security model of [22], for
a challenge set Θ∗ = (y1, . . . , yl), the set of identities queried for key extraction
should be strictly non-overlapping. However, in the security argument of (SPE2),
the query (Ω) adversary makes may contain some elements that also belong to
the challenge set Θ∗.

We are able to realize the first large universe adaptive secure SPE without
random oracle. Our construction is quite efficient too in terms of parameter size,
encryption and decryption cost. For example, the encryption does not require
any pairing evaluation while the decryption evaluates only 3 pairings. The only

Large Universe Subset Predicate Encryption 65

limitation is the obvious: ciphertext size depends on the size of the privileged
set it is intended to.

We briefly discuss the effect of black-box transformations of Katz et al. [20]
on our SPE2 constructions. We achieve first adaptive secure CP-DNF (CP-ABE
with DNF policy) evaluation with constant-size secret key. We present the com-
parison with state of the art in Tables 1 and 2.

Organization of the Paper. In Sect. 2 we recall few definitions and present the
notations that will be followed in this paper. In Sect. 3 we define the subset
predicate encryption (SPE) and its security model. In Sects. 4 and 5, we present
two SPE constructions along with their proofs. Section 6 concludes this paper.

2 Preliminaries

Notations. Here we denote [a, b] = {i ∈ N : a ≤ i ≤ b} and for any n ∈ N,
[n] = [1, n]. The security parameter is denoted by 1λ where λ ∈ N. By s ←↩ S
we denote a uniformly random choice s from S. We use A ≈ε B to denote
that A and B are computationally indistinguishable such that for any PPT
adversary A, |Pr[A(A) → 1] − Pr[A(B) → 1]| ≤ ε where ε ≤ neg(λ) for neg(λ)
denoting negligible function. We use Advi

A(λ) to denote the advantage adversary
A has in security game Gamei and AdvHP

A (λ) is used to denote the advantage of
A to solve the hard problem HP.

2.1 Bilinear Groups

This paper presents two subset predicate encryption schemes. The first construc-
tion is instantiated in the composite order symmetric bilinear groups whereas
the second one is instantiated in the prime order asymmetric bilinear groups.

Composite Order Bilinear Pairings. A composite order symmetric bilin-
ear group generator Gsbg, apart from security parameter 1λ takes an addi-
tional parameter n and returns an (n+3)-tuple (p1, · · · , pn,G,GT, e) where both
G,GT are cyclic groups of order N =

∏

i∈[n]

pi where all pi are large primes and

e : G × G → GT is an admissible, non-degenerate Type-1 bilinear pairing. Here,
Gpi

denotes a subgroup of G of order pi. This notation is naturally extended to
Gpi···pj

denoting a subgroup of G of order pi × · · · × pj . By convention gi···j is an
element of subgroup Gpi···pj

. It is evident that e(gi, gj) = 1 if i �= j.

Prime Order Bilinear Pairings. The prime order asymmetric bilinear group
generator Gabg, takes security parameter 1λ and returns a 5 tuple (p,G1,G2,GT, e)
where all of G1,G2,GT are cyclic groups of order large prime p and e : G1×G2 →
GT is an admissible, non-degenerate Type-3 bilinear pairing [16].

66 S. Chatterjee and S. Mukherjee

2.2 Hardness Assumptions

Composite Order Setting. Let (p1, p2, p3,G,GT, e) ← Gsbg(1λ, 3) be the out-
put of symmetric bilinear group generator where both G,GT are cyclic groups
of order N = p1p2p3 where p1, p2, p3 are large primes. We define two variants of
subgroup decision problems [26] as follows:

DS1. {D,T0} ≈εDS1
{D,T1} for T0 ←↩ Gp1 and T1 ←↩ Gp1p2 given D = (g1, g3, g12)

where g1 ←↩ G×
p1

, g3 ←↩ G×
p3

and g12 ←↩ Gp1p2 . In other words, the advantage of
any adversary A to solve the DS1 is

AdvDS1
A (λ) = |Pr[A(D,T0) → 1] − Pr[A(D,T1) → 1]| ≤ εDS1.

DS1 is hard if advantage of A is negligible i.e. εDS1 ≤ neg(λ).

DS2. {D,T0} ≈εDS2
{D,T1} for T0 ←↩ Gp1p3 and T1 ←↩ G given D =

(g1, g3, g12, g23) where g1 ←↩ G×
p1

, g3 ←↩ G×
p3

, g12 ←↩ Gp1p2 and g23 ←↩ Gp2p3 .
In other words, the advantage of any adversary A to solve the DS2 is

AdvDS2
A (λ) = |Pr[A(D,T0) → 1] − Pr[A(D,T1) → 1]| ≤ εDS2.

DS2 is hard if advantage of A is negligible i.e. εDS2 ≤ neg(λ).

Prime Order Setting. Let (p,G1,G2,GT, e) ← Gabg(1λ) be the output of asym-
metric bilinear group generator where G1,G2,GT are cyclic groups of order a large
prime p.

Symmetric External Diffie-Hellman Assumption (SXDH). The SXDH assumption
in group (G1,G2) is: DDH in G1 and DDH in G2 is hard. We rewrite DDH in G1

in the form of 1-Lin assumption below and call it DDHG1 . The DDHG2 denotes
the DDH problem in G2.

– DDHG1 : {D,T0} ≈εDDHG1
{D,T1} for T0 = gs

1 and T1 = gs+ŝ
1 given D =

(g1, g2, gb
1, g

bs
1) where g1 ←↩ G1, g2 ←↩ G2, b ←↩ Z×

p , s, ŝ ←↩ Zp. In other words,
the advantage of any adversary A to solve the DDHG1 is

Adv
DDHG1
A (λ) = |Pr[A(D,T0) → 1] − Pr[A(D,T1) → 1]| ≤ εDDHG1

.

DDHG1 is hard if advantage of A is negligible i.e. εDDHG1
≤ neg(λ).

– DDHG2 : {D,T0} ≈εDDHG2
{D,T1} for T0 = gcr

2 and T1 = gcr+r̂
2 given D =

(g1, g2, gc
2, g

r
2) where g1 ←↩ G1, g2 ←↩ G2, c, r, r̂ ←↩ Zp. In other words, the

advantage of any adversary A to solve the DDHG2 is

Adv
DDHG2
A (λ) = |Pr[A(D,T0) → 1] − Pr[A(D,T1) → 1]| ≤ εDDHG2

.

DDHG2 is hard if advantage of A is negligible i.e. εDDHG2
≤ neg(λ).

3 Subset Predicate Encryption

We rephrase Subset Predicate Encryption (SPE) in terms of a predicate encryp-
tion [21] and formally model its security requirement.

Large Universe Subset Predicate Encryption 67

3.1 Subset Predicate Encryption (SPE)

Let ID be the identity space. For a key-index set Ω ∈ X ⊂ ID and a data-index
set Θ ∈ Y ⊂ ID, the predicate function for SPE is

Rs(Ω,Θ) =

{
1 if Ω ⊆ Θ

0 otherwise
.

The following description of SPE scheme is presented here as a Key-
Encapsulation Mechanism (KEM) where C, SK and K denote ciphertext space,
secret key space and encapsulation key space respectively.

– Setup: It takes m ∈ N along with security parameter 1λ. It outputs master
secret key msk and public key mpk.

– KeyGen: It takes mpk, msk and key-index set Ω ∈ X of size k ≤ m secret key
SK ∈ SK corresponding to key-index set Ω.

– Encrypt: It takes mpk, data-index set Θ ∈ Y of size l≤ m encapsulation key
κ ∈ K and ciphertext CT ∈ C.

– Test: It takes (SK,Ω) and (CT,Θ) as input. Outputs κ or ⊥.

Correctness. For all (mpk,msk) ← Setup(1λ), all key-index set Ω ∈ X , all
SK ← KeyGen(msk,Ω), all data-index set Θ ∈ Y, all (κ,CT) ← Encrypt(mpk,Θ),

Decrypt(mpk, (SK,Ω), (CT,Θ)) =

{
κ if Rs(Ω,Θ) = 1
⊥ otherwise

.

Remark 1. The Setup algorithms takes an additional parameter m along with the
security parameter λ. This is because, both our constructions are large universe
constructions. The cardinality of the sets processed in ciphertext generation and
key generation in both of our constructions will be upper bounded by m like any
other available standard model large universe constructions [4,22].

3.2 Security Notions

Adaptive CPA-Security of SPE. The security game for adaptive CPA-Security
for SPE (SPE) is defined as following:

– Setup: The challenger C gives mpk to adversary A and keeps msk as secret.
– Query Phase-I: C gets a key-index set Ω and returns SK ← KeyGen(msk,Ω).
– Challenge: A provides challenge data-index set Θ∗ (such that Rs(Ω,Θ∗) = 0

for all previous key queries). C then generates (κ0,CT) ← Encrypt(mpk,Θ∗)
and chooses κ1 ←↩ K . Finally, C returns (CT, κb) to A for b ←↩ {0, 1}.

– Query Phase-II: Given a key-index Ω such that Rs(Ω,Θ∗) = 0, C returns
SK ← KeyGen(msk,Ω).

– Guess: A outputs its guess b′ ∈ {0, 1} and wins if b = b′.

68 S. Chatterjee and S. Mukherjee

For any adversary A,

AdvSPE
A,IND-CPA(λ) = |Pr[b = b′] − 1/2|.

We say, SPE is Ind-CPA secure (IND-CPA) if for any efficient adversary A,
AdvSPE

A,IND-CPA(λ) ≤ neg(λ). If there is a Init phase before the Setup where the
adversary A commits to the challenge data-index set Θ∗, we call such security
model as sInd-CPA security (sIND-CPA) model.

4 SPE1: Realizing Constant Size Ciphertext

We present first SPE construction having constant-size secret key and constant-
size ciphertext in the composite order pairing setting.

4.1 Construction

SPE1 is defined by following four algorithms.

– Setup(1λ,m) : The symmetric bilinear group generator outputs (p1, p2, p3,
G,GT, e) ← Gsbg(1λ, 3) where both G,GT are cyclic groups of order N =
p1p2p3. Then pick α, β ←↩ N , generators g1, u ←↩ Gp1 and g3 ←↩ Gp3 . Choose
R3,i ←↩ Gp3 for all i ∈ [m]. Define the msk = (α, β, u, g3) and the public
parameter is

mpk = (g1, g
β
1 ,

(
Gi = gαi

1 , Ui = uαi · R3,i

)

i∈[m]
, e(g1, u)β ,H)

where H : GT → {0, 1}poly(λ) is a randomly chosen universal hash function.
– KeyGen(msk,Ω) : Given a set Ω, such that |Ω| = k ≤ m; define the polynomial

PΩ(z) =
∏

x∈Ω

(z +x) = d0 +d1z +d2z
2 + . . .+dkzk, pick X3 ←↩ Gp3 and define

secret key as

SKΩ = u
β

PΩ(α) · X3 = u

β∏

x∈Ω
(α+x)

· X3.

– Encrypt(mpk,Θ) : Given a set Θ, such that |Θ| = l ≤ m; the polynomial
PΘ(z) =

∏

y∈Θ

(z + y) = c0 + c1z + c2z
2 + . . . + clz

l. Choose s ←↩ Zp and

compute κ and CTΘ = (C0,C1) such that

κ = H(e(g1, u)sβ),C0 = gsβ
1 ,C1 = g

sPΘ(α)
1 =

⎛

⎝gc0
1

∏

i∈[l]

Gci
i

⎞

⎠

s

.

– Decrypt((SKΩ,Ω), (CTΘ,Θ)): As Ω ⊆ Θ, compute PΘ\Ω(α) =
∏

w∈Θ\Ω

(α+w) =

a0+a1α+a2α
2+. . .+atα

t where t = |Θ \ Ω|. Then compute κ = H((B/A)1/a0)
where

A = e(C0,
∏

i∈[t]

Uai
i), B = e(C1,SKΩ).

Large Universe Subset Predicate Encryption 69

Correctness. Notice that,

A = e(C0,
∏

i∈[t]

Uai
i) = e(gsβ

1 , uPΘ\Ω(α)−a0) = e(g1, u)sβ(PΘ\Ω(α)−a0),

B = e(C1,SKΩ) = e(gsPΘ(α)
1 , u

β
PΩ(α) · X3) = e(g1, u)sβPΘ\Ω(α).

Then B/A = e(g1, u)sβa0 , H((B/A)1/a0) = H(e(g1, u)sβ) = κ.

4.2 Security

As we already have mentioned, one can view SPE as a generalization
of IBBE [14]. Recently Gong et al. [17] used Déjà Q to prove their
identity-based broadcast encryption selective secure in the standard model. The
crux of their proof lies in the independence of the semi-functional component
of the secret keys (SKΩ) and semi-functional components of the related public
parameters (Ui)i∈[m]. To argue that, they showed corresponding matrix repre-
sentation to be non-singular (see game G5 in the proof of [17, Theorem 1]). The
proof made an implicit natural assumption that none of the secret key queries
get repeated. Otherwise, the matrix will have more than one identical rows that
encode the same key-index. The matrix in such case is singular and the proof
fails.

SPE, being a generalization of IBBE, allows key queries on sets where same
key-index can appear in different key queries. Precisely, the adversary in case
of SPE, can make key extraction queries on Ωi and Ωj for Ωi ∩ Ωj �= 0. This
introduces a problem here due to dependency among the secret keys of SPE1. As
a result, the matrix might become singular in one of the intermediate games of
our hybrid argument to prove security of SPE1. Here, we take a simple example
to show this problem in light of one admissible Aggregate [15].

In [15], an efficient algorithm called Aggregate was introduced. Given finite
sets S = (xi)i∈I and H =

(
h

1
z+xi

)

xi∈S
, Aggregate outputs hX where I is finite

set of indices on S, z is the indeterminant, h is an element from cyclic group W
and xi ∈ [ord(h)] such that X = 1∏

xi∈S
(z+xi)

. Note that this holds for any cyclic

group (W) unless there exists distinct xi, xj ∈ S but xi − xj = 0 mod ord(W).
Now, notice that the secret keys of SPE1 allow collusion similar to [15,17].

But such collusions did not create any problem in [15,17] as their KeyGen takes
singleton key-index. On the other hand, as SPE1.KeyGen takes set as input, col-
lusion due to Aggregate creates the following problem. Suppose the adversary of
SPE1 makes following three queries: Ω1 = {1, 2}, Ω2 = {1, 3} and Ω3 = {2, 3}.
Given SKΩ1 and SKΩ2 , the adversary can easily compute SKΩ using Aggregate
function where Ω = {1, 2, 3}. Moreover, given SKΩ2 and SKΩ3 , the adversary can
also compute same key SKΩ using Aggregate function. Such a query sequence
causes the proof to fail as semi-functional components can no longer be proved
to be independent. See the full version [11] of this work for further details. In
particular, during the proof of Lemma 3 (in [11]) which is at the core of the

70 S. Chatterjee and S. Mukherjee

proof of indistinguishability of Game5 and Game6, the matrix P′ (and subse-
quently A in Lemma 2 in [11]) precisely would be singular. Notice that, given
(SKΩi

)i∈I , one can use Aggregate in a cascading manner to get secret keys cor-
responding to other sets as well. We formally define the claw due to Aggregate
as following: there exists Ωi,Ωj ,Ωk ⊂ ID where at least two of these sets are
distinct and the adversary acquired secret key on all three of them such that
Aggregate(SKΩi

,SKΩj
) = Aggregate(SKΩj

,SKΩk
). In case the query sequence

has such a claw, the matrix P′ becomes singular and the proof fails. The easiest
work-around would be to ensure that no two queries have any element common
i.e. Ωi ∩ Ωj = φ for all distinct i, j ∈ [q].

We put a much weaker restriction on the adversary where we allow making
key queries only on cover-free sets. Formally, after making a challenge query
Θ∗, adversary A is allowed to make key extraction queries on (Ω1,Ω2, . . . ,Ωq)
adaptively with two restrictions. For all i ∈ [q], the following must hold:

1. Ωi �⊂ Θ∗,
2. Ωi \ (

⋃
j∈[q]\{i} Ωj) �= φ.

Notice that, the first is the natural restriction on the relation between chal-
lenge set Θ∗ with secret key queries {Ωi}i∈[q]. We say, SPE is selective* Ind-CPA
secure (aka s∗IND-CPA) if for any PPT adversary A that gives out the challenge
Θ∗ during Init and the queries it make following the above-mentioned restric-
tions, AdvSPE

A,s∗IND-CPA(λ) ≤ neg(λ).
Here we mention that, we do not see any ready vulnerability in our construc-

tion due to Aggregate (or any other way for that matter). This is because, given
secret keys corresponding to Ωi and Ωj , the Aggregate computes secret key for
bigger set Ω (precisely Ω = Ωi ∪Ωj for distinct Ωi,Ωj). Now for a challenge Θ∗,
the natural restriction ensures Ωi,Ωj �⊂ Θ∗ and therefore Ω �⊂ Θ∗. Naturally,
the resulting Ω is a valid key-index set. Thus, even if the Aggregate function is
used to compute SKΩ from SKΩi

and SKΩj
, it does not help the adversary in

any way to break the security of the scheme. We reiterate that, we do not put
any restriction on the relation between challenge Θ∗ and secret-key queries Ω
apart from the natural restriction mentioned above. This s∗IND-CPA model in
this respect behaves exactly the same as sIND-CPA model.

Theorem 1. For any adversary A of SPE construction SPE1 in the s∗IND-CPA
model that makes at most q many secret key queries, there exist adversary B1,
B2 such that

AdvSPE1

A,s∗IND-CPA(λ) ≤ 2 · AdvDS1
B1

(λ) + (m + q + 2) · AdvDS2
B2

(λ)

+ ((m+q)(m+q+1)+1)
p2

+ 2−λ.

Proof Sketch. The proof is established via a hybrid argument. The idea is to
modify each game only a small amount that allows the solver B to model the
intermediate games properly. The hybrid argument is based on Wee’s [25] port-
ing of Déjà Q framework introduced by Chase and Meiklejohn [10]. Intuitively, in
the first game Game0, both the challenge ciphertext and secret keys are normal.
We define three intermediate games (Game1,Game2, and Game3) to change the

Large Universe Subset Predicate Encryption 71

ciphertext to semi-functional in Game4. We next define a sub-sequence of games
(Game5,1,0,Game5,1,1,Game5,2,0,Game5,2,1, . . . ,Game5,m+q+1,0,Game5,m+q+1,1)
to introduce enough randomness into the semi-functional components of secret
key and few related public parameters. Note that till this point, we mostly have
followed [17]. Such a sub-sequence of games effectively introduces enough entropy
in the semi-functional component such that we can replace it by pure random
choice in Game6. The structure here is more involved than [17] and we find a trick
(namely key-queries on cover-free sets only) that is necessary and sufficient to
complete the security argument. Finally, in Game7, we show that semi-functional
components as a whole supply enough entropy to hide encapsulation key κ. The
detailed proof is given in the full version of the paper ([11, Section 4.2.1]). �

5 SPE2: An Adaptive Secure Construction

Our second and main construction is instantiated in the prime order bilinear
groups and achieves adaptive security under SXDH assumption.

5.1 Construction

SPE2 is defined as following four algorithms.

– Setup(1λ,m) : Let (p,G1,G2,GT, e) ← Gabg(1λ) where G1,G2,GT are cyclic
groups of order p. Choose generators (g1, g2) ←↩ G1 × G2 and define gT =
e(g1, g2). Choose α1, α2, c, d, (uj , vj)j∈[0,m] ←↩ Zp and b ←↩ Z×

p . For all j ∈
[0,m], define g

wj

1 = g
uj+bvj

1 and gw
1 = gc+bd

1 . Then define gα
T = e(g1, g2)α1+bα2

via setting α = (α1 + bα2). Define the msk = (g2, gc
2, α1, α2, d, (uj , vj)j∈[0,m])

and the public parameter is defined as

mpk =
(
g1, g

b
1,

(
g

wj

1

)
j∈[0,m]

, gw
1 , gα

T

)
.

– KeyGen(msk,Ω) : Given a key-index set Ω of size k ≤ m, choose r ←↩ Zp.
Compute the secret key as SKΩ = (K1,K2,K3,K4,K5) where

K1 = gr
2 ,K2 = gcr

2 ,K3 = g

α1+r
∑

x∈Ω
(u0+u1x+u2x2+...+umxm)

2 ,

K4 = gdr
2 ,K5 = g

α2+r
∑

x∈Ω
(v0+v1x+v2x2+...+vmxm)

2 .

– Encrypt(mpk,Θ) : Given a data-index set Θ of size l ≤ m, choose s ←↩ Zp.
Compute κ and CTΘ = (C0,C1, (C2,i, ti)i∈[l]) where (ti)i∈[l] ←↩ Zp and

κ = e(g1, g2)αs ,C0 = gs
1 ,C1 = gbs

1 ,C2,i = g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)

1 .

– Decrypt((SKΩ,Ω), (CTΘ,Θ)): Computes κ = B/A where

A = e

⎛

⎝
∏

yi∈Ω

C2,i,K1

⎞

⎠ , B = e

⎛

⎝C0,K3

∏

yi∈Ω

Kti
2

⎞

⎠ e

⎛

⎝C1,K5

∏

yi∈Ω

Kti
4

⎞

⎠ .

72 S. Chatterjee and S. Mukherjee

Correctness. As Ω ⊆ Θ,

B = e

(

C0,K3

∏

yi∈Ω

Kti
2

)

e

(

C1,K5

∏

yi∈Ω

Kti
4

)

,

= e

⎛

⎝C0, g

α1+r
∑

yi∈Ω
(u0+u1yi+u2yi

2+...+umyi
m)

2 · ∏

yi∈Ω

grcti
2

⎞

⎠

· e

⎛

⎝C1, g

α2+r
∑

yi∈Ω
(v0+v1yi+v2yi

2+...+vmyi
m)

2 · ∏

yi∈Ω

grdti
2

⎞

⎠

= e

(
C0, g

(α1+bα2)+r
∑

yi∈Ω
((u0+bv0)+(u1+bv1)yi+...+(um+bvm)ym

i)

2 · ∏
yi∈Ω

g
r(c+bd)ti
2

)

= e

⎛

⎝C0, g

α+r
∑

yi∈Ω
(w0+w1yi+w2yi

2+...+wmyi
m)

2 · ∏

yi∈Ω

grwti
2

⎞

⎠

= e

⎛

⎝gs
1 , g

α+r
∑

yi∈Ω
(w0+w1yi+w2yi

2+...+wmyi
m+wti)

2

⎞

⎠

A = e

(
∏

yi∈Ω

C2,i,K1

)

= e

⎛

⎝g

s
∑

yi∈Ω
(w0+w1yi+w2yi

2+...+wmyi
m+wti)

1 , gr
2

⎞

⎠

Then B/A = e(gs
1 , gα

2) = κ.

Remark 2. We observe that our SPE2 construction has a pair encoding [3] embed-
ded. One can utilize the generic technique of Chen et al. [12] to get corresponding
predicate encryption. The public parameter and ciphertext size, however, will be
significantly larger than that of SPE2. Precisely, both the public parameter and
ciphertext contain additional m G1-elements. Although the secret key requires
one less G2 element, the decryption is costlier as it takes one extra pairing eval-
uation. In addition, one can apply such pair encoding on framework by Chen
and Gong [13] to generalize our SPE2 construction further in terms of security.

5.2 Security

Theorem 2. For any adversary A of SPE construction SPE2 in the IND-CPA
model that makes at most q many secret key queries, there exist adversary B1,
B2 such that

AdvSPE2

A,IND-CPA(λ) ≤ Adv
DDHG1
B1

(λ) + q · Adv
DDHG2
B2

(λ) + 2/p.

Proof Sketch. We propose a hybrid argument based proof that uses dual system
proof technique [24] at its core. This hybrid argument follows the proof strategy
of [22]. In this sequence of game based argument, in the first game (Game0)

Large Universe Subset Predicate Encryption 73

both the challenge ciphertext and secret keys are normal. In Game1, we first
make the challenge ciphertext semi-functional. Then all the keys are changed
to semi-functional via a series of games namely (Game2,1, . . . ,Game2,q). In any
Game2,k, for any k ∈ [q], all the previous (i.e. 1 ≤ j ≤ k) secret keys are semi-
functional whereas all the following (i.e. k < j ≤ q) secret keys are normal. We
continue this till Game2,q where all the keys are semi-functional. In the final
game (Game3), the encapsulation key κ is replaced by a uniform random choice
from K . We show that the semi-functional components of challenge ciphertext
and secret keys in Game3 supply enough entropy to hide the encapsulation key
κ; hence it is distributionally same as random choice from K . Note that, we
denote Game1 by Game2,0.

We first recall the crucial tactics [22] used to prove their IBBE adaptive
CPA-secure as we already have mentioned that our large-universe SPE2 construc-
tion uses IBBE [22] as a starting point. The crux of the proof of IBBE in [22]
is a linear map that reflects the relation between tags (t1, . . . , tl) that encoded
(y1, . . . , yl) respectively and semi-functional component (π) in the secret key SKx

that encoded queried key-index x. This scenario occurs when a normal secret key
is translated into corresponding semi-functional form. At this point, [22] showed
that such linear map is non-singular following Attrapadung and Libert [5]. Such
a property of the linear map effectively ensures that semi-functional component
of the key has enough entropy to hide the encapsulation key κ.

However, following their proof technique verbatim does not work in our case
as the semi-functional component π no longer encodes only one identity rather it
has to encode multiple identities belonging to the queried set Ω. Let us consider
a case where, x ∈ (Θ∗ ∩ Ω), i.e. ∃j ∈ [l], x = yj . In other words ∃j ∈ [l] such
that tag tj encodes yj(= x) where x ∈ Ω. As the semi-functional component π,
that encodes queried set Ω, will also contain some information about x (i.e. yj),
it is not clear if (t1, . . . , tl) and π are still independent.

The novelty in our proof technique is that we proceed in a different manner
where we argue independence of (t1, . . . , tl) and π∗ as well as the independence
of π̂ and π∗ where π∗ encodes x∗ ∈ Ω\Θ∗ and π̂ encodes all x ∈ Ω\{x∗}. Notice
that such a x∗ will always exist as Ω �⊂ Θ∗. This therefore ensures that the linear
map reflecting the relation between (t1, . . . , tl) and π to be non-singular.

Now, we define the semi-functional ciphertext and semi-functional secret
keys.

5.2.1 Semi-functional Algorithms
– SFKeyGen(msk,Ω): Let the normal secret key be SK′

Ω = (K′
1,K

′
2,K

′
3,K

′
4,

K′
5) ← KeyGen(msk,Ω) where r is the randomness used in KeyGen. Choose

r̂, π ←↩ Zp. Compute the semi-functional trapdoor as SKΩ = (K1,K2,K3,
K4,K5) such that

K1 = K′
1 = gr

2 ,K2 = K′
2 · gr̂

2 = gcr+r̂
2 ,

K3 = K′
3 · gr̂π

2 = g

α1+r
∑

x∈Ω
(u0+u1x+u2x2+...+umxm)+r̂π

2 ,

74 S. Chatterjee and S. Mukherjee

K4 = K′
4 · g−r̂b−1

2 = gdr−r̂b−1

2 ,

K5 = K′
5 · g−r̂πb−1

2 = g

α2+r
∑

x∈Ω
(v0+v1x+v2x2+...+vmxm)−r̂πb−1

2 .
– SFEncrypt(mpk,msk,Θ): Let the normal encapsulation key and normal

ciphertext be (κ′,CT′
Θ) ← Encrypt(mpk,msk,Θ) where s is the randomness

and (ti)i∈[l] are the random tags used in Encrypt such that CT′
Θ = (C′

0,C
′
1,

(C′
2,i, ti)i∈[l]). Compute the semi-functional encapsulation key κ and semi-

functional ciphertext CTΘ = (C0,C1, (C2,i, ti)i∈[l]) as follows:

κ = κ′ · gα1ŝ
T = e(g1, g2)αs+α1ŝ ,C0 = C′

0 · gŝ
1 = gs+ŝ

1 ,C1 = gbs
1 ,

C2,i = C′
2,i · g

ŝ(u0+u1yi+u2yi
2+...+umyi

m+cti)
1 ,

= g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)+ŝ(u0+u1yi+u2yi

2+...+umyi
m+cti)

1 . �

5.2.2 Sequence of Games
The idea is to change each game only by a small margin and prove indistin-
guishability of two consecutive games.

Lemma 1 (Game0 to Game1). For any efficient adversary A that makes at most
q key queries, there exists a PPT algorithm B such that

∣
∣Adv0A(λ) − Adv1A(λ)

∣
∣ ≤

Adv
DDHG1
B (λ).

Proof. The solver B is given the DDHG1 problem instance D = (g1, g2, gb
1, g

bs
1)

and the target T = gs+ŝ
1 where ŝ = 0 or chosen uniformly random from Z

×
p .

Setup. B chooses α1, α2, (ui, vi)i∈[0,m] , c, d ←↩ Zp. As both α1 and α2 are avail-
able to B, it can generate gα

T = e(gα1
1 ·(gb

1)
α2 , g2). Hence, B outputs the public

parameter mpk. Notice that the master secret key msk is available to B.
Phase-I Queries. Since B knows the msk, it can answer with normal secret

keys on any query of Ω.
Challenge. Given the challenge set Θ∗ = (y1, . . . , yl) for l ≤ m, B chooses

(ti)i∈[l] ←↩ Zp. It then computes the challenge as κ0 and CTΘ∗ = (C0,C1,
(C2,i, ti)i∈[l]) using the problem instance as follows.

κ0 = e(C0, g2)α1 · e(C1, g2)α2 ,C0 = T, C1 = gbs
1 ,

C2,i = Cu0+u1yi+u2yi
2+...+umyi

m+cti

0 · Cv0+v1yi+v2yi
2+...+vmyi

m+dti

1

where i ∈ [l]. B then chooses κ1 ←↩ K and returns (κb,CTΘ∗) as the challenge
ciphertext for b ←↩ {0, 1}.

Phase-II Queries. Same as Phase-I queries.
Guess. A output b′ ∈ {0, 1}. B outputs 1 if b = b′ and 0 otherwise.

Large Universe Subset Predicate Encryption 75

Notice that, if ŝ in DDHG1 problem instance is 0, then the challenge ciphertext
CTΘ∗ is normal. Otherwise the challenge ciphertext CTΘ∗ is semi-functional. If
A can distinguish these two scenarios, the solver B will use it to break DDHG1

problem. Thus,
∣
∣Adv0A(λ) − Adv1A(λ)

∣
∣ ≤ εDDHG1

. �
Lemma 2 (Game2,k−1 to Game2,k). For any efficient adversary A that makes
at most q key queries, there exists a PPT algorithm B such that |Adv2,k−1

A (λ) −
Adv2,k

A (λ)| ≤ Adv
DDHG2
B (λ).

Proof. The solver B is given the DDHG2 problem instance D = (g1, g2, gc
2, g

r
2)

and the target T = gcr+r̂
2 where r̂ = 0 or chosen uniformly random from Z

×
p .

Setup. B chooses b ←↩ Z
×
p , α, α1, w, (pi, qi, wi)i∈[0,m] ←↩ Zp. It sets α2 =

b−1(α − α1), d = b−1(w − c), ui = pi + cqi, vi = b−1(wi − ui). Note that,
as c explicitly is unknown to B, all but α2 assignment has been done implic-
itly. The public parameters mpk are generated as (g1, gb

1, (g
wi
1)i∈[0,m], g

w
1 , gα

T)
where gT = e(g1, g2). Here note that, not all of msk is available to B. Still we
show that, even without knowing (d, (ui, vi)i∈[0,m]) explicitly, B can simulate
the game.

Phase-I Queries. Given the jth key query on Ωj s.t. |Ωj | = kj ≤ m,
– If j > k: B has to return a normal key. We already have mentioned

that (d, (ui, vi)i∈[0,m]) of msk are unavailable to B. Thus B simulates the
normal secret keys as follows.
B chooses rj ←↩ Zp. Computes the secret key SKΩj

= (K1,K2,K3, K4,K5)
where,
K1 = g

rj

2 ,K2 = (gc
2)

rj ,

K3 = gα1
2 · K

∑

x∈Ωj

(p0+p1x+p2x2+...+pmxm)

1 · K

∑

x∈Ωj

(q0+q1x+q2x2+...+qmxm)

2 ,

= g

α1+rj

∑

x∈Ωj

(u0+u1x+u2x2+...+umxm)

2 ,

K4 = Kb−1w
1 · K−b−1

2 = g
drj

2 ,

K5 = gb−1α
2 · K

b−1 ∑

x∈Ωj

(w0+w1x+w2x2+...+wmxm)

1 · K−b−1

3

= g

b−1α+rjb−1 ∑

x∈Ωj

(w0+w1x+w2x2+...+wmxm)

2

· g

−b−1(α1+rj

∑

x∈Ωj

(u0+u1x+u2x2+...+umxm))

2 ,

= g

α2+rj

∑

x∈Ωj

(v0+v1x+v2x2+...+vmxm)

2 .
Notice that SKΩj

is identically distributed to output of KeyGen(msk,Ωj).
Hence B has managed to simulate the normal secret key without knowing
the msk completely.

– If j < k: B has to return a semi-functional secret key. It first creates nor-
mal secret keys as above and chooses r̂, π ←↩ Zp to create semi-functional
secret keys following SFKeyGen.

76 S. Chatterjee and S. Mukherjee

– If j = k: B will use DDHG2 problem instance to simulate the secret key.
It sets,
K1 = gr

2 , K2 = T = gcr+r̂
2 = K′

2 · gr̂
2 ,

K3 = gα1
2 · K

∑

x∈Ωj

(p0+p1x+p2x2+...+pmxm)

1 · K

∑

x∈Ωj

(q0+q1x+q2x2+...+qmxm)

2 ,

= g

α1+r
∑

x∈Ωj

(u0+u1x+u2x2+...+umxm)+r̂
∑

x∈Ωj

(q0+q1x+q2x2+...+qmxm)

2 ,

= K′
3 · g

r̂
∑

x∈Ωj

(q0+q1x+q2x2+...+qmxm)

2 .
K4 = Kb−1w

1 · K−b−1

2 = gdr
2 · g−b−1r̂

2 = K′
4 · g−b−1r̂

2 .

K5 = gb−1α
2 · K

b−1 ∑

x∈Ωj

(w0+w1x+w2x2+...+wmxm)

1 · K−b−1

3 ,

= g

α2+r
∑

x∈Ωj

(v0+v1x+v2x2+...+vmxm)

2 ·g
−b−1r̂

∑

x∈Ωj

(q0+q1x+q2x2+...+qmxm)

2

= K′
5 · g

−b−1r̂
∑

x∈Ωj

(q0+q1x+q2x2+...+qmxm)

2 .
Here, B has implicitly set π =

∑

x∈Ωj

(q0 + q1x+ q2x
2 + . . .+ qmxm). Notice

that if r̂ = 0 then the key is normal; otherwise it is semi-functional secret
key.

Challenge. Given the challenge set Θ∗, of size l≤ m, B chooses s, ŝ ←↩ Zp. It
then defines the challenge as κ0 and CTΘ∗ = (C0,C1, (C2,i, ti)i∈[l]) such that,

κ0 = g
(αs+α1ŝ)
T , C0 = gs+ŝ

1 , C1 = gbs
1 ,

C2,i = g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)+ŝ(u0+u1yi+u2yi

2+...+umyi
m+cti)

1 ,

= g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)+ŝ(p0+p1yi+p2yi

2+...+pmyi
m)

1

· g
cŝ(q0+q1yi+q2yi

2+...+qmyi
m+ti)

1 .
However, gc

1 is not available to B. We here implicitly set ti = −(q0 + q1yi +
q2yi

2 + . . . + qmyi
m) for each i ∈ [l].

Then, C2,i = g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)+ŝ(p0+p1yi+p2yi

2+...+pmyi
m)

1

where ith element of the challenge set Θ∗ is denoted by yi. B then chooses
κ1 ←↩ K and returns

(
κb,C0,C1, (C2,i, ti)i∈[l]

)
as the challenge ciphertext.

Notice that, the challenge ciphertext (κ0,CTΘ∗) is identically distributed
to the output of SFEncrypt(mpk,msk,Θ∗). Hence, the ciphertext is semi-
functional.

Phase-II Queries. Same as Phase-I queries.
Guess. A output b′ ∈ {0, 1}. B outputs 1 if b = b′ and 0 otherwise.

As noted earlier, if r̂ in DDHG2 problem instance is 0, then the kth secret key is
normal. Otherwise the kth secret key is semi-functional. The challenge ciphertext
is also constructed semi-functional.

However, we need to argue that the tags (ti)i∈[l] output as the challenge
ciphertext component are uniformly random to the view of adversary A who
has got hold of the semi-functional kth secret key containing π. This is because,
according to Sect. 5.2.1, the tags that are used in the semi-functional secret key

Large Universe Subset Predicate Encryption 77

and semi-functional ciphertext, should also be uniformly random and indepen-
dent.

Recall that, π =
∑

x∈Ωk

(q0 + q1x + q2x
2 + . . . + qmxm) and ti = −(q0 + q1yi +

q2yi
2 + . . .+ qmyi

m) for all yi ∈ Θ∗. As Ωk �⊂ Θ∗, due to natural restriction of the
security game, there exists an x∗ ∈ Ωk but x∗ /∈ Θ∗. Then, π =

∑

x∈Ωk

(q0 + q1x +

q2x
2+. . .+qmxm) =

∑

x∈Ωk

x�=x∗

(q0+q1x+q2x
2+. . .+qmxm)+(q0+q1(x∗)+q2(x∗)2+

. . . + qm(x∗)m). Let us denote π∗ = (q0 + q1(x∗)+ q2(x∗)2 + . . . + qm(x∗)m) and
π̂ =

∑

xi∈Ωk\{x∗}
πi where πi = (q0 + q1xi + q2xi

2 + . . . + qmxi
m).

Next we argue that π∗ is independent of all the tags (ti)i∈[l]. The relation
between π∗ and (t1, t2, . . . , tl) can be expressed as the following linear system of
equations t = Vq.

⎛

⎜
⎜
⎜
⎜
⎜
⎝

π∗

t1
t2
...
tl

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 x∗ (x∗)2 · · · (x∗)m

1 y1 (y1)2 · · · (y1)m

1 y2 (y2)2 · · · (y2)m

...
...

...
. . .

...
1 yl (yl)2 · · · (yl)m

⎞

⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

q0
q1
q2
...

qm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1)

Notice that V is Vandermonde matrix of rank (l + 1) as x∗ �∈ Θ∗ =
{y1, y2, . . . , yl}. The vector q is completely hidden from adversary A and was
chosen uniformly at random. Therefore, π∗ is independent of (t1, t2, . . . , tl) and
uniformly random in the view of A.

Recall that, π = π̂ + π∗ where π̂ is linear combination of (k− 1) many m-
degree polynomials as |Ωk| = k. The collection π1, . . . , πk−1 and π∗ also result
in a full rank matrix as each encodes m-degree polynomial evaluated on distinct
k points. This effectively ensures that π∗ is independent of π̂ as well. Thus,
π = π̂ + π∗ is now a one-time-pad evaluation in the view of A. Hence, π is
uniformly random and independent choice from Zp. This completes the proof as
(π, (ti)i∈[l]) are uniformly random quantities. Thereby, the ciphertext and kth

secret key is properly simulated.
If A can distinguish normal and semi-functional secret keys, the solver B will

use it to break DDHG2 problem. Thus,
∣
∣
∣Adv2,k−1

A (λ) − Adv2,k
A (λ)

∣
∣
∣ ≤ εDDHG2

. �

Lemma 3 (Game2,q to Game3). For any efficient adversary A that makes at

most q key queries,
∣
∣
∣Adv2,q

A (λ) − Adv3A(λ)
∣
∣
∣ ≤ 2/p.

Proof. In Game2,q, all the queried secret keys and the challenge ciphertext are
transformed into semi-functional. To argue that the challenge encapsulation key
κ is identically distributed to uniformly random GT element, we perform a con-
ceptual change on the parameters of Game2,q.

78 S. Chatterjee and S. Mukherjee

Setup. Choose b ←↩ Z×
p , α1, α, c, w, (ui, wi)i∈[0,m] ←↩ Zp. It sets α2 = b−1(α −

α1), d = b−1(w − c), vi = b−1(wi − ui). The public parameters are gener-
ated as (g1, gb

1, (g
wi
1)i∈[0,m], g

w
1 , gα

T) where gT = e(g1, g2). Notice that gT is
independent of α1 as α was chosen independently.

Phase-I Queries. Given key query on Ω, choose r, r̂, π′ ←↩ Zp. Compute the
secret key SKΩ = (K1,K2,K3,K4,K5) as follows.

K1 = gr
2 ,K2 = gcr+r̂

2 ,K3 = gπ′
2 · g

r
∑

x∈Ω
(u0+u1x+u2x2+...+umxm)

2 ,

K4 = gdr−r̂b−1

2 , K5 = g
b−1(α−π′)
2 · g

r
∑

x∈Ω
(v0+v1x+v2x2+...+vmxm)

2 .
The reduction sets π′ = α1+r̂π. Therefore, if r̂ = 0, π can take any uniformly
random value from Zp. On the other hand, if r̂ �= 0, due to the independent
random choice of both π′ and α1, π is uniformly random and independent.
Therefore no matter what value r̂ takes, π is uniformly random and indepen-
dent. As a result, the secret keys are simulated properly.
Here the point of focus is that both K3 and K5 are generated using randomly
chosen π′ that is independent of α1 as long as r̂ �= 0 and none of the other
key components contain α1. The secret key SKΩ therefore, is independent of
α1 if r̂ �= 0. This happens with probability 1 − 1/p.

Challenge. On challenge Θ∗, choose s, ŝ ←↩ Zp and (ti)i∈[l] ←↩ Zp. Compute
the ciphertext CTΘ∗ = (κ0,C0,C1, (C2,i, ti)i∈[l]) where,

κ0 = e(g1, g2)αs+α1ŝ = gαs
T · gα1ŝ

T ,C0 = gs+ŝ
1 ,C1 = gbs

1 ,

C2,i = g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)+ŝ(u0+u1yi+u2yi

2+...+umyi
m+cti)

1 .
Phase-II Queries. Same as Phase-I queries.
Guess. A output b′ ∈ {0, 1}. Output 1 if b = b′ and 0 otherwise.

All the scalars used in mpk and (SKΩi
)i∈[q] are independent of α1 as we already

have seen. Notice that none of the ciphertext components but κ0 contain α1. The
entropy due to α1 thus makes κ0 random as long as ŝ �= 0. In fact, this allows the
replacement of κ0 by a uniform random choice κ1 ←↩ K provided ŝ �= 0. Recall
that, this exactly is the situation of Game3. Thus,

∣
∣
∣Adv2,q

A (λ) − Adv3A(λ)
∣
∣
∣ ≤ Pr[r̂ =

0] + Pr[ŝ = 0] ≤ 2/p.
Notice that, κb output in Game3 completely hides b. Thus, for any adversary

A, the advantage Adv3A(λ) = 0. �

5.3 Applications

Katz et al. [20] described a few black-box transformations from SPE to well
known cryptographic protocols. We can perform those transformations on our
adaptive-secure SPE2 construction. Note that, all these transformations were
designed for small-universe SPE. We therefore restrict our large-universe SPE2

construction to small universe. This is done by considering the universes U =
{1, · · · , n} and U ′ = {1, · · · , n} where U is universe for protocol to be designed
and U ′ is the universe for underlying SPE2 for some n ∈ N. Note that, we
formalize the black-box transformation [20] as a function called Encode.

Large Universe Subset Predicate Encryption 79

WIBE. The generic transformation of [20] allows construction of WIBE [1] which
supports presence of wildcard in the data-index. Here, any index (key-index,
data-index alike) will be first processed bit-wise into a ordered set of double
size (i.e. n = 2n). Informally, Encode expands z ∈ {0, 1, ∗}n to T ∈ {0, 1}n
where T [2i − 1] stores zi and T [2i] stores z̄i if zi ∈ {0, 1}. In case of zi = ∗, both
T [2i−1] and T [2i] stores 1. Then S(z) is defined as the set that stores all indexes
that are set in T . The WIBE KeyGen and Encrypt is defined as SPE2.KeyGen and
SPE2.Encrypt running on such set S respectively. We can achieve a WKD-IBE [2]
in a similar way with the exception that now, the wildcard is present in the key-
index.

CP-ABE. As [20] mentions, the most interesting black-box transformation of
SPE is that it can achieve a secure CP-ABE (though restricted to DNF formula
only) with constant-size key. Intuitively, an attribute set A can satisfy a DNF
formula C1∨C2∨· · · Ct where each Cj represents a conjunction over some subset
of the attributes if ∃j ∈ [t] such that Cj ⊆ A. This is done by associating the
clauses Cj as well as A to corresponding revocation list i.e. U \Cj and U \A and
perform the subset predicate evaluation: U \ A ⊆ U \ Cj where U denotes the
attribute universe of size n. Precisely, Encode takes input Z ∈ {C1, · · · , Ct,A}
and outputs S(Z) =

{
i ∈ U ′ : T (Z)[i] = 1

}
where for all i ∈ {1, 2, · · · , n} (here

n = n).

T (Z)[i] =

{
0 if i ∈ Z,

1 if i �∈ Z.

Table 1. Comparison of efficient standard model WIBE schemes.

WIBE schemes |mpk| |SK| |CT| Decrypt Security Assumption

BBG-WIBE [1] (n + 4)G (n + 2)G (n + 2)G + GT 2[P] Adaptive n-BDHI

Wa-WIBE [1] ((� + 1)n + 3)G (n + 1)G ((� + 1)n + 2)G + GT (n + 1)[P] Adaptive DBDH

SPE-1 [20] (2n + 2)G1 + GT G2 + Zp (2n + 1)G1 + GT 1[P] Selective q-BDHI

SPE-2 [20] (2n + 1)G1 + 2G2 G1 + G2 2nG1 + G2 + GT 2[P] Selective DBDH

SPE2 (2n + 6)G1 + GT 5G2 (n + 2)G1 + GT + nZp 3[P] Adaptive SXDH

Table 2. Comparison of efficient standard model DNF schemes.

DNF schemes |mpk| |SK| |CT| Decrypt Security Assumption

SPE-1 [20] (n + 2)G1 + GT G2 + Zp γ((n + 1)G1 + GT) 1[P] Selective q-BDHI

SPE-2 [20] (n + 1)G1 + 2G2 G1 + G2 γ(2nG1 + G2 + GT) 2[P] Selective DBDH

SPE2 (n + 3)G1 + GT 5G2 γ((n + 2)G1 + GT + nZp) 3[P] Adaptive SXDH

We now compare the black-box transformation [20] applied on SPE2 in terms
of performance to previous WIBE and DNF schemes (both dedicated and due to

80 S. Chatterjee and S. Mukherjee

black-box transformation [20]). From Table 1, we see that both adaptive secure
BBG-WIBE and Wa-WIBE attain much bigger secret key size. Although, other
parameter sizes are quite competitive to ours, Wa-WIBE is proved secure under
parameterized assumption. In case of the second one however, the all the param-
eters blow up. Our construction not only attains similar parameter size as the
selective secure constructions due to black-box transformation [20], is also proved
adaptive secure under standard assumption. In case of DNF in Table 2, ours is the
only scheme that achieve adaptive security and still enjoy constant-size key and
constant number of pairing evaluations during decryption. Again, as compared
to black-box transformation [20], our parameter sizes are quite competitive. We
denote size of public key by |mpk|, size of secret key by |SK|, size of ciphertext by
|CT|, number of primitive operations required in Decrypt. Here n denotes depth
of hierarchy,
 is bit-length of identity in Wa-IBE [23], γ is number of disjunctive
clauses in a DNF formula and [P] denotes number of pairing operations.

6 Conclusion

We presented two large universe constructions of subset predicate encryption
(SPE). Both the constructions achieve constant-size secret key and efficient
decryption. First construction achieves constant-size ciphertext as well and is
proven selectively secure in a restricted model. Our second and main construc-
tion achieves adaptive security in the asymmetric prime order bilinear group
setting under the SXDH assumption. The ciphertext size in this construction is
of O(|Θ∗|). It is an interesting open problem to design an SPE with constant-size
ciphertext without the kind of restriction we imposed in the selective security
model so is any improvement of our second construction in terms of the cipher-
text size.

References

1. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006 26

2. Abdalla, M., Kiltz, E., Neven, G.: Generalized key delegation for hierarchical
identity-based encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 139–154. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74835-9 10

3. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

4. Attrapadung, N.: Dual system encryption framework in prime-order groups. In:
IACR Cryptology ePrint Archive 2015, 390 (2015)

https://doi.org/10.1007/11787006_26
https://doi.org/10.1007/978-3-540-74835-9_10
https://doi.org/10.1007/978-3-540-74835-9_10
https://doi.org/10.1007/978-3-642-55220-5_31

Large Universe Subset Predicate Encryption 81

5. Attrapadung, N., Libert, B.: Functional encryption for inner product: achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 23

6. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

8. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

9. Boyen, X.: General Ad Hoc encryption from exponent inversion IBE. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 394–411. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72540-4 23

10. Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assump-
tions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 622–639. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 34

11. Chatterjee, S., Mukherjee, S.: Large universe subset predicate encryption based
on static assumption (without random oracle). Cryptology ePrint Archive, Report
2018/1190 (2018). https://eprint.iacr.org/2018/1190

12. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

13. Chen, J., Gong, J.: ABE with tag made easy. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10625, pp. 35–65. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70697-9 2

14. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 12

15. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
39–59. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73489-5 4

16. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008). Applications of Algebra to Cryptography

17. Gong, J., Libert, B., Ramanna, S.C.: Compact IBBE and Fuzzy IBE from sim-
ple assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol.
11035, pp. 563–582. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98113-0 30

18. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS, pp. 89–98 (2006)

19. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. J.
Cryptol. 30(4), 1116–1156 (2017)

https://doi.org/10.1007/978-3-642-13013-7_23
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/978-3-540-72540-4_23
https://doi.org/10.1007/978-3-642-55220-5_34
https://doi.org/10.1007/978-3-642-55220-5_34
https://eprint.iacr.org/2018/1190
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-70697-9_2
https://doi.org/10.1007/978-3-319-70697-9_2
https://doi.org/10.1007/978-3-540-76900-2_12
https://doi.org/10.1007/978-3-540-76900-2_12
https://doi.org/10.1007/978-3-540-73489-5_4
https://doi.org/10.1007/978-3-319-98113-0_30
https://doi.org/10.1007/978-3-319-98113-0_30

82 S. Chatterjee and S. Mukherjee

20. Katz, J., Maffei, M., Malavolta, G., Schröder, D.: Subset predicate encryption
and its applications. In: Capkun, S., Chow, S.S.M. (eds.) CANS 2017. LNCS, vol.
11261, pp. 115–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02641-7 6

21. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

22. Ramanna, S.C., Sarkar, P.: Efficient adaptively secure IBBE from the SXDH
assumption. IEEE IT 62(10), 5709–5726 (2016)

23. Waters, B.: Efficient identity-based encryption without random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005). https://doi.org/10.1007/11426639 7

24. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

25. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

26. Wee, H.: Déjà Q: Encore! un petit IBE. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016. LNCS, vol. 9563, pp. 237–258. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49099-0 9

https://doi.org/10.1007/978-3-030-02641-7_6
https://doi.org/10.1007/978-3-030-02641-7_6
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-662-49099-0_9
https://doi.org/10.1007/978-3-662-49099-0_9

An Improved RNS Variant of the BFV
Homomorphic Encryption Scheme

Shai Halevi1, Yuriy Polyakov2(B), and Victor Shoup3

1 IBM Research, Yorktown Heights, USA
2 New Jersey Institute of Technology, Newark, USA

polyakov@njit.edu
3 New York University, New York, USA

Abstract. We present an optimized variant of the Brakerski/Fan-
Vercauteren (BFV) homomorphic encryption scheme and its efficient
implementation in PALISADE. Our algorithmic improvements focus on
optimizing decryption and homomorphic multiplication in the Residue
Number System (RNS), using the Chinese Remainder Theorem (CRT)
to represent and manipulate the large coefficients in the ciphertext poly-
nomials. These improvements are based on our original general-purpose
techniques for CRT basis extension and scaling that can be applied to
many other lattice-based cryptographic primitives. Our variant is simpler
and significantly more efficient than the RNS variant proposed by Bajard
et al. both in terms of noise growth and the computational complexity
of the underlying CRT basis extension and scaling procedures.

Keywords: Lattice-based cryptography · Homomorphic encryption ·
Post-quantum cryptography · Residue number systems ·
Software implementation

1 Introduction

Homomorphic encryption has been an area of active research since the first
design of a Fully Homomorphic Encryption (FHE) scheme by Gentry [9]. FHE
allows performing arbitrary secure computations over encrypted sensitive data
without ever decrypting them. One of the potential applications is to outsource
computations to a public cloud without compromising data privacy.

A salient property of contemporary FHE schemes is that ciphertexts are
“noisy”, where the noise increases with every homomorphic operation, and
decryption starts failing once the noise becomes too large. This is addressed
by setting the parameters large enough to accommodate some level of noise,

S. Halevi—Supported by the Defense Advanced Research Projects Agency (DARPA)
and Army Research Office (ARO) under Contract No. W911NF-15-C-0236.
Y. Polyakov—Supported by the Sloan Foundation and Defense Advanced Research
Projects Agency (DARPA) and Army Research Office (ARO) under Contracts No.
W911NF-15-C-0226 and W911NF-15-C-0233.

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 83–105, 2019.
https://doi.org/10.1007/978-3-030-12612-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_5

84 S. Halevi et al.

and using Gentry’s “bootstrapping” technique to reduce the noise once it gets
too close to the decryption-error level. However, the large parameters make
homomorphic computations quite slow, and so significant effort was devoted
to constructing more efficient schemes. Two of the most promising schemes in
terms of practical performance have been the BGV scheme of Brakerski, Gentry
and Vaikuntanathan [6], and the Fan-Vercauteren variant of Brakerski’s scale-
invariant scheme [5,8], which we call here the BFV scheme. Both of these schemes
rely on the hardness of the Ring Learning With Errors (RLWE) problem.

Both schemes manipulate elements in large cyclotomic rings, modulo integers
with many hundreds of bits. Implementing the necessary multi-precision modular
arithmetic is expensive, and one way of making it faster is to use a “Residue
Number System” (RNS) to represent the big integers. Namely, the big modulus q
is chosen as a smooth integer, q =

∏
i qi, where the factors qi are same-size,

pairwise coprime, single-precision integers (typically of size 30–60 bits). Using
the Chinese Remainder Theorem (CRT), an integer x ∈ Zq can be represented
by its CRT components {xi = x mod qi ∈ Zqi

}i, and operations on x in Zq can
be implemented by applying the same operations to each CRT component xi in
its own ring Zqi

.
Unfortunately, both BGV and BFV feature some scaling operations that can-

not be directly implemented on the CRT components. In both schemes there is
sometimes a need to interpret x ∈ Zq as a rational number (say in the interval
[−q/2, q/2)) and then either lift x to a larger ring ZQ for Q > q, or to scale
it down and round to get y = �δx� ∈ Zt (for some δ � 1 and accordingly
t � q). These operations seem to require that x be translated from its CRT rep-
resentation back to standard “positional” representation, but computing these
translations back and forth will negate the gains from using RNS to begin with.

While implementations of the BGV scheme using CRT representation are
known (e.g., [10,13]), implementing BFV in this manner seems harder. One dif-
ference is that BFV features more of these scaling operations than BGV. Another
is that in BGV numbers are typically scaled by just single-precision factors, while
in BFV these factors are often big, of order similar to the multi-precision mod-
ulus q. An implementation of the BFV scheme using CRT representation was
recently reported by Bajard et al. [3], featuring significant speedup as compared
to earlier implementations such as in [16]. This implementation, however, uses
somewhat complex procedures, and moreover these procedures incur an increase
in the ciphertext noise.

In the current work we propose simpler and more efficient procedures for the
CRT-based scaling and lifting as compared to the procedures in [3]. The same
techniques are also applicable to other scale-invariant homomorphic encryption
schemes, such as YASHE and YASHE’ [4], and many other lattice-based cryp-
tographic primitives that require CRT-based scaling.

We implemented our procedures in the PALISADE library [19]. We evalu-
ate the runtime performance of decryption and homomorphic multiplication in
the range of multiplicative depths from 1 to 100. For example, the runtimes
for depth-20 decryption and homomorphic multiplication are 3.1 and 62 ms,

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme 85

respectively, which can already support outsourced-computing applications with
latencies up to few seconds, even without bootstrapping.

Our Contributions. We propose new procedures for CRT basis extension and
scaling in RNS using floating-point arithmetic for some intermediate computa-
tions. Our procedures have a low probability of introducing small approximation
errors, but in the context of homomorphic operations these errors are inconse-
quential. As we explain in Sect. 4.5, they increase the ciphertext noise after
homomorphic multiplications by at most 2 bits for any depth of the multiplica-
tion circuit (typically significantly less than 1 bit), and those contributions were
not observable in our experiments. We apply these techniques to develop:

– A BFV decryption procedure supporting CRT moduli up to 59 bits, using
extended precision floating-point arithmetic natively available in x86 archi-
tectures1.

– A BFV homomorphic multiplication procedure that has practically the same
noise requirements as the textbook BFV.

– A multi-threaded CPU implementation of our BFV variant in PALISADE.

Comparison with the RNS Variant by Bajard et al. [3]2. Al Badawi
et al. [2] compare the complexity and performance of decryption and homo-
morphic multiplication in our variant and the one proposed in [3]. For the
experimental comparison, they implemented both variants in PALISADE (CPU)
and DSI BFV (GPU). Their analysis shows that the practical (experimentally
observed) noise growth of our variant is much lower. For instance, our variant
supports the multiplicative depth of 35 at n = 215 and log2 q = 600 while the
Bajard et al. variant can support only the depth of 26. They also demonstrate
that the computational complexity and actual runtimes for our variant both in
GPU and CPU are lower (even when the noise growth difference is ignored)
in all cases, except for the decryption when the size of CRT moduli is 60 bits.
The combined effect of smaller noise growth and computational complexity is a
speed-up of 2x or more in homomorphic multiplication for the same depth.

2 Notations and Basic Procedures

For an integer n ≥ 2, we identify below the ring Zn with its representation
in the symmetric interval Z ∩ [−n/2, n/2). For an arbitrary real number x, we
denote by [x]n the reduction of x into that interval (namely the real number
x′ ∈ [−n/2, n/2) such that x′ − x is an integer divisible by n). We also denote
by �x�, �x	, and �x� the rounding of x to an integer down, up, and to the
nearest integer, respectively. We denote vectors by boldface letters, and extend
the notations �x�, �x	, �x� to vectors element-wise.

1 Larger CRT moduli can be supported using “double double” floating-points.
2 A more detailed comparison is presented in the extended version of this paper [12].

86 S. Halevi et al.

Throughout this paper we fix a set of k co-prime moduli q1, . . . , qk (all integers
larger than 1), and let their product be q =

∏k
i=1 qi. For all i ∈ {1, . . . , k}, we

also denote

q∗
i = q/qi ∈ Z and q̃i = q∗

i
−1 (mod qi) ∈ Zqi

, (1)

namely, q̃i ∈ [− qi

2 , qi

2

)
and q∗

i · q̃i = 1 (mod qi).

Complexity Measures. In our setting we always assume that the moduli qi are
single-precision integers (i.e. |qi| < 263), and that operations modulo qi are inex-
pensive. We assign unit cost to mod-qi multiplication and ignore additions, and
analyze the complexity of our routines just by counting the number of multi-
plications. Our procedures also include floating-point operations, and here too
we assign unit cost to floating-point multiplications and divisions (typically in
“double float” format as per IEEE 754) and ignore additions.

2.1 CRT Representation

We denote the CRT representation of an integer x ∈ Zq relative to the CRT basis
{q1, . . . , qk} by x ∼ (x1, . . . , xk) with xi = [x]qi

∈ Zqi
. The formula expressing x

in terms of the xi’s is x =
∑k

i=1 xi · q̃i · q∗
i (mod q). This formula can be used

in more than one way to “reconstruct” the value x ∈ Zq from the xi’s. In this
work we use in particular the following two facts:

x =
(k∑

i=1

[xi · q̃i]qi
· q∗

i︸ ︷︷ ︸
∈Zq

) − υ · q for some υ ∈ Z, (2)

and x =
(k∑

i=1

xi · q̃i · q∗
i︸ ︷︷ ︸

∈[− qiq

4 ,
qiq

4)

) − υ′ · q for some υ′ ∈ Z. (3)

2.2 CRT Basis Extension

Let x ∈ Zq be given in CRT representation (x1, . . . , xk), and suppose we want
to extend the CRT basis by computing [x]p ∈ Zp for some other modulus p > 1.

Using Eq. 2, we would like to compute [x]p =
[(∑k

i=1[xi · q̃i]qi
· q∗

i

) − υ · q
]

p
.

The main challenge here is to compute υ (which is an integer in Zk). The formula
for υ is:

υ =

⌈
(k∑

i=1

[xi · q̃i]qi
· q∗

i

)
/q

⌋

=

⌈
k∑

i=1

[xi · q̃i]qi
· q∗

i

q

⌋

=

⌈
k∑

i=1

[xi · q̃i]qi

qi

⌋

.

To get υ, we compute for every i ∈ {1, . . . , k} the element yi := [xi · q̃i]qi
(using

single-precision integer arithmetic), and next the rational number zi := yi/qi

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme 87

(in floating-point). Then we sum up all the zi’s and round them to get υ. Once
we have the value of υ, as well as all the yi’s, we can directly compute Eq. 2
modulo p to get [x]p =

[(∑k
i=1 yi · [q∗

i]p
) − υ · [q]p

]

p
.

In our setting p and the qi’s are parameters that can be pre-processed. In
particular we pre-compute all the values [q∗

i]p’s and [q]p, so the last equation
becomes just an inner-product of two (k + 1)-vectors in Zp.

Complexity Analysis. The computation of υ requires k single-precision inte-
ger multiplications to compute the yi’s, then k floating-point division operations
to compute the zi’s, and then some additions and one rounding operation. In
total it takes k integer and k + 1 floating-point operations. When p is a single-
precision integer, the last inner product takes k + 1 integer multiplications, so
the entire procedure takes 2k + 1 integer and k + 1 floating-point operations.

For larger p we may need to do k + 1 multi-precision multiplications, but
we may be able to use CRT representation again. When p =

∏k′

j=1 pj for single-
precision co-prime pj ’s, we can compute υ only once and then compute the last
inner product for each pi (provided that we pre-computed [q∗

i]pj
’s and [q]pj

for
all i and j). The overall complexity in this case will be kk′ + k + k′ integer
operations and k + 1 floating-point operations.

Correctness. The only source of errors in this procedure is the floating-point
operations when computing υ: Instead of the exact values zi = yi/qi, we compute
their floating-point approximations z∗

i (with error εi), and so we obtain υ∗ =
�∑i(zi + εi)� which may be different from υ = �∑i zi�.

Since the zi’s are all in [− 1
2 , 1

2), then using IEEE 754 double floats we have
that the εi’s are bounded in magnitude by 2−53, and therefore the overall magni-
tude of the error term ε :=

∑
εi is bounded, |ε| < k · 2−53. If we assume k ≤ 32,

this gives us |ε| < 2−48. (Similarly, if we use single floats we get |ε| < 2−19.)
When applying the procedure above, we should generally check that the

resulting υ∗ that we get is outside the possible-error region Z+ 1
2 ± ε. If υ∗ falls

in the error region, we can re-run this procedure using higher precision (and
hence smaller ε) until the result is outside the error region.

It turns out that for our use cases, we do not need to check for these error
conditions, and can often get by with a rather low precision for this computation.
One reason for this is that for our uses, even if we do incur a floating-point
approximation error, it only results in a small contribution to ciphertext noise,
which has no practical significance.

Moreover, we almost never see these approximation errors, because the value∑
i zi that we want to approximate equals x/q modulo 1. When we use that

procedure in our implementation, we sometimes have (pseudo)random values of
x ∈ Zq, in which case the probability that the result falls in the error region
is bounded by 2|ε|. In other cases, we even have a guarantee that |x| � q (say
|x| < q/4), so we know a-priori that the value will always fall outside of the error
region. For more details, see Sects. 2.4 and 4.5.

88 S. Halevi et al.

Comparison to Other Approaches for Computing υ. Two exact
approaches for computing υ are presented in [22] and [15]. The first approach
introduces an auxiliary modulus and performs the CRT computations both for
p and the extra modulus, thus significantly increasing the number of integer
operations and also increasing the implementation complexity [22]. The second
approach computes successive fixed-point approximations until the computed
value of υ is outside the error region (in one setting) or computes the exact
value (in another setting with higher complexity) [15]. Both of these techniques
incur higher computational costs than our method.

2.3 Simple Scaling in CRT Representation

Let x ∈ Zq be given in CRT representation (x1, . . . , xk), and let t ∈ Z be an
integer modulus t ≥ 2. We want to “scale down” x by a t/q factor, namely to
compute the integer y = �t/q · x� ∈ Zt. We do it using Eq. 3, as follows:

y :=
⌈

t

q
· x

⌋

=

⌈
(k∑

i=1

xi · (q̃i · t

qi
)
)
⌋

− υ′ · t =

[⌈
(k∑

i=1

xi · (q̃i · t

qi
)
)
⌋]

t

. (4)

The last equation follows since the two sides are congruent modulo t and are
both in the interval [−t/2, t/2), hence they must be equal.

In our context, t and the qi’s are parameters that we can pre-process (while
the xi’s are computed on-line). We pre-compute the rational numbers tq̃i/qi ∈
[−t/2, t/2), separated into their integer and fractional parts:

tq̃i/qi = ωi + θi, with ωi ∈ Zt and θi ∈ [− 1
2 , 1

2).

With the ωi’s and θi pre-computed, we take as input the xi’s, compute the two
sums w := [

∑
i xiωi]t and v := �∑i xiθi� , (using integer arithmetic for w and

floating-point arithmetic for v), then output [w + v]t.

Complexity Analysis. The procedure above takes k floating-point multiplica-
tions, some additions, and one rounding to compute v, and then an inner product
mod t between two (k+1)-vectors: the single-precision vector (x1, . . . , xk, 1) and
the mod-t vector (ω1, . . . , ωk, v). When the modulus t is a single-precision inte-
ger, the ωi’s are also single-precision integers, and hence the inner product takes
k integer multiplications. The total complexity is therefore k + 1 floating-point
operations and k integer modular multiplications.

For a larger t we may need to do O(k) multi-precision operations to compute
the inner product. But in some cases we can also use CRT representation here:
For t =

∏k′

j=1 tj (with the tj ’s co-prime), we can represent each ωi ∈ Zt in the
CRT basis ωi,j = [ωi]tj

. We can then compute the result y in the same CRT basis,
yj = [y]tj

by setting wj = [
∑

i xiωi,j]tj
for all j, and then yj = [v+wj]tj

. This will
still take only k + 1 floating-point operations, but kk′ modular multiplications.

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme 89

Correctness. The only source of errors in this routine is the computation of
v := �∑i xiθi�: Since we only keep the θi’s with limited precision, we need to
worry about the error exceeding the precision. Let θ̃i be the floating-point values
that we keep, while θi are the exact values (θi = tq̃i/q−ωi) and εi are the errors,
εi = θ̃i − θi. Since |θ̃i| ≤ 1

2 , then for IEEE 754 double floats we have |εi| < 2−53.
The value that our procedure computes for v is therefore ṽ := �∑i xi(θi + εi)�,
which may be different from v := �∑i xiθi�.

We can easily control the magnitude of the error term
∑

xiεi by limiting
the size of the qi’s: Since |xi| < qi/2 for all i, then |∑i xiεi| < 2−54 · ∑

i qi. For
example, if k < 32, as long as all our moduli satisfy qi ≤ 247 < 254/4k, we are
ensured that |∑ xiεi| < 1/4.

If we use the extended double floating-point precision (“long double” in
C/C++) natively supported by x86 architectures, which stores 64 bits in the
significand as compared to 52 bits in the IEEE 754 double float, we can increase
the upper bound for the moduli up to qi ≤ 259.

When using the scaling procedure for decryption, we can keep y′ = �t/q · x�
close to an integer by controlling the ciphertext noise. For example, we can
ensure that y′ (and therefore also v) is within 1/4 of an integer, and thus if we
also restrict the size of the qi’s as above, then we always get the correct result.
Using the scaling procedure in other settings may require more care, see the next
section for a discussion.

2.4 Complex Scaling in CRT Representation

The scaling procedure above was made simpler by the fact that we scale by a t/q
factor, where the original integer is in Zq and the result is computed modulo t.
During homomorphic multiplication, however, we have a more complicated set-
ting: Over there we have three parameters t, p, q, where q =

∏k
i=1 qi as before,

we similarly have p =
∏k′

j=1 pj , and we know that p is co-prime with q and p � t.
The input is x ∈ Z ∩ [−qp/2t, qp/2t) ⊂ Zqp, represented in the CRT basis

{q1, . . . , qk, p1, . . . , pk′}. We need to scale it by a t/q factor and round, and we
want the result modulo q in the CRT basis {q1, . . . , qk}. Namely, we want to
compute y :=

[�t/q · x�]
q
. This complex scaling is accomplished in two steps:

1. First we essentially apply the CRT scaling procedure from Sect. 2.3 using
q′ = qp and t′ = tp, computing y′ := [�tp/qp · x�]p (which we can think of
as computing y′ modulo tp and then discarding the mod-t CRT component).
Note that since x ∈ [−qp/2t, qp/2t) then �tp/qp · x� ∈ [−p/2, p/2). Hence
even though we computed y′ modulo p, we know that y′ = �t/q · x� without
modular reduction.

2. Having a representation of y′ relative to CRT basis {p1, . . . , pk′}, we extend
this basis using the procedure from Sect. 2.2, adding [y′]qi

for all the qi’s. Then
we just discard the mod-pj CRT components, thus getting a representation
of y = [y′]q.

The second step is a straightforward application of the procedure from
Sect. 2.2, but the first step needs some explanation. The input consists of

90 S. Halevi et al.

the CRT components xi = [x]qi
and x′

j = [x]pj
, and we denote Q := qp,

Q∗
i := Q/qi = q∗

i p, Q′
j
∗ := Q/pj = qp∗

j , and also Q̃i = [(Q∗
i)

−1]qi
and

Q̃′
j = [(Q′

j
∗)−1]pj

. Then by Eq. 3 we have

t

q
·x =

t

q

(k∑

i=1

xiQ̃iQ
∗
i +

k′
∑

j=1

x′
jQ̃

′
jQ

′
j
∗−υ′Q

)
=

k∑

i=1

xi · tQ̃ip

qi
+

k′
∑

j=1

x′
j ·tQ̃′

jp
∗
j −tυ′p.

Reducing the above expression modulo any one of the pj ’s, all but one of the
terms in the second sum drop out (as well as the term tυ′p), and we get:

[�t/q · x�]pj
=

[⌈∑k
i=1 xi · tQ̃ip

qi

⌋
+ x′

j · [tQ̃′
jp

∗
j]pj

]

pj

.

As in Sect. 2.3, we pre-compute all the values tQ̃ip
qi

, breaking them into their

integral and fractional parts, tQ̃ip
qi

= ω′
i + θ′

i with ω′
i ∈ Zp and θ′

i ∈ [− 1
2 , 1

2). We
store all the θ′

i’s as double (or extended double) floats, for every i, j we store
the single-precision integer ω′

i,j = [ω′
i]pj

, and for every j we also store λj :=
[tQ̃′

jp
∗
j]pj

. Then given the integer x, represented as x ∼ (x1, . . . , xk, x′
1, . . . , x

′
k′),

we compute

v := �∑i θ′
ixi� , and for all j wj :=

[
λjx

′
j +

∑
i ω′

i,jxi

]
pj

and y′
j :=

[
v + wj]pj

.

Then we have y′
j = [�t/q · x�]pj

, and we return y′ ∼ {y′
1, . . . , y

′
k′} ∈ Zp.

Correctness. When computing the value v = �∑i θ′
ixi�, we can bound the

floating-point inaccuracy before rounding below 1/4, just as in the simple scaling
procedure from Sect. 2.3. However, when we use complex scaling during homo-
morphic multiplication, we do not have the guarantee that the exact value before
rounding is close to an integer, and so we may encounter rounding errors where
instead of rounding to the nearest integer, we will round to the second nearest.
Contrary to the case of decryption, here such “rounding errors” are perfectly
acceptable, as the rounding error is only added to the ciphertext noise.

We remark also that in the second CRT basis extension (from Zp to Zpq,
before discarding the mod-p components), we regain the guarantee that the exact
value before rounding is close to an integer: This is because the value that we
seek before rounding is v = x/p (mod 1), we have the guarantee that |x| ≤ q/2,
and our parameter choices imply that p > q (by a substantial margin). Since
|x
p | ≤ q

2p � 1
2 , we are ensured to land outside of the error region of Z + 1

2 ± ε.
See Sect. 4.5 for more details of our parameter choices.

Complexity Analysis. The complexity of the first step above where we com-
pute y′ = [�t/q · x�]p, is similar to the simple scaling procedure from Sect. 2.3.
Namely we have k +1 floating-point operations when computing v, and then for

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme 91

each modulus pj we have k + 1 single-precision modular multiplications to com-
pute wj . Hence the total complexity of this step is k+1 floating-point operations
and k′(k + 1) modular multiplications.

The complexity of the CRT basis extension, as described in Sect. 2.2, is k +1
floating-point operations and k′(k + 1) + k single-precision modular multiplica-
tions. Hence the total complexity of complex scaling is 2(k + 1) floating-point
operations and 2k′(k + 1) + k modular multiplications.

3 Background: Scale-Invariant Homomorphic Encryption

For self-containment we briefly sketch Brakerski’s “scale-invariant” homomor-
phic encryption scheme from [5]. Then we discuss the Fan-Vercauteren variant
of the scheme and some optimizations due to Bajard et al. [3].

3.1 Brakerski’s Scheme

The starting point for Brakerski’s scheme is Regev’s encryption scheme [21], with
plaintext space Zt for some modulus t > 1, where secret keys and ciphertexts are
dimension-n vectors over Z

n
q for some other modulus q � t. (Throughout this

section we assume for simplicity of notations that q is divisible by t. It is well
known that this condition in superfluous, however, and replacing q/t by �q/t�
everywhere works just as well.)

The decryption invariant of this scheme is that a ciphertext ct, encrypting a
message m ∈ Zt relative to secret key sk, satisfies

[〈sk, ct〉]q = m · q/t + e, for a small noise term |e| � q/t,

where 〈·, ·〉 denotes inner product. Decryption is therefore implemented by set-
ting m :=

[⌈
t
q · [〈sk, ct〉]q

⌋]
t
3. Homomorphic addition of two ciphertext vectors

ct1, ct2 consists of just adding the two vectors over Zq, and has the effect of
adding the plaintexts and also adding the two noise terms. Homomorphic mul-
tiplication is more involved, consisting of the following parts:

Key Generation. In Brakerski’s scheme, the secret key sk must also be small,
namely ‖sk‖ � q/t. Moreover, the public key includes a “relinearization gadget”,
consisting of log q matrices Wi ∈ Z

n×n2

q . Denoting the tensor product of sk with
itself (over Z) by sk∗ = sk ⊗ sk ∈ Z

n2
, the relinearization matrices satisfy

[sk × Wi]q = 2isk∗ + e∗
i , for a small noise term ‖e∗

i ‖ � q/t.

3 We ignore the encryption procedure in this section, since it is mostly irrelevant for
the current work. For suitable choices, Regev proved that this encryption scheme is
CPA-secure under the LWE assumption.

92 S. Halevi et al.

Homomorphic Multiplication. Let ct1, ct2 be two ciphertexts, satisfying the
decryption invariant [〈sk, cti〉]q = mi · q/t + ei. The multiplication consists of:

1. Tensoring. Taking the tensor product ct1 ⊗ ct2 without modular reduction,
then scaling down by t/q, hence getting ct∗ :=

[�t/q · ct1 ⊗ ct2�
]
q
.

2. Relinearization. Decomposing ct∗ into bits ct∗
i ∈ {0, 1}n2

(where ct∗ =∑
i 2ict∗

i), then setting ct× := [
∑

i Wi × ct∗
i]q.

To see that ct× is indeed an encryption of the product m1m2 relative to sk,
denote the rational vector before rounding by ct′ = t/q · ct1 ⊗ ct2, and the
rounding error by ε (so ct∗ = ε + ct′ + q · something), and we have

〈
sk∗, ct′〉 =

〈
sk ⊗ sk, t

q
ct1 ⊗ ct2

〉
= t/q · (〈sk, ct1〉 · 〈sk, ct2〉

= t/q · (m1 · q/t + e1 + k1q)(m2 · q/t + e2 + k2q)

= m1m2 · q/t + e1m2 + m1e2 + e1e2t/q + t(k1e2 + k2e1)︸ ︷︷ ︸
e′�q/t

+q · something.

Including the rounding error, and since sk is small (and hence so is sk∗), we get

〈sk∗, ct∗〉 = 〈sk∗, ε + ct′ + k∗q〉 = m1m2 ·q/t+e′ + 〈sk∗, ε〉
︸ ︷︷ ︸

e′′�q/t

+q ·something, (5)

so ct∗ encrypts m1m2 relative to sk∗. After relinearization, we have

〈
sk, ct×〉

= sk ×
∑

i

Wi × ct∗
i =

∑

i

〈
(2isk∗ + e∗

i), ct
∗
i

〉

=
〈
sk∗,

∑

i

2ict∗
i

〉
+

∑

i

〈e∗
i , ct

∗
i 〉 = m1m2 · q/t + e′′ +

∑

i

〈e∗
i , ct

∗
i 〉

︸ ︷︷ ︸
ẽ

(mod q).

Since the ct∗
i ’s are small then so is the noise term ẽ, as needed.

3.2 The Fan-Vercauteren Variant

In [8], Fan and Vercauteren ported Brakerski’s scheme to the ring-LWE setting,
working over polynomial rings rather than over the integers. Below we let R =
Z[X]/〈f (X)〉 be a fixed ring, where f ∈ Z[X] is a monic irreducible polynomial of
degree n (typically an m-th cyclotomic polynomial Φm (x) of degree n = φ (m)).
We use some convenient basis to represent R over Z (most often just the power
basis, i.e., the coefficient representation of the polynomials). Also, let Rt = R/tR
denote the quotient ring for an integer modulus t ∈ Z in the same basis.

The plaintext space of this variant is Rt for some t > 1 (i.e., a polynomial
of degree at most n − 1 with coefficients in Zt), the secret key is a 2-vector
sk = (1, s) ∈ R2 with ‖s‖ � q/t, ciphertexts are 2-vectors ct = (c0, c1) ∈ R2

q

for another modulus q � t, and the decryption invariant is the same as in

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme 93

Brakerski’s scheme, namely [
⌈

t
q [〈sk, ct〉]q

⌋
]t = [

⌈
t
q [c0 + c1s]q

⌋
]t = m · q

t + e for
a small noise term e ∈ R, ‖e‖ � q/t.

For encryption, the public key includes a low-noise encryption of zero,
ct0 = (ct00, ct

0
1), and to encrypt m ∈ Rt they choose low-norm elements

u, e1, e2 ∈ R and set Encct0(m) := [u·ct0+(e0, e1)+(Δm, 0)]q, where Δ = �q/t�.
Homomorphic addition just adds the ciphertext vectors in R2

q , and homomorphic
multiplication is the same as in Brakerski’s scheme, except (a) the special form
of sk lets them optimize the relinearization “matrices” and use vectors instead,
and (b) they use base-w decomposition (for a suitable word-size w) instead of
base-2 decomposition4. In a little more detail:

(a) For the secret-key vector sk = (1, s), the tensor product sk ⊗ sk can be
represented by the 3-vector sk∗ = (1, s, s2). Similarly, for the two ciphertexts
cti = (ci

0, c
i
1) (i = 1, 2), it is sufficient to represent the tensor ct1 ⊗ ct2 by

the 3-vector ct∗ = (c∗
0, c

∗
1, c

∗
2) = [c10c

2
0, (c10c

2
1 + c11c

2
0), c11c

2
1]q.

(b) For the relinearization gadget, all they need is to “encrypt” the single ele-
ment s2 using sk. When using a base-w decomposition, they have vec-
tors (rather than matrices) Wi = (βi, αi), with uniform αi’s and βi =
[wis2 − αis + ei]q (for low-norm noise terms ei).

After computing the three-vector ct∗ = (c∗
0, c

∗
1, c

∗
2) as above during homo-

morphic multiplication, they decompose c∗
2 into its base-w digits, c∗

2 =∑
i wic∗

2,i. Then computing ct× =
∑

i Wi × ct∗
i only requires that they set

c̃0 := [
k∑

i=1

βic
∗
2,i]q, c̃1 := [

k∑

i=1

αic
∗
2,i]q, and then ct× := [(c∗

0 + c̃0, c
∗
1 + c̃1)]q.

3.3 CRT Representation and Optimized Relinearization

Bajard et al. described in [3] several optimizations of the Fan-Vercauteren vari-
ant, centered around the use of CRT representation of the large integers involved.
(They called it a Residue Number System, or RNS, but in this writeup we prefer
the term CRT representation.) Specifically, the modulus q is chosen as a product
of same-size, pairwise coprime, single-precision moduli, q =

∏k
i=1 qi, and each

element x ∈ Zq is represented by the vector (xi = [x]qi
)k
i=1.

One significant optimization from [3] relates to the relinearization step in
homomorphic multiplication. Recall that in that step we decompose the cipher-
text ct∗ into low-norm components ct∗

i , such that reconstructing ct∗ from the
ct∗

i ’s is a linear operation, namely ct∗ =
∑

i τict∗
i for some known coefficients

τi. Instead of decomposing ct∗ into bit or digits, Bajard et al. suggested to use
its CRT components ct∗

i = [ct∗q̃i]qi
and secret key components s2i = [s2 q∗

i]q

4 Fan and Vercauteren described in [8] a second relinearization procedure, using a
technique of Gentry et al. from [10]. We ignore this alternative procedure here.

94 S. Halevi et al.

when computing the relinearization key, and rely on the reconstruction from
Eq. 3 (which is linear).

We remark that it is more efficient to use the CRT components ct∗
i = [ct∗]qi

and secret key components s2i = [s2q̃iq
∗
i]q. The latter corresponds to [s2]qi

for
the i-th modulus and 0’s for all other moduli. This optimization removes one
scalar multiplication in each ct∗

i term (as compared to [3]) and eliminates the
need for any precomputed parameters in the relinearization procedure.

As in [3], we also apply digit decomposition to the residues, thus allowing a
more granular control of noise growth at small multiplicative depths. A detailed
discussion of this technique is provided in Appendix B.1 of [3].

4 Our Optimizations

4.1 The Scheme that We Implemented

The scheme that we implemented is the Fan-Vercauteren variant of Braker-
ski’s scheme (we refer to this variant as the “BFV scheme”), with a modified
CRT-based relinearization step of Bajard et al. We begin with a concrete stand-
alone description of the functions that we implemented, then describe our sim-
pler/faster CRT-based implementation of these functions.

Parameters. Let t,m, q ∈ Z be parameters (where the single-precision t deter-
mines the plaintext space, and m, |q| depend on t and the security parameter),
such that q =

∏k
i=1 qi for same-size, pairwise coprime, single-precision moduli qi.

Let n = φ(m), and let R = Z[X]/Φm(X) be the m-th cyclotomic ring, and
denote by Rq = R/qR and Rt = R/tR the quotient rings. In our implemen-
tation we represent elements in R,Rq, Rt in the power basis (i.e., polynomial
coefficients), but note that other “small bases” are possible (such as the decod-
ing basis from [18]), and for non-power-of-two cyclotomics they could sometimes
result in better parameters. We let χe, χk be distributions over low-norm ele-
ments in R in the power basis, specifically we use discrete Gaussians for χe and
the uniform distribution over {−1, 0, 1}n for χk.

Key Generation. For the secret key, choose a low-norm secret key s ← χk and
set sk := (1, s) ∈ R2. For the public encryption key, choose a uniform random
a ∈ Rq and e ← χe, set b := [−(as + e)]q ∈ Rq, and compute pk := (b, a).

Recall that we denote q∗
i = q

qi
and q̃i =

[
q∗
i

−1
]
qi

. For relinearization, choose
a uniform αi ∈ Rq and ei ← χe, and set βi = [q̃iq

∗
i s2 − αis + ei]q for each

i = 1, . . . , k. The public key consists of pk and all the vectors Wi := (βi, αi).

Encryption. To encrypt m ∈ Rt, choose u ← χk and e′
0, e

′
1 ← χe and output

the ciphertext ct := [u · pk + (e′
0, e

′
1) + (Δm, 0)]q, where Δ = q/t.

Decryption. For a ciphertext ct = (c0, c1), compute x := [〈sk, ct〉]q = [c0+c1s]q
and output m := [�x · t/q�]t.

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme 95

Homomorphic Addition. On input ct1, ct2, output [ct1 + ct2]q.

Homomorphic Multiplication. Given cti = (ci
0, c

i
1)i=1,2, do the following:

1. Tensoring: Compute c′
0 := c10c

2
0, c′

1 := c10c
2
1 + c11c

2
0, c′

2 := c11c
2
1 ∈ R without

modular reduction, then set c∗
i = [�t/q · c′

i�]q for i = 0, 1, 2.
2. Relinearization: Decompose c∗

2 into its CRT components c∗
2,i = [c∗

2]qi
, set

c̃0 := [
∑k

i=1 βic
∗
2,i]q, c̃1 := [

∑k
i=1 αic

∗
2,i]q, output ct× := [(c∗

0 + c̃0, c
∗
1 + c̃1)]q.

4.2 Pre-computed Values

When setting the parameters, we pre-compute some tables to help speed things
up later. Specifically:

– We pre-compute and store all the values that are needed for the simple CRT
scaling procedure in Sect. 2.3: For each i = 1, . . . , k, we compute the rational
number tq̃i/qi, split into integral and fractional parts. Namely, ωi :=

⌈
t · q̃i

qi

⌋
∈

Zt and θi := t·q̃i

qi
− ωi ∈ [− 1

2 , 1
2). We store ωi as a single-precision integer and

θi as a double (or long double) float.
– We also choose a second set of single-precision coprime numbers {pj}k′

j=1

(coprime to all the qi’s), such that p :=
∏

j pj is bigger than q by a large
enough margin. Specifically we will need to ensure that for c10, c

1
1, c

2
0, c

2
1 ∈ R

with coefficients in [−q/2, q/2), the element c∗ := c10c
2
1 + c11c

2
0 ∈ R (without

modular reduction) has coefficients in the range [−qp/2t, qp/2t). For our set-
ting of parameters, where all the qi’s and pj ’s are 55-bit primes and t is up to
32 bits, it is sufficient to take k′ = k + 1. For smaller CRT primes or larger
values of t, a higher value of k′ may be needed.
Below we denote for all j, p∗

j := p/pj and p̃j := [(p∗
j)

−1]pj
. We also denote

Q := qp, and for every i, j we have Q∗
i := Q/qi = q∗

i p, Q′
j
∗ := Q/pj = qp∗

j ,
and also Q̃i = [(Q∗

i)
−1]qi

and Q̃′
j = [(Q′

j
∗)−1]pj

.
– We pre-compute and store all the values that are needed in the procedure from

Sect. 2.2 to extend the CRT basis {q1, . . . , qk} by each of the pj ’s, as well the
values that are needed to extend the CRT basis {p1, . . . , pk′} by each of the
qi’s. Namely for all i, j we store the single-precision integers μi,j = [q∗

i]pj
and

νi,j = [p∗
j]qi

, as well as φj = [q]pj
and ψi = [p]qi

.
– We also pre-compute and store all the values that are needed for the complex

CRT scaling procedure in Sect. 2.4. Namely, we pre-compute all the values
tQ̃ip

qi
, breaking them into their integral and fractional parts, tQ̃ip

qi
= ω′

i + θ′
i

with ω′
i ∈ Zp and θ′

i ∈ [− 1
2 , 1

2). We store all the θ′
i’s as double (or long double)

floats, for every i, j we store the single-precision integer ω′
i,j = [ω′

i]pj
, and for

every j we also store λj := [tQ̃′
jp

∗
j]pj

.

4.3 Key-Generation and Encryption

The key-generation and encryption procedures are implemented in a straightfor-
ward manner. Small integers such as noise and key coefficients are drawn from χe

96 S. Halevi et al.

or χk and stored as single-precision integers, while uniform elements in a ← Zq

are chosen directly in the CRT basis by drawing uniform values ai ∈ Zqi
for all i.

Operations in Rq are implemented directly in CRT representation, often
requiring the computation of the number-theoretic-transform (NTT) modulo
the separate qi’s. The only operations that require computations outside of Rq

are decryption and homomorphic multiplications, as described next.

4.4 Decryption

Given the ciphertext ct = (c0, c1) and secret key sk = (1, s), we first compute the
inner product in Rq, setting x := [c0 + c1s]q. We obtain the result in coefficient
representation relative to the CRT basis q1, . . . , qk. Namely for each coefficient
of x (call it x� ∈ Zq) we have the CRT components x�,i = [x�]qi

, i = 1, . . . , k, � =
0, . . . , n − 1.

We then apply to each coefficient x� the simple scaling procedure from
Sect. 2.3. This yields the scaled coefficients m� = [�t/q · x��]t, representing the
element m = [�t/q · x�]t ∈ Rt, as needed.

As we explained in Sect. 2.3, in the context of decryption we can ensure
correctness by controlling the noise to guarantee that each t/q · x� is within 1/4
of an integer, and limit the size of the qi’s to 59 bits to ensure that the error is
bounded below 1/4.

Decryption Complexity. The dominant factor in decryption is NTTs modulo
the individual qi’s, that are used to compute the inner product x := [c0+c1s]q ∈
Rq. Specifically we need 2k of them, k in the forward direction (one for each [c1]qi

)
and k inverse NTTs (one for each [c1s]qi

). These operations require O(kn log n)
single-precision modular multiplications, where n = φ(m) is the degree of the
polynomials and k is the number of moduli qi. Once this computation is done,
the simple CRT scaling procedure takes (k + 1)n floating-point operations and
kn integer multiplications modulo t.

4.5 Homomorphic Multiplication

The input to homomorphic multiplication is two ciphertexts ct1 = (c10, c
1
1), ct

2 =
(c20, c

2
1), where each ca

b ∈ Rq is represented in the power basis with each coefficient
represented in the CRT basis {qi}k

i=1. The procedure consists of three steps,
where we first compute the “double-precision” elements c′

0, c
′
1, c

′
2 ∈ R, then scale

them down to get c∗
i := [�t/q · c′

i�]q, and finally apply relinearization.

Multiplication with Double Precision. We begin by extending the CRT
basis using the procedure from Sect. 2.2. For each coefficient x in any of the ca

b ’s,
we are given the CRT representation (x1, . . . , xk) with xi = [x]qi

and compute
also the CRT components (x′

1, . . . , x
′
k′) with x′

j = [x]pj
. This gives us a repre-

sentation of the same integer x, in the larger ring Zqp, which in turn yields a
representation of the ca

b ’s in the larger ring Rqp.

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme 97

Next we compute the three elements c′
0 := [c10c

2
0]pq, c′

1 := [c10c
2
1 + c11c

2
0]pq and

c′
2 := [c11c

2
1]pq, where all the operations are in the ring Rqp. By our choice of

parameters (with p sufficiently larger than q), we know that there is no modular
reduction in these expressions, so in fact we obtain c′

0, c
′
1, c

′
2 ∈ R. These elements

are represented in the power basis, with each coefficient x ∈ Zqp represented by
(x1, . . . , xk, x′

1, . . . , x
′
k′) with xi = [x]qi

and x′
j = [x]pj

.

Scaling Back Down to Rq. By our choice of parameters, we know that all
the coefficients of the c′

�’s are integers in the range [−qp/2t, qp/2t), as needed
for the complex CRT scaling procedure from Sect. 2.4. We therefore apply that
procedure to each coefficient x ∈ Zqp, computing x∗ = [�t/q · x�]q. This gives
us the power-basis representation of the elements c∗

� = [�t/q · c′
��]q ∈ Rq for

� = 0, 1, 2.

Relinearization. For relinearization, we use a modification of the technique
by Bajard et al. [3] discussed in Sect. 3.3. Namely, at this point we have the
elements c∗

0, c
∗
1, c

∗
2 ∈ Rq in CRT representation, c∗

�,i = [c∗
�]qi

(for � = 0, 1, 2 and
i = 1, . . . , k). To relinearize, we use the relinearization gadget vectors (βi, αi)
that were computed during key generation. For each qi, we first compute c̃0,i :=
[∑k

j=1[βj]qi
·c∗

2,j

]
qi

and c̃1,i :=
[∑k

j=1[αj]qi
·c∗

2,j

]
qi

, and then c×
0,i := [c∗

0,i + c̃0,i]qi

and c×
1,i := [c∗

1,i + c̃1,i]qi
.

This gives the relinearized ciphertext ct× = (c×
0 , c×

1) ∈ R2
q , which is the

output of the homomorphic multiplication procedure.

Correctness. Correctness of the CRT basis-extension and complex scaling pro-
cedures was discussed in Sects. 2.2 and 2.4, respectively. Though both CRT basis
extension and scaling procedures may introduce some approximation errors due
to the use of floating-point arithmetic, these errors only increase the ciphertext
noise by a small (practically negligible) amount.

To illustrate the small contribution of approximation errors, consider the
noise estimate for the original Brakerski’s scheme described in Sect. 3.1. (Sim-
ilar arguments apply to any other scale-invariant scheme, including BFV and
YASHE.) The approximation error in the CRT basis extension before the
tensor product can change the value of υ at most by one, with probability
≈ 2−48. This means that the value of k1 or k2 may grow by one with the
same probability, thus increasing the noise term t(k1e2 + k2e1) in Eq. 5 to
t((k1 + ε1)e2 + (k2 + ε2)e1), where εi ∈ {0, 1} and Pr[εi �= 0] ≈ 2−47+log n.
Recall that ki ≈ �〈sk, cti〉/q�, so ‖ki‖∞’s are at least

√
n. As n in all practical

cases is typically above 1024 (and often much higher), the difference between
k1e2 + k2e1 and (k1 + ε1)e2 + (k2 + ε2)e1 is less than 3% (and even this only
occurring with probability 2−47+log n). In our experiments we never noticed this
effect.

To study the effect of the approximation error introduced by scaling, we
replace the term ct∗ = ε + ct′ + q · something for Brakerski’s scheme (Sect. 3.1)
with ct∗ = ε + εs + ct′ + q·something, where εs is the scaling error. To ensure that

98 S. Halevi et al.

the noise growth is not impacted, it suffices to ensure that the added noise term
|sk2 · εs| (corresponding to the term 〈sk∗, εs〉 in the description from Sect. 3.1)
is smaller than the previous noise term of t(k1e2 + k2e1). This is always the case
if we have ‖εs‖∞ < 1/4 (as we do for decryption), but in some cases we can also
handle larger values of εs (e.g., later in the computation where the terms e1, e2
are already larger, or when working with a large plaintext-space modulus t).

Finally, we note that the floating-point arithmetic in the second CRT-basis
extension (inside complex scaling) does not produce any errors. This is because
we use p � q (to ensure that all the coefficients before scaling fit in the range
[−pq/2t,+pq/2t]). The analysis from Sect. 2.2 then tells us that when computing
the CRT basis extension from mod-p to mod-pq we never end up in the error
region.

Multiplication Complexity. As for decryption, here too the dominant factor
is the NTTs that we must compute when performing multiplication operations
in Rq and Rqp. Specifically we need to transform the four elements ca

b ∈ Rqp

after the CRT extension in order to compute the three c′
� ∈ Rqp, then transform

back the c′
�’s before scaling them back to Rq to get the c∗

� ’s. For relinearization
we need to transform all the elements c∗

2,i ∈ Rq before multiplying them by the
αi’s and βi’s, and also transform c∗

0, c
∗
1 before we can add them. Each transform

in Rq takes k single-precision NTTs, and each transform in Rqp takes k + k′

NTTs, so the total number of single-precision NTTs is k2+9k+7k′. Each trans-
form takes O(n log n) multiplications, so the NTTs take O(k2n log n) modular
multiplications overall. In our experiments, these NTTs account for 58–77% of
the homomorphic multiplication running time.

In addition to these NTTs, we spend 4(k + k′)n modular multiplications
computing the c′

�’s in the transformed domain and 2k2n modular multiplica-
tions computing the products c∗

2,iβi and c∗
2,iβi in the transformed domain. We

also spend 4n(kk′ + k + k′) modular multiplications and 4(k + 1)n floating-
point operations in the CRT-extension procedure in Sect. 4.5, and additional
3n(2k′(k+1)+k) modular multiplications and 3(k′ +k+2)n floating-point oper-
ations in the complex scaling in Sect. 4.5. Hence other than the NTTs, we have a
total of (7k+3k′ +10)n floating-point operations and (2k2+10kk′ +11k+14k′)n
modular multiplications.

4.6 Noise Growth

We show that our decryption and homomorphic multiplication procedures intro-
duce almost no extra noise (up to 2 bits) as compared to the textbook BFV.

Textbook BFV. The worst-case noise bound for correct decryption using text-
book BFV is written as [16]:

‖v‖∞ < (Δ − rt(q))/2, (6)

where rt(q) = t (q/t − Δ).

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme 99

The initial noise in [c0 + c1s]q is bounded by Be (1 + 2δ ‖s‖∞), where Be

is the effective (low-probability) upper bound for Gaussian errors, and δ is the
polynomial multiplication expansion factor sup {‖ab‖∞/‖a‖∞‖b‖∞ : a, b ∈ R}.
The initial noise is the same in all three BFV variants as the first RNS procedure
is introduced at the scaling step of decryption.

The noise bound for binary tree multiplication of depth L is given by [16]

‖vmult‖∞ < CL
1 V + LCL−1

1 C2, (7)

where ‖v1‖∞ , ‖v2‖∞ < V and

C1 = (1 + ε2) δ2t ‖s‖∞ , ε2 = 4 (δ ‖s‖∞)−1
, (8)

C2 = δ2 ‖s‖∞
(‖s‖∞ + t2

)
+ δ�w,qwBe. (9)

Here �w,q is the number of base-w digits in q.

Our RNS Variant. Our RNS variant has the following requirement for correct
decryption:

‖v′‖∞ < (Δ − rt(q))/4. (10)

Here the denominator is 4 (rather than 2 in the textbook BFV) to guarantee
that the simple scaling procedure does not approach the possible-error region
Z + 1

2 ± ε. This adds at most 1 bit of noise to the textbook BFV bound.
The low-probability (around 2−48 in our implementation) approximation

error in CRT basis extension before computing the tensor product without mod-
ular reduction simply changes the value of ε2 to 5 (δ ‖s‖∞)−1, which can be easily
shown using the same procedure as in Appendix I of [4] for the YASHE’ scheme
and the same logic as described for Brakerski’s scheme in Sect. 4.5. Note that
the value of ε2 � 1, which implies that the change of the factor from 4 to 5
should have no practical effect, especially considering the low probability of this
approximation error. We did not observe any practical noise increase due to this
error in our experiments.

The effect of the scaling approximation error can be factored into the existing
term δ2 ‖s‖2∞ in C2, which corresponds to the error in rounding t/q · ct1 ⊗ ct2.
In our case, we need to multiply this term by (1 + 2 ‖εs‖∞), as explained in
Sect. 4.5. As ‖εs‖∞ < 1/4 when we use the same floating-point precision as in
decryption, this term is smaller than C ′

1V in all practical settings, including the
case of fresh ciphertexts at t = 2 (see Sect. 4.5 for a more detailed discussion).
We add 1 more bit to the textbook BFV noise to account for the potential extra
noise during first-level multiplications, especially if larger values of ‖εs‖∞ are
selected to use a lower precision for floating-point arithmetic. For homomorphic
multiplications at higher levels, we will always have ‖εs‖∞ � C ′

1V .
The relinearization term δ�w,qwBe in the textbook BFV expression gets

replaced with δ�w,2ν wkBe, where ν is the CRT moduli bit size, which is the
same as for the Bajard et al. variant and the same as for the textbook BFV if
w ≤ ν.

100 S. Halevi et al.

In summary, the binary tree multiplication noise constraint for our RNS
variant is given by

‖v′
mult‖∞ < C ′L

1 V + LC ′L−1
1 C ′

2, (11)

C ′
1 = (1 + ε′

2) δ2t ‖s‖∞ , ε′
2 = 5 (δ ‖s‖∞)−1

, (12)

C ′
2 = δ2 ‖s‖∞

({1 + 2 ‖εs‖∞} ‖s‖∞ + t2
)

+ δ�w,2ν wkBe. (13)

5 Implementation Details and Performance Results

5.1 Parameter Selection

Tighter Heuristic (Average-Case) Noise Bounds. The polynomial mul-
tiplication expansion factor δ in Eqs. 8 and 9 is typically selected as δ = n for
the worst-case scenario [3,16]. However, our experiments for the textbook BFV,
our BFV variant, and products of discrete Gaussian and ternary generated poly-
nomials showed that we can select δ = C

√
n for practical experiments, where

C is a constant close to one (for the case of power-of-two cyclotomics). This
follows from the Central Limit Theorem (or rather subgaussian analysis), since
all dominant polynomial multiplication terms result from the multiplication of
polynomials with zero-centered random coefficients.

The highest experimental value of C for which we observed decryption fail-
ures was 0.9. We also ran numerous experiments at n varying from 210 to 217

for the cases of (1) multiplying a discrete Gaussian polynomial by a ternary uni-
form polynomial and (2) multiplying a discrete uniform polynomial by a ternary
uniform polynomial, which cover the dominant terms in the noise constraints
for BFV. The highest experimental value of C (observed for the product of a
discrete Gaussian polynomial by a ternary uniform polynomial at n = 1024) was
1.75. Therefore, we selected C = 2 for our experiments, i.e., we set δ = 2

√
n.

Security. To choose the ring dimension n, we ran the LWE security estimator5

(commit f59326c) [1] to find the lowest security levels for the uSVP, decoding,
and dual attacks following the standard homomorphic encryption security rec-
ommendations [7]. We selected the least value of the number of security bits λ
for all 3 attacks on classical computers based on the estimates for the BKZ sieve
reduction cost model.

The secret-key polynomials were generated using discrete ternary uniform
distribution over {−1, 0, 1}n. In all of our experiments, we selected the minimum
ciphertext modulus bitwidth that satisfied the correctness constraint for the
lowest ring dimension n corresponding to the security level λ ≥ 128.

Other Parameters. We set the Gaussian distribution parameter σ to 8/
√

2π
[7], the error bound Be to 6σ, and the lower bound for p to 2tnq. For the digit
decomposition of residues in the relinearization procedure, we used the base
w of 30 bits for the range of multiplicative depths from 1 to 10. For larger
multiplicative depths, we utilized solely the CRT decomposition.
5 https://bitbucket.org/malb/lwe-estimator.

https://bitbucket.org/malb/lwe-estimator

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme 101

5.2 Implementation Details

Software Implementation. The BFV scheme based on the decryption and
homomorphic multiplication algorithms described in this paper was implemented
in PALISADE [19], a modular C++11 lattice cryptography library that supports
several SHE and proxy re-encryption schemes based on cyclotomic rings [20]. The
results presented in this work were obtained for a power-of-two cyclotomic ring
Z[x]/〈xn + 1〉, which supports efficient polynomial multiplication using nega-
cylic convolution [17]. For efficient modular multiplication implementation in
NTT, scaling, and CRT basis extension, we used the Number Theory Library
(NTL) function MulModPrecon, which is described in Lines 5–7 of Algorithm
2 in [14]. All single-precision integer computations were done in unsigned 64-bit
integers. Floating-point computations were done in IEEE 754 double-precision
and extended double-precision floating-point formats. Our implementation of the
BFV scheme is publicly accessible (included in PALISADE starting with v1.1).

Loop Parallelization. Multi-threading in our implementation is achieved via
OpenMP. The loop parallelization in the scaling and CRT basis extension oper-
ations is applied at the level of single-precision polynomial coefficients (w.r.t.
n). The loop parallelization for NTT and component-wise vector multiplications
(polynomial multiplication in the evaluation representation) is applied at the
level of CRT moduli (w.r.t. k).

Experimental Setup. We ran the experiments in PALISADE version 1.1,
which includes NTL version 10.5.0 and GMP version 6.1.2. The evaluation envi-
ronment for the single-threaded experiments was a commodity desktop computer
system with an Intel Core i7-3770 CPU with 4 cores rated at 3.40 GHz and 16 GB
of memory, running Linux CentOS 7. The compiler was g++ (GCC) 5.3.1. The
evaluation environment for the multi-threaded experiments was a server system
with 2 sockets of 16-core Intel Xeon E5-2698 v3 at 2.30 GHz CPU (which is a
Haswell processor) and 250 GB of RAM. The compiler was g++ (GCC) 4.8.5.

5.3 Results

Single-Threaded Mode. Table 1 presents the timing results for the range of
multiplicative depths L from 1 to 100 for the single-threaded mode of operation.
It also demonstrates the contributions of CRT basis extension, scaling, and NTT
to the homomorphic multiplication time (excluding the relinearization).

Table 1 suggests that the relative contribution of CRT basis extension and
scaling operations to the homomorphic multiplication runtime (without relin-
earization) first declines from 42% at L = 1 to 37% at L = 10, and then grows
up to 50% at L = 100. The remaining execution time is dominated by NTT oper-
ations. Our complexity and profiling analysis indicated that the initial decline is
caused by a decreasing contribution (w.r.t. to modular multiplications in NTTs)
of the linear terms of k and k′ to the computational complexity of homomorphic

102 S. Halevi et al.

multiplication as k increases from 1 to 4. The subsequent increase in relative
execution time is due to the O(k2n) modular multiplications needed for CRT
basis extension and scaling operations, which start contributing more than the
O(kn log n) modular multiplications in the NTT operations for polynomial mul-
tiplications as k further increases.

Table 1. Timing results for decryption, homomorphic multiplication, and relineariza-
tion in the single-threaded mode; t = 2, log2 qi ≈ 55, λ ≥ 128

L n log2 q k Dec. [ms] Mul. [ms] Relin. [ms] Multiplication [%]

CRT ext. Scaling NTT

1 211 55 1 0.15 3.16 0.41 34 8 52

5 212 110 2 0.49 10.1 2.58 29 9 56

10 213 220 4 1.89 38.9 18.7 27 10 56

20 214 440 8 8.3 174 78.3 27 14 54

30 215 605 11 25.8 555 332 27 15 52

50 216 1,045 19 95.8 2,368 2,066 30 20 46

100 217 2,090 38 409 12,890 16,994 30 20 46

Table 2. Timing results with multiple threads for decryption, multiplication, and
relinearization, for the case of L = 20, n = 214, k = 8 from Table 1

of threads Dec. [ms] Mul. [ms] Relin. [ms] Mul. + Relin. [ms]

1 9.83 178.6 95.8 274.4

2 5.90 114.1 53.8 168.0

3 4.93 79.5 49.6 129.1

4 3.92 66.3 37.4 103.7

8 3.13 43.3 29.2 72.5

9 3.17 38.0 31.4 69.5

16 3.37 34.9 32.7 67.6

17 3.46 32.0 33.2 65.2

32 3.47 29.2 33.1 62.4

Our profiling analysis showed that the contributions of floating-point opera-
tions to CRT basis extension and scaling were always under 5% and 10% (under
5% for k > 5), respectively. This corresponded to at most 2.5% of the total
homomorphic multiplication time (typically the value was closer to 1%). This
result justifies the practical use of our much simpler algorithms, as compared to
[3], considering that our approach has lower computational complexity.

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme 103

Table 1 also shows that the contribution of the relinearization procedure to
the total homomorphic multiplication time grows from 11% (L = 1) to 57%
(L = 100) due to the quadratic dependence of the number of NTTs in the
relinearization procedure on the number of coprime moduli k.

The profiling of the decryption operation showed that only 8% (L = 100)
to 18% (L = 1) was spent on CRT scaling while at least 60% was consumed
by NTT operations and up to 10% by component-wise vector products. This
supports our analysis, asserting that the decryption operation is dominated by
NTT, and the effect of the scaling operation is insignificant.

Multi-threaded Mode. Table 2 illustrates the runtimes for L = 20 on a 32-
core server system when the number of threads is varied from 1 to 32. The highest
runtime improvement factors for decryption and homomorphic multiplication
(with relinearization) are 3.1 and 4.4, respectively.

The decryption runtime is dominated by NTT, and the NTTs are paral-
lelized at the level of CRT moduli (parameter k, which is 8 in this case). Table 2
shows that the maximum improvement is indeed achieved at 8 threads. Any fur-
ther increase in the number of threads increases the overhead related to multi-
threading without providing any improvement in speed. The theoretical maxi-
mum improvement factor of 8 is not reached most likely due to the distribution
of the load between the cores of two sockets in the server. A more careful fine-
tuning of OpenMP thread affinity settings would be needed to achieve a higher
improvement factor, which is beyond the scope of this work.

The runtime of homomorphic multiplication (without relinearization) shows
a more significant improvement with increase in the number of threads: it contin-
ues improving until 32 threads and reaches the speedup of 6.1 compared to the
single-threaded execution time. This effect is due to the CRT basis extension and
scaling operations, which are parallelized at the level of polynomial coefficients
(parameter n = 214). However, as the contribution of NTT operations is high
(nearly 70% for the single-threaded mode, as illustrated in Table 1), the bene-
fits of parallelization due to CRT basis extension and scaling are limited (their
relative contribution becomes smaller as the number of threads increases).

The relinearization procedure is NTT-bound and, therefore, shows approxi-
mately the same relative improvement as the decryption procedure, i.e., a factor
of 2.9, which reaches its maximum value at 8 threads.

In summary, our analysis suggests that the proposed CRT basis extension
and scaling operations parallelize well (w.r.t. ring dimension n) but the over-
all parallelization improvements of homomorphic multiplication and decryption
largely depend on the parallelization of NTT operations. In our implementa-
tion, no intra-NTT parallelization was applied and thus the overall benefits of
parallelization were limited.

6 Conclusion

In this work we described simpler alternatives to the CRT basis extension and
scaling procedures of Bajard et al. [3], and implemented them in the PALISADE

104 S. Halevi et al.

library [19]. These procedures are based on the use of floating-point arithmetic
for certain intermediate computations. These procedures are not only simpler but
also have lower computational complexity and noise growth than the procedures
proposed in [3].

Our single- and multi-threaded experiments suggest that the main bottleneck
of the implementation of our BFV variant is NTT operations. In other words, the
cost of the CRT maintenance procedures, i.e., CRT basis extension and scaling,
is relatively small. Therefore, further improvements in the BFV runtimes can be
achieved by optimizing the NTT operations, focusing on their parallelization.

We have shown that our procedures can be applied to any scale-invariant
homomorphic encryption scheme based on Brakerski’s scheme, including
YASHE. The CRT basis extension and scaling procedures may also be utilized
in other lattice-based cryptographic constructions; for instance, scaling is a com-
mon technique used in many lattice schemes based on dual Regev’s cryptosys-
tem [11,21].

References

1. Albrecht, M., Scott, S., Player, R.: On the concrete hardness of learning with errors.
J. Math. Cryptol. 9(3), 169–203 (2015)

2. Badawi, A.A., Polyakov, Y., Aung, K.M.M., Veeravalli, B., Rohloff, K.: Imple-
mentation and performance evaluation of RNS variants of the BFV homomorphic
encryption scheme. Cryptology ePrint Archive, Report 2018/589 (2018)

3. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

4. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45239-0 4

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012, pp. 309–325 (2012)

7. Chase, M., Chen, H., Ding, J., Goldwasser, S., et al.: Security of homomorphic
encryption. Technical report, HomomorphicEncryption.org, Redmond WA, July
2017

8. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012)

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp.
169–178 (2009)

10. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_49

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme 105

11. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

12. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. Cryptology ePrint Archive, Report 2018/117 (2018)

13. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library (2013). https://shaih.github.io/pubs/he-library.pdf

14. Harvey, D.: Faster arithmetic for number-theoretic transforms. J. Symb. Comput.
60, 113–119 (2014)

15. Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-rower architecture for fast par-
allel montgomery multiplication. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 523–538. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 37

16. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06734-6 20

17. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0 8

18. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

19. Polyakov, Y., Rohloff, K., Ryan, G.W.: PALISADE lattice cryptography library.
https://git.njit.edu/palisade/PALISADE. Accessed Sept 2018

20. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanathan, V.: Fast proxy re-encryption
for publish/subscribe systems. ACM Trans. Priv. Secur. 20(4), 14:1–14:31 (2017)

21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34 (2009)

22. Shenoy, A.P., Kumaresan, R.: Fast base extension using a redundant modulus in
RNS. IEEE Trans. Comput. 38(2), 292–297 (1989)

https://shaih.github.io/pubs/he-library.pdf
https://doi.org/10.1007/3-540-45539-6_37
https://doi.org/10.1007/3-540-45539-6_37
https://doi.org/10.1007/978-3-319-06734-6_20
https://doi.org/10.1007/978-3-319-06734-6_20
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-642-38348-9_3
https://git.njit.edu/palisade/PALISADE

New Techniques for Multi-value Input
Homomorphic Evaluation

and Applications

Sergiu Carpov1, Malika Izabachène1(B), and Victor Mollimard1,2

1 CEA LIST, Point Courrier 172, 91191 Gif-sur-Yvette Cedex, France
malika.izabachene@gmail.com

2 Univ. Lyon, ENS de Lyon, 15 Parvis Renè Descartes, 69342 Lyon Cedex, France

Abstract. In this paper, we propose a new technique to perform sev-
eral homomorphic operations in one bootstrapping call over a multi-value
plaintext space. Our construction relies on the FHEW-based gate boot-
strapping; we analyze its structure and propose a strategy we call multi-
value bootstrapping which allows to bootstrap an arbitrary function in
an efficient way.

The security of our scheme relies on the LWE assumption over the
torus. We give three possible applications: we first describe how to effi-
ciently evaluate an arbitrary boolean function (LUT) and combine LUTs
in circuits. We also explain how to apply our procedure to optimize
the circuit bootstrapping from (Asiacrypt’2017) which allows to com-
pose circuits in a leveled mode. And we finally present a simple method
which makes use of the multi-value bootstrapping to evaluate a encrypted
neural network. We have implemented the proposed method and were
able to evaluate an arbitrary 6-to-6 LUTs under 1.6 s. Our implemen-
tation is based on the TFHE library but can be easily integrated into
other homomorphic libraries based on the same structure, such as FHEW
(Eurocrypt’2015). The number of LUT outputs does not influence the
execution time by a lot, e.g. evaluation of additional 128 outputs on the
same 6 input bits takes only 0.05 more seconds.

Keywords: LWE-based FHE · Multi-value bootstrapping ·
Homomorphic LUT

1 Introduction

Fully homomorphic encryption (FHE) allows to perform arbitrary computations
directly over encrypted data. The first FHE scheme has been proposed by Gen-
try [16]. The construction relies on a technique called bootstrapping , which han-
dles noise increase in FHE ciphertexts. This construction theoretically enables
to execute any computation directly over encrypted data but remains slow in
practice. Several works ([6,15,18,19,22] for example) followed Gentry’s initial
proposal and contributed to further improve FHE efficiency.
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 106–126, 2019.
https://doi.org/10.1007/978-3-030-12612-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_6

New Techniques for Multi-value Input Homomorphic Evaluation 107

Fully homomorphic encryption schemes are divided in two types of construc-
tions. The first one is based on Gentry’s initial proposal, where basically the
bootstrapping procedure consists of the evaluation of the decryption circuit at
gate level. In this case, the operations remain slow but their design allows to pack
data efficiently using batching techniques. The second one is based on the Gentry,
Sahai and Waters Somewhat homomorphic scheme [17] proposed in 2013 which
supports branching programs with polynomial noise overhead and determinis-
tic automata logic. Alperin-Sheriff and Peikert [3] improved the bootstrapping
by implementing an efficient homomorphic arithmetic function, showing that
boolean function and Barighton circuit can be avoided in bootstrapping. In 2015,
Ducas and Micciancio [14] gave a construction of bootstrapping with NAND
gate evaluation, named FHEW, and suggested extension for larger gates. They
provided an implementation for their scheme taking less than a second per boot-
strapping on a single core. Biasse and Riuz [4] adapted the FHEW construction
for arbitrary gates. Recently, Chillotti, Gama, Georgieva and Izabachène [10,12]
also improved the bootstrapping procedure and provided a construction named
TFHE. Their implementation [13] runs in less than 13ms for any binary gate
and 26 ms for the MUX gate. They also proposed new techniques for the TFHE
toolbox which allow to pack data and compose bootstrapped gates in a leveled
mode with a new procedure they called circuit bootstrapping. Recently, Bon-
noron, Ducas, and Fillinger [5] introduced a FHEW-based type scheme which
allows to perform more computation per bootstrapping call. They implemented
their method for the evaluation of a 6-to-6 bit LUT in about 10 s.

Our multi-value bootstrapping is built from the same line of scheme as the
FHEW bootstrapping. In order to explain our contribution, we first review its
basic construction and give later a more detailed description. The FHEW-based
boostrapping algorithms are implemented via an homomorphic accumulator
which evaluates the linear part of decryption function followed by a non-linear
part. Given an LWE ciphertext of m and GSW encryptions of the secret key,
we want to homomorphically evaluate a known arbitrary function f on m where
f : Zt → Zt. We define F = f ◦ r where r is the rounding function which
corresponds to the final non-linear step of the ciphertext c decryption function.
We write F : ZT → ZT . To be as clear as possible, we depict the bootstrap-
ping algorithm in three steps: Setp (1) the input ciphertext of m is rescaled
modulo T and the operations are mapped over a cyclic group G. We explain
later how G is constructed; Step (2) the accumulator ACC is computed using
blind shift operations in G which uses encryptions of the secret key; Step (3) a
test polynomial TVF is then applied to ACC and an LWE ciphertext of f(m) is
extracted. Here TVF encodes the possible output values of the function f , i.e.
the correspondence between the message m encoded in the input ciphertext and
the output ciphertext of f(m). Note that the test polynomial TVF can also be
applied before the blind shift operations.

Our Contribution. In this work, we show how to construct and chose TVF in
order to optimize the evaluation of arbitrary functions in one bootstrapping
call. In order to do so, we analyze the structure of FHEW-based bootstrapping

108 S. Carpov et al.

algorithms and make a comparison in term of noise overhead output and
modularity, i.e. the functions they allow to evaluate. To be efficient, our solu-
tion should output a small noise while being able to ‘statistically’ encode all the
possible values of the function. As a first proof concept and for sake of compar-
ison, we implement a 6-to-6 LUT which runs in 1.6 s for a concrete security of
about 128 bits (asserted using the estimator from [1]) compared to a timing of
about 10 s at a security level of about 100 bits for the implementation of [5].
Our construction makes it possible to evaluate several arbitrary functions on
the same set of inputs by calling only once the main subroutine of the TFHE
bootstrapping. The name multi-value is derived from many-valued logic which
is a propositional calculus with more than two values. We give examples of pos-
sible applications of our procedure in this paper: we explain how to efficiently
compose homomorphic LUTs and we give an idea on how to optimize the cir-
cuit bootstrapping proposed in Sect. 4 of [12] which can be used to compose
circuits in a leveled mode. We finally show an application to the homomorphic
evaluation of a neural network where the linear part is evaluated using a gen-
eralization of the key-switching procedure and the non-linear part is evaluated
with our multi-value bootstrapping.

Our Technique and Comparisons to Other Works. In previous constructions,
except [13], test polynomial TVF is integrated at the end, after the accumulator
is computed, we have ACC ·TVF

1. In the TFHE gate bootstrapping of [13], the
test polynomial TVF is embedded in the accumulator from the very start when
the accumulator is still noiseless and, at step 2 the accumulator is TVF ·ACC. This
allows to save a factor

√
N , where N is the dimension. On the other end, they

are only able to encode two possible values in TFHE gate bootstrapping. A naive
idea for computing multi-value input function f would be to decompose f into
p Mux gate functions and then combine the results of the p gate bootstrapping
calls, but this method is quite inefficient. To optimize this naive construction, we
define a common factor TV

(0)
F which is shared between all the p calls. The most

expensive part is made once for the p calls. Then the specification with respect
to the 2-value functions is made at the end using a second test polynomial TV(1)

F .
This last step consists only of a multiplication by constant polynomial, which
is much cheaper than p blind rotations. We manage to decrease the output
ciphertext noise by choosing a low-norm second-stage test polynomials when
compared to previous methods integrating the test polynomial at the end.

Organization of the Paper. We first describe the high level structure of FHEW
based bootstrapping algorithms and provide a comparison between the different
scheme in the literature. Then, our preliminary section reviews the mathemat-
ical backgrounds for LWE and GSW encryption over the torus and gives the
building blocks from the TFHE framework [13] used in our constructions. In
Sect. 3, we present the optimized multi-value bootstrapping together with test

1 In this paragraph only the evaluation order of an expression matters and is used for
a better illustration.

New Techniques for Multi-value Input Homomorphic Evaluation 109

polynomial factorization. In Sect. 4, we present applications to the homomorphic
evaluation of arbitrary functions and describe our implementation results for the
case of a 6-to-6 LUT function. Finally, we explain how to apply the multi-value
bootstrapping and extended keyswitching to optimize the circuit bootstrapping
from [12] and to evaluate a encrypted neural network system.

2 Preliminaries

Notation. The set {0, 1} is written as B. The set of vectors of size n in E
is denoted En, and the set of n × m matrices with entries in E is noted
Mn,m(E). The real torus R mod 1 is denoted T. TN [X] denotes the Z-module
R[X]/(XN + 1) mod 1 of torus polynomials, here N is a fixed power of 2 inte-
ger. The ring Z[X]/(XN + 1) is denoted R. The set of polynomials with binary
coefficients is denoted BN [X].

2.1 High Level Structure of FHEW-based Bootstrapping

We first describe the high level structure of the FHEW-based bootstrapping
algorithms. The procedure can be split in three steps we detail below. We explain
later how schemes in this line can be instanciated using this formalism. Figure 1
gives a schematic overview of the bootstrapping steps.

1. In the first step, the coefficients (a, b) of input LWE ciphertext c = (a, b) are
mapped to ZT . A cyclic multiplicative group G, where ZT � G, is used for
an equivalent representation of ZT elements. The group G contains all the
powers of X: X0, . . . , XT−1 and T is defined as the smallest integer verifying
XT mod Φ(X) = 1 where Φ(X) is the quotient polynomial defining the input
Ring-LWE scheme. Most of the times Φ(X) is the T -th cyclotomic polynomial.

2. In this step, the message m encrypted as c = (a, b) is transformed to an
intermediary GSW encryption of Xm. Message m ∈ ZT is obtained from
c = (a, b) using the linear transformation b−a·s ≡ m (i.e. the linear part of the
decryption algorithm). Given encryptions of Xsi one can homomorphically
apply linear mapping ϕ to c. We obtain the so-called accumulator ACC which
contains an encryption of Xϕ(c) ∈ G.

3. At the third step, a test polynomial TVF ∈ G is multiplied to ACC. The
test polynomial encodes output values of a function F for each possible input
message m ∈ ZT . Here F is a function from ZT to ZT . It finally extracts an
LWE encryption of F (m) from TVF ·ACC (or from ACC·TVF if TVF is applied
after computing the accumulator) with a modified noise. As input message m
is a noised version of the actual message encrypted in c = (a, b) function F
is a composition of a ‘payload’ function f : Zt → Zt and a rounding function
r : ZT → Zt.

For example, in [5], step (1) corresponds to a modulus switching from
Q to T = pq, step (2) computes the accumulator operation in the groups

110 S. Carpov et al.

G = {1, . . . , Xp − 1} and G = {1, . . . , Y q − 1} for primes p and q and recomposes
the result in the circulant ring Z[Z]/(Zpq − 1); at step (3), a test polynomial
(encoding F (x) = f(�tx/pq) where f is an arbitrary function) is applied to
the accumulator and a LWE ciphertext of f(m) is extracted, where the extrac-
tion is implemented by the trace function. In [13], G is the multiplicative group
{1,X, . . . ,X2N−1} where N is a power of 2. Function f implements a rounding
(i.e. torus most significant bit extraction); step (1) does the rounding from T to
Z2N and the test polynomial is applied before the computation of the accumu-
lator ACC; step (2) computes ACC ∈ G with a blind rotation; step (3) extracts
LWE(f(m)) by extracting the constant coefficient of TVF ·ACC. Our multi-value
bootstapping is instanciated using [13].

Fig. 1. Structure of the bootstrapping Algorithm. Setp (1): The ciphertext of m is
rescaled modulo T and the operations are mapped over the cyclic group G where
G = 〈X〉 is the group of T -th roots of unity associated to the cyclotomic polynomial
ΦT (X) (for example). Step (2): the accumulator ACC is computed using blind shift
operations in G which uses encryptions of the secret key in the powers of X. Step
(3): a test polynomial is applied to ACC, it can also be applied before blind shift
operations, and an LWE ciphertext of f(m) is extracted from ACC using the encoding
of an alternative representation of f over ZT .

2.2 Backgrounds on TFHE

In this work, we will use the torus representation from [10] of the LWE encryption
scheme introduced by Regev [21] and the ring variant of Lyubashevsky et al. [20].

Distance, Norm and Concentrated Distribution. We use the �p distance for
torus elements. By abuse of notation, we denote as ‖x‖p the p-norm of the
representative of x ∈ T

k with all its coefficients in
]− 1

2 , 1
2

]
. For a torus poly-

nomial P (X) modulo XN + 1, we take the norm of its unique representative
of degree ≤ N − 1. A distribution on the torus is concentrated iff its sup-
port is included in a ball of radius 1

4 of T except with negligible probability.
In this case, we can define the usual notion of expectation and variance over
T. Let N (0, σ2) be a normal distribution centered in 0 and of variance σ2.
We denote κ(ε) = mink{PrX←N (0,σ2) [|X| > k · σ] < ε}. In this case, we have
PrX←N (0,σ2) [|X| > k · σ] = erf(k/

√
2). For example, for ε = 2−64 (this paper),

we can take κ(ε) > 9.16 and for ε = 2−32, we can take κ(ε) > 6.33.

New Techniques for Multi-value Input Homomorphic Evaluation 111

A real distribution X is said σ-subgaussian iff for all t ∈ R, E(exp(tX)) ≤
exp(σ2t2/2). If X and X ′ are two independent σ and σ′ subgaussian variables,
then for all α, γ ∈ R, αX + γX ′ is

√
α2σ2 + γ2σ′2-subgaussian. All the errors in

this document will follow subgaussian distributions. In what follows, we review
TFHE for encryption of torus polynomial elements.

TRLWE Samples. To encrypt a message μ ∈ TN [X], one picks a Gaussian
approximation of the preimage of ϕ−1

s (μ) over the Ω-probability space of all
possible choices of Gaussian noise. If the Gaussian noise α is small, we can
define the expectation and the variance over the torus. The expectation of ϕs(c)
is equal to μ and its variance is equal to the variance of α. We refer to [10] for
a more complete definition of the Ω-probability space.

Definition 2.1 (TRLWE). Let M be a discrete subspace of TN [X] and μ ∈ M
a message. Let s ∈ BN [X]k a TRLWE secret key, where each coefficient is chosen
uniformly at random. A TRLWE sample is a vector c = (a, b) of TN [X]k+1 which
can be either :

– A trivial sample: a = 0 and b = μ. Note that this ciphertext is independent
of the secret key.

– A fresh TRLWE sample of μ of standard deviation α: a is uniformly cho-
sen in TN [X]k and b follows a continuous Gaussian distribution of standard
deviation α centered in μ + s · a and of variance α2.

– Linear combination of fresh or trivial TRLWE samples.

We define the phase ϕs(c) of a sample c = (a, b) ∈ TN [X]k × TN [X] under
key s ∈ BN [X]k as ϕs(c) = b − s • a. Note that the phase function is a linear
(kN + 1)-lipschitzian function from TN [X]k+1 to TN [X]. We say that c is a
valid TRLWE sample iff there exists a key s ∈ BN [X]k such that the distribution
of the phase ϕs(c) is concentrated over the Ω-space around the message μ, i.e.
included in a ball of radius < 1

4 around μ. Note that c =
∑p

j=1 rj · cj is a valid
TRLWE sample if c1, . . . , cp are valid TRLWE samples (under the same key) and
r1, . . . , rp ∈ R. We also use the function msg() defined as the expectation of the
phase over the Ω-space. If μ is in M, one can decrypt a TRLWE sample c under
secret key s with small noise (smaller that the packing radius) by rounding its
phase to the nearest element of the discrete message space M. We also use the
function error Err(·) of a sample defined as the difference between the phase
and the message of the sample. We write Var(Err(X)) the variance of the error
of X and ‖Err(X)‖∞ its amplitude. When X is a normal distribution we have
‖Err(X)‖∞ ≤ κ(ε) · Var(Err(X)) with probability 1 − ε.

Given p valid and independent TRLWE samples c1, . . . , cp under key s, if
c =

∑p
i=1 ei · ci, then msg(c) =

∑p
i=1 ei · msg(ci) with ‖Err(c)‖∞ ≤ ∑p

i=1 ‖ei‖1 ·
‖Err(ci)‖ and Var(Err(c)) =

∑p
i=1 ‖ei‖22 · Var(Err(ci)).

The TRLWE problem consists of distinguishing TRLWE encryptions of 0 from
random samples in TN [X]k × TN [X]. When N = 1 and k is large, the TRLWE
problem is the Scalar LWE problem over the torus and the TRLWE encryption
is the LWE encryption over the torus. We denote it TLWE. When N is large and

112 S. Carpov et al.

k = 1, the TRLWE problem is the LWE problem over torus polynomials with
binary secrets. In addition, the TLWE and the TRLWE correspond to the Scale
invariant variants defined in [7,9,11] and to the Ring-LWE from [20]. We refer
to Sect. 6 of [10] for more details on security estimates on the LWE problem of
the torus.

TRGSW Samples. We define a gadget matrix that will be used to decompose
over ring elements and to reverse back. Other choices of gadget basis are also
possible.

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/Bg · · · 0
...

. . .
...

1/B�
g · · · 0

...
. . .

...

0 · · · 1/Bg

...
. . .

...

0 · · · 1/B�
g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ M(k+1)�,k+1(TN [X]).

A vector v ∈ TN [X]k+1 can approximately be decomposed as DecH,β,ε(v) =
u where u ∈ R(k+1)�, s.t. ‖u‖∞ ≤ β and ‖u · H − v‖∞ ≤ ε. We call β ∈ R>0

the quality parameter and ε ∈ R>0 the precision of the decomposition. In this
paper, we use the gadget H where the decomposition in base Bg is a power of 2.
We take β = Bg/2 and ε = 1/2B�

g.

Definition 2.2 (TRGSW Sample). Let � and k ≥ 1 be two integers and
α ≥ 0 be a noise parameter. Let s ∈ BN [X]k be a TRLWE key, we say that
C ∈ M(k+1)�,k+1(TN [X]) is a fresh TGSW sample of μ ∈ /H⊥ with standard
deviation α iff C = Z + μ · H where each row of Z ∈ M(k+1)�,k+1(TN [X]) is a
TRLWE sample of 0 with Gaussian standard deviation α. Reciprocally, we say
that an element C ∈ M(k+1)�,k+1(TN [X]) is a valid TRGSW sample iff there
exists a unique polynomial μ ∈ /H⊥ and a unique key s such that each row of
C−μ ·H is a valid TRLWE sample of 0 under the key s. We call the polynomial
μ the message of C.

Since a TRGSW sample consists of (k + 1)� TRLWE under the same secret
key, the definition of the phase, message, error, norm and variance and the result
on the sum of TRLWE samples can easily be extended for TRGSW samples.

External Product. We review the module multiplication of the messages of
TRGSW and TRLWE samples from [8,10]. This operation is called external
product operation and is defined as: � : TN [X]k+1 × M(k+1)�,k+1(TN [X]) →
TN [X]k+1. The operation � has the following property:

New Techniques for Multi-value Input Homomorphic Evaluation 113

Theorem 2.3 (Homomorphic module multiplication). If A is a valid
TRGSW sample of μA and b is a valid TRLWE sample of μb. Then, if ‖Err(A �
b)‖∞ ≤ 1

4 , A � b is a valid TRLWE sample of μA · μb.
We have Var(Err(A � b)) ≤ (k + 1)�Nβ2Var(Err(A)) + (1 + kN)‖μA‖22ε2 +

‖μA‖22Var(Err(b)) where β and ε are the parameters used in the decomposition
Dech,β,ε()̇.

Assumption 2.4 (Independence heuristic). All the previous results rely on
the Gaussian Heuristic: all the error coefficients of TRLWE or TRGSW samples
of the linear combinations we consider are independent and concentrated. In
particular, we assume that they are σ-subgaussian where σ is the square-root of
their variance.

2.3 TFHE Gate Bootstrapping

We review the TFHE gate bootstrapping and the key-switching procedure
from [10,12]. The TFHE gate bootstrapping changes the noise of the LWE input
to bring it to a fix noise; it can also change the dimension of the ciphertexts.
We specify with an under-bar the input parameters and with an upper-bar the
output parameters when needed.

Definition 2.5. Let K ∈ B
n, K̄ ∈ B

k
N and α be a noise parameter. We

define the bootstrapping key BKK→K̄,α as the sequence of n TGSW samples
BKi ∈ TGSWK̄,α(Ki).

TFHE Gate Bootstrapping. The ternary Mux gate takes three boolean values
c, d0, d1 and returns Mux(c, d0, d1) = (c ∧ d1) ⊕ ((1 − c) ∧ d0). We also write
Mux(c, d0, d1) = c?d1 : d0.

The controlled Mux gate, CMux takes in input samples d0,d1 of messages
μ0, μ1, a TRGSW sample C of a message bit m and returns a TRLWE sample of
message μ0 if m = 0 and μ1 if m = 1. Lemma 2.6 gives the error propagation of
CMux.

Lemma 2.6. Let d0,d1 be TRLWE samples and C ∈ TRGSWs(m) where mes-
sage m ∈ {0, 1}. Then, msg(CMux(C,d1,d0)) = msg(C)?msg(d1) : msg(d0) and
we have: Var(Err(CMux(C,d1,d0))) ≤ max(Var(Err(d0)),Var(Err(d1))) + ϑ(C)
where ϑ(C) = (k + 1)�Nβ2Var(Err(C)) + (1 + kN)ε2.

The gate bootstrapping from [12] also uses the BlindRotate algorithm. Assum-
ing c = (a1, . . . , ap, b) is a LWE ciphertext under secret key s, Algorithm 1 com-
putes the blind rotation of v by the phase of c.

Theorem 2.7. Let α > 0 ∈ R be a noise parameter, K ∈ B
n be a TLWE

secret key and K ∈ BN [X]k be its TRLWE interpretation. Given one sample
c ∈ TRLWEK(v) with v ∈ TN [X], p + 1 integers a1, . . . , ap, b ∈ Z/2NZ, and p
TRGSW ciphertexts C1, . . . ,Cp where each Ci ∈ TRGSWK,α(si) for si ∈ B the
BlindRotate algorithm outputs a sample ACC ∈ TRLWEK(X−ρ ·v) where ρ = b−∑p

i=1 aisi such that Var(Err(ACC)) ≤ Var(Err(c))+p(k+1)�Nβ2ϑC +p(1+kN)ε2

where ϑC = α2.

114 S. Carpov et al.

Algorithm 1. BlindRotate
Input: A TRLWE sample c of v ∈ TN [X] with key K.
1: p + 1 int. coefficients a1, . . . , ap, b ∈ Z/2NZ

2: p TRGSW samples C1, . . . , Cp of s1, . . . , sp ∈ B with key K
Output: A TRLWE sample of X−ρ.v where ρ = b − ∑p

i=1 si.ai mod 2N with key K
3: ACC ← X−b • c
4: for i = 1 to p
5: ACC ← CMux(Ci, X

ai · ACC,ACC)
6: return ACC

TRLWE-to-TLWE Sample Extraction. Given one TRLWE sample of message μ ∈
TN [X] the SampleExtract procedure allows to extract a TLWE sample of a single
coefficient of polynomial μ. Indeed, a TRLWE ciphertext of message μ ∈ TN [X]
of dimension k under a secret key K ∈ BN [X] can alternatively be seen as N
TLWE ciphertexts whose messages are the coefficients of μ. It is of dimension
n = kN and the secret key K is in B

n, where Ki =
∑N−1

j=0 KN(i−1)+j+1X
j .

Functional Key-Switching. The functional key-switching procedure allows to
switch between different parameter sets and between scalar and polynomial mes-
sage space. It allows to homomorphically evaluate a morphism from Z-module
T

p to TN [X]. We recall in Algorithm 2 the functional keyswitching algorithm
(from Sect. 2.2 of [12]) where the morphism f is public; we adapt its definition
to be able to use other decomposition basis of the key than the decomposition
in base 2.

Algorithm 2. TLWE-to-TRLWE public functional key-switch
Input: p TLWE samples c(z) = (a(z), b(z)) ∈ TLWEK(μz) for z = 1, . . . , p, a public

R-lipschitzian morphism f from T
p to TN [X], KSi,j ∈ TRLWEK(Ki

basej
), where base

is an integer.
Output: A TRLWE sample c ∈ TRLWEK(f(μ1, . . . , μp))
1: for i ∈ [[1, n]] do

2: Let ai = f(a
(1)
i , . . . , a

(p)
i)

3: Let ãi be the closest multiple of 1/baset to ai (i.e. ‖ãi − ai‖∞ < base−(t+1))
4: Binary decompose each ãi =

∑t
j=1 ãi,j · base−j where ãi,j ∈ ZN [X] and each of

its coefficient is in {0, . . . , base − 1}.
5: end for
6: return (0, f(b(1), . . . , b(p))) − ∑n

i=1

∑t
j=1 ãi,j × KSi,j

Theorem 2.8 (Public functional key-switch). Given p TLWE samples c(z) under
the same key K of μz with z = 1, . . . , p, a public R-lipschitzian morphism f from
T

p to TN [X], and a family of samples KSi,j ∈ TRLWEK,γ(Ki

basej
) with standard

deviation γ and where base is an integer, Algorithm2 outputs a TRLWE sam-
ple c ∈ TRLWEK(f(μ1, . . . , μp)) with Var(Err(c)) ≤ R2Var(Err(c)) + ntNϑKS +
nNbase−2(t+1), where ϑKS = γ2 is the variance of the error of KS.

New Techniques for Multi-value Input Homomorphic Evaluation 115

For p = 1 and f the identity function, we retrieve the classical key-switching
where the KSi,j is a sample TLWEs,γ(ci · base−j) for i ∈ [[1, n]] and j ∈ [[1, t]].
In this case, the output is a TLWE sample c of the same input message μ1 and
secret s, with Var(Err(c)) ≤ Var(Err(c)) + ntγ2 + nbase−2(t+1).

We are now ready to recall the TFHE gate bootstrapping in Algorithm3.
The TFHE gate bootstrapping algorithm takes as inputs a constant μ ∈ T, a
TLWE sample of x · 1

2 with x ∈ B, a bootstrapping key and returns a TLWE
sample of x · μ with a controlled error.

Algorithm 3. TFHE gate bootstrapping
Input: A constant μ ∈ T, a TLWE sample c = (a, b) ∈ TLWEK,η(x · 1

2
) with x ∈ B,

a bootstrapping key BKK→K̄,α =
(
BKi ∈ TRGSWK̄,α(Ki)

)
i∈[[1,n]]

where K̄ is the

TRLWE interpretation of K̄.
Output: A TLWE sample c̄ = (ā, b̄) ∈ TLWEK̄,η̄(x · μ)
1: Let μ̂ = 1

2
μ ∈ T (Pick one of the two possible values)

2: Let b = �2Nb� and ai = �2Nai� ∈ Z for each i ∈ [[1, n]]

3: Let TVF := (1 + X + · · · + XN−1) · X
N
2 · μ̂ ∈ TN [X]

4: ACC ← BlindRotate((0, v), (a1, . . . , an, b), (BK1, . . . ,BKn))
5: Return (0, μ̂) + SampleExtract(ACC)

Lines 1 to 4 compute a TRLWE sample of message Xϕ · v where ϕ is the
phase of c (actually an approximated phase because of rescaling in line 2). The
SampleExtract extracts its constant coefficient (μ̂ if x = 1 and −μ̂ if x = 0)
encrypted in a TLWE sample. The final addition allows to either obtain a TLWE
sample of 0 or a TLWE sample of 2 · μ̂ = μ. The error of the output ciphertext is
obtained from the combination of the output error of Theorem2.7 and the error
of the SampleExtract procedure. An internal cumulated error δ is introduced in
line 2 by the rescaling. We have δ ≤ h+1

4N where h is the number of non-zero
coefficients of TLWE secret key K and 4N comes from the rescaling by 2N and
rounding of (a, b) coefficients. This error does not influence the output.

Theorem 2.9 (TFHE gate boostrapping). Let K ∈ B
n and K̄ ∈ B

kN be
two TLWE secret keys, K̄ ∈ BN [X]k be the TRLWE interpretation of K̄ and
α > 0 ∈ R a noise parameter. Let BKK→K̄,α be a bootstrapping key, i.e n samples
BKi ∈ TRGSWK̄,α(Ki) for i ∈ [[1, n]]. Given a constant μ ∈ T and a sample
c ∈ T

n+1, Algorithm3 outputs a TLWE sample c̄ ∈ TLWEK̄(μ̄) where μ̄ = 0 if
|ϕK(c)| < 1

4 − δ and μ̄ = μ if |ϕK(c)| > 1
4 + δ. We have Var(Err(c̄)) ≤ n(k + 1)

�Nβ2ϑBK + n(1 + kN)ε2 where ϑBK is Var(Err(BKK→K̄,α)) = α2.

3 Multi-value Bootstrapping

In the previous section, we recall the bootstrapping procedures based on an
auxiliary GSW scheme. Instead of the bootstrapping procedures where only a

116 S. Carpov et al.

‘re-encryption’ of input ciphertext is made, we explain here how to bootstrapp
an arbitrary function of the input message. For example in [10] the arbitrary
function was the rounding (or modulus switching) of ciphertext decryption func-
tion. Recall, G = 〈X〉 is the group of powers of X where X is a 2N -th root of
unity. This corresponds to the cyclotomic polynomial Φ2N (X) = XN + 1 defin-
ing the TRLWE ciphertext polynomials. The bootstrapping procedure consists
of a linear step where an approximate phase m ∈ Z2N of the input ciphertext
c is computed followed by a non-linear step described by the following relation,
here R(X) ∈ ZN [X] is a polynomial with zero-degree coefficient equal to zero:

TVF (X) · Xm ≡ F (m) + R(X) mod Φ2N (X) (1)

To ease the exposition, only the plaintext counterpart is presented. The
BlindRotate procedure is used to obtain ACC which encrypts the phase m in
the form of a power of X. This new representation is then multiplied by a test
polynomial TVF , for a function F : Z2N → Z2N . In the zero-degree coefficient
of the resulting polynomial the evaluation of function F in point m is obtained.
Several possibilities to evaluate relation (1) exist. Hereafter we present 3 different
ways to perform this evaluation and discuss their advantages and drawbacks.

TVF (X) · Xm – The first one is to start the BlindRotate procedure with TVF

already encoded in ACC. The main advantage is that the output noise is inde-
pendent of the test polynomial and is the lowest possible. The drawback is that
only one function can be computed per bootstrapping procedure. This is how
TVF is encoded in the bootstrapping of [10].

Xm · TVF (X) – Another possibility is to integrate TVF after the BlindRotate
procedure is performed. In this case, one can use several test polynomials and
thus, compute several functions in the same input. This is how TVF is encoded
in the bootstrapping of [4,5,14]. The main drawback is that output ciphertext
noise depends on test polynomial coefficient values.

TV(0) (X) · Xm · TV(1)
F (X) – Finally, we can split test polynomial TVF into

two factors, with a first-phase factor TV (0) and a second-phase factor TV(1)
F (X)

test polynomials. The first-phase factor TV(0) does not depend on the evaluated
function F . Thus, as in the previous case, using different second-phase test poly-
nomials we are able to evaluate several functions on the same input. Another
condition when performing the factorization is to obtain the second-phase fac-
tors with low-norm coefficients. This is needed in order to obtain small noise
increase in output ciphertexts. We conclude that this new evaluation technique
allows to leverage the best of the first two possibilities.

The test polynomial is specific to a function f we want to evaluate. As the
phase m is a noised version of the message of the input c, it should be rounded
before function f is applied to. We have F = f ◦ round, where the function F is
a composition of a rounding function and the “payload” function.

In the next subsection, we give a possible way to factorize test polynomials.
Afterwards, we examine an updated version of Algorithm3 which implements a
bootstrapping procedure where the test polynomials are split.

New Techniques for Multi-value Input Homomorphic Evaluation 117

3.1 Test Polynomial Factorization

Hereafter, we examine the conditions a function F should verify and we introduce
a “half-circle” factorization of the test polynomial.

Theorem 3.1. Let F : Z2N → Z2N be a function to be evaluated in a bootstrap-
ping procedure using relation (1). Function F must satisfy relation F (m+N) =
−F (m) for 0 ≤ m < N .

Proof. Let P (X) be a polynomial from ZN [X]. Multiplying it by XN gives the
initial polynomial with negated coefficients, i.e. P (X) · XN ≡ −P (X) ∈ ZN [X].
This is due to relation XN = −1 defining cyclotomic polynomial Φ2N (X), i.e.
the negacyclic property of the ring ZN [X]. If we apply this observation to the
left-hand side of Eq. (1) we have:

TVF (X) · X(m+N) ≡ −TVF (X) · Xm mod Φ2N (X), 0 ≤ m < N

Respectively, the right-hand side must satisfy the condition F (m+N) = −F (m)
for 0 ≤ m < N .

In what follows we restrict Eq. (1) to values of m belonging to ZN . In this
way, the condition F (m + N) = −F (m) is automatically verified.

Half-Circle Polynomial Bootstrapping. Let TVF be a test polynomial defined as
TVF =

∑N−1
i=0 tiX

i, where t0 = F (0) and ti = −F (N − i) for 1 ≤ i < N . Thus,
TVF equals to F (0) − ∑N−1

i=1 F (i) · XN−i. It is straightforward to see that the
relation TVF ·Xm = F (m)+R(X) mod Φ2N (X) is satisfied for any 0 ≤ m < N .

The test polynomial TVF must be factored into two polynomials such that
the first one TV(0) does not depend on the evaluated function F . We did not
mentioned earlier but the factorization can be fractional. Let τ denote the least
common multiple of the factorization such that TV (0), TV

(1)
F ∈ ZN [X]:

τ · TV (0) · TV
(1)
F ≡ TVF mod Φ2N (X)

We define the first-phase test polynomial as TV (0) =
∑N−1

i=0 Xi and τ = 1/2.
Let second-phase test polynomial be TV

(1)
F =

∑N−1
i=0 t′i · Xi. Polynomials

TV(0) and TV
(1)
F being factors of TVF we have:
∑

i

ti · Xi ≡ 1/2 ·
∑

i

t′i · Xi ·
∑

i

Xi mod Φ2N (X)

Using the fact that XN = −1, we obtain the following system of linear equations
with N unknowns t′i, 0 ≤ i < N :

∑

0≤i≤k

t′i −
∑

k<i<N

t′i = 2tk, 0 ≤ k < N (2)

118 S. Carpov et al.

Theorem 3.2. The system of linear equation (2) admits an analytical solution
given by: t′0 = t0 + tN−1 and t′k = tk − tk−1 for k ≥ 1.

Proof. Observe that two consecutive tk−1 and tk differ only by t′k element sign.
Computing their difference, we have 2 · (tk − tk−1) =

∑
0≤i≤k t′i − ∑

k<i<N t′i −∑
0≤i≤k−1 t′i +

∑
k−1<i<N t′i = 2t′k. The case for t′0 is equivalently proved except

that for t0 and tN−1 only the sign of t′0 is the same.

Property 1. Suppose that function F has the same output value for consecutive
points N − k and N − k + 1, thus F (N − k) = F (N − k + 1). Observe that
t′k = tk − tk−1 = −F (N − k) − F (N − k + 1) = 0. We deduce that the second-
phase test polynomial coefficient t′k is zero in this case. More generally, this
test polynomial has exactly s non-zero coefficients where s is the number of
transitions of function F , i.e. s = |{F (k) �= F (k + 1) : 0 ≤ k < N}|.

The test polynomial factorization introduced earlier can be graphically inter-
preted as follows:

1. The first-phase test polynomial divides the torus in two parts. The bootstrap-
ping with test polynomial τ · TV (0) returns +τ for first half-circle [0, 1/2[of
torus and −τ for the other part.

2. The second-phase test polynomial builds a linear combination of such half-
circles, thus the half-circles from step 1 are rotated by Xi and scaled by
t′i.

Example. We give in Fig. 2 an example over T of the previously explained proce-
dure. We ignore the coefficient τ in this illustration. On the top torus circle are
denoted values returned by the first-phase test polynomial, i.e. test polynomial
values projected on torus circle. The second-phase test polynomial has 3 terms
and is equal to t′aXa + t′bX

b + t′cX
c. The 3 bottom torus circles denote the lin-

ear mapping performed by each monomial of the second-phase test polynomial.
Summing up these terms gives a torus circle values illustrated on the rightmost
part of the figure. Observe the negacyclic property of cyclotomic polynomial
XN + 1 on the torus circles from the fact that symmetric output values are
negated.

Function Evaluation with Rounding. Let f be a function from Zt to Zq for
t < 2N and q ≤ 2N . Let r be a rounding function which takes as input a
message from Z2N and outputs a rounded message belonging to Zt. Function
r is defined as r (m) = �m · t/2N	. This function corresponds to the rounding
performed on TLWE ciphertext phase in order to obtain the plaintext message.

Test polynomial TVf◦r =
∑

i ti for the composed function f ◦ r is defined
as: t0 = f ◦ r(0) and tk = −f ◦ r(N − k) for 1 ≤ k < N . Building the system
of linear equation (2) and using explicit solution given in Theorem3.2 we can
deduce the coefficients for second-phase test polynomial.

New Techniques for Multi-value Input Homomorphic Evaluation 119

Fig. 2. Illustration of the high-level strategy for the multi-value bootstrapping

Proposition 1 (Second-phase test polynomial norm). Let f be a function
from Zs to Zq and let TV

(1)
f◦r be the corresponding second-phase test polynomial.

The squared norm of this polynomial is given by:
∥
∥
∥TV

(1)
f◦r

∥
∥
∥
2

2
≤ s · (q − 1)2.

Proof. (Number of non-zero coefficients) From the definition of the rounding
function r we have r(k) = l for any k such that l·2N/t ≤ k < (l+1)·2N/t. Without
loss of generality we suppose here that t divides 2N . Composed function f ◦ r,
denoted by F , has the same output value for 2N/t consecutive input messages
from Z2N , i.e. F (k) = f ◦ r(k) = f(l) for l · 2N/t ≤ k < (l + 1) · 2N/t. Using
Property 1 we deduce that the TV

(1)
f◦r polynomial is sparse and has exactly s

non-zero coefficients. Let S, |S| = s, be the set of indexes of non-zero coefficients,
we have TV

(1)
f◦r =

∑
i∈S t′iX

i.
(Coefficient range) Each non-zero coefficient t′i, i ∈ S, is defined as the differ-

ence between consecutive output values of function f ◦r, or equivalently function
f . Refer to Theorem 3.2 and TVf◦r definition. We have (t′i)

2 ≤ (f(k) − f(k′))2

for any k, k′ ∈ Zt. As function f is defined over Zq relation 0 ≤ f(.) ≤ q − 1
is verified. We deduce (t′i)

2 ≤ (q − 1)2. Combining these results we obtain the
bound expression:

∥
∥
∥TV

(1)
f◦r

∥
∥
∥
2

2
=

∥
∥
∥
∥
∥

∑

i∈S

t′iX
i

∥
∥
∥
∥
∥

2

2

=
∑

i∈S

(t′i)
2 ≤ s · (q − 1)2

3.2 Optimized Multi-value Bootstrapping

In this subsection we focus on multi-value bootstrapping procedure for Torus
FHE where the 2N -th cyclotomic polynomial XN + 1 defines TRLWE samples.
We assume that first and second phase test polynomials, TV (0), TV

(1)
F ∈ ZN [X],

together with scale factor τ verifying condition (3) are given.

τ · TV (0) (X) · Xm · TV
(0)
F (X) ≡ F (m) + R(X) mod Φ2N (X) (3)

120 S. Carpov et al.

Algorithm 4 illustrates the steps of optimized bootstrapping procedure using
split test polynomials. It takes as input a ciphertext encrypting a message m/2N,
m ∈ Z2N , and outputs a ciphertext encrypting F (m) ∈ Z2N . Test polynomial
TV (0) belongs to ZN [X]. It is mapped to TN [X] by multiplication with 1/2N ∈ T

and with scale factor τ (algorithm step 2). There is not need to map second-
phase test polynomial to TN [X] because in step 4 a linear transformation of ACC
by TV

(1)
F is performed.

Algorithm 4. Multi-value bootstrapping algorithm
Input: A TLWE sample c = (a, b) ∈ TLWEK,η(μ) where μ = m/2N, m ∈ Z2N

Input: First, second phase test polynomials TV (0), TV
(1)

F ∈ ZN [X] and scale factor τ
Input: A bootstrapping key BKK→K̄,α =

(
BKi ∈ TRGSWK̄,α(Ki)

)
i∈[[1,n]]

where K̄ is

the TRLWE interpretation of K̄.
Output: A TLWE sample c̄ ∈ TLWEK̄,η̄(F (m)/2N)
1: Let b = �2Nb� and ai = �2Nai� ∈ Z2N for each i ∈ [[1, n]]
2: Let v ← TV(0) · 1/2N · τ ∈ TN [X]
3: ACC ← BlindRotate((0, v), (a1, . . . , an, b), (BK1, . . . ,BKn))

4: ACC ← TV
(1)
F · ACC

5: Return c̄ = SampleExtract(ACC)

Theorem 3.3. Given a TLWE input ciphertext c of message μ = m/2N, m ∈
Z2N , first-phase TV(0) ∈ ZN [X], second-phase TV

(1)
F ∈ ZN [X] test polyno-

mials, factorization factor τ verifying condition (3) and a valid bootstrapping
key BKK→K̄,α = (BKi)i∈[[1,n]], Algorithm4 outputs a valid TLWE ciphertext c̄
of message F (m)/2N with error distribution variance verifying: Var(Err(c)) ≤∥
∥
∥TV(1)

F

∥
∥
∥
2

2

(
n(k + 1)�Nβ2ϑBK + n(1 + kN)ε2

)
where ϑBK is the variance of boot-

strapping key Var(Err(BKK←K̄,α)) = α2.

Proof. (Correctness) The first 3 lines of Algorithm 4 compute a TRLWE cipher-
text of message Xb−aK · TV (0) · 1/2N · τ . Line 4 applies a linear transformation
to it and message τ/2N · Xb−aK · TV (0) · TV

(1)
F is obtained. Input message μ

is a multiple of 1/2N on the torus so we have b − aK = μ · 2N . Recall that
τ ·TV (0) ·TV

(1)
F ·Xm ≡ F (m)+ . . . for any m ∈ Z2N and m = μ ·2N . Thus, ACC

at line 5 contains an encryption of a polynomial whose zero-degree coefficient
is F (m)/2N. The SampleExtract function from the last line extracts from ACC a
TLWE sample of message F (m)/2N.

(Error Analysis) The error analysis for this method follows from the error
analysis of the TFHE gate bootstrapping. It adds one multiplication by a con-
stant polynomial TV

(1)
F and gives the following variation of error distribution:

Var(Err(c)) ≤
∥
∥
∥TV

(1)
F

∥
∥
∥
2

2

(
n(k + 1)�Nβ2ϑBK + n(1 + kN)ε2

)
.

New Techniques for Multi-value Input Homomorphic Evaluation 121

Theorem 3.4. Under the same hypothesis as in Theorems 2.8 and 3.3, when
given a correct input ciphertext c of message μ, m = μ · 2N ∈ Z2N , the multi-
value bootstrapping of Algorithm4 followed by the classical key-switching outputs
a ciphertext c̄ of message F (m)/2N with error distribution variance:

Var(Err(c)) ≤
∥
∥
∥TV(1)

F

∥
∥
∥
2

2

(
n(k + 1)�Nβ2ϑBK + n(1 + kN)ε2

)
+

ntϑ2
KS + n2−2(t+1) (4)

where ϑBK and ϑKS are respectively the variances of bootstrapping and key-
switching keys error distributions.

Multi-output Version. In many cases one needs to evaluate several functions
over the same encrypted message. The naive way is to execute bootstrapping
Algorithm 4 several times for each function. Remark that for equal first-phase
test polynomials TV (0) Algorithm 4 performs the same computations up to line 3.
Thus, until second-phase test polynomial integration into the accumulator. By
repeating steps 4–5 for several second-phase test polynomials TV

(1)
F1

, . . . ,TV
(1)
Fq

the bootstrapping algorithm outputs encryptions of messages F1(m), . . . , Fq(m).
Figure 3 is a schematic view of the bootstrapping procedure which evaluates
several functions over same input message.

Fig. 3. Multiple output multi-value bootstrapping overview. Test polynomials
TV

(1)
F1

, . . . ,TV
(1)
Fq

correspond to q functions evaluated over message μ encrypted in the
input ciphertext.

4 Homomorphic LUT

In this section, we show how to use the multi-value bootstrapping introduced
earlier to homomorphically evaluate r-bit LUT functions over encrypted data.

122 S. Carpov et al.

4.1 Homomorphic LUT Evaluation

A boolean LUT is a function defined as f : Zr
2 → Z

q
2. At first we focus on single-

output LUTs, i.e. the case q = 1. Afterwards we show how to efficiently evaluate
multi-output LUTs. It is straightforward to see an equivalent formulation for f
over the ring of integers modulo 2r using F : Z2r → Z2 and the linear mapping
φ (m0, . . . ,mr−1) =

∑r−1
j=0 mj ·2j from Z

r
2 to Z2r . We have F ◦φ (m0, . . . ,mr−1) ≡

f (m0, . . . ,mr−1) for any (m0, . . . ,mr−1) ∈ Z
r
2. The multi-value bootstrapping is

used to evaluate LUT function F as follows. We encode integers over the torus as
multiples of 1/2r+1. Only the first half-circle of torus is used for input and output
message spaces. In this way any function can be evaluated using bootstrapping
procedure - refer to restrictions from Theorem3.1. Full message space is used
for the input j/2r+1 for j ∈ Z2r and only the first 2 elements are used for the
output messages j/2r+1 for j ∈ Z2. Test polynomial factorization described in
previous section is used. Recall, the first-phase test polynomial TV(0) is

∑
i Xi

and scaling factor is τ = 1/2. The second-phase test polynomial is computed
using Theorem 3.2 for LUT function F composed with a rounding function.

From Proposition 1 this test polynomial norm verifies relation
∥
∥
∥TV

(1)
F◦r

∥
∥
∥
2

2
≤ 2r.

4.2 LUT Circuits

A naive solution for multi-output LUT evaluation is to map Z
q
2 to Z2q . Doing so,

we would be able evaluate functions F : Z2r → Z2q where q ≤ r. The drawback
of this method appears when we need to compose LUTs into a circuit and evalu-
ate it. A reverse mapping from Z2q to Z

q
2 would be needed. It will be an overkill

to use another function to extract bits from Z2q messages, because it implies
to use another multi-value bootstrapping. Let F (�) : Z2r → Z2 be a multi-value
input function computing the �-th output bit of LUT function f : Z

r
2 → Z

q
2,

� = 1, . . . , q. Each of these functions, F (1), . . . , F (q), is evaluated as described
previously. Note that the expensive blind rotate part from the bootstrapping is
performed once. Only the multiplication by second-phase test vector and sample
extract is done for each evaluated function. Figure 4 illustrates intermediary steps
for interfacing LUTs. Firstly, ciphertexts encrypting messages m1, . . . ,mr ∈ B

obtained from several bootstrapping procedures are combined together into a
multi-value message m using the linear transformation φ. Note that this trans-
formation is performed in the output key space of the bootstrapping procedure
under the secret key K. Next, a key-switching procedure is performed and a
ciphertext of the same message m under the secret K is obtained. This ciphertext
is fed into the next bootstrapping and the process can be repeated. It is possi-
ble to reorder the linear mapping evaluation and the key-switching, i.e. perform
key-switching directly after the bootstrapping and evaluate the linear mapping
afterwards. Besides the fact that r times more key-switching procedures are per-
formed the noise increase will also be larger. Actually, the linear map evaluation
noise increase is multiplicative compared to the additive key-switching noise. In
the next subsection, we describe implementation in more details.

New Techniques for Multi-value Input Homomorphic Evaluation 123

Fig. 4. LUT composition into circuits. On top are shown executed algorithms and at
the bottom obtained ciphertexts.

4.3 Implementation Details and Performance

We implement the previous method for r = 6. The parameters of samples are:

– TLWE – n = 803, noise standard deviation 2−20 and h = 63 (TLWE key
non-zero coefficient count),

– TRLWE – N = 214 and noise standard deviation 2−50,
– TRGSW – decomposition parameters � = 23 and Bg = 26.

To estimate the security, we used the lwe-estimator script2 from [1] which
includes the recent attacks on small LWE secrets [2]. We found that our instances
achieve at least 128 bits of security which is better than to the concrete secu-
rity level (about 100 bits) of the 6-to-6 LUT implementation of [5]. The key-
switch parameters are t = 4 and decomposition base 24. We have implemented
the multi-value bootstrapping technique proposed above on-top of the TFHE
library [13] and a test implementation is available in the torus generic branch.
Several modifications were performed in order to support 64-bit precision torus.
Approximate sample sizes are: TLWE 6.3 kB, TRLWE 256 kB and the TRGSW
2 MB. As for the keys we have: multi-value bootstrapping key <2GB and the
switching key ≈6GB. The key sizes can be reduced using a pseudo-random num-
ber generator as in [10]. Our experimental protocol consisted in: (i) a 6 bit multi-
value message is encrypted, (ii) parameters (i.e. second-phase test polynomials)
for several LUTs are generated randomly, (iii) the multi-value bootstrapping
is executed on this encrypted message (several ciphertexts encrypting boolean
messages are obtained), (iv) a weighted sum is used to build a new multi-value
message ciphertext from 6 of the output boolean messages obtained previously,
(v) finally a key-switching procedure is performed in order to regain the boot-
strapping input parameter space. We executed the algorithms on a single core
of an Intel Xeon E3-1240 processor running at 3.50 GHz. The bootstrapping and
switching keys are generated in approximatively 66 s. Multi-value bootstrapping
on 6 bit words with 6 boolean outputs runs in ≈1.57 s with the bit combina-
tion plus key-switching phase and in under 1.5 sec. without the key-switching.
For comparison the gate bootstrapping from TFHE library takes 15 ms on the
same machine. We did not observed a significant increase in the execution time

2 Available at https://bitbucket.org/malb/lwe-estimator. Our estimation were per-
formed using commit 76d05ee.

https://bitbucket.org/malb/lwe-estimator

124 S. Carpov et al.

when the number of LUT outputs augments. For example computing 128 dif-
ferent functions on the same input message increased the execution time only
by 0.05 s, almost for free! We shall note that the combination and key-switching
was performed a single time in this last experiment.

4.4 Further Applications

We present here possible applications of the multi-value bootstrapping. We do
not implement them but give a brief overview on the multi-bootstrapping could
be used and leave the model analysis and teh implementation for a future inde-
pendent work. The first one concerns the optimization of the circuit bootstrap-
ping from [12, Sec. 4.1] which allows to compose circuits in a leveled mode by
turning a TLWE sample into a TRGSW sample. The first step of the circuit boot-
strapping consists to � TFHE gate bootstrapping calls on the same TLWE input
sample. Here each bootstrapping call is associated to a different test polynomial.
We can apply the multi-value bootstrapping to optimize this step: since the LWE
input sample is the same, the idea is to perform Algorithm 1 only once for the �
bootstrapping calls, and to adapt the output using corresponding test polynomi-
als TV(1)

F as in Subsect. 3.2. We then obtain the � desired outputs. This allows to
save a factor � in one of the circuit bootstrapping phases. The second one relates
to homomorphic evaluation of neural networks. Our multi-value bootstrapping
can also be used to homomorphically evaluate a neural network. Assume neu-
rons x1, . . . , xp inputs and output y are encrypted as TLWE ciphertexts. The
computational neuron network functionality is defined by two functions, a linear
function f : T

p �→ T and an activation function g : T �→ T. The result is a
TLWE sample of y = g(f(x1, . . . , xp)). Function f is usually implemented as an
inner-product. We can compute the inner-product between p neuron inputs and
a fixed weight vector using a functional key-switch, and afterwards extract the
TLWE encryption from the TRLWE key-switch output. Note that the public func-
tional key-switch allows to compute up to N inner-products. Thus, using a single
key-switch procedure we can compute all the linear functions of a whole neural
network layer! Afterwards, using our multi-value bootstrapping, we compute a
TLWE sample of g(.) which is not an arbitrary function. Usually a threshold
function is used for g. In this particular case, the multi-value bootstrapping can
be more efficiently instantiated than for an arbitrary function.

5 Conclusion

We introduced a bootstrapping procedure based on TFHE scheme with split test
polynomials which can be used to evaluate multi-value functions and increase
the evaluation efficiency of multi-output functions. We notice that this method
(the test polynomial split trick) can be easily adapted to other FHEW-based
bootstrapping algorithms. We show how to apply the multi-value bootstrapping
to execute arbitrary LUT functions on encrypted data and implement the eval-
uation of a 6-to-6 LUT which takes under 1.6 s; the evaluation of additional
outputs on the same input comes at virtually no cost.

New Techniques for Multi-value Input Homomorphic Evaluation 125

Acknowledgements. We acknowledge the support of the french Programme
d’Investissement d’Avenir under the national project RISQ.

References

1. Albrecht, M., Player, R., Scott, S.: On the concrete hardness of learning with errors.
J. Math. Cryptol. 9, 169–203 (2015). ePrint Archive 2015/046

2. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 4

3. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

4. Biasse, J.-F., Ruiz, L.: FHEW with efficient multibit bootstrapping. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 119–135.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 7

5. Bonnoron, G., Ducas, L., Fillinger, M.: Large FHE gates from tensored homo-
morphic accumulator. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2018. LNCS, vol. 10831, pp. 217–251. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89339-6 13

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

7. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584 (2013)

8. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 8

9. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–
536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 20

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based
E-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–
265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 16

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption library, August 2016. https://tfhe.github.io/tfhe/

14. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-319-22174-8_7
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1007/978-3-319-70694-8_14
https://tfhe.github.io/tfhe/
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24

126 S. Carpov et al.

15. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption (2012).
https://eprint.iacr.org/2012/144

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, vol. 9,
pp. 169–178 (2009)

17. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

18. Halevi, S., Shoup, I.V.: Helib - an implementation of homomorphic encryption,
September 2014. https://github.com/shaih/HElib/

19. Lepoint, T.: FV-NFLlib: library implementing the Fan-Vercauteren homomorphic
encryption scheme, May 2016 https://github.com/CryptoExperts/FV-NFLlib

20. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93 (2005)

22. SEAL. Simple encrypted arithmetic library. https://sealcrypto.codeplex.com/

https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-642-40041-4_5
https://github.com/shaih/HElib/
https://github.com/CryptoExperts/FV-NFLlib
https://doi.org/10.1007/978-3-642-13190-5_1
https://sealcrypto.codeplex.com/

Efficient Function-Hiding Functional
Encryption: From Inner-Products

to Orthogonality

Manuel Barbosa1, Dario Catalano2, Azam Soleimanian3,4(B),
and Bogdan Warinschi5

1 INESC TEC and FCUP, Porto, Portugal
mbb@fc.up.pt

2 Università di Catania, Catania, Italy
catalano@dmi.unict.it

3 Kharazmi University, Tehran, Iran
std a.soleimani@khu.ac.ir

4 École Normale Supérieure, Paris, France
5 University of Bristol, Bristol, UK

csxbw@bristol.ac.uk

Abstract. We construct functional encryption (FE) schemes for the
orthogonality (OFE) relation where each ciphertext encrypts some vec-
tor x and each decryption key, associated to some vector y, allows to
determine if x is orthogonal to y or not. Motivated by compelling appli-
cations, we aim at schemes which are function hidding, i.e. y is not leaked.

Our main contribution are two such schemes, both rooted in existing
constructions of FE for inner products (IPFE), i.e., where decryption
keys reveal the inner product of x and y. The first construction builds
upon the very efficient IPFE by Kim et al. (SCN 2018) but just like the
original scheme its security holds in the generic group model (GGM).
The second scheme builds on recent developments in the construction of
efficient IPFE schemes in the standard model and extends the work of
Wee (TCC 2017) in leveraging these results for the construction of FE
for Boolean functions. Conceptually, both our constructions can be seen
as further evidence that shutting down leakage from inner product values
to only a single bit for the orthogonality relation can be done with little
overhead, not only in the GGM, but also in the standard model.

We discuss potential applications of our constructions to secure
databases and provide efficiency benchmarks. Our implementation shows
that the first scheme is extremely fast and ready to be deployed in prac-
tical applications.

1 Introduction

Consider the following scenario inspired from the literature on privacy preserving
cryptographic role-based access control. The file storage of an organization is

A. Soleimanian—Work done while visiting student at the Università di Catania, Italy.

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 127–148, 2019.
https://doi.org/10.1007/978-3-030-12612-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_7

128 M. Barbosa et al.

structured following a role-based access control, where users have associated
one or more roles and each file can be accessed by users with a certain role (or
combination of roles). Storage of the files is outsourced to a cloud which needs to
serve files to users that request them. In particular, the cloud needs to determine,
for each request, if it complies with the access control structure. In this scenario
it is important to empower the cloud to perform such checks but, crucially, the
cloud should not have information regarding the roles that can access each file.
Indeed, access privileges may indicate which files are critical and may be linked,
semantically, with the content of the files (e.g. revealing which patient files can
be accessed by psychiatrists is clearly undesirable).

A similar scenario arises in the context of outsourcing file storage in a way
that enables keyword search. A solution is to reveal to the cloud, for each file
deterministic encryptions of the keywords which occur in that file. Even if the
actual keywords are hidden, this solution reveals co-occurrence information, i.e.
which files share keywords and how many keywords are shared. In turn this may
reveal sensitive information about the semantics of the encrypted keywords.

The two scenarios are conceptually quite close and, unsurprisingly, share a
similar solution. The information associated to a file f can be encoded as a binary
vector rf which encodes the subset of roles that can access a file. Similarly, to
each user u one can then associate a binary vector ru, which encodes the roles
associated to that user. User u has access to file f if 〈ru, rf 〉 �= 0.1 The challenge
is to encode ru and rf in a way that prevents unnecessary leaks. In particular,
given encodings of rf1 and rf2 the precise relation between the vectors (i.e. their
dot-product) should not be revealed. More interestingly, while the cloud should
learn that 〈ru, rf 〉 �= 0 it should not learn the precise value of 〈ru, rf 〉: this
reveals the number of roles associated to a user that allow accessing that file.

Technically, the above functionality can be achieved using functional encryp-
tion for the orthogonality relation (OFE). Here, each ciphertext encrypts a vector
x in Z

n
q . Each secret key sky is also associated with a vector y in Z

n
q defines a

function fy(x) that returns 1 iff 〈x, y〉 = 0, and returns 0 otherwise. We write
x⊥ y for the orthogonality predicate between vectors x and y.2

Despite the close relation between orthogonality and inner products, OFE
is a different primitive from Functional Encryption for Inner-Products (IPFE):
in the latter schemes a decryption key permits recovering the value of the inn
er-product 〈x, y〉. Intuitively, IPFE schemes should be easier to construct than
OFE schemes, since they leak much more information about the encrypted data.
A cursory look at the state of the art shows that this the case. For IPFE schemes,
recent works [1–6] propose surprisingly efficient constructions of IPFE schemes
with strong security guarantees and comparatively simple security proofs. More
recent extensions to these constructions also covered the function-hiding case

1 Here 〈·, ·〉 denotes the inner-product.
2 In other works this type of OFE has been referred to predicate-hiding attribute-hiding

predicate-only predicate encryption, but we prefer the view that we are dealing with
a particular case of functional encryption rather than a particular case of attribute-
based or predicate encryption.

Efficient Function-Hiding Functional Encryption 129

where decryption keys do not reveal information about the function to which they
are associated. The most efficient scheme to date offering this level of security is
based on a modular construction proposed by Lin [15] that converts two instances
of a non-function hiding IPFE into a function hiding IPFE in an elegant way.

In contrast, most of the existing OFE schemes are instantiated in (three-
factors) composite-order bilinear groups [10,12] or dual paring vector space on
prime-order bilinear groups [17,18]. All of these schemes share an uncomfortably
high level of conceptual complexity which explains perhaps the slow progress in
this area. Indeed, till the recent work by Wee [22] there had been little progress
on the design of (non function-hiding) OFE schemes. Wee shows that it is possible
to port the rationale underlying the family of constructions of IPFE initiated by
Abdalla et al. [1] to build more efficient OFE schemes from standard assumptions
and using simpler proof techniques. The main result of this line of work is a family
of simple OFE schemes in prime-order bilinear groups under the matrix-DDH
(MDDH) assumption, using an insightful randomization technique to reduce
inner-product leakage (in the exponents) to the orthogonality leakage allowed
by OFE.

In this paper we extend this line of works, by considering the following two
main questions in the context of OFE schemes that are function hiding:

Question 1. Can the relation between OFE and IPFE hinted at by Wee’s con-
struction be generalized to obtain black-box constructions of OFE from IPFE
simply by “shutting down” the excessive leakage?

Question 2. Can one combine the new techniques by Lin [15] and Wee [22]
in the construction of OFE, giving rise to new families of schemes and proof
techniques?

1.1 Our Contributions

Simple Constructions: Good and Bad. We start by looking at the rela-
tion between OFE and IPFE and give a negative result that excludes a simplistic
approach to constructing a function hiding OFE from any IPFE. Specifically, we
look at black-box constructions that deterministically encodes the key y for the
orthogonality relation as a set of keys {y1, y1, . . . , yk} for the inner product com-
putation. We show that, even starting from a secure IPFE that also guarantees
function hiding (FH-IPFE, for short), it is impossible to construct in this way a
function hiding OFE even if security should only hold for a single ciphertext. We
then extend the results to the case where the transformation is randomized, but
multiple challenge queries are allowed. We stress that other black-box transfor-
mations, e.g. some which combine multiple instances of an IPFE scheme, are not
ruled out by these results.

Next, we show that this negative result is tight: we provide a construction
of an OFE from a FH-IPFE via a randomized transformation which is secure but
only for the single-challenge case. While not all-encompassing, these negative
results suggest ways around them. On the positive side, we first show how to
overcome this negative result when working in the generic group model and

130 M. Barbosa et al.

slightly deviating from the simplistic black-box construction above. We give
a highly efficient secure OFE in the generic group model (that also achieves
function hiding) via a simple modification of the FH-IPFE scheme put forth by
Kim et al. [14]. After these warm up results we move on to construct a fully secure
OFE from standard assumptions. Our solution builds on results by Wee [22] and
Lin [15] and extends them to the setting of function hiding OFE. We start by
briefly discussing these two results separately.

Recent Developments in IPFE. In [22] Wee shows how a family of (public-
key) OFE schemes can be constructed from the MDDH assumption. The schemes
are inspired by recent results in constructing IPFE in which the inner-product
result is recovered in the exponent. Wee’s crucial observation is that it is possi-
ble to use randomization to preserve the orthogonality relation in the decrypted
result, while ensuring that no additional leakage exists under the DDH assump-
tion. The resulting schemes are elegant and have a relatively simple security
proof when compared to constructions relying on alternative techniques such
as composite-order bilinear groups and dual pairing vector spaces over prime-
order bilinear groups. The caveat is that these schemes are semi-adaptive secure
(selective after seeing the master public key).

Lin [15] gave a generic construction of (secret-key) FH-IPFE from (public-key)
IPFE schemes with a particular structure (similar in spirit to those explored by
Wee). The construction (roughly) uses two instances of the same scheme on top
of each other (the encryption algorithm of one scheme is used to protect keys and
the other scheme is used to encrypt messages) and then takes advantage of the
algebraic structure of such schemes to ensure the correctness of the construction
via a combination of key extraction and decryption. Again, the security proof is
simple and elegant.3

Main Construction. We show how to combine the two techniques by Wee and
Lin to give a modular construction of a new family of function-hiding OFE via
the following partial results, which add up to our main technical contribution.

First, we extend Lin’s generic construction from the IPFE to the OFE setting,
showing that the construction also works if one starts from two instances of a
OFE scheme to obtain a (weakly) function hiding OFE. We also observe that this
transformation has a downside: if starting from a semi-adaptively secure OFE,
one obtains a weakly secure OFE, where the adversary must be restricted to
selectively commit to both keys and indices. Interestingly, our transform differs
from Lin’s original one in two main points. First, it does not induce additional
levels of multi-linearity. Starting from two OFE in the bilinear group setting,
the transformation produces a (weak) function hiding OFE that also relies on
pairings. This is in sharp contrast with the basic IPFE setting [15] and similar

3 A (small) caveat of Lin’s transform is that it only achieves weak function hiding.
This is a relaxation of the FH notion that imposes some additional constraints on
the key derivation queries that the adversary is allowed to ask. This restriction is
not too severe as generic (yet efficient) transforms to fully fledged (strong) function
hiding are known [16].

Efficient Function-Hiding Functional Encryption 131

Table 1. Comparison of our generic group model (GGM) and standard model
(SM) constructions with prior constructions. Full security refers to unrestricted
indistinguishability-based function-hiding. For the case of our standard-model scheme,
we signal with ∗ the (controlled) impact of complexity leveraging in our proof of secu-
rity. Selective security refers to the setting where the attacker commits to the challenge
message ahead of time. Sizes are given in terms of group element counts and the costs
of key generation, extraction and encryption are expressed in group operation counts.
For our standard model scheme we take k = 2.

Scheme Ours (GGM) Ours (SM) [20] [13]

Security Full Full∗ Selective Full

Group order Prime Prime Composite Prime

Assumption GGM MDDH, DDH C3DH, DLIN DLIN

Key size n 6n + 6 4n + 4 6n

Ciphertext size n 6n + 6 4n + 4 6n

Key extraction n 12n + 9 32n + 4 6n

Encryption n 12n + 9 24n + 16 6n

Decryption n 6n + 6 4n + 4 6n

to the multi-input IPFE setting [3]. Second, to guarantee correctness, the two
underlying OFE need to be instantiated with different, but matching parameters.

Thus, to concretely instantiate our transform we modify Wee’s OFE con-
struction in two ways: i. we make it compatible with our extension of Lin’s
construction and ii. we use complexity leveraging to get adaptive (rather than
semi-adaptive) security. As a result we get a new family of (function hiding) OFE
schemes based on the MDDH assumption with a simple and modular proof of
security and whose practical efficiency compares favorable with existing solutions
(see Table 1 for comparisons with previous work). We remark that our usage of
complexity leveraging does not degrade security too much (at least when restrict-
ing, as we do in our applications, to small norm vectors). To see why this is the
case let us describe our techniques a bit more in detail.

Just Enough Complexity Leveraging. In general, any selective (or semi-
adaptive) secure scheme can be turned into an adaptively secure one by essen-
tially guessing the challenges in advance. Complexity leveraging typically induces
an exponential factor (in the length of the challenge) loss in the quality of
the reduction, often resulting in meaningless security guarantee for practical
parameters. At the same time if one applies complexity leveraging to small size
challenges, the security loss might become tolerable, thus making the technique
relevant also from a practical perspective. A naive application of complexity
leveraging to the scheme resulting from our transformation would lead to an
unacceptably high security loss. Indeed, as we are dealing with a symmetric and
function-hiding scheme, the reduction would need to guess in advance all the
challenge messages and secret key queries that the adversary is allowed to ask.
Even when restricting to small norm vectors this results in a huge exponential

132 M. Barbosa et al.

loss that destroys security completely. Our key observation is to “anticipate”
complexity leveraging to a stage where it can be made much less harmful. Con-
cretely, we apply the complexity leveraging step to the basic (semi-adaptive
secure) OFE scheme. This scheme is secure in the public-key setting and there-
fore only one challenge query needs to be guessed by the reduction.4 Moreover,
we show that the next steps in our construction (namely our Lin-style function-
hiding transform) easily extends to the adaptive setting without introducing
exponential losses. Hence the final loss essentially matches the possibilities for a
single message vector, which is tolerable for small norm vectors.

Applications and Implementation. As a final result we put forward appli-
cations of OFE in the area of access-control and conjunctive keyword search.
We focus on applications where our usage of complexity leveraging step does
not reduce security too much, which is the case for both applications because
they depend only on the ability to compute the subset relation. Indeed, when
encoding the subset relation over n keywords/roles we can show that our loss in
reduction tightness is only 22n and is independent of the size of the finite-field
in which the orthogonality relation is computed.

We implement both our scheme in the generic group model and our main
constructions and give benchmarking results for subset keyword search. The
generic group model construction is very fast and it can be used in practical
applications: all operations are in the range of 100 ms for vectors of size 256.
Operations in our standard model construction are roughly 6 times slower.

Organization. After we establish notation and introduce preliminary defini-
tions in Sect. 2 we present our generic group model construction is presented in
Sect. 4 and our standard model construction in Sect. 5. Finally in Sects. 6 and 7,
respectively, we present our experiment results and discuss applications of our
schemes.

2 Preliminaries

We write y ← x for assigning a value to variable x and x ←← X when sampling x
from the set X uniformly at random. For an integer n, we let [n] denote the set
{1, . . . , n}. If A is a probabilistic algorithm, we also write y ←← A(x1, . . . , xn) for
the action of running A on inputs x1, . . . , xn with random coins chosen uniformly
at random, and assigning the result to y. We use ppt for probabilistic polynomial-
time. All algorithms are ppt unless stated otherwise.

We use lowercase bold font for vectors x and uppercase bold font for matrices
A. |x| denotes vector length and x ‖ y is used for vector concatenation. We use
〈x, y〉 to denote the inner-product of two vectors. We write x⊥y for orthogonality
of two vectors, which takes the value 1 if 〈x, y〉 = 0, and 0 otherwise.

Throughout we let PG = (e,G1, G2, GT , q, g1, g2) denote a pairing group,
where G1, G2, GT are cyclic groups of prime order q, g1 and g2 are generators of
4 Recall that in the public key setting, adaptive single message indistinguishability

implies adaptive many message indistinguishability via a standard hybrid argument.

Efficient Function-Hiding Functional Encryption 133

G1 and G2 respectively, and e : G1×G2 → GT is an admissible bilinear map. For
a ∈ Zq and i = {1, 2, T} we write [a]i for encoding a using the group operation
[a]i = ga

i and extend this notation naturally for the component-wise encoding of
vectors and matrices. We will assume that the following computational assump-
tion holds in both G1 and G2.5

Definition 1 (Matrix Distribution). Let l, k ∈ N with l > k. We call Dl,k

a matrix distribution if it outputs (in polynomial time and with overwhelming
probability) matrices in Z

l×k
q of full rank k. We define Dk = Dk+1,k.

Definition 2 (Dl,k-Matrix Diffie-Hellman Assumption [11]). Let Dl,k be
a matrix distribution. We say that the Dl,k-Matrix Diffie-Hellman Assumption
(Dl,k-MDDH) holds in G if, for all ppt adversaries D, this definition of advantage
is small

AdvDl,k,G(D) := Pr[D(G, [A], [As]) = 1] − Pr[D(G, [A], [c]) = 1].

The probability space is that induced by the following sampling operations A ←←
Dl,k, s ←← Z

k
q , and c ←← Z

l
q and the coin tosses of adversary D.

In this paper we consider the case l = k + 1 referred as Dk-MDDH assumption.
Note that, to simplify notation, we omit the security parameter in the previous
assumption and throughout the paper. Asymptotic definitions of security can
be recovered by considering a family of bilinear groups indexed by the security
parameter.

Fig. 1. Game defining indistiguishability-based security of a functional encryption
scheme. An admissible adversary will ensure that F

y
j
0
(xi0) = F

y
j
1
(xi1) for all i queries to

LoRx and all j queries to LoRy. Furthermore, we also impose that the attacker never
queries the all-zeroes to either the key extraction or the encryption oracle.

Functional Encryption. We briefly overview relevant concepts from the area
of functional encryption, following the formalization introduced by Boneh, Sahai,
Waters [9] and O’Neill [19]. We start with the syntax of this primitive.

Syntax. A functional encryption scheme FE for a family of functions FyX → Σ,
for y ∈ Y , is a tuple FE = (Setup,KeyGen,Enc,Dec) of ppt algorithms, where:

– Setup() is the setup algorithm, which outputs a master public key mpk and
a master secret key msk.

5 This implies that our scheme requires an asymmetric Type-III pairing group.

134 M. Barbosa et al.

– KeyGen(msk, y), is the key extraction algorithm, which on input a master
secret key msk and key y ∈ Y outputs a secret key sky associated with Fy.

– Enc(mpk, x) is the encryption algorithm, which on input a public key mpk and
a message msk ∈ X outputs a ciphertext ct.

– Dec(mpk, ct, sky) is the deterministic decryption algorithm, which on input a
master publik key mpk, a ciphertext ct and a secret key sky outputs z ∈ Σ or
an abort symbol ⊥.

We note that when Σ = {0, 1} the syntax considered above matches predicate-
only encryption schemes [12].

Correctness. A scheme FE as above is correct if, for all (mpk,msk) in the
range of Setup(), all x, y ∈ X, all sky in the range of KeyGen(msk, y) and all ct
in the range of Enc(mpk, x), we have that Dec(ct, sky) = F (x, y).

Indistinguishability-Based Security. Consider the experiment defined in
Fig. 1, parametrised by a functional encryption scheme FE , an attacker A and
a secret bit b. The LoRx oracle receives two messages (x0, x1) and returns a fresh
encryption of xb and the LoRy oracle receives two keys (y0, y1) and returns a
secret key skb corresponding to a fresh extraction of yb.

Several variants of IND-based security can be defined based on this
experiment:

– Public-key security: the input to the attacker is α = mpk. In the secret key
setting, we have α = ε. We use SK to refer to the latter weaker setting.

– Semi-adaptive security: the attacker places all calls to LoRx before calling
LoRy. We use SAD to refer to the weaker setting where this restriction is
enforced.

– Non function-hiding (standard) security: the attacker is restricted to making
y0 = y1 in all calls to LoRy. We use FH to denote the stronger setting where
this restriction is not enforced.

– Weak function-hiding: the attacker is restricted by the stronger requirement
Fyj0

(xi
0) = Fyj1

(xi
0) = Fyj1

(xi
1) for all i queries to LoRx and all j queries to LoRy.

We use wFH to distinguish this case from the full function-hiding case.
– Single-message security: the attacker places only one call to LoRx. We will

use one to indicate when we are in the weaker setting where this restriction
is enforced.

For all such variants, the advantage of an an attacker A against FE is defined
by the following difference of conditional probabilities, where xx will specify the
security variant according to the above conventions.

Advxx-IND
FE,A () =

∣
∣Pr[IND1

FE,A() ⇒ 1] − Pr[IND0
FE,A() ⇒ 1]

∣
∣ .

Discussion. As examples of the use of our notation for security definitions,
the strongest notion of security is function hiding public-key FE, denoted
FH-IND, which is actually impossible to achieve; the weakest notion is single-
message, semi-adaptive single-key security in the secret-key setting, denoted

Efficient Function-Hiding Functional Encryption 135

Fig. 2. Games defining simulation-based security of an FE scheme. On the i-th (resp.
j-th) Enc query (resp. KeyGen query) the (stateful) simulator S receives as side informa-
tion leakage Φ: a matrix of values such that Φ[i, j] = Fyj (xi), for all (i, j) combinations
of all key extraction and encryption queries placed by A (including the current one).
Furthermore, we also impose that the attacker never queries the all zeroes vector to
either the key extraction or the encryption oracle.

one-SAD-SK-IND. Note that in the public key setting the single-message and
multi-message are equivalent via a standard hybrid argument (for all variants
of security) whereas in the symmetric key setting this is not the case since the
attacker cannot obtain arbitrary encryptions of chosen messages. Note also that,
as mentioned above, function-hiding functional encryption cannot be satisfied in
the public-key setting: once an adversary is provided with a secret key sky for
some y and public encryption key mpk, it can learn Fy(x) for arbitrary x. Finally,
note that in the secret-key setting, semi-adaptive security is the same as selec-
tive security, where the adversary needs to commit to the LoRx queries without
any side information about the global parameters. A further weakening of this
notion is fully selective security, where all queries are provided upfront and the
adversary gets a set of challenge ciphertexts and keys in batch to conduct its
attack.

Simulation-Based Security. Consider the experiments defined in Fig. 2,
which are parametrised by functional encryption scheme FE , adversary A and
simulator S.
As before, the following variants of simulation-based security can be defined
based on this experiment:

– Public-key security: the attacker is parametrised with α = mpk. In the secret
key setting (SK), we have α = ε.

– Semi-adaptive security (SAD): the attacker places all calls to Enc before call-
ing KeyGen.

– Non function-hiding (standard) security: leakage Φ is extended to also provide
the inputs to the KeyGen oracle (i.e., the keys are explicitly given to the
simulator). Again we use FH to denote the stronger function-hiding setting.

– Single-message security (one): the attacker places only one call to LoRx.

For all such variants, the advantage of an an attacker A against FE is defined by
the following difference of probabilities, where xx will specify the security variant
according to the above conventions.

Advxx-SIM
FE,A () = |Pr[RealFE,A() ⇒ 1] − Pr[IdealFE,A,S() ⇒ 1]| .

136 M. Barbosa et al.

For the same set of adversarial restrictions, simulation-based security implies
indistinguishability-based security. To see this, observe that any IND attacker A
can be used to construct a SIM attacker B as follows. B initially chooses a bit b
uniformly at random and converts the left-right calls placed by A into encryption
and key extractions calls xb (resp. yb) that depend on b. By giving the oracle
answers back to A, our SIM adversary ensures that, when running in the real
world, it perfectly simulates the environment in the IND experiment for A. The
output of A, which B uses as its own will therefore be correlated with b in a
visible way if A is a successful IND attacker. Consider now the ideal world and
any simulator Sim. It is easy to see that, given the restrictions on the left-or-right
calls placed by A, the input to the simulator will be information-theoretically
independent of b, which means that the output of A will also be independent of
b. The bias in the real-world output would therefore give B a visible advantage
in breaking SIM security. In other words, the existence of an IND attacker with
large advantage contradicts the existence of a successful simulator.

3 IPFE vs OFE

Perhaps the first question elicited by the close relationship between IPFE and
OFE is whether generic transformations of one scheme into the other one are pos-
sible. We briefly explore a couple of simple transformations where one attempts
to construct an OFE from an IPFE by somehow encoding an OFE key y as a vec-
tor of keys yi for the underlying IPFE. We provide negative results which show
that no deterministic transformation (even one which depends on a secret key)
cannot yield a function-hidding OFE, independent of the security level offered
by the starting IPFE.

These negative results heavily rely on the determinism of the transformation
and suggest that one way around them would be to consider randomized trans-
formations. Indeed, for warm-up we present a simple OFE scheme constructed,
generically, from an IPFE scheme: the OFE key for some vector y is simply the
IPFE key for r ·y for some randomly selected scalar r: decryption of a ciphertext
which encrypts x is either 0 when x⊥ y or uniformly random otherwise. Clearly,
as soon as the adversary has more than one ciphertext, which each encrypts
messages known to the adversary, then can recover information about r and y.
In effect, we can only prove that the scheme is one-SAD-FH-IND-secure.

For space reasons we describe the negative results and the construction in
the full version of this paper. Nonetheless, even the cursory discussion above
indicates that one needs additional randomization also in the ciphertexts. The
scheme which we present next implements this intuition.

4 A Construction in the Generic Group Model

In this section we describe a simple construction which satisfies simulation-based
security in the generic group model (GGM). Our starting point is recent work by
Kim et al. [14] who propose a FH-IPFE scheme that is simulation-based secure

Efficient Function-Hiding Functional Encryption 137

in the GGM. The construction follows the pattern of recent schemes where the
inner-product is recovered by solving a discrete logarithm problem over a small
domain by exhaustive search. Here we show that, by a simple adaptation where
we omit one group element in both keys and ciphertexts (which are the values
used to compute the basis for the discrete logarithm problem) we obtain a fully
secure OFE. Indeed, the information leaked by the scheme of Kim et al. is acces-
sible to the GGM attacker only via a zero-testing oracle which becomes useless
if the basis for the discrete logarithm problem is hidden.

Our construction works as follows:

– Setup(1λ, n): On input the security parameter λ, the setup algorithm samples
an asymmetric bilinear group (G1, G2, GT , q, e) and chooses generators g1 ∈
G1 and g2 ∈ G2. Then, it samples an invertible square matrix B ∈ Z

n×n
q

uniformly at random and sets B� = det(B) · (B−1)�. The algorithm outputs
the public parameters pp = (G1, G2, GT , q, e, n) and the master secret key
msk = (pp, g1, g2,B,B�).

– KeyGen(msk,y): On input the master secret key msk and a vector y ∈ Z
n
q ,

the key generation algorithm chooses an element α ∈ Zq uniformly at random
and outputs sky = [α · y� · B]1, i.e., a vector of encodings in G1.

– Enc(msk,x): On input the master secret key msk and a vector x ∈ Z
n
q , the

encryption algorithm chooses an element β ∈ Zq uniformly at random and
outputs ct = [β · x� · B�]2, i.e., a vector of encodings in G2.

– Dec(pp, sk, ct): On input the public parameters pp, a secret key sk and a
ciphertext ct, the algorithm computes

∏n
i=1 e(sk[i], ct[i]) and returns � if the

result is equal to 1GT
and ⊥ otherwise.

Correctness of the scheme follows from the fact that the output value com-
puted by decryption encodes [αβ ·x� ·B ·B�� ·y]t, which therefore includes 〈x, y〉
as a multiplicative factor. The following theorem establishes the security of the
scheme.

Theorem 1. The above OFE scheme is simulation-based secure OFE in the
GGM.

Sketch. The proof is an adaptation of the original argument in [14]. Specifically,
we describe a simulator that, not only answers key extraction and encryption
queries in a way which is identical to what happens in the real world, it also
simulates the operation of the generic bilinear group operations in a way which
is indistinguishable from what the attacker sees in the real world. Due to the
operation of the generic group model, all queries that the adversary makes can
be perfectly simulated by returning fresh random labels for all group elements
resulting from key extraction, encryption, and bilinear group operations bar
zero testing. Simulating zero-test queries in the source groups is natural: the
simulator answers zero if and only if the queried label corresponds to a formal
polynomial that is identically zero; all non-zero answers can be justified by the
Schwartz-Zippel lemma. The more intricate part of the simulation lies in zero-
test queries for the target group, where one must take into account that formal

138 M. Barbosa et al.

Fig. 3. First variant of Wee’s scheme. Decryption is presented using inner-product
notation, denoting in compact form the pointwise pairing of ciphertext and key com-
ponents (each comprising (n + 1)(k + 1) group elements), followed by a product to
obtain a single group element.

polynomials that are not identically zero in the simulator’s view, correspond to
cancellations in the real world. Here we show that the simulator can identify
honest evaluations of inner products between orthogonal vectors (these cases
can be detected because orthogonality is revealed in the leakage provided to
the simulator) and correctly answer zero to linear combinations of such cases.
We adapt the argument in [14] to show that all other cases can be answered as
non-zero. The details are deferred to the full version of this paper. �
5 A Construction in the Standard Model

In this section we show a construction of a function hiding OFE that is provably
secure in the standard model. Our construction is developed in several steps.

Intuitively, our goal is to adapt a technique originally developed by Lin [15] in
the context of functional encryption for inner products to the case of OFE. Recall
that Lin’s technique allows to combine two instances of a functional encryption
scheme for inner products to obtain a (secret key) functional encryption scheme
for inner products that also provides function hiding guarantees.

Aiming at the simplest possible solution, the natural approach would be to
try to combine Lin’s technique with the clever OFE recently proposed by Wee in
[22]. Interestingly, adapting Lin’s transform to the orthogonality setting is not
at all immediate. Indeed, to guarantee correctness, the two instances of the OFE
need to be instantiated with different, but matching, parameters. This is in sharp
contrast with the basic IPFE setting where the transformation is less demanding
on the underlying encryption schemes. In particular, we need to develop two
novel variants of the basic Wee’s scheme, both of which we discuss next.

5.1 First Scheme

The first scheme closely follows the blueprint of Wee’s original scheme. The
difference is that matrices U and Wi are uniformly chosen in Z

k+1×k+1
q , rather

Efficient Function-Hiding Functional Encryption 139

Fig. 4. Second variant of Wee’s scheme. Decryption notation is as in Fig. 3.

than in Z
k+1×k
q as in Wee’s scheme. This is shown in Fig. 3. Correctness follows

from the fact that the result of decryption includes 〈x, y〉 as a multiplicative
factor in the exponent. Indeed, decryption computes in the exponents:

n∑

i=1

yiM0(xiU + W i)r − M0

n∑

i=0

yir
�W�

i = M0Ur〈x, y〉 ∈ Zq.

The following theorem establishes security and follows an argument similar
to Wee’s construction [22]. A sketch of the proof is given in the full version of
this paper.

Theorem 2. If MDDH and DDH assumptions hold respectively in G1 and G2

then the modified scheme of Wee in Fig. 3 is one-SAD-SIM secure.

5.2 Second Scheme

The second construction modifies Wee’s scheme in the sense that it allows to
compute

∑

i XiY i for X = (X1, . . . ,Xn) and Y = (Y 1, . . . ,Y n) where for all
i ∈ [n], Xi ∈ Z

1×k+1
q and Y i ∈ Z

k+1
q . Intuitively, this corresponds precisely to

the computation carried out in the exponents by the decryption algorithm of
the first variant of Wee’s scheme we presented above. The scheme can be found
in Fig. 3.

Correctness can be verified by rewriting the decryption operation as

n∑

i=1

(rM0(UXi + W i)Y i) − M0

n∑

i=0

rW iY i = rM0U

n∑

i=1

XiY i

Again, the following theorem shows that these modifications do not affect secu-
rity. The proof is similar to the scheme of Wee [22] and is given in the full version
of this paper.

140 M. Barbosa et al.

Theorem 3. If DDH and MDDH assumptions hold respectively in G1 and G2,
then the modification of Wee’s scheme in Fig. 4 is one-SAD-SIM secure.

As a simple corollary of Theorems 2 and 3 we have the following

Corollary 1. The two modifications of Wee’s scheme are (many) SAD-IND
secure.

5.3 Weak Function-Hiding Functional Encryption for Orthogonality

Now, we can give the details of our new Lin-like transform for orthogonality.
For simplicity, we present our results in the fully selective setting, but the proof
easily generalises to the fully adaptive setting if the underlying constructions
are themselves fully adaptive. Moreover, for clarity of exposition, we present
the transform in an abstract, generic way. In particular we first establish a set
of conditions (see Definition 3 below) for which the transformation works and
then show that our two schemes from Sects. 5.1 and 5.2 trivially satisfy these
conditions. We stress that the transformation produces a scheme that is weakly
function hiding. Still, this is enough for us as we can move to a full-fledged FH
solution using the efficient Lin and Vaikuntanathan [16] compiler.6

Definition 3. Let Γ = (Setup,KeyGen,Enc,Dec) be a Functional Encryption
scheme for orthogonality (OFE), we say that Γ is [·]αβ-OFE, for α, β ∈ {1, 2} if
the following properties are satisfied.

1. There are ppt algorithms RowKey and RowEnc such that,

Enc(mpk, ·) = [RowEnc(msk, ·)]α and KeyGen(msk, ·) = [RowKey(msk, ·)]β
for all (mpk,msk) in the support of Setup().

2. There are efficiently computable functions Fe and Fk such that

Enc(mpk, ·) = Fe(mpk, [·]α) and KeyGen(msk, ·) = Fk(msk, [·]β).

3. For both schemes, and for all ciphertexts in the support of Enc(mpk, x) and
keys in the support of KeyGen(msk, y), there exists some scalar δ that is a
function of the randomness used in algorithms Enc and KeyGen, such that
decryption returns [〈x, y〉]δ� computed as

Dec(Enc(mpk, x),KeyGen(msk, y)) = [〈RowEnc(mpk, x),RowKey(msk, y)〉]�.

It is easy to see that our first and second modification of Wee’s scheme are
respectively [·]12-OFE and [·]21-OFE schemes. We now show that, if Γ1 and Γ2

are two [·]12 and [·]21 OFE schemes, respectively, then the generic OFE construc-
tion in Fig. 5 is a secret-key (weakly) function hiding OFE. Correctness of the
construction follows from the following derivation:

Γ2.Dec(sk, ct) = [〈sk2, ct1〉]δ2T = [〈x, y〉]δ1δ2
T

6 The compiler has been proposed in the IPFE setting, but trivially extends to the
OFE setting.

Efficient Function-Hiding Functional Encryption 141

Fig. 5. Lin-like transform for orthogonality. We slightly abuse notation by using
Γ1.Setup(n) and Γ2.Setup(n+1) to denote the size of message and key vectors supported
by each scheme when constructing a function-hiding OFE for vectors of size n.

Theorem 4. If Γ1 and Γ2 are SAD-IND secure OFE schemes then our scheme
is selectively secure OFE with (weak) function hiding.

Proof. The proof follows from a sequence of games, where Game0 is the real game
in the definition of indistinguishability-based security, when b = 0, Game1 is the
same game when b = 1, and Gameh is a hybrid game that proceeds as Game0,
except that Enc is run on inputs xj

1. Thus, for the security proof it is enough
to prove that Gameh is computationally indistinguishable from both Game0 and
Game1.

Indistinguishability of Game0 and Gameh: Let A0−h be any adversary that
is able to distinguish between these two games. We construct B that breaks
the SAD-IND-security of Γ1. B runs A0−h, interpolating between the two games
while interacting with the experiment SAD-IND, as follows.

B gets the the public key mpk1 of scheme Γ1 and challenges (xj
0, x

j
1) and

(yi
0, y

i
1) from A0−h. Then B runs Γ2.Setup itself to get a pair (msk2,mpk2), calls

the external LoRx oracle to get encryptions under Γ1 of all the challenges [ctj1]1 =
Γ1.Enc(mpk1, x

j
b), and computes ctj = Γ2.KeyGen(msk2, ct

j
1) = Fk(msk2, [ct

j
1]1),

where Fk comes from Definition 3. Then, B sends queries yi
0 to key extraction

in the external game, receives secret keys [ski
1]2 = Γ1.KeyGen(msk1, yi

0) and
computes

ski = Γ2.Enc(mpk2, sk
i) = Fe(mpk2, [sk

i
1]2)

It provides all ciphertexts and keys to the attacker, waits for the adversary’s
choice, and uses this as it’s own output. It is easy to see that any change in
the behaviour of A0−h between the two games is immediately translated into a
distinguishing advantage against Γ1. This is because all queries placed by B are
admissible: B must satisfy restriction xj

0⊥yi
0 = xj

1⊥yi
0 on all queries and this is

guaranteed because A0−h has output challenges that satisfy xj
0⊥yi

0 = xj
1⊥yi

0 =
xj
1⊥yi

1.

Indistinguishability of Gameh and Game1: Let Ah−1 be any adversary that
is able to distinguish between these two games. We construct B that breaks the

142 M. Barbosa et al.

SAD-IND-security of Γ2. B runs Ah−1, interpolating betweeen the two games
while interacting with the experiment SAD-IND, as follows.

B gets the the public key mpk2 of scheme Γ2 and challenges (xj
0, x

j
1) and

(yi
0, y

i
1) from Ah−1. Then B runs Γ1.Setup itself to get a pair (msk1,mpk1),

computes

ski
1,c = Γ1.RowKey(msk1, y

i
c) for all i and c ∈ {0, 1},

and calls LoRx in the external game on (ski
1,0, sk

i
1,1) to get ski =

Γ2.Enc(mpk2, sk
i
1,b).

B then computes ctj1 = Γ1.RowEnc(mpk1, x
j
1), calls key extraction in the external

game to obtain ctj = Γ2.KeyGen(msk2, ct
j
1). Finally, B provides all ciphertexts

and keys to the attacker, waits for the adversary’s choice, and uses this as it’s
own output.

It is easy to see that any change in the behaviour of Ah−1 between the two
games is immediately translated into a distinguishing advantage against Γ2. This
is because all queries placed by B are admissible, which we now justify. B must
satisfy restriction ctj1⊥ski

1,0 = ctj1⊥ski
1,1 on all queries. Note that [〈ctj1, ski

1,b〉]T =
[〈xj

1, y
i
b〉]δ1T , so restriction ctj1⊥ski

1,0 = ctj1⊥ski
1,1 is equivalent to xj

1⊥yi
0 = xj

1⊥yi
1.

Furthermore, Ah−1 outputs challenges that satisfy xj
0⊥yi

0 = xj
1⊥yi

0 = xj
1⊥yi

1.
Thus, all queries placed by B are admissible. �

5.4 Achieving Adaptive Security

An obvious way to make the scheme given in Sect. 5.3 adaptive secure, would be
to employ complexity leveraging.

However, a naive application of complexity leveraging to the scheme from
Sect. 5.3 would result in a security loss 2τ where τ = qe|x| + qs|y|, (here qe and
qs are, respectively, the maximum number of encryption queries and secret key
queries allowed). This is because the scheme is selective both with respect to
challenge messages and with respect to challenge keys. Furthermore, since it
lives in the symmetric setting we need to guess all the challenges in advance.
Notice that, while in our setting both |x| and |y| might be small, this is not
necessarily the case for τ .

We overcome this by “anticipating” the complexity leveraging step to the
basic schemes. Recall that the construction from Sect. 5.3 builds upon two
schemes Γ1 and Γ2 that are in the public key setting. These latter schemes,
in turn, are assumed to guarantee SAD-IND security, which means they also
guarantee one-SAD-IND security.

Our key observation is to apply complexity leveraging to these basic one-
SAD-IND secure building blocks. This means that assuming that x (resp. y) is
sufficiently small, complexity leveraging induces only a polynomial 22|x| (resp.
22|y|) loss, as one single challenge query has to be guessed. Next, we build our
way towards a fully fledged (adaptively secure) construction via the following two
observations. First, in the public key setting, one-IND implies (many) IND via

Efficient Function-Hiding Functional Encryption 143

a standard hybrid argument that only induces a polynomial loss in the security
reduction. Second, Theorem4 trivially extends to the adaptive setting without
introducing additional losses.

All these observations combined mean that the resulting scheme achieves
adaptive security with only a max(22|x|, 22|y|) security loss with respect to the
selective secure solution we started from. In what follows we prove this formally.
We start with the following theorem (its proof appears in the full version of this
paper).

Theorem 5. Let n, be a integer bound on the max size of admissible messages.
If Γ is a ε one-SAD-IND-secure functional encryption for orthogonality (where
ε denotes the advantage of adversary attacking the security of the scheme), then
Γ is also 22nε one-IND-secure.

Claim. If Γ is a ε′-one-IND-secure functional encryption for orthogonality, then
it is also (q + 1)ε′-IND-secure (where q is the number of ciphertext challenges).

The proof is a straightforward hybrid argument.

Claim. If Γ1 and Γ2 are respectively ε1 and ε2-IND-secure functional encryption
schemes for orthogonality, then the construction from Sect. 5.3 is (ε1 + ε2)-IND-
secure.

The proof is the same as that given in Sect. 5.3 and is, therefore, omitted. Putting
together all the claims we have the following result.

Corollary 2. If Γ1 and Γ2 are ε-one-SAD-IND-secure OFE, then our proposed
construction is 22n((qx + 1) + (qy + 1))ε-IND-secure FH-OFE scheme (where n is
the length of the messages and qx and qy are respectively the number of ciphertext
and secret key challenges).

Thus, the total factor of security that we will lose is 22n((qx + 1) + (qy + 1)).

6 Experimental Evaluation

We have implemented our new OFE schemes in C++ starting from Shoup’s
Number Theory Library7 (NTL) on top of the GNU Multiprecision Library8

(GMP), and in integration with and the SCIPR Lab’s library for Finite Fields
and Elliptic Curves9 (libff). We used NTL to deal with matrix and vector oper-
ations carried out in the exponents, and libff as a provider for the pairing group.
Conversions between the NTL representations and the libff representations make
the implementation sub-optimal in terms of performance in key generation and
encryption. No such conversions are needed for decryption. We used the pairing

7 https://www.shoup.net/ntl/.
8 https://gmplib.org/.
9 https://github.com/scipr-lab/libff.

https://www.shoup.net/ntl/
https://gmplib.org/
https://github.com/scipr-lab/libff

144 M. Barbosa et al.

group over a curve known as BN128 from libff, aka BN254,10 which is deployed for
example in ZCash but gradually being abandoned due to the fact that it offers
less than 128 bits of security.11 All our implementations are single-threaded, and
could be further optimized via parallelization. For all of these reasons, we present
this implementation as a proof of concept, aiming to give an approximate idea of
the performance one might get if deploying such schemes. The implementation
is available upon request.

Our benchmarking results were collected in a standard MacBook Pro machine
with a 2.9 GHz Intel Core i5 and 16 GB or RAM. For every chosen set of param-
eters, we repeated the experiment 10 times, and took the median of the timings.
In all cases we observed a coefficient of variation below 10%. Table 2 provides
execution times and key/ciphertext lengths for growing sizes of key/message
vectors. For our standard model construction, note that we are actually using
double-sized vectors, in order to guarantee full security according to the dis-
cussion in Sect. 5. We observe the linear growth in both execution times and
key/ciphertext length, which is to be expected, and highlight the fact that the
overhead of going for a standard-model security guarantee is roughly 6-fold. The
most interesting conclusion we can draw, although not surprising due to the
close match between our GGM scheme and that proposed in [14], is that our
implementation is roughly twice as fast for the same security level (112-bits)
than the results reported for the original inner-product encryption scheme. This
shows that we bridged the gap between the two primitives with essentially no
efficiency loss (this is explained by the fact that we deal with a generic attacker).

Table 2. Benchmarking results for our generic-group-model construction (GGM) and
our standard-model construction (SM). On the left-hand side, timing values are given in
milliseconds. On the righ-hand side, key and ciphertext lengths are given in kilobytes.
Each row corresponds to an increasing vector size N . Although similar in terms of
group operations, the execution times and sizes for keys and ciphertexts differ due to
the different sizes of representations of G1 and G2 elements in an asymmetric pairing.

GGM SM
N Extract Encrypt Decrypt Extract Encrypt Decrypt
16 6 2 10 36 15 60
32 12 4 19 71 28 116
64 22 9 37 139 60 231
128 46 20 73 270 112 463
256 100 44 155 558 229 968

GGM SM
N Keys Cph Keys Cph
16 0,99 0,50 6,34 3,18
32 1,99 1,00 12,30 6,16
64 3,98 1,99 24,23 12,14
128 7,95 3,98 48,09 24,09
256 15,91 7,97 95,81 48,00

10 https://github.com/zcash/zcash/issues/2502.
11 https://twitter.com/pbarreto/status/779852921135476738.

https://github.com/zcash/zcash/issues/2502
https://twitter.com/pbarreto/status/779852921135476738

Efficient Function-Hiding Functional Encryption 145

7 Applications of Function-Hiding OFE

Our function-hiding OFE constructions can be applied in all the scenarios where
secret-key functional encryption for hyperplane-membership [8,12] and hidden-
vector encryption [10] are used. These include outsourcing of computations of
CNF/DNF Boolean formulas, outsourcing subset relations and range queries on
encrypted data. In particular, in the latter example no information is leaked
about encrypted data and the query, besides the value of the predicate itself.
Indeed, since our constructions are function-hiding, they also imply property-
revealing encryption schemes [7] for such predicates. To see this, consider the
construction of a property-revealing encryption scheme where an encryption
of message x consists of both an encryption and a key token for x under our
function-hiding OFE. Then, the orthogonality relation can be publicly computed
over all pairs of encrypted messages as in the property revealing setting. In
fact, this construction gives rise to a single-key two-input functional encryption
scheme, which in turn implies a property-revealing encryption scheme [14].

Furthermore, both our GGM construction and our standard model construc-
tion are the most efficient to date under comparable assumptions. However,
our standard model construction comes with a message space constraint due to
the application of a complexity leveraging argument that we use to achieve full
adaptivity.

We therefore focus our attention on applications of function-hiding OFE
where this constraint is not a limitation. Our goal is to emphasize that the
optimized complexity leveraging argument that we give in Sect. 5 is crucial to
validate our standard model construction for applications where adaptive secu-
rity is a requirement.

We recall that all our schemes can securely operate over message sizes of
roughly |M| = qn, where q is the cardinality of the cyclic groups over which
the schemes are implemented and n is the vector length. However, our standard
model scheme from Sect. 5 achieves only selective security for both keys and
messages. A naive complexity leveraging argument to obtain adaptive security
would therefore lead to a security loss in the range of |M|k+1, where k is an
upper bound on the number of key extraction queries that the scheme should
tolerate. However, in Sect. 5 we have shown how to obtain adaptive security with
only |M| loss. This motivates our analysis of applications of function-hiding OFE
where only a small fraction of the full message space |M| ≈ 2n � qn is used. We
stress that no such restrictions apply to our GGM construction, which therefore
can be used to replace with better performance all applications of OFE proposed
in the literature.

Privacy-Preserving Subset Relation. Let us consider a universe U of n
elements u1, . . . , un and the following two representations of sets A,B ⊆ U in
this universe as vectors x, y of length n + 1 such that

mRep(A) :=

⎧

⎨

⎩

xi = 1 if ui ∈ A, 1 ≤ i ≤ n
xi = 0 if ui /∈ A, 1 ≤ i ≤ n
xn+1 = −1

146 M. Barbosa et al.

kRep(B) :=

⎧

⎨

⎩

yi = 1 if ui ∈ B, 1 ≤ i ≤ n
yi = 0 if ui /∈ B, 1 ≤ i ≤ n
yn+1 = |B|

Clearly, 〈mRep(A), kRep(B)〉 = 0 if and only if B ⊆ A. Furthermore, the power
set P(U) has size 2n and both of these representations give injective mappings
from P(U) to F

n+1
q . This means that, by using these encodings to compute the

subset relation over P(U), we are in effect operating over a message space of size
2n.

The computation of the subset relation over a universe of small size can
therefore be securely outsourced to an untrusted server with full adaptivity (i.e.,
new messages can be encrypted interleaved with query evaluations) with the
guarantee that the orthogonality predicate over all message/key pairs is leaked
to the untrusted server. Furthermore, no information is leaked to an external
observer or a snapshot adversary that just observes encrypted messages at rest.

One direct application of this primitive is to allow topological sorting over
encrypted data, as any partial order can be computed by using the subset rela-
tion. Another application of the subset relation is conjunction keyword search:
fix a dictionary of keywords of size n and for each document in a database,
encrypt the set of keywords that match that document; then the subset relation
can be used to identify all the documents that match all the keywords in the set
associated with an extracted key. This subsumes the simplest form of single-key
symmetric searchable encryption and reduces leakage for conjunctive queries by
hiding the size of the matched subset. However, the security loss of our scheme
requires impractically small dictionaries. Next however, we consider two other
applications of the subset relation where this is not the case.

Range Queries. A standard method to encode range queries of the sort
a < x < b is to partition the range of values that x can take into n disjoint
intervals of equal size 0 < i1 < i2 < . . ., and then encode x as the singleton
{ik} such that ik−1 ≤ x < ik. Let Ix be the representation of a value x. Then,
the check ia ≤ x < ib can be computed as Ix ⊆ {ia, . . . , ib}. This also applies
to cases where x is represented in generalized form as belonging to a range of
more than one intervals. Our standard-model function-hiding OFE therefore per-
mits dealing with range queries whenever the granularity of the used intervals
is acceptable for reasonably small n. In particular, for x coming from a small
domain, the same technique can be used to implement the comparison operator
and therefore implies a standard order revealing encryption scheme. For impli-
cations and optimized variants of these techniques we refer the interested reader
to, e.g., [21].

Access Control. It is well known that access-control and, more generally,
data-flow control restrictions can be represented as partial orders, and there-
fore implemented using a set representation and the subset relation. Then, the
enforcement of an access control mechanism can be outsourced to an untrusted
remote server, while keeping the details of the security lattice secret. For exam-
ple, consider a database of encrypted resources stored in the remote server, each

Efficient Function-Hiding Functional Encryption 147

along with an encryption of the point in the access-control lattice that defines
the minimal set of permissions A required to access it. Then, by providing the
server with a decryption key for an OFE that encodes the set of permissions
assigned to a user B, the server can decide whether the operation is allowed by
computing A ⊆ B. Any security lattice with n nodes is isomorphic to a partially
ordered subset of the power set P([n]), and can be therefore outsourced with
our standard model scheme if n is reasonably small.

Acknowledgements. This work was supported in part by Royal Society grant for
international collaboration and by the European Union Horizon 2020 Research and
Innovation Programme under grant agreement 780108 (FENTEC). The first author
is financed by Project NanoSTIMA (NORTE-01-0145-FEDER-000016) through the
North Portugal Regional Operational Programme (NORTE 2020), under the PORTU-
GAL 2020 Partnership Agreement and the ERDF.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abdalla, M., Bourse, F., Caro, A.D., Pointcheval, D.: Better security for functional
encryption for inner product evaluations. IACR Cryptology ePrint Archive 2016,
11 (2016)

3. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 20

4. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 21

5. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 28

6. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

7. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 19

8. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013.
LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42033-7 14

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-642-42033-7_14
https://doi.org/10.1007/978-3-642-42033-7_14

148 M. Barbosa et al.

9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

10. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for diffie-hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

12. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. J. Cryptol. 26(2), 191–224 (2013)

13. Kawai, Y., Takashima, K.: Predicate- and attribute-hiding inner product encryp-
tion in a public key setting. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS,
vol. 8365, pp. 113–130. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
04873-4 7

14. Kim, S., Lewi, K., Mandal, A., Montgomery, H.W., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. IACR Cryptology ePrint Archive
2016, 440 (2016)

15. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

16. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Proceedings of IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, pp. 11–20
(2016)

17. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 35

18. Okamoto, T., Takashima, K.: Efficient (hierarchical) inner-product encryption
tightly reduced from the decisional linear assumption. IEICE Trans. 96–A(1),
42–52 (2013)

19. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010, 556 (2010)

20. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 27

21. Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig, A.: Multi-dimensional
range query over encrypted data. In: Proceedings of the 2007 IEEE Symposium on
Security and Privacy, SP 2007, pp. 350–364. IEEE Computer Society, Washington,
DC, USA (2007). https://doi.org/10.1109/SP.2007.29

22. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 8

https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-319-04873-4_7
https://doi.org/10.1007/978-3-319-04873-4_7
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-00457-5_27
https://doi.org/10.1109/SP.2007.29
https://doi.org/10.1007/978-3-319-70500-2_8

Robust Encryption, Extended

Rémi Géraud1(B), David Naccache1(B), and Răzvan Roşie1,2(B)

1 ENS, CNRS, INRIA, PSL Research University, Paris, France
{remi.geraud,david.naccache,razvan.rosie}@ens.fr

2 University of Luxembourg, Esch-sur-Alzette, Luxembourg

Abstract. Robustness is a notion often tacitly assumed while work-
ing with encrypted data. Roughly speaking, it states that a cipher-
text cannot be decrypted under different keys. Initially formalized in
a public-key context, it has been further extended to key-encapsulation
mechanisms, and more recently to pseudorandom functions, message-
authentication codes and authenticated encryption. In this work, we
motivate the importance of establishing similar guarantees for functional
encryption schemes, even under adversarially generated keys. Our main
security notion is intended to capture the scenario where a ciphertext
obtained under a master key (corresponding to Authority 1) is decrypted
by functional keys issued under a different master key (Authority 2).
Furthermore, we show there exist simple functional encryption schemes
where robustness under adversarial key-generation is not achieved. As
a secondary and independent result, we formalize robustness for digital
signatures – a signature should not verify under multiple keys – and
point out that certain signature schemes are not robust when the keys
are adversarially generated.

We present simple, generic transforms that turn a scheme into a robust
one, while maintaining the original scheme’s security. For the case of
public-key functional encryption, we look into ciphertext anonymity and
provide a transform achieving it.

Keywords: Robustness · Functional encryption · Signatures ·
Anonymity

1 Introduction

Cryptographic primitives, such as encryption and signature schemes, provide
security guarantees under the condition, often left implicit, that they are “used
correctly”. Fatal examples of cryptographic misuse abound, from weak key gener-
ation to nonce-reuse. This reliance on operational security has attracted attack-
ers, who can for instance impose faulty or backdoored random number generators
to erode cryptographic protections. At the same time, the social usage of tech-
nology leans towards a more open environment than the one in which historic
primitives were designed: keys are generated by one party, shared with another,
certified by third... These two observations raise new interesting questions, which
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 149–168, 2019.
https://doi.org/10.1007/978-3-030-12612-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_8

150 R. Géraud et al.

have only recently been addressed in the cryptographic literature. For instance,
if Alice generates keys that she is using, but doesn’t share, can an adversary
(observing Alice or influencing her in some way) nevertheless generate a differ-
ent set of keys, which would allow decryption (maybe only partial)? Intuitively
this should not be the case, but it was not until the seminal work of Abdalla, Bel-
lare and Neven [1], that this situation was formally analysed. They introduced
the notion of robustness, which ensures that a ciphertext cannot be decrypted
under multiple keys.

Is robustness desirable? Imagine a scenario where users within a network
exchange messages by broadcasting them, and further encrypt them with the
public key of the recipient to ensure confidentiality. If this is the case, we usually
assume that there is only one receiver, by arguing that no other members apart
from the intended recipient can decrypt the ciphertext and obtain a valid (non-
⊥) plaintext. But if the adversary can somehow tamper with the key generation
process, she may “craft” keys that behave unexpectedly for some messages, or
design alternative keys that give at least some information on some of the mes-
sages.

Farshim et al. [12] refined the original definition of robustness, by covering
the cases where the keys are adversarially generated, under a master notion
called “complete robustness”. Mohassel addressed the question in the context
of key-encapsulation mechanisms [19]. More recently, Farshim et al. also defined
robustness for symmetric primitives [13], motivated by the security of oblivi-
ous transfer protocols [9] or message authentication codes. Further extensions of
their security notions found applications in novel password-authenticated key-
exchange protocols described by Jarecki et al. [17] or (fast) message-franking
schemes [16]. The above line of work, however, leaves open several questions.
Indeed, to the best of our knowledge there has been no notion of robustness
defined for digital signatures [15], functional signatures [7] or functional encryp-
tion [6,20]. Yet, some existing schemes seem to be vulnerable to attacks that a
proper notion of robustness would prevent.

Consider digital signature schemes (DS), that are used to authenticate elec-
tronic documents. The textbook notion, capturing the existential unforgeability
of a DS ensures that an adversary, interacting with one signing oracle, cannot
forge a signature (for a message he did not previously query). On the other
hand, a real-world scenario is placed in a multi-user context, where it is often
assumed (but not necessarily proven) that a signature can only be verified under
the issuer’s key.

Example 1: Consider a practical situation where a clerk has acquired a digital
signature for daily use, with a third party generating the pairs of keys. Even if the
scheme remains unforgeable according to the classical definition, we do not have
formal guarantees that two pairs of keys—(sk, pk) and (sk′, pk′)—generated by
the third party (potentially malicious), cannot be used to produce a signature
σ for some chosen message M , verifiable under both pk and pk′—something
completely undesirable in practice. To be fully explicit with our example, let
us suppose one pair of keys (pk, sk) is given to the clerk and the second pair
(pk′, sk′), is issued by the third party and is covertly used by a local/global

Robust Encryption, Extended 151

security agency. When needed (and if needed), an operator can issue a signature
(using sk′) for the message: “I attest [...] is true.” which can later be verified
under pk, thus having baleful consequences for the clerk.

To give a flavour of a signature scheme where such an attack is feasible,
consider the one obtained from a toy version of the Boneh–Boyen scheme [4].
The construction is pairing-based and can be summarized as follows: (1) key-
generation samples two group generators g1 ∈ G1 and g2 ∈ G2, both of prime
order p, and publishes as a public key (g1, g2, gx

2 , e(g1, g2))—for a uniformly sam-
pled x over Zp—keeping x as a secret key. To sign the message M , one computes
σ ← g

1/(x+M)
1 . A robustness attack against this simple signature scheme exploits

the randomness in choosing the secret keys, observing that for a different pair
(pk′, sk′), one can choose g′

1 ≡ gt
1 (mod p) and then can set x′ ≡ t(x + M) − M

(mod p) such that σ ≡ g′
1
1/(x′+M).

The above example provides the intuition that robustness has practical con-
sequences. As expected, under correct key generation, standard unforgeability
does imply robustness. But it fails in a malicious setting. Fortunately, we can pro-
vide a trivial construction that generically transforms any unforgeable signature
scheme into a completely robust one (allowing for adversarial, yet well-formed
keys). As we prove in Sect. 4.1, the natural idea of including the public key (or
a collision-resistant hash of it) in the signature is indeed sufficient.

Speaking roughly about robustness as the property of a ciphertext of not
being decryptable under multiple keys, then, when it comes to decryption, an
FE scheme trivially does not exhibit this property. The reason resides in the bro-
ken symmetry to the way decryption works in symmetric/public-key schemes.
Through its purpose, a functional ciphertext can be decrypted under multiple
keys [6,20]. In this respect, an adversary holding multiple functional keys (which
is not a restriction by itself) will be able to decrypt under multiple keys. There-
fore, defining robustness in terms of decryption itself is fallacious. Instead, an
appropriate definition should ensure the FE ciphertext can be decrypted only by
the intended set of receivers.

Example 2: Consider a simple use case of a functional encryption scheme
for the “inner product” function (IP FE) [2,3]. From a technical perspec-
tive, suppose the ciphertext is generated by encrypting a plaintext M as
C ← FE.Enc(mpk,M ;R). If msk is somehow corrupted1 to msk′, then is it possi-
ble that performing decryption under sk′

y reveals a different plaintext M ′ �= M ?
Intuitively, if the functional encryption scheme meets robustness, we expect that
no ciphertext can be decrypted under functional keys issued by a different master
secret keys.

As a concrete scenario, consider a Computer Science (CS) department’s reg-
istry, which holds the marks obtained by each student in the Crypto course,
the final grade being computed as a weighted average of the stored marks (i.e.
homework counts 30%, midterm 20% and final 50%). A priori established con-
fidentiality rules ask that a clerk should not have access to the marks, but still,
1 There are several scenarios leading to such corruption, including memory corruption.

152 R. Géraud et al.

it must be possible to compute the final grade. Therefore, considering the set of
marks as the vector x and the weights as y , one can use an IP FE scheme, to
obtain the final grade, its formula mapping to x� · y . In order to achieve this,
for each course: (1) the course leader encrypts the marks; (2) later, the clerk
obtains a new key sky (depending on the established course weights), and uses
it to obtain the final average. A failure to guarantee robustness could result in
decryption to succeed, but the final average being incorrect (and possibly under
the control of an adversary). To illustrate this, consider the (bounded-norm)
IP FE scheme instantiated from ElGamal and introduced in [2]: encrypting a
plaintext under mpk = (gs1 , . . . , gsn)—where msk = s = (s1, . . . , sn)—is done as
follows: C←$ (g−r, gr·s1+x1 , . . . , gr·sn+xn), for r sampled uniformly at random
in Zp. If an attacker wishes to obtain the same C, then r remains the same, but
it can use different s′ and x′, implicitly changing the value of msk. As expected,
even if FE.KDer is correct, and the queried key is indeed issued for the vector y ,
the final decrypted result corresponds to x′� · y rather than to x� · y .

Our contributions. We begin by motivating and defining the notion of robust
signature schemes under honest and adversarial keys, denoted as strong (SROB)
and complete (CROB) robustness (Sect. 3.1). A natural question is whether exist-
ing schemes already possess a form of robustness: we show that while SROB is
indeed typically guaranteed, it is not the case of CROB, thus providing a separa-
tion between the two security concepts. Fortunately, there exist a simple generic
transform, in the standard model, that turn a SROB signature scheme into a
CROB one (Sect. 4.1).

In Sect. 3.2, we define robustness for functional encryption in a multi-
authority context. The strongest security notion we propose (FEROB) is
intended to capture adversaries able to generate the keys and the randomness
used during encryption and key-derivation, while remaining as simple as possible.
As regards the generic transforms, we provide them in the public and private-
key paradigms Sect. 4.2. The case for private-key FE schemes [8,18] relies on
right-injective PRGs and collision-resistant PRFs, concepts that we review in
Sect. 2. Finally, in the original spirit of the security notion we consider, we dis-
cuss anonymity for the context of functional encryption schemes.

2 Preliminaries

Notations. We denote the security parameter by λ ∈ N
∗ and we assume it

is implicitly given to all algorithms in the unary representation 1λ. An algo-
rithm is equivalent to a Turing machine. Algorithms are assumed to be ran-
domized unless stated otherwise; PPT stands for “probabilistic polynomial-
time,” in the security parameter (rather than the total length of its inputs).
Given a randomized algorithm A we denote the action of running A on input(s)
(1λ, x1, . . .) with uniform random coins r and assigning the output(s) to (y1, . . .)
by (y1, . . .)←$ A(1λ, x1, . . . ; r). When A is given oracle access to some proce-
dure O, we write AO. For a finite set S, we denote its cardinality by |S| and
the action of sampling a uniformly at random element x from X by x←$ X.

Robust Encryption, Extended 153

We define [k] := {1, . . . , k}. A real-valued function Negl(λ) is negligible if
Negl(λ) ∈ O(λ−ω(1)). We denote the set of all negligible functions by Negl.
Throughout the paper ⊥ stands for a special error symbol, while || denotes con-
catenation. For completeness, we recall below definitions for the more important
concepts to be used throughout the paper.

2.1 (Right-Injective) Pseudorandom Generators

Definition 1. A pseudorandom generator PRG : {0, 1}n → {0, 1}n+� takes as
input a random seed s of length n and outputs a pseudorandom binary string of
length n+�. We require a negligible advantage for any PPT adversary A against
the PRG security experiment defined in Fig. 1:

AdvPRGA,PRG(λ) := 2 · Pr
[
PRGA

PRG(λ) = 1
]

− 1 ∈ Negl(λ).

Right-Injective PRGs. We will make use of length-doubling, right-injective
PRGs, where the right-injectivity condition is defined as

R2 = R′
2 =⇒ s = s′

for R1||R2 ← PRG(s) and R′
1||R′

2 ← PRG(s′). Such constructions can be achieved
assuming the existence of one-way permutations, as shown by Yao [21].

2.2 (Collision-Resistant) Pseudorandom Functions

The notion of a pseudorandom function (PRF), introduced in the seminal work
of Goldreich, Goldwasser, and Micali [14], is a foundational building block in
theoretical cryptography. A PRF is a keyed functionality guaranteeing the ran-
domness of its output under various assumptions. PRFs found applications in
the construction of both symmetric and public-key primitives.

Definition 2. A PRF is a pair of PPT algorithms (PRF.Gen,PRF.Eval) such
that:

– sk←$ PRF.Gen(1λ): is the randomized procedure that samples a secret key sk,
given as input the unary version of the security parameter.

– y ← PRF.Eval(sk,M): is the deterministic procedure that outputs y, corre-
sponding to the evaluation of M under sk.

We require the advantage of any PPT adversary A in the PRF security experi-
ment defined in Fig. 1 to be negligible:

AdvPRF
A,PRF(λ) := 2 · Pr

[
PRFA

PRF(λ)
] − 1 ∈ Negl(λ).

Collision-Resistant PRFs. We make use of collision-resistant PRFs [13]. The
collision-resistance property is defined over both the secret-keys and the inputs:

PRF.Eval(sk,M) = PRF.Eval(sk′,M ′) =⇒ (sk,M) = (sk′,M ′).

Such constructions can be obtained for instance from key-injective PRFs via
the GGM construction - see for instance [10, Appendix C] and length-doubling
right-injective PRGs.

154 R. Géraud et al.

Fig. 1. Experiments defining pseudorandomness for PRGs (left) and PRFs (middle).
Anonymity for public-key functional encryption is defined on the right.

2.3 Functional Encryption

Definition 3 (Functional Encryption Scheme - Public-Key Setting).
A functional encryption scheme FE in the public-key setting consists of a tuple
of PPT algorithms (Setup, Gen, KDer, Enc, Dec) such that:

– pars←$ FE.Setup(1λ): we assume the existence of a Setup algorithm producing
a set of public parameters which are implicitly given to all algorithms. When
omitted, the output of FE.Setup is ∅.

– (msk,mpk)←$ FE.Gen(1λ) : takes as input the unary representation of the
security parameter λ and outputs a pair of master secret/public keys.

– skf ←$ FE.KDer(msk, f): given the master secret key and a function f , the
(possibly randomized) key-derivation procedure outputs a corresponding skf .

– C←$ FE.Enc(mpk,M): the randomized encryption procedure encrypts the
plaintext M with respect to mpk.

– FE.Dec(skf ,C): decrypts the ciphertext C using the functional key skf in order
to learn a valid message f(M) or a special symbol ⊥, in case the decryption
procedure fails.

A functional encryption scheme is s-IND-FE-CPA-secure if the advantage
of any PPT adversary A against the IND-FE-CPA-game defined in Fig. 2 is
negligible:

Advs-IND-FE-CPA
A,FE (λ) := 2 · Pr

[
s-IND-FE-CPAA

FE(λ) = 1
] − 1 ∈ Negl(λ).

Similarly we say that it is adaptive IND-FE-CPA-secure if

AdvIND-FE-CPA
A,FE (λ) := 2 · Pr

[
IND-FE-CPAA

FE(λ) = 1
] − 1 ∈ Negl(λ).

Robust Encryption, Extended 155

s-IND-FE-CPAA
FE(λ):

b ←$ {0, 1}
L ← ∅
(M0,M1; state)←$ A(1λ)
(mpk,msk) msk←$ FE.Gen(1λ)
C ∗ ←$ FE.Enc(msk,Mb)
b′ ←$ AC∗,KDermsk(·),Encmsk(·)(1λ, state)

b′ ←$ AC∗,KDermsk(·),mpk(1λ, state)
if ∃skf ∈ L s.t. f(skf ,M0) �= f(skf ,M1)

return 0
return b = b′

Proc. KDermsk(f):
L ← L ∪ {f}
skf ←$ FE.KDer(msk, f)
return skf

IND-FE-CPAA
FE(λ):

b ←$ {0, 1}
L ← ∅
(mpk,msk) msk←$ FE.Gen(1λ)

(M0,M1)←$ AKDermsk(·),FE.Encmsk(·)(1λ)

(M0,M1)←$ AKDermsk(·),mpk(1λ)
C ∗ ←$ Enc(msk,Mb)
b′ ←$ AKDermsk(·),Encmsk(·)(1λ)

b′ ←$ AC∗,KDermsk(·),mpk(1λ, state)
if ∃skf ∈ L s.t. f(skf ,M0) �= f(skf ,M1) :

return 0
return b = b′

Proc. KDermsk(f):
L ← L ∪ {f}
skf ←$ FE.KDer(msk, f)
return skf

Fig. 2. The selective and adaptive indistinguishability experiments defined for a func-
tional encryption scheme. The difference between the private-key and the public set-

tings are marked in boxed lines of codes, corresponding to the latter notion.

Functional encryption can be defined in a private-key setting: the master
secret key msk is used to encrypt the plaintext M , as there is no mpk.

Anonymity. We define the classical notion of anonymity to the context of
functional encryption and its security experiment in Fig. 1 (right). We point
out that usually, in an FE scheme, a central authority answers key-derivation
queries from a potential set of users U , therefore it is unnatural to assume that a
user does not know from whom it received the functional key. What we want to
ensure is that an adversary A �∈ U cannot tell which central authority has issued
a ciphertext, without interacting with the key-derivation procedures, otherwise
the game becomes trivial. As an easy consequence, anonymity makes sense only
in the context of public-key FE, as for a private scheme, the adversary uses
encryption oracles to obtain a ciphertext. Thus, anonymity requires that a PPT
bounded adversary can tell which mpk was used to encrypt a ciphertext only with
negligible probability: AdvANON

A,FE (λ) := 2 · Pr
[
ANONA

FE(λ) = 1
] − 1 ∈ Negl(λ).

3 Robustness: Definitions, Implications and Separations

Robustness guarantees hardness in finding ciphertexts (resp. signatures) gener-
ated under adversarial, but well-formed keys, decryptable (resp. verifiable) under
multiple secret (resp. public) keys. As stated in the introductory part, this prop-
erty is often tacitly presumed, but almost as often left without a proof. In this

156 R. Géraud et al.

work, we capture two levels of strengths of an adversary: strong robustness mod-
els the case where the keys are honestly generated and the adversary is agnostic of
their actual values, the interaction being interfaced through decryption/signing
oracles. A related, stronger notion, dubbed complete robustness gives an adver-
sary the ability to generate keys (not necessarily honestly). In this work, we
restrict to the cases where the keys are malicious, but well-formed2.

We commence by presenting the security definition for digital signatures in
Sect. 3.1, and then for functional encryption in Sect. 3.2.

3.1 Warm-Up: Robustness for Digital Signatures

The case for digital signatures is treated with respect to two security notions,
which we denote strong and complete robustness. The winning condition remains
the same in both experiments: that of obtaining a signature/message pair in
such a way that it verifies under both public keys. In the SROB experiment, two
signing oracles under sk1, sk2 are given to the adversary, while a CROB adversary
generates its intrinsic keys for accomplishing essentially the same break.

SROBA
DS(λ):

(pk1, sk1)←$ Gen(1λ)
(pk2, sk2)←$ Gen(1λ)
(M , σ)←$ ASignsk1

(·),Signsk2
(·)(1λ, pk1, pk2)

if Ver(pk1, σ,M) = 1 ∧
Ver(pk2, σ,M) = 1:

return 1
return 0

CROBA
DS(λ):

(pk1, pk2, σ,M)←$ A(1λ)
if pk1 = pk2 :

return 0
if Ver(pk1, σ,M) = 1 ∧

Ver(pk2, σ,M) = 1:
return 1

return 0

Fig. 3. Games defining strong robustness SROB (left) and complete robustness CROB
(right) for a digital signature scheme DS. We assume a negligible probability of sampling
pk1 = pk2 in the SROB game.

Definition 4 (SROB and CROB Security). Let DS be a digital signature
scheme. We say DS achieves complete robustness if the advantage of any PPT
adversary A against the CROB game depicted in Fig. 3 (right side) is negligible:
AdvCROB

A,DS (λ) := Pr
[
CROBA

DS(λ) = 1
]
. SROB-security is defined similarly, the

SROBA
DS(λ) game being defined in Fig. 3 (left side).

Notice the difference to the classical unforgeability game where the adversary
obtains signatures issued under the same secret key. We prove any EUF-scheme
is implicitly strong-robust, and show there exist signature schemes that fail to
achieve complete robustness (thus providing a separation between the two).

2 We may assume that malformed keys would be easily recognisable and rejected.

Robust Encryption, Extended 157

Proposition 1. Let DS be a CROB-secure digital signature scheme. Then DS
is also SROB-secure, the advantage of breaking the strong robustness game being
bounded as follows: AdvSROB

A,DS (λ) ≤ AdvCROB
A′,DS (λ).

Proof (Proposition 1). Suppose DS is not SROB-secure. Let A be a PPT adver-
sary that wins the SROB game with advantage at most εSROB. We construct a
PPT adversary A′ against the CROB game as follows: (1) sample two pairs of
keys (sk1, pk1), (sk2, pk2) using Gen(1λ); (2) A′ publishes pk1, pk2 and constructs
the signing oracles Signsk1(·) and Signsk2(·); (3) A′ runs A w.r.t. signing oracles
and public-keys to obtain (M , σ); (4) A′ constructs the tuple (pk1, pk2, σ, M)
and outputs it. We obtain that AdvSROB

A′,DS (λ) ≤ AdvCROB
A,DS (λ). ��

Algorithm A′
A(λ, pk1,Signsk1(·)):

(pk2, sk2)←$ Gen(1λ)
build Signsk2(·)
(M , σ)←$ ASignsk1

(·),Signsk2
(·)(pk1, pk2)

if M ∈ Signsk1(·).SignedMessages()
abort

return (M , σ)

Fig. 4. The reduction A′ in Lemma 1.

Of interest, is a minimal level of
robustness achieved by any digital sig-
nature scheme, and as it turns out,
SROB is accomplished.

Lemma 1. Any EUF-secure digital
signature scheme DS is SROB-secure.
The advantage of breaking the SROB
game is bounded by the advan-
tage of breaking the EUF game:
AdvSROB

A,DS (λ) ≤ 2 · AdvEUF
A′,DS(λ).

Proof (Lemma 1). Let A be a PPT adversary against the strong robustness
game. Let A′ stand for an adversary against the unforgeability of the digital
signature. We assume without loss of generality that A: (1) never queries a
“winning” message M to the second signing oracle after it has been signed by
the first oracle (since it can check it right away) and (2) it never queries a
“winning” message M to the first oracle after it has been signed by the second
oracle (for the same reason). We present the reduction in Fig. 4 and describe it
below:

1. The EUF game proceeds by sampling (sk1, pk1) and builds a signing oracle
Signsk1(·).

2. The reduction A′ is given pk1 and oracle access to the Signsk1(·). A′ samples
uniformly at random (sk2, pk2) via DS.Gen and constructs a second signing
oracle Signsk2(·).

3. A′ runs A w.r.t. the two (pk1, pk2) and the corresponding signing oracles
Signsk1(·),Signsk2(·). A′ keeps track of the queried messages to each oracle.

4. A returns a pair (σ,M) which verifies under both public keys with probability
εSROB, s.t. M has been queried to either Signsk1 or Signsk2 but not to both.

5. A′ returns (σ,M). If M ∈ Signsk1(·).SignedMessages(), A′ aborts and runs A
again. With probability 1

2 , M was not queried before to Signsk1(·). The tuple
(σ,M) wins the EUF game w.r.t. (pk1, sk1) with probability ≥ 1

2 · εSROB.

158 R. Géraud et al.

Thus, the reduction (Fig. 4) shows the advantage of breaking SROB is bounded
by advantage breaking EUF, which completes the proof. ��

We also show a separation between the SROB and CROB, by pointing to a
signature scheme that is not CROB secure (but already SROB).

Proposition 2. There exist DS schemes that are not CROB-secure.

Proof (Proposition 2). We provide a simple counterexample as follows. Consider
the digital signature scheme in [5]:

– Gen: selects uniformly at random g1 ←$ G1, g2 ←$ G2 and (x, y)←$ Z
2
p. Set

sk ← (x, y) and pk ← (g1, g2, gx
2 , gy

2 , e(g1, g2)), where e : G1 × G2 → GT is a
pairing3.

– Sign: given a message M , sample r ←$ Zp and compute σ ← g
1/(x+M+yr)
1 .

Note that with overwhelming probability, x + M + yr �= 0 mod p, where p is
the order of G1. The signature is the pair (σ, r).

– Verify: check that e
(
σ, gx

2 · gM2 · (gy
2)r

) ?= e(g1, g2).

To win the CROB game, an adversary A proceeds as follows:

1. A samples a key-pair: sk←$ (x, y); pk ← (g1, g2, gx
2 , gy

2 , e(g1, g2)) and a mes-
sage M ∈ Zp.

2. A samples r ←$ Zp and computes σ under sk1. Since g′
1 can be written as

gt
1, A sets t, x′, y′ such that 1/(x + M + yr) = t/(x′ + M + y′r) (equate the

exponents to obtain the same σ corresponding to M). This can be done by
assigning random values to x′, y′ and setting t ← (x′ +M +y′r)/(x+M +yr).

3. A sets sk′ ←$ (x′, y′); pk′ ← (g′
1, g

′
2, g

′x′
2 , g′y′

2 , e(g′
1, g

′
2)), for some uniformly

sampled generator g′
2 ←$ G2.

4. Finally, observe that (σ, r) verifies under (sk1, pk1) through the correctness of
the signature scheme, but also under (pk2, sk2), since

e
(
g

t/(x′+M+y′r)
1 , g′x′

2 · g′M
2 · (g′y′

2)r
)

= e(gt
1, g

′
2).

A halts and returns (pk, pk′, (σ, r),M). Note that A runs in probabilistic
polynomial time. ��

3.2 Robustness for Functional Encryption

As discussed in the motivational part of Sect. 1, robustness should be considered
as a security notion achieved by a functional encryption scheme. In what follows,
we define it for the public/private key settings. We stress about the existence of
essentially two major paths one can explore. A first stream of work would study
the meaning of robustness in a single-authority context.

3 See for instance [5] for the definition and usage of a cryptographic pairing.

Robust Encryption, Extended 159

Multi-Authority Setting. A second path is placed in a multi-authority
context—that is, assuming there exist multiple pairs (msk,mpk). Aiming for
a correct definition, one property that should be guaranteed is that a ciphertext
should not be decryptable under two (or more) functional keys issued via differ-
ent master secret keys. Stated differently, if msk1 produces skf1 and msk2 �= msk1
produces skf2 for two functionalities f1, f2, we do not want that C (say encrypted
under mpk1) to be decrypted under skf2 (it already decrypts under skf1 with
high probability due to the correctness of the scheme). We follow the lines of
Definition 4, and propose two new flavours of robustness, corresponding to the
cases where the adversary has oracle access to the (encryption, if in a private
key setting case), key-derivation and decryption oracles. The security experi-
ments are depicted in Fig. 5. The difference between the two paradigms may
seem minor (for our purpose), but in fact having a public master key confers a
significant advantage when it comes to deriving a generic transform for achieving
complete robustness, as detailed in Sect. 4. In what follows, we will explore the
multi-authority path, since it naturally maps to our motivational examples.

Intermediate Notions. Intermediate notions considering robustness under
adversarially generated keys introduced in [12]—such as full-robustness or mixed
robustness—do not generalize well to functional encryption (or attribute-based
encryption). The notion we consider, namely FEROB is in fact the generalization
of KROB (key-less robustness), as introduced for PKE by Farshim et al. [12].

Definition 5 (SROB and FEROB Security for FE). Let FE be a functional
encryption scheme. We say FE achieves functional robustness if the advantage
of any PPT adversary A against the FEROB game defined in Fig. 5 (bottom) is
negligible: AdvFEROB

A,Pub/PrvFE(λ) := Pr
[
FEROBA

Pub/PrvFE(λ) = 1
]

. SROB-security is

defined similarly, the SROBA
Pub/PrvFE(λ) game being defined in Fig. 5 (top).

As stated in the algorithmic description of the security experiment, an adver-
sary against the strongest notion of FEROB attempts to find colliding cipher-
texts, which decrypt under two msk-separated keys skf 1, skf 2.

Lemma 2 (Implications). Let FE denote a functional encryption scheme. If
FE is FEROB-secure, then it is also SROB-secure.

Proof (Lemma 2). We prove the implication holds in both the public and private
key settings:

Public-Key FE. We take the contrapositive. For a scheme FE, we assume the
existence of an adversary A winning the SROB-game with non-negligible advan-
tage εSROB. A reduction A′ that wins the FEROB game is built as follows: (1)
A′ samples uniformly at random (msk1,mpk1,msk2,mpk2); (2) the corresponding
oracles for key-derivation are built; (3) A runs with access to the aforementioned
oracles, returning (C, skf1 , skf2). If A outputs a winning tuple, then A′ wins the
FEROB game by releasing the messages and the randomness terms used to con-
struct (C, skf1 , skf2). Hence, AdvSROB

A,FE (λ) ≤ AdvFEROB
A′,FE (λ).

160 R. Géraud et al.

SROBA
PubFE(λ):

L1 ← ∅
L2 ← ∅
(mpk1,msk1)←$ Gen(1λ)
(mpk2,msk2)←$ Gen(1λ)
(C , skf1 , skf2)←$

←$ A

⎛
⎜⎜⎜⎜⎜⎜⎝KDermsk1(·),
KDermsk2(·)

⎞
⎟⎟⎟⎟⎟⎟⎠
(mpk1,mpk2)

if skf1 ∈ L2 ∨ skf2 ∈ L1:
return 0

if Dec(C , skf1) �= ⊥ ∧
Dec(C , skf2) �= ⊥:

return 1
return 0

KDermski(f):
skf ←$ KDer(mski, f)
Li ← Li ∪ {(skf , f)}
return skf

Encmpki(M):
C ←$ Enc(mpki,M)
return C

SROBA
PrvFE(λ):

L1 ← ∅
L2 ← ∅
msk1 ←$ Gen(1λ)
msk2 ←$ Gen(1λ)
(C , skf1 , skf2)←$

←$ A

⎛
⎜⎜⎜⎜⎜⎜⎝

Encmsk1(·),
Encmsk2(·),
KDermsk1(·),
KDermsk2(·)

⎞
⎟⎟⎟⎟⎟⎟⎠
(1λ)

if skf1 ∈ L2 ∨ skf2 ∈ L1:
return 0

if Dec(C , skf1) �= ⊥ ∧
Dec(C , skf2) �= ⊥:

return 1
return 0

KDermski(f):
skf ←$ KDer(mski, f)
Li ← Li ∪ {(skf , f)}
return skf

Encmski(M):
C ←$ Enc(mski,M)
return C

FEROBA
PubFE(λ):

(mpk1,msk1,R1,M1, f1,Rf1 ,

mpk2,msk2,R2,M2, f2,Rf2)←$ A(1λ)
C1 ←$ Enc(mpk1,M1;R1)
C2 ←$ Enc(mpk2,M2;R2)
if C1 = C2 ∧ mpk1 �= mpk2:

skf1 ←$ KDer(msk1, f1;Rf1)
skf2 ←$ KDer(msk2, f2;Rf2)
if Dec(C , skf1) �= ⊥ ∧

Dec(C , skf2) �= ⊥:
return 1

return 0

FEROBA
PrvFE(λ):

(msk1,R1,M1, f1,Rf1 ,

msk2,R2,M2, f2,Rf2)←$ A(1λ)
C1 ←$ Enc(msk1,M1;R1)
C2 ←$ Enc(msk2,M2;R2)
if C1 = C2 ∧ msk1 �= msk2:

skf1 ←$ KDer(msk1, f1;Rf1)
skf2 ←$ KDer(msk2, f2;Rf2)
if Dec(C , skf1) �= ⊥∧

Dec(C , skf2) �= ⊥:
return 1

return 0

Fig. 5. We introduce FEROB and SROB in the context of FE schemes defined both
in the public and private key setting. For the SROB games, we give the oracles imple-
menting Enc and KDer procedures, mentioning that each query to the latter oracle
adds an entry of the form (f, skf) in the corresponding list Li—where i ∈ {1, 2} stands
for the index of the used master keys.

Private-Key FE. We take the contrapositive. For a scheme FE, we assume
the existence of an adversary A winning the SROB-game with non-negligible
advantage εSROB. A reduction A′ that wins the FEROB game is built as follows:

Robust Encryption, Extended 161

(1) A′ samples uniformly at random (msk1,msk2); (2) A′ constructs the encryp-
tion and key-derivation oracles under the two keys; (3) A′ runs A with these
oracles, records the random coins used and obtains (C, skf1 , skf2). Finally A′

wins the FEROB game by issuing the FEROB tuple, using the random coins
used to derive the functional keys and the ciphertext and therefore we have:
AdvSROB

A,FE (λ) ≤ AdvFEROB
A′,FE (λ). ��

Proposition 3 (Separations). There exist functional encryption schemes in
the public/private-key setting that are not FEROB-secure.

Proof (Proposition 3). As sketched in Sect. 1, a DDH instantiation for the FE
scheme of [2] is not FEROB-secure. The adversary is built upon the idea pre-
sented in the introduction and is shown in Fig. 6. Given that any public-key
functional encryption scheme can be trivially converted into one in the private-
key setting simply by making mpk private, we obtain an FE scheme for the inner
product functionality in the private-key setting that is not FEROB-secure.

FEROB adversary AFEROB
FE (λ):

1. (gs, s, r,x,y, ∅
gs′

, s′, r,x′,y, ∅)←$ Gen(1λ)
such that r · si + xi = r · s′

i + x′
i and s �= s′

2. observe that Enc(gs,x) = (g−r, gr·s1+x1 . . . , gr·sn+xn) =
(g−r, gr·s′

1+x′
1 . . . , gr·s′

n+x′
n) = Enc(gs′

,x′)
3. sky ← s� · y
4. sk′

y ← s′� · y
5. Dec(C , sky) = y� · x �= ⊥
6. Dec(C , sk′

y) = y� · x′ �= ⊥

Fig. 6. A FEROB adversary against the DDH instantiation of the bounded-norm inner
product scheme in [2].

��

4 Achieving Robustness via Generic Transforms

4.1 Robust Digital Signatures

We put forward a generic transform similar in spirit to the original work of
Abdalla, Bellare, and Neven [1] in the context of digital signatures. For a digi-
tal signature scheme, we benefit from the fact that pk acts as an “immutable”
value to which one can easily commit to, while signing a message. Thus, check-
ing if a message verifies under another public key implicitly breaks the binding
property of the commitment scheme. For simplicity, we use a hash instead of a
commitment scheme.

162 R. Géraud et al.

Gen(1λ):
(sk, pk)←$ DS.Gen(1λ)
pk ← pk

sk ← sk

return (sk, pk)

Setup(1λ):
K ← H.Gen(1λ); H ← HK ; return H

Sign(sk,M):
sk ← sk
σ1 ←$ DS.Sign(sk,M)
σ2 ← H(pk)
σ ← (σ1, σ2)
return σ

Ver(pk, σ,M):
pk ← pk
(σ1, σ2) ← σ
return DS.Ver(pk, σ1) = 1 ∧

σ2
?= H(pk)

Fig. 7. A generic transform that turns any digital signature scheme DS into one that
is, in addition, CROB-secure. The (publicly available) collision-resistant hash function
H can be based on claw-free permutations in the standard model, as shown in the
seminal work of Damg̊ard [11]. It is used as a commitment to the public-key.

Lemma 3. Let DS be an EUF-secure digital signature scheme. Let H denote a
collision-resistant hash function. The digital signature DS obtained through the
transform depicted in Fig. 7 is CROB-secure.

Proof (Lemma 3). We prove both the unforgeability and the complete robustness
of the newly obtained construction:

Unforgeability. Assume the existence of a PPT adversary A against DS. We
build an adversary A′ against the EUF of the underlying DS. The unforgeability
experiment EUF for DS samples (pk, sk) and constructs a signing oracle under
sk, which is given to A′. A′ is given a collision resistant hash function H and
builds its own signing oracle Sign; when queried, Sign returns the output of Sign
concatenated to the value of H(pk). When A replies with (σ,M), it must be
the case that Ver(pk, σ,M) passes, which breaks EUF for DS. Thus we conclude
that: AdvEUF

A,DS
(λ) ≤ AdvEUF

A′,DS(λ).

CROB. To show robustness, we rely on the collision-resistance of H. The CROB
game in Fig. 3 specifies that the adversary A against the CROB game finds
pk1 �= pk2 such that Ver passes. The latter implies H(pk1) = H(pk2), trivially
breaking the collision-resistance of H, giving us: AdvCROB

A,DS
(λ) ≤ AdvCR

A′,H(λ). ��

4.2 Achieving Robustness for Functional Encryption

The ABN Transform [1] Adapted to Public-Key FE. As for the case of
digital signatures, one can reuse the elegant idea rooted in the binding property
of a commitment scheme. Concretely, we start from a FE scheme, encrypt the
plaintext, and post-process the resulting ciphertext through the use of a public-
key encryption scheme. The transform consists in committing to the two public
keys (corresponding to FE and PK) and encrypting the resulting decommitment
together with the output of FE.Enc under pk. For decryption, in addition to the
functional key, the secret key sk4 is needed to recover the decommitment from
4 sk is common to all users querying a skf .

Robust Encryption, Extended 163

the “middle” part of the ciphertext. A key difference to the ABN transform
is rooted in the innate nature of FE: we cannot encrypt the plaintext under
pk, as this would break indistinguishability. For space reasons, we defer such a
construction to the full version of this work.

Simple Robustness Transforms in the Public-Key Setting. A simpler
idea makes use of a collision-resistant hash function and simply appends the
hash of mpk||C to the already existing ciphertext.

Gen(1λ):
(mpk,msk)←$ FE.Gen(1λ)
mpk ← mpk

msk ← msk

return (msk,mpk)

Enc(mpk,M):
mpk ← mpk
C1 ←$ FE.Enc(mpk,M)
C2 ←$ H(mpk||C)
C ← (C1,C2)
return C

KDer(msk, f):
msk, ← msk
skf ←$ FE.KDer(msk, f)
skf ← skf

return skf

Setup(1λ):
K ← H.Gen(1λ); H ← HK ; return H

Dec(skf ,C):
skf ← skf

(C1,C2) ← C
if H(mpk||C1) �= C2 :

return ⊥
return FE.Dec(skf ,C1)

Fig. 8. Generic transform that turns an FE scheme into a FEROB scheme FE.

Lemma 4. Let FE be an IND-FE-CPA-secure functional encryption scheme in
the public setting and let H denote a collision-resistant hash function. The func-
tional encryption scheme FE obtained through the transform depicted in Fig. 8 is
FEROB-secure, while preserving the IND-FE-CPA-security.

Proof (Lemma 4). Robustness. To show the transform achieves FEROB, we
argue that if an adversary concludes with (mpk1,R1,M1,mpk2,R2,M2, . . .) such
that FE.Enc(mpk1, M1; R1) = FE.Enc(mpk2, M2; R2), then the adversary is
essentially able to find two tuples such that H(mpk1||FE.Enc(mpk1,M1; R1)) =
H(mpk2||FE.Enc(mpk2,M2; R2)) which cannot happen with non-negligible prob-
ability down to the collision-resistance of H.

Indistinguishability. The proof follows easily down to the indistinguishability
of the underlying scheme FE: during the challenge phase, the reduction will be
given the C∗ corresponding to Mb (chosen by A); after appending H(C∗||mpk),
the adversary will be given C∗. Also, that the reduction can answer all the
functional key-derivation queries the adversary makes. Hence the advantage in
winning the IND-FE-CPA game against FE is bounded by the advantage of
winning the IND-FE-CPA game against FE.

164 R. Géraud et al.

FEROB Transform in the Private-Key FE Setting. In this part, we pro-
vide a similar generic transform for turning any FE scheme into one that is
FEROB-secure, in the private-key framework.

Gen(1λ):
R←$ {0, 1}λ

R1||R2 ← PRG.Eval(R)
msk ← FE.Enc(1λ;R1)
sk ← R2

msk ← (msk, sk)
return msk

Enc(msk,M):
(msk, sk) ← msk
C1 ←$ FE.Enc(msk,M)
C2 ←$ PRF.Eval(sk,C1)
C ← (C1,C2)
return C

KDer(msk, f):
(msk, sk) ← msk
skf ←$ FE.KDer(msk, f)
skf ← (skf , sk)
return skf

Dec(skf ,C):
(skf , sk) ← skf

(C1,C2) ← C
if PRF.Eval(sk,C1) �= C2 :

return ⊥
return FE.Dec(skf ,C1)

Fig. 9. A generic transform that turns a FE scheme in the private-key setting into a
FEROB-secure scheme FE.

Lemma 5. Let FE be an IND-FE-CPA functional encryption scheme in the
private-key setting. Let PRG denote a right-injective length doubling pseudoran-
dom generator from {0, 1}|1λ| to {0, 1}2·|1λ| and PRF a collision-resistant PRF.
The functional encryption scheme FE obtained through the transform depicted
in Fig. 9 is FEROB-secure, while preserving IND-FE-CPA-security.

Proof (Lemma 5). Robustness. Assuming the FEROB adversary A outputs
(msk1,R1,M1, f1,Rf1 , msk2,R2,M2, f2,Rf2) such that FE.Enc(msk1,M1;R1) =
FE.Enc(msk2,M2;R2), we argue that:
– C2 = PRF.Eval(sk1,C1) = PRF.Eval(sk2,C1). Down to the collision-resistance

(over both keys and inputs) property of the PRF, it results that sk1 = sk2.
– the Gen function makes use of a right injective pseudorandom generator. Since

the right half is exactly sk1(= sk2), through the injectivity property, it must
be the case that the seed R used to feed the PRG is the same.

– since the randomness R is the same for both cases, it results that the random
coins used by FE.Gen are the same, implying that msk1 = msk2.

– finally, we obtain that msk1 = msk2, which is not allowed in the robustness
game.

Therefore, the advantage of breaking the FEROB game is bounded by the union
bound applied on the collision-resistance of the PRF and right-injectivity of the
PRG: AdvFEROB

A,FE
(λ) ≤ AdvINJ

A′,PRG(λ) + AdvCR
A′′,PRF(λ).

IND-FE-CPA-security. The reduction proceeds via one game hop:

– Game0: is the game, where the adversary runs against the scheme depicted
in Fig. 9—the output of the PRG is the expected one.

Robust Encryption, Extended 165

– Game1: based on the pseudorandomness property of the PRG, we change
the output to a truly random string, ensuring independence between msk
and sk. The distance to Game0 is bounded by the pseudorandomness advan-
tage against PRG. We now show the advantage of an adversary winning the
IND-FE-CPA experiment against FE in this setting is negligible.

Assume the existence of a PPT adversary A against the IND-FE-CPA of FE. We
build an adversary A′ against the IND-FE-CPA of the underlying FE scheme.
The IND-FE-CPA experiment samples a bit b′, the key msk and constructs a
key-derivation oracle KDer under msk, which is given to A′. The reduction then
proceeds as follows:

1. A′ chooses uniformly at random sk to key the PRF utility.
2. A′ builds the FE.Enc oracle and the FE.KDer oracle by querying the given

FE.Enc,FE.KDer. The PRF is evaluated under sk.
3. A′ runs A, obtains a tuple (M0,M1) and gets back the encryption of Mb′ (say

C∗) by querying FE.Enc(msk,Mb′). A′ computes the corresponding C∗, which
is passed to A.

4. finally, A returns a bit b, which constitutes the output of A′.

Analysis of the Reduction. The correctness of the reduction follows trivially. Thus
we conclude that in Game1, the probability of winning is:

Pr[GameA
1 (λ) ⇒ 1] ≤ AdvIND-FE-CPA

A′,FE (λ).

For the analysis, we also include the fact that the transition between Game0 and
Game1 is bounded as follows:

Pr[GameA
0 (λ) ⇒ 1] − Pr[GameA

1 (λ) ⇒ 1] ≤ AdvPRGA′′,PRG(λ).

We apply the Union Bound and conclude:

AdvIND-FE-CPA
A,FE

(λ) ≤ AdvIND-FE-CPA
A′,FE (λ) + AdvPRGA′′,PRG(λ).

��

5 Anonymity and Robustness

Interestingly, FEROB does not imply anonymity as defined in Fig. 1 (right) for
the public-key case. And based on FEROB ⇒ SROB, it follows that SROB
does not imply anonymity in a generic fashion. Therefore, we have the following
separation:

Proposition 4. There exist FEROB transforms for public-key functional
encryption that do not ensure anonymity (as defined in Fig. 1).

Proof (Proposition 4). We consider the scheme in Fig. 8 and observe that
the anonymity game can be easily won as follows: an adversary, given two

166 R. Géraud et al.

master public keys and the ciphertext C ← (C1,C2), decides the issuer by
checking whether H(C1||mpk1)

?= C2 or H(C1||mpk2)
?= C2, via the publicly

available H. ��
Finally, we give a generic construction of an anonymous FEROB scheme.

Reaching both anonymity and robustness for FE is non-trivial: on one hand,
we expect the ciphertext to be “robust” w.r.t. a sole authority (mpk), but the
“link” should not be detectable when included in the ciphertext (anonymity).
Therefore, we attempt to embed such a link in the functional key. Our solution
ensures FEROB through the means of a collision-resistant PRF with keys K
generated on the fly. An independent functional key to compute the PRF value
is issued via a second FE supporting general circuits, while the PRF key K is
encrypted under the additional mpk.

Gen(1λ):
(mpk,msk)←$ FE.Gen(1λ)
(mpk′,msk′)←$ FE′.Gen(1λ)
mpk ← (mpk,mpk′)
msk ← (msk,msk′)
return (msk,mpk)

Enc(mpk,M):
(msk,msk′) ← msk

(mpk,mpk′) ← mpk
C1 ←$ FE.Enc(mpk,M)
K ←$ K
C2 ← PRF(K ,mpk)
C3 ←$ FE′.Enc(mpk′,K)
C ← (C1,C2,C3)
return C

KDer(msk, f):
msk ← msk
skf ←$ FE.KDer(msk, f)
skg ←$ FE′.KDer(msk′, CPRF(·,mpk))
skf ← (skf , skg)
return skf

Dec(skf ,C):
(skf , skg) ← skf

(C1,C2,C3) ← C
if FE.Dec(skg,C3) �= C2 :

return ⊥
return FE.Dec(skf ,C1)

Fig. 10. A generic transform that converts an FE scheme into a FEROB scheme FE,
without ensuring anonymity. Here CPRF denotes the circuit that computes the PRF
value, where mpk is hard-coded in the circuit.

Theorem 1. Let FE′ be an ANON-secure functional encryption scheme sup-
porting (at least) one functional-key for general circuits and PRF denote a
collision-resistant PRF. Given an ANON, IND-FE-CPA-secure scheme FE, the
functional encryption scheme obtained from the transform in Fig. 10 is FEROB-
secure while preserving the original scheme’s security guarantees.

Proof (Theorem 1). Robustness. FEROB follows from the collision resistance
of the PRF: if an adversary A is able to find (K ,C1), (K ′,C1) such that
PRF(K ,C1) = PRF(K ′,C1), then A wins the collision resistance game against
the PRF.

Robust Encryption, Extended 167

Indistinguishability. Follows from the IND-FE-CPA-security of the under-
lying scheme. For any adversary A against the IND-FE-CPA-security of the
scheme FE in Fig. 10, we build the reduction A′ that wins the IND-FE-CPA
game against FE. When A sends the challenge tuple (M0,M1), A′ obtains C1

from IND-FE-CPA challenger, samples its own K s, msk′,mpk′ and computes
C2,C3, which are forwarded to A. Whenever A makes a functional key query
for f , then A′ forwards two functional queries for f and for CPRF(·,mpk), a cir-
cuit that is designed to compute C2 (the PRF value) over the encrypted K .
Thus, whenever A returns b, A′ returns the same bit and wins under the same
advantage.

Anonymity. Follows from the anonymity of the underlying FE scheme. We use a
hybrid argument. We start from a setting corresponding to b = 0 in the ANONA

FE
game (Game0).

– Game1: in Game1, we change C3 from FE′.Enc(mpk0,K) to
FE′.Enc(mpk1,K), based on the ANON property of FE′, the hop between
the two games being bounded by AdvANON

A,FE′ (λ).
– Game2: we change C1 from FE.Enc(mpk0,M) to FE.Enc(mpk1,M), based

on the anonymity of the underlying FE scheme, the distance to the previ-
ous game being bounded by AdvANON

A,FE (λ). Implicitly, in Game2, the reduc-
tion updates the value of the PRF from PRF(K ,FE.Enc(mpk0,C1)) to
PRF(K ,FE.Enc(mpk1,C1)).

Finally observe that Game2 maps to the setting where b = 1 in the anonymity
game for the FE scheme. Therefore, AdvANON

A,FE
≤ AdvANON

A1,FE′(λ) + AdvANON
A2,FE (λ). ��

Acknowledgements. The authors thank to anonymous reviewers for valuable com-
ments. Roşie was supported by EU Horizon 2020 research and innovation programme
under grant agreements No H2020-ERC-2017-ADG-787390 CLOUDMAP and No
H2020-MSCA-ITN-2014-643161 ECRYPT-NET.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2 28

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

3. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-540-24676-3_4

168 R. Géraud et al.

5. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

7. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

8. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 30

9. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 3

10. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: Wichs, D., Mansour, Y. (eds.) 48th ACM
STOC, pp. 1115–1127. ACM Press, June 2016

11. Damg̊ard, I.B.: Collision free hash functions and public key signature schemes. In:
Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5 19

12. Farshim, P., Libert, B., Paterson, K.G., Quaglia, E.A.: Robust encryption, revis-
ited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 352–
368. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 22

13. Farshim, P., Orlandi, C., Roşie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symm. Cryptol. 2017(1), 449–473 (2017)

14. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

15. Goldwasser, S., Micali, S., Rivest, R.L.: A “Paradoxical” solution to the signature
problem. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, p.
467. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 37

16. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403,
pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 3

17. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

18. Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 5

19. Mohassel, P.: A closer look at anonymity and robustness in encryption schemes.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 501–518. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 29

20. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/2010/556

21. Yao, A.C.-C.: Theory and applications of trapdoor functions (extended abstract).
In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press, November 1982

https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/3-540-39118-5_19
https://doi.org/10.1007/978-3-642-36362-7_22
https://doi.org/10.1007/3-540-39568-7_37
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-642-17373-8_29
http://eprint.iacr.org/2010/556

Tight Reductions for Diffie-Hellman
Variants in the Algebraic Group Model

Taiga Mizuide1, Atsushi Takayasu2,3(B), and Tsuyoshi Takagi2

1 Department of Creative Informatics, The University of Tokyo, Tokyo, Japan
2 Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan
3 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

takayasu@mist.i.u-tokyo.ac.jp

Abstract. Fuchsbauer, Kiltz, and Loss (Crypto’18) gave a simple and
clean definition of an algebraic group model (AGM) that lies in between
the standard model and the generic group model (GGM). Specifically,
an algebraic adversary is able to exploit group-specific structures as
the standard model while the AGM successfully provides meaningful
hardness results as the GGM. As an application of the AGM, they
show a tight computational equivalence between the computing Diffie-
Hellman (CDH) assumption and the discrete logarithm (DL) assumption.
For the purpose, they used the square Diffie-Hellman assumption as a
bridge, i.e., they first proved the equivalence between the DL assump-
tion and the square Diffie-Hellman assumption, then used the known
equivalence between the square Diffie-Hellman assumption and the CDH
assumption. In this paper, we provide an alternative proof that directly
shows the tight equivalence between the DL assumption and the CDH
assumption. The crucial benefit of the direct reduction is that we can
easily extend the approach to variants of the CDH assumption, e.g., the
bilinear Diffie-Hellman assumption. Indeed, we show several tight com-
putational equivalences and discuss applicabilities of our techniques.

1 Introduction

1.1 Background

Diffie-Hellman Problem in the Generic Group Model. The discrete log-
arithm (DL) assumption and the computational Diffie-Hellman (CDH) assump-
tion including its variants have been devoted to constructing numerous cryp-
tographic protocols. Hence, estimating the computational hardness of solving
the problems is a fundamental research topic in cryptography. For the purpose,
the generic group model (GGM) [Nac94,BL96,Sho97,MW98,Mau05] over cyclic
groups is a wonderful tool and has successfully provided several fantastic results
in the context. Generic algorithms are not able to exploit specific structures of
cyclic groups in the sense that the algorithms are given group elements only via
abstract handles. Then, the algorithms are able to output only group elements
which are computed by interacting with an oracle and applying group operations
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 169–188, 2019.
https://doi.org/10.1007/978-3-030-12612-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_9

170 T. Mizuide et al.

to given elements. Therefore, generic algorithms such as a baby-step giant-step
algorithm, the Pohlig-Hellman algorithm [PH78] (in composite-order groups),
and Pollard’s rho algorithm [Pol78] work in any cyclic groups.

Furthermore, the most substantial benefit of the GGM is that we are able
to derive information theoretic lower bounds of computational problems, where
analogous analyses seem infeasible in the standard model. For example, any
generic algorithms require at least O(

√
p) group operations to solve the DL

problem in cyclic groups of a prime-order p. Analogous analyses have also been
made for the CDH problem and its variants in an ad-hoc manner. Thus far,
the GGM has been extended and used for studying computational problems in
bilinear (and multilinear) groups [BB08,Boy08,KSW13,MRV16,EHK+17].

One main criticism of the GGM is that computational problems that are
generically hard may not be hard when instantiated in concrete groups. Jager
and Schwenk [JS13] proved that computing a Jacobi symbol of an integer modulo
a composite n generically is equivalent to factorization; however, the computa-
tion is easy when given an actual representation of Zn. Similarly, the number
field sieves [Gor93] in specific groups are able to solve the DL problem in subex-
ponential time in log p, i.e., faster than the generic algorithms. Hence, the GGM
gives us certain confidence of computational hardness while we want to obtain
analogous results in the standard model or less restricted models than the GGM.

Algebraic Group Model. In Crypto’18, Fuchsbauer, Kiltz, and Loss [FKL18]
introduced an algebraic group model (AGM). The definition of the AGM lies
in between the standard model and the GGM. Like the standard model and
unlike the GGM, an algebraic algorithm is given an actual representation of
cyclic groups. On the other hand, like the GGM and unlike the standard model,
an algebraic algorithm is able to output only group elements by applying group
operations to given elements. Although the algebraic algorithm is not required to
interact with an oracle for the computation, it should output a record of a group
operation which Fuchsbauer et al. called a representation. Let G := (G, G, p) be a
group description, where G is an additive cyclic group of a prime-order p and G is
a generator. When an algebraic algorithm is given

(
G, �X := (X1, . . . , X�) ∈ G

�
)

and outputs Z ∈ G, it has to also output a vector �z := (z0, z1, . . . , z�) ∈ Z
�+1
p as a

representation of Z with respect to �X such that Z =
∑�

i=0 ziXi, where X0 := G.
Similar definitions of an algebraic algorithm are already known in [BV98,PV05];
however, Fuchsbauer et al.’s definition is simpler and clearer.

The AGM is not allowed to derive computational lower bounds as the stan-
dard model. In turn, as opposed to the standard model, Fuchsbauer et al. showed
that the AGM is able to make a tight reduction from the DL to the CDH. To
be precise, they used the square Diffie-Hellman (DH) problem [MW96,BDS98]
as an intermediate step. They first proved a tight reduction from the DL to
the square DH in the AGM. Let (G,X) be a DL instance such that X := xG.
The reduction algorithm gives (G,X) to a square DH algorithm and receives an
answer Z = x2G along with a representation vector �z. Fuchsbauer et al. showed
that the vector �z and the relation z0G+z1X = Z are sufficient to recover the DL

Tight Reductions for Diffie-Hellman Variants in the Algebraic Group Model 171

solution x by solving an equation modulo a prime p. Then, due to the known com-
putational equivalence between the square DH and the CDH [MW99,BDZ03],
their reduction implies a tight reduction from the DL to the CDH in the AGM.
Furthermore, a valuable feature of the result is that the reduction algorithm is
generic. Due to the fact, an existence of the tight reduction implies an informa-
tion theoretic lower bounds of the CDH as O(

√
p) in the GGM.

Fuchsbauer et al. claimed that a benefit of the AGM is that we are able to
derive information theoretic lower bounds of the CDH in the GGM via quite
simple arguments. Indeed, Fuchsbauer et al.’s reduction in the AGM is much
simpler than the analysis in the GGM. Therefore, providing generic reductions
from the DL to other computational problems of the CDH family in the AGM
has to be an interesting open problem.

1.2 Our Contributions

In this paper, we provide generic and tight reductions from the DL to several
computational problems of the CDH family in the AGM. A starting point of our
technique is a direct reduction from the DL to the CDH without using the square
DH as the intermediate step. Given the DL instance (G,X), our reduction algo-
rithm randomly samples r ∈ Zp and gives (G, (X1,X2)) to a CDH algorithm,
where X1 := X = xG and X2 := X + rG = (x + r)G. Here, (G, (X1,X2)) is
a properly distributed CDH instance in the sense that x and x + r are inde-
pendently distributed to uniform in Zp from the CDH algorithm’s view. Then,
the reduction algorithm receives a solution of the CDH Z = x(x + r)G along
with a representation vector �z. We show that the vector �z and the relation
z0G + z1X1 + z2X2 = Z are sufficient to recover x by solving an equation mod-
ulo a prime p. The approach is very simple as Fuchsbauer et al.’s one and easily
applicable to several CDH variants which are not studied in [FKL18]. We believe
that the simple approach is a main benefit of our result. To explain our tech-
nique as simple as possible, we consider only tight reductions in the sense that
the reduction algorithm uses an algorithm for CDH variants only once.

Furthermore, we extend the AGM to an algebraic bilinear group
model (ABGM) for studying computational problems in symmetric bilinear
groups equipped with a map e : G × G → GT . We define an algebraic bilin-
ear algorithm so that it is given

(G := (G,GT , G, e, p), �X := (X1, . . . , Xk) ∈
G

k, �Y := (Y1, . . . , Y�) ∈ G
�
T

)
and outputs Z ∈ GT along with a representa-

tion vector �z that indicates how Z is computed by the given elements. Then,
we extend the approach used in cyclic groups and provide generic and tight
reductions from the DL to several computational problems of the CDH family
including the bilinear Diffie-Hellman problem.

Finally, we provide our master theorems that indicate what kind of compu-
tational assumptions can be reduced to from the DL assumption both in cyclic
groups and bilinear groups of a prime-order.

We should note that the master theorem does not capture the standard k-
linear assumption. Hence, we slightly modify the above approach and successfully
provide a tailor-made reduction from the DL to the k-linear assumption.

172 T. Mizuide et al.

1.3 Organization

In Sect. 2, we recall several computational problems which we study in this paper.
Then, we show a definition of algebraic group models defined by Fuchsbauer et al.
In Sects. 3 and 4, we show our technique to provide generic and tight reductions
from the DL to the CDH family in cyclic groups and bilinear groups along with
a master theorem, respectively. In Sect. 5, we provide a tailor-made reduction
from the DL to the k-linear assumption.

2 Preliminaries

In Sect. 2.1, we review several computational problems in cyclic groups and in
bilinear groups. In Sect. 2.2, we recall a basic notion of security games, the generic
group model, and the algebraic group model. The contents of this section heavily
refer to [Boy08,KSW13,EHK+17,FKL18].

Notations. We use x
$← Zp to denote a uniformly random sampling from Zp and

(x1, . . . , x�)
$← Z

�
p to denote every element is sampled by xi

$← Zp independently.
For a positive integer � > 0, we use [�] to denote a set of integers {1, 2, . . . , �}. For
an (m +n)-variate polynomial f(x1, . . . , xm, y1, . . . , yn), we use deg f to denote
a degree of the polynomial and degx1,...,xm

f to denote a degree of the polynomial
only with respect to variables x1, . . . , xm. As an example for f(x, y, z) := x2yz,
we use the notations deg f = 4, degx f = 2, and degx,y = 3.

2.1 Computational Problems

We first review computational problems in cyclic groups, then do them in bilinear
groups.

Computational Problems in Cyclic Groups. We review computational
problems in cyclic groups. Let G := (G, G, p) be a group description, where
G is an additive group generated by G and has a prime-order p.1 We first define
a discrete logarithm problem to which other problems will be reduced.

Definition 1 (Discrete Logarithm (DL) Problem). Given a group descrip-
tion G := (G, G, p) and a group element X := xG ∈ G;x $← Zp, compute x ∈ Zp.

Then, we summarize the CDH problem and its variants which we study in
this paper.

Definition 2 (Computational Diffie-Hellman (CDH) Problem [DH76]).
Given a group description G := (G, G, p) and group elements (X1 := x1G,X2 :=
x2G) ∈ G

2; (x1, x2)
$← Z

2
p, compute Z := x1x2G ∈ G.

1 To construct a reduction, we solve an equation modulo an order of G. Hence, if the
order is composite, we do not know how to solve it in general. Hence, as [FKL18] we
study only a prime-order group in this paper.

Tight Reductions for Diffie-Hellman Variants in the Algebraic Group Model 173

Definition 3 (k-party Diffie-Hellman (k-PDH) Problem [Bis08]). Given
a group description G := (G, G, p) and group elements (X1 := x1G, . . . , Xk :=
xkG) ∈ G

k; (x1, . . . , xk) $← Z
k
p, compute Z := x1 · · · xkG ∈ G.

The following k-exponent Diffie-Hellman assumption for k = 2 called the
square Diffie-Hellman assumption was used in [MW96,BDS98].

Definition 4 (k-exponent Diffie-Hellman (k-EDH) Problem). Given a
group description G := (G, G, p) and a group element X := xG ∈ G;x $← Zp,
compute Z := xkG ∈ G.

The following k-th root Diffie-Hellman problem for k = 2 called the square
root Diffie-Hellman problem was used in [KMS04].

Definition 5 (k-th Root Diffie-Hellman (k-RDH) Problem). Given a
group description G := (G, G, p) and a group element X := xkG ∈ G;x $← Zp,
compute Z := xG ∈ G.

Next, we recall a decisional k-linear problem.

Definition 6 (Decisional k-Linear Problem [BBS04]). Given a group
description G := (G, G, p) and group elements (X1 := x1G, . . . , Xk := xkG,Y1 :=
x1y1G, . . . , Yk := xkykG,Z) ∈ G

2k+1; (x1, . . . , xk, y1, . . . , yk) $← Z
2k
p , distinguish

whether Z := (y1 + · · · + yk)G or Z is a random element in G.

In this paper, we define computational variants of the k-linear problem in the
following two ways.

Definition 7 (Computational k-Linear (k-Lin(1)) Problem). Given a
group description G := (G, G, p) and group elements (X1 := x1G, . . . , Xk :=
xkG,Y1 := x1y1G, . . . , Yk := xkykG) ∈ G

2k+1; (x1, . . . , xk, y1, . . . , yk) $← Z
2k
p ,

compute Z := (y1 + · · · + yk)G.

Definition 8 (Computational k-Linear (k-Lin(2)) Problem). Given a
group description G := (G, G, p) and group elements (X1 := x1G, . . . , Xk :=
xkG,Y1 := x1y1G, . . . , Yk−1 := xk−1yk−1G,Y ′ := (y1 + · · · + yk)G) ∈
G

2k; (x1, . . . , xk, y1, . . . , yk) $← Z
2k
p , compute Z := xkykG.

A natural definition of a computational variant should be k-Lin(1); however,
our master theorem will not capture the problem. Therefore, we also define
k-Lin(2) which is included in the master theorem. The difference may be a good
example to give an intuitive understanding of our master theorem. We will later
provide a tailor-made reduction for k-Lin(1) by slightly modifying our technique.

To provide our master theorem in cyclic groups, we define a generalized
version of the Diffie-Hellman problem as follows.

174 T. Mizuide et al.

Definition 9 (Generalized Diffie-Hellman (GDH) Problem). Let
f1(x1, . . . , xm, y1, . . . , yn), . . . , f�(x1, . . . , xm, y1, . . . , yn) and g(x1, . . . , xm) be
known fixed non-zero polynomials. Given a group description G := (G, G, p) and
group elements

(X1 := f1(x1, . . . , xm, y1, . . . , yn)G, . . . , X� := f�(x1, . . . , xm, y1, . . . , yn)G)∈G
�;

(x1, . . . , xm, y1, . . . , yn) $← Z
m+n
p ,

compute
Z := g(x1, . . . , xm)G.

Our master theorem will indicate that when the GDH problem can be reduced
to from the DL.

Computational Problems in Bilinear Groups. We review computational
problems in bilinear groups. For simplicity, we focus only on symmetric bilinear
maps e : G × G → GT throughout this paper. Let G := (G,GT , G, e, p) be a
bilinear group description, where G is an additive group generated by G and has
a prime-order p, and GT is a multiplicative group of order p associated with a
non-degenerate bilinear map e : G × G → GT , i.e., e(G,G) is a generator of GT

and e(xG, yG) = e(G,G)xy.
We will provide a reduction from the DL in source groups G to CDH variants.

Hence, we define a bilinear discrete logarithm problem as follows.

Definition 10 (Bilinear Discrete Logarithm (BDL) Problem). Given a
bilinear group description G := (G,GT , G, e, p) and a group element X := xG ∈
G;x $← Zp, compute x ∈ Zp.

Then, we summarize the CDH variants in bilinear groups.

Definition 11 (Bilinear Diffie-Hellman (BDH) Problem [BF03,Jou04]).
Given a bilinear group description G := (G,GT , G, e, p) and group elements
(X1 := x1G,X2 := x2G,X3 := x3G) ∈ G

3; (x1, x2, x3)
$← Z

3
p, compute

Z := e(G,G)x1x2x3 ∈ GT .

The following �-weak bilinear Diffie-Hellman inversion problem is a paramet-
ric problem defined with a fixed integer �. Although we define the problem with
general �, our technique will be able to provide generic reductions from the DL
problem to the parametric problem only for � = 1.

Definition 12 (�-weak Bilinear Diffie-Hellman Inversion (�-wBDHI)
Problem [Boy08]). Given a bilinear group description G := (G,GT , G, e, p)
and group elements (X1 := x1G,X2 := x2

1G, . . . , X� := x�
1G,X�+1 := x2G) ∈

G
�+1; (x1, x2)

$← Z
2
p, compute Z := e(G,G)x�+1

1 x2 ∈ GT .

To provide our master theorem in bilinear groups, we define a generalized
version of the bilinear Diffie-Hellman problem as follows.

Tight Reductions for Diffie-Hellman Variants in the Algebraic Group Model 175

Definition 13 (Generalized Bilinear Diffie-Hellman (GBDH) Prob-
lem). Let f1(x1, . . . , xm, y1, . . . , yn), . . . , fk(x1, . . . , xm, y1, . . . , yn), g1(x1, . . . ,
xm, y1, . . . , yn), . . . , g�(x1, . . . , xm, y1, . . . , yn), and h(x1, . . . , xm) be known fixed
non-zero polynomials. Given a bilinear group description G := (G,GT , G, e, p)
and group elements

(
X1 := f1(x1, . . . , xm, y1, . . . , yn)G, . . . , Xk := fk(x1, . . . , xm, y1, . . . , yn)G,

Y1 := e(G,G)g1(x1,...,xm,y1,...,yn), . . . , Y� := e(G,G)g�(x1,...,xm,y1,...,yn)

)

∈ G
k × G

�
T ; (x1, . . . , xm, y1, . . . , yn) $← Z

m+n
p ,

compute
Z := e(G,G)h(x1,...,xm).

2.2 Algebraic Group Model

In this subsection, we review the GGM and the AGM in cyclic groups.

Algebraic Security Game. Let GG be an algebraic security game relative to
a group description G := (G, G, p); an adversary A receives G and an instance of
the problem �X from a challenger, then returns an output. For example, we use
CDHG to denote security games of the CDH problem relative to G; an adversary
A receives G and (X1,X2) from a challenger, then returns an output Z. We use
GA

G to denote an output of a game GG between a challenger and an adversary
A. A is said to win if GA

G = 1; CDHA
G = 1 when Z = x1x2G. We define an

advantage and a running time of an adversary A in GG as AdvGG,A := Pr[GA
G = 1]

and TimeGG,A, respectively.

Generic Group Model (GGM). In the GGM, an adversary Agen is not given
actual representations of group elements but the elements via abstract handles.
For example, an adversary Agen in a security game CDHG receives a group
description G := (G, 00, p) and (01, 02) from a challenger. Here, G only con-
tains an information of an additive cyclic group of a prime-order p. The adver-
sary Agen is able to perform group operations only via oracle queries, e.g., a
generic adversary Agen queries (01, 02,+) to an oracle and obtains 03, where
01 = X1, 02 = X2, and 03 = X1 +X2. Since a behavior of the generic adversary
Agen is independent of actual group representations, it works in any groups.

Some computational problems that are hard in the GGM may not be hard
when instantiated in concrete groups. However, the GGM is still useful since
it enables us to obtain information theoretic lower bounds. We use a notion of
(ε, t)-hard if for all generic algorithms Agen in a game GG

TimeGG,Agen
≤ t ⇒ AdvGG,Agen

≤ ε

holds. The following fact is known for the discrete logarithm problem.

Lemma 1 (Generic Hardness of DL [Sho97,Mau05]). The discrete loga-
rithm problem is (t2/p, t)-hard in the GGM.

176 T. Mizuide et al.

Algebraic Algorithm. Now, we review a notion of an algebraic algorithm
defined by Fuchsbauer et al. [FKL18]. An algebraic algorithm is able to out-
put group elements only via group additions of given elements. Furthermore,
the algebraic algorithm should also output a representation which indicates how
outputted group elements are calculated with respect to given elements.

Definition 14 (Algebraic Algorithm, Definition 2.1 of [FKL18]). An
algorithm Aalg executed in an algebraic security game GG in a cyclic group
G := (G, G, p) is called algebraic if for all group elements Z ∈ G that Aalg out-
puts, it additionally returns the representation of Z with respect to given group
elements. Specifically, if �X := (X0, . . . , X�) ∈ G

�+1, where X0 := G, is the list of
group elements that Aalg has received so far, then Aalg must also return a vector
�z := (zi)0≤i≤� ∈ Z

�+1
p such that Z =

∑�
i=0 ziXi. We use [Z]�z to denote such an

output.

We remark that every generic algorithm Agen can be modeled as an alge-
braic one. A generic algorithm Agen is able to output only group elements which
are derived from group additions of given elements as an algebraic algorithm.
Furthermore, by keeping a record of all oracle queries, a generic algorithm Agen

is able to output a group element Z along with its representation �z. Hence, a
generic algorithm Agen is able to behave as an algebraic algorithm. Moreover,
let Aalg and Bgen be an algebraic and a generic algorithm, respectively. Then,
Balg := B

Aalg
gen is also an algebraic algorithm.

Reduction Between Algebraic Security Games. Let GG and HG be two
algebraic security games. Please keep in mind that GG and HG will be the game
for the CDH variants and the (B)DL, respectively. We use HG ⇒alg GG to denote
an existence of a generic and tight reduction algorithm Rgen such that for every
algorithm A, an algorithm B := RA

gen satisfies

AdvHG,B = AdvGG,A and TimeHG,B = TimeGG,A.

The crucial point of the definition is that a reduction algorithm Rgen is generic.
Hence, if A = Aalg is algebraic, B = Balg is also algebraic. Furthermore, if A = Agen

is generic, B = Bgen is also generic. Thanks to the generic reduction algorithm
Rgen, we are able to obtain information theoretic lower bounds of CDH variants
as follows by combining with Lemma 1.

Lemma 2 (Lemma 2.2 of [FKL18]). Let GG and HG be algebraic security
games such that HG ⇒alg GG and winning HG is (ε, t)-hard in the GGM. Then,
GG is (ε, t)-hard in the GGM.

3 Reduction from DL in Cyclic Groups

In this section, we show several generic and tight reductions from the DL to the
CDH variants in cyclic groups. We first provide a direct reduction to the CDH
in Sect. 3.1. Then, we provide our master theorem in Sect. 3.2.

Tight Reductions for Diffie-Hellman Variants in the Algebraic Group Model 177

3.1 Basic Reduction: From DL to CDH

In this section, we show a basic approach of this paper by providing a generic
and tight reduction from the DL to the CDH in the AGM.

Theorem 1. DLG ⇒alg CDHG.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically,
the reduction algorithm Rgen uses an algebraic adversary Aalg on the CDHG only
once and construct an algebraic adversary Balg := R

Aalg
gen on the DLG .

The reduction algorithm Rgen is given a group description G := (G, G, p) and
an instance of the DLG , i.e., X := xG ∈ G for an unknown x ∈ Zp. Then, the
reduction algorithm Rgen creates an instance of the CDHG as follows: Pick a
random r

$← Zp and compute

X2 := X + rG = (x + r)G ∈ G,

then set
(X1 := X,X2) ∈ G

2.

The reduction algorithm Rgen gives a group description G := (G, G, p) and group
elements (X1,X2) ∈ G

2 to Aalg. Observe that (X1,X2) is a valid CDH instance
by implicitly setting

(x1, x2) = (x, x + r)

since x2 is independently distributed of x1 to uniform in Zp from Aalg’s view.
Hence, an algebraic adversary Aalg outputs a correct solution [Z]�z with an advan-
tage AdvCDH

G,Aalg
and a running time TimeCDH

G,Aalg
.

Next, the reduction algorithm Rgen uses [Z]�z outputted by an algebraic adver-
sary Aalg on the CDHG and computes a solution of the DLG . Assume the out-
put is a correct solution of the CDH, i.e., Z = x1x2G. It holds with probability
AdvCDH

G,Aalg
. Then, the representation vector �z := (z0, z1, z2) satisfies

x1x2G = x(x + r)G = z0G + z1X + z2Y

= (z0 + z1x + z2(x + r))G.

Hence, the reduction algorithm Rgen obtains the following univariate equation
modulo a prime p:

x(x + r) = z0 + z1x + z2(x + r) mod p

⇔ x2 + (r − z1 − z2)x − z0 − z2r = 0 mod p.

Observe that the left hand side is a degree 2 monic polynomial; hence, a non-zero
polynomial. Since the reduction algorithm Rgen knows a value of r, it is able to
find all solutions for x in polynomial time. By checking xG = X, the reduction
algorithm Rgen successfully finds a correct solution of the DLG . 	

By combining with Lemmas 1, 2, and Theorem 1, we are able to obtain an
information theoretic lower bound for the CDH.

Theorem 2 (Generic Hardness of CDH). The computational Diffie-
Hellman problem in Definition 2 is (t2/p, t)-hard in the generic group model.

178 T. Mizuide et al.

3.2 Master Theorem in Cyclic Groups

In this subsection, we provide the following master theorem in cyclic groups to
indicate the power of our technique.

Theorem 3 (Master Theorem in Cyclic Groups). DLG ⇒alg GDHG
holds when the following conditions hold:

(1) degx1,...,xm
fi(x1, . . . , xm, y1, . . . , yn) ∈ {0, 1} for all i ∈ [�],

(2) deg g(x1, . . . , xm) > 1.

Before providing a proof, we summarize the CDH variants which we studied
in Sect. 3 and the conditions of Theorem3 in Table 1. As the table shows, CDH,
k-PDH, k-EDH, and k-Lin(2) satisfy the conditions (1) and (2) in Theorem3.
Hence, as immediate corollary of the master theorem, we are able to provide
generic and tight reductions from the DL to the k-PDH, k-EDH, and k-Lin(2).
Unfortunately, the k-Lin(1) does not satisfy the condition (2). Hence, we will
provide a tailor-made reduction for the k-Lin(1) later.

Table 1. Applicability of our technique in cyclic groups

Problem (fi)i∈[�] g max deg fi deg g Reduction?

CDH (x1, x2) x1x2 1 2 Yes

k-PDH (xi)i∈[k] x1 · · ·xk 1 k Yes

k-EDH x xk 1 k Yes

k-Lin(1)
(
(xi)i∈[k], (xiyi)i∈[k]

) ∑k
i=1 yi 1 1 No

k-Lin(2)

(
(xi)i∈[k], (xiyi)i∈[k−1],∑k

i=1 yi

)

xkyk 1 2 Yes

Then, we show a proof of Theorem 3. In advance, we claim that the condition
(1) will be used to ensure that the reduction algorithm is able to produce all
group elements of the GDH during a reduction, while both the conditions (1)
and (2) will be used to ensure that the modular equation never becomes a zero
polynomial.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically,
the reduction algorithm Rgen uses an algebraic adversary Aalg on the GDHG
only once and construct an algebraic adversary Balg := R

Aalg
gen on the DLG .

The reduction algorithm Rgen is given a group description G := (G, G, p) and
an instance of the DLG , i.e., X := xG ∈ G for an unknown x ∈ Zp. Then,
the reduction algorithm Rgen creates an instance of the GDHG as follows: Pick
random (r2, . . . , rm, s1, . . . , sn) $← Z

m+n−1
p and compute

Xi := fi(x1, . . . , xm, y1, . . . , yn)G ∈ G

Tight Reductions for Diffie-Hellman Variants in the Algebraic Group Model 179

for all i ∈ [�] by implicitly setting

(x1, x2, . . . , xm, y1, . . . , yn) = (x, x + r2, . . . , x + rm, s1, . . . , sn).

The reduction algorithm Rgen is able to compute all the group elements thanks
to the condition (1). Then, the reduction algorithm Rgen gives a group descrip-
tion G := (G, G, p) and group elements (X1, . . . , X�) ∈ G

� to Aalg. Observe that
(X1, . . . , X�) is a valid GDH instance since (x2, . . . , xm) is independently dis-
tributed of x1 to uniform in Z

m−1
p from Aalg’s view. Hence, an algebraic adversary

Aalg outputs a correct solution [Z]�z with an advantage AdvGDH
G,Aalg

and a running
time TimeGDH

G,Aalg
.

Next, the reduction algorithm Rgen uses [Z]�z outputted by an algebraic adver-
sary Aalg on the GDHG and computes a solution of the DLG . Assume the output
is a correct solution of the GDH, i.e., Z = g(x1, . . . , xm)G. It holds with proba-
bility AdvGDH

G,Aalg
. Then, the representation vector �z := (z0, z1, . . . , z�) satisfies

g(x1, . . . , xm)G
= z0G + z1X1 + · · · + z�X�

= (z0 + z1f1(x1, . . . , xm, y1, . . . , yn) + · · · + z�f�(x1, . . . , xm, y1, . . . , yn))G.

Hence, the reduction algorithm Rgen obtains the following univariate equation
modulo a prime p:

g(x, x + r2, . . . , x + rm)

= z0 +
�∑

i=1

zifi(x, x + r2, . . . , x + rm, s1, . . . , sn) mod p.

Observe that a degree of the left and the right hand side with respect to a variable
x is strictly larger than 1 and exactly 1 respectively due to the conditions (1)
and (2). Hence, the modular equation never becomes a zero polynomial. Since
the reduction algorithm Rgen knows values of (r2, . . . , rm, s1, . . . , sn), it is able to
find all solutions for x in polynomial time. By checking xG = X, the reduction
algorithm Rgen successfully finds a correct solution of the DLG . 	

By combining with Lemmas 1, 2, and Theorem 3, we are able to obtain an
information theoretic lower bound for the GDH as follows.

Theorem 4 (Generic Hardness of GDH). The generalized Diffie-Hellman
problem in Definition 9 is (t2/p, t)-hard in the generic group model.

4 Reduction from BDL in Bilinear Groups

In this section, we show tight reductions from the bilinear discrete logarithm
problem to the bilinear Diffie-Hellman problem in an algebraic bilinear group
model which we define in Sect. 4.1. In Sect. 4.2, we provide a reduction to the
BDH. Finally, we provide our master theorem in Sect. 4.3.

180 T. Mizuide et al.

4.1 Algebraic Bilinear Group Model

In advance of the reduction, we define an algebraic bilinear algorithm. The defi-
nition is analogous to Definition 14 in the sense that the algebraic bilinear algo-
rithm is able to output only group elements which are derived from group addi-
tions in G, group multiplications in GT , and pairing e of given elements. Fur-
thermore, the algebraic bilinear algorithm should also output a representation
which indicates how outputted group elements are calculated. In this paper, we
study computational problems in bilinear groups whose solutions Z are elements
in GT . Hence, we define a representation so that it records how Z is computed
by group multiplications of given elements in GT and pairing of given elements
in G. We formally provide a definition as follows.

Definition 15 (Algebraic Bilinear Algorithm). An algorithm Aalg exe-
cuted in an algebraic security game GG for G := (G,GT , G, e, p) is called alge-
braic if for all group elements Z ∈ GT that Aalg outputs, it additionally return
the representation of Z with respect to given group elements. Specifically, if
�X := (X0, . . . , Xk) ∈ G

k+1, where X0 := G, and �Y := (Y1, . . . , Y�) ∈ G
�
T

are the list of group elements that Aalg has received so far, then Aalg must

also return a vector �z := ((zij)0≤i≤j≤k, (z′
i)1≤i≤�) ∈ Z

(k+1)(k+2)
2 +�

p such that

Z =
(∏

0≤i≤j≤k e(Xi,Xj)zij

)
·
(∏�

i=1 Y
z′

i
i

)
. We denote such an output as [Z]�z.

We note that the BDH and the �-wBDI does not take elements in GT as the

input. Therefore, the algorithm outputs Z along with a vector �z ∈ Z

(k+1)(k+2)
2

p .

4.2 From BDL to BDH

In this subsection, we extend the approach in Sect. 3 and prove the following
reduction.

Theorem 5. BDLG ⇒alg BDHG.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically,
the reduction algorithm Rgen uses an algebraic adversary Aalg on the BDHG only
once and construct an algebraic adversary Balg := R

Aalg
gen on the BDLG .

The reduction algorithm Rgen is given a bilinear group description G :=
(G,GT , G, e, p) and an instance of the BDLG , i.e., X := xG ∈ G for an unknown
x ∈ Zp. Then, the reduction algorithm Rgen creates an instance of the BDHG as
follows: Pick a random (r, s) $← Z

2
p and compute

(X2 := X + rG = (x + r)G, X3 := X + sG = (x + s)G) ∈ G
2,

then set
(X1 := X,X2,X3) ∈ G

3.

The reduction algorithm Rgen gives a bilinear group description G :=
(G,GT , G, e, p) and group elements (X1,X2,X3) ∈ G

3 to Aalg. Observe that

Tight Reductions for Diffie-Hellman Variants in the Algebraic Group Model 181

(X1,X2,X3) is a valid BDH instance since (x2, x3) is independently distributed
of x to uniform in Z

2
p from Aalg’s view. Hence, an algebraic adversary Aalg out-

puts a correct solution [Z]�z with an advantage AdvBDH
G,Aalg

and a running time
TimeBDH

G,Aalg
.

Next, the reduction algorithm Rgen uses [Z]�z outputted by an algebraic adver-
sary Aalg on the BDHG and computes a solution of the BDLG . Assume the
output is a correct solution of the BDH, i.e., Z = e(G,G)x1x2x3 . It holds with
probability AdvBDH

G,Aalg
. Then, we use X0 := G for notational convenience and the

representation vector �z := (zij)0≤i≤j≤3 satisfies

e(G,G)x1x2x3 = e(G,G)x(x+r)(x+s)

=
∏

0≤i≤j≤3

e(Xi,Xj)zij

= e(G,G)z00+z01x+z02(x+r)+z03(x+s)+z11x2+z12x(x+r)+z13x(x+s)

· e(G,G)z22(x+r)2+z23(x+r)(x+s)+z33(x+s)2 .

Hence, the reduction algorithm Rgen obtains the following univariate equation
modulo a prime p:

x(x + r)(x + s)

= z00 + z01x + z02(x + r) + z03(x + s) + z11x
2 + z12x(x + r)

+ z13x(x + s) + z22(x + r)2 + z23(x + r)(x + s) + z33(x + s)2 mod p

⇔ x3 + (r + s − z11 − z12 − z13 − z22 − z23 − z33)x2

+ (rs − z01 − z02 − z03 − rz12 − sz13 − 2rz22 − (r + s)z23 − 2sz33)x

− z00 − rz02 − sz03 − r2z22 − rsz23 − s2z33 = 0 mod p.

Observe that the left hand side is a degree 3 monic polynomial; hence, a non-
zero polynomial. Since the reduction algorithm Rgen knows values of r and s, it
is able to find all solutions for x in polynomial time. By checking xG = X, the
reduction algorithm Rgen successfully finds a correct solution of the BDLG . 	

By combining with Lemmas 1, 2, and Theorem 5, we are able to obtain an
information theoretic lower bound for the BDH.

Theorem 6 (Generic Hardness of BDH). The bilinear Diffie-Hellman
problem in Definition 11 is (t2/p, t)-hard in the generic group model.

4.3 Master Theorem in Bilinear Groups

In this subsection, we provide the following master theorem in bilinear groups
to indicate the power of our technique.

Theorem 7 (Master Theorem in Bilinear Groups). BDLG ⇒alg

GBDHG holds when the following conditions hold:

182 T. Mizuide et al.

(1) degx1,...,xm
fi(x1, . . . , xm, y1, . . . , yn) ∈ {0, 1} for all i ∈ [k],

(2) degx1,...,xm
gi(x1, . . . , xm, y1, . . . , yn) ∈ {0, 1, 2} for all i ∈ [�],

(3) deg h(x1, . . . , xm) > 2.

Before providing a proof, we summarize the BDH and the �-wBDHI which
we studied in Sect. 4 and the conditions of Theorem7 in Table 2. Since these
problems do not take group elements in GT as the input, we omit the condition
(2) in the table. As the table shows, the BDH which we provided reductions
satisfies the conditions (1) and (3) in Theorem7. However, the �-wBDHI does
not satisfy the condition (1) for � > 1. Hence, as immediate corollary of the
master theorem, we are able to provide generic and tight reductions from the
BDL to the 1-wBDHI. In this paper, we are not able to provide a tailor-made
reduction for �-wBDHI for � > 1.

Table 2. Applicability of our technique in bilinear groups

Problem (fi)i∈[k] h max deg fi deg h Reduction?

BDH (xi)i∈[3] x1x2x3 1 3 Yes

�-wBDHI ((xi
1)i∈[�], x2) x�+1

1 x2 � � + 2 � = 1

Then, we show a proof of Theorem 7. In advance, we claim that the conditions
(1) and (2) will be used to ensure that the reduction algorithm is able to produce
all group elements of the GBDH during a reduction, while all the conditions (1),
(2), and (3) will be used to ensure that the modular equation never becomes a
zero polynomial.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically,
the reduction algorithm Rgen uses an algebraic adversary Aalg on the GBDHG
only once and construct an algebraic adversary Balg := R

Aalg
gen on the BDLG .

The reduction algorithm Rgen is given a bilinear group description G :=
(G,GT , G, e, p) and an instance of the BDLG , i.e., X := xG ∈ G for an unknown
x ∈ Zp. Then, the reduction algorithm Rgen creates an instance of the GBDHG
as follows: Pick random (r2, . . . , rm, s1, . . . , sn) $← Z

m+n−1
p and compute

Xi := fi(x1, . . . , xm, y1, . . . , yn)G ∈ G

for all i ∈ [k] and

Yj := gj(x1, . . . , xm, y1, . . . , yn)G ∈ GT

for all j ∈ [�] by implicitly setting

(x1, x2, . . . , xm, y1, . . . , yn) = (x, x + r2, . . . , x + rm, s1, . . . , sn).

The reduction algorithm Rgen is able to compute all the group elements
thanks to the conditions (1) and (2). Then, the reduction algorithm Rgen

Tight Reductions for Diffie-Hellman Variants in the Algebraic Group Model 183

gives a bilinear group description G := (G,GT , G, e, p) and group elements
(X1, . . . , Xk, Y1, . . . , Y�) ∈ G

k×G
�
T to Aalg. Observe that (X1, . . . , Xk, Y1, . . . , Y�)

is a valid GBDH instance since (x2, . . . , xm) is independently distributed of x1

to uniform in Z
m−1
p from Aalg’s view. Hence, an algebraic adversary Aalg out-

puts a correct solution [Z]�z with an advantage AdvGBDH
G,Aalg

and a running time
TimeGBDH

G,Aalg
.

Next, the reduction algorithm Rgen uses [Z]�z outputted by an algebraic adver-
sary Aalg on the GBDHG and computes a solution of the BDLG . Assume the
output is a correct solution of the GBDH, i.e., Z = h(x1, . . . , xm, y1, . . . , yn)G.
It holds with probability AdvGBDH

G,Aalg
. Then, the representation vector �z :=

(z0, (zij)0≤i≤j≤k, (z′
i)1≤i≤�) satisfies

e(G,G)h(x1,...,xm,y1,...,yn)

=

⎛
⎝ ∏

0≤i≤j≤k

e(Xi,Xj)zij

⎞
⎠ ·

⎛
⎝ ∏

1≤i≤�

Y
z′

i
i

⎞
⎠

= e(G,G)
∑

0≤i≤j≤k zijfi(x1,...,xm,y1,...,yn)·fj(x1,...,xm,y1,...,yn)

· e(G,G)
∑�

i=1 z′
igi(x1,...,xm,y1,...,yn).

Hence, the reduction algorithm Rgen obtains the following univariate equation
modulo a prime p:

h(x, x + r2, . . . , x + rm, s1, . . . , sn)

=
∑

0≤i≤j≤k

zijfi(x, x + r2, . . . , x + rm, s1, . . . , sn)

· fj(x, x + r2, . . . , x + rm, s1, . . . , sn)

+
�∑

i=1

z′
igi(x, x + r2, . . . , x + rm, s1, . . . , sn) mod p.

Observe that a degree of the left and the right hand side with respect to a variable
x is strictly larger than 2 and at most 2 respectively due to the conditions (1),
(2), and (3). Hence, the modular equation never becomes a zero polynomial.
Since the reduction algorithm Rgen knows values of (r2, . . . , rm, s1, . . . , sn), it is
able to find all solutions for x in polynomial time. By checking xG = X, the
reduction algorithm Rgen successfully finds a correct solution of the BDLG . 	

By combining with Lemmas 1, 2, and Theorem 7, we are able to obtain an
information theoretic lower bound for the GBDH as follows.

Theorem 8 (Generic Hardness of GBDH). The generalized bilinear Diffie-
Hellman problem in Definition 13 is (t2/p, t)-hard in the generic group model.

5 DL to k-Lin Reduction

In this section, we provide a generic and tight reduction from the DL to the
k-Lin(1) in an ad-hoc manner.

184 T. Mizuide et al.

As described in Sect. 3.2, our master theorem (Theorem 3) does not capture
the k-Lin(1) problem. The core trick of the above reduction for the CDH consists
of the following two steps:

– embedding the DL solution x into group elements of the CDH instance
(X1,X2),

– constructing a modular equation with a non-zero polynomial whose solution
is x.

In particular, by following the same approach, we are not able to ensure that a
modular equation becomes non-zero. For example, for simplicity we explain how
the attempt fails for the 1-Lin(1). To provide a reduction from the DL to the
1-Lin(1) in the same way, we try to embed the DL solution x into x1 and/or y1
of the 1-Lin(1) instance. We note that the DL solution x cannot be embedded
into x1 and y1, simultaneously. In particular, the reduction algorithm is not able
to create group elements whose discrete logarithm have a term of x of degree 2,
e.g., x2G. The intractability readily follows from the fact that the square DH is
computationally equivalent to the DL.

Hence, we try to continue the approach by embedding the DL solution x
into x1 or y1. When we embed x into x1 and create a 1-Lin(1) instance (X1 =
X,Y1 = cX) by implicitly setting (x1, y1) = (x, c) with a random c ∈ Zp, the
1-Lin(1) algorithm outputs [Z]�z such that Z = z0G + z1X1 + z2Y1. When Z is a
correct solution Z = y1G,

y1G = cG = z0G + z1X1 + z2Y1

= (z0 + z1x + z2cx) G

holds and the reduction algorithm obtains a modular equation

c = z0 + z1x + z2cx mod p

⇔ (z1 + z2c)x + z0 − c = 0 mod p.

Observe that the left hand side is a zero polynomial when z1 + z2c = z0 − c = 0.
Similarly, when we embed x into y1 and create a 1-Lin(1) instance (X1 = cG, Y1 =
cX) by implicitly setting (x1, y1) = (c, x) with a random c ∈ Zp,

y1G = xG = z0G + z1X1 + z2Y1

= (z0 + z1c + z2cx) G

holds and the reduction algorithm obtains a modular equation

x = z0 + z1c + z2cx mod p

⇔ (z2c − 1)x + z0 + z1c = 0 mod p.

Observe that the left hand side is a zero polynomial when z2c − 1 = z0 +
z1c = 0. Hence, the reduction algorithm may fail even when the 1-Lin(1) algo-
rithm outputs a correct solution Z = y1G.

Tight Reductions for Diffie-Hellman Variants in the Algebraic Group Model 185

The reduction of the CDH (and our master theorem) avoids the problem by
using the fact that the x1 and x2 which are the discrete logarithms of the input
(X1,X2) are linear in x while x1x2 which is the discrete logarithm of the CDH
solution Z is quadratic in x. In other words, the resulting modular equation has
to become a monic non-zero polynomial.

However, by modifying the approach, we are still able to provide a generic
and tight reduction from the DL to the k-Lin(1).

Theorem 9. DLG ⇒alg k-Lin(1)
G .

Here, for simplicity we prove DLG ⇒alg 1-Lin(1)
G . Note that there is a reduc-

tion from the 1-Lin(1)
G to the k-Lin(1)

G in the standard model. Hence, the proof
for 1-Lin(1)

G is sufficient to prove Theorem 9.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically,
the reduction algorithm Rgen uses an algebraic adversary Aalg on the 1-Lin(1)

G
only once and construct an algebraic adversary Balg := R

Aalg
gen on the DLG .

The reduction algorithm Rgen is given a group description G := (G, G, p) and
an instance of the DLG , i.e., X := xG ∈ G for an unknown x ∈ Zp. Then,
the reduction algorithm Rgen creates an instance of the 1-Lin(1)

G as follows: Pick
random c

$← Zp and compute

Y1 := cG ∈ G,

then set
(X1 := X,Y1) ∈ G

2.

The reduction algorithm Rgen gives a group description G := (G, G, p) and group
elements (X1, Y1) ∈ G

2 to Aalg. Observe that (X1, Y1) is a valid 1-Lin(1) instance
by implicitly setting

(x1, y1) = (x, c/x)

since y1 is independently distributed of x1 to uniform in Zp from Aalg’s view.
Hence, an algebraic adversary Aalg outputs a correct solution [Z]�z with an advan-
tage Adv1-Lin(1)

G,Aalg
and a running time Time1-Lin(1)

G,Aalg
.

Next, the reduction algorithm Rgen uses [Z]�z outputted by an algebraic adver-
sary Aalg on the 1-Lin(1)

G and computes a solution of the DLG . Assume the out-
put is a correct solution of the 1-Lin(1), i.e., Z = y1G. It holds with probability

Adv
1-Lin

(1)
G

G,Aalg
. Then, the representation vector �z := (z0, z1, z2) satisfies

y1G = (c/x)G = z0G + z1X1 + z2Y1

= (z0 + z1x + z2c) G

Hence, the reduction algorithm Rgen obtains the following univariate equation
modulo a prime p:

c/x = z0 + z1x + z2c mod p

⇔ z1x
2 + (z0 + z2c)x − c = 0 mod p.

186 T. Mizuide et al.

Observe that the left hand side is not a monic polynomial. However, it has to be
a non-zero polynomial due to the constant term c. Since the reduction algorithm
Rgen knows values of c, it is able to find all solutions for x in polynomial time.
By checking xG = X, the reduction algorithm Rgen successfully finds a correct
solution of the DLG . 	

By combining with Lemmas 1, 2, and Theorem 9, we are able to obtain an
information theoretic lower bound for the k-Lin(2).

Theorem 10 (Generic Hardness of k-Lin(2)). The computational k-linear
problem in Definition 8 is (t2/p, t)-hard in the generic group model.

The DL to k-Lin(1) reduction implies that our master theorem is not perfect
in the sense that there are other ways to provide reductions from the DL to the
computational problems.

6 Conclusion

In this paper, we revisited the AGM which Fuchsbauer, Kiltz, and Loss [FKL18]
gave a simple and clean definition to study the computational hardness of the
CDH family. The AGM allows us to study the problem based on very simple
arguments. Among their several results, we focused on the generic and tight
reduction from the DL to the CDH. For the purpose, they used the square
DH as the intermediate step. On the other hand, we provided the direct reduc-
tion from the DL to the CDH. We extended the approach and provided several
reductions from the DL to the CDH variants in cyclic groups. By extending the
definition of the AGM, we also studied the computational hardness of the BDH
in the same way. Our approach was able to provide these reduction based on
as simple arguments as Fuchsbauer et al.’s one. What is more, we formalized
master theorems to indicate that to what kinds of computational problems can
be reduced from the (B)DL by following our approach.

The additional contents of this paper may be more valuable. We claimed
the limit of our master theorems by showing that we were not able to provide
reductions for the standard computational variant of the k-Lin and the �-wBDHI
for � > 1 in the same way. We slightly modified our approach and provided a
generic and tight reduction from the k-Lin to the DL in an ad-hoc manner. On
the other hand, we were not able to provide such reductions for the �-wBDHI.

Studying the CDH variants that were not studied in this paper is an arguably
interesting topic (possibly variants which are not captured by our master the-
orems). One interesting open problem is formalizing a new master theorem to
capture the reduction from the k-Lin to the DL simultaneously. Throughout this
paper, we focused only on tight reductions so that the approach becomes as sim-
ple as possible. As opposed to our work, studying the computational hardness of
CDH variants by allowing reasonable reduction loss should also be an interesting
approach. The most important future directions of this work are extending the
technique to composite-order groups and/or decisional problems.

Tight Reductions for Diffie-Hellman Variants in the Algebraic Group Model 187

Acknowledgement. We would like to thank anonymous reviewers of CT-RSA 2019
for their helpful comments and suggestions. This research was supported by JST
CREST Grant Number JPMJCR14D6, Japan.

References

[BDZ03] Bao, F., Deng, R.H., Zhu, H.F.: Variations of diffie-hellman problem. In: Qing,
S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8 28

[Bis08] Biswas, G.: Diffie-Hellman technique: extended to multiple two-party keys
and one multi-party key. IET Inf. Secur. 2(1), 12–18 (2008)

[BB08] Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 3

[BF03] Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing.
SIAM J. Comput. 32(3), 586–615 (2003)

[BL96] Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application
to cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
283–297. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-
5 22

[BV98] Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factor-
ing. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054117

[Boy08] Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G.
(eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85538-5 3

[BDS98] Burmester, M., Desmedt, Y., Seberry, J.: Equitable key escrow with limited
time span (or, how to enforce time expiration cryptographically) extended
abstract. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
380–391. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-
1 30

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf.
Theory 22(6), 644–654 (1976)

[EHK+17] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic frame-
work for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

[FKL18] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its appli-
cations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96881-0 2

[GG17] Ghadafi, E., Groth, J.: Towards a classification of non-interactive compu-
tational assumptions in cyclic groups. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10625, pp. 66–96. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70697-9 3

[Gor93] Gordon, D.M.: Discrete logarithms in GF(P) using the number field sieve.
SIAM J. Discrete Math. 6(1), 124–138 (1993)

[JS13] Jager, T., Schwenk, J.: On the analysis of cryptographic assumptions in the
generic ring model. J. Cryptol. 26(2), 225–245 (2013)

https://doi.org/10.1007/978-3-540-39927-8_28
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/3-540-68697-5_22
https://doi.org/10.1007/3-540-68697-5_22
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/3-540-49649-1_30
https://doi.org/10.1007/3-540-49649-1_30
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-70697-9_3
https://doi.org/10.1007/978-3-319-70697-9_3

188 T. Mizuide et al.

[Jou04] Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol.
17(4), 263–276 (2004)

[KSW13] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. J. Cryptol. 26(2), 191–224 (2013)

[KMS04] Konoma, C., Mambo, M., Shizuya, H.: Complexity analysis of the crypto-
graphic primitive problems through square-root exponent. IEICE Trans. 87–
A(5), 1083–1091 (2004)

[Mau05] Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer,
Heidelberg (2005). https://doi.org/10.1007/11586821 1

[MW96] Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996). https://doi.
org/10.1007/3-540-68697-5 21

[MW98] Maurer, U., Wolf, S.: Lower bounds on generic algorithms in groups. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054118

[MW99] Maurer, U.M., Wolf, S.: The relationship between breaking the Diffie-Hellman
protocol and computing discrete logarithms. SIAM J. Comput. 28(5), 1689–
1721 (1999)

[MRV16] Morillo, P., Ràfols, C., Villar, J.L.: The Kernel Matrix Diffie-Hellman
assumption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 729–758. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 27

[Nac94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete loga-
rithm. Math. Notes 55(2), 165–172 (1994)

[PV05] Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788,
pp. 1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

[PH78] Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing loga-
rithms over GF(p) and its cryptographic significance (corresp.). IEEE Trans.
Inf. Theory 24(1), 106–110 (1978)

[Pol78] Pollard, J.: Monte carlo methods for index computation mod p. Math. Com-
put. 32, 918–924 (1978)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems. In:
Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/3-540-68697-5_21
https://doi.org/10.1007/3-540-68697-5_21
https://doi.org/10.1007/BFb0054118
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/3-540-69053-0_18

Doubly Half-Injective PRGs
for Incompressible White-Box

Cryptography

Estuardo Alpirez Bock1, Alessandro Amadori2, Joppe W. Bos3,
Chris Brzuska1(B), and Wil Michiels2,3

1 Aalto University, Helsinki, Finland
{estuardo.alpirezbock,brzuska}@aalto.fi

2 Technische Universiteit Eindhoven, Eindhoven, The Netherlands
A.Amadori@tue.nl

3 NXP Semiconductors, Eindhoven, The Netherlands
{joppe.bos,wil.michiels}@nxp.com

Abstract. White-box cryptography was originally introduced in the set-
ting of digital rights management with the goal of preventing a user
from illegally re-distributing their software decryption program. In recent
years, mobile payment has become a popular new application for white-
box cryptography. Here, white-box cryptography is used to increase the
robustness against external adversaries (i.e., not the user) who aim to
misuse/attack the cryptographic functionalities of the payment applica-
tion. A necessary requirement for secure white-box cryptography is that
an adversary cannot extract the embedded secret key from the imple-
mentation. However, a white-box implementation needs to fulfill further
security properties in order to provide useful protection of an applica-
tion. In this paper we focus on the popular property incompressibility
that is a mitigation technique against code-lifting attacks. We provide
an incompressible white-box encryption scheme based on the standard-
assumption of one-way permutations whereas previous work used either
public-key type assumptions or non-standard symmetric-type assump-
tions.

Keywords: White-box cryptography · Incompressibility ·
One-way permutations

1 Introduction

White-box cryptography was introduced by Chow, Eisen, Johnson and van
Oorschot in 2002 in order to protect keys in symmetric ciphers when imple-
mented in insecure or adversarially controlled environments [9,10]. The original
proposal was motivated by Digital Rights Management (DRM), and white-box
cryptography has been used in this context for many years. In recent years,
mobile payment applications became popular and, originally, relied on secure
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 189–209, 2019.
https://doi.org/10.1007/978-3-030-12612-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_10

190 E. Alpirez Bock et al.

hardware that communicated via Near-Field Communication (NFC) (cf. NFC-
based payment products by Mastercard, Visa and Google Wallet [38]). Android
4.4 added host-card emulation (HCE) which allows to implement the NFC pro-
tocols in software-only. Hereby, white-box cryptography has become an integral
building block of mobile payment applications. Mastercard promotes the use of
white-box cryptography in the payment applications that Mastercard certifies.
i.e., the Mastercard security guidelines for payment applications make the use
of white-box cryptography mandatory [30].

The wide-spread deployment of white-box cryptography stands in contrast
with the state-of-the-art in white-box research. Currently, there are no long-term
secure white-box implementations of standard ciphers in the academic literature.
Proposed white-box constructions for both DES [10,29] and AES [8,9,26,40]
have been subsequently broken by [21,25,39] and [3,28,32,33], respectively.
Moreover, Bos, Hubain, Michiels, and Teuwen [7] and Sanfelix, de Haas and
Mune [36] introduced Differential Computational Analysis (DCA) which is a
generic approach to extract emebedded keys from a large class of white-box
implementations automatically, i.e., without human reverse-engineering effort.
As explained in [31], popular frameworks for implementing white-box cryptog-
raphy are particularly vulnerable to such automated attacks.

In order to promote research on good candidates for white-box cryptography,
CHES 2017 organized the white-box competition CHES 2017 Capture the Flag
Challenge [13] to white-box AES-128. Unfortunately, all candidates were broken
eventually. Most candidates lasted only 2 days, whereas some candidates resisted
attacks for several weeks. Such a level of short-term security might already be
useful, as long as the secret key and the white-box design can be updated on a
regular basis. In light of these results, one might wonder whether there exists
a long-term secure white-box implementation of AES. Short of being able to
provide a practically secure white-box implementation of AES itself, we app-
roach feasibility from the reduction-based approach in cryptography and aim
to base secure white-box implementations on well-studied, symmetric assump-
tions. Whereas attacks usually focus on key extraction, positive feasibility results
should aim for stronger, more useful security notions.

Definitions. Systematic definitional studies of security properties for white-box
cryptography have been undertaken by Delerablée, Lepoint, Paillier, and Rivain
(DLPR [11]) and Saxena, Wyseur, Preneel (SWP [37]). Some of the early defi-
nitions have been revisited and refined subsequently [4–6]. Beyond the modest
goal of security against key extraction, those works cover desirable asymmetry
properties: A white-box encryption program should not allow to decrypt (con-
fidentiality), and a white-box decryption program should not allow to encrypt
(integrity).

While asymmetry is a desirable property (and, in particular, implies secu-
rity against key extraction), in practice, code-lifting attacks are more prevalent:
Given a software cryptographic implementation with an embedded secret key,
the adversary might simply copy the complete implementation and run it on its

Doubly Half-Injective PRGs for Incompressible White-Box Cryptography 191

own device without the need to recover the embedded secret key. As a means
to mitigate code-lifting attacks (and subsequently re-distribution attacks) most
works discuss the notion of incompressibility. Additionally, DLPR also suggest
traceability.

Incompressibility. Incompressibility aims to mitigate re-distribution attacks
by building large-size white-box programs, which remain functional only in their
complete form. As soon as the white-box program is compressed or fragments
of the program are removed, the program loses its functionality. The intuitive
justification of the usefulness of incompressibility is that if a decryption algo-
rithm is several gigabytes large, then online re-distribution of that algorithm
might not be feasible, reducing thus the chances of an adversary sharing the
cryptographic code for unintended purposes. This approach is particularly use-
ful for the case where one distributes a combination of software and hardware
with large memory.

Constructions. DLPR and SWP show that public-key encryption schemes,
considered as white-boxed symmetric encryption schemes, satisfy confidentiality.
Interestingly, DLPR also show that the RSA function is incompressible when
interpreted as a white-boxed cipher. Feasibility results are important, because
they illustrate that the hardness of building a white-box version of AES does
not hinge on a general impossibility of white-box encryption. In particular, the
hardness of building a white-box version of AES is not subject to the general
impossibility result for virtual black-box obfuscation shown in the seminal paper
by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and Yang [1].

In a systematic analysis of the obstacles that white-box constructions for AES
face, one might investigate the cryptographic tools and assumptions that are
needed. At first sight, one might expect that white-boxing AES requires public-
key type assumptions from Cryptomania (See Impagliazzo’s survey on average-
case complexity [22]) such as trapdoor functions. Indeed, if the white-boxed
version of AES shall satisfy the same confidentiality guarantees as public-key
encryption, then the oracle separation by Impagliazzo and Rudich [24] applies1.

In turn, for less demanding notions such as incompressibility, it is conceivable
that white-boxing can be based on symmetric-key type MiniCrypt assumptions
alone. Indeed, an important step in that direction was made in a recent work
by Fouque, Karpman, Kirchner and Minaud (FKKM [14]). FKKM present a
symmetric-style cipher (i.e., a cipher that looks like a genuine cipher-design and
is not built on public-key type assumptions) and show that the cipher admits an
incompressible implementation, based on a novel symmetric-style assumption.
1 It applies conceptually in the sense that AES is a pseudorandom permutation which

is a MiniCrypt primitive that is equivalent to the existence of one-way functions.
Strictly speaking, the security of AES is a much stronger assumption than merely the
assumption of a one-way function, but it is fair to conjecture that one cannot turn
AES into a secure public-key encryption scheme without gaining insights into the
question for how to build public-key encryption from one-way functions generally.

192 E. Alpirez Bock et al.

In this work, we place feasibility of incompressible white-box cryptography
fully in MiniCrypt. We provide a white-box encryption scheme and a white-
box decryption scheme, whose incompressibility is based on the assumption of
a one-way permutation (See Sect. 4 for a more detailed comparison between our
construction and the construction by FKKM).

Summary of Contribution. We contribute to the foundations of white-box
cryptography by showing that incompressible white-box encryption and decryp-
tion schemes can be built based on the assumption of one-way permutations only
thereby placing incompressible white-box cryptography fully in MiniCrypt.

Taking a step back, solid definitions as well as feasibility results and impos-
sibility for white-box cryptography are needed to clarify whether it is realistic
to pursue the goal of building white-box cryptography with useful long-term
security properties, with reasonable efficiency, based on standard assumptions.
As the CHES Capture the Flag Challenge 2017 demonstrates, providing a secure
white-box implementation of AES is tremendously difficult, and thus obtaining
a solid understanding of the feasibility and limits of white-box cryptography is
needed rather urgently. Our results take a step towards such an understanding
and we encourage further studies on the foundations of white-box cryptography.

2 Preliminaries and Notation

1n denotes the security parameter in unary notation. Given a bit string x, we
denote by x[j : i] the bits j to i of the bit string x. end denotes the index of the
last bit. By a||b we denote the concatenation of two bit strings a and b. For a
program P , we denote by |P | its bit-size. We leave the choice of encoding of the
program implicit in this work. Un denotes the uniform distribution over strings
of length n.

By ←, we denote the execution of a deterministic algorithm while ←$ denotes
the execution of a randomized algorithm. We denote by := the process of initial-
izing a set, e.g. S := ∅, while ←$ denotes the process of randomly sampling an
element from a given set, e.g. x ←$ {0, 1}n. When sampling x according to the
probability distribution X, we denote the probability that the event F (x) = 1
happens by Prx ←$ X [F (x)]. We sometimes use ◦ for function composition, i.e.
g ◦ f(x) is the same as g(f(x)). The latter notation is helpful to make terms
easier to parse when many functions are composed, as in the standard notation,
each function application introduces a layer of brackets. We write oracles as
superscript to the adversary AO.

Definition 1. A symmetric encryption scheme ξ consists of three polynomial-
time algorithms (Kgen, Enc, Dec) such that Kgen and Enc are probabilistic
polynomial-time algorithms (PPT), and Dec is deterministic. The algorithms
have the syntax k ←$ Kgen(1n), c ←$ Enc(1n, k,m) and m ← Dec(1n, k, c). More-
over, the encryption scheme ξ satisfies Correctness, i.e., for all messages m ∈
{0, 1}∗,

Pr[Dec(k, Enc(k,m)) = m] = 1 (1)

Doubly Half-Injective PRGs for Incompressible White-Box Cryptography 193

where the probability is over the randomness of Enc and k ←$ Kgen(1n).

Remark. To clarify wording (as scientific communities vary in their terminol-
ogy), we consider a cipher a deterministic algorithm that is a building block for
an encryption scheme, but is not an encryption scheme itself. That is, AES is
a cipher, not an encryption scheme, while, e.g., AES-CBC or AES-GCM are
symmetric encryption schemes. All algorithms receive the security parameter 1n

as input. For ease of notation, we omit the security parameter for the rest of the
article.

We now include the definition of authenticated encryption. We use an indis-
tinguishability definition of authenticated encryption that encodes both, the
ciphertext integrity and the indistinguishability under chosen plaintext attacks
(IND-CPA). Bellare and Namprempre [2] show that if a symmetric encryption
scheme provides ciphertext integrity and IND-CPA security, then it is also indis-
tinguishable under chosen ciphertext attacks (IND-CCA). We refer to their arti-
cle as well as to Krawczyk [27] for more background on authenticated encryption.

Definition 2 (Authenticated encryption (AE)). A symmetric encryption
scheme se = (AKgen, AEnc, ADec) is an authenticated encryption scheme (AE-
secure) if for all adversaries A, the advantage

∣
∣
∣Pr

[

EXPA,se
AE (1n) = 1

]

− 1
2

∣
∣
∣

is negligible.

EXPA,se
AE (1n)

k ←$ AKgen(1n)

b ←$ {0, 1}
b∗ ←$ AENC,DEC(1n)

return (b = b∗)

ENC(m)

if b = 0

c ←$ AEnc(k, m)

if b = 1

c ←$ AEnc(k, 0|m|)

C ← C ∪ {c}
return c

DEC(c)

if b = 0

if c /∈ C

m ← ADec(k, c)

return m

return ⊥

2.1 Syntax of White-Box Cryptography

Definition 3 (White-Box Encryption Scheme). A white-box encryp-
tion scheme WBEnc consists of four probabilistic polynomial-time algorithms
(Kgen, Enc, Dec, Comp), where (Kgen, Enc, Dec) is a symmetric encryption scheme
and Comp is a publicly known (possibly) randomized compiling algorithm that
takes as input the symmetric key k and generates a (probabilistic) white-box
encryption algorithm EncWB.

EncWB ←$ Comp(k) (2)

194 E. Alpirez Bock et al.

For all messages m ∈ {0, 1}∗, the randomized program EncWB(m) produces a dis-
tribution that is statistically close to the distribution of the randomized program
Enc(k,m). Moreover, the following correctness property holds. For all messages
m ∈ {0, 1}∗,

Pr[Dec(k, EncWB(m)) = m] = 1, (3)

where the probability is over the randomness of EncWB and k ←$ Kgen(1n).

Remark. One can use Enc(k, ·) as well as EncWB(·) to encrypt a message under
key k. Both programs require randomness, and an honest user can provide the
program EncWB(·) with uniform randomness to generate a secure distribution of
ciphertexts. We will not mention this feature again, as the security properties
covered in this paper are concerned with the case that the owner of EncWB(·)
misbehaves. Note that we only demand statistical closeness between Enc(k, ·)
and EncWB(·) and not full functional equivalence, as notions such as traceability
benefit from flexibility on the functionality requirement.

We now define a white-box decryption scheme analogously that produces a
white-box of the decryption algorithm rather than the encryption algorithm.
Note that in the case of white-box encryption, there is a ciphertext distribution
for each message m. In turn, in the case of white-box decryption, for each cipher-
text c, there is merely a single plaintext. Therefore, for white-box decryption, no
requirement on statistical closeness is needed beyond correctness.

Definition 4 (White-Box Decryption Scheme). A white-box decryp-
tion scheme WBDec consists of four probabilistic polynomial-time algorithms
(Kgen, Enc, Dec, Comp), where (Kgen, Enc, Dec) is a symmetric encryption scheme
and Comp is a publicly known (possibly) randomized compiling algorithm that
takes as input the symmetric key k and generates a white-box decryption pro-
gram DecWB, such that for all messages m ∈ {0, 1}∗,

Pr[DecWB(Enc(k,m)) = m] = 1, (4)

where the probability is over the randomness of k ←$ Kgen(1n), DecWB ←$ Comp(k)
and Enc(k, ·).

3 Definitions

Incompressibility aims to make redistribution attacks harder by making the
white-box program too large to distribute. The first formalization of incom-
pressibility was given by DLPR, and the notion has been adopted and studied
in several subsequent works [4,5,14]. We adopt the incompressibility notion by
DLPR with minor modifications: DLPR consider deterministic ciphers, while
we consider randomized encryption schemes. Therefore, our correctness require-
ment will ask to produce decryptable ciphertexts rather than ciphertexts that
are equal to a target value, as can be defined for deterministic ciphers. More-
over, we will add an encryption oracle for sake of completeness. As the adversary

Doubly Half-Injective PRGs for Incompressible White-Box Cryptography 195

has a white-box encryption algorithm, the adversary can emulate the encryption
oracle up to statistical distance and thus, our modification is merely esthetic.

In the (δ, λ)-incompressibility game, conceptually, there are two collaborating
adversaries. One is the adversary A that is given a white-box encryption program
EncWB and outputs some smaller value Com. The second collaborating adversary
is the decompression algorithm Decomp that will try to decompress Com. The
winning condition says that the pair of adversaries is successful if

(i) Com is shorter than EncWB by λ bits and
(ii) the probability that the decompressed program Decomp(Com) produces a

valid ciphertext (i.e., a ciphertext that decrypts correctly) for a random
message m ∈ {0, 1}n is greater than δ.

Definition 5 (Incompressibility). A white-box encryption scheme WBEnc is
INC-(δ, λ)-secure if for all PPT adversaries A, the success probability

∣
∣
∣Pr

[

EXPA,WBEnc
INC-(δ,λ) = 1

]∣
∣
∣

is negligible, where the experiment EXPA,WBEnc
INC-(δ,λ) is defined as follows:

EXPA,WBEnc
INC-(δ, λ)

k ←$ Kgen(1n)

EncWB ←$ Comp(k)

Com ←$ ARCA,ENC,DEC(EncWB)

if Prm ←$ {0,1}∗ [Dec(k, Decomp(Com)(m)) = m] ≥ δ

and if |Com| ≤ |EncWB| − λ

return 1

else return 0

RCA()

Enc
′
WB ←$ Comp(k)

return Enc
′
WB

ENC(m)

c ←$ Enc(k, m)

return c

DEC(c)

m ← Dec(k, c)

return m

Incompressibility for White-Box Decryption. The definition of incompressibility
for white-box decryption is analogous to Definition 5, except that in the former,
the compression attack targets a white-box decryption algorithm WBDecWB and
thus, the winning condition is Prm ←$ {0,1}∗ [Decomp(Com)(Enc(k, (m)) = m] ≥ δ,
where the randomness is over m and Enc.

Definition 6. A white-box decryption scheme WBDec is INC-(δ, λ)-secure if for
all PPT adversaries A, the advantage

∣
∣
∣Pr

[

EXPA,WBDec
INC-(δ,λ) = 1

]∣
∣
∣

is negligible, where the experiment EXPA,WBDec
INC-(δ,λ) is defined as follows:

196 E. Alpirez Bock et al.

EXPA,WBDec
INC-(δ, λ)

k ←$ Kgen(1n)

DecWB ←$ Comp(k)

Com ←$ ARCA,ENC,DEC(DecWB)

if Pr
m ←$ M

[Decomp(Com)(Enc(k, m)) = m] ≥ δ

∧ |Com| ≤ |DecWB| − λ

return 1

else return 0

RCA()

Dec
′
WB ←$ Comp(k)

return Dec
′
WB

ENC(m)

c ←$ Enc(k, m)

return c

DEC(c)

m ← Dec(k, c)

return m

4 Constructions of White-Box Cryptography

In this section, we first discuss existing white-box constructions and then present
our own construction with a security reduction for (δ, λ)-incompressibility,
assuming one-way permutations.

4.1 Existing Constructions

The white-box implementations of standardized cryptographic primitives that
have been published in [8–10,26,29,40] unfortunately turned out insecure with
respect to key extraction (see e.g. [7,36]). In turn, more recent works [5,6,11] fol-
low different approaches to construct white-box implementations for alternative
(non-standardized) primitives. In [11, Sect. 6], DLPR build a white-box encryp-
tion scheme based on a public-key encryption scheme which is secure under their
security notions of one-wayness under chosen plaintext attacks and incompress-
ibility. Their implementation is based on the RSA cryptosystem [35]. They first
consider the RSA cryptosystem as a symmetric cipher and then use the asym-
metric properties of RSA to prove the white-box properties. Likewise, SWP [37]
show that public-key encryption systems can first be interpreted as a symmetric
encryption algorithm, so that one can then use the asymmetric properties to
argue about IND-CPA and IND-CCA security.

Bogdanov and Isobe [5] propose a family of white-box secure block ciphers
called SPACE, and Bogdanov, Isobe and Tischhauser [6] present an improve-
ment of these designs called SPNbox. The authors claim that these designs are
secure under their models for weak and strong space hardness, a variant of the
DLPR model for incompressibility. Their designs are notable in that they present
the first symmetric-style construction for an incompressible white-box encryp-
tion scheme. The security of their design is based on symmetric cryptanalysis
techniques. In turn, a recent construction by FKKM [14] comes with a security
reduction. The reduction reduces incompressibility to a novel symmetric-style
assumption. Our construction below will improve upon FKKM by moving to the
(symmetric) standard-assumption of one-way permutations. Another difference
between FKKM and our construction is that FKKM restricted the adversary to

Doubly Half-Injective PRGs for Incompressible White-Box Cryptography 197

return bits of the key rather than arbitrary strings. Such a restriction, poten-
tially, could enable expansion via secret-sharing, which is highly compressible
when allowing for arbitrary compression algorithms. We remove this restriction.

4.2 Incompressible Constructions for White-Box Encryption

In this subsection, we provide an incompressible white-box encryption scheme
and an incompressible white-box decryption scheme. We start by introducing
our main tool, namely a pseudorandom function that admits a computationally
(δ, λ)-incompressible implementation. Then we show that if a PRF admits a com-
putationally (δ, λ)-incompressible implementation, then there is a (δ, λ − o(1))-
incompressible white-box encryption scheme and a (δ, λ − o(1))-incompressible
decryption scheme. Finally, we construct a computationally incompressible PRF,
assuming one-way permutations. Jumping ahead, we note that our incompress-
ible PRF construction makes use of a length-doubling, doubly half-injective pseu-
dorandom generator, a new tool that we introduce and construct in this work,
based on one-way permutations.

Computationally Incompressible Pseudorandom Functions. In the following, we
consider PRFs whose message and key length are identical, unless stated explic-
itly otherwise.

Definition 7 (PRF-implementation). Let f be a PRF. We call a pair of
deterministic polynomial-time algorithms (F, CompPRF) an implementation of the
PRF f with expansion α if the following hold:

Key Expansion. ∀k ∈ {0, 1}∗ |K| = α · |k|, where K = CompPRF(k).
Functionality-preservation. ∀k ∈ {0, 1}∗ ∀x ∈ {0, 1}|k|f(k, x) = F (K,x),

where K = CompPRF(k).

Definition 8 (computational PRF-incompressibility). An implementa-
tion (F, CompPRF) of a PRF f with expansion factor α is called computationally
(δ, λ)-incompressible, if the following hold:

Pseudorandomness. CompPRF(Un) is computationally indistinguishable from
Uαn.

Incompressibility. For any PPT computable leakage function Leak and any
PPT computable adversary S, it holds that, if |Leak(Uαn)| ≤ αn − λ, then
the probability that the experiment $-PRF-INCLeak,S returns 1 is less than δ.

$-PRF-INC Leak,S

K ←$ Uαn

aux ←$ Leak(K)

x ←$ {0, 1}n

y ←$ S(aux, x)
return (y ?= F (K, x))

PRF-INC Leak,S

k ←$ {0, 1}n

K ← CompPRF(k)

aux ←$ Leak(K)

x ←$ {0, 1}n

y ←$ S(aux, x)
return (y ?= F (K, x))

198 E. Alpirez Bock et al.

In the $-PRF-INCLeak,S game, the key K is not generated via CompPRF, but
sampled randomly from the distribution Uαn. The leakage function Leak outputs
several bits of information of K, which are saved in aux. The adversary S tries to
compute the value y by using aux instead of the complete key K. The following
claim states that due to the pseudorandomness of the key, the success probability
of the adversary in the PRF incompressibility game $-PRF-INCLeak,S does not
depend (except for a negligible amount) on whether the game uses a real key
or a random key. The statement follows directly from the pseudorandomness
property of (F, CompPRF).

Claim 1. Let f be a PRF. If (F, CompPRF) is a (δ, λ)-incompressible implemen-
tation of the PRF f , then for any PPT computable leakage function Leak and
any PPT computable adversary S, it holds that, if |Leak(Uαn)| ≤ αn − λ, then
the probability that the experiment PRF-INCLeak,S returns 1 is at most negligibly
greater than δ.

An Incompressible White-Box Encryption Scheme. We now use an incompress-
ible PRF to construct an incompressible white-box encryption scheme. Hereby,
we focus on integrity features, i.e., the hardness of producing valid ciphertexts
from a compressed algorithm. We achieve this via a message authentication code
(MAC) which is generated using the large key K. Additionally, our construction
achieves confidentiality via an authenticated encryption scheme which makes
use of a small key k′′ for encrypting the plaintext and MAC. Since the key
k′′ is very short in comparison to K, it does not affect the incompressibility
of our scheme significantly. An authenticated encryption scheme is a symmet-
ric encryption scheme that satisfies ciphertext integrity and indistinguishability
under chosen plaintext attacks. For simplicity, in the following, we assume an
authenticated encryption scheme whose key generation algorithm AKgen samples
uniformly random keys of the same length as the security parameter.

Construction 1 (incompressible white-box encryption scheme). Let (AKgen,
AEnc, ADec) be an authenticated encryption scheme. Let f be a PRF and let
(F, CompPRF) be an implementation of f with expansion factor α. We construct
WBEnc = (Kgen, Enc, Dec, Comp) as given in Fig. 1.

Theorem 1 (Incompressibility). If PRF f admits a computationally (δ, λ)-
incompressible implementation F , then white-box encryption scheme WBEnc in
Construction 1 is a (δ, λ−n−o(1))-incompressible white-box encryption scheme.

Proof. Given a pair of adversaries (A, Decomp) against (δ, λ)-incompressibility,
we need to construct a pair of adversaries (Leak,S) against the (δ, λ−n−o(1))-
incompressibility of the PRF implementation F . The adversary Leak receives as
input the key K, then draws a key k′′, builds EncWB as C[K, k′′] and runs A on
EncWB. The adversary Leak then emulates the oracles that A expects as follows:
Comp is a deterministic algorithm and thus, the recompilation algorithm would
always return the same program EncWB to A and so does Leak. Likewise, EncWB(·)

Doubly Half-Injective PRGs for Incompressible White-Box Cryptography 199

Kgen(1n)

k′ ←$ {0, 1}n

k′′ ←$ {0, 1}n

k ← k′||k′′

return k

Enc(k, m)

k′ ← k[0 : n − 1]

k′′ ← k[n : 2n − 1]

t ← f(k′, m)

τ ← (m, t)

c ←$ AEnc(k′′, τ)

return c

Dec(k, c)

k′ ← k[0 : n − 1]

k′′ ← k[n : 2n − 1]

τ ← ADec(k′′, c)

(m, t) ← τ

if t = f(k′, m) return m.

else return ⊥

Comp(k)

k′ ← k[0 : n − 1]

k′′ ← k[n : 2n − 1]

K := CompPRF(k′)

EncWB := C[K, k′′](.)

return EncWB

C[K, k′′](m)

t ← F (K, m)

τ ← (m, t)

c ←$ AEnc(k′′, τ)

return c

Fig. 1. Construction: incompressible white-box encryption scheme based on PRF f
and an authenticated encryption scheme.

and Enc(k, ·) are functionally equivalent, and thus, Leak can perfectly emu-
late Enc(k, ·) by running EncWB(·). Finally, to emulate the decryption oracle, the
adversary Leak computes a function that is functionally equivalent to Dec(k, ·) as
follows: On input a ciphertext (m, t), the adversary Leak first decrypts using k′′

and then re-computes the PRF on the message m, using K, and checks whether
the value is equal to t. If yes, Leak returns m. Else, Leak returns ⊥ to the adver-
sary. Eventually, A produces some output Com that Leak outputs together with
k′′, i.e., aux := (Com, k′′).

Finally, we need to construct the adversary S from the algorithm Decomp.
Given the leakage aux and a value x, the adversary S runs Decomp on aux and
obtains a ciphertext c that is an encryption of a pair (x, t) under k′′. S decrypts
c using k′′ and returns t.

Analysis. Note that EncWB, encoded as a Turing machine, is a constant number
of bits larger than K and thus, a compressing adversary can strip off those
additional bits needed for the Turing machine encoding whence the loss of a
constant in λ. By the winning condition of (δ, λ)-incompressibility, S returns the
correct PRF value if and only if Decomp(Com) returns a ciphertext that decrypts
to the correct message. Thus, if (A, Decomp) satisfies the winning condition with
probability greater than δ, so does (Leak,S).
�

In the next subsection, we present a white-box decryption scheme based on
an incompressible PRF. Afterwards, in Sect. 5, we construct an incompressible
PRF.

200 E. Alpirez Bock et al.

4.3 An Incompressible White-Box Decryption Scheme

For constructing a white-box decryption scheme we focus on the hardness of
recovering the message from the ciphertext. Note that analogous to our encryp-
tion scheme presented in Construction 1, our decryption scheme can be aug-
mented by adding an authenticated encryption scheme with a comparatively
short key on top of it and thus upgrade it to a full authenticated decryption
scheme.

Construction 2 (incompressible white-box decryption scheme). Let f be a
PRF and let (F, CompPRF) be an implementation of f with expansion factor α.
We construct WBDec = (Kgen, Enc, Dec, Comp) as given in Fig. 2.

Kgen(1n)

k ←$ {0, 1}∗

return k

Enc(k, m)

r ←$ {0, 1}|k|

pad ← f(k, r)

p ← m ⊕ pad

c ← (r, p)

return c

Dec(k, c)

(r, p) ← c

pad ← f(k, r)

m ← p ⊕ pad

return m

Comp(k)

K := CompPRF(k)

DecWB := C[K](.)

return DecWB

C[K](c)

(r, p) ← c

pad ← F (K, m)

m ← p ⊕ pad

return m

Fig. 2. Construction of an incompressible white-box decryption scheme based on a
PRF f .

Theorem 2 (Incompressibility). If a PRF f admits a computationally (δ, λ)-
incompressible implementation F , then the white-box decryption scheme WBDec
in Construction 2 is a (δ, λ − o(1))-incompressible white-box decryption scheme.

The proof is analogous to the proof of Theorem1 and thus omitted.

5 Incompressible PRFs from OWPs

The main theorem that we will prove in this section is the following.

Theorem 3. Assume that one-way permutations exist. Let α be a function in
the security parameter n such that for all n, α(n) > n and such that for all
n, α(n) is a power of 2. Then, there exists a PRF with a (δ, λ)-incompressible
implementation with δ = 1 − λn

α + negl(n), where λn is the largest integer such
that n · λn ≤ λ.

We now construct the incompressible PRF that instantiates this theorem.
The writing style of this section is aimed at the parts of the cryptographic com-
munity that are familiar with the reduction-based approach to cryptography,

Doubly Half-Injective PRGs for Incompressible White-Box Cryptography 201

see e.g., Goldreich’s textbooks on the foundations of cryptography for an excel-
lent introduction [17,18]. Recall that we want to construct a PRF that has its
standard small key as well as a much larger, pseudorandom key that cannot be
compressed. Towards this goal, we consider the PRF construction by Goldreich,
Goldwasser and Micali (GGM [19]). Recall that the GGM idea is to iterate a
PRG within a tree structure, where the paths within the tree is determined by
the bits of the PRF input x. That is, let g be a length-doubling PRG and let g0
be its left half and g1 be its right half. If k is the PRF key, then the GGM PRF
is computed as follows:

GGM(k, x) := gx[|x|]gx[|x|−1] ◦ ... ◦ gx[3] ◦ gx[2] ◦ gx[1](k)

We now provide an incompressible implementation of the GGM PRF.

Construction 3. The expansion factor of this incompressible implementation
of the GGM PRF is α = 2�. For 0 ≤ j ≤ 2� − 1, the notation < j > refers to
the �-bit string that encodes j in binary.

f(k, x)

y ← GGM(k, x)

return y

CompPRF(k)

for j from 0 to 2� − 1

kj := GGM(k, < j >)

K ← k0||...||k2�−1

return K

F (K, x)

(x[1...�], x[� + 1...|x|]) ← x

j ← x[1...�]

y ← GGM(kj , x[� + 1...|x|])
return y.

Fig. 3. Construction of an incompressible implementation of the GGM PRF.

For Construction 3, the key expansion property is clear, and the pseudoran-
domness property follows from the PRF property of the GGM construction.
We thus focus on showing incompressibility properties of Construction 3. To do
so, intuitively, one needs to argue that if one loses one bit of the key kj , then
one loses one bit of information about all PRF values that are located in the
corresponding branch of the GGM PRF (which corresponds to evaluations of
messages that start by < j >. Unfortunately, such a tight connection might not
hold generally. Imagine, e.g., the case, that the PRG in the GGM construction
ignores one half of its input and only expands the other half of the input hugely.
Likewise, it might be the case that certain bits of the input only affect the left
half of the output or the right part of the input. To avoid both of those bad
properties, we will consider a PRG that is both, left-half injective and right-half
injective. We call such a PRG a doubly half-injective pseudorandom generator
(DPRG).

Definition 9 (Doubly Half-Injective Pseudorandom Generator). A
doubly half-injective pseudorandom generator (DPRG) is a deterministic
polynomial-time computable map g : {0, 1}∗ → {0, 1}∗ such that the following
three properties are satisfied:

202 E. Alpirez Bock et al.

Length-doubling. For all x ∈ {0, 1}∗, it holds that |g(x)| = 2 |x|. We write
g0(x) for the left half of g and g1(x) for the right half of g.

Doubly half-injective. The functions g0 and g1 are injective.
Pseudorandomness. g(Un) is computationally indistinguishable from U2n.

Remark. Note that, as g0 and g1 are length-preserving, injectivity is equivalent
to bijectivity, but we choose the term injectivity because we only need injectivity
in our proofs and because one could define analogous properties also for functions
with more stretch. For a further discussion of modification of this definition, see
the end of this section.

We build on an observation by Garg, Pandey, Srinivasan and Zhandry [15,16]
who show that the standard-construction of a PRG from a one-way permutation
is left-half-injective and then transform any left-half injective PRG into a doubly
half-injective PRG.

Definition 10 (Left-Half-Injective Pseudorandom Generator). A left-
half-injective pseudorandom generator is a deterministic polynomially-time com-
putable map g : {0, 1}∗ → {0, 1}∗ such that the following three properties are
satisfied:

Length-doubling. For all x ∈ {0, 1}∗, it holds that |g(x)| = 2 |x|. We write
g0(x) for the left half of g and g1(x) for the right half of g.

Half-injective. The function g0 is injective.
Pseudorandomness. g(Un) is computationally indistinguishable from U2n.

For completeness, we include the proof of left-half-injectivity by Garg,
Pandey, Srinivasan and Zhandry [15,16].

Claim 2 ([15,16]). Assuming the existence of one-way permutations, there
exist left-half injective, length-doubling PRGs.

Proof. Let f ′ : {0, 1}∗ → {0, 1}∗ be a one-way permutation. Then the Goldreich-
Levin hardcore bit [20] implies that there exists a one-way permutation f :
{0, 1}∗ → {0, 1}∗ with hardcore bit B : {0, 1}∗ → {0, 1}. We define the function
G : {0, 1}∗ → {0, 1}∗, as G(x) := f |x|(x)||B(x)||B(f(x))||...||B(f |x|−1). Indeed,
|G(x)| = 2|x|. The pseudorandomness of G follows from the security of the
hardcore bit, see [17], and the left-injectivity follows, as f is a permutation and
therefore, for all �, f � is a permutation, too.
�

We can now prove the existence of doubly half-injective pseudorandom gen-
erators, based on one-way permutations.

Lemma 1 (Doubly Half-Injective Pseudorandom Generators). Assum-
ing the existence of one-way permutations, there exist DPRGs.

The proof follows directly by combining Claim2 and the following claim.

Doubly Half-Injective PRGs for Incompressible White-Box Cryptography 203

Claim 3. If G = G0||G1 is a left-half injective, length-doubling PRG, where G0

denotes its left, injective half, then g is doubly half-injective PRG, where g is
defined as

g(x0||x1) := G0(x0)||G1(x0) ⊕ G0(x1)||G0(x1)||G1(x1) ⊕ G0(x0),

where || denotes concatenation and where ⊕ binds stronger than || and where
w.l.o.g., we consider even length |x| and denote x0 the left half of x and x1 the
right half of x.

Proof. Assume a left-half injective length-doubling PRG G = G0||G1, where G0

denotes its left, injective half. We need to show that g is a doubly half-injective
PRG, where g is defined as

g(x0||x1) := G0(x0)||G1(x0) ⊕ G0(x1)||G0(x1)||G1(x1) ⊕ G0(x0),

where || denotes concatenation and where ⊕ binds stronger than || and where
w.l.o.g., we consider even length |x| and denote x0 the left half of x and x1 the
right half of x.

Double Half-Injectivity. We show that g0(x0||x1) = G0(x0)||G1(x0) ⊕ G0(x1) is
injective. The injectivity of g1 then follows analogously. Let w0||w1 be such that
g0(w0||w1) = g0(x0||x1). Firstly note that G0 is a permutation and therefore,
x0 = w0. Plugging this equality into G1(w0) ⊕ G0(w1) = G1(x0) ⊕ G0(x1), we
obtain that G0(w1) = G0(x1). As G0 is a permutation, it follows that w1 = x1.

Pseudorandomness. We now prove the pseudorandomness property. We denote
by U0

n, U00
n , U01

n , U1
n, U10

n , U11
n independent, uniform distributions on n bits.

We use that the output of the PRG G0(U0
n)||G1(U0

n) is computationally indis-
tinguishable from U00

n ||U01
n and that G0(U1

n)||G1(U1
n) is computationally indis-

tinguishable from U10
n ||U11

n . We get

G0(U0
n)||G1(U0

n) ⊕ G0(U1
n)|| G0(U1

n)||G1(U1
n) ⊕ G0(U0

n)
c≈ U00

n ||U01
n ⊕ G0(U1

n)|| G0(U1
n)||G1(U1

n) ⊕ U00
n

c≈ U00
n ||U01

n ⊕ U10
n || U10

n ||U11
n ⊕ U00

n

s≈ U00
n ||U01

n || U10
n ||U11

n

The last step follows, as U01
n and U11

n are independent from the other uniform
distributions. We thus proved that G is a pseudorandom generator. Note that
the restriction on even input length can be removed by using G0 and G1 with
matching input and output length (G1 needs to output strings that are one bit
longer than those output by G0.) and by truncating the output of G1 appropri-
ately when creating the padding for the shorter half. This concludes the proof
of Claim 3.
�

We now prove the incompressibility properties of the GGM pseudorandom
function when based on a DPRG.

204 E. Alpirez Bock et al.

Claim 4. Let f be the GGM PRF using a DPRG g = g0||g1. We denote by m the
input length of the input x to the PRF. Then for each pair of randomized, possibly
inefficient algorithms (Leak,S), there exists a randomized possibly inefficient
algorithm P such that the probability that the following two experiments return
1 is equal.

$-PRF-INC Leak,S

k ←$ Un

aux ←$ Leak(k)

x ←$ {0, 1}m

y ←$ S(aux, x)
return (y ?= f(k, x))

$-KEY-INC Leak,P

k ←$ Un

aux ←$ Leak(k)

k′ ←$ P(aux)

return (k′ ?= k)

Moreover, for each pair of possibly inefficient algorithms (Leak,P), there exists
a randomized possibly inefficient algorithm S such that the probability that the
two experiments $-PRF-INCLeak,S and $-KEY-INCLeak,P return 1 is equal.

Proof. We observe that for each x ∈ {0, 1}m, the function f(·, x) is a permuta-
tion as, depending on the bits of x, it applies the functions g0 and g1 several
times subsequently to the input k. As g0 and g1 are permutations, we have a fixed
sequence of permutations (depending on the bits of x) that we apply to k. A fixed
sequence of permutations is a permutation as well. Therefore, any unpredictabil-
ity on k immediately translates into unpredictability on the function values of
the PRF. We now prove this statement formally. We use the notation fx(·) for
f(·, x) to emphasize that x is fixed and now, for each pair of algorithms (Leak,S),
construct and algorithm P (left column). We also describe, how for each pair of
algorithms (Leak,P), one can construct an algorithm S (right column).

P(aux)

x ←$ Un

y ←$ S(aux, x)
k′ := f−1

x (y)

return k′

P(aux, x)

k′ ←$ P(aux)

y := f(k′, x)

return y

As fx is a permutation, k′ = k if and only if f(k′, x) = fx(k′) = fx(k) = f(k, x)
and the claim follows.
�

In other words, the average min-entropy (see Dodis et al. [12] and Reyzin [34])
of f(Un, Um), conditioned on Leak(Un), is equal to the average min-entropy of
Un, conditioned on Leak(Un). We recall the definition of average min-entropy.

Definition 11 (Average Min-Entropy). Let (Y,Z) be a pair of random vari-
ables. The average min-entropy of Y conditioned on Z is denoted H̃∞(Y |Z) and
defined as

− logEz ←$ Z

[

max
y

Pr[Y = y|Z = z]
]

= − log
(

Ez ←$ Z

[

2−H∞(Y |Z=z)
])

,

Doubly Half-Injective PRGs for Incompressible White-Box Cryptography 205

where H∞(Y |Z = z) = − log(max
y

Pr[Y = y|Z = z]) denotes min-entropy.

We can now rephrase Claim 4 as

H̃∞(f(Un, Um)|Leak(Un)) = H̃∞(Un|Leak(Un)). (5)

Now, we can state the following lemma which concludes the proof of Theorem3.

Lemma 2. Let α be a function in the security parameter n such that for all n,
α(n) > n and such that for all n, α(n) is a power of 2. Construction 3 is a (δ, λ)-
incompressible PRF implementation with expansion factor α of the GGM PRF
with δ = 1 − λn

α − negl(n), where λn is the largest integer such that n · λn ≤ λ.

Proof. We need to show that for each pair of efficient algorithms (Leak,S), the
probability that $-PRF-INCLeak,S returns 1 is smaller than δ + negl(n). We will
show that this statement even holds for pairs of inefficient algorithms (Leak,S).
That is, the property holds statistically and we need to show that

H̃∞(F (Uαn, Un)|Leak(Uαn)) ≥ − log(δ + negl(n)). (6)

First, remark that as the length of the output of Leak is upper bounded by λ,
we have that

λ ≤ H̃∞(Uαn|Leak(Uαn)).

We can now split Uαn into α blocks of n bits each, where we denote the ith block
as Uαn[i], and we obtain

H̃∞(Uαn|Leak(Uαn)) ≤
α−1∑

i=0

H̃∞(Uαn[i]|Leak(Uαn)).

We denote by hi the entropy of the conditional uniform distribution
H̃∞(Uαn[i]|Leak(Uαn)), which, by Eq. 5, is equal to the entropy of the condi-
tional PRF distribution H̃∞(f(Uαn[i], Um)|Leak(Uαn)). Putting all together, we
obtain that

λ ≤
α−1∑

i=0

hi, where (7)

∀0 ≤ i ≤ α − 1 : 0 ≤ hi ≤ n. (8)

Recall that we want to show Inequality 6. Using the notation hi, we can re-phrase
Inequality 6 equivalently as

S(h0, ..., hα−1) :=
1
α

α−1∑

i=0

2−hi ≤ δ + negl(n) . (9)

To summarize, we need to find h0,...,hα−1 such that Inequality 7 and Inequal-
ity 8 are satisfied and such that the term S(h0, ..., hα−1) on the left-hand side of
Inequality 9 is maximized. On the α-dimensional domain that satisfies Inequal-
ity 8, the term S(h0, ..., hα−1) is maximized when h0 = ... = hα−1 = 0. Moreover,

206 E. Alpirez Bock et al.

S is anti-monotone. That is, if (h′
0, ..., h

′
α−1) ≤ (h0, ..., hα−1) component-wise,

then S(h′
0, ..., h

′
α−1) ≥ S(h0, ..., hα−1). Moreover, given any point (h0, ..., hα−1)

in the domain [0, n]α, the descent of S is least steep in the direction of the largest
entry hi. As S is symmetric, we obtain that under the constraints of Inequality 7
and Inequality 8, S is maximized at h = (n, ..., n, λrem, 0, ..., 0), which contains
λn entries n and where λrem is such that λ = λn · n + λrem. We obtain

S(h) =
1
α

(λn · 2−n + 2−λrem + (α − λn − 1)) ≤ 1 − λn

α
+ negl(n) ,

which concludes the proof of the lemma.
�

Discussion on Stretch and Assumptions. Note that one can obtain DPRGs with
more stretch from a DPRG that is length-doubling simply by first applying the
original DPRG and then applying an injective PRG to the left half and an
injective PRG to the right half of the output of the DPRG. Also note that a
DPRG with stretch 2 implies (is actually equivalent to) the existence of one-
way permutations and that one-way permutations imply injective PRGs via the
Goldreich-Levin hardcore bit construction [20].

Our construction would also work with a DPRG that stretches its input
by more than a factor of 2. Such a function might be constructed based on
one-way functions only, as g0 and g1 would not be bijective anymore and thus,
such a DPRG does not seem to imply one-way permutations unlike a DPRG
whose stretch is exactly 2. In the rest of the paper, we consider DPRGs whose
stretch exactly 2. We made no attempt to construct DPRGs based on one-
way functions only, as one-way permutations are a standard symmetric-type
MiniCrypt assumption2.

References

1. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

2. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

3. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

2 That is, one-way permutations are not known to imply trapdoor functions, and, by
the seminal paper of Impagliazzo and Rudich [23], it seems unlikely that anyone
would show such an implication anytime soon. See also Impagliazzo [22] for an
excellent survey on cryptographic assumptions.

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16

Doubly Half-Injective PRGs for Incompressible White-Box Cryptography 207

4. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. Part I, of LNCS, vol. 8873, pp.
63–84. Springer, Heidelberg (2014)

5. Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers.
In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1058–1069. ACM Press,
October 2015

6. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptogra-
phy: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 126–158. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 5

7. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

8. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
Cryptology ePrint Archive, Report 2006/468 2006. http://eprint.iacr.org/2006/
468

9. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

10. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

11. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 13

12. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

13. ECRYPT: Ches 2017 capture the flag challenge - the whibox contest 2017. https://
whibox.cr.yp.to/

14. Fouque, P.-A., Karpman, P., Kirchner, P., Minaud, B.: Efficient and provable white-
box primitives. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 159–188. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6 6

15. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5 20

16. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 156–181. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 6

17. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

https://doi.org/10.1007/978-3-662-53887-6_5
https://doi.org/10.1007/978-3-662-53140-2_11
http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-662-43414-7_13
https://doi.org/10.1007/978-3-662-43414-7_13
https://doi.org/10.1007/978-3-540-24676-3_31
https://whibox.cr.yp.to/
https://whibox.cr.yp.to/
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-319-56617-7_6

208 E. Alpirez Bock et al.

18. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

19. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 276–288. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-
39568-7 22

20. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC, pp. 25–32. ACM Press, May 1989

21. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box DES
implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 278–295. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77360-3 18

22. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Min-
nesota, USA, 19–22 June 1995, pp. 134–147. IEEE Computer Society (1995)

23. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989

24. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 2

25. Jacob, M., Boneh, D., Felten, E.: Attacking an obfuscated cipher by injecting
faults. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5 2

26. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24209-0 19

27. Krawczyk, H.: The order of encryption and authentication for protecting com-
munications (or: how secure Is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8 19

28. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

29. Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving the security of
white-box encoding. Cryptology ePrint Archive, Report 2004/025 2004. http://
eprint.iacr.org/2004/025

30. Mastercard: Mastercard mobile payment SDK, 2017. https://developer.
mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-
mobile-payment-sdk-security-guide-v2.0.pdf

31. Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of
internal encodings - revisiting the DCA attack on white-box cryptography. Cryp-
tology ePrint Archive, Report 2018/301 2018. https://eprint.iacr.org/2018/301.
pdf

32. Mulder, Y.D., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao-Lai white-box AES
implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
34–49. Springer, Heidelberg (2013)

33. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/978-3-540-77360-3_18
https://doi.org/10.1007/978-3-540-77360-3_18
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-540-44993-5_2
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
http://eprint.iacr.org/2004/025
http://eprint.iacr.org/2004/025
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://eprint.iacr.org/2018/301.pdf
https://eprint.iacr.org/2018/301.pdf
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21

Doubly Half-Injective PRGs for Incompressible White-Box Cryptography 209

34. Reyzin, L.: Some notions of entropy for cryptography. In: Fehr, S. (ed.) ICITS
2011. LNCS, vol. 6673, pp. 138–142. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-20728-0 13

35. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature
and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126
(1978)

36. Sanfelix, E., de Haas, J., Mune, C.: Unboxing the white-box: practical attacks
against obfuscated ciphers. Presentation at BlackHat Europe 2015 (2015). https://
www.blackhat.com/eu-15/briefings.html

37. Saxena, A., Wyseur, B., Preneel, B.: Towards security notions for white-box cryp-
tography. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC
2009. LNCS, vol. 5735, pp. 49–58. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04474-8 4

38. Smart Card Alliance Mobile and NFC Council. Host card emulation 101.
white paper (2014). http://www.smartcardalliance.org/downloads/HCE-101-WP-
FINAL-081114-clean.pdf

39. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3 17

40. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2009 2nd Inter-
national Conference on Computer Science and its Applications, pp. 1–6. IEEE
Computer Society (2009)

https://doi.org/10.1007/978-3-642-20728-0_13
https://doi.org/10.1007/978-3-642-20728-0_13
https://www.blackhat.com/eu-15/briefings.html
https://www.blackhat.com/eu-15/briefings.html
https://doi.org/10.1007/978-3-642-04474-8_4
https://doi.org/10.1007/978-3-642-04474-8_4
http://www.smartcardalliance.org/downloads/HCE-101-WP-FINAL-081114-clean.pdf
http://www.smartcardalliance.org/downloads/HCE-101-WP-FINAL-081114-clean.pdf
https://doi.org/10.1007/978-3-540-77360-3_17

Error Detection in Monotone
Span Programs with Application

to Communication-Efficient
Multi-party Computation

Nigel P. Smart1,2(B) and Tim Wood1,2

1 University of Bristol, Bristol, UK
2 KU Leuven, Leuven, Belgium

{nigel.smart,t.wood}@kuleuven.be

Abstract. Recent improvements in the state-of-the-art of MPC for
non-full-threshold access structures introduced the idea of using a
collision-resistant hash functions and redundancy in the secret-sharing
scheme to construct a communication-efficient MPC protocol which is
computationally-secure against malicious adversaries, with abort. The
prior work is based on replicated secret-sharing; in this work we extend
this methodology to any LSSS implementing a Q2 access structure. To
do so we need to establish a folklore property of error detection for such
LSSS and their associated Monotone Span Programs. In doing so we
obtain communication-efficient online and offline protocols for MPC in
the pre-processing model.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a
function on their combined secret inputs so that all parties learn the output
of the function and no party can learn anything that cannot be inferred from
the output and their own inputs alone. As a field it has recently received a
lot of attention and has been explored in a variety of contexts: for example,
private auctions [12], secure statistical analysis of personal information [10] and
protection against side-channel attacks in hardware [8,33,34].

Most MPC protocols fall into one of two broad categories: garbled circuits,
and linear-secret-sharing-scheme-based (LSSS-based) MPC. The garbled-circuit
approach, which began with the work of Yao [36], involves some collection of
parties “garbling” a circuit to conceal the internal circuit evaluations, and then
later a single party or a collection of parties jointly evaluating the garbled cir-
cuit. By contrast, the LSSS-based approach involves using a so-called linear
secret-sharing scheme, in which the parties: “share” a secret into several shares
which are distributed to different parties, perform computations on the shares,
and then reconstruct the secret at the end by combining the shares to deter-
mine the output. LSSS-based MPC is traditionally presented in the context of
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 210–229, 2019.
https://doi.org/10.1007/978-3-030-12612-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_11

Error Detection in Monotone Span Programs 211

information-theoretic security, although many modern practical protocols that
realise LSSS-based MPC often make use of computationally-secure primitives
such as somewhat-homomorphic encryption (SHE) [23] or oblivious transfer
(OT) [30]. In this paper, we focus on computationally-secure LSSS-based MPC.

An access structure for a set of parties defines which subsets of parties are
allowed to discover the secret if they pool their information. Such quorums of
parties are often called qualified sets of parties. An access structure is called Q�

(for � ∈ N) if the union of any set of � unqualified sets of parties is missing at
least one party. We discuss this in some detail later, but for now the reader can
think of an (n, t)-threshold scheme where t < n/� which is where a subset of
parties is qualified if and only if it is of size at least t + 1. Computationally-
secure LSSS-based MPC has recently seen significant, efficient instantiations
for full-threshold access structures [7,22,23,30], which is where the protocol is
secure if at least one party is honest, even if the adversary causes the corrupt
parties to run arbitrary code (though this behaviour may cause the protocol to
abort rather than provide output to the parties). In the threshold case similar
efficient instantiations are known, such as the older VIFF protocol [20] which
uses (essentially) information-theoretic primitives only.

While protocols providing full-threshold security are an important research
goal, in the real world such guarantees of security do not always match the use-
cases that appear. Different applications call for different access structures, and
not necessarily the usual threshold examples. For example, a company may have
four directors (CEO, CTO, CSO and CFO) and access may be granted in the
two combinations (CEO and CFO) or (CTO and CSO and CFO). In such a
situation it may be more efficient to tailor the protocol to this structure, rather
than try to shoe-horn the application into a more standard (i.e. full-threshold)
structure. Indeed, while it is possible that a computation can be performed in
a full-threshold setting and then the outputs distributed in accordance with
the access structure, such a process requires all parties to participate equally
in the computation, which may not be feasible in the real world, especially if
the computing parties are distributed over a wide network, and susceptible to
outages if the total number of parties is large.

Most LSSS-based MPC protocols split the computation into two parts: an
offline phase, in which parties interact using “expensive” public-key cryptogra-
phy to lay the groundwork for an online phase in which only “cheap” information-
theoretic primitives are required. The online phase is where the actual circuit
evaluation takes place. For the access structures considered in this work, namely
Q2 structures, the offline phase is almost as fast as the online phase. Thus the
goal here is to minimize the cost of communication in both phases.

Realising MPC for different access structures has been well studied: shortly
following the advent of Shamir’s secret-sharing scheme [9,35], the first formal
MPC – as opposed to 2PC – protocols [5,15,26] were constructed, with varying
correctness guarantees for different threshold structures. These works were devel-
oped by Hirt and Maurer [27], and then Beaver and Wool [3] for general access
structures, culminating in Maurer’s relatively more recent work [32]. In this last

212 N. P. Smart and T. Wood

work it is shown that passively-secure information-theoretic MPC is possible if
the access structure is Q2, and full active security (without requiring abort) is
possible if the access structure is Q3. The latter has seen various optimisations
in the literature, for example [21], making use of packed secret sharing to obtain
a bandwidth-efficient perfectly-secure protocol.

In recent work [31], Keller et al. show that by generalising a method of Araki
et al. [1,25] communication-efficient computationally-secure MPC with abort
can be realised for Q2 access structures, if replicated secret-sharing is used. The
methodology in [1,25,31] uses the explicit properties of replicated secret-sharing
so as to authenticate various shares. This enables active security with abort
to be achieved relatively cheaply, albeit at the expense in general of the pre-
deployment of a large number, depending on the access structure, of symmetric
keys to enable the generation of pseudo-random secret sharings (PRSSs) in a
non-interactive manner. A disadvantage of replicated sharing is the potentially
larger (than average) memory footprint needed for each party per secret, and
consequently there is still a relatively large communication cost involved when
the parties need to send shares across the network. In this work we extend this
prior work to produce a protocol for any LSSS that supports the Q2 access
structure.

1.1 Authentication of Shares

Many of practical MPC protocols begin with a basic passively-secure (a.k.a.
semi-honest or honest-but-curious) protocol, in which corrupt parties execute
the protocol honestly but try to deduce anything they can about other par-
ties’ data from their own data and the communication tapes. Such passively-
secure protocols for Q2 access structures are highly efficient, and are information-
theoretically secure. The passively secure protocols are then augmented to obtain
active security with abort by using some form of “share authentication”; in
this security setting, corrupt parties may deviate arbitrarily from the protocol
description but if they do so the honest parties will abort the protocol.

At a high level, modern actively-secure LSSS-based MPC protocols combine:

1. A linear (i.e. additively homomorphic) secret sharing scheme;
2. A passive multiplication protocol; and
3. An authentication protocol.

The communication efficiency of the computation (usually an arithmetic or
Boolean circuit) depends heavily on how authentication is performed.

In the full-threshold SPDZ protocol [23] and its successors, e.g. [22,30],
authentication is achieved with additively homomorphic message authentication
codes (MACs). For each secret that is shared amongst the parties, the parties
also share a MAC on that secret. Since the authentication is additively homomor-
phic and the sharing scheme is linear, this means that the sum (and consequently
scalar multiple) of authenticated shares is authenticated “for free” by perform-
ing the addition (or scalar multiplication) on the associated MACs. More work

Error Detection in Monotone Span Programs 213

is required for multiplication of secrets, but the general methodology for doing
these operations on shared secrets is now generally considered “standard” for
MPC in this setting.

One important branch of this authentication methodology contributing sig-
nificantly to their practical performance is the amortisation of verification costs
by batch-checking MACs, a technique developed in [6,23], amongst other works.
A different approach to batch verification for authentication of shares, in the
case of Q2 access structures, was introduced by Furakawa et al. [25], in the
context of the three-party honest-majority setting, i.e. a (3, 1)-threshold access
structure. This work extended a passively-secure protocol of Araki et al. [1] in
the same threshold setting. This approach dispenses with the MACs and instead
achieves authentication of shares using a collision-resistant hash function when
authenticating an open-to-all operation, and uses redundancy of the underlying
secret sharing scheme in an open-to-one operation. Their protocol can be viewed
as a bootstrapping of the passively-secure protocol of Beaver and Wool [3], with
an optimised sharing procedure (highly tailored to the (3, 1)-threshold access
structure), to provide a communication-efficient actively-secure protocol (with
abort). By using a hash function they sacrifice the information-theoretic security
of Beaver-Wool for computational security, and also use computationally-secure
share generation operations to improve the offline phase.

The above protocols for replicated sharing in a (3, 1)-threshold access struc-
ture of [1,25] simultaneously reduce the number of secure communication chan-
nels needed and the total number of bits sent per multiplication. Recent work
[31] has shown that these techniques can be generalised from (3, 1)-threshold to
any Q2 access structure, using replicated secret-sharing. Both [25] and [31] make
use of the fact that replicated sharing provides a trivial method to authenticate
a full set of shares; i.e. it somehow offers a form of error-detection.

A recent protocol due to Chida et al. [16] also considers actively-secure
honest-majority MPC and makes use of MACs. In their work, the communica-
tion cost is a constant number of elements per multiplication, but the messages
are broadcast, so this cost is linear in the number of parties. Our protocol also
has linear overhead, but following the methodology of [31], the total number
of uni-directional channels is reduced and so the asymptotic cost is lower (for
threshold access structures). The benefit of the Chida protocol is that there is
no offline processing, and the total cost of active computation is less than ours
(they achieve roughly twice the cost of passive multiplication as opposed to our
roughly threefold cost). However, if one is interested purely in online times then
our protocol is more efficient than that of Chida et al.

1.2 Our Contribution

While the replicated secret-sharing of [31] offers flexibility in being able to realise
any access structure, unfortunately it can require an exponentially-large number
of shares to be held by each party for each shared secret. As threshold access
structures illustrate, using a general MSP may enable the same access structure
to be realised in a more efficient manner, which motivates our work in this area.

214 N. P. Smart and T. Wood

The two main contributions of this work are as follows:

– Showing we can get authentication of shares almost for free for any MSP
realising Q2 access structures. Assuming an offline phase which produces
Beaver triples, this gives us active security with abort, at the cost of replacing
information-theoretic with computational security.

– We also provide, in the full version, a generic way to reduce the amount
of communication required for the passive multiplication subprotocol in the
offline phase for multiplicative MSPs.

Thus we generalise the online phase of [31] to arbitrary MSPs, hence allowing
the benefits of that work to be achieved without necessarily requiring the cost of
replicated secret sharing. Whereas many of the previous protocols are optimised
for access structures on specific numbers of parties, or use specific secret-sharing
schemes, our optimisation of the passive online multiplication is generic in the
sense that it only uses the Q2 nature of the access structure for authentication:
[25] and [31] are special cases of our optimisation.

Our contribution, then, is not so much our full MPC protocol as it is the
mechanism for an actively-secure multiplication in the Q2 setting. Viewing the
protocol in this more modular sense allows us to separate the LSSS from the
actual multiplication and thus allows us to reduce the search for finding an
efficient MPC protocol for a given Q2 access structure to finding an LSSS with
a small total number of shares.

To conclude this section, we briefly remark how our work relates to the cor-
respondence between LSSSs and linear codes. Cramer et al. [19] showed how the
correspondence between linear secret-sharing schemes and linear codes reveals
an efficient method by which qualified parties can correct any errors in a set
of shares for some secret. The ability to do so requires the access structure to
be Q3, since if this holds then a strongly-multiplicative LSSS realising it allows
honest parties to correct any errors introduced by the adversary. This is not a
direct connection to error-correction codes since such LSSSs do not necessarily
allow unique decoding of the entire share vector: it is only the component of the
share vector corresponding to the secret that is guaranteed to be correct. In our
work we show that if the access structure is Q2 then any LSSS realising it allows
honest parties to agree on whether or not the secret is correct: thus we obtain
a form of error-detection. This reveals why the protocols above (viz., [25,31])
are able to perform the error-detection causing abort. This result seems to be
folklore – but we could find no statement or proof in the literature to this effect,
and so we prove the required properties here.

2 Preliminaries

2.1 Notation

Let F denote a finite field; we write F = Fq for q some prime power if F is the
field of q elements. We write r

$← F to mean that r is sampled uniformly at

Error Detection in Monotone Span Programs 215

random from F. Vectors are written in bold and are taken to be column vectors.
We denote by 0 a vector consisting entirely of zeros of appropriate dimension,
determined by the context, and similarly by 1 a vector consisting entirely of
ones. For a vector x we write the ith component as xi, whereas xi denotes the
ith vector from a sequence of vectors. We use the notation ei for the ith standard
basis vector (defined by ei

j := δij where δij is the Kronecker delta). We denote
by [n] the set ∪n

i=1{i}, and by P the complete set of parties, which we take to
be {Pi}i∈[n]. Given some set S, a subset of some larger set S′, we write a �∈ S
to indicate that element a is in S′ \ S; in general, S′ will be implicit, according
to context. We define the function supp : F

m → 2P via s �→ {i ∈ [m] : si �= 0}.
We use the notation A ⊆ B to mean that A is a (not necessarily proper) subset
of B, contrasted with A � B where A is a proper subset of B. We write λ and
κ for the statistical and computational security parameters respectively.

Given a vector space V ⊆ F
d, we denote by V ⊥ the orthogonal complement;

that is, V ⊥ = {w ∈ F
d : 〈v,w〉 = 0}, where 〈v,w〉 = v� ·w is the standard inner

product. From basic linear algebra, (V ⊥)⊥ = V . For a matrix M ∈ F
m×d, we

write M� for the transpose. If M is a matrix representing a linear map F
d → F

m,
then im(M�) = ker(M)⊥ by the fundamental theorem of linear algebra.

2.2 Access Structures, MSPs, LSSSs and Linear Codes

Access Structures: Fix P = {Pi}i∈[n] and let Γ ⊆ 2P be a monotonically
increasing set, i.e. Γ is closed under taking supersets: if Q ∈ Γ and Q′ ⊇ Q
then Q′ ∈ Γ . Similarly, let Δ ⊆ 2P be a monotonically decreasing set, i.e. Δ is
closed under taking subsets: if U ∈ Δ and U ′ ⊆ U then U ′ ∈ Δ. We call the
pair (Γ,Δ) a monotone access structure if Γ ∩ Δ = ∅. If Δ = 2P \ Γ , then we
say the access structure is complete. In this paper, we will only be concerned
with complete monotone access structures and so this is assumed throughout
without qualification. The sets in Γ , usually denoted by Q, are called qualified,
and the sets in Δ, usually denoted by U , are called unqualified. Partial ordering
is induced on Γ and Δ by the standard subset relation denoted by “⊆”: we
write Γ− for the set of minimally qualified sets where minimality is with respect
to “⊆”: Γ− = {Q ∈ Γ : if Q′ ∈ Γ and Q′ ⊆ Q then Q′ = Q}; similarly, Δ+

denotes the set of maximally unqualified sets where maximality is with respect
to “⊆”: Δ+ = {U ∈ Δ : if U ′ ∈ Δ and U ⊆ U ′ then U ′ = U}.

An access structure is said to be Q2 (resp. Q3) if the union of no two (resp.
three) sets in Δ is the whole of P. A consequence of this is that in a Q2 access
structure, the complement of a qualified set is unqualified, and vice versa.

In an (n, t)-threshold access structure, any set of t + 1 parties is qualified,
whilst any set of t or fewer parties is unqualified. Thus Γ− contains

(
n

t+1

)
sets

in total. The term full threshold refers to an (n, n−1)-threshold access structure.
For an arbitrary complete monotone access structure, the set of minimally qual-
ified sets together with the set of maximally unqualified sets uniquely determine
the entire structure. The dual access structure Γ ∗ of an access structure Γ is
defined by Γ ∗ := {Q ∈ 2P : 2P \ Q �∈ Γ}. Cramer et al. [19] showed that an
access structure Γ is Q2 if and only if Γ ∗ ⊆ Γ .

216 N. P. Smart and T. Wood

Linear Secret Sharing Schemes: An LSSS is a method of sharing secret data
amongst parties. It consists of three multi-party algorithms: Input, Open, and
ALF (affine linear function), allowing parties to provide secret inputs, reveal (or
open) secrets, and compute an affine linear function on shared secrets. In a prac-
tical sense, this means that the parties can add secrets, multiply by scalars, and
add public constants to a shared secret, all by local computations. In this work
we consider, as examples, the three most well-known secret-sharing schemes:
Shamir; replicated, also known as CNF-based (conjunctive-normal-form-based);
and DNF-based (disjunctive-normal-form-based). We will use the term additive
sharing to mean that a secret s takes the value s =

∑n
i=1 si where si is held by

Pi and the si’s are uniformly random subject to the constraint that they sum
to s.

An LSSS is called multiplicative if the whole set of parties P can compute
an additive sharing of the product of two secrets by performing only local com-
putations. If the product is to be kept as a secret and used further in the com-
putation, it is usually necessary for the parties to engage in one or more rounds
of communication to convert the additive sharing into a sharing in the LSSS
being used. A secret-sharing scheme is called strongly multiplicative if, for any
U ∈ Δ, the parties in P \ U can compute an additive sharing of the product
of two secrets by local computations. Such schemes offer robustness, since the
adversary, corrupting an unqualified set of parties, cannot prevent the honest
parties from reconstructing the desired secret. Cramer et al. [18] showed that
any (non-multiplicative) LSSS realising a Q2 access structure can be converted
to a multiplicative LSSS for the same access structure so that each party holds at
most twice the number of shares it held originally. There is currently no known
construction to convert an arbitrary Q3 LSSS to a strongly multiplicative LSSS
with only polynomial blow-up in the number of shares each party must hold
[18,19].

Monotone Span Programs: Span programs, and monotone span programs
specifically, were introduced by Karchmer and Wigderson [29] as a model of
computation. It has been shown that MSPs have a close relationship to secret-
sharing schemes, as discussed informally below.

Definition 1. A Monotone Span Program (MSP), denoted by M, is a quadru-
ple (F,M, ε, ψ) where F is a field, M ∈ F

m×d is a full-rank matrix for some m
and d ≤ m, ε ∈ F

d is an arbitrary non-zero vector called the target vector, and
ψ : [m] � P is a surjective “labelling” map of rows to parties. The size of M is
defined to be m, the number of rows of the matrix M .

Typically, ε = e1 or ε = 1, but it can be an arbitrary non-zero vector: changing
it simply changes how the vector x is selected, and corresponds to performing
column operations on the columns of M , which does not change the access struc-
ture the MSP realises by results of Beimel et al. [4]. Some definitions of MSP do
not require that M have full rank, since if this is not the case, one can iteratively
remove any columns which are linearly dependent on preceding columns without

Error Detection in Monotone Span Programs 217

changing the access structure M computes. We make this assumption for the
sake of simplicity later on.

We say that the row-map ψ defines which rows are “owned” by each party.
Given a set S ⊆ P, we denote by MS the submatrix of M whose rows are
indexed by the set {i ∈ [m] : ψ(i) ∈ S}, and similarly sS is the subvector of s
whose entries are indexed by the same. Later, we will somewhat abuse notation
by denoting again by MS , where now S ⊆ [m], the submatrix whose rows are
indexed by S. Context will determine which matrix we mean since the indexing
set is either a set of parties, or a set of row indices. If s ∈ F

m, then we call sQ a
qualified subvector of s if Q ∈ Γ , and an unqualified subvector otherwise. An MSP
M is said to compute an access structure Γ if it holds that Q ∈ Γ if and only if
∃ λQ ∈ F

m (i.e. depending on Q) such that M� ·λQ = ε and ψ(supp(λQ)) ⊆ Q.
In other words, ε ∈ Im(M�

Q) if and only if Q is qualified. Note that we write
λQ to show that this vector is associated to the set Q; compare with λQ

Q, which
is the subvector of λQ whose co-ordinates are indexed by Q, to be consistent
with the notation above. This means that the parties in the set Q “own” rows
of the matrix M which can be combined in a public, known linear combination
encoded as the vector λQ, to obtain the target vector ε.

Monotone Span Programs induce LSSSs in the following way: Sample x $← F
d

subject to 〈x, ε〉 = s, the secret. Now let s = M · x and for each i ∈ [m], give si

(that is, the ith co-ordinate) to party ψ(i). Thus party Pi has the vector s{Pi}.
We call x the randomness vector since x is chosen uniformly at random, subject
to 〈x, ε〉 = s, to generate s := M · x, the share vector. The co-ordinates of s are
precisely the shares of the secret which are distributed to parties according to
the mapping ψ. We say that a share vector s encodes a secret s if s = M · x
for some x where 〈x, ε〉 = s. An MSP is called ideal if ψ is injective; since it is
surjective by definition, an ideal MSP is an MSP for which ψ is bijective – i.e.
each party receives exactly one share.

The associated access structure for an MSP is such that ε is contained in
the linear span of the rows of M owned by any qualified set of parties, and also
so that ε is not in the linear span of the rows owned by any unqualified set of
parties. It is well known that, given a monotone access structure (Γ,Δ), there
exists an MSP M computing it [24,28,29].

In more detail: A qualified set of parties Q ∈ Γ can compute the secret from
the qualified subvector sQ because by construction of M there is a publicly-
known recombination vector λ associated to this set Q such that ψ(supp(λ)) ⊆ Q
and M�λ = ε. Note that while ψ(supp(λ)) ⊆ Q, this subset of Q must still be
qualified – it just may be the case that not all of the parties’ shares are required to
reconstruct the secret (for example, if multiple parties hold the same share). Since
ψ(supp(λ)) ⊆ Q, we have 〈λ, s〉 = 〈λQ, sQ〉, so given sQ the parties can compute
〈λQ, sQ〉, and since 〈λQ, sQ〉 = 〈λ, s〉 = 〈λ,M · x〉 = 〈M�λ,x〉 = 〈ε,x〉 = s,
they can thus determine the secret.

Conversely, for any unqualified set of parties U ∈ Δ, again by construction
of M we have that ε �∈ im(M�

U), which is equivalent to each of the following
three statements:

218 N. P. Smart and T. Wood

– ε �∈ ker(MU)⊥

– ∃ k ∈ ker(MU) such that 〈ε,k〉 �= 0
– ∃ k ∈ F

d such that MU · k = 0 with 〈ε,k〉 = 1

From the last statement, we can see that for any secret s, for any randomness
vector x ∈ F

d encoding it – i.e. where 〈x, ε〉 = s – for any other secret s′ ∈ F we
have MUx = MUx+0 = MUx+ MU ((s′ − s) ·k) = MU (x+ (s′ − s) ·k). Thus if
x encodes the secret s, then the randomness vector x+ (s′ − s) ·k encodes s′ by
linearity of the inner product, but the share vectors held by parties in U are the
same. Thus the set of shares received by an unqualified set of parties provides
no information about the secret.

In this work we show that for any MSP computing any Q2 access structure,
there exists a matrix N such that for any vector e �= 0 for which ψ(supp(e)) �∈ Γ ,
we either have N ·e �= 0, or N ·e = 0 and 〈e, ε〉 = 0. The matrix N is essentially
the parity-check matrix of the code generated by the matrix M of the MSP and
turns out to be very useful for efficiently detecting cheating behaviour.

2.3 MPC

Network: We assume secure point-to-point channels. When broadcasting shares
but we do not assume broadcast channels: in this context we mean an honest
party sends the same element to each other party over the given secure channel.

Security Model: Our protocols are modelled and proved secure in the Universal
Composability (UC) framework introduced by Canetti [13] and we assume the
reader is familiar with it. We assume static corruptions by the adversary, meaning
that the adversary corrupts some set of parties once at the beginning of the
protocol. We will usually denote the set of parties the adversary corrupts by
A ⊆ P. We assume the adversary is active, meaning that the corrupted parties
may execute arbitrary code determined by the adversary, and additionally we
allow the protocol to abort prematurely – i.e. the protocols are actively-secure
with abort. The protocol is secure against a computationally bounded adversary,
who must find a collision of the hash function to cheat without causing the
protocol to abort.

Pre-processing: Many modern MPC protocols split computation into two
phases, the offline or pre-processing phase and the online phase. In the offline
phase, the parties engage in several rounds of communication to produce data
which can then be used in the online phase. The purpose of doing this is that the
pre-processing can be done at any time prior to the execution of the online phase,
can be made independent of the function to be computed, and may use expen-
sive public-key primitives, in order to allow the online phase to use only fast
information-theoretic primitives. In our protocol design, we follow this model,
although we only require symmetric-key primitives throughout since the access
structure is Q2.

Hash Authentication: The work of Furakawa et al. [25] is in the three-party
honest majority case. A secret is additively split into three parts, and each party

Error Detection in Monotone Span Programs 219

Hash API

The hash API implemented via the hash function H : 0, 1 λ consists of the
following three algorithms:
– H.Initialise(): the hash function is initialised.
– H.Update(s): the hash function is updated with the vector s.
– H.Output(): the hash function is evaluated and output provided.

Fig. 1. Hash API

is given a different set of two of them. To open a secret, each party sends to one
other party the share that party is missing, symmetrically. This suffices for all
parties to obtain all shares, but does not ensure that the one corrupt party sent
the correct share. This is where the hash evaluation comes in: after a secret is
opened, all parties update their hash function locally with all three shares (the
two they held and the one they received); after possibly many secrets are opened,
the parties broadcast (here meaning each party sends to the other two parties
over a secure channel) the outputs of their hash evaluations and compare what
they received with what they computed themselves. If any hashes differ, they
abort. This process ensures that the shares held by all parties are consistent,
even though each party need only send one share to one party per opening. If
many shares are opened in the execution of the protocol (as is the case in SPDZ-
like protocols, since every multiplication requires two secrets to be opened),
this significantly reduces communication overhead, at the cost of cryptographic
assumptions for the existence of a collision-resistant hash function. This was
generalised to any replicated scheme Q2 LSSS by Keller et al. [31].

In our work, we apply similar techniques to Furukawa et al. and Keller et al.
to the problem of opening values to parties, but in a significantly more general
case. We achieve this by proving the folklore results that say an LSSS is error-
detecting if and only if it is Q2. Our protocol will use the “standard” hash
function API given in Fig. 1; in brief, our methods are as follows:

– If single party Pi is required to learn a secret, all the other parties send all
of their shares to Pi, and then Pi performs an error-detection check on the
shares received, telling all parties to abort if errors are detected.

– If all parties are required to learn a secret, the parties engage in a round
of communication in which not all parties need to communicate with each
other. The parties reconstruct a view of what they think other parties have
received, even if they have not communicated with all other parties. After
opening possibly many secrets, each party calls Output on the hash function,
broadcasts their output, and checks every other party’s hash value against
their own; we will see that this process authenticates the secrets.

In the next two sections we outline why the methodologies for the two cases are
correct. The proof of security of our protocol can be found in the full version.

220 N. P. Smart and T. Wood

3 Opening a Value to One Party

In this section, we show that for an LSSS realising a Q2 access structure, if
the share vector s for some secret s is modified with an error vector e with
unqualified support then s + e is either no longer a valid share vector (i.e. is not
in im(M)), or the error vector encodes 0, and so by linearity s + e also encodes
s. In our MPC protocol, this will provide an efficient method by which a party
to whom a secret is opened (by all other parties sending that party all of their
shares) can check whether or not the adversary has introduced an error. The
procedure of opening to a single party is necessary in order for the parties to
provide input and obtain output in an actively-secure manner.
Lemma 1. For any MSP M = (F,M, ε, ψ) computing a Q2 access structure Γ ,
for any vector s ∈ F

m,

ψ(supp(s)) �∈ Γ =⇒
{
s �∈ im(M), or

s ∈ im(M) and s = Mx for some x ∈ F
d where 〈x, ε〉 = 0.

Proof. If ψ(supp(s)) �∈ Γ then P \ ψ(supp(s)) ∈ Γ since the access structure is
Q2. Thus there is at least one set Q ∈ Γ where Q ⊆ P \ ψ(supp(s)) for which
si = 0 for all i ∈ [m] where ψ(i) ∈ Q (i.e. sQ = 0), by definition of supp.

Recall that for a qualified set Q of parties to reconstruct the secret, they
take the appropriate recombination vector λ (which has the property that
ψ(supp(λ)) ⊆ Q) and compute s = 〈λ, s〉. For this particular Q and correspond-
ing recombination vector λ, we have 〈λ, s〉 = 〈λQ, sQ〉 since ψ(supp(λ)) ⊆ Q,
and 〈λQ, sQ〉 = 〈λQ,0〉 = 0 by the above, so the secret is 0.

If s ∈ im(M) then every set Q ∈ Γ must compute the secret as 0 by the
definition of MSP (though note that it is not necessarily the case that sQ = 0
for all Q ∈ Γ). Thus the share vector s is in im(M) and encodes the secret s = 0.

Otherwise, s �∈ im(M), and we are done. ��
We now show that if the adversary (controlling an unqualified set of parties)

adds an error vector e to a share vector s, the resulting vector c := s + e
will either not be a valid share vector, or will encode the same secret as s (by
linearity). Adding in an error e that does not change the value of the secret
can be viewed as the adversary re-randomising the shares he holds for corrupt
parties.

Lemma 2. Let M = (F,M, ε, ψ) be an MSP computing Q2 access structure
Γ and c = s + e be the observed set of shares, given as a valid share vector s
encoding secret s, with error e. Then there exists a matrix N such that

ψ(supp(e)) �∈ Γ =⇒ either e encodes the error e = 0, or N · c �= 0

Proof. Let N be any matrix whose rows form a basis of ker(M�) and suppose
e ∈ F

m. By the fundamental theorem of linear algebra, ker(M�) = im(M)⊥, so
s ∈ im(M) if and only if N · s = 0. Since ψ(supp(e)) �∈ Γ , then by Lemma 1 we
have that either e �∈ im(M), or e ∈ im(M) and e = 0.

If e ∈ im(M) then e = 0 and we are done, whilst if e �∈ im(M) then N ·e �= 0.
In the latter case, since s ∈ im(M) we have N · s = 0 and hence N · c =
N · (s + e) = N · s + N · e = 0 + N · e �= 0. ��

Error Detection in Monotone Span Programs 221

The matrix N is usually called the cokernel of M , and can be viewed as the
parity-check matrix of the code defined by generator matrix M . The method to
open a secret to a single party Pi is then immediate: all parties send their shares
to Pi, who then concatenates the shares into a share vector s and computes N ·s.
Since the adversary controls an unqualified set of parties, if N · s = 0 then by
Lemma 2 the share vector s encodes the correct secret. In this case, Pi recalls
any recombination vector λ and computes the secret as s = 〈λ, s〉, and otherwise
tells the parties to abort.

4 Opening a Value to All Parties

To motivate our procedure for opening to all parties and to show that it is
correct, we first discuss the näıve method of opening shares in a semi-honest
protocol, then show how to reduce the communication, and then explain how to
obtain a version which is actively-secure (with abort).

To open a secret in a passively-secure protocol, all parties can broadcast
all of their shares so that all parties can reconstruct the secret. This method
contains redundancy if the access structure is not full-threshold since proper
subsets of parties can reconstruct the secret by definition of the access structure.
This implies the existence of “minimal” communication patterns for each access
structure and LSSS, in which parties only communicate sufficiently for every
party to have all shares corresponding to a qualified set of parties.

When bootstrapping to active security, we see that the redundancy allows
verification of opened secrets: honest parties can check all other parties’ broad-
casted shares for correctness. When reducing communication with the aim of
avoiding the redundancy of broadcasting, honest parties must still be able to
detect when the adversary sends inconsistent or erroneous shares. In particular,
parties not receiving shares from the adversary must also be able to detect that
cheating has occurred in spite of not directly being sent erroneous shares.

To achieve this, in our protocol each party will receive enough shares from
other parties to determine “optimistically” all shares held by all parties – that
is, reconstruct the entire share vector – and then all parties will compare their
reconstructed share vectors. To amortise the cost of comparison, the parties will
actually update a local collision-resistant hash function each time they recon-
struct a new share vector and will then compare the final output of the hash
function at the end of the computation, when output is required. This, in essence,
is the idea behind the protocols of Furakawa et al. [25] and Keller et al. [31] that
are tailored to replicated secret-sharing.

To fix ideas, consider the case of Shamir’s scheme: a set of t + 1 distinct
points determines a unique polynomial of degree at most t that passes through
them. This fact not only enables the secret to be computed using t + 1 shares,
but additionally enables determining the entire polynomial (the coefficients of
which are the share vector for the scheme) and consequently all other shares.

222 N. P. Smart and T. Wood

For some LSSSs it is not the case that any qualified set of parties have enough
information to reconstruct all shares1.

To allow the parties to perform reconstruction, each party is assigned a set
of shares that it will receive, which we encode as a map q : P → 2[m] defined as
follows: for each Pi ∈ P, define q(Pi) to be a set Si ⊆ [m] such that:

– ker(MSi
) = {0}; that is, the kernel of the submatrix M restricted to the rows

indexed by Si, is trivial; and
– ψ−1({Pi}) ⊆ Si, where ψ−1 denotes the preimage of the row-map ψ; that is,

each party includes all of their own shares in the set Si.

These sets are used as follows. Each Pi receives a set of shares, denoted by si
q(Pi)

,
for a given secret. Then in order to reconstruct all shares, Pi tries to find xi such
that si

q(Pi)
= Mq(Pi) · xi and then computes si = M · xi as the reconstructed

share vector, which is then used to update the hash function (locally). Trivially,
we can take q(Pi) = [m] for all Pi ∈ P, which corresponds to broadcasting all
shares; however, better choices of q result in better communication efficiency. In
the full version we give a somewhat-optimised algorithm for finding a “good”
map q for a given MSP. We remark that finding the map q is not always as
straightforward as it is for replicated secret-sharing in which each party must
obtain precisely all the shares it does not have; for many LSSSs, this is overkill:
for example, Shamir sharing only requires receiving t shares from other parties,
not all n − 1 other shares it does not possess.

If such an xi does not exist then it must be because the adversary sent one or
more incorrect shares, because si

q(Pi)
should be a subvector of some share vector.

In this case, the party or parties unable to reconstruct tell all parties to abort.
If such an xi does exist for each party then the adversary could still cause

different parties to reconstruct different share vectors (and thus output different
secrets), but then the hashes would differ and the honest parties would abort. The
first condition, ker(MSi

) = {0}, ensures that if all parties follow the protocol,
they all reconstruct the same share vector, since there are multiple possible share
vectors for a given secret, otherwise an honest execution may lead to an abort.

Indeed, the only thing the adversary can do without causing abort – either
immediately or later on when hashes are compared – is to change his shares so
that his shares combined with the honest parties’ shares form a valid share vector.
Intuitively, one can think of this as the adversary re-randomising the shares
owned only by corrupt parties, which is not possible in Shamir or replicated
secret-sharing, but is in DNF-based sharing, and in general is possible if and
only if the LSSS admits non-trivial share vectors with unqualified support.

More formally, we have the following lemma that shows that if all parties can
reconstruct share vectors and the share vectors are consistent, then the adversary
cannot have introduced an error.

1 In the full version we provide a formal description of MSPs in which all qualified
sets of parties can reconstruct the entire share vector and explain how such MSPs
are “good” for our protocol.

Error Detection in Monotone Span Programs 223

Fig. 2. Protocol ΠOpening

Lemma 3. Let q : P → 2[m] be defined as above and let si
q(i) denote the sub-

vector of shares received by party Pi for a given secret. Suppose it is possible for
each party Pi ∈ P to find a vector xi such that si

q(Pi)
= Mq(Pi)x

i; let si := M ·xi

224 N. P. Smart and T. Wood

for each i ∈ [n]. If si = sj for all honest parties Pi and Pj, then the adversary
did not introduce an error on the secret.

Proof. The existence of q follows from the fact that “at worst” we can take
q(Pi) = [m] for all Pi ∈ P. There is a unique xi solving si

q(Pi)
= Mq(Pi) · xi (not

a priori necessarily the same for all parties) because ker(Mq(Pi)) = {0} for all
Pi ∈ P by the first requirement in the definition of q.

Let A denote the set of corrupt parties. Since A is unqualified, the honest
parties form a qualified set Q = P \ A since the access structure is Q2.

Each honest party uses their own shares in the reconstruction process by the
second requirement in the definition of q, so if si = sj for all honest parties
Pi and Pj , then in particular they all agree on a qualified subvector defined by
honest shares – i.e. si

Q = sj
Q for all honest parties Pi and Pj . Thus some qualified

subvector of the share vector is well defined, which uniquely defines the secret
by definition of MSP. ��

Functionality FPrep

The functionality maintains a list Value of secrets that it stores. The set A indexes
the corrupt parties (unknown to the honest parties).

Triples: On input (Triple, NT) from all parties, the functionality does the following:
1. For i from 1 to NT :

(a) Sample ai, bi $← F and compute share vectors ai and bi.
(b) Send (ai

A,bi
A) to the adversary.

(c) Receive a subvector of shares c̃i
A from the adversary.

(d) Compute a vector ci = M · xi
c such that 〈xi

c, ε〉 = ai · bi and ci
A = c̃i

A. If
no such vector ci exists, set an internal flag Abort to true and continue.

2. Wait for a message OK or Abort from the adversary.
3. If the response is OK and the internal flag Abort has not been set to true, for

each honest Pi ∈ P, send (ai
{Pi},bi

{Pi}, ci
{Pi})

NT
i=1 to each honest party Pi, and

otherwise output the message Abort to all honest parties and abort.

Fig. 3. Functionality FPrep

As mentioned in the introduction, our results in the last two sections are
somewhat analogous to the result of Cramer et al. [19, Theorem 1] which roughly
shows that for a strongly multiplicative LSSS implementing a Q3 access struc-
ture, honest parties can always agree on the correct secret (when all parties
broadcast their shares). In Fig. 2 we present the methods we use to open secret
shared data in different situations.

5 MPC Protocol

We are now ready to present our protocol to implement the MPC functional-
ity offering active security with abort as given in Fig. 4. We present the online

Error Detection in Monotone Span Programs 225

Fig. 4. Functionality FMPC

method here, leaving the offline method for the full version. Our offline method is
much more scalable than [31] since the dependence on replicated secret-sharing
is removed. The offline method implements the functionality given in Fig. 3. Our
online protocol, in Fig. 5, makes use of the opening protocol ΠOpening given in
Fig. 2 earlier. The majority of our protocol uses standard MPC techniques for
secret-sharing. In particular, the equation the parties compute for the multipli-
cation is a standard application of Beaver’s circuit randomisation technique [2],
albeit for a general LSSS.

Correctness of our input procedure follows from the input method given in
the non-interactive pseudo-random secret-sharing protocol of [17]. In particular
for party Pi to provide an input s in a secret-shared form s, the parties will first
take a secret-sharing r of a uniformly random secret r – which is some a or b

226 N. P. Smart and T. Wood

Protocol ΠMPC

Note that this protocol calls on procedures from ΠOpening in Figure 2. If a party
never receives an expected message from the adversary, we assume the receiving
party signals Abort to all other parties and aborts.

Initialise: The parties do the following:
1. Each Pi ∈ P executes Hi.Initialise().
2. The parties call FPrep with input (Triple, NT) get NT triples.
3. The parties agree on a public sharing of the secret 1, denoted by u.
4. Each party has one random secret opened to them for every input they will

provide to the protocol: the parties do the following:
(a) Retrieve from memory a sharing r of a uniformly random secret r, obtained

first or second random secret from a Beaver triple. (The secret used may
neither be used again for input nor used in a multiplication.)

(b) Run OpenTo(i) on r so that Pi obtains r.

Input: For party Pi to input secret s,
1. Party Pi retrieves a secret r from memory, corresponding to a share vector r

established during Initialise for inputs, and all parties Pj ∈ P retrieve their
shares r{Pj}.

2. Party Pi executes Broadcast to open ε := s − r.
3. Each party Pj ∈ P computes s{Pj} := ε · u{Pj} + r{Pj}.

Add: To add secrets s and s′, with corresponding share vectors s and s′, for each
Pi ∈ P party Pi computes s{Pi} + s′

{Pi}.

Multiply: To multiply secrets s and s′, with corresponding share vectors s and s′,
each Pi ∈ P does the following:
1. Retrieve from memory the shares (a{Pi},b{Pi}, c{Pi}) of a triple (a,b, c) ob-

tained in Initialise.
2. Compute s{Pi} − a{Pi} and s′

{Pi} − b{Pi}.
3. Run OpenTo(0) on s − a and s′ − b to obtain (publicly) s − a and s′ − b.
4. If the parties have not aborted, compute the following as the share of the

product c{Pi} + (s − a) · s′
{Pi} + (s′ − b) · s{Pi} − (s − a) · (s′ − b) · u{Pi}.

OutputTo(i): If i = 0, the secret s, encoded via share vector s, is to be output to
all parties, so the parties do the following:
1. Run Verify.
2. If the parties have not aborted, run OpenTo(0) on s.
3. If the parties have not aborted, run Verify again.
4. If the parties have not aborted, all parties (locally) output s.

If Pi ∈ P, the secret s encoded via share vector s is to be output to party Pi, so
the parties do the following:
1. Run Verify.
2. If the parties have not aborted, run OpenTo(i) on s.
3. If Pi has not aborted it (locally) outputs s.

Fig. 5. Protocol ΠMPC

Error Detection in Monotone Span Programs 227

from a Beaver triple – and open it by calling OpenTo(i). Then Pi determines
the encoded secret (using any recombination vector) and broadcasts ε := s − r.
The parties compute the share vector as s := ε · u + r where u is a pre-agreed
sharing of 1, which may be the same vector used to compute all inputs, by which
we mean that for i ∈ [m], party ψ(i) computes si := ε · ui + ri. Since this r is
uniformly random by assumption, it hides the input s in the broadcast of ε. This
is proved formally in our simulation proof.

We have the following proposition, which we prove in the full version under
the UC framework of Canetti [14]. Here we use (ΠMPC‖ΠOpening) to mean simply
that the union of the procedures from both protocols are used.

Proposition 1. The protocol (ΠMPC‖ΠOpening) securely realises FMPC for a Q2

access structure in the presence of a computationally-bounded active adversary,
corrupting any unqualified set of parties, in the FPrep-hybrid model, assuming the
existence of a collision-resistant hash function and point-to-point secure chan-
nels.

We note that since we do not use MACs, we can also instantiate our protocol
over small finite fields2, or indeed using a LSSS over a ring. The latter will hold
as long as the reconstruction vectors can be defined over the said ring. By taking
a ring such as Z/232Z we thus generalise the Sharemind methodology [11] to an
arbitrary Q2 structure. Also note that we can extend FPrep in a trivial way so
as to obtain other forms of pre-processing such shares of bits etc. as in [22].

Acknowledgements. We thank for the anonymous reviewers for their helpful com-
ments and remarks. This work has been supported in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contract No. N66001-15-C-4070, and by EPSRC via grant EP/N021940/1.

References

1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp.
805–817. ACM Press, October 2016

2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

3. Beaver, D., Wool, A.: Quorum-based secure multi-party computation. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 375–390. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054140

4. Beimel, A., Gál, A., Paterson, M.: Lower bounds for monotone span programs. In:
36th FOCS, pp. 674–681. IEEE Computer Society Press, October 1995

2 If using a small ring/finite field we simply need to modify the sacrificing stage in the
triple production process; no changes are needed for the online phase at all.

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/BFb0054140

228 N. P. Smart and T. Wood

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

6. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

7. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

8. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45608-8 18

9. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979
National Computer Conference, vol. 48, pp. 313–317 (1979)

10. Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Students
and taxes: a privacy-preserving social study using secure computation. Cryptology
ePrint Archive, Report 2015/1159 (2015). http://eprint.iacr.org/2015/1159

11. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

12. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

13. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067

15. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988

16. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993,
pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

17. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

18. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

19. Cramer, R., et al.: On codes, matroids and secure multi-party computation from
linear secret sharing schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 327–343. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 20

20. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC

https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
http://eprint.iacr.org/2015/1159
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-642-03549-4_20
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/11535218_20

Error Detection in Monotone Span Programs 229

2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1 10

21. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

22. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

23. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

24. van Dijk, M.: Secret key sharing and secret key generation. Ph.D. thesis, Eindhoven
University of Technology (1997)

25. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 225–
255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

27. Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in
secure multi-party computation (extended abstract). In: Burns, J.E., Attiya, H.
(eds.) 16th ACM PODC, pp. 25–34. ACM, August 1997

28. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: Proceedings of IEEE Global Telecommunication Conference (Globe-
com 1987), pp. 99–102 (1987)

29. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in
Complexity Theory, pp. 102–111 (1993)

30. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October
2016

31. Keller, M., Rotaru, D., Smart, N.P., Wood, T.: Reducing communication channels
in MPC. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp.
181–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 10

32. Maurer, U.M.: Secure multi-party computation made simple. Discrete Appl. Math.
154(2), 370–381 (2006)

33. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

34. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 37

35. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
36. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th

FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-98113-0_10
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37

Lossy Trapdoor Permutations
with Improved Lossiness

Benedikt Auerbach1(B), Eike Kiltz1, Bertram Poettering2,
and Stefan Schoenen3

1 Horst-Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany
{benedikt.auerbach,eike.kiltz}@rub.de

2 Royal Holloway, University of London, Egham, UK
bertram.poettering@rhul.ac.uk

3 paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

stefan.schoenen@paluno.uni-due.de

Abstract. Lossy trapdoor functions (Peikert and Waters, STOC 2008
and SIAM J. Computing 2011) imply, via black-box transformations,
a number of interesting cryptographic primitives, including chosen-
ciphertext secure public-key encryption. Kiltz, O’Neill, and Smith
(CRYPTO 2010) showed that the RSA trapdoor permutation is lossy
under the Phi-hiding assumption, but syntactically it is not a lossy trap-
door function since it acts on ZN and not on strings. Using a domain
extension technique by Freeman et al. (PKC 2010 and J. Cryptology
2013) it can be extended to a lossy trapdoor permutation, but with con-
siderably reduced lossiness.

In this work we give new constructions of lossy trapdoor permutations
from the Phi-hiding assumption, the quadratic residuosity assumption,
and the decisional composite residuosity assumption, all with improved
lossiness. Furthermore, we propose the first all-but-one lossy trapdoor
permutation from the Phi-hiding assumption. A technical vehicle used
for achieving this is a novel transform that converts trapdoor functions
with index-dependent domain to trapdoor functions with fixed domain.

1 Introduction

Lossy Trapdoor Functions. Lossy trapdoor functions (LTFs) are like clas-
sic (one-way) trapdoor functions but with strengthened security properties.
Instances of an LTF can be created in two computationally indistinguish-
able ways: An instance generated with the standard key-generation algorithm
describes an injective function that can be efficiently inverted using the trapdoor;
and an instance generated with the lossy key-generation algorithm describes a
“lossy” function, meaning its range is considerably smaller than its domain. The

The full version of this article can be found in the IACR eprint archive as article
2018/1183 at https://eprint.iacr.org/2018/1183.
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 230–250, 2019.
https://doi.org/10.1007/978-3-030-12612-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_12&domain=pdf
https://eprint.iacr.org/2018/1183
https://doi.org/10.1007/978-3-030-12612-4_12

Lossy Trapdoor Permutations with Improved Lossiness 231

lossiness factor L ≥ 1, defined as the ratio of the cardinalities of domain and
range, measures the LTF’s quality.1 The larger the lossiness factor, the better
the cryptographic properties of the LTF. In case the non-lossy instances define
permutations, we will refer to the whole object as a lossy trapdoor permutation
(LTP).

Lossy trapdoor functions were introduced by Peikert and Waters [21,22] who
showed that they imply (via black-box constructions) fundamental cryptographic
primitives such as classic trapdoor functions, collision-resistant hash functions,
oblivious transfer, and chosen-ciphertext secure public-key encryption. Further-
more, LTFs have found various other applications, including deterministic public-
key encryption [7], OAEP-based public-key encryption [17], “hedged” public-key
encryption for protecting against bad randomness [2,4], security against selective
opening attacks [5], efficient non-interactive string commitments [20], threshold
encryption [26], correlated-product secure trapdoor functions [24], adaptive trap-
door functions [16], and many others.
LTFs with index-dependent domains. In the original definition by Peik-
ert and Waters, all instances of an LTF are defined over the same fixed
domain {0, 1}k. That is, the domain is independent of the specific index out-
put by the key-generation algorithm (‘index’ is used synonym with the pub-
lic key describing the instance). Subsequently, LTFs were generalized to LTFs
with index-dependent domains [11] where the domain may depend on the func-
tion’s index. To illustrate index-dependent domains, consider the well-known
RSA trapdoor permutation fRSA : ZN → ZN ; x �→ xe mod N . Its index consists
of a modulus N = pq (of fixed bit-length k) and an exponent e; its domain
is ZN , hence it is index-dependent. For e ≤ 2k/4, permutation fRSA was proved
to be lossy [17] with lossiness factor L = e under the Phi-hiding assumption [9].2
Similarly, constructions of trapdoor functions based on quadratic residuosity or
Paillier’s assumption yield LTPs with index-dependent domains [10,11].

As pointed out in [11], LTFs with index-dependent domains do not seem to
be sufficient for constructing correlated-product secure trapdoor functions [24]
or chosen-ciphertext secure public-key encryption [21]. The difficulty is that in
these applications a fixed value has to be evaluated on many independently gen-
erated instances of the trapdoor function. It is therefore crucial that the domains
are the same for all these instances. Furthermore, most constructions of deter-
ministic encryption schemes (e.g., [3,7,8,18,23]) assume message distributions
that do not depend on the public key and hence cannot be constructed from

1 The original definition of lossy trapdoor functions [21,22] measures lossiness on a
logarithmic scale. That is, � := log2(L) is the lossiness of the LTF and L is the
lossiness factor (which we use in this work).

2 In brief, the Phi-hiding assumption states that (N, e), where N = pq and e � ϕ(N),
is computationally indistinguishable from (N, e), where N = pq and e | ϕ(N). The
Phi-hiding assumption is conjectured to hold for e ≤ N1/4−ε and does not hold for
e > N1/4 (due to a Coppersmith-like attack). If e | ϕ(N), then fRSA(x) = xe mod N
is roughly an e-to-1 function.

232 B. Auerbach et al.

LTFs with index-dependent domains. Fortunately, however, LTFs with index-
dependent domains turn out to be sufficient for many other applications.

In [11, Sect. 3.2], a general domain-extension technique was (implicitly) pro-
posed that transforms an LTF f : ZN → ZN with index-dependent domain ZN

(with 2k−1 ≤ N < 2k) into an LTF fde : {0, 1}k → {0, 1}k with index-
independent domain {0, 1}k by defining

fde(x) :=
{

f(x) 0 ≤ x < N

x N ≤ x < 2k
. (1)

However, this transform does bad in preserving lossiness, in particular in the
case where N is close to 2k−1. Indeed, if the lossiness factor of f is L then
the lossiness factor of fde is about Lde = 2 · L/(L + 1) < 2. Note that such a
small lossiness factor does not even imply one-wayness, i.e., the resulting LTF
is, taken by itself, essentially useless. (Based on a result by Mol and Yilek [19]
it can still be used to build IND-CCA secure encryption, but with considerably
worse efficiency.) In [11, Sect. 4.4] also an alternative domain-extension technique
was sketched that can be used to construct an LTF fde with index-independent
domain {0, 1}k+log(L) and lossiness factor Lde ≈ L. Here, every evaluation of fde
requires log(L) many applications of f . For interesting values of L this is again
prohibitively inefficient.
All-but-one Lossy Trapdoor Functions. All-but-one lossy trapdoor func-
tions (ABO-LTFs) are a generalization of LTFs. An ABO-LTF is associated
with a set Br of branches. The corresponding generator algorithm is invoked on
input a target branch br∗ ∈ Br and outputs a trapdoor and a family of func-
tions (fbr)br∈Br with the property that fbr is injective for all br �= br∗ (and
can be inverted using the trapdoor), but function fbr∗ is lossy. Moreover, the
lossy branch is hidden (computationally) by the description of the function fam-
ily. ABO-LTFs with just two branches are equivalent to LTFs, and, similarly
to LTFs, ABO-LTFs can have index-independent or index-dependent domains.
Using the techniques of Peikert and Waters [21] an ABO-LTF with exponentially
large branch set can be constructed from any LTF, but the latter is required to
have a sufficiently large lossiness factor L. (This transformation also works for
LTFs with index-dependent domains.) Many of the mentioned applications of
LTFs require in fact ABO-LTFs.
Known LTFs and ABO-LTFs. Roughly speaking, cryptographic assumptions
are typically rooted in one out of three different environments: over cyclic groups,
over lattices, or over RSA moduli. Over cyclic groups as well as over lattices, con-
structions of LTFs and ABO-LTFs are known [21]. They have index-independent
domain and can be instantiated to have an arbitrarily large lossiness factor L. In
the RSA setting, the situation is different.3 There are constructions known from

3 When we say an LTF is “RSA-based” we mean it is defined in respect to some
composite number N = pq where p, q are primes. This shall not suggest its security
relies on the RSA assumption (the hardness of computing e-th roots).

Lossy Trapdoor Permutations with Improved Lossiness 233

the quadratic residuosity assumption [11], Paillier’s decisional composite resid-
uosity assumption [11], and from the Phi-hiding assumption [9,17] (for a fourth
one, see below). All constructions have index-dependent domains (the transform
sketched above fixes this, but the results are essentially useless due to the small
lossiness factor). Unfortunately, for the constructions based on the Phi-hiding
assumption and the quadratic residuosity assumption the lossiness factor cannot
be made arbitrarily large and, in particular, it is not sufficient to construct effi-
cient ABO-TDFs. However, both an index-independent LTF and an ABO-LTF
based on the decisional composite residuosity assumption are known [11].

As it is quite general, we describe in more detail the technique from [21]
for building LTFs. Starting with an additively homomorphic encryption scheme,
function indices correspond with element-wise encryptions of the identity matrix.
The range of the construction consists of vectors of ciphertexts. If ElGamal
encryption is used to instantiate the encryption scheme one obtains an LTF
with security based on DDH. Constructions of LTFs and ABO-LTFs in the same
spirit, but that achieve smaller index sizes and output lengths, are proposed in [6,
15]. Using a generalization of the Goldwasser–Micali homomorphic encryption
scheme [12] allows this construction, in contrast to processing the LTF input bit-
by-bit, to consider input values sequences of numbers of some fixed bit-length.
The construction’s security is based not only on the DDH assumption but also
on the quadratic residuosity assumption for a restricted class of RSA moduli
and an additional non-standard assumption, which can be removed by making
further restrictions on the modulus.

While the described constructions from [6,15,21] achieve high lossiness fac-
tors, a common disadvantage is that their indices are ciphertext matrices
and the function ranges are ciphertext vectors, and thus quite large. Further,
[6,15] require strong hardness assumptions in a quite restricted RSA setting.

As shown in [27], collision-resistant hash functions, CPA- and CCA-secure
public-key encryption, and deterministic encryption can be constructed from
adversary-dependent lossy trapdoor functions and ABO-LTFs, a variant of
LTFs and ABO-LTFs with relaxed security conditions. The authors give index-
independent constructions of these primitives from the factoring assumption for
semi-smooth RSA moduli. The proposed instantiations achieve high lossiness
factors and have compact indices and ciphertexts of roughly the size of an RSA
modulus.

1.1 Our Results

In this work we propose a new general domain-extension transformation that
can be used to transform index-dependent LTPs into index-independent LTPs
without sacrificing much lossiness. Concretely, our transformation decreases the
lossiness factor by at most by a factor of 2. For the special cases of the LTP based
on the Phi-hiding assumption and the LTP from [11] based on the quadratic
residuosity assumption, a more refined analysis even shows that the lossiness
factor effectively stays invariant. That is, ultimately we construct an LTP with
index-independent domain {0, 1}k and lossiness factor as large as L = 2k/4 from

234 B. Auerbach et al.

the Phi-hiding assumption, and an LTP with index-independent domain {0, 1}k

and lossiness factor 2 from the quadratic residuosity assumption. In compari-
son, the index-independent variants obtained via the transform implicitly given
in [11] would result in lossiness factors of 2 and 4/3 respectively. Furthermore, in
the full version [1] we apply our transformation to the index-dependent LTF and
ABO-LTF of [11] based on the decisional composite residuosity assumption. As
a result we obtain index-independent variants with slightly larger domain and
lossiness factor than the index-independent constructions given in [11]. Finally
we construct the first ABO-LTP from (a variant of) the Phi-hiding assumption.
We highlight that in particular our Phi-hiding based construction has particu-
larly compact indices (of the size of an RSA modulus) and range elements.
Domain extension for LTFs with index-dependent domains. We explain
our domain extension technique for the special case of a LTF f : ZN → ZN

with index-dependent domain ZN (with 2k−1 ≤ N < 2k). We use a two-round
construction in the spirit of Hayashi, Okamoto and Tanaka [13], who used a
similar construction to extend the domain of the RSA one-way permutation. We
define the function

f ′
de : {0, 1}k → {0, 1}k, f ′

de(x) := fde(π(fde(x))), (2)

where fde is defined in (1) and permutation π : {0, 1}k → {0, 1}k is given as
π(x) = x − (N − 1) mod 2k. The intuition of this construction is that the LTF
f is applied to every x ∈ {0, 1}k at least once. Indeed, if f is one-way, then f ′

de
defined in (2) is one-way [13]. Our first main result states that if f is a LTF
with index-dependent domain and lossiness factor L, then f ′

de is a LTF with
index-independent domain {0, 1}k and lossiness factor L′

de = L/2.
In the case of the RSA-based LTF fRSA we can even prove that the lossiness

factor of f ′
de is completely preserved, i.e. L′

de = L. Under the Phi-hiding assump-
tion this gives us a LTP with index-independent domain and lossiness factor as
large as k1/4. We also show how to obtain index-independent LTPs from the
quadratic residuosity and the decisional composite residuosity assumption (in
the full version [1]), which have a larger lossiness factor than the constructions
of [11].
An ABO-LTP in the RSA setting. Our second main result is the construc-
tion of an ABO-LTP with index-dependent domain from the Phi-hiding assump-
tion. Our generic domain extension technique also works for ABO-LTFs, so it
can be transformed into an ABO-LTP with index-independent domain {0, 1}k.

Our construction essentially follows [16, Sect. 5.2] who construct an adaptive
trapdoor function from the instance-independent RSA assumption, a decisional
version of the RSA assumption. It makes use of a new primitive that we call prime
family generator (PFG), an abstraction that may be of independent interest. An
instance of a PFG indicates a fixed sequence of (distinct) primes e1, . . . , e2n of
some specified bit-length l ≥ n/2. A specific programmability feature allows
embedding any given prime at any given position, where the position remains
hidden (computationally) from the instance. We give an information-theoretic
construction of a PFG that is based on work by Cachin, Micali, and Stadler [9].

Lossy Trapdoor Permutations with Improved Lossiness 235

A PFG instance consists of l2 bits and we leave it as an open problem to con-
struct a (computationally secure) PFG with improved parameters, for example
by using the PRF-based construction as implicitly in the work of Hohenberger
and Waters [14].

Given a PFG we define our new RSA-setting based ABO-LTP for a branch
br ∈ {0, 1}n as

fbr : ZN → ZN ; fbr(x) := xebr ,

where ebr is the br-th prime of the PFG prime sequence. To prove the ABO-
LTF security property we first use the Phi-hiding assumption to change the
distribution of the RSA modulus N to satisfy e∗ | ϕN , for some random prime
e∗. Next, we use the PFG’s programmability feature to make sure that ebr∗ = e∗,
meaning the function fbr(·) is injective if br �= br∗ and e∗-to-1 if br = br∗.4

Applications. Our constructions of index-independent LTFs and LTPs over
domain {0, 1}k (and our techniques to build them) are mostly of theoretical
interest with potential future applications. Whereas with our current knowl-
edge we are not able to present a killer application, let us still discuss possible
minor applications. Most importantly, correlated-product secure trapdoor func-
tions [24] and IND-CCA secure public-key encryption [21] can be constructed
from index-independent LTFs over domain {0, 1}k. Both require the lossiness fac-
tor L to be larger than 2k/2, whereas our construction based on the Phi-hiding
assumption cannot go beyond L = 2k/4. One can still apply the amplification
result by Mol and Yilek [19] to build IND-CCA secure encryption. The efficiency
loss will be smaller than with the previous constructions from the Phi-hiding
assumption (having lossiness factor L ≈ 2).

2 Preliminaries

2.1 Notation

If a, b ∈ N, a < b, we use notations [a .. b] = {a, . . . , b}, [b] = [1 .. b], �a .. b� =
[a .. (b − 1)], and �b� = [0 .. (b − 1)]. We say m ∈ N is an l-bit number if m ∈
�2l−1 .. 2l�. For any set M ⊆ N we denote with Ml := M ∩ �2l−1 .. 2l� its subset
of l-bit elements. We write {0, 1}l for the set of strings of length l and denote the
bit-wise exclusive-or operation of same-length strings with ⊕. For all l ∈ N we
assume a canonic bijection #: �2l� → {0, 1}l and correspondingly denote with
#x the interpretation of an element x of �2l� as a string in {0, 1}l. The support
of a randomized algorithm A on input x, i.e., the set of values it outputs with
non-zero probability, is denoted by [A(x)]. We annotate a disjoint union with ∪· .

4 In fact this requires a slightly strengthened variant of the Phi-hiding assumption
where for a larger set E it is known that precisely one element e ∈ E is a divisor
of ϕN . We call this the unique-divisor Phi-hiding assumption, see Sect. 2.3.

236 B. Auerbach et al.

2.2 (All-But-One) Lossy Trapdoor Permutations

We recall the concepts of lossy trapdoor functions and all-but-one lossy trapdoor
functions as introduced by Peikert and Waters [21]. More precisely, we slightly
deviate from their formalizations by restricting attention to permutations, sup-
porting index-dependent domains [11], and considering permutations that are
not perfectly correct.

Lossy Trapdoor Permutations. Let X be a domain, Id a universe of function
indices, and for each index id ∈ Id let X (id) ⊆ X be a specific (sub)domain. A
lossy trapdoor permutation (LTP) for X , Id then consists of a trapdoor space Td
and three efficient algorithms F = (FGen, FEv, FInv) for which the following
hold: Algorithm

{0, 1} → FGen →$ Id × (Td ∪· {⊥})

is a randomized instance generator. Its input b ∈ {0, 1} specifies whether the
generated instance is injective (b = 1) or lossy (b = 0). We require [FGen(1)] ⊆
Id × Td and [FGen(0)] ⊆ Id × {⊥}. In injective mode, if (id, td) ∈ [FGen(1)], we
refer to td as the trapdoor corresponding to id. Algorithms

Id × X → FEv → X and Td × X → FInv → X

are the evaluation and inversion algorithms, respectively. We require it hold
FEv(id, x) ∈ X (id) for all id ∈ Id and x ∈ X (id). For correctness we further
require that in injective mode the mapping X (id) → X (id) induced by FEv can
be effectively inverted on (almost) all values if the trapdoor is known. Formally,
we say that F is (1 − ε1)-correct if

Pr[(id, td) ←$ FGen(1), x ←$ X (id), y ← FEv(id, x) : FInv(td, y) �= x] ≤ ε1.

This means that for ε1 > 0 the function implemented by FEv(id, ·) might techni-
cally not be a permutation. For security we require (a) that FEv lose information
in lossy mode, and (b) that injective mode and lossy mode be indistinguishable.
Concerning (a), we say the LTP is L-lossy if for all (id, ⊥) ∈ [FGen(0)] we
have |FEv(id, X (id))| ≤ |X (id)|/L.5 Concerning (b), we say the LTP is (τ, ε2)-
indistinguishable if for all τ -time distinguishers D we have∣∣∣∣ Pr[(id, td) ←$ FGen(1) : D(id) ⇒ 1]

− Pr[(id, ⊥) ←$ FGen(0) : D(id) ⇒ 1]

∣∣∣∣ ≤ ε2.

5 According to our definition, L-lossiness indicates that the size of the lossy image is
by a factor L smaller than the domain. The original definition by Peikert and Waters
indicates the same quantity on a logarithmic scale, i.e., they report log2(L) instead
of L.

Lossy Trapdoor Permutations with Improved Lossiness 237

All-But-One Lossy Trapdoor Permutations. All-but-one LTPs are a gen-
eralization of LTPs where in addition to the universe of function indices there is
a universe of branches; function FEv is lossy for one branch and injective for all
others. In particular, a (regular) LTP is equivalent to an all-but-one LTP if the
branch space consists of precisely two elements.

Let Br be a branch space, X a domain, Id a universe of function indices, and
for each index id ∈ Id let X (id) ⊆ X be a specific (sub)domain. An all-but-one
lossy trapdoor permutation (ABO-LTP) for Br, X , Id then consists of a trapdoor
space Td and three efficient algorithms A = (FGen, FEv, FInv) for which the
following hold: Algorithm

Br → FGen →$ Id × Td

is an instance generator such that the invocation (id, td) ←$ FGen(br), for a
branch br , generates a function index id with trapdoor td. Similarly as for LTPs,
algorithms

Br × Id × X → FEv → X and Br × Td × X → FInv → X

are the evaluation and inversion algorithms. We require that for all br , br∗ ∈ Br
and (id, td) ∈ [FGen(br∗)] and x ∈ X (id), if y = FEv(br , id, x) then y ∈ X (id).
We further require that the mappings X (id) → X (id) induced by FEv on all
branches with exception of br∗ can be effectively inverted (on almost all values)
if the trapdoor is known. Formally, we say that A is (1 − ε1)-correct if for all
br , br∗ ∈ Br, br �= br∗, we have

Pr [(id, td) ←$ FGen(br∗), x ←$ X (id) : FInv (br , td, FEv(br , id, x)) �= x] ≤ ε1.

For security we require that FEv lose information on its lossy branch, i.e.,
the branch br∗ the instance was generated for. Further, it shall be unfeasible to
identify the lossy branch. Concretely, we say the ABO-LTP is L-lossy if for all
br∗ ∈ Br and (id, td) ∈ [FGen(br∗)] we have |FEv(br∗, id, X (id))| ≤ |X (id)|/L,
and we say it is (τ, ε2)-indistinguishable if for all br0, br1 ∈ Br and all τ -time
distinguishers D (that may depend on br0, br1) we have∣∣∣∣ Pr[(id, td) ←$ FGen(br0) : D(id) ⇒ 1]

− Pr[(id, td) ←$ FGen(br1) : D(id) ⇒ 1]

∣∣∣∣ ≤ ε2.

Index-Dependent vs. Index-Independent LTPs/ABO-LTPs. In the
above definition of LTPs, the domain X (id) ⊆ X on which FEv(id, ·) oper-
ates may depend on function index id. We say the LTP is index-independent if
this restriction does not exist, i.e., if X (id) = X for all id. For ABO-LTPs we
say correspondingly. In later sections we show how to generically transform an
index-dependent trapdoor permutation into an index-independent one.

238 B. Auerbach et al.

2.3 Number Theoretic Assumptions

For a, b ∈ N, a �= 0, we write a | b if a divides b, i.e., if there exists d ∈ N s.t.
b = da. We further write a |1 b if a divides b exactly once, i.e., if a | b ∧ a2

� b.
The greatest common divisor of a, b is denoted gcd(a, b). We denote the set of
prime numbers with P. Recall from Sect. 2.1 that Nl and Pl denote the sets of
l-bit natural and prime numbers, respectively.

If k is an even number, a product N = pq is a k-bit RSA modulus if N ∈ Nk,
p, q ∈ Pk/2, and p �= q. The order of the multiplicative group Z

∗
N is ϕN :=

ϕ(N) = (p−1)(q−1). We denote the space of k-bit RSA moduli with RSAk. If we
want to restrict attention to k-bit RSA moduli that fulfill a specific condition C,
we write RSAk[C]. The set of k-bit Blum integers, i.e., RSA moduli where the
prime factors satisfy p ≡ q ≡ 3 mod 4, is denoted by BRSAk := RSAk[p ≡ q ≡
3 mod 4].

Phi-Hiding Assumption. In standard RSA encryption, public exponent e
is chosen constraint to e � ϕN so that the mapping x �→ xe is a bijection.
Some applications in addition use exponents e |1 ϕN and require that it be
hard, given (N, e), to decide whether e |1 ϕN or e � ϕN . Roughly, the Phi-
hiding assumption [9,17] for a set of primes E says that N ∈ RSAk can be
generated such that for uniformly picked e ∈ E the cases N ∈ RSAk[e � ϕN] and
N ∈ RSAk[e |1 ϕN] are computationally indistinguishable. Formally, we say that
the (τ, ε)-Phi-hiding assumption holds for (k, E) if for all τ -time adversaries D
we have ∣∣∣∣ Pr[e ←$ E ; (N, ϕN) ←$ RSAk[e |1 ϕN] : D(N, e) ⇒ 1]

− Pr[e ←$ E ; (N, ϕN) ←$ RSAk[e � ϕN] : D(N, e) ⇒ 1]

∣∣∣∣ ≤ ε.

In the probability expressions we write (N, ϕN) ←$ RSAk[C] for an algorithm
that generates a k-bit RSA modulus satisfying condition C, and also outputs
ϕN = |Z∗

N |.
In this paper we also need a variant of this assumption: An added restriction

is that precisely one e ∈ E shall be a divisor of ϕN , and, as before, if e divides
ϕN then at most once.6 This is expressed by condition

C(E , ϕN , e) :⇐⇒ e | ϕN ∧ gcd(E , ϕN /e) = 1,

where the gcd term encodes that ϕN /e is relative prime to all elements of E ;
this in particular implies e |1 ϕN . We say the unique-divisor (τ, ε)-Phi-hiding
assumption holds for (k, E) if for all τ -time adversaries D we have∣∣∣∣ Pr[e0 ←$ E ; (N, ϕN) ←$ RSAk[C(E , ϕN , e0)] : D(N, e0) ⇒ 1]

− Pr[e0, e1 ←$ E ; (N, ϕN) ←$ RSAk[C(E , ϕN , e0)] : D(N, e1) ⇒ 1]

∣∣∣∣ ≤ ε.

6 While this assumption is stronger than the standard Phi-hiding assumption, we
conjecture that it is rather mild (possibly in the same way as the strengthened
Quadratic Residuosity assumption from [15] that is specialized towards defining the
2k-th Power Residue symbol).

Lossy Trapdoor Permutations with Improved Lossiness 239

Fig. 1. Transformation of index-dependent LTP into index-independent LTP. To make
algorithm FInvii well-defined we assume implicitly that trapdoor td contains a copy of
function index id. A visualization of the construction is in Fig. 2.

Quadratic Residuosity Assumption. Roughly, the quadratic residuosity
assumption says that it is hard to distinguish quadratic residues modulo a Blum
integer from quadratic non-residues that have positive Jacobi symbol.

Formally, for all N ∈ N denote with QRN ⊆ Z
∗
N the set of quadratic residues

modulo N and with JN ⊆ Z
∗
N the set of numbers with positive Jacobi symbol.

(In particular we have QRN ⊆ JN .) We say that the (τ, ε)-quadratic residuosity
assumption holds for k if for all τ -time adversaries D we have∣∣∣∣ Pr[(N, p, q) ←$ BRSAk, x ←$ QRN : D(N, x) ⇒ 1]

− Pr[(N, p, q) ←$ BRSAk, x ←$ JN \ QRN : D(N, x) ⇒ 1]

∣∣∣∣ ≤ ε.

In the probability expressions we write (N, p, q) ←$ BRSAk for an algorithm
that generates a k-bit Blum integer and also outputs its prime factors. Note
that sampling elements of QRN and JN \ QRN can be done efficiently if these
factors are known.

3 From Index-Dependence to Index-Independence

Many natural constructions of lossy trapdoor permutations are index-dependent,
i.e., for each index id the function FEv(id, ·) operates on an individual set
X (id) ⊆ X . However, for applications it might be necessary that there is only
one domain: X (id) = X for all id. In this section we convert index-dependent
LTPs into index-independent LTPs. Some transforms of this type have been pro-
posed before. For instance, [11] implicitly uses the somewhat trivial approach of
leaving elements in X \ X (id) untouched (i.e., elements in X (id) are processed
with the LTP, the others are passed through without modification). As discussed
in the introduction, the performance of this conversion is generally rather poor:
In the worst case, if |X (id)| � |X |, lossiness is bounded by L = 1.

Below we study a two-round construction that was first proposed in [13], in
a different context. There, the goal was to extend the domain of the RSA trap-
door permutation; aspects of lossiness were not studied. Further, our exposition
is more generic. The idea behind the transformation is to ensure that FEv is
applied to every point of X at least once. In both rounds the points of X (id) are
permuted with FEv while the remaining points of X stay unchanged. To achieve

240 B. Auerbach et al.

Fig. 2. Working principle of transformation of index-dependent LTP into index-
independent LTP. The corresponding algorithms are in Fig. 1. Note that πid is chosen
such that every point in X is permuted by FEv at least once.

the property stated above, after the first round a permutation πid is used to
move into X (id) all those points that have not yet been touched by FEv.

Let F = (FGen, FEv, FInv) be a LTP with domain X and index space Id.
Assume F has index-dependent domains. For all id ∈ Id write X (id) = X \X (id)
and let πid : X → X be an efficiently computable and efficiently invertible per-
mutation satisfying πid(X (id)) ⊆ X (id) or, equivalently, π−1

id (X (id)) ⊆ X (id).
(Note that such a πid can exist only if |X (id)| ≥ |X |/2 for all id.) From F
and (πid)id∈Id we construct a LTP Fii = (FGenii, FEvii, FInvii) with index-
independent domain X , i.e., X (id) = X for all id. The algorithms are specified
in Fig. 1 and illustrated in Fig. 2. The analysis is in Lemma 1 (which is proved
in the full version [1]).

Lemma 1. Let F be a (1 − ε1)-correct, (τ, ε2)-indistinguishable L-lossy trap-
door permutation with index-dependent domain. Furthermore, let (πid)id∈Id be
a family of permutations on X as described. Then Fii is an (1 − 2ε1)-correct,
(τ, ε2)-indistinguishable L/2-lossy trapdoor permutation with index-independent
domain X . In particular, if F is 1-correct, then so is Fii.

Analogously to the construction in Fig. 1 we can transform an index-dependent
ABO-LTP A = (FGen, FEv, FInv) into an index-independent ABO-LTP Aii =
(FGen, FEvii, FInvii). Note that Aii uses the same instance generator as A. Algo-
rithms FEvii and FInvii work as their counterparts for LTPs defined in Fig. 1,
the only difference being the use of the additional input br to evaluate FEv
and FInv. We obtain the following.

Lemma 2. Let A be a (1 − ε1)-correct, (τ, ε2)-indistinguishable L-lossy ABO-
LTP with index-dependent domain. Let (πid)id∈Id be a family of permutations
on X as described. Then Aii is an (1 − 2ε1)-correct, (τ, ε2)-indistinguishable
L/2-lossy ABO-LTP with index-independent domain X . In particular, if A is
1-correct, then so is Aii.

Lossy Trapdoor Permutations with Improved Lossiness 241

4 Lossy Trapdoor Permutations from Phi-Hiding

Fix an RSA modulus N and let e � ϕN be prime. We say e is injective for
N if e � ϕN and that it is lossy for N if e |1 ϕN . In the injective case the
mapping E : ZN → ZN ; x �→ xe is inverted by D : y �→ yd, where d is such that
ed = 1 mod ϕN . In the lossy case, the restriction E|Z∗

N
of E to domain Z

∗
N is e-to-

1, i.e., we have |E(Z∗
N)|/|Z∗

N | = 1/e. The Phi-hiding assumption from Sect. 2.3
then precisely says that it is hard to decide whether a candidate exponent e is
injective or lossy for N .

We propose two LTPs in the RSA setting, both with security based on the
Phi-hiding assumption. The first construction is quite natural but has index-
dependent domains. The second construction is the index-independent analogue
of the first, obtained via the transformation from Sect. 3. Here, our contribution
is establishing a better bound on the lossiness than is possible with the generic
result. (Our arguments are based on structures specific to the RSA setting.)

Fig. 3. LTPs F and F∗ from Phi-hiding assumption (with index-dependent domains).

4.1 Index-Dependent Domain LTP from Phi-Hiding Assumption

Let k be an even number indicating a desired bit length of RSA moduli. Let E be
a distribution of prime numbers such that the (τ, ε)-Phi-hiding assumption holds
for (k, E). Consider the constructions of LTPs F = (FGen, FEv, FInv) and F∗ =
(FGen, FEv∗, FInv) given by the algorithms in Fig. 3. Observe that condition
e |1 ϕN in line 02 implies that no element of E can be longer than k/2 bits.
Further, to protect from known attacks it is necessary that max E ≤ 2k/4.

The working principle of F is as follows: Function indices id correspond with
RSA parameters (N, e). The domain corresponding to index id is X (id) = ZN .
In injective mode, (N, e) are chosen such that e is invertible modulo ϕN , i.e.,
such that a corresponding decryption exponent d exists. The FEv and FInv
algorithms, in this case, are the standard RSA mappings x �→ xe and y �→ yd

(lines 10 and 13). In lossy mode, e is a divisor of ϕN . In this case, mapping
x �→ xe is e-to-1 for elements in Z

∗
N . The resulting overall lossiness (i.e., for

full ZN) is analyzed in Lemma 3.

242 B. Auerbach et al.

Fig. 4. Illustration of Phi-hiding based LTP Fii with index-independent domain.

We next discuss F∗. This variant achieves better lossiness by building on the
fact that given an element of ZN \ Z

∗
N it is possible to effectively determine

whether the function index (N, e) is injective or lossy. In the first case FEv∗ uses
the standard RSA map; in the second case elements in ZN \ Z

∗
N are detected

and explicitly mapped to 0. The identification of lossy indices and elements in
ZN \ Z

∗
N is handled in lines 17–21. Observe that the condition in line 17 can be

checked efficiently.
We analyze constructions F and F∗ in Lemma 3 (the proof of which is in the

full version [1]). While the second LTP is more complicated to implement, the
achieved lossiness bound is easier to work with.

Lemma 3. If for (k, E) the (τ, ε)-Phi-hiding assumption holds and L ≤ min E
is a lower bound on the elements in the support of E, LTP F is a 1-correct,
(τ, ε)-indistinguishable (1/L + 2−k/2+3)−1-lossy trapdoor function. Furthermore,
LTP F∗ is a 1-correct (τ, ε)-indistinguishable L-lossy trapdoor function. Both
LTPs have index-dependent domain.

4.2 Index-Independent Domain LTP from Phi-Hiding Assumption

The LTP F∗ from Sect. 4.1 has index-dependent domains: for function index id =
(N, e), algorithm FEv∗(id, ·) operates on domain X (id) = ZN . By construction
we have N ∈ �2k−1 .. 2k� and thus X (id) ⊆ X for X = �2k�. To obtain an LTP Fii
with index-independent domain �2k� we can apply to F∗ the generic transform of
Sect. 3. By Lemma 1, assuming appropriately chosen permutations (πid), if F∗ is
L-lossy, then Fii is L/2-lossy. The contribution of the current section is to show
that for a specifically defined family (πid) using direct (non-generic) arguments
this result can be strengthened: If F∗ is L-lossy, then also Fii is L-lossy. In other
words, there is no price to pay for switching from index-dependent domains
to index-independent domains. (This holds for the lossiness; computation time
might double.)

Lossy Trapdoor Permutations with Improved Lossiness 243

As a first step we identify a family (πid) of permutations on X that suits
the conditions of the transform from Sect. 3, namely πid(X (id)) ⊆ X (id) for
all id ∈ Id. Hence let X = �2k� and (N, e) = id ∈ Id, where N ∈ �2k−1 .. 2k�.
We define πid : X → X ; x �→ x − (N − 1) mod 2k. Then πid is a permutation
on X and we have N ≤ x < 2k ⇒ 1 ≤ πid(x) ≤ 2k − N < N (the last inequality
follows from 2k−1 ≤ N < 2k); this establishes πid(X (id)) ⊆ X (id). We illustrate
the transform from Fig. 2 in conjunction with this family of bijections (πid) in
Fig. 4. In the following, we first state the generic result obtained by applying
Lemma 1 to this setup. We then give the one established directly. The proof of
Lemma 4 is in the full version [1].

Corollary 1. Let E be a prime distribution and L ≤ min E. Further, let
F∗ = (FGen, FEv∗, FInv) be the L-lossy LTP defined in Fig. 3, (πid)id∈Id the
permutation family defined above, and Fii the conversion of F∗ via Fig. 1. If
for (k, E) the (τ, ε)-Phi-hiding assumption holds, then Fii is a 1-correct, (τ, ε)-
indistinguishable L/2-lossy trapdoor function with index-independent domain
X = �2k�.

Lemma 4. Let E be a prime distribution and L ≤ min E. Further, let F∗ =
(FGen, FEv∗, FInv) be the L-lossy LTF defined in Fig. 3, (πid)id∈Id the permuta-
tion family defined above, and Fii the conversion of F∗ via Fig. 1. If for (k, E) the
(τ, ε)-Phi-hiding assumption holds, then Fii is a 1-correct, (τ, ε)-indistinguishable
L/(1 + 2−k/2)-lossy trapdoor function with index-independent domain X = �2k�.

5 Lossy Trapdoor Permutations from Quadratic
Residuosity Assumption

In this section we recall the index-dependent lossy trapdoor function F of [10]
based on the quadratic residuosity assumption and show how the transform of
Sect. 3 can be used to obtain an index-independent variant Fii. Since F has a
lossiness factor of 2, using the generic bound is of no use in this case. However,
by exploiting the algebraic structure of the construction we are able to establish
that Fii has essentially the same lossiness factor as F. This improves on the
index-independent variant given in [10], which achieves a lossiness factor of 4/3.

5.1 Index-Dependent Domain LTP from Quadratic Residuosity

Let p, q be primes of bit length k/2 satisfying p ≡ 3 mod 4 and q ≡ 3 mod 4.
Consider the functions jN : Z → {0, 1} and hN : Z → {0, 1} defined by

jN (x) =
{

0, if x ∈ JN ∪ (ZN \ Z
∗
N)

1, if x ∈ Z
∗
N \ JN

hN (x) =
{

0, if x ≤ N/2
1, if x > N/2

.

244 B. Auerbach et al.

Fig. 5. LTP F from Quadratic residuosity assumption (with index-dependent domains).

Note that both jN and hN can be efficiently computed given N . Let dj , dh ∈
{0, 1}. Then—as pointed out in [10]—for each y ∈ QRN exactly one of the four
solutions of the equation x2 = y mod N satisfies jN (x) = dj and hN (x) = dh. We
denote this square root of y by Rdj ,dh

. Furthermore for every y ∈ ZN \ Z
∗
N with

y ∈ QRp ∨ y ∈ QRq the equation y = x2 mod N has exactly two solutions—one
being the negative of the other. Hence both solutions satisfy jN (x) = 0 and
for dh ∈ {0, 1} exactly one of the solutions satisfies hN (x) = dh. Analogous
to the situation above we denote this solution by R0,dh

. In [10] the authors
construct a lossy trapdoor permutation with index-dependent domain ZN . The
LTP’s algorithms are depicted in Fig. 5. The idea of the construction is to map
elements x ∈ ZN to x2, which is afterwards multiplied by some appropriately
chosen group elements, which allow to reconstruct x2 as well as both jN (x) =: dj

and hN (x) =: dh. Then the LTF can be inverted by computing Rdj ,dh
.

Lemma 5 ([10]). Let F = (FGen, FEv, FInv) the LTP of Fig. 5. If the
(τ, ε)-Quadratic residuosity assumption holds for k, then F is an (τ ′, ε)-
indistinguishable 2-lossy trapdoor function with index-dependent domain
X ((N, r, s)) = ZN ⊆ �2k� = X , where τ ′ ≈ τ .

5.2 Index-Independent Domain LTP from Quadratic Residuosity

In [10] the authors propose to modify the LTP F of Sect. 5.1 in the following
way to obtain an LTP F∗

ii with index-independent domain �2k�. This is done by
letting F∗

ii|X (id)(id, ·) := F(id, ·) and F∗
ii|X (id)(id, ·) := id. The resulting LTP F∗

ii

is a 4/3-lossy trapdoor function. In this section we show that using our transfor-
mation of Sect. 3 with an appropriate permutation yields an index-independent
LTP based on the quadratic residuosity assumption having essentially the same
lossiness factor as the underlying LTP F.

To be able to use our transformation we need a family of permutations
on X that suits the conditions of Sect. 3. Since—as in the construction based

Lossy Trapdoor Permutations with Improved Lossiness 245

on the Phi-hiding assumption—the index-dependent domain X (id) for some
id = (N, r, s) is ZN , we are able to use the same family of permutations. Hence
for id = (N, r, s) ∈ Id define πid : X → X ; x �→ x − (N − 1) mod 2k. Then πid is
a permutation on X and as in Sect. 4.2 we obtain πid(X (id)) ⊆ X (id).

Note that applying Lemma 1 would only yield a bound of 2/2 = 1 on the
lossiness factor of the transformed LTP, which is of no use. However, we are able
to establish a desirable result directly using techniques similar to the ones used
in the proof of Lemma 4. The proof of Lemma 6 is in the full version [1].

Lemma 6. Let F = (FGen, FEv, FInv) be the 1-correct, 2-lossy LTP defined in
Fig. 5, (πid)id∈Id the permutation family defined above, and Fii the transforma-
tion of F via Fig. 1. If the (τ, ε)-Quadratic residuosity assumption holds for k,
Fii is a 1-correct (τ ′, ε)-indistinguishable 2/(1 + 2−k/2)-lossy trapdoor function
with index-independent domain X = �2k�, where τ ′ ≈ τ .

6 Prime Family Generators

In Sect. 7 we construct all-but-one lossy trapdoor permutations from the unique
divisor Phi-hiding assumption. As a building block we use prime family genera-
tors, a tool that deterministically derives prime numbers from a randomly picked
seed. While this concept already appeared in [9], we need a variant of the tool
with different functionality and security properties. Below, we first define syntax
and functionality of prime family generators, and then give a construction based
on polynomial evaluation.

Let Q ⊆ P be a finite set of prime numbers and let L ≤ |Q|. For (Q, L),
any instance of a prime family generator (PFG) indicates a sequence of distinct
primes q1, . . . , qL ∈ Q. A specific programmability feature allows for embedding
any given prime at any given position. Formally, an (ε1, ε2)-PFG for (Q, L)
consists of a seed space Sd and three algorithms PGen, PGet, PProg such that

PGen →$ Sd and Sd × [L] → PGet → Q and [L] × Q → PProg →$ Sd.

For functionality we demand (a) programmability: for all i ∈ [L] we require

Pr[q ←$ Q; sd ←$ PProg(i, q) : PGet(sd, i) �= q] ≤ ε1.

(b) distinctness of outputs: for all i ∈ [L] we require

Pr[sd ←$ PGen : ∃j ∈ [L], i �= j : PGet(sd, i) = PGet(sd, j)] ≤ ε2.

For security we require perfectly indistinguishable programmability: We demand
that for all i ∈ [L] and every distinguisher D (running in arbitrary time) we have∣∣∣∣ Pr[sd ←$ PGen : D(sd) ⇒ 1]

− Pr[q ←$ Q; sd ←$ PProg(i, q) : D(sd) ⇒ 1]

∣∣∣∣ = 0.

246 B. Auerbach et al.

6.1 Construction Based on Polynomial Evaluation

The PFG we construct here outputs (l-bit) primes from Q = Pl. While the
construction is similar to one by [9], their PFG would also output primes shorter
than l bits. Further, our analysis of probabilities is different, for being tailored
towards our application: the construction of ABO-LTPs.

Concretely, for a set of chosen parameters l, n, d, λ ∈ N we construct a
(2−(λ+1), 2−λ)-PFG for Q = Pl and L = 2n. The construction is based on a
family {Fsd} of d-wise independent hash functions and, roughly, works as fol-
lows (see Fig. 6). The PFG’s seed space Sd is equal to {Fsd}’s key space. For
sd ∈ Sd and i ∈ [2n], natural numbers are generated by evaluating Fsd at up to
d/2 distinct points. PGet(sd, i)’s output is the first prime found. Since numbers
of bit length l are tested for primality, the prime number theorem guarantees
that PGen will succeed in finding a prime on average after roughly l attempts.
Furthermore, if d is chosen large enough finding a prime in this way will succeed
except with some negligible error probability. Concretely, we instantiate {Fsd}
with polynomial evaluation of degree d over the field GF(2l−1). Programming
a prime q into a particular point i is done by sampling a sequence of d-many
values aj in the image of Fsd . Then—if existent—the first prime in this sequence
is replaced by q. By polynomial interpolation it is possible to find a seed sd such
that Fsd evaluated at the j’th point equals aj . The technical challenge is to prove
that if q was a uniformly distributed prime then resulting seed sd has the correct
distribution and, furthermore, with high probability satisfies q = PGet(sd, i).

Fig. 6. PFG based on polynomial evaluation

We now specify the construction in detail. We start by imposing necessary
restrictions on its parameters. Let l, n, d, λ ∈ N with d even and l ≥ 25 such that

n ≤ l − λ − log2(l) − 2 (3)
2l(λ + 1)/ log2(e) ≤ d < 2l−1−n (4)

where e is Euler’s number. The first inequality ensures the probability of two
primes sampled uniformly from Pl colliding is small, the second inequality makes
sure d on one hand is large enough that PGet finds a prime with high probability

Lossy Trapdoor Permutations with Improved Lossiness 247

and on the other hand small enough, that numbers smaller than d can be encoded
with few bits. Note that for l = O(λ) and n = l/2 Eq. (3) will typically be fulfilled
and results in d being of order O(λ2). The family of hash functions used in our
construction is defined as follows. For sd ∈ GF(2l−1)d let

Fsd : {0, 1}l−1 → �2l−1�; x �→
∑d−1

k=0 sdkxk.

Here x is interpreted as element of GF(2l−1). Note that the function fam-
ily (Fsd)sd∈Sd is a d-wise independent hash function [25]. Finally, we define
an algorithm FindC as follows. FindC receives as input a tuple (i, a1, . . . , ad),
where i ∈ �2n� and a1, . . . , ad ∈ �2l−1�. It then uses Lagrange interpolation
to find sd0, . . . , sdd−1 ∈ GF(2l−1) such that Fsd(#i‖#j) = aj for all j ∈ [d],
where sd := (sd0, . . . , sdd−1) (see Sect. 2.1 for the # notation). Here we assume
#j ∈ {0, 1}l−1−n, which is possible since by Eq. 4 we have j ≤ d < 2l−1−n.
FindC’s output is sd. Note that for every i ∈ �2n� the function implemented by
FindC(i, ·) is a bijection between �2l−1�d and Sd. The description of the PFG P
may be found in Fig. 6.

Note that in the definition we formally do not allow PGet to return elements
that are not in Q. However, P returns ⊥ if after d tests no prime has been found.
This issue could be solved by letting PGet return some fixed prime q ∈ Q in this
case. We obtain the following result (the proof of which is in the full version [1]).

Fig. 7. ABO from Phi-hiding assumption. C(e∗, ϕN) denotes the condition defined in
Sect. 2.3.

Theorem 1. Let l, n, d, λ ∈ N as above. Then P = (PGen, PGet, PProg) from
Fig. 6 is a (2−(λ+1), 2−λ)-PFG for (Pl, 2n) with seed space Sd = GF(2l−1)d.

7 ABO-LTP with Index-Independent Domain from
Unique-Divisor Phi-Hiding

We use a prime family generator (for instance the one from Sect. 6) to con-
struct an ABO-LTP with index-independent domain, which can be shown secure
under the unique-divisor Phi-hiding assumption. The construction resembles [16,

248 B. Auerbach et al.

Sect. 5.2] who build an adaptive trapdoor function. As a starting point we first
specify an ABO-LTP A having index-dependent domains. Using the transform
from Sect. 3, A can be made index-independent. Due to the result of Lemma 4
the transformed ABO-LTP has essentially the same lossiness factor as A.

Index-Dependent ABO-LTP from Unique-Divisor Phi-Hiding. Let
n, l ∈ N. Consider the ABO-LTP defined in Fig. 7. We obtain the following
result (the proof of which is in the full version [1]).

Lemma 7. Let n, l ∈ N and let P = (PGen, PGet, PProg) be a (ε1, ε2)-PFG
for (Pl, 2n). Consider A = (FGen, FEv, FInv) from Fig. 7. If the unique-divisor
(τ, ε)-Phi-hiding assumption holds for (k, Pl), A is a (1 − ε2)-correct, L-lossy,
(τ ′, 2(ε+ ε1)/(1− ε1))-indistinguishable ABO-LTP with index-dependent domain
X = �2k�, where L = 2l−1 and τ ′ ≈ τ . Further, A has branching set Br = [2n].

Index-Independent ABO-LTP from Unique-Divisor Phi-Hiding. Using
the technique from Sect. 3 it is possible to transform A into an index-independent
ABO-LTP Aii. Using the improved bound on the lossiness from Lemma 4 we
obtain the following.

Corollary 2. Let n, l, k ∈ N and A = (FGen, FEv, FInv) be the ABO defined in
Fig. 7. Further, for (N, sd) = id ∈ Id let πid the permutation

πid : �2k� → �2k�; x �→ (x − N + 1) mod N.

Let Aii be the conversion of A via Fig. 1. If the unique-divisor (τ, ε)-Phi-hiding
assumption holds for (k, Pl), then Aii is a (1 − 2ε2)-correct, L-lossy, (τ ′, 2(ε +
ε1)/(1 − ε1)))-indistinguishable index-independent ABO-LTP with domain �2k�
and branching set [2n], where L = 2l−1/(1 + 2−k/2) and τ ′ ≈ τ .

Acknowledgments. Benedikt Auerbach was supported in part by the NRW Research
Training Group SecHuman and by ERC Project ERCC (FP7/615074). Bertram Poet-
tering conducted part of the research at Ruhr University Bochum, supported by ERC
Project ERCC (FP7/615074). Eike Kiltz was supported in part by ERC Project ERCC
(FP7/615074) and by DFG SPP 1736 Big Data.

References

1. Auerbach, B., Kiltz, E., Poettering, B., Schoenen, S.: Lossy trapdoor permutations
with improved lossiness. Cryptology ePrint Archive, Report 2018/1183 (2018).
https://eprint.iacr.org/2018/1183

2. Bellare, M., et al.: Hedged public-key encryption: how to protect against bad ran-
domness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_14

3. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5_20

https://eprint.iacr.org/2018/1183
https://doi.org/10.1007/978-3-642-10366-7_14
https://doi.org/10.1007/978-3-540-85174-5_20

Lossy Trapdoor Permutations with Improved Lossiness 249

4. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 627–656. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_21

5. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9_1

6. Benhamouda, F., Herranz, J., Joye, M., Libert, B.: Efficient cryptosystems from
2k-th power residue symbols. J. Cryptology 30(2), 519–549 (2017)

7. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic
encryption, and efficient constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5_19

8. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
the auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 543–560. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9_31

9. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X_28

10. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7_17

11. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More construc-
tions of lossy and correlation-secure trapdoor functions. J. Cryptology 26(1), 39–74
(2013)

12. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

13. Hayashi, R., Okamoto, T., Tanaka, K.: An RSA family of trap-door permutations
with a common domain and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.)
PKC 2004. LNCS, vol. 2947, pp. 291–304. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24632-9_21

14. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_38

15. Joye, M., Libert, B.: Efficient cryptosystems from 2k-th power residue symbols.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
76–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_5

16. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-
ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
673–692. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-
5_34

17. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-
plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_16

https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-642-22792-9_31
https://doi.org/10.1007/978-3-642-22792-9_31
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-540-24632-9_21
https://doi.org/10.1007/978-3-540-24632-9_21
https://doi.org/10.1007/978-3-642-03356-8_38
https://doi.org/10.1007/978-3-642-38348-9_5
https://doi.org/10.1007/978-3-642-13190-5_34
https://doi.org/10.1007/978-3-642-13190-5_34
https://doi.org/10.1007/978-3-642-14623-7_16

250 B. Auerbach et al.

18. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental deterministic public-
key encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_37

19. Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor func-
tions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
296–311. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7_18

20. Nishimaki, R., Fujisaki, E., Tanaka, K.: Efficient non-interactive universally com-
posable string-commitment schemes. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec
2009. LNCS, vol. 5848, pp. 3–18. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04642-1_3

21. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press, May 2008

22. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J.
Comput. 40(6), 1803–1844 (2011). https://doi.org/10.1137/080733954

23. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38348-9_6

24. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00457-5_25

25. Shoup, V.: A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, Cambridge (2005)

26. Xie, X., Xue, R., Zhang, R.: Efficient threshold encryption from lossy trapdoor
functions. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 163–178.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_11

27. Yamakawa, T., Yamada, S., Hanaoka, G., Kunihiro, N.: Adversary-dependent lossy
trapdoor function from hardness of factoring semi-smooth RSA subgroup moduli.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp.
3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_1

https://doi.org/10.1007/978-3-642-29011-4_37
https://doi.org/10.1007/978-3-642-29011-4_37
https://doi.org/10.1007/978-3-642-13013-7_18
https://doi.org/10.1007/978-3-642-13013-7_18
https://doi.org/10.1007/978-3-642-04642-1_3
https://doi.org/10.1007/978-3-642-04642-1_3
https://doi.org/10.1137/080733954
https://doi.org/10.1007/978-3-642-38348-9_6
https://doi.org/10.1007/978-3-642-00457-5_25
https://doi.org/10.1007/978-3-642-25405-5_11
https://doi.org/10.1007/978-3-662-53008-5_1

Post-quantum EPID Signatures
from Symmetric Primitives

Dan Boneh, Saba Eskandarian(B), and Ben Fisch

Stanford University, Stanford, USA
{dabo,saba,bfisch}@cs.stanford.edu

Abstract. EPID signatures are used extensively in real-world systems
for hardware enclave attestation. As such, there is a strong interest in
making these schemes post-quantum secure. In this paper we initiate the
study of EPID signature schemes built only from symmetric primitives,
such as hash functions and PRFs. We present two constructions in the
random oracle model. The first is a scheme satisfying the EPID signature
syntax and security definitions needed for private hardware attestation
used in Intel’s SGX. The second achieves significantly shorter signatures
for many applications, including the use case of remote hardware attesta-
tion. While our EPID signatures for attestation are longer than standard
post-quantum signatures, they are short enough for applications where
the data being signed is large, such as analytics on large private data sets,
or streaming media to a trusted display. We evaluate several instantia-
tions of our schemes so that the costs and benefits of these constructions
are clear. Along the way we also give improvements to the zero-knowledge
Merkle inclusion proofs of Derler et al. (2017).

1 Introduction

Enhanced Privacy ID, or EPID, signatures allow members of a group to anony-
mously sign messages on behalf of the group, with the added property that
a group manager can revoke the credentials of a misbehaving or compromised
group member [15,36].

In recent years, EPID signatures have become an important privacy mech-
anism in real-world systems, most prominently in trusted hardware attestation
such as Intel’s SGX. Attestation is a process by which a hardware enclave run-
ning on a client device proves the authenticity of its execution environment to a
remote party. EPID lets the client device attest without revealing its identity to
the remote party. However, EPID signatures used today are not post-quantum
secure [15]. An adversary with a quantum computer could subvert the attestation
process and break a hardware enclave’s security in the worst possible way.

In light of the above, there is strong interest in developing post-quantum
secure EPID signatures. One way to do so is to construct an EPID signature
scheme using only symmetric primitives, which are believed to be post-quantum
secure. This is analogous to constructing a standard signature scheme from hash

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 251–271, 2019.
https://doi.org/10.1007/978-3-030-12612-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_13

252 D. Boneh et al.

functions [9,16,20,43,44] to obtain a signature scheme whose post-quantum secu-
rity is virtually assured.

Can we build efficient and secure EPID signatures from symmetric primi-
tives? Bellare et al. [6] give a generic construction of a group signature [21], a
related primitive, from a standard signature scheme, public-key encryption, and
a non-interactive zero-knowledge (NIZK) proof. In this generic construction, the
group manager adds a member to the group by signing that member’s public
key. The member can then sign messages anonymously by first using the private
key to sign the message, and then computing a NIZK proof of knowledge of both
this signature and the group manager’s signature on the corresponding public
key. This NIZK proof is the member’s group signature. With some work, their
framework can be adapted to support the EPID group signature definition of
Brickell and Li [15] and to only use symmetric primitives. The NIZK can be
built from the “MPC in the Head” technique of Ishai et al. [3,30,35] using ran-
dom oracles, and the standard signature scheme can also be built from one-way
functions and collision-resistant hashing [9,20,31,43]. Camenisch and Groth [17]
give such a scheme from one-way functions and NIZKs. However, without careful
optimization, this generic approach leads to very inefficient signatures due to the
need for NIZK proofs on complex circuits (the proof size and prover time of these
NIZKs is proportional to the number of multiplication gates in the arithmetic
circuit representing the statement).

1.1 Our Contributions

We construct an EPID signature scheme from symmetric primitives, and take a
significant step towards reducing the signature size.

Towards this goal, we build two signature schemes. Our first construction
greatly reduces the size of the NIZK statement in the signature by using PRFs
instead of signatures wherever possible. In particular, we are able to replace the
inner group member’s signature in the generic approach with a PRF evaluation.
Our construction does not treat the given primitives as a black-box and performs
best when instantiated with NIZK-friendly PRFs and CRHFs. In particular, we
evaluate the scheme using the LowMC cipher [2], also including a comparison to
AES to show the benefit of choosing the right instantiations for our primitives.

Next, we show how to significantly improve our EPID signature by adapting
it to the specific real-world use case where signature verification requires an inter-
action with the group manager to ensure that the signer has not been revoked.
We take advantage of this structure to dramatically reduce the signature size by
moving many heavy verification steps outside of the NIZK, without compromis-
ing anonymity or affecting security. This significantly shrinks the signature size
over the first construction.

Along the way, we develop a technique for proving membership in a Merkle
tree, without revealing the leaf location, using a third preimage resistant hash
function (Sect. 5.4). This also provides an improvement to the recent post-
quantum accumulators of Derler et al. [24].

Post-quantum EPID Signatures from Symmetric Primitives 253

Performance and Use Cases. In Sect. 5 we discuss options for instantiating
our schemes, and measure the sizes of the resulting signatures under different
security assumptions. For the circuit sizes needed inside NIZKs in our construc-
tion, ZKB++ [20] provides the most efficient proofs. We report sizes for both
the Random Oracle and Quantum Random Oracle models [11] (using the Fiat-
Shamir [27] and Unruh [48] transforms, respectively), and find that our second
signature scheme, designed for attestation, can support groups of over a million
members with 3.45 MB signatures at 128-bit post-quantum security. While these
signatures are not short, it is important to keep in mind that several megabytes of
traffic for attestation is quite acceptable for many applications of trusted hard-
ware, especially where the data transfer needs of the higher-level application
dwarf the size of the attestation.

One example is the case of analytics over large private data sets, an area
of heavy investment, both in terms of research and financial resources [29,51].
In this setting, nodes in a distributed network (or the server in a client-server
setting) provide a single remote attestation and then exchange a great deal of
data. As the quantity of data transferred exceeds millions of database records,
the size of the initial attestation ceases to present a major bottleneck.

The case of digital rights management (DRM), for which hardware enclaves
such as Intel SGX seem particularly well-suited [22], is another setting where
the size of our signatures are acceptable. Consider the common situation where
a content provider wishes to stream a movie (easily a few gigabytes in size) to
a subscriber while preventing redistribution or unauthorized viewing of copy-
righted content [50,52]. The few additional megabytes of an attestation do not
matter next to a film or television series several hundred times its size.

1.2 Additional Related Work

Trusted Hardware and Attestation. Hardware enclaves, particularly Intel’s
SGX [22], have recently been used for a variety of security applications [28,
45]. One of the primary cryptographic components of SGX is its use of direct
anonymous attestation, a primitive introduced by Brickell et al. [14]. The EPID
attestation mechanism currently in use by SGX, is due to Brickell et al. [15,36].

Group Signatures. Anonymous attestation and EPID signatures bear a great
deal of similarity to group signatures. Group signatures [21] allow members of
a group to anonymously produce signatures on behalf of the group, with the
added restriction that a group manager has the power to police the behavior of
members, e.g. by revoking their group credentials or stripping their anonymity.
The most frequently used definitions of group signatures are described by Bellare
et al. [6,7]. Subsequent work on group signatures has led to various schemes, for
example, those of Lysyanskaya and Camenisch [18,19], Boneh et al. [10,12], and
a scheme of Groth [34]. These constructions are not post-quantum secure.

Post-quantum Signatures and Proofs. Lattice-based cryptography is a pop-
ular candidate for post-quantum security. Lattice group signatures were intro-
duced by Gordon et al. [33] and extended in several subsequent works [39–42].

254 D. Boneh et al.

The resulting group signatures are shorter than the ones developed here, but
rely on qualitatively stronger post-quantum assumptions.

Another set of post-quantum tools come from the “MPC in the Head” tech-
nique [35] for zero-knowledge proofs. This idea has been extended by ZKBoo [30],
ZKB++ [20], and Ligero [3]. In particular, Chase et al. use ZKB++ to construt
two post-quantum signature schemes Fish and Picnic [20]. The recent develop-
ment of zk-STARKS [8] opens another avenue to post-quantum zero-knowledge
proofs. In concurrent work, El Bansarkhani and Misoczki [4] describe a stateful
group signature scheme based on hash functions. Their work features small sig-
nature sizes but large keys. Derler et al. [24] and Katz et al. [37] also concurrently
study post-quantum group and ring signatures from symmetric primitives.

2 Preliminaries

Notation. Let x ← F (y) denote the assignment of the output of F (y) to x,
and let x ←R S denote assignment to x of a uniformly random element sampled
from set S. We use λ to refer to a security parameter and sometimes omit it if
its presence is implicit. The notation [k] represents the set of integers 1, 2, ..., k,
and ∅ denotes the empty set. We use AH to denote that A has oracle access to
some function H. A function negl(x) is negligible if for all c > 0, there is an x0

such that for any x > x0, negl(x) < 1
xc . We omit x if the parameter is implicit.

We use f(x) ≈ g(x) to mean that for two functions f, g, |f(x) − g(x)| < negl(x).
PPT stands for probabilistic polynomial time. We use the notation FuncA,B〈a, b〉
to refer to a protocol Func between parties A and B with inputs a and b, respec-
tively. Finally, we allow algorithms to output ⊥ to indicate failure.

Proof Systems. We briefly review the definitions of proof systems that we will
need in later sections. The main notion we will use is that of a non-interactive
zero knowledge proof of knowledge in the random oracle model. We use the
definitions of [26], which modify prior commom reference string-based definitions
of non-interactive zero-knowledge for use in the Random Oracle Model.

Definition 1 (Non-interactive Proof System). A non-interactive proof sys-
tem Π for a relation R consists of prover algorithm that on input x,w outputs a
proof π and a verifier algorithm that on input x, π outputs a bit b. We say that
(P, V) is correct and sound if it satisfies the following properties:

– (x,w) ∈ R → V (x, P (x,w)) = 1
– (x,w) /∈ R → Pr[V (x, P ∗(x,w)) = 1] < negl for any (potentially cheating)

prover P ∗.

For convenience and clarity of notation, we use P (public(·), private(·), R) to
indicate that the public parts of the input to a prover P for relation R correspond
to the statement x and that the private parts correspond to the witness w.

The zero-knowledge property [32] informally requires that a proof reveals
nothing about (x,w) except that (x,w) ∈ R. Formally, we model this property

Post-quantum EPID Signatures from Symmetric Primitives 255

by describing a simulator that can provide a legitimate proof given only x and
not w [5].

Extractability, informally, is a strengthening of the soundness property that
requires any acceptable proof to have an extractor algorithm that can efficiently
recover w with high probability given the ability to interact with the prover.
We refer to Bellare and Goldreich [5] for a full definition. Simulation-sound
extractability [34,46,47] further strengthens the extractability requirement of
proofs of knowledge to enable extracting a witness even after seeing many sim-
ulated proofs.

EPID Signatures. We construct our EPID signature to match the syntax and
security requirements as defined by Brickel and Li [15]. In this section we state
the EPID syntax and sketch security requirements. Full definitions and security
games appear in the full version of this paper. First, anonymity must ensure that
the group manager colluding with any number of group members cannot uncover
the identity of the signer. In particular, we do not want the group manager to
have a tracing key that lets it compromise a group member’s identity from a
signature. Nevertheles, we will later briefly explain how to extend our scheme to
achieve traceability, if desired.

Second, we want a revocation property where a group manager can revoke a
user’s ability to sign by either:

– adding a revoked user’s leaked signing key to a revocation list KEY-RL, or
– adding a revoked user’s EPID signature to a revocation list SIG-RL.

A user is revoked if its key is included in the list KEY-RL, or if any of its signatures
are included in the list SIG-RL.

With this setup, we define the syntax and security properties for an EPID
signature scheme as follows.

Definition 2 (EPID Signature). An EPID signature scheme G involving a
group manager M and n group members, parties P1 to Pn, consists of algorithms
Init, Join, GPSign, GPVerify, RevokeKey and RevokeSig:

– (gsk, gpk) ← Init(1λ): This algorithm takes as input a security parameter 1λ

and outputs a key pair (gsk, gpk).
– 〈certi, (ski, certi)〉 ← JoinM,Pi

〈(gsk, gpk), gpk〉: This is a protocol between the
group manager and a group member Pi where each party has its keys as input,
and both parties get party Pi’s certificate as output. Pi also gets its secret key
ski as an output.

– ⊥/sig ← GPSign(gpk, ski, certi,m,SIG-RL): This algorithm takes as input the
public key, a signature revocation list SIG-RL, and party Pi’s secret key and
certificate. The output is an EPID signature sig.

– 1/0 ← GPVerify(gpk,m,KEY-RL,SIG-RL, sig): This algorithm verifies an
EPID signature sig on a message m given the group public key and
key/signature revocation lists KEY-RL, SIG-RL. It outputs 1 to accept the sig-
nature and 0 to reject it.

256 D. Boneh et al.

– KEY-RL ← RevokeKey(gpk,KEY-RL, ski): This algorithm adds a secret key ski

to a key revocation list, so signatures created with this key will no longer be
accepted.

– SIG-RL ← RevokeSig(gpk,KEY-RL,SIG-RL,m, sig): This algorithm adds a sig-
nature sig to a signature revocation list, so signatures created with the same
key as sig will no longer be accepted.

The algorithms must satisfy Correctness, Anonymity, and Unforgeability.
For correctness, we require that if a group member has successfully completed

the Join procedure and neither its key nor any of its signatures have been revoked,
then that group member’s signatures should successfully verify.

We define anonymity via the Anonymity game. Informally, the property of
being Anonymous requires that signatures in G hide the identity of the signer
against any coalition of group members (including the group manager) except the
signer herself. The definition of anonymity also implies notions of unlinkability
between a signer and her signatures. The game allows the adversary to create
users, sign messages, and corrupt users of its choosing before attempting to
distinguish which of two uncorrupted users produced a signature on a challenge
message of the adversary’s choice.

Finally, we define unforgeability. Our unforgeability game consists of an
adversary who can add arbitrary parties to a group and corrupt arbitrarily many
members of a group. Security holds if this adversary cannot forge the signature
of an uncorrupted party on a message of its own choosing.

3 Post-quantum EPID Signatures

In this section we describe and prove the security of our first post-quantum EPID
signature scheme. Our construction uses a standard signature scheme where each
group member has its own key pair and a certificate from the group manager.
Instead of signature keys, however, we construct our scheme so that each group
member has a unique PRF secret key that will be used to issue EPID signatures.
As we will see, this leads to significant savings over the general framework of
Bellare et al. [6]. We still need a signature scheme for the group manager to
produce certificates, but the NIZK proof is done over a circuit that verifies a
single signature (the group manager’s) along with a few evaluations of the PRF.
An overview of the construction is as follows. Each member generates its own
secret key sk for a PRF f . During the join procedure it obtains a challenge c
from the group manager, sends t = f(sk, c) to the manager, and obtains back a
signature σ on t. To sign a message, the member first reveals t′ = (f(sk, r), r)
for random r and then a signature of knowledge, where the proof witness is sk
consistent with t′ as well as σ, i.e. a signature on f(sk, c∗) for some c∗. Including
t′ in the clear is used for signature revocation. Note that signatures need to be
verified relative to the same signature revocation lists under which they were
signed.

Collision Resistant PRF. We state and prove security of our scheme using
a function f : K × X → Y that is both a secure PRF and a collision resistant

Post-quantum EPID Signatures from Symmetric Primitives 257

function. In fact, it suffices that f be collision-resistant on the keyspace, meaning
that for a target input x ∈ X chosen by the adversary, it should be hard to find
k0
= k1 ∈ K such that f(k0, x) = f(k1, x). We explain how to construct an
MPC-friendly function with this property in Sect. 5.

Construction 1 (EPID Signature). Our EPID signature scheme G = (Init, Join,
GPSign, GPVerify, RevokeKey, RevokeSig) with security parameter λ uses a signa-
ture scheme S = (Keygen, Sign, Verify), a proof system Π = (P, V), and a PRF
f that also serves as a collision-resistant hash function.

– Init(1λ): Group manager M runs Keygen(1λ) to get (gpk, gsk) and outputs
this tuple (gpk is published and gsk kept secret).

– JoinM,Pi
〈(gsk, gpk), gpk〉:

– Group manager M sends challenge ci to member Pi.
– Pi chooses ski ←R {0, 1}λ and sends tjoini = f(ski, ci) back to M.
– M produces signature σi = Sign(gsk, (tjoini , ci)), and constructs certi =

(tjoini , ci, σi), sending a copy to Pi. If the signature scheme is stateful, then
algorithm Join must maintain a counter that is incremented for every user
who joins the group.

– The group member’s private key is ski and both parties get copies of certi.
– GPSign(gpk, ski, certi, m, SIG-RL): Compute the following and output sig:

– r ←R {0, 1}λ\ci

– t ← (f(ski, r), r)
– π ← P

(
public(λ,m, gpk, t,SIG-RL, KEY-RL), private(ski, certi), R1

)

– sig ← (t, π).
We define the relation R1 in the proof of knowledge π for (sk∗

i , cert
∗
i) to be

true when the following statements hold:
– t = (f(sk∗

i , r), r)
– r
= c∗

i

– Verify(gpk, (tjoin∗
i , c∗

i), σ
∗
i) = 1

– tjoin∗
i = f(sk∗

i , c
∗
i)

– for each sigj ∈ SIG-RL, tsigj
= (f(sk∗
i , rsigj), rsigj)

– GPVerify(gpk, m, KEY-RL, SIG-RL, sig):
– Verify proof π: check V ((λ,m, gpk, t,SIG-RL, KEY-RL), π) = 1.
– For each skj ∈ KEY-RL, check that t
= (f(skj , r), r).
– Check that sig /∈ SIG-RL.
– Output 1 if all of the above checks return 1; otherwise, output 0.

– RevokeKey(gpk, KEY-RL, ski): Return KEY-RL ∪ {ski}.
– RevokeSig(gpk, KEY-RL, SIG-RL, m, sig): return SIG-RL ∪ {sig} if

GPVerify(gpk, m, KEY-RL, SIG-RL, sig) = 1. Otherwise, return SIG-RL.

Revocation. Although the difference between the two forms of revocation does
not affect our scheme’s security, the effect of revocation differs in practice depend-
ing on whether a group member is revoked by key or by signature. A revocation
by key renders all signatures, past or future, invalid for that user, whereas a

258 D. Boneh et al.

revocation by signature only applies to future signatures because past signa-
tures need to be verified with respect to the SIG-RL in place at the time of
signing. This does not matter for the purposes of the security game because the
attempted forgery is always the last signature produced in the game. For the
same reason, the decision to include the check that sig /∈ SIG-RL during GPVerify
does not affect security for the purpose of the proof and can be omitted. We
include it only to better capture behavior that may be expected of revocation
in practice.

Traceable Signatures. Our approach can also be used to achieve traceability.
Traceability requires that the group manager have the power to learn the iden-
tity of a signer. We presented our scheme without a tracing property in order
to guarantee a stronger anonymity property against the group manager, but a
similar approach could be used to achieve traceability. The group manager could
give each group member a signed secret token sk′′

i , and every signature would
include the token t′ = (f(sk′′

i , r′), r′), for a newly picked random r′, along with
a proof of knowledge of a signature on sk′′

i . Now the group manager can trace a
signature by trying to reconstruct t′ with the value of sk′′

i for each signer, but
anonymity will still hold against any other group member.

Camenisch and Groth [17] give a traceable group signature scheme from one-
way functions and NIZKs. Although their scheme can be instantiated under
the same assumptions as ours, they (loosely speaking) include a commitment
to a credential for each group member in their public key and give a proof of
knowledge that a signature corresponds to one of those credentials. By avoiding
this cost, our scheme shrinks both the public key size and signature size by a
factor O(N). Our public key can also be published at group initialization time
before any members have joined the group.

Security Theorems. We now state our various theorems regarding the security
of our scheme and give a brief intuition to justify them. Proofs are deferred to
the full version of this paper. Correctness follows almost immediately from the
construction with the caveat that we must ensure that the revocation checks do
not accidentally cause a signature from a legitimate key to be rejected.

Theorem 3. Assuming the correctness of signature scheme S and proof system
Π and the pseudorandomness of f , G is a correct EPID signature scheme.

Anonymity follows from the zero-knowledge and pseudorandomness proper-
ties of the primitives used in our construction. Intuitively, the scheme achieves
anonymity against the group manager by having each group member generate
its own PRF secret key sk, and from all other parties because the signatures are
zero-knowledge signatures of knowledge.

Theorem 4. Assuming that Π is a zero-knowledge proof system and that f is
a PRF, G is an anonymous EPID signature scheme.

The high level intuition for unforgeability is as follows. If the adversary A
has not obtained a signature from the group manager on t = f(sk, c) then it

Post-quantum EPID Signatures from Symmetric Primitives 259

cannot produce a PoK of valid signature on t by unforgeability of the group
manager’s signature scheme and soundness of the PoK. Second, if A does not
know sk for some t = f(sk, c) that has been signed, then even though it sees
many f(sk, r), r inside signatures it cannot produce f(sk, c∗) on a fresh c∗ by
the security of the PRF. (Note that even if it were able to do this it has to
actually learn sk to forge a signature as otherwise it breaks PoK extractability).
Finally, collision-resistance of the PRF ensures that A who has a signature on
f(sk, c) for revoked sk cannot find sk′
= sk and r such that f(sk′, c) = t and
f(sk′, r)
= f(sk, r).

Theorem 5. Assuming that Π is a zero knowledge proof of knowledge proof sys-
tem with simulation-sound extractability, S is an unforgeable signature scheme,
that f is a PRF, and that f is additionally a collision-resistant hash function,
G is an unforgeable EPID signature scheme.

4 Practical Post-quantum Signatures for Attestation

Attestation schemes (such as that used in Intel SGX [22,36]) involve interac-
tion with an attestation service on every attestation, among other reasons to
obtain an updated revocation list. In the case of SGX, this attestation service is
also the group manager. In this section, we present a significantly smaller post-
quantum EPID-like signature scheme appropriate for this setting where frequent
interaction with the group manager is allowed.

The main bottleneck for signature size in our first construction was including
verification of the group manager’s signature on a group member’s certificate
inside the PoK (i.e. this contributed the most to arithmetic complexity). We
remove this signature in our new scheme by making each group member’s cer-
tificate a leaf in a Merkle tree. The group manager signs only the root, providing
each group member an inclusion proof during Join. The signature on the root
can be public as it leaks nothing about the identity of a member. Signers now
only need to include the Merkle inclusion proof inside the proof of knowledge
instead of a hash-based signature. The verification of an inclusion proof requires
a much smaller circuit.

This modification has several implications for security. As a new Merkle tree
root will need to be published each time a group member joins, this reduces
the size of anonymity sets. In an extreme case the group manager could issue
a sequence of Merkle roots where each tree only included a valid credential for
one group member, uniquely identifying the member’s signatures.

Fortunately, the continuing contact between group members and the group
manager enforced by attestation in practice enable effective mitigations for these
concerns. Group members can periodically “re-join” the group to update the
Merkle root relative to which they provide membership proofs, thereby increasing
the size of their anonymity sets. In practice, we can ensure that subsequent
Merkle roots issued by the group manager only ever add new credentials to the
group and never omit previous ones by using a Merkle consistency proof such

260 D. Boneh et al.

as the one proposed by the Certificate Transparency standard [38] and proven
secure by Dowling et al. [25]. We model the Merkle trees used in our proofs
as accumulators with zero-knowledge membership proofs and discuss how we
instantiate this primitive with an improved construction in Sect. 5.

4.1 Definitions

In this section we define accumulators and EPID-like signatures for attestation.
We begin with a special case of the formalization of accumulators by [23].

Definition 6 (Accumulator). A static accumulator is a tuple of efficient algo-
rithms (AGen, AEval, AWitCreate, AVerify, AProveCon, ACheckCon) which are
defined as follows:

– AGen(1λ): This algorithm takes a security parameter λ and returns a public
key pk∧.

– AEval(pk∧,X): This deterministic algorithm takes a key pk∧ and a set X to
be accumulated and returns an accumulator ΛX .

– AWitCreate(pk∧, ΛX ,X , xi): This algorithm takes a key pk∧, an accumulator
ΛX , the set X , and a value xi. It returns ⊥ if xi /∈ X and a witness witxi

for
xi otherwise.

– AVerify(pk∧, ΛX , witxi
, xi): This algorithm takes a public key pk∧, an accu-

mulator ΛX , a witness witxi
, and a value xi. It returns 1 if witxi

is a witness
for xi ∈ X and 0 otherwise.

We require accumulators to be correct, meaning that AVerify will accept an
honestly generated witness for xi ∈ X . We also require a soundness property
dubbed collision-freeness, formally defined below.

Definition 7 (Collision Freeness). An accumulator is collision free if for all
PPT adversaries A, we have that

Pr[AVerify(pk∧, Λ∗,wit∗xi
, x∗

i) = 1 ∧ x∗
i /∈ X ∗|

pk∧ ← AGen(1λ, Λ∗), Λ∗ ← Evalr∗(pk∧, X ∗), (wit∗xi
, x∗

i , X ∗) ← A(pk∧, Λ∗)] ≤ negl(λ)

The setting of EPID signatures for attestation largely leaves the security def-
initions of Sect. 3 unaffected up to changes in syntax, so we present the updated
syntax in the full version and omit statements of the security definitions. The
only notable changes are that (1) in both security games the adversary can now
choose to have a group member run the new GARejoin at any time it chooses, and
(2) signatures are only indistinguishable for two signatures produced relative to
the same accumulator.

4.2 EPID Signature Construction II

The full construction of the modified EPID signature scheme appears below.
Structurally similar to the construction in Sect. 3, the main changes involve the
introduction of a post-quantum accumulator and the resulting restructuring of
what needs to be proven inside/outside the proof of knowledge π, as described
informally at the beginning of this section.

Post-quantum EPID Signatures from Symmetric Primitives 261

Construction 2 (EPID Signature for Attestation). Our EPID signature scheme
for attestation GA = (GAInit, GAJoin, GARejoin, GASign, GAVerify, GARe-
vokeKey, GARevokeSig) with security parameter λ uses a signature scheme
S = (Keygen, Sign, Verify), a proof system Π = (P, V), a PRF f that also
serves as a collision-resistant hash function, and an accumulator Ac =
(AGen, AEval, AWitCreate, AVerify).

– GAInit(1λ): Group manager M runs Keygen(1λ) to get (pkgp, skgp) and runs
AGEN(1λ), to get pk∧. It outputs public key gpk = (pkgp, pk∧) and secret key
gsk = skgp.

– GAJoinM,Pi
〈(gsk, gpk,X), gpk〉:

– Group manager M sends challenge ci to member Pi.
– Pi picks ski ←R {0, 1}λ and sends tjoini = f(ski, ci) back to M.
– M defines xi = (tjoini , ci), sets X = X ∪ xi, sets Λ = AEval(pk∧,X),

and produces signature σ∧ = Sign(gsk, Λ). Next, M creates witxi
=

AWitCreate(pk∧, Λ,X , xi) and constructs certi = (xi,witxi
), sending a

copy to Pi along with Λ and σ∧.
– The group member’s private key is ski and both parties get copies of certi,

Λ, and σ∧.
– GARejoinM,Pi

〈(gsk, gpk,X , Λ, σ∧), (gpk, certi)〉:
– Pi sends certi to M.
– First, M verifies the signature in certi, aborting in case of failure. Then

it creates a new witxi
= AWitCreate(pk∧, Λ,X , xi) and constructs the

updated certi = (xi,witxi
), sending a copy to Pi along with Λ and σ∧.

– Pi updates its values of certi, Λ, and σ∧.
– GASign(gpk, ski, certi,m,SIG-RL, Λ, σ∧) : Compute the following and out-

put sig:
– Verify(pkgp, σ∧, Λ) (abort if it outputs 0)
– r ←R {0, 1}λ\ci

– t = (f(ski, r), r)
– π = P (public(λ,m, gpk, t,SIG-RL, KEY-RL, Λ), private(ski, certi), R2)
– sig = (t, π, Λ, σ∧).

We define R2 as a relation in the proof of knowledge of (sk∗
i , cert

∗
i) such that

the following statements hold:
– t = (f(sk∗

i , r), r)
– r
= c∗

i

– AVerify(pk∧, Λ,wit∗xi
, (tjoin∗

i , c∗
i))

– tjoin∗
i = f(sk∗

i , c
∗
i)

– for each sigj ∈ SIG-RL, tsigj
= (f(sk∗
i , rsigj), rsigj)

– GAVerify(gpk, m, KEY-RL, SIG-RL, sig):
– Verify signature σ∧: check Verify(pkgp, σ∧, Λ) = 1
– Verify proof π: check V ((λ,m, gpk, t,SIG-RL, KEY-RL, Λ), π) = 1.
– For each skj ∈ KEY-RL, check that t
= (f(skj , r), r).
– Check that sig /∈ SIG-RL.
– If all of the above checks return 1, output 1. Else, output 0.

– GARevokeKey(gpk, KEY-RL, ski): Return KEY-RL ∪ ski.

262 D. Boneh et al.

– GARevokeSig(gpk, KEY-RL, SIG-RL, m, sig): If GAVerify(gpk, m, KEY-RL,
SIG-RL, sig) = 1, return SIG-RL ∪ sig. Otherwise, return SIG-RL.

Security Theorems. Correctness and anonymity proofs for GA are almost
completely unchanged from our standard EPID signature scheme, so we only
state the corresponding theorems. The only proof that needs some tweaking is
that of unforgeability, which we sketch in the full version of this paper.

Theorem 8. Assuming the correctness of signature scheme S, proof system Π,
and accumulator Ac, as well as the pseudorandomness of f , GA is a correct
EPID signature scheme.

Theorem 9. Assuming that Π is a zero-knowledge proof system and that f is
a PRF, GA is an anonymous EPID signature scheme.

Theorem 10. Assuming that Π is a proof system for zero-knowledge proofs
of knowledge with simulation-sound extractability, S is an unforgeable signature
scheme, that f is a PRF, that f is additionally a collision-resistant hash function,
and that Ac is a collision-free (sound) accumulator, GA is an unforgeable EPID
signature scheme.

5 Instantiation of Protocols

We have now described and proven the security of our constructions, but the
post-quantum security of each construction relies on the existence of post-
quantum secure instantiations of the various primitives required. In particular
we require a PRF that is also a collision-resistant hash function, a signature
scheme, zero knowledge proofs of knowledge (ZKPoKs), and an accumulator. In
this section we describe options for instantiating each primitive under different
security assumptions about the underlying ciphers used and report the signature
sizes of our instantiated schemes in both the Random Oracle (RO) and Quantum
Random Oracle (QRO) models [11].

5.1 Zero Knowledge Proofs of Knowledge

In principle, standard symmetric primitives (AES, SHA) suffice for post-
quantum security so long as we double our security parameters. However, our
schemes uses these primitives in a non-black box manner by running them inside
of a ZKPoK. In particular, the following ZKPoKs contribute significantly to sig-
nature sizes:

1. ZKPoK of a PRF key k such that f(k, r) = t, for a PRF that is collision-
resistant on its key space.

2. ZKPoK of a signature σ on a message m such that Verify(m,σ) = 1 for a
post-quantum signature scheme S = (Keygen, Sign, Verify).

3. ZKPoK of membership of element xi in accumulator Λ for set X .

Post-quantum EPID Signatures from Symmetric Primitives 263

We restrict our choice of ZKPoK proof system to those systems which rely
only on symmetric primitives. This includes works following the “MPC in the
Head” approach of Ishai et al. [35] – ZKBoo [30], ZKB++ [20], and Ligero [3] –
as well as zk-STARKs [8]. Although Ligero and zk-STARKs offer proofs asymp-
totically sublinear in the size of the circuit to be proven, a preliminary analy-
sis suggested that, for our relatively small proof circuits, ZKB++ provides the
smallest signature sizes in practice without requiring heavy computing costs for
the signer. Moreover, ZKB++ has proofs of security in both the Random Ora-
cle and Quantum Random Oracle models, whereas Ligero and zk-STARKs only
have proofs in the classical RO model. As such, we choose to instantiate our
signatures and measure signature size using ZKB++ as our underlying ZKPoK.

In ZKB++ [20], the underlying statement to be proven is represented as an
arithmetic circuit over GF(2), and the proof size is proportional to the multiplica-
tive complexity (i.e., number of AND gates) in the circuit. The most important
practical consideration in signature schemes is signature size; therefore our main
criterion in instantiating the PRF and outer signature scheme is to minimize
their multiplicative complexity over GF(2).

5.2 PRF and Collision-Resistant Hash Function

Recently the ciphers LowMC [2] and MiMC [1] have been proposed as alter-
natives to AES that have significantly lower multiplicative complexity as arith-
metic circuits over finite fields.1 Although relatively new and less extensively
studied, these ciphers were shown to resist statistical cryptanalytic attacks, sim-
ilar to other state-of-the-art designs. A number of works have already proposed
using LowMC as the best candidate to-date for instantiating ciphers inside
ZKB++-style proofs [20,24]. The most recent public version of the LowMC
cipher with parameters set for 128-bit post-quantum security (256-bit key, 256-
bit block size) involves only 1374 AND gates, a significant improvement over the
7616 AND gates in AES-256 [2].

Derler et al. [24] also suggest using the LowMC round function in the sponge
framework (as described in [1]) to construct a collision-resistant hash function
with low multiplicative complexity. However, since only a collision-resistant com-
pression function on a fixed message length is needed (rather than full-blown
indifferentiability from a random oracle), we propose applying the much sim-
pler Davies-Meyer transformation to the LowMC cipher. Collision resistance of
Davies-Meyer is proved in the ideal cipher model [13], which is only marginally
stronger than the security assumption underlying the sponge transformation.
Given an ideal cipher E(k, x) on equal sized key and message space, the Davies-
Meyer compression function is H(m1||m2) = E(m1,m2) ⊕ m2. For a collision-
resistant PRF we would use F (k, x) = E(k, x) ⊕ x; as long as E is a PRF then
F is also a PRF. Note that the multiplicative complexity of F is the same as E.

1 LowMC optimizes multiplicative complexity over GF(2) while MiMC optimizes com-
plexity over larger finite fields. In ZKB++ the underlying circuit is represented in
GF(2), which is why we prefer LowMC.

264 D. Boneh et al.

To obtain a PRF that is collision-resistant only on its keyspace we can rely on a
slightly weaker assumption than the ideal cipher model. The ideal cipher model
assumes that E with any key is indistinguishable from a random permutation,
whereas we only need to assume there is an explicit fixed key kfix on which
E(kfix, ·) is indistinguishable from a random permutation. Then we can define
Π(y) = E(kfix, y), and define F ′(k, x) = Π(E(k, x)) ⊕ E(k, x). (The inner eval-
uation of E(k, x) ensures the PRF property while Π(y) ⊕ y is collision resistant
as a special case of Davies-Meyer).

5.3 Post-quantum Signature Scheme

Choices for post-quantum signatures that do not rely on stronger lattice
assumptions include Merkle signatures [43], Goldreich’s stateless signatures [31],
SPHINCS signatures [9], or the Fish signatures of Chase et al. [20]. The recent
literature on post-quantum signatures has focused on optimizing signature size.
When using signatures outside of proofs (in our construction of EPID signatures
for attestation) we propose using SPHINCS, which has the smallest signature
size. However, since our main EPID signature construction involves verifying
the group manager’s post-quantum signature inside a ZKPoK, there we care
about optimizing the arithmetic multiplicative complexity of signature verifica-
tion rather than the signature size.

We examine two options for instantiating the group manager’s signature
scheme for signatures used inside a ZKPoK: one using stateful Merkle signatures,
and other using Goldreich’s stateless signatures.

Stateful Merkle Signatures. The signer runs a signature setup that generates
a large number of one-time signature (OTS) keypairs. We would use Lamport
signatures from one-way functions (instantiated with LowMC) for the OTS. The
Lamport signature private key consists of 256 pairs of pseudorandom 256-bit
strings the public key consists of the 256 pairs of outputs generated by applying
the one-way function to each private key string. The signer finalizes the setup by
computing a Merkle tree (using a 2-to-1 collision resistant compression function)
over the OTS public keys at the leaves of the tree and publishing the root as the
public verification key. Signing a message involves singing the message with one
of the leaf OTS keys and proving membership of this OTS key in the Merkle
tree. The signer needs to maintain state to ensure that no OTS key is used more
than once. The stateful requirement is not prohibitive in the setting of managing
a group of trusted hardware platforms. The preprocessing of a tree of up to 230

members would take under a day on modern commodity hardware and would
require the server to use only several GB of storage.

Stateless Goldreich Signatures. Instead of maintaining state in the Merkle signa-
ture scheme above, the signer could choose an OTS key at random. This requires
squaring the size of the tree to make collisions unlikely. For a group of 230 mem-
bers storing a tree of size 260 keys would be prohibitively expensive. However,
Godlreich’s scheme provides a way to generate this tree pseudorandomly from a

Post-quantum EPID Signatures from Symmetric Primitives 265

small seed. In this scheme, the signer pseudorandomly generates an OTS keypair
for each node of the tree, which can be done by evaluating a PRF on the index
of the tree node. The OTS public key at the root of the tree is the overall public
key. The OTS key pair on each node of the tree is used to sign the hash of the
public keys on each of its two child nodes. To sign a message a random leaf is
selected and the signature includes the OTS signatures along the path from this
leaf to the root, where each signature signs either a child public key or the actual
message at the leaf.

5.4 Reducing Circuit Size for Membership Proofs

As mentioned in Sect. 4, we will use Merkle trees to instantiate our accumulators.
A recent work of Derler et al. [24] points out, however, that the circuit used to
verify standard Merkle inclusion proofs differs based on the path from the Merkle
root to the leaf xi. The dependence arises based on whether the hash at depth
j of the tree becomes the left or right input of the hash at depth j − 1. This
dependence of the AVerify circuit on i must be removed in order to generically
create a zero-knowledge inclusion proof with some zero-knowledge proof system.
They suggest a modification to the standard inclusion proof that allows the same
circuit to verify inclusion regardless of the index i whose inclusion is proven. The
idea is as follows: suppose xi resides in a subtree rooted at internal node a and
that a has sibling and parent nodes b and c, respectively. At each level of the
Merkle tree, instead of simply calculating h(a, b) and only comparing the result
to the root, they evaluate the expression c = h(a, b) ∨ c = h(b, a) and reject
the inclusion proof if it is not satisfied. This allows the construction of a circuit
AVerify’ with a fixed ordering of inputs to each hash function, since as long as
one ordering of inputs matches the node at the next level of the tree, correctness
will hold. The cost of this transformation is an extra hash evaluation, an equality
check, and a logical OR for each level of the tree.

We propose a solution that eliminates the need for equality checks at each
level of the tree and replaces the OR with an XOR, allowing smaller and more
efficient zero-knowledge membership proofs. Our idea is to replace the hash
function h already used in computing the merkle root with a modified function
h′(x, y) = h(x, y) ⊕ h(y, x). Using h′ in place of h proves that the input xi is a
dth preimage of the merkle root for a tree of depth d without any dependence
on the position i of xi among the tree’s leaves. Of course, h′ is trivially neither
collision-resistant nor second preimage resistant, as a swapping of the inputs
x and y results in the same output. Below we prove that h′ provides a third
preimage resistance property and helps build the inclusion proofs we desire.

Definition 11 (Third Preimage Resistance). We say a hash function H
defined over (M, T) is third preimage resistant if given a random m = a||b ∈ M
(with |a| = |b|) and a different m′ = b||a ∈ M such that H(m) = H(m′), it is
difficult to find an m′′ ∈ M such that H(m′′) = H(m) = H(m′).

266 D. Boneh et al.

Lemma 12. Assuming the hash function h : M × M → M is a random func-
tion, the hash function h′(x, y) = h(x, y)⊕h(y, x) for x, y ∈ M is third preimage
resistant, provided x
= y.

Proof. h′(x, y) admits a trivial collision h′(y, x). We argue it is hard to find
any other collision unless x = y (since h′(x, x) = 0 for all x). To find a
third preimage of h′(x, y) an adversary must produce w, z such that either
h′(w, z) = h′(x, y) and either w
= x or z
= y. Since h is a random function
and (x, y), (y, x), (w, z), (z, w) are all distinct tuples, h(x, y), h(y, x), h(w, z),
and h(z, w) will all be independently random strings. The probability that
h(x, y)⊕h(y, x) = h(w, z)⊕h(z, w) is therefore negligible in the length |x|+ |y|.
Therefore no efficient adversary can find a third preimage for h′. �

In order to replace h with h′ in our merkle tree construction and retain
security for the circuit AVerify’, we only need to show that we will have no leaves
x||y in the accumulator such that x = y. Fortunately, since the elements in the
accumulator for our particular case are challenge/response pairs (f(ski, ci), ci)
that serve as group member credentials (where f is collision-resistant and a
PRF), the probability that x = y is negligible in our setting.

Practically, our new circuit AVerify’ reduces the number of equality checks
inside a ZKPoK from 2 log2(N) (where N is the group size) to 1. Additionally,
log2(N) OR gates are replaced with XORs which do not increase proof size.

5.5 Signature Sizes

As discussed above, we instantiate our signatures using LowMC, Merkle signa-
tures (inside the ZKPoK), SPHINCS signatures (outside the ZKPoK), ZKB++,
and Merkle tree accumulators with our modified membership proof circuit.

Figure 1 shows the sizes for our modified EPID signatures for various group
sizes under (1) the assumption that LowMC is and ideal cipher and (2) the
assumption that LowMC with a public fixed key is a random permutation.
Figure 2 presents the same information, but uses the Unruh transform [48]
instead of the Fiat-Shamir transform [27] to make the ZKB++ proof nonin-
teractive. The Fiat-Shamir transform is proven secure in the Random Oracle
model but only sometimes retains security in the Quantom Random Oracle
model [11,49]. As visible from the figures, groups of size up to 220 could use post-
quantum signatures of size 6.74 MB (3.45 MB in RO model) under our scheme,
a sufficiently small size for attestation in applications with heavy data transfer
requirements. For comparison, the same signatures instantiated with AES-256
would require 33.8 MB (16.9 MB in RO model), meaning the choice of LowMC
enables a 5× improvement in signature size.

For comparison, our signature sizes are smaller than the recent ring signa-
tures of Derler et al. [24], which require at least 10.4 MB (5.26 MB in RO Model)
for signatures in a ring of 220 members2, despite providing a more elaborate
2 This size represents an optimized version of the ring signatures instantiated assuming

LowMC is an ideal cipher. The original Derler et al. paper claimed slightly larger
signatures of size 11.88 MB (8 MB in RO Model) for this ring size.

Post-quantum EPID Signatures from Symmetric Primitives 267

Signature Sizes in RO Model

Group Size Ideal Cipher Random Permutation

27 1.37MB 2.28MB
210 1.85MB 3.21MB
220 3.45MB 6.31MB
230 5.05MB 9.41MB
240 6.65MB 12.5MB

Fig. 1. Signature sizes for construction II under various security assumptions on
LowMC, using Fiat-Shamir [27] to make proofs of knowledge noninteractive.

Group Size Ideal Cipher Random Permutation

27 2.64MB 4.45MB
210 3.59MB 6.30MB
220 6.74MB 12.5MB
230 9.89MB 18.6MB
240 13.0MB 24.8MB

Signature Sizes in QRO Model

Fig. 2. Signature sizes for construction II under various security assumptions on
LowMC, using the Unruh transform [48] to make proofs of knowledge noninteractive.

functionality. The improvement comes from our new accumulator membership
proofs, as the accumulator constitutes the most costly component of both con-
structions. Note that subsequent to our paper, the Derler et al. paper has been
updated with new results that shrink their signatures by a factor of 2. Their
techniques can reduce signature sizes in our construction II as well.

Our general-purpose EPID signatures require 216.82 MB for signatures in a
group of size 230 assuming LowMC is an ideal cipher (110.81 MB in QRO Model),
a much larger value than the variation designed for attestation. This motivates
the question of how to generalize the specialized version of our construction to
apply to a wider range of use-cases, which we leave as an open problem.

6 Conclusion

We presented a general-purpose post-quantum EPID signature scheme as well
as a construction of a specialized variant designed for trusted hardware enclave
attestation. We also gave an analysis of the concrete sizes of our signatures based
on the best possible instantiations with current tools and showed that our sig-
natures for attestation can achieve sizes acceptable for use in some applications.

EPID signatures play an important role in modern trusted hardware. Making
them post-quantum secure is an important goal, and we hope this work will spur
further research on this question that will further reduce the signature size.

268 D. Boneh et al.

Acknowledgments. We would like to thank David Wu for several helpful conversa-
tions. This work is supported by NSF, the DARPA/ARL SAFEWARE project, the
Simons foundation, and a grant from ONR. The views expressed are those of the
author and do not reflect the official policy or position of the Department of Defense,
the National Science Foundation, or the U.S. Government.

References

1. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 7

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: CCS, pp. 2087–2104 (2017)

4. El Bansarkhani, R., Misoczki, R.: G-merkle: a hash-based group signature scheme
from standard assumptions. IACR Cryptology ePrint Archive (2018)

5. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 28

6. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

7. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptology ePrint Archive
(2018)

9. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

10. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

11. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

12. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Pro-
ceedings of the 11th ACM Conference on Computer and Communications Security
(CCS), pp. 168–177. ACM (2004)

13. Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography (2017)
14. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS,

pp. 132–145 (2004)

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

Post-quantum EPID Signatures from Symmetric Primitives 269

15. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing. IACR Cryptology
ePrint Archive, 2009:95 (2009)

16. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

17. Camenisch, J., Groth, J.: Group signatures: better efficiency and new theoretical
aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9 9

18. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

19. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

20. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: CCS, pp. 1825–1842 (2017)

21. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

22. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive
2016:86 (2016)

23. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-16715-2 7

24. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for
accumulators with applications to ring signatures from symmetric-key primitives.
IACR Cryptology ePrint Archive (2017)

25. Dowling, B., Günther, F., Herath, U., Stebila, D.: Secure logging schemes and
certificate transparency. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows,
C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 140–158. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45741-3 8

26. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7 5

27. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

28. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: IRON: functional encryp-
tion using intel SGX. In: CCS, pp. 765–782 (2017)

29. Fuller, B., et al.: Sok: cryptographically protected database search. In: IEEE Sym-
posium on Security and Privacy (Oakland), pp. 172–191 (2017)

30. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean
circuits. In: USENIX Security, pp. 1069–1083 (2016)

31. Goldreich, O.: Foundations of Cryptography - Volume 2, Basic Applications. Cam-
bridge University Press, Cambridge (2004)

32. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-540-30598-9_9
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-45741-3_8
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12

270 D. Boneh et al.

33. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 23

34. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

35. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

36. Johnson, S., Scarlata, V., Rozas, C., Brickell, E., Mckeen, F.: Intel R© software guard
extensions: EPID provisioning and attestation services (2016)

37. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge
with applications to post-quantum signatures. IACR Cryptology ePrint Archive
2018:475 (2018)

38. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC 6962 (2013)
39. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes

with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

40. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

41. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 19

42. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving
full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS
2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61204-1 15

43. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

44. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC, pp. 33–43. ACM (1989)

45. Nayak, K., et al.: HOP: hardware makes obfuscation practical. In: NDSS (2017)
46. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-

ciphertext security. In: FOCS, pp. 543–553 (1999)
47. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-

interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

48. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

49. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 3

https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70694-8_3

Post-quantum EPID Signatures from Symmetric Primitives 271

50. Yu, M., Gligor, V.D., Zhou, Z.: Trusted display on untrusted commodity platforms.
In: CCS, pp. 989–1003 (2015)

51. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.:
Opaque: an oblivious and encrypted distributed analytics platform. In: NSDI, pp.
283–298 (2017)

52. Zhou, Z., Gligor, V.D., Newsome, J., McCune, J.M.: Building verifiable trusted
path on commodity x86 computers. In: IEEE Symposium on Security and Privacy
(Oakland), pp. 616–630 (2012)

Assessment of the Key-Reuse Resilience
of NewHope

Aurélie Bauer1, Henri Gilbert1,2, Guénaël Renault1,3(B), and Mélissa Rossi4,5

1 ANSSI, Paris, France
{aurelie.bauer,henri.gilbert,guenael.renault}@ssi.gouv.fr

2 UVSQ, Versailles, France
3 Sorbonne Université, CNRS, Inria, Laboratoire d’Informatique de Paris 6, LIP6,

Équipe PolSys, Paris, France
4 Thales, Gennevilliers, France

5 Département d’informatique de l’Ecole normale supérieure, CNRS,
PSL Research University, Inria, Paris, France

melissa.rossi@ens.fr

Abstract. NewHope is a suite of two efficient Ring-Learning-With-Error
based key encapsulation mechanisms (KEMs) that has been proposed to
the NIST call for proposals for post-quantum standardization. In this
paper, we study the security of NewHope when an active adversary
takes part in a key establishment protocol and is given access to an ora-
cle, called key mismatch oracle, which indicates whether her guess of the
shared key value derived by the party targeted by the attack is correct
or not. This attack model turns out to be relevant in private key reuse
situations since an attacker may then be able to access such an oracle
repeatedly – either directly or using faults or side channels, depending
on the considered instance of NewHope. Following this model we show
that, by using NewHope recommended parameters, several thousands of
queries are sufficient to recover the full private key with high probability.
This result has been experimentally confirmed using Magma CAS imple-
mentation. While the presented key mismatch oracle attacks do not break
any of the designers’ security claims for the NewHope KEMs, they pro-
vide better insight into the resilience of these KEMs against key reuse. In
the case of the CPA-KEM instance of NewHope, they confirm that key
reuse (e.g. key caching at server side) should be strictly avoided, even
for an extremely short duration. In the case of the CCA-KEM instance
of NewHope, they allow to point out critical steps inside the CCA trans-
form that should be carefully protected against faults or side channels
in case of potential key reuse.

Keywords: PQ-crypto · Lattice based cryptography · Active attack ·
Side channels

This research has been partially funded by ANRT under the program CIFRE
2016/1583. We acknowledge the support of the French Programme d’Investissement
d’Avenir under national project RISQ P141580. This work is also partially supported
by the European Union PROMETHEUS project (Horizon 2020 Research and Innova-
tion Program, grant 780701).

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 272–292, 2019.
https://doi.org/10.1007/978-3-030-12612-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_14

Assessment of the Key-Reuse Resilience of NewHope 273

1 Introduction

The insecurity of the main asymmetric cryptosystems (RSA, (EC)DLP) in front
of a potential quantum computer has led the crytographic community to investi-
gate new quantum resistant primitives. In 2016, NIST has initiated a process to
develop and standardize one or more public-key cryptographic algorithms which
are supposed to be quantum safe. Cryptosystems based on lattices represent one
of the most promising directions for such systems.

Key Encapsulation Mechanisms (or KEMs) are one of the most important
asymmetric cryptographic primitives. The NIST call specifically asks for quan-
tum resistant KEM proposals in order to replace number theory based Diffie-
Hellman key establishment protocols, which can be broken in the quantum
computation model. Potential candidates for post quantum key establishment
include the ones based on the lattice based Ring Learning With Errors Problem
(Ring-LWE) introduced in [7,22]. Recently, Google conducted real life TLS
experiments [6] with a Ring-LWE based key exchange scheme: the NewHope-
Usenix system [6]. While these experiments show the efficiency of NewHope-
Usenix, the specification of the reconciliation step of the system is rather com-
plex. The technicality of this step requires a large fraction of the algorithm
description in the original paper [1]. This issue together with possible intel-
lectual property right considerations led the designers to introduce a simplified
new variant initially named NewHope-Simple [25] where the reconciliation-based
approach of NewHope-Usenix is replaced by an encryption-based approach.
Thanks to the combined use of encoding and compression techniques, the per-
formance price to pay for this new version in terms of bandwith overhead is
quite marginal. Now NewHope-Simple has been transformed into NewHope, a
suite of two candidate KEM mechanisms of the NIST call for proposals [23]
named NewHope-CPA-KEM and NewHope-CCA-KEM, in short CPA-KEM and
CCA-KEM. Both mechanisms are encryption-based: they rely upon an auxiliary
probabilistic public key encryption allowing to encrypt a 256-bit data named
CPA-PKE, that is not submitted to the NIST call for proposals as a standalone
mechanism.

NewHope-CPA-KEM, that is nearly identical to NewHope-Simple, is only
claimed to be a passively secure KEM. It can be viewed as the CPA-PKE
encryption of a hashed secret random value ν followed by hashing ν on both
sides. Unlike CPA-KEM, CCA-KEM is claimed to be secure with respect to
adaptively chosen ciphertext attacks. It is derived from CPA-PKE in a less
straightforward manner, by applying a variant of the Fujisaki-Okamoto trans-
form [11]. An essential feature of this transform is that the encryption of ν is
derandomized: this allows the decrypting party Alice to re-encrypt the decryp-
tion result, check that the result matches the received ciphertext, and use this
test to prevent information leakages on the private key in active attacks where
“dishonestly” derived ciphertext values are sent by an adversary.

While the specification of CPA-KEM and CCA-KEM does not formally pre-
vent re-using the same CPA-PKE (public key, private key) pair in multiple key
establishments, the design rationale section of the NewHope specification requires

274 A. Bauer et al.

that such key pairs be never cached and that a fresh key pair be generated at
each key establishment1. In the case of CPA-KEM, one of the main reasons for
this requirement is that, unlike the classical Diffie-Hellman key establishment,
the original Ring-LWE based KEM with reconciliation is known to be vulnera-
ble to a practical active attack in a key reuse situation as shown in [10]. Despite
not being based on the reconciliation paradigm, CPA-KEM shares sufficiently
many features with its predecessor for being conjectured also vulnerable to sim-
ilar attacks. In the case of CCA-KEM, this requirement to reuse private keys
could be justified by the fact that no real perfect forward privacy can be offered
if private keys are not ephemeral2.

Motivation

With its strong performance and its Ring-LWE based security, NewHope is a
high profile candidate of the NIST competition. There is a good chance for it
to be implemented in the future for Internet protocols. So, studying its security
under several attacker models is important.

In this paper, we investigate the resilience of the CPA-KEM and CCA-KEM
versions of NewHope in a misuse situation where the same key pair is reused for
multiple key establishment by the private key owner – who will be referred to as
Alice in the sequel. Note that Alice is also the party who initiates the two-round
key establishment in both schemes. We use the generic name of key mismatch
oracle to refer to the private key recovery attack models we are considering, that
are closely inspired from the adversary model considered in [10]. While slightly
less powerful than a CCA attack against an encryption based KEM where a
decryption oracle is available, attacks using a key mismatch oracle still belong
to the active attack category. Their common feature is that the adversary is
assumed to be able: (1) to actively interact with Alice by performing multiple
KEM establishment where Alice uses the same key pair, (2) to produce each
time a guess on the resulting secret key derived by Alice and (3) to access a
binary oracle that indicates whether this guess is valid or not.

Our study is motivated by the belief that an in-depth understanding of the
security offered by candidate KEM mechanisms submitted to the NIST call for

1 The single potential exception to this requirement is the publicseed part of the public
key, whose caching “for say a few hours” seems to be considered by the designers as a
viable alternative in situations where the preferred solution of a systematic renewal
would turn out to be prohibitively expensive.

2 On the other hand this requirement is not fully in line with the former observation,
in the NewHope-Usenix paper, that “One could enable key caching with a transfor-
mation from the CPA-secure key establishment to a CCA-secure key establishment
[...]”. Given the performance advantage that may be provided by key caching at
server side in certain applications, one can wonder whether it will be strictly fol-
lowed in practice in all deployments of CCA-KEM if strong cryptanalytic arguments
in favour of this conservative choice are not developed during the evaluation of the
candidates to the NIST call.

Assessment of the Key-Reuse Resilience of NewHope 275

proposals in key reuse situations is a useful part of their cryptanalytic evalua-
tion, even for those candidates for which key reuse is considered as a misuse of
the mechanism. Having an accurate estimate of the number of queries to the key
mismatch oracle and of the complexity of the private key recovery really helps to
assess the possible danger3. We focus here on a case study of the NewHope candi-
date KEMs. An advantage of this choice is that previous work on reconciliation-
based Ring-LWE schemes such as [10] can be partly leveraged. However, as
will be seen in the sequel, the fact that the NewHope suite is encryption-based
and is using encoding techniques induces substantial differences and non-trivially
complicates the cryptanalysis. To the best of our knowledge, no investigation of
attacks against a scheme without reconciliation in a key mismatch oracle model
was published so far.

Previous Work

The danger of accessing a key mismatch oracle within some key agreement pro-
tocols in a key share reuse context has been already exposed several times.
Early examples showing the vulnerability of some standardized Diffie-Hellman
key agreement protocols in such a context were introduced in [20]. The potential
danger of a somewhat related type of attack, namely so-called reaction attacks
against PKE schemes [13], where an adversary can submit a chosen ciphertext
to the legitimate private key owner and access a binary information about her
reaction (whether the decryption succeeds or fails for instance), is probably even
better known. Bleichenbacher’s attack against RSA PKCS#1 of Crypto’98 [4]
can been viewed as an early reaction attack. In 1999, Hall, Goldberg and Schneier
presented reactions attacks against several PKE schemes [13]. In the particular
case of lattice based cryptography, several notes on the vulnerability of NTRU to
reaction attacks and its protection against such attacks were published [14,15].
In 2003, Howgrave-Graham et al. proposed a reaction attack on NTRUEncrypt
that leverages decryption failures [17]. A recent example of reaction attack is Guo
et al.’s key recovery attack on the code-based PKE QC-MDPC [12]. It is thus
natural that NSA, in 2015, warns NIST Post-Quantum candidates against active
attacks [19]. Few times later, the first concrete attacks on a Ring-LWE based
key establishment leveraging a key mismatch oracle was proposed by Fluhrer [10]
(see also [8,9]).

These attacks rely on the fact that the reconciliation step can be exploited
by an active adversary to retrieve some information on the secret static key.
Despite the warnings issued in [19], certain NIST candidates are vulnerable
to active attacks. Indeed, it is shown in [3] that the secret key of the NIST

3 A similar need to investigate the resilience of candidate algorithms in misuse sit-
uations was encountered in the framework of the CAESAR competition aimed at
selecting authenticated encryption primitives. In that competition, much analysis
was conducted on the resistance of candidates to key recovery attacks in misuse
cases such as nonce or decryption-misuse and this provided quite useful information
for the algorithms selection process.

276 A. Bauer et al.

candidate HILA5 can be recovered in the key mismatch oracle setting following
Fluhrer’s approach. In summary, despite the raising awareness of the cryptogra-
phy research community that key mismatch oracle attacks threaten many lattice
based KEMs in case of key reuse, relatively few examples of such attacks have
been published so far.

About the side channel protection of NewHope, no dedicated countermeasure
has been proposed for NewHope so far, but in [21] a side channel protection for
a similar scheme has been proposed. This paper describes a provably first-order
secure masking scheme and its integration into a CCA conversion.

Our Contribution

In the following, we evaluate the security of NewHope when the attacker gets
access to a key mismatch oracle. We concretely explain how the attacker can
have access to such an oracle in different scenarios with the CPA-KEM and the
CCA-KEM. We first introduce a straightforward way to recover such an oracle
in the CPA-KEM. The adversary enters a key establishment with Alice, derives
from her guess on the shared key produced by Alice a guess on the resulting
session key she produces, and attempts to initiate a session with Alice under
this guessed session key. The success or failure of this protected communication
attempt provides the desired key mismatch oracle4.

Then, at the end of the paper, we elaborate other scenarios on the CCA ver-
sion which require side channels. Indeed, the CCA-KEM version induces major
extra differences with formerly analyzed reconciliation-based schemes, that also
deserve being analyzed. Because of the CCA transform, a key mismatch ora-
cle cannot be accessed directly. But we show that for unsufficiently protected
implementations, simple faults or side channels could bypass this transform and
provide the desired key mismatch oracle. While unprotected versions of CCA-
KEM are extremely efficient, its implementations must be very carefully pro-
tected against any key mismatch oracle leakage if key pairs are potentially reused.
This might eventually come with a cost in terms of performance. This study may
help the developers to protect the algorithms against a possible key mismatch
oracle leakage.

The core of this work is the description of a new attack on NewHope using
the key mismatch oracle. Even if the existence of previous work attacks (see
[8,10]) casts suspicion on the resistance of NewHope CPA-KEM against active
attacks in the same key-reuse setting, one has to take into account substantial
differences between the reconciliation-based paradigm of the original NewHope
and the encryption-based paradigm of CPA-KEM. Because of these differences,
the detail of Fluhrer’s attack [10] is not really inspiring for mounting an attack
and any direct transposition attempt would be hopeless. Finding an efficient way
4 It is worth noticing that the same direct access to a key mismatch oracle remains

feasible if the KEM exchange is embedded in an authenticated key establishment
protocol, under the sole condition that the adversary is the owner of a valid authen-
tication (or signature) key.

Assessment of the Key-Reuse Resilience of NewHope 277

of deriving information on the secret key from the key mismatch oracle with a
low number of queries induces several issues. The main difficulty is to retrieve
enough leakages after the application of the encoding and compression functions.
We investigated how to leverage these functions in order to find a simple way
to instantiate the oracle and identified precise elements in the polynomial ring
that can be used by the adversary to recover the secret. Finally, we had to take
into account the fact that NewHope coefficients are in [−8, 8].

We experimented our attack with a Magma CAS proof of concept. Under
NewHope parameters, we were able to recover exactly the secret S with on aver-
age 16, 700 queries for NewHope1024 which corroborates the expected perfor-
mance of the model.

Paper Outline

In Sect. 2 we introduce some notation and describe the NewHope CPA scheme.
In Sect. 3, we describe the notion of key mismatch oracle and how practical it can
be for the CPA-KEM. In Sect. 4, we detail our attack using the key mismatch
oracle. In Sect. 4.4, we present our experiments. In Sect. 5, we show how the key
mismatch oracle can be retrieved with side channels with the CCA-KEM. Finally,
in Sect. 6, we summarize our results and discuss future research.

2 Preliminaries

2.1 Notations

Let q be a prime number in N and let Zq denote the ring elements Z/qZ. Depend-
ing on the context, the elements in Zq can be equivalently represented as integers
in {0, . . . , q−1} or in {−(q−1

2), . . . , (q−1
2)}. In the following, the notation R refers

to the polynomial ring Zq[x]/(xN + 1) with N a power of 2. If P belongs to R,
it is a polynomial of degree (N − 1) with coefficients P[i] belonging to the set
Zq. Such elements can also be represented as vectors whose i-th coordinate is
the coefficient related to xi. In the sequel we use either the polynomial notation
or the vectorial one. For readability, bold capital letters are used to refer to
elements in R and bold lowercase letters will refer to compressed elements, i.e.
elements in R with small coefficients.

Let us define Ga as the centered Gaussian distribution of standard deviation a
and ψk the centered binomial distribution of parameter k. Its standard deviation
is

√
k/2. One may sample from ψk for integer k > 0 by computing

∑k
i=1 bi − b′

i,
where the bi,b′

i ∈ {0, 1} are uniform independent bits.

Property 1. The elements generated according to a centered binomial distribu-
tion ψk of parameter k are in the interval [−k, k]. Thus, the coefficients of the
small elements drawn from R in NewHope are in [−8, 8].

278 A. Bauer et al.

In the figures and algorithms, the notation $←− D means picking an element
in R having all its coefficients generated at random according to distribution
D. The notation coin←−−− D means using a coin ∈ {0, ..., 255}32 as a seed to pick a
pseudorandom element in R having all its coefficients according to distribution
D. This is generally done using a hash function like SHAKE-128. In the paper
we refer several times to Sign(a) with a ∈ Z by using the convention that it is
defined as positive when a ≥ 0 and as negative when a < 0. If x ∈ R, the integer
�x� is defined as �x + 1

2� ∈ Z.

2.2 NewHope

NewHope [23,25] is a RING-LWE based key establishment scheme derived from
NewHope-Usenix [1], that is simplified because it does not use the reconcilia-
tion anymore. In this section, we describe NewHope, where we omit some details
(e.g. the so-called NTT transform or the encoding of the messages) to simplify
the presentation. This does not imply any loss of generality for our attack. To
ease the understanding, we will describe the CPA-KEM version of NewHope in
this section as the key mismatch oracle can be easily derived. We will present the
CCA-KEM later in Sect. 5 when we present some ways to access a key mismatch
oracle.

The polynomial ring R used in NewHope has the following parameters:
(N, q) = (1024, 12289) or (N, q) = (512, 12289). The coefficients of the small
elements drawn from R follow a centered binomial distribution ψN

k with k = 8.

The standard deviation is a =
√

8
2 = 2. We decided to focus on explaining the

attack for N = 1024. Indeed, for N = 512 there is twice less redundancy and
the attack is easier. Thus, we fix N = 1024. These elements will be seen as vec-
tors of size N with integer components. We denote s = 1536 which is such that
q = 8s + 1. The aim of the system is to share a key of size 256 bits following the
exchange mechanism outlined below and represented in Fig. 1.

A public value A ∈ R is derived from a published seed. Four specific functions
are introduced: Encode, Decode, Compress and Decompress. They are described
in Algorithms 1, 2, 3 and 4. Note that we partly deviate from the notation of
the original specification of these algorithms, since we use the parameter s (the
original description is in [25]). The following paragraphs describe these functions.

Compress and Decompress. The function Compress (Algorithm 3) takes as input
a vector C in R and applies on each of its component a modulus switching
to obtain an element c in Z8[x]/(xN + 1). Compressing a vector C essentially
means keeping the 3 most significant bits of each coefficient. The function Decom-
press (Algorithm 4) shifts the bits of the input c ∈ [0, 8[N to place them among
the most significant bits. These functions are not the inverse of each other.

Encode and Decode. The Encode function takes a n-bit input ν where n =
N/4 and creates an element K ∈ R which stores 4 times the element ν. The
redundancy is used by the function Decode to recover ν with a noisy K.

NewHope Key Encapsulation Mechanism. Let us now describe this scheme.

Assessment of the Key-Reuse Resilience of NewHope 279

Fig. 1. Simplified NewHope

1. Setup: Alice generates 2 small secrets S and E in R. She sends B = AS + E
to Bob.

2. Key Encapsulation: From a random coin acting as a seed, Bob derives 3 small
secrets S′, E′ and E′′ in R and a random element νB of size n which will be the
encapsulated key. He computes U = AS′ + E′. He encodes νB into a redun-
dant element K of R using the algorithm Encode (Algorithm 1). Bob uses
Compress (Algorithm 3) to compress C = BS′ +E′′ +K into an element with
very small coefficients as described above. He sends (c = Compress(C),U) to
Alice. He deduces the shared secret as μB = SHAKE-256(32, νB).

3. Key Decapsulation: Alice decompresses c with Decompress into C′ (Algo-
rithm4). She computes C′ − US which is close to

C − US = ES′ + E′′ + K − E′S. (1)

Algorithm 1. Key Encoding
1 function Encode(ν ∈ {0, 1}n)
2 k ← 0
3 for i := 0 to n − 1 do
4 Ki ← νi.4s
5 Ki+n ← νi.4s
6 Ki+2n ← νi.4s
7 Ki+3n ← νi.4s

8 end
9 Return k

Algorithm 2. Key Decoding
1 function Decode(K ∈ R)
2 ν ← 0
3 for i := 0 to n − 1 do

4 t ← ∑3
j=0

∣
∣
∣
∣ Ki+jn − 4s

∣
∣
∣
∣

5 if t < q then νi ← 1 else νi ← 0

6 end
7 Return ν

280 A. Bauer et al.

Algorithm 3. Compression
1 function Compress(C ∈ R)
2 for i := 0 to N − 1 do

3 c[i] ←
⌈

8.C[i]
q

⌋
mod 8

4 end
5 Return c

Algorithm 4. Decompression
1 function Decompress(c ∈ [0, 8[N)
2 for i := 0 to N − 1 do

3 C’[i] ←
⌈

q.c[i]
8

⌋

4 end
5 Return C’

Since ES′ +E′′ −E′S is small, she recovers an estimated value νA of νB with
a decoding algorithm called Decode(Algorithm 2). From νA, she can deduce
μA = SHAKE-256(32, νA).

Since S,S′,E,E′,E′′ are small, Alice and Bob get the same key μ = μB = μA

with high probability.

Remark 1. This Section presented NewHope-CPA-KEM which is the target
Sect. 4’s analysis. However a PKE called NewHope-CPA-PKE has been intro-
duced in [23]. The slim difference lies on the fact that νB becomes the encrypted
message. The CCA security of the CCA version, called NewHope-CCA-KEM
relies on the CPA security of NewHope-CPA-PKE (see Sect. 5).

3 The Key Mismatch Oracle

This section introduces the notion of key mismatch oracle and a way to access it
in the CPA version. We will always consider a malicious active adversary, Eve,
who acts as Bob. Her messages, key and intermediate values will be denoted as
mE , μE and νE instead of mB , μB and νB .

Remark 2. One might wonder how a malicious Alice can recover Bob’s secret in
a case of key reuse by Bob. In NewHope, this can be done with 2 queries, see the
full version of our paper [2].

The goal of the adversary is to recover Alice’s static private keys S and E by
using the following oracle several times. We will focus on recovering the secret
S. E can be derived from S with E = B − AS.

Definition 1 (key mismatch oracle). A key mismatch oracle is an oracle that out-
puts a bit of information on the possible mismatch at the end of the key encap-
sulation mechanism.

In the NewHope context, the key mismatch oracle is the oracle that takes any
message mE and any key hypothesis μE as input and outputs the following

O1(mE , μE) =

{
1 if (μA =) Decapsulation

(
mE ,S

)
= μE

−1 otherwise
(2)

Assessment of the Key-Reuse Resilience of NewHope 281

Such an oracle should leak information on secret S because its output is
clearly correlated to the value of S. However, this oracle is less powerful than a
CCA decryption oracle against CPA-PKE. Indeed, the only information given is
a bit representing the possible key mismatch. The difficulty is to choose appropri-
ate (mE , μE) to retreive information of a small part of S. In Sect. 4, we present
how to recover the secret S from such an oracle.

The simplest way to access such an oracle is when the CPA-KEM is imple-
mented with static secrets. In other words, Alice will keep her secrets S and E
for several key establishment requests. We consider that Eve does not necessar-
ily follow the scheme specification. She can “cheat” and generate a message mE

that is not derived from a coin or from random small secrets S′,E′ and E′′. By
definition, the CPA version of NewHope is passively secure, an attacker using a
key mismatch oracle is outside of the security assumptions5. This has been well
highlighted in paragraph 2.3, Section No key caching of the original paper
of NewHope-Usenix. However an implementation of NewHope which allows
misuse cases (see [24]) cannot be completely excluded. Thus it is important to
precisely evaluate such a threat and consider the following attack model.

Attack Model 1. Alice will accept any syntactically correct message mE and
always try to use the corresponding shared key for communicating. When she
derives the shared key, either she is able to decrypt messages exchanged after
that with Eve (and thus Eve deduces that the shared key is the same) or she
will notify Eve that something went wrong with the key agreement. Eve will then
deduce that the key is different. In both cases, Eve gets the desired key mismatch
oracle.

In Sect. 5, we show how to get access to such an oracle with side channels in
the CCA framework.

4 Attack on NewHope with Key Mismatch Oracle

We assume here that Eve, the attacker, has access to O1, a key mismatch oracle as
defined in Sect. 3. Let us now explain how she proceeds to recover Alice’s static
secret key S following Attack Model 1.

5 While key reuse is against the designers’ requirements of the NIST submission
NewHope, as expressed in the footnote in the design rationale on p. 16, this
requirement does not seem to be formally reflected in the algorithm description
of Sect. 1.2. This section indeed defines separate algorithms for key pairs generation,
(en/de)capsulation, but does not state that a pair shall be used only once. Thus,
though running NewHope with key reuse represents a misuse situation, analyzing
the security of this scheme in this situation is definitely much more relevant question
than considering variations in the formal specification of NewHope and investigating
resulting weaknesses.

282 A. Bauer et al.

4.1 Rewriting the Key Mismatch Oracle

The use of the key mismatch oracle obviously leaks information on Alice’s secret
key S. But the task of recovering S entirely seems much more complicated. Indeed
as defined in Sect. 3, the only information provided by the key mismatch oracle is
a bit representing the success or mismatch of the key agreement. The difficulty
for Eve is to choose appropriate (mE , μE) pairs to get useful information on
small parts of S.

In a first step, Eve simplifies her part of the protocol in such a way that
the knowledge of the key mismatch oracle output bit O1(mE , μE) can be easily
exploited. To do so, she can fix for instance μE such that:

νE = (1, 0, . . . , 0) and thus μE = SHAKE-256(32, νE). (3)

The value of νE = (1, 0, . . . , 0) has not been arbitrarily chosen; as we will see
later, the 0 in positions 1 to n − 1 will help the success rate of the attack
(see Proposition 3). From now on, the value of μE is fixed according to Eq. (3).
Moreover, when replacing mE by its definition: mE = (c,U), the oracle O1 can
be reformulated using the oracle O2 defined below.

Definition 2. Let us introduce oracle O2 such that O2(c,U) = O1

(
(c,U), μE

)
.

With this new definition, Eve can adapt the values of c and U to leverage Oracle
O2 and retrieve information on S. In other words, since μE is fixed, the inputs
(c,U) are the degrees of liberty for finding S.

From Alice’s side, the link between νA and S passes through the functions
Decode, Decompress (see the figures in full version of our paper [2].) and the
element K′: νA = Decode(k′) = Decode(C − US) = Decode(Decompress(c) −
US). Thus, from the definition of the Decode algorithm, the value of νA[i], the
i-th component of νA, is deduced from the following sign computation:

Sign

(3∑

j=0

∣∣∣∣ (Decompress(c) − U · S)[i + nj] − 4s

∣∣∣∣ −q

)
(4)

We recall here that 0 is positive by convention.
The problem for Eve is that she is unable to know the number of errors that

will occur at the end of the decryption computations and the positions in which
they appear. Indeed, the key mismatch oracle only gives one bit of information
corresponding either to mismatch or success. If there is a mismatch, Eve knows
that at least one bit of νA is different from νE but she can not determine which
one (or which ones). Therefore, in order to mount an effective attack, Eve needs
to restrict all these different possibilities by making the following hypothesis:

Hypothesis 1. For i from 1 to n − 1, the component νA[i] is equal to 0.

If Hypothesis 1 is verified, any failure in the communication comes from a
single error in νA located in the very first component νA[0]. Indeed, in that case,
the success of the exchange only depends on the first computed value νA[0]. In
particular, if we assume this hypothesis, the oracle O2 depends only on the νA[0]
and we obtain the following result.

Assessment of the Key-Reuse Resilience of NewHope 283

Lemma 1. Under Hypothesis 1, the initial oracle O2 can be rewritten as

O2(c,U) = Sign

(j=3∑

j=0

∣∣∣
∣ (Decompress(c) − US)[0 + nj] − 4s

∣∣∣
∣ −q

)

For mounting her attack, Eve has to find pairs (c,U) that

1. target the smallest number of bits of S
2. verify Hypothesis 1

For item 1, since the Decode algorithm takes coefficients of S four by four,
the size of the smallest target is a quadruplet of coefficients of S. Actually, for a
given quadruplet of integers � = (�0, �1, �2, �3) and a target index k (i.e. an index
corresponding to the components of S that Eve wants to retrieve), by taking

U = sx−k and c =
3∑

j=0

(
(�j + 4) mod 8

)
· xnj (5)

one can prove (see in Proposition 1) that Eve targets the quadruplet
(
S[k +

nj]
)
j=0···3. Indeed, the element x−k will “rotate” S in order to target

(
S[k +

nj]
)
j=0···3 and c is induced by the quadruplet � = (�0, �1, �2, �3) that can vary.
About item 2, with this choice of (c,U), the Hypothesis 1 has good chances to

be verified because the coefficients of c outside from the set {k +nj| j = 0 · · · 3}
are 0. So, the same coefficients of C − US have good chances to be small.
Then, Alice is likely to derive 0 for these coefficients of νA. However, it is not
always verified and this will impact the attack’s success rate. We will discuss
and compute this probability later in Proposition 3.

We can now introduce O3, a reformulation of O2 depending on target index
k and the quadruplet � (see Eq. 5):

O3(k, �) = O2

(
sx−k,

3∑

j=0

(
(�j + 4) mod 8

)
· xnj

)

This formulation of the key mismatch oracle is more convenient in order to
explain how Eve will gather information on S from instantiations of �. The
following proposition shows a first result in this direction.

Proposition 1. Final oracle. Let us assume that Hypothesis 1 is verified. Let
k be a target index (k ∈ [0, n − 1]). For a given integer quadruplet � in [−4, 3]4,
the (c,U) explicited in Eq. 5 is such that

O3(k, �) = Sign

(j=3∑

j=0

∣∣∣
∣ �j − S[k + nj]

∣∣∣
∣ −8

)

Proof. The proof is given in the full version of our paper [2].

In the next section, we explain how to effectively use the form O3 of the key
mismatch oracle to extract the secret S.

284 A. Bauer et al.

4.2 Recovering Very Small Coefficients of S

Let us recall that the secret S is a polynomial in Zq[x]/(xN +1) with coefficients
in [−8, 8], it can be seen as a vector of N components S[i]. Eve will recover
the coefficients of the secret S four by four. Let k be the index of the targeted
quadruplet [S[k],S[k +n],S[k +2n],S[k +3n]]. The index k goes from 0 to n−1
and for each fixed k, Eve will call the oracle O3(k, �) with several appropriate
value of � until she gets the secret values.

For simplicity, let us now fix the index k and denote Sj = S[k + nj].
The following proposition and corollary describe an algorithm that, when

iterated (see Corollary 1), allows to recover Sj for j from 0 to 3.

Proposition 2. Let us fix j in [0, 3]. Under Hypothesis 1, if Sj is in [−3, 2]
and (Si)i�=j ∈ [−4, 4], there exists a probabilistic algorithm A which recovers the
value Sj in 8 queries to oracle O3 with a success probability depending on the
distribution of (Si)0≤i≤3.

Corollary 1. Under Hypothesis 1, if Sj is in [−3, 2] and (Si)i�=j ∈ [−4, 4], there
exists a probabilistic algorithm A′ which recovers the value Sj with an average
number of queries to oracle O3 depending on the distribution of (Si)0≤i≤3.

In the sequel of this section, we give the proof of Proposition 2 by first pre-
senting the construction of the algorithm and then by introducing a method to
assess the success rate. We refer the reader to the full version of our paper [2]
for the proof of Corollary 1.

Proof of Proposition 2

Description of A. Let us prove the proposition by focusing on the secret S0

and by explaining how it can be recovered in 8 queries to oracle O3. The process
will then be exactly the same for the three other values S1, S2 and S3.

The first step consists in taking the 3 values �1, �2, �3 at random inside the
interval [−4, 3]. Knowing that all Sj are fixed, the quantity

∑3
j=0 |�j − Sj | − 8

can thus be expressed by fv(�0) =
∣∣�0 − S0

∣∣ + v − 8 with v =
∑3

i=1 |�j − Sj | a
fixed unknown constant (since all Sj are unknown). Let us now see how fv(�0)
behaves when �0 varies, see Fig. 2 for an illustration.

We now assume that one makes 8 queries to the oracle O3: one for each value
of �0 varying inside [−4, 3]. Such queries imply having access to Sign

(
fv(�0)

)

∀�0 ∈ [−4, 3]. The analysis can thus be split in 2 cases:

1. If (v − 8) ≥ 0 then all queries to oracle 1 obviously lead to “positive signs”.
It is quite clear when one looks at Fig. 2.

2. If (v − 8) < 0, two subcases occur
– In some cases, there exists two possible values τ1 < τ2 such that the

function |�0 − S0| + (v − 8) goes from a positive value to a negative one
at point τ1 and then from a negative value to a positive one at point τ2.
We call this case the favorable case. Figure 3 provides a good illustration.

Assessment of the Key-Reuse Resilience of NewHope 285

0
S0

(v − 8)

0

Fig. 2. If v − 8 ≥ 0

0
τ1 τ2S0

v − 8

0

Fig. 3. If v − 8 > 0

0
τ2S0

v − 8

0

Fig. 4. If v − 8 � 0

�0 −4 · · · τ1 − 1 τ1 τ1 + 1 · · · τ2 − 1 τ2 τ2 + 1 · · · 3
O + · · · + + - · · · - + + · · · +

– If (v−8) < 0 and v 	 8, only one change of sign will occur in the interval
[−4, 3]. Figure 4 provides a good illustration.

Figure 3 illustrated what happens in the favorable case. Around S0, the trace
has a slope equal to + or −1. Because of the symmetry, the value S0 can simply
be recovered by:

S0 =
τ2 + τ1

2
. (6)

If we are not in the favorable case, two such values τ1 and τ2 do not exist.
This means that the constant v is not appropriate.

Termination of A. For any S0 ∈ [−3, 2], A has a non zero success probability.
Indeed, no matter the values of (S1, S2, S3) in [−4, 4]3, the 3-uple (�1, �2, �3) ∈
[−4, 3]3 defined by

(
�1 = S1 − 2 · Sign(S1), �2 = S2 − 2 · Sign(S2), �3 = S3 − 3 · Sign(S3)

)

is at least one of the choices inducing a favorable case. Actually, one can check
that this choice implies that v = 7. Thus v − 8 = −1 which always gives a
favorable case for finding S0 ∈ [−3, 2].

Table 1. Success probability of A for (Sj)1≤j≤3 following ψ4 distribution

S0 −3 −2 −1 0 1 2

Probability (%) 14 27 39 39 27 14
Expected number of iterations (1/probability) 7.1 3.7 2.6 2.6 3.7 7.1

Success Probability. A precise probabilistic study on the (Sj)1≤j≤3 to assess
the success rate of algorithm A is detailed in the full version of our paper [2]. In
Table 1, one can find the probability of success assuming that S1, S2, S3 follow
a binomial distribution ψ4. The expected number of iterations is the average
amount of tries before recovering the secret.
�

286 A. Bauer et al.

Example 1. Let us suppose that Si = [0,−2, 1,−1]. For (�1, �2, �3) = (2,−2,−1),∑3
j=0 |�j − Sj | − 8 = |�0 − S0| − 2. If we query the sign of the latter for �0 =

−4,−3,−2,−1, 0, 1, 2, 3, we get: +, +, +, -, -, -, +, +. We can conclude that
S0 = 1−1

2 = 0. Whereas, for (�1, �2, �3) = (−2, 0, 1),
∑3

j=0 |�j − Sj | − 8 = |�0 −
S0|−5. The sign for �0 = −4,−3,−2,−1, 0, 1, 2, 3 becomes: -, -, -,-, -, -, -, -. We
cannot conclude anything on S0.

At the end of this section, with Corollary 1, we know that if S is generated
with coefficients following the ψ4 distribution and if Hypothesis 1 is verified,
there exist an algorithm that recovers each coefficient of S that is in [−3, 2] (i.e.
almost 96% of the coefficients). If a coefficient of S is not in [−3, 2], no favorable
case will appear and the coefficient will not be found. In the next section, we
adapt this method for NewHope.

4.3 Recovering S for NewHope Parameters

In this section, we describe a way to recover S for NewHope parameters, i.e.
when the binomial parameter is 8. According to Property 1, the coefficients of
S[k] are in [−8, 8]. This is outside from the hypothesis made in Proposition 2.
Indeed, the coefficients S[k] should lie in [−3, 2]. One can make the following
change in order to fit with Proposition 2 hypothesis: S1 = S

2 . In order to target
S1 instead of S, one can change U from Eq. 5 to be the following U = s

2x−k.
Let us wrap up the attack into the following Proposition.

Proposition 3. There exists a probabilistic algorithm B which recovers
NewHope secret S with high probability using an average of 18, 500 queries for
N = 1024.

Proof. Let k ∈ [0, n − 1]. The distribution of probabilities for S[k] is in Table 2.

Case 1: S[k] belongs to {−8,−7,5,6,7,8}. The probability of this case is
around 1%. In that case, at most one change of sign will always happen. Then,
only the sign of S[k] can be recovered and a brute force should be done at the
end of the attack to distinguish among the possible values. For N = 1024, on
average 10 coefficients out of 1024 will not be found. When a positive value is
not found, it has 8/10 chances to be a 5. At the end of the attack, a bruteforce
step evaluating B − AS and taking account of the probabilities can be done.

Table 2. Distribution ψ8 (note that the probability is the same for negative values)

S[k] 0 1 2 3 4 5 6 7 8

Probability (×216) 12870 11440 8008 4368 1820 560 120 16 1

Assessment of the Key-Reuse Resilience of NewHope 287

0τ1 τ2S[k]
2

0

Fig. 5. When S[k] mod 2 = 0

0τ1 τ2S[k]
2

0

Fig. 6. When S[k] mod 3 = 1

Case 2: S[k] belongs to {−6, ...,4}. In that case, S1[k] belongs in the inter-
val [−3, 2]. The attack is the one from Proposition 2 with a different secret
S1[k]=S[k]

2 . However, the results will not be as accurate as before. We will show
that there is a subtelty that allows Eve to recover the exact value of S[k].
There are 2 possible results depending on S[k] mod 2:

– If S[k] mod 2 = 0, then S1[k] ∈ {−3,−2,−1, 0, 1, 2}. Proposition 2 allows Eve
to recover S1. In other words, Eve will recover a succession of signs where
an odd number of (−) occurs (see Fig. 5). She will then be able to recover
S[k]
2 = τ1+τ2

2 and then S[k].
– If S[k] mod 2 = 1 then S1[k] ∈ {−2.5,−1.5,−0.5, 0.5, 1.5}. In a favorable case

of Proposition 2, the situation will be different. As in Fig. 6, the number of
(−) is then even.

Wrap Up. Here is a procedure to recover S[k].

Case 1. If the number of (−) is odd, then S[k] is even and S[k] = 2 τ1+τ2
2 = τ1+τ2

Case 2. If the number of (−) is even, then S[k] = 2
⌊

τ1+τ2
2

⌋
+ 1

Case 3. If at most one change of sign occur, the procedure is restarted.

If the number of restarts is too large (say, ≥ M), the procedure is stopped
and the coefficient, placed in a bruteforce set, is found at the end of the attack.

Table 3. Average number of queries

Value −6 −5 −4 −3 −2 −1 0 1 2 3 4 −8, −7, 5, 6, 7 or 8

Average queries 33 33 19 20 16 17 17 15 22 20 38 M

Number of Queries. The amount of queries is derived with the same technique
as in the full version of our paper [2]. See Table 3 for the average number of
queries. Let us set the threshold M to 50, to get the total average number of
queries, we compute the expected number of queries for S[k] (≈18) and multiply
it by N = 1024.

288 A. Bauer et al.

Success Probability. The success probability depends only on Hypothesis 1
with S1, which becomes the following for S.

Hypothesis 2. ∀i, k ∈ [1, n − 1]
∑j=3

j=0

∣∣∣
∣

S[k+i+nj mod N]
2 + 4

∣∣∣
∣≥ 8

Hypothesis 2 is true with a probability 94.6% for N = 1024. Indeed, to com-
pute this probability, one can check whether each quadruplet verifies it. Only a
few unlikely quadruplet (e.g. [8, 8, 8, 8]) do not verify the hypothesis.
�

4.4 Experimental Results

We implemented a proof of concept with Magma CAS [5]6. We coded
NewHope according to its parameters and used the key mismatch oracle for the
attack. We worked on a basic optimization of the number of queries. We ran
1000 experiments and recovered more than 95% of the secret keys in an average
time of 30 minutes per key and 16,700 queries. We still think that the number
of queries and the time can be better optimized.

5 Accessing the Key Mismatch Oracle with the CCA
Version of NewHope

In order to be protected against active attacks, the CPA-KEM of NewHope has
been transformed according to the Hofheinz, Hövelmanns and Kiltz CCA trans-
formation [16] which is a variant of the Fujisaki-Okamoto transformation [11].
The CCA security is then based on the CPA security of the PKE. The CCA
transformation of the algorithms defining this version of NewHope is detailed
in Algorithms 5, 6 and 7. These algorithms use the underlying CPA-PKE of
NewHope as defined in Sect. 1.2.1 of [23].

Algorithm 5. NewHope CCA-
KEM Key Generation
1 function NewHope CCA-KEM.Gen()
2 (pk, sk) ← NewHope-CPA-PKE.Gen()

3 s ← {0, ..., 255}32

4 return (pk, s̄k = (sk||pk||SHAKE-256(32, pk)||s)

Algorithm 6. NewHope-CCA-
KEM Encapsulation
1 function NewHope-CCA-KEM-Encaps(pk)

2 coin ← {0, ...255}32

3 µ ← SHAKE-256(32, coin) ∈ {0, ..., 255}32

4 K||coin′||d ←
SHAKE-256(96, µ||SHAKE-256(32, pk)) ∈
{0, ..., 255}32+32+32

5 c ←NewHope-CPA-PKE.Encrypt(pk, µ; coin′)
6 ss ← SHAKE-256(32, K||SHAKE-256(32, c||d))
7 return (c̄ = c||d, ss)

One can note the main security measure in Algorithm 7 where the instruction
in red corresponds to a double encryption to check if the message mB has been
honestly generated.
6 The Magma code can be found at https://www.di.ens.fr/∼mrossi/.

https://www.di.ens.fr/~mrossi/

Assessment of the Key-Reuse Resilience of NewHope 289

More precisely, in the key mismatch oracle, the message mB can be adjusted
by the attacker but with this CCA version of NewHope, Eve must follow the
protocol and generate mE according to a seed called coin′ that is derived from
μE and another seed called coin (a 32-byte random integer). Then, Alice will
derive coin′ to check if μE was computed following the protocol. Then, a key
mismatch will come from the following oracle

O4(coin, μE) =

{
1 if Dec(Enc(mA, coin),S) = μE

−1 otherwise
(7)

This oracle is less convenient than O1 because with an honest behaviour, the
error probability is claimed to be lower than 2−213 in the NIST specification
(paragraph 4.2.7 of [23]). In the sequel, we point at critical steps inside the CCA
transform that let Eve access oracle O1 using side channel or fault attacks.

On Using Side Channel or Fault Attack

When the attacker has access to a device implementing Alice’s side of the
exchange, the attack model should take into account situations where some algo-
rithmic security measures may be bypassed by using hardware attacks.

Power Analysis. Here we consider that Eve is able to make a power analysis
during the verification step of Alice decapsulation algorithm.

Algorithm 7. NewHope-CCA-KEM Decapsulation
1 function NewHope-CCA-KEM.Decaps (c̄, s̄k)

2 c||d ← c̄ ∈ {0, ..., 255}NEWHOPE CPAPKE CIPHERTEXTBYTES+32

3 sk||pk||h||s ← s̄k ∈ {0, ..., 255}32+32+32+32

4 µ′ ← NewHope-CPA-PKE.Decrypt(c, sk)

5 K′||coin′′|d′ ← SHAKE-256(96, µ′||h) ∈ {0, ..., 255}32+32+32

6 if c =NewHope-CPA-PKE.Encrypt(pk, µ′; coin′′) and d = d′
7 then fail ← 0 else fail ← 1 end if

8 K0 ← K′
9 K1 ← s

10 return ss = (SHAKE-256(32, Kfail||SHAKE-256(32, c||d))

Attack Model 2. We assume that Alice has done the CCA key generation.
Eve sends messages mE with a wrong coin. Alice will then reject any messages
me because the verification is never passed. Eve, the attacker, is able to make a
power analysis during the verification step of Alice’s decapsulation algorithm.

With a power analysis, Eve can easily get the desired key mismatch oracle with
a low number of traces.

A first idea would be to target the computation of d = d′ with differential
power analysis. The following code corresponds to NewHope-CCA-KEM verifica-
tion step where a = (c, d), b = (NewHope-CPA-PKE.Encrypt(pk, μ′; coin′′), d′)
and len = 17/8 · N + 32.

290 A. Bauer et al.

∗ Name : v e r i f y
∗ Desc r ip t i on : Compare two arrays for equa l i t y in constant time .
∗ Arguments :
∗ const unsigned char ∗a : po in te r to f i r s t byte array
∗ const unsigned char ∗b : po in te r to second byte array
∗ s i z e t l en : l ength o f the byte arrays
∗ Returns 0 i f the byte arrays are equal , 1 otherwise
∗∗/

int v e r i f y (const unsigned char ∗a , const unsigned char ∗b , s i z e t l en)
{

u in t64 t r ;
s i z e t i ;
r = 0 ;

for (i =0; i<l en ; i++)
r |= a [i] ˆ b [i] ;

r = (−r) >> 63 ;
return r ;

}

This naive method actually works well in practice for an unprotected scheme
because when d = d′, r is ored with 0 during 17/8 · N iterations and when
d = d′, r is ored with arbitrary values during 17/8 · N iterations. With a single
trace analysis, the equality d = d′ can be verified. One would argue reasonably
that unprotected schemes are always vulnerable. The main aim of [21] is to
propose a countermeasure to such an attack for a similar scheme which uses the
CCA transform. It is an open problem, in this protected context, to extend this
approach to a second order power analysis attack. A more realistic model relies
on an invasive attack, this is what we present in the sequel.

Single Fault Attack. We consider inserting a fault during the computation of the
verification step which cancels the CCA transform. The attack model becomes:

Attack Model 3. We assume that Alice has done the CCA key generation.
Eve, the attacker, is able to set the value r to 0 in the verification step of Alice’s
decapsulation algorithm.

If Eve is able to set the value r to 0 anytime during the check d = d′, she
can bypass the reencryption and the mismatch will appear only if d = d′. Then
oracle O1 becomes accessible. Indeed, Eve can thus send any message mE . Alice
derives a wrong coin′ but the verification is skipped with the fault. If d = d′,
Alice derives the shared key for initiating a communication. If d = d′, Alice
will notice Eve that the key agreement failed. Eve will then deduce that the
key is different. This vulnerability has been underlined in Sect. 3.6 of [21] for a
similar scheme. But no countermeasure has been added to protect against this
single fault attack, which can practically be induced by a laser. Countermeasures
should have thus to be considered (see [18]), what may impact the efficiency of
the verification.

6 Conclusion

The resilience of NIST post-quantum candidate algorithms in misuse situations
is worth being investigated. It will help developers to propose implementations
with countermeasures tightly designed to ensure the security in extreme contexts

Assessment of the Key-Reuse Resilience of NewHope 291

(e.g. smart card, IoT) without decreasing too much the efficiency. In this paper,
we describe an active attack against NewHope-CPA-KEM with (public, private)
key pair reuse. This clearly confirms that if the designers’ caveat against any
private key reuse (e.g. temporary caching) is not strictly followed, this results
in a practical, low complexity, key recovery attack. Our study indeed indicates
that setting an upper limit of a few hundreds on the number of authorized key
reuses would not be conservative enough, and already expose private keys to
significant information leakages. While unprotected versions of CCA-KEM are
extremely efficient, implementations of this scheme must be very carefully pro-
tected against any key mismatch oracle leakage if key pairs are potentially reused.
As explained in this paper, this is particularly true for countermeasures against
fault attacks. This might eventually come with a cost in terms of performance.
This consideration may become even more important if one considers second
order side channel or combined attacks, which could be a sequel of this work.

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 327–343. USENIX
Association (2016)

2. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the Key-Reuse
Resilience of NewHope (2019, to appear)

3. Bernstein, D.J., Groot Bruinderink, L., Lange, T., Panny, L.: HILA5 pindakaas:
on the CCA security of lattice-based encryption with error correction. In: Joux,
A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp.
203–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 12

4. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I. The user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra
and number theory (London, 1993)

6. Braithwaite, M.: Experimenting with Post-quantum Cryptography. Posting on the
Google Security Blog (2016)

7. Ding, J.: A Simple Provably Secure Key Exchange Scheme Based on the Learning
with Errors Problem. Cryptology ePrint Archive, Report 2012/688 (2012). https://
eprint.iacr.org/2012/688

8. Ding, J., Alsayigh, S., Saraswathy, R.V., Fluhrer, S.R., Lin, X.: Leakage of signal
function with reused keys in RLWE key exchange. In: IEEE International Confer-
ence on Communications, ICC 2017, pp. 1–6. IEEE (2017)

9. Ding, J., Fluhrer, S., Saraswathy, R.V.: Complete attack on RLWE key exchange
with reused keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP
2018. LNCS, vol. 10946, pp. 467–486. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93638-3 27

10. Fluhrer, S.: Cryptanalysis of Ring-LWE based Key Exchange with Key Share
Reuse. Cryptology ePrint Archive, Report 2016/085 (2016). https://eprint.iacr.
org/2016/085

https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1007/BFb0055716
https://eprint.iacr.org/2012/688
https://eprint.iacr.org/2012/688
https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/978-3-319-93638-3_27
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085

292 A. Bauer et al.

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

12. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part I. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53887-6 29

13. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726,
pp. 2–12. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-
0 2

14. Hoffstein, J., Silverman, J.H.: Protecting NTRU against chosen ciphertext and
reaction attacks. Technical report 16, NTRU Cryptosystems Technical report
(2000)

15. Hoffstein, J., Silverman, J.H.: Reaction attacks against the NTRU public key cryp-
tosystem. Technical report 15, NTRU Cryptosystems Technical report (1999)

16. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 12

17. Howgrave-Graham, N., et al.: The impact of decryption failures on the security
of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
226–246. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4 14

18. Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography. Information Secu-
rity and Cryptography. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29656-7

19. Kirkwood, D., Lackey, B., McVey, J., Motley, M., Solinas, J., Tuller, D.: Failure is
not an option: standardization issues for post-quantum key agreement. In: NIST
Workshop on Cybersecurity in a Post Quantum World (2015)

20. Menezes, A., Ustaoglu, B.: On reusing ephemeral keys in Diffie-Hellman key agree-
ment protocols. IJACT 2(2), 154–158 (2010)

21. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-secure and
masked ring-LWE implementation. IACR Transactions on CHES (2016). https://
eprint.iacr.org/2016/1109

22. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

23. Pöppelmann, T., et al.: NewHope. Submission to Round 1 of NIST Post Quantum
Cryptography Competition (2017)

24. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

25. Schwabe, P., Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope with-
out Reconciliation. Cryptology ePrint Archive, Report 2016/1157 (2016). https://
eprint.iacr.org/2016/1157

https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/978-3-642-29656-7
https://eprint.iacr.org/2016/1109
https://eprint.iacr.org/2016/1109
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/11761679_23
https://eprint.iacr.org/2016/1157
https://eprint.iacr.org/2016/1157

Universal Forgery and Multiple Forgeries
of MergeMAC and Generalized

Constructions

Tetsu Iwata1, Virginie Lallemand2, Gregor Leander2, and Yu Sasaki3(B)

1 Nagoya University, Nagoya, Japan
tetsu.iwata@nagoya-u.jp

2 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum,
Bochum, Germany

{virginie.lallemand,gregor.leander}@rub.de
3 NTT Secure Platform Laboratories, Tokyo, Japan

sasaki.yu@lab.ntt.co.jp

Abstract. This article presents universal forgery and multiple forg-
eries against MergeMAC that has been recently proposed to fit scenar-
ios where bandwidth is limited and where strict time constraints apply.
MergeMAC divides an input message into two parts, m‖m̃, and its tag is
computed by F(P1(m)⊕P2(m̃)), where P1 and P2 are PRFs and F is a
public function. The tag size is 64 bits. The designers claim 64-bit secu-
rity and mention that it might be insecure to accept beyond-birthday-
bound queries.

This paper presents the first third-party analysis of MergeMAC.
Firstly, it is shown that limiting the number of queries up to the birthday
bound is crucial, because a generic universal forgery against CBC-like
MAC can be applied. Afterwards another attack is presented that works
with very few queries, 3 queries and 258.6 computations of F , by applying
a preimage attack against weak F . This breaks the claimed security. The
analysis is then generalized to a MergeMAC variant where F is replaced
with a one-way function H.

Finally, multiple forgeries are discussed in which the attacker’s goal
is to improve the ratio of the number of queries to the number of forged
tags. It is shown that the number of achievable forgeries is quadratic in
the number of queries in the sense of existential forgery, and this is tight
when messages have a particular structure. For universal forgery, tags
for 3q arbitrary chosen messages can be obtained by making 5q queries.

Keywords: MergeMAC · Universal forgery · Multiple forgeries ·
Public finalization · Preimage · Splice-and-cut

1 Introduction

Fully aware of the rapid expansion of pervasive computing and of what is usu-
ally referred to as the Internet of Things (IoT), symmetric cryptographers pro-
posed solutions to ensure appropriate security for the new use cases. Lightweight
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 293–312, 2019.
https://doi.org/10.1007/978-3-030-12612-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_15

294 T. Iwata et al.

cryptography became a hot research topic as it was understood that finding
the correct compromise between security and efficiency was challenging. Many
cryptographers – whether from academic community, from government agencies
or from private companies – proposed new primitives, starting with a myriad
of lightweight block ciphers (like Present [9], Prince [10], SKINNY [5], CLE-
FIA [18] and Simon [4] just to name a few). While in comparison the design of
other primitives seems less popular, some lightweight stream ciphers and hash
functions were also proposed1. The design of Message Authentication Codes was
also addressed, with the publication of SipHash [3], Chaskey [15], of the MAC
mode LightMAC [14] and very recently of MergeMAC [1].

MergeMAC was proposed by Ankele, Böhl and Friedberger at ACNS18. As
for all the Message Authentication Codes, it intends to provide integrity and
authenticity by producing a fixed-length tag from a message and a secret key.
MergeMAC was designed to fit extremely constrained environments with strict
time requirements and limited bandwidth, and in particular for the Controller
Area Network (CAN) bus2. The necessity to bring authentication for this lat-
ter scenario comes from the fact that some of the components at play are also
connected to the Internet, creating remote attack opportunities. The MAC con-
struction proposed by Ankele et al. is based on 3 components: 2 variable input-
length Pseudo-Random Functions (parameterized by independent keys), and a
so-called Merge function. Each PRF modifies one part of the input message,
and the two outputs are recombined by the merge function.

Our Contributions. In this paper, we investigate the resistance of MergeMAC
against forgery attacks in different scenarios.

First, we show that an attacker can take advantage of its special structure
and forge messages by adapting the universal forgery attack proposed by Jia
et al. [13], and this regardless of the choice of the PRF or of the Merge function.
This first technique has a data complexity slightly higher than the limit set by
the designers, which shows its tightness.

Our second results is a universal forgery that breaks the security claim of
MergeMAC by only requiring 3 queries to forge a tag. This attack exploits the
details of the Merge function (in particular its low diffusion and its feed-forward
structure) to perform a preimage attack using the splice-and-cut Meet-in-the-
Middle technique [2].

We also discuss the possibility of forgery attacks in the situation where
the Merge function is an ideal one-way function. We call this construction
MergeMACOW. By using the fact that it is public and can be evaluated offline,
we deduce possible tradeoffs that can be more practical than the generic attack,
but still less efficient than the one using the specificities of the Merge function.

Our last contribution is the analysis of MergeMAC to forge multiple tags:
first in the case of existential forgeries, and next in the case of universal ones.

1 We refer to [7] for a thorough review of lightweight constructions.
2 The CAN bus is the standard system used in most modern cars to connect together

the different components (engine control unit, airbags, audio system, doors, etc.).

Universal Forgery and Multiple Forgeries of MergeMAC 295

Table 1. Overview of the universal forgeries presented in this paper. Constant factor
in the complexities is omitted.

Merge func. Queries Complexity Ref.

Any 232 Memory: 232, time: 232 Sect. 3.1

3-round Chaskey 3 Memory: 28, time: 258.6 Sect. 3.2

One-way function 224 Memory: 248, time: 248 (offline), 224 (online) Sect. 4

Table 2. Multiple forgeries presented in this paper.

Type of forgery Forgeries Queries Ref.

Multiple existential (q − 1)2 2q − 1 Sect. 5.1

Multiple universal 3� + r 5� + 2r Sect. 5.4

The problem is known as the MAC reforgeability [8], where one takes advantage
of the computational efforts for the first forgery to reduce the complexity for
the subsequent forgeries. In the case of existential forgery, we show that it is
possible to forge (q − 1)2 tags by making 2q − 1 queries, i.e., we can obtain
more forgeries than the number of queries. We also discuss the tightness on the
number of queries. In the case of universal forgery, we show that we can forge q
tags by making 2q − 1 queries, and we also show that this can be improved to
forge q = 3� + r tags (0 ≤ r < 3) by making 5� + 2r queries. We remark that no
security claim has been made by the designers regarding multiple forgeries, and
hence our analyses give the first insight about the security of MergeMAC in this
attack scenario. Our results are summarized in Tables 1 and 2.

Paper Outline. Section 2 introduces specification of MergeMAC. Section 3
presents universal forgery against MergeMAC. Section 4 generalizes the analysis
to MergeMACOW. Section 5 discusses multiple forgeries.

2 Specification of MergeMAC

MergeMAC is a new MAC construction that has been recently proposed by
Ankele, Böhl and Friedberger [1] to fit scenarios where bandwidth is limited
and where strict time constraints apply. More precisely, the designers aim for an
efficient solution for authenticating messages on the CAN bus, a communication
system widely used in modern cars to manage the different electronic compo-
nents. In addition to the bandwidth constraint inherent to the CAN technology,
the fact that the components in questions are as critical as brakes or airbags
makes it plain that the MAC must have a low latency.

To meet these requirements, the solution proposed by Ankele et al. uses
different techniques3: for instance, it saves bandwidth by not transmitting some
3 We refer to the specification [1] for details.

296 T. Iwata et al.

low-entropy bits of the message, and it can be built from lightweight ciphers such
as Prince [10] to limit the latency. One of the design ideas that impacted the
most their construction was the wish to speed up MAC verifications by storing
frequently needed intermediate parts in the cache instead of computing them
again. This point leads them to a construction that combines the output of two
PRFs (each operating on a part of the input message) into a merging function
(see Fig. 1). The authors propose to precompute and cache the PRF outputs,
and stress that this solution only requires simple computations, an advantage in
comparison to other cache-able construction.

In what follows, we use the same notation as in the specification. As shown
in Fig. 1, the input of MergeMAC is first split into two parts, m and m̃, each
entering one of the PRFs P1, P2. These PRFs are of variable input length and
depend on two k-bit keys K1, K2. The n-bit outputs of P1, P2 are denoted by ρ
and ρ̃, respectively, and both enter the Merge function which returns the n-bit
tag.

m m̃

P1 P2

ρ ρ̃

Merge

K1 K2

tag

ρ ρ̃

tag

π

Fig. 1. MergeMAC construction (left) and Merge function (right).

The authors state that any MAC scheme that is a secure PRF (as for example
AES-CMAC or Chaskey) can be used to instantiate P1 and P2. To fit in with the
constrained environment use-case, they propose to use Present [9] or Prince [10]
in CMAC mode. The Merge function follows a Davies-Meyer construction with
ρ ⊕ ρ̃ as input: tag = π(ρ ⊕ ρ̃) ⊕ (ρ ⊕ ρ̃), where π is a permutation on n bits.
The authors define π as a 3-round variant of Chaskey [15] operating on 64-bit
blocks (note that the reduced block size is required to achieve compatibility with
the block size of Present/Prince). The other changes made to the round function
can be read in Fig. 2.

The instantiation of Merge can be viewed as an XOR-then-hash construc-
tion, i.e. the XOR of two inputs are processed by a public hash function (Fig. 3).
We will use this view when it is convenient to understand our analysis.

Security Claim. The authors claim that their construction is a provably secure
MAC, and in particular that it reaches n-bit security against forgery attacks.
Their proof requires that P1 and P2 are secure PRFs and that the Merge
function satisfies Random Input Indistinguishability.

Universal Forgery and Multiple Forgeries of MergeMAC 297

Fig. 2. One round of π in Merge. Each wire
represents 16 bits. The order of the variables
(1, 0, 2, 3) follow the one in the design document.

Fig. 3. Another view of Merge.

To prove this last point, they provide a security analysis of the Merge
function with respect to various types of attacks. An argument that they use
repeatedly in the discussion is that, since the input of the Merge function is
unknown and comes from a PRF, an attacker cannot force a specific property
on it, which removes the threat of many attacks such as the ones based on
differentials.

The authors also claim that finding a preimage of Merge is “as hard
as exhaustively guessing the internal state after the initial PRFs” so that
MergeMAC is resistant to attacks based on Meet-in-the-Middle techniques.
They justify the resistance to more advanced MitM attacks by the fact that
“MergeMAC does not implement an inverse function for the merging function
Merge”4.

The designers claim the security for each underlying primitive as in Table 3.
The designers also notice the risk of using a small block size against birthday
attacks demonstrated by the Sweet32 attack [6], and suggest that the amount of
data blocks that are processed by the initial PRFs of MergeMAC must be limited
appropriately. Although the designers do not specify the details of the appropri-
ate level, Table 3 may be interpreted as security claims under the condition that
key is renewed after the number of queries reaches the birthday bound.

3 Universal Forgery Against MergeMAC

In Sect. 3.1, we show that limiting the number of queries up to the birth-
day bound is almost tight because a generic universal forgery can be applied

4 As we will show later in the paper, this argument turns wrong.

298 T. Iwata et al.

Table 3. Security claims according to the underlying primitives [1, Table 1].

Underlying BC Block size Key size Existential forgery resistance

Present 64 80 2−64

Present 64 128 2−64

Prince 64 128 2−64

irrelevant to the choice of PRFs and the Merge function. In Sect. 3.2, we present
an attack only with 3 queries by exploiting the weak mixing effect of π.

3.1 Generic Attacks with High Data Complexity

Jia et al. proposed universal forgery with the birthday-bound complexity that
generally works against CBC-like MACs and PMAC-like MACs [13]. The attack
can be directly applied to MergeMAC. Let m‖m̃ be a challenged message. The
goal of the attacker is producing the tag t for this message without querying
m‖m̃. The attack works as follows.

1. For distinct xi, 1 ≤ i ≤ 2n/2, query xi‖m̃ to obtain a tag ti.
2. For distinct ỹj , 1 ≤ j ≤ 2n/2, query m‖ỹj to obtain a tag tj .
3. Find a collision of ti and tj . Let î, ĵ be the indices of the colliding pair.
4. Query xî‖ỹĵ to obtain the corresponding tag t′.
5. Output t′ as a valid tag for m‖m̃.

Analysis. We view Merge as Fig. 3. We first evaluate the attack by replacing
the hash function in Merge with a permutation. Then, a collision of the tag
implies a collision of the XOR of two PRF’s outputs, namely

P1(xî) ⊕ P2(m̃) = P1(m) ⊕ P2(ỹĵ). (1)

Therefore,

P1(xî) ⊕ P2(ỹĵ) = P1(m) ⊕ P2(m̃), (2)

which shows that the tag for m‖m̃ is equal to the tag for xî‖ỹĵ .
The attack requires 2 ·2n/2 +1 queries, which is roughly O(2n/2) queries (and

the computational cost of O(2n/2) memory accesses to operate on the data).

Analysis for Non-injective Merge Function. We now evaluate the case with
Merge following the actual construction. Then, a collision of ti and tj does not
imply Eq. (1). Suppose that P1(xî) ⊕ P2(m̃) = α,P1(m) ⊕ P2(ỹĵ) = β, α �= β
and Merge(α) = Merge(β). Then Eq. (2) becomes

P1(xî) ⊕ P2(ỹĵ) = P1(m) ⊕ P2(m̃) ⊕ α ⊕ β,

with unknown α and β. Hence, a tag for m‖m̃ cannot be computed.

Universal Forgery and Multiple Forgeries of MergeMAC 299

This issue can be solved by iterating the attack (finding a collision between ti
and tj) several times until the attacker probabilistically hits the case with α = β
as follows. For an n-bit to n-bit function, the number of multicollisions can be
upper bounded by n. Hence, by iterating the entire attack procedure n times,
the attacker can predict the correct tag with probability 1/n. The attack can be
improved slightly. When the attacker makes 2n/2 queries of xi‖m̃ and m‖ỹj , the
attacker can make 2n/2 · √

n queries. This generates n · 2n pairs of i, j, thus n
pairs of î, ĵ, which is sufficient for the attack. In the end, the complexity of the
application of the generic attack is upper bounded by O(

√
n · 2n/2).

The average complexity is smaller than the upper bound. The range size of
an n-bit to n-bit function is e−1 times smaller than the domain size, where e is
the base of the natural logarithm. Hence, an output value should have e distinct
preimages on average. In the end, the average complexity of the generic attack
is O(

√
e · 2n/2), which is O(2n/2).

Complexity for MergeMAC. In MergeMAC, n is 64. Hence, the attack com-
plexity is about

√
64 · 232 ≈ 235. Given that the authors imply to limit the num-

ber of queries up to an appropriate level in the context of the Sweet32 attack,
the generic universal forgery may not break the claimed security but shows the
tightness of their bounding data complexity.

Remarks on Existential Forgery Attacks. One of the reviewers mentioned
that a simple existential forgery with a birthday-bound complexity can be per-
formed. The attack first fixes the first part of the message m to an arbitrary
value, and make queries of O(2n/2) distinct m̃. The collision of the tags, with a
high probability, indicates the collision of the two PRF outputs for m̃ and m̃′.
Then, for an arbitrary choice of the first part of the message m∗, m∗‖m̃ and
m∗‖m̃′ lead to the same tag.

3.2 Universal Forgery with Very Low Data Complexity

In this section we present a universal forgery with a very low data complexity
but with a higher offline computational cost than that of the generic attack.

Attack Overview. The idea is to exploit the fact that the Merge function
mixes the data very lightly. Namely, we present a preimage attack against the
3-round Chaskey with the feed-forward operation used in MergeMAC.

Recall that the core idea of the generic attack is to obtain some information
on the input to the Merge function by finding collisions of the tag. To reduce the
data complexity, we avoid searching for a collision (with many queries), instead
invert the Merge function by spending offline computational cost. Note that
this strategy can only be applied when the finalization function is public, hence
the following attack shows another feature particular to MergeMAC.

Let m‖m̃ be a target. If the attacker obtains the value of P1(m)‖P2(m̃),
the tag can be forged by processing Merge function offline. We notice that

300 T. Iwata et al.

P1(m)‖P2(m̃) can be recovered by 3 queries and 3 executions of the preimage
attack. Let x and ỹ be the former half and the latter half of an arbitrary chosen
message. Then, the attacker queries three messages x‖m̃, m‖ỹ and x‖ỹ to obtain
the corresponding tags t1, t2, and t3 that are expressed as follows.

t1 ← π(P1(x) ⊕ P2(m̃)) ⊕ P1(x) ⊕ P2(m̃)
t2 ← π(P1(m) ⊕ P2(ỹ)) ⊕ P1(m) ⊕ P2(ỹ)
t3 ← π(P1(x) ⊕ P2(ỹ)) ⊕ P1(x) ⊕ P2(ỹ)

Suppose that for a given o, the attacker can execute a preimage attack to find i
such that o ← π(i)⊕ i. Then, by finding preimages of t1, t2, and t3, the attacker
obtains P1(x) ⊕ P2(m̃), P1(m) ⊕ P2(ỹ) and P1(x) ⊕ P2(ỹ). The sum of those 3
values equals P1(m) ⊕ P2(m̃), hence the attacker can compute the tag offline.

Preimage attacks on cryptographic functions have been discussed deeply. We
follow the framework of meet-in-the-middle preimage attacks [2,17]. Due to the
construction, the attack framework is closer to the preimage attack against the
block-cipher based compression functions first demonstrated against AES in the
Davies-Meyer mode [16].

Meet-in-the-Middle Preimage Attacks. Meet-in-the-Middle (MitM) attack
[11] was originally proposed to recover a key of a block cipher. When a ciphertext
c is computed with two encryption algorithms E1 and E2 with independent keys
k1 and k2, i.e. c = E2,k2 ◦E1,k1(p), k1 and k2 can be recovered with a complexity
min{|k1|, |k2|} instead of |k1| + |k2|.

Sasaki [16] presented a framework to apply the MitM attack to t = P (x)⊕x
for recovering unknown x for a given t, where P consists of an iteration of a
round function R with imperfect diffusion. Suppose that R consists of r rounds,
namely t is computed from x as

V0 ← x, Vi ← R(Vi−1) for i = 1, 2, . . . , r, t ← Vr ⊕ V0.

The splice-and-cut technique [2] allows the attacker to regard the first and the
last rounds as consecutive rounds. Indeed, t is computed by Vr ⊕ V0. For any
fixed t, computing V0 (resp. Vr) immediately fixes Vr (resp. V0).

The overview of the attack framework is illustrated in Fig. 4. The attacker
first determines a starting round p and matching round q, such that the compu-
tation from Vp−1 to Vq (forward computation) and the computation from Vp−1 to
V0, Vr = t⊕V0, and from Vr to Vq (backward computation) can be independently
performed. The results of the two computations are matched on Vq.

More precisely, each bit of the state Vp−1 is classified into three groups:

Bfor: all possible values are examined during the forward computation.
Bback: all possible values are examined during the backward computation.
Bfix: the value is fixed during the independent computations.

Suppose that the value of Bfix is fixed. The attacker, for each possible value
of Bfor, proceeds the forward computation without using the value of Bback.

Universal Forgery and Multiple Forgeries of MergeMAC 301

Fig. 4. Overview of meet-in-the-middle preimage attacks for t = H(x) ⊕ x.

Algorithm 1. Meet-in-the-middle preimage attack for t = P (x) ⊕ x

Require: t, p, q, Bfix, Bfor, Bback

Ensure: x
1: for all candidates of Bfix do
2: for all candidates of Bfor do
3: Partially compute Vi ← R(Vi−1) for i = p, p + 1, · · · , q, and store the result

in a list L.
4: end for
5: for all candidates of Bback do
6: Partially compute Vi−1 ← R−1(Vi) for i = p − 1, p − 2, · · · , 1.
7: Partially compute Vr ← V0 ⊕ t.
8: Partially compute Vi−1 ← R−1(Vi) for i = r, r − 1, · · · , q + 1.
9: if the computed value exists in L then

10: Set vp−1 ← (Bfix, Bfor, Bback), and compute corresponding V0 and Vr.
11: if V0 ⊕ Vr = T then
12: return V0.
13: end if
14: end if
15: end for
16: end for

Because Bback is unknown, the forward computation cannot compute all bits of
the state. However, when the diffusion of R is imperfect, the partial computation
can be performed for a few rounds (until round q). Independently, the attacker
computes the backward computation by examining all possible values of Bback

without using the value of Bfor (up to Vq). For a correct combination of Bfix, Bfor,
Bback, the partially computed values always match at Vq, and the correct value
of Vp−1 can be recovered efficiently. Finally, the MitM attack is iterated for the
exhaustive guesses of Bfix. The algorithmic description is given by Algorithm 1.

Attacks on 3-Round Chaskey with Feed-Forward. As shown in Fig. 2, one
round of π consists of two iterations of the half-round transformation. Hence,
3-round transformation of π is regarded as 6-round half-transformation of π.
Let (vi

1, v
i
0, v

i
2, v

i
3) denote a 64-bit internal state which is an input to the ith

half-transformation (or an output from the (i − 1)th transformation), where

302 T. Iwata et al.

fix

fix

fix

fix

7-0

all all all

all 7-0 7-0 all

7-0 7-0 12-5

6-0 12-5

31,6-0 7-0

7-0 7-0 15-8

all all all

all all 15-13, 4-0

12-5

12-5 12-5
carry
guess

8-bit
match

Fig. 5. Details of two independent computations for π(x) ⊕ x. Numbers denote known
bit positions in each independent computation.

i = 0, 1, . . . , 6. We divide this transformation into two independent compu-
tations. Readers may refer to Fig. 5 for the illustration of the independent
computations.

Choices of Bfor, Bback, Bfix. In Fig. 4, the starting round is defined as an input
state to some round. However, we can choose 64 bits of the state in different
rounds as the starting position, as long as they fix the entire transformation. In
our attack, we choose (v3

1 , v3
2 , v2

2 , v2
3) as a starting position. It is easy to see that

Universal Forgery and Multiple Forgeries of MergeMAC 303

all the possible internal state values can be simulated by exhaustively examining
264 values of (v3

1 , v3
2 , v2

2 , v2
3). We then choose Bfor, Bback, and Bfix as follows.

Bfor: bit positions 0 to 4 and 13 to 15 of v2
3 (total 8 bits)

Bback: bit positions 8 to 15 of v3
2 (total 8 bits)

Bfix: v3
1 , v2

2 and bit positions 5 to 12 of v2
3 and bit positions 0 to 7 of v3

2

The forward computation partially computes (v6
1 , v6

2 , v6
2 , v6

3)⊕t and the backward
computation partially computes (v0

1 , v0
2 , v0

2 , v0
3). We match the results of two

independent computations in 8 bits.

Forward Computation. All bits of v3
1 , v2

2 and v2
3 are known, while bit positions 8

to 15 of v3
2 are unknown. When we compute v4

0 ← v3
2 � v3

3 , we only can compute
the 8 LSBs of v4

0 . Similarly, v4
3 ← v4

0 ⊕ (v3
3 ≪ 8) can be computed only in 8

LSBs. With the same analysis, as shown in Fig. 5, the forward computation can
compute 8 bits of v6

2 in bit positions 5 to 12, and thus the corresponding 8 bits
after xoring the tag value. Note that all partial computations of the modular
addition in the forward computation are done from the LSBs, thus we do not
need to consider the unknown carry effect.

Backward Computation. All bits of v3
1 , v2

2 and v3
2 are known, while bit positions 0

to 4 and 13 to 15 of v2
3 are unknown. All bits of v1

0 can be computed while we can
compute only 8 bits (bit positions 0 to 4 and 13 to 15) of v1

3 ← (v2
3 ⊕ v2

0) ≫ 8.
This allows us to compute only 8 bits (bit positions 5 to 12) of v0

3 ← (v1
0 ⊕v1

3) ≫
8. Finally, we compute v0

2 ← v1
0�v0

3 in bit positions 5 to 12, where � is a modular
subtraction. We do not know the carry from bit position 4 to 5. Hence, we guess
the carry and compute v0

2 in both cases. Thus, we have 29 results of the backward
computation.

Complexity Evaluation. For each fixed choice of Bfix, we obtain 28 and 29 results
from two computations. They can match in 8 bits. Correct Bfor, Bback, Bfix

always match, thus we obtain (28 · 29)/28 = 29 candidates, which need to be
tested further. The procedure is iterated for exhaustive guesses of Bfix. Hence,
the complexity to find a preimage is 248 ·29 = 257 computations of π. The attack
requires 28 amount of memory to store the results of the forward computation.

Summary of Attacks. The attack requires 3 queries and 3 executions of the
preimage attack. Hence, the data, time and memory complexities are 3, 258.6(≈
3 × 257) and 28, respectively.

Analysis for Non-injective Merge Function. Let us finally discuss the
analysis for non-injective Merge function. As discussed before, each target has
e preimages on average. The MitM preimage attack exhaustively examines all
internal state values (in an efficient way), hence it collects all of e preimages with
1 execution. When we sum up preimages of t1, t2 and t3, we have e3 combinations
on average. This can be regarded that the success probability of our attack is

304 T. Iwata et al.

e−3 ≈ 0.0498. We can also store those e3 values as candidates, and iterate the
attack for another choice of x and ỹ to obtain another e3 candidates. The correct
internal state is included in both e3 pools of candidates. In this case, the data
and time complexities become 6 and 259.6, respectively.

Discussion of the Attack. MergeMAC is a provably secure MAC under the
assumption that P1 and P2 are secure PRFs and the Merge function satis-
fies Random Input Indistinguishability (RII). The preimage attack on 3-round
Chaskey with feed-forward presented in this section shows that, using the termi-
nology of [1], there exists a (t, q, ε)-RII-adversary, where t = 3×257, q = 2, and ε
is close to 1. As a consequence, as far as we see, our attack contradicts the overall
security claim on MergeMAC by the designers, but it does not contradict the
provable security claim. More precisely, the provable security claim excludes the
possibility of forgery attacks whose success probability is larger than about ε,
i.e., the attack with a high success probability itself is not excluded once ε turns
out to be large.

4 Analysis on MergeMACOW

In this section, the attack against MergeMAC is extended to MergeMACOW, in
which the Merge function of MergeMAC (3-round-Chaskey with feed-forward)
is replaced with a one-way function H.

The generic universal forgery discussed in Sect. 3.1 still works even if H is
invertible. Our approach here is to exploit the feature that H is public, and
thus can be evaluated offline. We preprocess H for various inputs and make a
look-up table so that the attacker can look up the input x efficiently from the
observed H(x). Namely, a precomputation phase is introduced to trade the data
complexity in the online phase by the offline computational cost.

4.1 Definition of MergeMACOW

Let P1,P2 be two PRFs and H be a public one-way function. For a given message
m‖m̃, MergeMACOWcomputes a tag t as follows.

ρ ← P1(m), ρ̃ ← P2(m̃), t ← H(ρ ⊕ ρ̃).

4.2 Tradeoff Between Time and Data

As in Sect. 3, we first explain the attack by assuming that H is injective. The
tradeoff is parameterized by the offline computational cost �, where � < n. The
intuition of this attack is as follows. We first evaluate H for 2� inputs offline
to generate a dictionary to be looked up, i.e. the input is looked up from the
output (instead of applying preimage attack in Sect. 3). Each query is included
in the lookup table with probability 2−(n−�) and as discussed in Sect. 3) we need
to invert 3 tags, i.e. we need to satisfy an event with probability of 2−3(n−�).

Universal Forgery and Multiple Forgeries of MergeMAC 305

Hence, we make 23(n−�)/2 distinct queries for each of the first half and the last
half of the input. The detailed attack procedure is described below.

Offline Phase

1. For 2� distinct z, compute H(z) and store (z,H(z)) in a list Lp.

Online Phase

2. For distinct xi, where i = 1, 2, . . . , 23(n−�)/2, query xi‖m̃ to obtain the tag
tx. If tx is included in Lp, store xi and the corresponding P1(xi) ⊕ P2(m̃) in
a list Lx.

3. For distinct ỹj , where j = 1, 2, . . . , 23(n−�)/2, query m‖ỹj to obtain the tag
ty. If ty is included in Lp, store ỹj and the corresponding P1(m) ⊕ P2(ỹj) in
a list Ly.

4. For all combinations of xi and ỹj in Lx and Ly, query xi‖ỹj to obtain the
corresponding tag t′ until t′ is included in Lp and thus the attacker obtains
the value of P1(xi) ⊕ P2(ỹj).

5. Compute P1(m) ⊕ P2(m̃) by
(P1(xi) ⊕ P2(m̃)

) ⊕ (P1(m1) ⊕ P2(ỹj)
) ⊕ (P1(xi) ⊕ P2(ỹj)

)
.

Compute t = H(P1(m) ⊕ P2(m̃)
)
, and output t as a tag for m‖m̃.

Evaluation and Tradeoff

– In the offline phase (Step 1), time and memory complexities are 2�.
– In Step 2, 23(n−�)/2 queries are made. Each tag is included in Lp with prob-

ability 2n−�, thus 2(n−�)/2 xi are stored in Lx.
– In Step 3, 23(n−�)/2 queries are made and 2(n−�)/2 ỹj are stored in Ly.
– In Step 4, 2(n−�) queries are made and there exists one pair of (xi, ỹj) such

that t′ is included in Lp.

Let Toff , D, and N be offline computational cost (2�), data complexity
(23(n−�)/2), and a cardinality of the tag space (2n), respectively. The tradeoff
curve is represented as

T
3/2
off · D = N3/2. (3)

Setting Toff > 22n/3 leads to D < 2n/2, i.e. the number of online queries can be
reduced compared to the generic attack in Sect. 3.1.

The attack requires to store 2�, 2n−� and 2n−� values for Lp, Lx and Ly,
respectively. When Toff > 22n/3, M = Toff . The online computational complexity,
Ton, is only for processing queried data, thus equals D. As long as Toff > 22n/3,
Ton is negligible.

Example. MergeMAC supposes that N = 264. By spending Toff = 248

computational cost and memory amount, the number of online queries is
reduced to D = 224 with online computational cost Ton = 224, which is
more practical than the general attack with D = 232 queries.

306 T. Iwata et al.

Remarks. The dedicated low data complexity attack against MergeMAC in
Sect. 3.2 succeeds with Toff = 258.6 and D = 3. This is more efficient than
the generic attack against MergeMACOW. As long as it is available, using the
preimage attack against H is more efficient.

5 Multiple Forgeries

In this section, we consider a problem of producing multiple forgeries by making
as small number of queries as possible. This is known as the security notion called
MAC reforgeability [8], where the adversary utilizes the computational complex-
ity for the first forgery to reduce the complexity for the subsequent forgeries.
This notion was also studied in the context of authenticated encryption [12].

5.1 Existential Forgery

We first consider the existential forgery, where we focus on producing as many
forgeries as possible, but we do not care about the content of forged messages.
From the results of Sect. 3.2, we see that given the tags of (m1, m̃1), (m1, m̃2),
and (m2, m̃1), we obtain the tag of (m2, m̃2). In other words, we make 3 queries
to output one forgery, and we need 3 preimage attacks. If we define the rate r
as the number of queries needed to produce one forgery, i.e.,

r =
#queries
#forgeries

,

then we have r = 3. We note that for an ideally secure MAC, if the rate to
produce one forgery is r, then the rate remains the same for multiple forgeries.

Now we call it the basic attack, which can be represented by using the first
matrix in Fig. 6: The matrix shows that we make queries (mi, m̃j) for (i, j) =
(1, 1), (1, 2), (2, 1) that are shown with Q, and we obtain the forgery for (i, j) =
(2, 2) that is shown with X.

We show that, for q ≥ 2, it is possible to output (q − 1)2 forgeries by making
2q − 1 queries. We first present a small example with q = 3. Consider the case
where we make 5 queries represented by the second matrix in Fig. 6. Observe
that we obtain the tag for (i, j) = (2, 2) from the submatrix with i ∈ {1, 2} and
j ∈ {1, 2}, and once this is obtained, we obtain the tag for (i, j) = (2, 3) from
the submatrix with i ∈ {1, 2} and j ∈ {2, 3}. At this point, we have the third
matrix in Fig. 6: It is easy to see that we also obtain the tags for (i, j) = (3, 2)
and (3, 3) from the submatrix with i ∈ {2, 3} and j ∈ {1, 2}, and then from
that with i ∈ {2, 3} and j ∈ {2, 3}. In this case, we need to make 5 queries and
5 executions of the preimage attack to produce 4 forgeries. This gives the rate
r = 5/4 = 1.25, which is lower than the case of the basic attack.

We now generalize this to arbitrarily q ≥ 2. We start with the fourth matrix
in Fig. 6: For each i = 2, 3, . . . , q, we see that we can successively obtain the tag

Universal Forgery and Multiple Forgeries of MergeMAC 307

j
1 2

i
1 Q Q
2 Q X

j
1 2 3

i
1 Q Q Q
2 Q
3 Q

j
1 2 3

i
1 Q Q Q
2 Q X X
3 Q

j
1 2 · · · q

i

1 Q Q · · · Q
2 Q
...
...

q Q

Fig. 6. 1st (leftmost): Messages for basic attack. 2nd: 5 queries for the attack with
q = 3. 3rd: middle status of the attack with q = 3 after forging 2 messages. 4th
(rightmost): (2q − 1) queries for the attack with arbitrary q.

for (i, j) with j = 2, 3, . . . , q. We present the algorithmic description to show the
details of this attack in Algorithm 2.

Algorithm 2. Producing (q − 1)2 forgeries with 2q − 1 queries
Require: q, the oracle O that computes the tag
1: fix m1, . . . , mq and m̃1, . . . , m̃q, where mi’s are distinct and m̃j ’s are distinct.
2: for i = 1, . . . , q, obtain the tag of (mi, m̃1) by making queries to O.
3: for j = 2, . . . , q, obtain the tag of (m1, m̃j) by making queries to O.
4: for i = 2, . . . , q do
5: for j = 2, . . . , q do
6: compute the tag for (mi, m̃j) from the tags of (mi−1, m̃j−1), (mi−1, m̃j), and

(mi, m̃j−1).
7: end for
8: end for

Observe that we make 2q − 1 queries and execute 2q − 1 preimage attacks to
obtain (q − 1)2 forgeries, and this gives the rate r = (2q − 1)/(q − 1)2.

It is interesting to note that for q ≥ 4, the rate becomes smaller than 1, and
thus we obtain more forgeries than the number of queries. However, we remark
that when q is large, the time complexity exceeds 264 as the time complexity of
one preimage attack is 257.

5.2 Tightness of Existential Forgery

In this section, we consider a problem of the tightness on the rate in the exis-
tential forgery. More precisely, we consider the following problem setting:

– Suppose we are given q half messages m1,m2, . . . ,mq and q half messages
m̃1, m̃2, . . . , m̃q.

– To obtain tags of all q2 messages of the form (mi, m̃j), where i, j ∈
{1, 2, . . . , q}, how many queries are necessary?

We show that 2q − 1 queries are necessary, showing the tightness of the attack
presented in the previous section.

308 T. Iwata et al.

For i, j ∈ {1, . . . , q}, let ti,j be the tag of (mi, m̃j), and si,j be the preimage
of ti,j , i.e., we let

{
si,j ← ρi ⊕ ρ̃j ,

ti,j ← π(si,j) ⊕ si,j ,

where ρi ← P1(mi) and ρ̃j ← P2(m̃j).
Now we observe that the relationship, si,j ← ρi ⊕ ρ̃j for i, j ∈ {1, . . . , q}, can

be represented by using a binary q2 × 2q matrix M as follows:

M · ρ = s, (4)

where ρ is a column vector of length 2q and s is a column vector of length q2,
and they are defined as

{
ρ = [ρ1, . . . , ρq, ρ̃1, . . . , ρ̃q]T ,

s = [s1,1, . . . , s1,q, . . . , sq,1, . . . , sq,q]T .

For instance when q = 3, Eq. (4) is
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ1

ρ2

ρ3

ρ̃1

ρ̃2

ρ̃3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s1,1

s1,2

s1,3

s2,1

s2,2

s2,3

s3,1

s3,2

s3,3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now the tightness problem is equivalent to prove the minimum number of
si,j that fully determines the linear system of Eq. (4) having q2 equations and
2q variables. From its form, it is easy to see that the rank of the matrix M is
2q − 1. As a consequence, we need at least 2q − 1 values of si,j to determine the
system, and hence we need to make at least 2q − 1 queries.

We remark that the tightness is obtained with respect to the problem setting
mentioned as above, and there are cases that are not covered. We leave the
tightness of a general case as an open question.

5.3 Universal Forgery

We next consider the universal forgery, where a list of messages to be forged
is given as a challenge. Suppose that (m1, m̃1), . . . , (mq, m̃q) are the challenge
messages. For simplicity, we assume that mi’s are all distinct, and m̃i’s are all
distinct.

We illustrate the case q = 6. Our goal is to output the tags shown with
X in the left matrix given in Fig. 7. For this, we make queries represented by
the middle matrix given in Fig. 7. At this point, we cannot obtain any of the

Universal Forgery and Multiple Forgeries of MergeMAC 309

j
1 2 3 4 5 6

i

1 X
2 X
3 X
4 X
5 X
6 X

j
1 2 3 4 5 6

i

1 X Q
2 Q X Q
3 Q X Q
4 Q X Q
5 Q X Q
6 Q X

j
1 2 3 4 5 6

i

1 X2 Q Q
2 Q X1 Q
3 Q X3 Q
4 Q X4 Q
5 Q X5 Q
6 Q X6

Fig. 7. Left: Messages to be forged given as a challenge. Middle: 2q−1 queries we make
for the attack. Right: One more query is sufficient to compute q tags for the challenge.

tags of the targets. However, observe that one more appropriate query allows
us to obtain the entire q tags of the targets. For instance if we make a query
(m1, m̃3), then we obtain the right matrix in Fig. 7, and we see that it is possible
to compute 6 tags with the order of X1, . . . , X6.

This can be generalized to arbitrary q in an obvious way, and for complete-
ness, we present the algorithmic description of the attack in Algorithm 3.

Algorithm 3. Producing q universal forgeries with 2q − 1 queries
Require: (m1, m̃1), . . . , (mq, m̃q), the oracle O that computes the tag
1: for i = 1, . . . , q−1, obtain the tags of (mi, m̃i+1) and (mi+1, m̃i) by making queries

to O.
2: obtain the tag of (m1, m̃3) by making a query to O.
3: compute the tag for (m2, m̃2) from the tags of (m1, m̃2), (m1, m̃3), and (m2, m̃3).
4: compute the tag for (m1, m̃1) from the tags of (m1, m̃2), (m2, m̃1), and (m2, m̃2).
5: for i = 3, . . . , q do
6: compute the tag for (mi, m̃i) from the tags of (mi−1, m̃i−1), (mi−1, m̃i), and

(mi, m̃i−1).
7: end for

With this attack, we make 2q − 1 queries and it uses executions of 2q − 1
preimage attack to obtain q forgeries, which gives the rate r = (2q − 1)/q ≈ 2.

5.4 Universal Forgery with Better Rate

We show below that it is possible to arrange the queries differently in order to
improve the previous rate and obtain one that is close to 5/3. First, we remark
that 3 tags can be forged by making 5 queries (and 5 preimage attacks), as can
be seen from the following matrix:

j
1 2 3

i
1 X Q Q
2 Q X Q
3 Q X

310 T. Iwata et al.

Now, assume that the number of tags we want to forge is a multiple of 3,
so that we are given a list of challenge messages (m1, m̃1), . . . , (mq, m̃q), where
q = 3�. We start by dividing the list into � lists, each consisting of 3 messages as

{(mi, m̃i), (mi+1, m̃i+1), (mi+2, m̃i+2)}i=1,4,7,...,q−2

and we then treat the lists {(mi, m̃i), (mi+1, m̃i+1), (mi+2, m̃i+2)} individually.
Each requires 5 queries and 5 preimage attacks, so to produce 3� tags, we make
5� queries and execute 5� times the preimage attack, which gives a rate of r =
5�/3� ≈ 1.67.

In case the number of challenges is not a multiple of 3 and is equal to q = 3�+r
with 0 < r < 3, we proceed as before and forge each of the � lists of 3 challenges
with 5 queries and 5 preimage attacks. The remaining r tags can be forged by
making 2 additional queries for each of them, as depicted on the following matrix:

j
· · · 3� − 2 3� − 1 3� 3� + 1 3� + 2

· · · · · ·
3� − 2 X Q Q

i
3� − 1 Q X Q

3� Q X Q
3� + 1 Q X Q
3� + 2 Q X

We formalize this as follows. Assume we forged the first 3� challenges
with the previous technique. If r = 1, we query the tags corresponding to
(m3�+1, m̃3�) together with (m3�, m̃3�+1). We combine them with the previously-
forged (m3�, m̃3�) and we are able to forge (m3�+1, m̃3�+1). If r = 2 we also query
the tags corresponding to (m3�+2, m̃3�+1) and to (m3�+1, m̃3�+2), and combine
them with (m3�+1, m̃3�+1) to forge (m3�+2, m̃3�+2).

To sum up, q = 3�+ r tags (with 0 ≤ r < 3) can be forged by making 5�+2r
queries and the same number of preimage attacks, leading to a rate equal to
r = (5� + 2r)/(3� + r).

Note that we do not know the tightness of the rate, which is left as an open
question.

6 Concluding Remarks

In this paper we presented several attacks and observations on MergeMAC. They
are build around pre-image attacks on the merge functions that are possible
as the merge function is public (generically) and not-one way (in the specific
instance given).

We also studied the reforgeability of MergeMAC, with the result that the
number of forgeries we can produce increases quadratically with the number
of queries. For example, it is possible to produce roughly 264 forgeries using

Universal Forgery and Multiple Forgeries of MergeMAC 311

233 forgeries and 264 computation, so the cost per forgery becomes as small as
legitimately computing one tag.

Finally, we like to mention interesting topics for future work. First, as stated
above, we are not able to prove the tightness of the rate in the case of universal
forgeries. We preformed a limited computer search for the optimal solution and
were able to confirm that no solution with a better rate exist for up to 6 chal-
lenges. In our opinion, proving the optimality, or finding better strategies, is an
interesting (but challenging) open question. As a second topic, generalizations of
MergeMAC could be investigated, where instead of splitting the initial message
into two parts, the message is split into t parts that are processed by t PRFs.
The input to the merge function than becomes the xor of the t outputs of the
PRFs. It would be interesting to see how our analysis could be adopted to this
case.

Acknowledgments. The authors would like to thank organizers of Japan Days 2018
to provide us with an opportunity of the collaboration. We also would like to thank
the anonymous reviewers of CT-RSA 2019 for helpful comments.

References

1. Ankele, R., Böhl, F., Friedberger, S.: MergeMAC: a MAC for authentication with
strict time constraints and limited bandwidth. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 2018. LNCS, vol. 10892, pp. 381–399. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 20

2. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103–
119. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4 7

3. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith,
S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7 28

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013)

5. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol.
9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 5

6. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 24–28 October 2016, pp. 456–467 (2016)

7. Biryukov, A., Perrin, L.: State of the Art in Lightweight Symmetric Cryptography.
IACR Cryptology ePrint Archive 2017, 511 (2017)

8. Black, J., Cochran, M.: MAC reforgeability. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 345–362. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03317-9 21

9. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

https://doi.org/10.1007/978-3-319-93387-0_20
https://doi.org/10.1007/978-3-319-93387-0_20
https://doi.org/10.1007/978-3-642-04159-4_7
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-642-03317-9_21
https://doi.org/10.1007/978-3-642-03317-9_21
https://doi.org/10.1007/978-3-540-74735-2_31

312 T. Iwata et al.

10. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 14

11. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. IEEE Comput, 10(6), 74–84 (1977)

12. Forler, C., List, E., Lucks, S., Wenzel, J.: Reforgeability of authenticated encryption
schemes. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017, Part II. LNCS, vol. 10343,
pp. 19–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3 2

13. Jia, K., Wang, X., Yuan, Z., Xu, G.: Distinguishing and second-preimage attacks
on CBC-like MACs. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 349–361. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10433-6 23

14. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight
block ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 43–59. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 3

15. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B.,
Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 19

16. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an
application to whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–
396. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 22

17. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 8

18. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74619-5 12

https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-319-59870-3_2
https://doi.org/10.1007/978-3-642-10433-6_23
https://doi.org/10.1007/978-3-642-10433-6_23
https://doi.org/10.1007/978-3-662-52993-5_3
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-642-21702-9_22
https://doi.org/10.1007/978-3-642-01001-9_8
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-540-74619-5_12

Linking Stam’s Bounds with Generalized
Truncation

Bart Mennink(B)

Digital Security Group, Radboud University, Nijmegen, The Netherlands
b.mennink@cs.ru.nl

Abstract. One of the most prominent PRP-to-PRF designs is trunca-
tion, a method that found renewed interest with the GCM-SIV authen-
ticated encryption scheme. A long line of research (from 1998 to 2018)
shows that truncating an n-bit random permutation to m bits achieves
tight n−m/2 security. However, it appeared that the result was a direct
consequence of a statistical result of Stam from 1978. In this work, we
aim to gain better understanding in the possibilities and impossibilities
of truncation. We take a closer look at the ancient result, observe that it
is much more general, and link it with a generalized truncation function
that uses an arbitrary post-processing function after the evaluation of the
permutation. The main conclusion is that generalized truncation with
any balanced post-processing achieves the same security bound as plain
truncation. For unbalanced post-processing, security degrades gradually
with the amount of unbalancedness. The results in particular exhibit a
use of the Kullback-Leibler divergence for cryptographic indistinguisha-
bility proofs, without resorting to the recently popularized chi-squared
method.

Keywords: Truncation · Generalization · PRF · Stam’s bounds

1 Introduction

The dominant building block for symmetric cryptographic modes is a pseudoran-
dom permutation (PRP), such as AES [22]. However, for many such modes, most
notably stream-based (authenticated) ciphers [24,28,39] and message authen-
tication codes [5,11,16,49], security is determined by the level at which the
underlying primitive behaves like a random function rather than a random per-
mutation. Stated differently, these modes benefit from being instantiated with
a pseudorandom function (PRF) instead of a PRP. Yet, with an extreme abun-
dance in PRP candidates [1–4,13,14,22] (to name a few), and only very few
dedicated PRFs [10,41], people have resorted to generic methods of transform-
ing a PRP into a PRF.

The well-known PRP-PRF switch [7,9,17,30,31] shows that an n-bit PRP
behaves as a PRF up to approximately 2n/2 evaluations. This “birthday bound”
could be inadequate for lightweight block ciphers, and various “beyond birth-
day bound” modes, schemes that achieve security beyond 2n/2 evaluations,
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 313–329, 2019.
https://doi.org/10.1007/978-3-030-12612-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_16

314 B. Mennink

have appeared. These include the xor of permutations [6,8,18,23,38,42,44–46],
EDM [19,23,40], EDMD [40], and truncation [6,12,25–27,30,47]. We refer to
Mennink and Neves [40,41] for an extensive discussion of the four variants. In
this work, we focus on truncation.

1.1 History of Truncation

Let n,m ∈ N be such that m ≤ n, and let p be an n-bit PRP. Truncation is
defined as simply returning the m leftmost bits of p:

Truncp(x) = leftm(p(x)). (1)

Hall et al. [30], introduced the truncation construction, and demonstrated secu-
rity up to around 2n−m/2 evaluations, but not for the entire parameter spectrum.
Bellare and Impagliazzo [6] gave an improved analysis that demonstrates secu-
rity for a broader selection of n and m. Gilboa and Gueron [25] resolved the
remaining gaps by proving security up to 2n−m/2 evaluations for any choice of
n and m. It turned out, however, that the problem was already solved in 1978
by Stam [47], and that Stam’s bound is stronger than the bounds of [6,25,30]
altogether. Bhattacharya and Nandi [12] transformed Stam’s analysis to the chi-
squared method [23], deriving an identical bound. We elaborate on this upper
bound in Sect. 4.1. Gilboa et al. [27] presented a detailed comparison of the
bounds of Hall et al. [30], Bellare and Impagliazzo [6], Gilboa and Gueron [25],
and Stam [47].

With respect to insecurity, Hall et al. [30] also argued tightness of their
bound by sketching a distinguisher. Gilboa and Gueron [26] presented a formal
derivation of a lower bound, for various choices of n,m, and the number of
evaluations. They showed that the best distinguisher’s success probability is
close to 1 for around 2n−m/2 evaluations. See Sect. 4.1 for the lower bound.

The truncated permutation construction found application as key derivation
function in GCM-SIV [28,29,37], although its use is disputed [15,32].

1.2 Stam’s Bounds

Stam’s 1978 bound [47] is more general than suggested in Sect. 1.1. Intuitively
(a formal treatment of Stam’s bounds is given in Sect. 3), it covers the idea of 2n

possible outcomes being grouped into 2m colors (the number of occurrences per
color not necessarily equal) and measures the distance between sampling with
or without replacement, where the observer learns the color of every sample. In
a later publication in 1986, Stam [48] generalized this result to the case where
the number of colors and the grouping of the outcomes into the colors differs per
sample.

The analysis of Stam is based on the Kullback-Leibler divergence KL(X;Y)
[36] (see Sect. 2.1 for the details), and Pinsker’s inequality [21,34,35] stating that

Δ(X,Y) ≤
(

1
2
KL(X;Y)

)1/2

, (2)

Linking Stam’s Bounds with Generalized Truncation 315

where Δ(X,Y) denotes the statistical distance between X and Y . The exact
same statistical tools were used in the chi-squared method of Dai et al. [23].
However, Dai et al. make an additional step, namely that the Kullback-Leibler
divergence KL(X;Y) is at most the chi-squared divergence χ2(X;Y) (see, again,
Sect. 2.1 for the details). In this work, we rely on Stam’s results and perform
analysis at the level of the Kullback-Leibler divergence.

1.3 Generalized Truncation

The goal of this work is to fully understand the implication of Stam’s bounds
to truncation. To do so, we describe a generalized truncation function GTrunc
in Sect. 4. The function generalizes simple truncation by the evaluation of a
post-processing function post : {0, 1}n × {0, 1}n → {0, 1}m after permutation:

GTruncp(x) = post(x, p(x)). (3)

The function is depicted in Fig. 1. It covers plain truncation of (1) by taking the
post-processing function that ignores its first input and evaluates leftm on its
second input.

However, GTrunc is much more general than Trunc. Most importantly, it feed-
forwards its input x to the post-processing function post. This, on the one hand,
gives an adversary more power, but on the other hand, frustrates statistical
analysis as the output function is not purely a post-processing function on the
output of the permutation p. We consider the security of GTrunc for various
types of post-processing functions. In Sect. 4.2 we consider a simplified variant
where post is balanced and no feed-forward is involved, and show security-wise
equivalence of the resulting construction with Trunc. In Sect. 4.3 we consider the
general GTrunc construction with balanced post-processing and link it with the
bounds of Stam [47,48]. The result shows that, in fact, GTrunc achieves the same
level of security as Trunc, regardless of the choice of post-processing function post
(as long as it is balanced). Finally, we extend the result to arbitrary (possibly
unbalanced) post, and derive a security bound that is slightly worse, depending
on the unbalancedness of post. The derivation is based on Stam’s bounds, with in
addition an analysis of the statistical distance between unbalanced and balanced
random samplings with replacement using the Kullback-Leibler divergence.

We comment on the affect of including a pre-processing function pre in Sect. 5.

2 Security Model

Consider two natural numbers n,m ∈ N. We denote by {0, 1}n the set of n-
bit strings. The set func(n,m) denotes the set of all n-to-m-bit functions, and
perm(n) the set of all n-bit permutations. If m ≤ n, the function leftm : {0, 1}n →
{0, 1}m returns the left m bits of its input. We denote by (m)n the falling factorial
m(m − 1) · · · (m − n + 1) = m!/(m − n)!. For a finite set X , x

$←− X denotes the
uniform random drawing of x from X .

316 B. Mennink

2.1 Statistical Tools

For two distributions X,Y over a finite space Ω, the statistical distance between
X and Y is defined as

Δ(X,Y) =
1
2

∑
ω∈Ω

∣∣Pr (X = ω) − Pr (Y = ω)
∣∣ (4)

= max
Ω∗⊆Ω

{ ∑
ω∈Ω∗

Pr (X = ω) − Pr (Y = ω)

}
. (5)

The Kullback-Leibler divergence [36] between X and Y is defined as

KL(X;Y) =
∑
ω∈Ω

Pr (X = ω) log
(
Pr (X = ω)
Pr (Y = ω)

)
, (6)

with the condition that Pr (Y = ω) > 0 for all ω ∈ Ω and the convention that
0 log(0) = 0. Pinsker’s inequality [21,34,35] gives

Δ(X,Y) ≤
(

1
2
KL(X;Y)

)1/2

. (7)

Remark 1. Dai et al. [23] recently introduced the chi-squared method to cryp-
tography. The chi-squared method also relies on Pinsker’s inequality (7), but in
addition uses that

KL(X;Y) ≤ χ2(X;Y), (8)

where

χ2(X;Y) =
∑
ω∈Ω

(
Pr (X = ω) − Pr (Y = ω)

)2
Pr (Y = ω)

(9)

is the chi-squared divergence [20,43]. What then remains in order to bound
Δ(X,Y) is an analysis of the chi-squared divergence between X and Y . In our
work, we do not go that far, but instead, stop at the Kullback-Leibler divergence.
(This is no critique on the chi-squared method; in many applications, bounding
χ2(X;Y) may be easier to do than bounding KL(X;Y)).

2.2 Pseudorandom Functions

A distinguisher D is an algorithm that is given access to an oracle O; it can make
a certain amount of queries to this oracle, and afterwards it outputs b ∈ {0, 1}.
We focus on computationally unbounded distinguishers, whose complexities are
measured by the number of oracle queries only. As usual, a scheme is secure
if it withstands the strongest possible distinguisher, and we can without loss of
generality restrict our focus to deterministic distinguishers. The reason for this is

Linking Stam’s Bounds with Generalized Truncation 317

that for any probabilistic distinguisher there exists a deterministic distinguisher
with the same success probability.

Let n,m ∈ N such that m ≤ n. Let p ∈ perm(n), and consider a function
F p ∈ func(n,m). We define the pseudorandom function (PRF) security of F p as
a random function against a distinguisher D by

Advprf
F (D) =

∣∣∣Pr
(
DFp

= 1
)

− Pr
(Df = 1

)∣∣∣ , (10)

where the first probability is taken over the random drawing of p
$←− perm(n) and

the second probability over f
$←− func(n,m). (Recall that D is a deterministic

distinguisher).
The definition of PRF security relates to the statistical distance of (4–5) in

the following manner. Let q ∈ N, and consider a deterministic distinguisher D
making q queries. Let X denote the probability distribution of interactions with
F p and Y the probability distribution of interactions with f . Let Ω1 denote the
set of query-response tuples for which distinguisher D outputs 1. Then,

Advprf
F (D) =

∣∣∣∣∣
∑

ω∈Ω1

Pr (X = ω) − Pr (Y = ω)

∣∣∣∣∣ ≤ Δ(X,Y). (11)

Equality is achieved for distinguisher D that returns 1 for any query-response
tuple in Ω∗, where Ω∗ is the set for which (5) achieves its maximum [12].

Remark 2. The above security model considers F p to be “keyed” with a random
permutation p

$←− perm(n). A standard hybrid argument allows us to transform
all results in this work to a complexity-theoretic setting where p is, instead, a
block cipher E with secret key K, and the distinguisher’s capabilities are also
bounded by a time parameter t.

3 Stam’s Bounds

Consider a finite set of N elements, of M types/colors. Denote the partition of the
N elements into the M colors by A1 ∪· · ·∪AM . For color j, write aj = |Aj | > 0,
such that

a1 + · · · + aM = N. (12)

Let q ∈ N. Denote by X the probability distribution of the obtained colors when
sampling q elements without replacement, and by Y the probability distribution
of the obtained colors when sampling with replacement. Both X and Y have
range {1, . . . , M}q. Stam [47] measures the distance between X and Y , and
proves the following bound1.

1 Note that our definition of distance has a factor 1
2

compared to that of Stam.

318 B. Mennink

Theorem 1 (Stam’s bound [47, Theorems 2.2 and 2.3]). Let q,N,M ∈ N

such that M ≤ N , and consider the configuration of M colors of color sizes
(a1, . . . , aM) as in (12). Consider the two distributions X and Y over range
{1, . . . , M}q. We have,

Δ(X,Y) ≤ 1
2

(
(M − 1)q(q − 1)

(N − 1)(N − q + 1)

)1/2

. (13)

Proof. We include Stam’s proof (in our terminology) for completeness.
Write X = (X1, . . . , Xq) and Y = (Y1, . . . , Yq). Denote, for brevity, Xi =

(X1, . . . , Xi) and Y i = (Y1, . . . , Yi) for i = 1, . . . , q. The Kullback-Leibler diver-
gence (6) can be rewritten as

KL(X;Y) ≤ KL(X1;Y1) +
q−1∑
i=1

KL(Xi+1;Yi+1 | Xi,Y i), (14)

where

KL(Xi+1;Yi+1 | Xi,Y i) =
∑

ji∈{1,...,M}i

Pr (Xi = ji) ·

M∑
j=1

Pr (Xi+1 = j | Xi = ji) log
(
Pr (Xi+1 = j | Xi = ji)
Pr (Yi+1 = j | Y i = ji)

)
. (15)

We have

Pr (Xi+1 = j | Xi = ji) =
aj − h

N − i
, (16)

Pr (Yi+1 = j | Y i = ji) =
aj

N
, (17)

where h denotes the number of occurrences of j in sample ji. Thus,

KL(Xi+1;Yi+1 | Xi,Y i) (18)

=
M∑

j=1

∑
ji∈{1,...,M}i

Pr (Xi = ji) · aj − h

N − i
· log

(
aj−h
N−i
aj

N

)
(19)

=
M∑

j=1

min{i,aj−1}∑
h=0

Pr
(
HGN

aj
(i) = h

)
· aj − h

N − i
· log

(
aj−h
N−i
aj

N

)
, (20)

where HGN
aj

(i) is a random variable of i hypergeometrically distributed draws
from N elements with aj success elements. We have

Pr
(
HGN

aj
(i) = h

)
· aj − h

N − i
=

(
i

h

)
(aj)h(N − aj)i−h

(N)i
· aj − h

N − i
(21)

=
(

i

h

)
(aj − 1)h(N − aj)i−h

(N − 1)i
· aj

N
(22)

= Pr
(
HGN−1

aj−1(i) = h
)

· aj

N
. (23)

Linking Stam’s Bounds with Generalized Truncation 319

Note furthermore that

min{i,aj−1}∑
h=0

h · Pr
(
HGN−1

aj−1(i) = h
)

= Ex
(
HGN−1

aj−1(i)
)

=
i(aj − 1)
N − 1

. (24)

We subsequently derive the following for (20), where in the first bounding we
use Jensen’s inequality (log is concave) and in the second bounding we use that
log(α) ≤ α − 1 (for any α > 0):

KL(Xi+1;Yi+1 | Xi,Y i) (25)

=
M∑

j=1

aj

N
·
min{i,aj−1}∑

h=0

Pr
(
HGN−1

aj−1(i) = h
)

· log

(
aj−h
N−i
aj

N

)
(26)

≤
M∑

j=1

aj

N
· log

⎛
⎝min{i,aj−1}∑

h=0

Pr
(
HGN−1

aj−1(i) = h
)

·
aj−h
N−i
aj

N

⎞
⎠ (27)

=
M∑

j=1

aj

N
· log

(
N

aj(N − i)

(
aj − Ex

(
HGN−1

aj−1(i)
)))

(28)

=
M∑

j=1

aj

N
· log

(
N

aj(N − i)

(
aj − i(aj − 1)

N − 1

))
(29)

=
M∑

j=1

aj

N
· log

(
1 +

(N − aj)i
aj(N − 1)(N − i)

)
(30)

≤
M∑

j=1

(
1 − aj

N

)
· i

(N − 1)(N − i)
(31)

=
(M − 1)i

(N − 1)(N − i)
. (32)

The theorem is concluded by combining (7), (14), and (32). ��
It is interesting to note that the bound depends on q, N , and M , but not on

the ai’s. This is caused by the observation that the outcomes are hypergeomet-
rically distributed and that the aj ’s drop out due to concavity of the function
log.

This fact allowed Stam to generalize his result to partitions varying with
i = 1, . . . , q at little effort [48]. More formally, consider a finite set of N elements,
this time with q partitions into Mi types/colors Ai,1∪· · ·∪Ai,Mi

for i = 1, . . . , q.
For color j in sample i, write ai,j = |Ai,j | > 0, such that for all i = 1, . . . , q,

ai,1 + · · · + ai,Mi
= N. (33)

Let q ∈ N. Denote by X the probability distribution of the obtained colors when
sampling q elements without replacement, and by Y the probability distribution

320 B. Mennink

of the obtained colors when sampling with replacement. Both X and Y have
range

{1, . . . , M1} × · · · × {1, . . . , Mq}. (34)

Stam [48] proves the following bound for the distance between X and Y .

Theorem 2 (Stam’s bound [48, Theorem 1]). Let q,N,M1, . . . ,Mq ∈ N such
that M1, . . . ,Mq ≤ N , and consider the configuration of Mi colors of color sizes
{(ai,1, . . . , ai,Mi

)} for i = 1, . . . , q as in (33). Consider the two distributions X
and Y over range {1, . . . , M1} × · · · × {1, . . . , Mq}. We have,

Δ(X,Y) ≤ 1
2

(
q−1∑
i=1

2(Mi+1 − 1)i
(N − 1)(N − q + 1)

)1/2

. (35)

Proof. The proof is a straightforward extension of that of Theorem1: the only
differences are that the indices in the summations and summands of (15) are
updated to the new range {1, . . . , M1}× · · ·×{1, . . . , Mq} and color sizes ai+1,j .
In particular, for fixed i ∈ {1, . . . , q}, (31–32) is superseded by

KL(Xi+1;Yi+1 | Xi,Y i) ≤
Mi+1∑
j=1

(
1 − ai+1,j

N

) i

(N − 1)(N − i)
(36)

=
(Mi+1 − 1)i

(N − 1)(N − i)
. (37)

The result then immediately follows. ��
If M1 = · · · = Mq = M (but not necessarily with identical color sizes

{(ai,1, . . . , ai,M)} for every sampling), the bound of Theorem 2 obviously sim-
plifies to that of Theorem 1.

4 Generalized Truncation

We consider a generalization of Trunc of (1) to arbitrary post-processing func-
tion. As before, let n,m ∈ N such that m ≤ n, and p ∈ perm(n). Let
post : {0, 1}n × {0, 1}n → {0, 1}m be an arbitrary post-processing function.
Generalized truncation is defined as

GTruncp(x) = post(x, p(x)). (38)

Generalized truncation is depicted in Fig. 1. For fixed x ∈ {0, 1}n and y ∈
{0, 1}m, we define

post[x]−1(y) = {z ∈ {0, 1}n | post(x, z) = y}. (39)

The differences between GTrunc and Trunc are subtle but quite significant,
depending on the choice of post.

Linking Stam’s Bounds with Generalized Truncation 321

x p post y\

n

\

n

\

m

Fig. 1. GTrunc of (38) based on n-bit permutation p ∈ perm(n). post is any function.

– The generalized description covers Trunc of (1) by setting post(x, z) =
leftm(z). In Sect. 4.1, we revisit the state of the art on Trunc and re-derive
the best security bound;

– In Sect. 4.2, we consider GTrunc with balanced and x-independent post-
processing, i.e., where the feed-forward of x is discarded, and demonstrate
that its security is equivalent to the security of Trunc;

– In Sect. 4.3, we consider GTrunc with balanced post-processing (not necessarily
discarding the feed-forward). In this case a direct reduction to Trunc seems
impossible but we resort to Stam’s generalized bound of Theorem 2;

– In Sect. 4.4, we consider GTrunc with arbitrary post-processing. Also in this
case, we resort to Theorem 2, but additional analysis is needed to make the
result carry over.

We elaborate on using a pre-processing function in Sect. 5.

4.1 Plain Truncation

We consider the case of plain truncation: Trunc of (1), or equivalently GTrunc of
(38) with post(x, z) = leftm(z).

Truncation first appeared in Hall et al. [30]. It is known to be secure up to
approximately 2n−m/2 queries [6,12,25,30,47]. We describe the bound as a direct
implication of Stam’s bound of Theorem 1. For educational interest, Bhat-
tacharya and Nandi [12] gave a self-contained proof of this result in the chi-
squared method: they derived the exact same bound, which should not come as
surprise in light of Remark 1 in Sect. 2.1.

Theorem 3 (Security of Trunc). Let q, n,m ∈ N such that m ≤ n. Consider
GTrunc of (38) with post(x, z) = leftm(z). For any distinguisher D making at
most q queries,

Advprf
Trunc(D) ≤ 1

2

(
(2m − 1)q(q − 1)

(2n − 1)(2n − q + 1)

)1/2

. (40)

Proof. Fix a deterministic distinguisher D that makes q queries. Let XTruncp

denote the probability distribution of interactions with Truncp for p
$←− perm(n),

and Y f the probability distribution of interaction with f
$←− func(n,m). By (11),

Advprf
Trunc(D) ≤ Δ(XTruncp , Y f). (41)

322 B. Mennink

Put N = 2n, M = 2m, and define the M colors by the first m bits of the sampling,
i.e., two elements z, z′ ∈ {0, 1}n have the same color if leftm(z) = leftm(z′).
Consider the samplings X and Y of Sect. 3. Clearly, Δ(X,XTruncp) = 0: in XTruncp

one samples without replacement and only reveals the first m bits of the drawing,
which is equivalent to revealing the color. As all color sets are of equal size
a1 = · · · = a2m = 2n−m, we also have Δ(Y f , Y) = 0. Thus, by the triangle
inequality,

Advprf
Trunc(D) ≤ Δ(XTruncp , Y f) = Δ(X,Y). (42)

The result now immediately follows from Theorem 1. ��

A simple simplification simplifies the bound of Theorem 3 to
((

q
2

)
/22n−m

)1/2.
The bound is known to be tight: Hall et al. [30] already presented a distinguisher
D meeting this bound up to a constant, but their distinguisher did not come with
an exact analysis. Gilboa and Gueron presented a more detailed attack [26], and
we repeat a simplification of their bound.

Theorem 4 (Insecurity of Trunc [26, Proposition 2, simplified]). Let n,m ∈ N

such that m ≤ n. Consider GTrunc of (38) with post(x, z) = leftm(z). There
exists a distinguisher D making q = 2n−m/2−3 queries, such that

Advprf
Trunc(D) ≥ 1

400

(
1 − e−1/306

)
. (43)

4.2 Balanced and x-Independent Post-processing

We consider security of GTrunc in a limited setting where post is independent of
its first input x (post(·, z) is constant for all z) and where it is balanced (the set
post[x]−1(y) is of the same size for all x, y). Already in the original introduction,
Hall et al. [30] remarked that the analysis of Trunc carries over to balanced post-
processing functions, and it also follows immediately from Theorem 1 (with
different color sets, but still all of equal size 2n−m as the function is balanced).
As a bonus, we present an analysis of this case that reduces the security of
GTrunc with balanced and x-independent post to Trunc.

Theorem 5 (Security of GTrunc with balanced and x-independent post).
Let q, n,m ∈ N such that m ≤ n. Consider GTrunc of (38) with balanced and
x-independent post. For any distinguisher D,

Advprf
GTrunc(D) = Advprf

Trunc(D). (44)

Proof. Without loss of generality, consider post : {0, 1}n → {0, 1}m and write
GTruncp as

GTruncp(x) = post ◦ p(x). (45)

Linking Stam’s Bounds with Generalized Truncation 323

As post is balanced, there exists a balanced function post′ : {0, 1}n → {0, 1}n

such that

post = leftm ◦ post′. (46)

Let p
$←− perm(n), and consider any distinguisher D whose goal it is to distinguish

GTruncp from f
$←− func(n,m). Defining p′ = post′ ◦ p, we obtain that

GTruncp = post ◦ p = leftm ◦ post′ ◦ p = leftm ◦ p′ = Truncp′
, (47)

and thus that

Advprf
GTrunc(D) = Advprf

Trunc(D), (48)

as p′ $←− perm(n) iff p
$←− perm(n) (because post′ is n-to-n and balanced). ��

4.3 Balanced Post-processing

We consider security of GTrunc in a more general setting: post is any balanced
function. We consider this to be the most interesting configuration, as for unbal-
anced post-processing, security decreases (see Sect. 4.4).

Theorem 6 (Security of GTrunc with balanced post). Let q, n,m ∈ N such
that m ≤ n. Consider GTrunc of (38) with balanced post. For any distinguisher
D making at most q queries,

Advprf
Trunc(D) ≤ 1

2

(
(2m − 1)q(q − 1)

(2n − 1)(2n − q + 1)

)1/2

. (49)

Proof. Fix a deterministic distinguisher D that makes q queries. Let XGTruncp

denote the probability distribution of interactions with GTruncp for p
$←− perm(n),

and Y f the probability distribution of interaction with f
$←− func(n,m). By (11),

Advprf
GTrunc(D) ≤ Δ(XGTruncp , Y f). (50)

Put N = 2n, M = 2m. For ease of reasoning, assume (for now) that the distin-
guisher makes queries x1, . . . , xq. For each query xi (i = 1, . . . , q), define the M
colors by the sets Ai,j := post−1[xi](j) for j ∈ {0, 1}m. The q queries thus define
q partitions of the N elements into M colors Ai,1 ∪ · · · ∪ Ai,M for i = 1, . . . , q.
Consider the samplings X and Y of Sect. 3. Clearly, Δ(X,XGTruncp) = 0 as in
the proof of Theorem 3. As post is balanced, all color sets are of equal size
ai,1 = · · · = ai,M = 2n−m for i = 1, . . . , q. We therefore also have Δ(Y f , Y) = 0.
Thus, by the triangle inequality,

Advprf
GTrunc(D) ≤ Δ(X,Y). (51)

We obtain our bound on the remaining distance from Theorem 2. As this
bound holds for any possible distinguisher, and any possible selection of

324 B. Mennink

inputs x1, . . . , xq, we can maximize over all possible deterministic distinguish-
ers. (Formally, the analysis of Theorem 2 consists of a per-query analysis of
KL(Xi+1;Yi+1 | Xi,Y i), where the derived bound in (37) is independent of the
ai+1,j ’s and thus of the input xi+1.) This completes the proof. ��

It is not straightforward to analyze tightness for the general GTrunc construc-
tion, i.e., to derive a lower bound. As demonstrated by Gilboa and Gueron [26],
the analysis for plain truncation is already highly involved: including a feed-
forward of the input only frustrates the analysis, and influences the per-
query probability of a response to occur (unlike the case of plain Trunc of
Sect. 4.1 and GTrunc without feed-forward of Sect. 4.2). However, it is possi-
ble to argue tightness for a reasonable simplification of GTrunc. In detail, if
post : {0, 1}n × {0, 1}n → {0, 1}m is linear in x, i.e.,

post(x, y) = A · x ⊕ post′(y) (52)

for some matrix A ∈ {0, 1}m×n and arbitrary post′ : {0, 1}n → {0, 1}m, an
adversary can “undo the feed-forward” by deciding to attack

(GTrunc′)p(x) = GTruncp(x) ⊕ A · x (53)
= post′(p(x)). (54)

In this way, it returns to the simpler case of Theorem 5. More involved post-
processing functions, where x is used to transform y (e.g., by rotation or multi-
plication) do not fall victim to this technique.

4.4 Arbitrary Post-processing

We finally consider GTrunc with arbitrary post-processing, where we only assume
that any value y ∈ {0, 1}m occurs with positive probability. Let γ ∈ N ∪ {0} be
such that |post−1[x](y) − 2n−m| ≤ γ for any x ∈ {0, 1}n and y ∈ {0, 1}m. This
value γ measures the unbalancedness of post: for γ close to 0, post is close to a
balanced function.

Theorem 7 (Security of GTrunc with arbitrary post). Let q, n,m ∈ N such
that m ≤ n. Consider GTrunc of (38) with arbitrary post. For any distinguisher
D making at most q queries,

Advprf
Trunc(D) ≤ 1

2

(
(2m − 1)q(q − 1)

(2n − 1)(2n − q + 1)

)1/2

+
(

1
2
q
(γ

2n−m

)2
)1/2

. (55)

Proof. The proof is identical to that of Theorem 6, with one important exception:
post does not need to be balanced, and hence Δ(Y f , Y) ≥ 0. We will use Pinsker’s
inequality (7) on the chi-squared divergence (9) to bound this term. For any
i = 1, . . . , q, ji−1 ∈ {1, . . . , 2m}i−1, and j ∈ {1, . . . , 2m},

Pr
(
(Y f)i = j | (Y f)i−1 = ji−1

)
= Pr

(
(Y f)i = j

)
=

1
2m

, (56)

Pr
(
Yi = j | Y i−1 = ji−1

)
= Pr (Yi = j) =

ai,j

2n
. (57)

Linking Stam’s Bounds with Generalized Truncation 325

In particular, for both Y f and Y the drawing of the i-th element is independent
of the first i − 1 samples. From the chi-squared divergence (9), for which we
translate its inductive formula [23] to our setting, we obtain

χ2(Y ;Y f) ≤
q∑

i=1

2m∑
j=1

(
Pr (Yi = j) − Pr

(
(Y f)i = j

))2
Pr ((Y f)i = j)

(58)

=
q∑

i=1

2m∑
j=1

1
22n−m

(
ai,j − 2n−m

)2
. (59)

Using that |ai,j − 2n−m| ≤ γ, we can proceed:

χ2(Y ;Y f) ≤
q∑

i=1

2m∑
j=1

γ2

22n−m
(60)

= q
(γ

2n−m

)2

. (61)

The proof is completed using Pinsker’s inequality (7). ��
The first part of the bound of Theorem 7 is identical to that of Theorem 6,

and the comments on tightness carry over. The second part of the bound comes
from the bounding of Δ(Y f , Y), and in this bounding we use the estimation
|ai,j − 2n−m| ≤ γ, which is non-tight for most of the choices for (i, j). We see no
way of attacking the scheme with query complexity around (2n−m/γ)2, but it is
reasonable to assume that the security degrades with the bias in the balancedness
of post.

It is interesting to note that, had we used the Kullback-Leibler divergence
(6) instead of the chi-squared divergence (9), we would have derived

KL(Y ;Y f) ≤ q
(
1 +

γ

2n−m

)
log

(
1 +

γ

2n−m

)
, (62)

which is in turn at most

q
(
1 +

γ

2n−m

) (γ

2n−m

)
(63)

as log(α) ≤ α − 1 (for any α > 0). In other words, the non-tightness of |ai,j −
2n−m| ≤ γ would have amplified into a slightly worse overall bound. We remark
that this does not contradict (8).

5 Note on Including Pre-processing Function

One might consider generalizing GTrunc of (38) even further to include an arbi-
trary pre-processing function pre : {0, 1}n → {0, 1}n as well:

(GTrunc′)p(x) = post(x, p(pre(x))). (64)

326 B. Mennink

However, we see no justification for doing so. If pre is balanced, it is necessarily
invertible and one can “absorb” it into p as done in the analysis of Sect. 4.2. If it is
unbalanced, this means that there exist distinct x, x′ such that pre(x) = pre(x′),
and consequently, the evaluations (GTrunc′)p(x) and (GTrunc′)p(x′) use the same
source of randomness:

p(pre(x)) = p(pre(x′)). (65)

This does not immediately lead to an attack, most importantly as post only
outputs m ≤ n bits. If, in particular, m � n, a distinguisher may not note that
the same randomness is employed. Nevertheless, unbalanced pre’s seem to set
the stage for a weaker generalized truncation.

Acknowledgments. Bart Mennink is supported by a postdoctoral fellowship from
the Netherlands Organisation for Scientific Research (NWO) under Veni grant
016.Veni.173.017. The author would like to thank the reviewers for their detailed com-
ments and suggestions.

References

1. Adams, C.: The CAST-128 encryption algorithm. Request for Comments (RFC)
2144, May 1997. http://tools.ietf.org/html/rfc2144

2. Aoki, K., et al.: Specification of Camellia – a 128-bit Block Cipher, Version 2.0
(2001). https://info.isl.ntt.co.jp/crypt/eng/camellia/dl/01espec.pdf

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present - towards reaching the limit of lightweight encryption. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 16

4. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

5. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: new methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-44750-4 2

6. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to PRP to PRF conver-
sion. Cryptology ePrint Archive, Report 1999/024 (1999). http://eprint.iacr.org/
1999/024

7. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 32

8. Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff backwards: increasing security
by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054132

http://tools.ietf.org/html/rfc2144
https://info.isl.ntt.co.jp/crypt/eng/camellia/dl/01espec.pdf
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-44750-4_2
https://doi.org/10.1007/3-540-44750-4_2
http://eprint.iacr.org/1999/024
http://eprint.iacr.org/1999/024
https://doi.org/10.1007/3-540-48658-5_32
https://doi.org/10.1007/BFb0054132
https://doi.org/10.1007/BFb0054132

Linking Stam’s Bounds with Generalized Truncation 327

9. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

10. Bernstein, D.J.: SURF: simple unpredictable random function (1997). https://cr.
yp.to/papers.html#surf

11. Bernstein, D.J.: How to stretch random functions: the security of protected counter
sums. J. Cryptol. 12(3), 185–192 (1999). https://doi.org/10.1007/s001459900051

12. Bhattacharya, S., Nandi, M.: A note on the chi-square method: a tool for proving
cryptographic security. Cryptogr. Commun. 10(5), 935–957 (2018). https://doi.
org/10.1007/s12095-017-0276-z

13. Biham, E., Anderson, R., Knudsen, L.: Serpent: a new block cipher proposal. In:
Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-69710-1 15

14. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

15. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user secu-
rity, faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10820, pp. 468–499. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 18

16. Brassard, G.: On computationally secure authentication tags requiring short secret
shared keys. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryp-
tology, pp. 79–86. Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-
4757-0602-4 7

17. Chang, D., Nandi, M.: A short proof of the PRP/PRF switching lemma. Cryptol-
ogy ePrint Archive, Report 2008/078 (2008). http://eprint.iacr.org/2008/078

18. Cogliati, B., Lampe, R., Patarin, J.: The indistinguishability of the XOR of k
permutations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
285–302. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-
0 15

19. Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-
misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 121–149. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 5

20. Csiszár, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf
den Beweis der Ergodizitat von Markoffschen Ketten. Magyar. Tud. Akad. Mat.
Kutató Int. Közl 8, 85–108 (1963)

21. Csiszár, I.: Information-type measure of difference of probability distributions and
indirect observations. Stud. Sci. Math. Hung. 2, 299–318 (1967)

22. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

23. Dai, W., Hoang, V.T., Tessaro, S.: Information-theoretic indistinguishability via
the chi-squared method. In: Katz, J., Shacham, H., (eds.) [33], pp. 497–523.
https://doi.org/10.1007/978-3-319-63697-9 17

24. Dworkin, M.: NIST SP 800–38A: Recommendation for block cipher modes of oper-
ation: methods and techniques (2001)

25. Gilboa, S., Gueron, S.: Distinguishing a truncated random permutation from a ran-
dom function. Cryptology ePrint Archive, Report 2015/773 (2015). http://eprint.
iacr.org/2015/773

https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://cr.yp.to/papers.html#surf
https://cr.yp.to/papers.html#surf
https://doi.org/10.1007/s001459900051
https://doi.org/10.1007/s12095-017-0276-z
https://doi.org/10.1007/s12095-017-0276-z
https://doi.org/10.1007/3-540-69710-1_15
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-319-78381-9_18
https://doi.org/10.1007/978-1-4757-0602-4_7
https://doi.org/10.1007/978-1-4757-0602-4_7
http://eprint.iacr.org/2008/078
https://doi.org/10.1007/978-3-662-46706-0_15
https://doi.org/10.1007/978-3-662-46706-0_15
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-319-63697-9_17
http://eprint.iacr.org/2015/773
http://eprint.iacr.org/2015/773

328 B. Mennink

26. Gilboa, S., Gueron, S.: The advantage of truncated permutations. CoRR
abs/1610.02518 (2016). http://arxiv.org/abs/1610.02518

27. Gilboa, S., Gueron, S., Morris, B.: How many queries are needed to distinguish a
truncated random permutation from a random function? J. Cryptol. 31(1), 162–
171 (2018). https://doi.org/10.1007/s00145-017-9253-0

28. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: specification and analysis.
Cryptology ePrint Archive, Report 2017/168 (2017). http://eprint.iacr.org/2017/
168

29. Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In: Ray, I., Li, N., Kruegel, C. (eds.)
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, 12–16 October 2015, pp. 109–119. ACM, New
York (2015). https://doi.org/10.1145/2810103.2813613

30. Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 370–389. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055742

31. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 2

32. Iwata, T., Seurin, Y.: Reconsidering the security bound of AES-GCM-SIV. IACR
Trans. Symmetric Cryptol. 2017(4), 240–267 (2017). https://doi.org/10.13154/
tosc.v2017.i4.240-267

33. Katz, J., Shacham, H. (eds.): Advances in Cryptology - CRYPTO 2017–37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, 20–24
August 2017, Proceedings, Part III. LNCS, vol. 10403. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-63697-9

34. Kemperman, J.H.: On the optimum rate of transmitting information. Ann. Math.
Stat. 40(6), 2156–2177 (1969). https://doi.org/10.1214/aoms/1177697293

35. Kullback, S.: A lower bound for discrimination information in terms of variation
(corresp.). IEEE Trans. Inf. Theory 13(1), 126–127 (1967). https://doi.org/10.
1109/TIT.1967.1053968

36. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),
79–86 (1951). https://doi.org/10.1214/aoms/1177729694

37. Lindell, Y., Langley, A., Gueron, S.: AES-GCM-SIV: Nonce Misuse-Resistant
Authenticated Encryption. Internet-Draft draft-irtf-cfrg-gcmsiv-05, Internet Engi-
neering Task Force, May 2017, Work in Progress. https://datatracker.ietf.org/doc/
html/draft-irtf-cfrg-gcmsiv-05

38. Lucks, S.: The sum of PRPs is a secure PRF. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45539-6 34

39. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

40. Mennink, B., Neves, S.: Encrypted Davies-Meyer and its dual: towards optimal
security using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 556–583. https://doi.org/10.1007/978-3-319-63697-9 19

41. Mennink, B., Neves, S.: Optimal PRFs from blockcipher designs. IACR Trans.
Symmetric Cryptol. 2017(3), 228–252 (2017). https://doi.org/10.13154/tosc.
v2017.i3.228-252

http://arxiv.org/abs/1610.02518
https://doi.org/10.1007/s00145-017-9253-0
http://eprint.iacr.org/2017/168
http://eprint.iacr.org/2017/168
https://doi.org/10.1145/2810103.2813613
https://doi.org/10.1007/BFb0055742
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.13154/tosc.v2017.i4.240-267
https://doi.org/10.13154/tosc.v2017.i4.240-267
https://doi.org/10.1007/978-3-319-63697-9
https://doi.org/10.1214/aoms/1177697293
https://doi.org/10.1109/TIT.1967.1053968
https://doi.org/10.1109/TIT.1967.1053968
https://doi.org/10.1214/aoms/1177729694
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-gcmsiv-05
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-gcmsiv-05
https://doi.org/10.1007/3-540-45539-6_34
https://doi.org/10.1007/3-540-45539-6_34
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.13154/tosc.v2017.i3.228-252
https://doi.org/10.13154/tosc.v2017.i3.228-252

Linking Stam’s Bounds with Generalized Truncation 329

42. Mennink, B., Preneel, B.: On the XOR of multiple random permutations. In:
Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015.
LNCS, vol. 9092, pp. 619–634. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-28166-7 30

43. Morimoto, T.: Markov processes and the H-theorem. J. Phys. Soc. Jpn. 18(3),
328–331 (1963). https://doi.org/10.1143/JPSJ.18.328

44. Patarin, J.: A proof of security in O(2n) for the Xor of two random permutations.
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85093-9 22

45. Patarin, J.: Introduction to mirror theory: analysis of systems of linear equalities
and linear non equalities for cryptography. Cryptology ePrint Archive, Report
2010/287 (2010). http://eprint.iacr.org/2010/287

46. Patarin, J.: Security in O(2n) for the Xor of two random permutations - proof with
the standard h technique-. Cryptology ePrint Archive, Report 2013/368 (2013).
http://eprint.iacr.org/2013/368

47. Stam, A.J.: Distance between sampling with and without replacement. Stat. Neerl.
32(2), 81–91 (1978). https://doi.org/10.1111/j.1467-9574.1978.tb01387.x

48. Stam, A.J.: A note on sampling with and without replacement. Stat. Neerl. 40(1),
35–38 (1986). https://doi.org/10.1111/j.1467-9574.1986.tb01162.x

49. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981). https://doi.org/10.
1016/0022-0000(81)90033-7

https://doi.org/10.1007/978-3-319-28166-7_30
https://doi.org/10.1007/978-3-319-28166-7_30
https://doi.org/10.1143/JPSJ.18.328
https://doi.org/10.1007/978-3-540-85093-9_22
http://eprint.iacr.org/2010/287
http://eprint.iacr.org/2013/368
https://doi.org/10.1111/j.1467-9574.1978.tb01387.x
https://doi.org/10.1111/j.1467-9574.1986.tb01162.x
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7

Poly-Logarithmic Side Channel Rank
Estimation via Exponential Sampling

Liron David(B) and Avishai Wool(B)

School of Electrical Engineering, Tel Aviv University,
Ramat Aviv, 69978 Tel Aviv, Israel

lirondavid@gmail.com, yash@eng.tau.ac.il

Abstract. Rank estimation is an important tool for a side-channel eval-
uations laboratories. It allows estimating the remaining security after an
attack has been performed, quantified as the time complexity and the
memory consumption required to brute force the key given the leakages
as probability distributions over d subkeys (usually key bytes). These
estimations are particularly useful where the key is not reachable with
exhaustive search.

We propose ESrank, the first rank estimation algorithm that
enjoys provable poly-logarithmic time- and space-complexity, which
also achieves excellent practical performance. Our main idea is to use
exponential sampling to drastically reduce the algorithm’s complexity.
Importantly, ESrank is simple to build from scratch, and requires no
algorithmic tools beyond a sorting function. After rigorously bounding
the accuracy, time and space complexities, we evaluated the performance
of ESrank on a real SCA data corpus, and compared it to the currently-
best histogram-based algorithm. We show that ESrank gives excellent
rank estimation (with roughly a 1-bit margin between lower and upper
bounds), with a performance that is on-par with the Histogram algo-
rithm: a run-time of under 1 s on a standard laptop using 6.5 MB RAM.

1 Introduction

1.1 Background

Side-channel attacks (SCA) represent a serious threat to the security of cryp-
tographic hardware products. As such, they reveal the secret key of a cryp-
tosystem based on leakage information gained from physical implementation of
the cryptosystem on different devices. Information provided by sources such as
timing [14], power consumption [13], electromagnetic emulation [23], electro-
magnetic radiation [2,11] and other sources, can be exploited by SCA to break
cryptosystems.

A security evaluation of a cryptographic device should determine whether
an implementation is secure against such an attack. To do so, the evaluator
needs to determine how much time, what kind of computing power and how

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 330–349, 2019.
https://doi.org/10.1007/978-3-030-12612-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_17

Poly-Logarithmic Side Channel Rank Estimation via Exponential Sampling 331

much storage a malicious attacker would need to recover the key given the side-
channel leakages. The leakage of cryptographic implementations is highly device-
specific, therefore the usual strategy for an evaluation laboratory is to launch a
set of popular attacks, and to determine whether the adversary can break the
implementation (i.e., recover the key) using “reasonable” efforts.

Most of the attacks that have been published in the literature are based on a
“divide-and-conquer” strategy. In the first “divide” part, the cryptanalyst recov-
ers multi-dimensional information about different parts of the key, usually called
subkeys (e.g., each of the d = 16 AES key bytes can be a subkey). In the “con-
quer” part the cryptanalyst combines the information all together in an efficient
way via key enumeration [7,21,25]. In the attacks we consider in this paper, the
information that the SCA provides for each subkey is a probability distribution
over the N candidate values for that subkey, and the SCA probability of a full
key is the product of the SCA probabilities of its d subkeys.

A security evaluator knows the secret key and aims to estimate the number
of decryption attempts the attacker needs to do before he reaches to the correct
key, assuming the attacker uses the SCA’s probability distribution. Clearly enu-
merating the keys in the optimal SCA-predicted order is the best strategy the
evaluator can follow. However, this is limited by the computational power of the
evaluator. This is a worrying situation because it is hard to decide whether an
implementation is “practically secure”. For example, one could enumerate the
250 first keys for an AES implementation (in the optimal order) without finding
the correct key, and then conclude that the implementation is practically secure
because the attacker needs to enumerate beyond 250 number of keys. But, this
does not provide any hint whether the concrete security level is 251 or 2120. This
makes a significant difference in practice, especially in view of the possibility of
improved measurement setups, signal processing, information extraction, etc.,
that should be taken into account for any physical security evaluation, e.g., via
larger security margins.

In this paper, we introduce a new method to estimate the rank of a given
secret key in the optimal SCA-predicted order. Our algorithm enjoys simplicity,
accuracy and provable poly-logarithmic time and memory efficiency and excellent
practical performance.

The Rank Estimation Problem: Given d independent subkey spaces each of
size N with their corresponding probability distributions P1, . . . , Pd such that
Pi is sorted in decreasing order of probabilities, and given a key k∗ indexed by
(k1, . . . , kd), let p∗ = P1(k1) · P2(k2) · . . . · Pd(kd) be the probability of k∗ to be
the correct key. The evaluator would like to estimate the number of full keys
with probability higher than p∗, when the probability of a full key is defined as
the product of its subkey’s probabilities.

In other words, the evaluator would like to estimate k∗’s rank: the position
of the key k∗ in the sorted list of Nd possible keys when the list is sorted
in decreasing probability order, from the most likely key to the least. If the
dimensions, or k∗’s rank are small, one can easily compute the rank of the
correct key by a straightforward key enumeration. However, for a key with a

332 L. David and A. Wool

high rank r, any optimal-order key enumeration requires Ω(r) time—which may
be prohibitive, and the currently-best optimal-order key enumeration algorithm
[25] requires Ω(Nd/2) space, which again may be prohibitive. Hence developing
fast and low-memory algorithms to estimate the rank without enumeration is of
great interest.

1.2 Related Work

The best key enumeration algorithm so far, in terms of optimal-order, was pre-
sented by Veyrat-Charvillon, Gérard, Renauld and Standaert in [25]. However,
its worst case space complexity is Ω(Nd/2) when d is the number of subkey
dimensions and N is the number of candidates per subkey - and its space com-
plexity is Ω(r) when enumerating up to a key at rank r ≤ Nd/2. Thus its space
complexity becomes a bottleneck on real computers with bounded RAM in real-
istic SCA attacks.

Since then several near-optimal key enumeration were proposed [4,5,7,12,15–
17,19,20,22,24,28]. However, none of these key enumeration algorithms enumer-
ate the whole key space within a realistic amount of time and with a realis-
tic amount of computational power: enumerating an exponential key space will
always come at an exponential cost. Hence the need for efficient and accurate
rank estimation for keys that have a high rank.

The first rank estimation algorithm was proposed by Veyrat-Charvillon
et al. [26]. They suggested to organize the keys by sorting their subkeys
according to the a-posteriori probabilities provided, and to represent them as
a high-dimensional dataspace. The full key space can then be partitioned in two
volumes: one defined by the key candidates with probability higher than the
correct key, one defined by the key candidates with probability lower than the
correct key. Using this geometrical representation, the rank estimation problem
can be stated as the one of finding bounds on these “higher” and “lower” vol-
umes. It essentially works by carving volumes representing key candidates on
each side of their boundary, progressively refining the lower and upper bounds
on the key rank. Refining the bounds becomes exponentially difficult at some
point.

A number of works have investigated solutions to improve upon [26]. In par-
ticular, Glowacz et al. [12] presented a rank estimation algorithm that is based
on a convolution of histograms and allows obtaining tight bounds for the key
rank of (even large) keys. This Histogram algorithm is currently the best rank
estimation algorithm we are aware of. The space complexity of this algorithm is
O(dB) where d is the number of dimensions and B is a design parameter con-
trolling the number of the histogram bins. A comparable result was developed
independently by Bernstein et al. [4].

Martin et al. [20] used a score-based rank enumeration, rather than a prob-
ability based rank estimation. They mapped the rank estimation to a knapsack
problem, which can be simplified and expressed as path counting. Subsequently,
in [18] Martin et al. show that their algorithm [20] is mathematically equiv-
alent to the Histogram algorithm [12] for a suitable choice of their respective

Poly-Logarithmic Side Channel Rank Estimation via Exponential Sampling 333

discretization parameter, thus they can both be equally accurate. Since the two
algorithms are equivalent we compared our algorithm’s performance only to that
of the Histogram algorithm [12].

Ye et al. investigated an alternative solution based on a weak Maximum
Likelihood (wML) approach [28], rather than a Maximum Likelihood (ML) one
for the previous examples. They additionally combined this wML approach with
the possibility to approximate the security of an implementation based on “easier
to sample” metrics, e.g., starting from the subkey Success Rates (SR) rather
than their likelihoods. Later Duc et al. [9] described a simple alternative to the
algorithm of Ye et al. and provided an “even easier to sample” bound on the
subkey SR, by exploiting their formal connection with a Mutual Information
metric. Recently, Wang et al. [27] presented a rank estimation for at dependent
score lists.

Choudary et al. [6] presented a method for estimating Massey’s guessing
entropy (GM) which is the statistical expectation of the position of the correct
key in the sorted distribution. Their method allows to estimate the GM within a
few bits. However, the actual guessing entropy (GE), i.e., the rank of the correct
key, is sometimes quite different from the expectation. In contrast, our algorithm
focuses on the real GE.

1.3 Contribution

In this paper we propose a simple and effective new rank estimation method
called ESrank, that is fundamentally different from previous approaches. We
have rigorously analyzed its accuracy, time and space complexities. Our main
idea is to use exponential sampling to drastically reduce the algorithm’s com-
plexity. We prove ESrank has a poly-logarithmic time- and space-complexity:
for a design parameter 1 < γ ≤ 2 ESrank has O(d2

4 (logγ N)2 log(logγ N)) time
and O(d logγ N + d2

16 (logγ N)2) space, and it can be driven to any desired level of
accuracy (trading off time and space against accuracy). Importantly, ESrank is
simple to build from scratch, and requires no algorithmic tools beyond a sorting
function.

Beyond asymptotic analysis, we evaluated the performance of ESrank
through extensive simulations based on a real SCA data corpus, and compared it
to the currently-best histogram-based algorithm. We showed that ESrank gives
excellent rank estimation (with roughly a 1-bit margin between lower and upper
bounds), with a performance that is on-par with the Histogram algorithm: a
run-time of under 1 s, for all ranks up to 2128, on a standard laptop using at
most 6.5 MB RAM. Hence ESrank is a useful addition to the SCA evaluator’s
toolbox.

2 The ESrank Algorithm for the Case d = 2

We start with describing the idea of our algorithm in case d = 2, then we shall
extend this idea for the general case d ≥ 2.

334 L. David and A. Wool

Algorithm 1. Exact rank.
Input: Two non-decreasing probability distributions P1, P2 of size N each, the

correct key k∗ = (k1, k2) and its probability p∗ = P1[k1] · P2[k2].
Output: Rank(k∗).

1 i = 1; j = N ; rank = 0;
2 while i ≤ N and j ≥ 1 do
3 p = P1[i] · P2[j];
4 if p ≥ p∗ then
5 rank = rank + j;
6 i = i + 1;

7 else
8 j = j − 1;

9 return rank;

2.1 An Exact Rank Estimation for d = 2

Definition 1 (Rank(k∗)). Let d non-increasing subkey probability distributions
Pi for 1 ≤ i ≤ d and the correct key k∗ = (k1, . . . , kd) be given. Let p∗ =
P1[k1] · . . . · Pd[kd] be the probability of the correct key. Then, define Rank(k∗)
to be the number of keys (x1, . . . , xd) s.t. P1[x1] · . . . · Pd[xd] ≥ p∗.

Definition 2. Let 2 non-increasing subkey probability distributions P1 and P2,
each of size N , the correct key k∗ = (k1, k2) and an index 1 ≤ i ≤ N be given.
Let p∗ = P1[k1] · P2[k2] be the probability of the correct key. Then define Hi to
be the number of points (i, j) such that P1[i] · P2[j] ≥ p∗, i.e.,

Hi(k∗) = |{(i, j)|P1[i] · P2[j] ≥ p∗}|.

The idea of the algorithm is to find Hi(k∗) for each i. The rank of the correct
key k∗ is the sum of Hi(k∗) over 1 ≤ i ≤ N , i.e.,

Rank(k∗) =
N∑

i=1

Hi(k∗).

The pseudo code is described in Algorithm 1. The correctness of Algorithm 1
stems from the observation that Hi ≥ Hi+1 for all 1 ≤ i ≤ N − 1. Therefore, to
find Hi+1, j starts from Hi and it is decreased until Hi+1 is found.

Proposition 1. The running time of Algorithm 1 is Θ(N).

Proof: In the technical report [8].

Algorithm 1 is reminiscent of the Threshold key enumeration algorithm of
[17].

Poly-Logarithmic Side Channel Rank Estimation via Exponential Sampling 335

2.2 Exponential Sampling with d = 2

To make this algorithm faster, we use exponential sampling. Intuitively, we sam-
ple a set of indices SI and run Algorithm 1 on the SI ×SI grid. On the sampled
indices Algorithm 1 is no longer exact, but we can modify it to produce lower
and upper bounds on Rank(k∗). As we shall see, if we use exponential sampling,
we can bound the inaccuracy introduced by the sampling.

Given a non-increasing subkey probability distribution P of size N , the expo-
nential sampling process returns a sampled probability distribution (SI, SP) of
size Ns where Ns = O(log N). SI contains the sampled indices and SP contains
their corresponding probabilities such that SP [i] = P [SI[i]] for all i ≤ Ns.

The goal of the exponential sampling is to maintain an invariant on the ratio
between sampled indices. Let 1 < γ ≤ 2 be given and let b be the smallest i such
that i/(i − 1) ≤ γ. The first b sampled indices are the first b indices of P . The
rest of the sampled indices are sampled from P at powers of γ. Formally,

Definition 3. Given a non-increasing subkey probability distribution P of size
N , the exponential sampling process returns a sampled probability distribution
(SI, SP) of size Ns such that for all i ≤ Ns − 1:

{
SI[i] = i if i ≤ b

SI[i]/SI[i − 1] ≤ γ and SI[i + 1]/SI[i − 1] > γ otherwise.
(1)

E.g., if γ = 2 then b = 2, and for SI = {1, 2, 4, 8, . . . , N} invariant (1) holds. The
pseudo code of this sampling is described in Algorithm 2. Note that the indices
1 and N are always included in SI.

Lemma 1. If SI is the output of Algorithm 2 then for any index i ≥ b + 1 in
SI it holds that

SI[i] = �γ · SI[i − 1]�.
and

SI[i] − SI[i − 1] = �(γ − 1) · SI[i − 1]�.
Proof: In the technical report [8].

Proposition 2. Let Ns = |SI| be the size the sample returned by Algorithm 2.
Then b + logγ(N/b) ≤ Ns < b + logγ(N/(b − 1)).

Proof: Since b · γNs ≥ N and b · γNs−1 < N .

To calculate the upper and lower bounds of the correct key k∗ = (k1, k2) given
two sampled probability distributions, we generalize Hi(k∗) for the sampled case:

Definition 4. Let two sampled probability distributions (SI, SP1), (SI, SP2),
each of size Ns, the correct key k∗ = (k1, k2), its probability p∗ and an index
1 ≤ i ≤ Ns be given. Then define HS

i to be the number of points (i, j) s.t.
1 ≤ j ≤ N and SP1[i] · P2[j] ≥ p∗, i.e.,

HS
i (k∗) = |{(i, j)|1 ≤ j ≤ N and SP1 [i] · P2 [j] ≥ p∗}|.

336 L. David and A. Wool

Algorithm 2. Exponential Sampling Process.
Input: A probability distribution P of size N , b, γ.
Output: A sampled probability distribution (SI, SP).

1 for i = 1 to b do
2 SI[i] = i; SP [i] = P [i];
3 j = b; i = j + 1; c = j + 1;
4 while i < N do
5 if i/j ≤ γ and (i + 1)/j > γ then
6 SI[c] = i; SP [c] = P [i];
7 c = c + 1; j = i;

8 i = i + 1;

9 SI[c] = N ; SP [c] = P [N];
10 return (SI, SP);

The difference between every two successive indices in the sampled proba-
bility distributions might be bigger than 1, i.e., SI[i + 1] − SI[i] > 1 therefore,
besides counting HS

i for each i ≤ Ns we also need to add the number of points
(i′, j) such that SI[i] < i′ < SI[i+1] for each i ≤ Ns−1. Recall that Algorithm 2
always includes i = N in SI.

Definition 5. Let two sampled probability distributions (SI, SP1), (SI, SP2),
each of size Ns, the correct key k∗ = (k1, k2), its probability p∗ and an index
1 ≤ i ≤ Ns be given. Then define HS

a,b be the number of (i, j) s.t. 1 ≤ j ≤ N
and SI[a] < i < SI[b] and SP1[i] · P2[j] ≥ p∗, i.e.,

HS
a,b(k

∗) = |{(i, j)|1 ≤ j ≤ N and P1[i] · P2[j] ≥ p∗ and SI[a] < i < SI[b]}|.
The idea of Algorithm 3 is to find HS

i (k∗) for each i ∈ {1, . . . , Ns} and
HS

i,i+1(k
∗) for each i ∈ {1, . . . , Ns − 1}. The rank of the correct key k∗ is the

following sum:

Rank(k∗) =
Ns∑

i=1

HS
i (k∗) +

Ns−1∑

i=1

HS
i,i+1(k

∗).

Since we are given sampled distributions, we cannot calculate the exact values
of HS

i (k∗) and HS
i,i+1(k

∗). Instead we calculate upper and lower bounds for each
HS

i (k∗) and HS
i,i+1(k

∗) as illustrated in Fig. 1.

Definition 6. Let up(HS
i (k∗)) be an upper bound of HS

i (k∗) and let
up (HS

i,i+1(k
∗)) be an upper bound of HS

i,i+1(k
∗), i.e.,

HS
i (k∗) ≤ up(HS

i (k∗)) and HS
i,i+1(k

∗) ≤ up(HS
i,i+1(k

∗)).

Definition 7. Let low(HS
i (k∗)) be a lower bound of HS

i (k∗) and let
low(HS

i,i+1(k
∗)) be a lower bound of HS

i,i+1(k
∗), i.e.,

HS
i (k∗) ≥ low(HS

i (k∗)) and HS
i,i+1(k

∗) ≥ low(HS
i (k∗)).

Poly-Logarithmic Side Channel Rank Estimation via Exponential Sampling 337

Algorithm 3. Calculating Upper and Lower bounds.
Input: Sampled probability distributions SP1, SP2 each of size Ns, b, the

correct key k∗ = (k1, k2) and it probability p∗.
Output: Upper and lower bounds on Rank(k∗).

1 iLast = Ns; jLast = Ns;
2 if k1 == 1 then jLast = k2;
3 if k2 == 1 then iLast = k1;
4 i = 1; j = jLast; ub = 0; lb = 0;
5 while i ≤ iLast and j ≥ 1 do
6 pCurr = SP1[i] · SP2[j];
7 if pCurr ≥ p∗ then
8 u = l = SI2[j]; uPrev = u;
9 ub = ub + u; lb = lb + l;

10 if i ≥ b + 1 then
11 ub = ub + uPrev · (SI[i] − SI[i − 1] − 1);
12 lb = lb + l · (SI[i] − SI[i − 1] − 1);

13 i = i + 1;

14 else if j > 1 then
15 pNext = SP1[i] · SP2[j − 1];
16 if pNext < p∗ < pCurr then
17 u = SI[j] − 1; l = SI[j − 1]; uPrev = u;
18 ub = ub + u; lb = lb + l;
19 if i ≥ b + 1 then
20 ub = ub + uPrev · (SI[i] − SI[i − 1] − 1);
21 lb = lb + l · (SI[i] − SI[i − 1] − 1);

22 i = i + 1;

23 else
24 j = j − 1;

25 else
26 j = j − 1;

27 if j < 1 and i ≤ iLast then
28 ub = ub + uPrev · (SI[i] − SI[i − 1] − 1);
29 return (lb, ub);

Therefore, it holds

Ns∑

i=1

low(Hi(k∗)) +
Ns−1∑

i=1

low(Hi,i+1(k∗)) ≤ Rank(k∗)

≤
Ns∑

i=1

up(Hi(k∗)) +
Ns−1∑

i=1

up(Hi,i+1(k∗)).

(2)

Our algorithm is intuitively similar to exponential searching [3]; note that in
our case the parameter γ is fractional.

338 L. David and A. Wool

Fig. 1. The red bars represent the un-sampled Hi’s, and the black grid represents the
sampled indices in SI. For each sampled index 1 ≤ i ≤ Ns the blue circles are upper
and lower bounds on HS

i (k∗). The yellow-shaded rectangles represent HS
i,i+1(k

∗) for
each b ≤ i ≤ Ns −1, for two different keys. Note that the yellow-shaded rectangles stop
exactly one index before the sampled indices, in both dimensions. (Color figure online)

2.3 Bounding the Sampled Distributions

Given two probability distributions P1 and P2, each of size N , we first sample the
indices using Algorithm 2. We get sampled probability distributions (SI, SP1)
and (SI, SP2) each of size Ns when SI is the set of sampled indices and SP1, SP2

are the corresponding sampled probabilities. Given these sampled probability
distributions, the next step is to calculate an upper bound and a lower bound
for Rank(k∗). This is done in Algorithm 3.

To do this, it keeps two variables: ub for the upper bound and lb for the lower
bound. At the beginning, both ub and lb are initialized to 0.

Definition 8. Given a key k∗, and given 1 ≤ i ≤ Ns, let ui be the value of u at
iteration i in Algorithm 3 and let li be the value of l at iteration i in Algorithm 3.

Algorithm 3 starts with i = 1 and j = Ns. It decreases j until one of the two
options happens:
(a) (line 16) We reach the highest j such that

SP1[i] · SP2[j] < p∗ < SP1[i] · SP2[j − 1].

In this case (i, j) ∈ HS
i (k∗) but (i, j − 1) /∈ HS

i (k∗), therefore

SI[j − 1] ≤ HS
i (k∗) ≤ SI[j] − 1.

Therefore the values of li and ui become

li = SI[j − 1] and ui = SI[j] − 1, (3)

Poly-Logarithmic Side Channel Rank Estimation via Exponential Sampling 339

and the running totals ub and lb are updated (line 9).
(b) (line 7) We reach the highest j such that

SP1[i] · SP2[j] ≥ p∗.

In this case we have the exact value of HS
i (k∗) which is

HS
i (k∗) = SI[j].

Therefore the values of li and ui become

li = ui = SI[j], (4)

and the running totals ub and lb are updated (line 18).
In the next step, after finding bounds on HS

i , the algorithm moves to i+1 and
finds bounds on HS

i+1. Since HS
i ≥ HS

i+1 we start from j of the previous iteration
i.e., j s.t. SI[j−1] ≤ HS

i ≤ SI[j] and decrease it to get the corresponding bounds
on HS

i+1.
Once i ≥ b + 1 (lines 10, 19) the difference SI[i] − SI[i − 1] ≥ 1 therefore

HS
i−1,i(k

∗) ≥ 1 and it should be added. To upper bound this number we multiply
the upper bound of HS

i−1, which is uPrevi = ui−1, by the width of HS
i−1,i(k

∗),
which is (SI[i] − SI[i − 1] − 1) (lines 11, 20). To lower bound HS

i−1,i(k
∗) we

multiply the lower bound of HS
i , which is li by the width of HS

i−1,i(k
∗), (lines

12, 21); see Fig. 1.

Theorem 1. Let two sampled probability distributions SP1 and SP2, which are
sampled from the probability distributions P1 and P2 respectively using Algo-
rithm 2 with γ > 1 be given and let b be the smallest i such that i/(i − 1) ≤ γ.
For a key k∗, let ub and lb be the outputs of Algorithm 3. Then ub/lb ≤ γ2.

Proof: From Eq. (2) it holds that

ub =
Ns∑

i=1

up(Hi(k∗)) +
Ns−1∑

i=1

up(Hi,i+1(k∗)).

Since

up(HS
i (k∗)) = ui and up(Hi,i+1(k∗)) = ui · (SI[i + 1] − SI[i] − 1)

we get

ub =
Ns∑

i=1

ui +
Ns−1∑

i=1

ui · (SI[i + 1] − SI[i] − 1).

340 L. David and A. Wool

Since SI[i + 1] − SI[i] = 1 for all 1 ≤ i ≤ b − 1, the first b − 1 elements of the
second sum are 0.

ub =
Ns∑

i=1

ui +
Ns−1∑

i=b

ui · (SI[i + 1] − SI[i]) − 1)

b−1∑

i=1

ui +
Ns−1∑

i=b

(
ui + ui · (SI[i + 1] − SI[i] − 1)

)
+ uNs

b−1∑

i=1

ui +
Ns−1∑

i=b

ui · (SI[i + 1] − SI[i])) + uNs

Separating the b’th term from the second sum we get

ub ≤
(b−1∑

i=1

ui

)
+ub · (SI[b+1]−SI[b])+uNs

+
Ns−1∑

i=b+1

ui · (SI[i+1]−SI[i]). (5)

Similarly from Eq. (2) it holds that

lb =
Ns∑

i=1

low(Hi(k∗)) +
Ns−1∑

i=1

low(Hi,i+1(k∗)).

Since

low(HS
i (k∗)) = li and low(Hi,i+1(k∗)) = li+1 · (SI[i + 1] − SI[i] − 1)

(Note the shift in indices where the multiplication is by the lower bound of i+1)
we get

lb =
Ns∑

i=1

li +
Ns−1∑

i=1

li+1 · (SI[i + 1] − SI[i] − 1).

Again the first b − 1 elements of the second sum are 0, therefore

lb =
Ns∑

i=1

li +
Ns−1∑

i=b

li+1 · (SI[i + 1] − SI[i] − 1).

By shifting index i by 1 in the second sum, we get

lb =
Ns∑

i=1

li +
Ns∑

i=b+1

li · (SI[i] − SI[i − 1] − 1)

=
b∑

i=1

li +
Ns∑

i=b+1

(
li + li · (SI[i] − SI[i − 1] − 1)

)

=
b∑

i=1

li +
Ns∑

i=b+1

li · (SI[i] − SI[i − 1])

≥
b∑

i=1

li +
Ns−1∑

i=b+1

li · (SI1[i] − SI1[i − 1]).

(6)

Poly-Logarithmic Side Channel Rank Estimation via Exponential Sampling 341

In order to show ub/lb ≤ γ2, we prove the following two Lemmas:

Lemma 2.
(Ns−1∑

i=b+1

ui · (SI[i + 1] − SI[i])
)/(Ns−1∑

i=b+1

li · (SI[i] − SI[i − 1])
)

≤ γ2

Lemma 3.
((b−1∑

i=1

ui

)
+ ub · (SI[b + 1] − SI[b]) + uNs

)/(b∑

i=1

li

)
≤ γ2.

3 The General Case d > 2

Given d > 2 sampled probability distributions (SI1, SP1), . . . , (SId, SPd), and
the correct key k∗ = (k1, . . . , kd), we now follow the intuition of the d = 2 case
to solve the general case. To do so, we organize the d distributions into pairs,
merge the pairs into d/2 joint distributions, sub-sample the joint distributions,
and continue in the same way until we get to a single pair of distributions
sampled from the Nd/2-dimensioned half-keys. We achieve this via a sequence
of algorithms described below.

3.1 Merging Two Sampled Distributions into a Joint Distribution

Given two sampled non-increasing probability distributions (SI1, SP1),
(SI2, SP2), each of size Ns, we wish to merge them into one non-increasing
distribution, and compute lower and upper bounds on the ranks of the points.
Algorithm 4 implements this task.

First, the algorithm goes over the grid of N2
s points (i, j) such that 1 ≤ i ≤ Ns

and 1 ≤ j ≤ Ns. For each point (i, j) it calculates the point’s probability SP1[i] ·
SP2[j]. Then, it sorts these points in decreasing order of their probabilities.

Given two consecutive points (i1, j1) and (i2, j2) in the sorted order such
that Prob(i1, j1) ≥ Prob(i2, j2), all the points whose probability is greater than
Prob(i1, j1) are also greater than Prob(i2, j2), therefore, all the points in the
rank of (i1, j1) are contained in the rank of (i2, j2). Relying on this observa-
tion, if we know the order of the N2

s points according to their probabilities, we
can bound the accumulative rank of these points while going over them from
the most likely point to the least. In this way, the upper-bound of the rank of
the current point (ic, jc) is the upper bound of the previous point (ip, jp) plus
the following expressions:

+ (SI[jp + 1] − SI[jp]) · (SI[ip + 1] − SI[ip] − 1)
+ SI[jp + 1] − SI[jp] − 1
+ 1
= (SI[jp + 1] − SI[jp]) · (SI[ip + 1] − SI[ip]).

(7)

342 L. David and A. Wool

Algorithm 4. Calculating the joint probability distribution.
Input: Sampled probability distributions SP1, SP2 each of size Ns.
Output: Joint probability distribution.

1 r = 1;
2 for i = 1 to Ns do
3 for j = 1 to Ns do
4 Y (r, 1) = SP1[i] · SP2[j]; Y (r, 2) = (i, j);
5 r = r + 1;

6 Y = Sort(Y) in decreasing order of Y (r, 1) ;
7 ub(1, 1) = 1; ub(1, 2) = SP1[1] · SP2[1];
8 lb(1, 1) = 1; lb(1, 2) = SP1[1] · SP2[1];
9 for r = 2 to N2

s do
10 (ic, jc) = Y (r, 2); (ip, jp) = Y (r − 1, 2);
11 ub(r, 1) = ub(r − 1, 1) + (SI(jp + 1) − SI(jp)) · (SI(ip + 1) − SI(ip);
12 lb(r, 1) = lb(r − 1, 1) + (SI(jc) − SI(jc − 1)) · (SI(ic) − SI1(ic − 1);
13 ub(r, 2) = lb(r, 2) = Y (r, 2);

14 return (ub, lb);

The first term in (7), (SI[jp + 1] − SI[jp]) · (SI[ip + 1] − SI[ip] − 1), represents
the number of points that might come after the previous point and before the
current point, which are not on the SI grid. I.e., these are the points (i, j) s.t.

SI[ip] < i < SI[ip + 1] and SI[jp] ≤ j < SI[jp + 1].

SI[jp + 1] is not included since we haven’t reached that point yet.
The second term in (7), SI[jp + 1] − SI[jp] − 1, represents the number of

points that might come after the previous point and before the current point
which are on the SI grid. I.e., these are the points (i, j) s.t.

i = SI[ip] and SI[jp] < j < SI[jp + 1].

SI[jp] is not included since the point (SI[ip], SI[jp]) is the previous point and
it was already included and SI[jp + 1] is not included since we haven’t reached
that point yet.

The last addition in (7) is 1, accounting for the current point itself.
The resulting expression can be seen in Algorithm 4 (line 11). A similar

derivation can be done for the lower bound (omitted).

3.2 Sampling the Joint Probability Distribution

The output of Algorithm 4 is a distribution over N2
s elements. We now show

that we can sub-sample this distribution, via exponential sampling, using the
same parameters b and γ used to create the one-dimension samples. Theorem 2
below shows that a sub-sampling with the same b and γ always exists.

We would like to sample this joint probability distribution using Algorithm2,
using b and γ, except now instead of the 1-dimensional ranks we sample using
the rank-upper/lower-bounds, See Algorithm 5.

Poly-Logarithmic Side Channel Rank Estimation via Exponential Sampling 343

Algorithm 5. Sub-Sampling the joint distribution.
Input: A joint probability distribution (inSI, inSP) of size N2

s , b, γ.
Output: A sampled probability distribution (SI, SP).

1 for i = 1 to b do
2 SI[i] = inSI[i]; SP [i] = inSP [i];
3 j = b; i = j + 1; c = j + 1;
4 while i < N2

s do
5 if inSI[i]/inSI[j] ≤ γ and inSI[i + 1]/inSI[j] > γ then
6 SI[c] = inSI[i]; SP [c] = inSP [i];
7 c = c + 1; j = i;

8 i = i + 1;

9 SI[c] = inSI[N2
s]; SP [c] = inSP [N2

s];
10 return (SI, SP);

For this, we shall prove in Lemma 5 that the first b indices of the joint
probability distribution are 1, . . . , b and we shall prove in Theorem 2 that the
ratio between any two successive ranks is at most γ.

Lemma 4. For any index i ≥ b + 1 in SI it holds that

SI[i] − SI[i − 1] ≤ (γ − 1) · SI[i − 1].

Lemma 5. Given two sampled probability distributions (SI1, SP1) and
(SI2, SP2) that are sampled by Algorithm 2 merged by Algorithm 4. The first
b upper ranks in the upper joint probability distribution are the integers 1, . . . , b
and the first b lower ranks in the lower joint probability distribution are the
integers 1, . . . , b.

Proof: According to the sampling process in Algorithm 2 it holds: ∀i ≤ b
SI1[i] = i and SI2[i] = i. Therefore, the joint probability contains the indices of
(i, j) ∈ {1, . . . , b} × {1, . . . , b}. Since the first b points with the highest probabil-
ities are somewhere in the square: {1, . . . , b}×{1, . . . , b} . The rank of the first b
composed only from points in this square, therefore for i ≤ b, the upper bound
and lower bound of the i’th element in the joint distribution are equal to each
other and equal to i.

Theorem 2. Given the joint probability distribution of the sampled probability
distributions (SI1, SP1), (SI2, SP2), The ratio between any two consecutive upper
(lower) ranks is at most γ, where 1 < γ ≤ 2.

Proof: In the technical report [8].

Theorem 2 shows that in the joint Ns × Ns distribution, the upper (lower)
bounds of every two consecutive points (in sorted order) obey the invariant
ub(ic, jc) ≤ γ · ub(ip, jp).

Corollary 1: The sample produced by Algorithm 5 on an input distribution of
size N2

s consists of O(Ns) ranks.

344 L. David and A. Wool

Algorithm 6. ESrank: Calculating the upper and lower bounds for d > 2.
Input: The probability distributions P1, ..., Pd, the correct key k∗ = (k1, ..., kd),

b and γ.
Output: Upper and lower bounds of rank(k∗).

1 for i = 1 to d do
2 (SIi, SPi) = Alg2(Pi, b, γ) ; // Sample the input distributions

3 dim = d;
4 while dim �= 2 do
5 for i = 1 to dim/2 do
6 (ubi, lbi) = Alg4((SI2i−1, SP2i−1), (SI2i, SP2i)) ; // Merge

7 (SIi, SPi) = Alg5(ubi) ; // Sub-Sample

8 dim = dim/2;

9 (ub′, lb′) = Alg3((SI1, SP1), (SI2, SP2)) ; // Calculate upper bound

10 dim = d;
11 while dim �= 2 do
12 for i = 1 to dim/2 do
13 (ubi, lbi) = Alg4((SI2i−1, SP2i−1), (SI2i, SP2i)) ; // Merge

14 (SIi, SPi) = Alg5(lbi) ; // Sub-Sample

15 dim = dim/2;

16 (ub′′, lb′′) = Alg3((SI1, SP1), (SI2, SP2)) ; // Calculate lower bound

17 return (ub′, lb′′);

3.3 The ESrank Algorithm: Putting it all Together

Given d > 2 sampled probability distributions (SI1, SP1), . . . , (SId, SPd), and
the correct key k∗ = (k1, . . . , kd), we first merge the d sampled probability
distributions into d/2 sampled joint distributions, so that we get d/2 sampled
upper- and lower-bounded distributions. Now, We take the d/2 upper-bounded
distributions and merge them into d/4 sampled upper-bounded distributions,
and similarly for the lower bounded distribution. We continue in the same way
until we get two pairs of joint distributions: one pair of upper sampled joint
distributions and one pair of lower sampled joint distributions. Now, we apply
Algorithm 3 on the upper pair sampled joint distribution to get the upper bound
of Rank(k∗) and again, we apply Algorithm 3 on the lower pair sampled joint
distribution to get the lower bound of Rank(k∗). Algorithm 6 shows the complete
pseudo-code for ESrank.

3.4 Theoretical Performance

Time Complexity. At each level of Algorithm 6 it uses Algorithm 4 to merge
the sampled distributions received from the previous level. Algorithm 4 goes over

Poly-Logarithmic Side Channel Rank Estimation via Exponential Sampling 345

N2
s pairs, calculates their probabilities using Θ(N2

s) time, and sorts them using
Θ(N2

s · log Ns) time. Let T (d, γ) be the total the running time. Then

T (d, γ) ≤
log d−2∑

i=1

d

2i
(2i−1 logγ N)2 log (2i−1 logγ N)2

≤ d2

4
(logγ N)2 log(logγ N).

I.e., we see that ESrank has a poly-logarithmic time complexity (in N).

Accuracy. Assume the correct key is k∗ = (k1, . . . , kd). For a key (ki, ki+1) and
(SIi, SPi), (SIi+1, SPi+1) let ki,i+1 be the real rank of (ki, ki+1). At the lowest
level Theorem 1 and Algorithm 3 give that up(ki, ki+1) ≤ γ2ki,i+1. In the next
level, each rank in the sampled joint distribution is multiplied by at most γ2,
therefore each term in the sum that composes up(γ2ki,i+1, γ

2ki+2,i+3) is mul-
tiplied by at most γ4. Hence up(γ2ki,i+1, γ

2ki+2,i+3) ≤ γ4up(ki,i+1, ki+2,i+3) ≤
γ4γ2ki,i+1,i+2,i+3 = γ6ki,i+1,i+2,i+3. We continue in the same way, and get

up(Rank(k∗))/Rank(k∗) ≤ γ
∑log d

i=1 2i = γ2d−2.

Since rank(k∗) might be any value in [low(Rank(k∗), up(Rank(k∗)], we get

accuracy(d, γ) = up(Rank(k∗))/low(Rank(k∗)) ≤ γ2d−2.

E.g., for AES-128 with a preprocessing step of merging the 16 8-bit distributions
into d = 8 16-bit distributions we get 2d − 2 = 14.

Space Complexity. In the first step we need to store d distributions of size
logγ N from Algorithm 2. In order to merge each pair of distributions into one,
we need addition memory of (logγ N)2. After merging 2 distributions each of size
(logγ N), we get one sampled distribution of size (logγ N2) which is 2(logγ N).
Since we do not need the original pair any more, we can overwrite this space of
size 2(logγ N) and store the new distribution into it. In the same way, in order to
merge two distributions of size logγ N2 we need additional space of (logγ N2)2,
and the merged distribution will overwrite the original pair. In the last step,
we need to merge 4 distributions, each of size Nd/4, therefore the maximum
additional space we need is (logγ Nd/4)2. In total we get d logγ N +(logγ Nd/4)2

which is

space(d, γ) = d logγ N +
d2

16
(logγ N)2.

4 Empirical Evaluation

We evaluated the performance of the ESrank algorithm through an extensive
simulation study. We compared our algorithm to the currently best rank esti-
mation algorithm: the Histogram algorithm of [12]. We implemented both in

346 L. David and A. Wool

Fig. 2. The accuracy (log2 of the ratio between the upper- and lower-bounds) for the
ESrank algorithm as a function of log2(Rank(k∗)) for different parameter settings:
γ = 1.05 (green), γ = 1.033 (blue), γ = 1.025 (yellow). (Color figure online)

Matlab. We ran both algorithms on a 2.80 GHz i7 PC with 8 GB RAM running
Microsoft windows 7, 64bit.

For the performance evaluation we used the data of [10]. Within this data
corpus there are 611 probability distribution sets gathered from a specific SCA.
The SCA of [10] was against AES [1] with 128-bits keys running on an embedded
processor with an unstable clock. Each set represents a particular setting of the
SCA: number of traces used, whether the clock was jittered, and the values of
tunable attack parameters. The attack grouped the key bits into 16 8-bit subkeys,
and hence its output probability distributions are over these byte values. Each
set in the corpus consists of the correct secret key and 16 distributions, one per
subkey. The distributions are sorted in non-increasing order of probability, each
of length 28. We used the same technique suggested in [12]: merge the d = 16
probability lists of size N = 28 into d = 8 lists of size N = 216. We measured
the upper bound, lower bound, time and space for each trace using ESrank and
the Histogram rank estimation.

Bound Tightness. Figure 2 shows that the analytical performance of Sect. 3.4
indeed agrees with the empirical results. For different values of γ we get accuracy
which corresponds to at most γ14: e.g., when γ = 1.05 Fig. 2 shows a margin of
at most 0.9 bits. We can see that as γ becomes closer to 1, the accuracy becomes
closer to 0. As we expected, the maximum gap between the upper bound and
the lower bound happens for ranks around 100−120 since the difference between
any two successive indices in the sampled set becomes greater when the indices
becomes greater.

Time and Space Analysis. Table 1 shows the time, the space and the percent-
age of the traces for which the accuracy is better than 1 bit, for ESrank with
γ = 1.025, 1.033, 1.05, 1.065 and for Histogram [12] with B = 50,000, 35,000,

Poly-Logarithmic Side Channel Rank Estimation via Exponential Sampling 347

Table 1. Performance summary of the ESrank and Histogram algorithms. The Accu-
racy column indicates the percentage of traces for which the difference between the
upper- and lower-bounds of the estimated ranks was below 1 bit.

Time (Seconds) Space (MB) Accuracy < 1 bit (%)

γ = 1.025 0.59 6.48 100

γ = 1.033 0.3 3.68 100

γ = 1.05 0.16 1.60 99.83

γ = 1.065 0.05 0.96 56.95

B = 50K 0.62 3.20 100

B = 35K 0.29 2.24 100

B = 20K 0.12 1.28 100

B = 5K 0.01 0.32 99.83

20,000, 5,000. As we can see, the two algorithms, using the described parame-
ters - all take less than 0.6 s and use under 6.5 MB of memory. In a practical
sense ESrank is on-par with the Histogram algorithm: both exhibit a run-time
of under 1 s using less than 6.5 MB, to get a 1-bit margin of uncertainty in the
rank for all ranks up to 2128.

5 Conclusion

In this paper we proposed a simple and effective new rank estimation method.
We have rigorously analyzed its accuracy, and its time and space complexities.
Our main idea is to use exponential sampling to drastically reduce the algo-
rithm’s complexity. We proved ESrank has a poly-logarithmic time- and space-
complexity, and it can be driven to any desired level of accuracy (trading off
time and space against accuracy). Importantly, ESrank is simple to build from
scratch, and requires no algorithmic tools beyond a sorting function.

We evaluated the performance of ESrank through extensive simulations based
on a real SCA data corpus, and compared it to the currently-best histogram-
based algorithm. We showed that ESrank gives excellent rank estimation (with
roughly a 1-bit margin between lower and upper bounds), with a performance
that is practically on-par with the Histogram algorithm: a run-time of under 1 s,
for all ranks up to 2128, on a standard laptop. Hence ESrank is a useful addition
to the SCA evaluator’s toolbox.

Acknowledgement. Liron David was partially supported by The Yitzhak and Chaya
Weinstein Research Institute for Signal Processing.

348 L. David and A. Wool

References

1. FIPS PUB 197, advanced encryption standard (AES), 2001. U.S. Department of
Commerce/National Institute of Standards and Technology (NIST)

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 4

3. Jon Louis Bentley and Andrew Chi-Chih Yao: An almost optimal algorithm for
unbounded searching. Inf. Process. Lett. 5(3), 82–87 (1976)

4. Daniel J Bernstein, Tanja Lange, and Christine van Vredendaal. Tighter, faster,
simpler side-channel security evaluations beyond computing power. IACR Cryp-
tology ePrint Archive, 2015:221, 2015

5. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. In: Dunkelman, O.,
Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 310–327. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6 19

6. Choudary, M.O., Popescu, P.G.: Back to Massey: impressively fast, scalable and
tight security evaluation tools. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 367–386. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4 18

7. David, L., Wool, A.: A bounded-space near-optimal key enumeration algorithm for
multi-subkey side-channel attacks. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS,
vol. 10159, pp. 311–327. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-52153-4 18

8. Liron David and Avishai Wool. Poly-logarithmic side channel rank estimation
via exponential sampling. Cryptology ePrint Archive, Report 2018/867 (2018).
https://eprint.iacr.org/2018/867

9. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 16

10. Fledel, D., Wool, A.: Sliding-window correlation attacks against encryption devices
with an unstable clock. In: Proceedings of 25th Conference on Selected Areas in
Cryptography (SAC), Calgary, August 2018

11. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

12. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander,
G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48116-5 6

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

15. Li, Y., Meng, X., Wang, S., Wang, J.: Weighted key enumeration for EM-based
side-channel attacks. In: 2018 IEEE International Symposium on Electromagnetic
Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Com-
patibility (EMC/APEMC), pp. 749–752. IEEE (2018)

https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/978-3-319-31301-6_19
https://doi.org/10.1007/978-3-319-66787-4_18
https://doi.org/10.1007/978-3-319-66787-4_18
https://doi.org/10.1007/978-3-319-52153-4_18
https://doi.org/10.1007/978-3-319-52153-4_18
https://eprint.iacr.org/2018/867
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-662-48116-5_6
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9

Poly-Logarithmic Side Channel Rank Estimation via Exponential Sampling 349

16. Li, Y., Wang, S., Wang, Z., Wang, J.: A strict key enumeration algorithm for
dependent score lists of side-channel attacks. In: Eisenbarth, T., Teglia, Y. (eds.)
CARDIS 2017. LNCS, vol. 10728, pp. 51–69. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-75208-2 4

17. Longo, J., Martin, D.P., Mather, L., Oswald, E., Sach, B., Stam, M.: How low
can you go? Using side-channel data to enhance brute-force key recovery. IACR
Cryptology ePrint Archive, 2016:609 (2016)

18. Martin, D.P., Mather, L., Oswald, E.: Two sides of the same coin: counting and
enumerating keys post side-channel attacks revisited. In: Smart, N.P. (ed.) CT-
RSA 2018. LNCS, vol. 10808, pp. 394–412. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-76953-0 21

19. Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and estimation of
the key rank distribution in the context of side channel evaluations. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 548–572. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 20

20. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel
after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48800-3 13

21. Pan, J., van Woudenberg, J.G.J., den Hartog, J.I., Witteman, M.F.: Improving
DPA by peak distribution analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.)
SAC 2010. LNCS, vol. 6544, pp. 241–261. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19574-7 17

22. Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 4

23. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

24. Martin, D.P., Montanaro, A., Oswald, E., Shepherd, D.: Quantum key search with
side channel advice. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol.
10719, pp. 407–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
72565-9 21

25. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35999-6 25

26. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9 8

27. Wang, S., Li, Y., Wang, J.: A new key rank estimation method to investigate
dependent key lists of side channel attacks. In: 2017 Asian Hardware Oriented
Security and Trust Symposium (AsianHOST), pp. 19–24. IEEE (2017)

28. Ye, X., Eisenbarth, T., Martin, W.: Bounded, yet sufficient? How to determine
whether limited side channel information enables key recovery. In: Joye, M.,
Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 215–232. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16763-3 13

https://doi.org/10.1007/978-3-319-75208-2_4
https://doi.org/10.1007/978-3-319-75208-2_4
https://doi.org/10.1007/978-3-319-76953-0_21
https://doi.org/10.1007/978-3-319-76953-0_21
https://doi.org/10.1007/978-3-662-53887-6_20
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-642-19574-7_17
https://doi.org/10.1007/978-3-642-19574-7_17
https://doi.org/10.1007/978-3-662-53140-2_4
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-319-72565-9_21
https://doi.org/10.1007/978-3-319-72565-9_21
https://doi.org/10.1007/978-3-642-35999-6_25
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-319-16763-3_13

Efficient Fully-Leakage Resilient
One-More Signature Schemes

Antonio Faonio(B)

IMDEA Software Institute, Madrid, Spain
antonio.faonio@imdea.org

Abstract. In a recent paper Faonio, Nielsen and Venturi (ICALP 2015)
gave new constructions of leakage-resilient signature schemes. The signa-
ture schemes proposed remain unforgeable against an adversary leaking
arbitrary information on the entire state of the signer, including the ran-
dom coins of the signing algorithm. The main feature of their signature
schemes is that they offer a graceful degradation of security in situations
where standard existential unforgeability is impossible. The notion, put
forward by Nielsen, Venturi, and Zottarel (PKC 2014), defines a slack
parameter γ which, roughly speaking, describes how gracefully the secu-
rity degrades. Unfortunately, the standard-model signature scheme of
Faonio, Nielsen and Venturi has a slack parameter that depends on the
number of signatures queried by the adversary.

In this paper we show two new constructions in the standard model
where the above limitation is avoided. Specifically, the first scheme
achieves slack parameter O(1/λ) where λ is the security parameter and
it is based on standard number theoretic assumptions, the second scheme
achieves optimal slack parameter (i.e. γ = 1) and it is based on knowl-
edge of the exponent assumptions. Our constructions are efficient and
have leakage rate 1−o(1), most notably our second construction has sig-
nature size of only 8 group elements which makes it the leakage-resilient
signature scheme with the shortest signature size known to the best of
our knowledge.

Keywords: Signature scheme · Leakage resilience · Efficient scheme ·
Knowledge assumptions

1 Introduction

In the last years a lot of effort has been put into constructing cryptographic
primitives that remain secure even in case the adversary obtains partial infor-
mation of the secrets used within the system. This effort is motivated by the
existence of the so-called side-channel attacks (see, e.g. [19,26,27]) which can
break provably secure cryptosystems exploiting physical characteristics of the
crypto-devices where such schemes are implemented.

A common way to model leakage attacks is to give to the adversary a leakage
oracle. Such oracle stores the current secret state of the cryptosystem under
attack (let it be α), takes as input leakage functions fi and returns fi(α).
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 350–371, 2019.
https://doi.org/10.1007/978-3-030-12612-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_18

Efficient Fully-Leakage Resilient One-More Signature Schemes 351

The leakage functions need to belong to a restricted set of functions, as other-
wise there is no hope for security. In this paper we consider the bounded leakage
model where we assume that the total bit-length of the leakage obtained via
the leakage functions is smaller than some a priori determined leakage bound
�. Leakage-resilient schemes in this model include public-key, identity-based
encryption, signature schemes and identification schemes [2–4,7,8,10,13,28,29].

Graceful Degradation. For any existentially unforgeable signature scheme
in the bounded leakage model, necessarily, the length of a signature is larger
than the leakage bound, as otherwise an adversary could simply leak a forgery.
The main consequence is that, if the goal is to tolerate large amount of leakage
then, the signature size needs to be very large but the latter makes the schemes
unpractical. Recently Nielsen, Venturi and Zottarel [30] addressed this issue
introducing a new notion of security for signature schemes which requires that
an adversary should not be able to produce more forgeries than what he could
have leaked via leakage queries.

In particular, if s is the length in bits of a signature of size and � is the leakage
bound, to break unforgeability, an adversary must produce n forgeries where n ≈
�/(γ·s)+1, where γ ∈ (0, 1] is a value that we call the “slack parameter”. Roughly
speaking, the slack parameter measures how close to optimal security the scheme
is. When γ = 1 we say that the scheme has optimal graceful degradation of
security, as the number of forged signatures requested is exactly one more than
what an adversary could possibly leak. When γ is a constant smaller then 1 we
say that the scheme has almost-optimal graceful degradation, as in this case,
the number of forged signature requested is a constant factor more than what
an adversary could leak1. Notably, this new security notion enables to design
signature schemes where the size of the secret key (and the leakage bound) does
not depend on the signature size, leading to short signatures.

Subsequently, Faonio, Nielsen and Venturi [14] (journal version in [15]),
extended the model to the fully-leakage resilient setting, where the adversary
can leak arbitrary information of the entire secret state, including all the ran-
dom coins of the signing algorithm.

Interestingly, while in the (not-fully) leakage-resilient regime the authors of
[30] showed a signature scheme with almost-optimal graceful degradation, in the
fully-leakage-resilient regime the best signature scheme known (in the standard
model) has slack parameter γ = O(1/q) where q is the number of signature
oracle queries performed by the adversary. While the latter result still allows for
some meaningful applications, in practice, the leakage security of the scheme is
hard to estimate as it degrades as function of the number of signatures which in
principle could be really big.

1 In [30], the authors show that the notion, even for small value of the slack parameter,
allows for interesting applications such as leakage-resilient identification schemes.

352 A. Faonio

Our Contributions. In this paper we solve the above problem by constructing
two new fully leakage-resilient signature schemes in the bounded leakage model
where the slack parameter does not depend on the number of signatures issued.

The first signature scheme has slack parameter O(1/λ). The construction
makes use of an All-but-Many Encryption scheme (Fujisaki [17]) and a Non-
Interactive Witness-Indistinguishable system and is instantiated under standard
number theoretic assumptions.

The second signature scheme has optimal graceful degradation. The construc-
tion is based on a specific extractable and perfectly hiding commitment scheme
(Abe and Fehr [1]) and on a quasi-adaptive NIZK for linear space (Jutla and
Roy [24]). For technical reason, we need a NIZK system with a weak form of
knowledge soundness. As minor contribution of independent interest, we show
how to modify the elegant construction of Kiltz and Wee [25] to get an efficient
quasi-adaptive NIZK system for linear-space relationship with (weak) knowledge
soundness. Both the components of the second schemes are instantiated under
the knowledge of the exponent assumption (see, e.g. [1,5,9,21]).

A Technical Overview. We recall the scheme of [30], for future reference we
call it NVZ14. The secret key of NVZ14 is a polynomial δ in Zp[X] of degree d
and a signature for a message m ∈ Zp is composed by a commitment C∗ to the
evaluation of the polynomial δ on the point m together with a sim-extractable
NIZK that the commitment, indeed, commits to such evaluation. The polynomial
δ is published in the verification key using an homomorphic commitment scheme
(for example, the classical Pedersen’s commitment scheme [32]). The verification
of a signature works in two stages: first from the verification key it derives (using
the homomorphic property of the commitment scheme) a commitment Cm to the
evaluation of the polynomial δ on point m, second it verifies the NIZK for the
statement (C∗, Cm) which proves that the commitments Cm and C∗ open to the
same value, therefore proving that the commitment C∗ commits to an evaluation
of δ on the point m. The leakage bound of the scheme is roughly � ≈ d log p and
the slack parameter is a constant. The key idea for the unforgeability is that
from n ≈ d + 1 signatures we can extract d + 1 evaluations of the polynomial δ,
however, because of the bound on the leakage performed, at most d evaluation
points could be possibly be uniquely defined. The latter implies that one of
the commitment produced by the adversary can be opened in two different way
therefore breaking the binding property of the commitment scheme.

The construction proposed by [14] follows the same blue print. Their main
idea is to convert leakage functions over the full state (namely, the secret key and
the randomness) to leakage functions of the secret key only. In this way, they
reduce the task of proving fully leakage resilient to the easier task of proving
(standard) leakage resilience.

We give a glimpse of their technique with a toy example. As in the scheme
NVZ14, in the construction of [14], a signature σ = (C∗, π) is composed by
a commitment C∗ and a proof of consistency for the commitment π. So the
randomness of a signature is equal to (r, t) where r is the randomness for the

Efficient Fully-Leakage Resilient One-More Signature Schemes 353

commitment and t is the randomness for the NIZK. Their first idea is to use
an equivocable commitment scheme. Recall that a commitment scheme is equiv-
ocable if, roughly speaking, we can sample a fake commitment C such that,
given a trapdoor, for any message m we can produce randomness r′ such that
C = Com(vk,m, r′), namely, the fake commitment C opens to the message m.
For the sake of this toy example, let us consider a leakage function f(δ, r) that
does not depend on the randomness t of the NIZK. In [14], the authors show
that we can construct a new leakage function f̂(δ) that first computes r′ equivo-
cating the commitment C∗ to δ(m) and then it computes f(δ, r′). The function
f̂ converts the leakage on the randomness as leakage of the secret key only.

The main technical problem that [14] had to solve is that standard equivoca-
ble commitments scheme were not sufficient. In fact two contrasting requirements
are necessary: on one hand, both the commitment scheme and the NIZK need to
be equivocable (so that we can reduce fully-leakage resilience to standard leakage
resilience as shown in the toy example above), on the other hand, to extract the
n evaluations of the polynomial δ we need that either the commitment scheme or
the NIZK system is perfectly binding. To solve this problem the authors of [14]
showed a construction of a commitment scheme where any commitment created
is perfectly binding with probability 1/q and equivocable with probability 1−1/q.
In this way, almost all the signatures queried by the adversary will be perfectly
hiding while over the n ≈ O(q · �) forged signatures (so that γ = O(1/q)) strictly
more than (�/ log p) + 1 signatures are perfectly binding (with overwhelming
probability). The unforgeability of the scheme follows because a winning adver-
sary gets in input exactly � bits of information about δ and outputs strictly more
than � bits of information about δ: this adversary cannot exist as otherwise a
basic information-theoretic principle would be violated.

New Ideas. We describe our two new signature schemes. For the first con-
struction we substitute the commitment scheme of [14] with an All-But-Many
Encryption (ABM-Enc) scheme. Roughly speaking, an ABM-Enc is an encryp-
tion scheme where all the ciphertexts created by the adversary can be success-
fully decrypted (knowing the secret key) while, with the knowledge of a special
trapdoor, we can create an unbounded number of fake ciphertexts that are equiv-
ocable. The proof of security is quite straight-forward (actually even easier than
in [14]): with the knowledge of the trapdoor all the signatures are equivocated
and with the knowledge of the secret key of the ABM-Enc all the forged signa-
ture are extracted. Fujisaki [17], building over a paper of Hofheinz [23], showed
two constructions of ABM-Enc. The first construction achieves constant over-
head (the ratio between ciphertext size and message size) and it is based on the
decision Composite Residuosity (DCR) assumption while the latter is based on
DDH and achieves λ/ log λ overhead (where λ is the security parameter). At first
sight, by plugging the constant-overhead ABM-Enc of Fujisaki in our signature
scheme we would get a fully-leakage resilient signature with almost-optimal slack
parameter, the problem is that efficient NIZK [22] and the Fujisaki’s construction
over DCR groups do not quite match. In particular, a Groth-Sahai proof for the

354 A. Faonio

needed statement would commit the witness bit-by-bit so that the total size of
the signature is O(λ2) groups elements. Since each forged signature carries only
log p bits of information this, unfortunately, implies that the slack parameter
is 1/poly(λ). Luckily, the ABM-Enc based on DDH of Fujisaki fits better with
the NIZK of Groth-Sahai, as to prove the necessary statement we need only a
constant number, in the size of the ciphertext, of pairing-product equations.

The second construction is inspired by the following observation: if we used
a zk-SNARK [20,21,31] instead of Groth-Sahai then the construction sketched
above would have signature size O(λ) and therefore almost-optimal slack param-
eter. However, at second thought, employing a zk-SNARK is an over killing, as
what we need is the ability of simultaneously equivocate and extract the com-
mitments, and in particular, we do not need succinctness. Therefore, instead of
naively use zk-SNARKs, we “open the box” of zk-SNARKs. In particular, we
consider the commitment scheme of Abe and Fehr [1] based on the knowledge of
the exponent assumption (KEA3) of Bellare and Palacio [5] (see also Damg̊ard
[9]). Nicely, for this kind of commitments, we can reduce the relation that two
commitments open to the same message to the fact that a certain vector in G

2

lies in a specific subspace. The latter allows us to get faster and shorter signa-
tures, thanks to recent advances in efficiency of quasi-adaptive NIZK systems
for linear relations (see for example, [24,25]).

More in details, the proof technique for the second construction diverges sig-
nificantly to the proof technique of [14]. The main reason is that the commitment
scheme of Abe and Fehr is simultaneously extractable and perfect hiding but it is
not efficiently equivocable2. Our strategy is to first apply all the computational
steps and then use the fact that the commitment scheme is perfectly hiding.
Therefore we can “equivocate” a commitment by brute force it and open it to
the desired value.

Comparison. We compare our signature schemes with the signature schemes
of [30] and [14,15] (see Table 1). Four different signature schemes are presented
in [15], we select the three most interesting3 and we denote them with FNV151,
FNV152 and FNV153. The third column in the Table 1 (namely, “No Erasure”)
refers to a weaker model of fully leakage resilient signature considered in [14].
Specifically, the scheme FNV151 is proved secure under the assumption that the
cryptographic device can perfectly erase the random coins used in the previous
invocations. We call SS1 the signature scheme based on ABM-Enc scheme and
SS2 the scheme based on knowledge of the exponent assumption. From an effi-
ciency point of view we notice that SS1 is less efficient than FNV152 but achieves
asymptotically better graceful degradation. On the other hand, SS1 is both less
efficient and with worse graceful degradation respect to FNV151 and FNV153,
however, FNV151 needs perfect erasure of the randomness and FNV153 is only

2 Intuitively, any trapdoor for equivocation would break the knowledge of the exponent
assumption.

3 As the forth scheme is a variation of FNV151 and it achieves worse efficiency
parameters.

Efficient Fully-Leakage Resilient One-More Signature Schemes 355

Table 1. Comparison of known efficient leakage-resilient one-more signature schemes
in the bounded leakage model. The ∗ symbol means the scheme is in the random oracle
model; G.D. stands for graceful degradation. The signature size is computed in number
of group elements. The value ε is parameter set at initialization phase and it can be
any inverse polynomial of the security parameter. DLIN stands for the decision linear
assumption, BDH stands for the bilinear Diffie-Hellman assumption, SXDH stands for
the external decisional diffie-hellman assumption.

proved secure in the random oracle model. The signature scheme SS2 is proved
secure in a fully-leakage model where the key generation phase is leak free. We
consider this a reasonable assumption, in fact, in almost all practical scenarios
we could safely assume that the cryptographic devices are initialized in a safe
environment before being used in the wild. The technical reason behind this lim-
itation is that the commitment scheme based on the knowledge of the exponent
assumption does not admit oblivious sampling of the parameters. The scheme
SS2 achieves optimal graceful degradation, the signature size is independent of
the ε and, notably, more compact (both asymptotically and practically) even
than the signature scheme FNV153 in the random oracle model.

2 Notations and Preliminaries

Throughout the paper we let λ denote the security parameter. We say that a
function f is negligible in the security parameter λ, and we write f ∈ negl(λ),
if it vanishes asymptotically faster than the inverse of any polynomial. We use
the classic notion of probabilistic polynomial time (PPT) algorithms. We write
x ← $ D (resp. x ← $ A(y)) to denote that x is chosen at random from the
distribution D (resp. an PPT algorithm A run on input y), and we write x ←
A(y; r) to denote that we assign to x the output of A run with randomness r.
For two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to denote
that X and Y are identically distributed, and X ≈s Y (resp., X ≈c Y) to denote
that X and Y are statistically (resp., computationally) indistinguishable. Vectors
and matrices are typeset in boldface. Given an element m ∈ Z and a vector v
of length d, we denote v(m) := vT · (1,m1, . . . ,md−1)T , meaning the evaluation
of the polynomial with coefficients v at point m. We consider also the natural
extension of the notion to matrix, V (m) := V · (1,m1, . . . ,md−1)T . All the

356 A. Faonio

algorithms take as input (group) parameters prm, for readability, whenever it is
clear from the context we consider them implicit. A (bilinear) group generator
SetupBG is an algorithm that upon input the security parameter 1λ outputs
the description (G1,G2,GT , p,G1, G2, GT , e) of three groups equipped with a
(non-degenerate) bilinear map e : G1 × G2 → GT . We use additive notation for
the group operation, and we denote group elements using the bracket notation
introduced by Escala et al. in [11]. Namely, for a y ∈ Zp we let [y]X be the element
y ·GX ∈ GX for X ∈ {1, 2, T}. Given [x]1 and [y]2 we write [x · y]T as shorthand
for e([x]1, [y]2). We denote with the tuple of PPT algorithms (GenCRH ,H) a
collision-resistant hash function (CRH).

Knowledge of the Exponent Assumption. Consider the experiment in Fig. 1
between an adversary A, a randomness sampler S, an extractor Ext and a bilinear
group generator SetupBG.

Experiment Expq−KE∗
A,S,Ext,SetupBG

(1λ):

1. Let prm = (G1,G2,GT , p, G1, G2, GT , e) ← SetupBG(1λ);
2. Sample g ←$ Z

q
p, α ←$ Zp and r ←$ {0, 1}λ, set M ← (g · (1, α))T ∈ Z

2,q
p ;

3. Let ω ← S([M]1, [α]2; r);
4. Let [y]1 ← A([M]1, [α]2, ω) and z ← Ext([M]1, [α]2, ω);
5. Output 1 iff y ∈ Span((1, α)T) and [y]1 �= [M]1 · z.

Fig. 1. The experiment of the q-KE∗ assumption.

Definition 1. Given a bilinear group generator SetupBG and a value q ∈ N, we
say that the q-KE∗ assumption holds for SetupBG if for any deterministic PT A
and any PPT sampler S there exists a PT Ext such that:

Advq−KE∗
A,Ext,SetupBG

(λ) := Pr
[
Expq−KE∗

A,Ext,SetupBG
(1λ) = 1

]
∈ negl(λ).

In contrast with the standard definition of the knowledge of the exponent
assumption, in our definition we additionally have a sampler S. The technical
reason is that we deal with adversaries with oracle access (for example, to the
signature oracle or the leakage oracle). In fact, in this setting, as shown by Fiore
and Nitulescu [16], we need to take particular care on how the adversary can
interact with its oracles. In particular, as we will show in the proof of security in
Sect. 5, with the help of the sampler, we can reduce the queries of the adversary
to be non adaptive. Notice, in bilinear groups the test [y]1 ∈ Span([1, α]T1) can be
efficiently performed using the bilinear map e([y0]1, [α]2) = e([y1]1, [1]2). Also,
we can naturally scale down the assumption to non bilinear groups, in this case,
the adversary does not get [α]2. Given a (non-bilinear) group generator SetupG

the assumption for q = 1 is not stronger than the KEA [9] for non-uniform PT

Efficient Fully-Leakage Resilient One-More Signature Schemes 357

adversaries, while for q = 3 is not stronger than the KEA3 assumption [5] for
non-uniform PT adversaries. For a bilinear group SetupBG, and any polynomial
q, the q-KE∗ assumption is not stronger than the q-PKE assumption of [21],
indeed it is easy to show that if q-PKE holds than also q-KE∗ holds, however,
the reverse implication is not known. The extractability assumptions for non-
uniform adversaries consider an extractor that works for any auxiliary inputs.
As shown in [6] this sometimes can be dangerous. Notice that in our assumption
the only “auxiliary input” is generated by the random sampler S which does not
take the secret material g, α ∈ Zp on clear4.

Homomorphic Trapdoor Commitment Schemes. A trapdoor commitment
scheme COM = (Setup,Com,ECom,EOpen) is a tuple of algorithms where: (1)
Algorithm Setup takes as input the security parameter and outputs a verification
key ϑ and a trapdoor ψ; (2) Algorithm Com takes as input a message m ∈ M,
randomness r ∈ R, the verification key ϑ and outputs a value Com ∈ C. To
open a commitment Com we output (m, r); an opening is valid if and only if
Com = Com(ϑ,m; r). (3) Algorithm ECom takes as input ψ and outputs a pair
(Com, aux); (4) Algorithm EOpen takes as input (ψ,m, aux) and outputs r ∈ R.
We recall the standard security notions of trapdoor hiding and computationally
binding. Roughly speaking, the former says that given a trapdoor is possible to
create fake commitments using ECom which later on can be equivocated to open
to any message in a indistinguishable way. The latter instead says that no PPT
adversary can open the same commitment to two different messages without the
knowledge of the trapdoor ψ. For simplicity in the exposition we set M and
R to be Zp for a prime p. We say that COM is linearly homomorphic if given
commitments Com and Com′ (that commit to m and m′) and a ∈ Zp, one can
compute the commitment Com∗ := a · Com + Com′ that opens to a · m + m′.
We write the mappings as Com∗ = Com(ϑ, a · m + m′; a · r + r′).

Moreover, we require the following additional property. Let (ϑ, ψ) ←
Setup(1λ), (Com1, aux1) ← ECom(ϑ, ψ) and (Com2, aux2) ← ECom(ϑ, ψ). We
can use the auxiliary information a ·aux1 +aux2 to equivocate the commitment
a · Com1 + Com2. Finally, we consider commitment schemes with an additional
algorithm ˜Setup which samples the verification key obliviously.

Quasi-Adaptive NIZK and NIWI Argument Systems. Let R ⊆ {0, 1}∗ ×
{0, 1}∗ be an NP-relation, the language associated with R is LR := {x :
∃w s.t. (x,w) ∈ R}. We assume that (x,w) ∈ R is efficiently verifiable. An
non-interactive argument system NIZK := (Init,P,V) for R is a tuple of PPT
algorithms where: (1) The initialization algorithm Init takes as input the secu-
rity parameter 1λ, and creates a common reference string (CRS) crs ∈ {0, 1}∗;
(2) The prover algorithm P takes as input the CRS crs, a pair (x,w) such that
(x,w) ∈ R, and produces a proof π ← $ P(crs, x, w); (3) The verifier algo-
rithm V takes as input the CRS crs, a pair (x, π), and outputs a decision bit
4 Also notice that we quantify the extractor after the sampler, so to avoid pathological

situation where the adversary A simply forwards the output of the sampler S.

358 A. Faonio

V(crs, x, π). Additionally, we say that an argument system is quasi-adaptive if
the CRS generator algorithm Init takes as additional input the NP-relation R
(or more formally a description of it). We consider distribution DR over NP-
relation. As for all the algorithms in this paper, the distribution can depends on
the parameters prm. We require the standard notion of completeness, meaning
that for any CRS crs output by Init(1λ) (or for any R and any crs output by
Init(1λ,R) in the quasi-adaptive case), and for any pair (x,w) ∈ R, we have
that V(crs, x,P(crs, x, w)) = 1 with all but a negligible probability. We consider
argument systems that admit oblivious sampling of the CRS and we denote it
with ˜Init. We require the following security properties.

– Perfect zero-knowledge: Proofs do not reveal anything beyond the validity
of the statement, meaning that they can be perfectly simulated given only
the statement itself and a trapdoor information.

– Perfect witness-indistinguishability: Given two different witnesses valid
for the same instance, a proof generated with the first witness is equivalently
distributed to a proof generated with the second witness.

– Adaptive weak knowledge soundness: For any PPT adversary that on
input the CRS produces a valid NIZK proof for a statement x there exists a
PPT extractor that outputs a witness w such that (x,w) ∈ R.

– Adaptive soundness: No PPT adversary can forge a verifying proof for an
adaptively chosen invalid statement.

2.1 All-but-Many Encryption

An all-but-many encryption scheme (ABM-Enc) is a tuple ABM =
(Gen,Sample,Enc,Dec,EquivEnc,FakeEnc) such that: (1) Gen upon input the
security parameter 1λ outputs (pk, (sks, ske)). The public key pk defines an tag
space that we denote with U and a message space M. (2) Sample upon input
(pk, ske) and t ∈ {0, 1}λ outputs u ∈ Upk. (3) Enc upon input pk, (t, u) and a
message μ ∈ M outputs a ciphertext C. (4) Dec upon input ske, (t, u) and a
ciphertext C outputs a message μ. (5) FakeEnc upon input pk, (t, u), sks outputs
a ciphertext C and auxiliary information aux. (6) EquivEnc upon input (t, u) and
aux and a message μ outputs random coins r; Let Ls

pk = {(t, u) : t ∈ {0, 1}λ, u ←
Sample(pk, ske, t)} and let Le

pk = {0, 1}λ ×Upk \Ls
pk. (For simplicity we will omit

the subscript pk when it is clear from the context.) We require that an ABM-Enc
satisfies the following properties:

– Pseudorandomness: The algorithm Sample(pk, sks, ·) is a pseudo-random5

function with domain {0, 1}λ and co-domain Upk.
– Unforgeability: It is hard to forge a fresh tuple (t∗, u∗) ∈ Ls even given

oracle access to Sample(pk, sks, ·).

5 The adversary gets to see the public key pk for uniformly sampled keys pk, sks, ske ←
$ Gen(1λ).

Efficient Fully-Leakage Resilient One-More Signature Schemes 359

– Dual Mode: The scheme can work in two different modes: (1) decryption
mode, for all the tags (t, u) ∈ Le the scheme defines a correct encryption
scheme; (2) trapdoor mode, for all tags (t, u) ∈ Ls it is possible to sample
fake ciphertexts using the algorithm FakeEnc that later on can be equivo-
cated to any message using the algorithm EquivEnc. The fake ciphertext and
randomness are indistinguishable from a real ciphertext and its randomness.

For space reason, we give the formal definition in the full version [12].

Theorem 1 (Fujisaki, [18]). If DDH assumption holds in SetupG then there
exists an ABM-Enc scheme. Moreover, the scheme admits an algorithm G̃en that
obliviously samples the public parameter.

3 Fully-Leakage One-More Unforgeability

A signature scheme is a triple of algorithms SS = (Gen,Sign,Verify) where:
(1) The key generation algorithm takes as input the security parameter λ and
outputs a verification key/signing key pair (vk, sk) ← Gen(1λ); (2) The signing
algorithm takes as input a message m ∈ M and the signing key sk and outputs
a signature σ ← Sign(sk,m); (3) The verification algorithm takes as input the
verification key vk and a pair (m,σ) and outputs a bit Verify(vk, (m,σ)) ∈ {0, 1}.

Given a signature scheme SS, consider the experiments in Fig. 2 running
with a PPT adversary A and parametrized by the security parameter λ ∈ N, the
leakage parameter � ∈ N, and the slack parameter γ := γ(λ).

Expone-more
SS,A (λ, �, γ) and Expone-more∗

SS,A (λ, �, γ) :

1. (vk, sk) ←$ Gen(1λ; r0), return vk to A; let α = r0, let α = sk .
2. Run A(vk) with oracle access to Sign(sk, ·) and the leakage oracle.

– Upon query m ∈ M to the signature oracle, let σ := Sign(sk, m; r), r ←
$ {0, 1}λ and udpate the state α := α ∪ {r}.

– Upon query f to the leakage oracle, return f(α) where α is the current state.
3. Let Q be the set of signing queries issued by A, and let Λ ∈ {0, 1}∗ be the con-

catenation of all the leakage. A outputs n pairs (m∗
1, σ

∗
1), . . . , (m∗

n, σ∗
n).

4. The experiment outputs 1 if and only if the following conditions are satisfied:
(a) Verify(vk, (m∗

i , σ∗
i)) = 1 and m∗

i Q∈� , for all i ∈ [n].
(b) The messages m∗

1, . . . , m
∗
n are pairwise distinct.

(c) n ≥ ��/(γ · s)� + 1, where s := |σ| and |Λ| ≤ �.

Fig. 2. The fully-leakage one-more unforgeability experiment and the fully-leakage one-
more unforgeability experiment with leak-free key gen. The second experiment is equal
to the first but it additionally executes the operations described the box.

360 A. Faonio

Definition 2 (Fully-leakage one-more unforgeability). We say that SS =
(Gen,Sign,Verify) is (�, γ)-fully-leakage one-more unforgeable if for every PPT
adversary A we have that:

Advone-moreSS,A (λ, �, γ) := Pr
[
Expone-more

SS,A (λ, �, γ) = 1
] ∈ negl(λ).

Moreover, We say that SS is (�, γ)-fully-leakage one-more unforgeable with leak-
free keygen if for every PPT adversary A we have that:

Advone-more
∗

SS,A (λ, �, γ) := Pr
[
Expone-more∗

SS,A (λ, �, γ) = 1
]

∈ negl(λ).

The number of signatures the adversary musts forge depends on the length
of the leakage. In particular (�, γ)-fully-leakage one-more unforgeability implies
standard unforgeability for any adversary asking no leakage. The slack parameter
γ specifies how close the signature scheme SS is to the optimal security SS. In
particular, in the case γ = 1 one-more unforgeability requires that the adversary
A cannot forge even a single signature more than what it could have (partially)
leaked via leakage queries. As γ decreases, so does the strength of the signature
scheme (the extreme case being γ = |M|−1, where we have no security).

4 Signature Scheme Based on ABM-Encryption

Our scheme SS = (Gen,Sign,Verify) has message space equal to Zp and is
described in Fig. 3. The scheme is based on a homomorphic commitment scheme
COM, an ABM-Enc scheme ABM, a NIWI argument system NIWI and a
CRH function (GenCRH ,H). The scheme follows the basic template described in
Sect. 1, however instead of using just one single polynomial δ ∈ Zp[X] of degree
d, we use μ ∈ N different polynomials arranged in the matrix Δ. The correct-
ness follows from the completeness of the NIWI argument system, and from the
linearly homomorphic property.

Theorem 2. Let μ ∈ N. Assume that: (i) the commitment scheme COM is
trapdoor hiding and linearly homomorphic with message space Z

μ
p ; (ii) the ABM

is a secure ABME-Enc scheme with message space Z
μ
p and ciphertexts of length

s1 bits; (iii) NIWI is a perfect NIWI argument system for the relation R
described in Fig. 3 with proofs of length s2 bits. Then, let s = s1 + s2 and let
γ = μ log p/s, for any 0 ≤ � ≤ ((d + 1)μ log p) − λ, the signature scheme SS1 is
(�, γ)-fully-leakage one-more unforgeable.

For space reason, the proof will appear in the full version of the paper
[12]. Here we provide a sketch. The proof is similar to the proof of [14],
the following proof sketch highlights the main differences. We denote with
(r0,Δ, r, (sj , tj)j∈[q]) the full secret state. Notice that, because of the oblivious
sampling of the parameters, the randomness r0 such that vk, sk = KGen(1λ; r0)
can be computed efficiently as function of both vk and sk, we therefore omit r0
from the state α. The first hybrid H0 is the fully-leakage one-more unforgeability

Efficient Fully-Leakage Resilient One-More Signature Schemes 361

Key Generation. Let d, μ ∈ N be parameters. Let NIWI = (Init,P,V) be a NIWI
argument system for the following polynomial-time relation:

R :=
{

(ϑ, pk, τ, Com, C); (m∗, r∗, s)
∣∣∣∣Com = Com(ϑ, m∗; r∗)

C = Enc(pk, τ, m∗; s)

}
.

Run hk ←$ GenCRH(1λ) crs ← ˜Init(1λ), ϑ ← ˜Setup(1λ) and pk ←$ G̃en(1λ).
Sample Δ ← $ Z

μ,d+1
p and r = (r0, . . . , rd) ← $ Rd+1, and compute Comi ←

Com(ϑ, δi; ri) for i ∈ [0, d], where δi ∈ Z
μ
p is the j-th column of Δ. Let Com =

(Com0, . . . , Comd)
Output

sk = (Δ, r) vk = (crs, ϑ, pk, Com).

Signature. To sign a message m ∈ Zp compute m∗ ← Δ(m) and r∗ ← r(m). Pick
u ← Upk and set τ = (H(hk, m), u) and compute C ← Enc(pk, τ, m∗; s) where
s ←$ R. Generate a NIWI argument π for (ϑ, pk, τ, Com(m), C), using the witness
(m∗, r∗, s). Output σ = (C, τ, π).

Verification. Given a pair (m, σ) and vk, parse σ as (C, τ = (t, u), π) and
parse vk as (crs, ϑ, pk, Com). Output 1 if and only if H(hk, m) = t and
V(crs, π, (ϑ, pk, τ, Com(m), C)).

Fig. 3. The signature scheme SS1.

game but we additionally condition on the validity of the forged proofs. By the
adaptive soundness of the NIWI the real experiment and H0 are indistinguish-
able. In the next hybrid H1 we switch the way the parameters are sampled, so
that we gets the secret keys sks, ske of the ABM-Enc and the equivocation trap-
door ψ of the commitment scheme. The hybrids H0 and H1 are indistinguishable
because of the dual mode property of the ABM-Enc and the equivocability of
the commitment scheme.

In the hybrid H2 we equivocate the commitments Com in the public key.
Notice that the full secret state α can be written as ((Δ, r(Δ)), (sj , zj)i∈[q])
where r(Δ) is a function of the secret key computed by EOpen.

In the hybrid H3 for each signature oracle query we sample the tag τ =
(t, u) such that u = Sample(pk, sks, t). The indistinguishability comes from the
pseudorandomness property of the ABM-Enc scheme.

Thanks to the last change, in the hybrid H4, for each signature oracle query
we can sample the encryption C using the trapdoor mode FakeEnc. Notice that
the full secret state α can be written as ((Δ, r(Δ)), (sj(Δ), zj)i∈[q]) where for
any j, the value sj(Δ) is a function of the secret key Δ computed using the
algorithm EquivEnc. The dual mode property of the ABM-Enc scheme assures
that the two hybrids are indistinguishable.

In the hybrid H5 we compute the NIWI proof using the witness (0, r′, s′)
where r′ is an opening of the equivocated commitment Com(m) to 0 and s′ is
an opening of the fake encryption to 0. This step follows exactly as in the proof
of security in [14].

362 A. Faonio

In this last hybrid the full secret state α can be written as
((Δ, r(Δ)), (sj(Δ), zj(Δ))i∈[q]), namely, all the state can be written as a deter-
ministic function of the secret polynomials Δ. In particular, any function f(α)
could be rephrased as a function f ′(Δ).

The last part of the proof proceeds similarly as in [14] so here we give just
an intuition. Informally, an adversary A that wins the fully-leakage one-more
unforgeability game with probability ε will wins with probability negligibly close
to ε in the hybrid H5. Recall that a winning adversary returns n :=
�/μ log p�+1
valid signatures. By the unforgeability of the ABM Encryption and the change
introduced in H0, from the forged signatures (m∗

i , σ
∗ = (C∗

i , τ∗
i , π∗

i))i∈[n], by
decrypting the ciphertext C∗

i , we can extract the values Δ(m∗
i). Notice that each

Δ(m∗
i) gives us μ log p bits of information about Δ. Putting all together, with

probability negligibly close to ε from the adversary we can extract n·(μ log p) > �
bits of information about Δ. On the other hand, in H5, the adversary gets at
most � bits of information about Δ, the latter implies that ε must be negligible.

Concrete Instantiation. We instantiate the ABM-Scheme with the con-
struction ABMDDH of [18] based on DDH assumption, the NIWI argument
system with Groth-Sahai [22] and the trapdoor commitment with the Ped-
ersen’s commitment scheme. A ciphertext C of ABMDDH is composed by
5λ/ log(λ) groups elements and the encryption procedure can be described by
5λ log(λ) pairing-product equations. The message space can be parsed as Zλ/ log λ

n

where n = poly(λ) and its “encoded in the exponent”. We additionally need
O(λ/ log λ) equations to describe that the plaintext and the opening of the com-
mitment match. Summing up, the value s in the theorem is equal to O(λ/ log λ).
Finally, we notice that since we use the same groups for NIWI and ABMDDH

we need to use the external Diffie-Hellman (SXDH) assumption.

Let COM := (Setup,Com) be the following commitment scheme:

Setup. The algorithm Setup parses prm as (G1,G2,GT , p, G1, G2, GT), picks at a ran-
dom [g]1 ← $ G

μ
1 , α ← $ Zp and [h]1 ← $ G1, sets [M]1 ← (1, α)T · [gT , h]1,

sets [h]1 = [h, α · h]T1 be the last column of [M]1, and sets [α]2. It outputs the
verification key ϑ = ([M]1, [α]2) ∈ (G2,μ+1

1 × G2).
Commit. The algorithm Com on input [M]1, [α]2 and a message m ∈ Z

μ
p , samples

r ← $ Zp and sets Com = [M] · (mT , r)T ∈ G
2
1. The opening of the commitment

is the r.

Fig. 4. The commitment scheme COM

5 A Signature Scheme Based on KEA

Before describing the signature scheme we give more details on the building
blocks. Consider the commitment scheme COM := (Setup,Com) (with implicit

Efficient Fully-Leakage Resilient One-More Signature Schemes 363

parameters an integer μ and a group generator SetupBG) described in Fig. 4.
Notice that for any two messages m0,m1 and randomness r0 there exists an
unique assignment for r1 such that [M]1 · (mT

0 , r0)T = [M]1 · (mT
0 , r1)T holds,

therefore COM is perfectly hiding.
The second building block is a quasi-adaptive non-interactive perfect zero-

knowledge argument of knowledge NIZKext. The argument system is adaptive
weak knowledge sound6. Roughly speaking, the NIZK is a two-fold version of
the scheme of Kiltz and Wee. For space reason we defer the details of the NIZK
in the full version of this paper, here we state the following theorem:

Theorem 3. The scheme NIZKext is a quasi-adaptive perfect zero-knowledge
argument system and if both the Dk-KerMDH assumption and the 1-KE∗ assump-
tion hold for SetupBG then it is adaptive weak knowledge sound.

Let SS2 = (KGen, Sign,Verify) with message space Zp be defined as follow:

Key Generation. Let d, μ ∈ N be parameters. Let prm ←$ SetupBG(1λ) be parame-
ter describing an asymmetric bilinear group , let ϑ = ([M]1, [α]2) ← $ Setup(prm)
and let [h]1 be the last column of [M]1. Consider the NP relation R defined as
follow:

R = {([y]1, r) : [y]1 = r · [h]1}
Run crs, tp ← Init(1λ, R), sample Δ ←$ Z

μ,d+1
p and r = (r0, . . . , rd) ←$ Z

d+1
p , and

compute commitments Comi ← Com(ϑ, δi; ri) for i ∈ [0, d], where δi ∈ Z
μ
p is the

j-th column of Δ. Let Com = (Comi)d
i=0 and output

sk = (Δ, r) vk = (crs, ϑ, Com).

Signature. To sign a message m ∈ Zp compute m∗ = Δ(m) and let C ←
Com(ϑ, m∗, s) where s ←$ Zp, and compute π ← P(crs, (r(m) − s) · [h], r(m) − s).
Output σ = (C, π).

Verification. Given a pair (m, σ) and the verification key vk, parse σ as (C, π) and
parse vk as (crs, ϑ, Com). Output 1 if and only if V(crs, Com(m) − C, π) and
e(C0, [1]2) = e(C1, [α]2).

Fig. 5. The signature scheme SS2.

The Signature Scheme. The signature scheme SS2 is described in Fig. 5. We
show that the scheme is correct. For any tuple m,σ where σ is a valid signature
for m with the verification key vk = (crs, ϑ,Com), let parse σ as (C, π), we
have:

6 We reverse the order of the quantifiers in the usual definition of knowledge soundness.
Namely, for each adversary A there exists an extractor Ext.

364 A. Faonio

Com(m)−C =
∑

i Comi · mi−C =
∑

i[M]1 · (δT
i , ri)T · mi−[M]1 · (Δ(m)T , s)T

= [M]1 · ∑
i(δ

T
i , ri)T · mi − [M]1 · (Δ(m)T , s)T

= [M]1 · ((Δ(m)T , r(m))T − (Δ(m)T , s)T) = [h]1 · (r(m) − s).

The last equation follows because [h]1 is the last column on [M]1. The correct-
ness of the signature scheme follows by the equation above and the correctness
of the quasi-adaptive NIZK scheme.

Theorem 4. Let μ, d ∈ N and μ > 8. If the (μ + 1)-KE∗ assumption and the
KerLin2 assumption hold over SetupBG then, for any 0 ≤ � ≤ ((d + 1) log λ) −
λ, the signature scheme SS2 described Fig. 5 is (�, 1)-fully-leakage one-more
unforgeable with leak-free key generation.

We give an intuition of the proof. In particular, we explain how to use the
knowledge of the exponent assumption of Definition 1. The main idea is to define
a sampler that, roughly speaking, executes the fully-leakage one-more unforge-
ability experiment. More in details, the sampler S samples all the randomness
needed, including the secret key, the randomness for the signatures and the ran-
dom tape of the adversary, with the only exception of the parameters of the
KEA∗ assumption. The sampler proceeds with executing the experiment up to
the moment before the adversary outputs its forgeries. Eventually the sampler
outputs the full view of the adversary including the queried signatures, the leak-
age and the random tape of the adversary, let View be such value.

At this point we can deterministically execute the adversary feeding it with
the view produced by the sampler. This adversary produces n commitment val-
ues (one for each forgery) for which, thanks to the knowledge of the exponent
assumption he must know the opening.

Notice we do not incur in any problem of recursive composition of extractors.
In fact the adversary outputs all its commitments at once. More in details, given
the adversary code, for any i ∈ [n], we can define the adversary Ai which outputs
only the i-th commitment of A. Using the knowledge of the exponent assumption,
for any index i, there musts exist an extractor Exti for the adversary Ai. Crucially,
the computational complexity of the extractor Exti depends only on Ai and not
on Extj for an index j �= i.

The proof continues showing that the extracted values are indeed evaluations
of the polynomial Δ sampled by the sampler. To argue this we use the adaptive
weak knowledge soundness of the NIZK. We give more details about this step in
the formal proof.

Now, consider the predictor that on input the random variable View first
runs the extractors Ext1, . . . ,Extn obtaining n evaluation points of the polyno-
mial Δ and then guesses a random polynomial that interpolates the evaluation
points. The probability that this predictor guesses the polynomial Δ is roughly
εp−(d−n)μ where ε is the winning probability of the adversary A. On the other
hand, we prove that, thanks to perfect hiding and perfect zero-knowledge, no
predictor can guess the polynomial Δ with probability more than 2�p−(d+1)μ We

Efficient Fully-Leakage Resilient One-More Signature Schemes 365

complete the proof by noticing that the two bounds are in contradiction when ε
is noticeable in the security parameter.

Proof (of Theorem 4). Let A be an adversary such that Advone-more
∗

A,SS2
(λ, �, 1) = ε

for parameter � as described in the statement of the theorem. Let H0(λ) be the
experiment Expone−more∗

SS,A (λ). Denote with ((m∗
1, (C

∗
1 , π∗

1)), . . . , (m
∗
n, (C∗

n, π∗
n)))

the list of forgeries of A. During the experiment the adversary has oracle access
to α = (Δ, r, (sj , zj)j∈[q]) where sj is the randomness used by Com and zj is the
randomness used by P (the prover of the NIZK proof system). The proof pro-
ceeds with an hybrid argument. In particular, the proof has seven main hybrid
experiments named H0, . . . ,H7 and other sub-hybrids that we name with Hi,j

for i ∈ {2, 3} and j ∈ [n]. Let Forgei (resp. Forgei,j) be the event that Hi (resp.
Hi,j) returns 1, so that P[Forge0] = ε.

Hybrid 1. The hybrid H1 runs the same as the hybrid H0 but with a slightly
different syntax. More in details, consider the following sampler S:

Sampler S([M]1, [α]2):

1. Sample rA ← {0, 1}λ and Δ ← $ Z
μ,d+1
p , r ← Z

d+1
p , set sk = (Δ, r)

and compute the verification key vk as described in KGen using [M]1;
Sample the randomness (sj , zj)j∈[q] and set α = (sk, r, (sj , zj)j∈[q]).

2. Run A(vk; rA) and answer all the signature oracle queries using
Sign(sk, ·) and the leakage oracle queries with the state α. Let View =
(σ1, . . . , σq, Leak) be the full transcript of the interactions between A
and the oracles;

3. Output (vk,View, rA).

The hybrid H1 executes three steps: (1) it creates the parameters
(prmBG, [M]1, [α]2), (2) it executes the sampler (vk,View, rA) ←$ S([M]1, [α]2),
(3) it runs A(vk; rA) and answers all the oracle queries using the information in
View. The change between the two hybrids is only syntactical, therefore ε0 = ε1.

Hybrid 2.i. The hybrid H2.i takes as parameters i different extrac-
tors Ext1, . . . ,Exti and runs the same as the hybrid H1 but, also, it
runs the extractors and outputs 1 if and only if the extracted val-
ues match the commitments C∗

1 , . . . , C∗
i . More in details, the hybrid

H2.i first creates the parameters (prmBG, [M]1, [α]2), then it executes
the sampler (vk,View, rA) ← S([M]1, [α]2), then it runs A(vk; rA) and
answers all the oracle queries using the information in View. Eventually,
A outputs its forgeries (m∗

1, σ
∗
1), . . . , (m

∗
n, σ∗

n) where σ∗
i = (C∗

i , π∗
i), and

for j = 1, . . . , i the hybrid H1.i computes xi ← Exti(([M]1, [α]2), (vk,View, rA))
and outputs 1 if and only if:

(a) all the forged signatures verify correctly for vk and all the messages are
different and,

(b) for any j = 1, . . . , i we have C∗
j = [M]1 · xj .

366 A. Faonio

Claim. There exist PPT extractors Ext1, . . . ,Extn such that for any i > 1,
|ε1.i−1 − ε1.i| ∈ negl(λ). Moreover, ε1 = ε2.0.

Proof. First we prove second sentence of the claim. The change between H1

and H2.0 is only syntactical. In fact, the winning condition is the same in both
hybrids, as H2.0 does not check the condition (b). Now we prove the first sen-
tence. We define an adversary A′

i for the (μ + 1)-KE∗ assumption:

Adversary A′
i([M]1; r′):

1. Parse r′ as (vk,View, rA);
2. Run A(vk; rA) and answers all the oracle queries using the information

in View;
3. Eventually, A outputs its forgeries (m∗

1, σ
∗
1), . . . , (m

∗
n, σ∗

n);
4. If all the forged signatures verify correctly for vk and all the messages

are different parse σ∗
i as (C∗

i , π∗
i) and output [y]1 := C∗

i .

For any PPT Exti the two hybrids diverge when [M]1 · xi �= [y]1, where xi

is the output of the extractor, but the signature σ∗
i verifies correctly. Notice

that the verification algorithm checks that e([y0]1, [α]2) = e([y1]1, [1]2), where
y = (y0, y1) and so [y]1 ∈ Span([1, α]1). Therefore:

|ε1.i−1 − ε1.i| ≤ Pr [[M]1 · xi �= Y ∧ Y ∈ Span([1, α]1)]

We can apply the security of the μ + 1-KE∗ assumption. In particular, there
musts exist an extractor Exti such that the difference above is negligible.

Hybrid 3.i. The hybrid H3.i takes as parameters n different PPT extrac-
tors Ext1, . . . ,Extn plus i different PPT extractors Ext′1, . . . ,Ext

′
i and runs

the same as the hybrid H2.n but also for any j = 1, . . . , i it computes wi ←
Ext′i(crs, tp, r′) where r′ = (Δ, r, [g, h], α) and the winning conditions are
changed as follow:

(a) All the forged signatures verify correctly for vk and all the messages are
different,

(b) for any j = 1, . . . , n we have C∗
j = [M]1 · xj and,

(c) for any j = 1, . . . , i check Com(m∗
i) − C∗

i = wi · [h, αh].

Claim. For any PPT Ext1, . . . ,Extn there exist PPT extractors Ext′1, . . . ,Ext
′
n

such that for any i > 1, |ε1.i−1 = ε2.i| ∈ negl(λ). Moreover, ε3.0 = ε2.n.

The claim follows by the weak knowledge soundness of NIZKext. For space
reasons the proof of the Claim is deferred to the full version [12].

Hybrid 4. The hybrid H4 is the same as H3.n but the winning conditions are
changed as follow:

(a) All the forged signatures verify correctly for vk and all the messages are
different,

Efficient Fully-Leakage Resilient One-More Signature Schemes 367

(b) for any j = 1, . . . , n we have C∗
j = [M]1 · xj ,

(c) for any j = 1, . . . , n check Com(m∗
i) − C∗

i = wi · [h, αh]1 and,
(d) for any j = 1, . . . , n, let x′

j be the projection of xj to the first μ coordinates,
check x′

j = Δ(m∗
j).

Claim. |ε3.n = ε4| ∈ negl(spar).

The claim follows by a simple reduction to the DLOG problem. For space reasons
the proof of the Claim is deferred to the full version [12].

Hybrid 5. The hybrid H5 is the same as H4 but we revert the changes intro-
duced in the hybrids H2,i for all i ∈ [n]. The winning conditions are changed
and in particular they are less stringent as do not consider the condition (c).
As the condition is not checked then the hybrid does not need to execute the
extractors Ext′i for i ∈ [n]. Notice that the set of conditions are relaxed, so the
probability of the event cannot decrease, namely ε5 ≥ ε4.

The Predictor P. The predictor runs the same as the hybrid H5 but the sam-
pler S is run externally. In particular, the parameters for S are sampled, then
first the sampler is executed and then the predictor P is executed with input
the output produced by S. Eventually, the predictors (which runs internally
A) receives n forgeries (m∗

1, σ
∗
1), . . . , (m

∗
n, σ∗

n). The predictor checks the winning
conditions (a), (b), (d) of the hybrid H5 and if they hold, for j ∈ [μ] it samples
a polynomial δ∗

j in Zp[X] of degree d such that δj(m∗
i) = x′

i,j for i ∈ [n], and it
outputs Δ∗ = (δ∗

1, . . . , δ
∗
μ).

Recall that the advantage of A in the one-more unforgeability game is ε.

Lemma 1. Pr [P(S([M]1, [α]2)) = Δ] ≥ exp(((n − d) · μ) log p) · (ε − negl(λ)).

Proof. By the triangular inequality and the claims above we have that ε5 ≥
ε − negl(λ). When the event Forge5 happens then Δ(m∗

i) = x′
i for i ∈ [n] so

the event that Δ∗ = Δ is equivalent to the event that the predictor P correctly
guesses the remaining d−n zeros of the polynomials δi for i ∈ [μ] which is equal
to 1/pμ(d−n) = exp(((n − d) · μ) log p).

Lemma 2. For any prm ←$ SetupBG(1λ), any ([M]1, [α]2) ∈ G
2,μ+1
1 × G2 and

any predictor P′ we have Pr [P′(S([M]1, [α]2)) = Δ] ≤ exp(−(d + 1)μ log p + �).

Proof. We define two samplers S1 and S2, we prove that their output distri-
butions (vk, (σ1, . . . , σq, Leak), rA) are equivalent to the distribution of S, and
moreover, the components vk, σ1, . . . , σq, rA are independent of Δ as sampled by
S. Both the sampler S1 and S2 are not efficiently computable, however, this is not
a problem as we are proving that their distributions are identically distributed
to the distribution of S.

The sampler S1 executes the same of S but the elements Com, the signature
queries, and the leakage oracle queries are computed in the following way:

368 A. Faonio

– The elements Com are sampled as uniformly element from Span([g, αg]).
– At the j-th signature oracle query with message m the element Cj is sampled

as uniformly element from Span([g, αg]).
– Define the function r(Δ) that outputs the vector (r0, . . . , rd) computing ri

such that Comi = [M]1 · (δT
i , ri)T . Similarly, define the functions sj(Δ) that

output the vector sj such that Cj = [M]1 · (δT
i , sj)T . For each leakage oracle

query f the answer of f is computed as f(Δ, r(Δ), (si(Δ), zi)i≤q).

Claim. For any parameter prm ←$ SetupBG(1λ) and any ([M]1, [α]2) ∈ G
2,μ+1
1 ×

G2 the outputs of the samplers S and S1 are identically distributed.

Proof. We notice that for any m the commitment to m is uniformly distributed
over Span([1, α]). Therefore, for any Comi (resp. Ci), it always exists such ri

(resp. si), and moreover, once Δ and Com (resp. Ci) are fixed its value is
uniquely defined.

The sampler S2 executes the same of S1 but, for all the signatures, the NIZK
proofs πi are computed using the simulator S of NIZK and, moreover, the ran-
domness zi is uniformly sampled over the set7

{zi : πi = P(crs, (r(Δ)(mi) − s(Δ)) · [h], (r(Δ)(mi) − s(Δ)))}
where r(Δ) is the vector of the randomness as computed by S1.

Claim. For any parameter prm ← $ SetupBG(1λ) and any ([M]1, [α]2) ∈
G

2,μ+1
1 × G2 the outputs of the samplers S1 and S2 are identically distributed,

S1([M]1, [α]2) ≡ S2([M]1, [α]2).

Proof. By the perfect zero-knowledge property of the quasi-adaptive NIZK, the
proofs πi are distributed equivalently to the real proofs. Notice that perfect zero-
knowledge implies that the set of the simulated proofs and the set of real proofs
(for any instance and witness) is exactly the same. Moreover, for all i, we sample
s′

i uniformly at random from the set of possible randomness that match with
the proof πi, therefore s′

i is equivalently distributed to si, the randomness used
to compute the proofs in S1. We write zi(Δ) to stress that zi is computed as
function of Δ, for each leakage oracle query f the answer of f is computed as
f(Δ, r(Δ), (si(Δ), zi(Δ))i≤q).

Claim. For any P′ we have Pr [P′(S2([M]1, [α]2)) = Δ] ≤ exp(−(d+1)μ log p+�).

Proof. Let q be the number of signature queries made by A and let Leak the
concatenation of all the leakage performed by A. For any predictor P′

Pr
[
P′(S2([M]1, [α]2)) = Δ

]
= Pr [P′(Leak) = Δ] (1)

=
∑
L

Pr [P′(L) = Δ | Leak = L] Pr [Leak = L]

≤ 2� max
D

Pr [Δ = D] . (2)

7 Namely, the set of assignment for the randomness zi for which the execution of P
with randomness zi and the appropriate tuple instance and witness does compute
exactly the proof πi.

Efficient Fully-Leakage Resilient One-More Signature Schemes 369

where Eq. 1 holds because vk, rA and the signatures σ1, . . . , σq are sampled inde-
pendently from Δ, while Eq. 2 holds applying the chain rule of the average con-
ditional min-entropy. Finally we notice that Δ is sampled uniformly at random
so the statement of the claim follows.

By putting together the first two claims we have that the probability of guessing
Δ by a predictor given in input the output produced by S2 is the same as it
gets in input the output produced by S1, by the last claim, therefore, the lemma
follows.
Returning to the proof of the theorem, we can put together the inequalities of
Lemmas 1 and 2, and by taking the logarithms we have:

−dμ log p + � ≥ −(d − n)μ log p + log(ε − negl(λ))

By adding dμ log p to both sides we derive that � ≥ nμ log p + log(ε − negl(λ)),
and by the fact that n > �

s·γ + 1 and γ = 1 we derive that − log(ε − negl(λ)) >
s ≥ λ. For the equation above to hold, necessarily, ε is negligible in λ.

Acknowledgements. Research leading to these results has been supported by the
Spanish Ministry of Economy under the projects Dedetis (ref. TIN2015-70713-R) and
Datamantium (ref. RTC-2016-4930-7), and by the Madrid Regional Government under
project N-Greens (ref. S2013/ICE-2731).

I would like to thank Dario Fiore for a conversation we had on his paper [16]. Also,
I would like to thank Dennis Hofheinz which suggested to me the paper of Fujisaki on
ABM Encryption.

References

1. Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70936-7 7

2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 6

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 3

4. Ateniese, G., Faonio, A., Kamara, S.: Leakage-resilient identification schemes from
zero-knowledge proofs of storage. In: Groth, J. (ed.) IMACC 2015. LNCS, vol.
9496, pp. 311–328. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27239-9 19

5. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 17

6. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: 46th ACM STOC, pp. 505–514 (2014)

https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/978-3-642-13190-5_6
https://doi.org/10.1007/978-3-642-13190-5_6
https://doi.org/10.1007/978-3-642-03356-8_3
https://doi.org/10.1007/978-3-319-27239-9_19
https://doi.org/10.1007/978-3-319-27239-9_19
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17

370 A. Faonio

7. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 7

8. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket: public-key cryptography resilient to continual memory leakage. In: 51st
FOCS, pp. 501–510 (2010)

9. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

10. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: 51st FOCS, pp. 511–520 (2010)

11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

12. Faonio, A.: Efficient fully-leakage resilient one-more signature schemes. Cryptology
ePrint Archive, Report 2018/1140 (2018). https://eprint.iacr.org/2018/1140

13. Faonio, A., Nielsen, J.B.: Fully leakage-resilient codes. In: Fehr, S. (ed.) PKC 2017.
LNCS, vol. 10174, pp. 333–358. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54365-8 14

14. Faonio, A., Nielsen, J.B., Venturi, D.: Mind your coins: fully leakage-resilient sig-
natures with graceful degradation. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 456–468. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7 37

15. Faonio, A., Nielsen, J.B., Venturi, D.: Fully leakage-resilient signatures revisited:
graceful degradation, noisy leakage, and construction in the bounded-retrieval
model. Theoret. Comput. Sci. 660, 23–56 (2017)

16. Fiore, D., Nitulescu, A.: On the (in)security of SNARKs in the presence of oracles.
In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 108–138. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 5

17. Fujisaki, E.: All-but-many encryption. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8874, pp. 426–447. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45608-8 23

18. Fujisaki, E.: All-but-many encryption. J. Cryptol. 31(1), 226–275 (2018)
19. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.

In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

20. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

21. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

22. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

23. Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D., Johans-
son, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-29011-4 14

https://doi.org/10.1007/978-3-642-20465-4_7
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://eprint.iacr.org/2018/1140
https://doi.org/10.1007/978-3-662-54365-8_14
https://doi.org/10.1007/978-3-662-54365-8_14
https://doi.org/10.1007/978-3-662-47672-7_37
https://doi.org/10.1007/978-3-662-53641-4_5
https://doi.org/10.1007/978-3-662-45608-8_23
https://doi.org/10.1007/978-3-662-45608-8_23
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-29011-4_14

Efficient Fully-Leakage Resilient One-More Signature Schemes 371

24. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

25. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

26. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

27. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

28. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual
leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 89–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19571-6 7

29. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 2

30. Nielsen, J.B., Venturi, D., Zottarel, A.: Leakage-resilient signatures with graceful
degradation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 362–379.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 21

31. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252
(2013)

32. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/978-3-642-03356-8_2
https://doi.org/10.1007/978-3-642-54631-0_21
https://doi.org/10.1007/3-540-46766-1_9

MILP-Based Differential Attack on
Round-Reduced GIFT

Baoyu Zhu1 , Xiaoyang Dong2(B) , and Hongbo Yu1,3(B)

1 Department of Computer Science and Technology, Tsinghua University,
Beijing, People’s Republic of China
yuhongbo@mail.tsinghua.edu.cn

2 Institute for Advanced Study, Tsinghua University,
Beijing, People’s Republic of China
xiaoyangdong@tsinghua.edu.cn

3 Science and Technology on Communication Security Laboratory,
Chengdu, People’s Republic of China

Abstract. At Asiacrypt 2014, Sun et al. proposed a MILP model [20] to
search for differential characteristics of bit-oriented block ciphers. In this
paper, we improve this model to search for differential characteristics of
GIFT [2], a new lightweight block cipher proposed at CHES 2017. GIFT
has two versions, namely GIFT-64 and GIFT-128. For GIFT-64, we find
the best 12-round differential characteristic and a number of iterative
4-round differential characteristics with our MILP-based model. We give
a key-recovery attack on 19-round GIFT-64. For GIFT-128, we find a
18-round differential characteristic and give the first attack on 23-round
GIFT-128.

Keywords: GIFT · Differential cryptanalysis ·
Lightweight block cipher · MILP

1 Introduction

In recent years, research on lightweight block ciphers has received a lot of atten-
tions. Lightweight block ciphers are widely used in Internet of things and wire-
less communication because their structures are simple and they can be run in
low-power environment. Many lightweight block ciphers such as PRESENT [5],
CLEFIA [17], LED [10], PRINCE [6], SIMON and SPECK [3] have been pub-
lished in last decades. GIFT [2] is a new lightweight block cipher proposed by
Banik et al. at CHES 2017, which is designed to celebrate 10 years of PRESENT.
GIFT has an SPN structure which is similar to PRESENT. It has two versions,

Supported by the National Key Research and Development Program of China (No.
2017YFA0303903 No. 2018YFB0803400) and National Cryptography Development
Fund (No. MMJJ20170121, MMJJ20180101) and Foundation of Science and Tech-
nology on Information Assurance Laboratory (No. 61421120103162112008).

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 372–390, 2019.
https://doi.org/10.1007/978-3-030-12612-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_19&domain=pdf
http://orcid.org/0000-0002-9284-7393
http://orcid.org/0000-0002-6723-6013
http://orcid.org/0000-0001-8500-5991
https://doi.org/10.1007/978-3-030-12612-4_19

MILP-Based Differential Attack on Round-Reduced GIFT 373

namely GIFT-64 and GIFT-128, whose block sizes are 64 and 128, and the round
numbers are 28 and 40 respectively.

Many classical cryptanalysis methods could be converted to mathematical
optimization problems which aims to achieve the minimal or maximal value of
an objective function under certain constraints. Mixed-integer Linear Program-
ming (MILP) is the most widely studied technique to solve these optimization
problems. One of the most successful applications of MILP is to search for differ-
ential and linear trails. Mouha et al. first applied MILP method to count active
S-boxes of word-based block ciphers [12]. Then, at Asiacrypt 2014, Sun et al.
extended this technique to search for differential and linear trails [20], whose
main idea is to derive some linear inequalities through the H-Representation
of the convex hull of all differential patterns and linear bias of S-box. Xiang
et al. [21] introduced a MILP model to search for integral distinguisher, Sasaki
et al. [16] and Cui et al. [7] gave the MILP-based impossible differential search
model independently. There are many MILP-based tools proposed already, such
as MILP-based differential/linear search model for ARX ciphers [8], MILP-based
conditional cube attacks [11] on Keccak [4], etc.

Our Contributions

The designers of GIFT provided many analysis result about GIFT in [2]. They
use MILP to compute the lower bounds for the number of active S-boxes in
differential cryptanalysis firstly. Then they presented round-reduced differential
probabilities. For GIFT-64, they provided a 9-round differential characteristic
with probability of 2−44.415 and they expected that the differential probability of
13-round GIFT-64 will be lower than 2−63. For GIFT-128, they provided a 9-
round differential probability of 2−47 and they expected that the differential
probability of 26-round GIFT-128 will be lower than 2−127. The designers did
not present actual attack on GIFT in [2].

In this paper, we generalize an efficient two-stage MILP-based model inspired
by Sun et al.’s two-stage model [18]. Our model includes two interactive sub-
models, denoted as outer-MILP and inner-MILP part. The outer-MILP part
obtains the minimal active S-boxes, namely, the truncated differential. Then
the inner-MILP part produces the differential characteristic with maximal prob-
ability, the differential characteristic should match the truncated differential.
With our two-stage model, we find some 12-round differential characteristics of
GIFT-64, some of the differential characteristics are iterative. Moreover, using
a 12-round differential characteristic with probability of 2−60, we give an attack
on 19-round reduced GIFT-64 (out of 28 full rounds) with time complexity 2112,
memory complexity 280 and data complexity 263.

In addition, we also improved our search model to find differential character-
istics of GIFT-128. Firstly, the algorithm solves a sub-MILP-model to obtain an
acceptable differential characteristic with small number of rounds. The output
difference of a sub-MILP-model should be served as input difference of the fol-
lowing sub-MILP-model. The sub-MILP-model is iterated until the probability
of the whole differential characteristic is higher than the given bound. Using
our algorithm, we find some new differential characteristics, including a new 18-

374 B. Zhu et al.

round differential characteristic with probability 2−109. We give the first attack
on 23-round GIFT-128 (out of 40 full rounds) with the 18-round differential
characteristic. All of the source code is uploaded to GitHub (https://github.
com/zhuby12/MILP-basedModel).

The summary of differential analysis of GIFT is shown in Table 1.

Table 1. Summary of cryptography analysis on GIFT

Type Rounds Time Memory Data Source

GIFT-64 Integral 14 296 263 263 [2]

GIFT-64 MitM 15 2120 28 264 [2]

GIFT-64 MitM 15 2112 216 264 [14]

GIFT-64 Differential 19 2112 280 263 Ours

GIFT-128 Differential 23 2120 286 2120 Ours

2 Preliminaries

2.1 Description of GIFT

GIFT has an SPN structure which is similar to PRESENT. It has two versions,
namely GIFT-64 and GIFT-128, whose block sizes are 64 and 128 and round
numbers are 28 and 40 respectively. Both versions have a key length of 128 bits.

Each round of GIFT consists of three steps: SubCells, PermBits and
AddRoundKey. The round function of GIFT-64 is shown in Fig. 1. Similarly,
GIFT-128 adopts thirty-two 4-bit S-boxes for each round.

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

RKi

RKi+1

Fig. 1. Two rounds of GIFT-64

https://github.com/zhuby12/MILP-basedModel
https://github.com/zhuby12/MILP-basedModel

MILP-Based Differential Attack on Round-Reduced GIFT 375

SubCells. Both versions of GIFT use the same invertible 4-bit S-box, which
is the only nonlinear component of the algorithm. The action of this S-box in
hexadecimal notation is given in Table 2.

Table 2. Sbox of GIFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

GS(x) 1 a 4 c 6 F 3 9 2 d b 7 5 0 8 e

PermBits. The bit permutation used in GIFT-64 and GIFT-128 are given in
Table 3.

AddRoundKey. The round key RK is extracted from the key state. A round
key is first extracted from the key state before the key state update.

For GIFT-64, two 16-bit words of the key state are extracted as the round key
RK = U ||V . U and V are XORed to b4i+1 and b4i of the cipher state respectively.
bi represents the i-th bit of the cipher state. ui and vi represent the i-th bit of
U and V.

U ← k1, V ← k0

b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi,∀i ∈ {0, · · · , 15}
For GIFT-128, four 16-bit words of the key state are extracted as the round
key RK = U ||V . U and V are XORed to b4i+2 and b4i+1 of the cipher state
respectively.

U ← k5||k4, V ← k1||k0

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi,∀i ∈ {0, · · · , 31}
The key state for two versions are updated as follows,

k7||k6|| · · · ||k1||k0 ← k1 ≫ 2||k0 ≫ 12|| · · · ||k3||k2

Round Constants. For both versions of GIFT, a single bit “1” and a 6-bit
constant C = {c5, c4, c3, c2, c1, c0} are XORed into the cipher state at bit position
n-1,23,19,15,11,7,3 respectively in each round. For GIFT-64, n-1 is 63 and for
GIFT-128, n-1 is 127. {c5, c4, c3, c2, c1, c0} are initialized to “0”, and they are
updated as follow:

(c5, c4, c3, c2, c1, c0) ← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1)

376 B. Zhu et al.

Table 3. Specifications of GIFT bit permutation

GIFT-64 i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P64(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P64(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P64(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P64(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

GIFT-128 i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P128(i) 0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P128(i) 4 37 70 103 100 5 38 71 68 101 6 39 36 69 102 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P128(i) 8 41 74 107 104 9 42 75 72 105 10 43 40 73 106 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P128(i) 12 45 78 111 108 13 46 79 76 109 14 47 44 77 110 15

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

P128(i) 16 49 82 115 112 17 50 83 80 113 18 51 48 81 114 19

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

P128(i) 20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

P128(i) 24 57 90 123 120 25 58 91 88 121 26 59 56 89 122 27

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

P128(i) 28 61 94 127 124 29 62 95 92 125 30 63 60 93 126 31

2.2 Notations

Kj
i The j-th bit of the i-th round key

ΔP The differential in the plaintext
ΔXi

S The differential in the output of the i-th round’s Sbox
ΔXi

P The differential in the output of the i-th round’s Permutation
ΔXi

K The differential in the output of the i-th round’s AddKey
ΔXi

S,P,K ΔXi
S or ΔXi

P or ΔXi
K

ΔXi
S,P,K{m} The m-th bit of ΔXi

S,P,K

ΔXi
S,P,K{ml-mt} The (mt-ml+1) bits totally from the ml-th bit to the mt-th bit

of ΔXi
S,P,K

3 Related Works

3.1 Mouha et al.’s Framework for Word-Oriented Block Ciphers

Mouha et al. [12] introduced MILP model to count the number of differentially
active S-boxes for word-oriented block ciphers.

Definition 1. Consider a differential characteristic state Δ consisting of n
bytes Δ = (Δ0,Δ1, . . . ,Δn−1). Then, the difference vector x = (x0, x1, . . . , xn−1)
corresponding to Δ is defined as

xi =
{

0 if Δi = 0,
1 otherwise.

(1)

MILP-Based Differential Attack on Round-Reduced GIFT 377

Based on Definition 1, Mouha et al. translated the XOR operation and the
linear transformation to linear inequalities as follows:

– Equations describing the XOR operation: Suppose the input difference
vector for the XOR operation be (x⊕

in1, x
⊕
in2) and the corresponding output

difference vector be x⊕
out. The following constraints will make sure that when

x⊕
in1, x⊕

in2 and x⊕
out are not all zero, then there are at least two of them are

nonzero: {
x⊕
in1 + x⊕

in2 + x⊕
out ≥ 2d⊕

d⊕ ≥ x⊕
in1, d⊕ ≥ x⊕

in2, d⊕ ≥ x⊕
out

(2)

where d⊕ is a dummy variable taking values in {0, 1}.
– Equations describing the linear transformation: Assume linear trans-

formation L transforms the input difference vector (xL
1 , xL

2 , . . . , xL
m−1) to

the output difference vector (yL
1 , yL

2 , . . . , yL
m−1). Given the differential branch

number BD. The following constraints can describe the relation between the
input and output difference vectors, they should be subject to:

{∑m−1
i xL

i +
∑m−1

i yL
i ≥ BDdL

dL ≥ xL
i , dL ≥ yL

i , i ∈ {0, ...,m − 1} (3)

where dL is a dummy variable taking values in {0, 1}.

3.2 Sun et al.’s Framework for Bit-Oriented Block Ciphers

At Asiacrypt 2014, Sun et al. [20] extended Mouha et al.’s framework [12] to bit-
oriented ciphers. For bit-oriented ciphers, Mouha et al.’s descriptions of XOR
operation and linear transformation are also suitable.

Definition 2. Consider a differential characteristic state Δ consisting of n bits
Δ = (Δ0,Δ1, . . . ,Δn−1). Then, the difference vector x = (x0, x1, . . . , xn−1) cor-
responding to Δ is defined as

xi =
{

0 if Δi = 0,
1 if Δi = 1.

(4)

Based on Definition 2, Sun et al. translated the S-box operation to linear
inequalities as follow:

– Equations describing the S-box operation: Suppose (x0, . . . , xw−1) and
(y0, . . . , yv−1) are the input and output bit-level differences of an w×v S-box.
A is a dummy variable taking values in {0,1} to describe whether the S-box
is active or not. A = 1 holds if and only if x0, x1, . . . , xw−1 are not all zero.
The following constraints should be obeyed:

{
A − xi ≥ 0, i ∈ {0, . . . , w − 1}∑w−1

i xi − A ≥ 0
(5)

378 B. Zhu et al.

3.3 Valid Cutting-Off Inequalities from the Convex Hull of S-Box

The convex hull of a set Q of discrete points in R
n is the smallest convex that

contains Q. A convex hull in R
n can be described as the common solutions of a

set of finitely many linear equalities and inequalities.
Suppose p = (x, y) = (x0, . . . , xw−1, y0, . . . , yv−1) is a differential pattern of

a w × v S-box, in which x is the input differential vector and y is the output
differential vector. If we treat a differential pattern of a w×v S-box as a discrete
point in R

w+v, then we can get a set of finitely discrete points which includes
all possible differential patterns of the S-box. We can describe this definite set
with the following inequalities:

⎧⎨
⎩

α0,0x0 + . . . + α0,w−1xw−1 + β0,0y0 + . . . + β0,v−1yv−1 + γ0 ≥ 0
. . .
αn,0x0 + . . . + αn,w−1xw−1 + βn,0y0 + . . . + βn,v−1yv−1 + γn ≥ 0

(6)

This is called the H-Representation of a w × v S-box, in which α and β are
constant. With the help of SageMath [1], hundreds of linear inequalities can
be derived by the differential distribution table of a S-box. But the inequali-
ties is redundant in general, for example, the number of inequalities of GIFT
S-box given by SageMath is 237. Because the efficiency of the MILP optimizer is
reduced radically when the amount of linear inequalities increase, adding all of
the inequalities to the MILP model will make the model insolvable in practical
time.

In order to minimize the number of the set of inequalities, Sasaki et al.
raised a MILP-based reduction algorithm in [15] to find the optimal combination
with minimal number of linear inequalities from hundreds of inequalities in the
H-representation of the convex hull. The algorithm considers each impossible
pattern in the DDT of S-box. An impossible pattern should be excluded from
the solution space by at least one inequality. Under these constraints, we can
minimize the number of inequalities by using MILP optimizer.

4 MILP-Based Model to Search Differential
Characteristic for GIFT-64

4.1 MILP-Based Two-Stage Algorithm to Search for Differential
Characteristic

Two-stage search strategy to find differential characteristics of block ciphers is
used in [9,13,18]. In the first step, truncated differential characteristics with
minimal active S-box will be found. Then, concrete differential characteristics
matching the truncated differential characteristic can be found in a subroutine
algorithm. In previous works, one first chose a prespecified threshold of the num-
ber of active S-box. However, it is possible that the characteristic with the highest
probability do not have the minimal number of active S-box. In this section, we
propose Algorithm 1 to search for the best or better differential characteristic.

MILP-Based Differential Attack on Round-Reduced GIFT 379

Algorithm 1. MILP-based differential characteristic searching algorithm
Require: r-round block cipher; valid cutting-off inequalities from the convex hull of

the S-box; Mr is the minimal number of active S-boxes in all of the r-round dif-
ferential characteristics.

Ensure: The highest probability; differential characteristics with high probability.
1: Define MPr = 2−64 as the initial differential probability of GIFT-64.
2: In the Outer-MILP part, construct a model M1 describing the differential behavior

of the cipher. The target value of M1 is a truncated differential characteristic, which
active S-boxes number is minimum in current solution space. Define Mrbound = Mr
as the lower bound of the number of active S-box in M1.

3: Solve the model M1 using an MILP optimizer.
4: if A feasible solution T D is found in M1, save it to a file. then
5: ♦ begin of Inner-MILP part
6: Construct a MILP model M2 describing the differential behavior of the cipher

and add the truncated differential characteristic T D as a constraint to M2.
The objective function of M2 is the differential characteristic with maximal
probability.

7: Solve the model using an MILP optimizer. If a feasible solution x is found, save
x and its probability Pr to the file. If Pr > MPr, set MPr equal to Pr.

8: ♦ end of Inner-MILP part
9: end if

10: Remove the truncated differential T D from the feasible region of M1.
11: Solve M1 again. If a new solution T D is found and its active S-boxes number is

equal to Mr, save it and go to step 5. Else go to step 12.
12: If the number of active S-boxes of is more than Mr and less than Mr + 3, set

Mrbound equal to Mrbound + 1, go to step 5. If a new solution T D is not found or
the number of active S-boxes of T D is greater than or equal to Mr + 3, return
MPr and the collection of solution x.

Algorithm 1 does not need the predefined threshold and could get the charac-
teristic with highest probability definitely. Algorithm1 includes two interactive
sub-models, denoted as outer-MILP part and inner-MILP part. The two stages
are interactive. In the outer-MILP part, the objective function is the minimal
active S-boxes. When a solution is found in the outer-MILP part, the truncated
differential that contains the information of the positions of active S-boxes will
input the inner-MILP part as constraints. In the inner-MILP part, it produces
the differential characteristic with maximal probability that matches the trun-
cated differential. Then the algorithm goes to the outer-MILP part with the
truncated differential removed from its feasible region.

In addition, the maximal probability of the derived differential characteristic
is also used to reduce the feasible region of the outer-MILP part dynamically.
In details, if a differential characteristic with larger probability could be found
in the next loops, the number of active S-boxes produced in outer-MILP part
must be lower than a certain bound. The bound is dynamically computed by
the current maximal probability. When the outer-MILP part is infeasible, the
algorithm returned.

380 B. Zhu et al.

We apply Algorithm1 to search for differential characteristics for GIFT-64,
and get some interesting results.

4.2 Search for Differentials of GIFT-64

Algorithm 1 needs two convex hulls about the S-box in the outer-MILP part
and the inner-MILP part respectively. First, we compute the H-representation
of convex hull of differential patterns of S-box in AppendixA. Using SageMath,
237 inequalities are produced in the H-Representation of the convex hull of
GIFT S-box, then after selecting inequalities by the method introduced in [15],
we get 21 inequalities. Second, we study the convex hull of differential patterns
with probabilities of the S-box. Sun et al. introduced the differential distribution
probability of S-box to MILP-model in [19]. Since, for GIFT S-box, there are 4
possible probabilities, i.e. 1, 2−1.415, 2−2, 2−3, we need three extra bits (p0, p1, p2)
to encode the differential patterns with probability. The new differential pattern
is (x0, x1, x2, x3, y0, y1, y2, y3; p0, p1, p2) ∈ F

8+3
2 which satisfies Eq. 7.

⎧⎪⎪⎨
⎪⎪⎩

(p0, p1, p2) = (0, 0, 0), if Prs[(x0, x1, x2, x3) → (y0, y1, y2, y3)] = 1 = 2−0

(p0, p1, p2) = (0, 0, 1), if Prs[(x0, x1, x2, x3) → (y0, y1, y2, y3)] = 6/16 =2−1.415

(p0, p1, p2) = (0, 1, 0), if Prs[(x0, x1, x2, x3) → (y0, y1, y2, y3)] = 4/16 = 2−2

(p0, p1, p2) = (1, 0, 0), if Prs[(x0, x1, x2, x3) → (y0, y1, y2, y3)] = 2/16 = 2−3

(7)
Then the objective function is changed to minimize

∑
(3×p0+2×p1+1.415×p2).

We implement the Algorithm 1 to search for differential characteristics for
GIFT-64. In the Outer-MILP part of the Algorithm1, the objective function is
to minimize active S-boxes. We get the tight bound of number of active S-boxes

Table 4. 12-round differential characteristic with probability 2−59

Round Differential-1 Probability

Input 0c00 0000 0060 0000 1

1st round 0000 0000 0000 4020 2−4

2nd round 0005 0000 0005 0000 2−8

3rd round 0000 0000 2020 0000 2−14

4th round 0050 0000 0050 0000 2−18

5th round 0000 0000 0000 2020 2−24

6th round 0005 0000 0005 0000 2−28

7th round 0000 0000 2020 0000 2−34

8th round 0050 0000 0050 0000 2−38

9th round 0000 0000 0000 2020 2−44

10th round 0000 0000 0005 000a 2−49

11th round 0080 0000 0000 0001 2−54

12th round 1008 0000 0002 2000 2−59

MILP-Based Differential Attack on Round-Reduced GIFT 381

Table 5. 4-round differential characteristic with probability 2−20

Round Differential-1 Probability

Input 0000 0000 0000 1010 1

1st round 0000 000a 0000 000a 2−6

2nd round 0000 0000 0000 0101 2−10

3rd round 000a 0000 000a 0000 2−16

4th round 0000 0000 0000 1010 2−20

for 11-round and 12-round reduced GIFT-64, which are 22 and 24 respectively.
Using the Algorithm 1, we find many 12-round differential characteristics. The
highest probability of 12-round differential characteristic is 2−59, the 12-round
differential characteristic with highest probability is shown in Table 4. Meanwhile
we get dozens of differential characteristics with probability 2−60.

We observe that some of 12-round characteristics are iterative. As a result, we
get eight 4-round differential characteristics with probability 2−20 totally. These
4-round characteristics are iterative, namely, their input states are identical to
their output states. One of them is shown in Table 5, and these characteristics
can be extended to more rounds. So we get one of 12-round differential charac-
teristics cycled by three 4-round differential characteristics with probability 2−60

in Table 6. A 13-round characteristic with probability 2−64 can also be generated
by adding another round at the beginning of 12-round differential characteristic.
Note that the designers of GIFT claimed that the differential probability of 13-
round GIFT-64 will be lower than 2−63. Our result does not violate the claim,
however the gap is very small.

4.3 Attack on 19-Round GIFT-64

Using the 12-round differential characteristic with probability 2−60 in Table 6,
we could launch a key-recovery attack against 19-round GIFT-64. We choose
this differential characteristic because its active bits in the head and tail is less
than others. As shown in Table 7, we add three rounds at its beginning and
four rounds at the end of the differential characteristic. Therefore, we can attack
19-round GIFT-64. According to the key schedule, the round key used in 1-
st, 2-nd, 16-th, 17-th, 18-th and 19-th round corresponds to (k1, k0), (k3, k2),
(k7 ≫ 6, k6 ≫ 4), (k1 ≫ 8, k0), (k3 ≫ 8, k2) and (k5 ≫ 8, k4) in initial key
state (k7, k6, k5, k4, k3, k2, k1, k0), respectively.

Data Collection

Since GIFT-64 does not have whitening key layer at the beginning, after the
P permutation of the first round, we could build 2n structures. Each structure
traverses the sixteen bits undetermined in ΔX1

P , i.e. the bit labeled by “?” in
ΔX1

P of Table 7, thus it can generate 216×2−1 = 231 pairs obeying the differential.
Therefore, 2n structures can generate 2n × 231 = 2n+31 pairs.

382 B. Zhu et al.

Table 6. 12-round differential characteristic with probability 2−60

Round Differential Probability

Input 0000 0000 0000 1010 1

1st round 0000 000a 0000 000a 2−6

2nd round 0000 0000 0000 0101 2−10

3rd round 000a 0000 000a 0000 2−16

4th round 0000 0000 0000 1010 2−20

5th round 0000 000a 0000 000a 2−26

6th round 0000 0000 0000 0101 2−30

7th round 000a 0000 000a 0000 2−36

8th round 0000 0000 0000 1010 2−40

9th round 0000 000a 0000 000a 2−46

10th round 0000 0000 0000 0101 2−50

11th round 000a 0000 000a 0000 2−56

12th round 0000 0000 0000 1010 2−60

Table 7. 19-round differential attack on GIFT-64

ΔP ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX1
S ?000 0?00 00?0 000? ?000 0?00 00?0 000? ?000 0?00 00?0 000? ?000 0?00 00?0 000?

ΔX1
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? ???? ???? ????

ΔX1
K 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? ???? ???? ????

ΔX2
S 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0?0? 10?0 0?0? 10?0

ΔX2
P 0000 0000 0000 1??? 0000 0000 0000 0000 0000 0000 0000 1??? 0000 0000 0000 0000

ΔX2
K 0000 0000 0000 1??? 0000 0000 0000 0000 0000 0000 0000 1??? 0000 0000 0000 0000

ΔX3
S 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000

ΔX3
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

ΔX3
K 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

4th round input 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

.

.

.

.

.

.

15th round output 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

ΔX16
S 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000 ???? 0000

ΔX16
P 0000 0000 0000 0?0? 0000 0000 0000 ?0?0 0000 0000 0000 0?0? 0000 0000 0000 ?0?0

ΔX16
K 0000 0000 0000 0?0? 0000 0000 0000 ?0?0 0000 0000 0000 0?0? 0000 0000 0000 ?0?0

ΔX17
S 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ????

ΔX17
P ?000 ?000 ?000 ?000 0?00 0?00 0?00 0?00 00?0 00?0 00?0 00?0 000? 000? 000? 000?

ΔX17
K ?000 ?000 ?000 ?000 0?00 0?00 0?00 0?00 00?0 00?0 00?0 00?0 000? 000? 000? 000?

ΔX18
S ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX18
P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX18
K ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX19
S ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX19
P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

ΔX19
K ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

For such a pair, it has an average probability of 2−16 to meet the differential
in 4-th round in Table 7. Then, the pair encrypted with the right key will obey

MILP-Based Differential Attack on Round-Reduced GIFT 383

the differential after 15th round with probability of 2−60. While the pair with a
wrong key will obey it with a random probability of 2−64. Therefore, with the
right key guess, 2n+31 ×2−16 ×2−60 = 2n−45 pairs will obey the differential after
15th round. Here we choose n = 47. So the data complexity is 247 × 216 = 263.

Key Recovery

When processing the key recovery, the guessing key bits include: k3
1, k2

1, k1
1, k0

1,
k3
0, k2

0, k1
0, k0

0 in 1st round, k12
3 , k12

2 , k4
3, k4

2 in 2nd round; k6
7, k8

6, k14
7 , k0

6 in 16th
round, k15

1 , k14
1 , k13

1 , k12
1 , k3

0, k2
0, k1

0, k0
0 in 17th round, as well as all 64 key bits

in 18th, 19th round. Totally, we construct 280 counters for the possible values of
the 80 key bits above. The whole attack procedure is a guess and filter approach.
Guess two key bits k0

1, k0
0, then we can partially encrypt the plaintexts.

Table 8. Round keys of GIFT-64

Round Key bit

1st round k15
1 , k14

1 , k13
1 , k12

1 , k11
1 , k10

1 , k9
1 , k

8
1, k

7
1 , k

6
1 , k

5
1, k

4
1 , k

3
1, k

2
1, k

1
1 , k

0
1

k15
0 , k14

0 , k13
0 , k12

0 , k11
0 , k10

0 , k9
0 , k

8
0, k

7
0 , k

6
0 , k

5
0, k

4
0 , k

3
0, k

2
0, k

1
0 , k

0
0

2nd round k15
3 , k14

3 , k13
3 , k12

3 , k11
3 , k10

3 , k9
3 , k

8
3, k

7
3 , k

6
3 , k

5
3, k

4
3 , k

3
3, k

2
3, k

1
3 , k

0
3

k15
2 , k14

2 , k13
2 , k12

2 , k11
2 , k10

2 , k9
2 , k

8
2, k

7
2 , k

6
2 , k

5
2, k

4
2 , k

3
2, k

2
2, k

1
2 , k

0
2

16th round k5
7 , k

4
7, k

3
7 , k

2
7 , k

1
7, k

0
7 , k

15
7 , k14

7 , k13
7 , k12

7 , k11
7 , k10

7 , k9
7, k

8
7, k

7
7 , k

6
7

k3
6 , k

2
6, k

1
6 , k

0
6 , k

15
6 , k14

6 , k13
6 , k12

6 , k11
6 , k10

6 , k9
6, k

8
6 , k

7
6, k

6
6, k

5
6 , k

4
6

17th round k7
1 , k

6
1, k

5
1 , k

4
1 , k

3
1, k

2
1 , k

1
1, k

0
1, k

15
1 , k14

1 , k13
1 , k12

1 , k11
1 , k10

1 , k9
1 , k

8
1

k15
0 , k14

0 , k13
0 , k12

0 , k11
0 , k10

0 , k9
0 , k

8
0, k

7
0 , k

6
0 , k

5
0, k

4
0 , k

3
0, k

2
0, k

1
0 , k

0
0

18th round k7
3 , k

6
3, k

5
3 , k

4
3 , k

3
3, k

2
3 , k

1
3, k

0
3, k

15
3 , k14

3 , k13
3 , k12

3 , k11
3 , k10

3 , k9
3 , k

8
3

k15
2 , k14

2 , k13
2 , k12

2 , k11
2 , k10

2 , k9
2 , k

8
2, k

7
2 , k

6
2 , k

5
2, k

4
2 , k

3
2, k

2
2, k

1
2 , k

0
2

19th round k7
5 , k

6
5, k

5
5 , k

4
5 , k

3
5, k

2
5 , k

1
5, k

0
5, k

15
5 , k14

5 , k13
5 , k12

5 , k11
5 , k10

5 , k9
5 , k

8
5

k15
4 , k14

4 , k13
4 , k12

4 , k11
4 , k10

4 , k9
4 , k

8
4, k

7
4 , k

6
4 , k

5
4, k

4
4 , k

3
4, k

2
4, k

1
4 , k

0
4

As the middle values of right pairs should obey ΔX2
S{0} = 0, ΔX2

S{2} = 0,
ΔX2

S{3} = 1, the (plaintext, ciphertext) pairs can be filtered with a probability
of 2−3. Similarly, guessing ki

1, k
i
0, i = 1, 2, 3 and partially encrypt, corresponding

conditions in ΔX2
S{5, 7}, ΔX2

S{8, 10, 11}, ΔX2
S{13, 15} can filter the pairs with

2−2, 2−3 and 2−2. Totally 1st round provide a filtering probability of 2−10.
Similarly, the encryption at 2-nd, 16-th, 17-th, 18-th round can filter the

pairs with probability 2−6, 2−8, 2−8, 2−48 while all 32 key bits in 19th round
need to be guessed. Thus, 2−2 pairs will be left for a random key, while 4 pairs
should be left for a right key.

The time complexity is 22 × 231+47 × 232 = 2112, the data complexity is 263

and the memory complexity is 280.

384 B. Zhu et al.

5 Improved MILP-Based Method to Find Differential for
GIFT-128

GIFT-128 adopts 128 bits state and has thirty-two 4-bit S-boxes in each round.
The variables and constrains are twice as many as GIFT-64. The designers of
GIFT [2] gives 9-round differential characteristics of GIFT-128. We test Algo-
rithm1 on 9-round GIFT-128 and obtain the designers’ conclusion. But it costs
days to solve. In this section, we devise a segmented MILP-based method to
search for longer differential characteristics for GIFT-128.

Suppose we aim to find a r-round differential characteristic for a block
cipher. We first divide it as ri-round (i = 1, 2, ..., t) sub-ciphers and

∑t
1 ri = r.

We choose probability thresholds for r1-round, r2-round,...,rt-round ciphers as
Pr1 , Pr2 , ..., Prt , so that the probability pri for ri-round sub-cipher should be
larger than Pri . Choose a threshold value Ptarget for r-round. If pr1pr2 . . . prt is
larger than Ptarget, an acceptable solution is found.

As shown in Fig. 2, for ri-round sub-cipher, the input state are fixed as the
output state of the differential characteristic Di−1 of ri−1-round sub-cipher, and
construct the MILP model Mri . If Mri is feasible, we continue to construct
Mri+1 for ri+1-round sub-cipher; else, we remove Di−1 from Mri−1 , and solve
it again. The search terminates until we find the differential characteristics of
r1-round,r2-round,...,rt-round sub-ciphers that could be connected to produce a
r-round differential characteristic.

Infeasible

ri

feasible

1r 1ri

Add input constrain

feasible

Add input constrain

Infeasible

i

Fig. 2. The framework of our search algorithm

We apply this model to search for differential characteristics for GIFT-128. It
is indeed a heuristic and empirical process. For GIFT-128, it is time consuming
to solve a more than 6-round MILP model. In order to keep the efficiency, we
choose ri < 6. Pri is chosen more flexible. According to the designers’ analysis in
[2], for 3/4/5-round GIFT-128, the numbers of minimum active S-boxes are 3,
5, and 7, respectively. The length of the sub-cipher can neither be too short nor
be too long. If the number of rounds is smaller than 2, this sub-MILP-model is
unnecessary to solve. On the other hand, if the number of rounds is bigger than
6 or 7, it costs too much time to solve the sub-model that we cannot bear. We do
not want the probability of ri-round differential characteristic of GIFT-128 to be
much smaller than the highest one. So Pri are chosen according to the minimum
active S-boxes of ri-round GIFT-128. In this section, we choose Pri=3 = 2−30,
Pri=4 = 2−40 and Pri=5 = 2−50 to act as the exact lower bound of differential
probability of each sub-model.

MILP-Based Differential Attack on Round-Reduced GIFT 385

We use this model and the strategies above choosing parameters to search
for differential characteristics for GIFT-128. We list some results in Table 9. The
12-round and 14-round differential characteristics are shown in AppendixC.

Table 9. Probabilities of some differential characteristics of GIFT-128

Round Parameters for ri Probability Source

9 – 2−47 [2]

12 r1 = r2 = r3 = r4 = 3 2−62.415 Ours

14 r1 = r2 = 4 and r3 = 6 2−85 Ours

18 r1 = r2 = r3 = 4 and r4 = 6 2−109 Ours

The 18-round characteristic, shown in Table 10 is constructed by the con-
nection of the following three 4-round differential characteristics and a 6-round
differential characteristic:

(0000 0000 7060 0000 0000 0000 0000 0000)
4−round, 2−12
−−−−−−−−−−−→ (0020 0000 0010 0000 0000 0000 0000 0000)

(0020 0000 0010 0000 0000 0000 0000 0000)
4−round, 2−29
−−−−−−−−−−−→ (0000 0000 0000 0011 0000 0000 0000 0000)

(0000 0000 0000 0011 0000 0000 0000 0000)
4−round, 2−32
−−−−−−−−−−−→ (0000 0000 0a00 0a00 0000 0000 0000 0000)

(0000 0000 0a00 0a00 0000 0000 0000 0000)
6−round, 2−36
−−−−−−−−−−−→ (0000 0100 0020 0800 0014 0404 0002 0202)

Table 10. 18-round differential characteristic of GIFT-128

Round Input Difference Probability

Input 0000 0000 7060 0000 0000 0000 0000 0000 1

1st 0000 0000 0000 0000 0000 0000 00a0 0000 2−5

2nd 0000 0010 0000 0000 0000 0000 0000 0000 2−7

3rd 0000 0000 0800 0000 0000 0000 0000 0000 2−10

4th 0020 0000 0010 0000 0000 0000 0000 0000 2−12

5th 0000 0000 0000 0000 4040 0000 2020 0000 2−17

6th 0000 5050 0000 0000 0000 5050 0000 0000 2−25

7th 0000 0000 0000 0000 0000 0000 0a00 0a00 2−37

8th 0000 0000 0000 0011 0000 0000 0000 0000 2−41

9th 0008 0000 0008 0000 0000 0000 0000 0000 2−47

10th 0000 0000 0000 0000 2020 0000 1010 0000 2−51

11th 0000 5050 0000 0000 0000 5050 0000 0000 2−61

12th 0000 0000 0a00 0a00 0000 0000 0000 0000 2−73

13th 0000 0000 0011 0000 0000 0000 0000 0000 2−77

14th 0090 0000 00c0 0000 0000 0000 0000 0000 2−83

15th 1000 0000 0080 0000 0000 0000 0000 0000 2−89

16th 0010 0000 0000 0000 0000 0000 8020 0000 2−94

17th 0000 0000 8000 0020 0000 0050 0000 0020 2−101

18th 0000 0100 0020 0800 0014 0404 0002 0202 2−109

386 B. Zhu et al.

With the 18-round differential characteristic, we can add three rounds at its
beginning and two rounds at the end to attack 23-round reduced GIFT-128. The
attack procedure is similar to Subsect. 4.3. The time complexity is 2120 which is
bounded by the data complexity and the memory complexity is 286 bits to store
the key counters.

6 Conclusion

In this paper, first, we design a more efficient MILP-based differential search
model. Using this model, we give a 12-round differential characteristic with prob-
ability 2−60 and get the first 19-round key-recovery attack on GIFT-64. Second,
we improve our MILP-based model for block ciphers with large state size. With
this model, we give 18-round differential characteristic with probability 2−109

and obtain the first 23-round key-recovery attack on GIFT-128.
MILP can efficiently find high-probabilistic differential characteristics when

attacking algorithms whose permutation layer will not cause diffusion. In the
future work, we can try to apply heuristic method to constrain global variables,
so as to find a higher probability differential characteristics.

A Difference Distribution Table (DDT) of GIFT S-Box

See Table 11.

Table 11. DDT of GIFT S-box

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2

2 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0

3 0 0 0 0 0 2 2 0 2 0 0 2 2 2 2 2

4 0 0 0 2 0 4 0 6 0 2 0 0 0 2 0 0

5 0 0 2 0 0 2 0 0 2 0 0 0 2 2 2 4

6 0 0 4 6 0 0 0 2 0 0 2 0 0 0 2 0

7 0 0 2 0 0 2 0 0 2 2 2 4 2 0 0 0

8 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4

9 0 2 0 2 0 0 2 2 2 0 2 0 2 2 0 0

a 0 4 0 0 0 0 4 0 0 2 2 0 0 2 2 0

b 0 2 0 2 0 0 2 2 2 2 0 0 2 0 2 0

c 0 0 4 0 4 0 0 0 2 0 2 0 2 0 2 0

d 0 2 2 0 4 0 0 0 0 0 2 2 0 2 0 2

e 0 4 0 0 4 0 0 0 2 2 0 0 2 2 0 0

f 0 2 2 0 4 0 0 0 0 2 0 2 0 0 2 2

MILP-Based Differential Attack on Round-Reduced GIFT 387

B Some 4-Round Iterative Differential Characteristics of
GIFT-64

See Table 12.
Table 12. 4-round iterative differential characteristics

Round Input difference Probability

Input 0005 0000 0005 0000 1

1st 0000 0000 2020 0000 2−6

2nd 0050 0000 0050 0000 2−10

3rd 0000 0000 0000 2020 2−16

4th 0005 0000 0005 0000 2−20

Input 0000 000a 0000 000a 1

1st 0000 0000 0000 0101 2−4

2nd 000a 0000 000a 0000 2−10

3rd 0000 0000 0000 1010 2−14

4th 0000 000a 0000 000a 2−20

Input 0000 00a0 0000 00a0 1

1st 0101 0000 0000 0000 2−4

2nd a000 0000 a000 0000 2−10

3rd 0000 0000 1010 0000 2−14

4th 0000 00a0 0000 00a0 2−20

Input 0000 0000 0101 0000 1

1st 00a0 0000 00a0 0000 2−6

2nd 1010 0000 0000 0000 2−10

3rd 0000 a000 0000 a000 2−16

4th 0000 0000 0101 0000 2−20

Input 0000 0202 0000 0000 1

1st 0000 0500 0000 0500 2−4

2nd 0202 0000 0000 0000 2−10

3rd 0000 5000 0000 5000 2−14

4th 0000 0202 0000 0000 2−20

Input 0000 1010 0000 0000 1

1st 0000 0a00 0000 0a00 2−6

2nd 0000 0101 0000 0000 2−10

3rd 0a00 0000 0a00 0000 2−16

4th 0000 1010 0000 0000 2−20

Input 0000 0050 0000 0050 1

1st 0000 0000 0000 0202 2−6

2nd 0000 0005 0000 0005 2−10

3rd 0000 0000 0202 0000 2−16

4th 0000 0050 0000 0050 2−20

Input 0500 0000 0500 0000 1

1st 2020 0000 0000 0000 2−6

2nd 5000 0000 5000 0000 2−10

3rd 0000 2020 0000 0000 2−16

4th 0500 0000 0500 0000 2−20

388 B. Zhu et al.

C 12-Round and 14-Round Differential Characteristics
of GIFT-128

See Tables 13 and 14.

Table 13. 12-round differential characteristic

Round Input Difference Probability

Input 0000 0000 7060 0000 0000 0000 0000 0000 1

1st 0000 0000 0000 0000 0000 0000 00a0 0000 2−5

2nd 0000 0010 0000 0000 0000 0000 0000 0000 2−7

3rd 0000 0000 0800 0000 0000 0000 0000 0000 2−10

4th 0020 0000 0010 0000 0000 0000 0000 0000 2−12

5th 0000 0000 0000 0000 4040 0000 2020 0000 2−17

6th 0000 5050 0000 0000 0000 5050 0000 0000 2−25

7th 0000 0000 0a00 0a00 0000 0000 0000 0000 2−37

8th 0000 0000 0011 0000 0000 0000 0000 0000 2−41

9th 0090 0000 0000 0000 0060 0000 0000 0000 2−47

10th 1000 0000 0000 0000 0000 0000 0000 2000 2−52

11th 0000 0004 0000 0002 0000 0000 8000 0000 2−57

12th 0000 0000 0404 0020 0200 0010 0101 0000 2−62.415

Table 14. 14-round differential characteristic

Round Input Difference Probability

Input 0000 0000 0000 0000 0000 0706 0000 0000 1

1st 0000 0000 0000 0000 0000 0a00 0000 0000 2−5

2nd 0000 0000 0000 0100 0000 0000 0000 0000 2−7

3rd 0000 0000 0000 0000 0008 0000 0000 0000 2−10

4th 0000 0000 0000 0000 0000 2000 0000 1000 2−12

5th 0000 0404 0000 0202 0000 0000 0000 0000 2−17

6th 0000 0000 0505 0000 0000 0000 0505 0000 2−25

7th 00a0 00a0 0000 0000 0000 0000 0000 0000 2−37

8th 1100 0000 0000 0000 0000 0000 0000 0000 2−41

9th 6000 0000 0000 0000 0000 0000 c000 0000 2−47

10th 0000 0000 2000 0020 0000 0000 0000 0000 2−51

11th 0041 0000 0000 0000 0014 0000 0000 0000 2−55

12th 9000 0000 0000 c000 0000 0000 3000 1000 2−66

13th 0000 0000 0002 0000 0000 0000 8000 0088 2−77

14th 0000 0001 0040 0020 0000 0012 0010 0003 2−85

MILP-Based Differential Attack on Round-Reduced GIFT 389

References

1. http://www.sagemath.org/
2. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a

small present - towards reaching the limit of lightweight encryption. In: Fischer,
W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66787-4 16

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). https://eprint.iacr.org/2013/404

4. Berton, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak sponge function
family. http://keccak.noekeon.org/

5. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

6. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications - extended abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 14

7. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for impos-
sible differentials and zero-correlation linear approximations. IACR Cryptology
ePrint Archive 2016, p. 689 (2016). http://eprint.iacr.org/2016/689

8. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algo-
rithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016.
LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52993-5 14

9. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen
key differential cryptanalysis. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892,
pp. 584–601. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-
1 37

10. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

11. Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on keccak
keyed modes with MILP method. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 99–127. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 4

12. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

13. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 183–203. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 11

14. Sasaki, Y.: Integer linear programming for three-subset meet-in-the-middle attacks:
application to GIFT. In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol.
11049, pp. 227–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
97916-8 15

http://www.sagemath.org/
https://doi.org/10.1007/978-3-319-66787-4_16
https://eprint.iacr.org/2013/404
http://keccak.noekeon.org/
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
http://eprint.iacr.org/2016/689
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-319-44953-1_37
https://doi.org/10.1007/978-3-319-44953-1_37
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/978-3-319-97916-8_15

390 B. Zhu et al.

15. Sasaki, Y., Todo, Y.: New algorithm for modeling S-box in MILP based differential
and division trail search. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS,
vol. 10543, pp. 150–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69284-5 11

16. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 185–215. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 7

17. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74619-5 12

18. Sun, S., et al.: Analysis of AES, SKINNY, and others with constraint programming.
IACR Trans. Symmetric Cryptol. 2017(1), 281–306 (2017). https://tosc.iacr.org/
index.php/ToSC/article/view/595

19. Sun, S., et al.: Towards finding the best characteristics of some bit-oriented block
ciphers and automatic enumeration of (related-key) differential and linear charac-
teristics with predefined properties. Cryptology ePrint Archive, Report 2014/747
(2014). http://eprint.iacr.org/2014/747

20. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

21. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-540-74619-5_12
https://tosc.iacr.org/index.php/ToSC/article/view/595
https://tosc.iacr.org/index.php/ToSC/article/view/595
http://eprint.iacr.org/2014/747
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-662-53887-6_24

Quantum Chosen-Ciphertext Attacks
Against Feistel Ciphers

Gembu Ito1, Akinori Hosoyamada1,2 , Ryutaroh Matsumoto1,3 , Yu Sasaki2,
and Tetsu Iwata1(B)

1 Nagoya University, Nagoya, Japan
g itou@echo.nuee.nagoya-u.ac.jp,

{ryutaroh.matsumoto,tetsu.iwata}@nagoya-u.jp
2 NTT Secure Platform Laboratories, Tokyo, Japan
{hosoyamada.akinori,sasaki.yu}@lab.ntt.co.jp

3 Aalborg University, Aalborg, Denmark

Abstract. Seminal results by Luby and Rackoff show that the 3-round
Feistel cipher is secure against chosen-plaintext attacks (CPAs), and
the 4-round version is secure against chosen-ciphertext attacks (CCAs).
However, the security significantly changes when we consider attacks
in the quantum setting, where the adversary can make superposition
queries. By using Simon’s algorithm that detects a secret cycle-period in
polynomial-time, Kuwakado and Morii showed that the 3-round version
is insecure against quantum CPA by presenting a polynomial-time dis-
tinguisher. Since then, Simon’s algorithm has been heavily used against
various symmetric-key constructions. However, its applications are still
not fully explored.

In this paper, based on Simon’s algorithm, we first formalize a suffi-
cient condition of a quantum distinguisher against block ciphers so that
it works even if there are multiple collisions other than the real period.
This distinguisher is similar to the one proposed by Santoli and Schaffner,
and it does not recover the period. Instead, we focus on the dimension
of the space obtained from Simon’s quantum circuit. This eliminates the
need to evaluate the probability of collisions, which was needed in the
work by Kaplan et al. at CRYPTO 2016. Based on this, we continue the
investigation of the security of Feistel ciphers in the quantum setting. We
show a quantum CCA distinguisher against the 4-round Feistel cipher.
This extends the result of Kuwakado and Morii by one round, and follows
the intuition of the result by Luby and Rackoff where the CCA setting
can extend the number of rounds by one. We also consider more practical
cases where the round functions are composed of a public function and
XORing the subkeys. We show the results of both distinguishing and key
recovery attacks against these constructions.

Keywords: Feistel cipher · Quantum chosen-ciphertext attacks ·
Simon’s algorithm

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 391–411, 2019.
https://doi.org/10.1007/978-3-030-12612-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_20&domain=pdf
http://orcid.org/0000-0003-2910-2302
http://orcid.org/0000-0002-5085-8879
http://orcid.org/0000-0002-4729-0979
https://doi.org/10.1007/978-3-030-12612-4_20

392 G. Ito et al.

1 Introduction

A block cipher is an important cryptographic primitive that is widely adopted in
various secure communication protocols and security products. A block cipher is
a pseudo-random permutation (PRP), i.e. it takes a key as input and provides
distinct permutations that cannot be distinguished from a random permutation
for distinct key inputs.

Designing an efficient block cipher is a long-term challenge in symmetric-key
cryptography. One of the most popular approaches is to use the Feistel network,
in which an n-bit state is divided into n/2-bit halves denoted by ai and bi, and
the state is updated by iteratively applying the following two operations;

bi+1 ← ai ⊕ FKi
(bi), ai+1 ← bi,

where FKi
is a keyed function taking a subkey Ki as input. The construction

is known as the Luby-Rackoff construction. In this paper, we call it Feistel-
F to make the name consistent with other constructions. The diagram of the
construction is drawn in the left of Fig. 1. Luby and Rackoff [19] proved that when
FKi

is a pseudo-random function (PRF), 3-round and 4-round Feistel ciphers
are PRPs up to O(2n/4) queries against chosen-plaintext attacks (CPAs) and
chosen-ciphertext attacks (CCAs), respectively. Luby and Rackoff also showed
the tightness of the number of rounds by demonstrating efficient attacks against 2
and 3 rounds in the corresponding attack models.

While the provable security bounds derived by Luby and Rackoff are attrac-
tive, using a PRF for FKi

requires significant implementation costs, and this
is often practically infeasible. To design a block cipher for practical usage, the
subkey space is often limited to {0, 1}n/2, and FKi

(bi) is defined as

bi+1 ← ai ⊕ F (Ki ⊕ bi), ai+1 ← bi,

where F is a public function. In this paper, we call this construction Feistel-KF.
See the middle figure of Fig. 1. Feistel-KF includes a lot of practical designs,
e.g. DES [20] and Camellia [1], where the function x �→ F (Ki ⊕x) is not a PRF,
and generic attacks on this construction have been widely studied, e.g. impossible
differential attacks [15], meet-in-the-middle attacks [10,12], dissection attacks [5]
and division property [24].

It is also possible to inject a subkey Ki ∈ {0, 1}n/2 outside the F function as

bi+1 ← ai ⊕ F (bi) ⊕ Ki, ai+1 ← bi.

We call this construction Feistel-FK, which is illustrated on the right of Fig. 1.
This construction provides implementation advantages and can be seen in several
lightweight designs e.g. Piccolo [22], Simon [2] and Simeck [25].

The discussion so far is about the classical computation setting, while the
security of symmetric-key schemes against quantum computers has become
active recently. Owing to less mathematical structure in symmetric-key schemes
than public-key schemes, there was a belief that simply doubling the key size in

Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers 393

F

Feistel-F Feistel-KF Feistel-FK

F

Ki

Ki

Ki F

ai

bi

ai+1

bi+1

ai

bi

ai+1

bi+1

ai

bi

ai+1

bi+1

Fig. 1. Our target constructions.

order to resist the exhaustive key search by Grover’s algorithm [9] is sufficient to
protect symmetric-key schemes from quantum computers. However, Kuwakado
and Morii [16] demonstrated that, by exploiting Simon’s algorithm [23], the Feis-
tel ciphers can be distinguished from a random permutation only in polynomial-
time of the output size under the assumption that the adversary can make
quantum superposition queries. Since then, many polynomial-time attacks using
Simon’s algorithm have been proposed e.g. key recovery against Even-Mansour
construction [17], forgery on various CBC-like MACs [14], and cryptanalysis of
AEZ [3]. Moreover, Leander and May [18] showed a clever method to combine
Grover’s and Simon’s algorithms to recover the key against the FX construction.
See also [21].

The attack model that adversaries can make quantum queries is worth inves-
tigating. This model is a natural extension of the classical attack models, and
theoretically interesting. Any symmetric scheme broken in this model should not
be implemented on a quantum computer. Moreover, the threat of this attack
model becomes significant if an adversary has access to its white-box implemen-
tation. Because arbitrary classical circuit can be converted into quantum one,
the adversary can construct a quantum circuit from the classical source code
given by the white-box implementation.

There are several attacks on Feistel ciphers in the quantum setting. Besides
the first work in [16], a meet-in-the-middle attack in the quantum setting was
discussed in [11] and appending key-recovery rounds by applying the algorithm
by Leander and May [18] was discussed in [7,8,11]. However, the following impor-
tant issues have not been discussed by the previous work.

– Security analysis of Feistel ciphers against chosen-ciphertext adversaries is
missing. In the classical setting, the tight bound of the number of rounds is
known for the Feistel-F construction, and clarifying the number of rounds that
can be attacked in the quantum setting leads us a deeper understanding of
the Feistel-F construction. Furthermore, the quantum setting assumes strong
power of adversaries, hence considering CCAs is more reasonable. We note
that there are results in a CCA setting on Feistel ciphers with a specific key
scheduling function called 2 key- or 4 key-alternation Feistel ciphers and their
variants [4,6], however, we are considering more general constructions.

394 G. Ito et al.

– Discussion on practical constructions is missing. Although the Luby-Rackoff
construction is a good object to study theoretical aspects of the Feistel
ciphers, in general, it cannot be implemented efficiently in practice. There-
fore, the analyses of practical constructions like Feistel-KF and Feistel-FK
are needed. Again, we are interested in general constructions that do not rely
on a specific key scheduling function.

Our Contributions. In this paper, we further investigate the security of the
Feistel ciphers against quantum adversaries. In particular, we show CCA distin-
guishers that can distinguish more rounds than the previous CPA distinguishers.
In addition, we extend the distinguishers to key recovery attacks for the practical
constructions, i.e. Feistel-KF and Feistel-FK.

We start with several fundamental observations about Simon’s algorithm that
detects a secret cycle-period in polynomial-time. The usage of Simon’s algorithm
in the previous work can be classified into two types; the first type uses Simon’s
algorithm for key recovery attacks, namely, the recovered secret cycle-period
corresponds to the key of the construction such as [17] and [14], whereas the
second type uses Simon’s algorithm for distinguishers, e.g. to distinguish the
construction from an ideal one [16,21] or to distinguish the right key guess from
wrong key guesses [7,8,11,18].

We observe that, for the second type, recovering the secret cycle-period is not
necessary as long as a non-ideal behavior is detected. If we follow [14] to recover
the secret cycle-period by using Simon’s algorithm, one has to derive the upper
bound on the probability of a collision other than the period. However, there are
cases where obtaining the upper bound is non-obvious, and it may be difficult
to prove it in attacks on complicated constructions. This motivates us to relax
the requirement of recovering the period in Simon’s algorithm. Technically, we
focus on the property that the dimension of the space spanned by the vectors
in Simon’s algorithm, instead of the exact period s. Namely, the dimension of
the space is at most � − 1 if the target function has a period s, where {0, 1}� is
the domain of the function evaluated by Simon’s algorithm. This modification
eliminates the need to derive the upper bound on the probability of a collision
other than the period s. Note that Santoli and Schaffner pointed out a similar
observation [21], and we are dealing with a general class of block ciphers, and
we also formalize a sufficient condition so that the distinguisher works.

We then apply the above observations to attack several Feistel ciphers. For
the Feistel-F construction, we show that a cycle-period can be formed for 4
rounds in the CCA setting. This leads to a 4-round polynomial-time CCA dis-
tinguisher, which is 1-round longer than the CPA distinguisher by Kuwakado and
Morii [16]. The attack is then extended to the practical constructions; Feistel-KF
and Feistel-FK. For Feistel-KF, although the distinguisher is the same as the one
for Feistel-F, we can now discuss the key recovery attack owing to the practi-
cal size of the secret key. We obtain 7-round key recovery attacks that recover
7n/2-bit key with O(23n/4) complexity. For Feistel-FK, the CCA distinguisher
is extended to 6 rounds and we obtain 9-round key recovery attacks that recover

Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers 395

Table 1. Comparison of the number of attacked rounds in various settings. “Dist.”
and “KR” denote distinguisher and key recovery attack, respectively. Superscript P

denotes that the attack complexity is only a polynomial of the function’s output size,
while the others require exponential complexity.

Construction Classic-CPA Classic-CCA Quantum-CPA Quantum-CCA

Dist. KR Dist. KR Dist. KR Dist. KR

Feistel-F 2 [19] - 3 [19] - 3P [16] - 4P Ours -

Feistel-KF 5 [10] 6 [10] 5 [10] 6 [10] 5 [11]
3P [16]

6 [11] 4P Ours 7 Ours

Feistel-FK - - - - 5P Ours 8 Ours 6P Ours 9 Ours

9n/2-bit key with O(23n/4) complexity. In addition, the CPA distinguisher is
extended to 5 rounds and we obtain 8-round key recovery attacks that recover
8n/2-bit key with O(23n/4) complexity. A comparison of the number of attacked
rounds is given in Table 1. Note that Table 1 focuses on attacks with complexity
at most O(2n), and it does not include attacks with higher complexities. Also,
we consider only general constructions, so it does not include attacks against
constructions with a particular key scheduling function such as [4,6].

Paper Outline. This paper is organized as follows. Section 2 describes prelimi-
naries. Section 3 introduces previous works. Section 4 explains the formalization
of a distinguishing technique that relaxes Simon’s algorithm. Section 5 presents
our CCA distinguisher against the 4-round Feistel-F constructions. The attack
is then applied to chosen-ciphertext key-recovery attacks on Feistel-KF con-
structions in Sect. 6. Section 7 explains distinguishing and key-recovery attacks
against Feistel-FK constructions in both CCA and CPA settings. We conclude
the paper in Sect. 8.

2 Preliminaries

2.1 Notation

For a positive integer n, let {0, 1}n be the set of all n-bit strings. Let Perm(n) be
the set of all permutations on {0, 1}n, and let Func(n) be the set of all functions
from {0, 1}n to {0, 1}n. For bit strings a and b, a ‖ b denotes their concatenation.
We also regard a and b as binary vectors, and let |a| be the dimension of the
vector a. When |a| = |b|, we denote their inner product as a · b. In this paper, e

denotes Napier’s number. For a finite set X , we write X
$← X for the process of

sampling an element uniformly from X and assigning the result to X.

2.2 Simon’s Algorithm

In this section, we describe Simon’s algorithm [23] that is used in our quantum
algorithms. Throughout this paper, we assume that readers have basic knowledge
about quantum computation. Simon’s algorithm can solve the following problem.

396 G. Ito et al.

Problem 1. Given a function f : {0, 1}n → {0, 1}n, assume that there exists a
period s ∈ {0, 1}n\{0n} such that for any distinct x, x′ ∈ {0, 1}n, it holds that
f(x) = f(x′) ⇔ x′ = x ⊕ s. The goal is to find the period s.

We assume that Simon’s algorithm has access to the quantum oracle Uf , which is
defined as Uf |x〉 |z〉 = |x〉 |z ⊕ f(x)〉. We use the Hadamard transform H⊗n that
is applied on n-qubit state |x〉 and gives H⊗n |x〉 = 1√

2n

∑
y∈{0,1}n(−1)x·y |y〉.

Simon proposed a circuit Sf that computes vectors that are orthogonal to s by
using the quantum oracle Uf . Sf is described as (H⊗n ⊗ In) · Uf · (H⊗n ⊗ In)
and works as follows:

1. We first apply the Hadamard transform H⊗n on the first n qubits of 2n-qubit

state |0n〉 |0n〉 to obtain the state
1√
2n

∑
x |x〉 |0n〉.

2. Then, we apply the unitary operator Uf to obtain the state 1√
2n

∑
x |x〉 |f(x)〉.

3. Finally, we apply the Hadamard transform H⊗n on the first n qubits to obtain
the state

1
2n

∑

x,y

(−1)x·y |y〉 |f(x)〉 . (1)

As we assume that f satisfies f(x) = f(x′) ⇔ x′ = x ⊕ s, we have |y〉 |f(x)〉 =
|y〉 |f(x ⊕ s)〉 for each y and x. Therefore, Eq. (1) is described as

1
2n

∑

x∈V,y

(
(−1)x·y + (−1)(x⊕s)·y) |y〉 |f(x)〉 ,

where V is a linear subspace of {0, 1}n of dimension n−1 that partitions {0, 1}n

into cosets V and V + s. The vector y such that y · s ≡ 1 (mod 2) will satisfy
(−1)x·y + (−1)(x⊕s)·y = 0. Thus, we will obtain a random vector y such that
y · s ≡ 0 (mod 2) by measuring the first n qubits. By repeating this routine that
obtains a random vector y for O(n) times, with a high probability, we obtain
n − 1 linearly independent such vectors, and then the period s can be recovered
by solving the system of linear equations.

We note that, in Simon’s algorithm, we assume that the function f has a
period s. In latter sections, we will use the circuit Sf to a function f that may
not have any period, or may have multiple periods.

2.3 Kaplan et al.’s Observation

To apply Simon’s algorithm, the function f has to satisfy f(x) = f(x′) ⇔ x′ =
x ⊕ s. We call this property Simon’s promise. If f does not satisfy this property
and has other collisions in addition to s, then there is no guarantee that Simon’s
algorithm works. However, Kaplan et al. showed that Simon’s algorithm can find
s even if f has partial periods, where the partial period is defined as t = s such
that f(x) = f(x ⊕ t) holds for some x [14].

Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers 397

More precisely, suppose that a function f : {0, 1}� → {0, 1}m satisfies only
the condition that f(x) = f(x′) ⇐ x′ = x⊕s for any distinct x, x′ ∈ {0, 1}�. Since
now the counter condition f(x) = f(x′) ⇒ x′ = x⊕s does not always hold, there
may exist partial periods of f . Intuitively, if there exist many partial periods
t1, t2, . . . which are very close to complete periods (i.e., Prx [f(x) = f(x ⊕ tj)]
is close to 1 for each j), then it becomes hard to recover s. To describe this
intuition formally, Kaplan et al. introduced the parameter ε(f, s) defined as

ε(f, s) = max
t∈{0,1}�\{0�,s}

Pr
x

[f(x) = f(x ⊕ t)] . (2)

This shows the maximum probability of partial periods of f . Notice that if f is
a constant function, then ε(f, s) = 1 and s cannot be recovered. On the other
hand, if f satisfies Simon’s promise, then ε(f, s) = 0. The following theorem
about the success probability of Kaplan et al.’s observation was proved.

Theorem 1 ([14]). If ε(f, s) ≤ p0 for some positive number p0 < 1, the proba-
bility that Simon’s algorithm returns s after c� queries is at least 1−(2(1+p0

2)c)�.

This theorem shows that we still obtain s with O(�) quantum queries and the
complexity does not increase significantly.

3 Previous Works

3.1 Quantum Distinguisher Against the 3-Round Feistel Cipher

Here we review the distinguishing algorithm of the 3-round Feistel cipher by
Kuwakado and Morii [16]. Kuwakado and Morii considered the case where FKi

in Fig. 1 is a random permutation, and we write Pi for FKi
.

Let FP3 denote the encryption algorithm of the 3-round Feistel cipher, where
random permutations P1, P2, P3

$← Perm(n/2) are used as internal functions.
FP3 takes a plaintext (a, b) ∈ ({0, 1}n/2)2 as input and outputs a ciphertext
(c, d) ∈ ({0, 1}n/2)2, where

c = b ⊕ P2(a ⊕ P1(b)),
d = a ⊕ P1(b) ⊕ P3(b ⊕ P2(a ⊕ P1(b))).

Figure 2 illustrates FP3.
Kuwakado and Morii considered the following problem.

Problem 2. Let O : {0, 1}n → {0, 1}n be either FP3 or a random permutation
Π

$← Perm(n). Given access to the quantum oracle UO : |x〉 |y〉 �→ |x〉 |y ⊕ O(x)〉,
where x, y ∈ {0, 1}n, the goal is to distinguish the two cases.

Let α0, α1 ∈ {0, 1}n/2 be arbitrary distinct constants. For β ∈ {0, 1} and
x ∈ {0, 1}n, Kuwakado and Morii used (x, αβ) as the plaintext (a, b). When O
is FP3, the lower half c of the ciphertext is described as

c = αβ ⊕ P2(x ⊕ P1(αβ)).

398 G. Ito et al.

Fig. 2. The 3-round Feistel cipher with Pi
$← Perm(n/2) being used as the internal

function.

x

α0/α1

Fig. 3. FP3(x, αβ) and the lower half c
of the ciphertext.

x

α0/α1

Fig. 4. P2(x ⊕ P1(αβ)).

Figure 3 illustrates c. Then, we see that c ⊕ αβ = P2(x ⊕ P1(αβ)) holds, which
is illustrated in Fig. 4. If we change the value of β, i.e., if we let β to β ⊕ 1,
we see that the input value of P2 remains the same value by changing x to
x ⊕ P1(α0) ⊕ P1(α1). Thus, we can construct a function fO(β ‖ x) that has the
period 1 ‖ P1(α0) ⊕ P1(α1) by defining fO as

fO : {0, 1} × {0, 1}n/2 → {0, 1}n/2

(β ‖ x) �→ c ⊕ αβ , where (c, d) = O(x, αβ). (3)

Note that fO can also be evaluated in quantum superpositions. We can realize
the unitary operator UfO : |x〉 |y〉 �→ |x〉 |y ⊕ fO(x)〉 which makes O(1) quantum
queries to UO. If O is FP3, then the function fO is described as

fO(β ‖ x) = αβ ⊕ P2(x ⊕ P1(αβ)) ⊕ αβ

= P2(x ⊕ P1(αβ)),

and the following lemma holds.

Lemma 1. If O is FP3, the function fO satisfies fO(β ‖ x) = fO(β′ ‖ x′) ⇔
β′ ‖ x′ = (β ‖ x) ⊕ (1 ‖ P1(α0) ⊕ P1(α1)) for any x, x′ ∈ {0, 1}n/2 such that
x = x′. That is, fO has the period s = 1 ‖ (P1(α0) ⊕ P1(α1)).

For completeness, a proof is presented in [13].
Lemma 1 guarantees that the function fO defined in Eq. (3) satisfies Simon’s

promise if O is FP3, and we can recover the period s by applying Simon’s
algorithm to fO. Define a unitary operator SfO by SfO = (H⊗n/2+1 ⊗ In/2) ·
UfO · (H⊗n/2+1 ⊗ In/2). The quantum distinguisher by Kuwakado and Morii
works as follows.

1. Measure the first n/2 + 1 qubits of SfO |0n+1〉 to obtain the vector y ∈
{0, 1}n/2+1.

Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers 399

2. Repeat Step 1 until we obtain n/2 linearly independent vectors. If obtained,
compute s by solving the system of linear equations.

3. Choose β ∈ {0, 1} and z ∈ {0, 1}n/2 randomly, and compute fO(β ‖ z) and
fO((β ‖ z) ⊕ s). If fO(β ‖ z) = fO((β ‖ z) ⊕ s), then output “O is FP3,”
otherwise output “O is Π.”

If O is FP3, we obtain the period s in Step 2 with a high probability and it passes
the test in Step 3. On the other hand, according to [16], if O is Π, with a high
probability, Simon’s algorithm returns a random string s′, and the probability
that fO(β ‖ z) = fO((β ‖ z) ⊕ s′) is about 2−n/2. Therefore, the distinguisher
above returns a correct answer by making O(n) quantum queries.

Remark 1. We need to truncate outputs of O for constructing the function fO,
since we use only the lower n/2 bits of the output of O. However, the oracle
may return outputs of which the lower and upper parts are entangled, and it
is not trivial to truncate such outputs without destroying the entanglement, as
pointed out by Kaplan et al. [14]. To solve this problem, Hosoyamada and Sasaki
showed how to simulate truncation of outputs of the oracles without destroying
quantum entanglements [11], and the same technique can be used in our case.

3.2 Key Recovery Attacks Against the Feistel-KF Construction

Next, we introduce the idea of the key recovery attacks against the Feistel-KF
construction by Hosoyamada and Sasaki [11], and Dong and Wang [8]. They com-
bined the quantum distinguisher against the 3-round Feistel cipher (see Sect. 3.1)
with the Grover search. The attack is a quantum chosen-plaintext attack, and
recovers the keys of the r-round Feistel cipher in time Õ(2(r−3)n/4).

Attack Idea. Given the quantum encryption oracle of the r-round Feistel-KF
construction, run the following procedures (on a quantum circuit).

1. Implement a quantum circuit which
– takes the intermediate state value after the first (r − 3) rounds and the

subkeys for the first (r − 3) rounds as input,
– computes the plaintext by decrypting the first (r − 3) rounds,
– makes a quantum query of the computed plaintext to the oracle,
– and returns the oracle output.

The input and output of this circuit correspond to those of the last 3 rounds.
We denote this circuit by E , which is depicted in Fig. 5.

2. Guess the subkeys of the first (r − 3) rounds.
3. For each guess, check its correctness with the following procedure.

(a) Apply the 3-round distinguisher to E .
(b) If the distinguisher returns that “this is a random permutation”, then

judge that the guess is wrong. Otherwise judge that the guess is correct.

Attack Complexity. The total length of the subkeys of the first (r − 3) rounds is
((r − 3)n/2) bits. Thus the exhaustive search of the first (r − 3) rounds can be

400 G. Ito et al.

(guess)

K1 Kr−3 Kr−2 Kr−1 Kr

αβ

x

plaintext

query
encryption oracle

– corresponds to the last 3 rounds
– apply the 3-round distinguisher

F

Kr−3

F

K1
(guess)

F F F F F
ciphertext

decrypt with (r − 3)-round subkeys guess

Fig. 5. Construction of E in the key recovery attack against the r-round Feistel-KF
construction. The ciphertext corresponds to the output of the 3-round Feistel-KF con-
struction which takes (Kr−2, Kr−1, Kr) as subkeys and (x, αβ) as input.

done in time O(
√

2(r−3)n/2) by using the Grover search. Moreover, the 3-round
distinguisher in the third step runs in time O(n) for each subkeys guess. The
running time of the attack is O(

√
2(r−3)n/2) × O(poly(n)) = Õ(2(r−3)n/4).

Although how to formally combine the Grover search and the 3-round dis-
tinguisher is non-trivial, the technique developed by Leander and May [18] guar-
antees that those can be combined. See the previous papers [8,11] for details.

4 Relaxing Simon’s Algorithm

This section presents quantum distinguishers that are based on the relaxed ver-
sion of Simon’s algorithm [23]. In a nutshell, we discuss that it is enough to
obtain several vectors that are orthogonal to the period, and thus we eliminate
the need to recover the actual period. This is similar to the one by Santoli and
Schaffner [21], while we are dealing with a general class of block ciphers, and we
also formalize a sufficient condition so that the distinguisher works.

In more detail, instead of using the period for the basis of the distinguisher,
we focus on the dimension of the space spanned by the vectors y1, y2, . . . that are
obtained by using Sf (recall that Sf is defined in Sect. 2.2). If f has the non-zero
period s, then the dimension is at most |s|−1, since the vectors y1, y2, . . . are all
orthogonal to the period s. On the other hand, as we prove in Theorem 2 below,
if the function f does not have any period, the dimension of the space spanned
by the vectors y1, y2, . . . can reach |s| with a high probability. In other words,
we can distinguish f by checking the dimension of the space spanned by the
vectors y1, y2, . . . without computing the actual period s. Thus, there will not
be a problem if there are several partial periods or periods other than s because
our distinguisher does not need the period s.

Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers 401

Note that this technique works only if we do not need the value of s. This
technique cannot be applied to the key recovery attacks on Even-Mansour con-
struction and forgery attacks on authentication and authenticated encryption
schemes since the goal of these attacks needs s [14].

Below we formally explain how our distinguisher works. Let O : {0, 1}n →
{0, 1}n be either an encryption scheme EK or a random permutation Π

$←
Perm(n), and suppose that the quantum oracles of O and O−1 are given. Our
goal is to distinguish whether O = EK or O = Π. In what follows, when we
use the symbol π for a permutation, we consider that π is a fixed (or constant)
permutation.

Settings. Our distinguisher can be applied when there is a function family {fπ :
{0, 1}� → {0, 1}m}π∈Perm(n) that satisfies the following conditions:

1. There is a (classical) algorithm A that makes black-box access to π, π−1, and
computes fπ. That is, for each permutation π, Aπ,π−1

computes fπ(x) if x
is given as input. We assume that A makes O(1) queries and runs in time
O(poly(�,m)).

2. For the encryption scheme E and any key K, fEK has a period, i.e., there
exists s ∈ {0, 1}� such that fEK (x ⊕ s) = fEK (x) holds for all x (note that s
depends on K).

Moreover, informally we expect that fΠ has no period with a high probability
when Π is a random permutation. Note that the first condition implies that we
can make a quantum circuit that realizes the unitary operator UfO : |x〉 |z〉 �→
|x〉 |z ⊕ fO(x)〉 by making O(1) quantum queries to O and O−1, since any clas-
sical deterministic algorithm can be converted to a corresponding quantum algo-
rithm.

Description of the Distinguisher. Let SfO be the unitary operator that is defined
as in Sect. 2. Recall that SfO = (H⊗� ⊗Im) ·UfO · (H⊗� ⊗Im). Our distinguisher
is described in Algorithm 1.

Analysis of the Distinguisher. Our distinguisher always returns the correct
answer if O = EK , since by assumption, fEK has a period for any K, and
thus the dimension of the space spanned by Y becomes strictly less than �. Our
distinguisher fails only if O = Π and the dimension of the space spanned by Y
becomes less than �. Below we analyze the failure probability, assuming that η
(the number of iterations in Step 2) is sufficiently large.

Algorithm 1. Distinguisher without recovering the period
1. Prepare an empty set Y.
2. For 1 ≤ i ≤ η, do:
3. Measure the first � qubits of SfO |0�+m〉 and add the obtained vector y to Y.
4. End For
5. Calculate the dimension d of the vector space spanned by Y.
6. If d = �, then output “O is Π.” If d < �, output “O is EK .”

402 G. Ito et al.

The failure probability increases if the distribution of y in Step 3 is highly
biased. Moreover, we obtain a vector y which is orthogonal to a partial period
t of fΠ with a high probability in Step 3 if Prx

[
fΠ(x) = fΠ(x ⊕ t)

]
is large

(i.e., t is close to a complete period) by definition of SfO . To capture how much
the distribution of y is biased under the condition that random permutation Π
matches a fixed permutation π, we introduce a parameter επ

f defined as

επ
f = max

t∈{0,1}�\{0�}
Pr
x

[fπ(x) = fπ(x ⊕ t)] . (4)

We expect that, if π is chosen uniformly at random, this parameter επ
f is small

on average.
Now take a small constant 0 ≤ δ < 1 arbitrarily and say that a permutation

π is irregular if επ
f > 1 − δ, i.e., επ

f is relatively large. In addition, define the set
of irregular permutations irrδf as

irrδf = {π ∈ Perm(n) | επ
f > 1 − δ}. (5)

Our intuition is that the failure probability becomes small if PrΠ [Π ∈ irrδf] is
sufficiently small, and actually the following theorem holds.

Theorem 2. Let � and m be positive integers that are O(n). Assume that we
have a quantum circuit with O(poly(�,m)) qubits which computes fO by making
O(1) queries to O, and runs in time T = T (�,m). Then, our distinguisher makes
O(η) quantum queries, runs in time O(ηT + �3), and distinguishes EK from Π
with probability at least

1 − 2�/eδη/2 − Pr
Π

[Π ∈ irrδf]. (6)

A proof is presented in [13]. This theorem guarantees that we can distinguish
EK from Π if 2�/eδη/2 and PrΠ [Π ∈ irrδf] are small. In later sections, we apply
the above theorem with η = 2�/δ, in which case we have 2�/eδη/2 = (2/e)�.

If we use the technique by Kaplan et al. (Theorem 1) to analyze a success
probability of a distinguisher, we have to upper bound the parameter ε(fEK , s)
that depends on the real construction EK , which may become hard if EK has
a complex structure. On the other hand, our technique (Theorem 2) requires
only upper bounds of the terms that are not related to the real construction.
Thus our technique makes analysis of a distinguisher easier than the technique
by Kaplan et al. We remark that the probability evaluation in the ideal case that
is similar to the last term of Eq. (6) is needed in the previous works [7,14,16] as
well.

Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers 403

Fig. 6. The 4-round Feistel-F construction. Fi ∈ Func(n/2).

5 Quantum Distinguishing Attacks Against Feistel-F

In this section, we present our distinguisher against the 4-round Feistel-F con-
struction with quantum chosen-ciphertext attacks. Based on this, we present
in Sect. 6 quantum distinguishing attacks and key recovery attacks against the
Feistel-KF construction.

We write FKi
as Fi. Note that Fi is still a keyed function and the absence of

Ki does not imply that it is a keyless function. Let FF4 denote the encryption
algorithm of the 4-round Feistel-F construction, and FF−1

4 denote its decryption
algorithm. Figure 6 illustrates FF4. Let F1, . . . , F4 ∈ Func(n/2) be the round
functions of Feistel-F. FF4 takes a plaintext (a, b) ∈ ({0, 1}n/2)2 as input and
outputs a ciphertext (c, d) ∈ ({0, 1}n/2)2, where FF4 : (a, b) �→ (c, d) is

c = a ⊕ F1(b) ⊕ F3(b ⊕ F2(a ⊕ F1(b))),

d = b ⊕ F2(a ⊕ F1(b)) ⊕ F4

(
a ⊕ F1(b) ⊕ F3(b ⊕ F2(a ⊕ F1(b)))

)
.

The decryption FF−1
4 : (c, d) �→ (a, b) is defined as

a = c ⊕ F3(d ⊕ F4(c)) ⊕ F1

(
d ⊕ F4(c) ⊕ F2(c ⊕ F3(d ⊕ F4(c)))

)
,

b = d ⊕ F4(c) ⊕ F2(c ⊕ F3(d ⊕ F4(c))).

Let Π
$← Perm(n) be a random permutation and Π−1 be the inverse per-

mutation of Π. Π takes a plaintext (a, b) ∈ ({0, 1}n/2)2 as input and outputs a
ciphertext (c, d) ∈ ({0, 1}n/2)2, and Π−1 takes a ciphertext (c, d) as input and
outputs a plaintext (a, b).

Given the quantum oracles of O and O−1, where O is either the 4-round
Feistel-F FF4 or a random permutation Π

$← Perm(n), our goal is to distinguish
the two cases. We now construct the function fO to use Algorithm 1. We first fix
two arbitrary distinct constants α0, α1 ∈ {0, 1}n/2, and we define the function
fO as

fO : {0, 1} × {0, 1}n/2 → {0, 1}n/2

(β ‖ x) �→ b ⊕ αβ , where (c, d) = O(x, αβ),

(a, b) = O−1(c, d ⊕ α0 ⊕ α1).

That is, fO is obtained by first encrypting (x, αβ) to obtain the ciphertext (c, d),
then decrypting (c, d ⊕ α0 ⊕ α1) to obtain the plaintext (a, b), and we define fO

as b ⊕ αβ .

404 G. Ito et al.

fO(β x)

Fig. 7. The function fO with FF4 and FF−1
4 , where O is FF4.

Zβ x

fO(β x)

Fig. 8. A circuit that is equivalent to fO.

If O is FF4, then by connecting FF4 and FF−1
4 , our function fO can be

illustrated as in Fig. 7. We observe that F4 has no effect on the computation of
fO, and F1 in FF−1

4 does not contribute to fO. They are shown in gray in Fig. 7.
We see that Fig. 7 is equivalent to Fig. 8, and the function fO is described as

fO(β ‖ x) = α0 ⊕ α1 ⊕ F2(x ⊕ F1(αβ))

⊕ F2

(
x ⊕ F1(αβ) ⊕ F3(αβ ⊕ F2(x ⊕ F1(αβ)))

⊕ F3(αβ ⊕ α0 ⊕ α1 ⊕ F2(x ⊕ F1(αβ)))
)
. (7)

Our main observation is the following lemma.

Lemma 2. If O = FF4, fO satisfies fO(β ‖ x) = fO(β ⊕ 1 ‖ x ⊕ F1(α0) ⊕
F1(α1)). That is, fO has the period s = 1 ‖ F1(α0) ⊕ F1(α1).

Proof. Let Zβ‖x = x ⊕ F1(αβ) (See Fig. 8). We prove the lemma based on two
claims. The first claim is that Zβ‖x already has the period s = 1 ‖ F1(α0) ⊕
F1(α1), and the second claim is that the subsequent computation of fO does not
depend on β nor x.

First, Zβ‖x has the period s, since

Z(β‖x)⊕s = x ⊕ F1(α0) ⊕ F1(α1) ⊕ F1(αβ⊕1)
= x ⊕ F1(αβ)
= Zβ‖x.

Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers 405

We next show that the subsequent computation of fO does not depend on β
nor x. If we describe fO in Eq. (7) by using Zβ‖x, then we obtain

fO(β ‖ x) = α0 ⊕ α1 ⊕ F2(Zβ‖x)

⊕ F2

(
Zβ‖x ⊕ F3(αβ ⊕ F2(Zβ‖x)) ⊕ F3(αβ ⊕ α0 ⊕ α1 ⊕ F2(Zβ‖x))

)
.

Now this is equivalent to

fO(β ‖ x) = α0 ⊕ α1 ⊕ F2(Zβ‖x)

⊕ F2

(
Zβ‖x ⊕ F3(α0 ⊕ F2(Zβ‖x)) ⊕ F3(α1 ⊕ F2(Zβ‖x))

)
(8)

since {αβ , αβ ⊕ α0 ⊕ α1} = {α0, α1}. We see that fO depends on Zβ‖x that has
the period s = 1 ‖ F1(α0) ⊕ F1(α1), and hence the lemma follows. ��

Therefore, we can construct a distinguisher against the 4-round Feistel-F
construction by using the function fO. From Theorem 2, the success probability
of the distinguisher with measuring (2n + 4) times is 1 − (2/e)n/2+1 − PrΠ [Π ∈
irr

1/2
f], where we use δ = 1/2 and η = 2n + 4.

It is clear that PrΠ [Π ∈ irr
1/2
f] is a small value, since it is highly unlikely

that fO obtained from a random permutation has periods. In [13], we present
experimental results for small values of n to show that PrΠ [Π ∈ irr

1/2
f] is indeed

a small value.

6 Quantum Attacks Against Feistel-KF

The distinguisher in the previous section can obviously be applied to the 4-round
Feistel-KF construction, and we can distinguish it from random permutations
in polynomial time. Similarly to the previous key recovery attacks against the
Feistel-KF [8,11] construction (see Sect. 3.2), our 4-round distinguisher can be
combined with the Grover search to develop key recovery attacks. Our new key
recovery attack recovers the keys of the r-round Feistel-KF construction in time
Õ(2(r−4)n/4) in the quantum CCA setting.

Attack Idea. Our attack idea is almost the same as that of the previous attacks [8,
11], except that our attack uses not only the encryption oracle but also the
decryption oracle. Given the quantum encryption and decryption oracles of the
r-round Feistel-KF construction, run the following procedures (on a quantum
circuit).

1. Implement a quantum circuit E that takes the intermediate state value after
the first (r − 4) rounds and the subkeys for the first (r − 4) rounds as input,
and computes the last 4 rounds, in the same way as the first step of the attack
idea in Sect. 3.2.

2. Implement a quantum circuit D that computes the inverse of E . That is,
implement a quantum circuit which

406 G. Ito et al.

– takes the ciphertext and the subkeys for the first (r − 4) rounds as input,
– makes a quantum decryption query of the ciphertext to the oracle to

obtain the plaintext,
– computes the intermediate state value after the first (r − 4) rounds from

the plaintext and the subkeys for the first (r − 4) rounds,
– and returns the intermediate state.

3. Guess the subkeys of the first (r − 4) rounds.
4. For each guess, check its correctness with the following procedure.

(a) Apply the 4-round distinguisher to E and D.
(b) If the distinguisher returns that “this is a random permutation”, then

judge that the guess is wrong. Otherwise judge that the guess is correct.

Attack Complexity. The length of the first (r − 4)-round subkeys is ((r − 4)n/2)
bits in total. Thus the exhaustive search on the first (r − 4) rounds can be
done in time O(

√
2(r−4)n/2) by using the Grover search. Moreover, the 4-round

distinguisher in the fourth step runs in time O(n) for each candidate subkeys.
Therefore the running time of the attack becomes O(

√
2(r−4)n/2)×O(poly(n)) =

Õ(2(r−4)n/4).
Our new attack reduces the time complexity Õ(2(r−3)n/4) of the previous

attacks to Õ(2(r−4)n/4), by using our new CCA 4-round distinguisher instead of
the previous CPA 3-round distinguisher by Kuwakado and Morii. Our attack is
a chosen-ciphertext attack unlike that the previous attacks are chosen-plaintext
attacks, since our 4-round distinguisher is a CCA distinguisher.

7 Quantum Attacks Against Feistel-FK

In Sect. 7.1, we show a quantum distinguishing attack against Feistel-FK. Based
on this, we present in Sect. 7.2 a key recovery attack. The main difference from
the previous sections is that the number of the distinguishable rounds increases.
In Sect. 7.3, we present a quantum chosen-plaintext attack.

7.1 Distinguishers Against Feistel-FK

We present our distinguisher against the 6-round Feistel-FK construction with
quantum chosen-ciphertext attacks. This attack is based on the distinguisher
against the 4-round Feistel-F construction described in Sect. 5. We increase the
number of rounds by adding the first and last rounds, and this is possible because
we can compute the output of the first F function and the last F function in
encryption (or decryption) without knowing the subkeys.

Let (a, b) ∈ ({1, 0}n/2)2 denote a plaintext and (c, d) ∈ ({1, 0}n/2)2 denote a
ciphertext. Let FFK6 : (a, b) �→ (c, d) denote the encryption algorithm of the 6-
round Feistel-FK construction, and FFK−1

6 : (c, d) �→ (a, b) denote its decryption
algorithm. Figure 9 illustrates the 6-round Feistel-FK construction.

Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers 407

b

a

K1 K2 K3 K4 K5 K6

FFFFFF

Fig. 9. The 6-round Feistel-FK construction.

Fig. 10. The function fO with FFK6 and FFK−1
6 , where O is FFK6. c′ = c ⊕ α0 ⊕ α1

and d′ = d ⊕ F (c) ⊕ F (c ⊕ α0 ⊕ α1).

Given the quantum oracles of O and O−1, we define the function fO as

fO : {0, 1} × {0, 1}n/2 → {0, 1}n/2

(β ‖ x) �→ a ⊕ F (b) ⊕ αβ

where (c, d) = O(αβ ⊕ F (x), x),

(a, b) = O−1(c ⊕ α0 ⊕ α1, d ⊕ F (c) ⊕ F (c ⊕ α0 ⊕ α1)).

If O is FFK6, then our function fO can be illustrated as in Fig. 10. We
observe that the F functions shown in gray in Fig. 10 and the subkeys K6 have
no effect on the computation of fO. By connecting FFK6 and FFK−1

6 , we obtain
Fig. 11 that is equivalent to Fig. 10. If we replace αβ with αβ ⊕ K1 and Fi(x)
with F (x)⊕Ki+1 in Fig. 7, we see that Fig. 7 is equivalent to Fig. 11. Therefore,
from Eqs. (7) and (8), the function fO is described as

408 G. Ito et al.

b

K2K3K4K5

K1

K1

K2 K3 K4 K5

F F FFFFFF

fO(β x)

Fig. 11. A circuit that is equivalent to Fig. 10.

fO(β ‖ x)
= α0 ⊕ α1 ⊕ F (x ⊕ F (αβ ⊕ K1) ⊕ K2)

⊕ F
(
x ⊕ F (αβ ⊕ K1) ⊕ K2 ⊕ F

(
α0 ⊕ F (x ⊕ F (αβ ⊕ K1) ⊕ K2) ⊕ K3

)

⊕ F
(
α1 ⊕ F (x ⊕ F (αβ ⊕ K1) ⊕ K2) ⊕ K3

))

and it has the period s = 1 ‖ F (α0 ⊕ K1) ⊕ F (α1 ⊕ K1).
Therefore, we can construct a distinguisher against the 6-round Feistel-FK

construction by using the function fO. From Theorem 2, the success probability
of the distinguisher with measuring (2n + 4) times is 1 − (2/e)n/2+1 − PrΠ [Π ∈
irr

1/2
f], where we set δ = 1/2 and η = 2n + 4. Note that PrΠ [Π ∈ irr

1/2
f] is a

small value, as it is unlikely that fO obtained from a random permutation has
periods.

7.2 Key Recovery Attacks Against Feistel-FK

Similarly to the key recovery attacks against the Feistel-KF construction in
Sect. 6, the distinguisher introduced above can be combined with the Grover
search to develop key recovery attacks. We can recover keys of the r-round
Feistel-FK construction in time Õ(2(r−6)n/4) in the quantum CCA setting.

Our attack idea follows the attack against the Feistel-KF construction in
Sect. 6. Recall that the attack in Sect. 6 guesses the first (r − 4)-round subkeys
since a 4-round distinguisher is available. On the other hand, as for the Feistel-
FK construction, we can use the 6-round distinguisher in Sect. 7.1 instead of the
4-round distinguisher. Hence it is sufficient to guess only the first (r − 6)-round
subkeys (instead of the first (r − 4)-round subkeys) when we attack the Feistel-
FK construction. The time complexity of our attack becomes Õ(2(r−6)n/4), since
the Grover search on the first (r−6)-round subkeys ((r−6)n

2 bits in total) requires
O(

√
2(r−6)n/2) = O(2(r−6)n/4) evaluations.

7.3 Quantum CPA Attacks Against Feistel-FK

We can also construct a distinguisher and recover the key of the Feistel-FK
construction in the quantum CPA setting. As in Sect. 7.1, we can construct

Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers 409

a 5-round distinguisher by following the 3-round distinguisher in Sect. 3.1 and
by computing the output of the first F function and the last F function in
encryption. Specifically, we use (αβ ⊕ F (x), x) as the input of the oracle O
and use d ⊕ F (c) ⊕ αβ as the output of the function fO(β ‖ x), where (c, d) =
O (αβ ⊕ F (x), x). This function has the period s = 1 ‖ F (α0⊕K1)⊕F (α1⊕K1).

Combined with the 5-round distinguisher, we can recover the subkeys of the
r-round Feistel-FK construction as in Sect. 6. The time complexity of our key
recovery attack is Õ(2(r−5)n/4), since the Grover search on the first (r−5)-round
subkeys ((r−5)n

2 bits in total) requires O(
√

2(r−5)n/2) = O(2(r−5)n/4) evaluations.

8 Concluding Remarks

In this paper, we first formalized a distinguishing algorithm against block ciphers
that does not recover the period. We then considered quantum chosen-ciphertext
attacks against Feistel ciphers. We gave a new quantum CCA distinguisher
against Feistel ciphers that can distinguish more rounds than the previous CPA
distinguishers. Our quantum CCA distinguishers can distinguish the 4-round
Feistel-F and Feistel-KF constructions, and the 6-round Feistel-FK construc-
tion, from random permutations in polynomial-time of the output size. Moreover,
we extended the distinguishers to key recovery attacks for the Feistel-KF and
Feistel-FK constructions. Our quantum CCA key recovery attacks against the r-
round Feistel-KF and Feistel-FK constructions recover keys in time Õ(2(r−4)n/4)
and Õ(2(r−6)n/4), and quantum CPA key recovery attacks against the r-round
Feistel-FK constructions recover keys in time Õ(2(r−5)n/4), respectively.

There are interesting open questions. First, we still do not know the tight
bound on the number of rounds that we can distinguish the Feistel-F construc-
tion. From the result of Kuwakado and Morii, we know that the 3-round con-
struction can be distinguished with quantum CPA, and this paper shows that
the 4-round construction can be distinguished with quantum CCA. However,
there is a possibility that these rounds can be extended, and deriving the tight
number of rounds remains as a challenging question. Improving the complex-
ity or extending the number of rounds of the attacks against Feistel-KF and
Feistel-FK constructions is also an interesting question.

Acknowledgments. The authors would like to thank participants of Dagstuhl sem-
inar 18021, Symmetric Cryptography, for insightful feedback. We also would like to
thank the anonymous reviewers of CT-RSA 2019 for helpful comments.

References

1. Aoki, K., et al.: Camellia: a 128-bit block cipher suitable for multiple platforms—
design andanalysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012,
pp. 39–56. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44983-3 4

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, pp. 175:1–175:6. ACM (2015)

https://doi.org/10.1007/3-540-44983-3_4

410 G. Ito et al.

3. Bonnetain, X.: Quantum key-recovery on full AEZ. In: Adams, C., Camenisch, J.
(eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-72565-9 20

4. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
IACR Cryptology ePrint Archive 2018, 1067 (2018)

5. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: New attacks on Feistel struc-
tures with improved memory complexities. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 433–454. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 21

6. Dong, X., Dong, B., Wang, X.: Quantum attacks on some Feistel block ciphers.
IACR Cryptology ePrint Archive 2018, 504 (2018)

7. Dong, X., Li, Z., Wang, X.: Quantum cryptanalysis on some generalized Feistel
schemes. IACR Cryptology ePrint Archive 2017, 1249 (2017)

8. Dong, X., Wang, X.: Quantum key-recovery attack on Feistel structures. IACR
Cryptology ePrint Archive 2017, 1199 (2017)

9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) STOC 1996, pp. 212–219. ACM (1996)

10. Guo, J., Jean, J., Nikolić, I., Sasaki, Y.: Meet-in-the-middle attacks on generic
Feistel constructions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8873, pp. 458–477. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45611-8 24

11. Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks:
applications to 6-round generic Feistel constructions. In: Catalano, D., De Prisco,
R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98113-0 21

12. Isobe, T., Shibutani, K.: Generic key recovery attack on Feistel scheme. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 464–485. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 24

13. Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Y., Iwata, T.: Quantum chosen-
ciphertext attacks against Feistel ciphers. IACR Cryptology ePrint Archive 2018,
1193 (2018). Full version of this paper

14. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking sym-
metric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

15. Knudsen, L.R.: The security of Feistel ciphers with six rounds or less. J. Cryptol.
15(3), 207–222 (2002)

16. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In: ISIT 2010, pp. 2682–2685. IEEE (2010)

17. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In:
ISITA 2012, pp. 312–316. IEEE (2012)

18. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-
construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 6

19. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

20. National Bureau of Standards: Data encryption standard. FIPS 46, January 1977
21. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryp-

tographic primitives. Quantum Inf. Comput. 17(1&2), 65–78 (2017)

https://doi.org/10.1007/978-3-319-72565-9_20
https://doi.org/10.1007/978-3-319-72565-9_20
https://doi.org/10.1007/978-3-662-47989-6_21
https://doi.org/10.1007/978-3-662-45611-8_24
https://doi.org/10.1007/978-3-662-45611-8_24
https://doi.org/10.1007/978-3-319-98113-0_21
https://doi.org/10.1007/978-3-642-42033-7_24
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-319-70697-9_6

Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers 411

22. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23951-9 23

23. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

24. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

25. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of
lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015.
LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48324-4 16

https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.1007/978-3-662-48324-4_16

Automatic Search for a Variant
of Division Property Using Three Subsets

Kai Hu and Meiqin Wang(B)

Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

hukai@mail.sdu.edu.cn, mqwang@sdu.edu.cn

Abstract. The division property proposed at Eurocrypt’15 is a novel
technique to find integral distinguishers, which has been applied to most
kinds of symmetric ciphers such as block ciphers, stream ciphers, and
authenticated encryption, etc. The original division property is word-
oriented, and later the bit-based one was proposed at FSE’16 to get bet-
ter integral property, which is composed of conventional bit-based divi-
sion property (two-subset division property) and bit-based division prop-
erty using three subsets (three-subset division property). Three-subset
division property has more potential to achieve better integral distin-
guishers compared with the two-subset division property. The bit-based
division property could not be to apply to ciphers with large block sizes
due to its unpractical complexity. At Asiacrypt’16, the two-subset divi-
sion property was modeled using Mixed Integral Linear Programming
(MILP) technique, and the limits of block sizes were eliminated. How-
ever, there is still no efficient method searching for three-subset division
property. The propagation rule of the XOR operation for L (The defini-
tion of L and K is introduced in Sect. 2.), which is a set used in the
three-subset division property but not in two-subset one, requires to
remove some specific vectors, and new vectors generated from L should
be appended to K when Key-XOR operation is applied, both of which are
difficult for common automatic tools such as MILP, SMT or CP. In this
paper, we overcome one of the two challenges, concretely, we address the
problem to add new vectors into K from L in an automatic search model.
Moreover, we present a new model automatically searching for a variant
three-subset division property (VTDP) with STP solver. The variant is
weaker than the original three-subset division property (OTDP) but it is
still powerful in some ciphers. Most importantly, this model has no con-
straints on the block size of target ciphers, which can also be applied to
ARX and S-box based ciphers. As illustrations, some improved integral
distinguishers have been achieved for SIMON32, SIMON32/48/64(102),
SPECK32 and KATAN/KTANTAN32/48/64 according to the number
of rounds or number of even/odd-parity bits.

Keywords: Division property · Three-subset · STP ·
Automatic research

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 412–432, 2019.
https://doi.org/10.1007/978-3-030-12612-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_21

Automatic Search for a Variant of Division Property Using Three Subsets 413

1 Introduction

Division property, a generalization of the integral property [6], was proposed by
Todo at Eurocrypt’15 [12], which has been applied to most kinds of symmetric
ciphers, such as block ciphers, stream ciphers and authenticated encryption [13,
14], etc. The most impressive application is that it was used to break, for the first
time, the full MISTY1 at CRYPTO’15 [13]. Furthermore, the division property
made significant progress in the cube attack because the limits of practical data
complexity have been eliminated [14].

Since the division property was put forward, this cryptanalytic technique has
been further investigated. The original division property [12] is word-oriented,
and it can only describe the algebraic degree of S-box instead of the particular
Boolean function. In order to further consider the Boolean function of S-box,
Boura et al. gave more precise description for S-box in division property at
CRYPTO’16 [3].

At FSE’16, Todo and Morii [15] introduced the bit-based division property
which depicts the components of target primitive at bit level so that more infor-
mation of the cipher structures can be utilized. Compared with the original
word-level division property, the bit-based one is more likely to find better inte-
gral characteristics. Bit-based division property family proposed in [15] includes
two-subset and three-subset division property. The two- and three-subset divi-
sion property classify all vectors u ∈ F

n
2 into two and three subsets, respectively,

according to the parity of a Boolean polynomial related to u. In detail, the parity
is even or unknown for two-subset division property while even, odd or unknown
for three-subset division property. Because the odd-parity set is extracted from
the unknown set in three-subset division property, it means that more infor-
mation of Boolean function is traced. Therefore, three-subset division property
has more potential to achieve better integral distinguishers. For example, the
14-round integral characteristic of SIMON32 has been found by two-subset divi-
sion property while 15-round integral characteristic was found by three-subset
division property [15].

Although the bit-based division property under Todo and Morri’s frame-
work is quite effective to find integral distinguishers, unfortunately, they can
only work on ciphers with small block sizes because of the huge memory and
time requirements. As pointed in [15], for a cipher with block size n, the time
and memory complexities are upper bounded by 2n. Xiang et al. have solved
the problem of searching for two-subset division property by utilizing the MILP
tools at Asiacrypt’16 [17]. They transformed the search problem into an MILP
problem which can be used to find division property for ciphers with large block
size. Automatic tools such as MILP solvers can describe the set with some con-
straints and conduct some inner optimization automatically, which do not need
to go through all the vectors. Xiang et al.’s method has been extended and
applied to improve the integral attacks on many ciphers [5,9,10,16]. Especially,
the MILP model to search division property was used to extend the cube attack,
which has improved the attacks on Trivium, Grain128a, and Acorn [14].

414 K. Hu and M. Wang

Since the automatic search model for three-subset division property is still
not constructed, it can be merely used on ciphers with small size until now.
For two-subset division property, we only trace the set K but both the set K

and L should be considered for three-subset division property. There are two
challenges to face when we construct the automatic search model by MILP,
SMT or CP. In one hand, the propagation rules for L are very different because
some vectors which appear an even number of times should be removed from L

and the propagation rule of XOR should remove the vectors occurring an even
number of times, too. On the other hand, some new vectors generated from
vectors in L will be added into K.

In common MILP, SMT or CP models, the constraints are used only to
narrow the range of the sets which the variables belong to. There are no direct
methods which can solve the two following problems as far as we know,

1. decide the duplicated vectors which appear even times and remove them
dynamically.

2. extend the range of a set which the specific variable belongs to.

In this paper, we introduce one new technique by an STP solver to overcome
the second problem directly. We do not remove the duplicated vectors in L and
then we get a variant of three-subset division property. Although VTDP is not
more efficient than OTDP, we prove that the results of VTDP are valid and
useful. Most importantly, we can automatically search for VTDP without the
limits of block sizes. It can also be applied to S-box based and ARX ciphers.

1.1 Our Contributions

1.1.1 Automatic Search Algorithm for VTDP

In this paper, we introduce VTDP and construct a general model of automatic
search for it. The details of our technical contributions are three-fold, which are
listed as follows.

VTDP and Variant Three-Subset Division Trail. We describe the method
to obtain VTDP from OTDP and prove the validity of this variant. Compared
with OTDP, VTDP does not remove any duplicated vector in L and modify
the propagation rule of XOR for L. As a result, we can prove that the integral
distinguishers found by VTDP are valid according to OTDP. To construct the
automatic search model for VTDP, we introduce the definition of variant three-
subset division trail. The definition of division trail to illustrate the propagation
of two-subset division property is introduced in [17]. Similarly, we define the
variant three-subset division trail in order to construct the automatic search
model for VTDP. With this definition, the problem of searching for VDTP can
be transformed to a problem of searching for a valid variant three-subset division
trail.

Automatic Search for a Variant of Division Property Using Three Subsets 415

Table 1. Results of VTDP for some ciphers

Cipher Data Round Number of
even/odd-parity
bits

Time Reference

SIMON32 231 14 32 [17]

15 3 27 s [15], Sect. 4.1

SIMON32(102) 231 20 1 [17]

20 3 25 s Sect. 4.1

SIMON48(102) 247 28 1 [17]

28 3 9.3 s Sect. 4.1

SIMON64(102) 263 36 1 [17]

36 3 1.1 h Sect. 4.1

KATAN/KTANTAN32 231 99 1 [9]

101 1 5.6 h Sect. 4.4

KATAN/KTANTAN48 247 63.5 1 [9]

64 1 16 h Sect. 4.4

KATAN/KTANTAN64 263 72.3 1 [9]

72.3 2 18 h Sect. 4.4

SPECK32 231 6 1 [11]

6 2 3.5m Sect. 4.2

Models of Key-Independent Components for L. To search for VTDP, we
should build the models for propagation for K and L. For K, the models are the
same as those in the two-subset division property [11,17], which can be referred
directly. However, we should construct the models of all kinds of operations
for L. We first give a variant propagation rule of XOR for L and construct the
automatic search models for common component such as Copy, AND and XOR.
Then, to make our models more general, we consider Modular Addition and
S-box also.

Model for Key-XOR. The difficult problem in constructing the models for VTDP
is how to update the set K with the set L when a Key-XOR operation is applied
to the state. By introducing the logical OR operation in STP, which is a simple
but efficient solver for the theory of quantifier-free bit vectors, we succeed to
solve this difficult problem. Thus, we can give a model for Key-XOR based on
STP.

1.1.2 Applications
We apply our model to search for integral distinguishers of SIMON [1],
SIMECK [18], SIMON(102) [7], SPECK [1], KATAN/KTANTAN [4]. The results
are shown in Table 1. Note our model are also suitable to the ciphers with larger
size and the S-box based ciphers but no better results can be obtained.

416 K. Hu and M. Wang

1.2 Organization of the Paper

We briefly recall some background knowledge about the bit-based division prop-
erty in Sect. 2. In Sect. 3, we introduce VTDP and construct the whole automatic
search model for it. We show some applications of our model in Sect. 4. At last,
we conclude the paper in Sect. 5.

2 Preliminaries

2.1 Bit-Based Division Property

At Eurocrypt’15, the division property, a generalization of the integral property,
was proposed [12], where better integral distinguishers for word-oriented cryp-
tographic primitives have been detected. Later, Todo and Morii introduced the
bit-based division property [15] where the propagation of integral characteris-
tic can be described in a more dedicated manner for the concrete structures of
the target primitives. As a result, more rounds of integral characteristics have
been found with this new technique. For example, the integral distinguishers of
SIMON32 have been improved from 10-round to 15-round.

Bit-based division property traces the propagation of vectors u ∈ F
n
2 accord-

ing to the parity of πu (x) for all x, where πu (x) is a polynomial πu (x) = Πix
ui
i

and xi, ui are the i-th bit of vector u and v. For the traditional bit-based divi-
sion property, only two cases are considered where u can be classified into two
sets according to that the parity of πu (x) is even or unknown. In this paper, we
name it as two-subset bit-based division property.

Definition 1 (Two-Subset Bit-Based Division Property [15]). Let X be a
multiset whose elements take a value of F

n
2 . Let K be a set whose elements take

an n-dimensional bit vector. When the multiset X has the division property D1n

K
,

it fulfils the following conditions:

⊕

x∈X

πu (x) =

{
unknown, if there exist k ∈ K s.t. u � k,
0, otherwise,

where u � k if ui � ki for all i.

The two-subset bit-based division property uses the set K to represent the
subset of u such that the parity of πu (x) is unknown. According to [15], the two-
subset bit-based division property is insufficient to find more accurate integral
characteristic because it cannot exploit the fact that the parity of πu (x) is defi-
nitely odd. Motivated by this fact, the three-subset bit-based division property
is introduced in [15].

The three-subset bit-based division property classifies u into three sets on
the basis of what the parity of

⊕
x∈X

πu (x) is unknown, definitely even or odd.
Therefore, the set K is used to represent the set of u with unknown

⊕
x∈X

πu (x),
and the set L is used to denote the set of u with

⊕
x∈X

πu (x) equal to one.

Automatic Search for a Variant of Division Property Using Three Subsets 417

Definition 2 (Three-Subset Bit-Based Division Property [15]). Let X be
a multiset whose elements take a value of F

n
2 . Let K and L be two sets whose

elements take n-dimensional bit vectors. When the multiset X has the division
property D1n

K,L, it fulfils the following conditions:

⊕

x∈X

πu (x) =

⎧
⎪⎨

⎪⎩

unknown, if there exist k ∈ K s.t. u � k

1, else if there is l ∈ L s.t. u = l

0, otherwise
.

According to [15], if there are k ∈ K and k′ ∈ K satisfying k � k′, then k is
redundant. Moreover, if there are l ∈ L and k ∈ K, the vector l is also redundant
if l � k. The redundant vectors in K and L will not affect the parity of πu (x)
for any u.

Since we only focus on the bit-based division property in this paper, all
notations of division property is for the bit level by default if we do not declare it.

Propagation Rules
Those for K are the same as those of two-subset one.

Rule 1 (Copy [15]). Let F be a copy function, where the input (x1, x2, . . . , xm)
takes values of (F2)n, and the output is calculated as (x1, x1, x2, x3, . . . , xm). Let
X and Y be the input and output multiset, respectively. Assume that X has D1m

K,L,
Y has D1m+1

K′,L′ , where K
′ and L

′ are computed as

K
′ ←

{
(0, 0, k2, . . . , km), if k1 = 0
(1, 0, k2, . . . , km), (0, 1, k2, . . . , km), if k1 = 1

,

L
′ ←

{
(0, 0, l2, . . . , lm), if l1 = 0
(1, 0, l2, . . . , lm), (0, 1, l2, . . . , lm), (1, 1, l2, . . . , lm), if l1 = 1

.

from k ∈ K and l ∈ L, respectively.

Rule 2 (AND [15]). Let F be a function compressed by an AND, where the
input (x1, x2, . . . , xm) takes values of (F2)m, and the output is calculated as
(x1 ∧ x2, x3, . . . , xm). Let X and Y be the input and output multiset, respec-
tively. Assume that X has D1m

K,L, Y has D1m−1

K′,L′ , where K
′ is computed from k ∈ K

as

K
′ ←

(⌈
k1 + k2

2

⌉
, k3, k4, . . . , km

)
.

Moreover, L
′ is computed from l ∈ L s.t. (l1, l2) = (0, 0) or (1, 1) as

L
′ ←

(⌈
l1 + l2

2

⌉
, l3, l4, . . . , lm

)
.

418 K. Hu and M. Wang

Rule 3 (XOR [15]). Let F be a function compressed by an XOR, where the
input (x1, x2, . . . , xm) takes values of (F2)m, and the output is calculated as
(x1 ⊕ x2, x3, . . . , xm). Let X and Y be the input and output multiset, respec-
tively. Assume that X has D1m

K,L, Y has D1m−1

K′,L′ , where K
′ is computed from k ∈ K

s.t. (k1, k2) = (0, 0), (1, 0), or (0, 1) as

K
′ ← (k1 + k2, k3, k4, . . . , km).

Moreover, L
′ is computed from l ∈ L s.t. (l1, l2) = (0, 0), (1, 0), or (0, 1) as

L
′ x←− (l1 + l2, l3, l4, . . . , lm),

where L
x←− l means

L =

{
L ∪ {l} if the original L does not include l,

L\{l} if the original L includes l.

Boura et al. presented the propagation rules of S-box for K at bit-level in
[3] for the first time. We summarize the technique in Rule 4.

Rule 4 (Bit-Based S-box for K [3]). Let F : F
m
2 → F

n
2 be a function of

substitution composed of (f1, f2, . . . , fn), where the input x = (x1, x2, . . . , xm)
takes values of (F2)m, and the output y = (y1, y2, . . . , yn) is calculated as

y1 = f1(x1, x2, . . . , xm),
y2 = f2(x1, x2, . . . , xm),
...
yn = fn(x1, x2, . . . , xm).

For each vector u ∈ K representing the input division property, check each vector
v ∈ F

n
2 whether the polynomial πv (y) contains any monomial πk′(x) that k′ � k.

If so, then (u,v) is a valid division trail for the S-box function.

Modular Addition is the nonlinear component of ARX ciphers. The Modular
Addition operation can be decomposed into a series of basic operations such
as Copy, AND and XOR. Let x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) and
z = (z0, z1, . . . , zn−1). If z = x�y, the Boolean function of zi can be iteratively
expressed as follows,

zn−1 = xn−1 ⊕ yn−1 ⊕ cn−1, cn−1 = 0,

zi = xi ⊕ yi ⊕ ci, ci = xi+1 · yi+1 ⊕ (xi+1 ⊕ yi+1) · ci+1,

i = n − 2, n − 3, . . . , 0.

With some auxiliary variables, Sun et al. modeled Modular Addition at
Aisacrypt’17 in [11] as follows.

Automatic Search for a Variant of Division Property Using Three Subsets 419

Rule 5 (ModularAddition for K [11]). Let (a0, a1, . . . , an−1, b0, b1, . . . , bn−1,
d0, d1, . . . , dn−1) be a division trail of n-bit Modular Addition operation, to
describe the division property propagation, the Copy, AND and XOR models should
be applied in a specific order.

Rule 6 (Key − XOR). Assuming F is a component of Key-XOR, (K, L) and
(K′, L′) are the input and output division property, respectively. According to
[15], the propagation is as follows,

L
′ ← l, for l ∈ L,

K
′ ← k, for k ∈ K,

K
′ ← (l1, l2, . . . li ∨ 1, . . . , lm), for l ∈ L satisfying li = 0, 1 � i � m.

2.2 Automatic Search for Bit-Based Division Property

As pointed in [15], the time and memory complexities for bit-based division
property are upper-bounded by 2n, where n denotes the block length. Therefore,
the bit-based division property was just applied to SIMON32 and SIMECK32
in [15].

Recently, the techniques of automatic search for distinguishers have devel-
oped a lot. Automatic search can trace the transitions of sets in an efficient
way. The propagation of vectors can be modeled by a serial of constrained opti-
mization or decision statements. The technique has been used to find better
differential and linear characteristics. Especially, it is very efficient to search for
the division property.

Xiang et al. transformed the problem of finding two-subset division property
into an MILP problem for the first time [17]. With the help of MILP solver
Gurobi, they can find division property for ciphers with large block sizes, e.g.,
SIMON128 or PRESENT. To search for two-subset bit-based division property,
they introduced the definition of two-subset division trail.

Definition 3 (Two-Subset Division Trail [17]). Let us consider the propa-
gation of the division property {k} def

= K0 → K1 → . . . → Kr. Moreover, for any
vector k∗

i+1 ∈ Ki+1, there must exit a vector k∗
i ∈ Ki such that k∗

i can prop-
agate to k∗

i+1 by the propagation rules of the division property. Furthermore,
for (k0,k1, . . . ,kr) ∈ K0 × K1 × . . . × Kr if ki can propagate to ki+1 for all
i ∈ {0, 1, . . . , r − 1}, we call (k0 → k1 → . . . → kr) an r-round division trail.

2.2.1 Models of Propagation with SMT/SAT
Since we will use STP solver to implement our model, we introduce the
SMT/SAT models for K describing the basic components Copy, AND, XOR and
complex components Modular Addition according to Rule 5.

Model 1 (Bit-Based Copy for K [11]). Denote (a)
Copy−−→ (b0, b1) a division

trail of Copy operation, the following logical equations are sufficient to depict the
propagation of bit-based division trail,

420 K. Hu and M. Wang

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b̄0 ∨ b̄1 = 1
a ∨ b0 ∨ b̄1 = 1
a ∨ b̄0 ∨ b1 = 1
ā ∨ b0 ∨ b1 = 1

.

Model 2 (Bit-Based XOR for K [11]). Denote (a0, a1)
XOR−−→ (b) a division trail

of XOR function, the following logical equations are sufficient to evaluate the bit-
based division trail through XOR operation,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ā0 ∨ ā1 = 1
a0 ∨ a1 ∨ b̄ = 1
a0 ∨ ā1 ∨ b = 1
ā0 ∨ a1 ∨ b = 1

.

Model 3 (Bit-Based AND for K [11]). Denote (a0, a1)
AND−−→ (b) a division trail

of AND function, the following logical equations are sufficient to evaluate the bit-
based division trail through AND operation,

⎧
⎪⎨

⎪⎩

ā1 ∨ b = 1
a0 ∨ a1 ∨ b̄ = 1
ā0 ∨ b = 1

.

Model 4 (Bit-Based ModularAddition for K [11]). According to Rule 5, we
can use the models of basic operations Copy, AND and XOR and some auxiliary
variables to implement the Modular Addition.

2.2.2 Initial and Stopping Rules of Two-Subset Division Property
An MILP or SMT/SAT model to search for two-subset bit-based division prop-
erty needs to set proper initial and stopping rules, i.e., assign values to the initial
and output variables in the division trail.

Assume that (a0
0, a

0
1, . . . , a

0
n−1) → . . . → (ar

0, a
r
1, . . . , a

r
n−1) is an r-round divi-

sion trail for an n-bit length cipher. Let D1n

k denote the initial division property
with k = (k0, k1, . . . , kn−1), and then we append the following constraints to the
search model,

a0
i = ki, i = 0, 1, 2, · · · , n − 1.

To check whether the i0-th (0 � i0 � n − 1) output bit is balanced or not, we
just add constraints on ar

i (i = 0, 1, . . . , n − 1) that

ar
i =

{
1, if i = i0,

0, else.

If there is a division trail, the i0-th output bit is decided as unknown; otherwise,
the i0-th output bit is balanced.

Automatic Search for a Variant of Division Property Using Three Subsets 421

3 Search for Variant Three-Subset Division Property

3.1 Variant of Three-Subset Division Property

Firstly, we introduce a compromising propagation rule of XOR for L for VTDP
as follows,

Rule 7 (Variant XOR). Let F be a function compressed by an XOR, where
the input (x1, x2, . . . , xm) takes values of (F2)m, and the output is calculated as
(x1 ⊕x2, x3, . . . , xm). Let X and Y be the input and output multiset, respectively.
Assuming that X has D1m

K,L, Y has D1m−1

K′,L′ , where K
′ is computed from k ∈ K s.t.

(k1, k2) = (0, 0), (1, 0), or (0, 1) as

K
′ ← (k1 + k2, k3, k4, . . . , km).

Moreover, L
′ is computed from l ∈ L s.t. (l1, l2) = (0, 0), (1, 0), or (0, 1) as

L
′ ← (l1 + l2, l3, l4, . . . , lm),

In VTDP, we do not remove the duplicated vectors which appear even number
of times in L, and there are no other differences between VTDP and OTDP.

In VTDP, some duplicated vectors which appear even times will further gen-
erate some unexpected vectors in L and K by Key-XOR. As a result, there are
many unexpected division trails in K and L. Note that these extra trails will not
change the original division trails inherited from OTDP if we do not remove the
redundant vectors. Let KV and LV be the set containing all the division trails
from all the duplicated vectors which appears even times and KO and LO be the
set containing all the division trails which are from the OTDP. The following
proposition describes the relationships between VTDP and OTDP.

Proposition 1. Regarding one fixed bit of ciphertext, the VTDP will determine
the parity of this bit by checking the vectors in K and L after r-round encryption.
Compared with the results from OTDP, those from VTDP satisfy the following
three properties.

1. If VTDP indicates that the parity of the bit is not unknown (even or odd),
the parity of this bit is not unknown, too, according to OTDP.

2. If VTDP indicates that the parity of the bit is even, the parity of this bit is
really even.

3. If VTDP indicates that the parity of the bit is odd, the parity of this bit will
be constant.

The proof is provided in the full version of this paper. According to
Proposition 1, we can illustrate the relationship between VTDP and OTDP by
Fig. 1. In Fig. 1, the colors represent the results based on OTDP while the line
patterns stand for those based on VTDP. If one bit is determined as an odd-
parity bit, we can know the bit is definitely not unknown. Therefore, we can still
obtain some useful information from these results. In practice, we can encrypt

422 K. Hu and M. Wang

all possible plaintexts by traversing all active plaintext bits under a random key,
and Xor all the corresponding considered ciphtext bits to determine the parity
of the considered ciphertext bits. This parity result holds for any key, which
can be applied to attack the target cipher with any key. In other words, with
our searching result, the test for only one key can achieve the available integral
distinguisher for any key. Thus, our searching result is significant for attack. It is
reasonable to encrypt the plaintexts because we need all the details of the cipher
structure except the key-schedule to construct the model to search for VTDP.
Note that the requirement also lies in the algorithm to search for OTDP [15].

Fig. 1. Relationship between VTDP and OTDP.

3.2 Variant Three-Subset Division Trail

To model the automatic search for VTDP, we introduce the variant three-subset
division trail.

Definition 4 (Variant Three-Subset Division Trial). Let us consider the
propagation of the division property {(k, l)} def

= K0 × L0 → K1 × L1 → · · · →
Kr × Lr. Moreover, for any vector tuple (k∗

i+1, l
∗
i+1), k∗

i+1 ∈ Ki+1 and l∗i+1 ∈
Li+1, there must exit a vector tuple (k∗

i , l
∗
i), k∗

i ∈ Ki and l∗i ∈ Li, such that
(k∗

i , l
∗
i) can propagate to (k∗

i+1, l
∗
i+1) by the propagation rules of the division

property for i = 0, 1, . . . , r−1. Furthermore, for ((k0, l0), (k1, l1), . . . , (kr, lr)) ∈
K0 × L0 × K1 × L1 × · · · × Kr × Lr, if (ki, li) can propagate to (ki+1, lk+1) for
all i ∈ {0, 1, . . . , r − 1}, we call (k0, l0) → (k1, l1) → · · · → (kr, lr) an r-round
variant three-subset division trail.

Similar to methods in [17], we decide the parity of one output bit by checking
whether certain division trails exist. Therefore, we need to transform the prop-
agation rules of each component into constraints and solve the problem by an
MILP or SMT/SAT tool. We divide all components into key-independent and
key-dependent components according to whether there are secret keys involved.

Automatic Search for a Variant of Division Property Using Three Subsets 423

For key-independent components, we construct the models of Copy, AND, XOR
and Modular Addition operations for L according to Rule 1, 2, 5 and 7. Since
there is no rule of S-box for L, we give the rule and then model the S-box in
Sect. 3.3 for the first time.

For key-dependent components, we concentrate only on the Key-XOR opera-
tion. We introduce a new technique that we can use the logical OR operation
of STP solver to model the dependencies between K and L when a Key-XOR
component is applied.

Note 1. Since redundant vectors do not affect the result of
⊕

x∈X
πu (x), our

model will not remove them.

3.3 Models of VTDP for Key-Independent Components

Assuming that f is a key-independent component of a cipher, (K, L) and (K′, L′)
are the input and output division property of f , respectively. In our automatic
search model, we allocate variables to represent the vectors in K, L, K

′ and L
′

at the bit level at first and then the constraints are added on these variables
according to the propagation rule of f . Note that the propagations of K

f→ K
′

and L
f→ L

′ are conducted separately according to their own rules.
In this paper, we use STP solver to implement our model. STP is a simple

but efficient solver for the theory of quantifier-free bit vectors. It is first intro-
duced to find optimal differential characteristic by Mouha and Preneel [8]. At
Asiacrypt’17, Sun et al. took it to search for division property [11]. We can
describe the propagation rules in CNF formulas using the method proposed in
[11]. The automatic search models for K has been listed in Sect. 2.1. We con-
struct models for the basic operations Copy, AND, XOR and Modular Addition
for L in a similar way.

For Copy operation, let a, b0 and b1 be three binary variables and (a)
Copy−−−→

(b0, b1) be the division trail. There are four possible division trails according to
Rule 1, which are (0) → (0, 0), (1) → (0, 1), (1) → (1, 0) and (1) → (1, 1). To
make (a, b0, b1) follow these four division trails only we put constraints on a, b0
and b1 as follows.

Model 5 (Bit-Based Copy for L). Denote (a, b0, b1) a division trail of Copy

function, the following logical equations are sufficient to evaluate the bit-based
division trail through Copy operation,

⎧
⎪⎨

⎪⎩

a ∨ b0 ∨ b̄1 = 1
ā ∨ b0 ∨ b1 = 1
a ∨ b̄0 = 1

.

For AND operation, let a0, a1 and b be three binary variables and (a0, a1)
AND−−→

(b) be the division trail. There are two possible division trails according to Rule 2,
which are (0, 0) → (0) and (1, 1) → (1), To make (a0, a1, b) follow these two
division trails only we add constrains on a0, a1 and b as follows.

424 K. Hu and M. Wang

Model 6 (Bit-Based AND for L). Denote (a0, a1, b) a division trail of AND

function, the following logical equations are sufficient to evaluate the bit-based
division trail trough AND operation,

{
a0 = b

a1 = b
.

For XOR operation, we follow the Rule 7 rather than Rule 3, let a0, a1 and b be
three binary variables and (a0, a1)

XOR−−→ (b) be the division trail. There are three
possible division trails according to Rule 7, which are (0, 0) → (0), (0, 1) → (1)
and (1, 0) → (1). To make (a0, a1, b) follow these three division trails only we
append constraints on a0, a1 and b as follows.

Model 7 (Bit-Based Variant XOR for L). Denote (a0, a1, b) a division trail
of XOR function, the following logical equations are sufficient to evaluate the bit-
based division trail trough XOR operation,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a0 ∨ a1 ∨ b̄ = 1
ā1 ∨ b = 1
ā0 ∨ a1 ∨ b = 1
ā0 ∨ ā1 ∨ b̄ = 1

.

Model 8 (Bit-Based ModularAddition for L). The model of Modular

Addition for L is totally same with that for K except that we use basic models
of Copy, AND and variant XOR for L rather than K.

Modeling S-box for L

The rule to calculate all the division trails of an S-box for K was presented in
[3,17]. Here we introduce the rules to find all the division trails for L.

Let F : (F2)m → (F2)n be a function of substitution composed of
(f1, f2, . . . , fn), where the input x = (x1, x2, . . . , xm) takes values of (F2)m,
and the output y = (y1, y2, . . . , yn) is calculated as

y1 = f1(x1, x2, . . . , xm),
y2 = f2(x1, x2, . . . , xm),
...
yn = fn(x1, x2, . . . , xm).

Similar to Rule 4, for each input vector u ∈ L, we consider each output vector
v ∈ F

n
2 seperately to derive all the valid division trails. According to Definition 2,

for each vector v ∈ F
n
2 , (u,v) is a valid division trail if the polynomial πv (y)

contains the monomial πu (x) but does not contain the monomial πu ′(x) for any
u′ satisfying u′
 u.

Automatic Search for a Variant of Division Property Using Three Subsets 425

Algorithm 1. Calculating Division Trails of S-box for L

Input: a vector u representing the input division property
Output: A set L of vectors representing the output division property

1 S̄ = {ū|ū � u};
2 F (X) = {πū (x)|ū ∈ S̄};
3 AllocateL = ∅;
4 for each v ∈ F

n
2 do

5 if πv (y) does not contain any monomial in F (X) and πv (y) contains
πu (x) then

6 L ← v;

7 return L;

We give Algorithm 1 to calculate all the valid division trails of S-box for L.
To implement the model for S-box, firstly we use Algorithm 1 to compute all

the division trails. Then we need to describe these trails in STP solver. We define
an array variable to store all the trails and then use this array to add constraints
on the variables representing the input and output division property1.

3.4 Model of VTDP for Key-XOR

For Key-XOR operation fk, the input and output division properties are {K, L}
and {K

′, L′}, respectively. In our model, we use four n-bit variables K,L,K′ and
L′ to denote them, where n is the block size. Because the dependencies between
K and L work on the block rather than a single bit, we use n-bit variables rather
than binary variables.

According to Rule 6, fk does not affect the propagation from L to L
′. There-

fore, the constraint on L and L′ is L′ = L.
In many ciphers, round key is only XORed with a part of block. Without loss

of generality, we assume that the round key is XORed with the left s (1 � s � n)
bits. This operation can be divided into two steps.

1. Allocate n-bit variables Vj (j ∈ {0, 1, 2, . . . , s − 1}). Check each bit of L, i.e.,
L[0],L[1], . . . ,L[s − 1], and assign Vj as follows,

Vj =

{
L ∨ ej , if L[j] = 0,
1, otherwise,

where ej is an n-bit unit vector whose bit j is one and 1 is the vector with all
components one. If L[j] �= 0, we set Vj as 1 because we use the STP statement
IF-THEN-ELSE to implement it, which follows a strict grammar. Note that
1 has no effect on the search results.

2. Let {K′} = {K} ∪ {V0} ∪ {V1} ∪ · · · ∪ {Vs−1}.

1 We can implement the model of S-box using the exclusion method as those of Copy,
AND and XOR, also.

426 K. Hu and M. Wang

In STP solver, we can implement the first step with an IF-THEN-ELSE
branch statement as follows,

ASSERT Lj = IF L[j] = 0 THEN L ∨ ej ELSE 1 ENDIF;

For the second step, we use the following statement with the logical OR operation
in STP to implement,

ASSERT K′ = K OR K′ = V0 OR K′ = V1 OR . . . OR K′ = Vs−1;

Algorithm 2 concludes the model of the Key-XOR operation.

Algorithm 2. Generating Constraints of Propagation Rule of Key-XOR

Input: n-bit variables K, K′, L, L′.
Output: A set C with constraints on K, K′, L, L′.

1 Allocate C as ∅;
2 C ← L′ = L;
3 Allocate n-bit variables Vj (j = 0, 1, . . . , s − 1);
4 for j = 0; j < s; j = j + 1 do
5 if L[j] == 0 then
6 C ← Vj = L ∨ ej ;

7 else
8 C ← Vj = 1;

9 C ← K′ = K OR K′ = V0 OR K′ = V1 OR · · · OR K′ = Vs−1;
10 return C;

Note 2. We just know that the STP solver supports the logical OR operation,
so our model relies on it. However, any tool that can implement the two steps
is suitable to our algorithm also.

3.5 Initial and Stopping Rules for VTDP

Initial Rule
In [15], to search for three-subset division property, Todo and Morii set the
initial division property as (k = 1, l), where the active bits of l are set as
one or zero for constant bits. It is the same for VTDP. For example, if we
find integral characteristic for SIMON32 using 231 chosen-plaintexts with first
bit constant, the initial division property is then set as (k = 1, l = 7fffffff).
Let ((K0

0,K0
1, . . . ,K0

n−1), (L0
0,L0

1, . . . ,L0
n−1)) denote the initial division property,

where n is the block size. The constraints on K0
i and L0

i are

K0
i = 1, for i = 0, 1, 2, . . . , n − 1.

L0
i =

{
1, if the i-th bit is active,
0, otherwise.

Automatic Search for a Variant of Division Property Using Three Subsets 427

Stopping Rule
Our automatic search model only focuses on the parity of one output bit. With-
out loss of generality, we consider the i0-th output bit. According to Definition 2,
the first step is to examine whether there is a unit vector ei0 ∈ K for the r-th
round, so we only need to set the constraints on (Kr

0,Kr
1, . . . ,Kr

n−1) as follows,

Kr
i =

{
1, if i = i0,
0, otherwise.

If the constraint problem has solutions, the i0-th bit is unknown, and our algo-
rithm stops. Otherwise, we need to remove the constraints on Kr

i (0 � i � n−1)
and add the following constraints on (Lr

0,Lr
1, . . . ,Lr

n−1),

Lr
i =

{
1, if i = i0,
0, otherwise.

If there is still no solution, the i0-th bit is balanced, otherwise the parity of the
i0-th bit is even or odd.

3.6 Connection Between Key-Independent and Key-XOR Components

Note that we use bit-level variables to model the key-independent compo-
nents in Sect. 3.3, but the implementations for key-XOR are based on n-bit
variables. Therefore, in order to connect bit variables and n-bit variables, the
concatenation operation “@” in STP is used to link them. Let the bit vari-
ables (L0,L1, . . . ,Ln−1) denote the output division property for L of a key-
independent component, whose following operation is Key-XOR with input divi-
sion property L′ ∈ F

n
2 . The link constraint on them is

ASSERT L′ = L0@L1@ . . . @Ln−1;

Conversely, if L′ is the output of Key-XOR while (L0,L1, . . . ,Ln−1) are the input
of next key-independent component, we use the statement above, too.

4 Applications

In this section, we apply our model to SIMON, SIMECK, SIMON(102), SPECK,
PRESENT and KATAN/KTANTAN. All our experiments are implemented on a
server with 48 Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30 GHz and 96 GB mem-
ory. And some of the programs run in a parallel way as long as the memory is
enough. In our illustrations, the character ‘?’ represents unknown, ‘*’ repre-
sents even or odd and ‘0’ stands for even. All the programs for these algorithms
are public in website https://github.com/VTDP/submission for ctrsa/.

https://github.com/VTDP/submission_for_ctrsa/

428 K. Hu and M. Wang

4.1 VTDP of SIMON-Like Ciphers

SIMON [1] is a family of lightweight block ciphers published by the U.S. National
Security Agency (NSA) in 2013. SIMON adopts Feistel structure and it has a
very compact round function which only involves bit-wise And, XOR and Circular
Shift. According to the block size, SIMON family is composed of SIMON32,
SIMON48, SIMON64, SIMON96, SIMON128.

For SIMON32, we identify a 15-round integral characteristic which is as fol-
lows,

(7fff,ffff)
14r−−→ (????,????,????,????,?*??,????,*???,???*).

Then we can encrypt the corresponding 231 chosen-plaintexts and determine
the three bits represented by ‘*’ are all even, which is the same result as that
in [15]. However, our automatic algorithm takes about 27 s which is much more
efficient than that in [15]. Unfortunately, the results for SIMON48/64/96/128
with VTDP have no improvements compared with the previous distinguishers.

SIMECK is a family of lightweight block cipher proposed at CHES’15 [18].
The round function of SIMECK is very like SIMON except the rotation con-
stants. We apply our automatic search algorithm to 15-, 18- and 21-round
SIMECK32/48/64, respectively. All the integral characteristics from our algo-
rithm are the same as those found by Xiang et al.

In [7], another variant of SIMON family named SIMON(102) is proposed
with rotation constants (1, 0, 2).

For 20-round SIMON32(102), we find the following improved integral distin-
guisher

(7fff,ffff)
19r−−→ (????,????,????,????,0*??,????,????,???*),

which has two additional odd or even parity bits compared with the previous
best results,

(7fff,ffff)
19r−−→ (????,????,????,????,0???,????,????,????).

Similarly, for 28-round SIMON48(102) and 35-round SIMON64(102), a
new distinguisher with two extra odd or even parity bits have been found,
respectively.

(7fff, ffff, ffff)
27r−−→

(????,????,????,????,????,????,0*??,????,????,????,???*).

(7fff, ffff, ffff, ffff)
35r−−→

(????,????,????,????,????,????,????,????, 0*??,????,????,????,????,????,????,???*).

4.2 VTDP of ARX Cipher SPECK

SPECK [1] is a family of lightweight block ciphers published by NSA, too. Dif-
ferent from SIMON, SPECK takes the Modular Addition as its nonlinear oper-
ation. According to the block size, SPECK family has 5 members, SPECK32,

Automatic Search for a Variant of Division Property Using Three Subsets 429

SPECK48, SPECK64, SPECK96 and SPECK128. shift by i bits and � repre-
sents the Modular Addition operation.

For SPECK32, there only exists one two-subset bit-based integral distin-
guisher for 6 rounds with 231 chosen-plaintexts as follows,

(ffff,ffdf)
6r−→ (????,????,????,???0,????,????,????,????).

However, based on VTDP, we can find one more distinguisher besides the above
one,

(ffff,ffbf)
6r−→ (????,????,????,???*,????,????,????,????).

4.3 VTDP of S-Box Based Cipher PRESENT

PRESENT [2] is an SP-network block cipher, of which the linear layers are bit
permutations.

In [17], Xiang et al. found a 9-round integral distinguisher with 260 chosen-
plaintexts under the two-subset division property framework. Our algorithm
achieves the same result. Furthermore, If we use more data complexity such as
263 chosen-plaintexts with the leftmost 63 bits active, we find a new distinguisher
with 28 balanced bits which is listed as follows,

(ffff, ffff, ffff, fffe)
9r−−→

(???0,???0,???0,0000,???0,???0,???0,0000,???0,???0,???0,0000,???0,???0,???0,0000).

Note that this distinguisher can be found by Xiang et al.’s model.

4.4 VTDP of KATAN/KTANTAN Family

KATAN and KTANTAN [4] are two families of hardware oriented block ciphers
and have three variants of 32-bit, 48-bit, 64-bit block. KATAN/KTANTAN takes
a very simple structure composed of two LFSR’s.

KATAN/KTANTAN32, 48, 64 conduct the round function once, twice and
three times in one round with the same round key, respectively. The only differ-
ence between KATAN and KTANTAN is the key schedule.

Compared with the previous results [9], we obtained the longer integral dis-
tinguishers for KATAN/KTANTAN32 and 48 with our automatic algorithm for
VTDP. Moreover, our identified integral characteristic for 721

3 -round
KATAN/KTANTAN64 has two more balanced bits.

For KATAN/KTANTAN32, Sun et al. found the following 99-round integral
characteristic with the two-subset division property [9],

(fffb, ffff) 99r−−→ (????,????,????,????,????,????,????,???0).

430 K. Hu and M. Wang

However, our new distinguishers based on VTDP are listed as follows,

(fffb, ffff) 100r−−−→ (????,????,????,????,????,????,????,??*0),

(fffb, ffff) 101r−−−→ (????,????,????,????,????,????,????,???*).

For 64- and 721
2 -round KATAN/KTANTAN48 and KATAN/KTANTAN64,

respectively, the search program requires too much time to get VTDP. Therefore,
we introduce a compromising strategy to simplify some propagation of vectors.
For two-subset division property, we only trace K, but for three-subset division
property, K and L are considered. In general, the program of two-subset division
property will take less time than that of the three-subset one. In our program,
we can trace K and L for the first N rounds only; and append u to K for all
u ∈ L at the N -th round; then trace the modified K merely. Since after N
rounds, the program becomes a two-subset division property, the stopping rules
should follow that of the two-subset division property.

With the compromising strategy, we still find better integral distinguishers
for KATAN/KTANTAN48 and 64 than those in [9].

For 64-round KATAN/KTANTAN48, the distinguisher we found is presented
as follows (N = 100),

(ffff, efff, ffff) 64r−−→
(????,????,????,????,????,????,????,????,????,????,???0),

which covers half more round than that in [9]. For KATAN/KTANTAN64, we
find the same length of integral distinguisher with the previous best one [9] but
ours has one more balanced bit as follows (N = 50),

(ffff, ffbf, ffff, ffff)
72.3r−−−−→

(????,????,????,????,????,????,????,????,????,????,????,????,????,????,??00).

5 Conclusions

In this paper, we proposed an automatic search model for a variant of three-
subset division property and it can be applied to ciphers with large block sizes.
Furthermore, we give the rules of S-box and Modular Addition for L, which
extend the usage of three-subset division property. With this model, the better
integral distinguishers have been found compared with the previous results.

Acknowledgement. The authors would like to thank Yosuke Todo for his important
comments and suggestions to this paper. This work is supported by National Cryp-
tography Development Fund (MMJJ20170102), National Natural Science Foundation
of China (Grant No. 61572293) and Major Scientific and Technological Innovation
Projects of Shandong Province, China (2017CXGC0704).

Automatic Search for a Variant of Division Property Using Three Subsets 431

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK lightweight block ciphers. In: PADAC 2015, pp. 175:1–175:6
(2015)

2. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

3. Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53018-4 24

4. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN—a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04138-9 20

5. Funabiki, Y., Todo, Y., Isobe, T., Morii, M.: Improved integral attack on HIGHT.
In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 363–383.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0 19

6. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

7. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 8

8. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for
ARX: application to salsa20. Cryptology ePrint Archive, Report 2013/328 (2013)

9. Sun, L., Wang, W., Liu, R., Wang, M.: MILP-aided bit-based division property for
ARX-based block cipher. IACR Cryptology ePrint Archive 2016:1101 (2016)

10. Sun, L., Wang, W., Wang, M.: MILP-aided bit-based division property for prim-
itives with non-bit-permutation linear layers. IACR Cryptology ePrint Archive
2016:811 (2016)

11. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property
for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 5

12. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

13. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 20

14. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 9

15. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 18

https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-662-53018-4_24
https://doi.org/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-319-60055-0_19
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-319-70694-8_5
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-47989-6_20
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-662-52993-5_18

432 K. Hu and M. Wang

16. Wang, Q., Grassi, L., Rechberger, C.: Zero-sum partitions of PHOTON permuta-
tions. IACR Cryptology ePrint Archive 2017:1211 (2017)

17. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

18. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of
lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015.
LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48324-4 16

https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.1007/978-3-662-48324-4_16

Constructing TI-Friendly Substitution
Boxes Using Shift-Invariant Permutations

Si Gao(B), Arnab Roy, and Elisabeth Oswald

University of Bristol, Bristol, UK
si.gao@bristol.ac.uk

Abstract. The threat posed by side channels requires ciphers that can
be efficiently protected in both software and hardware against such
attacks. In this paper, we proposed a novel Sbox construction based
on iterations of shift-invariant quadratic permutations and linear diffu-
sions. Owing to the selected quadratic permutations, all of our Sboxes
enable uniform 3-share threshold implementations, which provide first
order SCA protections without any fresh randomness. More importantly,
because of the “shift-invariant” property, there are ample implementa-
tion trade-offs available, in software as well as hardware. We provide
implementation results (software and hardware) for a four-bit and an
eight-bit Sbox, which confirm that our constructions are competitive
and can be easily adapted to various platforms as claimed. We have
successfully verified their resistance to first order attacks based on real
acquisitions. Because there are very few studies focusing on software-
based threshold implementations, our software implementations might
be of independent interest in this regard.

Keywords: Shift-invariant · Threshold implementation · Sbox

1 Introduction

In the past decade, side channel analysis (SCA) has become a serious threat to
various cryptographic devices. In this adversarial model, an attacker may observe
information leakage from a device operating some key-related information. For
cryptographic engineers, efficiently implementing a good cipher is then no longer
enough. They must also mitigate against the threat of such leakage and integrate
a proper countermeasure, which often is a non-trivial task.

Since they were proposed, Threshold Implementations (TI) [1,2] have become
a recognised countermeasure for power analysis when hardware implementations
are considered. Unlike Boolean masking schemes, TI requires more shares, but
the “non-completeness” property of TI ensures that in each computation logic
gate, at least one of the (input) shares is missing. As a consequence, even in the
presence of hardware glitches, this missing share guarantees that the observed
leakage will not give out information about any secret intermediate value [2] and

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 433–452, 2019.
https://doi.org/10.1007/978-3-030-12612-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_22

434 S. Gao et al.

thus robustly protects against so-called first-order attacks. In this paper, we only
consider threshold implementations that provide first order protections.

One obstacle in threshold implementations is that there is no trivial efficient
constructions for arbitrary cryptographic components. Take 3-share TI schemes
for instance: in theory, any arbitrary quadratic function can be re-written in a
TI-shared form with 3 shares. In practice, however, considering the requirement
of “uniformity”, a uniform 3-share TI scheme may not exist [2]. For smaller com-
ponents (eg. Sboxes), this issue has been extensively studied up to affine equiv-
alence [3–6]. For larger components, there is no generic construction available.
On the other hand, solutions for uniform TIs may exist with higher implementa-
tion costs, such as increasing the number of shares or adding fresh randomness.
Recently, De Meyer, Moradi and Wegener proposed a bit-serialized implemen-
tation of the Sbox of AES [7]: although their implementation with AES can be
easily deployed in many applications, it comes with the price of adding fresh ran-
domness. Daemen proposed a technique called “Changing of the Guards” , which
significantly eases the dilemma between uniformity and fresh randomness [8]. As
the “Changing of the Guards” technique borrows randomness from the shares
of other concurrent components, engineers no longer need to ensure uniformity
for their TI schemes, as long as there are a few extra random bits available in
the beginning of the encryption. Considering that the overhead of TI is already
high, it is imperative to keep any extra cost as low as possible. Therefore, in this
paper, we would like to avoid any fresh randomness and minimize the number
of shares.

Instead of searching for efficient TI representations for existing Sboxes, we
can also construct new Sboxes that are intrinsically suitable for TI protections.
The TI forms of all 4× 4 Sboxes were described in [3]. Boss et al. constructed sev-
eral 8-bit Sboxes with round-based balanced Feistel, MISTY, SPNs structures,
where the core building blocks are 4-bit Sboxes with easier TI protections [9].
The main focus of their paper was in finding Sboxes with efficient hardware TI
implementations. However, the authors claimed their approach also “enables an
efficient and low-cost implementation in software” (their “software implementa-
tion” refers to masked bitslice implementations, rather than TI-based software
implementations). De Meyer and Varici further extended this approach to sev-
eral new constructions (such as Generalized Feistel, Lai-Massey, Asymmetric
SPN etc.) and provided implementation costs in terms of ASIC logic area [10].

It is not surprising that very few papers actually consider using TI-based soft-
ware implementations. To the best of our knowledge, the only available TI con-
structions on software are TI-based PRESENT on an 8-bit micro-controller [11]
and TI-based ARX ciphers [12]. The reason behind this is straightforward: the
main concern that TI solves — glitches — do not exist in software1. The over-
head of using TI-based countermeasures is usually much higher than using (bit-
sliced) masking. Thus in theory, there is little point in applying TI to software

1 Technically, glitches still exist within one instruction. However, the threat that
glitches may bring—mixing between different data shares—does not usually show
up.

TI-Friendly Shift-Invariant Sboxes 435

implementations. In practice however, it has been observed that d-order bitsliced
maskings sometimes fail to provide d-order SCA protections. This is because the
internal architecture of micro-processors is not publicly accessible. Now even if a
cryptographic engineer carefully writes his/her code in assembly, some implicit
operations/registers may still mix different shares and produce exploitable leak-
age such as demonstrated in [13,14].

Our Contribution. In this paper, we aim to find several Sboxes that come with
easier first order TI protections, in both software and hardware platforms. In
contrast to Boss et al.’s work [9] we use shift-invariant quadratic permutations
instead of smaller Sboxes [15]. Similar to the χ2 function [16], any coefficient
Boolean function of these permutations is simply a “rotated” version of another.
In other words, the bit-width of the elementary computation logic —which we
called “granularity” in this paper — can be 1. Combined with the idea of serial
threshold implementations [17,18], the granularity of first order TI implemen-
tation can then be 1. Finer granularity brings more flexibility for cryptographic
engineers, giving them more fine-grained trade-off options between executing
time, logic area as well as power consumption. Specifically, the benefits of such
protected Sboxes include:

– No fresh randomness.
– Easier software implementations. Since the shared version of our TI func-

tion preserves the “shift-invariant” property to some extent, bit-slicing such
protected Sbox becomes easier.

– Flexible hardware implementations. As the granularity of such TI Sboxes is
1, in hardware, it is possible to implement only 1 computation unit, then get
all other shared bits by shifting. Such strategy can lead to a very compact
footprint, in the price of taking more cycles to execute.

– Full implementations/security evaluations. Despite the fact that all the imple-
mentations in this paper follow exactly the same rules as standard TI-s, we
have verified these implementations with real-world acquisitions.

Outline. In Sect. 2 we explain a few essential concepts, including the crypto-
graphic properties for Sboxes, the principle of threshold implementations and
our Sbox searching strategies. Section 3 first introduces the concept of shift-
invariance, then presents a search for quadratic TI-uniform shift-invariant per-
mutations. Based on the results of this search, we further construct Sboxes with
an SPN network. Sections 4 and 5 discuss the possible implementation tradeoffs
on software/hardware platforms, respectively. Section 6 presents TVLA-based
security evaluation results on both an ARM M0 core and a Kintex 7 FPGA.

2 Preliminaries

2.1 Cryptanalytic Properties for Sboxes

In a block cipher the Sbox provides the desired non-linear properties. A newly
constructed Sbox must be evaluated for cryptographic properties e.g. differential

436 S. Gao et al.

uniformity, linearity, to thwart the differential and linear attacks. Let : F2n →
F2n be a function.

Definition 1 (Differential uniformity [19]). For any pair (a, b) ∈ F2n , define
the set

DF (a → b) = {x ∈ F2n |F (x ⊕ a) ⊕ F (x) = b}.

The differential uniformity of F is defined as δ(F) := maxa�=0,b |DF (a → b)|
where the |DF (a → b)| denotes the cardinality of the set DF (a → b) and is
determined by the entry at the position (a, b) in the difference distribution table
of F .

The Walsh transformation of the function F is defined as W : F2n × F2n → Z

and is given as
WF (a, b) =

∑

x∈F2n

(−1)a·x+b·F (x).

The linearity of an Sbox gives a measure of its best linear approximation. The
linearity of F is defined as follows,

Definition 2. The linearity of F is defined as L(F) = maxa,b �=0 WF (a, b).

Besides, an Sbox should not have any algebraic properties e.g. low degree of
the polynomial, which may be exploited by an adversary to mount an attack. It
is known that the maximum algebraic degree of an m-bit permutation Sbox will
be m − 1.

2.2 Threshold Implementation

In side channel research,threshold implementation (TI) usually refers to a coun-
termeasure that based on secret sharing. For an m×n vectorial Boolean function
f where each input x is shared as an s-length vector x =

(
x(1), .., x(s)

)
, TI imple-

ments a few shared functions f (j) that satisfy:

– Correctness. The sum of all shared functions is equal to the original unshared
function f (i.e.

∑s
j=1 f (j) = f).

– Non-completeness. Every shared function f (j) is independent of at least one
share of x. Specifically, for a d-order TI scheme, the combination of d f (j)

functions is still independent of at least one share.
– Uniformity. For any unshared input value x = x(1) ⊕ x(2) ⊕ ... ⊕ x(s), the

corresponding output shares y =
(
y(1), .., y(s)

)
are uniformly distributed on

all y-s that satisfy f (x) = y(1) ⊕ y(2) ⊕ ... ⊕ y(s).

To ensure uniformity for permutations (m = n), we can simply check if the
shared version of f is an m × s-bit permutation [3] (or prove it is invertible [8]).

TI-Friendly Shift-Invariant Sboxes 437

2.3 Constructing TI Sboxes

To ensure non-completeness, threshold implementations need more shares for
Boolean functions with higher degrees. As the implementation cost increases
with the number of shares, the cheapest protected non-linear functions are
quadratic (deg = 2) Boolean functions. For Sbox constructions, it is favourable
to use permutations rather than arbitrary quadratic vectorial Boolean functions.
Previous studies have successfully found uniform TI schemes for many quadratic
permutations, including 3× 3 and 4× 4 Sboxes [3], 5-bit permutations [20] as well
as a few observations on 6-bit quadratic permutations [21].

All the results above serve as a perfect building block for larger
Sboxes: although directly applying TI is difficult, we can always use smaller
Sboxes/quadratic permutations with known TIs to build large Sboxes. Boss et
al. started searching for 8-bit Sboxes with Feistel (Fig. 1(a)), SPN (Fig. 1(b)),
and MISTY structures, using 4-bit TI Sboxes as building blocks [9]. De Meyer
and Varici extended this search to other constructions, such as Double Misty,
Asymmetric SPN and Generalized Feistel structures [10].

(a) Feistel in [9] (b) SPN in [9] (c) this paper

Fig. 1. Structure overview

Since the building blocks are smaller Sboxes/permutations, such construc-
tions give much more compact 8-bit Sboxes in hardware [9,10]. Generally speak-
ing, for an n-bit Sbox, its 3-share TI form would be a 3n-bit permutation.
Although each share can be computed with only 2 input shares (2n-bit), in hard-
ware, increasing inputs usually boosts the area cost. Using smaller TI-Sboxes
as building blocks significantly reduces the overall implementation cost, but it
is unclear whether such constructions can provide flexibility when considering
other platforms. Neither of these papers discusses the possibilities of serial TI—
an extra trade-off proposed back in 2013 [17]. Boss et al.’s work did mention
software implementations, yet their argument is that fewer AND gates lead to
more efficient bit-sliced masking in software, rather than any TI protection [9].
None of these papers present security evaluations of their final implementations.

2.4 The Notion of Granularity

Irrespective of considering hardware or software implementations, constructions
that feature multiple identical computation tasks usually give the cryptographic

438 S. Gao et al.

engineer more flexibility for the speed/cost trade-off. Taking hardware imple-
mentations for instance, all 4 bits in a PRESENT Sbox must be implemented
with combinational logic, because all 4 bits are based on different Boolean func-
tions [22]. Meanwhile, for the Keccak 5-bit χ2 function, it is possible to imple-
ment only the circuit to do a 1 bit computation, as other 4 output bits can be
computed through rotating the inputs [16] using the same circuit.

In this paper, we denote the output size of the smallest “gadget” to com-
pute an Sbox as the “granularity”. Clearly, the granularity for an unprotected
PRESENT Sbox is 4, whereas for an unprotected 5-bit χ2 function is 1. A finer
granularity gives crypto engineers more opportunities for trade-offs: for instance,
they can opt for a serial (slower) implementation, or a parallel (faster) imple-
mentation in hardware. Granularity also plays a critical role in software imple-
mentations. As most processors have intrinsic bit-widths (8,32 or 64), when per-
forming bitwise operations, most of the bit-width will be wasted unless all the
bits require the same operation. In order to take full advantage of the bit-width,
a bit-slice implementation usually “slices” the same bits from multiple Sboxes to
one register. As the CPU processes multiple Sboxes simultaneously, the overall
throughput increases. Implementations with finer granularity provide intrinsic
parallelism, which may take the most of the bit-width of our processors without
manually “slicing” from a lot of concurrent data blocks (eg. Sboxes).

3 Constructing TI-Sboxes with Better Granularity

In this section, we present our TI-Sboxes search strategy. To achieve better
implementation flexibility, we choose a different type of building blocks: instead
of using 4 bit Sboxes with known TIs, our search utilizes the “Shift-invariant”
[15] permutations. Such constructions usually lead to finer granularity (for each
elemental operation) and give better implementation trade-offs for not only the
Sbox itself, but also its TI-protection.

3.1 Shift-Invariant: Concept and Previous Works

Technically, an n × n vectorial Boolean function F is shift-invariant if for any
rotated shift τ and any state x, F (τ(x)) = τ(F (x)) [15]. As stated in Dae-
men’s thesis [15], “shift-invariant transformations can be implemented as an
interconnected array of identical 1-bit output ‘processors’ ” (granularity 1). Dae-
men further studied both linear and non-linear shift-invariant transformations,
exploring their invertibility, local propagation and correlation properties [15].
As shift-invariance is closely linked to the concept of cellular automaton, Mar-
iot, Picek , Leporati and Jakobovic searched up to 7× 7 Sboxes from a cellular
automaton perspective [23]. The most well known output of this direction is the
χ2 function in Keccak. However, it worth mentioning that without any other
trick, χ2 itself does not have a uniform 3-share TI.

TI-Friendly Shift-Invariant Sboxes 439

3.2 Quadratic Shift-Invariant Permutation with Uniform TI

For an unprotected Sbox, shift-invariance ensures its granularity is equal to 1.
However, considering the requirements of first order TI, its granularity also grows
with the number of shares. Further reducing the granularity requires not only
shift-invariance, but also its TI property: for any Boolean function f , if its direct
shared form (i.e. Sect. 4.2 in [3]) is uniform, its granularity can be reduced to 1,
using a serial TI implementation [17,18]. Thus, for granularity, our best option
would be using quadratic shift-invariant permutations with a uniform direct
sharing threshold implementation.

Therefore, our main building blocks for Sbox constructions are quadratic
shift-invariant permutations with uniform 3-share TI-s. Although Daemen’s the-
sis gave many useful results, it did not cover all possible nonlinear shift-invariant
transformations. Fortunately, the search space for common Sbox sizes (n = 4 or
n = 8) is small enough. For n×n shift-invariant transformations, the number of
all possible quadratic transformations are equal to the number of n-bit quadratic
Boolean functions 2

∑2
i=0 (ni). The search space for 4 bit building blocks is 211,

whereas for the 8 bit case is 237. Among these transformations, we are interested
in those satisfy:

– The transformation itself is an n-bit permutation.
– Its direct 3-share TI is uniform.

Both properties are easy to check: for TI uniformity we simply check whether the
shared form is still a 3n×3n permutation. For early abortion in this permutation
check we first examine whether the coefficient Boolean function f is balanced.
If it is not balanced, the transformation it derived cannot be a permutation.
Additionally, we further limit our search to functions that satisfy:

– For bit y0, its Boolean function always contains bit x0. If not, we can always
find a shift transformation τ that ensures F ′ = F ◦ τ (F is the shift-invariant
transformation f derived)2. For a shift-invariant F ′, τ and F are commuta-
tive. This means for lower rounds (1 or 2) of SPN network, τ can be integrated
into the initial/final linear transformation, which does not affect the crypto-
graphic properties.

– f does not have a constant term. For a shift-invariant transformation, the
constant term can be either all-0 or all-1. As an all-1 constant has little
impact on the cryptographic property of F , we simply discard these choices.

For 4-bit quadratic functions, we found that 960 out of 2048 functions contain
x0 and 0 as their constant terms. 400 of them are balanced, whereas only 28 f
lead to a 4× 4 permutation F . Fortunately, all of the direct 3-shares schemes
are actually 12× 12 permutations (i.e. satisfy uniformity) (Table 1).

On the other hand, for 8 bit permutations, the search space of f is 237. Almost
half of the f -s have x0 = c = 0, while only a quarter of f -s are balanced. 520
128 (≈ 219) can generate an 8-bit shift-invariant permutation F : interestingly,
all of these permutations have uniform direct 3-share TI (Table 2).
2 Note that here we only need x0 to appear, rather than appearing as a linear term [15].

440 S. Gao et al.

Table 1. Shift-invariant quadratic TI permutations: n = 4

n All f Has x0 & c = 0 Balanced Permutation TI permutation

4 2048 960 400 28 28

Table 2. Shift-invariant quadratic TI permutations: n = 8

n All f Has x0 & c = 0 Balanced Permutation TI permutation

8 237 68451041152 29986581632 520128 520128

3.3 Constructing Sboxes

In this section, we further construct cryptographically good 4/8-bit Sboxes with
these quadratic permutations. The Sbox search follows exactly the same strat-
egy as previous works [9,10], although the granularity further complicates the
situation here.

Design Architectures. As shift-invariance ensures each bit can be computed
in the same way, generally speaking, we would like to avoid more branches. Take
two-branch balanced Feistel structure for instance: although the round function
may still have granularity 1, the other branch also contributes to the granularity
for the whole Sbox. To this end, we perform our Sbox search with full range
Substitution-Permutation Network (SPN) (Fig. 1(c)).

Permutation Layer. As the substitution layer is chosen from those quadratic
TI permutations, the only decision left to make is the permutation layer. Clearly,
the most efficient construction would be using shift-invariant linear permuta-
tion or nothing at all. Although shift-invariance is a good property for soft-
ware/hardware implementations, considering the threat of rotational cryptanal-
ysis [24], we prefer not to preserve it in the final Sbox. Thus, our linear trans-
formation here needs to stop the propagation of shift-invariance. In general,
the cheapest option would be using non-shift bit-permutations. However, a bit-
permutation usually have a larger granularity (as each bit has to be implemented
respectively), which leads to a penalty on its software performance. Instead, in
this paper, we consider a linear transformation that is similar to AES’s “xtime”.
More specifically, we search for invertible matrices that satisfy:

A =

⎡

⎢⎢⎢⎢⎣

a1,1 1 0 . . . 0
a2,1 0 1 . . . 0
.

an−1,1 0 0 . . . 1
1 0 0 . . . 0

⎤

⎥⎥⎥⎥⎦

TI-Friendly Shift-Invariant Sboxes 441

Let a1 = {a1,1, a1,2, ..., an−1,1, 1}, if A is indeed invertible, in software, it can
be implemented with a shift and a conditional XOR.

Ax =

{
(x << 1) ⊕ a1, if hsb(x) = 1
(x << 1), otherwise

As the conditional branch is prone to cache attack, most implementations
tend to use a multiplication instruction to achieve a constant control flow

Ax = (x << 1) ⊕ (a1 × hsb(x))

As the n-bit state x is operated as a word, the granularity is determined by
this 1-bit multiplication: since this equation only holds 1 bit values, the over-
all granularity gets coarser. Nonetheless, from an implementation perspective,
it is still much better than arbitrary binary matrix multiplication. To achieve a
better diffusion property, in our Sbox search, we use two layers of A (A2) as our
permutation layer.

Selection Criteria. In order to achieve a balance between the implementation
cost and the cryptographic properties, we have defined a selection criteria for
the candidate Sboxes. Specifically, for 4-bit Sboxes,

– the differential uniformity is ≤ 4 and,
– the linearity is ≤ 8

For 8-bit Sboxes,

– the differential uniformity is ≤ 8 and,
– the linearity is ≤ 72

Besides, the algebraic degree and the degree of the interpolation polynomial
should be large enough to resistent algebraic attack and interpolation attack,
respectively.

3.4 Results

4-Bit Case. For 4-bit Sboxes, such selection criteria only accepts optimal Sboxes
(differential uniformity = 4, linearity = 8) [25]. By enumerating all possible
choices of A and quadratic permutations, we can find 16 such 4-bit Sboxes within
2 rounds. One such Sbox is presented as follow. The algebraic degree of this Sbox
is 3, whereas the degree of the interpolation polynomial is 15 (Table 3).

A =

⎡

⎢⎢⎣

1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

⎤

⎥⎥⎦

442 S. Gao et al.

Table 3. Shift-invariant quadratic TI permutation for S4

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 9 4 A 3 7 8 C 5 B 6 D E F

Table 4. Final Sbox for S4

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 4 8 A F C 6 9 1 E B D 7 5 3 2

8-Bit Case. For n = 8, the overall search space is around 226, which is quite
feasible for most PCs. 6 Sboxes appear within 3 rounds: all of them have differ-
ential uniformity 8 whereas their linearity vary from 64 to 72. Due to the space
limit, we present the best one (differential uniformity = 8, linearity = 64) in the
extended version of this paper. The algebraic degree of the presented Sbox is 6
and the degree of interpolation polynomial is 252 (Table 4).

4 Software Implementation

The major benefit of an Sbox with small granularity, is that it can be efficiently
implemented in both software and hardware platforms. Although software based
TIs tend to have higher overhead, in terms of security, they might have their
own advantages [17]. In this section, we implement our selected Sboxes with first
order TI protections in software and discuss a few possible trade-off options.

4.1 Target Platform

For software implementations, the most common platforms are smart cards
or high-end processors (ARM/AMD/Intel). Although different processors may
have different instruction sets, for bit-slice computations, most required bit-wise
instructions can be found easily in all instruction sets. The major difference lies
in the bit-width of the target processor, which determines how many bits can
be computed in parallel. In this paper, our implementation chooses the most
common bit-width—32. Implementations for 8-bit and 64-bit follow exactly the
same rule. Because our target chip is an NXP ARM M0 core, we wrote our Sbox
implementations using the Thumb instruction set [26]. In order to demonstrate
the difference between Thumb and ARM instruction sets [27], we also show how
those Sboxes can be computed on a more advanced core like the ARM M3.

4.2 Implementation Trade-Offs

No Optimization. It is worth mentioning that finer granularity only provides a
possibility for further implementation trade-off: when such trade-off is not nec-
essary, engineers can always do a TI implementation with 3n variables. Such an

TI-Friendly Shift-Invariant Sboxes 443

implementation achieves its best performance when there are 32 concurrent data
blocks (Sboxes) available. As the available bit-width is already fully occupied,
the shift-invariant property will not provide any benefit in this case.

Size-Based Optimization. As each bit can be computed in the same way, with
shift-invariant transformations, we can pack all n bits into one register. Take an
8 bit Sbox for instance, if there are 4 concurrent Sbox computations for x[1], x[2],
x[3] and x[4], a 32-bit register can be filled with

(
x
[1]
1 , x

[2]
1 , x

[3]
1 , x

[4]
1 , ..., x

[1]
8 , x

[2]
8 , x

[3]
8 , x

[4]
8

)

where xi is the i-th bit of x. Correspondingly, each computation will be adjusted
to ensure it takes the right input bit. Note that the rotated shift is still available
in this form: instead of rotating 1 bit, now we are rotating 4 bits. Readers can
verify that the transformation can still be computed correctly in this form, while
the number of required concurrent data blocks shrinks from 32 to 4. Similar to
the unprotected Sbox, the TI protection can be computed in exactly the same
way. If all three shares are computed separately, such an optimization does not
contradict with any TI requirement.

Extreme Optimization. In theory, since the granularity of the TI protection is
still 1, packing all 3 shares into one register is possible. Whether it contradicts
with TI’s security requirement (i.e. non-completeness) is debatable: ideally, if
bit-wise instructions’ leakage can be regarded as a sum of the leakages of all
candidate bits (i.e. no “bit-interactions”), such implementation should be as
secure as a hardware-based TI3. However, current results seem to suggest this
may not always be the case: Sasdrich et al.’s work shows that for lookup tables
(i.e. LDR instruction) on smart cards, bit-interaction clearly exists [17]. Our
experiments with ARM M0 processors also prove the shift instructions (LSL,
LSR, ROR) have the same issue. Moreover, as different bits and shares both get
placed in one register, shifting becomes trickier. Only one of the shifts, whether
shift bits or shares, can be operated with rotated shift instructions. The other
one must be done manually with a few shifts and data masks. Considering the
security loss and potential performance gain, we believe this is not a reasonable
option.

4.3 Implementation on ARM M0/M3

Throughout this section, our evaluation is based on the size-based optimization.
For the quadratic permutation S, we simply computed the TI-protected per-
mutation according to its Algebraic Normal Form (ANF). Further customized
optimizations may be possible but are out of the scope of this paper. To limit
3 Unlike its hardware counterpart, “coupling” effect [28] and “voltage fluctuation” are

not the only concerns for the software TI. An AND instruction may not have the
same leakage as 32 1-bit-AND gates, unless all the other combinational logic cells in
the ALU are actually “silent”.

444 S. Gao et al.

the usage of registers or memories, we compute all shifted results online, even
if some of them appear repeatedly in the computation. Although this sounds
far from ideal, as most commodity processors have a limited number of general
purpose registers, such a compromise is inevitable in practice. For the linear
transformation P , as the multiplication operation can only handle 1 bit at a
time, all n-bit data shares must be executed one by one.

Despite the fact that our Sbox is computed online (rather than using pre-
computed lookup tables), architecturally, its computation procedure is not
that different from Sasdrich et al.’s implementation of PRESENT’s Sbox [11].
Depending on the context, leakage might still show up when the CPU switches
from one TI-shared function to another. Nonetheless, as the number of shared
functions in TI is quite limited (compared with the number of AND-s in mask-
ing), implementing TI correctly requires much less effort than implementing
bit-slice Boolean masking.

Table 5 illustrates the software implementation costs of our selected Sboxes,
along with a few other well-known protected Sboxes, such as AES and
PRESENT. It is not hard to see there is a significant performance difference
between Thumb [26] and ARM [27] instruction sets. The major difference lies
in rotation: as Thumb’s ROR only shifts with a register rather than a constant,
rotating r1 by n and storing the result in r2 has to be implemented as

MOV r3, #n

MOV r2, r1
ROR r2, r3

However, with the “Flexible Operand 2” [27] in ARM instruction set, such
procedure can be implemented with only one line. In terms of executing cycles,
implementations with ARM instructions have a significant bonus.

MOV r2, r1, ROR #n

As the results in Table 5 are most likely parallel implementations for mul-
tiple Sboxes, we have listed the number of parallel Sboxes with the operation
cycles. For our S4, Table 5 suggests it takes 870 cycles to compute 8 Sboxes
simultaneously.4 For 4 bit Sboxes, our shift-invariant Sbox has similar perfor-
mance as the PRESENT Sbox based on quadratic decomposition (654 v.s. 686).
With bitslice masking, PRESENT Sbox can be much more efficient [29]. On the
other hand, for the 8 bit case, both the KHL and bit-sliced masking are quite
efficient, running twice faster than our shift-invariant Sbox. However, we would
like to stress that the comparison of Table 5 is not as trivial as comparing the
numbers of cycles. First of all, our implementation does not take any fresh ran-
domness. As we can see in Table 5, all other Sboxes use quite a lot of random
4 Note that this does not mean each Sbox can be computed only 109 cycles: if there

is only one Sbox to compute, it will still take 870 cycles, as most of the bit-width
will be wasted.

TI-Friendly Shift-Invariant Sboxes 445

Table 5. Software performance of various Sboxes

Size Diff. Lin. Deg. 1st order protected

Randomness Cycles

Thumb ARM

PRESENT (BS) [29] 4 4 8 3 64 n/a 796/16

PRESENT (F ◦ G) [29] 4 4 8 3 128 n/a 686/8

S4 (our result) 4 4 8 3 0 870/8 654/8

AES (BS) [29] 8 4 32 7 512 n/a 4698/16

AES (KHL) [29] 8 4 32 7 192 n/a 2309/8

S8 (our result) 8 8 64 6 0 3627/4 2169/4

bits, even if they do not use any mask refreshing. Considering the cost of produc-
ing (pseudo)random numbers, it is clearly desirable to avoid fresh randomness.
On the other hand, although all Sboxes in Table 5 claim first order security, a TI
scheme has 3 shares whereas a bit-slice masking only has 2. Since the authors did
not give any real traces based SCA evaluation [29], it is hard to argue whether
these bit-sliced masking schemes provide the same security level as our threshold
implementations. If we simply believe in the order-reduction theorem [30], a fair
comparison would be using the second order bit-slice masking (3 shares), which
degrades their performance to the same level of ours [29]. Last but not least,
enormous effort has been invested in optimizing the implementations of both
AES’s Sbox and PRESENT’s Sbox. In fact, the advantage of bit-slice masking is
mainly inherited from the circuit optimization of the unprotected Sbox. On the
contrary, we simply implemented the ANF of our shift-invariant Sboxes: further
optimizations may be possible but they are out of the scope of this paper.

Another interesting observation would be our granularity gains. Technically,
granularity determines how many concurrent Sbox computations we need to
achieve the best possible throughput. For PRESENT and AES in Table 5, gran-
ularity does not cause an issue: both ciphers use SPN networks with many same
Sboxes as their confusion layers. However, if the cipher uses smaller round func-
tions with less concurrent Sboxes or a confusion layer with different Sboxes,
it would be difficult to find enough data to “slice” within one plaintext block.
Thanks to the fine granularity of our new Sboxes, in short encryption request,
our construction has a better chance to reach its maximal throughput.

5 Hardware Implementation

5.1 Implementation Trade-Off

Unlike software platforms, TI on hardware has been extensively studied for years.
The only difference our Sboxes bring is a “double-rotating” feature: not only the
3 shares can be generated by rotating the inputs with the same circuit (i.e. serial

446 S. Gao et al.

TI [17]), all n-bit output can also be generated by rotating inputs. Note that
these two rotations are different operations: one is rotating bits, the other is
rotating shares. On software platforms, since there is only one rotation instruc-
tion, implementing both efficiently is not trivial. On hardware, double-rotation
can be simply implemented with multiplexers. Thanks to the fine granularity,
now we can implement only 1 bit Boolean function and compute the other 3n−1
bits through rotations (Fig. 2).

Fig. 2. Hardware schematic of shift invariant transformation S

As all other implementations are relatively trivial, in this section, our evalu-
ation only uses this 1-bit serial implementation. Note that this implementation
is by no means our “reference” design. The point of having a granularity 1 Sbox
is that the engineers have the flexibility to choose the right trade-off. Although
this 1-bit implementation leads to a very compact logic footprint, it trades area
advantages with executing cycles. It takes 3 ∗ n cycles to finish a 3-share n-bit
Sbox computation. Besides, the multiple data paths cause the control logic to
increase, which may compensate some of the footprint gain. Depending on the
specific applications, engineers can also use a “single rotation” version, where
only the shares or the bits are generated by rotations.

5.2 Pre-charge Issue

A well known issue for serial threshold implementation, is some first-order leak-
age might appear during the “shift-shares” procedure [31]. The reason behind
is that the leakage for a combinational logic during an input transition depends
on not only the current state, but also the previous state. The solution would
be simply eliminating any transition of input shares in the combinational logic:
i.e. add a pre-charge stage which charges the combinational logic with all zero
between these two states. Obviously, this pre-charge stage penalizes the overall
performance by one extra cycle. Interestingly, as our double-rotating design takes

TI-Friendly Shift-Invariant Sboxes 447

more cycles to proceed, the percentage of pre-charge time becomes smaller. Note
that a pre-charge stage is only required when we are switching between different
shares, not between different bits.

5.3 Implementation on ASIC

In order to evaluate their performance on hardware, we have implemented our
Sboxes with first order TI protections in Verilog. For synthesis, we used Synop-
sys Design Compiler with the TSMC 180 nm standard cell library. Their area
requirements as well as clock cycles are presented in Table 6. Note that only the
combinational part is documented in Table 6: as most previous works excluded
the multiplexers and registers as “required extra logic”, we cannot further com-
pare the whole design5. For clarity, Table 6 only shows one 8 bit Sbox and one 4
bit Sbox: other alternatives can be found in the full version of this paper.

Table 6. Hardware evaluation of various Sboxes

Size Diff. Lin. Deg. Rounds Protected

Area (GE) Delay (ns) Cycles

PRESENT [17] 4 4 8 3 n/a 151 — 6

GIFT [18] 4 6 8 3 n/a 172.5 —a 6

S4 4 4 8 3 2 54 0.72 28

AES [32] 8 4 32 7 n/a 2224 — 3

SB1 [9] 8 16 64 6 8 51 1.09 8

SB4 [9] 8 8 56 7 5 202 2.10 5

S8 8 8 64 6 3 181 1.89 78
a Not given.

Since most results in Table 6 are uniform first order threshold implementa-
tions, we did not present their fresh randomness requirements. Only the AES
Sbox uses 32 random bits; all others do not take fresh randomness. Thanks to its
fine granularity, our protected Sboxes can be implemented with 1-bit combina-
tional logic, which leads to very compact implementations (Table 6). However,
this is nothing more than a trade-off: the number of cycles clearly shows the
price to pay. Besides, for a larger n, shift-invariant constructions lose most of
their charms. Table 6 shows the area gain for 8 bit Sbox is neglectable (if any,
considering a serial implementation uses more MUX-es), compared with Boss et
al.’s construction. The reason for this roots in the philosophy of shift invariance:
shift invariance saves area by reducing the outputs of a logic circuit, but not
the inputs. Our 1-bit implementation is still a 2n-variate Boolean function. Boss
5 Depending on the specific implementation, such “extra logic” can actually predom-

inates the overall area cost. To this end, we would like the stress that our serial
implementation is only worthwhile if it has a significant advantage in area cost.

448 S. Gao et al.

et al.’s construction uses smaller Sboxes, which reduces the input scale of the
protected circuit. Technically, for an arbitrary vectorial Boolean function, the
implementation cost grows linearly with its output, but exponentially with its
input. Having said that, the main advantage of our construction is providing
flexible implementation trade-offs, on both software and hardware platforms.
Although Boss et al.’s paper also mentioned software-efficiency, their prediction
is actually based on the number of AND-s. We believe that software perfor-
mance evaluation should use actual assembly code: due to the limited resources
available (eg. instructions, registers, buses, etc.), high-level estimations could be
misleading.

6 Security Evaluation

6.1 Software: ARM M0

In order to evaluate our protected Sbox in practice, we have implemented such
Sboxes on both software and hardware platforms. For software implementation,
our target chip is an NXP LPC1114 (ARM Cortex M0) processor. The mea-
surement point connects to a 100 Ω resistor on the VCC end. Power traces were
captured with a PicoScope 2206B running at a sampling rate of 125 MSa/s. The
clock speed of the target core was set to 8 MHz. For leakage detection, we use the
non-specific fix-vs-random T-test [33]. In order to increase the detection power,
we force all parallel Sboxes to use the same input shares (i.e. all the concurrent
Sbox computations are exactly the same). Figure 3 shows the evaluation results
for our 4 bit Sbox with 1 million traces:

Considering the Sbox computation includes 25000 time points, we increase
the T-test threshold to 5 [34]. With 1 million traces, a first order T-test can-
not find any significant leakage. As we have only implemented a first order TI
protection, second order attacks are still feasible. In theory, the most efficient
2nd order attack should be multi-variate attacks which combine 2 independent
samples on the trace. In practice, significant leakage can be detected by simply
performing the same T-test on the second moment (Fig. 3). Therefore, we did
not enumerate all possible second order sample combinations on the trace. The
8-bit case is quite similar: due to the limited space, we present the results for S8

in the extended version.

6.2 Hardware: SAKURA-X FPGA

For hardware implementations, we have tested our Sboxes on the SAKURA-
X board with Xilinx Kintex-7 FPGA. In order to increase the signal-to-noise
ratio, an Agilent 25 db amplifier is connected to the measured signal. Moreover,
considering our all-serial implementation has very limited power consumption,
we extended a 3n-bit protected Sbox to a 384-bit design: for the 4 bit case,
this means there are 32 parallel Sboxes implemented on the board. For 8 bit
Sboxes, there are 16 parallel Sboxes. Similar to software implementations, all

TI-Friendly Shift-Invariant Sboxes 449

Fig. 3. Software evaluation of S4

the implemented Sboxes were given the same input shares. Our FPGA design
run at 3 MHz, while our Lecroy Waverunner 700 Zi scope was capturing traces
at 500 MSa/s. Obvious outliers were removed before T-test. Figure 4 shows the

0 2000 4000 6000
Time [*2ns]

-1

0

1

2

Vo
lt

[*1
V]

10-3 Raw Trace

0 2000 4000 6000
Time [*2ns]

-50

0

50

T
st

at
is

tic
s

1st Order T-test: N=50k, RNGOff

0 2000 4000 6000
Time [*2ns]

-5

0

5

T
st

at
is

tic
s

1st Order T-test: N=5M, RNGOn

0 1000 2000 3000 4000 5000
Number of traces (N) [*1000]

0

2

4

M
ax

im
um

 |T
|

1st Order Maximum |T| v.s. N

0 2000 4000 6000
Time [*2ns]

-5

0

5

T
st

at
is

tic
s

2nd Order T-test: N=5M, RNGOn

0 1000 2000 3000 4000 5000
Number of traces (N) [*1000]

0

2

4

6

M
ax

im
um

 |T
|

2nd Order Maximum |T| v.s. N

Fig. 4. Hardware evaluation of S4

450 S. Gao et al.

leakage detection results for our 4 bit Sbox after 5 million traces. Clearly, our
protected design is first order secure. Since our implementation is a serial one,
technically, the second order detection should use multi-variate T-test. However,
it is not hard to see that the second moment already shows some clear leakage.
Like the software case, we present the 8-bit results in the Appendix.

7 Conclusion

In this paper, we propose a novel Sbox construction using quadratic shift-
invariant transformations. Thanks to the shift-invariant property, our Sbox con-
structions have a fine “granularity” which contributes to more flexible imple-
mentation trade-offs. Both software and hardware implementations have been
discussed and evaluated (on ARM processors and an FPGA). The strong point
of our Sboxes is that their first order protection can be efficiently tuned for
the needs in different applications without using any fresh randomness. Experi-
ments suggest our TI protection has effectively eliminated the 1-st order leakage.
Meanwhile, to the best of our knowledge, this is the first computation based TI
Sbox implementation in software (rather than the table-based TI implementa-
tion in [17]). Considering masked software implementations do not always back
their security claims (eg. [11]), utilizing threshold implementations on software
is of independent interest.

Acknowledgements. We would like to thank all anonymous reviewers for improving
the quality of this paper as well as providing insights from some other perspectives.
This work has been funded in part by EPSRC under grant agreement EP/N011635/1
(LADA).

References

1. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

2. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

3. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33027-8 5

4. De Meyer, L., Bilgin, B.: Classification of balanced quadratic functions. IACR
Cryptology ePrint Archive, Report 2018/113 (2018)

5. Bozilov, D., Bilgin, B., Sahin, H.A.: A note on 5-bit quadratic permutations’ clas-
sification. IACR Trans. Symmetric Cryptol. 2017(1), 398–404 (2017)

6. Beyne, T., Bilgin, B.: Uniform first-order threshold implementations. In: Avanzi,
R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 79–98. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69453-5 5

https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-642-33027-8_5
https://doi.org/10.1007/978-3-642-33027-8_5
https://doi.org/10.1007/978-3-319-69453-5_5

TI-Friendly Shift-Invariant Sboxes 451

7. De Meyer, L., Moradi, A., Wegener, F.: Spin me right round rotational symmetry
for FPGA-specific AES. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3),
596–626 (2018)

8. Daemen, J.: Changing of the guards: a simple and efficient method for achieving
uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 137–153. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4 7

9. Boss, E., Grosso, V., Güneysu, T., Leander, G., Moradi, A., Schneider, T.: Strong
8-bit Sboxes with efficient masking in hardware extended version. J. Cryptogr.
Eng. 7(2), 149–165 (2017)

10. Meyer, L.D., Varici, K.: More constructions for strong 8-bit S-boxes with effi-
cient masking in hardware. In: Proceedings of the 38th Symposium on Information
Theory in the Benelux, Delft, NE, p. 11. Werkgemeenschap voor Informatie- en
Communicatietheorie (2017)

11. Sasdrich, P., Bock, R., Moradi, A.: Threshold implementation in software. In: Fan,
J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 227–244. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89641-0 13

12. Jungk, B., Petri, R., Stottinger, M.: Efficient side-channel protections of ARX
ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 627–653 (2018)

13. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and mask-
ing at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 599–619. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48324-4 30

14. de Groot, W., Papagiannopoulos, K., de La Piedra, A., Schneider, E., Batina,
L.: Bitsliced masking and ARM: friends or foes? In: Bogdanov, A. (ed.) LightSec
2016. LNCS, vol. 10098, pp. 91–109. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-55714-4 7

15. Daemen, J.: Cipher and hash function design, strategies based on linear and differ-
ential cryptanalysis. Ph.D. thesis, K. U. Leuven (1995). http://jda.noekeon.org/

16. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

17. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold imple-
mentations for 4-bit S-boxes. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol.
7864, pp. 99–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40026-1 7

18. Gupta, N., Jati, A., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold
implementations of GIFT: a trade-off analysis. IACR Cryptology ePrint Archive,
Report 2017/1040 (2017)

19. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 6

20. Božilov, D., Bilgin, B., Sahin, H.: A note on 5-bit quadratic permutations’ classi-
fication. IACR Trans. Symmetric Cryptol. 2017(1), 398–404 (2017)

21. Meyer, L.D., Bilgin, B.: Classification of balanced quadratic functions. Cryptology
ePrint Archive, Report 2018/113 (2018). https://eprint.iacr.org/2018/113

22. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

23. Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cellular automata based S-boxes.
Cryptogr. Commun. 11, 41–62 (2018)

https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-89641-0_13
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-319-55714-4_7
https://doi.org/10.1007/978-3-319-55714-4_7
http://jda.noekeon.org/
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-40026-1_7
https://doi.org/10.1007/978-3-642-40026-1_7
https://doi.org/10.1007/3-540-48285-7_6
https://eprint.iacr.org/2018/113
https://doi.org/10.1007/978-3-540-74735-2_31

452 S. Gao et al.

24. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13858-4 19

25. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73074-3 13

26. ARM: Arm and thumb-2 instruction set. http://infocenter.arm.com/help/topic/
com.arm.doc.qrc0006e/QRC0006 UAL16.pdf

27. ARM: Thumb 16-bit instruction set. http://infocenter.arm.com/help/topic/com.
arm.doc.qrc0001m/QRC0001 UAL.pdf

28. De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.:
Does coupling affect the security of masked implementations? In: Guilley, S. (ed.)
COSADE 2017. LNCS, vol. 10348, pp. 1–18. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64647-3 1

29. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–
597. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 20

30. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

31. Wegener, F., Moradi, A.: A first-order SCA resistant AES without fresh random-
ness. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 245–262.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89641-0 14

32. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for thresh-
old implementations illustrated on AES. IEEE Trans. CAD Integr. Circuits Syst.
34(7), 1188–1200 (2015)

33. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side channel
resistance validation. Technical report, CRI (2011)

34. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F.-X., Fei, Y.: Towards sound and
optimal leakage detection procedure. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS
2017. LNCS, vol. 10728, pp. 105–122. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75208-2 7

https://doi.org/10.1007/978-3-642-13858-4_19
https://doi.org/10.1007/978-3-540-73074-3_13
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-89641-0_14
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7

Fast Secure Comparison for
Medium-Sized Integers and Its

Application in Binarized Neural Networks

Mark Abspoel1,2(B), Niek J. Bouman3(B), Berry Schoenmakers3,
and Niels de Vreede3

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
abspoel@cwi.nl

2 Philips Research Eindhoven, Eindhoven, The Netherlands
3 Technische Universiteit Eindhoven, Eindhoven, The Netherlands

n.j.bouman@tue.nl

Abstract. In 1994, Feige, Kilian, and Naor proposed a simple protocol
for secure 3-way comparison of integers a and b from the range [0, 2].
Their observation is that for p = 7, the Legendre symbol (x | p) coincides
with the sign of x for x = a−b ∈ [−2, 2], thus reducing secure comparison
to secure evaluation of the Legendre symbol. More recently, in 2011,
Yu generalized this idea to handle secure comparisons for integers from
substantially larger ranges [0, d], essentially by searching for primes for
which the Legendre symbol coincides with the sign function on [−d, d]. In
this paper, we present new comparison protocols based on the Legendre
symbol that additionally employ some form of error correction. We relax
the prime search by requiring that the Legendre symbol encodes the sign
function in a noisy fashion only. Practically, we use the majority vote over
a window of 2k+1 adjacent Legendre symbols, for small positive integers
k. Our technique significantly increases the comparison range: e.g., for
a modulus of 60 bits, d increases by a factor of 2.8 (for k = 1) and 3.8
(for k = 2) respectively. We give a practical method to find primes with
suitable noisy encodings.

We demonstrate the practical relevance of our comparison protocol by
applying it in a secure neural network classifier for the MNIST dataset.
Concretely, we discuss a secure multiparty computation based on the
binarized multi-layer perceptron of Hubara et al., using our comparison
for the second and third layers.

1 Introduction

Secure integer comparison has been a primitive of particular interest since the
inception of multiparty computation (MPC). In 1982, even before general multi-
party computation had been realized, Yao introduced the Millionaires’ Problem
[21], where two millionaires want to determine who of them has greater wealth
without revealing any information beyond the outcome of this comparison to
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 453–472, 2019.
https://doi.org/10.1007/978-3-030-12612-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_23

454 M. Abspoel et al.

each other or to any third party. Secure comparison has been investigated exten-
sively since. A whole range of solutions is available with every solution aiming
for a particular trade-off. Nonetheless, with respect to arithmetic-secret-sharing-
based MPC, secure comparison remains among the most expensive basic oper-
ations in terms of round complexity. Hence, for applications that require many
comparisons, achieving high throughput (important for privacy-preserving data
processing applications) or low latency (crucial for certain applications, like blind
auctions for real-time advertisement sales) can be challenging.

1.1 Related Work

Whereas most secure comparison protocols work over finite fields of arbitrary
order, Yu [22] presents a comparison protocol that only works for specifically cho-
sen prime moduli. Although this clearly poses a restriction in terms of applicabil-
ity, the main benefit is that the specifically chosen prime modulus p enables Yu
to perform a comparison in a single round of communication in the online phase
(the offline preprocessing phase requires three communication rounds), albeit in
a range that is small compared to p (see Sect. 3.4 for explicit bounds). Namely,
he chooses p such that the pattern of quadratic residues and non-residues mod-
ulo p coincides with the sign function on a given interval symmetric around zero,
which is an idea that goes back to a protocol due to Feige, Kilian, and Naor [3],
who use it to compute the sign of an element x ∈ [−2, 2] in F7. Yu’s comparison
protocol for comparing arbitrary elements a, b ∈ Fp essentially works by break-
ing up the full-range comparison into several medium-range comparisons of the
above type by performing a digit decomposition.

1.2 This Paper

In this paper, we pursue the line of work initiated by Yu [22]. Our main contribu-
tion is that we achieve an improvement in the comparison range while keeping the
bit-length of the prime modulus fixed. Concretely, we propose a protocol that,
for a fixed prime-length, achieves close to a two-fold increase of the comparison
range (over Yu’s results), while still enjoying a single-round online phase, at
the cost of a constant amount of additional communication and some additional
local computations. Also, we present a two-online-rounds protocol that achieves
more than a three-fold increase in the comparison range when compared to Yu’s
approach. In other words, to compare two integers that lie in a given range
(symmetric around zero), our methods require a smaller prime than the prime
required for the protocol from [22]. Keeping the finite-field modulus as small as
possible or within the machine’s word size could be important, for example, in a
setting where MPC protocols run on constrained hardware platforms. On such
platforms, the complexity of prime-field arithmetic (which is directly related to
the prime size) can have a significant impact on the runtime performance. Our
protocols can be found in Sect. 5.

The main idea is to somewhat relax the constraints on the prime modulus
p: instead of requiring that the Legendre symbols of all elements in the interval

Fast Secure Comparison for Medium-Sized Integers 455

[−d, d], for a given positive integer d, coincide with the sign function, we only
require this coincidence for most elements (in a specific sense). Let us, for some
fixed prime p, say that there is an error at position x ∈ [−d, d] if (x | p) �= sgn(x).
Our improvement is based on exploiting a “local redundancy” property enjoyed
by the sign function that lets us correct such errors as long as they are sufficiently
“sparse”, by means of inspecting also the Legendre symbols of some neighboring
positions and then performing a majority vote.

This new approach raises the question of how to find primes that give rise to
increased ranges. In Sect. 4, we present some results that considerably simplify
this search, including tables of suitable primes for various bit lengths.

1.3 Application: Efficient Neural Network Evaluation in MPC

To demonstrate the practical value of our work, we apply our new comparison
protocol to the problem of securely evaluating a neural network, in which the
sign function is used as non-linearity. We use a binarized multi-layer perceptron
(BMLP) for recognizing handwritten digits, as described in [7], which is trained
(in the clear) on the well-known MNIST handwritten-digits data set. We con-
sider an MPC scenario in which the input images are secret-shared between the
parties, which then securely evaluate the BMLP to obtain the estimated digit in
secret-shared form.

2 Preliminaries

Arithmetic Black Box. We suppose that we are given a secure arithmetic black-
box (ABB) functionality that can securely evaluate multiplication and linear
forms over the finite field Fp. We write [x] for the residue class x ∈ Fp encrypted
under the ABB (e.g., x is secret-shared among a set of parties, or perhaps
encrypted under some homomorphic encryption scheme). Abusing notation, for
small x ∈ Fp we will also refer to x as an integer in Z, given as the canonical lift
of the residue class to the integers [−�p

2�, �p
2�].

Sign vs. Binary Sign. The sign function and the binary sign function are respec-
tively defined as

sgn(z) =

⎧
⎪⎨

⎪⎩

1 if z > 0,

0 if z = 0,

−1 if z < 0.

bsgn(z) =

{
1 if z ≥ 0,

−1 if z < 0.

Comparing two integers a and b is achieved by evaluating the sign (or bsgn) of
their difference a − b. The sgn function gives rise to a three-way comparison,
while the bsgn function corresponds to two-way comparison. In this paper, we
will start our analysis in terms of the sgn function, but for reasons that will
become clear later our protocols evaluate the bsgn function (i.e., achieve two-
way comparison). We will sometimes be a bit sloppy and use the word “sign”
also for the bsgn function; the precise meaning should nonetheless still be clear
from its context.

456 M. Abspoel et al.

The Legendre Symbol. Recall that for any odd prime p and any integer a, the
Legendre symbol is defined as the integer

(a | p) =

⎧
⎪⎨

⎪⎩

0 if a ≡ 0 (mod p),
1 if a is a quadratic residue modulo p,

−1 otherwise.

The Legendre symbol is a completely multiplicative function, which means that
(a | p) (b | p) = (ab | p) for all a, b ∈ Z. The identity (a | p) ≡ a

p−1
2 (mod p) is

known as Euler’s criterion. The law of quadratic reciprocity asserts that for odd
primes p and q,

(p | q) (q | p) = (−1)
p−1
2

q−1
2 .

Securely Evaluating Legendre Symbols. In principle, we can securely evaluate the
Legendre symbol via Euler’s criterion, which would require O(log p) secure mul-
tiplications. The complete multiplicativity of the Legendre symbol enables the
following constant-rounds protocol for securely evaluating the Legendre symbol
in the preprocessing model with an single-round online phase. In the preprocess-
ing phase, we generate a secret-shared pair ([r], [(r | p)]) of a random non-zero
class r together with its Legendre symbol. In the online (input-dependent) phase,
we securely multiply [a] · [r], open the result and then compute

[(a | p)] = (ar | p) [(r | p)] .

Note that the security of the protocol requires that a �≡ 0 (mod p), which should
be taken into account when using this protocol.

Blum Primes. A prime p for which p ≡ 3 (mod 4) is called a Blum prime. By
Euler’s criterion, −1 is a quadratic non-residue modulo p if and only if p is a Blum
prime. Hence, for any Blum prime p, the map x �→ (x | p) is an odd function
for x ∈ [−�p/2�, �p/2�] (which follows immediately from the multiplicativity
property of the Legendre symbol), i.e., it enjoys the same symmetry around the
origin as the sign function.

3 Evaluating the Sign Function Using Legendre Symbols

3.1 Redundancy Property of the Sign Function

In this section we show that the sign function enjoys a “local redundancy” prop-
erty, which lets us correct sign-flip errors by means of majority-decoding as long
as those errors occur sparsely (in a sense defined below).

Definition 1. Let k ≥ 0 be an integer, and let T = [t1, t2] be an interval of
integers with t2 − t1 ≥ 2k. We say that a function e : T → {0, 1} is an error
function on T admissible for k if e(x) = 0 for all x ∈ [−(k + 1), k + 1] ∩ T and
if

∑k
i=−k e(y + i) ≤ k holds for all y ∈ [t1 + k, t2 − k].

Fast Secure Comparison for Medium-Sized Integers 457

Lemma 1. Let k and T be as in Definition 1, and let e be an error function on
T admissible for k. Then,

sgn
(k∑

i=−k

(−1)e(x+i)sgn(x + i)
)

= sgn(x)

holds for all x ∈ [t1 + k, t2 − k].

The proof will clarify why we require in Definition 1 that an admissible error
function e(x) has an “error-free” region around x = 0; informally speaking, the
reason is that the sign function undergoes its sign change at x = 0, which means
that there is “less room” for errors under majority-decoding in this region.

Proof. We will prove the statement for T = [−a, a] where a ≥ k is any integer.
This implies the claim for any subinterval of T of cardinality at least 2k+1. Note
that because of symmetry (in the sign function as well as in the definition of an
admissible error function), it suffices to prove the statement for x ≥ 0. We distin-
guish three cases for x. If x = 0, we have

∑k
i=−k(−1)e(i)sgn(i) =

∑k
i=−k sgn(i) =

sgn(x) = 0, where the first equality follows because e is admissible for k and the
second equality follows from the fact that summing an odd function over an
interval symmetric around zero gives the value zero.

Second, if x > k, we have
k∑

i=−k

(−1)e(x+i)sgn(x + i) =
k∑

i=−k

(−1)e(x+i) > 0,

where the equality follows because sgn(x + i) = 1 for all i ∈ [−k, k] and the
inequality follows because e is admissible for k.

For the third (and final) case, suppose that x ∈ [1, k]. We have

k∑

i=−k

(−1)e(x+i)sgn(x + i) =
k−x+1∑

i=−k

sgn(x + i) +
k∑

i′=k−x+2

(−1)e(x+i′)sgn(x + i′)

=
k+1∑

j=x−k

sgn(j) +
k+x∑

j′=k+2

(−1)e(j′)sgn(j′)

= 1 + x +
k+x∑

j′=k+2

(−1)e(j′)

≥ (1 + x) + (1 − x) = 2

�

3.2 The Legendre Symbol as a “Noisy” Sign

Suppose that p is a Blum prime. We can view the Legendre symbol (x | p) for
x ∈ Fp as a “noisy” version of the sign of x:

(x | p) = (−1)e(x)sgn(x), (1)

458 M. Abspoel et al.

where e(x) is the error function that is determined by p. If we now plug (1) into
Lemma 1, we can conclude that we may compute the sign of x as the sign of the
sum of the Legendre symbols of positions in a length-(2k + 1) interval centered
at x, for all x ∈ [t1 + k, t2 − k], if e is an error function on the interval [t1, t2]
admissible for k.

Because p is a Blum prime, the pattern of Legendre symbols has odd symme-
try, which implies that we can w.l.o.g. define T such that it is symmetric around
zero. A natural question, for a given Blum prime p, non-negative integer k, and
T = [−d, d] for a positive integer d ≥ k, is how large d can maximally be such
that e is an error function on T that is admissible for k. This gives rise to the
following equivalent definition, in which we leave the error function implicit.

Definition 2. Let k be a non-negative integer, and let p > 2k + 1 be a Blum
prime. We define the k-range of p, denoted dk(p), to be the largest integer d such
that for all integers x with 1 ≤ x ≤ d it holds that

k∑

i=−k

(x + i | p) > 0, (2)

and we set dk(p) = 0 if no such d exists.

Note that d0(p) tells us the maximum size of Yu’s “Consecutive Quadratic
Residues and Non-Residues Sign Module” for a given prime p, i.e., in Yu’s ter-
minology and notation: a Blum prime p qualifies for ±�-CQRN for all � ≤ d0(p).

Lower Bound on dk(p). If p > 2k + 1 and d0(p) > k, then dk(p) ≥ d0(p).

Example. Let us illustrate Definition 2 by means of an example. Let us take
p = 23; note that this is a Blum prime. Below, we have evaluated the first 16
Legendre symbols.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
(x | p) 0 1 1 1 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1

We can now read off that d0(23) = 4. Furthermore, it is easy to verify that
d1(23) = 5, d2(23) = 8, and d3(23) = 7.

3.3 Avoiding Zero by Restricting to Odd Positions

As mentioned in the preliminaries, if we use the single-online-round protocol
for securely evaluating the Legendre symbol, we may not evaluate the Legendre
symbol on the zero element. A simple trick to avoid zero (also used in [22]) is
to restrict to evaluation of odd inputs by using the map x �→ 2x + 1. Note that
this implies that we cannot compute sgn(x) using the single-online-round proto-
col; instead we will evaluate bsgn(x). Removing the conditions on the Legendre
symbols at even positions gives rise to the following definition.

Fast Secure Comparison for Medium-Sized Integers 459

Definition 3. Let k be a non-negative integer, and let p > 2k + 1 be a Blum
prime. We define d∗

k(p) as the largest integer d such that for all integers x with
1 ≤ x ≤ d it holds that

k∑

i=−k

(2(x + i) + 1 | p) > 0, (3)

and we set d∗
k(p) = 0 if no such d exists.

Note that for any Blum prime p for which d0(p) > 1 (which implies that d0(p)
is even), it is easy to see that it holds that d∗

0(p) = 1
2d0(p) − 1. For k > 0, such

simple relations do not seem to exist. This means, for example, that a prime p
that gives rise to a high value for d1(p), does not necessarily give a high value
for d∗

1(p), and vice versa.

3.4 Bounds on d0(p)

The value d0(p) can be interpreted as the position just before the appearance
of the first quadratic non-residue. Let n1(p) denote the smallest quadratic non-
residue. Finding bounds on n1(p) is a well-known problem in number theory, with
important contributions from Polyà, Vinogradov and Burgess, among others.
The best explicit upper bound that is currently known (for p a Blum prime) is
due to Treviño [19]:

d0(p) + 1 = n1(p) ≤ 1.1 4
√

p log p.

Graham and Ringrose [5] proved an unconditional asymptotic lower bound
(improving on a previous result by, independently,1 Fridlender [4] and Salié [14]),
namely, that there exist infinitely many primes for which

d0(p) + 1 = n1(p) ≥ c · log(p) · log log log p.

for some absolute constant c.2

Lamzouri et al. [10] prove that conditional on the Generalized Riemann
Hypothesis, for all primes p ≥ 5 it holds that

d0(p) + 1 = n1(p) < (log p)2.

3.5 Bounds on d1(p)

Hudson [8] proves an upper bound on the least pair of quadratic non-residues.
Formally, let n2(p) be the smallest value such that n2(p) and n2(p) + 1 are
quadratic non-residues. For k = 1, it must hold that d1(p) < n2(p), because an

1 Ankeny [2] attributes this result to Chowla, but does not provide a reference.
2 In the literature, this is also written as n1(p) = Ω(log(p) · log log log p), where Ω is

Hardy–Littlewood’s Big Omega: f(n) = Ω(g(n)) ⇐⇒ lim supn→∞ |f(n)/g(n)| > 0.

460 M. Abspoel et al.

“error pattern” consisting of two consecutive quadratic non-residues (such that
n2(p) ∈ [1, (p − 3)/2]) cannot be corrected using a majority vote in a window of
length 2k + 1 = 3. Hudson’s bound is as follows. For every p ≥ 5 we have that

d1(p) < n2(p) ≤ (n1(p) − 1)q2,

where q2 is the second smallest prime that is a quadratic non-residue modulo p.
Hildebrand [6] also proves an upper bound on n2(p):

d1(p) < n2(p) ≤ p1/(4
√

e)+ε p ≥ p0(ε),

for every ε > 0 and p0(ε) a sufficiently large constant depending on ε.
Sun [17] gives a construction for generating all elements n in Fp such that n

and n + 1 are quadratic non-residues.

Lemma 2 ([17]). Let p be an odd prime and let g be a primitive root of p. Then,

U :=
{

n ∈ Fp

∣
∣ (n | p) = (n + 1 | p) = −1

}

=
{

uk ∈ Fp

∣
∣ uk ≡ (g2k−1 − 1)2

4g2k−1
(mod p), k = 1, . . . ,

⌊
p − 1

4

⌋}

We can interpret this lemma as giving a collection of upper bounds on d1(p),
that is, d1(p) < n2(p) ≤ uk holds for every k = 1, . . . , �(p − 1)/4�.

An error pattern that consists of two quadratic non-residues that are sepa-
rated by one arbitrary position can also not be corrected using a majority vote
in a window of length 2k+1 = 3. Inspired by Sun, we prove the following lemma.

Lemma 3. Let p be a Blum prime, let b =
(
(2 | p) + 1

)
/2 ∈ {0, 1} and let g be

a primitive root of p. Then,

V :=
{

n ∈ Fp

∣
∣ (n | p) = (n + 2 | p) = −1

}

=
{

vk ∈ Fp

∣
∣ vk ≡ (g2k−b − 1)2

2g2k−b
mod p, k = 1, . . . , (p − 3)/4

}

.

Also this lemma can be viewed as giving a collection of upper bounds on d1(p).
If (n | p) = (n + 2 | p) = −1, then a decoding error (under majority decoding
with k = 1) will occur at position n + 1, hence we have that d1(p) ≤ vk holds
(instead of strict inequality) for every k = 1, . . . , (p − 3)/4.

Proof. Let χ(x) = (x | p) for all x ∈ Fp. Jacobsthal [9] proves that for p a Blum
prime,

∣
∣{n ∈ Fp

∣
∣ χ(n) = χ(n + 2) = −1 ∧ χ(n + 1) = 1}

∣
∣ =

p − 1 + 2 (2 | p)
8

,

and
∣
∣{n ∈ Fp

∣
∣ χ(n) = χ(n + 1) = χ(n + 2) = −1}

∣
∣ =

p − 5 − 2 (2 | p)
8

.

Fast Secure Comparison for Medium-Sized Integers 461

Hence, by summing the cardinalities of the above sets, we get that

∣
∣{n ∈ Fp

∣
∣ χ(n) = χ(n + 2) = −1}

∣
∣ =

p − 3
4

.

For j = 1, 2, . . . , (p − 3)/2, let rj ≡ (gj − 1)2/(2gj) mod p. Then, rj + 2 ≡
(gj + 1)2/(2gj) mod p. It now follows that χ(rj) = χ(rj + 2) = (−1)jχ(2) for
all j = 1, 2, . . . , (p− 3)/2. Hence, χ(r2k−(χ(2)+1)/2) = χ(r2k−(χ(2)+1)/2 +2) = −1
for all k = 1, 2, . . . , (p − 3)/4.

It remains to prove that rs �= rt mod p for all s, t ∈ [1, (p− 3)/2] with t �= s;
for this part we can re-use Sun’s proof technique used in the proof of Lemma2.
Namely, for all s, t ∈ [1, (p − 3)/2] with t �= s, we have that gs+t �≡ 1 mod p
(since g is a primitive root), which implies that gs − gt �≡ (gs − gt)/gs+t mod p.
Hence, gs + g−s �≡ gt + g−t mod p from which we obtain that rs �≡ rt mod p.
We can now conclude that

{n ∈ Fp

∣
∣ χ(n) = χ(n + 2) = −1} = {r2k−b ∈ Fp

∣
∣ k ∈ [1, (p − 3)/4]},

and the claim follows. �

4 Finding a Prime for a Given k-Range

In order to find a prime that, for given integers k and Dk, gives rise to
dk(p) ≥ Dk, we could in principle take a naive approach by letting a com-
puter exhaustively enumerate the primes in increasing order and compute the
Legendre symbols at a = 1, . . . , Dk, and stop when they are all 1. Although this
approach works for small values of k and Dk (say for D1 < 200), for larger Dk

this will become intractable.
We can speed up the calculation of dk by using the multiplicativity of the

Legendre symbol, the law of quadratic reciprocity and the Chinese Remainder
Theorem (CRT). Moreover, we may speed up the computation by enumerating
over values p that already satisfy some conditions on the Legendre symbols,
using a wheel data structure [13,16]. We will first review the problem for the
case k = 0 and then extend the method to the case k = 1. Our approach also
works for arbitrary k, and we supply the relevant extensions, but we note that
its practicality rapidly diminishes as k increases.

4.1 Finding Primes with High d0(p)

Recall that finding a prime p′ such that d0(p′) ≥ D, for some D, means that p′

must be a Blum prime such that the elements 1, . . . , D are quadratic residues
modulo p′. By the complete multiplicativity of the Legendre symbol, it suffices
to find a Blum prime p such that all primes q ≤ D are quadratic residues modulo
p.

Proposition 1. Let q be an odd prime, and p a Blum prime. Then, it holds that

(q | p) = (−p | q) .

462 M. Abspoel et al.

Proof. It holds that (q | p) = (p | q)−1 (−1)
p−1
2

q−1
2 = (p | q) (−1)

q−1
2 =

(p | q) (−1 | q) = (−p | q), where the first equality holds by the law of quadratic
reciprocity, the second holds because p is a Blum prime, the third follows from
Euler’s criterion and the fourth follows from the multiplicativity property of the
Legendre symbol. �

Let Rq = {r mod q : (−r | q) = 1}. Then, q is a quadratic residue modulo p
if and only if

(p mod q) ∈ Rq. (4)

This represents an (exclusive) disjunction of linear congruences:

p ≡ r1(mod q) ∨ . . . ∨ p ≡ r� (mod q),

where Rq = {r1 mod q, . . . , r� mod q}.
Let q1, . . . , qm denote all odd primes that are in [1,D]. The condition that all

integers [1,D] are quadratic residues modulo x thus gives rise to the following
system of simultaneous disjunctions of linear congruences:

x ≡ 7(mod 8) (guarantees that (−1 | x) = −1 and (2 | x) = 1),
(x mod q1) ∈ Rq1 ,

(x mod q2) ∈ Rq2 ,

...
(x mod qm) ∈ Rqm .

(5)

Suppose for each i = 1, . . . , m we choose a residue class ai ∈ Rqi , and we
regard the resulting vector (a1, . . . , am). We may choose the ai independently
since the qi are distinct primes. An element (a1, . . . , am) ∈ Rq1 ×· · ·×Rqm =: R
is in one-to-one correspondence with an arithmetic progression of solutions to the
above system of congruences, that is, x, x+Q,x+2Q, . . . where Q = 8

∏
i∈[m] qi.

Linnik’s theorem [11] (combined with Xylouris’ bound [20]) asserts that there
will be a prime in this arithmetic progression whose size is bounded as O(Q5).

Finding the Smallest Such Prime. Finding some prime that satisfies the above
system is relatively easy, since we may fix a vector (a1, . . . , am) ∈ R. We can then
enumerate all positive integers x such that x mod qi = ai via the constructive
proof of the CRT, and output the first solution that is prime. However, finding
the smallest prime that satisfies the above system is a (much) harder task, as it
involves searching over the full set R, whose cardinality is exponential in m.

In practice, we may simply enumerate all integers x in ascending order, and
check whether x satisfies the system of Eq. (5) rather than computing the Leg-
endre symbols at 1, . . . , D0 explicitly. We can speed up the computation by
precomputing the sets Rqi and storing them in memory. We can check many
congruences at once by combining sets of congruences using the CRT. For exam-
ple, for moduli q, q′ we have that (x mod q) ∈ Rq and (x mod q′) ∈ Rq′ if and
only if (x mod qq′) ∈ Rqq′ ,

Rqq′ := (Rq + {0, q′, . . . , (�/q′ − 1)q′}) ∩ (Rq′ + {0, q, . . . , (�/q − 1)q}), (6)

Fast Secure Comparison for Medium-Sized Integers 463

where � = lcm(q, q′) and ‘+’ denotes Minkowski addition. Note that we have
abused notation here slightly, and represented the sets Rm for each modulus
m as the set of integers in [0,m − 1] that are the canonical lifts of the residue
classes mod m. By recursion, the above extends to combining more than two
sets of congruences.

4.2 Finding Primes with High d1(p)

For k > 0, for dk(p) ≥ D to hold for some positive integer D, it is no longer
necessary that p satisfies each disjunction of congruences in Eq. (5); instead,
some subsets suffice. For example, for d1(p) ≥ 6 we need (2 | p) = 1 and at least
one of (5 | p) = 1 or (6 | p) = (2 | p) (3 | p) = (3 | p) = 1, otherwise Eq. (2) fails
to hold for a = 5.

In order for Eq. (2) to hold, we have one set of congruences for every length-
(2k + 1) subinterval of [−k, d]; even for k = 1 this quickly grows prohibitively
large for non-trivial lower bounds D on dk(p). While for k > 0 the density of
primes p satisfying dk(p) ≥ D is greater than for k = 0, the search becomes a
lot more expensive.

For k = 1, we simplify our search for p with d1(p) ≥ D1 with an extra
condition: we also require d0(p) ≥ D0 where D1 ≤ (D0)

2. This ensures that each
integer in (D0,D1] has at most one prime factor greater or equal to D1. Under
this restriction, we get a condition equivalent to d1(p) ≥ D1 which requires fewer
computations to check.

Definition 4. Let D0,D1 be non-negative integers with D0 < D1 ≤ (D0)
2. Let

q, q′ be distinct primes. We say that {q, q′} is a related pair on (D0,D1] if D0 <
q, q′ ≤ D1 and there exist positive integers x, y < D0 such that |xq − yq′| ≤ 2
and max{xq, yq′} ≤ D1.

Proposition 2. Let D0,D1 be non-negative integers with D0 < D1 ≤ (D0)
2,

and let p be a Blum prime with d0(p) ≥ D0. Then d1(p) ≥ D1 − 1 if and only if
the following condition holds: for every related pair of primes {q, q′} on (D0,D1]
it holds that (q | p) = 1 ∨ (q′ | p) = 1.

Proof. Let a be any positive integer such that a ≤ D1. First, we show that
(a | p) = −1 if and only if a has a prime factor q > D0 and (q | p) = −1. Suppose
a has a prime factor q > D0 with (q | p) = −1. Since a

q < a
D0

≤ D1
D0

≤ D0, we
have (a/q | p) = 1, hence (a | p) = −1. If a does not have a prime factor q > D0

with (q | p) = −1, then taking any prime factor q′|a, it must hold that q′ > D0,
in which case (q′ | p) = 1 by assumption, or q′ ≤ D0, in which case (q′ | p) = 1
by d0(p) ≥ D0.

We now finish the proof by showing d1(p) < D1 − 1 if and only if there
is some related pair q, q′ such that (q | p) = (q′ | p) = −1. We have d1(p) <
D1 − 1 if and only if there exists an integer x such that 1 < x ≤ D1 − 1 and
(x − 1 | p)+(x | p)+(x + 1 | p) < 0. This latter inequality holds if and only if at
least two of {x− 1, x, x+1} have Legendre symbol −1. By the above, this holds

464 M. Abspoel et al.

if and only if two of these numbers have respective prime factors q, q′ > D0 and
(q | p) = (q′ | p) = −1. For these q, q′, we have that they constitute a related pair,
since they each have a multiple in {x−1, x, x+1} and x+1 ≤ D1. Conversely, for
any related pair there exists such an interval {x−1, x, x+1} with 1 < x ≤ D1−1.

�

Proposition 2 gives sufficient conditions for d1(p) > D1−1 in terms of related
pairs of primes that have to satisfy certain disjunctions of congruences. If we
want to include those disjunctions in a system as shown in Eq. (5), we need to
represent them in the same form. For every pair of related primes {q, q′}, the
condition that (q | p) = 1 ∨ (q′ | p) = 1 in Proposition 2 corresponds to taking
the union of the associated residue sets Rq and R′

q of the related primes q and
q′. That is, let � = lcm(q, q′), then

Rq,q′ := (Rq + {0, q, . . . , (�/q − 1)q}) ∪ (R′
q + {0, q′, . . . , (�/q′ − 1)q′}),

where ‘+’ denotes Minkowski addition, and again we abuse notation and canoni-
cally lift residue classes modulo m to the integers [0,m−1]. We can now express
the related-primes disjunction of congruences as

(x mod �) ∈ Rq,q′ .

Since this disjunction of congruences has exactly the same form as the other
disjunctions in Eq. (5) we can also take intersections (using Eq. (6)) between a
related-primes congruence Rq,q′ and another disjunction of congruences.

We can naturally extend the approach for searching primes with high d1(p) to
an approach for finding primes with high dk(p) for k > 1. This involves imposing
constraints on sets of k + 1 distinct primes that are related in a suitably defined
way. Note, however, that the use of this for high k is limited, given that we still
constrain Dk ≤ (D0)

2, and we do not elaborate on this.

4.3 Finding Primes with High d∗
k(p)

To find primes p with large d∗
k(p) we use the following results.

Definition 5. Let D0,Dk be non-negative integers with D0 < Dk ≤ (D0)
2. Let

Q = {q0, . . . , qk} be a set of k+1 distinct primes. We say that Q is a ∗-related set
on (D0,Dk] if Q ⊆ (D0,Dk] and there exist positive odd integers x0, . . . , xk < D0

such that:

1. for any i with 0 ≤ i ≤ k we have xiqi ≤ Dk

2. for any i, j with 0 ≤ i < j ≤ k it holds that |xiqi − xjqj | ∈ {2, 4, 6, . . . , 4k}

Proposition 3. Let D0,Dk be non-negative integers with D0 < Dk ≤ (D0)
2,

and let p be a Blum prime with d∗
0(p) ≥ 1

2D0. Then d∗
k(p) ≥ 1

2Dk −k if and only
if the following condition holds: for every set Q of k+1 distinct primes ∗-related
on (D0,Dk], it holds that there exists some q ∈ Q with (q | p) = 1.

Fast Secure Comparison for Medium-Sized Integers 465

4.4 Implementation and Results

We have implemented a search algorithm for primes p with minimal dk(p) and
d∗

k(p) for k = 0, 1, 2 using the precomputation of linear congruences as detailed
above. We have enumerated all minimal p up to 64 bits with ascending d1(p)
and with d0(p) ≥ 64, and likewise for ascending d∗

1(p) with d∗
0(p) ≥ 32. Our

implementation is written in Rust and uses the wheel method from [16]. It is
publicly available on GitHub [1].

Table 1 shows results of our search for primes that give rise to as high as
possible values of d∗

1(p) and d∗
2(p). Because of space constraints, we refer the

reader to the full version of our paper (IACR ePrint, Report 2018/1236) for
tables for d1(p) and d2(p). See Fig. 1 for a plot of the overall results.

0 20 40 60

0

500

1,000

bit-length of prime ()

d0

d1

d2

0 20 40 60

0

200

400

600

bit-length of prime ()

d0

d1

d2

Fig. 1. Graphical comparison of the comparison range achieved by Yu’s method (d0

and d∗
0) vs. our method. The data for d0 is taken from [12, Table 6.23] (and for all

points shown here it holds that d∗
0 = d0/2).

5 Secure Protocols for bsgn

In this section we present three protocols for evaluating the bsgn function, for
k = 1 and k = 2. Note that these immediately imply comparison protocols; from
the triangle inequality it follows that correctness for comparison is guaranteed
if both inputs lie in [−�d/2�, �d/2�], where [−d, d] is the input range of the bsgn
protocol. Throughout this section, we suppose that p is a Blum prime.

We first describe a protocol for securely evaluating the Legendre sym-
bol, which we call Legendre. We describe the protocol in terms of black-box
invocations of protocols for sampling a random element from F

∗
p (denoted as

RandomElem(F∗
p)) and for sampling a random bit {0, 1} ⊂ Fp called RandomBit.

5.1 Secure Medium-Range bsgn Protocol for k = 1

In our protocol for k = 1, shown as Protocol 2, we compute the binary sign of
the sum of the Legendre symbols by means of the multivariate polynomial

f(x, y, z) =
x + y + z − xyz

2
,

466 M. Abspoel et al.

Table 1. Sequence of primes in increasing order (and their bit-lengths �) for which d∗
k(p)

is strictly increasing, for k ∈ {1, 2}. Primes below the dashed lines have been found via
our sieving method, which means that there could exist smaller primes (missed by the
sieving method) that give rise to the same or higher values of d∗

1(p) resp. d∗
2(p). For

the primes above the dashed lines, it holds that the prime is the smallest possible for a
given d∗

k(p). The primes below “� � �” are 64 bit primes with the best known k-range.

� p d∗
1(p)

5 23 1
6 47 4
7 83 5
8 131 7
8 239 8
8 251 14

10 1019 16
11 1091 24
13 4259 30
14 10331 33
14 12011 34
17 74051 42
17 96851 44
19 420731 47
20 831899 52
20 878099 53
20 954971 68
23 5317259 78
25 19127891 79
25 31585979 94
28 140258219 98
30 697955579 104
31 1452130811 112
31 1919592419 115
33 4323344819 116
33 4499001491 117
33 6024587819 118
34 9259782419 138
35 19846138451 143
36 34613840351 151
37 73773096179 153

37 119607747731 174
38 163030664579 182
38 170361409391 207
43 4754588149211 229
48 171772053182831 242

dp� ∗
2(p)

6 47 3
7 83 6
8 131 8
8 179 15

10 1019 16
11 1091 26
11 1427 31
11 1811 36
14 9539 51
15 19211 68
19 334619 78
20 717419 80
21 1204139 104
22 2808251 114
24 8774531 116
24 11532611 117
25 18225611 152
27 98962211 155
28 247330859 166
30 738165419 174
30 1030152059 188
31 1456289579 197
32 2451099251 206
34 11159531291 207
34 13730529419 216
35 17221585499 219
35 19186524419 232
35 26203369331 242
37 92830394411 248
37 128808841619 287
38 232481520059 324
39 408727560491 335
40 807183995411 370

44 15869813229371 373
45 19379613618119 411
46 46760546950211 412

(continued)

Fast Secure Comparison for Medium-Sized Integers 467

Table 1. (continued)

48 178774759690511 243
48 205152197251811 258
52 2950193919326891 259
52 3705750905778011 284
54 10624213337944379 296
55 26259748609914431 321
57 141840650661890879 340
59 321961111376298371 345
61 1158960903343074191 348
61 1561357330831673339 378
64 9409569905028393239 383

48 240160967391791 425
49 294269750529611 456
53 8755197891979139 526
57 85283169141238571 528
58 148892345027857499 599
61 1915368196138563011 648

� � �
64 10807930853257193939 623

Protocol 1. Legendre([x])
Offline Phase

1: [a] ← RandomElem(F∗
p)

2: [b] ← RandomBit()
3: [s] ← 2[b] − 1
4: [r] ← [s] · [a2]

Online Phase
5: c ← [x] · [r]
6: [z] ← (c | p) · [s]
7: return [z]

which can be evaluated securely in two rounds using ordinary secure multipli-
cation. It is easy to verify that f correctly computes the sign of the sum of
x, y, z ∈ {−1,+1}.

Protocol 2. bsgn1Simple([a]), |a| ≤ d∗
1(p)

1: [x] ← Legendre(2[a] − 1), [y] ← Legendre(2[a] + 1), [z] ← Legendre(2[a] + 3)
2: [s] ← ([x] + [y] + [z] − [x][y][z])/2
3: return [s]

Decreasing the Round Complexity in the Online Phase. Protocol bsgn1Simple
requires three rounds in the online phase. We can bring this down to a single
round by premultiplying the random Legendre symbols produced in the offline
phase of the Legendre protocol. This is shown in Protocol 3. The random bit pro-
tocol has been concretely instantiated in the offline phase of Protocol 3 to show
that the product of the three random Legendre symbols can be computed in
parallel to the preparation of their corresponding random elements. The offline
phase requires two rounds in addition to the round complexity of securely sam-
pling random elements of F∗

p.

468 M. Abspoel et al.

Protocol 3. bsgn1SingleRound([a]), |a| ≤ d∗
1(p)

Offline Phase
1: for i ∈ {1, 2, 3} do [ti] ← RandomElem(F∗

p); [ui] ← RandomElem(F∗
p)

2: for i ∈ {1, 2, 3} do [vi] ← [ti] · [ti]; wi ← [ui] · [ui]

[m] ← [u1] · [u2]

3: for i ∈ {1, 2, 3} do [ri] ← [vi] · [ui] · w
−1/2
i ; [si] ← [ui] · w

−1/2
i

[n] ← [m] · [u3] · ∏3
i=1 w

−1/2
i

4: return ([r1], [s1], [r2], [s2], [r3], [s3], [n])

Online Phase
5: for i ∈ {1, 2, 3} do ci ← (2[a] − 3 + 2i) · [ri]

6: return 2−1
(∑3

i=1[si] · (ci | p) − [n] · ∏3
i=1 (ci | p)

)

5.2 Secure Medium-Range bsgn Protocol for k = 2

In our protocol for k = 2, shown as Protocol 4, we compute the binary sign of the
sum of the five Legendre symbols by means of another invocation of Legendre.
In the latter (outer) invocation of Legendre, we need not apply the x �→ 2x + 1
map because we sum an odd number of values in {−1,+1} which cannot become
zero. Note that this requires that d0(p) ≥ 5 for correctness of the protocol.

Protocol 4. bsgn2([a]), |a| ≤ d∗
2(p), d0(p) ≥ 5

1: [x1] ← Legendre(2[a] − 3), [x2] ← Legendre(2[a] − 1), [x3] ← Legendre(2[a] + 1)
[x4] ← Legendre(2[a] + 3), [x5] ← Legendre(2[a] + 5)

2: [s] ← Legendre([x1] + [x2] + [x3] + [x4] + [x5])
3: return [s]

6 Application: Fast Neural Network Evaluation in MPC

In this section we demonstrate the usefulness of our secure binary-sign evaluation
technique for securely evaluating a neural network.

6.1 Binarized Multi-layer Perceptron for MNIST

For our experiments, we take the binarized multi-layer perceptron of Cour-
bariaux et al. for recognizing handwritten digits from the well-known MNIST
benchmark data set [7], which we refer as BMLP below. The BMLP network
uses the sign function as its non-linear activation function, and is designed to be
evaluated using integer arithmetic only, which allows for a natural MPC imple-
mentation.

Fast Secure Comparison for Medium-Sized Integers 469

The MNIST data set contains images of 28-by-28 pixels, where the intensity
of each pixel is represented by a byte, i.e., an integer in B := [0, 255] (0 represents
black, 255 represents white, and the values in between represent shades of gray).
For the BMLP network, an input image is represented as a byte vector x ∈ B784.
Note that by reshaping a two-dimensional image into a (one-dimensional) vector
the spatial structure is lost, but this is not a problem for multi-layer perceptrons
(as opposed to convolutional neural networks, for instance).

Let n denote the number of neurons per layer. The BMLP network consists
of four layers, and uses n = 4096. We view each layer Li, i ∈ [1, 4], as a map
between an input and output vector:

L1 : B784 → {−1,+1}n,
Li : {−1,+1}n → {−1,+1}n, i ∈ {2, 3}
L4 : {−1,+1}n → Z

10.

Let k1 = k2 = k3 = m2 = m3 = m4 = n and k4 = 10 and m1 = 784. In [7],
the output of Li is computed as

Li(x) :=

{
BinarySign(BatchNormki

Θi
(Wix + bi)), i ∈ {1, 2, 3}

BatchNormki

Θi
(Wix + bi) i = 4.

Here Wi ∈ {−1,+1}ki×mi is a matrix of weights, and bi ∈ Z
ki is a vector of bias

values. The function BatchNorm, which applies batch normalization element-
wise, is defined as

BatchNorm�
Θi

: Z
� → Z

�

(x1, . . . , x�) �→ (fΘi,1(x1), . . . , fΘi,�(x�))

where Θi := (μi, σ̃i,γi,βi) are the batch norm parameters for the ith layer:
μi = (μi,1, . . . , μi,�), σ̃i = (σ̃i,j)j∈[1,�], γ = (γi,j)j∈[1,�], and β = (βi,j)j∈[1,�], and

fΘi,j(x) := γi,j

(x − μi,j

σ̃i,j

)
+ βi,j .

The function BinarySign applies the bsgn function element-wise,

BinarySign : Z
n → {−1,+1}n

(x1, . . . , xn) �→ (bsgn(x1), . . . ,bsgn(xn)).

To obtain the final output of the BMLP, which is an integer y ∈ [0, 9], we
apply an (oblivious) argmax operation to the output of L4:

y := arg max L4(L3(L2(L1(x)))).

Training the Network. We have trained the BMLP on a GPU using Courbariaux’
original implementation (described in [7]) which is publicly available on GitHub.

470 M. Abspoel et al.

6.2 Eliminating Redundant Parts of Batch Normalization

In layers 1–3, the BinarySign function is applied directly to the output of the
BatchNorm function. Because the bsgn function is invariant to multiplying its
input by a positive scalar, the BatchNorm function might perform some opera-
tions that are immediately undone by the bsgn function. Indeed, it actually turns
out that the BatchNorm function (when followed by the BinarySign function)
reduces to an additional bias term; the authors of [7] seem to have overlooked
this. Formally,

fi(x) = γi

(x − μi

σ̃i

)
+ βi =

γi

σ̃i

(

x − μi +
βiσ̃i

γi

)

,

bsgn(fi(x)) = bsgn
(

x − μi +
βiσ̃i

γi

)

, γi, σ̃i > 0.

Hence, we update the bias vector in all layers except the last as follows,

b′
i := bi − μi +

βiσ̃i

γi

where all operations (addition, subtraction, multiplication, and division) in the
above expression are performed element-wise. With this modification, evaluation
of the BMLP network simplifies to

Li(x) =

{
BinarySign(Wix + b′

i), i ∈ {1, 2, 3}
BatchNormki

Θi
(Wix + bi) i = 4.

6.3 Instantiating the BinarySign Function per Layer

Our aim is to instantiate the BinarySign function using our medium-range bsgn
protocols. Nonetheless, for layer L1, the magnitudes of the elements in the vector
W1x + b′

1 for some image x ∈ B784 will typically be way too large compared to
the input range on which our bsgn protocols guarantee a correct answer. Hence,
for L1 we instantiate BinarySign as the element-wise application of an “off-the-
shelf” large-range bsgn protocol, such as Toft’s comparison protocol [18].

For layers L2 and L3 we instantiate BinarySign with (element-wise appli-
cations of) Protocol bsgn1Simple using a 64-bit prime modulus p for which
d∗
1(p) = 383, and, in a separate experiment, with bsgn2 using a 64-bit modulus

p′ for which d∗
2(p

′) = 594.3 Also for these layers, there seems to be a mismatch
between the input ranges of bsgn1Simple and bsgn2 on which they guarantee
correctness, i.e., [−383, 383] and [−594, 594] respectively, and the magnitudes of
the elements in the vector Wiy + b′

i for i ∈ {2, 3}, where y ∈ {−1,+1}n. The
first term in this sum (the vector Wiy), can have elements with magnitude equal
to n in the worst case, where n = 4096. Nonetheless, the distribution of values in
the vector Wiy +b′

i for all i ∈ {2, 3} is strongly concentrated around zero, hence

3 The prime moduli are p = 9409569905028393239 and p′ = 15569949805843283171.

Fast Secure Comparison for Medium-Sized Integers 471

Table 2. Classification performance of the BMLP on 10,000 MNIST test images

Full-range sign bsgn1Simple bsgn2

Number of misclassifications 248 227 247

Error rate 0.0248 0.0227 0.0247

we will just ignore the fact that our bsgn-protocols will be invoked a number of
times on values outside the range for which they guarantee correctness. As we
show quantitatively in Table 2, this does not deteriorate the classification per-
formance compared to a network where the full-range sign protocol is also used
in layers L2 and L3. (Surprisingly, using bsgn1Simple even slightly improves the
performance on the MNIST test set.)

6.4 Experimental Results (Neural Network Evaluation)

We have implemented the neural network in MPyC, a Python framework for
secure multiparty computation [15]. For k = 1 we used a mixture of Protocols 2
and 3, and for k = 2 we used Protocol 4, in all cases expanding the calls to
Protocol 1 to parallelize the secure computations of the Legendre symbol as much
as possible. As a baseline we use the MPyC built-in secure comparison protocol,
which is based on Toft’s protocol [18]. For a meaningful performance evaluation,
we set the bit length to 10 bits for the built-in comparisons used in layers 2 and 3.
We have also vectorized the code for all these comparison protocols, handling
n = 4096 comparisons at the same time for layers 1–3, which increases the speed
considerably.

We have run our experiments on a 3PC-LAN setup (CPUs: Intel four-core
4th generation Core i7 3.6 GHz). A complete evaluation between three parties
on a secret-shared input image, using secret-shared weights and bias vectors,
runs in 60 s for k = 1, in 62 s for k = 2, and in 67 s for full-range comparisons.
For evaluation of a batch of 10 input images the times are 223, 235, and 302 s,
respectively. The times for processing all comparisons in layers 2 and 3 are 20, 34,
and 99 s, respectively. Hence, in this experiment the Legendre-based comparisons
with k = 1 are about 5 times faster than full-range comparisons. Similar speedups
may be expected with other MPC frameworks for applications with comparisons
restricted to medium-sized integers.

To determine the error rate for our particular BMLP, we have also imple-
mented it in Python (including the Python counterparts of the Protocols
bsgn1Simple and bsgn2, producing exactly the same errors outside their input
ranges). The results measured for the 10,000 MNIST test images are shown in
Table 2.

Acknowledgments. We thank Frank Blom for running all our 3-party experiments
on his 3PC-LAN setup. This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreements No 731583
(SODA) and No 780477 (PRIViLEDGE).

472 M. Abspoel et al.

References

1. Abspoel, M.: Search for primes with high d1, d2 (2018).
https://github.com/abspoel/dk-search

2. Ankeny, N.C.: The least quadratic non residue. Ann. Math. 55(1), 65–72 (1952)
3. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended

abstract). In: Proceedings of STOC 1994, pp. 554–563 (1994)
4. Fridlender, V.R.: On the least nth power non-residue. Dokl. Akad. Nauk. SSSR

66, 351–352 (1949)
5. Graham, S.W., Ringrose, C.J.: Lower bounds for least quadratic non-residues. In:

Berndt, B.C., et al. (eds.) Analytic Number Theory: Proceedings of a Confer-
ence in Honor of Paul T. Bateman, vol. 85, pp. 269–309. Springer, Boston (1990).
https://doi.org/10.1007/978-1-4612-3464-7 18

6. Hildebrand, A.: On the least pair of consecutive quadratic nonresidues. Mich. Math.
J. 34(1), 57–62 (1987)

7. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neu-
ral networks: training neural networks with low precision weights and activations.
J. Mach. Learn. Res. 18(187), 1–30 (2018)

8. Hudson, R.H.: The least pair of consecutive character non-residues. J. Reine
Angew. Math. (281), 219–220 (1976)

9. Jacobsthal, E.: Anwendungen einer Formel aus der Theorie der quadratischen
Reste. Ph.D. thesis, Friedrich-Wilhelms-Universität, Berlin, Germany (1906)

10. Lamzouri, Y., Li, X., Soundararajan, K.: Conditional bounds for the least quadratic
non-residue and related problems. Math. Comput. 84(295), 2391–2412 (2015)

11. Linnik, U.V.: On the least prime in an arithmetic progression. I. The basic theorem.
Rec. Math. [Mat. Sbornik] N.S. 15(57), 139–178 (1944)

12. Lukes, R.F.: A very fast electronic number sieve. Ph.D. thesis, University of Man-
itoba, Winnipeg, Canada (1995)

13. Pritchard, P.: A sublinear additive sieve for finding prime numbers. Commun. ACM
24(1), 18–23 (1981)

14. Salié, H.: Über den kleinsten positiven quadratischen Nichtrest nach einer
Primzahl. Math. Nachr. 3(1), 7–8 (1949)

15. Schoenmakers, B.: MPyC - secure multiparty computation in Python, v0.4.7.
GitHub (2018). https://github.com/lschoe/mpyc

16. Sorenson, J.P.: The pseudosquares prime sieve. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 193–207. Springer, Heidelberg (2006).
https://doi.org/10.1007/11792086 15

17. Sun, Z.H.: Consecutive numbers with the same Legendre symbol. Proc. Am. Math.
Soc. 130(9), 2503–2507 (2002)

18. Toft, T.: Primitives and applications for multi-party computation. Ph.D. thesis,
Aarhus Universitet, Denmark (2007)

19. Treviño, E.: The least kth power non-residue. J. Number Theory 149, 201–224
(2015)

20. Xylouris, T.: Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste
Primzahl in einer arithmetischen Progression. Ph.D. thesis, Rheinischen Friedrich-
Wilhelms-Universität Bonn, Germany (2011)

21. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
FOCS 1982, pp. 160–164 (1982)

22. Yu, C.H.: Sign modules in secure arithmetic circuits. Cryptology ePrint Archive,
Report 2011/539 (2011). http://eprint.iacr.org/2011/539

https://github.com/abspoel/dk-search
https://doi.org/10.1007/978-1-4612-3464-7_18
https://github.com/lschoe/mpyc
https://doi.org/10.1007/11792086_15
http://eprint.iacr.org/2011/539

EPIC: Efficient Private Image
Classification (or: Learning from the

Masters)

Eleftheria Makri1,2, Dragos Rotaru1,3, Nigel P. Smart1,3(B),
and Frederik Vercauteren1

1 imec-COSIC, KU Leuven, Leuven, Belgium
{eleftheria.makri,dragos.rotaru,nigel.smart,

frederik.vercauteren}@esat.kuleuven.be
2 ABRR, Saxion University of Applied Sciences, Enschede, The Netherlands

3 University of Bristol, Bristol, UK

Abstract. Outsourcing an image classification task raises privacy con-
cerns, both from the image provider’s perspective, who wishes to keep
their images confidential, and from the classification algorithm provider’s
perspective, who wishes to protect the intellectual property of their clas-
sifier. We propose EPIC, an efficient private image classification system
based on support vector machine (SVM) learning, secure against mali-
cious adversaries. EPIC builds upon transfer learning techniques known
from the Machine Learning (ML) literature and minimizes the load on
the privacy-preserving part. Our solution is based on Multiparty Com-
putation (MPC), it is 34 times faster than Gazelle (USENIX’18) –the
state-of-the-art in private image classification– and it improves the com-
munication cost by 50 times, with a 7% higher accuracy on CIFAR-10
dataset. For the same accuracy as Gazelle achieves on CIFAR-10, EPIC
is 700 times faster and the communication cost is reduced by 500 times.

1 Introduction

Visual object recognition is an important machine learning application, deployed
in numerous real-life settings. Machine Learning as a Service (MLaaS) is becom-
ing increasingly popular in the era of cloud computing, data mining, and knowl-
edge extraction. Object recognition is such a machine learning task that can be
provided as a cloud service. However, in most application scenarios, straightfor-
ward outsourcing of the object recognition task is not possible due to privacy
concerns. Generally, the image holder who wishes to perform the image classifi-
cation process, requires their input images to remain confidential. On the other
hand, the classification algorithm provider wishes to commercially exploit their
algorithm; hence, requires the algorithm parameters to remain confidential.

We consider an approach, which facilitates the outsourcing of the image clas-
sification task to an external classification algorithm provider, without requiring

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 473–492, 2019.
https://doi.org/10.1007/978-3-030-12612-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_24

474 E. Makri et al.

the establishment of trust, contractually or otherwise, between the involved par-
ties. We focus on the evaluation task (i.e., labeling a new unclassified image), and
not the learning task. Our proposal is based on secure Multiparty Computation
(MPC), and allows for private image classification without revealing anything
about the private images of the image holder, nor about the parameters of the
classification algorithm. Unlike previous work [4,5,20], we can fully outsource
the task at hand, in such a way that the classification algorithm provider does
not need to be the same entity as the cloud computing provider. Although any
of the involved parties (i.e., the classification algorithm provider, and the image
holder) can play the role of one of the MPC servers, this is not a requirement
for guaranteeing the security of our proposal. MPC allows distribution of trust
to two or more parties. As long as the image holder (resp. the classification algo-
rithm provider) trusts at least one of the MPC servers, their input images (resp.
their classification algorithm parameters) remain secret.

MPC allows a set of mutually distrusting parties to jointly compute a func-
tion on their inputs, without revealing anything about these inputs (other than
what can be inferred from the function output itself). Currently, MPC allows
one to compute relatively simple functions on private data; arbitrarily complex
functions can be supported, but with an often prohibitive computational cost.
EPIC, our privacy-preserving image classification solution, combines the tech-
niques of transfer learning feature extraction, support vector machine (SVM)
classification, and MPC. In this work we use recently developed techniques for
generic image classification (within the ImageNet competition) such as trans-
fer learning to extract powerful generic features. Transfer learning using raw
Convolutional Neural Network (CNN) features has been studied extensively by
Azizpour et al. [3], and Yosinski et al. [55]. Then, the computation done in the
MPC setting is minimized to only evaluate a simple function with secret shared
inputs.

We focus on classification via SVM, as opposed to using more sophisticated
techniques, such as Neural Networks (NNs), in the privacy-preserving domain to
minimize the computational cost. While the field of private image classifica-
tion is shifting towards NN-based approaches [25,33,43], we show that it is not
necessary to use private NNs, as we can achieve classification with better accu-
racy by using generic NNs to improve the feature extraction techniques used.
Although CNNs are the state-of-the-art for image classification [23], we con-
firm that SVMs can achieve high accuracy, as long as they are provided with
good quality features. Transforming a NN to a privacy-preserving one results in
inefficient solutions (e.g., 570 s for one image classification by CryptoNets [20]).

A schematic representation of the application scenario treated by EPIC is
given in Fig. 1. Using additive secret sharing techniques both the classification
algorithm provider, and the image holder share their inputs to the n ≥ 2 MPC
servers. Note that no information about the actual secret inputs can be gained
by the individual shares alone. Thus, each MPC server learns nothing about
the inputs of the two parties. The cluster of the MPC servers comprise the
cloud computing provider, which together execute the MPC protocol to produce

EPIC: Efficient Private Image Classification 475

the final classification result. The MPC servers communicate via authenticated
channels to accomplish what the protocol prescribes. The protocol completes
its execution by having all MPC servers sending their share of the final classi-
fication result to the designated party, who can then reconstruct the result by
combining the received shares. This party can be the image holder, or an external
analyst, assigned to examine the classification results, without getting access to
the underlying private images. The involved parties (image holder, classification
algorithm provider, and –potentially– analyst), may play the role of the MPC
servers themselves, avoiding completely the outsourcing to the cloud provider(s).

Fig. 1. A schematic representation of the private image classification scenario.

A key aspect of our work is how the data is processed before the MPC engine
is used to perform the classification. The SVM classification is performed on so-
called feature vectors, and not directly on the images. The way one determines
these feature vectors not only affects accuracy, but it also has an impact on
security. As shown in Fig. 1 the image holder performs the feature extraction
on the input image before it is passed to the secure gateway. Thus this feature
extraction must not be specific to the algorithm classification provider; otherwise
the extracted features could reveal information about exactly what is being
classified. We apply a generic feature extraction method, which is independent
of the underlying classification task.

In particular, we employ TensorFlow [1], to extract features based on the acti-
vation of a deep CNN (specifically the Inception-v3 [47] CNN) trained on a set
of object recognition tasks, different from the target task. This method is known
as CNN-off-the-shelf in the ML literature, and it has been successfully applied
in various image recognition tasks [15,42]. Since the CNN is generic, it can be
released in the clear, and hence become part of the image holder’s preprocess-
ing. This not only gives us a security benefit, but it also significantly improves
the accuracy of our method. There are many public CNNs available online for

476 E. Makri et al.

generic feature extraction in Caffe’s Model Zoo, which can be used with our
EPIC solution to add a privacy dimension to a typical ML problem [24]. In our
paper we selected Inception-v3 as the public CNN to extract features, because it
suits many generic image recognition tasks, and allows us to benchmark EPIC
against previous solutions on traditional datasets such as CIFAR-10.

We also present a second variant of EPIC, which aims at allowing a tradeoff
between the accuracy of the classifier’s predictions, and its performance. It does
so by deploying a kernel approximation method, on top of Inception-v3 features
for dimensionality reduction.

We implemented our solution using SPDZ [7], which was introduced by
Damg̊ard et al. [12,13]; it is based on additive secret sharing, and it is proven
secure in the active security model, in the full versions of the papers [12,13]. We
assume the reader to be familiar with MPC, but we discuss preliminaries on the
techniques used by EPIC for completeness in the full version of our paper [34].
EPIC outperforms the state-of-the-art in secure neural network inference [25],
both in terms of efficiency, and in terms of prediction accuracy. Our implemen-
tation shows that privacy-preserving image classification has become practical.
As shown in Table 1, we are the only provably secure work in the active security
model, which is a property we inherit by the chosen implementation frameworks.
A system like EPIC could find application in numerous real-life cases, such as
in purchase scenarios where visual inspection is performed, or when targeted
surveillance is required without compromising non-targets’ privacy.

Our contributions are thus four fold: (i) We enable full outsourcing of privacy-
preserving image classification to a third independent party using a simple tech-
nique yet much faster and accurate than others, which require complicated
machinery. (ii) Our solution does not leak any information about the private
images, nor the classifier, while being the first to provide active security. (iii) We
show how to deploy a data-independent feature extraction method to alleviate
the privacy-preserving computations, while increasing accuracy and efficiency.
(iv) We demonstrate the practicality of our approach, both in terms of efficiency,
and in terms of accuracy, by conducting experiments on realistic datasets.

2 Related Work

Privacy-preserving machine learning can focus either on providing a secure train-
ing phase, a secure classification phase, or both secure training and classifica-
tion phases. The first research works in the field aimed at designing a privacy-
preserving training phase. Recently, due to the advent of cloud computing, and
Machine Learning as a Service, more and more works focus on the design of a
privacy-preserving classification phase. Fewer works have attempted to address
both the training, and the classification phases in a privacy-preserving manner.

To facilitate an easy comparison of the related work, we summarize the main
features of each proposal in Table 1.

EPIC: Efficient Private Image Classification 477

• The first column of Table 1 is the reference to the corresponding paper.
• The second column indicates whether the work considers secure training (T),

secure training and classification (T + C), or only secure classification (C).
• The third column indicates the security model, under which the proposed

protocols are secure, where P stands for passive security, and A stands for
active security. N/A (not applicable) refers to differential privacy techniques,
which are designed to protect against inference about the inputs from the
outputs, and thus are orthogonal to the issue of securing the computation
which we deal with.

• The fourth column denotes the method used to preserve privacy. DP stands
for differential privacy; SP stands for selective privacy, and refers to the unique
characteristic of the work of Shokri and Shmatikov [46] allowing the users to
decide how much private information about their learned models they wish
to reveal. SHE stands for Somewhat Homomorphic Encryption, 2-PC for 2-
Party Computation, and MPC stands for Multiparty Computation (which
could include 2-PC).

• The fifth column lists the training method(s) used. N-L SVM stands for non-
linear SVM, NN for Neural Networks, LM for Linear Means, FLD for Fisher’s
Linear Discriminant, HD for hyperplane decision, LIR for linear regression,
LOR for logistic regression, and DT for decision trees.

• The sixth column lists the information that is revealed by the protocol exe-
cution. C stands for information about the classifier, and TD for information
about the training data. We note with boldface letters the information that is
intentionally revealed by the protocol execution, and we mark with an asterisk
the information that is protected by means of differential privacy techniques.
Information that can potentially, and unintentionally be leaked is noted with
normal, non-boldface letters.

• The last column indicates whether the work provides an implementation.

Training an SVM in a privacy-friendly way, has been previously considered
based on techniques of differential privacy [30,31]. Despite the little overhead
that these techniques incur, which makes them competitive from an efficiency
perspective, they do not consider the security of the actual computation during
the training or classification. Shokri and Shmatikov [46] achieve such privacy-
preserving collaborative deep learning with multiple participants, while refrain-
ing from using cryptographic techniques. Their work focuses on learning the NN,
but they also consider protecting the privacy of each individual’s NN, allowing
the participants to decide how much information to share about their models.

A lot of research has been devoted to provable privacy-preserving tech-
niques for training a classifier. Privacy-preserving data mining has been an active
research area since the seminal work of Lindell and Pinkas [32]. More recently,
Vaidya et al. [51] showed how to train a SVM classifier, in a privacy-preserving
manner, based on vertically, horizontally, and arbitrarily partitioned training
data. In follow-up work, Teo et al. [48] improved upon the efficiency of the
solution of Vaidya et al. [51], and showed that their approach scales well to
address the challenges of data mining on big data. Chase et al. [9] combine MPC
techniques with differential privacy techniques to achieve private neural net-
work learning. Their work provides provable security guarantees for the learning

478 E. Makri et al.

Table 1. Comparison of the related work.

Func. Sec. model Privacy mthd Train mthd Info leak Impl.

[30] T N/A DP N-L SVM C; TD∗ �
[31] T N/A DP N-L SVM C; TD∗ �
[46] T P SP NN C �
[51] T P MPC N-L SVM C �
[48] T P MPC; DP N-L SVM C �
[9] T P MPC; DP NN C∗ �
[21] T+C P SHE LM; FLD No �
[2] T+C P SHE Bayes; random forests No �
[29] T+C P 2-PC N-L SVM No ×
[10] T+C P 2-PC NN TD ×
[35] T+C P 2-PC NN; LIR; LOR No �
[20] C P SHE NN No �
[4] C P SHE N-L SVM C �
[8] C P SHE NN No ×
[6] C P SHE; 2-PC HD; Bayes; DT No �
[41] C P 2-PC N-L SVM No �
[5] C P 2-PC NN C ×
[36] C P 2-PC NN No �
[45] C P 2-PC NN No �
[33] C P 2-PC NN Filter size �
[43] C P 2-PC NN; SVM No �
[25] C P 2-PC NN No �
EPIC C A MPC SVM No �

phase (in the passive security model), and adds noise to the resulting network
to protect its privacy during classification.

A parallel research line aiming to address the same challenge, namely privacy-
preserving data mining, is based on homomorphic encryption (instead of MPC).
The notion of homomorphic encryption dates back to the work of Rivest et
al. [44], but only recently fully homomorphic encryption was devised [19]. This
type of homomorphic encryption allows the computation of any polynomial func-
tion on the encrypted data, and unlike MPC, it does not require communication,
as the task can be outsourced to one single party. Since the seminal work of Gen-
try [19], somewhat homomorphic encryption schemes have been proposed, allow-
ing computations of polynomial functions of a limited degree. Graepel et al. [21]
consider both machine learning training, and classification based on encrypted
data, with their solutions being secure in the passive model. Due to the selected
homomorphic encryption scheme, Graepel et al. [21] cannot treat comparisons
efficiently, which excludes SVM-based solutions. Addressing both learning, and
classification based on extremely random forests, and näıve Bayes networks,
Aslett et al. [2], also work on homomorphically encrypted data.

One of the first private SVM classifiers was proposed by Laur et al. [29], which
addresses both the training and the classification in a privacy-preserving manner.

EPIC: Efficient Private Image Classification 479

Their work combines the techniques of homomorphic encryption, secret sharing,
and circuit evaluation, into a passively secure 2-PC solution. Concurrently, and
independently Dahl [10] is working on using the same MPC framework as in our
work, to realize both the training, and the classification of CNN based privacy-
preserving algorithms. While Dahl [10] is deploying CNNs instead of SVM, he
needs to apply them in a non-black-box fashion. The protocol of Dahl [10] allows
some leakage of information during the training phase, which is not the case with
our approach. SecureML [35] also considers both training and classification in
the 2-PC setting, and the passive security model. These approaches [10,29,35]
can only treat the two-party setting, and cannot be trivially extended to allow
the classifier provider to be a different entity than the cloud provider.

Other works focus particularly on the private image classification problem,
instead of the training of the model. Gilad-Bachrach et al. [20] propose a solu-
tion applicable to the image classification problem, based on homomorphically
encrypted data. The resulting CryptoNets [20] provide an accuracy of 99% for
the MNIST dataset, and can make on average 51739 predictions per hour. How-
ever, this is only the case when the predictions are to be made simultaneously;
for a single prediction the task takes 570 s to complete.

Recent work by Barnett et al. [4] demonstrated the potential of polynomial-
kernel SVM to be used for classification in a privacy-preserving manner. Specifi-
cally, Barnett et al. apply SVM techniques for the classification –as in our work–
but on encrypted data. Although they mention the potential of an MPC app-
roach to be more efficient in this setting, they do not consider it, because direct
translation of the protocols to MPC would require interaction between the client
and the classification algorithm provider during the computations. We overcome
this limitation by extending the application scenario in a way that allows the
classification task to be fully outsourced to a cluster of independent third parties.
We implement their approach using SPDZ in a more secure way by keeping the
PCA components private (they choose to make them public). This implemen-
tation is more expensive than EPIC, due to the non-linearity of the polynomial
SVM, and it is also less accurate. Albeit inefficient and inaccurate, it provides an
initial benchmark, and it shows the gap between an FHE and an MPC approach
(see details in Sect. 4). Chabanne et al. [8] attempted to approximate commonly
used functions used in NN-based classification in a SHE-friendly manner. Despite
the high prediction accuracy that their work achieves, Chabanne et al. do not
provide any performance evaluation results.

In the 2-PC setting, Bost et al. [6], and Rahulamathavan et al. [41] focus on
the problem of private classification, where both the classifier parameters, and
the client’s input to be classified need to remain private. The latter approach
does not consider linear SVM, while both approaches only offer passive secu-
rity. Barni et al. [5] propose private NN-based data classification, also in the
2-PC setting and passive security model. They suggest three protocols, which
offer different privacy guarantees for the classifier owner, while always protect-
ing fully the client’s input. Follow up work by Orlandi et al. [36] extends the
work of Barni et al. in terms of privacy. DeepSecure [45] is another work in the

480 E. Makri et al.

2-PC setting, and the passive security model, using Garbled-Circuit techniques.
A direct performance comparison of DeepSecure versus CryptoNets [20] con-
firmed a significant efficiency improvement achieved by DeepSecure.

The recently proposed MiniONN [33] is one of the latest NN-based data clas-
sification approaches in the 2-PC setting. MiniONN demonstrates a significant
performance increase compared to CryptoNets, without loss of accuracy, as well
as better accuracy compared to SecureML [35], combined with increased perfor-
mance. However, it still operates in the 2-PC setting, which is more restricted
than the MPC setting we consider, and it only offers passive security. Under a
comparable configuration as MiniONN, and still in the passive security model,
Chameleon [43] achieves a 4.2 times performance improvement. Chameleon oper-
ates in the 2-PC setting, under the assumption that a Semi-Honest Third Party
(STP) is engaged in the offline phase to generate correlated randomness. Despite
the strong STP assumption, Chameleon does not need the third party for the
online phase, while it gets a significant performance increase from this STP.

Gazelle [25], the latest work on secure NN classification, outperforms, in
terms of efficiency, the best previous solutions in the literature [20,33,43], by
carefully selecting which parts of the CNN to carry out using a packed additively
homomorphic encryption, and which parts using garbled circuits. EPIC performs
better than Gazelle, while also being secure in the active security model. This is
because EPIC only treats linear computations in the privacy-preserving domain.

To the best of our knowledge, we are the first to provide a privacy-preserving
image classification tool combining SVM classification with transfer learning
feature extraction, offering active security. EPIC is more efficient than previous
work and achieves prediction accuracy higher than that of the related work on the
same datasets, although it does not deploy sophisticated NN-based classification
on the private inputs. Interestingly, EPIC is not limited to the 2-PC setting,
allowing a broad range of application scenarios to be treated by our solution.

3 EPIC

The proposed private image classification solution, EPIC, is based on transfer
learning techniques [49] for feature extraction. The EPIC algorithm for image
classification runs in two phases. In the first phase the image is passed through
a generic feature extraction method. Being generic, i.e., not task specific, this
method can be published in-the-clear and hence can be applied by the image
holder before passing the output securely to the MPC engine. In the second
phase the actual classification, via an SVM, is applied. This SVM is specific to
the task at hand, and hence needs to be securely passed to the MPC engine. We
thus have two problems to solve: Feature Extraction and SVM classification.

Feature Extraction. High quality features are key to the accuracy of a trained
classifier. We ensure high quality feature extraction by deploying the tech-
niques of transfer learning. Specifically, we perform feature extraction based
on Inception-v3 [47], which is a public CNN classifier trained on a set of non-
privacy-sensitive object recognition tasks. Commonly, the training for such a

EPIC: Efficient Private Image Classification 481

CNN classifier is performed on large datasets, which enhances the prediction
accuracy of the classifier. In our context, the trained classifier extracts features
based on the activation of a deep convolutional network. Our work shows that
powerful feature extraction is essential to the quality of the final classification
accuracy. In fact, we demonstrate that the high-complexity (CNN) tasks can be
learned on non-private datasets, and still use their power for feature extraction
of unrelated tasks. Eventually, this allows us to deploy only linear functions for
the actual classification, which enables accurate, and efficient privacy-preserving
solutions.

SVM Classification. Despite the increasing popularity and high effective-
ness of CNN classification techniques, the direct deployment of CNN techniques
requires large training datasets [14] that are potentially difficult to obtain when
the underlying data is privacy sensitive. In addition, black-box transformation of
CNN-based methods to their privacy-preserving equivalents will result in clas-
sifiers that are computationally prohibitive to use. Thus using a light-weight
classification method such as SVMs can be beneficial in privacy sensitive envi-
ronments, and their evaluation can be done (as we show) in a secure manner.
With the CNN features, an SVM can learn quickly from very few positive exam-
ples, which shows that they are useful to perform one-shot learning [15]. Thus,
we opted for the design of a private SVM classifier, while using the techniques
of CNN-based transfer learning in the context of feature extraction, which does
not raise privacy concerns.

To classify a new unlabeled input with our classifier trained with a linear
SVM, we need to securely evaluate the following equation:

class(h) = arg max
i

(xi · h + bi), (1)

where:

• h is the vector representing the client’s image, and has been provided to the
MPC servers in shared form;

• bi is the model intercept (aka bias), calculated by the classification algorithm
provider during the learning phase and secret shared to the MPC servers;

• xi are the n support vectors.

The support vectors xi, and the model intercepts bi are assumed to need pro-
tection, as they represent the intellectual property of the learned model.

Feature Reduction. To achieve efficient training of kernel machines (such as
SVM) aimed at non-linear problems, several approximation methods (e.g., the
method of Rahimi and Recht [39]) have been proposed. Such approaches have the
goal to alleviate the (cleartext) computational, and storage cost of the training,
incurred by the high dimensionality of the data, especially when the training
datasets are large. The approximation generally is implemented by mapping the
input data to a low-dimensional feature space, such that the inner products of
the mapped data are approximately equal to the features of a more complex
(e.g., Gaussian) kernel. This is known as the kernel trick. These features are

482 E. Makri et al.

then combined with linear techniques (e.g., linear SVM), yielding an efficient
training, but also an efficient classification, which we are able to implement in a
privacy-preserving way.

One of the first successful approaches for kernel approximations, achieving
high accuracy, was proposed by Rahimi and Recht [39], and is based on random
features, which are independent of the training data. To the contrary, Nyström
based kernel approximations [16,53], are data dependent. Although Nyström
approximations outperform randomly extracted features [54] in terms of accu-
racy, being data dependent makes them unfit for our purposes, as they require
applying non-linear functions on the private inputs. From a computational, and
storage efficiency perspective, data independent approximations are favored.

We discovered that a variant of the method proposed by Rahimi and
Recht [40] is presented in the scikit-learn package [37]. This implements an RBF
(Radial Basis Function) sampler, which allows to transform the features without
using the training data. This dimensionality reduction (like the feature extrac-
tion) is deployed both for the training, and for the data classification. Since the
feature selection is random (i.e., data independent), it can be performed on the
cleartext data, both by the classification algorithm provider, and by the client,
without raising privacy concerns.

Our second variant of EPIC (see below) supports dimensionality reduction
for free, by placing all the computational load on the cleartext. This variant
makes use of an algorithm implementing the RBF sampler listed in Fig. 2. In
our application scenario, the algorithm provider broadcasts the RBF sampler
parameters, namely the γ parameter and the feature size. The γ parameter does
not reveal any information about the dataset. Note that γ is a floating point
number, which is varied to match a cross-validation score on the training data.
The shape variable is the feature size of a point (set to 2048), which is the output
of Inception-v3.

Scikit-learn variant of Random Kitchen Sinks [37].

Init: Set γ, shape, staterandom, nc.
Fit:

1. Select weightsrandom =
√

2 γ · staterandom.N (0, 1) of size nc × shape, with
mean 0 and standard deviation 1.

2. Assign offsetrandom = staterandom.U(0, 2 · π) of size nc.
Transform(x):

1. projection = x · weightsrandom + offsetrandom.
2. projection = cos (projection).
3. projection = projection · (

√
2/

√
nc)

Fig. 2. RBF sampler.

EPIC: Efficient Private Image Classification 483

EPIC – Simple Variant: The classification algorithm provider has already
trained their SVM classifier. The parameters for the SVM classification are
shared to the MPC servers by the classification algorithm provider and are
never revealed to the image holder (nor the analyst). The image holder applies
the Inception-v3 feature extraction to their image, and takes the second to last
layer, which has a feature size of 2048, as their output. The resulting features are
then shared (via the secure gateway) to the MPC servers by the image holder,
and thus are kept secret from the classification algorithm provider. We indicate
secret shared data in square brackets (Fig. 1). The MPC engine then evaluates
the SVM securely on the features and outputs the result to the analyst (or image
holder).

Note that although EPIC does not allow any information leakage about the
private SVM parameters, recent work by Tramèr et al. [50] showed that only
black-box access to the classifiers can still serve to recover an (near-)equivalent
model. We consider this problem to be out of this work’s scope, as it can easily
be tackled by restricting the number of queries an external party is allowed to
perform on the MPC Engine. This type of attacks has not been averted by any
of the secure computation solutions in the related work.

EPIC – Complex Variant: The second variant of the EPIC protocol is summa-
rized in Fig. 3. This EPIC variant trades a small percentage of the classification
accuracy to increase efficiency. It achieves this tradeoff by deploying the kernel
approximation dimensionality reduction explained above, and in particular the
kernel approximation sub-step is also considered to be part of the feature extrac-
tion phase. Here the algorithm provider needs to publish the feature size of a
point (in our case 2048) and the parameter γ from above. At first sight it might
seem that γ reveals information about the training data, but we noticed that for
our datasets one can fix γ = 2−13 to a small value and modify the regularization
parameter C of the SVM. This parameter C will always remain private to the
algorithm provider, hence there is no information leakage. We stress again that
for both cases, the CNN feature extraction is input independent, so privacy is
maintained for the image holder and algorithm provider.

Specifically, the protocol starts with the Setup phase, where the algorithm
provider (AP) performs the kernel approximation (from Fig. 2) on its own
dataset, and broadcasts the type of CNN used, and the Init parameters neces-
sary for the feature reduction at the image holder (IH) side. Then, the algorithm
provider secret shares the SVM parameters to the MPC Engine (Eng). Secret
shared values are denoted in double square brackets. In the evaluation phase,
the image holder performs the feature extraction locally (given the previously
obtained parameters), and secret shares the new point to be classified by Eng.
Then, the MPC protocol computes Eq. 1.

4 Experiments

Experimental Setup. Our experiments are conducted on two MPC servers,
which yields the most efficient solution, but we also show how the proposed sys-

484 E. Makri et al.

EPIC Protocol with kernel approximation as feature reduction

Setup:
1. Algorithm Provider (AP) broadcasts the type of CNN used for feature

extraction.
2. AP computes γ from Fig.2 on its own training data. Then AP broadcasts

the Init variables from Fig. 2 and secret shares the support vectors xi, bi
to the MPC engine (Eng). These are stored on Eng as xi , bi .

Evaluate:
1. Image Holder (IH) uses public CNN to extract features h from its image.

Then IH maps h h locally using the RBF sampler initialized with the γ
broadcasted by AP to obtain a smaller number of features. The new point
h is further secret shared to the Eng and stored as h .

2. Eng uses xi , bi , h to compute Eq. 1 with a shared result: class(h) .

Fig. 3. Protocol for SVM classification with RBF sampler.

tem scales with more than two MPC servers. We assume a protocol-independent,
input-independent preprocessing phase that takes place prior to the protocol
execution between the MPC servers. The inputting parties do not need to be
aware, nor contribute to this phase. The preprocessing creates the randomness
needed to boost the efficiency of the online phase, and allows the inputting par-
ties (image holder and classification algorithm provider) to securely share their
inputs.

The online phase begins with the image holder, and the algorithm provider
sharing their inputs (reduced CNN features, and SVM parameters, resp.) to the
MPC servers. This is performed by executing an interactive protocol between
each inputting party and the two MPC servers, as Damg̊ard et al. [11] proposed.
Then, the actual private image classification task is executed only between the
two MPC servers, as in the Evaluate phase of Fig. 3. In the end, each MPC
server sends their resulting share to the image holder, or the analyst, who can
combine the shares and reconstruct the cleartext result, which is the desired
class label.

From Fixed Point Arithmetic to Integers. For the secure integer compari-
son sub-protocols that EPIC deploys, we selected the statistical security param-
eter to be κ = 40 bits. We stress that everywhere the computational security
parameter is set to λ = 128. We observed experimentally after running the scikit-
learn’s RBF (see Fig. 2) on top of Inception-v3 that each feature is bounded by
abs(xi) ≤ 15 where len(x) ≤ 2048.

To avoid the costly fixed point arithmetic, we scale each feature xi by a fac-
tor f , and then perform arithmetic on integers. Particularly, we compute xi · f
and then floor it to the nearest integer. We varied f , and evaluated the SVM’s
accuracy. We experimentally concluded that setting f = 28 gives sufficient accu-
racy, as if working on floating point numbers, while lowering the scale factor f
decreased the accuracy by more than 1%. If f = 28 then to compute a class

EPIC: Efficient Private Image Classification 485

score from Eq. 1 becomes: s =
∑2048

j=1 (28 · xij · 28 · hj) + 216 · bi since we need to
scale both the support vectors xi as well the features h. Using the fact that each
component is bounded by 15 then clearly s ≤ 235.

To improve the underlying MPC performance we wanted to aim for using a
64-bit prime modulus for the underlying linear secret sharing scheme. Unfortu-
nately, if our inputs are of 35 bit size then there is no room left to perform the
secure comparisons in arg max with 40 bits statistical security, as 35 + 40 > 64.
Since some of the xij ’s are negative and roughly uniform around zero then we can
conclude that s is bounded by 20 bits which was confirmed for all our datasets.
Hence, we could run everything modulo a 64-bit prime with 40-bit statistical
security, while ensuring there is no information leak from the comparisons. We
can achieve an even tighter bounding by normalizing the features using the L2-
Norm, after the RBF-Sampler invocation. In our setting this is not necessary,
since the expected bound on s is already low (20 bits). We also experimented (see
later) with higher statistical security of 100 bits by using 128-bit prime fields.

For the feature reduction we considered whether to use RBF or PCA, and
concluded that RBF is more suitable for our purposes. Despite the accuracy
loss that RBF incurs compared to PCA, it is justified to use RBF for reasons
of computational and communication efficiency. For a more detailed comparison
between RBF and PCA feature reduction in our setting, we refer the reader to
the full version of our paper [34].

Datasets. We selected three image datasets: CIFAR-10, MIT-67, and Caltech-
101, to show how EPIC scales in terms of performance, when increasing the
number of classes, and to illustrate its classification accuracy.

• CIFAR-10 [28]: This is a dataset of 60000 32 × 32 color images, out of which
50000 are training images and 10000 are test images. CIFAR-10 features 10
classes of objects, with 6000 images per class. The accuracy metric is the
quotient between correctly classified samples and total number of samples.

• MIT-67 [38]: MIT-67 has 15620 indoor images from 67 scene categories. We
used 80 images per class for training, and the rest of the pictures for testing.
The accuracy metric used here is the mAP (mean Accuracy Precision), which
consists of calculating the average over the accuracies of each class.

• Caltech-101 [17]: This dataset contains pictures of objects of 102 categories.
Each class has at least 31 images and we chose to use 30 images from each
class for the training. The accuracy metric is mAP, just as in MIT-67.

Training. We trained the SVM on the cleartext versions of the aforementioned
datasets. Feature extraction was done after resizing each image to 256 × 256. We
trained Linear SVMs based on the one-versus-all strategy (OvA) [52], because
it is more efficient to evaluate n classifiers in MPC instead of n(n − 1)/2. Note
that we chose to avoid the data augmentation trick, and adopted the training
method presented in DeCAF [15] using the original datasets, and raw features
from Inception-v3 [15]. To find parameters that yield high classification accuracy,
we have done a grid search for the γ required in the RBF, and the parameter C,
which denotes the size-margin hyperplane for the SVM decision function.

486 E. Makri et al.

We stress that EPIC achieves a sufficient classification accuracy. Given that
EPIC workings have been purposely kept simple to allow for efficient secure com-
putations, we consider the classification accuracy of EPIC comparable to that
achieved by the state-of-the-art (non-privacy-preserving) works in the ML com-
munity. The best classification accuracy in-the-clear on the CIFAR-10 dataset is
97.14% [18], while EPIC achieves 88.8%. On the MIT-67 dataset, EPIC achieves
72.2% accuracy, while the state-of-the-art in-the-clear solution [27] reports an
accuracy of 83.1%. More interestingly, on Caltech-101, the state-of-the-art accu-
racy in-the-clear is still 93.42% [22], while EPIC achieves 91.4%.

Classification Accuracy and Performance Evaluation. We executed our
experiments, simulating the two MPC servers on two identical desktop computers
equipped with Intel i7-4790 processor, at 3.60 GHz over a 1 Gbps LAN with an
average round-trip ping of 0.3 ms.

Our algorithm hand matches the one listed in Fig. 3, where the Evaluate
step from Fig. 3 was implemented using the SPDZ software [7]. The preprocessing
phase for this step was estimated using the LowGear protocol by Keller et al. [26],
which is the fastest known protocol to produce triples for multiple parties with
active security. We do not report on the timings for the feature extraction and
reduction, since they can be done in the clear, locally by the external parties,
which provide inputs to the MPC engine, and they are not privacy-sensitive.

EPIC – Simple Variant: We evaluated the computational performance, data
sent over the network, and classification accuracy of EPIC on the default 2048
length feature from the output of Inception-v3. We report these experiment
results in Table 2. Increasing the number of classes n (from 10, to 67, to 102)
has a worsening effect on the performance, as the amount of data sent over the
network scales linearly with n. The runtime of the online phase is affected less
as n increases. Going from 10 classes (CIFAR-10) with 0.005 s runtime, to 102
classes (Caltech) with 0.03 s, is an increase factor of six, whereas for all other
metrics it is roughly ten (i.e., linear in the number of classes).

In Table 3 we show that EPIC improves over Gazelle [25] in terms of every
relevant metric on CIFAR-10: accuracy with 7%, total communication by 50x,
and total runtime by 34x. This is because we start with secret shared (power-
ful) features obtained from public CNNs, whereas Gazelle [25] starts with an
encrypted image. We expect Gazelle’s timings to considerably improve, if they
adopt our approach, starting from encrypted features produced by a public CNN.

EPIC – Complex Variant: To increase the performance of EPIC even further,
we tried to minimize the feature size used, while still matching the classification
accuracy achieved by Gazelle [25] or MiniONN [33] for CIFAR-10. In the end,
we settled with nc = 128, and then performed a grid search on γ for the MIT
and Caltech datasets. Our results are reported in Table 4. Since the number
of features decreases considerably from 2048 to 128 the timings decrease as
well. For example, if we look at the online runtime compared to Gazelle [25],
our solution improves by a factor of 700x and the total communication cost
decreases by almost 500x. We do recognize that our setting is different from the

EPIC: Efficient Private Image Classification 487

one considered by Gazelle [25], but we see more the similarities, since the end
goal is the same, namely to classify secret shared (or encrypted) images.

Our results indicate that general image recognition, and user’s privacy can
go well together. In fact we showed that securing the private classification comes
nearly for free. A stronger case for why CNN features with a Linear SVM should
be considered, as a baseline benchmark is done by Razavian et al. [42].

Other Optimizations: Note that one of the major improvements came from
running the dot products on multiple threads, and doing the argmax operation
in a tree-wise manner to decrease the number of communication rounds required.

Table 2. 1Gbps LAN timings for EPIC – simple variant on different datasets with a
linear SVM.

Dataset Runtime (s) Communication (MB) Accuracy %

Offline Online Total Offline Online Total

CIFAR 0.36 0.005 0.37 24 0.33 24.33 88.8

MIT 2.43 0.02 2.45 161.94 2.24 164.18 72.2

Caltech 3.71 0.03 3.74 246.59 3.41 250 91.4

Table 3. 1 Gbps LAN timings for CIFAR-10 dataset on different frameworks. The
EPIC – simple variant is compared to the state-of-the-art private classification solu-
tions, and outperforms them in all metrics.

Framework Runtime (s) Communication (MB) Accuracy %

Offline Online Total Offline Online Total

MiniONN [33] 472 72 544 3046 6226 9272 81.61

Gazelle [25] 9.34 3.56 12.9 940 296 1236 81.61

EPIC 0.36 0.005 0.37 24 0.33 24.33 88.8

Table 4. 1 Gbps LAN timings for EPIC – complex variant on different datasets with
a RBF-SVM and a 128 feature size.

Dataset Runtime (s) Communication (MB) Accuracy %

Offline Online Total Offline Online Total

CIFAR 0.037 0.0003 0.037 2.472 0.027 2.5 81.74

MIT 0.259 0.002 0.261 17.22 0.180 17.4 64.4

Caltech 0.395 0.004 0.399 26.27 0.273 26.543 85.56

488 E. Makri et al.

Multiparty Setting. We benchmarked EPIC on different number of comput-
ers with the RBF-128 variant on the CIFAR-10 dataset and measured through-
put (operations per second) for the online and offline phases in Fig. 4. For the
two party case our protocol can carry around 2650 evaluations per second. The
throughput decreases with a growing number of parties and reaches 870 ops per
second for the five parties case. Notice that the main bottleneck when executing
these protocols is still the preprocessing phase, generating the necessary triples.

2 3 4 5

101

102

103

104

Number of parties

T
h
ro

u
g
h
p
u
t

(/
s)

Online

Offline

Fig. 4. Throughput of CIFAR-10 evaluations of secret features with RBF-128 EPIC
for multiple parties.

Similar Work. It is worth mentioning that we also implemented the method of
Barnett et al. [4] in SPDZ, after fixing some security bugs such as cleartext PCA
coefficients. They report 124 s for one binary classification thus to extrapolate
this to 10 classes takes roughly 1240 s. To translate the work for Barnett et al.
in SPDZ we used a feature extraction algorithm based on Histogram of Oriented
Gradients (HOG) and then reduced their dimension using PCA. The reduced
points were then plugged into a polynomial SVM to classify the inputs. This
methodology yielded a 6.7 s execution time of the online phase, and an expensive
preprocessing phase of 12 h for CIFAR-10. The classification accuracy was also
poor (58%). This showed that the input dependent phase in MPC is faster than
in FHE, by at least two orders of magnitude, confirming that our EPIC solution
outperforms traditional attempts at classifying images using SVMs.

The closest work to ours that tried to solve the issue of linear SVM classifi-
cation is a semi-honest 2-PC protocol due to Bost et al. [6]. In this work party A
owns the model and party B holds the features to be classified. To compare our
method with theirs in an accurate manner we took their open sourced code and
tailored it to our feature length (2048), input size (27 bits) and computational
security λ = 128 and ran it on our computers; whilst maintaining their statisti-
cal security of 100 bits. In Table 5 the method of Bost et al. [6] is benchmarked

EPIC: Efficient Private Image Classification 489

with the recent libraries (NTL-11.3.0, HElib, etc.). We then compare with EPIC
using the same parameters as the ones used in the experiments of Bost et al.,
namely statistical security κ = 100 and computational security λ = 128, where
the shares live in Fp and p ≈ 2128. For more details on the selection of the secu-
rity parameters, we refer the reader to the full version of our paper [34]. EPIC
has a faster online phase than Bost et al., by at least a factor of 20, at the cost of
a slower preprocessing phase. This shows that the main bottleneck in the entire
protocol is the triple generation, which deploys expensive cryptographic tools.

Table 5. 1 Gbps LAN timings for EPIC – simple variant and Bost et al. with different
number of classes.

Method Classes Runtime (s) Communication (MB)

Offline Online Total Offline Online Total

[6] 10 0 0.48 0.48 0 5.36 5.36

EPIC 10 1.04 0.014 1.054 46.35 0.66 47.01

[6] 102 0 1.67 1.67 0 54.85 54.85

EPIC 102 10.72 0.083 10.8 475.96 6.68 482.64

5 Conclusion and Future Work

We have introduced EPIC, a private image classification system, trained with
SVM, while having the input features extracted based on the techniques of trans-
fer learning. We showed how to achieve privacy-preserving image classification
in such a way that the task can be fully outsourced to a third, independent
party. For our solution we deployed generic MPC tools and showed how to avoid
the restricted two-party setting. Unlike all previous work, our approach provides
active security, does not leak any information about the private images, nor
about the classifier parameters, and it is orders of magnitude more efficient than
the privacy-preserving classification solutions proposed in the literature.

Due to their highly accurate predictions, especially for multiclass classifica-
tion tasks, CNNs have superseded SVM as the state-of-the-art for image classi-
fication. However, our work shows that in the privacy-preserving domain, SVM
classification can still produce accurate results, as long as it is provided with high
quality features. Thus, we chose to focus on improving the feature extraction
phase, using a transfer learning, CNN-based approach, while avoiding the exe-
cution of such complex functions in the MPC domain. An interesting advantage
of our solution is that it can be applied to the homomorphic encryption domain,
since performing the linear operations has depth 1, and the costlier operation is
computing the argmax, which requires to branch on secret comparisons.

Our experiments confirmed that there is a tradeoff between the complex-
ity, and therefore also accuracy of the classification algorithms used, versus the

490 E. Makri et al.

efficiency of the privacy-preserving variants of the proposed solutions. In the
active security model that we consider in this work, deploying CNNs in the
same manner as they are used on cleartext data, is computationally prohibitive
with current privacy-preserving methods.

Acknowledgements. This work has been supported in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contract No. N66001-15-C-4070. This work has been supported in part by the Research
Council KU Leuven grants C14/18/067 and STG/17/019.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI,
pp. 265–283 (2016)

2. Aslett, L.J., Esperança, P.M., Holmes, C.C.: Encrypted statistical machine learn-
ing: new privacy preserving methods. arXiv:1508.06845 (2015)

3. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: Factors of trans-
ferability for a generic convnet representation. IEEE Trans. Pattern Anal. Mach.
Intell. 38(9), 1790–1802 (2016)

4. Barnett, A., et al.: Image classification using non-linear support vector machines
on encrypted data. IACR Cryptology ePrint Archive: 2017/857 (2017)

5. Barni, M., Orlandi, C., Piva, A.: A privacy-preserving protocol for neural-network-
based computation. In: Multimedia and Security Workshop, pp. 146–151. ACM
(2006)

6. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: Network and Distributed System Security Symposium (2015)

7. Bristol Crypto: SPDZ-2: Multiparty computation with SPDZ, MASCOT, and
Overdrive offline phases (2018). https://github.com/bristolcrypto/SPDZ-2

8. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-
preserving classification on deep neural network. IACR Cryptology ePrint Archive:
2017/35 (2017)

9. Chase, M., Gilad-Bachrach, R., Laine, K., Lauter, K., Rindal, P.: Private collabo-
rative neural network learning. IACR Cryptology ePrint Archive: 2017/762 (2017)

10. Dahl, M.: Private image analysis with MPC: training CNNs on sensitive data using
SPDZ (2018). https://mortendahl.github.io/2017/09/19/private-image-analysis-
with-mpc/

11. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential
benchmarking based on multiparty computation. IACR Cryptology ePrint Archive:
2015/1006 (2015)

12. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

13. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

http://arxiv.org/abs/1508.06845
https://github.com/bristolcrypto/SPDZ-2
https://mortendahl.github.io/2017/09/19/private-image-analysis-with-mpc/
https://mortendahl.github.io/2017/09/19/private-image-analysis-with-mpc/
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38

EPIC: Efficient Private Image Classification 491

14. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)

15. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic
visual recognition. In: ICML, pp. 647–655 (2014)

16. Drineas, P., Mahoney, M.W.: On the Nyström method for approximating a gram
matrix for improved kernel-based learning. J. Mach. Learn. Res. 6(Dec), 2153–2175
(2005)

17. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: an incremental bayesian approach tested on 101 object cate-
gories. In: CVPR, pp. 178–178. IEEE (2004)

18. Gastaldi, X.: Shake-Shake regularization. arXiv:1705.07485 (2017)
19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–

178 (2009)
20. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:

CryptoNets: applying neural networks to encrypted data with high throughput
and accuracy. In: ICML, pp. 201–210 (2016)

21. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 1–21. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37682-5 1

22. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10578-9 23

23. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR, pp. 4700–4708. IEEE (2017)

24. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
ACMMM, pp. 675–678. ACM (2014)

25. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency
framework for secure neural network inference. In: USENIX, pp. 1651–1668 (2018)

26. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

27. Khan, F.S., van de Weijer, J., Anwer, R.M., Bagdanov, A.D., Felsberg, M., Laak-
sonen, J.: Scale coding bag of deep features for human attribute and action recog-
nition. Mach. Vis. Appl. 29(1), 55–71 (2018)

28. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, University of Toronto (2009)

29. Laur, S., Lipmaa, H., Mielikäinen, T.: Cryptographically private support vector
machines. In: SIGKDD, pp. 618–624. ACM (2006)

30. Lin, K.P., Chen, M.S.: Privacy-preserving outsourcing support vector machines
with random transformation. In: SIGKDD, pp. 363–372. ACM (2010)

31. Lin, K.P., Chen, M.S.: On the design and analysis of the privacy-preserving SVM
classifier. Knowl. Data Eng. 23(11), 1704–1717 (2011)

32. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 3

33. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
MiniONN transformations. In: SIGSAC, pp. 619–631. ACM (2017)

http://arxiv.org/abs/1705.07485
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3

492 E. Makri et al.

34. Makri, E., Rotaru, D., Smart, N.P., Vercauteren, F.: EPIC: efficient private image
classification (or: learning from the masters). IACR Cryptology ePrint Archive:
2017/1190 (2017)

35. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: S&P, pp. 19–38. IEEE (2017)

36. Orlandi, C., Piva, A., Barni, M.: Oblivious neural network computing via homo-
morphic encryption. EURASIP J. Inf. Secur. 2007(1), 1–11 (2007)

37. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

38. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: CVPR, pp. 413–420.
IEEE (2009)

39. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: NIPS,
pp. 1177–1184 (2008)

40. Rahimi, A., Recht, B.: Weighted sums of random kitchen sinks: replacing mini-
mization with randomization in learning. In: NIPS, pp. 1313–1320 (2009)

41. Rahulamathavan, Y., Phan, R.C.W., Veluru, S., Cumanan, K., Rajarajan, M.:
Privacy-preserving multi-class support vector machine for outsourcing the data
classification in cloud. IEEE Trans. Dependable Secure Comput. 11(5), 467–479
(2014)

42. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf:
an astounding baseline for recognition. In: CVPRW, pp. 512–519. IEEE (2014)

43. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushan-
far, F.: Chameleon: a hybrid secure computation framework for machine learning
applications. In: ASIACCS, pp. 707–721. ACM (2018)

44. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secure Comput. 4(11), 169–180 (1978)

45. Rouhani, B.D., Riazi, M.S., Koushanfar, F.: DeepSecure: scalable provably-secure
deep learning. In: ACM/ESDA/DAC, pp. 1–6. IEEE (2018)

46. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: SIGSAC, pp.
1310–1321. ACM (2015)

47. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: CVPR, pp. 2818–2826. IEEE (2016)

48. Teo, S.G., Han, S., Lee, V.C.: Privacy preserving support vector machine using
non-linear kernels on Hadoop Mahout. In: CSE, pp. 941–948. IEEE (2013)

49. Thrun, S.: Is learning the n-th thing any easier than learning the first? In: NIPS,
pp. 640–646 (1996)

50. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction APIs. In: USENIX, pp. 601–618 (2016)

51. Vaidya, J., Yu, H., Jiang, X.: Privacy-preserving SVM classification. Knowl. Inf.
Syst. 14(2), 161–178 (2008)

52. Vapnik, V.N.: Statistical Learning Theory, vol. 3. Wiley, New York (1998)
53. Williams, C.K., Seeger, M.: Using the Nyström method to speed up kernel

machines. In: NIPS, pp. 682–688 (2001)
54. Yang, T., Li, Y.F., Mahdavi, M., Jin, R., Zhou, Z.H.: Nyström method vs random

Fourier features: a theoretical and empirical comparison. In: NIPS, pp. 476–484
(2012)

55. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: NIPS, pp. 3320–3328 (2014)

Context Hiding Multi-key Linearly
Homomorphic Authenticators

Lucas Schabhüser(B), Denis Butin, and Johannes Buchmann

Technische Universität Darmstadt, Darmstadt, Germany
{lschabhueser,dbutin,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. Demanding computations are increasingly outsourced to
cloud platforms. For such outsourced computations, the efficient verifia-
bility of results is a crucial requirement. When sensitive data is involved,
the verification of a computation should preserve the privacy of the input
values: it should be context hiding. Context hiding verifiability is enabled
by existing homomorphic authenticator schemes. However, until now,
no context hiding homomorphic authenticator scheme supports multi-
ple independent clients, e.g. multiple keys. Multi-key support is neces-
sary for datasets involving input authenticated by different clients, e.g.
multiple hospitals in e-health scenarios. In this paper, we propose the
first perfectly context hiding, publicly verifiable multi-key homomorphic
authenticator scheme supporting linear functions. Our scheme is prov-
ably unforgeable in the standard model, and succinct. Verification time
depends only linearly on the number of clients, in an amortized sense.

Keywords: Delegated computation · Homomorphic authenticators ·
Context hiding

1 Introduction

Today, it is common practice to outsource time-consuming computations to the
cloud. In such a situation, it is desirable to be able to verify the outsourced
computation. The verification must be efficient, by which we mean that the
verification procedure is significantly faster than the verified computation itself.
Otherwise, the verifier could as well carry out the computation by himself, negat-
ing the advantage of outsourcing. In addition, there are scenarios in which the
verification is required to provide input privacy, i.e. the verification does not
reveal anything about the input to the computation. For instance, a cloud ser-
vice may collect health data of individuals and compute statistics on them. These
statistical evaluations are then given to third parties, such as insurance compa-
nies. While these third parties must be able to learn the statistical outcome, for
privacy reasons, they must not learn the individual health data. Furthermore,
many interesting statistics involve multiple identities; for instance, computing
on health data across datasets provided by multiple hospitals. Keeping iden-
tities separate instead of merging all data supports fine-grained authenticity.
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 493–513, 2019.
https://doi.org/10.1007/978-3-030-12612-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_25

494 L. Schabhüser et al.

Furthermore, using different keys instead of copies of a shared key avoids a sin-
gle point of failure. With multiple keys, the loss of a single key does not result
in a total security loss, in contrast with the shared key approach.

Homomorphic Authenticators. In practice, the efficient verifiability of out-
sourced computation can be realised using homomorphic authenticators. The
general idea of homomorphic authenticators is the following. Before delegat-
ing inputs to a function, the input values are authenticated. The homomorphic
property allows the server to compute an authenticator to the output of a given
function from the authenticators to the inputs to said function. In the pub-
lic key setting, homomorphic authenticators are called homomorphic signatures.
In the private key setting, they are called homomorphic MACs. Input privacy
for homomorphic authenticators has been formalized in the form of the context
hiding property.

State of the Art. Using such authenticators, there are solutions for efficient
context hiding verifiability for the case of a single client, and for the equivalent
case of multiple clients sharing a single secret key [4,8,20]. However, no context
hiding solution for multiple clients with different keys exists. Fiore et al. [12]
already presented multi-key homomorphic authenticators. However, their con-
structions are not context hiding. Hence the challenge to design efficient and
context hiding verification procedures for outsourced computing that support
multiple clients.

1.1 Contribution Overview

In this paper, we present the first publicly verifiable homomorphic authentica-
tor scheme providing efficient and context hiding verification in the setting of
multiple clients (allowing for multiple keys). We construct a multi-key linearly
homomorphic signature scheme, and thus focus on the public key setting. We
first define the context hiding property in the multi-key case. We then describe
our main contribution, a new publicly verifiable multi-key linearly homomor-
phic authenticator scheme. Our scheme allows to generate an authenticator on
the function value of a linear function from authenticators on the input values
of various identities without knowledge of the authentication key. Furthermore,
our scheme is perfectly context hiding, i.e. the authenticator to the output value
does not leak any information about the input values. Using our multi-key homo-
morphic authenticator scheme, the verification procedure for outsourced compu-
tations of linear functions can be implemented as follows. The various clients
each upload data, signed under their personal private key, to the cloud. The
cloud server computes the result of the given function over these data. It also
generates an authenticator to this result from the signatures on the inputs. The
verifier uses this authenticator to check for correctness of the computation, by
using the verification keys associated to the clients providing input to the com-
putation. Regarding performance, verification time depends only on the number
of identities involved (in an amortized sense).

Context Hiding Multi-key Linearly Homomorphic Authenticators 495

Context Hiding Security for Multiple Clients. On a high level, we first
define the context hiding property in the multi-key setting. Intuitively, this prop-
erty provides some measure of input privacy, i.e. an authenticator to the output
of a computation does not leak information about the input to the computation.
In the multi-key setting, the question who exactly is meant to be prevented from
learning about the input values becomes relevant. In particular, we differentiate
between an external adversary—one that has not corrupted any of the identities
involved in a computation—and an internal adversary, who has this additional
knowledge. Thus we capture the two slightly different notions of keeping the
input values private with respect to some outside party (externally context hid-
ing), versus keeping the input values confidential with respect to an identity that
also provided inputs to the computation (internally context hiding).

Our Construction. Then, we provide a concrete instantiation of a publicly
verifiable multi-key linearly homomorphic authenticator scheme, i.e. a homo-
morphic signature scheme with these properties. Our authenticator size is O(k),
where k is the number of identities involved in the computation, thus achieving
succinctness. A homomorphically derived authenticator consists of both compo-
nents associated to an identity id and global elements. In order to prevent the
elements associated to id from leaking information about the inputs provided by
id, the authenticators are randomized, and the global elements are used to deal
with the randomization in order to preserve the homomorphic property. Our
verification procedure naturally splits into two parts, only one of which involves
the actual outcome of the computation. The other part only depends on the
public verification key vk and the function to be evaluated, and can thus be pre-
computed. This allows for amortized efficient verification, i.e. after an expensive
function-dependent one-time precomputation, all subsequent verifications occur
in constant time.

Proving Unforgeability. A significant part of this paper is the security reduc-
tion used to prove our scheme’s unforgeability. In Sect. 4, we present a series
of games, followed by several lemmata considering the difference between the
games. Most games only differ if a forgery of a specific type is produced by the
adversary, i.e. a special case of a forgery, where one or several of the components
are correct. We bound the probability of these events and can show that such
forgeries imply solving the Discrete Logarithm, the Decisional Diffie–Hellman
and the Flexible Diffie–Hellman Inversion problem (introduced by Catalano,
Fiore and Nizzardo at CRYPTO 2015 [8]), respectively. Our security reduction is
performed in the standard model. Our scheme does not use Fiore et al.’s lattice-
based construction [12] and thus features a different structure. Consequently,
our proof strategy is also novel. As is common in homomorphic authenticator
schemes, we use identifiers or labels. They uniquely identify the position of an
input in a dataset. There are elements in the public verification key associated
to these labels. When simulating (some of) these security games, the simulator
does not have access to the secret signing key and thus cannot run the algorithm

496 L. Schabhüser et al.

Auth. By embedding a trapdoor into the elements associated to labels in the
verification key the simulator can perfectly simulate authenticators when pre-
sented with a Flexible Diffie–Hellman Inversion instance (and thus not knowing
the secret key).

Outline. We recall relevant definitions for homomorphic authenticator schemes
in Sect. 2 and define the context hiding property in the multi-key setting. In
Sect. 3, we present our publicly verifiable multi-key homomorphic authenticator
scheme for linear functions. We then address its properties, notably correctness
and context hiding. In Sect. 4, we provide a security reduction for our scheme.
Next, in Sect. 5, we compare our contribution to existing work on homomorphic
authenticators and verifiable computation. Finally, in Sect. 6, we summarize our
results and give an outlook to future work and open problems.

2 Formalising Multi-key Homomorphic Authenticators

In this section, we provide the necessary background for homomorphic authenti-
cators and their properties. We recall the definitions for correctness and unforge-
ability, ass well as efficiency properties in the form of succinctness and efficient
verification. Then we present our generalization of the context hiding property to
the multi-key setting. Finally we state the computational assumptions on which
the security of our scheme is based.

To accurately describe both correct and legitimate operations for homomor-
phic authenticators, we use multi-labeled programs similarly to Backes, Fiore,
and Reischuk [5]. The basic idea is to append a function by several identifiers,
in our case input identifiers and dataset identifiers. Input identifiers label in
which order the input values are to be used and dataset identifiers determine
which authenticators can be homomorphically combined. The idea is that only
authenticators created under the same dataset identifier can be combined. We
now give formal definitions.

A labeled program P consists of a tuple (f, τ1, . . . , τn), where f : Mn → M is
a function with n inputs and τi ∈ T is a label for the ith input of f from some set
T . Given a set of labeled programs P1, . . . ,PN and a function g : MN → M,
they can be composed by evaluating g over the labeled programs, i.e. P∗ =
g(P1, . . . ,PN). The identity program with label τ is given by Iτ = (fid, τ),
where fid : M → M is the identity function. The program P = (f, τ1, . . . , τn)
can be expressed as the composition of n identity programs P = f(Iτ1 , . . . , Iτn

).
A multi-labeled program PΔ is a pair (P,Δ) of the labeled program P and

a dataset identifier Δ. Given a set of k multi-labeled programs with the same
dataset identifier Δ, i.e. (P1,Δ), . . . , (PN ,Δ), and a function g : MN → M,
a composed multi-labeled program P∗

Δ can be computed, consisting of the
pair (P∗,Δ), where P∗ = g(P1, . . . ,PN). Analogously to the identity pro-
gram for labeled programs, we refer to a multi-labeled identity program by
I(τ,Δ) = ((fid, τ),Δ).

Context Hiding Multi-key Linearly Homomorphic Authenticators 497

In particular, we use labeled programs to identify the different clients. Our
multi-key homomorphic authenticators allow the verification of linear functions
evaluated over data signed by different keys. Following the convention of [12],
we assume every client has an identity id in some identity space ID, and that
public keys can be linked to an identity id. This can, for instance, be achieved by
a public-key infrastructure (PKI). In order to identify which inputs (labeled by
τ) were authenticated by id, our messages are assigned with a label l ← (id, τ),
where id is a client’s identity and τ is an input identifier. Following conven-
tion, messages are grouped within datasets Δ and homomorphic evaluation
is only supported over the same dataset. [n] denotes the interval of integers
from 1 to n.

Definition 1 (Multi-key Homomorphic Authenticator ([12]). A multi-
key homomorphic authenticator scheme MKHAuth is a tuple of the following
probabilistic polynomial time (PPT) algorithms:

Setup(1λ): On input a security parameter λ, the algorithm returns a set of public
parameter pp, consisting of (at least) the description of a tag space T , an
identity space ID, a message space M, and a set of admissible functions F .
Given T and ID the label space of the scheme is defined as L = ID × T . The
public parameters pp will implicitly be inputs to all following algorithms even
if not explicitly specified.

KeyGen(pp): On input the public parameters pp, the algorithm returns a key
triple (sk, ek, vk), where sk is the secret key authentication key, ek is a public
evaluation key, and vk is a verification key that can be either private or public.

Auth(sk,Δ, l,m): On input a secret key sk, a dataset identifier Δ, a label l =
(id, τ), and a message m, the algorithm returns an authenticator σ.

Eval(f, {(σi,EKSi)}i∈[n]): On input a function f : Mn → M and a set {(σi,
EKSi)}i∈[n] of authenticators and evaluation keys, the algorithm returns an
authenticator σ.

Ver(PΔ, {vkid}id∈P ,m, σ): On input a multi-labeled program PΔ, a set of verifica-
tion key {vkid}id∈P , corresponding to the identities id involved in the program
P, a message m ∈ M, and an authenticator σ , the algorithm returns either
1(accept), or 0(reject).

If the class F of admitted functions is the set of linear functions, we call
MKHAuth a multi-key linearly homomorphic authenticator. If vk is private, we
call MKHAuth a multi-key homomorphic MAC, while for a public vk we call it a
multi-key homomorphic signature.

We now define properties relevant for the analysis of multi-key homomor-
phic authenticator schemes: authentication correctness, evaluation correctness,
succinctness, unforgeability, efficient verification and context hiding.

Correctness naturally comes in two forms. We require both authenticators
created directly with a secret signing key as well as those derived by the homo-
morphic property to verify correctly.

498 L. Schabhüser et al.

Definition 2 (Authentication Correctness). A multi-key homomorphic
authenticator scheme (Setup,KeyGen,Auth,Eval,Ver) satisfies authentication
correctness if, for any security parameter λ, any public parameters pp ←
Setup(1λ), any key triple (sk, ek, vk) ← KeyGen(pp), any label l = (id, τ) ∈ L,
any dataset identifier Δ ∈ {0, 1}∗, any message m ∈ M, and any authentica-
tor σ ← Auth(sk,Δ, l,m) we have Ver(I(l,Δ), vk,m, σ) = 1, where Il,Δ is the
multi-labeled identity program.

Definition 3 (Evaluation Correctness). A multi-key homomorphic authen-
ticator scheme (Setup,KeyGen,Auth,Eval,Ver) satisfies authentication correct-
ness if, for any security parameter λ, any public parameters pp ← Setup(1λ),

any set of key triples {(skid, ekid, vkid)}id∈ĨD, with (skid, ekid, vkid)
$← KeyGen(pp)

for all id ∈ ˜ID, for some subset ˜ID ⊂ ID, for any dataset identifier Δ ∈ {0, 1}∗,
and any set of program/message/authenticator triples {(Pi,mi, σi)}i∈[N], such
that Ver(Pi,Δ, {vkid}id∈Pi

,mi, σi) = 1 the following holds: Let m∗ =
g(m1, . . . ,mN),P∗ = g(P1, . . . ,PN), and σ∗ = Eval(g, {(σi,EKSi)}i∈[N]) where
EKSi = {ekid}id∈Pi

. Then Ver(P∗
Δ, {vkid}id∈P∗ ,m∗, σ∗) = 1 holds.

We now consider two properties impacting the practicality of homomorphic
authenticator schemes. Succinctness on a high level guarantees that bandwidth
requirements for deploying such a scheme are low. Efficient verification allows
for low computational effort on behalf of the verifier.

Definition 4 (Succinctness [12]). A multi-key homomorphic authenticator
scheme (Setup,KeyGen,Auth,Eval,Ver) is said to be succinct if the size of every
authenticator depends only logarithmically on the size of a dataset. However, we
allow authenticators to depend on the number of keys involved in the computa-
tion. More formally, let pp ← Setup(1λ), P = (f, l1, . . . , ln), with li = (idi, τi),
{(skid, ekid, vkid) ← KeyGen(pp)}id∈P , and σi ← Auth(skidi

,Δ, li,mi) for all i ∈
[n]. A multi-key homomorphic authenticator is said to be succinct if there exists a
fixed polynomial p such that |σ| = p(λ, k, log n), where σ = Eval(f, {σi, ekidi

}i∈[n])
and k = |{id ∈ P}|.

We explicitly allow the size of the authenticators to depend on the number
of identities k = |{id ∈ P}| involved in the computation.

Like Libert and Yung [19], we call a key concise if its size is independent of
the input size n.

Definition 5 (Efficient Verification [8]). A multi-key homomorphic authen-
ticator scheme for multi-labeled programs allows for efficient verification if there
exist two additional algorithms (VerPrep,EffVer) such that:

VerPrep(P, {vkid}id∈P): Given a labeled program P = (f, l1, . . . , ln), and a set of
verification keys {vkid}id∈P this algorithm generates a concise verification key
vkP . This does not depend on a dataset identifier Δ.

EffVer(vkP ,Δ,m, σ): Given a concise verification key vkP , a dataset Δ, a mes-
sage m, and an authenticator σ, it outputs 1 or 0.

Context Hiding Multi-key Linearly Homomorphic Authenticators 499

The above algorithms are required to satisfy the following two properties:

Correctness: Let {(skid, ekid, vkid)}id∈ID be a set of honestly generated keys and
(PΔ,m, σ) be a tuple such that, Ver(PΔ, {vkid}id∈P ,m, σ) = 1. Then, for every

vkP
$← VerPrep(P, {vkid}id∈P), Pr[EffVer(vkP ,Δ,m, σ) = 0] = negl(λ), where

negl(λ) denotes any function negligible in the security parameter λ.
Amortized Efficiency: Let P be a program, let m1, . . . ,mn be valid input val-

ues and let t(n) be the time required to compute P(m1, . . . ,mn) with out-

put m. Then, for any vkP
$← VerPrep(P, {vkid}id∈P), and any Δ ∈ {0, 1}∗

the time required to compute EffVer(vkP ,Δ,m, σ) is t′ = o(t(n)), where
σi ← Auth(skidi

,Δ, li,mi) for i ∈ [n], and σ ← Eval(f, {(σi,EKSi)}i∈[n]).

Here, efficiency is used in an amortized sense. There is a function-dependent
pre-processing phase, so that verification cost amortizes over multiple datasets.

For the notion of unforgeability of a multi-key homomorphic authentica-
tor scheme (Setup,KeyGen,Auth,Eval,Ver), we define the following experiment
between an adversary A and a challenger C. During the experiment, the adver-
sary A can adaptively query the challenger C for authenticators on messages
of his choice under labels of his choice. He can also make verification queries
and corrupt clients. Intuitively, the homomorphic property allows anyone (with
access to the evaluation keys) to derive new authenticators. This can be checked
by the use of the corresponding program in the verification algorithm. An adver-
sary should however not be able to derive authenticators beyond that. Preventing
forgeries on programs involving inputs of corrupted clients is impossible in many
cases (e.g. for any linear function), as knowledge of the secret key allows the cre-
ation of arbitrarily many authenticators under any multi-label (l,Δ). However,
this security definition captures that knowledge of one client’s secret key does
not allow any forgeries on a computation not involving this corrupted client.

Definition 6 (HomUF − CMAA,MKHAuth(λ)).

Setup: C runs Setup(1λ) to obtain the public parameters pp that are sent to A.
Authentication Queries: A can adaptively submit queries of the form (Δ, l,m)

where Δ is a dataset identifier, l = (id, τ) ∈ L is a label, and m ∈ M is a
message of its choice. C answers as follows:
If (Δ, l,m) is the first query for the dataset Δ, C initializes an empty list

LΔ = ∅ and proceeds as follows.
If (Δ, l,m) is the first query with identity id, C generates keys (skid, ekid, vkid)

$← KeyGen(pp) (that are implicitly assigned to identity id), gives (ekid, vkid)
to A and proceeds as follows.

If (Δ, l,m) is such that (l,m) /∈ LΔ, C computes σl ← Auth(skid,Δ, l,m)
(C has already generated keys for the identity id), returns σl to A and
updates the list LΔ ← LΔ ∪ (l,m).

If (Δ, l,m) is such that (l, ·) ∈ LΔ (which means that the adversary had
already made a query (Δ, l,m′) for the identity id), then C ignores the
query.

500 L. Schabhüser et al.

Verification Queries: A is also given access to a verification oracle. Namely
the adversary can submit a query (PΔ,m, σ) and C replies with the output of
Ver(PΔ, {vkid}id∈P ,m, σ).

Corruption Queries: The adversary A has access to a corruption oracle. At
the beginning of the experiment, the challenger C initializes an empty list
Lcorr = ∅ of corrupted identities. During the game A can adaptively query
identities id ∈ ID. If id /∈ Lcorr then C replies with the triple (skid, ekid, vkid)
(that is generated using KeyGen if not done before) and updates the list Lcorr ←
Lcorr ∪ id. If id ∈ Lcorr, then C replies with the triple (skid, ekid, vkid) assigned
to id before.

Forgery: In the end, A outputs a tuple (P∗
Δ∗ ,m∗, σ∗). The experiment outputs

1 if the tuple returned by A is a forgery as defined below (see Definition 7),
and 0 otherwise.

This describes the case of publicly verifiable multi-key homomorphic authen-
ticators. For multi-key homomorphic MACs, only the verification keys vkid
received from the corruption oracle are given to the adversary A during the
security experiment.

Definition 7 (Forgery [12]). Consider a run of HomUF − CMAA,MKHAuth(λ)
where (P∗

Δ∗ ,m∗, σ∗) is the tuple returned by the adversary in the end of the exper-
iment, with P∗ = (f∗, l∗1, . . . , l

∗
n). This is a forgery if Ver(P∗

Δ∗ , {vkid}id∈P∗ ,m∗,
σ∗) = 1, id /∈ Lcorr (i.e. no identity involved in P∗ is corrupted), and at least
one of the following properties is satisfied:

Type 1: The list LΔ∗ was not initialized during the security experiment, i.e. no
message was ever committed under the dataset identifier Δ∗.

Type 2: P∗
Δ∗ is well defined with respect to list LΔ∗ and m∗ is not the correct

output of the computation, i.e. m∗ �= f∗(m1, . . . , mn)
Type 3: P∗

Δ∗ is not well defined with respect to LΔ∗ (see Definition 8).

Definition 8 (Well Defined Program). A labeled program P = (f, l1, . . . , ln)
is well defined with respect to a list L ⊂ L×M if one of the two following cases
holds: First, there are messages m1, . . . ,mn such that (li,mi) ∈ L ∀i ∈ [n].
Second, there is an i ∈ {1, . . . , n} such that (li, ·) /∈ L and f({mj}(lj ,mj)∈L ∪
{m′

k}(lk,·)/∈L) is constant over all possible choices of m′
k ∈ M.

If f is a linear function, the labeled program P = (f, l1, . . . , ln), with
f(m1, . . . ,mn) =

∑n
i=1 fimi fulfills the second condition if and only if fk = 0

for all (lk, ·) /∈ L.

Definition 9 (Unforgeability). A multi-key homomorphic authenticator
scheme MKHAuth is unforgeable if for any PPT adversary A we have

Pr[HomUF − CMAA,MKHAuth(λ) = 1] = negl(λ).

Additionally, we will use the following statement:

Context Hiding Multi-key Linearly Homomorphic Authenticators 501

Lemma 1. Let MKHAuth = (Setup,KeyGen,Auth,Eval,Ver) be a multi-key lin-
early homomorphic authenticator scheme over a message space M ⊂ Rt for
some ring R and integer t. If MKHAuth is secure against Type 2 forgeries, then
MKHAuth is also secure against Type 3 forgeries.

Proof. This is an immediate corollary of a result by Freeman [13, Proposi-
tion 2.3].

We also consider a relaxation of the unforgeability definition in which the
adversaries ask for corruptions in a non-adaptive way. More precisely, we say
that an adversary A makes non-adaptive corruption queries if for every identity
id asked to the corruption oracle, id was not queried earlier in the game to
the authentication oracle or the verification oracle. For this class of adversaries,
corruption queries are of no help as the adversary can generate keys on its own.
We will use the following lemma:

Lemma 2 ([12, Proposition 1]). MKHAuth is unforgeable against adversaries
that do not make corruption queries if and only if MKHAuth is unforgeable
against adversaries that make non-adaptive corruption queries.

We are now ready to provide our notion of input privacy, in the form of the
context hiding property and adapting this to the multi-key setting.

Our definition for the context hiding property is inspired by Gorbunov et
al.’s definition [15] for the single-key case. However, in our case, the simulator
is explicitly given the circuit for which the authenticator is supposed to verify.
With respect to this difference, our definition is more general. We stress that
the circuit is not hidden in either of these notions. Furthermore, we differentiate
between an external adversary and an internal adversary, that corrupts some of
the various identities involved in a computation, i.e. knows their secret keys and
inputs to a computation. Such an adversary will learn more than the outcome of
the computation, since it knows some of the secret keys. It is however desirable
for any non-corrupted party to achieve context hiding privacy even against other
parties involved in the computation, as far as that is possible. We now formally
define context hiding for both kinds of adversaries.

Definition 10 (Context Hiding). A multi-key homomorphic authenticator
scheme for multi-labeled programs is externally context hiding if there exist two
additional PPT procedures σ̃ ← Hide({vkid}id∈P ,m, σ) and HideVer({vkid}id∈ID,
PΔ,m, σ̃) such that:

Correctness: For any pp ← Setup(1λ), (skid, ekid, vkid) ← KeyGen(pp) and
any tuple (PΔ,m, σ), such that Ver(PΔ, {vkid}id∈P ,m, σ) = 1, and σ̃ ←
Hide({vkid}id∈ID,m, σ), it holds that HideVer({vkid}id∈ID,PΔ,m, σ̃) = 1.

Unforgeability: The homomorphic authenticator scheme is unforgeable (Defi-
nition 9) when replacing the algorithm Ver with HideVer in the security exper-
iment.

502 L. Schabhüser et al.

Context Hiding Security: There is a simulator Sim such that, for any fixed
(worst-case) choice of {(skid, ekid, vkid) ← KeyGen(pp)}id∈P , any multi-labeled
program PΔ = (f, l1, . . . , ln,Δ), messages m1, . . . ,mn, and distinguisher D
there exists a function ε(λ) = negl(λ) such that |Pr[D(Hide({vkid}id∈P ,m, σ))
= 1] − Pr[D(Sim({skid}id∈P ,PΔ,m)) = 1]| = ε(λ), where σi ← Auth(skidi

,Δ,
li,mi), m ← f(m1, . . . ,mn), σ ← Eval(f, {(σi, EKSi)}i∈[n]),and the probabil-
ities are taken over the randomness of Auth,Hide and Sim.

If ε(λ) = negl(λ), we call the multi-key homomorphic authenticator scheme sta-
tistically externally context hiding. If ε(λ) = 0, we call it perfectly externally
context hiding.

If for the context hiding security we even have |Pr[D(I,Hide(vk,m, σ)) = 1]−
Pr[D(Sim({skid}id∈P , I,PΔ,m)) = 1]| = ε(λ), where I = ({skid}id∈ĨD, {(m(τ,id),

σ(τ,id))}id∈ĨD), ˜ID ⊂ ID is a set of corrupted identities and the rest is like before, we
call the multi-key homomorphic authenticator scheme (statistically or perfectly,
depending on ε(λ) as above) internally context hiding.

2.1 Computational Assumptions

We recall the computational assumptions on which our schemes are based.

Definition 11 (Asymmetric bilinear groups). An asymmetric bilinear
group is a tuple bgp = (p, G1, G2, GT , g1, g2, e), such that:

– G1, G2, and GT are cyclic groups of prime order p,
– g1 ∈ G1 and g2 ∈ G2 are generators for their respective groups,
– The Discrete Logarithm (DL) assumption holds in G1, G2, and GT ,
– e : G1 × G2 → GT is bilinear, i.e. e(g1a, g2

b) = e(g1, g2)ab ∀ a, b ∈ Z,
– e is non-degenerate, i.e. e(g1, g2) �= 1, and
– e is efficiently computable.

We will write gt = e(g1, g2).

Definition 12. Let G be a generator of asymmetric bilinear groups and let
bgp = (p, G1, G2, GT , g1, g2, e)

$← G(1λ). We say the Decisional Diffie–Hellman
assumption (DDH) holds in G1 if, for every PPT adversary A,

| Pr[A(bgp, gx
1 , gy

1 , gxy
1) | x, y

$← Zp] − Pr[A(bgp, gx
1 , gy

1 , gz
1) | x, y, z

$← Zp]| = negl(λ)

We also use the Flexible Diffie–Hellman Inversion hardness assumption, intro-
duced by Catalano, Fiore and Nizzardo [8]. In the extended version of their
CRYPTO2015 paper, they formally investigate the hardness of this assumption
and analyse it in the generic group model.

Definition 13 ([8]). Let G be a generator of asymmetric bilinear groups and

let bgp = (p, G1, G2, GT , g1, g2, e)
$← G(1λ). We say the Flexible Diffie–Hellman

Inversion (FDHI) assumption holds in bgp if, for every PPT adversary A,

Pr[W ∈ G1\{1G1} ∧ W ′ = W
1
z | (W,W ′) ← A(g1, g2, gz

2 , g
v
2 , g

z
v
1 , gr

1, g
r
v
1) |

z, r, v
$← Zp] = negl(λ).

Context Hiding Multi-key Linearly Homomorphic Authenticators 503

3 A Publicly Verifiable Multi-key Linearly Homomorphic
Authenticator Scheme

In this section, we present our multi-key homomorphic signature scheme, i.e.
a publicly verifiable homomorphic authenticator. It supports linear functions.
We analyse it with respect to its correctness, its succinctness and efficient ver-
ifiability. Finally, we prove that our scheme is indeed perfectly context hiding.
Unforgeability is dealt with in the next section.

3.1 Our Construction

Notation. If we have n possibly distinct messages m1, . . . ,mn, we denote by mi

the ith message. Since our messages are vectors, i.e. m ∈ Z
T
p , we write m[j] to

indicate the jth entry of message vector m for j ∈ [T]. Therefore mi[j] denotes
the jth entry of the ith message. Given a linear function f , its ith coefficient is
denoted by fi, i.e. f(m1, . . . ,mn) =

∑n
i=1 fimi. If we have n possibly distinct

authenticator components, e.g. Λ1, . . . , Λn, we denote by Λi the ith component. A
single authenticator comprises different components, corresponding to different
identities. For authenticator Λ, we denote by Λid the component for identity
id. We denote by Λid,i the component of the ith authenticator corresponding to
identity id. We use a regular signature scheme Sig = (KeyGensig,Signsig,Versig)
as a building block. (sksig, pksig) denotes a secret/public key pair for Sig. ‖
denotes concatenation.

Setup(1λ): On input a security parameter λ, this algorithm chooses the param-

eters k, n, T ∈ Z, a bilinear group bgp = (p, G1, G2, GT , g1, g2, e)
$←

G(1λ), the message space M = Z
T
p , the tag space T = [n], and the

identity space ID = [k]. Additionally it fixes a pseudorandom function
F : K × {0, 1}∗ → Zp, as well as a signature scheme Sig. It chooses
H1, . . . HT ∈ G1 uniformly at random. It outputs the public parameters
pp = (k, n, T, bgp,H1, . . . , HT , F,Sig, λ).

KeyGen(pp): On input the public parameters pp, the algorithm chooses K ∈ K
uniformly at random. It runs (sksig, pksig) ← KeyGensig(1λ). It chooses
x1, . . . , xn, y ∈ Zp uniformly at random. It sets hi = gxi

t for all i ∈ [n],
as well as Y = gy

2 . It sets sk = (K, sksig, x1, . . . xn, y), ek = ∅, vk =
(pksig, h1, . . . , hn, Y) and outputs (sk, ek, vk). Each identity performs KeyGen
individually, and hence obtains its own key tuple (skid, ekid, vkid).

Auth(sk,Δ, l,m): On input a secret key sk, a dataset identifier Δ, a label
l = (id, τ), and a message m, the algorithm computes z = FK(Δ), sets
Z = gz

2 and binds this parameter to the dataset by signing it, i.e. it com-
putes σΔ ← Signsig(sksig, Z||Δ). Then it chooses r, s ∈ Zp uniformly at
random and sets R = gr−s

1 , S = g−s
2 . It parses l = (id, τ) and com-

putes A =
(
gxl+r
1 ·

∏T
j=1 H

m[j]
j

) 1
z

and C =
(
gs
1 ·

∏T
j=1 H

m[j]
j

) 1
y

. It sets
Λ = {(id, σΔ, Z,A,C)} and outputs σ = (Λ,R, S).

504 L. Schabhüser et al.

Eval(f, {(σi,EKSi)}i∈[n]): On input an function f : Mn → M and a set
{(σi,EKSi)}i∈[n] of authenticators and evaluation keys (in our construction,
no evaluation keys are needed, so this set contains only authenticators), the
algorithm parses f = (f1, . . . fn) as a coefficient vector. It parses each σi as
(Λi, Ri, Si) and sets R =

∏n
i=1 Rfi

i , S =
∏n

i=1 Sfi

i . Set LID =
⋃n

i=1{idi}. For
each id ∈ LID it chooses a pair (σΔ,id, Zid) uniformly at random such that
a tuple (id, σΔ,id, Zid, A,C) is contained in one of the Λi. More formally, it

chooses (σΔ,id, Zid)
$← {(σ,Z) | ∃ A,C | (id, σΔ, Z,A,C) ∈

⋃n
i=1 Λi}. Then it

computes Aid =
n∏

i=1
idi=id

Afi

i , Cid =
n∏

i=1
idi=id

Cfi

idi
, and sets Λid = {(id, σΔ,id, Zid, Aid,

Cid)}. Set Λ =
⋃

id∈LID
Λid. It returns σ = (Λ,R, S).

Ver(PΔ, {vkid}id∈P ,m, σ): On input a multi-labeled program PΔ, a set of ver-
ification key {vkid}id∈P , corresponding to the identities id involved in the
program P, a message m ∈ M, and an authenticator σ , the algorithm
parses σ = (Λ,R, S). For each id such that (id, σΔ,id, Zid, Aid, Cid) ∈ Λ it takes
pksig,id from vkid and checks whether Versig(pksig,id, Zid||Δ,σΔ,id) = 1 holds,
i.e. whether there is a valid signature on (Zid||Δ). If any check fails it returns 0.
Otherwise it checks whether the following equations hold:

∏
id∈P e (Aid, Zid) =

∏n
i=1 hfi

li
·
∏

id∈P e (Cid, Yid) · e (R, g2), as well as e (g1, S) ·
∏

id∈P e (Cid, Yid) =

e
(∏T

j=1 H
m[j]
j , g2

)
. If they do, it outputs 1, otherwise it outputs 0.

Our authenticators σ consist of several components, so we have σ = (Λ,R, S),
where Λ is a list of elements, each associated to some identity id, i.e. Λ = {(id,
σΔ,id, Zid, Aid, Cid)}id∈P . The R and S components are global. Note, that the
Aid, Cid are randomized in order for the scheme to be internally context hiding
and the global components are used to preserve the homomorphic property.

3.2 Correctness and Efficiency

We now analyse our scheme with respect to its correctness and efficiency. An
obvious requirement for a homomorphic authenticator scheme is to be correct.
Due to the homomorphic property, there are two different types of correctness to
consider (see Definitions 2 and 3). The former ensures, that our scheme MKHAuth
can be used as a conventional signature scheme, by verifying it with respect to the
identity program. The latter property ensures a correct homomorphic evaluation
will also be verified as correct.

Theorem 1. The scheme MKHAuth presented in Subsect. 3.1 satisfies authen-
tication correctness (see Definition 2), if Sig is a correct signature scheme.

Proof. Take any public parameters pp ← Setup(1λ), any key triple (sk, ek, vk) ←
KeyGen(pp), any label l = (id, τ) ∈ L, any dataset identifier Δ ∈ {0, 1}∗,
and any authenticator σ ← Auth(sk,Δ, l,m). Then we have σ = (Λ,R, S)
and Λ = (id, σΔ, Z,A,C). By construction we have σΔ ← Signsig(sksig, Z||Δ)
and if Sig is a correct signature scheme then Versig(pksig,id, Zid||Δ,σΔ,id) = 1

Context Hiding Multi-key Linearly Homomorphic Authenticators 505

holds. We have by construction e (A,Z) = e

((
gxl+r
1 ·

∏T
j=1 H

m[j]
j

) 1
z

, gz
2

)

=

e
(
gxl+r−s
1 · gs

1 ·
∏T

j=1 H
m[j]
j , g2

)
= gxl+r−s

t · e

(

g
s
y

1 ·
∏T

j=1 H
1
y m[j]

j , gy
2

)

= hl ·

e (C, Y) · e (R, g2), and e (g1, S) · e (C, Y) = g−s
t · gs

t · e

(
∏T

j=1 H
1
y m[j]

j , gy
2

)

=

e
(∏T

j=1 H
m[j]
j , g2

)
, and thus Ver(Il,Δ, vk,m, σ) = 1 holds.

Theorem 2. The scheme MKHAuth presented in Subsect. 3.1 satisfies evalua-
tion correctness (see Definition 3), if Sig is a correct signature scheme.

Proof. We have P∗
Δ = g(P∗

Δ,1, . . . P∗
Δ,N). Since Sig is a correct signature scheme,

Versig(pksig,id, Zid||Δ,σΔ,id) = 1 holds for all id ∈ P∗. If Ver(Pi,Δ, {vkid}id∈Pi
,mi,

σi) = 1 holds, then in particular

∏

id∈Pi,Δ

e (Aid,i, Zid) =
n∏

k=1

h
fi,k

li,k
· e

⎛

⎝
∏

id∈Pi,Δ

Cid,i, Yid

⎞

⎠ · e (Ri, g2)

holds as well as e (g1, Si) ·
∏

id∈Pi,Δ
e (Cid,i, Yid) = e

(∏T
j=1 H

mi[j]
j , g2

)
for all

i ∈ [N]. Write g as a coefficient vector (c1, . . . cN). Without loss of generality
let {id ∈ Pi,Δ} = {id ∈ Pj,Δ} for all i, j ∈ [n]. Let fk for k ∈ [n] denote the
coefficients describing P = g(P1, . . . ,PN). Then we have fk =

∑N
i=1 cifi,k. We

have

N∏

i=1

⎛

⎝
∏

id∈Pi,Δ

e (Aid,i, Zid,i)

⎞

⎠

ci

=
N∏

i=1

⎛

⎝
n∏

k=1

h
fi,k

li,k
·

∏

id∈Pi,Δ

e (Cid,i, Yid) · e (Ri, g2)

⎞

⎠

ci

and

∏

id∈P∗
Δ

e (A∗
id, Z

∗
id) =

N∏

i=1

⎛

⎝
∏

id∈Pi,Δ

e (Aid,i, Zid,i)

⎞

⎠

ci

=
n∏

k=1

hfk

lk
·

∏

id∈P∗
Δ

e (C∗
id, Y

∗
id) · e (R∗, g2)

We also have
e (g1, S∗) ·

∏
id∈P∗ e (C∗

id, Yid) = e
(
g1,

∏N
i=1 Sgi

i

)
·
∏

id∈P∗ e
(∏N

i=1 Cgi

i,id, Yid

)

=
N∏

i=1

e

⎛

⎝
T∏

j=1

H
mi[j]
j , g2

⎞

⎠

gi

= e

⎛

⎝
T∏

j=1

H
∑N

i=1 gimi[j]
j , g2

⎞

⎠ = e

⎛

⎝
T∏

j=1

H
m∗[j]
j , g2

⎞

⎠

Thus all checks of Ver pass.

506 L. Schabhüser et al.

We now consider our scheme’s efficiency properties, first w.r.t. bandwidth, in
the form of succinctness, and then w.r.t. verification time.

A trivial solution to constructing a homomorphic signature scheme is to (con-
ventionally) sign every input, and during Eval to just concatenate all the signa-
tures along with the corresponding values. Verification then consists of checking
every input value and then redoing the computation. This naive solution is obvi-
ously undesirable in terms of bandwidth, efficiency and does not provide any
privacy guarantees.

Succinctness guarantees that a homomorphically derived signature is still
small, thus keeping bandwidth requirements low. Efficient verification ensures
that the time required to check an authenticator is low. This is achieved by
splitting Ver into two sub-algorithms, one of which can be precomputed, and the
other one EffVer can be faster than natively computing the function itself.

Theorem 3. The scheme MKHAuth in Subsect. 3.1 is succinct (Definition 4).

Proof. An authenticator consists of (at most) k + 1 elements of G1, k elements
of G2, k identities id ∈ ID, and k (conventional) signatures. None of this depends
on the input size n. Therefore MKHAuth is succinct.

Theorem 4. MKHAuth allows for efficient verification (Definition 5).

Proof. We describe the algorithms (VerPrep,EffVer):

VerPrep(P, {vkid}id∈P): On input a labeled program P = (f, l1, . . . , ln), with f
given by its coefficient vector (f1, . . . fn), the algorithm takes (Yid, pksig,id)

from vkid. For label li = (idi, τi) it takes hli from vkidi
. It computes hP ←

∏n
i=1 hfi

li
and outputs vkP ← (hP , {(Yid, pksig,id)}id∈P). This is independent

of the input size n.
EffVer(vkP ,Δ,m, σ): On input a concise verification key vkP , a dataset Δ, a

message m, and an authenticator σ, the algorithm parses σ = (Λ,R, S).
For each id ∈ P it checks whether Versig(pksig,id, Zid||Δ,σΔ,id) = 1 holds.
If not, it outputs 0. Otherwise, it checks whether the following equa-
tion holds:

∏
id∈P e (Aid, Zid) = hP ·

∏
id∈P e (Cid, Yid) · e (R, g2) as well as

e (g1, S) ·
∏

id∈P e (Cid, g
yid

2) = e
(∏T

j=1 H
m[j]
j , g2

)
. If they do, it outputs 1,

otherwise it outputs 0.

This obviously satisfies correctness. We can see that the runtime of EffVer is
O(k), and is independent of the input size n. Thus, for n � k, MKHAuth allows
for efficient verification.

3.3 Context Hiding

We now showcase our scheme’s privacy property. On a high level, we want an
authenticator to the output of a computation not to leak information about the
inputs to the computation, which we have formalized in Definition 10. Intuitively,
the outcome of a function (e.g. the average) reveals significantly less information

Context Hiding Multi-key Linearly Homomorphic Authenticators 507

than the individual inputs to the computation. In our scenario, multiple clients
upload data to a cloud server that performs the computation, and allows for
public verification of the result due to the use of homomorphic authenticators.
The context hiding property ensures that the verifier cannot use the authentica-
tors provided to him to derive additional information about the inputs, beyond
his knowledge of the output.

Theorem 5. The scheme MKHAuth in Subsect. 3.1 is perfectly internally con-
text hiding (Definition 10) and thus also externally context hiding.

Proof. First, in our case, the algorithm Hide is just the identity function. More
precisely, we have Hide({vkid}id∈ID,m, σ) = σ, for all possible verification keys
vkid, messages m and authenticators σ. Thus we have HideVer = Ver, so correct-
ness and unforgeability hold by Theorems 1, 2 and 6.

We show how to construct a simulator Sim that outputs authenticators per-
fectly indistinguishable from the ones obtained by running Eval. Consider that
for all linear functions f , we have f(m1, . . . ,mn) =

∑n
i=1 fimi =

∑
i∈I fimi +∑

j∈J fjmj , for each I,J ⊂ [n], with I ∪ J = [n] and I ∩ J = ∅.
S can simulate the corrupted parties perfectly. By the identity shown

before, we can in our case therefore reduce internal context hiding security to
external context hiding security. We now show external context hiding secu-
rity. Parse the simulator’s input as skid = (Kid,K

′
id, sksig,id, x1,id, . . . xn,id, y),

m = (m[1], . . . ,m[T]), and PΔ = (f, l1, . . . , ln,Δ). With this information, the
simulator computes:

Z ′
id = gzid

2 where zid ← FKid
(Δ) σ′

Δ,id
$← Signsig(sksig,id, Zid||Δ)

r′
id

$← Zp r′ =
∑

l=(τ,id)∈P flr
′
id

s′
id

$← Zp s′ =
∑

id∈P yidsid

A′
id =

(

g
∑

(id,τ)∈P xlfl+r′

1 ·
∏T

j=1 H
ym[j]
j

) 1
zid

id∗ $← ID

C ′
id = g

−s′
id

1 for all id �= id∗ C ′
id∗ = g

−s′
id∗

1 ·
∏T

j=1
1
y H

m[j]
j

R′ = g
r′+

∑
id∈P yids

′
id

1 S′ = g−s′
2

Λ′ =
⋃

id∈P{(A′
id, Z

′
id, σ

′
Δ,id)}

The simulator outputs the authenticator σ′ = (Λ′, R′, S′). We now show that
this simulator allows for perfectly context hiding security. We fix arbitrary key
pairs (skid, pkid), a multi-labeled program PΔ, and messages m1, . . . ,mn ∈ Z

T
p .

Let σ ← (f, {(σi,EKSi)}i∈[n]) and parse it as σ = (Λ,R, S). We look at each
component of the authenticator. We have Zid = FKid

(Δ) by definition and there-
fore also Zid = Z ′

id. Yid and Y ′
id are both taken from the public keys and therefore

identical. In particular we also have zid = z′
id . We have σΔid

= Signsig(sk
′, Zid||Δ)

by definition and σ′
Δid

= Signsig(sk
′, Z ′

id||Δ). Since Zid = Z ′
id, for all id ∈ P, σΔid

and σ′
Δid

are perfectly indistinguishable to any distinguisher D. Thus these com-
ponents are perfectly indistinguishable to any distinguisher D.

508 L. Schabhüser et al.

A′
id is a uniformly random (u.r.) element of G1, as r′

id is also u.r. Aid is a u.r.
element of G1, as rid =

∑
id∈l flrl is u.r. as a linear combination of u.r. elements.

C ′
id is a u.r. element of G1, as s′

id is also u.r. Cid is a u.r. element of G1, as sid =∑
id∈l flysl is u.r. as a linear combination of u.r. elements. R′is a u.r. element of

G1, as all r′
id are also u.r. R is a u.r. element of G1, as r =

∑
id∈P rid is u.r. as a

linear combination of u.r. elements. The A′
id, C

′
id as well as R′ uniquely define S′

and Aid, Cid as well as R uniquely define S. Thus, all simulated elements have
the identical distribution as the ones from the real evaluation. They correspond
to a different choice of randomness during Auth. This holds even if all secret
keys skid are known to D. Hence σ and σ′ are perfectly indistinguishable for any
(computationally unbounded) distinguisher D.

4 Unforgeability

In delegated computations, the question of the correctness of the result arises.
Homomorphic authenticators aim at making these computations verifiable, thus
allowing for the detection of incorrect results. It should therefore be infeasible
for any adversary to produce a authenticator that passes the Ver algorithm, that
has not been produced by honestly performing the Eval algorithm. This has been
formalized in Definition 6. In this section, we present the security reduction for
the unforgeability of our scheme. To this end, we first describe a sequence of
games, allowing us to argue about different variants of forgeries. In the extended
version of this work [21], we prove a series of lemmata where we bound the
difference between those games.

Since our authenticators have multiple components, we consider specific types
of forgeries in the various games, i.e. ones where one or multiple components are
indeed correct, and in our final security reduction we consider the generic case.
When simulating the final two games, the issue of providing signatures, without
knowing the correct secret key arises. Here we use the elements hid,i taken from
the public keys associated to the label l = (id, i) and embed an information
theoretically hidden trapdoor into them, which we use to answer signing queries.

Theorem 6. The scheme MKHAuth is unforgeable (see Definition 9), if Sig is an
unforgeable (EU-CMA [14]) signature scheme, F is a pseudorandom function and
G is a bilinear group generator, such that the DL assumption, the DDH assump-
tion (see Definition 12) and the FDHI assumption (see Definition 13) hold.

Proof. We can deal with corruptions via our generic result of Lemma 2. It is
thus sufficient to prove the security against adversaries that make no corrup-
tions. Recall that any corrupted party provides their key tuples (skid, ekid, vkid)
to the adversary, giving the adversary additional knowledge in order for him to
adaptively query messages. To prove Theorem6, we define a series of games with
the adversary A and we show that the adversary A wins, i.e. any game outputs
1, only with negligible probability. Following the notation of [8], we write Gi(A)
to denote that a run of game i with adversary A returns 1. We use flag values
badi, initially set to false. If, at the end of each game, any of these previously

Context Hiding Multi-key Linearly Homomorphic Authenticators 509

defined flags is set to true, the game simply outputs 0. Let Badi denote the event
that badi is set to true during game i. Using Lemma 1, any adversary who out-
puts a Type 3 forgery (see Definition 7) can be converted into one that outputs
a Type 2 forgery. Hence we only have to deal with Type 1 and Type 2 forgeries.

Game 1 is the security experiment HomUF − CMAA,MKHAuth(λ) between an
adversary A and a challenger C, where A makes no corruption queries and
only outputs Type 1 or Type 2 forgeries.

Game 2 is defined as Game 1, except for the following change: Whenever A
returns a forgery (P∗

Δ∗ ,m∗, σ∗) and the list LΔ∗ has not been initialized by
the challenger during the queries, then Game 2 sets bad2 = true. It is worth
noticing that after this change the game never outputs 1 if A returns a Type
1 forgery. In the extended version we show that Bad2 cannot occur if Sig is
unforgeable.

Game 3 is defined as Game 2, except that the keyed pseudorandom function FK

is replaced by a random function R : {0, 1}∗ → Zp. In the extended version,
we show that these two games are indistinguishable if F is pseudorandom.

Game 4 is defined as Game 3, except for the following changes. It computes
m̂ = f∗(m1, . . . ,mn), as well as σ̂ = Eval(f∗, {(σi,EKSi)}i∈[n]), i.e. it runs an
honest computation over the queried messages and generated authenticators
in dataset Δ∗. The challenger runs an additional check. If

∏T
j=1 H

m∗[j]
j =

∏T
j=1 H

m̂[j]
j and m̂ �= m∗ it sets bad4 = true. We clearly have |Pr[G3(A)] −

Pr[G4(A)]| ≤ Pr[Bad4]. In the extended version, we show that any adversary
A for which Bad4 occurs implies a solver for the DL problem.

Game 5 is defined as Game 4, except for the following change. The challenger
runs an additional check. If C∗ = Ĉ and m∗ �= m̂ it sets bad5 = true, where
C∗ is a component of the forged authenticator σ∗ and Ĉ is a component of
the honest execution of Eval over the queried data set, as defined in Game
4. We have |Pr[G4(A)] − Pr[G5(A)]| ≤ Pr[Bad5]. In the extended version, we
show that any adversary A for which Bad5 occurs implies a solver for the
DDH problem.

Game 6 is defined as Game 5, except for the following change. At the beginning
C chooses μ ∈ [Q] uniformly at random, with Q = poly(λ) is the number of
queries made by A during the game. Let Δ1, . . . ,ΔQ be all the datasets
queried by A. Then, if in the forgery Δ∗ �= Δμ, set bad6 = true. In the
extended version, we show that Pr[G5(A)] = Q · Pr[G6(A)].

Game 7 is defined as Game 6, except for the following change. The chal-
lenger runs an additional check. If Ver(P∗

Δ∗ , {vkid}id∈P∗ ,m∗, σ∗) = 1 as well

as m̂ �= m∗ and
∏

id∈P∗ e
(
Âid, Z

∗
id

)
=

∏
id∈P∗ e (A∗

id, Z
∗
id), where Âid, A

∗
id are

the components taken from σ̂ and σ∗ respectively, then C sets bad7 = true.
We have |Pr[G6(A)] − Pr[G7(A)]| ≤ Pr[Bad7]. In the extended version, we
show that any adversary A for which Bad7 occurs implies a solver for the
FDHI problem.

510 L. Schabhüser et al.

Finally, in the extended version we show that any adversary A that wins Game 7
implies a solver for the FDHI problem. This proves Theorem 6 and we have
Pr[G(A)] ≤ AdvUF−CMA

Sig,F (λ) + AdvPRF
F,D (λ) + (1 − 1

p) · AdvDL
S (λ) + AdvDDH

S (λ) +
2QAdvFDHI

S (λ).

5 Related Work

We review related work on homomorphic authenticators and verifiable compu-
tation, considering multi-key support separately for both scheme categories.

Homomorphic Authenticators. Homomorphic authenticators have received sub-
stantial attention in previous work, focusing either on the public key setting, in
the form of homomorphic signatures or on the private key setting, in the form
of homomorphic MACs. The notion of homomorphic signatures was originally
proposed by Johnson et al. [17]. The first published schemes were homomorphic
only for linear functions (e.g. [2–4,6–8,20]), and found important applications
in network coding and proofs of retrievability. Schemes supporting functions of
higher degree also exist (e.g. [5,9]). The work by Catalano et al. [9] contains the
first mechanism to verify signatures faster than the running time of the verified
function. Gorbunov et al. [15] have proposed the first homomorphic signature
scheme that can evaluate arbitrary boolean circuits of bounded polynomial depth
over signed data. However, none of the above schemes support multiple keys.

Multi-key Homomorphic Authenticators. Works considering multi-key homomor-
phic authenticators are more directly comparable to our scheme. Agrawal et al.
[1] considered a notion of multi source signatures for network coding, and pro-
posed a solution for linear functions. Network coding signatures are one appli-
cation of homomorphic signatures, where signed data is combined to produce
new signed data. Their solution allows for the usage of different keys in com-
bining signatures, but differ slightly in their syntax and homomorphic property,
as formalized in our definition of evaluation correctness. Unlike this work, our
scheme achieves efficient verification and is perfectly context hiding. Fiore et al.
[12] have even constructed multi-key homomorphic authenticators for boolean
circuits of bounded depth. While our scheme only supports linear functions, it
allows the authentication of field elements, while in the case of [12] each sin-
gle bit is signed individually. Thus our authenticators are significantly smaller.
Both their and our solution achieve fast amortized verification, independently
of function complexity. Their solution, however, is not context hiding. Lai et
al. [18] proposed a generic constructions of multi-key homomorphic authenti-
cators from zk-SNARGs. So far, zk-SNARGs are only known to exist under
non-falsifiable assumptions. Their constructions only allows for an a priori set
bound of applications of Eval on authenticators that have been produced by Eval.
Our construction has no such bound.

Context Hiding Multi-key Linearly Homomorphic Authenticators 511

Verifiable Computation. Verifiable computation also aims at detecting incorrect
results in delegated computations. In this setting, a client wants to delegate the
computation of a function f on input x to an untrusted server. If the server
outputs y, the client’s goal is to verify that indeed y = f(x) at a faster runtime
than an evaluation of f . For a detailed overview of this line of research, we refer
to Demirel et al. [11]. Using homomorphic authenticators, clients can authenti-
cate various (small) pieces of data independently and without storing previously
outsourced data, thus allowing for incremental updates of data. In contrast, for
other verifiable computation schemes, it is necessary to encode the entire input
data before delegation and often such encoding can be used in a single compu-
tation only. Another advantage of homomorphic authenticators is their natural
composition property. The outputs of some computations on authenticated data
are already authenticated, and can be input to further computations.

Multi-client Verifiable Computation. Verifiable computation has also been con-
sidered in the multi-key setting [10,16]. Here the verifier is always one of the
clients providing inputs to the functions, whereas our construction is publicly
verifiable. Existing multi-client verifiable computation schemes also require a
message from the verifier to the server, where it has to provide an encoding
of the function f , which is not necessary for our homomorphic authenticators.
Furthermore, the communication between the server and the verifier is at least
linear in the total number of inputs of f , whereas in the case of succinct multi-
key homomorphic authenticators the communication between server and verifier
is proportional only to the number of clients. Finally, in multi-client verifiable
computation, an encoding of one input can only be used in a single computation.
Any input to be used in multiple computations has to be uploaded for each com-
putation. In contrast, multi-key homomorphic authenticators allow the one-time
authentication of every input and allow it to be used in an unbounded number
of computations.

6 Conclusions

In this paper, we investigated the problem of constructing a context hiding
publicly verifiable multi-key homomorphic authenticator scheme. We first pre-
sented two different definitions of the context hiding property in this setting,
thereby distinguishing between adversaries with inside knowledge of the compu-
tation and purely external adversaries. We present the first scheme that fulfils
both of these requirements. The context hiding property, both against internal
and external adversaries holds in an information theoretic sense, allowing not
even computationally unbounded adversary to gain additional knowledge about
inputs.

Our authenticators are succinct, i.e. their size is independent of the number of
inputs to a computation, thus keeping bandwidth low. Our verification procedure
can be split into two parts, only one of which actually requires the signature
to be verified. The other part can thus be precomputed, allowing for faster

512 L. Schabhüser et al.

verification time. Regarding performance, verification time depends only on the
number of identities involved (after a one time preprocessing), thus leading to
efficient verification. We furthermore showed how to reduce the security of our
scheme to the discrete logarithm, the decisional Diffie–Hellman and the Flexible
Diffie–Hellman Inversion problems in the standard model.

In the future, we intend to investigate the viability of context hiding multi-key
homomorphic authenticators for functions of higher degree. Another interesting
question is whether authenticators can be constructed, whose size does not even
depend on the number of identities involved.

Acknowledgments. This work has received funding from the European Union’s
Horizon 2020 research and innovation program under Grant Agreement No. 644962.

References

1. Agrawal, S., Boneh, D., Boyen, X., Freeman, D.M.: Preventing pollution attacks in
multi-source network coding. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 161–176. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 10

2. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19379-8 2

3. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 23

4. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 24

5. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: ACM CCS 2013, pp. 863–874. ACM (2013)

6. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 1

7. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1 5

8. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private:
constructions and applications to (homomorphic) signatures with shorter public
keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
254–274. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 13

https://doi.org/10.1007/978-3-642-13013-7_10
https://doi.org/10.1007/978-3-642-13013-7_10
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-36362-7_24
https://doi.org/10.1007/978-3-642-19379-8_1
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/978-3-662-48000-7_13

Context Hiding Multi-key Linearly Homomorphic Authenticators 513

9. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44371-2 21

10. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 28

11. Demirel, D., Schabhüser, L., Buchmann, J.: Privately and Publicly Verifiable Com-
puting Techniques. SCS. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-53798-6

12. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic
authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 17

13. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 41

14. Goldwasser, S., Micali, S., Yao, A.C.: Strong Signature Schemes. In: STOC 1983,
pp. 431–439. ACM (1983)

15. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: STOC 2015, pp. 469–477. ACM (2015)

16. Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable
computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 6

17. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

18. Lai, R.W.F., Tai, R.K.H., Wong, H.W.H., Chow, S.S.M.: Multi-key homomor-
phic signatures unforgeable under insider corruption. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 465–492. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 16

19. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 30

20. Schabhüser, L., Buchmann, J., Struck, P.: A linearly homomorphic signature
scheme from weaker assumptions. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol.
10655, pp. 261–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71045-7 14

21. Schabhüser, L., Butin, D., Buchmann, J.: Context hiding multi-key linearly homo-
morphic authenticators. Cryptology ePrint Archive, Report 2018/629 (2018).
https://eprint.iacr.org/2018/629

https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-642-36594-2_28
https://doi.org/10.1007/978-3-319-53798-6
https://doi.org/10.1007/978-3-319-53798-6
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/978-3-030-03329-3_16
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-319-71045-7_14
https://doi.org/10.1007/978-3-319-71045-7_14
https://eprint.iacr.org/2018/629

Revisiting the Secret Hiding Assumption
Used in Verifiable (Outsourced)

Computation

Liang Zhao(B)

College of Cybersecurity, Sichuan University, Chengdu, China
zhaoliangjapan@scu.edu.cn

Abstract. Privacy-preserving Verifiable (outsourced) Computation
(PVC) is a hopeful primitive that enables a resource-constrained client
to outsource expensive and sensitive workloads to powerful but possibly
untrusted servers and to verify the correctness of the returned results.
Specifically, the privacy property is of significance for this type of prim-
itive. Then, how to provide the privacy property has become a cen-
tral interest of many researchers. At ACM-ASIACCS 2010, Atallah and
Frikken introduced a new hardness assumption called the Secret Hiding
assumption (SH), which includes the Weak SH assumption (WSH) and
Strong SH assumption (SSH). Moreover, for the outsourcing of the mul-
tiplication of large-scale matrices, the authors constructed two concrete
PVC protocols whose privacy is based on the decisional-WSH assump-
tion and decisional-SSH assumption, respectively.

Until our work, to the best of our knowledge, there is no paper
that precisely explored the hardnesses of the WSH assumption and SSH
assumption. Thus, in this paper, we first propose an analysis method,
using the rank distribution of the matrix as the basic strategy, to evalu-
ate the hardnesses of two problems corresponding to the decisional-WSH
assumption and decisional-SSH assumption. Unfortunately, our analysis
can efficiently break the decisional-WSH assumption and decisional-SSH
assumption for a wide range of parameters with overwhelming proba-
bility. Then we employ the idea of the above analysis for breaking the
SH assumption to similarly break the privacy of Atallah and Frikken’s
PVC protocols. The results show that the adversary’s advantages are
non-negligible. Finally, we present some detailed experimental results to
support our theoretical argument.

Keywords: Privacy-preserving verifiable (outsourced) computation ·
Indistinguishability · Rank · Linear relation

1 Introduction

1.1 Background

Privacy-preserving Verifiable (outsourced) Computation (PVC), characterized
by four properties [8], i.e., correctness, security, privacy and efficiency, has
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 514–534, 2019.
https://doi.org/10.1007/978-3-030-12612-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_26&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_26

Revisiting the Secret Hiding Assumption 515

attracted many researchers from the cryptography and information security com-
munity. Various protocols [2–6,8,9,15,16] have been proposed to solve the prob-
lems related to the outsourcing of computations on general and specific functions.
In particular, for those protocols, privacy is a significant property guaranteeing
that the information hidden in the data structure related to the input and output
of the outsourced computation cannot be revealed to any unauthorised entity
who has access to the data. The analysis of privacy is based on the notion of
indistinguishability (see [7] about this notion). This implies that the input and
output data are semantically hidden to the unauthorised entity.

To construct the PVC protocols for outsourcing expensive linear algebraic
computations, at ACM-ASIACCS 2010, Atallah and Frikken [2] introduced a new
hardness assumption called the Secret Hiding assumption (SH) (see Sect. 2.1).
Specifically, the authors presented two concrete versions, i.e., the Weak SH
assumption (WSH) and the Strong SH assumption (SSH), respectively. The
WSH assumption, informally, states that it is hard to distinguish (with knowing
the prime p) between the uniform distribution over Z

n×m
p and the distribution

χ(p)n×m that outputs the matrix with λ + 1 rows [Σλ
j=1a1,j · kjr . . . Σλ

j=1am,j · kjr]
and λ rows uniformly distributed over Z

m
p , where n = 2 · λ + 1, where λ ∈ N+,

m ∈ N+ (e.g., m = 2 · λ + 1), ∀r ∈ {1, . . . , λ + 1}kr is chosen from Z
∗
p uniformly

at random, and ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , λ}ai,j is chosen from Zp uniformly at
random. The SSH assumption is similar to the WSH assumption, and it states
that the uniform distribution over Z

n×m
p is computationally indistinguishable

from the distribution χ(p)n×m that outputs the matrix with λ + e + 1 rows
[Σλ

j=1a1,j · kjr . . . Σλ
j=1am,j · kjr] and λ + e+ 1 rows uniformly distributed over Z

m
p ,

where n = 2 · λ + 2 · e + 2, where e ∈ N+ (e.g., e = λ). To validate the plausible
hardnesses of the above assumptions, Atallah and Frikken provided a proof to
show that the SH assumption (i.e., the WSH assumption) implies the existence
of one-way functions. This means that proving the SH assumption is at least as
hard as proving P �= NP [2].

Based on the SH assumption, Atallah and Frikken [2] proposed two con-
crete PVC protocols for efficiently outsourcing the multiplication of large-scale
matrices (see Sect. 2.3). Specifically, these two provably private protocols can
be seen as the ingenious extensions of Shamir’s secret sharing [14], and they
are always regarded as the typical work in the PVC community. Atallah and
Frikken first introduced a protocol based on the WSH assumption under the
two non-colluding servers model (denoted by AF-PVCtwo). In this warm-up pro-
tocol, a client needs to generate λ and 2 · λ + 1 pairs of matrices for each server,
respectively. The servers perform O(λ) matrix multiplications. Then, the authors
developed a protocol based on the SSH assumption under the single server model
(denoted by AF-PVCsingle). In this main protocol, a client must create 4 · λ + 2
pairs of matrices for the single server, and this server also perform O(λ) matrix
multiplications. Furthermore, the authors provided a method to make the proto-
col under the single server model hold the security (i.e., the property related to
the integrity verification). Of course, there exist some other researchers who are
also interested in the SH assumption. For example, Laud and Pankova [12] tried

516 L. Zhao

to construct a PVC protocol for outsourcing solutions of linear programming
problems based on the SSH assumption.

1.2 Our Contributions

Atallah and Frikken have given some theoretical consequences related to the
SH assumption, but whether the SH problem corresponding to the assumption
is a hard problem is still a worthwhile research area, particularly when the
assumption is proposed for applications in the concrete real-world scenarios.
In this paper, we present some rigorous analyses, targeting the SH problem and
the Atallah-Frikken PVC Protocols for matrix multiplication, as follows:

– We present the decisional and search variants of the SH problem in Sect. 2,
which are more standard problems when compared with the originals.

– We propose an analysis, discussed in Sect. 3, to break the decisional variant
of the SH assumption (including the WSH assumption and SSH assumption)
in a wide range of parameters. Our precise analysis focusing on evaluating
the rank of a matrix shows that the decisional-SH problem (including the
decisional-WSH problem and decisional-SSH problem) is not a hard problem,
and the given SH distribution χ(p)n×m can be distinguished from the uniform
distribution over Z

n×m
p with overwhelming probability.

– We invoke the idea of the analysis for solving the decisional-SH problem to
undermine the privacy of AF-PVCtwo and AF-PVCsingle in Sect. 3. Our analyses
running in polynomial-time take advantage of the distinctions between the
rank distributions of two types of given ciphertext matrices (see Theorems 7
and 8 for the two types of ciphertext matrices). The success probabilities
of the analyses are close to 1, which shows that neither of those protocols
is private against passive eavesdropping (i.e., a ciphertext-only attack (COA)
(see Definition 3)) and also a chosen-plaintext attack (CPA) (see Definition 4).

– We implement the simulation experiments on our theoretical analyses for
solving the decisional-SH problem and breaking the privacy of AF-PVCtwo

and AF-PVCsingle. The experimental results, presented in Sect. 4, confirm our
analyses, which demonstrates that the decisional-SH problem is not a hard
problem for a wide range of parameters, and AF-PVCtwo and AF-PVCsingle

are not semantically private PVC protocols.

1.3 Organization of the Rest of the Paper

The remainder of the paper is organized as follows. Section 2 introduces the deci-
sional and search versions of the SH assumption (including the WSH assumption
and SSH assumption), the Atallah and Frikken’s theoretical exploration on the
SH assumption, the PVC protocols AF-PVCtwo and AF-PVCsingle and the for-
mal definition of privacy. Section 3 describes the adversary’s strategy and the
detailed theoretical analyses for solving the decisional-SH problem and break-
ing the privacy of AF-PVCtwo and AF-PVCsingle. Section 4 gives some detailed

Revisiting the Secret Hiding Assumption 517

experimental verifications about our theoretical analyses in Sect. 3. The paper
is concluded in Sect. 5 with a direction for future research.

Notation: Throughout the paper, we generally do math modulo p for some
prime p. We denote by bold lower-case letters vectors over Z

n
p for n ≥ 2, and by

bold upper-case letters matrices over Z
n×m
p for n, m ≥ 2, where Zp is a finite

field of size p. We refer a set of elements from a row or a column of a matrix to as
a vector. We denote by xi,j the individual element in the ith row and jth column
of a matrix X. For any integer n, we denote the set {1, . . . ,n} by [n]. We denote
a security parameter by λ ∈ N+. We denote the transpose of x by xT, the rank of
a matrix X by rank(X), and the minimum of two values by min(·, ·). We denote
the class of polynomial functions in λ by poly(λ), and some unspecified negligible

function in λ by negl(λ). We use x $←− Ψ to denote the operation of uniformly
sampling an element x from a finite set Ψ . For some probability distribution χ,
x ← χ refers to sampling x according to χ.

2 Preliminaries

In this section, we recall the SH assumption, AF-PVCtwo and AF-PVCsingle pro-
posed by Atallah and Frikken at ACM-ASIACCS 2010 [2]. We also present the
formal definition of privacy for the PVC protocol.

2.1 The SH Assumption

We first describe the probability distribution χ(p)n×m that results from the
following steps, where n ∈ {2 ·λ+1, 2 ·λ+2 · e+2} and m = poly(λ) ≥ 2, where
e ∈ N+.

1. Choose a uniformly random matrix A $←− Z
m×λ
p , where each element ai,j

$←− Zp

for i ∈ [m] and j ∈ [λ]. Choose � = λ + 1 (resp. � = λ + e + 1) distinct values

k1, . . . , k�
$←− Z

∗
p.

2. For r ∈ [λ + 1] (resp. r ∈ [λ + e + 1]), compute dr = (A · kr)T, where
kr = [krk2r . . . kλ

r]T. Obtain � = λ + 1 (resp. � = λ + e + 1) row vectors
d1, . . . ,d�, where dr = [Σλ

j=1a1,j · kjr . . . Σλ
j=1am,j · kjr] for r ∈ [λ + 1] (resp.

r ∈ [λ + e + 1]).

3. For r ∈ [λ] (resp. r ∈ [λ + e + 1]), choose ur
$←− Z

m
p . Obtain τ = λ (resp.

τ = λ + e + 1) row vectors u1, . . . ,uτ .
4. Combine the � = λ + 1 (resp. � = λ + e + 1) row vectors d1, . . . ,d� with

the τ = λ (resp. τ = λ + e + 1) row vectors u1, . . . ,uτ to generate an n × m
matrix R. Choose a random permutation of the set [n] to permute the rows
of R. The permuted matrix is the final matrix.

Then, we present the WSH problem and SSH problem as follows:

518 L. Zhao

Definition 1 (WSH Problem). Let n = 2 · λ + 1 and m = poly(λ) ≥ 2.
The WSH distribution χ(p)n×m for a given prime p is the set of the permuted
matrices, where each matrix includes λ + 1 row vectors d1, . . . ,dλ+1 and λ row
vectors u1, . . . ,uλ.

– The decisional-WSH problem is: For some fixed prime p and given arbitrar-
ily many samples (i.e., a polynomial number of samples) from Z

n×m
p , to

computationally distinguish whether these samples are distributed uniformly
or whether they are distributed as χ(p)n×m.

– The search-WSH problem is: For some fixed prime p and given n samples from
the distribution χ(p)m (i.e., a sample from χ(p)n×m), to find k1, . . . , kλ+1

(or A).

Definition 2 (SSH Problem). Let n = 2 · λ + 2 · e+ 2 and m = poly(λ) ≥ 2,
where e ∈ N+. The SSH distribution χ(p)n×m for a given prime p is the set
of the permuted matrices, where each matrix includes λ + e + 1 row vectors
d1, . . . ,dλ+e+1 and λ + e + 1 row vectors u1, . . . ,uλ+e+1.

– The decisional-SSH problem is: The description of this problem is the same
as that of the decisional version in Definition 1.

– The search-SSH problem is: The description of this problem is the same as
that of the search version in Definition 1. The aim is to find k1, . . . , kλ+e+1

(or A).

According to Atallah and Frikken’s opinion, the WSH assumption denotes
that no polynomial-time adversary solve the decisional and search WSH prob-
lem, and the SSH assumption means that no polynomial-time adversary can solve
the decisional and search SSH problem. Specifically, the decisional-WSH assump-
tion and the decisional-SSH assumption state that the distribution χ(p)n×m is
computationally indistinguishable from the uniform distribution over Z

n×m
p for

n ∈ {2 · λ + 1, 2 · λ + 2 · e+ 2}. Then, this implies that, for any polynomial-time
adversary A, we have

AdvA,SH(p,n,m) def=
∣
∣SucA,SH(p,n,m) − 1

2

∣
∣ ≤ negl(λ) , (1)

where SH is either the WSH distribution or the SSH distribution,
SucA,SH(p,n,m) denotes the probability of A’s successful guess employing some
adversary’s strategy for the distribution of the sample X from Z

n×m
p , and

AdvA,SH(p,n,m) denotes the advantage of A’s guess for the distribution. Note
that, A’s guess for the sample X ∈ Z

n×m
p can be based on the following experi-

ment:

1. b $←− {0, 1}.

2. If b = 1 then X ← χ(p)n×m else X $←− Z
n×m
p .

3. If A(X) = b then A wins else A loses.

Revisiting the Secret Hiding Assumption 519

2.2 Atallah-Frikken Theorems Related to the SH Assumption

For the above WSH assumption and SSH assumption, Atallah and Frikken intro-
duced some associated consequences below.

Lemma 1 ([2], Lemma 1). Given a set of � special row vectors d1, . . . ,d�,
where � < λ + 1, this set of row vectors is distributed identically to a set of �
uniformly random row vectors from Z

m
p .

Theorem 1 ([2], Corollary 2). Consider a (λ + 1) × m matrix that includes
λ + 1 randomly permuted rows consisting of � special row vectors d1, . . . ,d� and
λ + 1 − � uniformly random row vectors from Z

m
p , where � < λ + 1. This type of

matrix is distributed identically to the uniformly sampled matrix from Z
(λ+1)×m
p .

Theorem 2 ([2], Theorem 6). Consider an n × m matrix sampled from
χ(p)n×m, where n = 2 · λ + 2 · e+ 2. Choose a set of λ + 1 row vectors from this
matrix uniformly at random. The probability that all the λ + 1 row vectors come
from the λ + e + 1 special row vectors d1, . . . ,dλ+e+1 is negligible in λ.

In [2], Atallah and Frikken did not prove the WSH assumption and SSH
assumption from first principles, but the authors confirmed the hardness of the
WSH problem and proposed the following theorem.

Theorem 3 ([2], Theorem 9). Assume that the decisional-WSH assumption
holds, the function that outputs an n×m matrix by invoking the generation steps
of the distribution χ(p)n×m is a one-way function, where n = 2 · λ + 1.

Actually, from Theorem 3, the difficulty for distinguishing between the uni-
form distribution over Z

n×m
p and the distribution χ(p)n×m shows the lower bound

of the difficulty for finding k1, . . . , kλ+1 (or A). This means that the hardness of
the decisional-WSH problem implies the hardness of the search-WSH problem.
We refer to [2] for more details.

2.3 Atallah-Frikken PVC Protocols for Matrix Multiplication

Since decisional version is more handy for applications, Atallah and Frikken pro-
posed two PVC protocols AF-PVCtwo and AF-PVCsingle based on the plausible
hardnesses of the decisional-WSH problem and decisional-SSH problem, respec-
tively. Specifically, these protocols consist of a tuple of Probabilistic Polynomial-
Time (PPT) algorithms PVC = (KeyGen,ProbGen,Compute,ResuGen), where
KeyGen is a private-key generation algorithm, ProbGen a problem generation
algorithm that produces some ciphertext inputs for an outsourced function,
Compute a function computation algorithm that is run by the server to pro-
duce some ciphertext outputs of the outsourced function, and ResuGen a result
generation algorithm that produces the real output. The details of these two
protocols are as follows:

The Two-Server Case: Given a security parameter λ, the matrix size v =
poly(λ), the size of the message space p = poly(λ) and the degree of a polynomial

520 L. Zhao

h = λ. For two v × v matrices M1,M2 ∈ Z
v×v
p , a quadruple of PPT algorithms

AF-PVCtwo is defined by

1. AFT.KeyGen(1λ): Choose a uniformly random matrix A $←− Z
2·v2×h
p , 2 · λ + 1

distinct values k1, . . . , k2·λ+1
$←− Z

∗
p and a random permutation θ of the set

[2 · λ + 1]. Output a fresh key sk = (A, {k1, . . . , k2·λ+1}, θ).
2. AFT.ProbGen(sk,M1,M2): Run A · k to obtain a vector d that involves

2 · v2h-degree polynomials, where k = [k k2 . . . kh]T, where k is an inde-
terminate. Use these h-degree polynomials to mask each element of M1

and M2, and generate two ciphertexts C1 and C2. Specifically, ∀i, j ∈ [v],
i′ ∈ [2 · v2] ci,j = Σh

s=1ai′,s · ks + mi,j. For r ∈ [2 · λ + 1], let k = kr and
compute C1(kr) and C2(kr). This implies that ci,j(kr) = Σh

s=1ai′,s · ksr + mi,j.

Choose 2 · λ uniformly random matrices B1, . . . ,B2·λ
$←− Z

v×v
p and create

λ pairs (B1,B2), . . . , (B2·λ−1,B2·λ). A client sends a set of matrix pairs
U(1) = {(C1(k1),C2(k1)), . . . , (C1(kλ),C2(kλ))} to the first server. More-
over, the client permutes the 2 · λ + 1 matrix pairs of the set U(2) =
{(C1(kλ+1),C2(kλ+1)), . . . , (C1(k2·λ+1), C2(k2·λ+1)), (B1, B2), . . . , (B2·λ−1,

B2·λ)} using θ, and sends the permuted set U(2) to the second server.
3. AFT.Compute(U(1),U(2)): The products of all matrix pairs in U(1) and U(2) are

computed by those two servers and put in two sets Q(1) and Q(2), respectively.
These two sets Q(1) and Q(2) are sent back to the client.

4. AFT.ResuGen(sk,Q(1),Q(2)): Based on θ, choose some matrices from Q(1) and
Q(2), which correspond to M1 and M2. Interpolate these matrices to find the
real result of M1 · M2.

The Single-Server Case: Given a security parameter λ, the matrix size v =
poly(λ), the size of the message space p = poly(λ) and the degree of a polynomial
h = λ. For two v × v matrices M1,M2 ∈ Z

v×v
p , a quadruple of PPT algorithms

AF-PVCsingle is defined as

1. AFS.KeyGen(1λ): Choose a uniformly random matrix A $←− Z
2·v2×h
p , 2 · λ + 1

distinct values k1, . . . , k2·λ+1
$←− Z

∗
p and a random permutation θ of the set

[4 · λ + 2]. Output a fresh key sk = (A, {k1, . . . , k2·λ+1}, θ).
2. AFS.ProbGen(sk,M1,M2): Run A ·k to obtain a vector d that includes 2 · v2

h-degree polynomials, where k = [k k2 . . . kh]T, where k is an indeterminate.
Use these h-degree polynomials to mask each element of M1 and M2, and
generate two ciphertexts C1 and C2. Specifically, ∀i, j ∈ [v], i′ ∈ [2 · v2]ci,j =
Σh

s=1ai′,s · ks + mi,j. For r ∈ [2 · λ + 1], let k = kr and compute C1(kr) and
C2(kr), where ∀i, j ∈ [v], i′ ∈ [2 · v2]ci,j(kr) = Σh

s=1ai′,s · ksr + mi,j. Choose

4 · λ + 2 uniformly random matrices B1, . . . ,B4·λ+2
$←− Z

v×v
p and create

2 · λ + 1 pairs (B1,B2), . . . , (B4·λ+1,B4·λ+2). A client permutes the 4 · λ + 2
matrix pairs of the set U = {(C1(k1),C2(k1)), . . . , (C1(k2·λ+1), C2(k2·λ+1)),
(B1,B2), . . . , (B4·λ+1,B4·λ+2)} using θ, and sends the permuted set U to a
server.

Revisiting the Secret Hiding Assumption 521

3. AFS.Compute(U): The products of all matrix pairs in U are computed by the
server and put in a set Q. The set Q is sent back to the client.

4. AFS.ResuGen(sk,Q): Based on θ, choose some matrices from Q, which corre-
spond to M1 and M2. Interpolate these matrices to find the real result of
M1 · M2.

For AF-PVCsingle, Atallah and Frikken introduced a method to verify the
result returned from a server who is lazy or malicious. This verification algo-
rithm is a probabilistic verification process that means successfully detecting a
cheating server with non-negligible probability. Since our work focuses on the
privacy property of the PVC protocol, we refer to [2] for more details about the
verification process.

2.4 Privacy Definition

According to [2], a property of AF-PVCtwo and AF-PVCsingle, from an informal
ciphertext indistinguishability statement, is that it is infeasible for any passive
PPT adversary A to computationally distinguish the ciphertexts over two dis-
tinct inputs. Specifically, a ciphertext is a set of matrix pairs (i.e., U(1),U(2),U).
This computational problem is linked to the notion of privacy against passive
adversary. Based on different attack models, two formal definitions are given
below.

Definition 3 (Privacy Against Passive Eavesdropping). For a PVC pro-
tocol PVC = (KeyGen,ProbGen,Compute,ResuGen), the following experiment
associated with a PPT eavesdropping adversary A is considered:

Experiment Expind-priv
coa

A [PVC, λ]:

((M1(0),M2(0)), (M1(1),M2(1))) ← A(1λ);
sk ← KeyGen(1λ);
b $←− {0, 1};
Ub ← ProbGen(sk,M1(b),M2(b));
b′ ← A((M1(0),M2(0)), (M1(1),M2(1)),Ub);
If b′ = b, output 1; else, output 0,

where Ub is called a challenge ciphertext. The computation of Ub is done by
the performer of the experiment. Then, we define the advantage of A in the
experiment above as follows:

Advind-priv
coa

A (PVC, λ) =
∣
∣
∣Pr[Expind-priv

coa

A [PVC, λ] = 1] − 1
2

∣
∣
∣ .

PVC is IND-COA private if, for any A, there exists a negligible function negl
such that

Advind-priv
coa

A (PVC, λ) ≤ negl(λ) .

Definition 4 (Privacy Against A Chosen-Plaintext Attack). For a PVC
protocol PVC = (KeyGen,ProbGen,Compute,ResuGen), the following experiment
associated with a PPT adversary A is considered:

Experiment Expind-privA [PVC, λ]:

522 L. Zhao

((M1(0),M2(0)), (M1(1),M2(1))) ← APrivProbGen(KeyGen(1λ),·,·)(1λ);
sk ← KeyGen(1λ);

b $←− {0, 1};
Ub ← ProbGen(sk,M1(b),M2(b));
b′ ← APrivProbGen(KeyGen(1λ),·,·)((M1(0),M2(0)), (M1(1),M2(1)),Ub);
If b′ = b, output 1; else, output 0,

where the oracle PrivProbGen(KeyGen(1λ),M1,M2) asks ProbGen(KeyGen(1λ),
M1,M2) to obtain a set of matrix pairs U and send it back. The output
from PrivProbGen(KeyGen(1λ),M1,M2) is probabilistic. Then, we can define the
advantage of A in the experiment above as follows:

Advind-privA (PVC, λ) =
∣
∣
∣Pr[Expind-privA [PVC, λ] = 1] − 1

2

∣
∣
∣ .

PVC is IND-CPA private if, for any A, there exists a negligible function negl such
that

Advind-privA (PVC, λ) ≤ negl(λ) .

Remark 1. From Katti et al.’s work [11], privacy against passive eavesdropping
is equivalent to IND-COA privacy. If a PVC protocol satisfies IND-CPA privacy
based on Definition 4, it must also satisfy IND-COA privacy based on Definition 3.
However, if a PVC protocol does not satisfy IND-COA privacy, it also does not
satisfy IND-CPA privacy.

In [2], Atallah and Frikken gave the detailed proofs for privacy of AF-PVCtwo

and AF-PVCsingle and the following theorems.

Theorem 4 ([2], Theorem 5). Assume that the two servers do not collude and
the decisional-WSH assumption holds. Then, AF-PVCtwo is IND-CPA private.

Theorem 5 ([2], Sect. 4.5.3). Assume that the decisional-SSH assumption
holds. Then, AF-PVCsingle is IND-CPA private.

3 Breaking the Decisional-SH Assumption

In this section, we first present a rigorous analysis for breaking the decisional-
WSH assumption and decisional-SSH assumption. Then, we show how the anal-
ysis for solving the decisional-SH problem extends naturally to AF-PVCtwo and
AF-PVCsingle, thus demonstrating that both of them are not IND-COA private.

3.1 Adversary’s Strategy

For the decisional-WSH problem (resp. decisional-SSH problem) in Definition 1
(resp. Definition 2), if a polynomial-time adversary A wants to solve this problem
with non-negligible advantage, she must employ some unexpected strategy. In
general, the adversary’s direct strategy is that she tries to find a set that involves
� special row vectors d1, . . . ,d� efficiently and evaluate the distinction between

Revisiting the Secret Hiding Assumption 523

the set of � special row vectors and a set of � uniformly random vectors over
Z
m
p . As stated in Theorem 1, any set of λ + 1 row vectors that include at least

one uniformly random vector over Z
m
p is distributed identically to the set of

λ + 1 uniformly random vectors over Z
m
p . This implies that A needs to find at

least � = λ + 1 special row vectors d1, . . . ,dλ+1. However, Atallah and Frikken
argued that A is unlikely to find d1, . . . ,dλ+1 with significant probability (e.g.,
Theorem 2)1.

Then, we take a step back and consider such a question: if we sample a
matrix from a distribution which is either the WSH distribution (resp. the SSH
distribution) or uniformly random, what type of factor about this matrix do we
need to analyze and evaluate? We believe that one of the important factors is
the rank of a matrix. This means that the adversary’s strategy can be based on
the analysis for the rank of a matrix. From this point of view, we propose an
adversary’s strategy that proceeds in two steps.

Strategy Overview: Let X be an n×m matrix that is sampled from a distribu-
tion which is either the WSH distribution (resp. the SSH distribution) χ(p)n×m

or the uniform distribution over Z
n×m
p .

1. Compute the rank of X, denoted by rank(X).
2. Check whether rank(X) is below some value ε ≤ min(n,m) or not below this

value. If rank(X) is below ε, X is sampled from χ(p)n×m; otherwise, X is
sampled from the uniform distribution over Z

n×m
p .

Why the Rank-Based Analysis Works? The idea of the proposed strategy is
remarkably simple. It focuses on a distinguishing problem about the distributions
of ranks of matrices from those two distributions. Specifically, the value ε can be
seen as a threshold rank that is the critical factor of the proposed strategy. To
motivate why computing the rank of a matrix is useful for solving the decisional-
WSH problem and decisional-SSH problem, we list the following two facts:

– Fact 1: Consider an n×m matrix X over Z
n×m
p . W.l.o.g. assume that n ≤ m.

If there are � < n linearly dependent row vectors in X, all the n row vectors
of X are linearly dependent. This implies that the rank of X must be below
n (i.e., rank(X) < n).

– Fact 2: Consider an n × m matrix X sampled from the uniform distribu-
tion over Z

n×m
p . W.l.o.g. assume that n ≤ m. With high probability, the

n row vectors of X are linearly independent, and the rank of X is n (i.e.,
rank(X) = n).

Specifically, based on Linial and Weitz’s work [13] (see Eq. (2)), we verify
the Fact 2 concretely. To implement this verification, we choose parameters
p > 4 · λ + 2, n = 2 · λ + 1 and m ≥ n, and compute the results on the prob-
abilities of the full-row-rank matrices for different parameters. The verification

1 In Sect. 5, we show that d1, . . . ,dλ+1 can be found (with overwhelming probability)
by employing our adversary’s strategy. Here, we want to show that these vectors are
unlikely to be found without using our adversary’s strategy.

524 L. Zhao

results show that the probability of a uniformly random matrix having rank n is
nearly 1, i.e., Pr[rank(X) = n] ≈ 1, which can show the rank distribution of the
uniformly random matrices over Z

n×m
p . For more details about the verification

results, we refer the reader to the full version of our paper.

Pr[rank(X) = z] =
1

p(n−z)·(m−z)
·
z−1∏

i=0

(1 − pi−n) · (1 − pi−m)
1 − pi−z

(2)

According to Fact 1 and Fact 2, if the matrices sampled from some distri-
bution over Z

n×m
p always have some linearly dependent row vectors, the ranks

of these matrices are always below the matrix sizes, and the rank distribution is
distinguished from the rank distribution of the uniformly random matrices over
Z
n×m
p with non-negligible advantage.

Then, based on the above analysis, if A employs the proposed strategy to solve
the decisional-WSH problem and decisional-SSH problem, the crux is that whether
there are λ+1 linearly dependent special row vectors d1, . . . ,dλ+1 and what is the
probability that d1, . . . ,dλ+1 are linearly dependent. Assume that d1, . . . ,dλ+1

must be linearly dependent, then the rank of a matrix sampled from χ(p)n×m can
leak information about the matrix structure. In what follows, we focus on exploring
the linear relation of the λ+1 special row vectorsd1, . . . ,dλ+1 and give the answer.

3.2 Analysis for the Decisional-SH Assumption

To show the linear relation of the λ + 1 special row vectors d1, . . . ,dλ+1, we
consider a set of the transposes of the λ + 1 vectors [(d1)T . . . (dλ+1)T] as the
product of two matrices A · K, where A is an m × λ uniformly random matrix
where the ith column is ai for i ∈ [λ], and K is a λ× (λ+1) matrix where the rth

column is kr = [kr k2r . . . kλ
r]T for r ∈ [λ + 1]. Specifically, according to Fact 2,

our following analysis focuses on the case with high probability that the vectors
a1, . . . ,aλ are linearly independent2.

Lemma 2. Consider an m × (λ + 1) matrix (A · K). Assume that m =
poly(λ) > λ, and the column vectors a1, . . . ,aλ are linearly independent. Then,
rank(A · K) < min(m, λ + 1), which implies that the special row vectors
d1, . . . ,dλ+1 are linearly dependent.

Proof. The result in this lemma is immediate, actually. For the formal proof, we
refer the reader to the full version of our paper.

According to Eq. (2), the probability that the column vectors a1, . . . ,aλ are
linearly independent (i.e., rank(A) = λ) is Πλ−1

i=0 (1−pi−m). Then, the probability
that the row vectors d1, . . . ,dλ+1 are linearly dependent is also Πλ−1

i=0 (1−pi−m).
Specifically, if p is a large prime (e.g., p > 4 ·λ+2), the row vectors d1, . . . ,dλ+1

are likely to be linearly dependent.
Then, based on the proposed adversary’s strategy and Lemma2, we show our

main analysis results for solving the decisional-WSH problem and decisional-SSH
problem.
2 In the full version of our paper, we will present an analysis that also considers the

case that the vectors a1, . . . , aλ are linearly dependent.

Revisiting the Secret Hiding Assumption 525

Lemma 3. Consider a sample X from either the WSH distribution (resp.
the SSH distribution) χ(p)n×m or the uniform distribution over Z

n×m
p , where

n ∈ {2 · λ + 1, 2 · λ + 2 · e + 2}. Assume that m > 2 ·λ (resp. m > 2 · λ + e + 1),
and p is a large prime, e.g., p > 4 · λ + 2. Let ϕ = Πλ−1

i=0 (1 − pi−m). Let η =
Pr[rank(X) = z], where the probability is for the case that X is uniformly ran-
dom, and z = min(n,m). If rank(X) < min(n,m), the probability that X is sam-
pled from χ(p)n×m satisfies Pr[X ← χ(p)n×m|rank(X) < min(n,m)] ≥ 1

1+ 1−η
ϕ

,

and if rank(X) = min(n,m), the probability that X is uniformly random satisfies

Pr[X $←− Z
n×m
p | rank(X) = min(n,m)] ≥ 1

1+ 1−ϕ
η

.

Proof. For the detailed proof, we refer the reader to the full version of our paper.

In Lemma 3, since p is a large prime, we can obtain Pr[X ← χ(p)n×m|rank(X)

< min(n,m)] ≈ 1 and Pr[X $←− Z
n×m
p |rank(X) = min(n,m)] ≈ 1.

Theorem 6. Let ϕ = Πλ−1
i=0 (1 − pi−m). Let η = Pr[rank(X) = z] denote the

probability that the rank of any n × m uniformly random matrix X is z, where
z = min(n,m), where n ∈ {2 · λ + 1, 2 · λ + 2 · e + 2}. Assume that m > 2 · λ
(resp. m > 2 · λ + e + 1), and p is a large prime, e.g., p > 4 · λ + 2. Then there
exists an adversary A running in polynomial-time t for solving the decisional-
WSH problem (resp. decisional-SSH problem) with

AdvA,SH(p,n,m) ≥ 1
2 · (ϕ + η) − 1

2 ,

where t is used to compute the rank of a matrix. Specifically, since p is a large
prime, A has advantage AdvA,SH(p,n,m) ≈ 1

2 in solving the decisional-WSH
problem (resp. decisional-SSH problem).

Proof. Let Unif(Zn×m
p) denote the uniform distribution over Z

n×m
p . The adver-

sary A has access to an oracle that is either χ(p)n×m or Unif(Zn×m
p). She calls the

oracle arbitrarily many times (i.e., a polynomial number of times) to obtain sam-
ples of the form Xi and uses the rank-based adversary’s strategy to evaluate each
sample. If rank(Xi) < min(n,m),A outputs χ(p)n×m. If rank(Xi) = min(n,m),A
returns Unif(Zn×m

p).
We first look at the probability distribution of the rank of Xi when the

oracle that A has access to is Unif(Zn×m
p). In this case it’s easy to see that

Pr[rank(Xi) = min(n,m)] = η and Pr[rank(Xi) < min(n,m)] = 1 − η.
If the oracle is χ(p)n×m, as discussed earlier, we have Pr[rank(Xi) =

min(n,m)] ≤ 1 − ϕ and Pr[rank(Xi) < min(n,m)] ≥ ϕ.
Thus, based on Lemma 3, we obtain the success probability (see Sect. 2.1)

SucA,SH(p,n,m)
= Pr[A(X) = b|rank(X) < min(n,m)] · Pr[rank(X) < min(n,m)]+

Pr[A(X) = b|rank(X) = min(n,m)] · Pr[rank(X) = min(n,m)]
= Pr[X ← χ(p)n×m|rank(X) < min(n,m)] · Pr[rank(X) < min(n,m)]+

Pr[X $←− Z
n×m
p |rank(X) = min(n,m)] · Pr[rank(X) = min(n,m)]

≥ ϕ
ϕ+1−η · 1−η+ϕ

2 + 1
2 · η = 1

2 · ϕ + 1
2 · η

.

526 L. Zhao

This means that AdvA,SH(p,n,m) ≥ 1
2 · ϕ + 1

2 · η − 1
2 . Specifically, when p is a

large prime, the value of ϕ is close to 1. Moreover, as discussed in Sect. 3.1, η
is also close to 1 if p is not a small prime. Then, AdvA,SH(p,n,m) is close to 1

2 ,
which confirms our theorem.

Theorem 6 demonstrates that we can break the decisional-WSH assumption
and decisional-SSH assumption efficiently for a wide range of parameters. The
final result contradicts Atallah and Frikken’s result in Eq. (1). However, this does
not imply that we can solve the search-WSH problem and search-SSH problem
efficiently, which shows the inaccuracy of Theorem 3.

3.3 Analysis for AF-PVCtwo and AF-PVCsingle

Now we want to present the formal analysis for privacy of AF-PVCtwo and
AF-PVCsingle. Specifically, it is straightforward to use the idea of the analysis
for the decisional-WSH assumption and decisional-SSH assumption to under-
mine the privacy of AF-PVCtwo and AF-PVCsingle. This means that an adversary
A employs the rank-based strategy to evaluate a given ciphertext matrix. Note
that, our analysis is based on the IND-COA experiment (see Definition 3), where
an eavesdropping adversary A running in polynomial-time has non-negligible
advantage to show that both protocols are not IND-COA private (and thus not
IND-CPA private).

Lemma 4. Given a uniformly random matrix A ∈ Z
2·v2×λ
p where the ith column

is ai for i ∈ [λ], a λ × n matrix K where the rth column is kr = [kr k2r . . . kλ
r]T

for r ∈ [n], and a 2 · v2 × n matrix S where the elements of the ith column si
are the same as the corresponding elements of the jth column sj for i, j ∈ [n],

where si
$←− Z

2·v2
p

3. Let p be a large prime (e.g., p > 4 · λ + 2), v = poly(λ) >
√

λ
2 and n ∈ {λ + 1, 2 · λ + 1}. Assume that the column vectors a1, . . . ,aλ, si

are linearly independent. Then, for the 2 · v2 × n matrix (A · K + S), we have
rank(A · K + S) = λ + 1.

Proof. For the formal proof, we refer the reader to the full version of our paper.

Corollary 1. Consider two 2 · v2 × n matrices (A · K + S) and (A · K + Z),
where the definitions of A,K and S are in Lemma 4, and Z is a 2 · v2 × n

zero matrix. Let v = poly(λ) >
√

λ
2 and n ∈ {λ + 1, 2 · λ + 1}. Then the

probability Pr[rank(A · K + S) = λ + 1] = Πλ
i=0(1 − pi−2·v2), and the probability

Pr[rank(A · K + Z) < λ + 1] = Πλ−1
i=0 (1 − pi−2·v2) for the case that the vectors

a1, . . . ,aλ, si are linearly independent.

Proof. We again refer the reader to the full version of our paper for the detailed
proof.
3 For column vectors s1, s2, . . . , sn, since s1 = s2 = · · · = sn,S = [s1 s1 . . . s1], where

s1
$←− Z

2·v2
p .

Revisiting the Secret Hiding Assumption 527

Based on Lemma 4 and Corollary 1, we present the following theorems of
breaking the privacy of AF-PVCtwo and AF-PVCsingle.

Theorem 7. The protocol AF-PVCtwo does not satisfy IND-COA privacy based
on Definition 3 under the condition that the size of the message space p is a large
prime (e.g., p > 4 ·λ+2) and the matrix size v >

√
λ. Specifically, the advantage

of an PPT adversary A for breaking the privacy of this protocol is close to 1
2 .

Proof. According to Definition 3, for the experiment Expind-priv
coa

A [AF-PVCtwo,
λ], an PPT adversary A chooses two pairs of v × v matrices (M1(0),M2(0)),

(M1(1),M2(1)). Specifically, (M1(0),M2(0))
$←− Z

v×v
p × Z

v×v
p , and (M1(1),M2(1))

are two zero matrices. The challenge ciphertext is the matrix set Ub that comes
from the second server (i.e., U(2)

b). A flattens out each pair of matrices of Ub

into a list of 2 · v2 values to generate a (2 · λ + 1) × 2 · v2 matrix Eb. Eb involves
either all rows of the matrix (A ·K+S)T or all rows of the matrix (A ·K+Z)T,
where the descriptions of the transposes of these two matrices are in Corollary 1.
For winning the experiment in Definition 3, A employs a PPT distinguisher D
based on the proposed adversary’s strategy as follows:

Distinguisher D:

– For the case rank(Eb) = 2 · λ + 1,A outputs b′ = 0.
– For the case rank(Eb) < 2 · λ + 1,A outputs b′ = 1.

The positive integer 2 ·λ+1 is regarded as the threshold rank. If Advind-priv
coa

A
(AF-PVCtwo, λ) is non-negligible, then AF-PVCtwo is not IND-COA private. In
what follows, we show this result by considering a large prime p (e.g., p > 4·λ+2)
and a matrix size v >

√
λ.

Pr[Expind-priv
coa

A [AF-PVCtwo, λ] = 1]
= Pr[Eb = E0|rank(Eb) = 2 · λ + 1] · Pr[rank(Eb) = 2 · λ + 1]

+ Pr[Eb = E1|rank(Eb) < 2 · λ + 1] · Pr[rank(Eb) < 2 · λ + 1]
.

Specifically, from Corollary 1, we obtain
⎧

⎪⎨

⎪⎩

Pr[rank(Eb) = 2 · λ + 1|Eb = E0] =
∏λ

i=0
(1 − pi−2·v2) ·

∏2·λ
i=0

(1 − pi−2·v2)

Pr[rank(Eb) < 2 · λ + 1|Eb = E1] ≥
∏λ−1

i=0
(1 − pi−2·v2)

.

Thus, we have

Pr[Expind-priv
coa

A [AF-PVCtwo, λ] = 1]

≥ 1
2 ·

λ∏

i=0

(1 − pi−2·v2) ·
2·λ∏

i=0

(1 − pi−2·v2) + 1
2 ·

λ−1∏

i=0

(1 − pi−2·v2)

= 1
2 ·

λ−1∏

i=0

(1 − pi−2·v2) · ((1 − pλ−2·v2) ·
2·λ∏

i=0

(1 − pi−2·v2) + 1)

.

528 L. Zhao

Since p is a large prime, as discussed earlier, we can obtain
Pr[Expind-priv

coa

A [AF-PVCtwo, λ] = 1] ≈ 1. This means that Advind-priv
coa

A
(AF-PVCtwo, λ) ≈ 1

2 � negl(λ).

Theorem 8. The protocol AF-PVCsingle does not satisfy IND-COA privacy based
on Definition 3 under the condition that the size of the message space p is a large

prime (e.g., p > 4 · λ + 2) and the matrix size v >
√

3·λ+1
2 . Specifically, the

advantage of an PPT adversary A for breaking the privacy of this protocol is
close to 1

2 .

Proof. The proof follows a similar procedure to that for Theorem7. For the
experiment Expind-priv

coa

A [AF-PVCsingle, λ] in Definition 3, an PPT adversary A
also chooses two pairs of v×v matrices (M1(0),M2(0)) and (M1(1),M2(1)), where

(M1(0),M2(0))
$←− Z

v×v
p × Z

v×v
p , and (M1(1),M2(1)) are two zero matrices. The

challenge ciphertext is the matrix set Ub. A flattens out each pair of matrices of
Ub into a list of 2 ·v2 values to generate a (4 ·λ+2)×2 ·v2 matrix Eb. Eb includes
either all rows of the matrix (A ·K+S)T or all rows of the matrix (A ·K+Z)T.
To win the experiment in Definition 3, A employs a PPT distinguisher D̂ based
on the proposed adversary’s strategy as follows:

Distinguisher D̂:

– For the case rank(Eb) = 3 · λ + 2,A outputs b′ = 0.
– For the case rank(Eb) < 3 · λ + 2,A outputs b′ = 1.

The positive integer 3 ·λ+2 is regarded as the threshold rank. If Advind-priv
coa

A
(AF-PVCsingle, λ) is non-negligible, then AF-PVCsingle is not IND-COA private. In
what follows, we show this result by considering a large prime p (e.g., p > 4·λ+2)

and a matrix size v >
√

3·λ+1
2 .

Pr[Expind-priv
coa

A [AF-PVCsingle, λ] = 1]
= Pr[Eb = E0|rank(Eb) = 3 · λ + 2] · Pr[rank(Eb) = 3 · λ + 2]

+ Pr[Eb = E1|rank(Eb) < 3 · λ + 2] · Pr[rank(Eb) < 3 · λ + 2]
.

Specifically, from Corollary 1, we have
⎧

⎪⎨

⎪⎩

Pr[rank(Eb) = 3 · λ + 2|Eb = E0] =
∏λ

i=0
(1 − pi−2·v2) ·

∏3·λ+1

i=0
(1 − pi−2·v2)

Pr[rank(Eb) < 3 · λ + 2|Eb = E1] ≥
∏λ−1

i=0
(1 − pi−2·v2)

.

Then, we can obtain

Pr[Expind-priv
coa

A [AF-PVCsingle, λ] = 1]

≥ 1
2 ·

λ∏

i=0

(1 − pi−2·v2) ·
3·λ+1∏

i=0

(1 − pi−2·v2) + 1
2 ·

λ−1∏

i=0

(1 − pi−2·v2)

= 1
2 ·

λ−1∏

i=0

(1 − pi−2·v2) · ((1 − pλ−2·v2) ·
3·λ+1∏

i=0

(1 − pi−2·v2) + 1)

.

Revisiting the Secret Hiding Assumption 529

Since p is a large prime, as discussed earlier, the above success probability
Pr[Expind-priv

coa

A [AF-PVCsingle, λ] = 1] ≈ 1. This implies that the adversary’s
advantage Advind-priv

coa

A (AF-PVCsingle, λ) ≈ 1
2 � negl(λ).

3.4 Discussion

In order to make the readers fully understood our rank-based analyses, we
present some concrete discussions below.

Parameters: The parameter choice is significant for our analyses of solving the
decisional-SH problem and breaking the privacy of AF-PVCtwo and AF-PVCsingle.

First, for the size of the message space p, it should be set as a large prime
that is at least larger than λ, e.g., p > 4 · λ + 2. On the one hand, as shown
in Sect. 3.1, if p is large enough, with high probability, the vectors from an
uniformly random matrix are linearly independent. This is necessary for our
analyses. On the other hand, if a client wants to outsource the multiplication of
some matrix pair (M1,M2) ∈ Z

v×v
p ×Z

v×v
p to a powerful server, then the message

space of each element in these two matrices should be large, which makes the
client hard to run the expensive computation. Otherwise, there is no need to
do the outsourcing, and the client can carry out the computation locally. This
means that the decisional-SH problem and the feasible protocols AF-PVCtwo and
AF-PVCsingle with a suitable large parameter p are the targets of our analyses.

Second, for the matrix size v (resp. the matrix size m involved in the

decisional-SH problem), it should satisfy v >
√

λ (see Theorem 7) or v >
√

3·λ+1
2

(see Theorem 8) (resp. m > 2 · λ or m > 2 · λ + e + 1 for e ∈ N+ (see The-
orem 6)4). On the one hand, for an n × 2 · v2 (resp. n × m) matrix, where
n ∈ {2 · λ + 1, 4 · λ + 2 (resp. 2 · λ + 2 · e + 2)}, since the rank of the matrix is
dependent on min(n, 2 · v2 (resp. m)), if v (resp. m) does not satisfy the above
condition, the rank-based adversary’s strategy no longer has any effect. This
means that our analyses cannot solve the decisional-SH problem and break the
privacy of AF-PVCtwo and AF-PVCsingle. On the other hand, if a client wants
to outsource the multiplication of some matrix pair to a powerful server, a key
requirement is that these two matrices should be large-scale, which makes the
outsourcing practical. If the matrix size does not satisfy the above condition, e.g.,
v ≤ √

λ, the amount of work performed by the client for the outsourcing may
be not substantially cheaper than performing the computation on its own. This
implies that the outsourcing may be impractical. Therefore, this demonstrates
that our analyses focus on the meaningful decisional-SH problem and protocols
AF-PVCtwo and AF-PVCsingle.

Adversary’s Cost: The cost of our analyses is generated by computing the
rank of a matrix. We can employ any existing algorithm for obtaining the rank
of a matrix. In general, for a matrix from Z

n×m
p with rank z ≤ min(n,m), using

Gaussian elimination, we may compute the rank of the matrix in O(z · n · m)

4 2 · v2 is equivalent to m.

530 L. Zhao

field operations and storage of n ·m field elements [17]. Of course, the rank of a
matrix can be computed probabilistically by invoking the blackbox approaches,
e.g., the Wiedemann method [10,18]. More concretely, if our analyses employ
the blackbox method, for a matrix from Z

(2·λ+1)×(2·λ+1)
p with rank 2 ·λ, we need

to take Õ(2 · λ · (2 · λ + 1)2) time and use Õ(2 · λ + 1) storage to obtain the rank
of this matrix, where we employ the “soft − Oh” (i.e., Õ) notation to suppress
log factors.

4 Experimental Verifications

In order to give the reader a glance at the practical results of our analyses
for solving the decisional-SH problem and breaking the privacy of AF-PVCtwo

and AF-PVCsingle. We implemented our analyses in Sect. 3 and reported the
adversary’s advantages and costs.

4.1 Setup

Hardware and Software: We conducted the real example experiments on
a Lenovo ThinkStation (Intel(R) Xeon(R) E5-2620, 24 hyperthreaded cores at
2.00 GHz, 8 GB RAM at 2.00 GHz), on Windows (Windows 7, x64 64). Our
implementations are single-threaded. We used the NTL library [1] version 10.5.0
for the field operations over Zp and the matrix operations.

Parameters Choice: In our implementations we covered λ = 80, 128, 192
and 256 privacy. These selections lead to the parameters in Table 1, where
e = λ,n ∈ {2 · λ + 1, 2 · λ + 2 · e + 2}, m ∈ {2 · λ + 1, 3 · λ + 1} for
n = 2 · λ + 1 and m ∈ {3 · λ + 1, 4 · λ + 2} for n = 2 · λ + 2 · e + 2, p > 4 · λ + 2,

v =
√λ + 1� for n = 2 · λ + 1 and v =

√

3·λ+1
2 + 1� for n = 2 · λ + 2 · e + 25,

and h = λ.

Table 1. The used parameters for our analyses

λ e n m v p h

80 N/A 161 161, 241 10 353, 401 80

80 322 241, 322 12

128 N/A 257 257, 385 13 631, 701 128

128 514 385, 514 15

192 N/A 385 385, 577 15 809, 907 192

192 770 577, 770 18

256 N/A 513 513, 769 17 1069, 1187 256

256 1026 769, 1026 21

5 n = 4 · λ + 2.

Revisiting the Secret Hiding Assumption 531

4.2 Results and Timings

The experimental results are presented in Tables 2, 3, 4 and 5. Specifically, the
adversary’s advantages and timings for solving the decisional-WSH problem and
decisional-SSH problem are shown in Tables 2 and 3, and the adversary’s advan-
tages and timings for breaking the privacy of AF-PVCtwo and AF-PVCsingle are
reported in Tables 4 and 5. To obtain these results, we compute the advantages
that the adversaries answer correctly in the whole experiment process (i.e., 200
experiments). Note that, for each experiment of solving the decisional-WSH
problem (resp. the decisional-SSH problem), a fresh sample from either the dis-
tribution χ(p)n×m or the uniform distribution over Z

n×m
p is used for the guess.

For each experiment of breaking the privacy of AF-PVCtwo (resp. AF-PVCsingle),
a fresh key sk used by AF-PVCtwo (resp. AF-PVCsingle) is generated to complete
the matrix masking. Moreover, for each timing in the tables, the value is the
average value over 200 experiments.

Table 2. Results on the decisional-WSH problem

(n,m, p) AdvA,WSH(p,n,m) Timing (second)

(161, 161, 353) 0.495 0.725

(161, 241, 353) 0.495 0.998

(161, 161, 401) 0.500 0.723

(161, 241, 401) 0.500 0.997

(257, 257, 631) 0.500 2.843

(257, 385, 631) 0.500 4.646

(257, 257, 701) 0.495 2.832

(257, 385, 701) 0.500 4.633

(385, 385, 809) 0.500 9.304

(385, 577, 809) 0.500 15.253

(385, 385, 907) 0.500 9.284

(385, 577, 907) 0.500 15.137

(513, 513, 1069) 0.500 21.558

(513, 769, 1069) 0.500 35.944

(513, 513, 1187) 0.500 21.629

(513, 769, 1187) 0.500 35.997

As reported in Tables 2, 4 and 5, all the experimental results about the adver-
sary’s advantage are in accord with the analyses of Theorems 6, 7 and 8, and
demonstrate that there exists a PPT adversary algorithm that (almost) always
succeeds in guessing the distribution of a given sample or the bit b in the eaves-
dropping indistinguishability experiment (see Definition 3). For the results in

532 L. Zhao

Table 3. Results on the decisional-SSH problem

(n,m, p) AdvA,SSH(p,n,m) Timing (second)

(322, 241, 353) 0.005 2.543

(322, 322, 353) 0.500 3.843

(322, 241, 401) 0.010 4.447

(322, 322, 401) 0.495 3.746

(514, 385, 631) 0.030 9.610

(514, 514, 631) 0.500 15.348

(514, 385, 701) 0.050 9.476

(514, 514, 701) 0.495 14.253

(770, 577, 809) 0.025 30.900

(770, 770, 809) 0.495 46.268

(770, 577, 907) 0.040 30.098

(770, 770, 907) 0.500 46.374

(1026, 769, 1069) 0.040 71.009

(1026, 1026, 1069) 0.500 109.091

(1026, 769, 1187) 0.020 71.436

(1026, 1026, 1187) 0.500 108.871

Table 4. Results on AF-PVCtwo

(n, v, p) Advind-priv
coa

A (AF-PVCtwo, λ) Timing (second)

(161, 10, 353) 0.500 0.854

(161, 10, 401) 0.495 0.849

(257, 13, 631) 0.500 3.549

(257, 13, 701) 0.500 3.648

(385, 15, 809) 0.500 11.064

(385, 15, 907) 0.500 10.336

(513, 17, 1069) 0.500 23.037

(513, 17, 1187) 0.500 22.666

Table 3, when n = m, the adversary’s advantages validate the analysis in Theo-
rem 6, which is based on the fact that m > 3 · λ + 1. However, when n > m, the
adversary’s advantages are close to 0. This is because the rank of a given matrix
from one of those two distributions is dependent on m if m ≤ 3 · λ + 1. Then, in
this case, the proposed rank-based strategy is invalid for distinguishing the SSH
distribution from the uniform distribution over Z

n×m
p , and the adversary must

guess randomly.
Moreover, the timings of all the example experiments in Tables 2, 3, 4 and 5

show that our rank-based analyses for solving the decisional-SH problem and

Revisiting the Secret Hiding Assumption 533

Table 5. Results on AF-PVCsingle

(n, v, p) Advind-priv
coa

A (AF-PVCsingle, λ) Timing (second)

(322, 12, 353) 0.500 2.976

(322, 12, 401) 0.500 3.026

(514, 15, 631) 0.500 11.499

(514, 15, 701) 0.500 11.509

(770, 18, 809) 0.500 36.407

(770, 18, 907) 0.500 34.566

(1026, 21, 1069) 0.500 82.436

(1026, 21, 1187) 0.500 83.199

breaking the privacy of AF-PVCtwo and AF-PVCsingle are really efficient. Specif-
ically, for some small matrix sizes (e.g., (n,m) = (161, 161) in Table 2), our
analyses take less than a second.

5 Conclusions

In this paper, we propose an efficient analysis method for solving the decisional-
WSH problem and decisional-SSH problem introduced by Atallah and Frikken
[2]. Specifically, the strategy of our analysis takes advantage of the rank distribu-
tion of the matrix to distinguish between the samples from the WSH distribution
(resp. the SSH distribution) χ(p)n×m and the samples from the uniform distri-
bution over Z

n×m
p . The adversary’s advantage of our analysis on a wide range of

parameters is close to 0.5. Moreover, we employ a similar approach to break the
privacy of AF-PVCtwo and AF-PVCsingle. The analysis results show that both
protocols are not IND-COA private.

Solving the Search Variant of the SH Problem? Our rank-based analysis
can break the decisional-WSH assumption and decisional-SSH assumption, but
this does not implies that we can also break the search versions efficiently. Actu-
ally, for breaking the search-WSH assumption and search-SSH assumption, our
rank-based analysis may be regarded as a preprocessing step. To check whether
a row of a matrix sampled from χ(p)n×m is a row vector from d1, . . . ,d� or from
u1, . . . ,uτ , the adversary first replaces the row that needs to be tested by a row
vector chosen from Z

m
p uniformly at random, and then computes the rank of

the matrix where the tested row has been replaced. According to our analysis in
Sect. 3.2, if the obtained rank increases (compared with the rank of the matrix
sampled from χ(p)n×m), this implies that the tested row is from the row vectors
d1, . . . ,d�. The above procedure can be run at most n − 1 times (with over-
whelming probability) to reveals all the vectors d1, . . . ,d�. However, this result
is not equivalent to finding k1, . . . , k� (or A). Therefore, how to break the search
variant of the SH assumption efficiently is an interesting open problem.

534 L. Zhao

Acknowledgements. The author would like to thank the anonymous reviewers of
CT-RSA 2019 for providing their helpful comments. This work was supported in part
by the National Natural Science Foundation of China under Grant 61302161, in part
by the Doctoral Fund, Ministry of Education, China, under Grant 20130181120076.

References

1. NTL 10.5.0 (2017). http://www.shoup.net/ntl/
2. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In:

ASIACCS (2010)
3. Benjamin, D., Atallah, M.J.: Private and cheating-free outsourcing of algebraic

computations. In: PST (2008)
4. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-

able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 28

5. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 483–501. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 26

6. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: CCS (2014)

7. Goldreich, O.: Foundations of Cryptography: Volume I Basic Tools. Cambridge
University Press, Cambridge (2001)

8. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

9. Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable
computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 6

10. Kaltofen, E., David Saunders, B.: On Wiedemann’s method of solving sparse linear
systems. In: Mattson, H.F., Mora, T., Rao, T.R.N. (eds.) AAECC 1991. LNCS,
vol. 539, pp. 29–38. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
54522-0 93

11. Katti, R.S., Srinivasan, S.K., Vosoughi, A.: On the security of randomized arith-
metic codes against ciphertext-only attacks. IEEE Trans. Inf. Forensics Secur. 6(1),
19–27 (2011)

12. Laud, P., Pankova, A.: On the (im)possibility of privately outsourcing linear pro-
gramming. In: CCSW (2013)

13. Linial, N., Weitz, D.: Random vectors of bounded weight and their linear depen-
dencies (2000). http://www.drorweitz.com/ac/pubs/rand mat.pdf

14. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
15. Salinas, S., Luo, C., Chen, X., Li, P.: Efficient secure outsourcing of large-scale

linear systems of equations. In: INFOCOM (2015)
16. Salinas, S., Luo, C., Liao, W., Li, P.: Efficient secure outsourcing of large-scale

quadratic programs. In: ASIACCS (2016)
17. Saunders, B.D., Youse, B.S.: Large matrix, small rank. In: ISSAC (2009)
18. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans.

Inf. Theory 32(1), 54–62 (1986)

http://www.shoup.net/ntl/
https://doi.org/10.1007/978-3-642-36594-2_28
https://doi.org/10.1007/978-3-642-14623-7_26
https://doi.org/10.1007/978-3-642-14623-7_26
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/3-540-54522-0_93
https://doi.org/10.1007/3-540-54522-0_93
http://www.drorweitz.com/ac/pubs/rand_mat.pdf

Delegatable Anonymous Credentials from
Mercurial Signatures

Elizabeth C. Crites(B) and Anna Lysyanskaya(B)

Brown University, Providence, RI 02912, USA
{elizabeth crites,anna lysyanskaya}@brown.edu

Abstract. In a delegatable anonymous credential system, participants
may use their credentials anonymously as well as anonymously delegate
them to other participants. Such systems are more usable than tradi-
tional anonymous credential systems because a popular credential issuer
can delegate some of its responsibilities without compromising users’
privacy. They also provide stronger privacy guarantees than traditional
anonymous credential systems because the identities of credential issuers
are hidden. The identity of a credential issuer may convey information
about a user’s identity even when all other information about the user
is concealed.

The only previously known constructions of delegatable anonymous
credentials were prohibitively inefficient. They were based on non-
interactive zero-knowledge (NIZK) proofs. In this paper, we provide a
simple construction of delegatable anonymous credentials and prove its
security in the generic group model. Our construction is direct, not based
on NIZK proofs, and is therefore considerably more efficient. In fact, in
our construction, only five group elements are needed per link to repre-
sent an anonymous credential chain.

Our main building block is a new type of signature scheme, a mercurial
signature, which allows a signature σ on a message M under public key
pk to be transformed into a signature σ′ on an equivalent but unlinkable
message M ′ under an equivalent but unlinkable public key pk′.

Keywords: Anonymous credentials · Signature schemes ·
Generic group model

1 Introduction

Anonymous Credentials. Anonymous credentials allow a user to prove possession
of a set of credentials, issued by some trusted issuer or issuers, that allow access
to a resource. What makes them anonymous is the fact that the user’s proof
is zero-knowledge and credentials can be obtained anonymously: an issuer need
not know the user’s identity in order to issue a credential.

Supported by NSF grant 1422361.

c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 535–555, 2019.
https://doi.org/10.1007/978-3-030-12612-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_27

536 E. C. Crites and A. Lysyanskaya

As a result of decades of research, there are anonymous credential systems
that are provably secure and efficient enough for practical use [Cha86,LRSW99,
CL01,Lys02,CL04,CKL+14,CDHK15]. These results have attracted wide atten-
tion beyond the cryptographic community: they have been implemented by
industry leaders such as IBM, incorporated into industrial standards (such as
the TCG standard), and underpinned government policy.

And yet traditional anonymous credentials do not in fact protect users’ pri-
vacy. The traditional anonymous credential model assumes that the verifying
party, such as an access provider, knows the public key of the credential issuer.
This can reveal a lot of information about a user. In the US, for example, the
identity of the issuer of a user’s driver’s license (the local DMV) might reveal
the user’s zip code. If, in addition, the user’s date of birth and gender are leaked
(as could happen in the context of a medical form), this is enough to uniquely
identify the user the majority of the time [Swe97]. To remedy this, a user could
prove possession of a credential from one issuer in a long list instead of from a
particular issuer (local DMV), but this solution is undesirable for two reasons:
(1) it incurs a significant slowdown, proportional to the number of potential
issuers, and (2) it requires the user herself to know who the issuer is.

Delegatable Anonymous Credentials. A more promising approach is to use del-
egatable anonymous credentials [CL06,BCC+09]. First, a non-anonymous del-
egatable credential scheme can be constructed as follows. A certification chain
is rooted at some authority and ends at the public key of the user in question,
who then needs to demonstrate that she knows the corresponding secret key
to prove that she is authorized. The simplest case, when the trusted authority
issues certificates directly to each user (so each certification chain is of length
1), is inconvenient because it requires the authority to do too much work. A
system in which the authority delegates responsibility to other entities is more
convenient: an entity with a certification chain of length � can issue certification
chains of length � + 1. A conventional signature scheme immediately allows del-
egatable credentials: Alice, who has a public signing key pkA and a certification
chain of length �, can sign Bob’s public key pkB , giving Bob a chain of length
� + 1.

Delegatable anonymous credentials allow users to enjoy much more privacy.
Even the users themselves do not know the actual identities of the links on their
certification chains. They only know what they need to know. For example, con-
sider a discount program for senior citizens. An online shopper proves that she
is eligible for the discount by presenting a level-3 credential from the govern-
ment administering the program as follows. Government official Alice receives a
credential directly from the government. She gives a credential to a local grocer,
Bob, who does not need to know who she is or to whom she has issued creden-
tials. Bob’s job is to issue credentials to his customers who are senior citizens
and he gives such a credential to Carol. Carol need not know who Bob is, who
gave him the credential, or who else received credentials from him. Now Carol
can use her credential to shop online with a discount. Her credential does not

Delegatable Anonymous Credentials from Mercurial Signatures 537

reveal the identity of anyone on her credential chain. Thus, even if Bob issues a
discount credential to no other customer, Carol’s anonymity is still preserved.

Delegatable anonymous credentials (DACs) were first proposed by Chase
and Lysyanskaya [CL06], who gave a proof of concept construction based on
non-interactive zero-knowledge (NIZK) proof systems for NP. Their construc-
tion incurred a blow-up that was exponential in L, the length of the certifica-
tion chain. Even for constant L it was not meant for use in practice. Belenkiy
et al. [BCC+09] showed that, given a commitment scheme and a signature
scheme that “play nicely” with randomizable NIZK (which they defined and
realized), DACs with only linear dependency on L could be achieved. They
also showed that their approach could be instantiated using Groth-Sahai com-
mitments and an NIZK proof system [GS08]. Although this was a significant
efficiency improvement over previous work, the resulting scheme’s use of heavy
machinery, such as the Groth-Sahai proof system, rendered it unsuitable for
use in practice. (A back-of-the-envelope calculation shows that several hun-
dred group elements would be required to represent a certification chain of
length two.) Chase et al. [CKLM13] gave a conceptually novel construction of
DACs that relied on controlled-malleable signatures and achieved stronger secu-
rity; however, their instantiation of controlled-malleable signatures still required
Groth-Sahai proofs, so the resulting construction was essentially as inefficient
as that of Belenkiy et al. A recent paper by Camenisch et al. [CDD17] suggests
a solution in which one can indeed prove possession of a credential chain in a
privacy-preserving manner, but one cannot obtain credentials anonymously.

Our Contribution. We provide a simple and efficient construction of delegatable
anonymous credentials. Our construction does not rely on heavy machinery such
as NIZK proofs; it relies on bilinear groups, where only five group elements per
level of delegation are needed to represent a credential chain. (If Alice obtains a
credential from the certification authority and delegates it to Bob, who in turn
delegates it to Carol, Carol’s credential chain can be represented using fifteen
group elements.) Our construction is provably secure in the generic group model.
We also give what we believe to be a simpler definition of DACs.

Our Approach. The main building block of our construction is a new type of sig-
nature scheme, which we call a mercurial signature scheme1. Given a mercurial
signature σ on a message M under public key pk, one can, without knowing the
secret key sk, transform it into a new signature σ′ on an equivalent message M ′

under an equivalent public key pk′, for some equivalence relations on messages
and public keys. Moreover, for an appropriate choice of message space and public
key space, this can be done in such a way that the new M ′ cannot be linked to
the original M , and the new public key pk′ cannot be linked to pk.

The approach to constructing DACs from mercurial signatures is as follows.
Suppose that the certification authority (CA) with public key pk0 has issued a
credential to Alice, whose pseudonym is some public key pkA. Alice’s certification

1 No relationship to mercurial commitments [CHK+05].

538 E. C. Crites and A. Lysyanskaya

chain (of length 1) will have the form (pkA, σA), where σA is the CA’s signature
on pkA. Alice interacts with Bob, who knows her under a different public key,
pk′

A. The public keys pkA and pk′
A are equivalent—they both belong to Alice

and have the same underlying secret key—but Bob cannot link them. Mercurial
signatures allow her to translate σA into σ′

A, which is the CA’s signature on her
pk′

A. Alice delegates her credential to Bob, after which Bob’s certification chain
has the form ((pk′

A, pkB), (σ′
A, σB)), where pkB is the pseudonym under which

Bob is known to Alice, and σB is the signature on pkB under the public key pk′
A.

Now suppose that Bob wants to delegate to Carol, who is known to him under the
pseudonym pkC . He first uses the properties of the mercurial signature scheme
in order to make his credential chain unrecognizable. He transforms pk′

A into an
equivalent pk′′

A and pkB into an equivalent pk′
B , taking care to also transform

the signatures appropriately. Finally, he signs pkC under pk′
B .

Our mercurial signatures were inspired by the paper of Fuchsbauer, Hanser
and Slamanig [FHS14] on structure-preserving signatures on equivalence classes
(SPS-EQ). SPS-EQ does not include the feature of transforming a public key
into an equivalent one; this is new with our mercurial signatures. It does intro-
duce the property that a signature on a message M can be transformed into one
on an equivalent message M ′, where M ′ cannot be linked to M . It also presents a
construction of SPS-EQ that is secure in the generic group model. Our construc-
tion of mercurial signatures is adapted from theirs, but our notion of security
requires that the adapted construction is still unforgeable even when the forger
is given the added freedom to modify the public key. In addition, it requires that
we prove pkA and pk′

A are unlinkable even when given signatures under these
keys. A recent, independent work by Backes et al. [BHKS18] considers signatures
with flexible public keys but not flexible messages.

Open Problems. Our paper leaves open the question of how to construct efficient
DACs with desirable features that have been explored in the context of anony-
mous credentials, such as credential attributes (e.g. expiration dates), revocation,
identity escrow and conditional anonymity.

2 Definition of Mercurial Signatures

For a relation R over strings, let [x]R = {y | R(x, y)}. If R is an equivalence
relation, then [x]R denotes the equivalence class of which x is a representative.
We say (somewhat loosely) that a relation R is parameterized if it is well-defined
as long as some other parameters are well-defined. For example, if G is a cyclic
group with generators g and h, then the decisional Diffie-Hellman (DDH) relation
R = {(x, y) | ∃α such that x = gα ∧ y = hα} is parameterized by G, g, and h
and is well-defined as long as G, g, and h are well-defined.

Definition 1 (Mercurial signature). A mercurial signature scheme for
parameterized equivalence relations RM , Rpk, Rsk is a tuple of the following
polynomial-time algorithms, which are deterministic algorithms unless otherwise
stated:

Delegatable Anonymous Credentials from Mercurial Signatures 539

PPGen(1k) → PP : On input the security parameter 1k, this probabilistic algo-
rithm outputs the public parameters PP . This includes parameters for the
parameterized equivalence relations RM , Rpk, Rsk so they are well-defined.
It also includes parameters for the algorithms sampleρ and sampleμ, which
sample key and message converters, respectively.

KeyGen(PP , �) → (pk, sk): On input the public parameters PP and a length
parameter �, this probabilistic algorithm outputs a key pair (pk, sk). The
message space M is well-defined from PP and �. This algorithm also
defines a correspondence between public and secret keys: we write (pk, sk) ∈
KeyGen(PP , �) if there exists a set of random choices that KeyGen could make
that would result in (pk, sk) as the output.

Sign(sk,M) → σ: On input the signing key sk and a message M ∈ M, this
probabilistic algorithm outputs a signature σ.

Verify(pk,M, σ) → 0/1: On input the public key pk, a message M ∈ M, and a
purported signature σ, output 0 or 1.

ConvertSK(sk, ρ) → s̃k: On input sk and a key converter ρ ∈ sampleρ, output a
new secret key s̃k ∈ [sk]Rsk

.
ConvertPK(pk, ρ) → p̃k: On input pk and a key converter ρ ∈ sampleρ, output

a new public key p̃k ∈ [pk]Rpk
. (Correctness of this operation, defined below,

will guarantee that if pk corresponds to sk, then p̃k corresponds to s̃k =
ConvertSK(sk, ρ).)

ConvertSig(pk,M, σ, ρ) → σ̃: On input pk, a message M ∈ M, a signature σ,
and key converter ρ ∈ sampleρ, this probabilistic algorithm returns a new
signature σ̃. (Correctness of this will require that whenever Verify(pk,M, σ) =
1, it will also be the case that Verify(p̃k,M, σ̃) = 1.)

ChangeRep(pk,M, σ, μ) → (M ′, σ′): On input pk, a message M ∈ M, a signa-
ture σ, and a message converter μ ∈ sampleμ, this probabilistic algorithm
computes a new message M ′ ∈ [M]RM

and a new signature σ′ and out-
puts (M ′, σ′). (Correctness of this will require that Verify(pk,M, σ) = 1 ⇒
Verify(pk,M ′, σ′) = 1.)

Similar to a standard cryptographic signature [GMR88], a mercurial signature
must be correct and unforgeable.

Definition 2 (Correctness). A mercurial signature scheme (PPGen, KeyGen,
Sign, Verify, ConvertSK, ConvertPK, ConvertSig, ChangeRep) for parameterized
equivalence relations RM , Rpk, Rsk is correct if it satisfies the following con-
ditions for all k, for all PP ∈ PPGen(1k), for all � > 1, for all (pk, sk) ∈
KeyGen(PP , �):

Verification. For all M ∈ M, for all σ ∈ Sign(sk,M), Verify(pk,M, σ) = 1.
Key conversion. For all ρ ∈ sampleρ, (ConvertPK(pk, ρ),ConvertSK(sk, ρ))

∈ KeyGen(PP , �). Moreover, ConvertSK(sk, ρ) ∈ [sk]Rsk
and ConvertPK(pk, ρ)

∈ [pk]Rpk
.

Signature conversion. For all M ∈ M, for all σ such that Verify(pk,M, σ)
= 1, for all ρ ∈ sampleρ, for all σ̃ ∈ ConvertSig(pk,M, σ, ρ),Verify(ConvertPK
(pk, ρ), M, σ̃) = 1.

540 E. C. Crites and A. Lysyanskaya

Change of message representative. For all M ∈ M, for all σ such that
Verify(pk,M, σ) = 1, for all μ ∈ sampleμ, Verify(pk,M ′, σ′) = 1, where
(M ′, σ′) = ChangeRep(pk,M, σ, μ). Moreover, M ′ ∈ [M]RM

.

Let us discuss the intuition for the correctness property. Correct verification
is simply the standard correctness property for signature schemes. Correct key
conversion means that if the same key converter ρ is applied to a valid key
pair (pk, sk), the result is a new valid key pair (p̃k, s̃k) from the same pair of
equivalence classes. Correct signature conversion means that if the same key
converter ρ is applied to a public key pk to obtain p̃k and to a valid signature
σ on a message M to obtain σ̃, then the new signature σ̃ is a valid signature
on the same message M under the new public key p̃k. Finally, correct change
of message representative ensures that if a message converter μ is applied to a
valid message-signature pair (M,σ), the result is a new valid message-signature
pair (M ′, σ′), where the new message M ′ is in the same equivalence class as M .

Definition 3 (Unforgeability). A mercurial signature scheme (PPGen,
KeyGen, Sign, Verify, ConvertSK, ConvertPK, ConvertSig, ChangeRep) for param-
eterized equivalence relations RM , Rpk, Rsk is unforgeable if for all polynomial-
length parameters �(k) and all probabilistic, polynomial-time (PPT) algorithms
A having access to a signing oracle, there exists a negligible function ν such that:

Pr[PP ← PPGen(1k); (pk, sk) ← KeyGen(PP , �(k)); (Q, pk∗,M∗, σ∗) ←
ASign(sk,·)(pk) : ∀M ∈ Q, [M∗]RM

	= [M]RM
∧ [pk∗]Rpk

= [pk]Rpk

∧Verify(pk∗,M∗, σ∗) = 1] ≤ ν(k)

where Q is the set of queries that A has issued to the signing oracle.

The unforgeability property here is similar to existential unforgeability (EUF-
CMA) for signature schemes, except the adversary’s winning condition is some-
what altered. As in the EUF-CMA game, the adversary is given the public key pk
and is allowed to issue signature queries to the oracle that knows the correspond-
ing secret key sk. Eventually, the adversary outputs a public key pk∗, a message
M∗, and a purported signature σ∗. Unlike the EUF-CMA game, the adversary
has the freedom to output a forgery under a different public key pk∗, as long as
pk∗ is in the same equivalence class as pk. This seemingly makes the adversary’s
task easier. At the same time, the adversary’s forgery is not valid if the message
M∗ is in the same equivalence class as a previously queried message, making
the adversary’s task harder. We can more formally relate our definitions to the
standard definitions of existential unforgeability and correctness for signature
schemes as follows. Suppose the relations RM , Rpk, Rsk are equality relations
(i.e. (a, b) ∈ R ⇔ a = b). Let ConvertSK, ConvertPK, ConvertSig, ChangeRep
be algorithms that do nothing but simply output their input sk, pk, σ, (M,σ),
respectively. Then, it is easy to see that (PPGen, KeyGen,Sign, Verify) is a correct
and existentially unforgeable signature scheme if and only if the mercurial sig-
nature scheme (PPGen, KeyGen, Sign, Verify, ConvertSK, ConvertPK, ConvertSig,
ChangeRep) for RM , Rpk, Rsk is correct and unforgeable.

Delegatable Anonymous Credentials from Mercurial Signatures 541

If one disregards insignificant differences in input-output specification and the
emphasis on structure-preserving properties (not important for the security defi-
nition), our mercurial signatures are a generalization of Fuchsbauer, Hanser and
Slamanig’s [FHS14] structure-preserving signatures on equivalence classes (SPS-
EQ) and in fact were inspired by signatures on equivalence classes in that paper.
In an SPS-EQ signature for an equivalence relation RM , the ChangeRep algo-
rithm is present, but there are no ConvertSK,ConvertPK,ConvertSig algorithms.
The correctness requirement boils down to our correct verification and correct
change of message representative requirements. Unforgeability of SPS-EQ is sim-
ilar to unforgeability of mercurial signatures, except that A does not have the
freedom to pick a different public key pk∗; the forgery must verify under the origi-
nal public key pk. We can more formally relate our definitions to the definitions of
existential unforgeability and correctness for signatures on equivalence classes as
follows. Suppose the relations Rpk and Rsk are equality relations. Let ConvertSK,
ConvertPK,ConvertSig be algorithms that do nothing but simply output their
input sk, pk, σ, respectively. Then, (PPGen,KeyGen,Sign,Verify,ChangeRep) is a
correct and unforgeable signature scheme for the equivalence relation RM if and
only if the mercurial signature scheme (PPGen, KeyGen, Sign, Verify, ConvertSK,
ConvertPK, ConvertSig, ChangeRep) for RM , Rpk, Rsk is correct and unforgeable.

Class- and Origin-Hiding of Mercurial Signatures. It is important for
our application that the relations RM and Rpk be class-hiding. Class-hiding for
messages [FHS14] means that given two messages, M1 and M2, it should be hard
to tell whether or not M1 ∈ [M2]RM

. Class-hiding for public keys means that,
given two public keys, pk1 and pk2, and oracle access to the signing algorithm
for both of them, it is hard to tell whether or not pk1 ∈ [pk2]Rpk

.
An additional property we will need for our application is that, even if pk∗

is adversarial, a message-signature pair obtained by running ChangeRep(pk∗,
M0, σ0, μ0) is distributed the same way as a pair obtained by running
ChangeRep(pk∗,M1, σ1, μ1), as long as M0 and M1 are in the same equivalence
class. Thus, seeing the resulting message-signature pair hides its origin, whether
it came from M0 or M1. Similarly, even for an adversarial pk∗, a signature on
a message M output by ConvertSig hides whether ConvertSig was given pk∗ as
input or another pk in the same equivalence class.

Definition 4 (Class- and origin-hiding). A mercurial signature scheme
(PPGen, KeyGen, Sign, Verify, ConvertSK, ConvertPK, ConvertSig, ChangeRep)
for parameterized equivalence relations RM , Rpk, Rsk is class-hiding if it satisfies
the following two properties:

Message class-hiding: For all polynomial-length parameters �(k) and all
probabilistic polynomial-time (PPT) adversaries A, there exists a negligible
function ν such that:

542 E. C. Crites and A. Lysyanskaya

Pr[PP ← PPGen(1k);M1 ← M;M0
2 ← M;M1

2 ← [M1]RM
;

b ← {0, 1}; b′ ← A(PP ,M1,M
b
2) : b′ = b] ≤ 1

2
+ ν(k)

Public key class-hiding: For all polynomial-length parameters �(k) and all
PPT adversaries A, there exists a negligible function ν such that:

Pr[PP ← PPGen(1k); (pk1, sk1) ← KeyGen(PP , �(k)); (pk02, sk
0
2) ← KeyGen(PP ,

�(k)); ρ ← sampleρ(PP); pk12 = ConvertPK(pk1, ρ); sk12 = ConvertSK(sk1, ρ);

b ← {0, 1}; b′ ← ASign(sk1,·),Sign(skb
2,·)(pk1, pk

b
2) : b′ = b] ≤ 1

2
+ ν(k)

A mercurial signature is also origin-hiding if the following two properties hold:

Origin-hiding of ChangeRep: For all k, for all PP ∈ PPGen(1k), for all pk∗ (in
particular, adversarially generated ones), for all M , σ, if Verify(pk∗,M, σ) = 1,
if μ ← sampleμ, then ChangeRep(pk∗,M, σ, μ) outputs a uniformly random
M ′ ∈ [M]RM

and a uniformly random σ′ ∈ {σ̂ | Verify(pk∗,M ′, σ̂) = 1}.
Origin-hiding of ConvertSig: For all k, for all PP ∈ PPGen(1k), for all pk∗ (in

particular, adversarially generated ones), for all M , σ, if Verify(pk∗,M, σ) = 1,
if ρ ← sampleρ, then ConvertSig(pk∗,M, σ, ρ) outputs a uniformly random
σ̃ ∈ {σ̂ | Verify(ConvertPK(pk∗, ρ),M, σ̂) = 1}, and ConvertPK(pk∗, ρ) outputs
a uniformly random element of [pk∗]Rpk

.

3 Construction of Mercurial Signatures

Let e : G1 × G2 → GT be a Type III bilinear pairing for multiplicative groups
G1,G2, and GT of prime order p. Let P, P̂ , and e(P, P̂) be generators, respec-
tively. (See full version [CL18] for a review.) The message space for our mercu-
rial signature scheme will consist of vectors of group elements from G

∗
1, where

G
∗
1 = G1\{1G1}. The space of secret keys will consist of vectors of elements from

Z
∗
p. The space of public keys, similar to the message space, will consist of vectors

of group elements from G
∗
2. Once the prime p, G∗

1, G
∗
2, and � are well-defined,

the equivalence relations of interest to us are as follows:
RM = {(M,M ′) ∈ (G∗

1)
� × (G∗

1)
� | ∃r ∈ Z

∗
p such that M ′ = Mr}

Rsk = {(sk, s̃k) ∈ (Z∗
p)

� × (Z∗
p)

� | ∃r ∈ Z
∗
p such that s̃k = r · sk}

Rpk = {(pk, p̃k) ∈ (G∗
2)

� × (G∗
2)

� | ∃r ∈ Z
∗
p such that p̃k = pkr}

where Mr = (Mr
1 , . . . ,Mr

�) for a message M = (M1, . . . ,M�) ∈ (G∗
1)

�. Note that
messages, secret keys, and public keys are restricted to vectors consisting of only
non-identity group elements. Without this restriction and the restriction that
r 	= 0, the resulting relation would not be an equivalence one.

We introduce our mercurial signature construction with message space (G∗
1)

�,
but a mercurial signature scheme with message space (G∗

2)
� can be obtained by

simply switching G
∗
1 and G

∗
2 throughout.

Delegatable Anonymous Credentials from Mercurial Signatures 543

PPGen(1k) → PP : Compute BG ← BGGen(1k). Output PP = BG =
(G1,G2,GT , P, P̂ , e). Now that BG is well-defined, the relations RM , Rpk, Rsk

are also well-defined. sampleρ and sampleμ are the same algorithm, namely
the one that samples a random element of Z∗

p.
KeyGen(PP , �) → (pk, sk): For 1 ≤ i ≤ �, pick xi ← Z

∗
p and set secret key

sk = (x1, . . . , x�). Compute public key pk = (X̂1, . . . , X̂�), where X̂i = P̂ xi

for 1 ≤ i ≤ �. Output (pk, sk).
Sign(sk,M) → σ: On input sk = (x1, . . . , x�) and M = (M1, . . . ,M�) ∈

(G∗
1)

�, pick a random y ← Z
∗
p and output σ = (Z, Y, Ŷ), where Z =(∏�

i=1 Mxi
i

)y

, Y = P
1
y , and Ŷ = P̂

1
y .

Verify(pk,M, σ) → 0/1: On input pk = (X̂1, . . . , X̂�), M = (M1, . . . ,M�), and
σ = (Z, Y, Ŷ), check whether

∏�
i=1 e(Mi, X̂i) = e(Z, Ŷ) ∧ e(Y, P̂) = e(P, Ŷ).

If it holds, output 1; otherwise, output 0.
ConvertSK(sk, ρ) → s̃k: On input sk = (x1, . . . , x�) and a key converter ρ ∈ Z

∗
p,

output the new secret key s̃k = ρ · sk.
ConvertPK(pk, ρ) → p̃k: On input pk = (X̂1, . . . , X̂�) and a key converter ρ ∈ Z

∗
p,

output the new public key p̃k = pkρ.
ConvertSig(pk,M, σ, ρ) → σ̃: On input pk, message M , signature σ = (Z, Y, Ŷ),

and key converter ρ ∈ Z
∗
p, sample ψ ← Z

∗
p. Output σ̃ = (Zψρ, Y

1
ψ , Ŷ

1
ψ).

ChangeRep(pk,M, σ, μ) → (M ′, σ′): On input pk, M , σ = (Z, Y, Ŷ), μ ∈ Z
∗
p,

sample ψ ← Z
∗
p. Compute M ′ = Mμ, σ′ = (Zψμ, Y

1
ψ , Ŷ

1
ψ). Output (M ′, σ′).

Proofs of the following theorems can be found in the full version [CL18].

Theorem 1 (Correctness). The construction described above is correct.

Theorem 2 (Unforgeability). The construction described above is unforge-
able in the generic group model for Type III bilinear groups.

To prove unforgeability, we construct a reduction to the unforgeability of the
SPS-EQ signature scheme. Suppose a PPT algorithm A produces a successful
forgery (M∗, σ∗, pk∗) for a mercurial signature scheme with non-negligible prob-
ability. Then, by definition, there exists some α in Z

∗
p such that pk∗ = pkα,

where pk is the challenge public key for unforgeability of SPS-EQ. We show that
a PPT reduction B is able to obtain this α and produce a successful forgery
((M∗)α, σ∗, pk) for the SPS-EQ scheme, contradicting its proven security in the
generic group model. The full proof can be found in the full version [CL18].

Theorem 3 (Class-hiding). The construction described above is class-hiding
in the generic group model for Type III bilinear groups.

Message class-hiding follows from message class-hiding of the SPS-EQ scheme.
Specifically, (G∗

i)
� is a class-hiding message space if and only if the decisional

Diffie-Hellman assumption (DDH) holds in Gi [FHS14].
For public key class-hiding, consider public keys written additively, so

that pk = (xiX̂)i∈[�]. We must show that an adversary’s view in a game in

544 E. C. Crites and A. Lysyanskaya

which the challenger computes independent public keys pk1 = (x(1)
i X̂)i∈[�] and

pk2 = (x(2)
i X̂)i∈[�] (Game 0) is the same as his view in a game in which

pk2 = αpk1 = (αx
(1)
i X̂)i∈[�] for some α ∈ Z

∗
p (Game 3). We achieve this by

constructing two intermediate games (Game 1 and Game 2). In Game 1, pk1
and pk2 are independent, but C’s responses to A’s group oracle and signing
queries are computed as formal multivariate Laurent polynomials in the vari-
ables x

(1)
1 , . . . , x

(1)
� , x

(2)
1 , . . . , x

(2)
� , y1, . . . yq, where yi is the secret value the chal-

lenger uses for the ith Sign query. In Game 2, pk2 = αpk1 for some α ∈ Z
∗
p,

and C’s responses to the oracle queries are again computed as formal multi-
variate Laurent polynomials, but now in the variables x

(1)
1 , . . . , x

(1)
� , y1, . . . yq,

and α. Demonstrating that A’s view is the same in Game 0 as it is in Game
1 is a direct application of the Schwartz-Zippel lemma, which guarantees that
the probability that a formal polynomial in Game 1, in which the variables
x
(1)
1 , . . . , x

(1)
� , x

(2)
1 , . . . , x

(2)
� , y1, . . . yq are given to A as handles, collides with a

formal polynomial in Game 0, in which the handles correspond to the variables
that were fixed at the beginning of the game, is negligible. The same argument
applies to Game 2 vs. Game 3.

It is nontrivial to prove that A’s view is the same in Game 1 as it is in Game
2. First, we must show that for computations carried out by the challenger in
each of the three groups, G∗

1,G
∗
2, and GT , A’s view is the same in both games.

In G
∗
2, for example, we prove that two group oracle queries to G

∗
2 in Game 1

result in distinct formal polynomials if and only if the same two queries in Game
2 result in distinct polynomials. Then, the same must be shown, by induction,
for signature queries too. If this sounds vague, it is because of the difficulty in
conveying the details, which involve many variables and groups, in a high-level
proof sketch. Please see the full version [CL18] for the full proof.

Theorem 4 (Origin-hiding). The construction described above is origin-
hiding in the generic group model for Type III bilinear groups.

4 Definition of Delegatable Anonymous Credentials

Delegatable anonymous credentials have been studied before and previous def-
initions exist. The first paper to study the subject, due to Chase and Lysyan-
skaya [CL06], does not contain a definition of security. The next paper, by
Belenkiy et al. [BCC+09], contains a simulation-extraction style definition.
Anonymity means there is a simulator that, when interacting with the adver-
sary on behalf of honest parties, creates for each interaction a transcript whose
distribution is independent on the identity of the honest party interacting with
the adversary. The extractability part means there is an extractor that “de-
anonymizes” the parties under the adversary’s control and guarantees that the
adversary cannot prove possession of a credential that “de-anonymizes” to a
credential chain not corresponding to a sequence of credential issue instances
that have actually occurred. A subsequent paper, by Chase et al. [CKLM13],
suggested modifying the Belenkiy et al. definition but preserved the simulation-
extraction style.

Delegatable Anonymous Credentials from Mercurial Signatures 545

Our definitional approach is more traditional: we have a single security game,
in which the adversary interacts with the system and attempts to break it either
by forging a credential or de-anonymizing a user, or both. Thus, we do not rely
on the definitional machinery of simulation and extraction that Belenkiy et al.
“inherited” from non-interactive zero-knowledge proof of knowledge (NIZK PoK)
systems. This makes our definition weaker than the Belenkiy et al. definition
(as we will discuss below), but at the same time, doing away with simulation
and extraction requirements means that it can be satisfied with cryptographic
building blocks, such as mercurial signatures and (interactive) zero-knowledge
proofs, that do not necessarily imply NIZK PoK.

Definition 5 (Delegatable anonymous credentials). A delegatable anony-
mous credential scheme consists of algorithms (Setup,KeyGen,NymGen) and pro-
tocols for issuing/receiving a credential and proving/verifying possession of a
credential as follows:

Setup(1k) → (params): A PPT algorithm that generates the public parameters
params for the system.

KeyGen(params) → (pk, sk): A PPT algorithm that generates an “identity” of
a system participant, which consists of a public and secret key pair (pk, sk).
sk is referred to as the user’s secret identity key, while pk is its public identity
key. WLOG, sk is assumed to include both params and pk so that they need
not be given to other algorithms as separate inputs. A root authority runs
the same key generation algorithm as every other participant.

NymGen(sk, L(p̆k0)) → (nym, aux): A PPT algorithm that, on input a user’s
secret identity key sk and level L(p̆k0) under the root authority whose public
key is p̆k0, outputs a pseudonym nym for this user and the auxiliary informa-
tion aux needed to use nym.

Issuing a credential:
[Issue(LI(p̆k0), p̆k0, skI , nymI , auxI , credI , nymR) ↔ Receive(LI(p̆k0), p̆k0, skR,
nymR, auxR, nymI)] → (credR): This is an interactive protocol between an
issuer of a credential, who runs the Issue side of the protocol, and a receiver,
who runs the Receive side. The issuer takes as input his own credential at
level LI(p̆k0) under root authority p̆k0 together with all information asso-
ciated with it. Specifically, this includes LI(p̆k0), the length of the issuer’s
credential chain; p̆k0, the public key of the root authority; skI , the issuer’s
secret key; nymI , the pseudonym by which the issuer is known to the receiver
and its associated auxiliary information, auxI ; and credI , the issuer’s creden-
tial chain. The issuer also takes as input nymR, the pseudonym by which the
receiver is known to him. The receiver takes as input the same LI(p̆k0) and
p̆k0, the same nymI and nymR, her own secret key skR, and the auxiliary
information auxR associated with her pseudonym nymR. The receiver’s out-
put is her credential credR.
Remarks. Note that there is a single protocol any issuer, including a root
authority, runs with any recipient. A root authority does not use a pseudonym,

546 E. C. Crites and A. Lysyanskaya

so our convention in that case is LI(p̆k0) = 0, nymI = p̆k0, and auxI =
credI = ⊥. Also, note that credentials, like levels, are dependent on p̆k0 (i.e.
credI = credI(p̆k0)), but this dependency has been omitted for clarity.

Proof of possession of a credential:
[CredProve(LP (p̆k0), p̆k0, skP , nymP , auxP , credP) ↔ CredVerify(params, LP

(p̆k0), p̆k0, nymP)] → output (0 or 1): This is an interactive protocol between
a prover, who is trying to prove possession of a credential and runs the
CredProve side of the protocol, and a verifier, who runs the CredVerify side.
The prover takes as input his own credential at level LP (p̆k0) under root
authority p̆k0 together with all information associated with it. Specifically,
this includes LP (p̆k0), the length of the prover’s credential chain; p̆k0, the
public key of the root authority; skP , the prover’s secret key; nymP , the
pseudonym by which the prover is known to the verifier and its associated
auxiliary information, auxP ; and credP , the prover’s credential chain. The
verifier takes as input params and the same LP (p̆k0), p̆k0, and nymP . The
verifier’s output is 1 if it accepts the proof of possession of a credential and 0
otherwise.

A delegatable anonymous credential (DAC) system must be correct and secure.
We provide a description of the security game along with a definition of unforge-
ability and anonymity for DAC under a single certification authority.

Definition 6 (Correctness of DAC). A delegatable anonymous credential
scheme is correct if, whenever Setup, KeyGen and NymGen are run correctly
and the Issue-Receive protocol is executed correctly on correctly generated inputs,
the receiver outputs a certification chain that, when used as input to the prover
in an honest execution of the CredProve-CredVerify protocol, is accepted by the
verifier with probability 1.

Security game. The security game is parameterized by (hard-to-compute) func-
tions f, fcred, and fdemo. An adversary A interacts with a challenger C, who is
responsible for setting up the keys and pseudonyms of all the honest participants
in the system and for acting on their behalf when they issue, receive, prove pos-
session of, or verify possession of credential chains. Throughout the game, C
maintains the following state information:

1. A directed graph G(p̆k0) = (V (p̆k0), E(p̆k0)) that will consist of a single tree
and some singleton nodes. The root of the tree is the node called root, and it
has public key p̆k0.

2. Corresponding to every node v ∈ V (p̆k0), the following information:
(a) v’s level L(p̆k0, v) (i.e. v’s distance to root p̆k0).
(b) status(v), which specifies whether v corresponds to an honest or adver-

sarial user.
(c) If status(v) = honest , then

– pk(v), the public key associated with v;

Delegatable Anonymous Credentials from Mercurial Signatures 547

– sk(v), the secret key corresponding to pk(v);
– all pseudonyms nym1(v), . . . , nymn(v) associated with v (if they exist)

and their corresponding auxiliary information aux1(v), . . . , auxn(v);
– the user’s credential credv := credv(p̆k0) (if it exists);
– a value p̂kv, determined using the function f . (As we will see, p̂kv =

f(pk(v)) = f(nymi(v)) for nymi(v) ∈ {nym1(v), . . . , nymn(v)}.)
(d) If status(v) = adversarial , a value p̂kv, determined using the function f ,

that will be used as this node’s identity. As we will see, p̂kv = f(nym(v))
if nym(v) is a pseudonym used by the adversary on behalf of node v. Note
that for two different adversarial nodes v, v′, it is possible that p̂kv = p̂kv′ .
This is not possible for honest nodes.

3. A forgery flag, which is set to true if the adversary forges a credential.
4. An anonymity bit b ∈ {0, 1}, a pair of anonymity challenge nodes (u0, u1),

and the status of the anonymity attack. Define S to be the set of pairs
of pseudonyms (nym(ub), nym(ub̄)) that the adversary has seen for the
anonymity challenge node ub and the other node in the pair, ub̄, where
b̄ = 1 − b. The challenger keeps track of S along with the auxiliary infor-
mation for the pairs of pseudonyms it contains.

The security game is initialized as follows. The params are generated and
given to the adversary A. A(params) specifies whether the status of the root node
is going to be honest or adversarial . If it is honest , the challenger C generates
the root key pair, (p̆k0, s̆k0) ← KeyGen(params); else, A supplies p̆k0 to C. Next,
C sets the forgery flag to false and picks a random value for the anonymity
bit b: b ← {0, 1}. At this point, the anonymity attack has not begun yet, so its
status is undefined . C stores G(p̆k0) = (V (p̆k0), E(p̆k0)) = ({root}, ∅) (i.e. the
graph consisting of the root node and no edges) and sets status(root) to be as
specified by A: pk(root) = p̆k0, and when status(root) = honest , sk(root) = s̆k0.
Next, A can add nodes/users to G(p̆k0), both honest and adversarial, and have
these users obtain, delegate, and prove possession of credentials by interacting
with C using the following oracles (see full version [CL18] for details):

AddHonestParty(u): A invokes this oracle to create a new, honest node u. C runs
(pk(u), sk(u)) ← KeyGen(params), sets L(p̆k0, u) = ∞, returns pk(u) to A.

SeeNym(u): A invokes this oracle to see a fresh pseudonym for honest node u.
C runs (nym(u), aux(u)) ← NymGen(sk(u), L(p̆k0, u)), returns nym(u) to A.

CertifyHonestParty(p̆k0, u, v): A invokes this oracle to have the honest party asso-
ciated with u issue a credential to the honest party associated with v. A
selects pseudonyms nym(u), nym(v) that he has seen for u, v (unless u = root),
and C runs the protocols: [Issue(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu,

nym(v)) ↔ Receive(L(p̆k0, u), p̆k0, sk(v), nym(v), aux(v), nym(u))] → credv. If
u = root , then p̆k0 is given as input instead of nym(u). C adds the edge (u, v)
to the graph and sets L(p̆k0, v) = L(p̆k0, u) + 1.

VerifyCredFrom(p̆k0, u): The honest party associated with u proves to A that
it has a credential at level L(p̆k0, u). A selects a pseudonym nym(u)

548 E. C. Crites and A. Lysyanskaya

that he has seen for u, and C runs the CredProve protocol with A:
CredProve(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu) ↔ A.

GetCredFrom(p̆k0, u, nymR): The honest party associated with u issues a cre-
dential to A, whom it knows by nymR. C creates a new adversarial node v

and sets its identity to be p̂kv = f(nymR). A selects a pseudonym nym(u)
that he has seen for u (unless u = root), and C runs the Issue protocol with
A: Issue(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu, nymR) ↔ A. If u = root ,
then p̆k0 is given as input instead of nym(u). C adds the edge (u, v) to the
graph and sets L(p̆k0, v) = L(p̆k0, u) + 1.

GiveCredTo(p̆k0, LI(p̆k0), nymI , v): A issues a credential to the honest party
associated with v under a pseudonym nymI (or p̆k0 if he is the root). A selects
a pseudonym nym(v) that he has seen for v, and C runs the Receive protocol
with A: [A ↔ Receive(LI(p̆k0), p̆k0, sk(v), nym(v), aux(v), nymI)] → credv. If
A is the root , then p̆k0 is given as input instead of nymI . If credv 	= ⊥, C sets
L(p̆k0, v) = LI(p̆k0) + 1 and computes the function fcred on v’s credential,
fcred(credv) = (p̂k0, p̂k1, . . . , p̂kLI

), revealing the identities in v’s credential
chain. If p̂k0 	= p̆k0, p̂kLI

	= f(nymI), or p̂kLI
= f(nym(u)) for an honest user

u, then C sets the forgery flag to true. Additionally, if according to C’s data
structure, there is some p̂ki in this chain such that p̂ki = f(nym(u)) for an
honest user u, but p̂ki+1 	= f(nym(v′)) for any v′ that received a credential
from u, then C sets the forgery flag to true. If credv 	= ⊥ and the forgery
flag remains false, C fills in the gaps in the graph as follows. Starting from
the nearest honest ancestor of v, C creates a new node for each (necessarily
adversarial) identity in the chain between that honest node and v and sets
its identity to be the appropriate p̂kj . C then adds edges between the nodes
on the chain from the nearest honest ancestor of v to v.

DemoCred(p̆k0, LP (p̆k0), nymP): A proves possession of a credential at level LP

(p̆k0). C runs the Verify protocol with A: [A ↔ CredVerify(params, LP (p̆k0),
p̆k0, nymP)] → output (0 or 1). If output = 1, C computes the function fdemo

on the transcript of the output, fdemo(transcript) = (p̂k0, p̂k1, . . . , p̂kLP
), and

determines if a forgery has occurred as in GiveCredTo. If output = 1 and
the forgery flag remains false, C creates a new adversarial node v for the
identity p̂kLP

and sets L(p̆k0, v) = LP (p̆k0). C fills in the gaps in the graph
as in GiveCredTo.

SetAnonChallenge(u0, u1): A will try to distinguish between the honest parties
associated with u0 and u1.

SeeNymAnon: A invokes this oracle to see fresh pseudonyms for ub and ub̄. C
runs (nym(ub), aux(ub)) ← NymGen(sk(ub), L(p̆k0, ub)), repeats this for ub̄,
and returns (nym(ub), nym(ub̄)) to A.

CertifyHonestAnon(p̆k0, u): A invokes this oracle to have the honest party
associated with u issue credentials to ub and ub̄. A selects pseudonyms
(nym(ub), nym(ub̄)) and nym(u) that he has seen for ub, ub̄, and u, and C runs
the protocols: [Issue(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu, nym(ub)) ↔
Receive(L(p̆k0, u), p̆k0, sk(ub), nym(ub), aux(ub), nym(u))]→credub

. If u=root ,

Delegatable Anonymous Credentials from Mercurial Signatures 549

then p̆k0 is given as input instead of nym(u). C adds the edge (u, ub) to the
graph and sets L(p̆k0, ub) = L(p̆k0, u) + 1. C repeats these steps for ub̄, using
the same nym(u) (if u 	= root).

CertifyAnonHonest(p̆k0, b∗, v): A invokes this oracle to have one of the
anonymity challenge nodes, ub∗ , where b∗ = b or b̄, issue a credential to
the honest party associated with v. C checks that the two paths from ub∗

and ub̄∗ to the root p̆k0 consist entirely of honest nodes, with the exception
that p̆k0 may be adversarial. If this check fails, C updates the status of the
anonymity attack to forfeited . A selects pseudonyms (nym(ub∗), nym(ub̄∗))
and nym(v) that he has seen for ub∗ , ub̄∗ , and v, and C runs the pro-
tocols: [Issue(L(p̆k0, ub∗), p̆k0, sk(ub∗), nym(ub∗), aux(ub∗), credub∗ , nym(v)) ↔
Receive(L(p̆k0, ub∗), p̆k0, sk(v), nym(v), aux(v), nym(ub∗))] → credv. C adds the
edge (ub∗ , v) to the graph and sets L(p̆k0, v) = L(p̆k0, ub∗) + 1.

VerifyCredFromAnon(p̆k0): The honest parties associated with ub and ub̄

prove to A that they have credentials at level L(p̆k0, ub) = L(p̆k0, ub̄).
C checks the two paths from ub and ub̄ to the root p̆k0 as in
CertifyAnonHonest. Next, A selects pseudonyms (nym(ub), nym(ub̄)) that
he has seen for ub and ub̄, and C runs the CredProve protocol with A:
CredProve(L(p̆k0, ub), p̆k0, sk(ub), nym(ub), aux(ub), credub

) ↔ A. C repeats
this step for ub̄.

GetCredFromAnon(p̆k0, b∗, nymR): The honest party associated with ub∗ , where
b∗ = b or b̄, issues a credential to A, whom it knows by nymR. C checks
the two paths from ub∗ and ub̄∗ to the root p̆k0 as in CertifyAnonHonest.
Next, C creates a new adversarial node v and sets its identity to be p̂kv =
f(nymR). Note that A can have ub∗ , ub̄∗ issue credentials to two differ-
ent adversarial nodes v, v′, respectively, with the same underlying adver-
sarial identity p̂kv = p̂kv′ . A selects pseudonyms (nym(ub∗), nym(ub̄∗))
that he has seen for ub∗ and ub̄∗ , and C runs the Issue protocol with
A: Issue(L(p̆k0, ub∗), p̆k0, sk(ub∗), nym(ub∗), aux(ub∗), credub∗ , nymR) ↔ A. C
adds the edge (ub∗ , v) to the graph and sets L(p̆k0, v) = L(p̆k0, ub∗) + 1.

GiveCredToAnon(p̆k0, LI(p̆k0), nymI): A issues credentials to ub and ub̄ under
a pseudonym nymI (or p̆k0 if he is the root). A selects pseudonyms
(nym(ub), nym(ub̄)) that he has seen for ub and ub̄, and C runs the Receive pro-
tocol with A: [A ↔ Receive(LI(p̆k0), p̆k0, sk(ub), nym(ub), aux(ub), nymI)] →
credub

. If A is the root, then p̆k0 is given as input instead of nymI . C
repeats this step for ub̄. If both credub

	= ⊥ and credub̄
	= ⊥, C sets

L(p̆k0, ub) = LI(p̆k0) + 1, computes the function fcred on ub’s credential,
fcred(credub

) = (p̂k0, p̂k1, . . . , p̂kLI
), and determines if a forgery has occurred

as in GiveCredTo. C repeats this step for ub̄. If both credub
	= ⊥ and credub̄

	= ⊥
and the forgery flag remains false, C fills in the gaps in the graph as follows. If
there is already an adversarial node v corresponding to the pseudonym nymI

with an edge connecting it to an honest parent, then C only adds an edge
between v and ub. Else, C creates a chain of edges and (adversarial) nodes

550 E. C. Crites and A. Lysyanskaya

from the nearest honest ancestor of ub to ub as in GiveCredTo. C repeats this
step for ub̄.

GuessAnon(b′): If b′ = b, the status of the anonymity attack is set to success.

Definition 7 (Unforgeability and Anonymity). A delegatable anonymous
credential scheme is unforgeable and anonymous if there exist functions f, fcred,
and fdemo such that for all PPT A, there exists a negligible function ν such that:

1. the probability that the forgery flag will be true in the single-authority game
is at most ν(k), where k is the security parameter.

2. the probability that the status of the anonymity attack in the single-authority
game will be success is at most 1/2 + ν(k).

Strengthening Anonymity. Note that this flavor of anonymity is weaker than the
previous one by Belenkiy et al., and not only because it is not based on simu-
latability. In our anonymity game, two nodes, u0 and u1, may have credentials
at the same level but still may not be appropriate candidates for the anonymity
challenge; the two paths from u0 and u1 to the root must consist entirely of
honest nodes, with the exception that the root may be adversarial. The reason
is that our definition allows the adversary to recognize himself on a credential
chain, so if he were on u0’s credential chain but not u1’s, he would be able to
distinguish the two. It would be relatively straightforward to “fix” our definition
to not allow this: we would just need to remove the requirement that u0 and
u1 have entirely honest paths to the root. Unfortunately, our construction only
satisfies the weaker anonymity notion in which this requirement must be met.

Other Types of Composition. Note that in our definition, the adversary invokes
the oracles sequentially. Our definition gives no security guarantees when the ora-
cles are invoked concurrently and the adversary orchestrates the order in which
protocol messages are exchanged. There are standard techniques for turning cer-
tain sequentially secure protocols into concurrently secure ones; there are also
well-known subtleties [Dam00,Lin03b,Lin03a]. As far as stronger types of com-
position, such as universal composition [Can01], are concerned, our definition,
even if modified somewhat, does not seem to provide this level of security.

5 Construction of DAC from Mercurial Signatures

Suppose we have a mercurial signature scheme such that the space of public
keys is a subset of the message space and RM = Rpk. Furthermore, suppose it
has the property that sampleμ = sampleρ and on input ChangeRep(pk,M, σ, μ),
where M = pk′, it outputs (M ′, σ′) such that M ′ = ConvertPK(pk′, μ).

To generate a key pair, each participant runs the KeyGen algorithm of the
mercurial signature scheme to get (pk, sk). To generate a new pseudonym and
its auxiliary information, pick ρ and let nym = ConvertPK(pk, ρ), aux = ρ.

A credential chain of length L will consist of a series of pseudonyms (nym1, . . .,
nymL) and a series of signatures (σ1, . . . , σL) such that (1) σ1 is a signature on

Delegatable Anonymous Credentials from Mercurial Signatures 551

the message nym1 under the certification authority’s public key p̆k0; (2) for
2 ≤ i ≤ L, σi is the signature on the message nymi under the public key nymi−1.
This is possible because the message space contains the space of public keys and
the relations RM and Rpk are the same.

A credential chain can be randomized so as to be unrecognizable by using
the ConvertSig and ChangeRep algorithms as follows. The input to this step
is (nym1, . . . , nymL) and (σ1, . . . , σL). In order to randomize it, pick random
(ρ1, . . . , ρL) ← sampleL

ρ . Define nym′
0 = p̆k0, σ̃1 = σ1. Now, perform two steps:

(1) for 2 ≤ i ≤ L, set σ̃i = ConvertSig(nymi−1, nymi, σi, ρi−1), and (2) for 1 ≤
i ≤ L, set (nym′

i, σ
′
i) = ChangeRep(nym′

i−1, nymi, σ̃i, ρi). This way, nym′
i is the

new, unrecognizable pseudonym corresponding to the same underlying identity
as nymi, and σ′

i is a signature attesting to that fact, which verifies under the
already updated pseudonym nym′

i−1 (treated as a public key for the purposes of
message verification). Finally, output (nym′

1, . . . , nym
′
L) and (σ′

1, . . . , σ
′
L).

In order to issue a credential, the issuer first has the receiver prove, via an
interactive zero-knowledge proof of knowledge (ZKPoK), that the receiver knows
the secret key associated with his pseudonym, nymR. Then, the issuer random-
izes his certification chain as described above and uses the last pseudonym on
the randomized chain, nym′

L, as his issuer’s pseudonym nymI . (Alternatively,
he can give a zero-knowledge proof that the two are equivalent.) He then com-
putes σL+1 = Sign(skI , nymR), where skI is the secret key that corresponds to
nymI . He sends the randomized chain as well as σL+1 to the receiver, who stores
the resulting credential chain (nym′

1, . . . , nym
′
L, nymR) and (σ′

1, . . . , σ
′
L, σL+1). In

order to prove possession of a credential, a prover first randomizes the creden-
tial chain, reveals it to the verifier, and proves knowledge of the secret key that
corresponds to the last pseudonym, nym′

L, on the certification chain.
Unfortunately, we do not know of a construction of a mercurial signature in

which the public key space is a subset of the message space. Our mercurial sig-
nature construction does not enjoy that property because messages are vectors
in G

∗
1, while public keys are vectors in G

∗
2. However, we know how to construct

a pair of mercurial signature schemes in which the public key space of one is
the message space of the other, and vice versa. That is accomplished by just
switching G

∗
1 and G

∗
2 in one of the schemes; the secret key space is the same in

both. We can use this pair of mercurial signature schemes to construct delegat-
able anonymous credentials similar to the intuitive way described above, except
that we must invoke different algorithms for even positions on the certification
chain than we do for odd positions.

Let MS1 = (PPGen1,KeyGen1,Sign1,Verify1,ConvertSK1,ConvertPK1,
ConvertSig1,ChangeRep1) and MS2 = (PPGen2,KeyGen2,Sign2,Verify2,
ConvertSK2,ConvertPK2,ConvertSig2,ChangeRep2) be two mercurial signature
schemes that share the same parameter generation algorithm PPGen1 = PPGen2.
Let R1, R2, Rsk be parameterized relations such that MS1 has message relation
R1, public key relation R2, and secret key relation Rsk, while MS2 has message
relation R2, public key relation R1, and the same secret key relation Rsk. Sup-
pose sampleμ = sampleρ for both schemes and that the message space for the

552 E. C. Crites and A. Lysyanskaya

first scheme consists of public keys for the second one, and vice versa. Finally,
suppose that both schemes satisfy class- and origin-hiding.

Our construction consists of the following algorithms and protocols. Initially,
a user runs KeyGen to obtain two key pairs, an odd pair and an even pair. Once
a user receives a credential, her level is fixed, so she only uses the relevant key
pair - the odd pair to be used at an odd level and the even pair at an even level.

Setup(1k) → (params): Compute PP ← PPGen1(1k) = PPGen2(1k) and output
params = PP .

KeyGen(params) → (pk, sk): There are two cases. For the root authority, com-
pute (p̆k0, s̆k0) ← KeyGen1(PP , �) and output it. For others, compute
(pkeven, skeven) ← KeyGen1(PP , �) and (pkodd, skodd) ← KeyGen2(PP , �) and
output both pairs of keys (pkeven, skeven), (pkodd, skodd).

NymGen(sk, L(p̆k0)) → (nym, aux): If L(p̆k0) = 0, output (p̆k0,⊥). Oth-
erwise, pick random key converters ρeven, ρodd and compute s̃keven ←
ConvertSK1(skeven, ρeven) and nymeven ← ConvertPK1(pkeven, ρeven). Sim-
ilarly, compute s̃kodd ← ConvertSK2(skodd, ρodd) and nymodd ←
ConvertPK2(pkodd, ρodd). Output both pairs (nymeven, ρeven), (nymodd, ρodd).

In the following protocols, each algorithm is either from MS1 or MS2, but
the even/odd subscripts have been omitted for clarity. For example, σ1 ←
Sign(s̆k0, nym1) is computed as σ1 ← Sign1(s̆k0, nym1,odd) since the user nym1

is fixed at odd level 1.

Issuing a credential:
Issue(LI(p̆k0), p̆k0, skI , nymI , auxI , credI , nymR) ↔ Receive(LI(p̆k0), p̆k0, skR,

nymR, auxR, nymI)] → credR: {(nym′
1, . . . , nym

′
LI

, nymR), (σ′
1, . . . , σ

′
LI

,
σLI+1)}
The issuer first has the receiver prove, via an interactive ZKPoK, that the
receiver knows the secret key, skR, associated with his pseudonym, nymR.

Issue: If the ZKPoK accepts, proceed as follows; else, abort.
Randomize credential chain.
1. If LI(p̆k0) = 0, credI = ⊥. Define nym′

0 = p̆k0, σ̃1 = σ1.
Compute σ1 ← Sign(s̆k0, nym1).
Output credR = (nym1, σ1) and send it to the receiver.

2. If LI(p̆k0) 	= 0, credI = {(nym1, . . . , nymLI
), (σ1, . . . , σLI

)}.
Pick random (ρ1, . . ., ρLI

) ← sampleLI
ρ .

If LI(p̆k0) = 1, nym′
0 = p̆k0, σ̃1 = σ1 as above.

Compute (nym′
1, σ

′
1) ← ChangeRep(nym′

0, nym1, σ̃1, ρ1).
If LI(p̆k0) > 1, for 2 ≤ i ≤ LI ,
Compute σ̃i ← ConvertSig(nymi−1, nymi, σi, ρi−1).
Then, compute (nym′

i, σ
′
i) ← ChangeRep(nym′

i−1, nymi, σ̃i, ρi).
Finally, output (nym′

1, . . . , nym
′
LI

) and (σ′
1, . . . , σ

′
LI

).
Compute σLI+1 ← Sign(skLI

, nymR).
Send the randomized chain as well as σLI+1 to the receiver.
Note: The issuer uses nym′

LI
as his issuer’s pseudonym, nymI .

Delegatable Anonymous Credentials from Mercurial Signatures 553

Receive: If Verify(nym′
i−1, nym

′
i, σ

′
i) = 1 ∀ 1 < i < LI and

Verify(nym′
LI

, nymR, σLI+1) = 1, store the resulting credential chain credR :
{(nym′

1, . . . , nym
′
LI

, nymR), (σ′
1, . . . , σ

′
LI

, σLI+1)}; else, output ⊥.

Proof of possession of a credential:
[CredProve(LP (p̆k0), p̆k0, skP , nymP , auxP , credP) ↔ CredVerify(params,

LP (p̆k0), p̆k0, nymP)] → output (0 or 1)
CredProve: Randomize the credential chain credP = {(nym1, . . . , nymLP

),
(σ1, . . . , σLP

)} as above and send the chain to the verifier. The prover then
proves knowledge of the secret key that corresponds to the last pseudonym,
nym′

LP
, on the randomized chain, which he uses as nymP .

CredVerify: If the ZKPoK accepts, credP 	= ⊥, and Verify(nym′
i−1, nym

′
i, σ

′
i) = 1

∀ 1 < i < LP , output 1; else, output 0.

Theorem 5 The construction presented in Sect. 5 is correct, unforgeable, and
anonymous in the single-authority security game.

Unforgeability follows from unforgeability of mercurial signatures, while
anonymity follows from class- and origin-hiding. The proof is in the full ver-
sion [CL18].

Efficiency Analysis. Consider this scheme instantiated with our mercurial sig-
nature construction (Sect. 3). We need to establish an appropriate value for the
length parameter �. For our purposes, � = 2 is good enough, so public keys
and messages consist of two group elements each. (If � = 1, all messages and
all public keys are equivalent.) A certification chain of length L will then have
two group elements per pseudonym on the chain and three group elements per
signature (according to our construction). Therefore, it takes 5L group elements
to represent a credential chain of length L.

Trust Assumptions. Note that the only system-wide setup that needs to take
place is the generation of the system parameters. When instantiated with mercu-
rial signatures, this boils down to just the bilinear pairing setup. Even if the setup
is carried out by a less-than-trustworthy party, it is unclear that this party can
introduce trapdoors that would allow it to forge credentials or break anonymity.
This is in contrast with previous constructions, in which the setup had to be
carried out by a completely trustworthy process because trapdoors would allow
simulation and extraction, thus breaking both unforgeability and anonymity.

References

[BCC+09] Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous credentials.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 7

https://doi.org/10.1007/978-3-642-03356-8_7

554 E. C. Crites and A. Lysyanskaya

[BHKS18] Backes, M., Hanzlik, L., Kluczniak, K., Schneider, J.: Signatures with flexi-
ble public key: a unified approach to privacy-preserving signatures (full ver-
sion). Cryptology ePrint Archive, Report 2018/191 (2018). https://eprint.
iacr.org/2018/191

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press (2001)

[CDD17] Camenisch, J., Drijvers, M., Dubovitskaya, M.: Practical UC-secure dele-
gatable credentials with attributes and their application to blockchain. In:
ACM CCS 2017, pp. 683–699. ACM Press (2017)

[CDHK15] Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Com-
posable and modular anonymous credentials: definitions and practical con-
structions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9453, pp. 262–288. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48800-3 11

[Cha86] Chaum, D.: Showing credentials without identification. In: Pichler, F. (ed.)
EUROCRYPT 1985. LNCS, vol. 219, pp. 241–244. Springer, Heidelberg
(1986). https://doi.org/10.1007/3-540-39805-8 28

[CHK+05] Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally
composable password-based key exchange. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 24

[CKL+14] Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Ped-
ersen, M.Ø.: Formal treatment of privacy-enhancing credential systems.
Cryptology ePrint Archive, Report 2014/708 (2014). http://eprint.iacr.
org/2014/708

[CKLM13] Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable
signatures: complex unary transformations and delegatable anonymous
credentials. Cryptology ePrint Archive, Report 2013/179 (2013). http://
eprint.iacr.org/2013/179

[CL01] Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-44987-6 7

[CL04] Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Cre-
dentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-28628-8 4

[CL06] Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg
(2006). https://doi.org/10.1007/11818175 5

[CL18] Crites, E.C., Lysyanskaya, A.: Delegatable anonymous credentials from
mercurial signatures. http://eprint.iacr.org/2001/064 (2018)

[Dam00] Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string
model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–
430. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-
6 30

[FHS14] Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures
on equivalence classes and constant-size anonymous credentials. Cryptology
ePrint Archive, Report 2014/944 (2014). http://eprint.iacr.org/2014/944

https://eprint.iacr.org/2018/191
https://eprint.iacr.org/2018/191
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/3-540-39805-8_28
https://doi.org/10.1007/11426639_24
http://eprint.iacr.org/2014/708
http://eprint.iacr.org/2014/708
http://eprint.iacr.org/2013/179
http://eprint.iacr.org/2013/179
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/11818175_5
http://eprint.iacr.org/2001/064
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/3-540-45539-6_30
http://eprint.iacr.org/2014/944

Delegatable Anonymous Credentials from Mercurial Signatures 555

[GMR88] Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308
(1988)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3 24

[Lin03a] Lindell, Y.: Bounded-concurrent secure two-party computation without
setup assumptions. In: 35th ACM STOC, pp. 683–692. ACM Press (2003)

[Lin03b] Lindell, Y.: Brief announcement: impossibility results for concurrent secure
two-party computation. In: 22nd ACM PODC, p. 200. ACM, July 2003

[LRSW99] Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems.
In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46513-8 14

[Lys02] Lysyanskaya, A.: Signature schemes and applications to cryptographic pro-
tocol design. Ph.D. thesis, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, September 2002

[Swe97] Sweeney, L.: Weaving technology and policy together to maintain confiden-
tiality. Int. J. Law Med. Ethics 25(2–3), 98–110 (1997)

https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/3-540-46513-8_14

Accountable Tracing Signatures from
Lattices

San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu(B)

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

{lingsan,khoantt,hxwang,xu0014ng}@ntu.edu.sg

Abstract. Group signatures allow users of a group to sign messages
anonymously in the name of the group, while incorporating a tracing
mechanism to revoke anonymity and identify the signer of any message.
Since its introduction by Chaum and van Heyst (EUROCRYPT 1991),
numerous proposals have been put forward, yielding various improve-
ments on security, efficiency and functionality. However, a drawback of
traditional group signatures is that the opening authority is given too
much power, i.e., he can indiscriminately revoke anonymity and there
is no mechanism to keep him accountable. To overcome this problem,
Kohlweiss and Miers (PoPET 2015) introduced the notion of accountable
tracing signatures (ATS) - an enhanced group signature variant in which
the opening authority is kept accountable for his actions. Kohlweiss and
Miers demonstrated a generic construction of ATS and put forward a
concrete instantiation based on number-theoretic assumptions. To the
best of our knowledge, no other ATS scheme has been known, and the
problem of instantiating ATS under post-quantum assumptions, e.g., lat-
tices, remains open to date.

In this work, we provide the first lattice-based accountable tracing sig-
nature scheme. The scheme satisfies the security requirements suggested
by Kohlweiss and Miers, assuming the hardness of the Ring Short Integer
Solution (RSIS) and the Ring Learning With Errors (RLWE) problems.
At the heart of our construction are a lattice-based key-oblivious encryp-
tion scheme and a zero-knowledge argument system allowing to prove
that a given ciphertext is a valid RLWE encryption under some hidden
yet certified key. These technical building blocks may be of independent
interest, e.g., they can be useful for the design of other lattice-based
privacy-preserving protocols.

1 Introduction

Group signature is a fundamental cryptographic primitive introduced by Chaum
and van Heyst [12]. It allows members of a group to anonymously sign messages
on behalf of the group, but to prevent abuse of anonymity, there is an opening
authority (OA) who can identify the signer of any message. While such a tracing
mechanism is necessary to ensure user accountability, it grants too much power to
the opening authority. Indeed, in traditional models of group signatures, e.g., [2,
c© Springer Nature Switzerland AG 2019
M. Matsui (Ed.): CT-RSA 2019, LNCS 11405, pp. 556–576, 2019.
https://doi.org/10.1007/978-3-030-12612-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12612-4_28&domain=pdf
https://doi.org/10.1007/978-3-030-12612-4_28

Accountable Tracing Signatures from Lattices 557

3,7,8,22,23,52], the OA can break users’ anonymity whenever he wants, and we
do not have any method to verify whether this trust is well placed or not.

One existing attempt to restrict the OA’s power is the proposal of group
signatures with message-dependent opening (MDO) [51], in which the OA can
only identify the signers of messages admitted by an additional authority named
admitter. However, this solution is still unsatisfactory. Once the OA has obtained
admission to open a specific message, he can identify all the users, including
some innocent ones, who have ever issued signatures on this specific message.
Furthermore, by colluding with the admitter, the OA again is able to open all
signatures.

To tackle the discussed above problem, Kohlweiss and Miers [24] put for-
ward the notion of accountable tracing signatures (ATS), which is an enhanced
variant of group signatures that has an additional mechanism to make the OA
accountable. In an ATS scheme, the role of the OA is incorporated into that
of the group manager (GM), and there are two kinds of group users: traceable
ones and non-traceable ones. Traceable users are treated as in traditional group
signatures, i.e., their anonymity can be broken by the OA/GM. Meanwhile, it
is infeasible for anyone, including the OA/GM, to trace signatures generated
by non-traceable users. When a user joins the group, the OA/GM first has to
determine whether this user is traceable and then he issues a corresponding
(traceable/nontraceable) certificate to the user. In a later phase, the OA/GM
reveals which user he deems traceable using an “accounting” algorithm, yielding
an intriguing method to enforce his accountability.

As an example, let us consider the surveillance controls of a building, which
is implemented using an ATS scheme. On the one hand, the customers in this
building would like to have their privacy protected as much as possible. On the
other hand, the police who are conducting security check in this building would
like to know as much as they can. To balance the interests of these two parties,
the police can in advance narrow down some suspects and asks the OA/GM to
make these suspected users traceable and the remaining non-suspected users
non-traceable. To check whether the suspects entered the building, the police
can ask the OA/GM to open all signatures that were used for authentication at
the entrance. Since only the suspects are traceable, the group manager can only
identify them if they indeed entered this building. However, if a standard group
signature scheme (e.g., [1–3,6]) were used, then the privacy of innocent users
would be seriously violated. In this situation, one might think that a traceable
signature scheme, as suggested by Kiayias, Tsiounis and Yung [22], would work.
By requesting a user-specific trapdoor from the OA/GM, the police can trace all
the signatures created by the suspects. However, this only achieves privacy of
innocent users against the police, but not against the group authorities. In fact,
in a traceable signature scheme, the OA/GM has the full power to identify the
signers of all signatures and hence can violate the privacy of all users without
being detected. In contrast, if an ATS scheme is used, then the OA/GM must
later reveal which user he chose to be traceable, thus enabling his accountability.

558 S. Ling et al.

In [24], besides demonstrating the feasibility of ATS under generic assump-
tions, Kohlweiss and Miers also presented an instantiation based on number-
theoretic assumptions, which remains the only known concrete ATS construc-
tion to date. This scheme, however, is vulnerable against quantum computers
due to Shor’s algorithm [53]. For the sake of not putting all eggs in one basket,
it is therefore tempting to build schemes based on post-quantum foundations. In
this paper, we investigate the design of accountable tracing signatures based on
lattice assumptions, which are currently among the most viable foundations for
post-quantum cryptography. Let us now take a look at the closely related and
recently active topic of lattice-based group signatures.

Lattice-based group signatures. The first lattice-based group signature
scheme was introduced by Gordon, Katz and Vaikuntanathan in 2010 [19]. Sub-
sequently, numerous schemes offering improvements in terms of security and
efficiency have been proposed [9,11,25,27,29,33,46,49]. Nevertheless, regarding
the supports of advanced functionalities, lattice-based group signatures are still
way behind their number-theoretic-based counterparts. Indeed, there have been
known only a few lattice-based schemes [27,30,31,34,35] that depart from the
BMW model [2] - which deals solely with static groups and which may be too
inflexible to be considered for a wide range of real-life applications. In partic-
ular, although there was an attempt [30] to restrict the power of the OA in
the MDO sense, the problem of making the OA accountable in the context of
lattice-based group signatures is still open. This somewhat unsatisfactory state-
of-affairs motivates our search for a lattice-based instantiation of ATS. As we
will discuss below, the technical road towards our goal is not straightforward:
there are challenges and missing building blocks along the way.

Our Results and Techniques. In this paper, we introduce the first lattice-
based accountable tracing signature scheme. The scheme satisfies the security
requirements suggested by Kohlweiss and Miers [24], assuming the hardness of
the Ring Short Integer Solution (RSIS) problem and the Ring Learning With
Errors (RLWE) problem. As all other known lattice-based group signatures, the
security of our scheme is analyzed in the random oracle model. For a security
parameter λ, our ATS scheme features group public key size and user secret
key size ˜O(λ). However, the accountability of the OA/GM comes at a price: the
signature size is of order ˜O(λ2) compared with ˜O(λ) in a recent scheme by Ling
et al. [35].

Let us now give an overview of our techniques. First, we recall that in an
ordinary group signature scheme [2,3], to enable traceability, the user is sup-
posed to encrypt his identifying information and prove the well-formedness of
the resulting ciphertext. In an ATS scheme, however, not all users are traceable.
We thus would need a mechanism to distinguish between traceable users and
non-traceable ones. A possible method is to let traceable users encrypt their
identities under a public key (pk) such that only the OA/GM knows the under-
lying secret key (sk), while for non-traceable users, no one knows the secret key.
However, there seems to be no incentive for users to deliberately make themselves
traceable. We hence should think of a way to choose traceable users obliviously.

Accountable Tracing Signatures from Lattices 559

An interesting approach is to randomize pk to a new public key epk so that
it is infeasible to decide how these keys are related without the knowledge of
the secret key and the used randomness. More specifically, when a user joins
the group, the OA/GM first randomizes pk to epk and sends the latter to the
user together with a certificate. The difference between traceable users and non-
traceable ones lies in whether OA/GM knows the underlying secret key. Thanks
to the obliviousness property of the randomization, the users are unaware of
whether they are traceable. Then, when signing messages, the user encrypts his
identity using his own randomized key epk (note that this “public key” should
be kept secret) and proves the well-formedness of the ciphertext. Several ques-
tions regarding this approach then arise. What special kind of encryption scheme
should we use? How to randomize the public key in order to get the desirable
obliviousness? More importantly, how could the user prove the honest execution
of encryption if the underlying encryption key is secret?

To address the first two questions, Kohlweiss and Miers [24] proposed the
notion of key-oblivious encryption (KOE) - a public-key encryption scheme in
which one can randomize public keys in an oblivious manner. Kohlweiss and
Miers showed that a KOE scheme can be built from a key-private homomorphic
public-key encryption scheme. They then gave an explicit construction based on
the ElGamal cryptosystem [17], where epk is obtained by multiplying pk by a
ciphertext of 1. When adapting this idea into the lattice setting, however, one
has to be careful. In fact, we observe that an implicit condition for the underlying
key-private public-key encryption scheme is that its public key and ciphertext
should have the same algebraic form1, which is often not the case for the schemes
in the lattice setting, e.g., [18,50]. Furthermore, lattice-based encryption schemes
from the Learning with Errors (LWE) problem or its ring version RLWE often
involve noise terms that grow quickly when one performs homomorphic opera-
tions over ciphertexts. Fortunately, we could identify a suitable candidate: the
RLWE-based encryption scheme proposed by Lyubashevsky, Peiker and Regev
(LPR) [42], for which both the public key and the ciphertext consist of a pair
of ring elements. Setting the parameters carefully to control the noise growth
in LPR, we are able to adapt the blueprint of [24] into the lattice setting and
obtain a lattice-based KOE scheme.

To tackle the third question, we need a zero-knowledge (ZK) protocol for
proving well-formedness of the ciphertext under a hidden encryption key, which
is quite challenging to build in the RLWE setting. Existing ZK protocols from
lattices belong to two main families. One line of research [4,5,36,37,40,43]
designed very elegant approximate ZK proofs for (R)LWE and (R)SIS relations
by employing rejection sampling techniques. While these proofs are quite effi-
cient and compact, they only handle linear relations. In other words, they can
only prove knowledge of a short vector x satisfying y = A · x mod q, for pub-
lic A and public y. This seems insufficient for our purpose. Another line of
research [13,28,29,32,33,35] developed decomposition/ extension/permutation

1 This condition is needed so that epk can be computed as pk · enc(1) (multiplicative
homomorphic) or pk + enc(0) (additive homomorphic).

560 S. Ling et al.

techniques that operate in Stern’s framework [55]. Although Stern-like pro-
tocols are less practical than those in the first family, they are much more
versatile and can even deal with quadratic relations [28]. More precisely, as
demonstrated by Libert et al. [28] one can employ Stern-like techniques to prove
knowledge of secret-and-certified A together with short secret vector x satisfying
y = A · x mod q. Thus, Libert et al.’s work appears to be the “right” stepping
stone for our case. However, in [28], quadratic relations were considered only in
the setting of general lattices, while here we have to deal with the ring setting,
for which the multiplication operation is harder to express, capture and prove in
zero-knowledge. Nevertheless we manage to adapt their techniques into the ring
lattices and obtain the desired technical building block.

As discussed so far, we have identified the necessary ingredients - the LPR
encryption scheme and Stern-like ZK protocols - for upgrading a lattice-based
ordinary group signature to a lattice-based accountable tracing signature. Next,
we need to find a lattice-based ordinary group signature scheme that is compati-
ble with the those ingredients. To this end, we work with Ling et al.’s scheme [35],
that also employs the LPR system for its tracing layer and Stern-like techniques
for proving knowledge of a valid user certificate (which is a Ducas-Micciancio
signature [14,15] based on the hardness of the Ring Short Integer Solution (RSIS)
problem). We note that the scheme from [35] achieves constant-size signatures,
which means that the signature size is independent of the number of users. As
a by-product, our signatures are also constant-size (although our constant is
larger, due to the treatment of quadratic relations).

A remaining aspect is how to enable the accountability of the OA/GM. To
this end, we let the latter reveal the choice (either traceable or non-traceable) for
a given user together with the randomness used to obtain the randomized public
key. The user then checks whether his epk was computed as claimed. However,
the OA/GM may claim a traceable user to be non-traceable by giving away
malicious randomness and accusing that the user had changed epk by himself. To
ensure non-repudiation, OA/GM is required to sign epk and the users’ identifying
information when registering the user into the group. This mechanism in fact
also prevents dishonest users from choosing non-traceable epk by themselves.

The obtained ATS scheme is then proven secure in the random oracle model
under the RSIS and RLWE assumptions, according to the security requirements
put forward by Kohlweiss and Miers [24]. On the efficiency front, as all known
lattice-based group signatures with advanced functionalities, our scheme is still
far from being practical. We, however, hope that our result will inspire more
efficient constructions in the near future.

2 Background

Notations. For a positive integer n, define the set {1, 2, . . . , n} as [n], the set
{0, 1, . . . , n} as [0, n], and the set containing all the integers from −n to n as
[−n, n]. Denote the set of all positive integers as Z

+. If S is a finite set, then

x
$←− S means that x is chosen uniformly at random from S. Let a ∈ R

m1 and

Accountable Tracing Signatures from Lattices 561

b ∈ R
m2 be two vectors for positive integers m1,m2. Denote (a‖b) ∈ R

m1+m2 ,
instead of (a�,b�)�, as the concatenation of these two vectors.

2.1 Rings, RSIS and RLWE

Let q ≥ 3 be a positive integer and let Zq = [− q−1
2 , q−1

2]. In this work, let us
consider rings R = Z[X]/(Xn + 1) and Rq = (R/qR), where n is a power of 2.

Let τ be the coefficient embedding τ : Rq → Z
n
q that maps a ring element

v = v0 + v1 · X + . . . + vn−1 · Xn−1 ∈ Rq to a vector τ(v) = (v0, v1, . . . , vn−1)�

over Z
n
q . When working with vectors and matrices over Rq, we generalize the

notations τ in the following way. For a vector v = (v1, . . . , vm)� ∈ Rm
q , define

τ(v) = (τ(v1)‖ · · · ‖τ(vm)) ∈ Z
mn
q .

For a = a0 + a1 · X + . . . + an−1 · XN−1 ∈ R, we define ‖a‖∞ = maxi(|ai|).
Similarly, for vector b = (b1, . . . , bm)� ∈ Rm, we define ‖b‖∞ = maxj(‖bj‖∞).

We now recall the average-case problems RSIS and RLWE associated with the
rings R,Rq, as well as their hardness results.

Definition 1 ([38,39,48]). Given a uniform matrix A = [a1|a2| · · · |am] over
R1×m

q , the RSIS∞
n,m,q,β problem asks to find a ring vector b = (b1, b2, . . . , bm)�

over Rm such that A · b = a1 · b1 + a2 · b2 + · · · + am · bm = 0 over Rq and
0 < ‖b‖∞ ≤ β.

For polynomial bounded m,β and q ≥ β · ˜O(
√

n), it was proven that the
RSIS∞

n,m,q,β problem is no easier than the SIVPγ problem in any ideal in the ring
R, where γ = β · ˜O(

√
nm) (see [26,38,48]).

Definition 2 ([41,42,54]). For positive integers n,m, q ≥ 2 and a probability

distribution χ over the ring R, define a distribution As,χ over Rq×Rq for s
$←− Rq

in the following way: it first samples a uniformly random element a ∈ Rq, an
error element e ←↩ χ, and then outputs (a, a·s+e). The target of the RLWEn,m,q,χ

problem is to distinguish m samples chosen from a uniform distribution over
Rq × Rq and m samples chosen from the distribution As,χ for s

$←− Rq.

Let q ≥ 2 and B = ˜O(
√

n) be positive integers. χ is a distribution over R which
efficiently outputs samples e ∈ R with ‖e‖∞ ≤ B with overwhelming probability
in n. Then there is a quantum reduction from the RLWEn,m,q,χ problem to
the SIVPγ problem and the SVPγ problem in any ideal in the ring R, where
γ = ˜O(

√
n · q/B) (see [10,26,41,47]). It is shown that the hardness of the RLWE

problem is preserved when the secret s is sampled from the error distribution χ
(see [10,41]).

2.2 Decompositions

In this work, we employ the decomposition technique from [32]. For any positive
integer B, let δB := 	log2 B
 + 1 = �log2(B + 1)� and the sequence B1, . . . , BδB ,

562 S. Ling et al.

where Bj = 	B+2j−1

2j
, for any j ∈ [δB]. Then there is a decomposition procedure
that on input v ∈ [0, B], it outputs idecB(a) = (a(1), a(2), . . . , a(δB))� ∈ {0, 1}δB

satisfying (B1, B2, . . . , BδB) · idecB(a) = a.
In [35], the above decomposition procedure is also utilized to deal with poly-

nomials in the ring Rq. Specifically, for B ∈ [1, q−1
2], define the injective function

rdecB that maps a ∈ Rq with ‖a‖∞ ≤ B to a ∈ RδB with ‖a‖∞ ≤ 1, which works
as follows.

1. Let τ(a) = (a0, . . . , an−1)�. For each i, let σ(ai) = 0 if ai = 0; σ(ai) = −1 if
ai < 0; and σ(ai) = 1 if ai > 0.

2. ∀i, compute wi = σ(ai) · idecB(|ai|) = (wi,1, . . . , wi,δB)� ∈ {−1, 0, 1}δB .
3. Form the vector w = (w0‖ . . . ‖wn−1) ∈ {−1, 0, 1}nδB , and let a ∈ RδB be

the vector such that τ(a) = w.
4. Output rdecB(a) = a.

When working with vectors of ring elements, e.g., v = (v1, . . . , vm)� such that
‖v‖∞ ≤ B, then we let rdecB(v) = (rdecB(v1)‖ · · · ‖rdecB(vm)) ∈ RmδB . Now,
∀m,B ∈ Z

+, we define matrices HB ∈ Z
n×nδB as

HB =

⎡

⎢

⎣

B1 . . . BδB

. . .
B1 . . . BδB

⎤

⎥

⎦
.

Then we have
τ(a) = HB · τ(rdecB(a)) mod q.

For simplicity reason, when B = q−1
2 , we will use the notation rdec instead of

rdec q−1
2

, and H instead of H q−1
2

.

2.3 A Variant of the Ducas-Micciancio Signature Scheme

We recall the stateful and adaptively secure version of Ducas-Micciancio signa-
ture scheme [14,15], which is used to enroll new users in our construction.

Following [14,15], throughout this work, for any real constants c > 1 and
α0 ≥ 1

c−1 , define a series of sets Tj = {0, 1}cj of lengths cj = 	α0c
j
 for j ∈ [d],

where d ≥ logc(ω(log n)). For each tag t = (t0, t1, . . . , tcj)
� ∈ Tj for j ∈ [d],

associate it with a ring element t(X) =
∑cj

k=0 tk · Xk ∈ Rq. Let c0 = 0 and then
define t[i](X) =

∑ci−1
k=ci−1

tk · Xk and t[i] = (tci−1 , . . . , tci−1)� for i ∈ [j]. Then

one can check t = (t[1]‖t[2]‖ · · · ‖t[j]) and t(X) =
∑j

i=1 t[i](X).
This variant works with the following parameters.

– Let n,m, q, k be some positive integers such that n ≥ 4 is a power of 2,
m ≥ 2�log q� + 2, and q = 3k. Define the rings R = Z[X]/(Xn + 1) and
Rq = R/qR.

– Let the message dimension be ms = poly(n). Also, let � = 	log q−1
2
 + 1, and

m = m + k and ms = ms · �.

Accountable Tracing Signatures from Lattices 563

– Let integer β = ˜O(n) and integer d and sequence c0, . . . , cd be as above.
– Let S ∈ Z be a state that is 0 initially.

The public verification key consists of the following:

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F ∈ R1×�
q ; F1 ∈ R1×ms

q ; u ∈ Rq

while the secret signing key is a Micciancio-Peikert [44] trapdoor matrix R ∈
Rm×k

q .
When signing a message m ∈ Rms

q , the signer first computes m = rdec(m) ∈
Rms , whose coefficients are in the set {−1, 0, 1}. He then performs the following
steps.

– Set the tag t = (t0, t1 . . . , tcd−1)� ∈ Td, where S =
∑cd−1

j=0 2j ·tj , and compute

At = [A|A[0] +
∑d

i=1 t[i]A[i]] ∈ R
1×(m+k)
q . Update S to S + 1.

– Choose r ∈ Rm with ‖r‖∞ ≤ β.
– Let y = F0 · r + F1 · m ∈ Rq and up = F · rdec(y) + u ∈ Rq.
– Employing the trapdoor matrix R, produce a ring vector v ∈ Rm+k with
At · v = up over the ring Rq and ‖v‖∞ ≤ β.

– Return the tuple (t, r,v) as a signature for the message m.

To check the validity of the tuple (t, r,v) with respect to message m ∈ Rms
q ,

the verifier first computes the matrix At as above and verifies the following
conditions:

{

At · v = F · rdec(F0 · r + F1 · rdec(m)) + u,

‖r‖∞ ≤ β, ‖v‖∞ ≤ β.

He outputs 1 if all these three conditions hold and 0 otherwise.

Lemma 1 ([14,15]). Given at most polynomially bounded number of signature
queries, the above variant is existentially unforgeable against adaptive chosen
message attacks assuming the hardness of the RSISn,m,q, ˜O(n2) problem.

2.4 Stern-Like Zero-Knowledge Argument of Knowledge

The statistical zero-knowledge arguments of knowledge (ZKAoK) presented in
this work are Stern-like [55] protocols. In particular, they are Σ-protocols in
the generalized sense defined in [4,20] (where 3 valid transcripts are needed
for extraction, instead of just 2). Stern’s protocol was originally proposed in
the context of code-based cryptography, and was later adapted into the lattice
setting by Kawachi et al. [21]. Subsequently, it was empowered by Ling et al. [32]
to handle the matrix-vector relations where the secret vectors are of small infinity
norm, and further developed to design various lattice-based schemes. Libert et
al. [27] put forward an abstraction of Stern’s protocol to capture a wider range
lattice-based relations.

564 S. Ling et al.

2.5 Key-Oblivious Encryption

We next recall the definitions of key-oblivious encryption (KOE), as introduced
in [24]. A KOE scheme consists of the following polynomial-time algorithms.

Setup(λ): On input the security parameter λ, it outputs public parameter pp.
pp is implicit for all algorithms below if not explicitly mentioned.

KeyGen(pp): On input pp, it generates a key pair (pk, sk).
KeyRand(pk): On input the public key pk, it outputs a new public key pk′ for

the same secret key.
Enc(pk,m): On inputs pk and a message m, it outputs a ciphertext ct on this

message.
Dec(sk, ct): On inputs sk and ct, it outputs the decrypted message m′.

Correctness. The above scheme must satisfy the following correctness require-
ment: For all λ, all pp ← Setup(λ), all (pk, sk) ← KeyGen(pp), all pk′ ←
KeyRand(pk), all m,

Dec(sk,Enc(pk′,m)) = m.

Security. The security requirements of a KOE scheme consist of key randomiz-
ability (KR), plaintext indistinguishability under key randomization (INDr), and
key privacy under key randomization (KPr). Details of these requirements are
referred to [24] or the full version of this paper.

2.6 Accountable Tracing Signatures

An ATS scheme [24] involves a group manager (GM) who also serves as the
opening authority (OA), a set of users, who are potential group members. As a
standard group signature scheme (e.g. [2,3]), GM is able to identify the signer
of a given signature. However, if GM is able to do so, there is an additional
accounting mechanism that later reveals which user he chose to trace (traceable
user). Specifically, if a user suspects that he was traceable by group manager
who had claimed non-traceability of this user, then the user can resort to this
mechanism to check whether group manager is honest/accountable or not. An
ATS scheme consists of the following polynomial-time algorithms.

Setup(λ): On input the security parameter λ, it outputs public parameter pp.
pp is implicit for all algorithms below if not explicitly mentioned.

GKeyGen(pp): This algorithm is run by GM. On input pp, GM generates group
public key gpk and group secret keys: issue key ik and opening key ok.

UKeyGen(pp): Given input pp, it outputs a user key pair (upk, usk).
Enroll(gpk, ik, upk, tr): This algorithm is run by GM. Upon receiving a user public

key upk from a user, GM determines the value of the bit tr ∈ {0, 1}, indicating
whether the user is traceable (tr = 1) or not. He then produces a certificate
cert for this user according to his choice of tr. GM then registers this user to
the group and stores the registration information and the witness wescrw to
the bit tr, and sends cert to the user.

Accountable Tracing Signatures from Lattices 565

Sign(gpk, cert, usk,M): Given the inputs gpk, cert, usk and message M , this algo-
rithm outputs a signature Σ on this message M .

Verify(gpk,M,Σ): Given the inputs gpk and the message-signature pair (M,Σ),
this algorithm outputs 1/0 indicating whether the signature is valid or not.

Open(gpk, ok,M,Σ): Given the inputs gpk, ok and the pair (M,Σ), this algo-
rithm returns a user public key upk′ and a proof Πopen demonstrating that
user upk′ indeed generated the signature Σ. In case of upk′ = ⊥, Πopen = ⊥.

Judge(gpk,M,Σ, upk′,Πopen): Given all the inputs, this algorithm outputs 1/0
indicating whether it accepts the opening result or not.

Account(gpk, cert, wescrw, tr): Given all the inputs, this algorithm returns 1 con-
firming the choice of tr and 0 otherwise.

Correctness. The above ATS scheme requires that: for any honestly generated
signature, the Verify algorithm always outputs 1. Furthermore, if the user is
traceable, then Account algorithm outputs 1 when tr = 1, and the Open algorithm
can identify the signer and generate a proof Πopen that will be accepted by the
Judge algorithm. On the other hand, if the user is non-traceable, then the Account
algorithm outputs 1 when tr = 0, and the Open algorithm outputs ⊥.

Remark 1. There is a minor difference between the syntax we describe here and
that presented by Kohlweiss and Miers [24]. Specifically, we omit the time epoch
when the user joins the group, since we do not consider forward and backward
tracing scenarios as in [24].

Security. The security requirements of an ATS scheme consist of anonymity
under tracing (AuT), traceability (Trace), and non-frameability (NF), anonymity
with accountability (AwA) and trace-obliviousness (TO). Details of these require-
ments are referred to [24] or the full version of this paper.

3 Key-Oblivious Encryption from Lattices

In [24], Kohlweiss and Miers constructed a KOE scheme based on ElGamal cryp-
tosystem [17]. To adapt their blueprint into the lattice setting, we would need
a key-private homomorphic encryption scheme whose public keys and cipher-
texts should have the same algebraic form (e.g., each of them is a pair of ring
elements). We observe that, the LPR RLWE-based encryption scheme, under
appropriate setting of parameters, does satisfy these conditions. We thus obtain
an instantiation of KOE which will then serve as a building block for our ATS
construction in Sect. 4.

566 S. Ling et al.

3.1 Description

Our KOE scheme works as follows.

Setup(λ): Given the security parameter λ, let n = O(λ) be a power of 2 and
q = ˜O(n4). Also let � = 	log q−1

2
 + 1. Define the rings R = Z[X]/(Xn + 1)
and Rq = R/qR. Let the integer bound B be of order ˜O(

√
n) and χ be a

B-bounded distribution over the ring R. This algorithm then outputs public
parameter pp = {n, q, �, R,Rq, B, χ}.

KeyGen(pp): Given the input pp, this algorithm samples s ←↩ χ, e ←↩ χ� and

a $←− R�
q. Set pk = (a,b) = (a,a · s+ e) ∈ R�

q ×R�
q and sk = s. It then returns

(pk, sk).
KeyRand(pk): Given the public key pk = (a,b), it samples g ←↩ χ, e1 ←↩ χ� and

e2 ←↩ χ�. Compute

(a′,b′) = (a · g + e1, b · g + e2) ∈ R�
q × R�

q.

This algorithm then outputs randomized public key as pk′ = (a′,b′).
Enc(pk′, p): Given the public key pk′ = (a′,b′) and a message p ∈ Rq, it samples

g′ ∈ χ, e′
1 ∈ χ� and e′

2 ∈ χ�. Compute

(c1, c2) = (a′ · g′ + e′
1, b′ · g′ + e′

2 + 	q/4
 · rdec(p)) ∈ R�
q × R�

q.

This algorithm returns ciphertext as ct = (c1, c2).
Dec(sk, ct): Given sk = s and ct = (c1, c2), the algorithm proceeds as follows.

1. It computes

p′′ =
c2 − c1 · s

	q/4
 .

2. For each coefficient of p′′,
– if it is closer to 0 than to −1 and 1, then round it to 0;
– if it is closer to −1 than to 0 and 1, then round it to −1;
– if it is closer to 1 than to 0 and −1, then round it to 1.

3. Denote the rounded p′′ as p′ ∈ R�
q with coefficients in {−1, 0, 1}.

4. Let p′ ∈ Rq such that τ(p′) = H·τ(p′). Here, H ∈ Z
n×n�
q is the decomposition

matrix for elements of Rq (see Sect. 2.2).

3.2 Analysis

Correctness. Note that

c2 − c1 · s = b′ · g′ + e′
2 + 	q/4
 · rdec(p) − (a′ · g′ + e′

1) · s

= e · g · g′ + e2 · g′ − e1 · s · g′ + e′
2 − e′

1 · s + 	q/4
 · rdec(p)

Accountable Tracing Signatures from Lattices 567

where s, g, g′, e, e1, e2, e′
1, e

′
2 are B-bounded. Hence we have:

‖e ·g ·g′ +e2 ·g′ −e1 ·s ·g′ +e′
2 −e′

1 ·s‖∞ ≤ 3n2 ·B3 = ˜O(n3.5) ≤
⌈ q

10
⌉

= ˜O(n4).

With overwhelming probability, the rounding procedure described in the Dec
algorithm recovers rdec(p) and hence outputs p. Therefore, our KOE scheme is
correct.

Security. The security of our KOE scheme is stated in the following theorem.

Theorem 1. Under the RLWE assumption, the described key-oblivious encryp-
tion scheme satisfies: (i) key randomizability; (ii) plaintext indistinguishability
under key randomization; and (iii) key privacy under key randomization.

The proof of Theorem1 is deferred to the full version of this paper.

4 Accountable Tracing Signatures from Lattices

In this section, we construct our ATS scheme based on: (i) The Ducas-Micciancio
signature scheme (as recalled in Sect. 2.3); (ii) The KOE scheme described in
Sect. 3; and (iii) Stern-like ZK argument systems. Due to space restriction, the
details of our Stern-like ZK protocol are deferred to the full version.

4.1 Description of Our ATS Scheme

We assume there is a trusted setup such that it generates parameters of the
scheme. Specifically, it generates a public matrix B for generating users’ key
pairs, and two secret-public key pairs of our KOE scheme such that the secret keys
are discarded and not known by any party. The group public key then consists
of three parts: (i) the parameters from the trusted setup, (ii) a verification key
of the Ducas-Micciancio signature, (iii) two public keys of our KOE scheme such
that the group manager knows both secret keys. The issue key is the Ducas-
Micciancio signing key, while the opening key is any one of the corresponding
secret keys of the two public keys. Note that both the issue key and the opening
key are generated by the group manager.

When a user joins the group, it first generates a secret-public key pair (x, p)
such that B·x = p. It then interacts with the group manager, who will determine
whether user p is traceable or not. If the user is traceable, group manager sets
a bit tr = 1, randomizes the two public key generated by himself, and then
generates a Ducas-Micciancio signature σcert on user public key p and the two
randomized public keys (epk1, epk2). If the user is non-traceable, group manager
sets a bit tr = 0, randomizes the two public key generated from the trusted setup,
and then generates a signature on p and epk1, epk2. If it completes successfully,
the group manager sends certificate cert = (p, epk1, epk2, σcert) to user p, registers
this user to the group, and keeps himself the witness wescrw that was ever used
for randomization.

568 S. Ling et al.

Once registered as a group member, the user can sign messages on behalf of
the group. To this end, the user first encrypts his public key p twice using his two
randomized public keys, and obtains ciphertexts c1, c2. The user then generates
a ZKAoK such that (i) he has a valid secret key x corresponding to p; (ii) he
possesses a Ducas-Micciancio signature on p and epk1, epk2; and (iii) c1, c2 are
correct ciphertexts of p under the randomized keys epk1, epk2, respectively. Since
the ZKAoK protocol the user employs has soundness error 2/3 in each execution,
it is repeated κ = ω(log λ) times to make the error negligibly small. Then, it is
made non-interactive via the Fiat-Shamir heuristic [16]. The signature then con-
sists of the non-interactive zero-knowledge argument of knowledge (NIZKAoK)
Πgs and the two ciphertexts. Note that the ZK argument together with double
encryption enables CCA-security of the underlying encryption scheme, which is
known as the Naor-Yung transformation [45].

To verify the validity of a signature, it suffices to verify the validity of the
argument Πgs. Should the need arises, the group manager can decrypt using his
opening key. If a user is traceable, the opening key group manager possesses can
be used to correctly identify the signer. However, if a user is non-traceable, then
his anonymity is preserved against the manager.

To prevent corrupted opening, group manager is required to generate a
NIZKAoK of correct opening Πopen. Only when Πopen is a valid argument, we
then accept the opening result. Furthermore, there is an additional accounting
mechanism for group manager to reveal which users he had chosen to be trace-
able. This is done by checking the consistency of tr and the randomized public
keys in user’s certificate with the help of the witness wescrw.

We describe the details of our scheme below.

Setup(λ): Given the security parameter λ, it generates the following public
parameter.

– Let n = O(λ) be a power of 2, and modulus q = ˜O(n4), where q = 3k for
k ∈ Z

+. Let R = Z[X]/(Xn + 1) and Rq = R/qR.
Also, let m ≥ 2�log q� + 2, � = 	log q−1

2
 + 1, ms = 4� + 1, and m = m + k
and ms = ms · �.

– Let integer d and sequence c0, . . . , cd be described in Sect. 2.3.
– Let β = ˜O(n) and B = ˜O(

√
n) be two integer bounds, and χ be a B-bounded

distribution over the ring R.
– Choose a collision-resistant hash function HFS : {0, 1}∗ → {1, 2, 3}κ, where

κ = ω(log λ), which will act as a random oracle in the Fiat-Shamir heuris-
tic [16].

– Choose a statistically hiding and computationally binding commitment
scheme from [21], denoted as COM, which will be employed in our ZK argu-
ment systems.

– Let B $←− R1×m
q , a(0)1

$←− R�
q, a(0)2

$←− R�
q, s−1, s−2 ←↩ χ, e−1, e−2 ←↩ χ�.

Compute

b(0)
1 = a(0)1 · s−1 + e−1 ∈ R�

q; b(0)
2 = a(0)2 · s−2 + e−2 ∈ R�

q.

Accountable Tracing Signatures from Lattices 569

This algorithm outputs the public parameter pp:

{n, q, k,R,Rq, �,m,ms,m,ms, d, c0, · · · , cd,

β,B, χ,HFS, κ,COM,B, {a(0)i ,b(0)
i }i∈{1,2}}.

pp is implicit for all algorithms below if not explicitly mentioned.

GKeyGen(pp): On input pp, GM proceeds as follows.

– Generate verification key

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F ∈ R1×�
q ; F1 ∈ R1×ms

q ; u ∈ Rq

and signing key R ∈ Rm×k
q for the Ducas-Micciancio signature from Sect. 2.3.

– Initialize the Naor-Yung double-encryption mechanism [45] with the key-
oblivious encryption scheme described in Sect. 3.1. Specifically, sample
s1, s2 ←↩ χ, e1, e2 ←↩ χ�, a(1)1

$←− R�
q, a

(1)
2

$←− R�
q and compute

b(1)
1 = a(1)1 · s1 + e1 ∈ R�

q; b(1)
2 = a(1)2 · s2 + e2 ∈ R�

q.

Set the group public key gpk, the issue key ik and the opening key ok as follows:

gpk = {pp,A, {A[j]}d
j=0,F,F0,F1, u,a(1)1 ,b(1)

1 ,a(1)2 ,b(1)
2 },

ik = R, ok = (s1, e1).

GM then makes gpk public, sets the registration table reg = ∅ and his internal
state S = 0.

UKeyGen(pp): Given the public parameter, the user first chooses x ∈ Rm such
that the coefficients are uniformly chosen from the set {−1, 0, 1}. He then
calculates p = B · x ∈ Rq. Set upk = p and usk = x.

Enroll(gpk, ik, upk, tr): Upon receiving a user public key upk from a user, GM
determines the value of the bit tr ∈ {0, 1}, indicating whether the user is
traceable. He then does the following:

– Randomize two pairs of public keys (a(tr)1 ,b(tr)
1) and (a(tr)2 ,b(tr)

2) as described
in Sect. 3.1. Specifically, sample g1, g2 ←↩ χ, e1,1, e1,2 ←↩ χ�, e2,1, e2,2 ←↩ χ�.
For each i ∈ {1, 2}, compute

epki = (a′
i,b

′
i) = (a(tr)i · gi + ei,1, b(tr)

i · gi + ei,2) ∈ R�
q × R�

q. (1)

– Set the tag t = (t0, t1 . . . , tcd−1)� ∈ Td, where S =
∑cd−1

j=0 2j ·tj , and compute

At = [A|A[0] +
∑d

i=1 t[i]A[i]] ∈ R
1×(m+k)
q .

– Let m = (p‖a′
1‖b′

1‖a′
2‖b′

2) ∈ Rms
q .

570 S. Ling et al.

– Generate a signature σcert = (t, r,v) on message rdec(m) ∈ Rms - whose
coefficients are in {−1, 0, 1} - using his issue key ik = R. As in Sect. 2.3, we
have r ∈ Rm, v ∈ Rm+k and

{

At · v = F · rdec(F0 · r + F1 · rdec(m)) + u,

‖r‖∞ ≤ β, ‖v‖∞ ≤ β.
(2)

Set certificate cert and wescrw as follows:

cert = (p,a′
1,b

′
1,a

′
2,b

′
2, t, r,v), wescrw = (g1, e1,1, e1,2, g2, e2,1, e2,2).

GM sends cert to the user p, stores reg[S] = (p, tr, wescrw), and updates the state
to S + 1.

Sign(gpk, cert, usk,M): To sign a message M ∈ {0, 1}∗ using the certificate
cert = (p,a′

1,b
′
1,a

′
2,b

′
2, t, r,v) and usk = x, the user proceeds as follows.

– Encrypt the ring vector rdec(p) ∈ R�
q whose coefficients are in {−1, 0, 1}

twice. Namely, sample g′
1, g

′
2 ←↩ χ, e′

1,1, e
′
1,2 ←↩ χ�, and e′

2,1, e
′
2,2 ←↩ χ�. For

each i ∈ {1, 2}, compute ci = (ci,1, ci,2) ∈ R�
q × R�

q as follows:

ci,1 = a′
i · g′

i + e′
i,1; ci,2 = b′

i · g′
i + e′

i,2 + 	q/4
 · rdec(p).

– Generate a NIZKAoK Πgs to demonstrate the possession of a valid tuple ζ of
the following form

ζ = (p,a′
1,b

′
1,a

′
2,b

′
2, t, r,v,x, g′

1, e
′
1,1, e

′
1,2, g

′
2, e

′
2,1, e

′
2,2) (3)

such that
(i) The conditions in (2) are satisfied.
(ii) c1 and c2 are correct encryptions of rdec(p) with B-bounded randomness

g′
1, e

′
1,1, e

′
1,2 and g′

2, e
′
2,1, e

′
2,2, respectively.

(iii) ‖x‖∞ ≤ 1 and B · x = p.
This is achieved by running our Stern-like ZK protocol. The protocol is
repeated κ = ω(log λ) times and made non-interactive via Fiat-Shamir heuris-
tic [16] as a triple Πgs = ({CMTi}κ

i=1,CH, {RSPi}κ
i=1) where the challenge

CH is generated as CH = HFS(M, {CMTi}κ
i=1, ξ) with ξ of the following form

ξ = (A,A[0], . . . ,A[d],F,F0,F1, u,B, c1, c2) (4)

– Output the group signature Σ = (Πgs, c1, c2).

Verify(gpk,M,Σ): Given the inputs, the verifier performs in the following man-
ner.

– Parse Σ as Σ =
(

{CMTi}κ
i=1, (Ch1, . . . , Chκ), {RSP}κ

i=1, c1, c2
)

.
If (Ch1, . . . , Chκ) �= HFS

(

M, {CMTi}κ
i=1, ξ

)

, output 0, where ξ is as in (4).

Accountable Tracing Signatures from Lattices 571

– For each i ∈ [κ], run the verification phase of our Stern-like ZK protocol to
verify the validity of RSPi corresponding to CMTi and Chi. If any of the
verification process fails, output 0.

– Output 1.

Open(gpk, ok,M,Σ): Let ok = (s1, e1) and Σ = (Πgs, c1, c2). The group man-
ager proceeds as follows.

– Use s1 to decrypt c1 = (c1,1, c1,2) as in the decryption algorithm from
Sect. 3.1. The result is p′ ∈ Rq.

– He then searches the registration information. If reg does not include an
element p′, then return ⊥.

– Otherwise, he produces a NIZKAoK Πopen to show the knowledge of a tuple
(s1, e1,y) ∈ Rq × R�

q × R�
q such that the following conditions hold.

⎧

⎪

⎨

⎪

⎩

‖s1‖∞ ≤ B; ‖e1‖∞ ≤ B; ‖y‖∞ ≤ �q/10�;
a(1)1 · s1 + e1 = b(1)

1 ;
c1,2 − c1,1 · s1 = y + 	q/4
 · rdec(p′).

(5)

Since the conditions in (5) only encounter linear secret objects with bounded
norm, we can easily handled them using the Stern-like techniques. There-
fore, we are able to have a statistical ZKAoK for the above statement.
Furthermore, the protocol is repeated κ = ω(log λ) times and made non-
interactive via the Fiat-Shamir heuristic, resulting in a triple ΠOpen =
({CMTi}κ

i=1,CH, {RSP}κ
i=1), where CH ∈ {1, 2, 3}κ is computed as

CH = HFS

(

{CMTi}κ
i=1,a

(1)
1 ,b(1)

1 ,M,Σ, p′). (6)

– Output (p′,ΠOpen).

Judge(gpk,M,Σ, p′,Πopen): Given all the inputs, this algorithm does the follow-
ing.

– If Verify algorithm outputs 0 or p′ = ⊥, return 0.
– This algorithm then verifies the argument ΠOpen with respect to common

input (a(1)1 ,b(1)
1 ,M,Σ, p′), in the same way as in the algorithm Verify. If

verification of the argument Πopen fails, output 0.
– Else output 1.

Account(gpk, cert, wescrw, tr): Let the certificate be cert = (p,a′
1,b

′
1,a

′
2,b

′
2, t,

r,v) and witness be wescrw = (g1, e1,1, e1,2, g2, e2,1, e2,2) and the bit tr, this
algorithm proceeds as follows.

– It checks whether (t, r,v) is a valid Ducas-Micciancio signature on the mes-
sage (p,a′

1,b
′
1,a

′
2,b

′
2). Specifically, it verifies whether cert satisfies the condi-

tions in (2). If not, output 0.

572 S. Ling et al.

– Otherwise, it then checks if (a′
1,b

′
1) and (a′

2,b
′
2) are randomization of

(a(tr)1 ,b(tr)
1) and (a(tr)2 ,b(tr)

2) with respect to randomness (g1, e1,1, e1,2) and
(g2, e2,1, e2,2), respectively. Specifically, it verifies whether the conditions
in (1) hold. If not, output 0.

– Else output 1.

4.2 Analysis of Our ATS Scheme

Efficiency. We first analyze the efficiency of our scheme from Sect. 4.1 in terms
of the security parameter λ.

– The bit-size of the public key gpk is of order O(λ · log3 λ) = ˜O(λ).
– The bit-size of the membership certificate cert is of order O(λ·log2 λ) = ˜O(λ).
– The bit-size of a signature Σ is determined by that of the Stern-like
NIZKAoK Πgs, which is of order O(λ2 · log3 λ) · ω(log λ) = ˜O(λ2).

– The bit-size of the Stern-like NIZKAoK Πopen is of order O(λ · log3 λ) ·
ω(log λ) = ˜O(λ).

Correctness. For an honestly generated signature Σ for message M , we first
show that the Verify algorithm always outputs 1. Due to the honest behavior of
the user, when signing a message in the name of the group, this user possesses
a valid tuple ζ of the form (3). Therefore, Πgs will be accepted by the Verify
algorithm with probability 1 due to the perfect completeness of our argument
system.

If an honest user is traceable, then Account(gpk, cert, wescrw, 1) will output 1,
implied by the correctness of Ducas-Micciancio signature scheme and honest
behaviour of group manager. In terms of the correctness of the Open algorithm,
we observe that c1,2 − c1,1 · s1 =

(b(tr)
1 − a(tr)1 ·s1) ·g1 ·g′

1 + e1,2 ·g′
1 − e1,1 ·s1 ·g′

1 + e′
1,2 − e′

1,1 ·s1 + 	q/4
 · rdec(p),

denoted as ẽ + 	q/4
 · rdec(p). In this case, tr = 1, b(tr)
1 − a(tr)1 · s1 = e1, and

‖ẽ‖∞ ≤
⌈

q
10

⌉

. The decryption can recover rdec(p) and hence the real signer due to
the correctness of our key-oblivious encryption from Sect. 3.1. Thus, correctness
of the Open algorithm follows. What is more, Πopen will be accepted by the Judge
algorithm with probability 1 due to the perfect completeness of our argument
system.

If an honest user is non-traceable, then again Account(gpk, cert, wescrw, 1) will
output 1. For the Open algorithm, since b(0)

1 − a(0)1 · s1 = a(0)1 · (s−1 − s1) + e−1,
then we obtain

c1,2 − c1,1 · s1 = a(0)1 · (s−1 − s1) · g1 · g′
1 + ẽ + 	q/4
 · rdec(p),

where ‖ẽ‖∞ ≤
⌈

q
10

⌉

. Observe that a(0)1
$←− R�

q, and s−1 �= s1 with overwhelming
probability. Over the randomness of g1, g

′
1, the decryption algorithm described

Accountable Tracing Signatures from Lattices 573

in Sect. 3.1 will output a random element p′ ∈ Rq. Then, with overwhelming
probability, p′ is not in the registration table and the Open algorithm outputs ⊥.
It then follows that our scheme is correct.

Security. In Theorem 2, we prove that our scheme satisfies the security require-
ments of accountable tracing signatures, as specified by Kohlweiss and Miers.

Theorem 2. Under the RLWE and RSIS assumptions, the accountable tracing
signature scheme described in Sect. 4.1 satisfies the following requirements in the
random oracle model: (i) anonymity under tracing; (ii) traceability; (iii) non-
frameability; (iv) anonymity with accountability; and (v) trace-obliviousness.

The proof of Theorem 2 is deferred to the full version of this paper.

Acknowledgements. The research is supported by Singapore Ministry of Education
under Research Grant MOE2016-T2-2-014(S). Khoa Nguyen is also supported by the
Gopalakrishnan – NTU Presidential Postdoctoral Fellowship 2018.

References

1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 16

2. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

3. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

4. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 29

5. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 305–325.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 16

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

7. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS
2004, pp. 168–177. ACM (2004)

8. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7

574 S. Ling et al.

9. Boschini, C., Camenisch, J., Neven, G.: Floppy-sized group signatures from lattices.
In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 163–182.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 9

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012, pp. 309–325. ACM (2012)

11. Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from
lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9 4

12. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

13. Cheng, S., Nguyen, K., Wang, H.: Policy-based signature scheme from lattices.
Des. Codes Cryptogr. 81(1), 43–74 (2016)

14. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 19

15. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
IACR Cryptology ePrint Archive 2014, 495 (2014)

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

17. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206. ACM (2008)

19. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 23

20. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 40

21. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

22. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 34

23. Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and
separable authorities. Int. J. Secur. Netw. 1(1), 24–45 (2006)

24. Kohlweiss, M., Miers, I.: Accountable metadata-hiding escrow: a group signature
case study. PoPETs 2015(2), 206–221 (2015)

25. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 3

26. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015)

https://doi.org/10.1007/978-3-319-93387-0_9
https://doi.org/10.1007/978-3-642-32928-9_4
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-642-34961-4_40
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-540-24676-3_34
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-42045-0_3

Accountable Tracing Signatures from Lattices 575

27. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

28. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge
arguments for matrix-vector relations and lattice-based group encryption. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 101–131.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 4

29. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

30. Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature scheme
with message-dependent opening. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 8

31. Ling, S., Nguyen, K., Roux-Langlois, A., Wang, H.: A lattice-based group signature
scheme with verifier-local revocation. Theor. Comput. Sci. 730, 1–20 (2018)

32. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

33. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 19

34. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving
full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS
2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61204-1 15

35. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lat-
tices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 58–88.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 3

36. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

37. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

38. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006 13

39. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4 4

40. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 293–
323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 11

https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-53890-6_4
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-76581-5_3
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-540-71039-4_4
https://doi.org/10.1007/978-3-319-56620-7_11

576 S. Ling et al.

41. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

42. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43:1–43:35 (2013)

43. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclo-
tomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 8

44. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

45. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990, pp. 427–437. ACM (1990)

46. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2 18

47. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: STOC 2017, pp. 461–473. ACM (2017)

48. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 8

49. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-
knowledge proofs of automorphism stability. IACR Cryptology ePrint Archive,
2018:779 (2018). Accepted to ACM CCS 2018

50. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93. ACM (2005)

51. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group sig-
natures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing
2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36334-4 18

52. Sakai, Y., Schuldt, J.C.N., Emura, K., Hanaoka, G., Ohta, K.: On the security of
dynamic group signatures: preventing signature hijacking. In: Fischlin, M., Buch-
mann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 715–732. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 42

53. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS 1994, pp. 124–134. IEEE Computer Society (1994)

54. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

55. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996)

https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-46447-2_18
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-642-30057-8_42
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

Author Index

Abspoel, Mark 453
Alpirez Bock, Estuardo 189
Amadori, Alessandro 189
Auerbach, Benedikt 230

Barbosa, Manuel 127
Bauer, Aurélie 272
Blazy, Olivier 44
Boneh, Dan 251
Bos, Joppe W. 189
Bouman, Niek J. 453
Brzuska, Chris 189
Buchmann, Johannes 493
Butin, Denis 493

Carpov, Sergiu 106
Catalano, Dario 127
Chakraborty, Suvradip 23
Chatterjee, Sanjit 62
Chow, Sherman S. M. 1
Crites, Elizabeth C. 535

David, Liron 330
de Vreede, Niels 453
Dong, Xiaoyang 372

Eskandarian, Saba 251

Faonio, Antonio 350
Fisch, Ben 251

Gao, Si 433
Géraud, Rémi 149
Germouty, Paul 44
Gilbert, Henri 272

Halevi, Shai 83
Hosoyamada, Akinori 391
Hu, Kai 412

Ito, Gembu 391
Iwata, Tetsu 293, 391
Izabachène, Malika 106

Kiltz, Eike 230

Lallemand, Virginie 293
Leander, Gregor 293
Ling, San 556
Lysyanskaya, Anna 535

Makri, Eleftheria 473
Matsumoto, Ryutaroh 391
Mennink, Bart 313
Michiels, Wil 189
Mizuide, Taiga 169
Mollimard, Victor 106
Mukherjee, Sayantan 62

Naccache, David 149
Nguyen, Khoa 556

Oswald, Elisabeth 433

Phan, Duong Hieu 44
Poettering, Bertram 230
Polyakov, Yuriy 83

Rangan, C. Pandu 23
Renault, Guénaël 272
Roşie, Răzvan 149
Rossi, Mélissa 272
Rotaru, Dragos 473
Roy, Arnab 433

Sasaki, Yu 293, 391
Schabhüser, Lucas 493
Schoenen, Stefan 230
Schoenmakers, Berry 453

Shoup, Victor 83
Smart, Nigel P. 210, 473
Soleimanian, Azam 127

Takagi, Tsuyoshi 169
Takayasu, Atsushi 169

Vercauteren, Frederik 473

Wang, Huaxiong 556
Wang, Meiqin 412
Warinschi, Bogdan 127

Wood, Tim 210
Wool, Avishai 330
Wu, Huangting 1

Xu, Yanhong 556

Yu, Hongbo 372

Zhang, Tao 1
Zhao, Liang 514
Zhu, Baoyu 372

578 Author Index

	Preface
	CT-RSA 2019
	Contents
	Structure-Preserving Certificateless Encryption and Its Application
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Group
	2.2 Groth-Sahai Proof System
	2.3 Structure-Preserving Signature

	3 Definitions of Certificateless Encryption
	4 A Specific Construction of SP-CLE
	4.1 Intuition
	4.2 CPA-Secure SP-CLE Scheme
	4.3 A Variant CLE Scheme for M G
	4.4 RCCA-Secure Extension

	5 Group Signatures with Certified Limited Opening
	5.1 Our Group Signature Scheme with Certified Limited Opening
	5.2 Construction

	6 Conclusion
	A Towards Removing GT Elements from the Ciphertext
	References

	Public Key Encryption Resilient to Post-challenge Leakage and Tampering Attacks
	1 Introduction and Related Works
	1.1 Our Contributions and Techniques
	1.2 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Two Source Extractors
	2.3 True Simulation Extractable Non-interactive Zero Knowledge Argument System

	3 Entropic Post-challenge IND-CCA-BLT Secure PKE
	3.1 Entropic Restricted Post-challenge IND-CCA-BLT Secure PKE
	3.2 Construction of Entropic Restricted Post-challenge IND-CCA-BLT Secure PKE
	3.3 The General Transformation

	4 Post-challenge IND-CCA-BLT Secure KEM in Split-State Model
	4.1 Construction of Post-challenge IND-CCA-BLT Secure KEM

	5 Post-challenge IND-CCA-BLT Secure PKE in Split-State Model
	5.1 Construction of Post-challenge IND-CCA-BLT Secure PKE

	6 Conclusion
	References

	Downgradable Identity-Based Encryption and Applications
	1 Introduction
	1.1 This Work
	1.2 Comparison to Existing Work
	1.3 Open Problems

	2 Definitions
	2.1 Notation
	2.2 Pairing Groups and Matrix Diffie-Hellman Assumption
	2.3 Identity-Based Key Encapsulation

	3 Downgradable Identity-Based Encryption
	4 Transformation to Classical Primitives
	4.1 From DIBE to WIBE
	4.2 From DIBE to HIBE
	4.3 From DIBE to Wicked IBE
	4.4 From Wicked IBE to DIBE

	5 ABE
	6 Instantiation
	7 Efficiency Comparison
	References

	Large Universe Subset Predicate Encryption Based on Static Assumption (Without Random Oracle)
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Hardness Assumptions

	3 Subset Predicate Encryption
	3.1 Subset Predicate Encryption (SPE)
	3.2 Security Notions

	4 SPE 1: Realizing Constant Size Ciphertext
	4.1 Construction
	4.2 Security

	5 SPE 2: An Adaptive Secure Construction
	5.1 Construction
	5.2 Security
	5.3 Applications

	6 Conclusion
	References

	An Improved RNS Variant of the BFV Homomorphic Encryption Scheme
	1 Introduction
	2 Notations and Basic Procedures
	2.1 CRT Representation
	2.2 CRT Basis Extension
	2.3 Simple Scaling in CRT Representation
	2.4 Complex Scaling in CRT Representation

	3 Background: Scale-Invariant Homomorphic Encryption
	3.1 Brakerski's Scheme
	3.2 The Fan-Vercauteren Variant
	3.3 CRT Representation and Optimized Relinearization

	4 Our Optimizations
	4.1 The Scheme that We Implemented
	4.2 Pre-computed Values
	4.3 Key-Generation and Encryption
	4.4 Decryption
	4.5 Homomorphic Multiplication
	4.6 Noise Growth

	5 Implementation Details and Performance Results
	5.1 Parameter Selection
	5.2 Implementation Details
	5.3 Results

	6 Conclusion
	References

	New Techniques for Multi-value Input Homomorphic Evaluation and Applications
	1 Introduction
	2 Preliminaries
	2.1 High Level Structure of FHEW-based Bootstrapping
	2.2 Backgrounds on TFHE
	2.3 TFHE Gate Bootstrapping

	3 Multi-value Bootstrapping
	3.1 Test Polynomial Factorization
	3.2 Optimized Multi-value Bootstrapping

	4 Homomorphic LUT
	4.1 Homomorphic LUT Evaluation
	4.2 LUT Circuits
	4.3 Implementation Details and Performance
	4.4 Further Applications

	5 Conclusion
	References

	Efficient Function-Hiding Functional Encryption: From Inner-Products to Orthogonality
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 IPFE vs OFE
	4 A Construction in the Generic Group Model
	5 A Construction in the Standard Model
	5.1 First Scheme
	5.2 Second Scheme
	5.3 Weak Function-Hiding Functional Encryption for Orthogonality
	5.4 Achieving Adaptive Security

	6 Experimental Evaluation
	7 Applications of Function-Hiding OFE
	References

	Robust Encryption, Extended
	1 Introduction
	2 Preliminaries
	2.1 (Right-Injective) Pseudorandom Generators
	2.2 (Collision-Resistant) Pseudorandom Functions
	2.3 Functional Encryption

	3 Robustness: Definitions, Implications and Separations
	3.1 Warm-Up: Robustness for Digital Signatures
	3.2 Robustness for Functional Encryption

	4 Achieving Robustness via Generic Transforms
	4.1 Robust Digital Signatures
	4.2 Achieving Robustness for Functional Encryption

	5 Anonymity and Robustness
	References

	Tight Reductions for Diffie-Hellman Variants in the Algebraic Group Model
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Organization

	2 Preliminaries
	2.1 Computational Problems
	2.2 Algebraic Group Model

	3 Reduction from DL in Cyclic Groups
	3.1 Basic Reduction: From DL to CDH
	3.2 Master Theorem in Cyclic Groups

	4 Reduction from BDL in Bilinear Groups
	4.1 Algebraic Bilinear Group Model
	4.2 From BDL to BDH
	4.3 Master Theorem in Bilinear Groups

	5 DL to k-Lin Reduction
	6 Conclusion
	References

	Doubly Half-Injective PRGs for Incompressible White-Box Cryptography
	1 Introduction
	2 Preliminaries and Notation
	2.1 Syntax of White-Box Cryptography

	3 Definitions
	4 Constructions of White-Box Cryptography
	4.1 Existing Constructions
	4.2 Incompressible Constructions for White-Box Encryption
	4.3 An Incompressible White-Box Decryption Scheme

	5 Incompressible PRFs from OWPs
	References

	Error Detection in Monotone Span Programs with Application to Communication-Efficient Multi-party Computation
	1 Introduction
	1.1 Authentication of Shares
	1.2 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Access Structures, MSPs, LSSSs and Linear Codes
	2.3 MPC

	3 Opening a Value to One Party
	4 Opening a Value to All Parties
	5 MPC Protocol
	References

	Lossy Trapdoor Permutations with Improved Lossiness
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Notation
	2.2 (All-But-One) Lossy Trapdoor Permutations
	2.3 Number Theoretic Assumptions

	3 From Index-Dependence to Index-Independence
	4 Lossy Trapdoor Permutations from Phi-Hiding
	4.1 Index-Dependent Domain LTP from Phi-Hiding Assumption
	4.2 Index-Independent Domain LTP from Phi-Hiding Assumption

	5 Lossy Trapdoor Permutations from Quadratic Residuosity Assumption
	5.1 Index-Dependent Domain LTP from Quadratic Residuosity
	5.2 Index-Independent Domain LTP from Quadratic Residuosity

	6 Prime Family Generators
	6.1 Construction Based on Polynomial Evaluation

	7 ABO-LTP with Index-Independent Domain from Unique-Divisor Phi-Hiding
	References

	Post-quantum EPID Signatures from Symmetric Primitives
	1 Introduction
	1.1 Our Contributions
	1.2 Additional Related Work

	2 Preliminaries
	3 Post-quantum EPID Signatures
	4 Practical Post-quantum Signatures for Attestation
	4.1 Definitions
	4.2 EPID Signature Construction II

	5 Instantiation of Protocols
	5.1 Zero Knowledge Proofs of Knowledge
	5.2 PRF and Collision-Resistant Hash Function
	5.3 Post-quantum Signature Scheme
	5.4 Reducing Circuit Size for Membership Proofs
	5.5 Signature Sizes

	6 Conclusion
	References

	Assessment of the Key-Reuse Resilience of NewHope
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 NewHope

	3 The Key Mismatch Oracle
	4 Attack on NewHope with Key Mismatch Oracle
	4.1 Rewriting the Key Mismatch Oracle
	4.2 Recovering Very Small Coefficients of S
	4.3 Recovering S for NewHope Parameters
	4.4 Experimental Results

	5 Accessing the Key Mismatch Oracle with the CCA Version of NewHope
	6 Conclusion
	References

	Universal Forgery and Multiple Forgeries of MergeMAC and Generalized Constructions
	1 Introduction
	2 Specification of MergeMAC
	3 Universal Forgery Against MergeMAC
	3.1 Generic Attacks with High Data Complexity
	3.2 Universal Forgery with Very Low Data Complexity

	4 Analysis on MergeMACOW
	4.1 Definition of MergeMACOW
	4.2 Tradeoff Between Time and Data

	5 Multiple Forgeries
	5.1 Existential Forgery
	5.2 Tightness of Existential Forgery
	5.3 Universal Forgery
	5.4 Universal Forgery with Better Rate

	6 Concluding Remarks
	References

	Linking Stam's Bounds with Generalized Truncation
	1 Introduction
	1.1 History of Truncation
	1.2 Stam's Bounds
	1.3 Generalized Truncation

	2 Security Model
	2.1 Statistical Tools
	2.2 Pseudorandom Functions

	3 Stam's Bounds
	4 Generalized Truncation
	4.1 Plain Truncation
	4.2 Balanced and x-Independent Post-processing
	4.3 Balanced Post-processing
	4.4 Arbitrary Post-processing

	5 Note on Including Pre-processing Function
	References

	Poly-Logarithmic Side Channel Rank Estimation via Exponential Sampling
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Contribution

	2 The ESrank Algorithm for the Case d=2
	2.1 An Exact Rank Estimation for d=2
	2.2 Exponential Sampling with d=2
	2.3 Bounding the Sampled Distributions

	3 The General Case d>2
	3.1 Merging Two Sampled Distributions into a Joint Distribution
	3.2 Sampling the Joint Probability Distribution
	3.3 The ESrank Algorithm: Putting it all Together
	3.4 Theoretical Performance

	4 Empirical Evaluation
	5 Conclusion
	References

	Efficient Fully-Leakage Resilient One-More Signature Schemes
	1 Introduction
	2 Notations and Preliminaries
	2.1 All-but-Many Encryption

	3 Fully-Leakage One-More Unforgeability
	4 Signature Scheme Based on ABM-Encryption
	5 A Signature Scheme Based on KEA
	References

	MILP-Based Differential Attack on Round-Reduced GIFT
	1 Introduction
	2 Preliminaries
	2.1 Description of GIFT
	2.2 Notations

	3 Related Works
	3.1 Mouha et al.'s Framework for Word-Oriented Block Ciphers
	3.2 Sun et al.'s Framework for Bit-Oriented Block Ciphers
	3.3 Valid Cutting-Off Inequalities from the Convex Hull of S-Box

	4 MILP-Based Model to Search Differential Characteristic for GIFT-64
	4.1 MILP-Based Two-Stage Algorithm to Search for Differential Characteristic
	4.2 Search for Differentials of GIFT-64
	4.3 Attack on 19-Round GIFT-64

	5 Improved MILP-Based Method to Find Differential for GIFT-128
	6 Conclusion
	A Difference Distribution Table (DDT) of GIFT S-Box
	B Some 4-Round Iterative Differential Characteristics of GIFT-64
	C 12-Round and 14-Round Differential Characteristics of GIFT-128
	References

	Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Simon's Algorithm
	2.3 Kaplan et al.'s Observation

	3 Previous Works
	3.1 Quantum Distinguisher Against the 3-Round Feistel Cipher
	3.2 Key Recovery Attacks Against the Feistel-KF Construction

	4 Relaxing Simon's Algorithm
	5 Quantum Distinguishing Attacks Against Feistel-F
	6 Quantum Attacks Against Feistel-KF
	7 Quantum Attacks Against Feistel-FK
	7.1 Distinguishers Against Feistel-FK
	7.2 Key Recovery Attacks Against Feistel-FK
	7.3 Quantum CPA Attacks Against Feistel-FK

	8 Concluding Remarks
	References

	Automatic Search for a Variant of Division Property Using Three Subsets
	1 Introduction
	1.1 Our Contributions
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Bit-Based Division Property
	2.2 Automatic Search for Bit-Based Division Property

	3 Search for Variant Three-Subset Division Property
	3.1 Variant of Three-Subset Division Property
	3.2 Variant Three-Subset Division Trail
	3.3 Models of VTDP for Key-Independent Components
	3.4 Model of VTDP for Key-XOR
	3.5 Initial and Stopping Rules for VTDP
	3.6 Connection Between Key-Independent and Key-XOR Components

	4 Applications
	4.1 VTDP of SIMON-Like Ciphers
	4.2 VTDP of ARX Cipher SPECK
	4.3 VTDP of S-Box Based Cipher PRESENT
	4.4 VTDP of KATAN/KTANTAN Family

	5 Conclusions
	References

	Constructing TI-Friendly Substitution Boxes Using Shift-Invariant Permutations
	1 Introduction
	2 Preliminaries
	2.1 Cryptanalytic Properties for Sboxes
	2.2 Threshold Implementation
	2.3 Constructing TI Sboxes
	2.4 The Notion of Granularity

	3 Constructing TI-Sboxes with Better Granularity
	3.1 Shift-Invariant: Concept and Previous Works
	3.2 Quadratic Shift-Invariant Permutation with Uniform TI
	3.3 Constructing Sboxes
	3.4 Results

	4 Software Implementation
	4.1 Target Platform
	4.2 Implementation Trade-Offs
	4.3 Implementation on ARM M0/M3

	5 Hardware Implementation
	5.1 Implementation Trade-Off
	5.2 Pre-charge Issue
	5.3 Implementation on ASIC

	6 Security Evaluation
	6.1 Software: ARM M0
	6.2 Hardware: SAKURA-X FPGA

	7 Conclusion
	References

	Fast Secure Comparison for Medium-Sized Integers and Its Application in Binarized Neural Networks
	1 Introduction
	1.1 Related Work
	1.2 This Paper
	1.3 Application: Efficient Neural Network Evaluation in MPC

	2 Preliminaries
	3 Evaluating the Sign Function Using Legendre Symbols
	3.1 Redundancy Property of the Sign Function
	3.2 The Legendre Symbol as a ``Noisy'' Sign
	3.3 Avoiding Zero by Restricting to Odd Positions
	3.4 Bounds on d0(p)
	3.5 Bounds on d1(p)

	4 Finding a Prime for a Given k-Range
	4.1 Finding Primes with High d0(p)
	4.2 Finding Primes with High d1(p)
	4.3 Finding Primes with High dk*(p)
	4.4 Implementation and Results

	5 Secure Protocols for bsgn
	5.1 Secure Medium-Range bsgn Protocol for k=1
	5.2 Secure Medium-Range bsgn Protocol for k=2

	6 Application: Fast Neural Network Evaluation in MPC
	6.1 Binarized Multi-layer Perceptron for MNIST
	6.2 Eliminating Redundant Parts of Batch Normalization
	6.3 Instantiating the BinarySign Function per Layer
	6.4 Experimental Results (Neural Network Evaluation)

	References

	EPIC: Efficient Private Image Classification (or: Learning from the Masters)
	1 Introduction
	2 Related Work
	3 EPIC
	4 Experiments
	5 Conclusion and Future Work
	References

	Context Hiding Multi-key Linearly Homomorphic Authenticators
	1 Introduction
	1.1 Contribution Overview

	2 Formalising Multi-key Homomorphic Authenticators
	2.1 Computational Assumptions

	3 A Publicly Verifiable Multi-key Linearly Homomorphic Authenticator Scheme
	3.1 Our Construction
	3.2 Correctness and Efficiency
	3.3 Context Hiding

	4 Unforgeability
	5 Related Work
	6 Conclusions
	References

	Revisiting the Secret Hiding Assumption Used in Verifiable (Outsourced) Computation
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Organization of the Rest of the Paper

	2 Preliminaries
	2.1 The SH Assumption
	2.2 Atallah-Frikken Theorems Related to the SH Assumption
	2.3 Atallah-Frikken PVC Protocols for Matrix Multiplication
	2.4 Privacy Definition

	3 Breaking the Decisional-SH Assumption
	3.1 Adversary's Strategy
	3.2 Analysis for the Decisional-SH Assumption
	3.3 Analysis for AF-PVCtwo and AF-PVCsingle
	3.4 Discussion

	4 Experimental Verifications
	4.1 Setup
	4.2 Results and Timings

	5 Conclusions
	References

	Delegatable Anonymous Credentials from Mercurial Signatures
	1 Introduction
	2 Definition of Mercurial Signatures
	3 Construction of Mercurial Signatures
	4 Definition of Delegatable Anonymous Credentials
	5 Construction of DAC from Mercurial Signatures
	References

	Accountable Tracing Signatures from Lattices
	1 Introduction
	2 Background
	2.1 Rings, RSIS and RLWE
	2.2 Decompositions
	2.3 A Variant of the Ducas-Micciancio Signature Scheme
	2.4 Stern-Like Zero-Knowledge Argument of Knowledge
	2.5 Key-Oblivious Encryption
	2.6 Accountable Tracing Signatures

	3 Key-Oblivious Encryption from Lattices
	3.1 Description
	3.2 Analysis

	4 Accountable Tracing Signatures from Lattices
	4.1 Description of Our ATS Scheme
	4.2 Analysis of Our ATS Scheme

	References

	Author Index

