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Abstract. This article proposes a search mechanism based on linear
combinations of population members to increase the solution quality of
multi-objective and many-objective optimisation algorithms. Our app-
roach makes use of the inherent knowledge in the solution population at
a given time step, and forms new solutions through linear combinations
of the existing ones. A population of coefficient vectors is formed and
optimised by a metaheuristic to explore and exploit promising areas of
the search space. In addition, our proposed method provides a reduction
of dimensionality for large search spaces. The concept is formally intro-
duced and implemented into a generic algorithm structure to be used in
arbitrary metaheuristics. The experimental evaluation uses four multi-
and many-objective algorithms (NSGA-II, GDE3, NSGA-III and RVEA)
and is performed on a total of 60 test instances from three benchmark
families with 2 to 5 objective functions and 30 to 514 decision vari-
ables. The results indicate that the performance of existing methods can
be significantly improved by the proposed search strategy, especially in
high-dimensional search spaces and for many-objective problems.

Keywords: Multi-objective optimisation ·
Many-objective optimisation · Large-scale optimisation ·
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1 Introduction

The search for a well-spread non-dominated front in multi- and many-objective
optimisation is still an ongoing challenge. This is especially true in large-scale
optimisation which contains a very large number of decision variables or many
objective functions. Previous methods try to balance the trade-off between con-
vergence and diversity in different ways. The research in the last years has led to a
variety of many-objective optimisation methods (e.g. [2,6,10]), as well as a num-
ber of methods that can deal with hundreds or thousands of decision variables
(e.g. [11,17,18,20]). Concepts that can be found in this area are dimensionality
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reduction (e.g. [14]), variable interaction analyses or the division of design vari-
ables into convergence-related and diversity-related parameters (e.g. [11,17]),
some of which involve increased computational costs.

In this work, we propose a method to increase exploration in multi- and
many-objective optimisation by searching in subspaces defined by the current
populations’ design variables. The approach is based on the assumption that
the evolutionary process finds promising areas of the search space (i.e. areas
where good solutions are located) and adjusts the variables in the population
accordingly to cover and explore these areas. Once certain promising results have
been found, a recombination of these solutions through linear combinations is
subject to optimisation in order to create new solutions which benefit from the
inherent information in the population. Our newly proposed exploration method
can easily be included into any metaheuristic optimisation algorithm and can
also lead to a dimensionality reduction without the need for dividing variables
into subcomponents. In this work, the mathematical concept is introduced and
analysed, and an experimental evaluation shows its benefits when embedded into
multi- and many-objective algorithms. The equipped algorithms are tested on a
total of 60 different benchmark function instances from the literature with 2 to
5 objective functions and 30 to 514 decision variables.

The remainder of this article is structured as follows. In Sect. 2 the basic prin-
ciples of multi-objective optimisation are outlined briefly and a short overview
about related work on multi-objective and large-scale approaches is given. In
Sect. 3 the proposed linear-combination approach is introduced. The mathemat-
ical concept is explained first before describing the inclusion of the concept into
existing algorithms. The experimental evaluation in Sect. 4 equips a number of
well-known metaheuristics with the proposed exploration method and compares
their performance on a variety of benchmark functions. Finally, a summary and
outlook on future work directions is given in Sect. 5.

2 Multi-objective Optimisation and Related Work

Problems in nature and science often contain multiple conflicting goals which
need to be optimised simultaneously. These problems are called multi-objective
problems (MOPs) and can be formulated as:

Z : min f(x) = (f1(x), f2(x), ..., fm(x))T

s.t. x ∈ Ω ⊆ R
n

(1)

where m ≥ 2. This kind of MOP maps the decision space Ω = {x ∈ R
n| g(x) ≤

0} of dimension n to the objective space of dimension m. In most problems,
some of the constraints define a domain for each variable with lower and upper
bounds, i.e. xi ∈ [xi,min, xi,max], i = 1, .., n. For such problems, a single optimal
solution can often not be determined, since there is usually a trade-off between
the objective functions. Modern problem solving methods instead concentrate
on finding an approximation of a Pareto-optimal solution set [4,6,9].
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Two key challenges in finding such a set of solutions are convergence and
diversity of the solution set. Convergence refers to the search for better, non-
dominated solutions, which improve all objective functions from the current
solution set, and therefore bring the whole set closer to the true Pareto-optimal
solutions. Diversity on the other hand is necessary to obtain a widely spread set
of solutions. The output of a metaheuristic algorithm should provide a diverse
set of different solutions which represent different trade-offs among the objective
functions and cover the whole Pareto-optimal front as good as possible. Finding
a non-dominated set of solutions that is as close to the true Pareto-set and as
diverse as possible is an ongoing challenge, especially when many-objective and
large-scale problems are involved [11,17,18,20].

In the area of large-scale (i.e. many-variable) optimisation, the topic of reduc-
ing the dimensionality of a problem is often of importance. Concepts like Coop-
erative Coevolution [1] aim to optimise smaller subspaces of the n-dimensional
search space by dividing the variables into groups or subcomponents based on
different criteria. Approaches to achieve a better balance between convergence
and diversity have been used e.g. in [11,17]. These works carry out an analy-
sis to identify variables which influence the diversity of the solution set before
starting the optimisation process. In addition, both methods utilize an inter-
action detection to from groups of variables. A major drawback of these and
similar approaches is that the analysis of variables and formation of variable
groups requires an additional and very large computational budget for this pre-
processing step, while the actual benefit compared to a random assignment of
variables to the groups or less expensive methods is not always guaranteed [13].
Another method called WOF [19,20] shows a superior convergence behaviour in
large-scale problems with up to thousands of variables [21]. WOF aims to bal-
ance diversity and convergence through the selection of certain solutions from the
population, which are used in a fast-converging transformation and optimisation
step of the algorithm.

In the area of many-objective optimisation, a variety of algorithms has been
developed in recent years, among them many who adapt the concept of refer-
ence vectors like NSGA-III [6], MOEA/DD [10] or RVEA [2]. Reference vec-
tors or directions are a common concept that is used to solve the problem
of decreasing selection pressure when Pareto-dominance-based approaches are
used for many-objective problems. Such methods have increased the capabilities
of metaheuristics to solve many-objective problems. Due to that, an area that
might draw increased focus in the future is solving problems with many objec-
tives and a large number of decision variables at the same time, while keeping
computational budget as low as possible. This work therefore aims to propose a
mechanism that can be used to reduce the dimensionality of such problems and
by that improve the solution quality of existing many-objective methods.

3 Proposed Approach

In this section, we propose a search strategy that can be used to enhance explo-
ration of the search space and at the same time reduce the dimensionality of
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a problem without using variable groups. In metaheuristic evolutionary opti-
misation, one general assumption is that the encoding of the problem ensures
that promising solutions can be generated from a combinations of other good
solutions. By extension, Pareto-optimal solutions might share certain character-
istics, i.e. decision variable values, which might be similar throughout the whole
Pareto-optimal set (as for instance the convergence-related variables of common
benchmark families [3,8]), and which might be approximated by an optimiser.
The main goal of this approach is to exploit this information that is inherent in
the population of an evolutionary algorithm at a given time, i.e. the information
which (sub-)vector-space of the n-dimensional search space contains the (at that
point) best or most promising solutions. Based on this, a search inside this sub-
space in conducted. This concept is also related to that of “innovization” from
the literature ([5,7]), which aims to extract information or design principles from
the outcome or during the process of optimisation. In the following, the concept
of the proposed search strategy is explained.

3.1 Concept

Suppose we have an optimisation problem with n real-valued decision variables
and m objectives as given in Eq. 1. Let the population of an algorithm be P and
its size be s := |P |. At each given time of the optimisation process the population
consists of s solution vectors each of dimensionality n: P = {x(1),x(2), ...,x(s)}.
Each solution is a vector ∈ R

n:

x(i) = (x(i)
1 x

(i)
2 ... x(i)

n ) (2)

and the set of solutions P defines a vector (sub)space. The dimensionality of this
subspace is given by the rank of the matrix of the spanning vectors. We therefore
compose the matrix X̂ ∈ R

s×n which contains in each row one solution of the
population.

X̂ =

⎛
⎜⎜⎜⎜⎝

x
(1)
1 x

(1)
2 · · · x

(1)
n

x
(2)
1 x

(2)
2 · · · x

(2)
n

...
...

. . .
...

x
(s)
1 x

(s)
2 · · · x

(s)
n

⎞
⎟⎟⎟⎟⎠

(3)

An evolutionary algorithm (EA) combines the solutions in the current popu-
lation by using crossover operators. However, instead of classical crossover meth-
ods, it is also possible to combine the existing solutions linearly. This can be
done through convex, conical or arbitrary linear combinations. In the following
we focus on general linear combinations as they include the convex and conical
combinations as subsets. A linear combination of the solutions in the population
is defined as follows:

x′ = yX̂ = y1x
(1) + y2x

(2) + ... + ysx
(s) (4)

where y is the vector of coefficients of the combination:

y = (y1 y2 ... ys) (5)
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With this concept it is possible to search the subspace spanned by the s
vectors in the population, and thereby find improved solutions from combinations
of the existing ones. The actual dimension of this subspace is defined by the rank
of the matrix X̂ which is bounded between 1 ≤ rank(X̂) ≤ min{n, s}.

In a way, this method can be seen as a s-parent crossover method. In contrast
to a crossover, in our proposed method the parameters of the vector y are subject
to an optimisation process. While a multi-parent crossover would produce a
random combination and let the evolutionary process judge whether this was a
good one, the proposed procedure uses an evolutionary process to find “optimal”
combinations.

In order to find a good linear combination, the values of the vector y are
optimised instead of the original variables. As a consequence, this newly formed
optimisation problem has only s decision variables compared to the original one
with n variables. This means, in case a problem with n = 30 variables is opti-
mised with a population size of s = 100, there might be redundancy in the
newly formed linear-combination-problem, and the algorithm now searches in
100 dimensions, even though the actual space in which the solutions are created
is still 30-dimensional, and some of the vectors of the linear combinations are not
independent in this case. However, the situation differs when applied to a high-
dimensional problem with for instance n = 500 variables. The s solutions can at
most define a s-dimensional subspace. If all solutions are randomly created in
the beginning, it is not guaranteed that good solutions actually lie in the defined
subspace. However, when the algorithm is allowed a certain progress to find a
preliminary approximation of the optimal areas, we can assume that promis-
ing parameter combinations might have been found already, and the spanned
subspace might contain additional good solutions. In that case, optimising the
linear-combination-solutions can also be regarded as a dimensionality reduction
technique, as it enables the algorithm to search in a 100-dimensional subspace
instead of the 500-dimensional original search space. This makes the method not
only promising for multi- and many-objective problems, but also for the area of
large-scale optimisation.

3.2 Inclusion into Other Algorithms

The proposed concept can be used inside arbitrary metaheuristic optimisation
algorithms. To do so, we define a population Q of y-vectors, where each vector in
the population defines one linear combination of the members of P as described
above. By this, we can use any metaheuristic optimiser on this newly formed
population to find suitable linear combinations of the underlying original solu-
tions in the population P . Since the optimisation of the population Q relies on
the assumption, see above, that the population P defines a promising subspace
of Ω, the proposed method is included into other metaheuristics as an addi-
tional search step. In particular, we apply the original (arbitrary) metaheuristic
in turns with the proposed linear-combination-search. As a further step to con-
centrate on promising solutions, the linear combinations are only performed on
the non-dominated solutions in the population.
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Let X̂ be the matrix of the decision variable values of all non-dominated
solutions in P as seen above, where each row in X̂ corresponds to one non-
dominated solution in P . As a result, X̂ is an s′×n matrix, where s′ is the number
of non-dominated solutions. In the same way, let Ŷ be the matrix of the decision
variable values (i.e. coefficients of linear combinations) of the solutions in Q. The
population size of Q is t, therefore Ŷ ∈ R

t×s′
. The original objective function

evaluation can be applied to the new population by simply multiplying X̂ with Ŷ
and computing f(Ŷ X̂), i.e. applying f to each row in Ŷ X̂. For practical reasons
and to limit the search space of the newly found problem, the variables yi are
also equipped with lower and upper bounds, i.e. yi ∈ [yi,min, yi,max], i = 1, .., s′.

The outline of the resulting algorithm looks as follows:

1. Optimise the population P with any multi-objective method for a specified
time.

2. Use the first non-dominated front of the current population P to build the
matrix X̂ out of its decision variables’ values.

3. Create a random population Q of linear-combination-vectors.
4. Optimise Q for a certain time using an arbitrary optimisation method. Store

all evaluated solutions in an Archive A.
5. Merge the population P with A and proceed with the normal optimisation

process (Step 1).

4 Evaluation

To evaluate the proposed method, we have included it into several well-known
optimisation algorithms from the areas of multi- and many-objective optimisa-
tion. These algorithms are NSGA-II [4], GDE3 [9] as representatives of tra-
ditional evolutionary methods, both classical and differential evolution, and
NSGA-III [6] and RVEA [2] to represent many-objective methods. The aim of
the experiments is not to show the superiority of one of these methods over
one another, but rather to show that the proposed exploration method has a
positive influence when applied to existing algorithms. Due to space limitations,
an inclusion into dedicated large-methods like LMEA [17], MOEA/DVA [11]
or WOF [20], and the analysis of this methods’ capabilities as a dimensionality
reduction mechanism, is subject to future work. Each of the four used algorithms
has been equipped with the proposed method by applying in terms 100 genera-
tions of the original algorithm and after that 100 generations of the search in the
formed subspace as described above. The created solutions are then merged back
into the original population using the usual selection method of the respective
algorithm. For the optimisation of the population Q, the NSGA-II algorithm is
used in all cases. This is done so that all algorithms use the same exploration
mechanism for searching the formed subspace. Future research might deal with
different mechanisms in this regard, as the NSGA-II mechanism might not be
the optimal choice for many-objective problems. This procedure is repeated until
the maximum amount of function evaluations is reached. The modified versions
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of the algorithms are denoted with an “x” in front of their names, i.e. xNSGA-
II, xGDE3, xNSGA-III and xRVEA. To test the performance, we use a total of
60 test problem instances from three common benchmark families with 2 to 5
objectives and 30 to 514 decision variables. The used problems are as follows:

– Six problems from the LSMOP (large-scale multi- and many-objective test
problems) family [3]: LSMOP1-6. Each of them is tested with 2, 3, 4 and 5
objective functions, resulting in 206, 307, 413 and 514 decision variables.

– Six problems from the popular WFG family [8]: WFG2-5, WFG7 and WFG8.
All of them are tested with 2 and 3 objectives, in combination with both 40
and 400 decision variables. The WFG problems were chosen by an analysis
done in [11], where WFG2 and 3 represent problems with a sparse number
of interacting variables, WFG4 and 5 have no interactions and WFG7 and 8
have a high number of interacting variables.

– Six problems from the CEC 2009 unconstrained benchmarks: UF1-3 are 2-
objective problems, UF8-10 are 3-objective problems. All of them are tested
with 30 and 300 variables.

For implementation, the PlatEMO framework [15] version 1.5 is used. For
each experiment we perform 31 independent runs and report the median and
interquartile range (IQR) values of the relative hypervolume (HV) indicator
[16]. The relative HV is the hypervolume obtained by a solution set in relation
to the hypervolume obtained by a sample of the Pareto-front of the problem,
consisting of 10, 000 solutions as provided by the PlatEMO framework. The
used reference point for the indicator is obtained by using the nadir point of our
Pareto-front sample (i.e. the point in the objective space containing the worst
value in each dimension throughout the sample) and multiply it by 2.0 in each
dimension. Statistical significance is tested using a two-sided Mann-Whitney-
U Test with the null hypothesis that the tested samples have equal medians.
Statistical significance is assumed for a value of p < 0.01.

4.1 Parameter Settings

The maximum number of function evaluations for all algorithms and problem
instances is set to 100,000. The number of position-related variables for the WFG
problems has been set to n/4 and the parameter nk in the LSMOP benchmarks
was set to 5. The population size is set to 40 in all instances of NSGA-II and
GDE3. The population sizes of NSGA-III and RVEA are set to 40, 36, 35 and
40 for m = 2, 3, 4 and 5 objectives respectively, due to the uniform generation
of reference vectors. All algorithms use polynomial mutation with a distribution
index of 20.0 and a probability of 1/n. All algorithms, except GDE3, use the
simulated binary crossover with a distribution index of 20.0 and a probability of
1.0. In GDE3 are CR = 1 and F = 0.5. In RVEA, α = 2 and fr = 0.1 as in the
original work. The bounds of the coefficients for the linear combination are set
to yi,min = −10.0, and yi,max = 10.0.
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4.2 Results

The results of the experiments are shown in Tables 1 and 2, where each algo-
rithm is compared with its respective linear-combination-enhanced counterpart.
Overall, the proposed method is beneficial for the performance of all algorithms
in most problem instances.

First, we take a look at the two traditional evolutionary algorithms. The
xNSGA-II performs significantly better (based on the used Mann-Whitney-U
Test) compared to the original NSGA-II in 44 out of 60 problem instances, and
achieves an equal result in 9 cases. xGDE3 is significantly better or equal to its
counterpart in 52 out of 60 cases. Notable is that both original algorithms can
perform better just in a few 2-objective and 3-objective instances, while in all
higher dimensional problems with 4 and 5 objectives, they lack the ability to even
achieve any solution beyond the reference point for the HV calculation, result-
ing in a HV of zero (denoted as dashes in the tables). The linear combination
technique enables these algorithms to achieve significantly better results in even
high-dimensional problems with 5 objectives and over 500 decision variables.

Next, we examine the two many-objective algorithms NSGA-III and RVEA.
Also in these methods the proposed approach is able to improve the performance
of both algorithms significantly. In NSGA-III, the modified version with linear
combination performs significantly better in 49 problem instances and performed
equally well in another 6. xRVEA outperforms its original version in 49 instances
as well, with 5 more draws. An interesting observation is that even though both
algorithms are originally designed to work with many-objective problems, their
enhanced versions increase their performances even in these instances to a great
extent. It is worth to note that the performance on the many-objective instances
is significantly increased, even though the subspace of linear combinations is
searched with the NSGA-II mechanism, which is usually not designed for many-
objective problems. A possible explanation for this fact might be that NSGA-III
and RVEA do not posses a mechanism for dealing with high-dimensional search
spaces. Since the LSMOP problems do not only contain many objective function
but also high-dimensional search spaces, this might turn out a challenge for
these algorithms. The positive influence of the linear-combination-search might
be, at least partly, due to the inherent reduction of dimensionality. This is also
supported by the fact that for all the four algorithms, the original version did
only perform better than the x-versions in low-dimensional problems, almost
exclusively in UF and WFG problems with only 30 or 40 variables.

Another interesting observation concerns the type of problem where the
linear-combination-search seems to work less effectively. Among the few instances
where the modified algorithms do not perform best are the (low-dimensional)
WFG4 and WFG5 problems, both with 2 and with 3 objectives. WFG4 and
WFG5 are both fully separable. Furthermore, NSGA-II and NSGA-III outper-
form their modified counterparts on the 2-objective LSMOP5 problem, which
is also fully separable. The separability of variables suggests that an algorithm
can reach optimal solutions by altering variables completely independent of each
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Table 1. Obtained median and IQR values of the relative Hypervolume for NSGA-II
and xNSGA-II as well as GDE3 and xGDE3. An asterisk in the column of an x-
Algorithm indicates statistical significance to the respective original version of that
algorithm. Best performances are marked in bold and shaded where significant.

m n NSGA-II xNSGA-II GDE3 xGDE3

LSMOP1

2

206 0.75134 (1.13E-1) 0.85510 * (9.07E-2) 0.56263 (4.52E-2) 0.86759 * (2.47E-2)
LSMOP2 206 0.94481 (4.97E-3) 0.96903 * (6.71E-3) 0.94321 (2.31E-3) 0.98270 * (1.41E-3)
LSMOP3 206 — ( — ) 0.23474 * (1.38E-1) — ( — ) 0.03916 * (3.23E-3)
LSMOP4 206 0.90440 (8.53E-3) 0.94727 * (4.55E-3) 0.94008 (9.01E-3) 0.96784 * (6.26E-3)
LSMOP5 206 0.79282 (6.00E-2) 0.62224 * ( — ) 0.30990 (9.27E-2) 0.81408 * (3.48E-2)
LSMOP6 206 0.46222 (1.79E-2) 0.57904 * (5.69E-3) 0.50444 (3.28E-2) 0.58816 * (1.95E-2)
LSMOP1

3

307 — ( — ) 0.80958 * (2.78E-2) — ( — ) 0.71837 * (2.01E-2)
LSMOP2 307 0.97074 (2.47E-3) 0.97026 (2.91E-3) 0.97153 (1.59E-3) 0.97553 * (1.70E-3)
LSMOP3 307 — ( — ) 0.51111 * ( — ) — ( — ) 0.51111 * ( — )
LSMOP4 307 0.90478 (7.82E-3) 0.92602 * (4.70E-3) 0.89693 (6.83E-3) 0.93835 * (3.50E-3)
LSMOP5 307 — ( — ) 0.85655 * (9.56E-4) — ( — ) 0.87305 * (1.33E-2)
LSMOP6 307 — ( — ) 0.29197 * (6.70E-3) — ( — ) 0.26725 * (6.36E-3)
LSMOP1

4

413 — ( — ) 0.76046 * (1.25E-2) — ( — ) 0.66323 * (1.91E-2)
LSMOP2 413 0.98192 (1.77E-3) 0.98272 * (1.29E-3) 0.98080 (1.59E-3) 0.98570 * (1.03E-3)
LSMOP3 413 — ( — ) 0.02216 * (9.49E-4) — ( — ) 0.02356 * (3.31E-4)
LSMOP4 413 0.96053 (2.76E-3) 0.96187 (2.80E-3) 0.95663 (3.94E-3) 0.96756 * (2.80E-3)
LSMOP5 413 — ( — ) 0.91945 * (4.68E-2) — ( — ) 0.93033 * (5.17E-3)
LSMOP6 413 0.33750 (3.50E-3) 0.66594 * (2.55E-2) 0.33652 (5.55E-3) 0.67133 * (5.52E-2)
LSMOP1

5

514 — ( — ) 0.63753 * (1.49E-2) 0.50034 ( — ) 0.63655 * (2.09E-2)
LSMOP2 514 0.99283 (7.79E-4) 0.99313 (5.96E-4) 0.99323 (4.98E-4) 0.99416 * (5.24E-4)
LSMOP3 514 — ( — ) 0.50034 * ( — ) — (5.00E-1) 0.50034 * ( — )
LSMOP4 514 0.96323 (2.79E-3) 0.97878 * (1.84E-3) 0.96271 (3.12E-3) 0.98035 * (2.37E-3)
LSMOP5 514 — ( — ) 0.90318 * (5.62E-2) — ( — ) 0.69514 * (3.07E-1)
LSMOP6 514 — ( — ) 0.21220 * (1.02E-1) — ( — ) 0.26520 * (1.19E-1)

UF1

2

30 0.91887 (4.11E-2) 0.96229 * (2.89E-2) 0.97379 (1.39E-2) 0.96932 (1.53E-2)
UF2 30 0.95267 (3.99E-2) 0.98183 * (8.40E-3) 0.97989 (9.59E-3) 0.97173 * (8.26E-3)
UF3 30 0.71558 (5.38E-2) 0.95430 * (6.00E-3) 0.96908 (1.45E-2) 0.95301 * (1.46E-2)
UF1 300 0.90110 (2.48E-2) 0.90481 (6.03E-2) 0.44383 (9.57E-2) 0.29760 * (4.25E-2)
UF2 300 0.89138 (2.24E-2) 0.88332 (1.39E-2) 0.86877 (5.74E-3) 0.88162 * (4.62E-3)
UF3 300 0.73023 (8.34E-3) 0.95459 * (5.81E-3) 0.73585 (1.42E-2) 0.94991 * (1.92E-3)
UF8

3

30 0.80694 (3.35E-2) 0.84659 * (9.42E-2) 0.24162 (2.42E-1) 0.64186 * (6.77E-2)
UF9 30 0.72903 (9.67E-2) 0.82914 * (8.45E-2) 0.31863 (1.46E-1) 0.59303 * (5.85E-2)
UF10 30 0.38003 (1.29E-1) 0.82597 * (1.22E-2) — ( — ) 0.54190 * (3.09E-2)
UF8 300 0.79119 (2.05E-2) 0.85501 * (9.36E-4) 0.65592 (4.89E-2) 0.82907 * (8.35E-3)
UF9 300 0.63539 (2.04E-2) 0.62206 (2.44E-2) 0.50443 (2.73E-2) 0.62197 * (1.26E-2)
UF10 300 0.03827 (5.22E-2) 0.84973 * (2.89E-3) — ( — ) 0.73813 * (8.86E-2)

WFG2

2

41 0.85891 (7.60E-3) 0.97933 * (1.27E-2) 0.97452 (5.03E-2) 0.97187 (2.02E-2)
WFG3 41 0.84987 (2.91E-3) 0.84869 (6.62E-3) 0.84444 (1.00E-2) 0.83283 * (7.49E-3)
WFG4 40 0.99235 (1.06E-3) 0.99019 * (2.60E-3) 0.94351 (6.56E-3) 0.94394 (9.17E-3)
WFG5 40 0.97948 (2.92E-3) 0.97841 * (2.40E-3) 0.95348 (1.31E-2) 0.93875 * (2.60E-2)
WFG7 40 0.99345 (1.02E-3) 0.99262 * (8.23E-4) 0.96279 (3.02E-2) 0.95901 (1.44E-2)
WFG8 40 0.89218 (5.87E-3) 0.89593 * (6.48E-3) 0.85652 (1.44E-2) 0.83074 * (1.64E-2)
WFG2 401 0.72887 (3.64E-2) 0.86591 * (2.49E-3) 0.76243 (6.42E-3) 0.87080 * (2.68E-3)
WFG3 401 0.63592 (7.54E-3) 0.78669 * (7.04E-2) 0.66454 (1.52E-2) 0.73419 * (6.82E-3)
WFG4 400 0.66487 (1.36E-2) 0.83624 * (1.42E-2) 0.79988 (2.20E-2) 0.82247 * (1.51E-2)
WFG5 400 0.64103 (1.90E-2) 0.85848 * (1.42E-2) 0.82362 (6.03E-3) 0.85548 * (8.87E-3)
WFG7 400 0.67641 (1.19E-2) 0.86891 * (2.39E-2) 0.74902 (8.54E-3) 0.78553 * (9.29E-3)
WFG8 400 0.57725 (1.06E-2) 0.78999 * (1.48E-2) 0.57692 (2.33E-2) 0.78252 * (1.79E-2)
WFG2

3

40 0.90095 (9.05E-3) 0.97075 * (8.38E-3) 0.94492 (1.92E-2) 0.93262 * (3.45E-2)
WFG3 40 0.93396 (2.31E-2) 0.93407 (2.58E-2) 0.84310 (3.27E-2) 0.86879 * (4.69E-2)
WFG4 40 0.96941 (3.62E-3) 0.95785 * (6.89E-3) 0.88129 (2.56E-2) 0.85787 * (2.53E-2)
WFG5 40 0.94920 (4.28E-3) 0.94571 * (2.34E-3) 0.88469 (2.12E-2) 0.88316 (2.18E-2)
WFG7 40 0.96833 (2.17E-2) 0.97117 (3.13E-2) 0.86183 (3.23E-2) 0.86343 (2.79E-2)
WFG8 40 0.92742 (6.25E-3) 0.91145 * (8.30E-3) 0.80365 (1.82E-2) 0.80627 (1.82E-2)
WFG2 400 0.68917 (9.54E-3) 0.85622 * (5.57E-3) 0.69053 (5.17E-3) 0.84083 * (5.10E-3)
WFG3 400 0.57700 (2.56E-2) 0.79436 * (4.23E-2) 0.57939 (1.48E-2) 0.67991 * (4.62E-3)
WFG4 400 0.59041 (1.47E-2) 0.71919 * (6.97E-2) 0.70378 (1.63E-2) 0.71675 * (2.00E-2)
WFG5 400 0.55374 (1.23E-2) 0.75534 * (4.74E-2) 0.69452 (1.47E-2) 0.72009 * (1.29E-2)
WFG7 400 0.59516 (1.35E-2) 0.71240 * (8.34E-3) 0.68170 (9.85E-3) 0.69439 * (9.10E-3)
WFG8 400 0.52326 (1.77E-2) 0.72452 * (1.80E-2) 0.59209 (1.95E-2) 0.72812 * (1.85E-2)

other. These results imply that for such problems, at least in low-dimensional
search spaces, a combination of solutions, which actually alters all variables at
the same time through the linear coefficients, might not be suitable.
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Table 2. Obtained median and IQR values of the relative Hypervolume for NSGA-
III and xNSGA-III as well as RVEA and xRVEA. An asterisk in the column of an
x-Algorithm indicates statistical significance to the respective original version of that
algorithm. Best performances are marked in bold and shaded where significant.

m n NSGA-III xNSGA-III RVEA xRVEA

LSMOP1

2

206 0.64220 (1.53E-1) 0.79579 * (1.15E-1) 0.06873 (5.66E-1) 0.83933 * (1.61E-2)
LSMOP2 206 0.95088 (2.79E-3) 0.98200 * (4.04E-3) 0.94387 (4.98E-3) 0.97949 * (2.83E-3)
LSMOP3 206 — ( — ) 0.08521 * (9.18E-2) 0.56963 (9.96E-3) 0.01974 * (3.53E-4)
LSMOP4 206 0.92227 (5.51E-3) 0.95692 * (3.62E-3) 0.89610 (5.73E-3) 0.95196 * (6.33E-3)
LSMOP5 206 0.80093 (5.06E-2) 0.62224 * ( — ) — ( — ) 0.62224 * (7.05E-4)
LSMOP6 206 0.45949 (8.70E-3) 0.57262 * (7.48E-3) 0.49474 (5.00E-2) 0.53730 * (2.34E-1)
LSMOP1

3

307 0.07558 (1.15E-1) 0.82378 * (2.30E-2) 0.53715 (5.74E-2) 0.76242 * (1.24E-2)
LSMOP2 307 0.97954 (4.31E-4) 0.98317 * (5.45E-4) 0.97803 (5.73E-4) 0.98107 * (7.71E-4)
LSMOP3 307 — ( — ) 0.51112 * (1.37E-2) — ( — ) 0.51081 * (5.01E-4)
LSMOP4 307 0.93995 (2.68E-3) 0.96222 * (1.53E-3) 0.93470 (3.10E-3) 0.96314 * (2.83E-3)
LSMOP5 307 — ( — ) 0.85486 * (9.61E-4) 0.53581 (6.39E-6) 0.91034 * (2.29E-2)
LSMOP6 307 — ( — ) 0.28687 * (4.61E-3) — ( — ) 0.16058 * (1.06E-1)
LSMOP1

4

413 — ( — ) 0.79609 * (2.13E-2) 0.56234 (1.34E-1) 0.76333 * (1.34E-2)
LSMOP2 413 0.98752 (2.75E-4) 0.99087 * (3.96E-4) 0.98672 (4.39E-4) 0.99004 * (7.35E-4)
LSMOP3 413 — ( — ) 0.02076 * (1.47E-3) 0.02149 (3.03E-1) 0.02041 (2.93E-3)
LSMOP4 413 0.97775 (1.31E-3) 0.98127 * (1.63E-3) 0.97015 (3.45E-3) 0.98206 * (1.20E-3)
LSMOP5 413 — ( — ) 0.93971 * (8.78E-4) 0.51144 (3.22E-4) 0.92817 * (5.73E-3)
LSMOP6 413 0.36714 (7.75E-3) 0.70352 * (8.04E-3) 0.40710 (2.81E-2) 0.74121 * (8.87E-2)
LSMOP1

5

514 — ( — ) 0.69758 * (4.51E-2) 0.67646 (1.28E-1) 0.74755 * (1.11E-2)
LSMOP2 514 0.99601 (8.07E-5) 0.99644 * (6.37E-5) 0.99566 (2.15E-3) 0.99625 * (1.14E-4)
LSMOP3 514 — ( — ) 0.50033 * (2.10E-5) — (7.30E-3) 0.50033 * (3.31E-2)
LSMOP4 514 0.98389 (1.12E-3) 0.98972 * (6.96E-4) 0.98235 (2.83E-3) 0.98890 * (1.14E-3)
LSMOP5 514 — ( — ) 0.98680 * (1.82E-3) 0.50400 (5.49E-6) 0.98609 * (2.35E-3)
LSMOP6 514 — ( — ) 0.53851 * (1.35E-2) 0.19527 (2.39E-1) 0.31759 * (1.33E-1)

UF1

2

30 0.90857 (5.92E-2) 0.97172 * (2.62E-2) 0.86021 (7.86E-2) 0.94097 * (1.38E-2)
UF2 30 0.95574 (3.03E-2) 0.98049 * (1.00E-2) 0.95095 (3.30E-2) 0.95587 (1.82E-2)
UF3 30 0.70910 (4.33E-2) 0.94851 * (1.07E-2) 0.69021 (1.81E-2) 0.90003 * (2.32E-2)
UF1 300 0.88442 (6.09E-2) 0.88944 (4.52E-2) 0.70355 (5.68E-2) 0.65673 * (4.88E-2)
UF2 300 0.88425 (1.64E-2) 0.88747 (6.78E-3) 0.85611 (9.08E-3) 0.87460 * (4.22E-3)
UF3 300 0.70306 (1.05E-2) 0.96051 * (1.68E-3) 0.69537 (8.73E-3) 0.95204 * (4.75E-3)
UF8

3

30 0.84654 (6.85E-3) 0.85433 * (1.79E-3) 0.84549 (1.19E-3) 0.84531 (1.13E-1)
UF9 30 0.72999 (3.78E-2) 0.86360 * (7.90E-2) 0.68531 (2.59E-2) 0.86237 * (1.95E-1)
UF10 30 0.46645 (2.00E-1) 0.85371 * (1.78E-3) 0.44133 (8.21E-2) 0.84551 * (2.97E-4)
UF8 300 0.82401 (6.90E-3) 0.85408 * (1.07E-3) 0.75309 (2.85E-2) 0.84802 * (7.03E-4)
UF9 300 0.56338 (1.33E-2) 0.56357 (1.11E-2) 0.57018 (1.40E-2) 0.56862 (9.94E-3)
UF10 300 0.49573 (1.36E-1) 0.85499 * (9.58E-4) 0.41166 (3.40E-1) 0.84215 * (3.51E-3)

WFG2

2

41 0.85728 (1.06E-2) 0.97518 * (1.18E-2) 0.84715 (1.23E-2) 0.95977 * (1.02E-2)
WFG3 41 0.84681 (6.36E-3) 0.84961 (6.54E-3) 0.83505 (1.19E-2) 0.84317 * (8.32E-3)
WFG4 40 0.99153 (9.83E-3) 0.98916 (8.35E-3) 0.98032 (1.09E-2) 0.97351 * (9.98E-3)
WFG5 40 0.97941 (3.86E-3) 0.97447 * (4.24E-3) 0.98076 (4.17E-3) 0.97430 * (3.69E-3)
WFG7 40 0.93748 (1.22E-2) 0.99385 * (5.10E-4) 0.92685 (1.41E-2) 0.98565 * (4.19E-3)
WFG8 40 0.86666 (2.03E-2) 0.89541 * (1.08E-2) 0.83284 (1.65E-2) 0.84491 * (1.49E-2)
WFG2 401 0.73729 (4.17E-2) 0.86429 * (1.96E-3) 0.71967 (1.06E-2) 0.85805 * (4.48E-3)
WFG3 401 0.63240 (1.17E-2) 0.74807 * (3.22E-2) 0.60861 (8.36E-3) 0.75809 * (8.93E-3)
WFG4 400 0.66360 (2.09E-2) 0.84435 * (1.72E-2) 0.62383 (1.44E-2) 0.79269 * (2.27E-2)
WFG5 400 0.64081 (9.68E-3) 0.85923 * (1.75E-2) 0.58413 (1.36E-2) 0.84903 * (1.56E-2)
WFG7 400 0.67987 (1.46E-2) 0.87752 * (1.64E-2) 0.63490 (1.33E-2) 0.80371 * (2.21E-2)
WFG8 400 0.56587 (1.33E-2) 0.79794 * (3.07E-2) 0.52654 (1.04E-2) 0.75307 * (2.12E-2)
WFG2

3

40 0.89508 (9.06E-3) 0.97233 * (1.06E-2) 0.88068 (1.72E-2) 0.95820 * (1.28E-2)
WFG3 40 0.89644 (3.21E-2) 0.91990 * (1.88E-2) 0.92193 (3.11E-2) 0.90139 * (1.91E-2)
WFG4 40 0.97227 (3.95E-3) 0.96489 * (5.08E-3) 0.96010 (9.14E-3) 0.96054 (1.07E-2)
WFG5 40 0.95600 (3.73E-3) 0.95345 * (1.85E-3) 0.96749 (2.00E-3) 0.95277 * (1.38E-3)
WFG7 40 0.98000 (5.03E-2) 0.98470 * (3.55E-3) 0.96277 (3.84E-2) 0.98642 * (1.04E-3)
WFG8 40 0.94130 (4.94E-3) 0.92604 * (7.27E-3) 0.84503 (9.21E-2) 0.91875 * (8.59E-3)
WFG2 400 0.68287 (9.66E-3) 0.82952 * (7.41E-3) 0.65750 (5.27E-3) 0.83219 * (1.32E-2)
WFG3 400 0.54703 (2.47E-2) 0.65643 * (7.34E-2) 0.33447 (4.64E-2) 0.67913 * (3.18E-2)
WFG4 400 0.46450 (1.38E-2) 0.61422 (2.85E-1) 0.46569 (2.93E-2) 0.50973 * (3.65E-2)
WFG5 400 0.53172 (4.44E-2) 0.64958 * (1.86E-1) 0.49506 (2.40E-2) 0.60250 * (2.47E-2)
WFG7 400 0.48076 (1.48E-2) 0.68523 * (4.92E-2) 0.49942 (6.12E-2) 0.71808 * (4.20E-2)
WFG8 400 0.39701 (5.85E-2) 0.66022 * (2.87E-2) 0.36715 (1.04E-2) 0.72648 * (1.53E-2)

In summary, we conclude that the proposed approach of optimising linear
combination of the population members is able to increase the performance of
multi- and many-objective algorithms in most cases. This is especially true for
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higher numbers of decision variables and higher numbers of objective functions.
The authors further tested the method on the remaining problems from the
WFG, UF and LSMOP families, which were not reported here due to page
limitations, and obtained similar superior performance of the proposed method.

5 Conclusion and Future Work

This article proposed a new mechanism for exploration and solution creation in
multi- and many-objective optimisation. The mathematical concept is able to
focus the search on relevant areas and at the same time reduce the dimension-
ality of the original problem without using (possibly expensive) variable group-
ing methods. After we introduced the mathematical concept, we described how
this approach can be incorporated into existing metaheuristic algorithms and
explored its capabilities on a variety of benchmark functions with different char-
acteristics and dimensionality. The results indicate that this linear-combination
approach can improve the performance of existing methods in both large-scale
and many-objective optimisation.

Future work in this area involves exploring the possibilities of this approach
further. It can be included into specific large-scale metaheuristics like the WOF
as a dimensionality reduction technique. Another possible application might
be in constrained problems. Linear combinations have been applied to parti-
cle swarm optimisation in [12] to preserve the feasibility of individuals. The
approach described in this article can easily be adapted to only allow certain
linear combinations, for instance convex ones. If the search is restrained in this
way to convex combinations, the algorithm can by definition only create feasi-
ble solutions out of existing feasible ones, provided that constraints are linear.
Therefore, this can be a promising direction for constraint handling in (large-
scale) many-objective optimisation.
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