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Abstract. A steady increase in the prices of non-renewable energy
sources, their environmental impact, and the ever-increasing energy
demands have made it imperative to explore alternative, renewable
energy options. Wind energy is one of the prominent alternatives, and
for onshore installations, optimal placement of wind turbines is necessary
to harness maximum power. This optimal placement problem, referred
to as wind-farm layout optimization, has received significant research
attention with regards to output power maximization. However, in prac-
tice, apart from maximization of power, a number of other key factors
need to be considered, such as cabling cost, maintenance cost and noise
levels. Furthermore, the wind farm itself may have irregular boundaries
and within the area there may be several protected areas due to exist-
ing archaeological deposits, water bodies, bird feeding areas, etc. In this
paper, we present a framework to support practical layout optimization
of wind farms. In the proposed approach, a variable discretization scheme
is employed to deal with irregular land boundaries and a many-objective
formulation is used to identify the set of trade-off solutions. The utility
of the approach is highlighted using a case study resembling the Capital
wind farm located in New South Wales, Australia. We hope that this
study will motivate use of such tools to solve practical wind farm layout
optimization problems.

1 Introduction

Wind power is one of the prominent sources of large scale renewable energy. In
2015, Australia’s wind farms produced 33.7 per cent of the country’s clean energy
and supplied 4.9 per cent of Australia’s overall electricity [3]. A typical onshore
wind farm contains several turbines installed over a large land area. Each turbine
has an individual capacity of producing a certain amount of energy. However, if
installed too close to each other, the turbulence and wake effects cause a reduc-
tion in wind speed and consequently in the power generated at the downstream
turbines. Consequently, a wind farm tends to span expansive land area, which in
turn increases its interference with natural habitats [15,23]. Additionally, noise
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generated by the turbines also need appropriate consideration. The noise levels
at nearby residential areas should be below prescribed levels to limit potential
health hazards [8,28,30]. Wind farm layout design is thus a challenging opti-
mization problem with a number of practical considerations.

Optimum design of wind farm layouts has been attempted in the past with
various levels of simplification in the model. For example, in [18] the wind farm
was assumed to be of a square shape and represented using a 10 × 10 grid (100
cells in total), where turbines could only be located at the center of the cells.
This discrete location model relied on the size of the cells to inherently enforce
proximity constraints (of a minimum distance between any two turbines). Con-
tinuous location models have also been used, for example in [13], where turbines
could be located anywhere within the area. In reality, a wind farm often spans
across areas belonging to multiple land owners and there may be a limit on the
number of turbines installed within each block depending on agreements with
the respective owners. The model in [32,33] considered straight-line boundaries
between these blocks. More realistic models that consider regulatory land use [27]
or variation in elevation also appear in recent literature. Irregular boundaries
have rarely been considered, although this would be the most likely scenario in
a practical wind farm design.

In terms of estimation of power, simplifications range from considering uni-
directional wind at constant speed through to models that consider wind speed/
direction variation with turbine interactions [22]. Turbine interaction models
also vary in complexity ranging from Jensen wake model [12] through to three
dimensional wake models [25]. There are also a variety of optimization formu-
lations reported in the literature which range from energy maximization as the
sole objective [10,18], energy maximization subject to proximity and noise level
constraints [2,9,13] or even bi-objective formulations that consider noise levels
and energy maximization simultaneously [14]. Further extensions that consider
energy maximization, cable length minimization and enclosed land area min-
imization have also been reported in [31]. Since the underlying optimization
problem is NP-hard, a range of stochastic algorithms (NSGA-II [14], CMA-ES
[11], SPEA [13,25], IBEA [17]) have been used for solving it.

Given that the adoption of wind farms clearly depends on a number of factors
apart from the power maximization, it is useful to seek and present a rich trade-
off set of solutions to the stakeholders. In view of the existing research on this
problem discussed above and the associated limitations, the key highlights of
this study are listed below.

• Firstly, we offer an optimization framework to deal with wind farm layout
optimization involving realistic objectives such as (a) maximization of wind
power, (b) minimization of cable length connecting the turbines, (c) minimiza-
tion of enclosed land area of the layout to reduce maintenance and inspec-
tion costs and (d) minimization of noise level. While some of these objec-
tives have been considered individually in the works before, in its essence the
problem is a multi-objective optimization problem; also referred to colloqui-
ally as a many-objective optimization problem (MaOP) when the number of
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objectives are more than three. MaOP has been a highly active research area
in the past decade [16]; but most studies predominantly use mathematical
benchmark functions that may not capture some of the real-life modeling
challenges. The formulation of the windfarm layout optimization problem as
a MaOP, with its unique set of challenges, not only offers opportunity to
obtain realistic trade-off solutions, but the case-study can also serve as an
application benchmark from an algorithm development perspective.

• Secondly, the proposed approach can deal with realistic constraints such as (a)
multiple infeasible regions where turbines cannot be placed due to environ-
mental regulations (archaeological deposits, bird feeding areas, natural flora,
etc.) and/or landowners’ restrictions and (b) proximity constraints on the tur-
bine placements. Notably, (a) is handled using a novel solution representation
through triangulation of the given irregular land area, while (b) is handled
through assistance of infeasibility driven constraint handling approach.

• Thirdly, the proposed approach incorporates a mechanism capable of gener-
ating a feasible cable layout, i.e., rerouting of cables to avoid all infeasible
areas.

• Lastly, the above contributions are demonstrated through a case-study con-
ducted on a problem resembling the Capital wind farm located near Lake
George, New South Wales, Australia.

The remainder of the paper is organized as follows. The details of the wind
farm layout problem are discussed in Sect. 2. The algorithm is briefly outlined in
Sect. 3, followed by the results obtained on the case study in Sect. 4. Concluding
remarks and future directions are given in Sect. 5.

2 Wind Farm Layout Optimization Problem

2.1 Generic Problem Formulation

A typical onshore wind farm contains several turbines located over a significant
stretch of land. It is well known that the total generated power of a wind farm
is significantly less than the summation of the rated power of the individual
turbines [26]. This is due to the wake effect, where flow past a turbine affects
other turbines located downstream from it [13]. The magnitude of wake and in
turn the efficiency of energy production depends primarily on the layout of the
wind turbines. While maximization of energy production is a key consideration,
there are several other factors which affect the design of the layout such as min-
imization of noise, minimization of cable length, minimization of enclosed area
of the layout, etc. Furthermore, there might be several prohibited zones inside
the layout where no turbines can be placed due to environmental regulations or
landowners’ requirements. There are also a number of practical constraints e.g.
(a) distance between any two turbines should be more than a prescribed dis-
tance (generally 8 times the turbine rotor radius) to minimize wake losses and
hazardous loads on the turbines (b) cables between two turbines cannot pass
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through restricted areas, etc. Thus the layout problem is best represented as a
constrained many-objective optimization problem presented in Eq. 1.

Minimize: F(X) = fi(X), i = 1, 2, . . . M

Subject to
cj(X) ≤ 0, j = 1, 2, . . . p

hj(X) = 0, j = 1, 2, . . . q

X(L) ≤ X ≤ X(U)

(1)

Here, f1(X), f2(X), f3(X), ......fM (X) are the M objective functions to be opti-
mized; considered here in a minimization sense. The number of inequality and
equality constraints are denoted by p and q, respectively. The upper and lower
bounds of the variables are denoted as X(U) and X(L), respectively. For every
solution, the sum of constraint violations is denoted by CV , where CV = 0 indi-
cates a feasible solution. For every pair of turbine locations, a violation value
is computed if the distance between them is less than 8 times the turbine rotor
radius. Sum of these violations correspond to CV . As for the constraints on cable
routing, it is managed through a repair (re-routing), as will be discussed shortly.
The constraints of being in feasible irregular boundaries is handled implicitly
through the solution representation itself.

2.2 Solution Representation

Contrary to some of the regular geometries considered in the literature, e.g. [18],
wind farms could typically have geometries with very irregular boundaries. Fur-
ther, the areas prohibited for turbine installation may be irregular too. In this
study, we propose a simple representation that can place the turbines within
these irregular boundaries and avoid the prohibited zones. In order to do this,
we discretize the boundaries of the allowable areas using the technique proposed
in [20] and construct a triangular mesh within the feasible zones. Figure 1(a)
illustrates an example of a discretized feasible area with irregular geometry and
several infeasible areas with irregular geometries within it such as bird feed-
ing area, private property and a water body. Once the Nt triangles have been
obtained through this step, the location of an ith turbine can be represented
using the set of variables (Ai,wi), where Ai is one of the triangles, and wi is
a set of weights such that

∑3
j=1 wj

i = 1. The weights corresponding to a set
of uniformly distributed Nw points on a given triangle generated using normal
boundary intersection (NBI) [4]. All these points on any given triangle are con-
sidered candidate locations for the turbine. The representation is given in Eq. 2.
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Fig. 1. Discretization of area and cable re-routing (Color figure online)

X = {Ai, wi}
where (2)

i ∈ [1, N ],
Ai ∈ {A1, A2, . . . , ANt}, wi ∈ {w1, w2, . . . , wNw}

Let’s say, the vertices of Ai are (A1
i,A2

i,A3
i), the x-coordinate of the vertices

of Ai are denoted by {xAj
i | j = 1, . . . , 3} and the y-coordinates are denoted by

{yAj
i | j = 1, . . . , 3}. The Cartesian coordinates of the ith turbine location can

thus be simply computed as:

xi =
3∑

j=1

wj
ixAj

i ; yi =
3∑

j=1

wj
iyAj

i (3)

2.3 Objectives and Computation Models

In this study, the performance of a candidate layout is assessed using four objec-
tives: (a) energy production(maximize), (b) total cable length (minimize), (c)
enclosed area of the layout (minimize) and (d) the maximum noise level (min-
imize). The energy production model is based on [13] which considers wind
speed and directional variations. Turbines are connected via cables and the total
length of the cable configuration contributes to the levelised annual cost of a
farm. Given the location of the turbines, the cable routes are derived using



712 K. S. Bhattacharjee et al.

minimum spanning tree algorithm (MST). However, cable connections passing
through any of the infeasible regions are re-routed in order to achieve a deploy-
able design. The re-routing of a cable connection between two turbines (t1 and
t2) is achieved through the following stages. At first, the triangles from the dis-
cretized feasible land containing the turbines are identified. Let’s say t1 belongs
to the triangle A and t2 belongs to the triangle B. The vertices of these two
triangles (A and B) are (A1,A2,A3) and (B1,B2,B3), respectively. In the next
stage, between every ith vertex of A and jth vertex of B, the shortest paths
(with path length d̃(Ai, Bj)) through the edges of the discretized feasible area
are identified using [7]. In addition to d̃(Ai, Bj), the distances from every vertex
to the corresponding turbines i.e. d(Ai, t1) and d(Bj , t2) are added to compute
the total distances between two turbines through various vertex combinations.
Finally, the re-routed cable length (D) between two turbines is considered as
the path having minimum total distance. The total distance computation fol-
lows Eq. 4. Figure 1(b) illustrates the infeasible region, the turbines, the triangles
containing the turbines, the old cable configuration (in blue) and the re-routed
cable configuration (in red).

D = min
1≤i≤3,1≤j≤3

(
d̃(Ai, Bj) + d(Ai, t1) + d(Bj , t2)

)
(4)

The maintenance cost of a wind farm is proportional to the enclosed area
of the wind farm layout. The enclosed area is computed based on the convex
hull bounded by the turbine locations. Generation of noise by the wind farm is
one of the most important environmental concerns. In general, the sound level
is measured at the receptors at the nearby residences [29]. In this study, the
ISO-9613-2 standard has been followed to compute the noise generation at the
receptor locations and the maximum noise level generated among all receptors
is considered as an objective.

2.4 Case Study Description

The application is based on Capital wind farm located in New South Wales,
Australia. The wind farm has three different regions: Groses hill, Ellenden and
Hammonds hill. It has a total of 67 turbines out of which 17 are placed in
Groses hill, 21 are within Ellenden and 29 turbines are located in Hammonds
hill region. There are several infeasible regions, such as woodland vegetation,
secondary grassland, wattle woodland, yellowbox woodland, she-oak region and
nearby residences as shown in Fig. 2. Due to environmental regulations, turbines
cannot be placed in these infeasible regions. The turbines are of same make and
model, i.e., Suzlon S88 and the parameters related to the turbines are listed in
Table 1. The wind scenario used in this study is constructed from the wind rose
provided for the Capital wind farm project in [19].

This problem is solved as a constrained many-objective optimization prob-
lem. The need to place 67 turbines translates to 134 variables and results in
67(67 − 1), i.e., 4422 proximity constraints. The discretization of the allowable
land generates a total of Nt = 10476 triangles among which 2167 triangles belong
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Table 1. Turbine related parameters

Turbine parameters Value Turbine parameters Value

Make and model Suzlon S88 Rated power (Prated) 2100 kW

Rotor radius (R) 44 m Hub height 80 m

Cut-in wind speed (vcut−in) 4 m/s Rated wind speed (vrated) 14 m/s

Cut-out wind speed (vcut−out) 25 m/s Slope of the power curve (λ) 262.5

Intercept of the power curve (η) −1050 Thrust coefficient (CT ) 0.9

to Groses hill, 4639 triangles to Ellenden and 3670 to Hammonds hill. The num-
ber of combinations of weights (Nw) for each triangle is set to be 8001. Take
note that the discretization does lead to triangles with different sizes and the
choice of (Nw) is just to ensure appropriate discretization for the largest trian-
gle. Among the objectives, the noise level at the residences shown in Fig. 2 are
computed using the parameters listed in Table 2.

Table 2. Turbine related parameters

Noise parameters Value

Noise generation (Lw) 105.9 dBA

Residence height 1.5 m

Directivity correction (Ds) 0

Average temperature 10◦C

Average humidity 80%

Ground factor (G = 0: hard, G = 1: porous) 0

Nominal midband frequency (f) {63, 125, 250, 500, 1000, 2000, 4000, 8000} Hz

Atmospheric attenuation coefficient (α) {0, 0, 1, 2, 4, 9, 29, 104}
A-weighted factors (Af ) {−26.2, −16.1, −8.6, −3.2, 0, 1.2, 1, −1.1}

3 Algorithm

The optimization algorithm is based on a (μ + λ) evolutionary model, where
μ parents are recombined to generate λ offspring and the best μ solutions are
selected as parents for the next generation. The pseudo-code of the proposed
method is presented in Algorithm 1 and uses decomposition of objective space,
a strategy commonly used in the contemporary algorithms for solving MaOPs.

The algorithm has a framework similar to reference vector based evolution-
ary algorithm (RVEA) [1], but there are two key modifications. The first relates
to parent selection scheme. While random parents are selected from a neighbor-
hood in RVEA for recombination, we opt to use ranking that prefers marginally
infeasible solutions over feasible solutions. Such a ranking scheme was intro-
duced in [21,24] and demonstrated to perform better than strictly feasibility
first schemes for constrained optimization problems. Secondly, in order to uti-
lize the advantages of both differential evolution crossover [5] and simulated
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Algorithm 1. Proposed algorithm used for windfarm layout optimization
Input: Genmax (Maximum number of generations), W (Number of Reference points/population
size), Crossover and mutation parameters

1: i=1. {Generation counter}
2: Generate W reference points using Systematic Sampling.
3: Construct W reference directions; Straight lines joining origin and W reference points.
4: θth: Compute the minimum angle between a reference direction and all others.
5: Initialize the population using LHS sampling P i;

∣
∣P i

∣
∣ = W .

6: Assign individuals of P i to the reference directions.
7: while (i ≤ Genmax) do

8: Create C offspring from P i via recombination.
9: Assign P i+1 individuals from P i + C to W reference directions
10: i=i+1.
11: end while

binary crossover [6], at each generation both types of crossover are employed for
alternate base parents. Similarly during the evolution, reverse order of crossover
types are used in alternate generations. Thus, if at generation 1, first reference
direction uses differential evolution crossover and second reference direction uses
simulated binary crossover, at generation 2 the first reference direction will use
simulated binary crossover and differential evolution crossover will be used for
the second. The intent is to improve convergence by adopting the high quality
solutions generated using the two types of crossovers, while also reducing bias
towards either of them. Due to space constraints, we omit the detailed descrip-
tion of the algorithm, but the interested readers are referred to [1].

4 Results

A single optimization run has been performed to solve this problem due to the
computationally expensive nature of the underlying simulations. A population
size of 220 solutions was evolved over 600 generations to obtain the final layout
of the turbines. The run-time was approximately 75 h on a 2.30 GHz, 32 cores
with 128 GB of memory. A total of 27 feasible solutions were obtained at the end
of evaluation budget, which highlights that the problem is highly constrained.
Out of the feasible solutions, 9 solutions were nondominated and there were
3 unique extreme solutions. The extreme solutions in the context of minimum
cable length and minimum enclosed area were the same. The obtained values
of the maximum energy production, the minimum cable length, the minimum
enclosed area and the minimum noise level were 49.16 MW, 53.38 km, 71.07 km2

and 55.54 dBA, respectively.
The complete set of trade-off solutions are presented in Fig. 3. Since there are

only 9 solutions under consideration, the stakeholders can collectively work to
select the most preferred option. The layouts corresponding to each extreme solu-
tions including the noise level on each residence is plotted in Fig. 3. In the current
state since such modeling/optimization tools are either not readily accessible or
well understood by communities at large, there is very limited understanding of
the benefits and the impacts of wind farms. The considerations of multiple cri-
teria and resulting visualization can help in an informed decision-making about
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trade-offs between various designs. For example, it can be observed from Fig. 4
that the location of the turbines corresponding to minimum noise level are away
from the residential areas. Among the feasible solutions, there were variations
of 1.56%, 14.66%, 8.55% and 26.73% in terms of power generation, cable length,
land area and noise level, respectively (calculated as max(|f |)−min(|f |

max(|f |) ). This obser-
vation raises an interesting and practically relevant design consideration - if one
opted to solve the above problem as a single objective power maximization prob-
lem, the best solution would correspond to a total power of 49.16 MW with a
noise level of 75.81 dBA. On the other hand, using a multi-objective approach
one can identify alternatives and opt for a layout with marginally lower power
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of 48.84 MW but with a significantly lower noise level of 55.54 dBA. That is,
by maintaining almost the same level of power output (i.e. only 1.56% lower
than the best), one can reduce the noise level significantly (by 26.73%). Since
the noise level is often a major community concern that has a major bearing
on adoption of the plan, it is important to identify the complete set of trade-off
solutions for an informed decision-making.

5 Conclusions and Future Work

In this paper, we presented an approach that can be used to develop wind farm
layouts with a range of practical design considerations. Currently, there is limited
understanding within the community with respect to the trade-offs involved in a
wind farm layout design, as typically the existing studies have solved the prob-
lem as a single-objective formulation involving power maximization. In absence
of the consideration of multiple objectives and constraints relevant to the envi-
ronment, the obtained designs may not reflect realistic layouts, which in turn
affects the uptake and exploitation of wind energy. In this paper, we presented an
approach that can be used to analyze or design potential wind farm layouts with
appropriate level of details such as irregular land boundaries, multiple land own-
ers, consideration of protected areas, noise levels at nearby residential dwellings,
etc. It also offers an opportunity to view alternative layouts while considering
maintenance costs, cable layouts, noise levels and power generation simultane-
ously. The utility of the approach is highlighted using a case study resembling
the Capital wind farm located in New South Wales, Australia. We hope that
this study will motivate use of such formulations and tools to identify optimal
wind farm layouts.

While in our current analysis we did not impose an upper limit on maximum
noise level constraints, it could be a straightforward extension in the future to
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the existing proximity constraints. Furthermore, variation in elevation of the
wind farm was ignored in the model which can be easily incorporated in power
estimation models. Apart from its utility as a tool, the underlying problem is also
interesting as an application problem for research in evolutionary many-objective
optimization as it represents a highly constrained optimization problem with
modest number of variables.
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