
GDE4: The Generalized Differential
Evolution with Ordered Mutation

Azam Asilian Bidgoli1,2(B) , Sedigheh Mahdavi2 ,
Shahryar Rahnamayan2 , and Hessein Ebrahimpour-Komleh1

1 Department of Computer and Electrical Engineering, University of Kashan,
Kashan, Iran

ebrahimpour@kashanu.ac.ir
2 Nature Inspired Computational Intelligence (NICI) Lab,

Department of Electrical, Computer, and Software Engineering,
University of Ontario Institute of Technology (UOIT), Oshawa, Canada

{azam.asilianbidgoli,sedigheh.mahdavi,shahryar.rahnamayan}@uoit.ca

Abstract. Differential Evolution (DE) is one the most popular evolu-
tionary algorithm (EA) to handle optimization problems with an efficient
performance. Due to its success and popularity, it has been utilized by
researchers in multi-objective optimization, so there are various multi-
objective versions of DE. Similar to other population-based algorithms,
DE uses a mutation operator to produce the new individual for the
next generation. Although the original version of DE randomly selects
three candidate solutions from the population without considering any
ordering in its mutation scheme, this paper proposes ordering strategy
of individuals which influences the performance of the algorithm. An
enhanced version (GDE4) of Generalized Differential Evolution (GDE)
with ordered mutation operator is designed. GDE is a multi-objective
evolutionary algorithm based on DE. The proposed approach orders
candidate individuals using popular ranking measures of multi-objective
optimization problems to utilize the ordered solutions in mutation opera-
tor. The best one of three randomly selected solutions is considered as the
parent, and two others are applied as second and third candidate solu-
tions in DE mutation, respectively. Unlike most of the multi-objective
methods which consider multi-objectiveness during the selection process,
the proposed method improves the performance using a modification on
the genetic operator. The standard benchmark functions and measures
are adopted to evaluate the performance of GDE4. The conducted exper-
iments are on 5, 10, and 15 objectives for the utilized benchmark set. The
comparison results reveal that GDE4 algorithm outperforms GDE3, the
last version of GDE.

Keywords: Evolutionary computation ·
Multi-objective optimization · Generalized differential evolution ·
Ordered mutation

c© Springer Nature Switzerland AG 2019
K. Deb et al. (Eds.): EMO 2019, LNCS 11411, pp. 101–113, 2019.
https://doi.org/10.1007/978-3-030-12598-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12598-1_9&domain=pdf
http://orcid.org/0000-0001-5122-773X
http://orcid.org/0000-0002-5369-9068
http://orcid.org/0000-0002-6990-787X
http://orcid.org/0000-0002-9935-7821
https://doi.org/10.1007/978-3-030-12598-1_9


102 A. Asilian Bidgoli et al.

1 Introduction

Since many real-world problems involve more than one objective, solving multi-
objective optimization problems is considered as an important subject in many
fields of science and engineering. The main issue that makes such problems
harder than single objective problems is that how it is possible to compare solu-
tions with two or more conflicting objectives. Evolutionary computation (EC)
as a powerful method has been used to solve multi-objective optimization prob-
lems. There are a wide variety of single objective evolutionary algorithms (EA’s)
which have been adapted for multi-objective schemes [1,2]. Differential evolution
(DE) is one of them which its simplicity offers a great characteristic to apply
it in single- and multi-objective optimization. Generalized differential evolution
(GDE) [3] is a multi-objective version of DE. There are some research works
to improve GDE to be more successful in the optimization. The third version
(GDE3) [4] was proposed to handle all types of multi-objective optimization
problems including non-constrained and constrained ones.

Creation of a new individual in population-based algorithms, is one of the
most important steps to make the generation more progressive. So selecting
parents can influence producing better population and increasing elitism in the
next generations. DE mutation which uses three randomly selected individuals
from the population to create a new offspring. For single objective DE, there are
some designed schemes of ordered mutation based on objective function value
which have shown significant improvement in obtained results [5–7].

GDE3 also uses DE mutation operator, so ordered selection can improve
the results of multi-objective optimization. The difficulty of ordered selection
in multi-objective optimization case compared to the single objective one is the
defining strategy of ranking of three selected individuals. Since there are two or
more conflicting objective values, decision making in which candidate solutions
are better, is sophisticated. This paper presents a version of GDE3 with ordered
mutation (GDE4) for multi-objective optimization problems. Three selected can-
didate solutions are sorted based on two known measures, non-dominating sort-
ing and crowding distance [8]. The best one is used as a base vector, and two other
ranked candidate solutions are considered as the second and third individuals in
DE mutation of GDE3. Since optimality doesn’t have a straightforward defini-
tion, most of the multi-objective algorithms consider multi-objectiveness during
their selection process. They concentrate on the proposing a method to rank
candidate solutions while the proposed method improves multi-objectiveness in
generative operator. Experiments show an enhancement of results in GDE4 com-
pared to GDE3 in standard benchmarks. The organization of the rest of this
paper is as follows. Section 2 gives a brief background review of GDE3 algo-
rithms. Section 3 describes the proposed scheme in detail. Section 4 presents a
simple algorithm and the experimental results to support discussion on the pro-
posed scheme. Finally, the paper is concluded in Sect. 5.



GDE4: The Generalized Differential Evolution with Ordered Mutation 103

2 Background Review

Many real-world optimization problems have more than one conflicting objec-
tives to be optimized. The definition of the optimality is not as simple as
the single-objective optimization. Therefore it is necessary to make a tradeoff
between objective values. There are some well-known concepts to compare two
candidate solutions in the multi-objective problem space. Since this paper uti-
lizes non-dominated sorting and crowding distance to order candidate solutions
for DE mutation scheme, in this section, we define these measures in detail. A
minimization multi-objective optimization problem is defined as follows:

Minimize F (x) = [f1(x), f2(x), ..., fM (x)] Li ≤ xi ≤ Ui, i = 1, 2, ..., d (1)

where M is the number of objectives, d is the number of variables (dimension)
of solution vector, xi is in interval [Li, Ui]. fi represent the objective function
which should be minimized.

If x = (x1, x2, ..., xd) and x́ = (x́1, x́2, ..., x́d) are two vectors in search space,
x dominates x́ (x � x́) if and only if:

∀i ∈ {1, 2, ..., d}, f(xi) ≤ f(x́i) ∧ ∃i ∈ {1, 2, ..., d} : f(xi) < f(x́i) (2)

It defines optimality for solutions in objective space. Candidate solution x is
better than x́ if it is not bigger than x́ in any of objectives and at least it has
a smaller value in one of the objectives. All solutions that are not dominated
using none of other solutions in the population called non-dominated solutions
and they create the Pareto front set.

Non-dominated sorting is an algorithm to rank obtained solutions to differ-
ent levels in the processing of multi-objective optimization. All non-dominated
solutions are in the first rank and then the second rank is made of solutions
which are non-dominated by removing the first rank from the population. This
process is repeated until all solutions are ranked using this concept.

Crowding distance is another measure which usually completes comparison
of solutions along with non-dominating sorting. It is a measure to compute the
diversity of obtained solutions by calculating the distance between adjacent solu-
tions. In the beginning, the set of solutions in the same rank are sorted according
to each objective function value in ascending order. To get crowding distance, the
difference between neighbors objective values of each solution is computed. This
computation is done for all objectives, then the sum of individual distance values
corresponding to each objective is considered as overall crowding distance. The
bigger value of crowding distance for a vector in population shows less diversity
around that vector.

2.1 Generalized Differential Evolution

The DE is an evolutionary algorithm originally for solving continuous optimiza-
tion problems which improves initial population using the crossover and muta-
tion operations. Creation of new generation is done by a mutation and a crossover



104 A. Asilian Bidgoli et al.

operator. The mutation operator for a gene, j, is defined as follows:

vj,i = xj,i1 + F . (xj,i2 − xj,i3) (3)

Applying this operator generates a new D dimensional vector, vi, using three
randomly selected individuals, xj,i1 , xj,i2 , and xj,i2 from the current popula-
tion. Parameter F , mutation factor, scales difference between two vectors. The
crossover operator changes some or all of the genes of parent solution based on
Crossover Rate (CR). Similar to other population-based algorithms, the single
objective version of DE starts with a uniform randomly generated population.
Next generation is created using mentioned mutation and crossover operations;
then best individual (between parent and new individual) is selected based on
their objective values; which is called a greedy selection. It iterates until meeting
stopping criterion such as a predefined number of generations.

There are also several variants of DE algorithms for multi-objective optimiza-
tion. The first version of Generalized Differential Evolution (GDE) [3] changed
the DE selection mechanism for producing the next generation. The idea in
the selection was based on constraint-domination. The new vector is selected
if it dominates the old vector. GDE2 [9], the next version of multi-objective
DE algorithm, added the crowding distance measure to its selection scheme. If
both vectors are non-dominating each other, the vector with a higher crowding
distance will be selected.

The third version of GDE (GDE3) extends DE algorithm for multi-objective
optimization problems with M objectives and K constraints. DE operators are
applied using three randomly selected vectors to produce an offspring per parent
in each generation. The selection strategy is similar to the GDE2 except in two
parts: 1. Applying constraints during selection process. 2. The non-dominating
case of two candidate solutions. Selection rules in GDE3 are as follows: when
old and new vectors are infeasible solutions, each solution that dominates other
in constraint violation space is selected. In the case that one of them is feasible
vector, feasible vector is selected. If both vectors are feasible, then one is selected
for the next generation that dominates other. In non-dominating case, both
vectors are selected. Therefore, the size of the population generated may be
larger than the population of the previous generation. If this is the case, it is then
decreased back to the original size. Selection strategy for this step is similar to
NSGA-II algorithm [10]; it sorts individuals in the population, based on the non-
dominated sorting algorithm and crowding distance measure. Similar to other
population-based multi-objective algorithms, the selected individuals go to the
next generation to continue optimization processing. The common point about
all of these versions is the utilizing randomly selected individuals to produce a
new vector using the main mutation operator of DE which will be modified in
our proposed algorithm in this paper. So, even the mutation scheme would be
tailored to support multi-objective optimization strategy.



GDE4: The Generalized Differential Evolution with Ordered Mutation 105

2.2 Existing Single Objective Differential Evolution with Ordered
Mutation

In some versions of DE algorithm, the ordering of the candidate solutions is uti-
lized for the mutation operator to enhance the performance of DE algorithm for
solving the single objective optimization problems. A new scheme of mutation
operator, DE/2-Opt, was defined in [5] which sorts two first candidate solutions
in the mutation operator according (for minimization case) to their objective
function value in ascending order to place as xi1 and xi2 in the mutation oper-
ator as:
‘DE/2-Opt/1’:

vi =

{
xi1 + F . (xi2 − xi3) if f(xi1) <= f(xi2)
xi2 + F . (xi1 − xi3) if f(xi2) < f(xi1)

(4)

‘DE/2-Opt/2’:

vi =

{
xi1 + F . (xi2 − xi3 + xi4 − xi5) if f(xi1) <= f(xi2)
xi2 + F . (xi1 − xi3 + xi4 − xi5) if f(xi2) < f(xi1)

(5)

In [6], the winner mutation (DE/win) was proposed which uses the best candi-
date of three selected random candidate solutions for the base vector as follows:
‘DE/win/1’:

vi =

⎧⎪⎨
⎪⎩
xi1 + F . (xi2 − xi3) if f(xi1) <= f(xi2), f(xi3)
xi2 + F . (xi1 − xi3) if f(xi2) < f(xi1), f(xi3)
xi3 + F . (xi2 − xi1) if f(xi3) < f(xi2), f(xi1)

(6)

In [7], a modified DE algorithm with the order mutation scheme was proposed
which three selected random solutions are sorted in ascending order according
to their fitness values for placing as vectors (xi1 , xi2 , and xi3) in the mutation
operator.
‘DE/order/1’:

vi = xi1 + F . (xi2 − xi3)s.t. f(xi1) <= f(xi2) <= f(xi3) (7)

Where f(x) indicates the objective function. This method outperforms previous
mentioned DE schemes.

3 Proposed Algorithm: The Generalized Differential
Evolution with the Ordered Mutation (GDE4)

The proposed enhanced version of GDE3 method has the same components of
GDE3 method except for the mutation operator in the DE algorithm. In this
paper, a new mutation scheme is proposed according to a defined order for the
candidate solutions involved in the mutation of the DE algorithm. GDE3 uses the



106 A. Asilian Bidgoli et al.

DE/rand/1/bin method to solve problems with M objectives and K constraints.
The basic mutation, in the classical DE (DE/rand/1/bin) generates the mutant
vector as a linear combination of three selected individual candidate solutions
from the current population as follows:

vi = xi1 + F . (xi2 − xi3) (8)

Where i1, i2, i3 are different random integer numbers within [1, NP ] and NP is
the population size. In [7], an ordered mutation scheme was proposed to improve
the performance of DE algorithm and we change this mutation scheme by defin-
ing a new order of the randomly selected candidate solutions for the problems
with M objectives. In the GDE4, we propose an order mutation scheme which
uses non-dominance and crowding distance measures to sort three different ran-
dom candidate solutions to set as vectors in the mutation scheme. The sorted
candidate solutions can be called as the best (xb), the second best (xsb), and the
worst candidate (xw) solutions.

In the following, we explain how the three randomly selected candidate solu-
tions are sorted. First, all candidate solutions are sorted by non-dominated sort-
ing method [10] and they are associated with their corresponding non-dominated
ranks (Rankd) obtained from non-dominated sorting. Random candidate solu-
tions can be faced with four possible cases based on their non-dominance ranks:

1. In the first case, all three candidate solutions are in different Pareto fronts;
therefore, they are set to xb, xsb, and xw to their non-dominated ranks. The
ordered mutation scheme (DE/order/1) is defined as follows: ‘DE/order/1’:

vi = xib + F . (xisb − xiw)
s.t. Rankd(xib) < Rankd(xisb) < Rankd(xiw)

2. In this case, two candidate solutions are in the same Pareto front, so we
compute crowding distance (CD) measure to sort these solutions. The ordered
mutation scheme (DE/order/1) is defined as two possible cases:
(a) ‘DE/order/1’:

vi = xib + F . (xisb − xiw)
s.t. Rankd(xib) = Rankd(xisb) < Rankd(xiw)

CD(xib) > CD(xisb)

(b) ‘DE/order/1’:

vi = xib + F . (xisb − xiw)
s.t. Rankd(xib) < Rankd(xiw) = Rankd(xisb)

andCD(xisb) > CD(xiw)



GDE4: The Generalized Differential Evolution with Ordered Mutation 107

3. If all three random candidate solutions are in the same Pareto front, they
are sorted based on their crowding distance (CD) to place in the mutation
scheme. The ordered mutation scheme (DE/order/1) is defined as follows:
‘DE/order/1’:

vi = xib + F . (xisb − xiw)
s.t. CD(xib) > CD(xisb) > CD(xiw)

The proposed method uses the order mutation scheme for DE algorithm in
GDE3, and other components remain untouched. Generalized Differential Evo-
lution with the ordered mutation (GDE4) suggests that placing the best solution
of three selected candidate solutions according to two measures, non-dominance
and crowding distance, as the base vector causes to generate more promising trial
solutions. Also, we use the worst candidate solution of three candidate solutions
as the third vector in the mutation which causes the new trial candidate solu-
tion to get away from the worst candidate and move toward the second best
candidate solution.

Fig. 1. An example of variable and objective spaces for ordered DE mutation.

Figure 1 presents variable and objective spaces in a case of ordered mutation
and clarifies the benefits of this strategy in creating a promising new solution.
As it is shown, for a parent solution, xi, three randomly selected candidate
solutions are ordered based on the proposed strategy in GDE4 algorithm. In
this case, the first candidate solution, xi1 is in the first rank of non-dominated
sorting, so it is considered as the base vector (best). xi2 and xi3 are in the same
rank therefore they ordered according to crowding distance. xi2 has a bigger
crowding distance comparing to xi3, so they are ordered as second (better) and
third vector (worst) in mutation operator. Right sub-figure in Fig. 1 shows the
operation of mutation on selected vectors. F . (xi2 −xi3) leads new vector moves
toward to better solution and gets away from the worst while F is considered 1.
In this example, better solution is one with a bigger crowding distance. Moving



108 A. Asilian Bidgoli et al.

toward this solution causes the creation of a vector in a less crowded region
to have a well-distributed Pareto front. Then summation operation on xi1 and
F . (xi2 − xi3) causes the final resulted vector goes toward the best candidate
solution. So it is expected to generate a more promising candidate solution.

Table 1. Main properties of the test functions [11].

Problem Properties

MaF1 Linear

MaF2 Concave

MaF3 Convex, multimodal

MaF4 Concave, multimodal

MaF5 Convex, biased

MaF6 Concave, degenerate

MaF7 Mixed, disconnected, multimodal

MaF8 Linear, degenerate

MaF9 Linear, degenerate

MaF10 Mixed, biased

MaF11 Convex, disconnected, nonseparable

MaF12 Concave, nonseparable, biased, deceptive

MaF13 Concave, unimodal, nonseparable, degenerate

MaF14 Linear, partially separable, large scale

MaF15 Convex, partially separable, large scale

4 Experiment

GDE4 is evaluated with a set of test problems and compared to GDE3 regarding
multi-objective evaluation measures. The same settings are considered for two
algorithms. The mutation amplification factor (F) and crossover rate (CR) are
set to 0.5 and 1, respectively. For population size and maximum evaluation num-
ber, value 100 and 3000 ∗D are considered. To evaluate the performance of the
proposed algorithm, we use the inverse generational distance (IGD) metric [12–
14], which measures the convergence and the diversity of the obtained Pareto-
optimal solutions at the same time. The IGD metric measures the distances
between each solution composing the Pareto-optimal front and the obtained
solution. The IGD metric is defined as follow:

IGD =

√∑n

i=1
di

n
(9)



GDE4: The Generalized Differential Evolution with Ordered Mutation 109

Where n is the number of solutions in the Pareto-optimal front, and di is the
Euclidean distance (measured in the objective space) between each point of
the Pareto-optimal front (reference Pareto front) and the nearest member of
obtained solution. Also, all algorithms were executed 51 times independently,
and the best, the worst, the median, and the average results of each algorithm
are reported. Additionally, the Wilcoxon’s signed rank statistical test with a
confidence interval of 95% is conducted to evaluate the statistical significance of
the obtained results. We have utilized GDE3 algorithm in the MATLAB based
MOEA platform (PlatEMO) [15] and it was modified by changing its mutation
operator to the order mutation as explained for the GDE4.

In the experiments, fifteen test problems are used to evaluate the perfor-
mance of the proposed algorithm from the MaF test suite which is designed
for the assessment of MOEAs in the CEC 2017 competition on evolutionary
many-objective optimization [11]. These benchmark functions have many prop-
erties to resemble various real-world scenarios such as multi-modal, disconnected,
degenerate, and/or nonseparable, and having an irregular Pareto front shape, a
complex Pareto set or a large number of decision variables. The main properties
of functions are detailed in Table 1. Experiments are performed on 5, 10 and 15
objective functions.

Figure 2 illustrates the distribution of obtained solutions by GDE4 and GDE3
for MFa11 test problem in different number of objectives. The diagrams are
resulted based on median value of IGD. As the figure shows both algorithms
are able to find distributed solutions with same performance when the number
of objectives is 5. However, as the number of objectives of the test problem
increases, GDE4 performs significantly better to find well-distributed solutions.
The difference between diversity of obtained solutions using GDE3 and GFE4 is
more remarkable with 15 objectives.

The results of IGD metric for two comparing methods are summarized in
Table 2. Better mean of IGDs are highlighted based on Wilcoxon’s signed rank
statistical test. It can be seen from the tables, on functions with five objectives,
GDE4 can achieve the better results than GDE3 on seven functions while GDE3
is better than GDE4 on five functions, and they are similar results on three
functions. On functions with ten objectives, GDE4 can achieve the better results
than GDE3 on ten functions while GDE3 can obtain better results than GDE4 on
three functions; and they are similar results on two functions. On functions with
fifteen objectives, GDE4 outperforms GDE3 on nine functions while GDE3 can
obtain better results than GDE4 on five functions; and they are similar results
on one functions. Results show that by increasing the number of objectives in
the many-objective functions, GDE4 preforms significantly better than GDE3
regarding statistical test. Furthermore, comparing results according to median
and best IGD confirms better performance of GDE4. Median IGDs of GDE4 are
better in 9, 11 and 9 out of 15 functions for 5, 10, and 15 objective problems
respectively comparing to GDE3.

According to best IGDs, GDE4 achieve better results in 7, 9, and 8 out of
15 functions for 5, 10, and 15 objective problems respectively. So the order of



110 A. Asilian Bidgoli et al.

GDE3, M=5 GDE4, M=5

GDE3, M=10 GDE4, M=10

GDE3, M=15 GDE4, M=15

Fig. 2. Comparison of obtained Pareto fronts by GDE3 and GDE4 for MFa11 test
problem in different dimensions.

solutions in DE mutation operator improves the search processing in many-
objective optimization problems using generating better (non-dominated) solu-
tions. The generated solution is expected to create in place close to the best
solution in term of the rank of non-dominated sorting and the less crowded
region. As another advantage of the proposed method, it can be clarified that
this improvement is achieved without any extra objective function evaluation.
The method needs only ordering of three existing solutions, so there isn’t over-
head computation for applying mutation comparing to previous version.



GDE4: The Generalized Differential Evolution with Ordered Mutation 111

Table 2. Results of GDE3 and GDE4 algorithms for the functions MaF1-MaF15. The
highlighted entries are significantly better.

Function #Objectives=5 #Objectives=10 #Objectives=15
GDE3 GDE4 GDE3 GDE4 GDE3 GDE4

MaF1

Mean 0.2052 0.1696 0.3529 0.3015 0.3718 0.3220
Median 0.2049 0.1700 0.3542 0.3006 0.3676 0.3207
Worst 0.2244 0.1843 0.3687 0.3096 0.4312 0.3489
Best 0.1923 0.1570 0.3346 0.2894 0.3510 0.3038

MaF2

Mean 0.1502 0.1414 0.1691 0.1717 0.1960 0.1639
Median 0.1448 0.1393 0.1691 0.1718 0.1962 0.1638
Worst 0.2016 0.2059 0.1783 0.1802 0.2159 0.1698
Best 0.0983 0.1006 0.1619 0.1630 0.1774 0.1580

MaF3

Mean 2.9848e+4 1.1454e+4 8.9508e+4 4.7488e+4 6.3820e+6 7.6529e+4
Median 3.0976e+4 9.6593e+3 6.5095e+04 3.8852e+4 1.2809e+5 6.0298e+4
Worst 5.1531e+4 2.9545e+4 2.6107e+5 1.2766e+5 1.9288e+8 2.5940e+5
Best 303.1595 4.0487e+3 3.3775e+4 1.2146e+4 5.5970e+4 9.7001e+3

MaF4

Mean 185.6015 154.0321 1.8330e+4 6.5089e+3 6.1292e+5 1.7718e+5
Median 132.2845 157.4819 1.7994e+4 5.7372e+3 5.6660e+5 1.6946e+5
Worst 558.9949 272.2185 3.8579e+4 1.6750e+4 1.2662e+6 4.3676e+5
Best 2.8850 56.2430 73.5666 1.3418e+3 5.1928e+3 4.2660e+4

MaF5

Mean 3.4354 2.4941 81.7945 52.6467 1.6891e+3 1.2131e+3
Median 3.4658 2.5029 78.1735 52.7151 1.7065e+3 1.2137e+3
Worst 4.1599 2.9408 130.9308 66.7699 2.2733e+3 1.6161e+3
Best 2.9288 2.0434 58.0378 43.6443 1.3950e+3 1.0154e+3

MaF6

Mean 0.0043 0.0042 0.5219 0.2241 0.3858 0.3430
Median 0.0043 0.0041 0.4389 0.2496 0.3418 0.3425
Worst 0.0045 0.0049 1.2602 0.3195 0.7446 0.3474
Best 0.0039 0.0038 0.3101 0.0025 0.3415 0.3415

MaF7

Mean 0.5699 0.4674 1.8627 1.6517 2.0686 3.2783
Median 0.5701 0.4653 1.8428 1.5986 2.0761 3.0007
Worst 0.6658 0.5433 2.0059 2.4190 2.1438 5.5710
Best 0.4885 0.3954 1.7207 1.4164 1.9249 2.1578

MaF8

Mean 0.1352 0.5757 0.1420 1.3324 0.1414 2.5921
Median 0.1342 0.5621 0.1417 1.2636 0.1417 2.2632
Worst 0.1618 0.9057 0.1505 2.5778 0.1463 7.5285
Best 0.1214 0.3688 0.1363 0.7950 0.1349 1.2687

MaF9

Mean 0.7077 1.1437 64.3750 53.1231 0.8668 9.3834
Median 0.7029 1.1106 46.9070 45.8173 0.8606 12.0917
Worst 0.7417 1.7796 173.4796 155.0931 1.0069 15.3572
Best 0.6873 0.8050 12.3038 2.4595 0.7851 1.7868

MaF10

Mean 2.3053 1.9520 4.0770 3.0795 4.8911 4.0115
Median 2.2896 1.9442 4.1003 3.0895 4.9108 4.0144
Worst 2.5162 2.0167 4.2786 3.1721 5.0849 4.1371
Best 2.1792 1.9116 3.7678 3.0070 4.7297 3.8524

MaF11

Mean 0.9947 0.6098 1.6504 0.8708 1.9490 1.4747
Median 0.9777 0.5826 1.7212 1.0780 2.2806 1.8268
Worst 1.1922 0.9363 2.2222 1.6269 3.0181 2.2427
Best 0.8443 0.4961 0.5462 0.1776 0.7014 0.2508

MaF12

Mean 1.5934 1.6983 5.7623 5.4441 8.6395 7.7793
Median 1.5959 1.7319 5.7621 5.4454 8.6360 7.8252
Worst 1.7707 1.8636 5.8966 5.6727 8.9330 8.0114
Best 1.4322 1.5049 5.5960 4.9936 8.3844 7.3945

MaF13

Mean 0.1869 0.1209 0.1232 0.1071 0.1045 0.0953
Median 0.1748 0.1219 0.1204 0.1063 0.1017 0.0945
Worst 0.2502 0.1308 0.1647 0.1235 0.1500 0.1129
Best 0.1372 0.1045 0.1089 0.0928 0.0921 0.0845

MaF14

Mean 0.9794 25.9004 8.0794 25.5172 3.1449 41.3429
Median 0.9796 28.4090 8.3299 23.0875 1.0996 39.7949
Worst 0.9796 45.2110 18.2883 48.8730 12.0864 59.5061
Best 0.9774 8.0826 1.9220 11.4911 1.0963 27.2051

MaF15

Mean 9.9889 11.2497 56.4160 53.1113 50.6759 72.4516
Median 9.2002 11.2324 49.1652 51.9795 53.6135 72.7500
Worst 15.1699 16.8106 108.9222 73.1437 90.7196 84.7248
Best 6.5229 6.6440 32.3527 40.5497 23.5498 59.5537

5 Conclusion Remarks

This paper proposes GDE4, a new version of Generalized Differential Evolution
algorithm for multi-objective optimization problems. The ordering of randomly
selected candidate solutions for DE mutation operator is investigated. Method
sorts three solutions at first, based on non-dominated sorting approach and then
crowding distance measure to utilize as first, second and best solutions in DE
mutation to generate a new individual exhibiting better fitness. DE summation
and subtraction operators cause moving of new solution toward the first and



112 A. Asilian Bidgoli et al.

second vectors and getting away from the third vector. So ordered vectors has
inherited the quality of best and better candidate solutions. The performance
of the method is evaluated using standard benchmark functions of CEC 2017
competition on evolutionary many-objective optimization problems. The results
indicate that the proposed algorithm outperforms GDE3 which puts solutions in
mutation operator randomly in most test problems. In the future, it is intended
to investigate new strategies to order candidate solutions, such as the distance
of each vector from an ideal point.

References

1. Ali, M., Siarry, P., Pant, M.: An efficient differential evolution based algorithm for
solving multi-objective optimization problems. Eur. J. Oper. Res. 217(2), 404–416
(2012)

2. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45356-3 83

3. Lampinen, J.: DEs selection rule for multiobjective optimization. Technical report,
Lappeenranta University of Technology, Department of Information Technology,
pp. 03–04 (2001)

4. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differ-
ential evolution. In: The 2005 IEEE Congress on Evolutionary Computation, vol.
1, pp. 443–450. IEEE (2005)

5. Chiang, C.W., Lee, W.P., Heh, J.S.: A 2-opt based differential evolution for global
optimization. Appl. Soft Comput. 10(4), 1200–1207 (2010)

6. Yeh, M.F., Lu, H.C., Chen, T.H., Huang, P.J.: System identification using differ-
ential evolution with winner mutation strategy. In: 2014 International Conference
on Machine Learning and Cybernetics (ICMLC), vol. 1, pp. 77–81. IEEE (2014)

7. Mahdavi, S., Rahnamayan, S., Karia, C.: Analyzing effects of ordering vectors in
mutation schemes on performance of differential evolution. In: 2017 IEEE Congress
on Evolutionary Computation (CEC), pp. 2290–2298 (2017). https://doi.org/10.
1109/CEC.2017.7969582

8. Seada, H., Deb, K.: Non-dominated sorting based multi/many-objective optimiza-
tion: two decades of research and application. In: Mandal, J.K., Mukhopadhyay,
S., Dutta, P. (eds.) Multi-Objective Optimization, pp. 1–24. Springer, Singapore
(2018). https://doi.org/10.1007/978-981-13-1471-1 1

9. Kukkonen, S., Lampinen, J.: An extension of generalized differential evolution for
multi-objective optimization with constraints. In: Yao, X., et al. (eds.) PPSN 2004.
LNCS, vol. 3242, pp. 752–761. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30217-9 76

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

11. Cheng, R., et al.: A benchmark test suite for evolutionary many-objective opti-
mization. Complex Intell. Syst. 3(1), 67–81 (2017)

12. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in
evolution strategies: the covariance matrix adaptation. In: 1996 Proceedings of
IEEE International Conference on Evolutionary Computation, pp. 312–317. IEEE
(1996)

https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1109/CEC.2017.7969582
https://doi.org/10.1109/CEC.2017.7969582
https://doi.org/10.1007/978-981-13-1471-1_1
https://doi.org/10.1007/978-3-540-30217-9_76
https://doi.org/10.1007/978-3-540-30217-9_76


GDE4: The Generalized Differential Evolution with Ordered Mutation 113

13. Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems using
differential evolution. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol.
3339, pp. 861–872. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30549-1 74

14. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

15. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evo-
lutionary multi-objective optimization [educational forum]. IEEE Comput. Intell.
Mag. 12(4), 73–87 (2017)

https://doi.org/10.1007/978-3-540-30549-1_74
https://doi.org/10.1007/978-3-540-30549-1_74

	GDE4: The Generalized Differential Evolution with Ordered Mutation
	1 Introduction
	2 Background Review
	2.1 Generalized Differential Evolution
	2.2 Existing Single Objective Differential Evolution with Ordered Mutation

	3 Proposed Algorithm: The Generalized Differential Evolution with the Ordered Mutation (GDE4)
	4 Experiment
	5 Conclusion Remarks
	References




