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Preface

Over the past 25 years, there has been a phenomenal growth in research and application
of multi-criterion optimization. Among the many approaches, evolutionary
multi-criterion optimization (EMO) has received significant attention for many reasons.
EMO methods use a population of evolving solutions in their iterative steps by
establishing an implicit parallel search. The population approach also allows a number
of diverse non-dominated solutions to be processed simultaneously, thereby enabling
populations to converge near the Pareto-optimal set with a good distribution.

A search with certain keywords related to EMO topics found 76,358 articles in the
SCOPUS database from 1990 to the present. Figure 1 shows the numbers of articles per
year, indicating an exponential growth until about 2010. During this initial phase, a
number of efficient two- and three-objective EMO algorithms, their extensions, and
their applications were reported. While the field seemed to have steadily produced
about 4,500 articles per year during 2010–2012, another steady increase in the number
of published articles is observed from 2012, with a renewed interest in handling

more-than-three-objective optimization problems. The renewed effort for handling
these problems has been significant, and EMO researchers have labeled this effort
“evolutionary many-objective optimization” or EMaO. Besides algorithmic develop-
ments, EMO and EMaO methods have also been applied to various practical problems.
A number of software companies have also helped to make the field popular. Figure 2
shows the distribution of 76,358 articles according to the disciplines in which they are
applied. While engineering and computer science fields cover about half of the total

Fig. 1. Number of articles of EMO papers since 1990.



articles, mostly in the area of algorithmic developments, it is interesting to observe how
EMO has infiltrated many other science and technology areas. Among them, the use of
EMO in mathematics, social sciences, agriculture, and medicine is worth mentioning. It
is clear from the chart that EMO has taken the evolutionary computation field beyond
its usual habitat and proliferated into various application areas.

Regarding the origin of the EMO conference series, of which the current EMO 2019
conference was the 10th edition, there is an interesting fact worth pointing out. On a
long flight from New Delhi to Zurich to attend Eckart Zitzler’s PhD thesis defense in
1999, Kalyan had a bold idea of organizing a one- or two-day event with the handful of
EMO researchers who he knew were working on EMO then, so that a more coordinated
research effort could be made to move the activities forward. Lothar Thiele and Eckart
Zitzler were so enthusiastic about the idea that they not only wanted to call the event an
EMO conference, but were also interested in hosting the conference in ETH Zurich.
The first EMO conference was held in March 2001, with Springer publishing the
conference proceedings. The conference was such a success that more participants
showed up on the day of the conference than the organizers planned for. Moreover,
there were multiple proposals from leading EMO researchers to organize the next EMO
conference. Without much further effort, the EMO conference series was born.

With the completion of the first EMO conference, an EMO Steering Committee was
immediately formed to facilitate organization of future EMO-related events. It was
decided that the EMO conference would be held every other year and that it would be a
single-track event in order to have a more focused emphasis on the topic.

EMO conferences have been held on four continents so far: EMO 2001 in
Switzerland (LNCS 1993), EMO 2003 in Portugal (LNCS 2632), EMO 2005 in
Mexico (LNCS 3410), EMO 2007 in Japan (LNCS 4403), EMO 2009 in France
(LNCS 5467), EMO 2011 in Brazil (LNCS 6576), EMO 2013 in the UK (LNCS 7811),
EMO 2015 in Portugal (LNCS 9019), and EMO 2017 in Germany (LNCS 10173).
EMO 2019 (LNCS 11411) was the first EMO conference to be held in the USA.

A multi-objective optimization task is not complete without the use of a
multi-criterion decision-making (MCDM) effort. EMO organizers recognized this fact

Fig. 2. Distribution of EMO-related articles across various disciplines.
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early on, and invited key MCDM researchers to present their latest methodologies.
However, since the EMO 2009 conference, a separate MCDM track was arranged to
promote further participation of MCDM researchers in EMO conferences. It is also
worth mentioning that a separate EMO track has also been held during the bi-annual
MCDM conferences since 2009.

This volume contains the papers presented at EMO 2019: the Evolutionary
Multi-Criterion Optimization Conference held during March 10–13, 2019, in East
Lansing, Michigan, USA. There were 76 full paper submissions, of which 69 papers
were in the EMO track and seven papers in the MCDM track. Each submission was
reviewed by at least three, and on average 3.6, Program Committee members. After the
rigorous review process, the committee decided to accept 59 papers for presentations at
the conference. The accepted papers are divided into eight categories, each representing
a key area of current interest in the EMO field today. They include theoretical
developments, algorithmic developments, issues in many-objective optimization, per-
formance metrics, knowledge extraction and surrogate-based EMO, multi-objective
combinatorial problem solving, MCDM and interactive EMO methods, and
applications.

Following the trends of the past few EMO conferences, this conference included an
Industry Session in which industrial participants were encouraged to attend and present
their work in EMO and MCDM areas without the need to submit a full paper. The
abstracts of the accepted industry session presentations were printed in the conference
program booklet.

The conference arranged two plenary talks, one by Prof. Prabhat Hajela, Provost at
Rensselaer Polytechnic Institute in Troy, New York, USA and one of the proposers of
an early EMO algorithm, called the Weight-Based Genetic Algorithms in 1993, and the
other by Dr. Matthew Ferringer, Principal Director of National GEOINT Programs,
National Intelligence Division, The Aerospace Corporation, USA, and an
EMO-MCDM specialist in space-related system design, build, and launch activities.

For the first time, this EMO conference organized two tutorials, one on EMO
delivered by Prof. Hisao Ishibuchi, Chair Professor, Southern University of Science
Technology (SUSTech), Shenzhen, China, and Editor-in-Chief of the IEEE Compu-
tational Intelligence Magazine, and another on MCDM delivered by Prof. Jyrki
Wallenius, former Dean of Aalto University School of Business, Helsinki, Finland, and
former Editor-in-Chief of the European Journal of Operations Research, so that par-
ticipants of each group could benefit from the recent key research developments of the
other group.

We express our sincere gratitude and appreciation to the plenary and tutorial
speakers for accepting our invitations. We thank all the authors for submitting their
excellent work and responding to reviewers’ comments in a short time-frame. We
cannot thank enough each and every Program Committee member who reviewed three
to six papers in the short time allotted to them. We appreciate all the hard work put by
the various organization-related committee members, a list of whom is provided herein.

Finally, it is time to thank our sponsors. This conference was organized in part-
nership with HEEDS Design Space Exploration and sponsored partially by
ArcelorMittal and FinnOPT. We appreciate their contributions. Awards from the first
two organizations are highly appreciated. We also thank Springer for supporting an
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award and also for publishing the proceedings. The help from the staff of the Kellogg
Hotel and Conference Center in setting up the conference venue and amenities is highly
appreciated. The support provided by students and associated members of the Com-
putational Optimization and Innovation (COIN) Laboratory at Michigan State
University, the staff of the NSF BEACON Center for the Study of Evolution in Action
at Michigan State University, and the facilities of the College of Engineering and
Michigan State University are appreciated. It would be unfair not to recognize here the
dedication, time, and efforts of three persons: Connie James, Yashesh Dhebar, and
Julian Blank, who helped us at every step of the way since the very beginning.

The paper submission and review process were executed using the EasyChair
system, which helped to make our tasks much simpler.

December 2018 Kalyanmoy Deb
Erik Goodman

Carlos A. Coello Coello
Kathrin Klamroth
Kaisa Miettinen

Sanaz Mostaghim
Patrick Reed
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On Bi-objective Convex-Quadratic
Problems
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Abstract. In this paper, we analyze theoretical properties of bi-
objective convex-quadratic problems. We give a complete description of
their Pareto set and prove the convexity of their Pareto front. We show
that the Pareto set is a line segment when both Hessian matrices are pro-
portional. We then propose a novel set of convex-quadratic test problems,
describe their theoretical properties and the algorithm abilities required
by those test problems. This includes in particular testing the sensitivity
with respect to separability, ill-conditioned problems, rotational invari-
ance, and whether the Pareto set is aligned with the coordinate axis.

Keywords: Bi-objective optimization · Pareto set · Convex front ·
Convex-quadratic problems

1 Introduction

Convex-quadratic functions are among the simplest yet very useful test functions
in optimization. Given a positive definite matrix Q of Rn×n, a convex quadratic
function is defined as

f(x) =
1
2
(x − x∗)�Q(x − x∗)

where x∗ is the unique optimum of the function. The Hessian of f coincides with
the matrix Q. The level-sets of f defined as {x ∈ R

n : (x − x∗)�Q(x − x∗) =
c, c ≥ 0} are hyper-ellipsoids whose main axes are the eigenvectors of the matrix
Q with length proportional to the inverse of the eigenvalues of Q.

By changing the eigenvalues and eigenvectors of Q, one can model different
essential difficulties in numerical optimization: if the eigenvectors are not aligned
with the coordinate axes (if the matrix Q is not diagonal), then the associated
function is non-separable: it cannot be efficiently optimized by coordinate-wise
search. In practice, difficult optimization problems are non-separable. Having
a large condition number for Q, that is a large ratio between the largest and
smallest eigenvalue of Q models ill-conditioned problems where the characteristic
scale along different directions is very different. Ill-conditioning is very frequent
in real-world problems. They arise naturally as one often optimizes quantities
that have different natures and different intrinsic scales (some variables can be
c© Springer Nature Switzerland AG 2019
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akin to time, others to weights, ...) such that a unit change along each variable
can have a completely different impact on the function optimized. More generally,
the eigenspectrum of Q entirely characterizes the scale among the different axes
of the hyper-ellipsoidal level sets and parametrizes the difficulty of the function:
from the arguably easiest function, the sphere function f(x) =

∑n
i=1 x2

i , to very
difficult ill-conditioned functions where condition numbers of Q of up to 1010

have been observed in real-world problems, for example in [3].
Convex-quadratic functions have been central to the design of several impor-

tant classes of optimization algorithms for single-objective optimization. New-
ton or quasi-Newton methods use or learn a second order approximation of the
objective function optimized [11]. This second order approximation is done by
convex-quadratic functions (assuming that the function is twice continuously
differentiable and convex). Introduced more recently, the class of derivative-free-
optimization (DFO) trust-region based algorithms builds a second-order approx-
imation of the objective function by interpolation [12]. In the evolutionary com-
putation (EC) context, convex-quadratic functions have also played a central
role for the design of algorithms like CMA-ES: they have been intensively used
for designing the algorithm and the performance of the method has been care-
fully quantified on different eigenspectra of the matrix Q for different condition
numbers [6].

Given that a multiobjective problem is “simply” the simultaneous optimiza-
tion of single-objective problems, the typical difficulties of each objective function
are the same as the typical difficulties of single-objective problems. In particu-
lar non-separability and ill-conditioning are important difficulties that the single
functions have. Therefore, combining convex-quadratic problems seems natural
for testing and designing multiobjective algorithms. This has already been done
in the past for instance for the design of multiobjective versions of CMA-ES [7]
or as a subset of the biobjective BBOB test function suite [2,13].

Yet, while the difficulties encoded and parametrized within a convex-
quadratic problem are well-understood for single-objective optimization, the sit-
uation is different for multiobjective optimization, starting from bi-objective
optimization. Simple properties like convexity of the Pareto front associated
to bi-objective convex-quadratic problems as well as properties of the Pareto
set have not been systematically investigated. Additionally, convex-quadratic
bi-objective test problems used in the literature do not capture all important
properties one could be testing with convex-quadratic problems. There is more
degree of freedom than for single objective optimization that is not exploited:
we can combine two functions having the same Hessian matrix, place the optima
on the functions both on one axis of the search space, ... and this will affect how
the Pareto set and Pareto front look like.

This paper aims at filling the gaps from the literature on multiobjective opti-
mization with respect to convex-quadratic problems. More precisely the objec-
tives are twofold: clarify theoretical Pareto properties of bi-objective problems
where each function is convex-quadratic and define sets of bi-objective convex-
quadratic problems that allow to test different (well-understood) difficulties of
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bi-objective problems. The paper is organized as follows: in Sect. 2 we present
theoretical properties of convex-quadratic problems and discuss new test func-
tions in Sect. 3.

2 Theoretical Properties of Bi-objective
Convex-Quadratic Problems

2.1 Preliminaries

We consider bi-objective problems (f1, f2) defined on the search space R
n.

The Pareto set of (f1, f2) is defined as the set of all non-dominated (or
efficient) solutions {x ∈ R

n | � ∃y ∈ R
n such that f1(y) ≤ f1(x) and f2(y) ≤

f2(x) and at least one inequality is strict}. The image of the Pareto set (in the
objective space R

2) is called the Pareto front of (f1, f2). We first remark that
the Pareto set remains unchanged if we compose the objective functions with a
strictly increasing function. More precisely the following lemma holds.

Lemma 1 (Invariance of the Pareto set to strictly increasing transfor-
mations of the objectives). Given a bi-objective problem x �→ (f1(x), f2(x))
and g1 : Im(f1) �−→ R, g2 : Im(f2) �−→ R two strictly increasing functions, then
(f1, f2) and (g1 ◦ f1, g2 ◦ f2) have the same Pareto set.

Proof. If x is not in the Pareto set of (g1 ◦ f1, g2 ◦ f2), then their exists y such
that g1 ◦ f1(y) ≤ g1 ◦ f1(x) and g2 ◦ f2(y) ≤ g2 ◦ f2(x) with one inequality being
strict, which is equivalent to the fact that f1(y) ≤ f1(x) and f2(y) ≤ f2(x), with
one inequality being strict. And vice versa. Hence x is not in the Pareto set of
(g1 ◦ f1, g2 ◦ f2) if and only if it is not in the Pareto set of (f1, f2), which shows
that both problems have the same Pareto set. 
�

From now on (f1, f2) denote a bi-objective convex-quadratic problem. More
precisely, let x1, x2 be two different vectors in R

n, and α, β > 0. Let Q1 and
Q2 (in R

n2
) be two positive definite matrices and consider the bi-objective min-

imization problem (f1, f2) defined for x ∈ R
n as

f1(x) =
1
α

(x − x1)
�

Q1 (x − x1), f2(x) =
1
β

(x − x2)
�

Q2 (x − x2) . (1)

We denote this general bi-objective convex-quadratic problem by P, and assume
that the optimization goal is to find (an approximation of) the Pareto set of P.

2.2 Pareto Set

We characterize in this section the Pareto set of P. We use the linear scalarization
method to obtain the whole Pareto set. This is doable, whenever f1 and f2 are
strict convex functions (see [8]). Then the Pareto set of P is described by the
solutions of

min
x∈Rn

(1 − t) f1(x) + tf2(x), for t ∈ [0, 1] .

We prove in the next proposition that the Pareto set of P is a continuous
and differentiable parametric curve of Rn whose extremes are x1 and x2.
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Proposition 1. The Pareto set of P is the image of the function ϕ defined as

ϕ : t ∈ [0, 1] �→ [(1 − t)Q1 + tQ2]
−1 [(1 − t)Q1x1 + tQ2x2] . (2)

The function ϕ is differentiable and verifies for any t in [0, 1]

(1 − t)Q1 (ϕ(t) − x1) = tQ2 (x2 − ϕ(t)) , (3)
t [(1 − t)Q1 + tQ2] ϕ′(t) = Q1 (ϕ(t) − x1) . (4)

Hence, the Pareto set is a continuous (differentiable) curve of Rn whose extremes
are x1 = ϕ(0) and x2 = ϕ(1).

Proof. For any s in [0, 1], define gs
def= (1 − s)f1 + sf2. We observe that gs, like

f1 and f2, is strictly convex, differentiable, and diverges to ∞ when ‖x‖ goes to
∞ (where ‖x‖ denotes the Euclidean norm). Then its critical point minimizes
gs. Let us now compute the gradient of gs times αβ for x in R

n:

αβ∇gs(x) = (1 − s)αβ ∇f1(x) + sαβ ∇f2(x) = 2(1 − s)β Q1(x − x1) + 2sα Q2(x − x2)

Thus, αβ∇gs(x) = 2 [(1 − s)β Q1 + sα Q2] x − 2(1 − s)β Q1x1 − 2sα Q2x2.

Then it follows that for any s in [0, 1], the point that minimizes gs (its critical
point), denoted by x̃s verifies (1−s)β Q1+sα Q2

(1−s)β+sα x̃s = (1−s)β Q1x1+sα Q2x2
(1−s)β+sα . Since

[0, 1] � s �−→ sα
(1−s)β+sα ∈ [0, 1] is bijective (its derivative is s �−→ αβ

((1−s)β+sα)2
),

then it is equivalent to parametrize the Pareto set with t
def= sα

(1−s)β+sα . Hence,
the Pareto set is fully described by (ϕ(t))t∈[0,1] such that:

[(1 − t)Q1 + tQ2] ϕ(t) = (1 − t)Q1x1 + tQ2x2, (5)
(1 − t)Q1 (ϕ(t) − x1) = tQ2 (x2 − ϕ(t)) . (6)

The function t → [(1 − t)Q1 + tQ2]
−1 is differentiable as inverse of a differen-

tiable and invertible matrix function. Then ϕ is differentiable.
We differentiate (5) and multiply by t to obtain t [(1 − t)Q1 + tQ2] ϕ′(t) =

tQ2x2 − tQ1x1 + tQ1ϕ(t) − tQ2ϕ(t). Injecting in (6) gives t [(1 − t)Q1 + tQ2] ϕ′

(t) = Q1 (ϕ(t) − x1) , for any t ∈ [0, 1] . 
�
We obtain as corollary that when f1 and f2 have proportional Hessian matri-

ces, then the Pareto set is the line segment between the optima of the functions
f1 and f2.

Corollary 1. In the case where f1 and f2 have proportional Hessian matrices,
the Pareto set of P is the line segment between x1 and x2.

Proof. In that case, their exists a real γ such that Q1
α = γ Q2

β . Then, Proposition 1
implies that for any t ∈ [0, 1],

ϕ(t) =

[
(1 − t)γ

α

β
Q2 + tQ2

]−1 [
(1 − t)γ

α

β
Q2x1 + tQ2x2

]
=

γα(1 − t)x1 + tβx2

(1 − t)αγ + tβ
,

which is [x1, x2], since [0, 1] � t �−→ tβ
(1−t)αγ+tβ ∈ [0, 1] is a bijection. 
�
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Using Lemma 1, we directly deduce the following corollary.

Corollary 2. If f1 and f2 have proportional Hessian matrices, g1 : Im(f1) �−→
R, g2 : Im(f2) �−→ R are two strictly increasing functions, then the Pareto set of
the problem (g1 ◦ f1, g2 ◦ f2) is the line segment between x1 and x2.

As an example, the double-norm problem defined as:
(x → x − x1 2, x → x − x2 2) can be seen as: (g ◦ f1, g ◦ f2) where g(x) =

√
x,

f1(x) = x − x1
2
2 and f2(x) = x − x2

2
2.

Then (g ◦ f1, g ◦ f2) has the same Pareto set than the double-
sphere problem (f1, f2), which is the line segment between x1 and x2.
Therefore the Pareto front of the double-norm problem is described by
(t x2 − x1 2, (1 − t) x2 − x1 2)t∈[0,1]. Thereby, the front is described by the
function u �−→ x2−x1 2−u. We recover the well-known result that the double-
norm problem has a linear front.

Corollary 2 allows also to recover the Pareto set description for the one-peak
scenario in the Mixed-Peak Bi-Objective Problem (see [9] and [10]).1

In general, the Pareto set of a bi-objective convex-quadratic problem is not
necessarily a line segment. Consider for instance for n = 2 the case where x1 =
(0, 0)�, x2 = (1, 1)� and where we generate two different matrices Q1 and Q2 by
randomly rotating a diagonal matrix with eigenvalues 1 and 10. Two resulting
Pareto fronts associated to different random rotations are depicted in Fig. 1.

For n = 10, we also define P10 setting x1 = (0, . . . , 0)�, x2 = (1, . . . , 1)� and
Q1 and Q2 as diagonal matrices such that for i = 1, . . . , 10

Q1(i, i) = 100
i−1
9 , and Q2(i, i) = 10

i−1
9 . (7)

The different coordinates of the Pareto set given in (3) are depicted in Fig. 1.

2.3 Convexity of the Pareto Front

Corollary 1 proves that in the case where we have proportional Hessian matrices
in problem P, the Pareto set is a line segment. Then it is reasonable to expect a
simple analytic expression for the corresponding Pareto front. In what follows,
we will express the Pareto front of a bi-objective problem as a one-dimensional
function u ∈ R �→ g(u). Formally, if t ∈ R �→ ϕ(t) ∈ R

n is a parametrization
of the Pareto set, then the function g satisfies f2(ϕ(t)) = g(f1(ϕ(t)). It is well-
known that when (f1, f2) is the double-sphere, that is f1(x) = 1

n

∑n
i=1 x2

i and
f2(x) = 1

n

∑n
i=1(xi − 1)2, then the Pareto front expression is given by g(u) =

(1 − √
u)2 [4]. In the next proposition, we show that this expression of the

Pareto front holds (up to a normalization) for all bi-objective convex-quadratic
problems, provided the Hessians of f1 and f2 are proportional.

1 In that scenario, we set f1(x) = (x − c)� Σ (x − c), f2(x) = (x − c′)�
Σ′ (x − c′) (f1

and f2 are seen as squares of the Mahalanobis distance to the optima, with respect
to the Hessian matrices), g1(u) = 1 − h1

1+
√

u
r1

, g2(u) = 1 − h2

1+
√

u
r2

.
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Fig. 1. Left: Two Pareto sets for n = 2 represented in R
2 with Q1 and Q2 randomly

sampled and different. Right: Pareto set for n = 10 with matrices given in (7) repre-
sented as the function of the parameter t given in (3). The coordinates are ordered,
the first one is on top and last one below.

Proposition 2. When we have proportional Hessian matrices in the problem P,
the Pareto front is described by the following continuous and convex function:

u ∈ [0, κα] �→ κβ

(

1 −
√

u

κα

)2

,where

{
κα = (x2−x1)

�Q1(x2−x1)
α

κβ = (x2−x1)
�Q2(x2−x1)

β

(8)

Proof. Denote u
def= f1 ◦ ϕ and v

def= f2 ◦ ϕ, where ϕ : [0, 1] � t �−→ (1 − t)x1 +
tx2 ∈ [x1, x2] is the line segment between x1 and x2.

For any t ∈ [0, 1], u(t) = f1(ϕ(t)) = 1
α (x2 − x1)

�
Q1 (x2 − x1) t2, v(t) =

f2(ϕ(t)) = 1
β (x2 − x1)

�
Q2 (x2 − x1) (1 − t)2 . It follows that for any t ∈ [0, 1]:

v(t) =
(x2 − x1)

�
Q2 (x2 − x1)
β

(

1 −
√

αu(t)

(x2 − x1)
�

Q1 (x2 − x1)

)2

. 
�

From Proposition 2, we deduce that if we set κα = κβ = 1, then the Pareto
front will be independent from the Hessian matrix and will be described by the
front of the double-sphere problem: u �→ (1 − √

u)2.
We investigate now the general case where the Hessians of the functions f1

and f2 are not necessarily proportional. Yet, before digging into the general
convex-quadratic problems, we show a result on the shape of the Pareto front of
a larger class of bi-objective problems.

Theorem 1. Let f1 : Rn �−→ R and f2 : Rn �−→ R be strict convex differen-
tiable functions such that the problem (f1, f2) has, as Pareto set, the image of a
differentiable function ϕ : [0, 1] �−→ R

n.
Assume that: (i) f1 ◦ ϕ is strictly monotone, (ii) lim

t→0

(f1 ◦ ϕ)′(t)
t �= 0 and (iii)

lim
t→1

(f2 ◦ ϕ)′(t)
1−t �= 0. Then, the Pareto front is a convex curve, with vertical

tangent at t = 0 and horizontal tangent at t = 1.
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Proof. Denote by u
def= f1 ◦ ϕ and v

def= f2 ◦ ϕ. Then the Pareto front is described
by the parametric equation (u(t), v(t)) , for t ∈ [0, 1]. We will show that u′v′′ −
u′′v′ > 0 which implies the convexity of the curve.

By linear scalarization (see [8], or weighted sum method in [5]), as in the
proof of Proposition 1, we have (1− t)∇f1(ϕ(t))+ t∇f2(ϕ(t)) = 0. If we take the
scalar product of the former equation with ϕ′(t), we obtain that

(1 − t) 〈∇f1(ϕ(t)) , ϕ′(t)〉 + t 〈∇f2(ϕ(t)) , ϕ′(t)〉 = 0. (9)

Moreover, for any differentiable function f with suitable domains,

(f ◦ ϕ)′ (t) = d (f ◦ ϕ)t (1) = dfϕ(t) (dϕt(1)) = 〈∇f(ϕ(t)) , ϕ′(t)〉 . (10)

Inserting this in (9) shows (1 − t) (f1 ◦ ϕ)′ (t) + t (f2 ◦ ϕ)′ (t) = 0, which is the
same as:

(1 − t)u′(t) + tv′(t) = 0, for any t ∈ [0, 1] . (11)

Since lim
t→0

(f1 ◦ ϕ)′(t)
t exists, (11) implies that:

v′(t) =
(

1 − 1
t

)

u′(t), for any t ∈ [0, 1] . (12)

By deriving (12) and multiplying by u′(t) in a suitable way, we obtain

u′(t)v′′(t) =
1
t2

u′(t)2 +
(

1 − 1
t

)

u′(t)u′′(t), for any t ∈ [0, 1] . (13)

Using (12) in (13) gives u′(t)v′′(t) = 1
t2 u′(t)2 + v′(t)u′′(t). Thanks to the asser-

tions on f1 ◦ ϕ, we have that u′(t)v′′(t) − u′′(t)v′(t) > 1
t2 u′(t)2 > 0, for any t ∈

[0, 1]. Thus, the Pareto front is a convex curve.
Evaluating (11) at t = 0 and at t = 1 implies that u′(0) = 0, v′(1) = 0. And

if we divide (11) by t (resp. 1− t) and take the limit to 0 (resp. 1), it follows that
v′(0) �= 0 (resp. u′(1) �= 0). Thereby we also obtain the derivative assumptions
on the extremal points. 
�
Remark 1. Note that the above result about the tangents in the extremal points
have additional consequences: according to [1], the assumptions of Theorem 1
imply that the extremal points are never included in any optimal μ-distributions
of the Hypervolume indicator.

We now deduce the convexity of the Pareto front for convex-quadratic bi-
objective problems and characterize the derivatives at the extremes of the front.

Corollary 3. For the problem P, the Pareto front is a convex curve, with ver-
tical tangent at (0, f2(x1)) and horizontal tangent at (f1(x2), 0).
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Proof. We will show that f1 ◦ ϕ verifies the assumptions of Theorem 1. From (10)
we know that

(f1 ◦ ϕ)′ (t) = 〈∇f1(ϕ(t)) , ϕ′(t)〉 . (14)

In addition, ∇f1(ϕ(t)) = 2
αQ1 (ϕ(t) − x1) and Eq. (4) of Proposition 1 gives

t [(1 − t)Q1 + tQ2] ϕ′(t) = Q1 (ϕ(t) − x1) . Multiplying (14) by t ∈ [0, 1] shows

t (f1 ◦ ϕ)′ (t) =
2
α

〈
[(1 − t)Q1 + tQ2]

−1
Q1 (ϕ(t) − x1) , Q1 (ϕ(t) − x1)

〉
. (15)

Since [(1 − t)Q1 + tQ2]
−1 is a positive definite matrix, then t (f1 ◦ ϕ)′ (t) ≥ 0.

Let us prove that ϕ(t) �= x1, for t ∈ (0, 1]. By contradiction, assume that there
exists t ∈ (0, 1] such that ϕ(t) = x1. Then Eq. (3) in Proposition 1 shows that:
tQ2 (x2 − ϕ(t)) = (1 − t)Q1 (ϕ(t) − x1) = 0, which implies that x2 = ϕ(t) = x1:
that is impossible since x1 �= x2. Hence, by reductio ad absurdum, ϕ(t) �= x1, for
t ∈ (0, 1]. From (15), it follows that

(f1 ◦ ϕ)′ (t) > 0, for any t ∈ (0, 1]. (16)

If we use again the relation from Proposition 1, we obtain lim
t→0

Q1(ϕ(t)−x1)
t =

Q2 (x2 − ϕ(0)) = Q2 (x2 − x1) . Injecting this result in (15), it follows that:

lim
t→0

(f1 ◦ ϕ)′(t)
t

=
2
α

〈
Q−1

1 Q2 (x2 − x1) , Q2 (x2 − x1)
〉

> 0, since (Q−1
1 is a positive definite matrix) (17)

In the same way as above, we obtain that

lim
t→1

(f2 ◦ ϕ)′(t)
1 − t

= − 2
β

〈
Q−1

2 Q1 (x1 − x2) , Q1 (x1 − x2)
〉

< 0. (18)

Equations (16), (17), and (18) allow us to apply Theorem 1. 
�
We illustrate the previous corollary by taking three random instances

of our general problem P, with the scalings always chosen as α = β =
max (f1(x2), f2(x1)). The Pareto fronts are presented in Fig. 2. We observe that
the Pareto fronts are convex and their derivatives are infinite on the left and
zero on the right.

3 New Classes of Bi-objective Test Functions

Bi-objective problems using convex-quadratic functions have been used to test
MO algorithms (see for example [7]). Problems where both Hessian matrices have
the same eigenvalues have been used in particular. Yet, test problems considered
so far do not explore the full possibilities of properties that can be tested. We
therefore extend the test problems from the literature to be able to capture more
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Fig. 2. Left: Two Pareto fronts for n = 2 represented in R
2 with Q1, Q2 randomly

sampled and different. Right: Pareto front for n = 10 with matrices given in (7).

properties. To do so we present seven classes of bi-objective convex-quadratic
problems where the eigenspectra of both Hessian matrices are equal. A natural
extension of these classes is to use in each objective different eigenspectra, Δ,
which leads in general to a nonlinear Pareto set.

The proposed construction parametrizes, apart from search space transla-
tions, all bi-objective convex-quadratic functions with identical Hessian eigen-
spectrum in seven classes with increasing difficulty. The particular focus is on
problems with a linear Pareto set in five of the seven classes. Some classes repre-
sent essentially different problems, hence we do not expect uniform performance
over all problems within each class. Independently of the given construction,
invariance to search space rotation can be tested by applying an orthogonal
transformation to the input argument.

We start from a diagonal matrix Δ with positive entries that define a separa-
ble convex-quadratic function f(x) = 1

αx�Δx. For instance, Δ can be equal to
the identity and we recover the sphere function. If Δ(1, 1) = 1, Δ(n, n) = 108 and
Δ(i, i) = 104, we recover the separable cig-tab function and if Δ(i, i) = 106

i−1
n−1 ,

we recover the separable ellipsoid function.
In the sequel, O and O2 denote orthogonal matrices. O1 is either a permu-

tation matrix, or an orthogonal matrix, depending on the context. The classes
of problems proposed are summarized in Tables 1 and 2.

The Sep Problem Classes. We define the Sep-k class by considering two sep-
arable functions and place the optimum of f1 in 0 and of f2 in the kth unit vec-
tor: fsep-k

1,Δ (x) = 1
α (x − x1)

�
Δ (x − x1) and fsep-k

2,Δ (x) = 1
β (x − x2)

�
Δ (x − x2),

where x1 = (0, . . . , 0)� and x2 = (0, . . . , 0,
√

n, 0, . . . , 0)� where
√

n is at coor-
dinate k. According to Corollary 1, the Pareto set of this class of problems is
the line segment between the optima of the single-objective problems. These
problems allow to test the performance on separable problems with a Pareto
set aligned with the coordinate axis and check the sensibility with respect to
different axes (by varying k).
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For the Sep-O class, we only change the location of the optimum of the
second objective by taking x2 = O(1, . . . , 1)�. If O has elements �∈ {−1, 0, 1}, the
Pareto set is not anymore aligned with the coordinate system, but the objectives
f1 and f2 themselves remain separable. Comparing with class Sep-k, we can
test whether having the Pareto set not aligned with the coordinate axis has an
influence on the performance of the algorithm.

For the Sep-Two-O class, we define fsep-Two-O
1,Δ (x) = 1

α (x − x1)
�

Δ

(x − x1) and fsep-Two-O
2,Δ (x) = 1

β (x − x2)
�

O�
1 ΔO1 (x − x2) where O1 is a per-

mutation matrix, x1 = (0, . . . , 0)� and x2 = O(1, . . . , 1)�. The matrix O�
1 ΔO1

is also diagonal, and thereby each function is separable. Yet the Pareto set is
generally not a line segment anymore since we have different Hessian matrices.
We can test here the difficulty of having a nonlinear Pareto set on separable
functions.

The One and the One-O Problem Classes. We now consider non-separable
problems with a line segment as Pareto set. We define fone

1,Δ (x) = 1
α (x − x1)

�
O�

1

ΔO1 (x − x1) and fone
2,Δ (x) = 1

α (x − x2)
�

O�
1 ΔO1 (x − x2), where O1 is an

orthogonal matrix, x1 = (0, . . . , 0)� and x2 = (1, . . . , 1)�. We replace x2 by
Ox2 to obtain the One-O problems.

These two problem classes allow to test the performance on non-separable
problems that have a line segment as Pareto set comparing in particular to
class Sep-O. Up to a reformulation, the problems ELLI1 and CIGTAB1 from
[7] are from the One-O problem class. Generally, we do not expect different
performance over all problems of the One vs the One-O class.

The Two and the Two-O Problem Classes. For these classes, we rotate
each function independently; then the Pareto set is generally not a line segment

Table 1. Unconstrained quadratic bi-objective test problems: Δ is a positive diagonal
matrix, O is an orthogonal matrix, O1 is a permutation matrix.

Sep-k Sep-O Sep-Two-O

x1 (0, . . . , 0)� (0, . . . , 0)� (0, . . . , 0)�

x2

0, ..,
√

n, .., 0
)�

︸ ︷︷ ︸√
n is at row k

O(1, . . . , 1)� O(1, . . . , 1)�

Q1, Q2 Δ, Δ Δ, Δ Δ, O�
1 ΔO1

L
ev
el

se
ts
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Table 2. Unconstrained quadratic bi-objective test problems: Δ is a positive diagonal
matrix, O, O1 and O2 are three independent orthogonal matrices.

One One-O Two Two-O

x1 (0, . . . , 0)� (0, . . . , 0)� (0, . . . , 0)� (0, . . . , 0)�

x2 (1, . . . , 1)� O(1, . . . , 1)� (1, . . . , 1)� O(1, . . . , 1)�

Q1, Q2 O�
1 ΔO1, O�

1 ΔO1 O�
1 ΔO1, O�

1 ΔO1 O�
1 ΔO1, O�

2 ΔO2 O�
1 ΔO1, O�

2 ΔO2

L
ev
el

se
ts

anymore. We define f two
1,Δ (x) = 1

α (x − x1)
�

O�
1 ΔO1 (x − x1) and f two

2,Δ (x) =
1
α (x − x2)

�
O�

2 Δ O2 (x − x2), with O1 orthogoanal, x1 = (0, . . . , 0)� and x2 =
(1, . . . , 1)�. The corresponding O problems are obtained with Ox2 replacing x2.
All presented classes are subsets of the Two-O class. ELLI2 and CIGTAB2 from
[7] fall within the Two-O class. Compared to the respective One classes, we can
test the impact of having a nonlinear Pareto set.

4 Summary

We have presented an analytic description of the Pareto set for quadratic bi-
objective problems. We have shown that the Pareto set is a line segment when
both objectives have proportional Hessian matrices and deduced a complete
description of the Pareto front in that case. We have also proven that some
properties of the double-sphere are conserved in a wider framework that includes
the general quadratic bi-objective problem: the Pareto front remains convex and
its vertical and horizontal tangents remain at the extremal points of the front.
Such assumptions on the derivatives imply that when looking at the optimal
μ-distributions of the Hypervolume indicator, the extremal points are always
excluded [1]. We have also presented several classes of problems, where each one
tests a specific capability of the multiobjective algorithm.

Acknowledgments. The Ph.D. of Cheikh Touré is funded by Inria and Storengy. We
particularly thank F. Huguet and A. Lange from Storengy for their strong support,
practical ideas and expertise.
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Abstract. Most evolutionary multiobjective optimisation (EMO) algo-
rithms explicitly or implicitly maintain an archive for an approxima-
tion of the Pareto front. A question arising is whether existing archiving
methods are reliable with respect to their convergence and approxima-
tion ability. Despite theoretical results available, it remains unknown how
these archivers actually perform in practice. In particular, what percent-
age of solutions in their final archive are Pareto optimal? How frequently
do they experience deterioration during the archiving process? Deteri-
oration means archiving a new solution which is dominated by some
solution discarded previously. This paper answers the above questions
through a systematic investigation of eight representative archivers on
37 test instances with two to five objectives. We have found that (1)
deterioration happens to all the archivers; (2) the deterioration degree
can vary dramatically on different problems; (3) some archivers clearly
perform better than others; and (4) several popular archivers sometime
return a population with most solutions being the non-optimal. All of
these suggest the need of improvement of current archiving methods.

Keywords: Multi-objective optimisation · Archive · Optimality ·
Monotonicity · Empirical investigation · Evolutionary computation

1 Introduction

Most evolutionary multiobjective optimisation (EMO) algorithms, and other
multiobjective search techniques, keep an archive1 to capture the output of the
search process. Such an archiver is typically used to approximate the Pareto

1 For EMO algorithms without considering an external archive (e.g., NSGA-II [8]),
their population can also be seen as an implicit archive where the selection operation
is performed to preserve the best solutions ever produced [40].
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front and/or as a collection of the current most promising solutions to guide
next step search. Archiving can be seen as a process of taking new points from a
point sequence, comparing them with the old points in the archive and deciding
how to update the archive.

An archive of bounded size is of importance due to not only the consideration
of computational resource but also search performance and later decision-making
process. As such, numerous archiving methods (or archivers) emerge, known as
elite preservation or environmental selection in evolutionary algorithms. They
all serve the purpose of maintaining a set of well-converged and well-diversified
solutions to represent the Pareto front.

However, an important issue of archiving has received relatively little
attention—the optimality/monotonicity properties of archivers. In particular,
one may be curious about whether an archiving method is able to return a
subset of the Pareto optimal solutions discovered so far. This matters as the
decision maker certainly does not want to face a situation that s/he has to
select an inferior solution in the archive but misses a Pareto optimal solution
once produced. In fact, many papers have observed that EMO algorithms whose
archiving has no theoretical quality guarantee can suffer from dramatic perfor-
mance oscillation during the search process on various instances, such as syn-
thetic input sequences [21,31], benchmark test problems [2,11,25], and real life
scenarios [10,32].

Unfortunately, most modern archivers do not have such optimality/
monotonicity properties. They fail to ensure a subset of the Pareto optimal
points with respect to an input sequence. Points can be preserved even when
they are dominated by the points eliminated previously in the archiving process.
A subsequent archive can be worse than an earlier archive. These drawbacks
have been well illustrated in the literature, on different types of archiving meth-
ods, such as Pareto-based archiver [11,14,25], indicator-based archiver [22,31],
and decomposition-based archiver [10]. López-Ibáñez et al. [31] have made a
comprehensive summary of the approximation properties for popular archiving
methods.

On the other hand, some work focused on development of monotonic
archiving methods, including theoretical analysis [6,14,20,33] and algorithm
design [18,25,26,35]. However, without problem-specific knowledge available a
priori, monotonic archiving methods often fail to maintain a diverse solution set
and may end up with very few solutions in the archive (see [21,31]). As such,
non-monotonic archiving methods are still dominantly used everywhere.

Given the above, one interesting question raised is how current state-of-the-
art archiving methods, despite their theoretical drawbacks, perform in practice.
In particular, do archivers, in most cases, actually return a subset of the Pareto
optimal solutions discovered so far; in other words, what percentage of solutions
in the final archive are Pareto optimal? How frequently do archivers experi-
ence deterioration during the search process, in the sense that a point will still
be preserved even if dominated by points which were discarded in the previous
archiving? In this paper, we aim to answer the above questions. These correspond
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to two properties defined in [31]: (1) ⊆ Y ∗ (i.e., the returning archive is a subset
of the Pareto optimal solutions found so far) and (2) monotone (i.e., the dete-
rioration never happens in the archiving process) We systematically investigate
archiving methods associated with eight representative EMO algorithms on 37
test problems with from two to five objectives.

2 Experimental Design

2.1 Assessment Indexes

We consider two indexes, optimal ratio (OR) and deterioration ratio (DR). OR
is, for one run of an EMO algorithm, the percentage of the nondominated solu-
tions in the final archive/population are Pareto optimal with respect to all the
solutions produced in this run. DR is, for one run of an EMO algorithm, the
ratio of the times of deterioration occurring in the archiving process to the num-
ber of solutions considered to enter the archive, where the deterioration means
that archiving a solution which is dominated by some solution discarded in the
previous archiving process.

2.2 Archivers Investigated

We consider four classes of eight archiving methods: (1) Pareto-based archivers
used in NSGA-II [8] and SPEA2 [41]; (2) indicator-based archivers in IBEA [39]
and SMS-EMOA2 [3]; (3) decomposition-based archivers in MOEA/D [37] and
NSGA-III [7]; (4) enhanced Pareto-based archivers for many-objective optimi-
sation (i.e., modifying Pareto dominance or density estimation) used in NSGA-
II+ε [23] and SPEA2+SDE [28].

Pareto-based archivers first compare the Pareto dominance relation between
solutions, and when the solutions have the same Pareto-based fitness (e.g., the
non-dominated front in NSGA-II and the Pareto strength in SPEA2) their esti-
mated density values are used to further distinguish between them. Indicator-
based archivers adopt a performance indicator to optimise a certain preference
of the solution set. In IBEA, the ε or dominated hypervolume indicator, based
on solutions’ pairwise comparison, is used, while in SMS-EMOA the set-based
dominated hypervolume is used. Decomposition-based archivers decompose the
space into a set of subspaces, ideally each solution representing one subspace.
One difference between MOEA/D and NSGA-III is that the latter first sorts all
solutions on the basis of Pareto dominance, and then decomposes the solutions
on the same layer. Enhanced Pareto-based archivers increase the selection pres-
sure of the Pareto-based archiving by either modifying the Pareto dominance
criterion or modifying the crowding degree of solutions. NSGA-II+ε belongs to
the former where the ε dominance [25] is used to replace crowding distance in
NSGA-II, and SPEA2+SDE belongs to the latter where a position shift strategy
is used to estimate solutions’ density in order to make it cover both convergence
and diversity.
2 The method of computing the dominated hypervolume in SMS-EMOA was from [13],

available at http://iridia.ulb.ac.be/∼manuel/hypervolume.

http://iridia.ulb.ac.be/~manuel/hypervolume
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2.3 Test Problems

A set of 37 problem instances were tested, including popular benchmark
suites, early-developed problems and recently-developed ones. Specifically, we
considered three popular suites, ZDT [38], WFG [15] and DTLZ [9]; seven
early-developed problems, SCH1–SCH2 [34], FON [12], KUR [24] and VNT1–
VNT3 [36]; seven recently-developed problems, convex DTLZ2 (denoted by
CDTLZ2), inverted DTLZ1 (IDTLZ1), inverted DTLZ2 (IDTLZ2), scaled
DTLZ1 (IDTLZ1), scaled DTLZ2 (IDTLZ2) [7,17], multiple point distance min-
imisation problem (MPDMP) [16,23], and multiple line distance minimisation
problem (MLDMP) [27]. As to objective dimensionality settings of the scal-
able problems, the 2-objective WFG, the 3-objective DTLZ, and the 4-objective
MPDMP and MLDMP (aka the rectangle problem [29]) were used; we also con-
sidered the 5-objective DTLZ1 and DTLZ2.

2.4 General Experimental Settings

All the results presented were obtained by executing 30 independent runs of
each algorithm on each problem with the termination criterion of 30,000 evalu-
ations. The population/archive size was set to 100 for all the algorithms except
MOEA/D and NSGA-III where a closest number to 100 amongst the possi-
ble values was selected. To perform variation, simulated binary crossover with
probability pc = 1.0 and polynomial mutation with probability pm = 1/d (d
denotes the number of decision variables) were considered in all the algorithms.
The indicator ε was used in IBEA, and the PBI scalarising function was used in
MOEA/D. All the parameters of the algorithms were configured as the same as
in their original papers.

3 Results

3.1 Optimal Ratio

Table 1 shows the average optimal ratio (OR) of 30 runs of the eight algorithms
on all the 37 problems. As can be seen, SMS-EMOA performs best, followed
by SPEA2+SDE and NSGA-III; MOEA/D, NSGA-II and SPEA2 are among
the worst algorithms, with only over 70% solutions being Pareto optimal3 in
their final archive on average. Taking a particular look at SMS-EMOA, unlike
other algorithms whose OR varies on different problems, SMS-EMOA always
achieves over 99.9% OR values on all the problems. This excellent ability may be
attributed to the fact that the hypervolume value of the SMS-EMOA’s archive
never (or very rarely [19]) decreases and the archiving is of �-monotonicity
(see [31]) when the reference point is stable, leading to the dominated solutions
hard to stay in the archive.

3 Here, “Pareto optimal” means being nondominated to all the solutions found during
the run, rather than the problem’s Pareto optimal solutions.
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Table 1. The average optimal ratio (OR) of 30 runs of the eight algorithms. The
higher the better; 100% (in boldface) means that all the solutions in the final archive
or population are Pareto optimal with respect to the produced solutions (i.e., their
input sequence).

Problem NSGA-II NSGA-II+ε SPEA2 SPEA2+SDE IBEA SMS-EMOA MOEA/D NSGA-III
SCH1 100.0% 99.8% 100.0% 99.8% 99.8% 100.0% 100.0% 100.0%
SCH2 100.0% 99.4% 99.9% 99.4% 91.0% 100.0% 98.4% 100.0%
FON 33.6% 36.5% 43.8% 60.8% 92.5% 99.4% 43.1% 86.8%
KUR 51.9% 48.1% 67.0% 69.5% 85.2% 99.9% 47.1% 75.3%
ZDT1 81.7% 86.7% 91.8% 96.4% 97.3% 100.0% 54.4% 99.6%
ZDT2 87.6% 91.1% 93.3% 98.4% 85.8% 100.0% 62.8% 99.3%
ZDT3 80.5% 86.9% 89.9% 92.1% 97.8% 99.9% 72.6% 93.5%
ZDT4 96.8% 97.2% 97.1% 99.3% 80.7% 99.9% 64.1% 96.9%
ZDT6 97.7% 98.2% 96.6% 99.6% 94.4% 100.0% 36.8% 98.7%
WFG1 95.7% 97.8% 98.3% 99.7% 71.8% 100.0% 43.2% 96.8%
WFG2 83.6% 86.8% 90.4% 92.8% 88.5% 100.0% 72.9% 83.9%
WFG3 61.2% 75.3% 70.3% 86.4% 93.9% 99.9% 45.0% 92.4%
WFG4 55.9% 69.1% 65.7% 83.9% 78.6% 99.7% 52.2% 91.1%
WFG5 57.8% 67.9% 72.8% 84.8% 80.1% 100.0% 49.0% 95.1%
WFG6 69.4% 80.6% 79.9% 92.3% 79.2% 99.9% 55.2% 93.8%
WFG7 51.3% 61.4% 60.8% 84.6% 79.0% 100.0% 48.9% 88.5%
WFG8 68.0% 72.0% 81.9% 94.5% 59.1% 99.8% 54.2% 85.8%
WFG9 50.8% 61.3% 55.6% 77.2% 81.0% 100.0% 40.4% 83.6%
VNT1 71.4% 94.7% 64.8% 96.8% 97.9% 100.0% 81.3% 82.3%
VNT2 56.5% 85.8% 59.0% 90.2% 91.7% 100.0% 67.0% 78.8%
VNT3 53.5% 37.6% 72.1% 66.0% 90.3% 99.8% 92.6% 57.5%
DTLZ1 96.2% 99.1% 90.2% 99.9% 40.7% 100.0% 90.1% 98.3%
DTLZ2 63.1% 69.8% 67.0% 88.9% 94.6% 100.0% 90.3% 77.8%
DTLZ3 94.4% 97.9% 97.6% 99.8% 27.0% 99.8% 87.3% 96.4%
DTLZ4 60.8% 71.4% 70.1% 89.8% 90.4% 100.0% 94.0% 78.7%
DTLZ5 58.1% 66.6% 72.0% 87.1% 80.9% 100.0% 97.8% 52.0%
DTLZ6 100.0% 99.1% 94.1% 100.0% 99.9% 100.0% 90.7% 93.9%
DTLZ7 56.2% 82.5% 67.6% 94.2% 97.1% 100.0% 49.8% 68.2%
CDTLZ2 59.2% 78.0% 63.8% 94.5% 97.9% 100.0% 84.4% 79.7%
IDTLZ1 93.3% 99.5% 97.1% 99.9% 15.9% 100.0% 97.7% 98.0%
IDTLZ2 64.9% 80.3% 71.6% 93.3% 97.4% 100.0% 96.6% 67.3%
SDTLZ1 96.2% 99.0% 93.8% 99.3% 42.9% 100.0% 75.1% 98.3%
SDTLZ2 60.3% 74.6% 62.5% 82.2% 94.6% 99.3% 71.6% 77.6%
MPDMP 90.0% 94.8% 85.0% 99.4% 72.8% 100.0% 98.9% 93.5%
MLDMP 99.5% 99.1% 98.0% 100.0% 74.4% 100.0% 82.0% 98.6%
DTLZ1-5 57.6% 99.7% 15.9% 100.0% 83.9% 100.0% 96.8% 98.3%
DTLZ2-5 66.3% 90.1% 20.2% 94.2% 98.3% 100.0% 91.1% 86.6%
Average 73.54% 82.05% 76.15% 91.54% 81.62% 99.93% 72.31% 87.65%

The other seven archivers do not have these desirable properties. They can
reach/approach 100% OR values on some problems (e.g., SCH1, SCH2 and
DTLZ6), but perform rather poorly on some other problems (e.g., FON, KUR,
WFG8 and WFG9). In addition, some archivers appear to behave quite distinctly
from others on a couple of problems. For example, SPEA2 and NSGA-II per-
form considerably worse than the other archivers on the 5-objective DTLZ1 and
DTLZ2; IBEA performs on DTLZ1, DTLZ3, IDTLZ1, and SDTLZ1; MOEA/D
performs on ZDT6 and WFG1. Figure 1 shows the final population obtained
by MOEA/D in a typical run on WFG1 and also all the solutions produced in
this run and the Pareto optimal ones. As can be seen in the figure, many solu-
tions of the final population of MOEA/D are not Pareto optimal of the whole
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Fig. 1. Final population obtained by MOEA/D in a typical run on WFG1, coupled
with (a) all the solutions produced in this run and (b) all the Pareto optimal solutions
in this run.

set of solutions produced, particularly in the bottom right and top left of the
figure, where they are dominated by some solutions which are eliminated in the
archiving process of MOEA/D.

Since all the archivers (except SMS-EMOA) are the same in terms of theo-
retical properties, the observations of the different behaviours are from specific
problems and archiving methodologies. In general, there are several situations
that lead to an archive to only/mostly contain the Pareto optimal solutions.
The first is that the newly produced solutions are typically dominated by some
solutions in the archive. This happens on the test instance SCH1. The second
situation is that a certain amount of newly produced solutions dominate some
solutions in the archive even at the end of the evolution process. This happens
often when the archive does not approach the Pareto front yet, such as Pareto-
based algorithms on DTLZ1 and DTLZ3. The last situation is that the newly
produced solutions are usually nondominated to the solutions in the archive, and
also nondominated to any previously produced one. This happens either when
the produced solutions are already Pareto optimal to the given problem (such
as SCH2 and DTLZ6), or when they are stuck in the local optimum (such as
Pareto-based algorithms on MLDMP).

Now, comparing different classes of the archiving methods, enhanced Pareto-
based archivers generally outperform Pareto-based ones, with NSGA-II+ε and
SPEA2+SDE improving the original NSGA-II and SPEA2 on average by around
10% and 15% respectively. This means that the density-based secondary archiv-
ing criterion (without incorporating convergence information) leads to OR
degenerating. As to the three mainstream archiving classes, the Pareto-based, the
indicator-based, and the decomposition-based, there is no clear pattern between
their OR values. But we can infer the importance of Pareto dominance as the first
archiving criterion in decomposition-based archiver, as NSGA-III, equipped with
the Pareto nondominated sorting, performs significantly better than MOEA/D.
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3.2 Deterioration Ratio

Next, let us move to the deterioration ratio (DR) results. DR denotes the ratio of
the times of deterioration occurring in the archiving process to the total times of
the archiving operations, and DR = 0% implies OR = 100%. It is then expected
that a similar pattern to OR will be observed. Table 2 gives the average DR of
30 runs of the eight algorithms. Surprisingly, IBEA, which takes the fifth place
on the average OR result, performs best here, slightly better than SMS-EMOA.
One possible explanation is that the deterioration occurs mainly during the late
phase of IBEA’s evolutionary process, thereby some dominated solutions (in
a global sense) remaining in the final archive. In contrast, in SMS-EMOA the
deterioration occurs mainly during the evolutionary phase when the archive does
not approach the Pareto front. This is also supported by the poor DR values of
SMS-EMOA on WFG1 and DTLZ3 where the final archive is still far from the
Pareto front.

It is noticed that MOEA/D reaches nearly 10% DR on average, significantly
higher than the other algorithms, indicating that its archiving process preserves
many dominated solutions with respect to the input sequence. This, interestingly,
is contrary to the observations in [2], where the authors have seen that MOEA/D
perform well (against Pareto-based, indicator-based and enhance Pareto-based
EMO algorithms) in archiving the Pareto optimal solutions found on the MNK-
landscape problem [1]. One possible reason for this could be different behaviours
of MOEA/D between on continuous problems and on combinatorial problems.
Another more likely explanation is the different performances of MOEA/D in
exploration and archiving. The matting selection which considers neighbouring
solutions in MOEA/D could be promising in generating Pareto optimal solutions,
but it is difficult for the archive (here the population) to always keep them; i.e.,
good solutions can be easily generated and easily discarded as well.

3.3 Summary

Now we make a summary of the above observations.

– Consistent with the theoretical results, deterioration can happen to all the
archivers in practice. However, the deterioration degree may vary dramatically
on different test problems.

– SMS-EMOA performs best, especially in preserving the Pareto optimal solu-
tions in the final archive. This is probably due to the desirable property of its
hypervolume-based archiving—the �-monotonicity [31]. Such a hypervolume-
based bounded-size archiving, originally proposed in [22], can significantly
reduce the occurrences of deterioration.

– IBEA does well in preventing the dominated solutions (with respect to the
input sequence) from entering the archive, but it works mainly at the early
phase of the evolution. This leads to the archive often ending up not being a
subset of the Pareto optimal solutions.
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Table 2. The average deterioration ratio (DR) of 30 runs of the eight algorithms. The
lower the better; 0.00% (in boldface) means that there is no archived solution which is
dominated by the solutions eliminated in the previous archiving process.

Problem NSGA-II NSGA-II+ε SPEA2 SPEA2+SDE IBEA SMS-EMOA MOEA/D NSGA-III
SCH1 0.00% 0.10% 0.00% 0.08% 0.20% 0.00% 0.25% 0.00%
SCH2 0.00% 0.22% 0.00% 0.14% 0.36% 0.00% 0.50% 0.00%
FON 10.21% 10.66% 4.05% 5.13% 1.02% 0.02% 2.99% 0.66%
KUR 5.06% 6.12% 1.83% 2.05% 0.49% 0.05% 5.86% 3.74%
ZDT1 3.79% 2.78% 1.90% 0.94% 0.05% 0.67% 21.65% 0.68%
ZDT2 2.42% 1.74% 1.23% 0.47% 0.11% 0.42% 29.26% 0.77%
ZDT3 3.46% 2.42% 1.92% 1.48% 0.06% 0.85% 22.98% 2.64%
ZDT4 0.58% 0.41% 0.40% 0.21% 0.26% 0.73% 12.25% 0.53%
ZDT6 0.97% 0.67% 0.62% 0.20% 0.00% 0.72% 19.00% 0.60%
WFG1 1.11% 0.60% 1.13% 0.30% 0.00% 3.96% 16.16% 2.11%
WFG2 1.81% 1.37% 1.20% 0.75% 0.03% 1.02% 17.45% 2.64%
WFG3 7.48% 4.75% 4.22% 1.71% 0.05% 0.45% 16.89% 1.72%
WFG4 8.34% 5.25% 4.70% 2.50% 0.08% 0.45% 15.81% 3.81%
WFG5 10.46% 8.00% 5.06% 4.12% 0.09% 0.31% 18.16% 2.13%
WFG6 4.88% 3.32% 2.57% 1.49% 0.04% 0.51% 17.97% 2.26%
WFG7 10.22% 7.97% 5.86% 3.02% 0.08% 0.21% 17.29% 2.86%
WFG8 2.68% 2.36% 1.37% 0.56% 0.09% 0.56% 18.69% 2.43%
WFG9 12.04% 8.51% 6.84% 4.64% 0.48% 0.19% 13.86% 3.17%
VNT1 7.65% 2.13% 9.01% 1.38% 0.93% 0.00% 1.65% 6.64%
VNT2 6.44% 4.27% 4.39% 2.88% 3.07% 0.01% 2.41% 8.61%
VNT3 7.24% 10.18% 2.70% 3.94% 2.19% 0.02% 0.65% 11.85%
DTLZ1 1.25% 0.41% 1.49% 0.30% 0.55% 0.74% 2.78% 1.08%
DTLZ2 9.55% 7.45% 7.66% 2.77% 0.34% 0.08% 2.93% 3.03%
DTLZ3 1.22% 0.68% 1.10% 1.08% 0.97% 2.26% 6.44% 2.08%
DTLZ4 9.53% 7.85% 6.56% 2.52% 0.36% 0.14% 5.81% 3.57%
DTLZ5 9.11% 7.52% 5.84% 2.82% 0.17% 0.13% 5.10% 12.68%
DTLZ6 0.01% 0.50% 2.35% 0.31% 0.05% 0.66% 5.29% 2.50%
DTLZ7 10.07% 3.72% 5.77% 1.22% 0.13% 0.19% 12.14% 8.46%
CDTLZ2 9.88% 5.62% 9.34% 1.46% 0.35% 0.07% 2.63% 3.70%
IDTLZ1 1.22% 0.37% 0.68% 0.33% 0.86% 0.46% 6.13% 0.95%
IDTLZ2 9.96% 5.21% 7.11% 1.54% 0.55% 0.06% 1.38% 9.79%
SDTLZ1 1.25% 0.37% 1.38% 0.43% 0.56% 0.73% 8.81% 1.01%
SDTLZ2 9.45% 5.72% 7.62% 3.68% 0.33% 0.31% 11.58% 3.38%
MPDMP 1.17% 0.65% 1.27% 0.11% 0.01% 0.01% 0.58% 0.91%
MLDMP 0.11% 0.17% 0.28% 0.00% 0.08% 0.01% 0.78% 0.36%
DTLZ1-5 7.53% 0.22% 19.18% 0.05% 0.42% 0.11% 1.28% 1.47%
DTLZ2-5 12.55% 2.40% 18.23% 1.14% 0.17% 0.02% 1.13% 2.69%
Average 5.424% 3.586% 4.240% 1.561% 0.421% 0.461% 9.366% 3.176%

– Pareto-based archivers NSGA-II and SPEA2 generally perform poorly as the
density-based criterion can lead to the dominated solutions frequently to enter
the archive.

– Inserting convergence information into the density-based criterion of Pareto-
based archivers can reduce the deteriorations. This has been shown in NSGA-
II+ε and SPEA2+SDE.

– For indicator-based and decomposition-based archivers, Pareto dominance
should still be necessary as the first criterion to select solutions. This can be
inferred from the comparison between MOEA/D and NSGA-III.
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4 Concluding Remarks

An archiver with theoretical quality guarantee is of high importance. It can
improve search efficiency, prevent performance oscillation, and return a subset
of the Pareto optimal solutions found so far. This paper has made a practical
investigation of the optimality/monotonicity properties of eight representative
archivers on 37 test instances. The results have shown that deterioration happens
most of the time, and some archivers only return a population with less than
half solutions being optimal.

It is worth pointing out that our investigation is based on the whole EMO
algorithms rather than on archiving methods alone. That is, each EMO algorithm
generates a different sequence of solutions that is presented to its archiving
component. As such, the results (OR and DR) could be affected by the algorithm
performance of producing solutions. An investigation of archiving methods under
the same input sequence of solutions, independent of any EMO algorithm, can
better tell their differences, which will be our next work.

Finally, note that we cannot say that a population consisting of a significantly
large proportion of the current Pareto optimal solutions already well converges
into the Pareto front, as it might be in the “middle” of the evolution, for exam-
ple, for the Pareto-based algorithms on WFG1 and DTLZ3. But, an algorithm
with a low percentage of the Pareto optimal solutions should have lots of room
to be improved. In this regards, MOEA/D is an interesting example, in which
good solutions can be easily generated but easily discarded as well. A combina-
tion of MOEA/D and SMS-EMOA could be potentially promising, in the sense
that MOEA/D is responsible for generating solutions and updating population,
while an extra archive based on the archiving method of SMS-EMOA is used
to keep solutions. This would lead to different archiving methods for the differ-
ent purposes in EMO—internal archiving for fostering exploration and external
archiving for reducing deterioration, as suggested in [4,5]. It is worth mentioning
that a similar algorithm framework, called bi-criterion evolution [30], has been
presented recently, where MOEA/D can mainly be used to generate solutions
and a Pareto-based archiving method is used to keep solutions. However, this
cannot prevent the occurrence of deterioration as the Pareto dominance relation
and individuals’ crowding degree are used to maintain the archive just like in
NSGA-II and SPEA2.
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13. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algo-
rithm for the hypervolume indicator. In: Proceedings of IEEE Congress Evolution-
ary Computation CEC 2006, pp. 1157–1163 (2006)

14. Hanne, T.: On the convergence of multiobjective evolutionary algorithms. Eur. J.
Oper. Res. 117(3), 553–564 (1999)

15. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

16. Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-objective test
problems to visually examine the behavior of multiobjective evolution in a decision
space. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN 2010.
LNCS, vol. 6239, pp. 91–100. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15871-1 10

https://doi.org/10.1007/978-3-319-31471-6_2
https://doi.org/10.1007/978-3-319-31471-6_2
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-642-15871-1_10
https://doi.org/10.1007/978-3-642-15871-1_10


An Empirical Investigation of Multiobjective Archivers 25

17. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, part II: handling constraints
and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–
622 (2014)

18. Jin, H., Wong, M.-L.: Adaptive, convergent, and diversified archiving strategy
for multiobjective evolutionary algorithms. Expert Syst. Appl. 37(12), 8462–8470
(2010)

19. Judt, L., Mersmann, O., Naujoks, B.: Non-monotonicity of observed hypervolume
in 1-Greedy S-Metric selection. J. Multi-Criteria Decis. Anal. 20(5–6), 277–290
(2013)

20. Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for storing
nondominated vectors. IEEE Trans. Evol. Comput. 7(2), 100–116 (2003)

21. Knowles, J., Corne, D.: Bounded Pareto archiving: theory and practice. In:
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Abstract. Many Evolutionary Algorithms (EAs) have been proposed
over the last decade aiming at solving multi- and many-objective opti-
mization problems. Although EA literature is rich in performance metrics
designed specifically to evaluate the convergence ability of these algo-
rithms, most of these metrics require the knowledge of the true Pareto
Optimal (PO) front. In this paper, we suggest a novel Karush-Kuhn-
Tucker (KKT) based proximity measure using Benson’s method (we call
it B-KKTPM). B-KKTPM can determine the relative closeness of any
point from the true PO front, without prior knowledge of this front.
Finally, we integrate the proposed metric with two recent algorithms
and apply it on several multi and many-objective optimization problems.
Results show that B-KKTPM can be used as a termination condition for
an Evolutionary Multi-objective Optimization (EMO) approach.

Keywords: Multi-objective optimization ·
Karush-Kuhn-Tucker conditions · Evolutionary optimization ·
Termination criterion · Benson’s method

1 Introduction

Many EAs have proven to be effective in solving optimization problems with
multiple (often conflicting) objectives. This made them widely popular over the
last two decades. One of the most important reasons for its popularity is its abil-
ity to find multiple, wide-spread, trade-off solutions in a single simulation run,
unlike classical methods, which use a point-to-point strategy to generate each
non-dominated solution [1,2]. Among the first attempts in this field are MOGA
[3], NPGA [4] and NSGA [5], where researchers devised different methods to
deal with more than one goal by achieving a balance between convergence and
diversity preservation. To accomplish convergence, these algorithms used the
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K. Deb et al. (Eds.): EMO 2019, LNCS 11411, pp. 27–38, 2019.
https://doi.org/10.1007/978-3-030-12598-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12598-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-12598-1_3


28 M. Abouhawwash and M. A. Jameel

concept of Pareto dominance [6]. For diversity preservation, this group of algo-
rithms used various diversity measures studied in the context of single-objective
evolutionary computation techniques [7–9]. A following generation of algorithms
achieved faster convergence while maintaining good diversity among the set of
non-dominated solutions. This second wave is represented by a number of stud-
ies, most notably, NSGA-II [10], NSGA-III [11,12], PAES [13], and SPEA-II [14].

KKT conditions are one of the earliest and most popular sets of optimality
conditions [15–17] and thus they play a vital role in constrained optimization
theory [18,19]. KKT conditions is used to test whether a point (solution) is opti-
mal or not. First order gradient of both objectives and constraints are required to
check KKT conditions at a specific point. Other researcher expanded the idea of
using KKT conditions to deal with non-smooth problems, using subdifferentials
[19]. However these studies were only proposed for single-objective optimization
problems. In 2015, Deb and Abouhawwash extended KKTPM to the realm of
multi-objective optimization problems (MOPs) [20]. Their approach relies on one
of the most common approaches to solve the generic MOPs, namely, Achievement
Scalarizing Function (ASF) [21]. They extended this approach to use numeri-
cal differentiation when exact gradients are not available [22]. Abouhawwash et
al. [23] integrated KKTPM with an efficient local search approach to enhance
convergence of NSGA-III [24].

In this study we propose a novel KKT based metric using Benson’s method,
one of the classical methods of aggregating objectives in multi-objective opti-
mization problems. The proposed metric (B-KKTPM) is intended to measure
how far a solution is from being Pareto optimal in a multi-objective optimiza-
tion context. We also show that the proximity of a solution from being optimal
is perfectly correlated with the respective B-KKTPM of this solution. Benson’s
method is a well-known method for checking Pareto-optimality and for producing
efficient solutions. One of the main goals is to verify that our proposed metric can
be used as a termination criterion for EAs. One of the advantages of using Ben-
son’s method is that it- unlike ASF- does not need augmentation to avoid weakly
dominated solutions. In the rest of the paper, a brief study of KKT proximity
measure in Sect. 2. Our proposed metric for multi and many-objective optimiza-
tion problems is described in Sect. 3. Simulation results on different optimization
problems using NSGA-II and NSGA-III are introduced in Sect. 4. Lastly, Sect. 5
presents concludes and suggests potential future work.

2 KKT Based Proximity Measure

Dutta et al. [25] defined an approximate-KKT solution to calculate a KKTPM
value for any iterate (solution) xk for single-objective optimization problem of
the following type:

Minimize(x) f(x),
Subject to gj(x) ≤ 0, j = 1, 2, . . . , J,

(1)
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after the theoretical computation of authors, they proposed a procedure for
calculating KKTPM value εk for a solution xk as follows:

Minimize(εk,u) εk,

Subject to ‖∇f(xk) +
∑J

j=1 uj∇gj(xk)‖2 ≤ εk,
∑J

j=1 ujgj(xk) ≥ −εk,

uj ≥ 0, ∀j.

(2)

Here, the variable vector is (εk,u). The closer KKTPM value is to zero; it gives
us thought about the closeness of the solution for the optimal value ε∗

k is called
exact (or optimal) KKT proximity measure for the above problem. In the next
section, we extend the KKT proximity metric concept for MOP based on the
concept of Benson’s method.

3 Proposed B-KKT Proximity Measure

A typical M -objective optimization problem with inequality constraints formu-
lated as:

Minimize(x) {f1(x), f2(x), . . . , fM (x)}, x ∈ Rn

Subject to gj(x) ≤ 0, j = 1, 2, . . . , J.
(3)

There are many methods to solve the above problem. One of the most well-known
methods of checking Pareto optimality (or efficiency) status and of generating
efficient solutions for the above problem is Benson’s method, which was originally
suggested by Benson [26]. This method needs an initial solution z0 (parameter
of the Benson’s problem), this problem is given as follows:

Maximize(x)
M∑

m=1

max
(
0, (z0m − fm(x))

)
,

Subject to fm(x) ≤ z0m, m = 1, 2, . . . ,M,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, . . . , n.

(4)

The idea and the aim of Benson’s method are on identifying the Pareto-
optimality status, i.e., checking whether a given feasible solution x is Pareto-
optimal or not. If the mentioned feasible solution x is not Pareto-optimal, this
method finds PO solution of the multi-objective optimization problem which
dominates the mentioned inefficient feasible solution. Figure 1 shows the chosen
reference solution z0 ∈ RM which is any suitable solution in the M -dimensional
objective space, note that use of nadir point, znad, as the chosen point might
be found suitable here [6]. The above problem maximizes the distance between
the vector of objective functions corresponding to the under-assessment feasi-
ble solution x0 and the vectors of objective functions corresponding to all fea-
sible solutions which dominate z0=f(x0). The distance function in Benson’s
method is ‖.‖1 (L1 − norm). The objective function in the above problem is
non-differentiable, thereby causing difficulties for derivative-based methods to
solve this problem. To tackle this shortcoming, a modified formulation of the
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Fig. 1. Illustration of Benson’s method.
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Fig. 2. Illustration of Benson’s problem (5).

optimization problem stated in Eq. 4 used, and which suggested in [27] for a
smooth problem:

Maximize(x)
M∑

i=1

xn+i,

Subject to fi(x) + xn+i = fi(x0),
xn+i ≥ 0 , for all i = 1, 2, . . . ,M,
x ∈ X ,

(5)

where both x ∈ Rn and xn+i ∈ RM
+ are variables, xn+i = fi(x0) − fi(x) added

as non-negative deviation variables. To clarify the idea in objective space (see
Fig. 2). The initial feasible chosen, after that, the point fi(x0) has values greater
than the PO solution fi(x) . Maximizing the total deviation xn+1 + xn+2, the
purpose is to find a dominating solution, which is PO solution. For more details
about the procedure of work for the above problem, see [27]. Note that sometimes
equality constraints of the above problem cause computationally difficult. We
must point out that problem stated in Eq. 5 is computationally badly conditioned
because it has only one feasible solution (xn+i = 0 for each i) if x0 is Pareto-
optimal. Therefore, it is useful to note that equalities described in Eq. 5 could be
replaced with inequalities fi(x) + xn+i ≤ fi(x0) for all i = 1, 2, . . . ,M without
affecting generality of the results presented [2,28].

Finally, we recount some of the advantages of Benson’s method: (i) Its
implementation is easy (ii) This method can be viewed as a hybridization of
ε-constraint and weighted sum methods (iii) Benson’s method constraints are
more flexible than ε-constraint method (iv) If the point chosen appropriately
then this method can also be used for non-convex MOPs. In this study, nadir
point znad is selected as an appropriate initial point z0. According to the above
explanation, to formulate the B-KKTPM proximity measure, a maximization
problem described in Eq. 5 is transformed into a minimization problem as follows:
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Min.(x, xn+i) F (x, xn+i) = −
M∑

i=1

xn+i,

Subject to fi(x) + xn+i − fi(x0) ≤ 0, i = 1, 2, . . . , M,
gj(x) ≤ 0, j = 1, 2, . . . , J.

(6)

Since the number of new variables xn+i equals the number of objectives M . The
above problem has (n + M) variables: y = (x, xn+i) for all i = 1, 2, . . . ,M . The
idea of the above formulation of the optimization problem could be explained
briefly as follows: Suppose that xk a strict, efficient solution, then, Benson’s
optimization problem expected to produce the same solution, at the same time,
KKT conditions expected to satisfy at this solution. But, if the solution xk is
away from the PO front, our new proposed KKTPM metric expected to give a
monotonic metric value related to the nearness of any point from the correspond-
ing Benson’s optimal solution. For any suitable reference solution z0=f(x0), the
optimal solution to the above optimization problem expected to make x∗

n+i ≥ 0.
Finally, there exist M + J inequality constraints Gj(y) for the above problem:

Gj(y) = fj(x) + xn+j − z0j ≤ 0, j = 1, . . . , M, (7)
GM+j(y) = gj(x) ≤ 0, j = 1, 2, . . . , J. (8)

Now, B-KKT proximity measure for the above smooth objective function y =
(x, xn+i) stated in Eq. 6 computed as follows:

Min.(εk, xn+j ,u) εk +
∑J

j=1

(
uM+jgj(xk)

)2
,

Subject to ‖∇F (y) +
∑M+J

j=1 uj∇Gj(y)‖2 ≤ εk,
∑M+J

j=1 ujGj(y) ≥ −εk,

uj ≥ 0, j = 1, 2, . . . , (M + J),
−xn+j ≤ 0, j = 1, 2, . . . ,M.

(9)

The variables in this problem are εk, xn+i ∈ RM for i = 1, 2, . . . ,M and Lagrange
multiplier vector uj ∈ RM+J . The first order gradient of F and G functions for
the first constraint of the above problem required. If the complementary slack-
ness condition value is zero at iterate xk, meaning that it is Pareto-optimal (by
either gj(xk) = 0 or uM+j = 0) and hence the objective value for the above
optimization should equal to zero. In the above optimization problem, the left
side expressions of first and second constraints are not anticipated to equal zero
for any other solution (not Pareto-optimal). The above problem has (2M +J +1)
and (2M + 2J + 1) variables and inequality constraints, respectively. To make
B-KKTPM value has a larger (and worse) value for an infeasible solution, the
second term in the objective function added as a penalty. Finally, to make sure
that xn+j (∀j, j = 1, 2, . . . ,M) have non-negative values in the above optimiza-
tion problem, the final constraint added. An analysis of the optimization problem
described in Eq. 9 and the subsequent simplifications uncover an essential out-
come. The exact (or optimal) B-KKT proximity measure for feasible solutions
is given as follows:
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ε∗
k = M − M

M∑

j=1

u∗
j −

J∑

j=1

(
u∗

M+jgj(xk)
)2

, (10)

where M is the number of objectives, u∗
j ≥ 0 for all j and the third term

is always non-negative. For any feasible solution xk, ε∗
k is always bounded in

[0,M ]. Therefore, B-KKTPM metric for any solution xk is calculated as follows:

B-KKTPM metric(xk) ={
ε∗
k, if xk is feasible,

M +
∑J

j=1

〈
gj(xk)

〉2
, otherwise.

(11)

where 〈α〉 = α if α > 0; zero, otherwise. For PO solution xk = x∗, the B-
KKTPM value stated in Eq. 10 is always zero (ε∗

k = 0), the second term is
always M (in this term

∑M
j=1 u∗

j = 1 for all j) and the third term is always
zero because that complementary slackness condition satisfied (u∗

M+jgj(x∗) = 0)
for all constraints. To get a value greater than M for B-KKTPM metric in an
infeasible solution case, M is added to ε∗

k as shown Eq. 11. Since the computation
procedure for our proposed metric and KKTPM metric are same coincided, then
we can find the computational cost for our proposed metric by using the same
methods of KKTPM metric which mentioned in [29].

4 Results

Before discussing the performance of the proposed metric on multi- and many-
objective optimization test problems, two of the most common MOEA algo-
rithms used to solve all test problems. Bi-objective problems solved utilizing
NSGA-II [10], while three or more objective problems solved utilizing NSGA-
III [11]. These algorithms are used with standard parameter settings: Simulated
Binary Crossover (SBX) probability = 0.9, SBX index = 30, polynomial muta-
tion probability = 1/n (where n is the number of variables), and mutation index
= 20 are applied. Description of SBX and polynomial mutation operations found
in [30] and [6], respectively. In our metric, we suppose that if a solution (iterate
xk) has B-KKTPM value which is less than or equal to 0.01, then we can say
that this solution is the optimal solution. Some details of the test problems used
in this work presented in Table 1.

4.1 Two-Objective Optimization Problems

Now, we apply B-KKTPM to the non-dominated solutions at the end of each
generation in an NSGA-II run.

Two-Objective Test ZDT Problems. The simulation results for some two-
objective ZDT test problems [31] are presented. The Variation for the smallest,
first quartile, median, third quartile, and largest B-KKTPM values for NSGA-II
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Table 1. Parameters - columns represent – left-to-right – test problem name, number
of objectives, number of variables, bounds on the decision variables, population size,
maximum number of generation.

Test
problem

Num. of
objectives
(M)

Num. of
variables
(n)

Bounds x Popsize (N) MaxGen.

ZDT1 2 30 xi ∈ [0, 1] 40 200

ZDT3 2 30 xi ∈ [0, 1] 40 200

ZDT4 2 30 x1 ∈ [0, 1] 48 300

x2:30 ∈ [−1, 1]

TNK 2 2 xi ∈ [0, π] 40 250

BNH 2 2 x1 ∈ [0, 5] 200 500

x2 ∈ [0, 3]

DTLZ1 5 7 xi ∈ [0, 1] 212 1000

DTLZ2 3 8 xi ∈ [0, 1] 92 400

5 14 xi ∈ [0, 1] 212 400

DTLZ5 3 12 xi ∈ [0, 1] 92 500

CAR 3 7 x1,3,4 ∈ [0.5, 1.5] 92 1000

x2 ∈ [0.45, 1.35]

x5 ∈ [0.875, 2.625]

x6,7 ∈ [0.4, 1.2]
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Fig. 3. B-KKT proximity measures
versus generation numbers for non-
dominated points on ZDT1 problem.
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Fig. 4. B-KKT proximity measures
versus generation numbers for non-
dominated points on ZDT3 problem.

procedure on problems ZDT1, ZDT3 and ZDT4 illustrated in Figs. 3, 4 and 5,
respectively. First, ZDT1 problem has convex PO front. The first population
member arrived within B-KKTPM value (less than or equal 0.01) at 36 gen-
erations. Half and third quartile population members took about 105 and 110
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generations to reach the true PO front. Note the decrease of B-KKTPM value to
zero with the increasing number of generations, meaning that possibility of using
B-KKTPM metric as a termination condition to the optimization algorithms.
Next, ZDT3 problem has a convex discontinuous efficient front. The first strictly
efficient solution was found at generation 11. Note that the convergence towards
the efficient front was faster for about 75% of population members, as clear
from Fig. 4. 27 and 62 of generations were necessary to half and third quartile of
population members, respectively, until they arrive the efficient front. However,
not all the population members (population size 40) were able to convergence
to the efficient front at 200 generations. The ZDT4 function has about 100 local
PO fronts and therefore is highly multi-modal. This problem solved utilizing
the NSGA-II algorithm having 48 population members. Variation of B-KKTPM
values with Benson’s formulation for this problem shown in Fig. 5. Eighty-nine
generations required for the first population member to reach the true PO front,
while 202, and 225 generations required for both half and 75-th percentile pop-
ulation members, respectively, to reach the true PO front. To avoid points for
which the gradient does not exist in this problem, we do not consider points had
x1 = 0.

Constrained Test Problems. Now, TNK and BNH constrained test problems
[6] are presented, respectively. The variation for B-KKTPM values with Benson’s
formulation for problems TNK and BNH shown in Figs. 6 and 7, respectively. For
the TNK test problem, At 175 generation, all Pareto-optimal solutions nearly
converge (within 0.01 B-KKTPM value) to the efficient front. In the BNH prob-
lem, the first non-dominated point discovered at generation 1. After that, 25%,
50% and 75% of non-dominated points took 22, 105 and 365 generations, respec-
tively, to arrive at the efficient front. At 500-th generation, the largest B-KKTPM
value is 0.079. Due to some known complexity in solving this problem, a slow
reduction of the B-KKTPM value with the generating counter observed.

4.2 Three-Objective Optimization Problems

Three-objective DTLZ2 and DTLZ5 test problems presented in this subsection.
The proposed NSGA-III procedure [12], applied to both DTLZ2 and DTLZ5
problems (population members and maximum generations for these problems
shown in Table 1). The variation for B-KKTPM values of both DTLZ2 and
DTLZ5 problems illustrated in Figs. 8 and 9, respectively. For DTLZ2 prob-
lem, at generation 1 itself, the first non-dominated point was found. After that,
25%, 50% and 75% of the non-dominated points took 8, 41 and 72 generations,
respectively, to arrive at the efficient front. For all 92 non-dominated points, 389
generations required to convergence all these points to the efficient front, while
only 226 generations required to reach all non-dominated points to the efficient
front with a minimal value of BKKTPM measure for DTLZ5 problem.
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Fig. 5. B-KKT proximity measures
versus generation numbers for non-
dominated points on ZDT4 problem.
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Fig. 6. B-KKT proximity measures
versus generation numbers for non-
dominated points on TNK problem.
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Fig. 7. B-KKT proximity measures
versus generation numbers for non-
dominated points on BNH problem.
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Fig. 8. B-KKT proximity measures
versus generation numbers for non-
dominated points on 3-objective
DTLZ2 problem.

4.3 Many-Objective Optimization Problems

For many objective optimization problems, EMO algorithms have difficulty in
solving them. Here, DTLZ1 and DTLZ2 introduced using five objectives. With
212 population members for both DTLZ1 and DTLZ2, NSGA-III run until 1,000
and 400 maximum generations, respectively. In 5-objective DTLZ1 problem, the
first strictly efficient solution is found at generations 84, while 298 generations
were enough for half of the non-dominated solutions to reach to the PO front
(see Fig. 10). At 1000-th generation, all population members used for this prob-
lem (see Table 1) could not reach to the efficient front. For 5-objective DTLZ2
problem, the convergence toward the Pareto-optimal front was faster than the
DTLZ1 problem (see Fig. 11) because this problem is relatively easier to solve to
Pareto-optimality. Since that all non-dominated points took only 215 generations
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Fig. 9. B-KKT proximity measures
versus generation numbers for non-
dominated points on 3-objective
DTLZ5 problem.
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Fig. 10. B-KKT proximity mea-
sures versus generation numbers for
non-dominated points on 5-objective
DTLZ1 problem.
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Fig. 11. B-KKT proximity mea-
sures versus generation numbers for
non-dominated points on 5-objective
DTLZ2 problem.
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Fig. 12. B-KKT proximity measures
versus generation numbers for non-
dominated points on car side impact
problem.

to arrive at the PO front. This figure indicated that the maximum of 215 gen-
erations was sufficient to all non-dominated points to reach close to the Pareto-
optimal front.

4.4 Engineering Design Problem

Finally, the variation for B-KKTPM values with generations illustrated in Fig. 12
for 3-objective car-side-impact (CAR) [12] problem. NSGA-III run until 1000
generations with the number of special population members (see Table 1) for this
problem. Although 75% of PO solutions are found fairly early (76 generation),
but all PO solutions took more than 995 to reach to the efficient front.



EMO Using B-KKT Proximity Measure 37

5 Conclusions

In this paper, a novel KKT proximity measure for multi and many objective opti-
mization problems is presented. A smooth decrease in the value of B-KKTPM
is observed as solutions get closer to the PO front. Based on our results, the
value of the new metric is consistently directly proportional to how far the solu-
tion is from being optimal. One essential and important result of this study is
that the proposed B-KKTPM metric can be used as a termination condition in
an optimization algorithm. At each point, the derivatives of both objective and
constraint functions are required and thereby make B-KKTPM procedure com-
putationally expensive and therefore time-consuming for some practical uses.
We are working on reducing the computational cost of the proposed metric.
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Abstract. Decomposition methods have been considered for dealing
with many-objective problems, since the Pareto-dominance selection was
found to become ineffective as the number of objectives grow beyond
four. As decomposition methods change the multiobjective problem into
a set of single-objective problems, the difficulties found by evolutionary
algorithms in many-objective optimization were expected to become alle-
viated. This paper studies the convergence properties of two decomposi-
tion schemes, respectively based on Euclidean norm and on Tchebyschev
norm, in many-objective optimization. Numerical experiments show that
the solution sequences obtained from Tchebyschev norm decomposi-
tion becomes stuck at a finite distance from the Pareto-set, while the
sequences obtained from Euclidean norm decomposition may be adjusted
such that an asymptotic convergence is achieved. Explanations for those
different convergence behaviors are obtained from recently developed
analytical tools.

Keywords: Many-objective problems · Decomposition methods ·
Tchebyschev decomposition

1 Introduction

The first mention to the difficulties that Evolutionary Multiobjective Optimiza-
tion (EMO) algorithms would find in problems with a number of objectives
higher than usual seems to appear in [1], in 1995. Some early experimental stud-
ies of convergence loss of EMO algorithms in those problems were published in
2001 [2,3]. In 2003, a study about the effect of increasing the number of objec-
tive functions on the performance of existing EMO algorithms was presented
in [4]. In that work, it was verified empirically that for a number of objectives
higher than three, the main EMO algorithms presented a significant degrada-
tion of performance. Those problems with four or more objectives were named
the many-objective problems. In 2007, a detailed experimental evaluation of that
phenomenon was presented in [6]. In the years that followed, the pursuit of the
reasons behind that performance degradation and the search for new approaches
that could alleviate this degradation have become a major theme of research [5].
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In 2018, an analytical description of the convergence loss of Pareto-dominance
based algorithms in many-objective problems was presented in [7].

Decomposition-based EMO algorithms rely on the idea of defining a num-
ber of single-objective optimization problems which are solved simultaneously
by the evolution of a single population. Even before the subject of many-
objective optimization received so much attention, there were attempts to use
decomposition methods which resulted in important evolutionary algorithms,
such as the MOEA/D [8]. The empirical observation of the difficulties in the
usage of dominance-based selection for many-objective problems motivated the
employment of decomposition-based algorithms, which were expected to keep
unaffected by the difficulties related to many-objective optimization. However,
different decomposition methods have demonstrated very different performances
in many-objective problems, and those differences are not well understood on
this moment.

This paper studies the aggregation of objectives performed by the minimiza-
tion of the distance to a reference point, with that distance defined by: (i) a
Tchebyschev norm; and (ii) an Euclidean norm. The algorithm behavior under
such decomposition schemes are examined here, considering the analytical tools
developed in [7]. The paper is organized as follows. The Sect. 2 presents some
numerical experiments that reveal some patterns of convergence loss in many-
objective optimization. Specifically, the sequences of solutions obtained from
Tchebyschev decomposition are found to become stuck at a finite distance from
the Pareto set. Section 3 briefly presents the analytical tools developed in [7] and
apply them to the analysis of the numerical results that were obtained in the
former section. Section 4 presents some conclusions.

2 Numerical Experiments

In a finite-dimensional continuous-variable multi-criteria decision problem, a
decision variable x should be chosen from a set Ω ⊆ R

n, according to m criteria
functions fi : Ω �→ R. Let x1 ∈ Ω and x2 ∈ Ω. It is assumed, by convention,
that x1 is better than x2 in criterion fi if fi(x1) < fi(x2). As the problem deals
with m different criteria, the following relational operators are defined, in order
to compare vectors. Let u,v ∈ R

n, then:

u � v ⇔ ui ≤ vi, i = 1, . . . , m
u 	= v ⇔ ∃i ∈ {1, . . . , m} : ui 	= vi
u ≺ v ⇔ u � v and u 	= v

Considering two candidate points x1,x2 ∈ Ω, if f(x1) ≺ f(x2) then x1 dominates
x2. The solutions x ∈ Ω which are not dominated by any other solution in Ω
are the minimal solutions in Ω, considering the strict partial order ≺. A multi-
objective optimization problem is defined as the problem of finding such minimal
solutions:

min f(x) = (f1(x), f2(x), · · · , fm(x))
subject to: x ∈ Ω

(1)
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Formally, the solution set of this problem, denoted by P, is defined by:

P = {x ∈ Ω | 	 ∃ x̄ ∈ Ω such that f(x̄) ≺ f(x)} (2)

The set P is called the Pareto-set or the non-dominated solution set of the
problem. The image of P in the space of objectives is called the Pareto front of
the problem.

The problem of minimization of the following set of functions is considered
here:

fi(x) = ‖x − ei‖22 , i = 1, . . . ,m (3)

where x ∈ R
n, ei ∈ R

n, i = 1, · · · ,m is the i-th canonical basis vector (the vector
with all coordinates equal to zero except the i-th one, which is equal to 1), and
‖ · ‖2 stands for the Euclidean norm of the argument vector. The Pareto-set of
this problem is the (m−1)-dimensional simplex with vertices in {e1, e2, . . . , em}.

The analysis of the behavior of decomposition-based searches on this simple
problem has the purpose of allowing the identification of the structural difficulties
related only to the high number of objectives, removing other possibly interfering
factors such as multi-modality, ill-conditioning, deceptive behavior, and so forth.

In the study conducted here, an initial point x0 is considered, and a sequence
[x]k is built in order to reach the reference point xref = ( 1

n , 1
n , . . . , 1

n ), which is
situated exactly on the center of the Pareto front. This sequence is generated
according to:

1. The Euclidean distance d from the current point to the reference point is
calculated:

d ← ‖xk − xref‖2
2. A tentative step is generated from a Gaussian distribution, with standard

deviation given by γd:
ζ ← N (0, γd)

with γ = 0.02.
3. The tentative new point is given by:

xa = xk + ζ

4. If
‖xa − xref‖(·) < ‖xk − xref‖(·)

then
xk+1 ← xa

else keep trying with

ζ ← ζ/αj for α = 1.2 and j = 1, 2, . . . , 25

If the acceptance condition is not reached, make xk+1 ← xk.
5. Make k ← k + 1 and go to step 1.
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The sequences generated by those steps are studied here for the cases of
acceptance criterion (step 4) defined by the Euclidean norm, indicated by ‖ · ‖2,
and by the Tchebyschev norm, indicated by ‖ · ‖∞. Some experiments were
performed with n = 10 and m = 6, and a random initial point defined by:

x0 = 2xref + 0.1ε

with ε ← N (1, 0). The results are presented in Fig. 1.
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Fig. 1. (a) Evolution of f(xk) vector, for Euclidean norm decomposition. (b) Evolu-
tion of f(xk) vector, for Tchebyschev norm decomposition. In all cases, the reference
values to be reached are represented by horizontal lines, and the abscissas represent
the sequence index k.

Figure 1(a) shows that the sequence produced by the acceptance rule based
on the Euclidean norm seems to converge to the reference point. On the other
hand, Fig. 1(b) shows that the sequence produced by the acceptance rule based
on the Tchebyschev norm becomes stuck at a distance from the reference.

Another run was performed for an initial point given by:

x0 = 1.1xref + 0.1ε

with all other simulation parameters kept constant. Figure 2(b) now shows a
similar behavior for the sequence produced by the acceptance rule based on the
Tchebyschev norm, which still becomes stuck at a distace from the reference.
Figure 2(a) indicates that the sequence produced by the acceptance rule based
on the Euclidean norm also becomes stuck now, although much nearer to the
reference than the other sequence.

A new simulation is performed, on this time considering a reference point
xref = 0.9( 1

n , 1
n , . . . , 1

n ), which is situated behind the Pareto-front, still consid-
ering the same initial condition from Fig. 2. The results are presented in Fig. 3.
Now, the sequence produced by the acceptance rule based on the Euclidean norm
converges to the Pareto set, while the sequence produced by the Tchebyschev
norm rule still becomes stuck without converging.
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Fig. 2. Initial point close to the Pareto-set. (a) Evolution of f(xk) vector, for Euclidean
norm decomposition. (b) Evolution of f(xk) vector, for the Tchebyschev norm decom-
position. The reference values to be reached are represented by horizontal lines, and
the abscissas represent the sequence index k.

0 500 1000 1500 2000 2500 3000
0.825

0.83

0.835

0.84

0.845

0.85

f(
x
)

0 500 1000 1500 2000 2500 3000
0.832

0.833

0.834

0.835

0.836

0.837

0.838

0.839

f(
x
)

(a) (b)

Fig. 3. Initial point close to the Pareto-set, reference point behind the Pareto front. (a)
Evolution of f(xk) vector, for Euclidean norm decomposition. (b) Evolution of f(xk)
vector, for the Tchebyschev norm decomposition. The reference values to be reached
are represented by horizontal lines, and the abscissas represent the sequence index k.

The interpretation of those results is presented in the next section. Before
continuing, it should be mentioned that, although more exhaustive simulations
are not presented here, due to space limits, a much larger set of experiments was
performed. In all cases of m ≥ 6, results similar to the ones presented here were
obtained. There was not, also, any significant difference for different distributions
of the initial point. The only noticeable difference to the results presented here
occurs for m ≤ 4, when the final distance from the Tchebyschev sequence to the
reference point becomes much smaller.
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3 Interpretation of Results

Reference [7] developed some analytical tools for the phenomenon of loss of
convergence of Pareto-dominance evolutionary algorithms in the case of many-
objective problems. An asymptotic expression for the probability pm(λ) of a
Gaussian mutation producing a direction in which there exists a point that domi-
nates the current one was determined, as a function of the number of objectives,
m, and of the distance λ from the current point to the Pareto-set. Such an
expression leads to a power law which holds nearby the Pareto-set:

pm(λ) = cm λm−1 (4)

In this way, the cause of loss of convergence associated to Pareto-dominance
selection was described as the fast decrease of the relative size of the space
region which contains points that dominate current solutions. The probability
of generation of any dominating point rapidly approaches zero, leading those
algorithms to stagnate when the regions of acceptable points become of nearly
zero measure, although keeping a non-zero length.

(a) (b)

Fig. 4. Bi-objective problem with individual minima located in q1 and q2 and current
point xk. (a) Decision variable space: points in Ax dominate xk, points in Bx are
dominated by xk and points in Cx neither dominate nor are dominated by xk. (b)
Space of objectives: the images of the same entities in the decision variable space, now
including also the Pareto front (the curve from f(q1) to f(q2)).

A pictorial explanation of the phenomenon which results in the collapse of
the probability of enhancement of a current point xk into a new point xk+1

which dominates the current one quite before reaching the Pareto-set is pro-
vided in Figs. 4, 5 and 6. Figure 4 shows the following regions: Ax (points which
dominate xk), Bx (points which are dominated by xk), and Cx (points which
neither are dominated by xk nor dominate it). In the space of objectives, those
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Fig. 5. Bi-objective problem with individual minima located in q1 and q2. As xk

approaches the Pareto-set, the relative size of Ax decreases, while the relative size of
Cx increases.

regions correspond to quadrants symmetrically disposed around f(xk), respec-
tively indicated by A, B and C.

The Fig. 5 shows what happens to the relative sizes of Ax, Bx and Cx as
xk approaches the Pareto-set: for a farther xk, the largest region is Bx and the
smallest one is Cx. For a nearer xk, Cx becomes the largest region, while Ax

becomes the smallest one.
The key illustration that explains why the search for new solutions that

dominate the current solution eventually becomes stuck at a non-zero distance
from the Pareto-set is provided in Fig. 6. This figure shows a sequence of contour
curves that represent the boundary of set Ax (points which dominate xk) for
different distances from xk to the Pareto-set. It can be seen that, instead of
being similar to the outer contours, the inner contours become more elongated,
eventually collapsing into a line segment before reaching the ultimate Pareto-set
point xref to which the convergence was expected. Once xk reaches that line
segment, the probability of further finding a xk+1 inside the same line segment
which is nearer to xref becomes virtually null.

It should be noticed that the phenomenon of convergence loss would occur
for any number of objectives. In fact, from the Eq. (4) it can be inferred that for
m = 3 or greater, the probability of solution enhancement would decay faster (by
orders of magnitude) than the distance to the desired solution. This phenomenon
has not been reported for m = 3 because it appears only at a very small distance
to the solution set, which renders it irrelevant in that case. For larger numbers
of objectives, this is the fundamental cause of the convergence difficulties that
have been reported for “many-objective” problems.

The Tchebyschev decomposition has a geometry which is similar to the
geometry of Pareto-dominance, with an important difference: In the case of
an acceptance rule based on Pareto-dominance, the next point to be gener-
ated is constrained to dominate the current one. This leads to Eq. (4), with all
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Fig. 6. Sequence of contour curves that represent the boundary of set Ax (the points
which dominate xk). This sequence converges first to a line segment which contains
the Pareto-optimal point xref , before converging to xref .

its consequences, as discussed above. In the case of an acceptance rule based
on Tchebyschev decomposition, on the other hand, the constraint that the new
point should have Tchebyschev norm smaller than the Tchebyschev norm of
the current point means that, in addition to the points that dominate the cur-
rent one, also some of the points which neither dominate nor are dominated by
the current one are acceptable. This means that the convergence properties of
sequences generated by Tchebyschev decomposition are expected to be better
than in the case of Pareto-dominance acceptance rule.

However, the analysis to be presented next shows that the Tchebyschev
acceptance rule eventually becomes equivalent to a Pareto-dominance accep-
tance rule, therefore leading to a similar loss of convergence. The explanation
for this phenomenon is provided with the help of Fig. 7.

Figure 7 shows a representation, in the space of objectives, of the regions
around a current point f(xk) = (p, q). The reference point is assumed to be
on the origin. As p > q, the Tchebyschev norm of f(xk) is equal to p. Region
A represents the points which dominate f(xk). Region C1 represents the points
which neither dominate nor are dominated by f(xk) and which have Tchebyschev
norm smaller than p. Region C2 contains the points which neither dominate
nor are dominated by f(xk) and which have Tchebyschev norm greater than
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A
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Fig. 7. Configuration of the regions of the space of objectives around a current point
f(xk) = (p, q). The Tchebyschev norm of f(xk), considering the reference point on the
origin, is equal to p. Region A represents the points which dominate f(xk). Region C1

represents the points which neither dominate nor are dominated by f(xk) and which
have Tchebyschev norm smaller than p. Region C2 contain the points which neither
dominate nor are dominated by f(xk) and which have Tchebyschev norm greater than
p. Region B represents the points which are dominated by f(xk).

p. Region B represents the points which are dominated by f(xk). From this
configuration, a next point f(xk+1) is to be generated.

The relevant analysis of a situation like this will occur when the number of
objectives grows. Although the figure becomes more complex, the five regions
A, B, C1 and C2 will still appear, with the same definition above, for problem
instances with any number of objectives, provided that there is one component
of f(xk) which is equal to p and is greater than the other components. In such a
case, the analysis tools provided earlier in this section will lead to the following
consequences for a current point xk sufficiently close to the Pareto-set:

1. The size of the preimage of set A (the set Ax) becomes smaller as xk

approaches the Pareto-set. For a large number of objectives, when xk is near
the Pareto-set, the probability of xk+1 to fall on Ax approaches zero.

2. Considering the Tchebyschev acceptance rule, that disregards any xk+1 whose
image f(xk+1) falls on the sets B or C2, and also the consequence 1 above,
the new point xk+1 will have its image f(xk+1) in the set C1. This means
that the new f(xk+1) will have its greatest component smaller than p, while
the other components, which were smaller than p, are likely to grow, being
however bounded by p.

3. The successive application of such steps will lead the smaller components
of f(xk+j) to approach the maximum component. One component after the
other will become approximately equal to the maximum component.
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4. After all components becoming equal to the maximum, the region C1 vanishes,
and the algorithm ceases to converge, becoming trapped on the last point
that was reached, now presenting exactly the behavior that is predicted for a
Pareto-dominance acceptance rule.

The process described by those steps is illustrated in Fig. 8. This figure shows
a sequence of successive points f(x1), f(x2), f(x3), f(x4), is such that each
new point has Tchebyschev norm smaller than the former one, and no point
dominates the other ones. The sequence converges to a situation in which all
components of f(x) become equal, and no further convergence will occur.

f(x1)

f(x2)

f(x3)

f(x4)

Fig. 8. A sequence of successive points f(x1), f(x2), f(x3), f(x4), is such that each new
point has Tchebyschev norm smaller than the former one, and no point dominates the
other ones.

In this way, it is expected that the minimization of a Tchebyschev norm goes
farther than a pure Pareto-dominance search, because the algorithm presents
some progress towards the Pareto-set while the sequence f(xk) approaches the
situation in which all its components become equal. However, the search sequence
eventually converges to the curve defined by {f1(x) = f2(x) = . . . = fm(x)}
before reaching the Pareto-set, becoming trapped on that curve.

The analysis presented in this section provides a full explanation for the
behavior of the sequences produced by Tchebyschev-norm acceptance rule, as
presented in Sect. 2. In this way: (i) the sequences cease to converge at a finite
distance to the Pareto-set; (ii) this distance is about one order of magnitude
smaller than the size of the Pareto-set (as predicted in [7]); (iii) the solution
point in the space of objectives (f(x)) has all its components on the same value
when the convergence ceases; and (iv) this issue appears with a smaller intensity
in Tchebyschev decomposition schemes than in Pareto-dominance algorithms,
which is confirmed by the observation that a number of objectives m = 4 was
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enough for the full manifestation of the convergence loss in the Pareto-dominance
case, while in the case of Tchebyschev decomposition the phenomenon appears
clearly only for m = 6 or above.

The only remaining issue is concerned with the behavior of the sequences gen-
erated by Euclidean norm acceptance rule. The discussion about their behavior
may be performed on the basis of Fig. 9.

(a) (b)

Fig. 9. Sequences of contour curves that represent the set of points which have
Euclidean distance from xref smaller than xk, for the cases: (a) the reference point
xref is on the Pareto-set; and (b) the reference point xref is behind the Pareto-set.

Figure 9(a) shows that, in the case of the reference point xref on the Pareto-
set, the contour curves that enclose the acceptable points (the points which
enhance the current Euclidean norm) are such that the inner curves become
increasingly more elongated. The sequence of such curves collapse into a line
segment that contains xref , before converging to that point. Similarly to the
analysis which was performed for the case of the Pareto-dominance contour
curves, this geometric configuration causes the sequence [x]k to converge to that
line segment, becoming stuck on the point to which the convergence occurred,
without further convergence to xref . However, in the case of the reference point
yref being placed behind the Pareto front, the contour curves that enclose the
acceptable points become regularized, as shown in Fig. 9(b). In this case, the only
accumulation point of the sequence [x]k becomes the point x∗, which corresponds
to the point whose image f(x∗) is the nearest point, in the space of objectives,
to the reference point yref (which, of course does not have a pre-image in the
space of decision variables). This fully explains the behavior of the sequences
generated by the Euclidean norm acceptance rule, as presented in Sect. 2. In
short: (i) when the reference point is defined on the Pareto front, the sequence
becomes stuck at a finite distance to the Pareto-set (although at a distance which



50 R. H. C. Takahashi

is smaller than in the case of Tchebyschev norm acceptance rule); (ii) when the
reference point is established behind the Pareto front, the sequence seems to
converge asymptotically to the Pareto-optimal point x∗.

4 Conclusion

The convergence properties of sequences generated by Tchebyschev norm accep-
tance rule and Euclidean norm acceptance rule were studied for special cases of
many-objective problems. The Tchebyschev acceptance rule was found to cause a
convergence loss, with the sequence stuck at a finite distance from the Pareto-set,
while the Euclidean rule could be regularized, reaching asymptotic convergence.
Although the present study was conducted over specially built functions which
facilitated the analysis, in more general situations the same phenomena will also
occur. An important observation is: the deep cause of the observed losses of con-
vergence lies in the collapse of the size of the region that contains the solutions
which may be accepted.
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1 Introduction

In many different applications, the problem arises that several conflicting objec-
tives have to be optimized concurrently [6,19]. Such problems are termed as
multi-objective optimization problems (MOPs) in literature. One important
characteristic of a MOP is that its solution set, the Pareto set, and its image,
the Pareto front, typically form locally (k − 1)-dimensional manifolds, where k
is the number of objectives of the MOP. Since these sets can not be computed
analytically—apart from simple academic problems—the question arises how to
compute suitable finite size approximations of them.

So far, many numerical methods for the treatment of a given MOP have been
proposed. There exist, for instance, specialized evolutionary algorithms (EAs),
called multi-objective evolutionary algorithms (MOEAs), that have caught the
interest of many researchers in the recent past (e.g, [1,4,7,10,11,26]). Reasons
for this include the global approach of these population-based methods, their
relatively low assumptions on the model, their high robustness, and that they
are capable of delivering a finite size approximation of the entire set of interest
in one single run of the algorithm. The latter is because the whole population
will evolve. These significant advantages, however, come at a certain price. It
is widely accepted that MOEAs are very good in detecting promising regions
and are highly efficient in computing rough approximations of the solution sets.
However, they typically need quite a few function evaluations to obtain reason-
able estimates of the Pareto set/front. This drawback gets even more significant
in case the model contains complex constraints and/or the decision variable
space is high-dimensional. As a possible remedy, researchers have hybridized
evolutionary strategies with local search techniques mainly coming from math-
ematical programming leading to so-called memetic strategies. As local search
engines, however, mainly only scalarization methods have been utilized (e.g.,
[2,3,12–14,18]). After a certain euphoria for such methods, this has led to many
frustrations as the cost for the resulting hybrid is very high in many cases. The
reason for this is the above mentioned missing possibility to fine tune the scalar-
ization methods to obtain a suitable distribution along the solution sets. As a
result, scalarization based memetic algorithms are highly competitive in case the
given MOP is relatively easy, but this advantage vanishes with increasing com-
plexity of the problem. For complex problems, scalarization based hybrids even
perform worse than their base MOEAs due to the relative high cost induced by
the local search.

The content of this study is the hybridization of a recently proposed multi-
objective continuation method with MOEAs to obtain fast and reliable solvers for
continuous MOPs. The Pareto Tracer (PT, [17]) is currently probably the more
affordable algorithm (measured regarding the function calls needed to detect the
next solution from a given starting point) that allows to perform a solution move-
ment along the Pareto set/front; it is applicable to higher dimensions, and can
handle box and equality constraints. In this initial study, we will make the first
effort for such hybridization and will restrict ourselves to bi-objective equality
constrained problems. We stress, however, that the chosen approach is in gen-
eral not limited to bi-objective problems. As problems with a more significant
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number of objectives, however, will need a separate consideration and adapta-
tions of the algorithm, we will leave this for future work. The results we present
in this work already show the vast potential of the chosen hybrid and indicate
the possibilities for deeper research in this direction. The first hybridization of
a MOEA with a continuation method has been proposed in [21]. In this study,
however, only unconstrained MOPs have been considered, and no extensions to
constrained problems are discussed.

The remainder of this paper is organized as follows: in Sect. 2, we briefly
state the required background for the understanding of this work. In Sect. 3,
we describe the proposed algorithm that aims for the fast and reliable numerical
treatment of continuous bi-objective optimization problems that contain equality
constraints. In Sect. 4, we present some numerical results on selected academic
benchmark problems including comparisons to the state-of-the-art. Finally, we
draw our conclusions in Sect. 5 and state some possible paths for future research
in this promising direction.

2 Background

In this paper we focus on continuously differentiable bi-objective optimization
problems (BOPs) that contain equality constraints:

min
x∈Rn

F (x)

s.t. hi(x) = 0, i = 1, . . . , p,
(1)

where F (x) = (f1(x), f2(x))T is defined as the vector of the objective functions.
Denote by Q the domain of (1), i.e., Q := {x ∈ R

n : hi(x) = 0, j = i, . . . , p}.

Definition 1.

(a) Let v, w ∈ R
k. Then the vector v is less than w (v <p w), if vi < wi for all

i ∈ {1, . . . , k}. The relation ≤p is defined analogously.
(b) A vector y ∈ Q is dominated by a vector x ∈ Q (x ≺ y) with respect to (1)

if F (x) ≤p F (y) and F (x) �= F (y), else y is called non-dominated by x.
(c) x ∈ Q is called (Pareto) optimal if there is no y ∈ Q which dominates x.
(d) The set PQ of all Pareto optimal solutions is called the Pareto set and its

image F (PQ) the Pareto front.

In the literature, some MOEAs can be found that have been designed to
tackle such problems including NSGA-II [5], NSGA-IIMPP [20], GDE3 [15] and
MOEA/D/D [16]. NSGA-II uses feasibility rules in the selection process. In
case the selection process considers two infeasible individuals, a penalization
function is used to determine which individual violates more the constraints.
NSGA-IIMPP is a modification of the NSGA-II, which repairs a percent of the
infeasible solutions via a sub-problem using Sequential Quadratic Programming.
GDE3 is an extension of differential evolution for global multi-objective opti-
mization. This method handles constraints using the same principles as NSGA-II.
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Finally, MOEA/D/D combines dominance and decomposition-based approaches
for solving many-objective optimization problems. MOEA/D/D also uses fea-
sibility rules and the penalization function proposed in NSGA-II, but it is not
only used in the selection process. It is present also in the update procedure of
the algorithm, and this consideration helps with the preservation of diversity of
the population.

PT is a predictor-corrector method that allows performing a movement along
the set of KKT points of a given MOP. In the following we briefly recall the main
steps for equality constrained BOPs, for more information and the general case
the reader is referred to [17].

Given an initial solution xi, a subsequent solution xi+1 is computed in two
steps as follows: first, a tangent vector νμ of the set of KKT points at xi is
computed via solving

(
Wα HT

H 0

)(
νμ

ξ

)
=

(−JT μ
0

)
, (2)

where α ∈ R
k its associated Lagrange multiplier, J is the Jacobian of F at x,

μ ∈ R
k, ξ ∈ R

p and

Wα :=
k∑

i=1

αi∇2fi(x) ∈ R
n×n (3)

and

H :=

⎛
⎜⎝

∇h1(x)T

...
∇hp(x)T

⎞
⎟⎠ ∈ R

p×n. (4)

If the rank of Wα is n and the rank of H is p, then the matrix on the right hand
side of (2) is regular and hence νμ is determined uniquely. For μ ∈ R

2 there are
two choices for the bi-objective case:

μ(1) = (−1, 1)T and μ(2) = (1,−1)T . (5)

For μ(1), a right-down movement along the Pareto front is performed, while
the movement is left-up for μ(2). Using the tangent vector νμ, the predictor pi is
computed as

pi := xi + tiνμ, (6)

where the step size ti is chosen as

ti :=
τ

‖Jνμ‖ (7)

to obtain ‖F (pi) − F (xi)‖ ≈ τ , where τ > 0 is user specified value. By doing so,
a uniform spread along the Pareto front can be obtained.

In the second step, the predicted point pi is projected back to the set of
KKT points via a multi-objective Newton method starting with pi. Hereby, the
Newton direction is chosen via solving
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min
(ν,δ)∈Rn×R

δ

s.t. ∇fi(x)T ν + 1
2νT ∇2fi(x)ν ≤ δ, i = 1, . . . , k,

hi(x) + ∇hi(x)T ν = 0, i = 1, . . . , p.

(8)

which is a modification of the Newton method from [9] adapted to the equality
constrained case.

3 Proposed Algorithm (M-NSGA-II/PT)

In this section, we present a hybrid of a MOEA with the PT. As PT is very
efficient in making a move along the Pareto set/front of a given problem, but
is in turn of local nature, the task of the global counterpart is to feed PT with
promising solutions that are well-spread along the set of interest. For this, we
have decided to use a micro-GA that is based on NGSA-II in the first phase
of the algorithm. In a second and last phase, PT takes over and refines the
obtained solutions. In the following, we describe the two stages of the resulting
hybrid (M-NSGA-II/PT) in detail.

3.1 First Stage: Rough Approximation via Micro-NSGA-II

The aim of the Multi-Objective Evolutionary Algorithm (MOEA) to be imple-
mented is to generate an approximated Pareto set that contains only a few
solutions since the construction of the real front will be subsequently performed
by the PT. However, these solutions should be diverse enough to identify all the
components of a possibly disconnected front. Finally, the MOEA should be able
to handle equality constraints efficiently. Decomposition-based algorithm con-
stitutes a viable option, actually, some preliminary experiments were performed
with MOEA/D, but the use of small populations drastically increases the veloc-
ity of information transfer within the population. As a consequence, using too
many neighbors (3 or more) led to very few different solutions in the final pop-
ulation. On the other hand, with too few neighbors, the algorithm is not able
to converge to the real front. Finally, those convergence troubles encouraged for
the use of a dominance-based algorithm, NSGA-II, which can efficiently handle
a two-objective problem and allows the easy integration of constraint handling
mechanism.

In order to balance the cost of the two stages, the algorithm handles a small
population (preliminary tests showed that 20 individuals allow a sufficiently good
convergence) and the crowding distance operator is used to maintain diversity.
Regarding constraint handling, the Constraint Dominance Principle (CDP) is
combined with ε-constraint [25], to avoid the risk of premature convergence
towards the first feasible solutions found by the algorithm. CDP implements
the standard feasibility rules: if two solutions are infeasible, that with the lower
constraint violation is selected; if one solution is feasible and the other one is
infeasible, the feasible wins; finally, in case that both solutions are feasible, the
decision is taken according to the dominance criterion.



58 O. Cuate et al.

In addition, according to the ε-constraint strategy, constraints are first
relaxed at the beginning of the run, so that a solution x such that Φ(x) ≤ ε
is considered as feasible (where Φ(x) represents the total amount of constraint
violation of x). Then, ε is gradually reduced, having slightly infeasible solutions
competing with feasible ones and allowing diversity preservation during the run.
A decreasing schedule of ε was proposed in the framework of single-objective
optimization in [24], where ε decreases according to a polynomial function until
a critical generation Tc is reached. Then, ε is set to 0 and the constraint handling
technique reduces to the above-mentioned CDP:

ε =

{
ε(0) (1 − t/Tc)

cp if 0 < t < Tc

0 if t ≥ Tc,
(9)

where t is the generation number, cp is a parameter controlling the speed of
the decrease and ε(0) is the constraint relaxation level at the first generation.
This parameter is computed as the total constraint violation of xθ, which is
the θ-th solution in the first population, sorted in decreasing order of the total
constraint violation Φ: ε(0) = Φ(xθ). Notice that this technique was embedded
in MOEA/D in [8]. Finally, an additional parameter was introduced in order to
improve diversity: parent selection is performed with tournaments implement-
ing the CDP extended with ε-constraint. However, the resulting winner of the
tournament is considered only with probability pf : in other cases (i.e., with prob-
ability 1 − pf ), the winner individual is randomly chosen. The entire process is
shortly described, for the reader convenience, in Algorithm1.

Algorithm 1. Micro-NGSA-II
P ← pop init()

Evaluate each individual xi ∈ P to obtain F (xi)

Compute ε(0)

for t ← 1 to MaxGen do

P ′ ← crossover(P ) � Parent selection through tournament, CDP and ε-constraint

P ′′ ← mutation(P ′)
Q ← P ∪ P ′′

Q′ ← Feasible(Q, ε), Q′′ = Infeasible(Q, ε)

Q′ ← FastNonDominatedSorting(Q′), Q′′ = SortConstraintV iolation(Q′′)
Fill P with Q′, using crowding distance if necessary

if |Q′| < PopSize then

Complete P with Q′′

end if

Update ε through equation 9

end forreturn P and F (P )

3.2 Second Stage: Refinement via PT

The main task on this stage is to process the resulting archive P , which is
provided by the Micro-NSGA-II, appropriately. For instance, PT could spend a
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lot of additional function evaluations computing non-optimal KKT points. We
can solve this and other issues for bi-objective problems as described below.
After the first stage, and before using PT, we need a post-processing procedure
for archive P as in the following steps:

1. Improve every point in P by the modification of the Newton method (8).
2. Remove all dominated points in the new archive (possible local fronts).
3. Sort the final archive P , according to f1, in the way that f1(p(1)) < . . . <

f1(p(m)), where p(i) ∈ P, i = 1, . . . ,m.

Now, we can use PT as follows: we take the first element p(1) ∈ P as starting
point for PT with a left-up movement (μ(2)), we compute as many solutions as
possible (until here there is no conflict with the other points of P ). Then, we
perform the right-down movement (μ(1)) starting at p(1), but from this case,
we have to consider the value of the next element in P (and also the previous
one in case we have) in order to avoid extra function evaluations.

In general, let xd be the current solution for the right-down movement of
PT starting from p(i), i = 1, . . . ,m − 1, τ as in Eq. (7), and θ ∈ (0, τ); then we
have the following stopping criteria:

– ‖F (xd) − F (p(i+1))‖2 < θ. That is, we reach the next point in P . In case
xd ≺ p(i+1), we delete p(i+1) from P and we continue with the right-down
movement (compute a new xd). Otherwise, we stop and select p(i+1) as a new
starting point.

– f2(xd) < f2(p(i+1)). When first condition is not satisfied, this condition means
that xd ≺ p(i+1). If that is the case, we delete p(i+1) from P and continue
with the right-down movement (compute a new xd).

– No improvements in f2 direction could be achieved (PT stopping condition).
If the PT stops, then we select p(i+1) as a new starting point (we move to a
different connected component of the Pareto front).

Additionally, for p(i), i = 2, . . . ,m, we have also to perform and verify the
left-up movement. Here, we assume that a previous right-down movement was
made. Let xu be the current solution for the left-up movement of PT start-
ing from p(i), i = 2, . . . , m, xd the last solution obtained by the right-down
movement starting from p(i−1), τ as in Eq. (7), and θ ∈ (0, τ); then we have the
following stopping criteria:

– ‖F (xu) − F (xd)‖2 < θ. This condition prevents the computation of extra
solutions in previously considered regions of the Pareto front.

– f2(xu) > f2(xd). When first condition is not satisfied, this condition means
that xd ≺ xu. If that is the case, then we stop and we continue with the
right-down movement for p(i+1).

– No improvements in f1 direction could be achieved (PT stop condition). If
the PT stops, then we continue with the right-down movement for next point
p(i+1).
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4 Numerical Results

In this section, we present some numerical examples that compare the behavior
of state-of-the-art MOEAs against the proposed M-NSGA-II/PT when applied
to the CZDT test suite proposed in [20] and the modification of the Das and

Table 1. Parameters of the MOEAs.

MOEA Parameter Value

NSGA-II Population size 100

Crossover probability 0.8

Mutation probability 1
n

Distribution index for crossover 20

Distribution index for mutation 20

NSGA-II/PT Initial Population size 20

Crossover probability 1.0

Mutation probability 1
n

Distribution index for crossover 20

Distribution index for mutation 20

τ for CZDT(1, 2, 4) 0.015

τ for CZDT3 0.004

τ for CZDT6 0.0005

NSGA − IIMPP Population size 40

Crossover probability 0.9

Mutation probability 0.1

Distribution index for crossover 15

Distribution index for mutation 20

fmincon tol 1e−10

MOEA/D/D Population size 100

# weight vectors 100

Crossover probability 1

Mutation probability 1/n

Distribution index for crossover 30

Distribution index for mutation 20

Penalty parameter of PBI 5

Neighborhood size 20

Probability used to select in the neighborhood 0.9

GDE3 Population size 100

CR 0.2

F 0.2

Distribution index for mutation 20
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Dennis problem (D&D) stated in [17]. We consider a solution x as feasible,
i.e. h(x) = 0, when ‖h(x)‖ < ε. Here we consider ε = 1e − 04, which is a
value regularly reported in the specialized literature. The selected MOEAs for
comparison against are GDE3, MOEA/D/D, NSGA-II, and NSGA-IIMPP . We
do not compare against classical Mathematical Programming (MP) methods
because of the nature of the selected test suite, that is CZDT is multi-modal
and the performance of MP techniques depends on the given initial solution.

For every experiment, we have performed 20 independent runs. From the
experimental analysis, we observed that M-NSGA-II/PT needs between 15, 000
and 17, 000 function evaluations to obtain good results. Then to have a fair
comparison, we established a final budget of 20, 000 function calls for all the
selected MOEAs. Finally, we split the budget for both stages of M-NSGA-II/PT
as follows: 15, 000 and 5, 000. Table 1 contains the algorithm parameter values
used for the experiment. The performance indicator Δ2 (see [22]) is used to
measure the algorithm effectiveness in this proposed benchmark. We apply the
Wilcoxon test to validate the results; we consider α = 0.05. Table 2 and Figs. 1,
2, 3 and 4 show the results for CZDT and D&D functions. The theoretical PF
is marked with . while the MOEA approximation is marked with 
. For this
table, Column # sol shows the average number of feasible solutions at the end of
each run. An arrow up means the result is statistically reliable. Observe that the
proposed hybrid algorithm wins significantly in five of six test functions. Finally,
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Fig. 1. Pareto front approximation for the C-ZDT1 problem for the selected MOEAs
with 20, 000 function evaluations.
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Fig. 2. Pareto front approximation for the C-ZDT2 problem for the selected MOEAs
with 20, 000 function evaluations.
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0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f1

f 2

(d) MOEA/D/D

Fig. 3. Pareto front approximation for the C-ZDT3 problem for the selected MOEAs
with 20, 000 function evaluations.
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Fig. 4. Pareto front approximation for the D&D problem for the selected MOEAs with
20, 000 function evaluations.

Table 2. Computational effort for M-NSGA-II/PT.

CZDT1 CZDT2 CZDT3 CZDT4 CZDT6 D&D

τ 0.015 0.015 0.004 0.015 0.0005 0.20

Function evaluations 196.2 150 280.3 367.4 147.9 511.9

Jacobian evaluations 784.8 600 954.8 954.8 591.6 1663.6

Total function evs PT 981 700 1235.1 1265.4 739.5 2175.5

Total function evs M-NSGA-II 15000 15000 15000 15000 15000 15000

Final function evs 15981 15700 16235.1 16265.4 15739.5 17175.5

Table 2 shows the computational efforts of the proposed algorithm (we considered
automatic differentiation to approximate the required Jacobians) (Table 3).
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Table 3. Results for CZDT and D&D functions with k = 2 for some MOEAs. (# is
average of the number of feasible solutions at the end of each run).

5 Conclusions and Future Work

In this paper, we have proposed M-NSGA-II/PT which is a two-phase hybrid
algorithm combining the Micro-NSGA-II and the multi-objective continuation
method named as Pareto Tracer. The task of Micro-NSGA-II is to primarily
compute a rough, small sized but well-spread solution approximation of the
given MOP. In a second stage, PT is used to refine this approximation by
numerical continuation based on specific candidate solutions. In this study, we
have focussed on bi-objective equality constrained problems. Numerical results
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and comparisons against four state-of-the-art MOEAs have shown that this new
strategy is highly competitive and can lead to satisfying results with a moderate
budget of function evaluations.

Though these results are strongly promising, more research has to be per-
formed in this direction to obtain a new class of hybrid evolutionary algorithms
for the fast and reliable numerical treatment of general MOPs. For this, it is
mandatory to thoroughly discuss the cases of a general number of objectives
and general constraints. Further, more comparisons have to be performed to
demonstrate the benefit of the novel hybrid. Finally, it is intended to apply M-
NSGA-II/PT to problems arising in real-world applications. For this task, it will
likely be necessary to reduce the required derivative information, e.g. by utilizing
approximation strategies like the one proposed in [23].
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Abstract. We improve the worst-case time complexity of non-
dominated sorting, an operation frequently used in evolutionary multiob-
jective algorithms, to O(n ·(log n)k−2 log log n), where n is the number of
solutions, k is the number of objectives, and the random-access memory
computation model is assumed. This improvement was possible thanks
to the van Emde Boas tree, an “advanced” data structure which stores
a set of non-negative integers less than n and supports many queries
in O(log logn). This is not only a theoretical improvement, as we also
provide an efficient implementation of the van Emde Boas tree, which
resulted in a competitive algorithm that scales better than other algo-
rithms when n grows, at least for small numbers of objectives greater
than two.

Keywords: Non-dominated sorting · Large-scale optimization ·
vEB tree

1 Introduction

The world is making its first steps through the era of Big Data. As the amount
of data grows faster than the available computing power, researchers need algo-
rithms that scale better than ever. The scalability can be improved in various
directions, including scalability with the number of cores, scalability with the
problem size, as well as scalability with the complexity of the problem, which
makes sense for problem-agnostic solvers such as evolutionary algorithms.

There is an increasing trend among researchers in evolutionary computation
to tackle problems with millions of decision variables, continuous [1] and dis-
crete [6], or even with billions of variables [9]. All mentioned papers have been
nominated for best paper awards at the corresponding conferences, and some
have won, which signifies the interest of the community to such approaches.

The number of decision variables is only one of the critical measures for how
difficult it is to solve the problem. The problem’s complexity may influence the
choices of parameters for evolutionary algorithms, which, in turn, can influence
c© Springer Nature Switzerland AG 2019
K. Deb et al. (Eds.): EMO 2019, LNCS 11411, pp. 66–77, 2019.
https://doi.org/10.1007/978-3-030-12598-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12598-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-12598-1_6


Make Evolutionary Multiobjective Algorithms Scale Better 67

the overall running time through the computational complexity of the internal
steps of the algorithm. As an example one can consider multimodal problems,
which typically require larger population sizes to find good enough local optima.
If the computational complexity of the algorithm is superlinear with regards to
the population size, any increase of the multimodality results in a much larger
increase in the running time. This means that the computational complexity of
the internal steps of an evolutionary algorithm can determine its scalability with
regards to the complexity of the solved problem.

This is especially true for multiobjective optimization. Since many evolution-
ary multiobjective algorithms contain subroutines that are basically computa-
tional geometry algorithms, sometimes in high dimensions, it is often the case
that an iteration of such an evolutionary algorithm has at least quadratic com-
plexity with regards to the population size. While for small population sizes this
effect does not show up, since all the internals are dominated by fitness evalu-
ation, it affects running times for large enough population sizes to the extent
where parallelization of the update procedures seems to be necessary [16].

The hypervolume indicator [26], or S-metric, is probably the most well-known
example of a computationally hard subroutine which is a part of several evolu-
tionary multiobjective algorithms. Despite its highly desirable properties, it is
#P-complete [2] and also NP-hard to approximate. While for small dimensions
there do exist efficient algorithms, it is very unlikely that hypervolume indicator
will ever scale well for the number of objectives starting with, for instance, six.

Non-dominated sorting is maybe the second most popular subroutine among
those that can be bottlenecks in evolutionary multiobjective algorithms. The
problem of non-dominated sorting was introduced along with the original NSGA
algorithm [24], where an algorithm with time complexity O(n3k) was proposed
to solve this problem. Here and onwards, n is the number of solutions (also “the
number of points”), and k is the number of objectives (also “dimension”). Among
other improvements, NSGA-II [10] brought a faster algorithm for non-dominated
sorting with time and memory complexity of O(n2k). Non-dominated sorting
remains one of the bottlenecks in NSGA-III [8] and many other algorithms.

Jensen [18] applied the divide-and-conquer paradigm to this problem, follow-
ing the guidelines of Kung [19] for solving similar problems, and achieved the
worst-case time complexity of O(n · (log n)k−1) and linear memory complexity
under certain conditions (e.g. no two objective vectors coincide in any of the
objectives). It took more than ten years to settle down the same worst-case time
complexity for arbitrary inputs [5,14]. The practical performance has also been
improved since then, the paper [20] features the currently fastest variation of this
idea. In the last ten years a number of algorithms were published which focused
on improving the practical performance while having the Ω(n2k) worst-case per-
formance, among which Best Order Sort [22,23] and ENS-NDT [17] currently
seem to be the fastest on average. In particular, the algorithm from [20] is a
hybrid algorithm that joins the divide-and-conquer paradigm of [5,14,18] and a
specially tailored version of ENS-NDT [17].
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The worst-case time complexity bound of O(n · (log n)k−1) was unbeatable
since 2003, except for constant small dimensions. Some works exist for k = 3 (e.g.
an O(n log n) algorithm in O(n log n/log log n) space [3], or an O(n · (log log n)2)
algorithm in the RAM machine model [21]), however, no implementations and no
experimental evaluation are available, which makes a direct comparison difficult.
There is currently no known lower bound except for the trivial Ω(nk), which can
be slightly refined to Ω(n log n + nk) if the pointer machine model is assumed.

We propose a theoretically faster algorithm with the worst-case time com-
plexity of O(n · (log n)k−2 log log n) which uses the RAM machine model. The
speedup is due to the use of the van Emde Boas tree [12,13] instead of the
binary search tree. The van Emde Boas tree is a data structure that stores a
set of integers belonging to the interval [0;M − 1) and offers many operations in
O(log log M), including navigation to the next or to the previous element of the
set. It is widely believed to be efficient only when the number of elements stored
in it is large (of the same order as M). Despite this, we have written an effi-
cient implementation of the van Emde Boas tree which resulted in competitive
running times of the entire enclosing non-dominated sorting algorithm, which is
comparable to the best available algorithms. The new implementation eventually
overcomes other algorithms as n grows, which was observed experimentally at
n ≈ 106 . . . 107 and 3 ≤ k ≤ 5, and is not much slower at smaller n.

The rest of the paper is structured as follows. The necessary notation
is introduced in Sect. 2. The structure of the divide-and-conquer algorithm
from [5,14,18] is outlined in Sect. 3, along with the hybridization ideas suc-
cessfully applied in [20]. The concept of the van Emde Boas tree is explained
in Sect. 4. The details of our efficient implementation1 are given in Sect. 5 for
the tree and in Sect. 6 for the whole algorithm. We give our experimental setup,
results and their discussion in Sect. 7. Section 8 summarizes our work.

2 Preliminaries

Since the algorithms studied in this paper operate only on the level of objec-
tive vectors, we ignore various problems of genotype-to-phenotype mapping, use
interchangeably individuals and vectors of their objective values, and hence often
call individuals the points. The letter n typically denotes the number of points,
and the letter k denotes the number of objectives, or the dimension.

We consider points coming from the R
k space without loss of generality,

as otherwise the values for each objective can be sorted and then compressed
into integers from the range [1;n]. Also without loss of generality we consider
multiobjective problems that require minimization of every objective. For two
points p, q from the k-dimensional space we say that p dominates q, and write
p ≺ q, if ∀i, 1 ≤ i ≤ k, pi ≤ qi and ∃j, 1 ≤ j ≤ k, pj < qi.

Note that it follows from this definition that p ⊀ p for any p. Some implemen-
tations of non-dominated sorting assume that p ≺ p, which introduces inconsis-
tency to the results but can be desirable to punish multiple equal solutions. For
1 Available at https://github.com/mbuzdalov/non-dominated-sorting/tree/v0.2.

https://github.com/mbuzdalov/non-dominated-sorting/tree/v0.2
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adapting any divide-and-conquer algorithm for non-dominated sorting to this
property we direct the reader to the recent work [4].

The non-dominated sorting problem is, given a (multi)set of points P , to
assign each point a rank such that:

– for any point p such that ∀q ∈ P it holds that q ⊀ p the rank r(p) ← 0;
– for any other point r(p) ← 1 + maxq∈P,q≺p r(q).

This definition assumes that ranks are assigned in an arbitrary order such
that, if p ≺ q, the rank is first assigned to p. It is not difficult to show that such
an order exists, e.g. the lexicographical order of points has this property for an
arbitrary set of points, so the definition is valid.

3 The Divide-and-Conquer Algorithm for Non-dominated
Sorting

In this section we outline the divide-and-conquer algorithm initially proposed by
Jensen [18] and then subsequently refined by a number of researchers [5,14,20].
This algorithm divides the problem into smaller subproblems of two types, which
have somewhat more general formulation than just non-dominated sorting, and
reduces the number of used objectives when possible. The algorithms based on
the so-called sweep line solve the special cases of these subproblems that have
only two objectives to consider. We will focus on them, since in this paper we
aim at replacing these algorithms with their more efficient counterparts based on
the van Emde Boas tree, and the rest of the algorithm will be described briefly.

3.1 The General Plan

The first step of the algorithm, similar to the ENS algorithm family [25], is
to sort the individuals lexicographically (by first comparing them in the first
objective, if equal move on to the second one, and so on), which can be done
in O(n log n + nk) by an appropriate modification of the quicksort. While doing
this, the algorithm retains a single representative of multiple equal points, if
needed, so the rest of the algorithm can assume that no two points are equal;
after the main work is done, all equal points are assigned the same rank as their
representative. The resulting list of points P = {p1, p2, . . . , pn} obviously has
the following property: for any two 1 ≤ i < j ≤ n it holds that pj ⊀ pi.

When k > 2, the algorithm uses the divide-and-conquer technique to solve
the problem. To do this, it defines two auxiliary subproblems called A and B:

A: A set of points S ⊂ P is given, along with the number of meaningful objec-
tives m and the lower bounds on the rank r(s) for each point s ∈ S. It is
assumed that all points from S have equal objective values for all objectives
m < i ≤ k. Assign the ranks according to the definition of non-dominated
sorting and taking into account these lower bounds. It is assumed that all
comparisons with points dominating all points from S are already performed,
so the resulting ranks will be final.
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B: Two sets of points L and R are given, along with the number of meaningful
objectives m. It is known that L ⊂ P , R ⊂ P , L ∩ R = ∅, all the ranks are
final for all points in L, lower bounds are known for all points in R. For any
point l ∈ L, r ∈ R and objective m < i ≤ k it holds that li < ri. Update the
lower bounds for the points in R taking into account the dominance relations
between points from L and R, as well as the ranks of points in L.

Note that the non-dominated sorting problem itself is a special case of the
subproblem A when all lower bounds on the ranks are zeros and m = k.

The subproblem B can be trivially solved if |L| = 1 or |R| = 1. If m = 2,
a special algorithm is used, which is outlined in the following subsection. For
performance reasons, as proposed in [20], the subproblem is solved by a tailored
version of an efficient quadratic algorithm, such as ENS-SS [25] or ENS-NDT [17],
when |L| + |R| ≤ C for some (constant) value C. Otherwise, the algorithm finds
a median M of the m-th objective across L and R. Then it splits L into three
sets LL, LM , LH , as well as R into RL, RM , RH , such that all ·L sets feature
the m-th objective less than M , for all ·M sets it is equal to M , and for all ·H
sets it is greater than M . Then the instances of the subproblem B are solved
for the pairs (LL;RM ), (LL;RH), (LM ;RM ), (LM , RH) with the meaningful
objective value of m − 1, as well for the pairs (LL;RL) and (LH ;RH) with
the unchanged meaningful objective value. The use of the median guarantees
that max(|LL| + |RL|, |LH | + |RH |) ≤ 1

2 (|L| + |R|). If an algorithm for m =
2 works in O((|L| + |R|) log(|L| + |R|)), this results in the runtime bound of
O((|L| + |R|)(log(|L| + |R|))m−1) thanks to the Master theorem [7].

Very similarly, the subproblem A is trivially solved if |S| = 2, delegated to
the two-dimensional case if m = 2 and to a quadratic algorithm if |S| ≤ C.
Otherwise, the set S is split into SL, SM , SH around the median of the m-th
objectives. Next, the instance of the subproblem A is solved for SL, since no
other points can dominate points from this set. Once it is solved, the ranks
for SL are final. After that, the instance of the subproblem B is solved for
L ← SL and R ← SM . Then the subproblem A is solved for SM , next the
subproblem B is solved for L ← SL ∪ SM and R ← SH , and finally another
instance of the subproblem A is solved for SH . Then the Master theorem proves
the O(|S|(log |S|)m−1) runtime if the algorithm for m = 2 works in O(|S| log |S|).

3.2 Sweep Line Algorithms for m = 2

The special algorithms for two-dimensional cases of the above problems use the
concept of the sweep line. Such algorithms visit points as if they are hit by a
line that is parallel to the ordinate axis and moves through the plane from small
to large abscissas. They also maintain a data structure which is updated and/or
queried when a point is visited.

The data structure used in the algorithms for non-dominated sorting is a
sorted set which maps ordinate values to ranks. More precisely, for each last
processed point p of rank r the mapping py → r is stored in the set. Additionally,
if there exist two points p and q, such that py ≤ qy and r(p) > r(q), the mapping
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for the point q need not be stored, since any point z, that comes lexicographically
after both p and q and is dominated by q in first two objectives, is also dominated
by p. This means that we can restrict the data structure to a monotone sorted
map, where for any two mappings k1 → v1 and k2 → v2 it holds that (k1 <
k2) ↔ (v1 < v2).

With such a sorted map as a data structure on the sweep line, one can solve
the subproblem B as follows. The points from L ∪ R are jointly traversed in
lexicographical order. If the next point comes from L, the corresponding mapping
(the ordinate of the point to the rank of this point) is added to the map, while
preserving monotonicity. If the next point is r ∈ R, the smallest mapping with
the not-exceeding ordinate is queried from the map, and the rank lower bound
of r is updated. The subproblem A is solved similarly, however, both operations
are performed on each point (first query then insertion).

The existing implementations of the divide-and-conquer non-dominated sort-
ing algorithms use a binary search tree to implement the monotone sorted
map, which supports insertions and queries in O(log n) time (amortized for
insertions). This ensures O(n log n) worst-case running time for both subprob-
lems on n points, more precisely, O(|S| log |S|) for the subproblem A and
O((|L| + |R|) log |L|) for the subproblem B.

4 The Van Emde Boas Tree

The van Emde Boas tree [12,13] is a data structure for storing non-negative
integers less than D = 2d and supporting queries common for sorted sets in
time O(log log D) = O(log d). These operations include testing whether an ele-
ment belongs to a set, querying the closest element not smaller than (the next-
query), or not greater than (the prev-query) the given one, as well as insertion
and removal. It additionally supports querying the minimum and the maximum
among the stored elements in O(1) time. It requires the random-access memory
model and, in particular, the ability of indexing the elements of an array by the
results of bitwise operations on keys in O(1) time.

This data structure is parameterized by d (we will refer to a van Emde Boas
tree with the parameter d as the d-tree) and is constructed recursively. It always
stores the minimum and the maximum elements explicitly. For d = 1 there can
be only two elements, so the implementation is trivial. For d > 1, the elements
other than the minimum and the maximum are stored in subordinate dL-trees,
where dL = �d

2�, which are stored in an array of size DH = 2� d
2 �. We also denote

DL = 2dL and dH = �d
2�. A key x is stored in a subordinate tree as follows:

the (xdiv DL)-th subordinate tree stores the value x mod DL. To speed up the
next-queries and prev-queries, a d-tree also contains a dH -tree that serves as an
index tree: if the x-th subordinate tree is not empty, the index tree contains x.

Note that operations such as xdivDL and x mod DL can be efficiently imple-
mented in most modern computer architectures with the use of bitwise arith-
metics (e.g. the former is implemented by bit shift, and the latter by bit masking),
since DL is a power of two. We assume this knowledge in the following sections.
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Testing whether an element x belongs to a d-tree, d > 1, is straightforward:
first it is compared with the minimum and the maximum; in a non-trivial case
when it is between them, the (xdiv DL)-th subordinate tree is asked for whether
it contains x mod DL. Since the index tree and each subordinate tree have almost
the same parameter value ≈ d/2, each query in a d-tree amounts to O(1) plus
one query to a (d/2)-tree, which results in O(log d) = O(log log D) runtime.

A similar recursive construction enables efficient prev-queries and next-
queries. For instance, for a next-query on a d-tree, d > 1, a key x is first compared
with the maximum. If it is smaller (otherwise the query is trivial and O(1)), the
(xdiv DL)-th tree is queried. If it returned that there is no next key, which hap-
pens in O(1), then the index tree is queried for the next non-empty subordinate
tree, and if any, its minimum is returned. In total, in every query to a d-tree, at
most one query to a (d/2)-tree is performed, which results in O(log d) runtime.

The update procedures require considering a number of corner cases and an
accurate implementation, so we will not go into details in this paper, however,
recursion patterns similar to the ones above ensure the same O(log d) runtime
bound for both insertion and removal.

5 Efficient Implementation of the Van Emde Boas Tree

This section is dedicated to an efficient implementation of a monotone sorted
map, based on the van Emde Boas tree, to be used for a more efficient imple-
mentation of algorithms described in Sect. 3.2. Note that the actually used code
does not support the entire interface of a van Emde Boas tree, but rather an
interface required for non-dominated sorting. The Java classes mentioned in this
section can be accessed on GitHub.2

We mention first that, in order to implement a monotone sorted map over a
sorted set, we shall store also the values, and we shall also be able to “clean up”
when a mapping is inserted that forces some existing mappings to be removed
in order to preserve monotonicity. We store the values in a plain auxiliary array
indexed by the unmodified keys, and some additional information about that
array is passed around a few methods that should be able to clean up.

For performance reasons, we implement, aside from the generic van Emde
Boas tree that contains other van Emde Boas trees as either subordinate trees
or an index tree, six other implementations of a van Emde Boas tree for specific
ranges of the parameter d, and a special implementation representing an empty
tree. This is done for performance reasons, since for small values of d the corre-
sponding operations can be implemented more efficiently with the use of bitwise
arithmetics. More precisely, we have the following implementations:

– AnyAnyBitSet: the general case used for d ≥ 14;
– EmptyBitSet: a singleton implementation of an always empty set, used for

empty subordinate sets of an AnyAnyBitSet to save time and memory;

2 https://github.com/mbuzdalov/non-dominated-sorting/tree/v0.2/
implementations/src/main/java/ru/ifmo/nds/util/veb.

https://github.com/mbuzdalov/non-dominated-sorting/tree/v0.2/implementations/src/main/java/ru/ifmo/nds/util/veb
https://github.com/mbuzdalov/non-dominated-sorting/tree/v0.2/implementations/src/main/java/ru/ifmo/nds/util/veb
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– IntBitSet: a wrapper around a 32-bit integer, used for 0 ≤ d ≤ 5;
– LongBitSet: a wrapper around a 64-bit integer, used for d = 6;
– IntIntBitSet: an implementation with both subordinate sets and the index

set represented directly as 32-bit integers, used for 7 ≤ d ≤ 10;
– IntLongBitSet: same as above, but the index set is a 64-bit integer, used for

d = 11;
– LongLongBitSet: same as above, but the subordinate sets are also 64-bit

integers, used for d = 12;
– LongAnyBitSet: same as above, but the index set is an IntIntBitSet, used

for d = 13;

Note that in languages which allow integer parameters for classes and
compile-time specialization of classes based on these parameters, such as C++,
the number of implementations can be reduced in order to achieve the same
performance effect, but would still require writing at least half the size of the
code above.

Each of these classes contains implementations of the following methods:

– isEmpty(), min(), max() are implemented straightforwardly except for the
cases of IntBitSet and LongBitSet, where the two latter are implemented
through counting the number of leading/trailing zeros;

– clear() removes all elements in time linear to the number of elements;
– next(int), prev(int), prevInclusively(int) perform the strict next-

query, the strict prev-query and the non-strict prev-query, correspondingly;
– add(int) and remove(int) to add and remove an element without checking

the monotonicity, which are used internally;
– setEnsuringMonotonicity that takes a key, a value, an array for values and

an offset in this array to be used with the key, and performs insertion of
the mapping if necessary and cleaning up the mappings which are no longer
needed;

– cleanupUpwards that takes a value, an array for values and an offset in this
array, and cleans up the mappings which are no longer needed, starting from
the minimum element.

In particular, the two latter methods can perform bulk removal of the stale
mappings, which is typically faster than using next and remove iteratively. Two
different methods for strict and non-strict prev-queries implement strictness-
specific shortcuts to save more computation time. As a result of all these precau-
tions, we ensure roughly O(log log D) performance for queries on our monotone
sorted map implementation, whereas we save sufficient resources, both time and
memory, at the smaller end of the size range, to make it competitive.

6 Implementation and Analysis of the Whole Algorithm

Both algorithms given in Sect. 3.2 run in time O(n log log n) with the use of the
implementation of the monotone sorted map based on the van Emde Boas tree,
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assuming ordinates are non-negative integers less than n. However, in practice
they are floating point values from an arbitrary range. To enable using our new
implementation, we first compress these values in O(n log n) time using sorting
and a linear scan. Since for k > 2 the resulting running times are still ω(n log n),
this does not impact the theoretical performance, however, it has a small but
noticeable impact on the overall performance.

Repeating the analysis given in Sect. 3.1 with the performance for two-
dimensional algorithms to solve subproblems A and B to be O(|S| log log |S|)
and O((|L|+ |H|) log log |L|) correspondingly, we get the overall running time of
O(n · (log n)k−2 log log n) for k > 2.

7 Experiments

We conducted experiments on uniform hypercube datasets (also known as
“cloud” datasets) with dimension k ∈ {3, 4, 5, 7, 10} and the numbers of points
n = �10i/2� for 1 ≤ i ≤ 14. For these n and k, we randomly generated 10
datasets.

We did not use datasets with only non-dominated points, as in these condi-
tions it does not matter which data structure is used for the two-dimensional
case, since at most one point is stored in it during the entire run, and the theo-
retical performance becomes O(n · (log n)k−2). We did not use datasets from the
runs of the real evolutionary multiobjective algorithms on benchmark problems,
since it is not clear yet which algorithms, on which problems and with which
budgets will form a benchmark set that adequately represents the possible cases
from the point of view of non-dominated sorting, especially for very large n.

The following algorithms were used in our comparison:

– Best Order Sort as in [23];
– ENS-NDT as in [17] with the split threshold of 4;
– two configurations of the divide-and-conquer algorithm based on a binary

search tree hybridized as in [20] with ENS-SS [25] and with ENS-NDT, and
two similar configurations based on the van Emde Boas tree.

We have executed each algorithm on each dataset for five times (which seems
fair as runtimes are well concentrated). We did not execute Best Order Sort on
datasets with n > 105 as it appeared to scale worse than other algorithms.

The results are given in Table 1. One can see that the algorithm based on the
van Emde Boas tree hybridized with ENS-SS wins for k = 3 at n ≥ 3 · 105. The
modification of [20] with the van Emde Boas tree starts winning for 4 ≤ k ≤ 5 at
n = 107. For other dimensions, the van Emde Boas based algorithms do not yet
win for n ≤ 107, however they get closer to the best algorithms while n grows.
It is slightly more difficult for a van Emde Boas based algorithm to overcome
other algorithms with greater k and cloud datasets, as the maximum rank grows
slower with n when k is large.

One can also see that our implementation of the van Emde Boas tree does
not impose significant penalties on the running times. Indeed, for both hybrid
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Table 1. Running times of algorithms, in seconds. The values of n are ordered in a
column-first order. For every k, the best result for every n is highlighted dark gray.
Results within 5% of the best are highlighted light gray.

n 10
1
2 10

3
2 10

5
2 10

7
2 10

9
2 10

11
2 10

13
2

Algorithm 101 102 103 104 105 106 107

k = 3
BOS 2.015 · 10−7 4.905 · 10−6 7.645 · 10−5 1.262 · 10−3 3.961 · 10−2 — —
[23] 1.187 · 10−6 2.033 · 10−5 3.049 · 10−4 6.128 · 10−3 2.661 · 10−1 — —

ENS-NDT 1.254 · 10−7 5.506 · 10−6 1.235 · 10−4 1.904 · 10−3 3.197 · 10−2 5.675 · 10−1 1.167 · 101

[17] 8.634 · 10−7 3.068 · 10−5 4.837 · 10−4 7.755 · 10−3 1.358 · 10−1 2.444 · 100 5.186 · 102

RBTree+ENS-SS 1.124 · 10−7 2.840 · 10−6 7.557 · 10−5 1.272 · 10−3 1.950 · 10−2 2.910 · 10−1 4.171 · 100

5.472 · 10−7 1.722 · 10−5 3.274 · 10−4 5.095 · 10−3 7.287 · 10−2 1.141 · 100 1.555 · 101

RBTree+ENS-NDT 1.701 · 10−7 5.981 · 10−6 1.274 · 10−4 1.719 · 10−3 2.369 · 10−2 3.282 · 10−1 4.598 · 100

[20] 1.088 · 10−6 3.203 · 10−5 4.572 · 10−4 6.488 · 10−3 8.584 · 10−2 1.240 · 100 1.725 · 101

vEB+ENS-SS 1.536 · 10−7 4.347 · 10−6 8.990 · 10−5 1.330 · 10−3 2.092 · 10−2 2.828 · 10−1 3.903 · 100

8.937 · 10−7 2.171 · 10−5 3.551 · 10−4 5.514 · 10−3 7.479 · 10−2 1.087 · 100 1.481 · 101

vEB+ENS-NDT 2.106 · 10−7 7.609 · 10−6 1.413 · 10−4 1.776 · 10−3 2.495 · 10−2 3.257 · 10−1 4.416 · 100

1.427 · 10−6 3.657 · 10−5 4.805 · 10−4 7.017 · 10−3 8.802 · 10−2 1.227 · 100 1.617 · 101

k = 4
BOS 2.545 · 10−7 6.476 · 10−6 1.026 · 10−4 1.944 · 10−3 7.825 · 10−2 — —
[23] 1.561 · 10−6 2.603 · 10−5 4.271 · 10−4 1.131 · 10−2 5.773 · 10−1 — —

ENS-NDT 1.335 · 10−7 5.941 · 10−6 1.418 · 10−4 2.395 · 10−3 5.108 · 10−2 1.165 · 100 3.636 · 101

[17] 8.689 · 10−7 3.316 · 10−5 5.548 · 10−4 1.107 · 10−2 2.343 · 10−1 6.181 · 100 1.735 · 102

RBTree+ENS-SS 1.158 · 10−7 3.388 · 10−6 1.304 · 10−4 3.032 · 10−3 6.782 · 10−2 1.200 · 100 2.121 · 101

5.723 · 10−7 2.194 · 10−5 6.711 · 10−4 1.462 · 10−2 2.692 · 10−1 5.327 · 100 8.797 · 101

RBTree+ENS-NDT 1.726 · 10−7 6.721 · 10−6 1.514 · 10−4 2.349 · 10−3 4.441 · 10−2 9.704 · 10−1 1.942 · 101

[20] 1.105 · 10−6 3.524 · 10−5 5.643 · 10−4 1.020 · 10−2 2.196 · 10−1 4.502 · 100 7.988 · 101

vEB+ENS-SS 1.591 · 10−7 4.958 · 10−6 1.457 · 10−4 3.111 · 10−3 7.000 · 10−2 1.191 · 100 2.080 · 101

9.067 · 10−7 2.646 · 10−5 7.117 · 10−4 1.546 · 10−2 2.730 · 10−1 5.160 · 100 8.357 · 101

vEB+ENS-NDT 2.099 · 10−7 8.262 · 10−6 1.682 · 10−4 2.527 · 10−3 4.694 · 10−2 9.893 · 10−1 1.995 · 101

1.428 · 10−6 3.994 · 10−5 6.219 · 10−4 1.061 · 10−2 2.262 · 10−1 4.505 · 100 7.872 · 101

k = 5
BOS 3.079 · 10−7 7.861 · 10−6 1.264 · 10−4 2.594 · 10−3 1.272 · 10−1 — —
[23] 1.870 · 10−6 3.109 · 10−5 5.526 · 10−4 1.698 · 10−2 9.433 · 10−1 — —

ENS-NDT 1.341 · 10−7 6.086 · 10−6 1.479 · 10−4 2.843 · 10−3 6.741 · 10−2 1.883 · 100 7.679 · 101

[17] 9.312 · 10−7 3.459 · 10−5 6.281 · 10−4 1.397 · 10−2 3.201 · 10−1 1.203 · 101 4.162 · 102

RBTree+ENS-SS 1.210 · 10−7 3.912 · 10−6 1.502 · 10−4 4.153 · 10−3 1.241 · 10−1 2.693 · 100 5.615 · 101

5.924 · 10−7 2.643 · 10−5 8.300 · 10−4 2.291 · 10−2 5.253 · 10−1 1.345 · 101 2.547 · 102

RBTree+ENS-NDT 1.747 · 10−7 6.808 · 10−6 1.667 · 10−4 3.000 · 10−3 6.219 · 10−2 1.688 · 100 4.422 · 101

[20] 1.146 · 10−6 3.846 · 10−5 6.699 · 10−4 1.397 · 10−2 3.388 · 10−1 8.718 · 100 1.979 · 102

vEB+ENS-SS 1.631 · 10−7 5.488 · 10−6 1.673 · 10−4 4.300 · 10−3 1.287 · 10−1 2.749 · 100 5.632 · 101

9.300 · 10−7 3.097 · 10−5 8.858 · 10−4 2.378 · 10−2 5.339 · 10−1 1.364 · 101 2.545 · 102

vEB+ENS-NDT 2.157 · 10−7 8.271 · 10−6 1.840 · 10−4 3.170 · 10−3 6.448 · 10−2 1.716 · 100 4.501 · 101

1.481 · 10−6 4.334 · 10−5 7.256 · 10−4 1.453 · 10−2 3.523 · 10−1 8.926 · 100 1.973 · 102

k = 7
BOS 4.095 · 10−7 1.045 · 10−5 1.704 · 10−4 4.088 · 10−3 2.206 · 10−1 — —
[23] 2.410 · 10−6 4.108 · 10−5 7.723 · 10−4 2.858 · 10−2 1.881 · 100 — —

ENS-NDT 1.356 · 10−7 6.729 · 10−6 1.604 · 10−4 3.502 · 10−3 9.785 · 10−2 3.519 · 100 1.591 · 102

[17] 9.644 · 10−7 3.643 · 10−5 7.237 · 10−4 1.830 · 10−2 5.160 · 10−1 2.458 · 101 7.900 · 102

RBTree+ENS-SS 1.306 · 10−7 5.249 · 10−6 1.894 · 10−4 5.146 · 10−3 1.854 · 10−1 5.649 · 100 1.614 · 102

6.322 · 10−7 3.492 · 10−5 9.543 · 10−4 2.945 · 10−2 9.267 · 10−1 3.445 · 101 8.643 · 102

RBTree+ENS-NDT 1.863 · 10−7 7.395 · 10−6 1.905 · 10−4 4.199 · 10−3 1.024 · 10−1 2.745 · 100 9.130 · 101

[20] 1.192 · 10−6 4.078 · 10−5 8.392 · 10−4 2.182 · 10−2 5.310 · 10−1 1.514 · 101 4.390 · 102

vEB+ENS-SS 1.724 · 10−7 6.536 · 10−6 2.060 · 10−4 5.363 · 10−3 1.887 · 10−1 5.789 · 100 1.621 · 102

9.621 · 10−7 3.965 · 10−5 1.013 · 10−3 3.012 · 10−2 9.433 · 10−1 3.485 · 101 8.861 · 102

vEB+ENS-NDT 2.334 · 10−7 8.924 · 10−6 2.082 · 10−4 4.434 · 10−3 1.053 · 10−1 2.796 · 100 9.279 · 101

1.521 · 10−6 4.539 · 10−5 9.008 · 10−4 2.248 · 10−2 5.406 · 10−1 1.529 · 101 4.537 · 102

k = 10
BOS 6.174 · 10−7 1.409 · 10−5 2.251 · 10−4 6.047 · 10−3 3.518 · 10−1 — —
[23] 3.500 · 10−6 5.536 · 10−5 1.056 · 10−3 4.363 · 10−2 3.797 · 100 — —

ENS-NDT 1.550 · 10−7 7.055 · 10−6 1.790 · 10−4 4.209 · 10−3 1.366 · 10−1 5.645 · 100 2.478 · 102

[17] 1.043 · 10−6 3.969 · 10−5 8.124 · 10−4 2.402 · 10−2 7.600 · 10−1 4.098 · 101 1.599 · 103

RBTree+ENS-SS 1.481 · 10−7 5.541 · 10−6 2.449 · 10−4 6.954 · 10−3 2.188 · 10−1 7.255 · 100 2.540 · 102

6.785 · 10−7 4.178 · 10−5 1.244 · 10−3 3.738 · 10−2 1.197 · 100 4.850 · 101 1.589 · 103

RBTree+ENS-NDT 2.047 · 10−7 7.828 · 10−6 1.978 · 10−4 5.312 · 10−3 1.512 · 10−1 4.418 · 100 1.400 · 102

[20] 1.262 · 10−6 4.253 · 10−5 9.498 · 10−4 3.061 · 10−2 8.340 · 10−1 2.394 · 101 7.132 · 102

vEB+ENS-SS 1.927 · 10−7 6.845 · 10−6 2.618 · 10−4 7.159 · 10−3 2.210 · 10−1 7.328 · 100 2.520 · 102

1.021 · 10−6 4.671 · 10−5 1.297 · 10−3 3.806 · 10−2 1.194 · 100 4.871 · 101 1.597 · 103

vEB+ENS-NDT 2.508 · 10−7 9.324 · 10−6 2.137 · 10−4 5.513 · 10−3 1.539 · 10−1 4.459 · 100 1.396 · 102

1.595 · 10−6 4.698 · 10−5 1.009 · 10−3 3.122 · 10−2 8.368 · 10−1 2.405 · 101 7.156 · 102
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variants the running time of the new implementations does not exceed 1.5 times
the running time of the old implementations even for the smallest values of n,
and this ratio tends to decrease towards 1.0 and even below while n increases.

8 Conclusion

We proposed a theoretic improvement over the existing runtime complexity of
non-dominated sorting. Our algorithm is based on the van Emde Boas tree and
works in time O(n · (log n)k−2 log log n), a factor of O(log n/log log n) faster than
any previous approach for arbitrary k. We also provided its implementation able
to outperform the existing algorithms on large enough n and small enough k.

This paper evaluated the algorithms only on artificial uniform hypercube
datasets. We expect to perform a more thorough comparison of all the available
non-dominated sorting algorithms on real-world datasets and on various scales.
Apart from implementation of the algorithms from [3,21] we also plan to test
Pareto archiving algorithms [11,15] wrapped in the ENS framework [25].
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Foundation, Agreement No. 17-71-30029 with co-financing of Bank Saint Petersburg.
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Abstract. Multi-objective optimization problems (MOPs) arise in a
natural way in diverse knowledge areas. Multi-objective evolutionary
algorithms (MOEAs) have been applied successfully to solve this type
of optimization problems over the last two decades. However, until now
MOEAs need quite a few resources in order to obtain acceptable Pareto
set/front approximations. Even more, in certain cases when the search
space is highly constrained, MOEAs may have troubles when approxi-
mating the solution set. When dealing with constrained MOPs (CMOPs),
MOEAs usually apply penalization methods. One possibility to overcome
these situations is the hybridization of MOEAs with local search oper-
ators. If the local search operator is based on classical mathematical
programming, gradient information is used, leading to a relatively high
computational cost. In this work, we give an overview of our recently
proposed constraint handling methods and their corresponding hybrid
algorithms. These methods have specific mechanisms that deal with the
constraints in a wiser way without increasing their cost. Both methods
do not explicitly compute the gradients but extract this information in
the best manner out of the current population of the MOEAs. We conjec-
ture that these techniques will allow for the fast and reliable treatment
of CMOPs in the near future. Numerical results indicate that these ideas
already yield competitive results in many cases.

Keywords: Multi-objective optimization ·
Evolutionary computation · Mathematical programming ·
Hybrid meta-heuristics

1 Introduction

In many engineering applications one is faced with the problem that several
objectives have to be optimized concurrently resulting in a multi-objective opti-
mization problem (MOP). For the treatment of MOPs, traditional optimization
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techniques establish effective search directions by using differentiability prop-
erties of the objective functions. These directions should be able to (at least
locally) lead toward better solutions with respect to the objective value. The
computation of these proper multi-objective search directions requires, in gen-
eral, the numerical approximation of the derivatives. These search directions
produce a sequence of trial points which eventually converge to one single local
optimum point of the problem. It is worth to notice that the solution of a MOP,
the Pareto set (PS), typically forms a (k − 1)-dimensional object where k is the
number of objectives.

Multi-objective evolutionary algorithms (MOEAs) have caught the interest
of many researchers (see, e.g. [4,6,30]) over the last two decades. Some reasons
for this include that MOEAs are of global nature, and hence, they do not depend
on the initial population. Further, due to their set based approach they compute
a finite size approximation of the entire PS in one single run of the algorithm.
Also, MOEAs do not require gradient information. Recently, hybrid algorithms
have gained popularity. They combine gradient-based local search with MOEAs.
In particular, for unconstrained MOPs we refer to [13,20,23,24], and to [18,
25] for constrained MOPs. Also, hybrid MOEAs with non-gradient based local
search can be found (e.g., [28] and [29]). Designing these hybrid algorithms is
not a direct process since MOEAs are stochastic by nature, and making solution
improvements in a deterministic way can affect the convergence of the set based
algorithm. Besides, the cost of performing gradient-based local search could be
excessive, considering the particular improvement. For this reason, designing
effective local search procedures is highly relevant. For the case of constrained
MOPs, hybrid algorithms mostly rely on their evolutionary part to manage the
feasibility of the solutions, and do not involve constraint function information
during the evolutionary process.

In [20], an analysis about the behavior of multi-objective stochastic local
search (MOSLS) was presented. This analysis showed that a pressure both
toward and along the Pareto front (PF) is already inherent for unconstrained
problems. For the constrained case however, this behavior is not pre-
served. Although, based on the Karush-Kuhn Tucker (KKT) equations for opti-
mality, one can identify subspaces that allow a movement along the Pareto front
for points that are near to the solution set. Since gradients are required to
obtain these subspaces, an increment in the computational cost is expected. In
this work, we present an overview of our recently proposed constraint handling
methods and their corresponding hybrid algorithms. These methods have spe-
cific mechanisms, that take advantage of these subspaces, i.e., they move along
the PF. In addition, these methods extract information in a best manner out of
the current population of the MOEAs. In this way, we are able to move along
the Pareto front and maintain a low computational cost.

We first present the Subspace Mutation Operator (SPM) as an alternative
variation operator for MOEAs. Classically, mutation has been guided for “small-
moves heuristics” [22] or differences on the objective values [15]. For the con-
strained case, the constraints management is left to the selection process in the
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MOEA. On the contrary, SPM takes advantage of the studied neighborhood
sampling to perform promising mutations when dealing with CMOPs. Second,
we extend the formula introduced in [16] for computing a descent direction to
the case of optimizing two objective functions under constraints. We also pro-
pose an efficient gradient-free computation of this descent direction for CMOPs,
providing support with theoretical results. Both techniques are coupled with a
state-of-the-art MOEAs to empirically show the practical potential of the pre-
sented theory. We conjecture that these new insights will help with the fast and
reliable treatment of CMOPs. Finally, the mention to a real world application,
in [27], is included. For the solution of this problem, a hybrid metaheuristic for
constrained optimization was developed.

2 Background

In the following we consider continuous MOPs that can be expressed as

minx∈Q F (x),

where x ∈ Q ⊂ R
n contains the decision variables and F : Q → R

k is the vector
of objective functions F (x) = [f1(x), . . . , fk(x)]T . Each objective fi : Q → R is
assumed for simplicity to be continuously differentiable. We stress, however, that
the sampling algorithm used in this work does not use any explicit gradient infor-
mation. Traditional optimization techniques use differentiability properties of the
functions. The idea of using the gradient-based information to find descent direc-
tions, has been extensively exploited for single objective optimization. For the
case of MOPs, moving an individual solution toward a particular improvement
direction is also wanted. Multi-objective descent directions (MODDs) should be
able to (at least locally) lead toward better solutions regarding all the functions
simultaneously. So far, some proposals to compute MODDs using first or second
order information are available in [2,3,9,11]. Another point-wise iterative search
procedure (called Directed Search Method) [20] has the feature of steering the
search in any direction given in objective function space.

Gradient Subspace Approximation (GSA) [21] is a method that seeks to com-
pute the most greedy descent direction of an objective function f, by exploit-
ing the neighborhood information available from the population of a MOEA.
Consider a point x0 chosen to start local search, as well as a point xi from a
neighborhood of x0. Notice that both points come from the population of the evo-
lutionary algorithm; therefore their objective value is already known. Then, with
the available information it is possible to approximate (without any additional
cost regarding function evaluations) the directional derivative in the direction

νi =
xi − x0

‖xi − x0‖ . (1)

To be more precise, it holds that

f
′
νi

= 〈∇f(x0), νi〉 =
f(xi) − f(x0)

‖xi − x0‖ + O(‖xi − x0‖), (2)
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where O denotes the Landau symbol.
Assume we are given ν1, . . . , νr ∈ R

n. The best approximation of the gradient,
ν ∈ span{ν1, . . . , νr}, can be obtained by solving the following problem:

min
λ∈Rk

∑r

i=1
λi〈∇f(x0), νi〉 (3)

s.t. λT V T V λ − 1 = 0,

where V = (ν1, . . . , νr) ∈ R
n×r. Then by solving (3) we get that λ∗ := λ̃∗

‖V λ̃∗‖ , is

the unique solution of (3), where λ̃∗ = −(V T V )−1V T ∇f(x0). Therefore, ν∗ :=
V λ∗, is the most greedy search direction in span{ν1, . . . , νr} [21]. This approach
has a gradient free realization. For this, x0 and x1, x2, . . . , xr in the neighborhood
of x0 are given and whose objective values f(xi), i = 1, 2, . . . , r, are known.
Define,

νi :=
xi − x0

‖xi − x0‖2 , di :=
f(xi) − f(x0)
‖xi − x0‖2 , i ∈ {1, . . . , r}. (4)

We finally obtain

ν̃∗ = − 1
‖Ṽ λ̃∗‖ Ṽ (Ṽ T Ṽ )−1d. (5)

where Ṽ := (ν1, . . . , νr). Note that the computation of ν̃∗ is gradient-free. This
approach can be extended both to equality and inequality constraints, see [21]
for details.

3 Subspace Polynomial Mutation Operator

In this section, we present the Subspace Polynomial Mutation (SPM) operator;
that identifies subspaces that allow to perform a movement along the Pareto front
for points near to the solution set. We present the case for general inequalities.
For this, assume for a moment that we are given the search directions ν1, . . . , νr ∈
R

n as well as the directional derivatives

〈∇gji(x), νs〉, i = 1, . . . , l, s = 1, . . . , r, (6)

where gj1 , . . . , gjl , 1 ≤ l, are the active inequality constraints at x and further,
that we are interested in directions ν within the subspace span{ν1, . . . , νr} such
that

0 = 〈∇gji(x), ν〉 = 〈∇gji(x),
r∑

s=1

ξsνs〉 =
r∑

s=1

ξs〈∇gji(x), νs〉, i = 1, . . . , l, (7)

where ξ ∈ R
r−l at random. Define V as above and then,

GV = (〈∇gji(x), νs〉) i=1,...,l
s=1,...,r

∈ R
l×r (8)

is composed of the directional derivatives from (6). Here we assume that r > l.
Note that (7) is equivalent to GV ξ = 0, i.e., we are interested in the kernel of
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GV . To find an orthonormal basis of ker(GV ) we can utilize a QR factorization:
(GV )T = QR = (q1, . . . , ql, ql+1, . . . , qr)R and define:

Q1 := (ql+1, . . . , qr) ∈ R
r×(r−l). (9)

The columns of Q1 build the desired orthonormal basis of the kernel of GV.
This is used for the construction of the suitable subspace that SPM needs, see
Algorithm 1.

Algorithm 1. y = SPM(x) - Subspace Polynomial Mutation
Require: x : solution for mutation.
Ensure: y : mutated solution.
1: y := x;
2: Compute Q1 as in Eq. (9).
3: Compute Sx := V ∗ Q1 ∈ R

n×(r−l)

4: for i = 1, · · · , (r − l) do
5: Compute step size ti.
6: y := y + tisi;
7: end for

Figures 1 and 2 show the different behaviors of uniform sampling and SPM
sampling in decision and objective space for CMOPS. In Fig. 2, observe how
SPM is able to perform movements along the feasible subspace.
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Fig. 1. Example of uniform sampling in decision and objective space for a CMOP.

Given a particular individual of the population, SPM stochastically gener-
ates a new individual considering a suitable subspace which promotes feasibility.
Therefore, the survival rate of the mutated individual increases, i.e., represents
a successful mutation. Also, the exploitation of this suitable subspace is very
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(b) SPM sampling in objective space

Fig. 2. Example of SPM sampling in decision and objective space for a CMOP.

convenient due to the fact that the mutated candidate probably lies along the
Pareto set of the constrained MOP. SPM adapts polynomial mutation (PM) to
effectively deal with constrained MOPs. SPM performs movements over the basic
vectors of a suitable subspace for mutation instead if moving on each canonical
coordinate variable. The main idea is that given a parent solution x, we com-
pute the mutation subspace. Then, a perturbation is performed along each basic
direction of the mutation subspace. SPM is applied just when it is detected that
can be useful. Otherwise, polynomial mutation is applied. It is worth to notice
that SPM is a free-cost operator (in terms of function evaluations) but its appli-
cation is controlled by the conditions above, in order to preserve diversity in the
evolutionary process.

Numerical Results. In order to test SPM and to investigate its advantages
over polynomial mutation when dealing with constrained MOPs, we replaced
the mutation module of the algorithms NSGA-II [8] and GDE3 [12]. The per-
formance of the algorithms (i) NSGA-II + SPM and (ii) GDE3 + SPM are com-
pared against their corresponding base MOEAs, NSGA-II and GDE, that uses
traditional polynomial mutation. It is worth to notice that the intention of this
experiment is to show that the proposed neighborhood sampling represents wide
open possibilities for the design of specialized operators for MOEAs and multi-
objective hybrid algorithms. The comparison of the two mutation operators,
for each test problem (CTP suite), is presented in [14]. Although the results
of the SPM are already very promising, there are some aspects that have to
be taken care of in the future. For instance, the extension for handling equality
constraints. Also, other hybrid aspects inherent to the inclusion of neighborhood
sampled operators into population strategies should be investigated, and are sub-
ject to ongoing work. For example, our approach is (theoretically) not limited
to a few objectives. Since the computational cost is low due to the information
extracted from the population, the efficiency is not affected when the number of
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objectives increases. Even though, a computational issue is that currently some
improved individuals are lost in the evolutionary process, and this problem could
be magnified when the number of objectives increases.

4 Multi-objective Descent Directions Within MOEAs

In this section we present the adaptation of the MODD proposed in [16] to
the constrained case. We also introduce a gradient-free approach to efficiently
compute such MODD. The main idea is explained for the equality constrained
case, although it is analog for the inequality constrained case.

4.1 Equality Constrained MOPs

Consider a bi-objective optimization problem (BOP) of the form

min
x∈Rn

F (x) := [f1(x), f2(x)]T , (10)

s.t hj(x) = 0, j ∈ {1, . . . , m},

where F : Rn → R
2 is the objective function. Consider the scenario that x is

a feasible initial point for MOP (10); i.e., that hj(x) = 0 for j ∈ {1, . . . , m}.

In this case H =
(∇h1(x)T , . . . ,∇hm(x)T

)T ∈ R
m×n, is the matrix formed by

the gradients of the equality constraints at x. Assuming that rank(H) = m,
we decompose the matrix as HT = QR = (q1, . . . , qm, qm+1, . . . , qn) R, where
Q ∈ R

n×n is orthogonal, and R ∈ R
n×m is right upper triangular. It is worth to

notice that the last n−m column vectors of Q form an orthonormal basis of the
tangent space of the feasible set h−1(0) at x, where ∇fi(x) 
= 0 and h(x) = 0.
We denote this submatrix by Q̃ := (qm+1, . . . , qn) .

Then, we consider νL which is the selected MODD. Then, for constrained
BOP.

νp = Q̃Q̃T νL (11)

is the orthogonal projection of νL onto the set of feasible directions. The following
proposition establishes criteria for the practical use of this proposal.

Proposition 1. [26] For a BOP of the form (10), with k = 2, suppose ∇fi(x) 
=
0 for i ∈ {1, 2}. Assume νp, given by Eq. (11), such that 〈νp, hj(x)〉 
= 0 for
j ∈ {1, . . . , m} and let x ∈ R

n such that hj(x) = 0 for j ∈ {1, . . . , m}. Then the
following holds:

(a) If ∇f1(x)T Q̃Q̃T ∇f2(x) > 0, then νp is a MODD of F at x.
(b) If ∇f1(x)T Q̃Q̃T ∇f2(x) = 0 and Q̃T ∇fi(x) 
= 0 for an index i ∈ {1, 2}, then

νp is a MODD of F at x.
(c) If ∇f1(x)T Q̃Q̃T ∇f2(x) < 0, then νp is no descent direction of F at x.

In particular, νp is a descent direction of F at x if ∇f1(x) and Q̃Q̃T ∇f2(x)
point to the same direction. In case ∇f1(x) and Q̃Q̃T ∇f2(x) point to the different
directions, νp is not a descent direction. This can be extended to the inequality
constrained case.
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4.2 Gradient-Free Descent Direction

In a next step we utilize GSA in order to obtain the MODD from Proposition 1
gradient free within the use of MOEAs. Assuming that x0 is a feasible solution,
first we apply GSA gradient-free realization similar to the unconstrained case to
approximate νL. Then, we proceed analogously to the equality constrained case,
in order to compute ν̃p, we apply a QR decomposition to H̃T := Ṽ (Ṽ T Ṽ )−1M ,
where M ∈ R

m×r is approximated via GSA. Define O := (q̃m+1, . . . , q̃n) , where
q̃i from i ∈ {m + 1, . . . , n} are the last n − m column vectors of the orthogonal
matrix Q obtain by the QR-decomposition of H̃T . Then

ν̃p := OOT ν̃L, (12)

is the orthogonal projection of ν̃p onto the set of feasible directions. Finally,
assuming the notation for Ṽ and dj

i as in Eq. (4), the following proposition
states the criteria for the application of our gradient-free proposal:

Proposition 2. [26] For a MOP of the form (10), suppose ∇fi(x) 
= 0 for i ∈
{1, 2}. Assume ν̃p, given by Eq. (12) such that 〈ν̃p, hj(x)〉 
= 0 for j ∈ {1, . . . , m}
and let x ∈ R

n such that hj(x) = 0 for j ∈ {1, . . . , m}. Then the following
statements hold:

(a) If d1T (Ṽ T Ṽ )−1Ṽ T OOT Ṽ (Ṽ T Ṽ )−1d2 > 0, then ν̃p is a MODD of F at x.
(b) If d1T (Ṽ T Ṽ )−1Ṽ T OOT Ṽ (Ṽ T Ṽ )−1d2 = 0 and diT (Ṽ T Ṽ )−1Ṽ T OOT Ṽ (Ṽ T

Ṽ )−1di 
= 0 for an index i ∈ {1, 2}, then ν̃p is a MODD of F at x.
(c) If d1T (Ṽ T Ṽ )−1Ṽ T OOT Ṽ (Ṽ T Ṽ )−1d2 < 0, then ν̃p is not a MODD F at x.

Note that the above propositions allow us to know whether the computed
direction is a descent direction without any additional cost. Thus, if it is a
descent direction we compute the new iterative point xi as follows: xi := x0 +
tν̃p, where t is a suitable step length. For the interleaving of this proposal into
a MOEA, we have decided to couple the proposed gradient-free MODD with
NSGA-III [7]. The reasons for this choice are (i) that the niching process imposed
to the population of NSGA-III induces the neighborhood selection needed for
the local search process, and (ii) that the ideas presented here also apply to
MOPs with more than two objectives when considering other MODDs like those
referred in Sect. 2, instead of the one in [16]. It is worth to notice that the niching
procedure is used to preserve solutions and also to define a neighborhood around
the given reference points. Then these r neighbor solutions allow the computation
of the proposed gradient-free MODD. Doing this, we guarantee keeping the best
solutions at every generation; also we anticipated an accelerated convergence
toward the solution by refining the suitable individuals.

Numerical Results. In the following, we compare the performance of the
hybrid algorithm against the base MOEA to assess the benefits of our proposal.
We tested both algorithms on equality constrained test BOPs defined in [17];
also, on the well known CTP test problems [6]. For all experiments we have



86 L. Uribe et al.

executed 30 independent runs using 50,000 and 15,000 function calls respectively
for each benchmark. For equality test functions (2 to 4) we use one hundred
decision variables. The comparison of the two algorithms, for each test problem,
is presented in Table 1. The performance indicators Δ2 [19] and the hypervolume
HV are used to measure algorithm effectiveness. We apply the Wilcoxon test
to validate the results; the obtained p−value for all test problems appears in
both tables; we consider α = 0.05. Table 1 shows that NSGA − III/GFDD
returns better values in 7 out of 10 test problems. Also, almost all the results are
statistically significant. Note that the difference between both algorithms is more
evident when dealing with inequality constrained test problems; we expected
this from the design of the refinement mechanism. Although the results of this
new hybrid algorithm are very promising, some aspects are still pending for
exploration. For example, we focused on the bi-objective case as the first attempt
of this approach, but we claim that the methods developed in this work can lead
to proposals that are able to deal with more objective functions. For example,
we can use the MODD defined in [9] instead of the one given by [16]. See [26]
for more details.

Table 1. Values obtained for Δ2 and HV performance indicators. These results are
averaged over 30 independent runs.

Problem Δ2 HV

NSGA-III NSGA-
III/GFDD

p-value NSGA-III NSGA-
III/GFDD

p-value

MOP-EQ1
(std.dev)

1.3993
(0.9608)

0.112
(0.1021)

7.39E-011 34.0588
(5.5815)

40.6781
(0.7866)

6.68E-011

MOP-EQ2
(std.dev)

1.1048
(0.1184)

1.0767
(0.0789)

0.0002 1.0043
(0.2142)

2.1877
(0.1655)

3.02E-011

MOP-EQ3
(std.dev)

1.0703
(0.0754)

0.9011
(0.0972)

6.53E-08 1.0073
(0.1413)

1.7256
(0.3642)

2.03E-09

CTP1
(std.dev)

0.0108
(0.0043)

0.0095
(0.0007)

3.51E-02 0.4675
(0.0014)

0.4677
(0.0012)

4.36E-02

CTP2
(std.dev)

0.0038
(0.0003)

0.0045
(0.0003)

3.50E-09 0.5137
(0.0004)

0.5129
(0.0003)

1.69E-09

CTP3
(std.dev)

0.0161
(0.0107)

0.0273
(0.0112)

0.0001 0.6069
(0.0025)

0.6098
(0.0145)

0.5392

CTP4
(std.dev)

0.1974
(0.1258)

0.1865
(0.1141)

0.5742 0.4463
(0.0464)

0.442
(0.0563)

0.9058

CTP5
(std.dev)

0.0113
(0.0044)

0.0109
(0.003)

0.0224 0.4814
(0.0035)

0.4836
(0.012)

0.0108

CTP6
(std.dev)

0.012
(0.0009)

0.022
(0.0007)

3.02E-011 2.078
(0.0027)

2.0669
(0.0014)

3.02E-011

CTP7
(std.dev)

0.0122
(0.0149)

0.0098
(0.0151)

0.0150 0.8759
(0.0035)

0.8763
(0.0042)

0.0351
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5 Application: Hybrid Algorithm for Constrained
Optimization

In this section we present how to solve a real world application (Garch with trend
model) using a hybrid algorithm. This model was proposed in [10]. Here, the
authors introduce the Garch with trend model in order to analyze the behavior
of several international and Mexican commodities. In particular, this work we
extend the Garch model [1] to test for a linear trend in the volatility. The main
aim of this work is to efficiently solve scalar optimization problems (SOPs) that
are related to Garch with trend models. The Newton method, which is usually
taken as solver for such problems, is not reliable. Reasons for this include that:
(a) the objective function is highly multi-modal resulting in many local minima;
(b) the set of feasible points is in many cases disconnected, in particular near to
the global solutions, due to the existence of the inequality constraints; and (c)
the performance of the Newton method on constrained problems is rather slow if
the initial starting point is not near to the solution. Figure 3 shows a particular
time series. The trend is shown by the red line. In addition, a spurious trend is
shown in blue which results from a local minimum of the related SOP. As such
spurious trends cannot be detected visually, it is hence desired to obtain the
global optimum of the given SOP.
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Fig. 3. Optimal Volatility (red line) and spurious Volatility (blue line) of a given time
series. The spurious volatility attains a local maximum, on the other hand the optimal
volatility attains the global maximum of the objective function (taken from [27]). (Color
figure online)

We propose in [27] the algorithm DE–N which is a hybrid of Differential
Evolution and the Newton method. We show the strength of the proposal on a
benchmark suite consisting of 44 monthly CPI series of agricultural commodities
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and two different series related to international prices1. Numerical results indi-
cate that DE–N accomplishes its task within a reasonable effort. Further, the
algorithm is highly competitive to the state-of-the-art. We test DE–N against
two global methods that are used to solve Garch related SOPs which are, how-
ever, not designed for the particular problem class (DE, Fuzzy Genetic Algo-
rithm (F-GA) and Monte Carlo Method (MC)). For all experiments we have
executed 30 independent runs using 60,000 and 100,000 function calls. The
success rate of all tested algorithms for 60,000 function evaluations is: DE-N:
86.36%, DE: 63.64%, F-GA: 0% and MC: 0%. and for 100,000 function evalua-
tions is: DE-N: 100%, DE: 100%, F-GA: 20.45% and MC: 25%. This proposal is
published in [27].

6 Conclusions and Future Work

We present an overview of our recently proposed constraint handling methods
and their corresponding hybrid algorithms. These methods have specific mech-
anisms that deal with the constraints in a wiser way without increasing their
cost. That is, we take advantage of suitable subspaces that allow a movement
along the PF. We notice that by utilizing the approximation strategies proposed
in GSA, we are capable of building these low-cost operators (SPM and gradient-
free MODD).

Another possibility for future work is to extend this approach to hybrid
algorithms that employ continuation methods (see [5]). These ideas guide us to
a new class of hybrid evolutionary algorithms for the fast and reliable numerical
treatment of general MOPs. For this, it is necessary to study more general cases
such as a general number of objectives, and the treatment of both types of
constraints. Also, we desire to apply this type of hybrid algorithms to real-world
problems.
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Abstract. Multi-objective Evolutionary Algorithm Based on Decom-
position (MOEA/D) is one of the dominant algorithmic frameworks
for multi-objective optimization in the area of evolutionary computa-
tion. The performance of multi-objective algorithms based on MOEA/D
framework highly depends on how a diverse set of single objective
subproblems are generated. Among all decomposition methods, the
Penalty-based Boundary Intersection (PBI) method has received par-
ticular research interest in MOEA/D due to its ability for controlling
the diversity of population for many-objective optimization. However,
optimizing multiple PBI subproblems defined via a set of uniformly-
distributed weight vectors may not be able to produce a good approxi-
mation of Pareto-optimal front when objectives have different scales. To
overcome this weakness, we suggest a new strategy for adjusting weight
vectors of PBI-based subproblems in this paper. Our experimental results
have shown that the performance of MOEA/D-PBI with adjusted weight
vectors is competitive to NSGA-III in diversity when dealing with the
scaled version of some benchmark multi-objective test problems.

Keywords: MOEA/D · Penalty-based Boundary Intersection (PBI) ·
Objective normalization

1 Introduction

Over the past twenty years, evolutionary algorithms (EAs) have became a
class of popular methodologies for solving multi-objective optimization problems
(MOPs). This is because the population-based mechanism enables EAs to find
multiple Pareto-optimal solutions in a single run. Unlike the fitness assignment
in single objective EAs, the fitness values of individuals in multi-objective evolu-
tionary algorithms (MOEAs) are often assigned in terms of Pareto dominance,
or decomposition (i.e., scalarization), or performance indicator. The representa-
tive MOEAs with above three schemes for fitness assignment are NSGA-II [1],
MOEA/D [2], and IBEA [3], respectively. In recent a few years, there has been
c© Springer Nature Switzerland AG 2019
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an increasing research interests on MOEA/D in the area of MOEAs due to its
ability to deal with various problem difficulties. For example, the combination of
MOEA/D with differential evolution (DE) is an efficient optimization strategy
when solving MOPs with complicated Pareto sets [4]. Compared with Pareto-
based MOEAs, MOEA/D is more suitable for solving many-objective optimiza-
tion problems since the selection pressure of population can be guaranteed by
optimizing single objective subproblems. So far, a large number of MOEAs for
many-objective optimization were developed on the basis of MOEA/D frame-
work, which employed the idea of decomposition for fitness assignment or diver-
sity control.

To find a set of nondominated solutions with good spread, diversity main-
tenance plays a very crucial role in MOEAs. In Pareto-based MOEAs, the
diversity of population is often controlled by calculating the density values of
all population members. The well-known examples of these density strategies
include crowding distance in NSGA-II, nearest neighboring method in SPEA2
[5], grid-based density estimation in PAES [6]. In contrast, MOEA/D main-
tains the diversity of population by optimizing multiple single objective sub-
problems with no density estimation. It should be pointed out that the original
version of MOEA/D made an assumption on decomposition that optimizing mul-
tiple subproblems can produce a set of well-distributed Pareto-optimal solutions
if the corresponding weight vectors for subproblems are appropriately chosen.
This assumption is reasonable when all objectives have similar scales and the
shape of Pareto-optimal front is relatively simple. In fact, some efforts have also
been made on improving the performance of MOEA/D in diversity. The most
commonly-used strategies on the improvement of diversity in MOEA/D include
objective normalization [2] and adjustment of weight vectors [7,8].

When solving the MOPs with continuous objective space, the weighted
Tchebycheff method is more preferred than other decomposition methods. This is
mainly because: (i) it is easy to understand and implement, and (ii) it is effective
for both convex Pareto-optimal front and concave Pareto-optimal front. How-
ever, the performance of weighted Tchebycheff method in diversity is not very
satisfactory on some benchmark multi-objective test problems, such as DTLZ1
and DTLZ2 [9], when a number of uniformly-distributed weight vectors are used
in decomposition. To overcome this weakness, MOEA/D is combined with the
PBI method, which calculates the projected distance for convergence and the
perpendicular distance for diversity. Very interestingly, the idea of PBI method
has been widely adopted to associate population members with search directions
in many MOEAs for many-objective optimization. However, the PBI method has
very poor performance on the MOPs with different objective scales, which was
reported in the paper on NSGA-III [10]. It is well-known that the weighted
Tchebycheff method with objective normalization can deal with the MOPs the
different objective scales [2]. Similarly, a modified PBI method with objective
normalization was studied in [11]. It should be mentioned that this modified
PBI method is sensitive to one extra parameter apart from the penalty factor.
In this paper, we investigate a new strategy to improve the performance of the
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PBI method in diversity without using objective normalization. The basic idea
in our proposed strategy is to adjust the weight vector of each PBI subproblem
based on the objective ranges of extreme solutions, which are optimal to one of
the objective functions. Our experimental results have shown that the proposed
PBI method is effective when solving the MOPs with different objective scales.

The rest of this paper is organized as follows. Section 2 introduces the basic
concepts in multi-objective optimization and provides a brief survey on the diver-
sity strategies in MOEA/D. In Sect. 3, the PBI method with adjusted weight vec-
tors is presented. In the following section, some experimental results are reported
to show the effectiveness of our proposed strategy. The final section concludes
this paper.

2 Related Works

In many real-world optimization problems, multiple conflicting objectives are
often involved. The mathematical formulation of an MOP can be written as
follows:

minimize F (x) = (f1(x), . . . , fm(x)) subject to x ∈ Ω (1)

where x is a decision vector, and Ω is a feasible region. The optimality of (1)
can be defined in terms of Pareto dominance [12]. The set of all Pareto solutions
is called Pareto set (PS). The set of their objective vectors is called Pareto front
(PF).

According to the relationship between decision and search, multi-objective
methods can be prior (decision before search), or posterior (decision after search),
or interactive (decision during search). Traditional multi-objective optimization
methods, such as weighted sum method and weighted Tchebycheff method, often
belong to prior methods. In each run of these methods, only one preferred solu-
tion is found. In contrast, posterior methods, such as MOEAs, aim at obtaining a
set of Pareto solutions with good distribution along Pareto front. To achieve this
goal, two major research issues, i.e., fitness assignment and diversity, must be
highly addressed. Among all MOEAs, the decomposition-based MOEAs, such as
MOEA/D, have received much attention over the past ten years. In MOEA/D,
a family of subproblems are defined via scalarization functions or subregions
with prior weight vectors, and optimized by evolving a population of individu-
als. When subproblems are single objective, a set of uniformly-distributed weight
vectors are often considered. This naive strategy for the settings of weight vectors
used in MOEA/D can work well on some normalized benchmark multi-objective
test problems, such as ZDT test problems.

In fact, the performance of MOEA/D in diversity depends on both the selec-
tion of decomposition methods and the settings of weight vectors. For example,
the weighted Tchebycheff method needs to consider the following optimization
problem.

minimize g(tch)(x|λ) = max
i∈{1,...,m}

λi|fi(x) − f∗
i | (2)

where
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– λ = (λ1, . . . , λm) is a normalized weight vector with λi ≥ 0, i = 1, . . . , m and∑m
i=1 λi = 1;

– (f∗
1 , . . . , f∗

m) is an ideal point satisfying f∗
i = minx∈Ω fi(x), i = 1, . . . , m.

The performance of Tchebycheff approach in diversity is highly related to the
scales of objectives. When all objectives have similar scales, a set of uniformly
distributed weight vectors are often generated by the simplex-lattice method, in
which each component of normalized weight vectors is taken the value from the
following set: {

0,
1
H

,
2
H

, . . . ,
H − 1

H
, 1

}

(3)

where H is a positive integer number. The total number of normalized weight vec-
tors determined in the above method is Cm+H−1

m−1 . The performance of MOEA/D
with Tchebycheff decomposition on the 3-objective normalized test problems,
such as DTLZ1 and DTLZ2, can be further improved by transforming weight
vectors in the following way:

λ̄i =
1

λi+δ
1

λ1+δ + 1
λ2+δ + · · · + 1

λm+δ

(4)

where δ is a very small positive number.
When dealing with different scales of objectives, the performance of the

weighted Tchebycheff method in MOEA/D can be improved by objective nor-
malization, which transforms the value of each objective function as follows:

f̄i(x) =
fi(x) − fmin

i

fmax
i − fmin

i

, i = 1, . . . ,m (5)

with
fmin

i = min
x∈PS

fi(x) and fmax
i = max

x∈PS
fi(x),

Consequently, the values of normalized objective function f̄i, i = 1, . . . ,m, belong
to [0,1].

The penalty boundary intersection method is the other commonly-used
decomposition method for continuous MOPs. It aims at minimizing the com-
bination of two distance functions formulated as follows:

g(pbi)(x, λ, z) = d1(F (x), λ, z) + θ · d2(F (x), λ, z) (6)

where

– d1 is the projected distance of F (x) along the reference line L as shown in
Fig. 1, and d2 is the perpendicular distance from F (x) to the reference line L.

d1(F (x), λ, z) =
|(F (x) − z)T λ|

‖λ‖ and d2(F (x), λ, z) =
∥
∥
∥
∥F (x) − z − d1

λ

‖λ‖
∥
∥
∥
∥
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Fig. 1. Penalty boundary intersection method for decomposition in MOEA/D.

– θ is a positive penalty factor. It plays an important role in striking the balance
between convergence and diversity in MOEA/D.

The existing experimental results have shown that MOEA/D with PBI performs
better than that with Tchebycheff in diversity when handling the MOPs with
simplex or spherical PF shapes, such as DTLZ1 and DTLZ2.

3 MOEA/D-PBI with Adjusted Weight Vectors

In this paper, we investigate both objective normalization and adjusted weight
vectors in MOEA/D with PBI, which uses the following baseline MOEA/D
framework:

– Step 0: Initialization:
• Initialize a set of N weight vectors {λ1, . . . , λN}, and calculate the neigh-

borhoods of subproblems {B1, . . . , BN};
• Initialize a population of N solutions {x1, . . . , xN}randomly, and calculate

their objective values {F (x1), . . . , F (xN )};
• Compute the reference point zj = mini∈{1,...,N} fj(xi), j = 1, . . . ,m.

– Step 1: Reproduction and Update:
• Select two indexes i1 and i2 from one neighborhood Bc with c ∈

{1, . . . , N} randomly;
• Generate an offspring solution y by recombining xi1 and xi2 via simulated

binary crossover and disturb it via polynomial mutation;
• Update the current solutions of subproblems in Bc with y in terms of

PBI-based criteria.
– Step 2: Stopping Criteria:

• If the total number of function evaluations reach the computational bud-
get, then output the population and stop; otherwise, go to Step 1 for
further iterations.
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To improve the performance of MOEA/D-PBI on the MOPs with different
objective scales, some efforts have also been done on the normalization of PBI
method. Similar to the normalization for the weighted Tchebycheff method, the
objective function F (x) can be normalized as follows [11]:

f̄i(x) =
fi(x) − fmin

i

fmax
i − fmin

i + ε
(7)

where ε is a very small positive number. Note that the difference between the
normalizations formulated in (5) and (7) lies in the use of ε, which can avoid the
zero denominator in (5).

Fig. 2. The distribution of intersection points between five weight vectors with even
spread and two PFs (i.e., PF1 with same scales and PF2 with different scales)

In this paper, we propose a new strategy to improve the performance of PBI
on the MOPs with different objective scales without objective normalization.
The main idea of our method is illustrated in Fig. 2. When dealing with the
linear PF with same scales in all objectives, such as PF1 in Fig. 2, PBI with a
set of uniformly-distributed weight vectors can obtain a set of Pareto solutions
with good spread. However, this is not the case for the PF2 with different scales
in two objectives. Assume that five points obtained by PBI with five weight
vectors λ1, . . . , λ5 are equally spaced in PF1, the corresponding five equally-
spaced solutions in PF2 can be obtained by optimizing the PBI subproblems
with five new weight vectors λ̄1, . . . , λ̄5 satisfying:

[
λ̄i
1

λ̄i
2

]

=
[

b × λi
1

a × λi
2

]

(8)

Based on our discussions above, a set of N weight vectors λ̄1, . . . , λ̄N used in
MOEA/D-PBI need to be transformed in the following way:

λ̄i
k =

λi
k × (fmax

k − fmin
k )

∑m
j=1(λ

i
j × (fmax

j − fmin
j ))

, k = 1, . . . , m (9)
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In this work, the values of fmin
i , i = 1, . . . ,m, are computed by:

fmin
k = min

x∈{x1,...,xN}
fk(x), k = 1, . . . ,m.

The values of fmax
k , k = 1, . . . ,m, are computed by finding intercepts of extreme

points as in the objective normalization of NSGA-III.

4 Computational Experiments

In this section, the settings of our experiments are first introduced. Then, the
experimental results are reported and discussed.

4.1 Experimental Settings

To verify the effectiveness of our proposed strategy for adjusting weight vec-
tors in MOEA/D-PBI, the rescaled versions of two benchmark multiobjective
test problems, i.e., DTLZ1 and DTLZ2, are considered in our experiments. The
changes of these MOPs are summarized as follows (Table 1):

Table 1. The changes in four rescaled benchmark multiobjective test problems. The
distance functions g are the same as those in the original benchmark MOPs.

Rescaled instance Formulation Dimensionality

DTLZ1/R

f1(x) = (1 + g(x)) × x1x2

f2(x) = (1 + g(x)) × 2 × x1(1 − x2)

f3(x) = (1 + g(x)) × 10 × (1 − x1)

n = 10

DTLZ2/R

f1(x) = (1 + g(x)) × cos(0.5x1π) cos(0.5x2π)

f2(x) = (1 + g(x)) × 2 × cos(0.5x1π) sin(0.5x2π)

f3(x) = (1 + g(x)) × 10 × sin(0.5x1π)

n = 10

In this work, three versions of MOEA/D-PBI and NSGA-III are considered
in performance comparison. The configurations of three MOEA/D-PBI variants
are as follows:

– MOEA/D-PBI-V1: No transformation on objective functions and no adjust-
ment of weight vectors;

– MOEA/D-PBI-V2: objective normalization in (7);
– MOEA/D-PBI-V3: adjustment of weight vectors in (9).

The population size is set to 300 for DTLZ1/R and DTLZ2/R. The penalty
factor θ in MOEA/D-PBI-V1 and MOEA/D-PBI-V2 is set to 5 while that in
MOEA/D-PBI-V3 is set to 20. The neighborhood size in all three MOEA/D-PBI
variants is set to 0.1 × N . The total number of generations is set to 500.
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Fig. 3. The final populations found by three MOEA/D-PBI variants and NSGA-III on
DTLZ1/R in one run.
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Fig. 4. The final populations found by three MOEA/D-PBI variants and NSGA-III on
DTLZ2/R in one run.
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4.2 Experimental Results

The final populations found by four algorithms, i.e., MOEA/D-PBI-V1,
MOEA/D-PBI-V2, MOEA/D-PBI-V3, and NSGA-III, on DTLZ1/R and
DTLZ2/R are plotted in Figs. 3 and 4. From the results reported in these two
figures, we can have the following observations:

– On DTLZ1/R, both MOEA/D-PBI-V1, i.e., the original MOEA/D with PBI,
and MOEA/D-PBI-V2 with objective normalization obtained part of Pareto
solutions in the PF. Neither of these two MOEA/D-PBI variants found the
whole PF. However, MOEA/D-PBI-V1 performed better than MOEA/D-
PBI-V2 in diversity on this instance. In this case, the use of objective nor-
malization in MOEA/D-PBI didn’t play a positive role in enhancing the per-
formance in diversity. The reason might be due to the difficulty in minimizing
the multimodal distance function in DTLZ1/R. As a result, the range of func-
tion values in one objective could be very tiny. In contrast, both MOEA/D-
PBI-V3 and NSGA-III found a very good approximation of the whole PF on
this instance.

– On DTLZ2/R, the final populations found by all four algorithms except
MOEA/D-PBI-V1 approximate the whole PF very well both in conver-
gence and in diversity. Again, MOEA/D-PBI-V1 with no objective normal-
ization and no adjustment of weight vectors failed to find the whole PF. The
good performance of MOEA/D-PBI-V2 on this instance is due to the suc-
cess in minimizing the unimodal distance function in DTLZ2/R. However,
MOEA/D-PBI-V3 is clearly superior to MOEA/D-PBI-V1 on this instance.
Both MOEA/D-PBI-V3 and NSGA-III are competitive in approximating the
whole PF of DTLZ2/R.

The above experimental results indicate that the performance of MOEA/D-PBI
with objective normalization in diversity is less robust than that of MOEA/D-
PBI with our proposed adjusted weighting method. It should also be pointed out
that a large value of the penalty factor θ must be considered in MOEA/D-PBI
with adjusted weight vectors for guaranteeing good diversity of final population.

5 Conclusions

This paper studied a new strategy for adjusting weight vectors in MOEA/D
with PBI decomposition. The main idea of our proposed strategy is to modify
the component of each weight vector by multiplying a factor, which corresponds
to the range of associated objective values of solutions in current population.
Our experimental results have shown MOEA/D-PBI with adjusted weight vec-
tors has the ability to deal with the MOPs with different objective scales, and
its performance is competitive to that of NSGA-III on the rescaled 3-objective
benchmark test problems. In our future work, the application of MOEA/D-PBI
with our proposed weighting method for many-objective optimization will be
investigated.
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Abstract. Differential Evolution (DE) is one the most popular evolu-
tionary algorithm (EA) to handle optimization problems with an efficient
performance. Due to its success and popularity, it has been utilized by
researchers in multi-objective optimization, so there are various multi-
objective versions of DE. Similar to other population-based algorithms,
DE uses a mutation operator to produce the new individual for the
next generation. Although the original version of DE randomly selects
three candidate solutions from the population without considering any
ordering in its mutation scheme, this paper proposes ordering strategy
of individuals which influences the performance of the algorithm. An
enhanced version (GDE4) of Generalized Differential Evolution (GDE)
with ordered mutation operator is designed. GDE is a multi-objective
evolutionary algorithm based on DE. The proposed approach orders
candidate individuals using popular ranking measures of multi-objective
optimization problems to utilize the ordered solutions in mutation opera-
tor. The best one of three randomly selected solutions is considered as the
parent, and two others are applied as second and third candidate solu-
tions in DE mutation, respectively. Unlike most of the multi-objective
methods which consider multi-objectiveness during the selection process,
the proposed method improves the performance using a modification on
the genetic operator. The standard benchmark functions and measures
are adopted to evaluate the performance of GDE4. The conducted exper-
iments are on 5, 10, and 15 objectives for the utilized benchmark set. The
comparison results reveal that GDE4 algorithm outperforms GDE3, the
last version of GDE.
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1 Introduction

Since many real-world problems involve more than one objective, solving multi-
objective optimization problems is considered as an important subject in many
fields of science and engineering. The main issue that makes such problems
harder than single objective problems is that how it is possible to compare solu-
tions with two or more conflicting objectives. Evolutionary computation (EC)
as a powerful method has been used to solve multi-objective optimization prob-
lems. There are a wide variety of single objective evolutionary algorithms (EA’s)
which have been adapted for multi-objective schemes [1,2]. Differential evolution
(DE) is one of them which its simplicity offers a great characteristic to apply
it in single- and multi-objective optimization. Generalized differential evolution
(GDE) [3] is a multi-objective version of DE. There are some research works
to improve GDE to be more successful in the optimization. The third version
(GDE3) [4] was proposed to handle all types of multi-objective optimization
problems including non-constrained and constrained ones.

Creation of a new individual in population-based algorithms, is one of the
most important steps to make the generation more progressive. So selecting
parents can influence producing better population and increasing elitism in the
next generations. DE mutation which uses three randomly selected individuals
from the population to create a new offspring. For single objective DE, there are
some designed schemes of ordered mutation based on objective function value
which have shown significant improvement in obtained results [5–7].

GDE3 also uses DE mutation operator, so ordered selection can improve
the results of multi-objective optimization. The difficulty of ordered selection
in multi-objective optimization case compared to the single objective one is the
defining strategy of ranking of three selected individuals. Since there are two or
more conflicting objective values, decision making in which candidate solutions
are better, is sophisticated. This paper presents a version of GDE3 with ordered
mutation (GDE4) for multi-objective optimization problems. Three selected can-
didate solutions are sorted based on two known measures, non-dominating sort-
ing and crowding distance [8]. The best one is used as a base vector, and two other
ranked candidate solutions are considered as the second and third individuals in
DE mutation of GDE3. Since optimality doesn’t have a straightforward defini-
tion, most of the multi-objective algorithms consider multi-objectiveness during
their selection process. They concentrate on the proposing a method to rank
candidate solutions while the proposed method improves multi-objectiveness in
generative operator. Experiments show an enhancement of results in GDE4 com-
pared to GDE3 in standard benchmarks. The organization of the rest of this
paper is as follows. Section 2 gives a brief background review of GDE3 algo-
rithms. Section 3 describes the proposed scheme in detail. Section 4 presents a
simple algorithm and the experimental results to support discussion on the pro-
posed scheme. Finally, the paper is concluded in Sect. 5.
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2 Background Review

Many real-world optimization problems have more than one conflicting objec-
tives to be optimized. The definition of the optimality is not as simple as
the single-objective optimization. Therefore it is necessary to make a tradeoff
between objective values. There are some well-known concepts to compare two
candidate solutions in the multi-objective problem space. Since this paper uti-
lizes non-dominated sorting and crowding distance to order candidate solutions
for DE mutation scheme, in this section, we define these measures in detail. A
minimization multi-objective optimization problem is defined as follows:

Minimize F (x) = [f1(x), f2(x), ..., fM (x)] Li ≤ xi ≤ Ui, i = 1, 2, ..., d (1)

where M is the number of objectives, d is the number of variables (dimension)
of solution vector, xi is in interval [Li, Ui]. fi represent the objective function
which should be minimized.

If x = (x1, x2, ..., xd) and x́ = (x́1, x́2, ..., x́d) are two vectors in search space,
x dominates x́ (x � x́) if and only if:

∀i ∈ {1, 2, ..., d}, f(xi) ≤ f(x́i) ∧ ∃i ∈ {1, 2, ..., d} : f(xi) < f(x́i) (2)

It defines optimality for solutions in objective space. Candidate solution x is
better than x́ if it is not bigger than x́ in any of objectives and at least it has
a smaller value in one of the objectives. All solutions that are not dominated
using none of other solutions in the population called non-dominated solutions
and they create the Pareto front set.

Non-dominated sorting is an algorithm to rank obtained solutions to differ-
ent levels in the processing of multi-objective optimization. All non-dominated
solutions are in the first rank and then the second rank is made of solutions
which are non-dominated by removing the first rank from the population. This
process is repeated until all solutions are ranked using this concept.

Crowding distance is another measure which usually completes comparison
of solutions along with non-dominating sorting. It is a measure to compute the
diversity of obtained solutions by calculating the distance between adjacent solu-
tions. In the beginning, the set of solutions in the same rank are sorted according
to each objective function value in ascending order. To get crowding distance, the
difference between neighbors objective values of each solution is computed. This
computation is done for all objectives, then the sum of individual distance values
corresponding to each objective is considered as overall crowding distance. The
bigger value of crowding distance for a vector in population shows less diversity
around that vector.

2.1 Generalized Differential Evolution

The DE is an evolutionary algorithm originally for solving continuous optimiza-
tion problems which improves initial population using the crossover and muta-
tion operations. Creation of new generation is done by a mutation and a crossover
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operator. The mutation operator for a gene, j, is defined as follows:

vj,i = xj,i1 + F . (xj,i2 − xj,i3) (3)

Applying this operator generates a new D dimensional vector, vi, using three
randomly selected individuals, xj,i1 , xj,i2 , and xj,i2 from the current popula-
tion. Parameter F , mutation factor, scales difference between two vectors. The
crossover operator changes some or all of the genes of parent solution based on
Crossover Rate (CR). Similar to other population-based algorithms, the single
objective version of DE starts with a uniform randomly generated population.
Next generation is created using mentioned mutation and crossover operations;
then best individual (between parent and new individual) is selected based on
their objective values; which is called a greedy selection. It iterates until meeting
stopping criterion such as a predefined number of generations.

There are also several variants of DE algorithms for multi-objective optimiza-
tion. The first version of Generalized Differential Evolution (GDE) [3] changed
the DE selection mechanism for producing the next generation. The idea in
the selection was based on constraint-domination. The new vector is selected
if it dominates the old vector. GDE2 [9], the next version of multi-objective
DE algorithm, added the crowding distance measure to its selection scheme. If
both vectors are non-dominating each other, the vector with a higher crowding
distance will be selected.

The third version of GDE (GDE3) extends DE algorithm for multi-objective
optimization problems with M objectives and K constraints. DE operators are
applied using three randomly selected vectors to produce an offspring per parent
in each generation. The selection strategy is similar to the GDE2 except in two
parts: 1. Applying constraints during selection process. 2. The non-dominating
case of two candidate solutions. Selection rules in GDE3 are as follows: when
old and new vectors are infeasible solutions, each solution that dominates other
in constraint violation space is selected. In the case that one of them is feasible
vector, feasible vector is selected. If both vectors are feasible, then one is selected
for the next generation that dominates other. In non-dominating case, both
vectors are selected. Therefore, the size of the population generated may be
larger than the population of the previous generation. If this is the case, it is then
decreased back to the original size. Selection strategy for this step is similar to
NSGA-II algorithm [10]; it sorts individuals in the population, based on the non-
dominated sorting algorithm and crowding distance measure. Similar to other
population-based multi-objective algorithms, the selected individuals go to the
next generation to continue optimization processing. The common point about
all of these versions is the utilizing randomly selected individuals to produce a
new vector using the main mutation operator of DE which will be modified in
our proposed algorithm in this paper. So, even the mutation scheme would be
tailored to support multi-objective optimization strategy.
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2.2 Existing Single Objective Differential Evolution with Ordered
Mutation

In some versions of DE algorithm, the ordering of the candidate solutions is uti-
lized for the mutation operator to enhance the performance of DE algorithm for
solving the single objective optimization problems. A new scheme of mutation
operator, DE/2-Opt, was defined in [5] which sorts two first candidate solutions
in the mutation operator according (for minimization case) to their objective
function value in ascending order to place as xi1 and xi2 in the mutation oper-
ator as:
‘DE/2-Opt/1’:

vi =

{
xi1 + F . (xi2 − xi3) if f(xi1) <= f(xi2)
xi2 + F . (xi1 − xi3) if f(xi2) < f(xi1)

(4)

‘DE/2-Opt/2’:

vi =

{
xi1 + F . (xi2 − xi3 + xi4 − xi5) if f(xi1) <= f(xi2)
xi2 + F . (xi1 − xi3 + xi4 − xi5) if f(xi2) < f(xi1)

(5)

In [6], the winner mutation (DE/win) was proposed which uses the best candi-
date of three selected random candidate solutions for the base vector as follows:
‘DE/win/1’:

vi =

⎧⎪⎨
⎪⎩
xi1 + F . (xi2 − xi3) if f(xi1) <= f(xi2), f(xi3)
xi2 + F . (xi1 − xi3) if f(xi2) < f(xi1), f(xi3)
xi3 + F . (xi2 − xi1) if f(xi3) < f(xi2), f(xi1)

(6)

In [7], a modified DE algorithm with the order mutation scheme was proposed
which three selected random solutions are sorted in ascending order according
to their fitness values for placing as vectors (xi1 , xi2 , and xi3) in the mutation
operator.
‘DE/order/1’:

vi = xi1 + F . (xi2 − xi3)s.t. f(xi1) <= f(xi2) <= f(xi3) (7)

Where f(x) indicates the objective function. This method outperforms previous
mentioned DE schemes.

3 Proposed Algorithm: The Generalized Differential
Evolution with the Ordered Mutation (GDE4)

The proposed enhanced version of GDE3 method has the same components of
GDE3 method except for the mutation operator in the DE algorithm. In this
paper, a new mutation scheme is proposed according to a defined order for the
candidate solutions involved in the mutation of the DE algorithm. GDE3 uses the
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DE/rand/1/bin method to solve problems with M objectives and K constraints.
The basic mutation, in the classical DE (DE/rand/1/bin) generates the mutant
vector as a linear combination of three selected individual candidate solutions
from the current population as follows:

vi = xi1 + F . (xi2 − xi3) (8)

Where i1, i2, i3 are different random integer numbers within [1, NP ] and NP is
the population size. In [7], an ordered mutation scheme was proposed to improve
the performance of DE algorithm and we change this mutation scheme by defin-
ing a new order of the randomly selected candidate solutions for the problems
with M objectives. In the GDE4, we propose an order mutation scheme which
uses non-dominance and crowding distance measures to sort three different ran-
dom candidate solutions to set as vectors in the mutation scheme. The sorted
candidate solutions can be called as the best (xb), the second best (xsb), and the
worst candidate (xw) solutions.

In the following, we explain how the three randomly selected candidate solu-
tions are sorted. First, all candidate solutions are sorted by non-dominated sort-
ing method [10] and they are associated with their corresponding non-dominated
ranks (Rankd) obtained from non-dominated sorting. Random candidate solu-
tions can be faced with four possible cases based on their non-dominance ranks:

1. In the first case, all three candidate solutions are in different Pareto fronts;
therefore, they are set to xb, xsb, and xw to their non-dominated ranks. The
ordered mutation scheme (DE/order/1) is defined as follows: ‘DE/order/1’:

vi = xib + F . (xisb − xiw)
s.t. Rankd(xib) < Rankd(xisb) < Rankd(xiw)

2. In this case, two candidate solutions are in the same Pareto front, so we
compute crowding distance (CD) measure to sort these solutions. The ordered
mutation scheme (DE/order/1) is defined as two possible cases:
(a) ‘DE/order/1’:

vi = xib + F . (xisb − xiw)
s.t. Rankd(xib) = Rankd(xisb) < Rankd(xiw)

CD(xib) > CD(xisb)

(b) ‘DE/order/1’:

vi = xib + F . (xisb − xiw)
s.t. Rankd(xib) < Rankd(xiw) = Rankd(xisb)

andCD(xisb) > CD(xiw)
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3. If all three random candidate solutions are in the same Pareto front, they
are sorted based on their crowding distance (CD) to place in the mutation
scheme. The ordered mutation scheme (DE/order/1) is defined as follows:
‘DE/order/1’:

vi = xib + F . (xisb − xiw)
s.t. CD(xib) > CD(xisb) > CD(xiw)

The proposed method uses the order mutation scheme for DE algorithm in
GDE3, and other components remain untouched. Generalized Differential Evo-
lution with the ordered mutation (GDE4) suggests that placing the best solution
of three selected candidate solutions according to two measures, non-dominance
and crowding distance, as the base vector causes to generate more promising trial
solutions. Also, we use the worst candidate solution of three candidate solutions
as the third vector in the mutation which causes the new trial candidate solu-
tion to get away from the worst candidate and move toward the second best
candidate solution.

Fig. 1. An example of variable and objective spaces for ordered DE mutation.

Figure 1 presents variable and objective spaces in a case of ordered mutation
and clarifies the benefits of this strategy in creating a promising new solution.
As it is shown, for a parent solution, xi, three randomly selected candidate
solutions are ordered based on the proposed strategy in GDE4 algorithm. In
this case, the first candidate solution, xi1 is in the first rank of non-dominated
sorting, so it is considered as the base vector (best). xi2 and xi3 are in the same
rank therefore they ordered according to crowding distance. xi2 has a bigger
crowding distance comparing to xi3, so they are ordered as second (better) and
third vector (worst) in mutation operator. Right sub-figure in Fig. 1 shows the
operation of mutation on selected vectors. F . (xi2 −xi3) leads new vector moves
toward to better solution and gets away from the worst while F is considered 1.
In this example, better solution is one with a bigger crowding distance. Moving
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toward this solution causes the creation of a vector in a less crowded region
to have a well-distributed Pareto front. Then summation operation on xi1 and
F . (xi2 − xi3) causes the final resulted vector goes toward the best candidate
solution. So it is expected to generate a more promising candidate solution.

Table 1. Main properties of the test functions [11].

Problem Properties

MaF1 Linear

MaF2 Concave

MaF3 Convex, multimodal

MaF4 Concave, multimodal

MaF5 Convex, biased

MaF6 Concave, degenerate

MaF7 Mixed, disconnected, multimodal

MaF8 Linear, degenerate

MaF9 Linear, degenerate

MaF10 Mixed, biased

MaF11 Convex, disconnected, nonseparable

MaF12 Concave, nonseparable, biased, deceptive

MaF13 Concave, unimodal, nonseparable, degenerate

MaF14 Linear, partially separable, large scale

MaF15 Convex, partially separable, large scale

4 Experiment

GDE4 is evaluated with a set of test problems and compared to GDE3 regarding
multi-objective evaluation measures. The same settings are considered for two
algorithms. The mutation amplification factor (F) and crossover rate (CR) are
set to 0.5 and 1, respectively. For population size and maximum evaluation num-
ber, value 100 and 3000 ∗D are considered. To evaluate the performance of the
proposed algorithm, we use the inverse generational distance (IGD) metric [12–
14], which measures the convergence and the diversity of the obtained Pareto-
optimal solutions at the same time. The IGD metric measures the distances
between each solution composing the Pareto-optimal front and the obtained
solution. The IGD metric is defined as follow:

IGD =

√∑n

i=1
di

n
(9)
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Where n is the number of solutions in the Pareto-optimal front, and di is the
Euclidean distance (measured in the objective space) between each point of
the Pareto-optimal front (reference Pareto front) and the nearest member of
obtained solution. Also, all algorithms were executed 51 times independently,
and the best, the worst, the median, and the average results of each algorithm
are reported. Additionally, the Wilcoxon’s signed rank statistical test with a
confidence interval of 95% is conducted to evaluate the statistical significance of
the obtained results. We have utilized GDE3 algorithm in the MATLAB based
MOEA platform (PlatEMO) [15] and it was modified by changing its mutation
operator to the order mutation as explained for the GDE4.

In the experiments, fifteen test problems are used to evaluate the perfor-
mance of the proposed algorithm from the MaF test suite which is designed
for the assessment of MOEAs in the CEC 2017 competition on evolutionary
many-objective optimization [11]. These benchmark functions have many prop-
erties to resemble various real-world scenarios such as multi-modal, disconnected,
degenerate, and/or nonseparable, and having an irregular Pareto front shape, a
complex Pareto set or a large number of decision variables. The main properties
of functions are detailed in Table 1. Experiments are performed on 5, 10 and 15
objective functions.

Figure 2 illustrates the distribution of obtained solutions by GDE4 and GDE3
for MFa11 test problem in different number of objectives. The diagrams are
resulted based on median value of IGD. As the figure shows both algorithms
are able to find distributed solutions with same performance when the number
of objectives is 5. However, as the number of objectives of the test problem
increases, GDE4 performs significantly better to find well-distributed solutions.
The difference between diversity of obtained solutions using GDE3 and GFE4 is
more remarkable with 15 objectives.

The results of IGD metric for two comparing methods are summarized in
Table 2. Better mean of IGDs are highlighted based on Wilcoxon’s signed rank
statistical test. It can be seen from the tables, on functions with five objectives,
GDE4 can achieve the better results than GDE3 on seven functions while GDE3
is better than GDE4 on five functions, and they are similar results on three
functions. On functions with ten objectives, GDE4 can achieve the better results
than GDE3 on ten functions while GDE3 can obtain better results than GDE4 on
three functions; and they are similar results on two functions. On functions with
fifteen objectives, GDE4 outperforms GDE3 on nine functions while GDE3 can
obtain better results than GDE4 on five functions; and they are similar results
on one functions. Results show that by increasing the number of objectives in
the many-objective functions, GDE4 preforms significantly better than GDE3
regarding statistical test. Furthermore, comparing results according to median
and best IGD confirms better performance of GDE4. Median IGDs of GDE4 are
better in 9, 11 and 9 out of 15 functions for 5, 10, and 15 objective problems
respectively comparing to GDE3.

According to best IGDs, GDE4 achieve better results in 7, 9, and 8 out of
15 functions for 5, 10, and 15 objective problems respectively. So the order of
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GDE3, M=5 GDE4, M=5

GDE3, M=10 GDE4, M=10

GDE3, M=15 GDE4, M=15

Fig. 2. Comparison of obtained Pareto fronts by GDE3 and GDE4 for MFa11 test
problem in different dimensions.

solutions in DE mutation operator improves the search processing in many-
objective optimization problems using generating better (non-dominated) solu-
tions. The generated solution is expected to create in place close to the best
solution in term of the rank of non-dominated sorting and the less crowded
region. As another advantage of the proposed method, it can be clarified that
this improvement is achieved without any extra objective function evaluation.
The method needs only ordering of three existing solutions, so there isn’t over-
head computation for applying mutation comparing to previous version.
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Table 2. Results of GDE3 and GDE4 algorithms for the functions MaF1-MaF15. The
highlighted entries are significantly better.

Function #Objectives=5 #Objectives=10 #Objectives=15
GDE3 GDE4 GDE3 GDE4 GDE3 GDE4

MaF1

Mean 0.2052 0.1696 0.3529 0.3015 0.3718 0.3220
Median 0.2049 0.1700 0.3542 0.3006 0.3676 0.3207
Worst 0.2244 0.1843 0.3687 0.3096 0.4312 0.3489
Best 0.1923 0.1570 0.3346 0.2894 0.3510 0.3038

MaF2

Mean 0.1502 0.1414 0.1691 0.1717 0.1960 0.1639
Median 0.1448 0.1393 0.1691 0.1718 0.1962 0.1638
Worst 0.2016 0.2059 0.1783 0.1802 0.2159 0.1698
Best 0.0983 0.1006 0.1619 0.1630 0.1774 0.1580

MaF3

Mean 2.9848e+4 1.1454e+4 8.9508e+4 4.7488e+4 6.3820e+6 7.6529e+4
Median 3.0976e+4 9.6593e+3 6.5095e+04 3.8852e+4 1.2809e+5 6.0298e+4
Worst 5.1531e+4 2.9545e+4 2.6107e+5 1.2766e+5 1.9288e+8 2.5940e+5
Best 303.1595 4.0487e+3 3.3775e+4 1.2146e+4 5.5970e+4 9.7001e+3

MaF4

Mean 185.6015 154.0321 1.8330e+4 6.5089e+3 6.1292e+5 1.7718e+5
Median 132.2845 157.4819 1.7994e+4 5.7372e+3 5.6660e+5 1.6946e+5
Worst 558.9949 272.2185 3.8579e+4 1.6750e+4 1.2662e+6 4.3676e+5
Best 2.8850 56.2430 73.5666 1.3418e+3 5.1928e+3 4.2660e+4

MaF5

Mean 3.4354 2.4941 81.7945 52.6467 1.6891e+3 1.2131e+3
Median 3.4658 2.5029 78.1735 52.7151 1.7065e+3 1.2137e+3
Worst 4.1599 2.9408 130.9308 66.7699 2.2733e+3 1.6161e+3
Best 2.9288 2.0434 58.0378 43.6443 1.3950e+3 1.0154e+3

MaF6

Mean 0.0043 0.0042 0.5219 0.2241 0.3858 0.3430
Median 0.0043 0.0041 0.4389 0.2496 0.3418 0.3425
Worst 0.0045 0.0049 1.2602 0.3195 0.7446 0.3474
Best 0.0039 0.0038 0.3101 0.0025 0.3415 0.3415

MaF7

Mean 0.5699 0.4674 1.8627 1.6517 2.0686 3.2783
Median 0.5701 0.4653 1.8428 1.5986 2.0761 3.0007
Worst 0.6658 0.5433 2.0059 2.4190 2.1438 5.5710
Best 0.4885 0.3954 1.7207 1.4164 1.9249 2.1578

MaF8

Mean 0.1352 0.5757 0.1420 1.3324 0.1414 2.5921
Median 0.1342 0.5621 0.1417 1.2636 0.1417 2.2632
Worst 0.1618 0.9057 0.1505 2.5778 0.1463 7.5285
Best 0.1214 0.3688 0.1363 0.7950 0.1349 1.2687

MaF9

Mean 0.7077 1.1437 64.3750 53.1231 0.8668 9.3834
Median 0.7029 1.1106 46.9070 45.8173 0.8606 12.0917
Worst 0.7417 1.7796 173.4796 155.0931 1.0069 15.3572
Best 0.6873 0.8050 12.3038 2.4595 0.7851 1.7868

MaF10

Mean 2.3053 1.9520 4.0770 3.0795 4.8911 4.0115
Median 2.2896 1.9442 4.1003 3.0895 4.9108 4.0144
Worst 2.5162 2.0167 4.2786 3.1721 5.0849 4.1371
Best 2.1792 1.9116 3.7678 3.0070 4.7297 3.8524

MaF11

Mean 0.9947 0.6098 1.6504 0.8708 1.9490 1.4747
Median 0.9777 0.5826 1.7212 1.0780 2.2806 1.8268
Worst 1.1922 0.9363 2.2222 1.6269 3.0181 2.2427
Best 0.8443 0.4961 0.5462 0.1776 0.7014 0.2508

MaF12

Mean 1.5934 1.6983 5.7623 5.4441 8.6395 7.7793
Median 1.5959 1.7319 5.7621 5.4454 8.6360 7.8252
Worst 1.7707 1.8636 5.8966 5.6727 8.9330 8.0114
Best 1.4322 1.5049 5.5960 4.9936 8.3844 7.3945

MaF13

Mean 0.1869 0.1209 0.1232 0.1071 0.1045 0.0953
Median 0.1748 0.1219 0.1204 0.1063 0.1017 0.0945
Worst 0.2502 0.1308 0.1647 0.1235 0.1500 0.1129
Best 0.1372 0.1045 0.1089 0.0928 0.0921 0.0845

MaF14

Mean 0.9794 25.9004 8.0794 25.5172 3.1449 41.3429
Median 0.9796 28.4090 8.3299 23.0875 1.0996 39.7949
Worst 0.9796 45.2110 18.2883 48.8730 12.0864 59.5061
Best 0.9774 8.0826 1.9220 11.4911 1.0963 27.2051

MaF15

Mean 9.9889 11.2497 56.4160 53.1113 50.6759 72.4516
Median 9.2002 11.2324 49.1652 51.9795 53.6135 72.7500
Worst 15.1699 16.8106 108.9222 73.1437 90.7196 84.7248
Best 6.5229 6.6440 32.3527 40.5497 23.5498 59.5537

5 Conclusion Remarks

This paper proposes GDE4, a new version of Generalized Differential Evolution
algorithm for multi-objective optimization problems. The ordering of randomly
selected candidate solutions for DE mutation operator is investigated. Method
sorts three solutions at first, based on non-dominated sorting approach and then
crowding distance measure to utilize as first, second and best solutions in DE
mutation to generate a new individual exhibiting better fitness. DE summation
and subtraction operators cause moving of new solution toward the first and
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second vectors and getting away from the third vector. So ordered vectors has
inherited the quality of best and better candidate solutions. The performance
of the method is evaluated using standard benchmark functions of CEC 2017
competition on evolutionary many-objective optimization problems. The results
indicate that the proposed algorithm outperforms GDE3 which puts solutions in
mutation operator randomly in most test problems. In the future, it is intended
to investigate new strategies to order candidate solutions, such as the distance
of each vector from an ideal point.

References

1. Ali, M., Siarry, P., Pant, M.: An efficient differential evolution based algorithm for
solving multi-objective optimization problems. Eur. J. Oper. Res. 217(2), 404–416
(2012)

2. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45356-3 83

3. Lampinen, J.: DEs selection rule for multiobjective optimization. Technical report,
Lappeenranta University of Technology, Department of Information Technology,
pp. 03–04 (2001)

4. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differ-
ential evolution. In: The 2005 IEEE Congress on Evolutionary Computation, vol.
1, pp. 443–450. IEEE (2005)

5. Chiang, C.W., Lee, W.P., Heh, J.S.: A 2-opt based differential evolution for global
optimization. Appl. Soft Comput. 10(4), 1200–1207 (2010)

6. Yeh, M.F., Lu, H.C., Chen, T.H., Huang, P.J.: System identification using differ-
ential evolution with winner mutation strategy. In: 2014 International Conference
on Machine Learning and Cybernetics (ICMLC), vol. 1, pp. 77–81. IEEE (2014)

7. Mahdavi, S., Rahnamayan, S., Karia, C.: Analyzing effects of ordering vectors in
mutation schemes on performance of differential evolution. In: 2017 IEEE Congress
on Evolutionary Computation (CEC), pp. 2290–2298 (2017). https://doi.org/10.
1109/CEC.2017.7969582

8. Seada, H., Deb, K.: Non-dominated sorting based multi/many-objective optimiza-
tion: two decades of research and application. In: Mandal, J.K., Mukhopadhyay,
S., Dutta, P. (eds.) Multi-Objective Optimization, pp. 1–24. Springer, Singapore
(2018). https://doi.org/10.1007/978-981-13-1471-1 1

9. Kukkonen, S., Lampinen, J.: An extension of generalized differential evolution for
multi-objective optimization with constraints. In: Yao, X., et al. (eds.) PPSN 2004.
LNCS, vol. 3242, pp. 752–761. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30217-9 76

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

11. Cheng, R., et al.: A benchmark test suite for evolutionary many-objective opti-
mization. Complex Intell. Syst. 3(1), 67–81 (2017)

12. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in
evolution strategies: the covariance matrix adaptation. In: 1996 Proceedings of
IEEE International Conference on Evolutionary Computation, pp. 312–317. IEEE
(1996)

https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1109/CEC.2017.7969582
https://doi.org/10.1109/CEC.2017.7969582
https://doi.org/10.1007/978-981-13-1471-1_1
https://doi.org/10.1007/978-3-540-30217-9_76
https://doi.org/10.1007/978-3-540-30217-9_76


GDE4: The Generalized Differential Evolution with Ordered Mutation 113

13. Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems using
differential evolution. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol.
3339, pp. 861–872. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30549-1 74

14. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

15. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evo-
lutionary multi-objective optimization [educational forum]. IEEE Comput. Intell.
Mag. 12(4), 73–87 (2017)

https://doi.org/10.1007/978-3-540-30549-1_74
https://doi.org/10.1007/978-3-540-30549-1_74


Multi-objective Techniques
for Single-Objective Local Search:

A Case Study on Traveling
Salesman Problem

Jialong Shi1(B), Jianyong Sun1, and Qingfu Zhang2,3

1 School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
{jialong.shi,jy.sun}@xjtu.edu.cn

2 Department of Computer Science, City University of Hong Kong,
Hong Kong, Hong Kong

3 Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
qingfu.zhang@cityu.edu.hk

Abstract. In this paper, we show that the techniques widely used in
multi-objective optimization can help a single-objective local search pro-
cedure escape from local optima and find better solutions. The Trav-
eling Salesman Problem (TSP) is selected as a case study. Firstly the
original TSP f0 is decomposed into two TSPs f1 and f2 such that
f0 = f1 + f2. Then we propose the Non-Dominance Search (NDS)
method which applies the non-domination concept on (f1, f2) to guide a
local search out of the local optima of f0. In the experimental study, NDS
is combined with Iterated Local Search (ILS), a well-known metaheuris-
tic for the TSP. Experimental results on some selected TSPLIB instances
show that the proposed NDS can significantly improve the performance
of ILS.

Keywords: Multi-objective optimization ·
Traveling Salesman Problem · Local search · Metaheuristic ·
Iterated Local Search

1 Introduction

A single-objective problem is defined as follows:

minimize f(x)
subject to x ∈ S,

(1)

where f : S → R is the objective function and S is the solution space. When S is
a finite set, we face a Combinatorial Optimization Problem (COP). For COPs,
many state-of-the-art algorithms use local search as a basic building block. How-
ever, a local search procedure stops at locally optimal solutions. When the objec-
tive function in Eq. (1) becomes an objective vector F which contains more than
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one objective, we face a multi-objective problem. Usually, in a multi-objective
problem there exists a trade-off between different objectives and no single solu-
tion can optimize all the objectives. Most existing multi-objective algorithms
are based on the non-dominance concept. They intend to find the solutions that
are not dominated by any member of the current population and remove the
population members that are dominated by the newly added solutions. A formal
definition of the dominance/non-dominance relationship can be found in Sect. 2.

In this paper, we show that the multi-objective optimization techniques can
help a single-objective local search procedure escape from local optima. We inves-
tigate a single case where local search for the Traveling Salesman Problem (TSP)
can be improved by adding a simple Non-Dominance Search (NDS) procedure.
Firstly, the original problem f0 is decomposed into two problems f1 and f2 such
that f0(x) = f1(x) + f2(x) for any x ∈ S. When the local search on f0 falls in a
local optimum x∗, the NDS procedure searches the neighborhood of x∗ and tries
to find a neighboring solution x′ which is non-dominated by x∗ on the two objec-
tives (f1, f2). If such a solution is found, NDS searches the neighborhood of x′. If
in the neighborhood of x′ NDS finds a solution x′′ that satisfies f0(x′′) < f0(x).
Then the local optimum x∗ is replaced by x′′ and a new round of local search is
started from x′′. Otherwise, a random perturbation will be executed to jump out
of the local optimum x∗. Experiments on some TSP instances have shown that
NDS can significantly improve the performance of a widely used TSP algorithm,
Iterated Local Search (ILS). Note here that the goal of this paper is to show the
possibility of using multi-objective techniques to escape from local optima, not
to propose a competitive algorithm for the TSP.

The rest of this paper is organized as follows. Section 2 introduces the multi-
objective problems and the corresponding optimization techniques. Section 3
introduces the TSP and the method to decompose a TSP into two TSPs.
Section 4 presents the proposed NDS method. In Sect. 5 the experimental studies
have been conducted to show that NDS can improve the performance of ILS on
the test TSP instances. Section 6 concludes this paper.

2 Multi-objective Optimization

A multi-objective problem is defined as:

minimize F (x) = (f1(x), . . . , fm(x))
subject to x ∈ S,

(2)

where F : S → R
m is the objective vector function which contains m objectives.

When the solution space S is a finite set, it is referred to a Multi-objective
COP (MCOP). Usually, there exists a trade-off between objectives and no single
solution can optimize all objectives simultaneously. The goal of a multi-objective
algorithm is to approximate the Pareto Set(PS). Some of the key concepts in
multi-objective optimization are defined as follows.

– Definition 1 (Dominance). A vector u = (u1, . . . , um) is said to dominate
a vector v = (v1, . . . , vm), if and only if uk ≤ vk, ∀k ∈ {1, . . . , m} ∧ ∃k ∈
{1, . . . , m} : uk < vk, denoted as u ≺ v.
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– Definition 2 (Non-dominance). If u is not dominated by v and v is not
dominated by u, we say that u and v are non-dominated by each other,
denoted as u ⊀ v or v ⊀ u.

– Definition 3 (Pareto Optimal Solution). A feasible solution x ∈ S is
called a Pareto optimal solution, if and only if �y ∈ S such that F (y) ≺ F (x).

– Definition 4 (Pareto Set and Pareto Front). For a multi-objective prob-
lem, the set of all the Pareto optimal solutions is called the Pareto Set (PS),
denoted as PS = {x ∈ S|�y ∈ S, F (y) ≺ F (x)} and the Pareto front (PF) is
defined as PF = {F (x)|x ∈ PS}.

For convenience, in the following when we state that a solution x is
dominated/non-dominated by a solution y, we mean that F (x) is dominated/
non-dominated by F (y).

In the well known Multi-objective Evolutionary Algorithm based on Decom-
position (MOEA/D) [1], the single-objective optimization techniques is employed
to help solve multi-objective problems. The original multi-objective problem is
decomposed into L scalar optimization subproblems using the predefined weight
vectors {λ1, . . . , λL}. For example, given a bi-objective problem (f1, f2) and a
weight vector λ = (0.5, 0.5), the weighted sum method is used to generate a
scalar optimization subproblem:

minimize fws(x|λ) = 0.5 ∗ f1(x) + 0.5 ∗ f2(x). (3)

In the population of MOEA/D, each solution is associated with a subproblem
and different subproblems are optimized in a collaborative manner. Specifically,
each subproblem has a number of neighboring subproblems. In the reproduction
procedure of each subproblem, two neighboring subproblems are selected ran-
domly and a new solution is generated from the associated solutions of the two
neighboring subproblems using evolutionary operators like crossover and muta-
tion. Then, the newly generated solution is used to update the population. The
idea of using single-objective problem to guide multi-objective optimization also
can be found in the existing multi-objective COP algorithms. For example Shi
et al. [2,3] proposed to use the single-objective subproblems to guide the Pareto
Local Search (PLS).

In the literature several studies have proposed to use a multi-objective evo-
lutionary algorithm to solve a single-objective problem, which are termed as
multi-objectivization [4–7]. In these studies, the original objective is converted
into a bi-objective problem and a multi-objective evolutionary algorithm (e.g.
NSGA-II) is executed on it. There are also other existing studies which use
multi-objective techniques to benefit a single-objective optimization procedure.
For example, Deb and Saha [8] convert a multi-modal problem into a bi-objective
problem by considering the gradient or neighborhood information as the second
objective. Then they use NSGA-II to address the Pareto front such that all the
local optima of the original problem can be found. Some studies [9–11] trans-
form a constrained single-objective optimization problem into an unconstrained
multi-objective optimization problem. Bui et al. [12] considers the diversity of an
evolutionary algorithm as the second objective to avoid falling in local optima.
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Alsheddy [13] constructs the second objective by a penalty-based approach and
run Pareto local search on the generated bi-objective problem. This paper differs
from these existing studies in the following aspects.

– This paper focuses on helping a local search procedure escape from local
optima and find better solutions. Based on the proposed method, an enhanced
ILS is proposed.

– Instead of maintaining a population of non-dominated solutions, the method
proposed in this paper only maintains one solution in its memory, which is
easy to be operated.

– A new TSP decomposition method is introduced.

3 Traveling Salesman Problem

In the Traveling Salesman Problem (TSP), a salesman wants to find the shortest
tour of n cities, starting and ending at the same city and visiting each of the
other cities exactly once. Let G = (V,E) be a fully connected graph where V
is its node set and E the edge set. Let ce > 0 be the cost of e ∈ E. A feasible
solution x is a cycle passing through every node in V exactly once. Thus the
TSP is defined as follows:

minimize f(x) =
∑

e∈x

ce. (4)

A node in G can be interpreted as a city and ce as the travel cost from the source
node of edge e to its destination node. TSP is NP-hard and is one of the most
widely considered test problems in the area of combinatorial optimization. In this
paper we focus on the symmetric TSPs. In a symmetric TSP, G is undirected,
i.e., the cost of travel from node A to node B is the same as that from B to A.

The distance matrix of a TSP lists the costs (distances) of all edges in this
TSP. A TSP instance is uniquely determined by its distance matrix. For exam-
ple, Fig. 1 shows a 5-city TSP instance and its distance matrix. Since the TSP
instance in Fig. 1 is a symmetric TSP, its distance matrix is a symmetric matrix.

Fig. 1. An example of a 5-city TSP and its distance matrix
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3.1 Iterated Local Search for TSP

Local search is a basic heuristic for COPs. It is a basic building block in many
existing metaheuristics. Local search defines a neighborhood for every candidate
solution in the search space. It maintains one candidate solution and iteratively
improves it. It searches the neighborhood of the current solution and moves to
a neighboring solution which has a better objective function value. Since the
neighborhood size is limited, local search usually stops at solutions that are not
worse than their neighbors but not necessarily all other solutions in the search
space, i.e. the locally optimal solutions.

Here we use the 2-Opt local search as an example to show the mechanism of
local search. The 2-Opt local search is a widely used local search method for the
TSP. In a 2-Opt move, two non-adjacent edges are replaced by the other two
edges if the resulting solution is better than the original one. As illustrated in
Fig. 2, edges AB and CD are replaced by edges AC and BD, so that the cost of
the solution is reduced.

Fig. 2. An example of 2-Opt move on
the TSP

Fig. 3. An example of the double
bridge perturbation on the TSP

There are many efficient algorithms for the TSP [14–16], among which Iter-
ated Local Search (ILS) [17] is a well-known metaheuristic based on local search.
At each iteration of ILS, a local search procedure is performed. When the local
search procedure is trapped in a local optimum, ILS executes the perturbation
operator to escape from the attraction region of the local optimum. In the next
iteration, a new local search procedure will start from the perturbed solution.
During the search, ILS keeps recording the historical best solution. Algorithm1
shows the procedure of ILS.

Algorithm 1. Iterated Local Search
1 j ← 0;
2 x0 ← random or heuristically generated solution.;
3 x0 ← LocalSearch(x0);
4 while stopping criterion is not met do
5 x′

j ← Perturbation(xj);
6 xj+1 ← LocalSearch(x′

j);
7 j ← j + 1;

8 return the historical best solution xbest
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Fig. 4. A possible decomposition result of the 5-city TSP instance. The red lines marks
an example solution x = [1 2 4 5 3]. After the decomposition it satisfies that f0(x) =
f1(x) + f2(x) (Color figure online)

For the TSP, the double bridge perturbation is a widely used perturbation
method. Figure 3 shows an example of the double bridge perturbation.

3.2 TSP Decomposition

In this section, we introduce a method to decompose a TSP f0 into two different
TSPs f1 and f2. The decomposition method is very simple. Since a TSP is
uniquely determined by its distance matrix and its objective function f0 is the
linear addition of the elements in the distance matrix, we just randomly divide
the original distance matrix into two positive symmetric matrices. Each matrix
defines a new TSP instance. For example, Fig. 4 shows a possible decomposition
result of the 5-city TSP instance. In Fig. 4, a solution x = [1 2 4 5 3] is also shown
and we can see that after the decomposition it satisfies that f0(x) = f1(x)+f2(x).

4 Non-Dominance Search

In this paper, we propose the Non-Dominance Search (NDS) method which
can help a local search procedure escape from local optimum and finds better
solutions. Firstly the original TSP f0 is decomposed into two TSPs f1 and f2
using the method introduced in Sect. 3. Since f0 = f1 + f2, the relationship
between f0 and the bi-objective problem (f1, f2) can be illustrated in Fig. 5. In
Fig. 5, f1 and f2 form a bi-objective space. If we put an extra axis in the middle
of the f1 axis and f2 axis, then this new axis measures 1√

2
f0. Minimizing 1√

2
f0

is minimizing f0 itself. The contour of f0 is perpendicular to the 1√
2
f0 axis. For

example, in Fig. 5, x1, x2 and x3 have the same f0 value.
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Fig. 5. The relationship between f0, f1 and f2. The middle axis measures 1√
2
f0 and

the red line is the contour of f0. x1, x2 and x3 have the same f0 value. (Color figure
online)

4.1 The Idea

To illustrate the idea of NDS, we assume that the local optimum we want to
escape is x∗ and x∗ has six neighboring solutions {x′

1, . . . , x
′
6}, as shown in Fig. 6.

Since x∗ is locally optimal on f0, all of {x′
1, . . . , x

′
6} are located above the f0(x∗)

contour. Our algorithm intend to find a neighboring solution whose neighbor-
hood can break through the contour of f0(x∗). From Fig. 6 we can see that the
neighboring solution that are not dominated by x∗ (e.g. x′

6) are more likely to be
close to the contour of f0(x∗), compared to the solutions that are dominated by
x∗ (e.g. x′

3). Hence the neighborhood of x′
6 are more likely to contain a solution

that can break through the f0(x∗) contour than the neighborhood of x′
3. This is

the hypothesis that the proposed NDS method is based on.
Starting from a local optimum x∗ of f0, the procedure of NDS is shown in

Algorithm 2. NDS follows the first-improving strategy. If it finds a candidate
solution x′′ that satisfies f0(x′′) < f0(x∗), it stops evaluating the rest candi-
date solutions and outputs x′′ immediately. In NDS, the neighborhood of the
neighborhood of x∗ is explored, hence NDS can be seen as a local search on
an enlarged neighborhood structure. The novelty of NDS is that it uses multi-
objective techniques (i.e. the non-dominance concept) to guide the search on the
enlarged neighborhood.

4.2 Improving ILS by NDS

NDS is a method to escape from local optima and find better solutions. It can be
employed by different algorithms. In this section we show that the proposed NDS
method can improve the performance of ILS. The resulting ILS variant is called
ILS+NDS. Roughly speaking, ILS+NDS alternately executed a local search pro-
cedure and an NDS procedure. If NDS fails to escape from the current local opti-
mum, a perturbation operator will be applied to this local optimum. Since NDS
can be seen as an enlarged neighborhood search, if the current local optimum
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Fig. 6. Assume the local optimum x∗ has six neighboring solutions {x′
1, . . . , x

′
6}. The

neighborhood of x′
6 are more likely to break through the contour of f0(x∗) than the

neighborhood of x′
3 since x′

6 is non-dominated by x∗.

Algorithm 2. Non-Dominance Search
Input: x∗, f0, f1, f2

1 for each x′ ∈Neighborhood(x∗) do
2 if (f1(x

′), f2(x′)) ⊀ (f1(x∗), f2(x∗)) then
3 for each x′′ ∈Neighborhood(x′) do
4 if f0(x

′′) < f0(x∗) then
5 xoutput ← x′′;
6 go to step 7;

7 return xoutput

has relatively low quality, then there is no need to explore the neighborhood of
this local optimum. Hence in ILS+NDS, we design a mechanism to skip the low-
quality local optima. Assuming the current best solution is xbest, ILS+NDS only
applies NDS on the local optimum x∗ that satisfies f0(x∗) < (1 + p)f0(xbest).
Here p > 0 is a pre-defined parameter. For the local optima that do not meet this
criterion, ILS+NDS directly executes perturbation on them. Algorithm3 shows
the procedure of ILS-NDS.

5 Experimental Study

To show that NDS can truly improve the performance of ILS. In the experimental
study we compare ILS+NDS against the original ILS on ten TSP instances from
TSPLIB [18]. The goal of this paper is to show the possibility of using multi-
objective techniques in single-objective local search, not to propose a competitive
algorithm for the TSP, hence we do not compare ILS+NDS against the state-
of-the-art TSP algorithms. Both ILS and ILS+NDS are implemented in C++.
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Algorithm 3. ILS+NDS
Input: f0

1 Decompose f0 into f1 and f2 such that f0 = f1 + f2;
2 j ← 0;
3 x0 ← random or heuristically generated solution;
4 x0 ← LocalSearch(x0);
5 while stopping criterion is not met do
6 if f0(xj) < (1 + p)f0(xbest) then
7 x′

j ← NDS(xj |f1, f2);
8 if NDS(xj |f1, f2) is failed then
9 x′

j ← Perturbation(xj);

10 else
11 x′

j ← Perturbation(xj);

12 xj+1 ← LocalSearch(x′
j);

13 j ← j + 1;

14 return the historical best solution xbest

The experimental platform is two 6-core 2.00GHz Intel Xeon E5-2620 CPUs (24
Logical Processors) under Ubuntu OS.

In our experiment, the TSP instances {eil51, pr76, rd100, bier127, kroA150,
d198, ts225, pr264, pr299, lin318} are selected from the TSPLIB as the test
instances. The numbers in the instances’ names indicate their city numbers.
In the ILS+NDS implementation, the 2-opt local search and the double bridge
perturbation are employed. To get the proper p value for ILS+NDS, we test
p = 0.005, 0, 01, 0.015, . . . , 0.05. For each setting of p, we run the ILS+NDS 50
times on each test instances. Each run starts from a randomly generated solution
and ends when the global optimum is reached or when the function evaluation
times reaches 1010. For comparison, we also run ILS 50 times on each instances.
After the experiment, we calculate the excess of the best solution found in each
run. Here the excess is defined by:

excess =
f0(xbest) − f0,opt

f0,opt
, (5)

where f0,opt is the globally optimal value of f0. It is obvious that the lower excess
value, the better performance of an algorithm.

Figure 7 shows the boxplot of the resulting excess data. From Figs. 7a and b
we can see that, on the instance eil51 and pr76, all algorithms get a zero excess,
which means that they all find the global optimum within 1010 function evalua-
tions. Hence in Fig. 8 we show the function evaluations that each algorithm takes
to find the global optimum of eil51 and pr76. From Figs. 7 and 8 we can conclude
that, ILS+NDS performs better than ILS on all the ten test instances when the
parameter p is properly set. In addition, we can find that the performance of
ILS+NDS deteriorates when p is too small or too large. When p is too small,
the criterion of executing NDS (i.e. f0(x∗) < (1 + p)f0(xbest)) becomes hard



Multi-objective Techniques for Single-Objective Optimization 123

ILS 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
ILS+NDS, p=

-0.5

0

0.5

Ex
ce

ss

(a) eil51

ILS 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
ILS+NDS, p=

-0.5

0

0.5

Ex
ce

ss

(b) pr76

ILS 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
ILS+NDS, p=

0

1

2

3

4

5

Ex
ce

ss

10-3

(c) rd100

ILS 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
ILS+NDS, p=

0

1

2

3

4

5

Ex
ce

ss

10-3

(d) bier127

ILS 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
ILS+NDS, p=

0

2

4

6

8

10

Ex
ce

ss

10-3

(e) kroA150

ILS 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
ILS+NDS, p=

0

2

4

6

8

10

12

Ex
ce

ss

10-3

(f) d198

ILS 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
ILS+NDS, p=

0

2

4

6

8

Ex
ce

ss

10-3

(g) ts225

ILS 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
ILS+NDS, p=

0

5

10

15

Ex
ce

ss

10-3

(h) pr264

ILS 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
ILS+NDS, p=

0

0.005

0.01

0.015

0.02

0.025

0.03

Ex
ce

ss

(i) pr299

ILS 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
ILS+NDS, p=

0.005

0.01

0.015

0.02

0.025

0.03

Ex
ce

ss

(j) lin318

Fig. 7. The final excess achieved by ILS and ILS+NDS with different p values
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Fig. 8. Function evaluations to find the global optimum of eil51 and pr76

to meet, hence the performance of ILS+NDS decreases. When p is too large,
NDS is executed on some low-quality local optima, which certainly is a waste of
computation resource, hence the performance of ILS+NDS also decreases. From
Figs. 7 and 8 we can see that, p = 0.02 is a good choice of p on all test instances.

6 Conclusion

Single-objective optimization techniques are often used in multi-objective opti-
mization algorithms to improve the efficiency and help find better solutions. In
this paper, we state that multi-objective optimization techniques can improve
a single-objective local search procedure. The proposed method is called Non-
Dominance Search (NDS). NDS first decompose the original single-objective
function f0 into two objective functions f1 and f2 such that f0 = f1 + f2. Using
the non-dominance concept on (f1, f2), NDS can help a local search procedure
on f0 escape from local optima and find better solutions. In the experimental
study, the TSP is selected as the test suite and ILS as the test algorithm. The
experimental results shown that, after combining with the NDS method, ILS
can achieve an obvious performance improvement.
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Abstract. This paper addresses multimodality of multi-objective (MO)
optimization landscapes. Contrary to common perception of local
optima, according to which they are hindering the progress of optimiza-
tion algorithms, it will be shown that local efficient sets in a multi-
objective setting can assist optimizers in finding global efficient sets.
We use sophisticated visualization techniques, which rely on gradient
field heatmaps, to highlight those insights into landscape characteristics.
Finally, the MO local optimizer MOGSA is introduced, which exploits
those observations by sliding down the multi-objective gradient hill and
moving along the local efficient sets.

Keywords: Multi-objective optimization · Multimodality ·
Fitness landscapes · Basins of attraction · Local search · Gradients

1 Introduction

In single-objective (SO) continuous optimization, multimodality of the problem
landscape is a crucial factor determining problem hardness. It is well-known that
solvers might get trapped in local optima or at least require a large computa-
tional budget to (repeatedly) escape from the latter [22]. We will show that,
counter-intuitively, MO optimizers do not necessarily face the same challenges.
Contrarily, the existence of local efficient sets is potentially beneficial for slid-
ing towards the global optimum along them. For this purpose a sophisticated
visualization technique based on gradient field heatmaps, using the cumulated
lengths of the normalized (approximated) gradients of both objectives towards
the respective attracting local efficient set, is proposed. Respective figures reveal
ridges and basins of attractions of local efficient sets - both in decision, as well
as in objective space.

Basically, the gained insights can be exploited in two different ways: First,
we pave the ground for retrieving as much information about the problems’
landscape characteristics as possible with the potential of deriving informative
exploratory landscape features for MO optimization problems, which is a rather
new research field with only few results so far. Secondly, we introduce MOGSA,
a (local) MO optimizer (MOO), which builds upon the straightforward idea of
c© Springer Nature Switzerland AG 2019
K. Deb et al. (Eds.): EMO 2019, LNCS 11411, pp. 126–138, 2019.
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sliding down the MO gradient hill towards the global efficient set by exploit-
ing properties of local efficient sets. Experiments show that common benchmark
sets almost exclusively show similarities in enabling the algorithm to exploit
the multimodal problem nature. MOGSA has the potential to even outperform
competitive state-of-the-art MO optimizers and to be efficiently hybridized with
other MOO approaches. Section 2 gives an overview of related work followed by
a detailed description of our proposed visualization approach in Sect. 3. MOGSA
is conceptually introduced in Sect. 4 together with preliminary experimental
results. Conclusions are drawn in Sect. 5.

2 Related Work

SO continuous optimization insights are often directly transferred to MOO: Mul-
timodality implies the existence of traps for local search methods in SO, which
prevent global convergence. Thus, multimodality in MO must be challenging for
finding the global efficient set. This assumption is the more astonishing, as almost
no insights into the landscapes of continuous MO problems exist. It is restricted
to very few general visualization techniques [29] and an early approach of [11].
These, however, only provide limited information on locality or landscape fea-
tures. To the authors’ best knowledge, only recent own work [18,20] provides
insights into MO landscapes. Theoretical and empirical results [13,16,21] imply,
that local optima in multimodal MOO are not necessarily traps for optimiz-
ers but following combined gradient directions can strongly support MOO.
This is supported by many works (e.g., [14,24–26]), in which gradient-based
directed search methods are applied to MOO problems. Note that for com-
binatorial MOO, analogies from SO landscape analysis (modality, ruggedness,
correlation, and plateaus) are often used for making abstract problem features
accessible [6,9,23,32]. However, due to the high dimensionality of combinatorial
problems, a visual landscape representation is usually not possible or helpful.

3 A Gradient-Based Methodology for Visualizing
Multi-objective Landscapes

Formal Preliminaries. Let f : X → R
p a vector valued function and define

x ∈ X dominates x′ ∈ X ⇔ f(x) ≤ f(x′) ∧ f(x) �= f(x′). The challenge of
a MOO problem (MOP) is to find all points in X that are not dominated by
other points in X . This so-called efficient set X ∗ has an image f(X ∗) w.r.t.
all objectives which is called the Pareto front. In the following, we are consid-
ering unconstrained continuous minimization MOPs, that is X = R

d for some
dimension d.

We define two cases of MOP local optimality [13]. First, the usual definition
of locality in neighborhood Bε(x) = {x′ ∈ R

d| ||x − x′|| ≤ ε}: A local efficient
point x ∈ R

d is a point for which exists ε > 0 such that no x′ ∈ Bε(x) dominates
x. Further, x ∈ R

d is called a strictly local efficient point, if there exists ε > 0
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such that x dominates all x′ ∈ Bε(x) \ {x}. We consider a set A ⊆ R
d to be

connected iff there do not exist two open and disjoint subsets U1, U2 ⊆ R
d such

that A ⊆ (U1 ∪ U2), (U1 ∩ A) �= ∅, and (U2 ∩ A) �= ∅. Further, let B ⊆ R
d. A

subset C ⊆ B is a connected component of B iff C �= ∅ is connected, and there
exists no connected set D with D ⊆ B such that C ⊂ D. Consequently, each
connected component consisting of locally efficient points is called local efficient
set.

The transfer of strict local efficiency to sets needs another definition. A local
efficient set XL is called strictly local efficient set, iff there exists an ε > 0 such
that the environment set Eε(XL) = {x′ ∈ R

d \ XL | ∃x ∈ XL : ||x − x′|| ≤ ε}
is not empty and each point in Eε(XL) is dominated by at least one point in
XL, see Fig. 1. The distinction between local and strict local efficient sets allows
for a fine-grained analysis, where only the latter describes (rare) local traps for
MOO algorithms.

Fig. 1. Schematic examples illustrating the definitions of a strictly local efficient point
(left) and set (center), as well as of a non-strictly local efficient set (right).

Idea of Gradient-Based Visualization for Multi-objective Landscapes.
For visually relating decision and objective space in MOO, a utility function
based on the aggregated MO gradient is proposed in [18] and a necessary con-
dition in [17] leading to the following concept:

Let the objectives be continuously differentiable in R
d and x∗ ∈ X be a local

efficient point of X . Then, there exists a vector ν ∈ R
p with 0 ≤ νi, i = 1, . . . , p,

and
∑p

i=1 νi = 1, such that
∑p

i=1 νi∇fi(x∗) = 0. For a local efficient point and
a suitable weighting vector, gradients for all objectives cancel each other out.
In the special case of a bi-objective problem, gradients become anti-parallel and
only differ in length. By normalizing the SO gradients, the then normalized multi-
objective gradient becomes zero when a local efficient point is reached. Otherwise,
the length and the direction of the normalized multi-objective gradient provides
information on the attraction area and closeness of a local efficient point or set.
For visualization purposes, we compute the discretized path of a given point
to a (local) efficient point following the MO gradient direction. Therefore, the
search space is divided into a grid of discrete points and then the combined
bi-objective gradient is computed for each of the grid points. The accumulated
length of the path towards the local efficient point is considered as utility value
that determines the “height” of the respective decision vector.

If the MO gradient ∇f is unknown, it can be approximated as g

by means of its SO gradients ∇fj , j = 1, . . . , p via gj = ∇f
(t)
j =
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∑d
i=1

fj(x
(t)+δ·ei)−fj(x

(t)−δ·ei)
2·δ (∗), where fj is the j-th (single) objective, δ is

a (small) step-size and ei is the d-dimensional unit vector. Using MO gradient
paths on all grid points, the MO landscape can be visualized in a two-dimensional
heatmap as exemplarily shown in Fig. 2.

Visual Inspection of State-of-the-Art Benchmarks for MOP. First, we
illustrate the concept for a highly multimodal MOP of the very recent bi-objective
black-box optimization benchmark (BBOB) [4,30]: bi-objective problems are con-
structed by combining multimodal SO functions of the BBOB set [15].

Fig. 2. Visualization of some exemplary and representative MOPs. The box and circle
(top left sub-figure) denote the global SO optima for the SO functions the BBOB
instance consists of. (Color figure online)

We also consider DENT [12] with a partly convex and concave Pareto-front,
while the global efficient set has a rather simple structure. DTLZ2 [8], which
has a completely concave Pareto-front, is focused followed by ED2 [10] similarly
constructed as DTLZ2 but allowing specific adjustment of concavity and locality.

Figure 2 depicts the respective 2D decision space of the considered prob-
lems. Red colored areas denote a “long” distance (w.r.t. gradient descent) to
the respective local efficient set. (Strictly) Local efficient sets are colored in blue
and usually surrounded by green to yellow areas which denote “small” distances.
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We observe known properties of the problems in decision space, like strong mul-
timodality for the BBOB problem or rather simple structures of efficient sets for
the remaining problem instances. Based on comprehensive visual inspections of
all well-known MO benchmark sets, two crucial observations could be made:

Basins of attraction: We can visually inspect the basins of attraction for all
local efficient sets based on the MO gradient on the discretized decision space.
Each basin can be considered as funnel towards its local efficient set. We may
imagine a “MO ball” following the MO gradient: then, the ball - rolling down
this funnel - will finally reach the local efficient set.

Ridges due to superposition of basins: Basins of attraction superpose each
other and as a consequence expose ridges that cut basin funnels and local
efficient sets (see e.g., BBOB in Fig. 2). A superposition describes the abrupt
change from one basin of attraction towards another one. Following definitions
in Sect. 3, only local efficient sets are subject to superposition and ridges.
Strict local efficient sets are - by definition - not superposed. Thus, non-strict
local efficient sets offer a sure path towards the superposing basin of attraction
(if we just walk along the local efficient set itself), while strictly efficient sets
can be considered traps for gradient steered optimization.

Therefore, local efficient sets are not necessarily traps for gradient-based
descent methods in MOO in contrast to the strict counterpart. In fact, not
strict local efficient sets offer a path to neighbouring basins of attraction and
can be exploited for finally reaching the global (strict) efficient set. Even more
interesting, strict local efficient sets are (empirically) rare for the benchmarks
we investigated so far (an example will be shown at the end of Sect. 4).

4 Exploiting Multimodality for Efficient Optimization

Superposition of basins of attraction results in ridges between adjacent basins, as
well as abruptly cutted local efficient sets as schematically depicted in Fig. 3. We
therefore propose a MOO algorithm, which exploits this superposed structure
by “sliding” from basin to basin until it reaches a global efficient set.

An Optimization Algorithm that Slides Through Local Optima.
MOGSA, a multi-objective gradient s liding a lgorithm, consists of (multiple
repetitions of) the following two phases detailed below: (1) follow the MOP’s
MO gradient until a (locally or globally) efficient point was found, (2) explore
the corresponding efficient set by following the gradients of the MOP’s SO com-
ponents.

Find a local (or global) efficient point: At first, MOGSA performs a local search
by sliding down the MO gradient landscape as described in Algorithm1. Given
an initial individual1, the MOP’s SO gradients are approximated (line 2). Next,

1 If no initial point is given, it will be sampled randomly within the search space.
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Fig. 3. Schematic view on the superimposed structure of basins of attraction. The
vertical red lines represent the ridges distinguishing adjacent basins from each other,
solid horizontal lines (within each basin) illustrate the respective efficient sets and the
dotted lines represent the path towards the attracting efficient set. (Color figure online)

the MO gradient2 at the current position is computed by summing up the nor-
malized SO gradients (line 3). Note that the length of the individual’s combined
gradient already provides information on its location w.r.t. its attracting efficient
set. If it is large (i.e., its length is close to two), both SO gradients point into sim-
ilar directions, whereas a length of zero indicates opposing and hence offsetting
gradients. In the latter case, the respective individual is regarded as being locally
efficient. In order to account for numerical imprecision, MOGSA considers all
individuals whose MO gradients have a length less than γ = 10−6 as locally
efficient and stops its downhill search once such a point was found (lines 4–6).
Otherwise, it performs a gradient-descent step using the gradient length scaled
by σ1 (line 7). If it was too short (i.e., less than ε = 10−6), the algorithm reached
a dead end. Such a dead end could for instance occur, if MOGSA evaluates a
point on the boundary of the feasible space and its gradient is pointing towards
the infeasible area. In such a scenario, MOGSA leaves this dead end by restarting
from an unexplored region of the MOP’s feasible space (lines 8–10).

Once the algorithm has successfully performed three consecutive gradient
steps (lines 11–18), it computes the angle between the three “youngest” individ-
uals to detect whether the latter two are located on the same or opposite side of
the attracting efficient set. In the former case, MOGSA continues its downhill
search. However, in the latter scenario, i.e., x(t) and x(t+1) are located on oppo-
site sides, it performs an interval bisection procedure, which exploits the indi-
vidual’s closeness to the efficient set in order to quickly converge to the efficient
point. For this purpose, we modified the classical bisection method [5] such that
the interval will be split according to the ratio of the lengths of the gradients, i.e.,
x(t+2) = x(t) + (x(t+1) − x(t)) · ||g(t)||/||g(t+1)||, rather than simply at its center.

Explore Efficient Set: Once a locally efficient individual was found by Algo-
rithm1, it starts its exploration phase from there (see Algorithm 2). MOGSA
computes the SO gradients (line 2) and follows the (normalized) gradient of the
first objective scaled by σ2 (line 4) as long as the step size is at least ε = 10−6

2 Note that the current implementation of MOGSA only enables the optimization of
bi-objective problems.
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Algorithm 1. Find local efficient point
1: Require:

a) MOP f : X → R
p with X ⊆ R

d,

b) starting individual x(t) ∈ X ,

c) step-size δ = 10−6 for grad.-approx.,

d) maximum gradient length γ = 10−6 of
a locally efficient individual,

e) scaling factor σ1 = 1 for step-size,

f) maximum difference ε = 10−6 between
individuals to be considered identical.

2: Approximate single-objective gradients g
(t)
j ,

currently only for j ∈ {1, 2}, using Eqn. (∗)

3: Combine normalized single-obj. gradients:

g
(t)

= g
(t)
1 /||g(t)

1 || + g
(t)
2 /||g(t)

2 ||
4: If ||g(t)|| < γ then

5: x(t) is locally efficient � exit algorithm

6: end if

7: Do gradient step: x(t+1) = x(t) + σ1 · g(t)

(if x(t+1) /∈ X , place it on boundary)

8: If ||x(t) − x(t+1)|| ≤ ε then

9: restart, i.e., draw an alternative x(t+1)

(using Optimal Augmented Latin Hyper-
cube Sampling) and proceed to step 2

10: end if

11: If x(t+1) is at least 3rd element since last
restart then

12: comp. ω = ∠(x(t+1)− x(t),x(t)− x(t−1))

13: If ω ≤ 90◦ then

14: individuals are approaching efficient
set from same side � proceed to step 2

15: else

16: x(t) and x(t+1) are located on opposite
sides of efficient set � perform weight-
ed interval bisection between them

17: end if

18: end if

19: Return archive of visited points

Algorithm 2. Explore efficient set
1: Require:

a) MOP f : X → R
p with X ⊆ R

d,

b) starting individual x(0) ∈ X ,

c) step-size δ = 10−6 for grad.-approx.,

d) maximum length γ = 10−6 of a (local
efficient) individual’s gradient,

e) scaling factor σ2 = 1 for step-size,

f) maximum difference ε = 10−6 between
individuals to be considered identical.

2: Initialize, i.e., set x(t) = x(0) and approx.

single-obj. gradients g
(t)
j (for j ∈ {1, 2})

3: Explore set from x(0) in direction of g1:

4: x(t+1) = x(t) + σ2 · (g
(t)
1 /||g(t)

1 ||)
(if x(t+1) /∈ X , place it on boundary)

5: If ||x(t) − x(t+1)|| ≤ ε then

6: no step performed � proceed to step 19

7: end if

8: Approx. g
(t+1)
1 and g

(t+1)
2 using Eqn. (∗)

9: If
(

||g(t+1)
1 || ≤ γ

)
or

(
||g(t+1)

2 || ≤ γ
)

10: then

11: found single-objective optimum � pro-
ceed to step 19

12: end if

13: compute angle α = ∠(g
(t)
1 , g

(t+1)
1 )

14: compute angle β = ∠(g
(t+1)
1 , g

(t+1)
2 )

15: If (α > 90◦) or (β < 90◦) then

16: left efficient set � proceed to step 19

17: end if

18: still in efficient set � proceed to step 4

19: Explore set from x(0) in direction of g2:

20: analog to steps 4-18, but using ex-
changed gradients g1 and g2

21: Return archive of visited points

(lines 5–7). These steps are repeated until MOGSA has reached the local opti-
mum of the first objective (lines 9–12) or even left the efficient set (lines 13–17).
The latter can have two reasons: (i) it left the efficient set, but remains in the
same basin of attraction (indicated by an angle of more than 90◦ between two
consecutive gradients of the first objective), or (ii) it left the basin of attraction
and crossed the ridge to an adjacent basin (indicated by an angle of less than
90◦ between the two single-objective gradients in the current individual). Once
MOGSA finished exploring one part of the efficient set (by following the first
objective), it explores the set once more (starting in the same initial individual),
but this time follows the second objective (lines 19–20). If at least one of the two
exploration phases stopped because of a crossed ridge, the respective efficient set
can not be globally efficient as it is apparently superimposed by another basin of
attraction. In such a case, MOGSA again executes Algorithms 1 and 2 - starting
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from the individual belonging to the adjacent, and thus more promising basin
of attraction. However, in case neither end of the efficient set has been cut by a
ridge, a strictly local efficient set - and thus likely a globally efficient Pareto set
- was found.

Comparison of MOGSA and State-of-the-Art MOO Algorithms.
Figure 4 illustrates the different search behaviors of MOGSA (top row), NSGA-
II [7] (middle row) and SMS-EMOA [1] (bottom) with default parameter set-
tings. The traces of their optimization paths are shown in the decision spaces of
two exemplary MOPs: an instance of the bi-objective BBOB (left column) and
DTLZ2 (right). For both problems, MOGSA was executed until it terminated

Fig. 4. Exemplary comparison of the search behavior of MOGSA (top row), NSGA-
II (middle) and SMS-EMOA (bottom) in the search space of two popular MOPs: an
instance from the bi-objective BBOB (FID 10, IID 5; left column) and DTLZ 2 (right).
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successfully, i.e., after only 504 resp. 240 function evaluations including gradient
approximation while its two contenders were then executed with the same bud-
get. Note that the MOPs were created using the R-package smoof [3], and for
the competing MOEAs (i.e., NSGA-II and SMS-EMOA) ecr2 [2] was used.

The deceptive structure of DTLZ2 initially lured MOGSA towards its bound-
aries (see top right image of Fig. 4). However, once it reached the boundaries,
it immediately restarted and quickly converged towards the global efficient set,
which it then explored very efficiently. Given the rather small amount of function
evaluations needed by MOGSA, we restricted the population sizes of NSGA-II
and SMS-EMOA to μ = 5 individuals such that they were able to run for a
reasonable number of generations. Although both solvers approached the effi-
cient set, neither of them was able to actually explore it nearly as precise or
evenly distributed (in the decision space) as MOGSA. This is also supported by
the corresponding covered hypervolumes (HV). As the latter strongly depend on
their reference points, we provide two HV values per pair of optimizer and MOP.
HV-all uses the nadir of all individuals from the archive of points evaluated when
constructing the heatmap or by any of the three optimizers, whereas HV-pf uses
the nadir based on all individuals along the (theoretical) Pareto front. All HV
values are shown as ratios of the maximum achievable HV - i.e., the HV based
on all individuals, which were used for identifying the nadir of HV-all.

Even in case of much more complex landscapes (left column of Fig. 4),
MOGSA is able to successfully maneuver through the basins of attraction
towards the Pareto set. Note that the depicted trace does not simply display
a positive outlier. Out of ten runs, in which we executed MOGSA from ten ran-
domly chosen starting points, MOGSA outperformed its contenders - within the
considered budget - in nine (NSGA-II) and ten runs (SMS-EMOA), respectively.

5 Discussion and Conclusion

Our proposed gradient field heatmaps visualize interaction effects among dif-
ferent objectives in the search space providing a new perspective on popular
benchmark problems by revealing interesting properties such as basins of attrac-
tion (similar to the idea of cell mapping, see, e.g., [19]), ridges between them,
local and/or global efficient sets, etc. This results in important insights into the
structure of MO landscapes, which in turn can be used for algorithm design - as
we successfully demonstrated with the design of MOGSA in Sect. 4.

Note that certain structures found in search space (such as the attraction
basins) are also visible in the objective space. As a result, our method is not
restricted to MOPs, whose search and objective space both are 2D. Instead, it
allows to illustrate any MOP for which at least one of the two spaces is 2D.

As indicated earlier, there exist MOPs, whose landscapes contain local
optima that are true MO traps. However, throughout our experiments with
more than a hundred of different MOPs, we only encountered one single land-
scape (displayed in Fig. 5), which displayed such a “malign” strictly local efficient
set. Despite possessing only one Pareto front in the objective space, it contains
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two cut-free efficient sets in the decision space. The local front - spanning from
the pink square to the cyan circle - is entirely dominated by the Pareto front.
However, as both ends of the local front are nondominated in its close neighbor-
hood, MOGSA is unable to leave it towards an improving attractor. In future
work, we intend to analyze (a) the causes for such traps, and (b) whether real-
world applications (in contrast to artificial problems) possess such traps more
often.

Fig. 5. Example of a MOP with a true MO trap (ranging from pink square to cyan
circle). The problem combines two multi-sphere problems created using MPM2 [33].
(Color figure online)

Within our exploratory proof-of-concept experiments, MOGSA reached the
global Pareto front much faster in terms of function evaluations - despite the
costs for approximating the gradient - than NSGA-II and SMS-EMOA. This
effect would increase even further, if the exact gradient was accessible. With-
out a doubt MOGSA’s performance strongly depends on its parametrization -
especially on its step-size related factors. If they are set too high, the algorithm
jumps across entire basins, whereas short steps increase the number of iterations
and thus function evaluations. Therefore, a future aspect is the development of
sophisticated step-size adaptation mechanisms, which ideally adjust the param-
eters automatically to the landscape at hand.

Given a reasonable parametrization, MOGSA converges rather quickly and
hence only consumes a small part of the budget. To further improve the algo-
rithm’s performance, one could invest additional budget into further runs of the
optimizer as these allow to (a) avoid running into MO traps, and (b) detect
different parts of the global Pareto front (if existent). Given the deterministic
search behavior, one should restart from unexplored regions as MOGSA would
otherwise quickly move into already visited basins. The chances of starting “far
away” from previously seen areas, can be increased by applying sophisticated
sampling mechanisms such as optimal augmented latin hypercube sampling [28].

Currently, the results were only shown for 2D problems, however, the algo-
rithm’s concept is transferable to higher dimensional search and objective spaces.
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Adapting it to larger search spaces is straightforward as this simply requires the
gradient approximation in further dimensions - resulting in two additional func-
tion evaluations per individual and search space dimension. In case of larger
objective spaces, it might be beneficial to first optimize w.r.t. two objectives
and once a strictly local efficient set was found, MOGSA could travel along
the adjacent fronts (by following different objectives) until a cut-free simplex of
global efficient points (comprising the global optimum) is found. In order to keep
the optimizer competitive in larger search spaces - and hence diminishing the
effect of the curse of dimensionality - future work could deal with alternative,
i.e., cheaper, approaches for approximating the gradients [27].

Although there have been numerous works in the past, which also make use of
gradients for MO optimization purposes, MOGSA is the first one that explicitly
exploits the problem’s multimodal structure from a search space point of view.

As our proposed algorithm is a local search algorithm, it might be promising
to hybridize it with other EMOAs or - given that MOGSA focuses on the search
space - with optimizers that are able of walking along the fronts in the objective
space [25]. Moreover, investigating our findings from a theoretical point of view
is of central interest for future work.

Our work revealed multiple further open issues w.r.t. benchmarking, problem
characterization, and algorithm selection. For instance, all existing MO bench-
marks should be compared thoroughly (e.g., using our visualization approach).
The gained insights can then be used to group the MOPs in an appropriate way,
similar to the five groups of BBOB [15]. Once important properties of MO land-
scapes have been identified, landscape features (see, e.g., [31] or [20]), which (a)
‘measure’ these different properties, and (b) can later on be used to perform algo-
rithm selection on a portfolio of complementary, powerful MO algorithms, can
be designed. Such a complementary portfolio requires an extensive benchmark
of competitive state-of-the-art algorithms on a manifold of MOPs.
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Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007.
LNCS, vol. 4403, pp. 922–936. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-70928-2 68

11. da Fonseca, C.M.M.: Multiobjective genetic algorithms with application to control
engineering problems. Ph.D. thesis, University of Sheffield (1995)

12. Gerstl, K., Rudolph, G., Schtze, O., Trautmann, H.: Finding evenly spaced fronts
for multiobjective control via averaging Hausdorff-measure. In: 2011 8th Interna-
tional Conference on Electrical Engineering, Computing Science and Automatic
Control, pp. 1–6 (2011). https://doi.org/10.1109/ICEEE.2011.6106656

13. Grimme, C., Kerschke, P., Emmerich, M.T.M., Preuss, M., Deutz, A.H., Traut-
mann, H.: Sliding to the global optimum: how to benefit from non-global optima
in multimodal multi-objective optimization. In: Proceedings of LeGO (2018,
accepted)

14. Grimme, C., Lepping, J., Papaspyrou, A.: Adapting to the habitat: on the integra-
tion of local search into the predator-prey model. In: Ehrgott, M., Fonseca, C.M.,
Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp.
510–524. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01020-
0 40

15. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization
benchmarking 2009: noiseless functions definitions. Technical report, INRIA (2009)

16. Jin, Y., Sendhoff, B.: Connectedness, regularity and the success of local search in
evolutionary multi-objective optimization. In: Proceedings of the IEEE CEC, vol.
3, pp. 1910–1917. IEEE (2003)

17. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies
and Essays, Courant Anniversary Volume, pp. 187–204. Interscience (1948)

18. Kerschke, P., Grimme, C.: An expedition to multimodal multi-objective optimiza-
tion landscapes. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp.
329–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0 23

19. Kerschke, P., et al.: Cell mapping techniques for exploratory landscape analysis.
In: Tantar, A.-A., et al. (eds.) EVOLVE - A Bridge between Probability, Set Ori-
ented Numerics, and Evolutionary Computation V. AISC, vol. 288, pp. 115–131.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07494-8 9

20. Kerschke, P., et al.: Towards analyzing multimodality of continuous multiobjective
landscapes. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G.,
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Abstract. Nonlinear equation systems (NESs) usually have more than
one optimal solution. However, locating all the optimal solutions in a sin-
gle run, is one of the most challenging issues for evolutionary optimiza-
tion. In this paper, we address this issue by transforming all the optimal
solutions of an NES to the nondominated solutions of a constructed mul-
tiobjective optimization problem (MOP). In the general case, we prove
that the proposed transformation fully matches the requirement of mul-
tiobjective optimization. That is, the multiple objectives always conflict
with each other. In this way, multiobjective optimization techniques can
be used to locate these multiple optimal solutions simultaneously as they
locate the nondominated solutions of the MOPs. Our proposed approach
is evaluated on 22 NESs with different features, such as linear and non-
linear equations, different numbers of optimal solutions, and infinite opti-
mal solutions. Experimental results reveal that the proposed approach is
highly competitive with some other state-of-the-art algorithms for NES.

Keywords: Nonlinear equation systems ·
Multiobjective optimization · Differential evolution

1 Introduction

Nonlinear equation systems (NESs) arise in many engineering and scientific
domains [1,13,19,20]. In many practical optimization problems, solving NESs is
time consuming, since the calculation in NESs is computationally expensive and
solutions are obtained in real-time due to several numerical issues [21]. Hence,
an efficient way to solve NESs is of great practical significance.

An NES can be defined as follows:

f(x) =

⎡
⎢⎢⎢⎣

f1(x)
f2(x)

...
fn(x)

⎤
⎥⎥⎥⎦ (1)
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where x = (x1, x2, . . . , xD) ∈ S denotes D variables for n equations, S =∏D
i=1[xi, xi] is the decision space in which xi ≤ xi ≤ xi, f(x) = (f1(x),

f2(x), . . . , fn(x)) ∈ �n refers to n nonlinear functions, and �n is the objec-
tive space mapped from S to �n. If a solution is the optimal solution of the
NES, it satisfies the condition that every equation in (1) is equal to zero, i.e.,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f1(x1, x2, . . . , xD) = 0
f2(x1, x2, . . . , xD) = 0

...
fn(x1, x2, . . . , xD) = 0

(2)

Solving NESs often involves finding multiple optimal solutions, especially in
the case of D > n. Since each optimal solution may represent the equal impor-
tance in practical applications, and locating them may require computationally
expensive experiments, it is desirable to locate them as many as possible in a
single run. the computational budget can be saved, and decision makers can also
have multiple choices.

To obtain multiple optima of an NES simultaneously, the population-
based evolutionary algorithms (EAs) [2] have been gaining increasing attention
recently. A variety of EAs has been proposed and developed [11,14,15,17] for
solving NESs. In general, an EA for locating multiple solutions includes two
significant components: (1) search algorithm and (2) multimodality handling
technique. As a search engine, different search algorithms and their variants use
different strategies to generate new offspring, and hence have different impacts on
the performance of solving NES. Among the various search algorithms, such as
genetic algorithm [22], particle swarm optimization [4,10], ant colony optimiza-
tion [9], and differential evolution [18], most of them originally aim at solving
numerical optimization with single optimum. Therefore, when they are applied
to locating multiple optimal solutions, the techniques that can aid the search
algorithms in handling the multimodality of NESs are required.

Recently, multiobjective optimization techniques have been widely applied to
solving NESs [8,16,23]. In this way, all the optimal solutions are located at the
whole population level. Hence, the fact that the search is sensitive to the user-
defined parameters does not exist in this kind of techniques. By some specific
transformations, the NES first is transformed into a multiobjective optimization
problem (MOP). Meanwhile, the multiple optimal solutions of the NES are trans-
formed into the nondominated solutions of the new constructed MOP. Then,
these nondominated solutions can be located simultaneously by multiobjective
optimization techniques [8,16]. However, the feasibility of solving NESs by mul-
tiobjective optimization techniques depends on whether the multiple objectives
always conflict in the constructed MOP. If not, the multiple optimal solutions
converted as nondominated solutions does not exist with regard to the trans-
formed MOP.

In principle, the MOP is constructed by the objective function itself and
the additional information from variables, gradients, and individual distances
[3,7,22], etc. In [7,22], the gradient of the objective function is utilized to recast
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a bi-objective optimization problem. However, if the objective function is non-
differentiable or discontinuous, the second objective would be difficult to con-
struct, which may infeasible in practical applications. In [3], the distance infor-
mation of each individual is considered as an additional objective value. How-
ever, the performance of this algorithm may suffer from degradation in particular
landscapes, since the two objectives do not conflict with each other.

The above mentioned issues drive the motivation of proposing a stable and
feasible transformation from NES to MOP. On one hand, the additional informa-
tion adopted to construct the objectives of an MOP should be easy to obtained.
On the other hand, the multiple objectives should always conflict. Based on
these two aspects, a bi-objective transformation combined with DE search algo-
rithm, named BiTDE, is proposed in this paper. Specifically, the characteristics
of BiTDE are stated as follows:

– The two constructed objectives always conflict with each other, which are
fully suitable to the requirement of multiobjective optimization.

– We theoretically prove that all the optimal solutions of an NES are mapped
into the nondominated solutions of the transformed MOP.

– As for the NESs with infinite optimal solutions, BiTDE can obtain the optimal
solutions evenly distributed for decision makers.

To demonstrate the feasibility of our proposed bi-objective transformation,
and verify the performance of the BiTDE, extensive experiments are conducted
on 22 NESs collected from practical applications. The experiments on these 22
NESs show that our proposed approach is better or at least competitive against
the compared state-of-the-art algorithms.

The reminder of this paper is organized as follows. The next section
introduces the preliminary knowledge. Section 3 details our proposed BiTDE.
Section 4 presents the experimental results and analyses. Finally, Sect. 5 draws
the conclusion.

2 Preliminary Knowledge

2.1 Multiobjective Optimization Techniques

Generally, an MOP can be formulated as follows:

Minimize F (x) = (F1(x), . . . , Fm(x))
subeject to x = (x1, . . . , xD) ∈ S

(3)

where x is a decision vector with n dimensions, and F (x) consists of m objectives
that always conflict.

With regard to multiobjective optimization, four essential definitions are
involved in our proposed approach.

Definition 1. Given two vectors u and v,u Pareto Dominates v, denoted by ≺,
if

∀i ∈ {1, . . . , m}, Fi(u) ≤ Fi(v) and ∃i ∈ {1, . . . , m}, Fi(u) < Fi(v).
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Definition 2. The vector u is Pareto Optimal, if and only if

¬∃v ∈ S, s.t. v ≺ u.

Definition 3. The set of all Pareto optimal vectors (i.e., Pareto set), denoted
by PS, is defined as

PS = {u ∈ S|¬∃v ∈ S, v ≺ u}.

Definition 4. The set of all Pareto optimal vectors mapped in objective space
(i.e., Pareto front), denoted by PF , is defined as

PF = {F (u)|u ∈ PS}.

In an MOP, the m objectives always conflict, and thus a set of tradeoff
solutions would be finally obtained by multiobjective optimization techniques.

2.2 Differential Evolution

Differential evolution (DE) is a simple and efficient evolutionary algorithm, and
originally proposed for single objective numerical optimization. Recently, it has
been widely employed as a search engine to generate new candidate vectors by
its mutation and crossover operators [5].

Mutation Operator. When generating new vectors or individuals of DE, dif-
ferential information is utilized to create the mutant vectors first. Specifically,
the ith mutant vector v generated by mutation operator (DE/rand/1) can be
expressed as follows:

vi = xr1 + Fs · (xr2 − xr3) (4)

where Fs is the scale factor, and xr1 , xr2 , xr3 are three distinct vectors that
randomly selected in the population.

Crossover Operator. Crossover operator is applied to produce a trial vector
ui based on target vector xi and mutant vector vi:

ui,j =
{

vi,j , if randj ≤ Cr, or j == jrand
xi,j , otherwise (5)

where randj is a random number uniformly generated from [1, 0], Cr is the
crossover rate, and jrand is an integer randomly selected from {1, . . . , D}.

3 The Proposed BiTDE

3.1 Bi-objective Transformation

In our proposed transformation, two conflicting objectives are designed by the
original objective function of NESs and additional information from the popu-
lation.
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As shown in (1) and (2), the objective function f(x) has n equations, but
these equations cannot be directly solved as numerical functions in evolutionary
optimization. Hence, we modify the f(x) to the following formulation:

Minimize f(x) =
n∑

j=1

|fj(x)| (6)

The additional information for each individual is computing from a number
of fixed reference points initiated randomly at the beginning of search. More
specifically, the additional information ad for a given individual xi is calculated
as follows:

ad(xi) =
Rp∑
j=1

√√√√ D∑
t=1

(xt
i − xt

j)2 (7)

where Rp denotes the number of reference points.
Since multiobjective optimization also involves multiple optimal solutions,

it has the technical feasibility to deal with NESs. However, the requirement of
multiobjective optimization is that the multiple objectives have to conflict with
each other. Hence, how to establish an effective transformation matching the
requirement is the key to solve NESs by multiobjective optimization. To address
this issue, a bi-objective transformation is proposed to construct two totally
conflicting objectives:

{
F1(x) = ad(x)norm + ξ ∗ f(x)norm
F2(x) = 1.0 − ad(x)norm + ξ ∗ f(x)norm

(8)

where ad(x)norm and f(x)norm represent the values obtained after min-max
normalization, and ξ is a scaling factor controlled as follows:

ξ = ξo ∗ (t/MaxGen)2 (9)

where ξo is an initial value, t is the current generation, and MaxGen denotes
the maximum evolution generation.

In (8), if F1(x) increases with the increasing of x, F2(x) goes to decrease, and
vice versa. Hence, F1(x) always conflict with F2(x). As a result, if an individual
is one of the multiple optimal solutions of an NES, it must be the nondominated
solution in the bi-objective problem described by (8).

Proof. If an individual of u is an optimal solution of an NES but not the nondom-
inated solution of (8), then there must be an individual v that Pareto dominates
u, which is as follows:⎧

⎨
⎩

F1(v) < F1(u)

F2(v) ≤ F2(u)
(10a) or

⎧
⎨
⎩

F1(v) ≤ F1(u)

F2(v) < F2(u)
(10b)

As for (10a), because u is an optimal solution, the value of f(u)norm is 0.0.
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Thus, the expression can be simplified as follows:
⎧
⎨
⎩

ξ ∗ f(v)norm ≤ ad(u)norm − ad(v)norm

ξ ∗ f(v)norm < −[ad(u)norm − ad(v)norm]
(11)

since ξ and f(x)norm are positive, the two inequalities in (11) are contradictory.
This means that u is a nondominated solution in (8). The situation in (10b) is
the same.

D

CB

A

x2

O
x1

(a)

Pareto front

f2(x)
O

D

B
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f1(x)

(b)

Fig. 1. The principle of bi-objective transformation. (a) Four optimal solutions A, B,
C and D of an NES in decision space. (b) Converting the four optimal solutions into
nondominated solutions on the Pareto front.

Figure 1 gives an example of the mapping relationship between an NES and
an MOP. The four solid points are multiple optima of an NES, as shown in
the decision space S in Fig. 1(a). Through the bi-objective transformation, they
are converted into the nondominated solutions on the Pareto front, as shown in
objective space �2 in Fig. 1(b).

3.2 Solving the Transformed Problem

In essence, the existing multiobjective optimization techniques can cope with the
transformed bi-objective problem straightforwardly. In this paper, the nondomi-
nated and crowding distance sorting technique [6], and DE search algorithm are
adopted in BiTDE. The implementation of BiTDE is stated as follows:

Step 1. Set t = 1.
Step 2. Randomly generate N individuals as the initial population (P ) and Rp

reference points from the decision space S.
Step 3. Calculate the additional information ad for each individual in P based

on (7).
Step 4. Calculate the current value of ξ.
Step 5. Evaluate each individual in P based on (8).
Step 6. Using the mutation and crossover operators to produce N new individ-

uals as offspring population Q.
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Step 7. Implement the fast nondominated and crowding distance sorting
approaches sequentially to select N best individuals from the combined pop-
ulation P

⋃
Q.

Step 8. If t < MaxGen, update t to t + 1 and go to Step 4, otherwise, output
the nondominated solutions in P .

As for the Step 7, the implementations of the fast nondominated and crowd-
ing distance sorting approaches can refer to [6]. It is noteworthy that BiTDE
does not introduce any serious burden on time complexity. As for calculating the
additional information, the computational time complexity is O(N)2 as well as
the fast nondominated sorting, and hence, the total time complexity of BiTDE
is still O(N)2.

4 Experiments

Twenty-two NESs [8] are adopted to evaluate the performance of our proposed
algorithm. The properties of these 22 NESs are given in Table 1, where LE
and NE denote the linear and nonlinear equations respectively, NOS denotes
the number of optimal solutions, and the maximum times of fitness evaluations
(MaxFEs) is 5.0E + 04 for each instance.

The proposed BiTDE is compared with six state-of-the-art EAs for NES.
The six algorithms are A-MONES and A-MOMMOP [8] which also utilize mul-
tiobjective optimization techniques to cope with NESs, NCDE and NSDE [15]
which are niching-method-based algorithms, and Rep-SHADE and Rep-CLPSO
[8] which combine the repulsion strategy with two developed variants of DE and
particle swarm optimization search algorithms. As for these six algorithms, the
parameters are set same according to the original papers.

Table 1. Properties of 22 test NESs

Ins. D S LE NE NOS Ins. D S LE NE NOS

NES01 2 [−1, 1]2 1 1 2 NES02 2 [−1, 1]2 1 1 11

NES03 2 [−10, 10]2 0 2 13 NES04 10 [−2, 2]10 0 10 1

NES05 5 [−10, 10]5 4 1 3 NES06 2 [−2, 2]2 0 2 10

NES07 2 [−5, 5]2 0 2 9 NES08 2 [0, 2π]2 0 2 13

NES09 2 [−2, 2]2 0 2 6 NES10 2 [−2, 2]2 0 2 4

NES11 2 [−2, 2]2 0 2 6 NES12 3 [−5, 5] × [−1, 3] × [−5, 5] 0 3 2

NES13 2 [0, 1] × [−10, 0] 0 2 2 NES14 2 [0, 2.5] × [−4, 6] 0 2 4

NES15 2 [−1, 1] × [−10, 10] 0 2 4 NES16 2 [0.25, 1] × [1.5, 2π] 0 2 2

NES17 3 [3, 5] × [2, 4] × [0.5, 2] 0 3 1 NES18 3 [−1, −0.1] × [−2, 2] 0 2 2

NES19 2 [−5, 1.5] × [0, 5] 0 2 3 NES20 2 [0, 2] × [10, 30] 0 2 2

NES21 3 [−2, 2]3 1 1 Inf. NES22 20 [−1, 1]20 1 19 Inf.
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4.1 Evaluation Criterion

Two commonly used evaluation criteria [12], i.e., the peak ratio (PR) and the
successful rate (SR), are utilized to evaluate the performance of different algo-
rithms under a given accuracy level ε. The PR and SR are computed as follows:

PR =
∑NR

i=1 NPFi

NKP×NOS , SR = NSR
NR

(12)

where NPFi is the number of optimal solutions found in the ith run, NR is
the number of runs, and NSR denotes the number of successful runs where all
optimal solutions are found.

4.2 Experimental Setup

As for the parameter settings, the population size N is set to 100 for BiTDE,
ξo is set to 999, and MaxGen = MaxFes/N . When generating the offspring
population by DE, the scale factor Fs and crossover rate Cr are randomly selected
from the scaling factor pool [0.6, 0.8, 1.0] and the crossover rate pool [0.1, 0.5, 1.0]
for every individual, respectively. All the compared algorithms run 50 times for
each test instance of the 22 NESs.

4.3 Experimental Results and Comparisons

Table 2 summarizes the statistical results of PR and SR for the first 20 NESs
with finite optimal solutions. It can be seen that the results obtained by BiTDE
are very competitive. The BiTDE can successfully solve 16 test instances of
the first 20 NESs where the PR and SR values are 100% for these test
instances. However, all of the other six algorithms cannot cope with the NES03
and NES08 consecutively on 50 independent runs. A-MONES, A-MOMMOP,
NCDE, NSDE, Rep-SHADE and Rep-CLPSO can solve 7, 9, 10, 10, 13 and 10
test instances, respectively. As for the rest of the four NESs, BiTDE still out-
performs the other six algorithms on NES05 and NES06. Only on NES07 and
NES12, BiTDE performs worse than the other five algorithms, i.e., A-MONES,
A-MOMMOP, NCDE, NSDE, Rep-SHADE.

Moreover, the nonparametric Wilcoxon and the Friedman test have been
adopted to test the statistical differences between BiTDE and the other six algo-
rithms. Table 3 and Fig. 2 present the experimental results. Table 3 reveals that
BiTDE has significant improvements over A-MONES, A-MOMMOP, NCDE,
NSDE and Rep-CLPSO, respectively. Moreover, Fig. 2 shows that BiTDE ranks
the first place among these seven compared algorithms based on Friedman’s test
values.

4.4 Further Study

When solving the first 20 NESs with finite optimal solutions, BiTDE achieves
highly competitive performance. However, there is another kind of NESs which
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Table 2. Comparison of the mean PR and SR obtained by the algorithms

PR/SR BiTDE A-MONES A-MOMMOP NCDE NSDE Rep-SHADE Rep-CLPSO

NES01 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

NES02 1.00/1.00 1.00/1.00 1.00/1.00 0.98/0.88 0.96/0.66 0.98/0.86 0.94/0.62

NES03 1.00/1.00 0.97/0.86 0.50/0.00 0.64/0.00 0.81/0.04 0.77/0.08 0.50/0.00

NES04 1.00/1.00 1.00/1.00 1.0000/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

NES05 0.89/0.72 0.73/0.50 0.78/0.42 0.00/0.00 0.07/0.00 0.29/0.04 0.00/0.00

NES06 0.98/0.92 0.71/0.50 0.88/0.24 0.65/0.00 0.86/0.28 0.92/0.42 0.84/0.22

NES07 0.88/0.36 0.99/0.96 0.98/0.90 0.98/0.84 0.98/0.88 0.97/0.80 0.86/0.28

NES08 1.00/1.00 0.44/0.00 0.99/0.98 0.85/0.04 0.85/0.02 0.88/0.10 0.92/0.36

NES09 1.00/1.00 0.75/0.50 0.86/0.48 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

NES10 1.00/1.00 0.51/0.00 0.57/0.14 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

NES11 1.00/1.00 0.76/0.50 1.00/1.00 0.99/0.98 0.99/0.94 1.00/1.00 1.00/1.00

NES12 0.92/0.84 0.97/0.94 0.98/0.96 0.99/0.98 0.99/0.98 0.98/0.96 0.81/0.62

NES13 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

NES14 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

NES15 1.00/1.00 0.75/0.50 1.00/1.00 0.97/0.88 1.00/1.00 1.00/1.00 0.99/0.96

NES16 1.00/1.00 0.86/0.74 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 0.99/0.98

NES17 1.00/1.00 1.00/1.00 1.00/1.00 0.40/0.40 0.84/0.84 1.00/1.00 1.00/1.00

NES18 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 0.98/0.96 1.00/1.00 1.00/1.00

NES19 1.00/1.00 0.94/0.86 0.99/0.98 0.98/0.96 1.00/1.00 1.00/1.00 1.00/1.00

NES20 1.00/1.00 0.91/0.84 0.94/0.88 1.00/1.00 1.00/1.00 1.00/1.00 0.92/0.84

Total 0.98/0.94 0.86/0.73 0.92/0.79 0.87/0.75 0.91/0.78 0.94/0.81 0.88/0.74

Table 3. Wilcoxon signed ranks test results for BiTDE versus the selected algorithms.

Comparison PR SR

BiTDE R+ R− p-value R+ R− p-value

vs. A-MONES 161.5 28.5 5.75E−03 159.5 30.5 8.00E−05

vs. A-MOMMOP 152.5 57.5 6.14E−02 154.0 56.0 5.14E−02

vs. NCDE 148.5 41.5 1.87E−02 149.0 41.0 1.76E−02

vs. NSDE 152.0 58.0 6.41E−02 154.5 55.5 3.45E−02

vs. Rep-SHADE 120.5 69.5 2.42E−01 121.0 69.0 2.73E−01

vs. Rep-CLPSO 182.5 27.5 2.61E−03 182.5 27.5 2.03E−03

have infinite optimal solutions in real-world applications. To investigate the capa-
bility of BiTDE to solve this kind of NESs, the performance of BiTDE on NES21
and NES22 with infinite optimal solutions are studied and compared in this
section.

The PR and SR evaluation criterion are not suitable for measuring the algo-
rithm performance on NESs with infinite optimal solutions. Thus, we plot the
nondominated solutions in the final population obtained by BiTDE in the objec-
tive spaces straightforwardly.

Figure 3 shows the nondominated solutions obtained by BiTDE for NES21
and NES22, respectively. It can be seen that all the soft red points are on
the line f2(x) = 1 − f1(x), which means that these solutions are the optimal
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Fig. 2. Friedman’s test for BiTDE, A-MONES, A-MOMMOP, NCDE, NSDE, Rep-
SHADE and Rep-CLPSO.
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Fig. 3. The nondominated solutions obtained by BiTDE plotted in bi-objective space.
(a) The NES21 test instance. (b) The NES22 test instance. (Color figure online)

solutions of the NESs. Usually the quality of the nondominated solutions is
indicated by the hypervolume value [24]. To compare the nondominated solutions
obtained from different algorithms, Table 4 records the hypervolume values of
all the compared algorithms. For each algorithm, the nondominated solution
obtained in the final population are preprocessed by the weighted bi-objective
transformation technique [8] to have a fair comparison.

The hypervolume values obtained by BiTDE are larger than those of the
other six algorithms on NES21 and NES22, respectively. This implies that
BiTDE has a better capability to solve the NESs with infinite solutions than the
other compared algorithms.
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Table 4. Wilcoxon signed ranks test results for BiTDE versus the selected algorithms.

Ins./HV BiTDE A-MONES A-MOMMOP NCDE NSDE Rep-SHADE Rep-CLPSO

NES21 0.475833 0.288931 0.298077 0.291552 0.291554 0.296955 0.300833

NES22 0.044486 0.027886 0.039333 0.031114 0.031185 0.034823 0.034317

5 Conclusion

In this paper, we have first proposed a bi-objective transformation for NESs.
Since the two objectives strictly conflict with each other, the transformation
is fully suitable for the requirement of multiobjective optimization, and thus
the transformed problem is feasible to be solved by multiobjective optimization
techniques. After the transformation, the nondominated solutions of the trans-
formed bi-objective optimization problem contains all the optimal solutions of
the original NES. Sequentially, the fast nondominated sorting approach and DE
search algorithm are naturally implemented in our proposed transformation to
locate the multiple optimal solutions of the original NES simultaneously.

The performance of BiTDE has been evaluated on 22 NESs test instances
from real-world applications. Six state-of-the-art EAs with different strategies,
such as multiobjective optimization techniques, niching methods and repulsion,
are adopted to compare with our proposed algorithm. The experimental results
show that BiTDE has high capabilities to solve most of the tested instances, and
it is competitive with the six compared algorithms, especially on the NESs with
infinite optimal solutions. As for future work, we plan to improve our proposed
algorithm on more complex NESs from practical applications, and develop it to
be more robust.

Acknowledgement. This work was supported by the Science and Technology Plan-
ning Project of Guangdong Province, China (Grant No. 2014B050504005).
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Abstract. Process Monitoring for Quality is a manufacturing quality
philosophy aimed at defect detection through binary classification that
is founded on big data and big models. Genetic Programming (GP) algo-
rithms have been successfully applied by following the big models learn-
ing paradigm for rare quality event detection (classification). Since it is
a bias-free technique unmarred by human preconceptions, it can poten-
tially generate better solutions (models) compared with the best human
efforts. However, since GP uses random search methods based on Dar-
winian philosophy of “survival of the fittest”, hundreds, or even thou-
sands of models need to be created to find a good solution. In this context,
model selection becomes a critical step in the process of finding the final
model to be deployed at the plant. A three-objective optimization model
selection criterion (3D − GP ) is introduced for analyzing highly/ultra
unbalanced data structures. It uses three competing attributes – pre-
diction, separability, complexity – to project candidate models into a
three-dimensional space to select the final model that solves the posed
tradeoff between them the best.

Keywords: Genetic programming · Separability index ·
Model selection · Binary classification ·
Highly unbalanced data structures · Manufacturing

1 Introduction

Process Monitoring for Quality (PMQ) is a big data-driven quality philosophy
aimed at defect detection through binary classification [1]. It is founded on Big
Models, a predictive modeling paradigm based on machine learning, statistics
and optimization aimed at developing a manufacturing-functional model [12]. We
are living in an era of high conformance manufacturing environment where most
mature organizations generate only a few Defects Per Million of Opportunities
(DPMO), therefore, manufacturing-derived data sets for binary classification of
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quality tend to be highly/ultra (minority class count < 1%) unbalanced. PMQ
has the potential to solve a new range of hitherto intractable problems [14],
where detecting these few DPMO is one of them. Genetic Programming (GP)
has been successfully applied following the big models modeling paradigm to
perform this task [1].

Inspired by biological evolution and its fundamental mechanisms, GP algo-
rithm uses random mutation, crossover, a fitness function, and multiple gener-
ations of evolution to optimize a user-defined fitness-function. In classification,
the input features are used to generate a random population of models, then the
performance of each of them is evaluated based on the fitness-function. Models
that perform better have a higher probability of being included in the breed-
ing of the next generation [24]. Finally, the fittest models become candidate
models, where oftentimes multi-attribute optimization or Pareto optimization
techniques [7] are used to develop a Pareto frontier, a set of Pareto Optimal
(PO) solutions that are not dominated by any other feasible solution. Model
complexity and generalization ability (prediction on unseen data) are the most
common competing attributes considered for Model Selection (MS).
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Fig. 1. Pareto optimization (source [1]), PO in green squares. (Color figure online)

GP is a technique free of human preconceptions or biases, that relies on
computer power to develop a good predictive model. In addition to optimizing
model parameters, the model structure is also optimized. This broad approach,
stochastic approach allows better search and optimization as well as a better
understanding of the natural physical processes which are being modeled [8].
However, the outcome can result in hundreds, thousands, or even tens of thou-
sands of models are developed in this process. Although the Pareto frontier and
pruning techniques help to downsize the list by identifying the non-dominated
models (as shown in Fig. 1), the number of options in PO may still be huge. In
such cases, engineers may be stuck with many alternatives and little guidance
as to how to choose between them.
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In this context, the separation distance between the two classes (separability)
can be used to further discriminate from two competing models. This problem
representation, highlights the importance of developing a three-objective opti-
mization MS criterion.

A three-dimensional MS criterion (3D−GP ) based on prediction, separabil-
ity, and complexity is developed. The three attributes are used to project each
candidate model into a three dimensional space to select the final model that
solves the posed tradeoff between them the best. Proposed criterion is supported
by a novel Separability Index (SI), which is aimed at analyzing highly/ultra
unbalanced data structures. MS is the main focus of this paper.

The rest of the paper is organized as follows. Acronyms in Table 1, a brief
theoretical background is in Sect. 2. The proposed SI is described in Sect. 3.
Section 4 describes the MS criterion. Section 5 shows the conclusions and future
research.

Table 1. Acronyms definition

Acronyms Definition

CM Candidate Model

CT Classification Threshold

DPMO Defect Per Million of Opportunities

EMO Evolutionary Multi-Objective Optimization

FN False Negative(s)

FP False Positive(s)

GA Genetic Algorithm(s)

GP Genetic Programming

MM Min-Max

MPCD Maximum Probability of Correct Decision

MS Model Selection

PMQ Process Monitoring for Quality

PO Pareto Optimal

SI Separability Index

SVM Support Vector Machine

TN True Negative(s)

TP True Positive(s)

UMW Ultrasonic Metal Welding

VS Validation Set

3D Three Dimension



154 C. A. Escobar et al.

2 Theoretical Background

2.1 Genetic Programming Algorithm – Model Development Process

GP [18] is an evolutionary computational method to learn predictive models. In
this section, the model development method based on a generic multi-objective
GP is described, with the following remarks:

– Evolutionary Multi-Objective Optimization (EMO) is an efficient way to
develop classification models and

– once a set of candidate models have been developed by the algorithm, 3D−GP
criterion can be applied to select the final model.

2.2 A Primer on Genetic Programming

A GP can be considered an application of Genetic Algorithms (GA) [17] when
the space of solutions to search consists of programs or equations for solving a
task [4]. Figure 2 shows a flowchart of a generic GA. Instead of decision variables,
an individual is a program or an equation to solve a task. In order to create an
initial population, a terminal set T and a function set F must be pre-specified
based on the application. A terminal set consists of constants and variables where
as a function set consists of operators or basic functions. F = {+,−,×,÷} and
T = {xi ∀i ∈ {1, 2, . . . , nx}} where xi’s are problem features, are examples of
function set and terminal sets. Based on the application, an extended operator
set (i.e. square root, power, log, min, max) may be needed to better model a
physical process. An individual in GP can be represented using different data
structures such as string of words [6], or trees [28] or graphs [26]. In this work,
the tree data structure is used to represent a solution/equation, hence a few
important concepts in the context of tree-based GPs will be discussed.

Consider a GP with terminal set T = {1, 2, x} and function set F =
{+,−, ∗}. The values ‘1’ and ‘2’ in terminal set represent the set ephemeral
constants allowed in the classification rules and let x be a feature. Then, Fig. 3
shows two candidate solutions that belong to the set of valid GP individuals
for such a GP. Furthermore, sub-tree swap crossover [3] is a popular crossover
mechanism used in tree based GPs. A sub-tree to be exchanged between two GP
individuals (parents) is first chosen at random in each parent. Then, the subtree
crossover operation is completed by exchanging the chosen subtrees between the
two parents. A Koza-style subtree mutation [18] involves swapping either a ter-
minal with another element from the terminal set or a function with another
element from the function set. When swapping functions, care must be taken to
maintain the arity of functions being swapped are the same. Bloat is known issue
with single objective GP algorithms [20]. Bloating of GP trees causes the GP tree
sizes to grow very fast without significant improvement in the model prediction
ability. One of the ways of keeping bloat in check is to use multi-objective opti-
mization [5]. Model error and model complexity are two most common objectives
to minimize in the model development process. Examples of additional modeling
objectives which can be added include model dimensionality and model age.
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Fig. 2. A flowchart of the working principle of a genetic algorithm (Source [9]).
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y(x) = 2*x*x − 2*x + 1

Fig. 3. Example of two GP solutions using tree representation.

2.3 Objective 1: Maximum Probability of Correct Decision

In predictive analytics, a confusion matrix (Table 2) [15] is a table with two rows
and two columns that reports the performance of a classifier function by includ-
ing the number of False Positives (FP), False Negatives (FN), True Positives
(TP), and True Negatives (TN). This allows more detailed analysis than just the
proportion of correct guesses (accuracy). A type-I error (α) may be compared
with a FP prediction; a type-II (β) error may be compared with a false FN [10].
They are defined as:

α =
FP

FP + TN
, β =

FN
FN + TP

. (1)

where α is the incorrect rejection of a true null hypothesis, and β is the incorrect
retain of a false null hypothesis.

The Maximum Probability of Correct Decision (MPCD) is a probabilistic-
based measure of classification performance aimed at analyzing highly/ultra
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unbalanced data structures [1,2]. Its estimated value mainly describes the ability
of a candidate model to correctly classify the minority class (detection). The α
and β values are combined to estimate MPCD ∈ [0, 1]:

MPCD = (1 − α)(1 − β). (2)

where higher score indicates better classification performance. In the multi-
objective GP method, 1 − MPCD is the error function to be minimized.

2.4 Objective 2: Model Complexity

Model complexity can be defined in many ways [19,23]. In this research, it is
defined as the total number of nodes in the GP tree corresponding to a model.
For example, the complexity of GP tree models shown in Fig. 3 is eight and three
respectively. However, it is intuitive that as the number of nodes in a tree rises,
the number of terms in the corresponding classification model also rises.

2.5 Input, Output, and Classification

In supervised learning, the general input, output, and classification process for
GP is defined as follows:

– Input: set of (input, output) training pair samples; input features x, and the
associated class label y. In binary classification, labels are defined as:

yi =
{

1 if ith item is bad (+)
−1 if ith item is good (−) (3)

– Output: a discriminative function zi = f(xi) and its associated classification
threshold (CT).

– Classification: the discriminative function value zi is compared to the CT
to assign the predicted label (ŷ) to an item.

ŷi =
{

1 if zi ≥ CT ⇒ ith item is predicted bad (+)
−1 if zi < CT ⇒ ith item is predicted good (−). (4)

Although the multi-objective GP is effective in controlling bloat and produc-
ing a diverse set of candidate models, most of the time engineers are left with
the problem of choosing the final model. This is where the idea of 3D − GP is
helpful as explained in coming sections.

3 Separability Index

The large margin theory, which was originally applied to explain the suc-
cess of boosting [25] and to develop the Support Vector Machine (SVM) algo-
rithm [22,29] plays a crucial role in modern machine learning research. Based
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on this concept, a larger gap between classes is preferred to avoid the nega-
tive effects of redundant and noisy examples. Several studies have shown that
the generalization performance of a classifier is related to the distribution of its
margins [16].

To evaluate the robustness of the predictions of a classifier, the third model
attribute is the SI introduced here, which is aimed at analyzing highly/ultra
unbalanced data structures. Its score is computed based on the confusion matrix
(Table 2) and the absolute difference of each predicted value to the CT. First, ŷi is
used to populate the confusion matrix, then the SI uses the absolute difference to
reward for correct classifications (TN, TP) and to penalize for miss-classifications
(FN, FP) in the Validation Set (VS).

Table 2. Confusion matrix.

Declare good Declare bad

Good True Negative (TN) False Positive (FP)

Bad False Negative (FN) True Positive (TP)

Proposed formulation is broken down into two terms; the former (SIt1) ana-
lyzes the majority class (e.g., good) and the later (SIt2) the minority class (e.g.,
bad). Both terms are scaled (divided) by their total count, therefore they repre-
sent the average distance to the threshold. Finally, to make the SI score highly
sensitive to FN – fail to detect – both terms are multiplied:

SI =
(
∑TN

tn=1 |ztn − CT | − ∑FP
fp=1 |zfp − CT |)

TN + FP
×

(
∑TP

tp=1 |ztp − CT | − ∑FN
fn=1 |zfn − CT |)

TP + FN
.

(5)

where CT = classification threshold, TN = # of TN in the VS, FP = # of FP
in the VS, TP = # of TP in the VS, FN = # of FN in the VS, ztn = predicted
value of the TNtn, zfp = predicted value of the FPfp, ztp = predicted value of
the TPtp, zfn = predicted value of the FNfn.

Virtual scenarios described in Fig. 4 are used to illustrate the properties of
the SI. To perform this analysis, the confusion matrix is used to compute MPCD
and the SI of each scenario, Table 3. With a virtual validation sample size of
3003 (3000 - good, 3 - bad), triangles are used to denote good units and circles for
bad units, negative predicted values are classified as bad, and positive predictive
values as good, and CT = 0.
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(b) Scenario 2, perfect separation with a bigger SI.

1x1x1x)PF(1x999x0001x0001x
CT

-4 -3 -2 -1 0 1 2 3 4

(c) Scenario 3, a type-I error (FP).
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(d) Scenario 4, a type-II error (FN ).
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(e) Scenario 5, type-II error (call them all good).
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(f) Scenario 6, type-I error (call them all bad).

Fig. 4. Virtual scenarios.

Table 3. Associated SI scores by scenarios.

Scenario TN TP FN FP α β MPCD SIt1 SIt2 SI

S1 3000 3 0 0 0 0 1 2 2 4

S2 3000 3 0 0 0 0 1 3 3 9

S3 2999 3 0 1 3.33e−4 0 0.9997 2.999 3 8.997

S4 3000 2 1 0 0 0.3333 0.6667 3 2 6

S5 3000 0 3 0 0 1 0 3 –1 –3

S6 0 3 0 3000 1 0 0 –1 3 –3

Analysis 1. Scenario 1 (Fig. 4(a)) shows a classifier that perfectly separates the
data, MPCD = 1 and SIS1 = 4. Scenario 2 (Fig. 4(b)) also shows a classifier
that perfectly separates the data, but the SIS2 = 9 helps to further discriminate
between S1 and S2. With the later being the best option.

Analysis 2. To demonstrate the sensibility of the proposed index with respect
to FN, virtual Scenarios 3–4 (Fig. 4(c), (d) respectively) are also presented and
analyzed. Using Scenario 2 as a reference, one type-I (FP), one type-II (FN )
and two type-I errors are committed:
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– if one type-I error (Scenario 3) is committed, MPCD = 0.9997 and SIS3 =
8.997, both scores show a decrease of 0.03% compared to SIS2.

– if one type-II error (Scenario 4) is committed, MPCD = 0.6667 and SIS4 =
5, both scores show a decrease of 33.33% compared to SIS2.

Analysis 3. Scenario 5 shows a common situation when analyzing highly/ultra
unbalanced data, where the classifier fails to detect, this is an illustrative exam-
ple where common measures of classification performance (e.g., accuracy) fail in
evaluating a classifier under these conditions, since accuracy = 0.9997 is mis-
leading. On the other hand, scenario 6 (less common) classified all the examples
as bad, in both cases MPCD = 0 and SI = −3.

Based on analyzes 1–2 it is illustrated how the MPCD and SI can work
together in selecting the final model. If only the measure of classification perfor-
mance is used, there is no difference between scenarios 1–2 (if same complexity
is assumed), this situation highlights the importance of including the SI in the
MS process. On the other hand, analysis 2 shows how MPCD and SI would
penalize a classifier for failing to detect (FN ). Analysis 3 shows that the SI can
take negative values, in such cases candidate models are not good, and should
not be included in the model selection process, since the 3D − GP criterion is
based on the Euclidean distance.

The SI index is a relative measure of classification robustness, that requires a
measure of classification performance (e.g., MPCD) to perform a comprehensive
classifier evaluation.

4 The MS Criterion

The 3D − GP MS criterion uses the three attributes (prediction, separability,
complexity) to project each candidate model into a three dimensional space to
select the final model that solves the posed tradeoff between them the best. The
first two attributes work together in rewarding a model with high prediction
and high separability abilities. Although these values tend to be highly corre-
lated, adding the SI in the MS process, helps to further discriminate between
competing models with similar prediction and complexity, as shown in the vir-
tual case in Sect. 3. Since over-complex models are usually not trusted by engi-
neers (and therefore never deployed), proposed criterion, also penalizes for model
complexity.

4.1 Euclidean Distance

The Euclidean distance is a straight forward way of representing distance
between two points in the Euclidean space [11]. In Euclidean three-dimensional
space (attributes - x, y, z), the distance between points (x1, y1, z1) and (x2, y2, z2)
is given by:

E =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (6)
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If the relative importance of each attribute is known, weighted Euclidean
distance can be used:

Ew =
√

wx(x2 − x1)2 + wy(y2 − y1)2 + wz(z2 − z1)2. (7)

The range of all attributes should be normalized [21] to compute the final
distance. Since the measure of classification performance, MPCD, is scaled to
[0, 1], Min − Max(MM) normalization was the rescaling used method, given
attribute x, its normalized value is computed by:

MM(xi) =
xi − min(x)

max(x) − min(x)
. (8)

4.2 Attributes

1. Prediction (detection): a rewarding attribute based on generalization (val-
idation MPCD), p = 1 − MPCD (smaller better). It is aimed at selecting a
model with a high detection ability. Normalization is not needed.

2. Separability (robustness): a rewarding attribute based on the SI, s =
1−SI (smaller better). It is aimed at selecting a model with a high separability
distance between classes. Normalization is needed.

3. Complexity: a penalizing attribute based on the complexity defined by the
classifier, c (smaller better). It is aimed at preventing over-complexity. Nor-
malization is needed.

For each candidate model, (CMm
i ), i = 1, ...,m, – where m is the num-

ber of models – the tree associated attribute values are mapped into a three-
dimensional space and the weighted Euclidean (Ei) distance to the utopian point
(0, 0, 0) is computed, Eq. 9. Then, the closest model (3D − GP ∗) is selected,
Eq. 10. In this context, the utopian point, is an ideal model that optimizes the
three attribute-functions simultaneously; however, most of the times, a model
cannot be improved in any of the attributes without degrading at least one of
the others.

Ewi =
√

(pi − 0)2 + (si − 0)2 + 0.01 × (ci − 0)2. (9)

3D − GP ∗ = min(Ewi)mi . (10)

The basic idea of keeping the complexity weight (wc = 0.01) relatively low, is
to maintain prediction and separability as the main drivers; thus, the criterion is
not hampered from selecting a model with high predictive capacity. However, this
weight can be increased to induce lesser complexity. Penalization for complexity
helps to eliminate over-complexity.
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4.3 The MS Process

To illustrate the MS process, a set of 25 GP candidate models are developed
using the two objective functions described in Sect. 2.1 with a data set derived
from Ultrasonic Metal Welding (UMW) [27] of battery tabs for the Chevrolet
Volt [1]. A very stable process, that only generates a few defective welds per
million of opportunities. The data set has 54 features and a binary outcome
(good/bad). It is highly unbalanced, since it contains only 36 bad batteries out
of 30,731 examples (0.09%). Because manufacturing systems tend to be time-
dependent, the data set is partitioned following the time-ordered hold-out valida-
tion scheme [12]: training set (18,495 - including 20 bads), validation set (12,236
- 9 bads).

Candidate model information is summarized in Fig. 5. The MS process is
illustrated in Fig. 6, first, the three attributes of each CMi are mapped into a
three dimensional space, Fig. 6(a), then, the weighted Euclidean distance of each
CMi is computed, and the one closest to the utopian point is selected, Fig. 6(b).
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Fig. 5. Candidate model information.

According to the MS criterion, the model that optimizes the three attributes
the best is CM5. With an estimated E5 = 0.0062, and attribute values of
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Fig. 6. MS process based on the weighted Euclidean distance.

MPCD = 0.9937, SI = 9.9533 and c = 5. As shown in Fig. 5, from predic-
tion perspective CM4 (MPCD = 0.9906), CM5 (MPCD = 0.9937) and CM7

(MPCD = 0.9968) are top performers, when the separability attribute is consid-
ered only CM5 (SI = 9.9533) is sustained. Finally, when complexity is included,
the best solution is clearly disclosed, a candidate model with top prediction abil-
ity (detection), the highest SI (robustness) and low complexity.

5 Conclusions

A new MS criterion, 3D − GP , for the application of GP algorithm to
highly/ultra unbalanced binary data structures (typical manufacturing-derived
data) was developed. It solves a three-objective optimization problem by map-
ping the prediction, separability, and complexity attributes of each candidate
model into a three dimensional space that uses the weighted Euclidean distance
to the utopian point to select the final model. It efficiently solves the posed
tradeoff between these three competing attributes.

To make the 3D − GP criterion more sensitive to FN (fail to detect), a
novel SI was developed, which is very sensitive to type-II error in highly/ultra
unbalanced data. Although proposed criterion and SI were developed for these
data structures, they can also be applied to balanced data.

In contrast with the widely used Pareto frontier technique, which is used to
identify non-dominated models, proposed criterion can be used to automatically
select the final model. Moreover, as demonstrated in the virtual case analysis,
using only the information provided by a measure of classification performance
(e.g., MPCD as used in [1,13]) may not be enough to discriminate between
models.

Rare quality event detection is one of the main applications of PMQ, this task
is broken down into classifier creation and MS. Proposed criterion addresses the
research challenges of selecting the final model when GP is applied for this task.

Future research can focus on extending the application of the proposed cri-
terion to the support vector machine algorithm. Another future research along
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this path, would be to develop a new classifier that uses the proposed SI as the
target function.
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Abstract. Many engineering optimization problems involve handling
constraints. Existing constraint-handling methods, dealing with all con-
straints simultaneously as a whole, may become less effective when the
number of constraints is large, termed many-constraint optimization
problems (MCOPs). Since different constraints usually pose different
degrees of difficulty to optimization problems (the constraint satisfying
order may also be defined by a decision-maker), intuitively, a potential
way is to progressively introduce each constraint into the search wherein
the constraint-handling order becomes crucial. However, MCOPs and the
problem-solver are far from being well investigated. This study therefore
fills in this research gap. First, MCOPs are formulated, followed by an
analysis of the difficulty of MCOPs. Then the concept of constraint-
ranking is introduced. Based on the ranking results, a novel framework,
i.e., cascaded constraint-handling (CCH), that follows “the most interest-
ing first” principle is proposed to solve MCOPs. This implicitly enables
the search to start from both interior and exterior of the feasible region.
To demonstrate the effectiveness of the CCH framework, first an MCOP
benchmark suite is designed. Then the penalty function based constraint-
handling technique with and without the CCH is compared. Experimen-
tal results clearly show the superiority of the CCH framework.

Keywords: Many-constraint optimization problem (MCOP) ·
Constrained optimization ·
Cascaded constraint-handling (CCH) framework ·
Evolutionary algorithms

1 Introduction

Constrained optimization problems (COPs) arise regularly in many engineer-
ing applications. In COPs the goal is to find a solution that satisfies all con-
straints and also optimizes the objective function. In the last two decades, evo-
lutionary algorithms (EAs), integrated with constraint-handling techniques, have
attracted a great deal of attention to handle COPs [4,14]. Some of representative
methods include, for example, penalty function based methods [1,8,11], multi-
objective approaches [2,3,22], feasibility-rule based methods [7,12], stochastic
ranking based methods [16] and ε-constraint method [19].
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The literature has revealed that these methods have their own advantages and
disadvantages, thus, exhibiting differently on various problems [17]. However, the
above methods share a common ground, i.e., dealing with all constraints simulta-
neously as a whole. They may be less effective on many-constraint optimization
problems (MCOPs), for the reasons that—(i) searching a feasible solution in
an MCOP is more difficult than in a general COP. This is because the feasi-
ble search space becomes even more complex; and (ii) the handling-difficulty of
different constraints is not considered. That is, a solution that violates an easy
constraint or a hard constraint is treated equally. Additionally, when the num-
ber of constraints is large, decision-makers may have their priorities, i.e., some
of constraints should be satisfied first. The above institutive observation moti-
vates us to re-investigate constrained optimization problems, especially when the
number of constraints is large.

This study therefore presents a systematic analysis of MCOPs. In order to
effectively handle MCOPs, a methodology adopting the “divide-and-conquer”
concept is proposed. It first divides all constraints into different levels according
to their handling-difficulty. Then the constraints are sequentially added into the
evolutionary search. In this study “the most interesting first” principle is followed
which aims to maximize the degree of constraint satisfaction of decision-makers.
It is worth noting that when decision-makers have no priority on constraints “the
most interesting one” is interpreted as “the most difficult one” so as to distribute
as much search effort as possible to handle those challenging constraints.

Overall the main contributions of this study are as follows. (i) Limitations
of constraint-handling techniques in literature are discussed. Correspondingly,
the challenge of many-constraint optimization is highlighted. (ii) Based on the
scalable many-objective test problems, DTLZ test suite [6], a set of MCOP
benchmarks is designed. (iii) A simple yet effective framework, namely, the cas-
caded constraint-handling (CCH) is proposed. The initial results show that the
CCH framework can significantly improve the effectiveness of penalty function
based constraint-handling technique on MCOPs.

The rest of this paper is organized as follows. Section 2 formulates MCOPs
and presents the motivation. Section 3 elaborates the proposed CCH framework,
following the introduction of constraint ranking. In Sect. 4, the performance of
the CCH framework is examined by comparing the only use of penalty function
and the CCH integrated version on a set of newly designed benchmarks. Section 5
concludes the paper and identifies future studies.

2 MCOP: Formulation and Motivation

Without loss of generality, a constrained optimization problem can be formulated
as follows [2]:

min f(x),x = (x1, x2, . . . , xn)
xi ≤ xi ≤ xi, i = 1, 2, . . . , n

gj(x) ≤ 0, j = 1, . . . , q

hj(x) = 0, j = q + 1, . . . , m

(1)
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where xi and xi are the lower and the upper bound of xi, respectively, and q
is the number of inequality constraints and m − q is the number of equality
constraints. Generally, an equality constraint is handled by converting it into
an inequality one. That is, hj(x) = 0 is converted into |hj(x)| − δ ≤ 0 with δ
being a positive close-to-zero number [15]. Thus the feasible region (F ) can be
generalized as:

gj(x) ≤ 0,∀j ∈ {1, 2, . . . ,m} (2)

When the number of constraints is large, the general COP is termed many-
constraint optimization problem (MCOP).

We argue that MCOPs should be paid more attention since many engineering
problems involve hundreds of or even more constraints. These constraints usually
pose different degrees of difficulty to the problem. However, the literature so far
often deals with constraints simultaneously as a whole, which, in other words, has
not considered the difference amongst constraints. Thus, the existing constraint-
handling methods need to be re-examined when dealing with MCOPs.

Given a large number of constraints, locating feasible solutions is already
difficult, not to mention finding the optimum. Thus, eliciting information from
infeasible solutions becomes crucial and helpful. In this sense, the priorities over
different constraints in MCOPs could serve as a baseline for selecting potential
infeasible solutions. More specifically, considering two infeasible solutions, the
one that satisfies high-priority constraints is preferred. Certainly, this requires
to rank constraints appropriately which will be introduced in the next section.

3 MCOP: Methodology

3.1 Constraint Ranking

As previously mentioned, constraints in an MCOP feature different degrees of
difficulty, that is, some are easy to be satisfied while others are difficult. In
addition to the difficulty posed by constraints themselves, decision-makers may
also have their priorities on the constraint satisfaction. In view of the difference
amongst constraints, it is natural to consider ranking them, which can therefore
provide a standard when maximizing the degree of constraint satisfaction.

In accordance with the above cognition, “the most interesting first” principle
is adopted. Specifically, the interest level (L) of a constraint (e.g., gj) can be
determined either by the preference information from decision-makers or the
degree of handling-difficulty.

Here, the handling-difficulty of gj is measured by the proportion of solutions
that dissatisfy it, as shown in Eq. (3).

L(gj) =
NS

j

N
, j = 1, 2, . . . ,m (3)

where NS
j is the number of solutions violating against the j-th constraint in the

initially-produced population and N is the population size. Note that in addition
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to this naive strategy, other advanced indicators can be employed which also
deserve further study. And if decision-makers have priorities for some constraints,
the corresponding interest levels can be directly determined by the decision-
makers.

Assuming that the interest level order of m constraints in an MCOP is as
follows.

L(gj1) � L(gj2) � . . . � L(gjm) (4)

where j1, j2, . . . , jm ∈ {1, 2, . . . ,m} and j1 �= j2 �= . . . �= jm. Thus, these con-
straints can be ranked as gj1 , gj2 , . . . , gjm which means that gj1 is the most
interesting one, followed by gj2 and so on.

3.2 Cascaded Constraint-Handling Framework

Observing the difference of constraints, this section elaborates a simple yet effec-
tive algorithmic framework, namely, cascaded constraint-handling (CCH). The
CCH, as the name says, handles the constraints in a sequential way. That is,
constraints are progressively introduced into the search.

Provided that there is no preference from decision-makers, all the constraints
can be grouped into different levels in terms of the interest level, i.e., the
handling-difficulty. To describe the CCH framework, we assume that the rank of
constraints has been determined as gj1 , gj2 , . . . , gjm .

The evolutionary process is then divided into multiple stages whose number is
the same as the quantity of different interest levels, and the number of generation
assigned to each stage is roughly equivalent to the division quotient. Then the
constraints are successively embraced by the CCH. In detail, at the first stage,
only the most difficult constraint is taken into account. The population keeps
evolving until it enters the next stage in which the second difficult constraint is
added. Sequentially, the remaining constraints are re-included into the problem
following their own rank, see Eqs. (5) to (7).

min f(x) s.t. gj1(x) ≤ 0 (5)
⇓

min f(x) s.t.

{
gj1(x) ≤ 0
gj2(x) ≤ 0

(6)

⇓
. . .

⇓

min f(x) s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gj1(x) ≤ 0
gj2(x) ≤ 0
. . .

gjm(x) ≤ 0

(7)
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It is worth mentioning that (i) at the initialization stage, expect for the
box constraints, none of constraints (gj(x)) is considered. Subsequently, con-
straints are added in a stepwise manner such that the feasible region shrinks
progressively. Also, during this process some infeasible solutions are provision-
ally acceptable (i.e., considered as feasible in early stages). This enables the
search to effectively work from both interior and exterior of the feasible region;
(ii) Priority is assigned to those difficult constraints, that is, being handled in
advance. This leads more search effort to be distributed to handle the most
difficult ones. Note that the study [13] also proposed to handle constraints in
a sequential manner. However, its basic idea focuses on finding feasible solu-
tions first then searching for the optimal one, which differs from our method as
described above.

In principle most of constraint-handling methods, e.g., penalty function [11],
stochastic ranking [16], can be integrated into the CCH framework. To demon-
strate the effectiveness of the CCH framework, the penalty function is taken as
an example. The derived algorithm is then called penalty function based cas-
caded constraint-handling method, denoted as CCH-PF. Moreover, essentially,
the CCH-PF utilizes the “divide-and-conquer” concept, that is, first constraints
are divided into different levels and assigned to different evolutionary stages by
the CCH, then those constraints are conquered by the PF method individually.

The use of penalty function is to penalize infeasible solutions by adding a
positive value to the objective function f [20]:

eval(x) =

{
f(x) if x ∈ F

f(x) + α(t) × ∑Nr

r=1 Gr(x) otherwise
(8)

where eval(x) is the composite evaluation value used for comparison between
individuals. The penalty coefficient α can either be static [21] or adaptively
adjusted based on the generation counter and/or the population information
[9]. Nr is the number of constraints involved in the current stage. Correspond-
ingly, the violation against current constraints is summed as the total violation
degree. Amongst them, the violation of the individual x against the r-th ranked
constraint can be constructed as Gr(x) = max{0, gjr (x)}.

The pseudo-code of the CCH-PF is shown in Algorithm 1. First, interest
levels of all constraints are calculated. Constraints are then ranked based on their
interest levels (lines 3–4), and are grouped into corresponding stages which is of
the same number as the interest levels (line 5). In the subsequent generations,
the evolution stage is identified based on the generation that the evolution is
in (line 12). If it enters a new stage, the constraints that are ranked in the
next level are added, leading to the change of the constraint violation function
(line 13). Note that the penalty function can be replaced by other constraint-
handling techniques. If so, the pseudo-code in lines 13–14 of Algorithm1 should
be changed accordingly.

To further explain the scheme of CCH-PF, a minimization problem with
two variables, as shown in Fig. 1, is presented. The surface in Fig. 1(a) shows
the original objective values of all solutions in the search space with the
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Algorithm 1. Penalty function based cascaded constraint-handling
method (CCH-PF)
Input: N : population size; m: the number of constraints; f(·): objective

function; C: constraints; maxGen: maximum generation; α: the initial
penalty factor.

Output: the optimal solution.

1 Initialize population S ← {x1,x2, . . . ,xN};
2 Calculate objective values F = f(S);
3 Calculate the interest level (L) of the constraints in C using Eq. (3);
4 Rank m constraints according to L with the largest ranking first, obtaining C′;
5 Group the constraints into different stages of the evolutionary process ;
6 Initialize the problem as an unconstrained problem;
7 for t ← 1 to maxGen do
8 Generate offspring S′ by differential evolution (DE) [18] and polynomial

mutation (PM) [5] of parent solutions in S;
9 F ′ = f(S′);

10 Sjoint = S � S′;
11 Fjoint = F � F ′;
12 Identify the current stage and the Nr constraints ranked forward in C′;
13 Add the corresponding new constraints and update the constraint

violation function if the evolution enters a new stage;
14 Obtaining the aggregating value by Eq. (8):

eval(Sjoint) = Fjoint + α × ∑Nr
r=1 Gr(Sjoint);

15 Replace solutions in S with better solutions in Sjoint;
16 x∗ ← arg min

xk∈Sjoint

evalk, k = 1, 2, . . . , 2N ;

17 end
18 return x∗ and its objective values.
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Fig. 1. Illustration of a simple constrained optimization problem

contours plotted. Figure 1(b) illustrates the feasible region (see the black rect-
angle) bounded by four constraints. In this problem, points A and B correspond
to the best and the second-best solutions, respectively.
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Assuming that the rank of constraints is “the right>the upper>the left>the
lower”, by applying the CCH-PF method, these constraints are subsequently
added and handled in four stages, as presented in Fig. 2. The solutions obtained
by the CCH-PF at the beginning, the mid-term and the end of the evolutionary
process are demonstrated in Fig. 3, compared with the penalty function without
the CCH framework.
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Fig. 2. Operational process of the cascaded constraint-handling (CCH) framework
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Fig. 3. Solutions obtained by penalty function with and without the CCH framework
under different evolutionary phases

From Fig. 3, it can be observed that,

– by the CCH-PF some infeasible solutions are retained at the early stages
and then move towards the boundary from the exterior of the feasible region.
Since starting from both sides of the boundary can provide more information
for the search, it is more likely to find the global optimal solution, especially
when it is located on the boundaries, e.g., A in Fig. 1(b).

– in comparison, the solutions in Fig. 3(a) are trapped into local minima. The
reason may be that, without CCH framework, the emphasis is laid on the
solutions satisfying all constraints, information from infeasible ones ignored.
Thus, B is of high probability to be obtained for its central location in the
feasible region. Once B is found, the search would be easily restricted within
its vicinity, resulting in the premature convergence.
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4 Experiments

This section examines the performance of the proposed CCH framework when
integrated with the penalty function method. Moreover, in order to eliminate the
possible interference caused by the penalty factor (α), in addition to the static
penalty function used above, the adaptive penalty function [9] is also adopted,
abbreviated as SPF and APF, respectively.

4.1 Test Problem and Algorithm Parameters

Since there is no MCOP benchmark available in literature, a new set of many-
constraint optimization test problems is designed. These test problems are con-
structed from the standard DTLZ benchmarks [6], and are denoted as MWZ1–
MWZ6. Specifically, the number of objectives in the DTLZ test suite is set as
m + 1. Amongst these m + 1 objective functions, only one objective is retained.
All the other m objectives are converted into constraints. For example, MWZ2
is described as follows.

min f(x) = (1 + g) sin
πx1

2

s.t. (1 + g) cos
πx1

2
sin

πx2

2
− 3

4
≤ 0

. . .

(1 + g)(
m−1∏
j=1

cos
πxj

2
) sin

πxm

2
− 3

2m
≤ 0

(1 + g)
m∏
j=1

cos
πxj

2
− 3

2(m + 1)
≤ 0

(9)

with

g =
n∑

i=m+1

(xi − 0.5)2 (10)

General parameters of the test algorithms are set as follows: The population
size N , the variable dimension n and the maximal generation number maxGen
are fixed as 100, 50 and 500, respectively. In these test problems, the number of
constraints is set as m = 39. And the penalty factor α is initialized as 50. All
the instances are independently run 31 times.

4.2 Experimental Results

In this section the performances of SPF and CCH-SPF, APF and CCH-APF on
the six benchmark problems are examined. The best, mean, worst value among
the obtained optimal objectives, as well as the standard deviation, across 31
independent runs of these algorithms are summarized in Table 1. Moreover, the
non-parametric Wilcoxon-ranksum two-sided comparison [10] procedure at the
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95% confidence level is employed to examine whether the results are significantly
different or not. The symbol ‘+’, ‘−’ or ‘=’ in Table 1 means that the proposed
methodology is better than, worse than or comparable to the technique without
the CCH framework.

Table 1. The best, mean, worst value and the standard deviation of the minimum
objectives obtained by SPF/ APF with and without the CCH framework on all test
problems. The statistical test using non-parametric Wilcoxon-ranksum two-sided com-
parison is performed. The symbol ‘+’, ‘−’ or ‘=’ means that the technique integrated
with the CCH is statistically better than, worse than or comparable to the counterpart.

Best results Mean results Worst results Std. dev. +/−/=

SPF CCH-SPF SPF CCH-SPF SPF CCH-SPF SPF CCH-SPF

MWZ1 0.0006 0.0000 0.0029 0.0000 0.0084 0.0000 0.0021 0.0000 +

MWZ2 0.0008 0.0000 0.1246 0.0019 0.4302 0.0295 0.1385 0.0054 +

MWZ3 0.0050 0.0000 0.0244 0.0005 0.0582 0.0075 0.0124 0.0014 +

MWZ4 0.9933 0.9927 0.9976 0.9956 0.9999 0.9992 0.0023 0.0025 +

MWZ5 0.0001 0.0000 0.0004 0.0003 0.0008 0.0009 0.0002 0.0002 +

MWZ6 0.0004 0.0000 0.0016 0.0000 0.0049 0.0003 0.0011 0.0001 +

Best results Mean results Worst results Std. dev. +/−/=

APF CCH-APF APF CCH-APF APF CCH-APF APF CCH-APF

MWZ1 0.0000 0.0000 0.0028 0.0002 0.0074 0.0011 0.0019 0.0003 +

MWZ2 0.0007 0.0000 0.2488 0.0131 0.4704 0.2142 0.1361 0.0431 +

MWZ3 0.0043 0.0000 0.0229 0.0003 0.0821 0.0099 0.0148 0.0018 +

MWZ4 0.9929 0.9929 0.9975 0.9955 0.9999 0.9988 0.0025 0.0022 +

MWZ5 0.0001 0.0000 0.0005 0.0002 0.0011 0.0004 0.0002 0.0001 +

MWZ6 0.0004 0.0000 0.0012 0.0000 0.0030 0.0002 0.0006 0.0001 +

In addition, the comparison results obtained by two pairs of algorithms are
box-plotted in Fig. 4, allowing a visual inspection.

According to the experimental results, it is observed that the superiority of
the proposed methodology is evident. To be more precise, amongst the six test
problems, CCH-SPF and CCH-APF are superior to their counterpart, presented
in Table 1 and Fig. 4. Additionally, both of CCH-SPF and CCH-APF obtain
comparably good performances.

In order to demonstrate the effectiveness of the CCH framework even further,
the SPF and the APF is individually compared against CCH-SPF and CCH-APF
on the MWZ2 under an incremental number of constraints. The comparison
results are shown in Fig. 5. It can be observed that, regardless of the number of
the constraints, the CCH integrated version can approximately converge to the
optimal objective value with little error while the competitors cannot. Moreover,
the performances of SPF and APF fluctuate to some extent.

Combining the above results, we therefore can tentatively conclude that the
proposed CCH framework is helpful in improving the effectiveness of the penalty
function method when dealing with MCOPs.
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Fig. 4. Comparison results of the constraint-handling technique without and with the
CCH framework on different test problems
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Fig. 5. The change of optimal objective values obtained by SPF and APF, without
and with the CCH framework as the number of constraints increases.

5 Conclusion

Many engineering problems involve handling a large number of constraints. How-
ever, few studies in literature have explicitly investigated how to effectively
handle many-constraint optimization problems (MCOPs). This study, to the
best of the authors’ knowledge, provides the first initial analysis on many-
constraint optimization. First, the MCOPs are formulated, and a new set of
benchmarks is proposed. Then, a simple yet effective algorithmic framework,
the cascaded constraint-handling (CCH), is proposed. The CCH framework han-
dles constraints progressively during the search process. That is, constraints are
added sequentially. Regarding the order of adding constraints, “the most inter-
esting one first” principle is adopted. Accordingly, a method for ranking the
interest level of constraints is proposed. Experimental results show that the



Evolutionary Many-Constraint Optimization: An Exploratory Analysis 175

CCH integrated penalty function is much more effective than the individual use
of penalty function method on MCOPs.

This study is limited in a certain number of ways. First, the effectiveness of
the CCH framework is only examined for the penalty function method. There-
fore caution is advised in generalizing the CCH to other constraint-handling
techniques. Second, the adopted MWZ benchmarks are constructed based on
the DTLZ many-objective optimization problems. These problems are known
for the conflicting relationship amongst objectives. That is to say, the MWZ
also holds the conflicting relationship which however is not usual in real con-
strained optimization problems. Thus, more advanced benchmarks are highly
required. A final point to consider is the issue of equality constraints. According
to the current constraint-ranking method, equality constraints would be very
likely to be the most difficult constraints, and thus make the search of feasible
solutions extremely difficult. In this sense, some other strategies to handle equal-
ity constraints can be considered, e.g., the variable reduction method [23,24].

In terms of future research, since the CCH framework examined in this paper
is very simplified, more effective strategies within this framework are encouraged
which include, e.g., advanced constraint-ranking method, appropriate partition
of constraints. Consideration may also be given to scaling up the framework for
being applicable to other constrained optimization algorithms.

In summary, this study has highlighted many-constraint optimization prob-
lems. However, both the MCOP benchmarks and the methodologies, e.g., the
CCH framework, are still in their infancy. More research along this direction is
needed.
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Abstract. Most of the recently proposed evolutionary many-objective
optimization (EMO) algorithms start with a number of predefined ref-
erence points on a unit simplex. These algorithms use reference points
to create reference directions in the original objective space and attempt
to find a single representative near Pareto-optimal point around each
direction. So far, most studies have used Das and Dennis’s structured
approach for generating a uniformly distributed set of reference points
on the unit simplex. Due to the highly structured nature of the procedure,
this method does not scale well with an increasing number of objectives.
In higher dimensions, most created points lie on the boundary of the
unit simplex except for a few interior exceptions. Although a level-wise
implementation of Das and Dennis’s approach has been suggested, EMO
researchers always felt the need for a more generic approach in which
any arbitrary number of uniformly distributed reference points can be
created easily at the start of an EMO run. In this paper, we discuss
a number of methods for generating such points and demonstrate their
ability to distribute points uniformly in 3 to 15-dimensional objective
spaces.

Keywords: Many-objective optimization · Reference points ·
Das and Dennis points · Diversity preservation

1 Introduction

Recent evolutionary many-objective optimization algorithms (EMO) use a set
of reference directions as guides to parallely direct their search to find a single
Pareto-optimal solution along each direction. These so-called decomposition-
based EMO methods, such as MOEA/D [18], NSGA-III [5], DBEA [1] are gain-
ing popularity due to their success in handling three to 15-objective problems
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involving convex, non-convex, multi-modal, disjointed, biased density based, and
non-uniformly scaled problems.

One of the requirements of these algorithms is the initial supply of a set of
reference directions, a matter which has not been pursued much in the literature.
Most studies use Das and Dennis’s [4] structured method in which first a set of
points are initialized on a M -dimensional unit simplex (where M is the number of
objectives): z ∈ [0, 1]M satisfying

∑M
i=1 zi = 1. Thereafter, a reference direction

is constructed by a vector originating from the origin and connected to each
of these points. The number of points on the unit simplex is determined by a
parameter p, which indicates the number of divisions along each objective axis.
It turns out that the total number of points on the unit simplex is

(
M+p−1

p

)
.

For example, if p = 10 is chosen for an M = 3-objective problem, then the
total number of points on the unit simplex is

(
12
10

)
or 66. The 66 points are well

distributed on the unit simplex. If an EMO algorithm works well to find a single
Pareto-optimal solution for each of these 66 reference lines (obtained by a vector
originating from the origin and passing through each point), a well-distributed
set of Pareto-optimal solutions will be expected at the end. If more points are
desired, p can be increased by one (or, p = 11), and the total number of points
must jump to 78. In other words, if exactly 70 points are desired on the unit
simplex, there is no way we can use Das and Dennis’s method to achieve them.

Besides the inability to construct an arbitrary number of points, there is
another issue with Das and Dennis’s method, which has been problematic. As
p increases, the total number of points on the unit simplex increases rapidly, as
shown for M = 10 in Fig. 1 – sublinear plot in the semilog scale indicates less
than exponential behavior. This requires a large population size to find a single
Pareto-optimal solution for each direction. Moreover, most of the structured
points lie on the boundary of the unit simplex and very few points lie in the
interior of the simplex. Calculations reveal that, when p < M , there is no interior
point, and when p = M , there is exactly one interior point. With p > M more
points are in the interior, but the number of such points is only

(
p−1
p−M

)
, which

is only a tiny fraction of all Das and Dennis’s points. Figure 1 shows that for
M = 10-objective problem, the proportion of interior Das and Dennis’s points
grow with p. For p < M , the proportion is zero and then it starts to grow, but
the proportion is still very low compared to the total number of points created.
For example, for p = 15, there are a total of 1,307,504 points, of which only
0.15% (or only 2,002) points are in the interior. The rest of the points lie on the
boundary of the unit simplex. A fix-up to the above problem has been suggested
in the literature [5] by applying the Das and Dennis’s method layer-wise. In
every layer, a small p is chosen to create a few points, but layers are shrunk
consecutively so that more interior points are created in the process. Even with
this layer-wise procedure, any arbitrary number of points cannot be created.

In this paper, we discuss a number of methods by which an arbitrary number
of well-distributed points can be created on the unit simplex. Methods based
on filling, construction and elimination are first described. The methods are
then applied in 3 to 15-dimensional objective spaces to show their effectiveness.
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Fig. 1. Proportion of interior points compared to total Das and Dennis’s points for
M = 10-objective problem.

Section 2 describes a few standard space filling methods which can be used for
the purpose. Section 3 then describes bottom-up approaches that build a set of
reference points from a few seed points. Section 4 proposes an opposite scenario,
in which a well-distributed set of reference points are chosen from an initial large
set of points on the unit simplex. Results using some of these methods are shown
in terms of the hypervolume measure in Sect. 5. Finally, conclusions are drawn
in Sect. 6.

1.1 Motivation

The choice of reference directions in decomposition-based EMO methods is
important, since the distribution of resultant Pareto-optimal solutions largely
depends on them. If a near-uniform distribution of reference points can be sup-
plied on a unit simplex, the corresponding reference directions are expected to
produce a well-distributed set of Pareto-optimal points. In this paper, we pro-
pose a number of philosophies of finding n reference points z(i), i = 1, . . . , n on
a standard (M − 1)-simplex1, such that

∑M
k=1 z

(i)
k = 1 holds for each i. Being a

preliminary study, we do not consider generating reference points on an arbitrary
simplex [8] or on convex and concave manifolds [12].

2 Filling Methods

In these methods, the set of n points will be created on the unit simplex by using
a standard filling technique. We describe a few techniques for this purpose.

1 A standard (M − 1)-simplex has M vertices in R
M , each of which is one unit from

the origin along each axis.
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2.1 Methods Based on Design of Experiments

In the design and analysis of computer experiments, the goal is to capture the
effect of inputs on one or more outputs as best as possible with as few expensive
experiments as possible. This problem can be restated as: “how to sample com-
puter experiments in the input space such that the input-output relationship
are maximally captured?”. The chosen set of experiments or samples is called
an experimental design. Classical experimental designs, which were originally
developed for physical experiments, include the following:

1. Full and fractional factorial designs: Full factorial design [7] places a
sample at every possible input configuration so that all main effects and inter-
action effects can be captured. This approach can easily become intractable
for a high number of dimensions. Fractional factorial designs are more prac-
tical as they use only a subset of complete factorial designs to capture just
the main effects and low-order interactions.

2. RSM designs: Response surface methodology (RSM) [2] uses polynomials of
various degrees to model the input-output relationship. RSM employs a vari-
ety of designs, such as full and fractional factorial, central composite design,
Box-Behnken design and sequential method, which are aimed at minimizing
errors at the design points and keeping biases in the estimated coefficients
small.

3. Optimal designs: Optimal designs are aimed at optimizing various statis-
tical criteria related to estimation and prediction. For example, D-optimal
and A-optimal designs, respectively, minimize the determinant and trace of
XTX (where X is the design matrix), which reduce estimation variance. On
the other hand, G-optimal and Q-optimal designs respectively minimize the
maximum and average prediction variance over the design points [3]. Here,
we consider D-optimal design as a representative method of this class.

2.2 Space Filling Methods

Classical experimental designs described above are also called model-dependent
designs because they require the knowledge of an underlying model. When no
prior information about the input-output relationship is known, the general
strategy is to assume that important features of the input-output relationship are
equally likely to be present in all parts of the input space. In order to capture
these features through an experimental design, the samples are spread evenly
throughout the input space. Such designs are called model-independent or space-
filling designs. The three important categories of space-filling designs are:

1. Orthogonal arrays: An orthogonal array [14] of strength d and index λ for
κ factors (κ > d), each with s levels, is an experimental design that, upon pro-
jection onto any subset of d dimensions, resembles a full factorial, with each
design point replicated λ times. The total number of designs required is there-
fore, n = λsd. The corresponding orthogonal array is denoted as (n, κ, s, d).
(s3, 4, s, 2). Since, the number of points come as in a structured manner and
cannot be set arbitrarily, we do not consider this method here.
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2. Latin hypercube design and sampling (LHS): A Latin hypercube design
is any orthogonal array of strength d = 1 and index λ = 1. Since N = s, this
design gives the flexibility to generate an arbitrary number of samples when
the factors are continuous. Latin hypercube sampling [13] involves dividing
each factor into N equal intervals. Each of the N required designs is obtained
by randomly selecting a previously unselected interval in each factor and
sampling a single value from it.

3. Number theoretic methods: Number theoretic methods, originally devel-
oped for quasi-Monte Carlo integration, are aimed at creating points uni-
formly in the input space by minimizing different discrepancy metrics,
which are measures of uniformity. Various low-discrepancy (also called quasi-
random) sequences are available in literature. Popular among them are Halton
set [9], Hammersley set [10], Sobol set [17] and Faure [6] sequences. When
using low-discrepancy sequences, randomization of samples can be achieved
by skipping over used sequences completely or partially. Here, we use three
methods as representatives of this class.

Mapping onto Unit Simplex. All filling methods described above generate
points in an M -dimensional hypercube (zk ∈ [0, 1]). In order to map these points
onto the (M − 1)-dimensional unit simplex, we adopt the following approach,
suggested in [16]:

1. Generate points z(i), i = 1, . . . , n in an M − 1 dimensional unit hypercube.
2. Set i ← 1
3. Sort ordinates {z

(i)
1 , z

(i)
2 , . . . , z

(i)
M−1} of z(i) in ascending order.

4. Let {y
(i)
1 , y

(i)
2 , . . . , y

(i)
M−1} be the sorted ordinates.

5. Define y
(i)
0 = 0 and y

(i)
M = 1, so that y

(i)
0 < y

(i)
1 < y

(i)
2 < . . . < y

(i)
M−1 < y

(i)
M .

6. Then, set z
(i)
k ← y

(i)
k − y

(i)
k−1 for k = 1, . . . ,M to form the mapped point z(i)k .

7. If i < n, then set i ← (i + 1) and go to Step 3, else Stop.

Note that
∑M

k=1 z
(i)
k = 1 is satisfied for each i.

In this paper, we will use the following filling methods because they allow us
to choose an arbitrary number of points: D-optimal designs (DOD), Latin hyper-
cube sampling (LHS), Halton set (HAL), Hammersley set (HAM) and Sobol set
(SOB).

2.3 Structured Filling Methods

Das and Dennis’s Method (DAS). As mentioned in Sect. 1, Das and Den-
nis’s method is a structured approach which requires an integer gap parameter
p(≥ 1) and then creates

(
M+p−1

p

)
points. The method is scalable to any number

of objectives (M), but has several drawbacks:

– Number of points cannot be set arbitrarily,
– Most points lie on the boundary of the unit simplex, which may not be of

interest to decision-makers, and
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– The approach is not easily moldable to incorporate preference information.

Due to popular use of this method, we consider it in our comparison base and
call this method DAS.

f3

1 1
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Layer 3 (p=1)
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Fig. 2. Layer-wise construction of Das and
Dennis’s points for M = 3-objective prob-
lem.

Layer-Wise Das and Dennis’s
Method. Layer-wise construction
process is illustrated in Fig. 2. A rela-
tively small value of p (< M) is used
for each layer. The first layer cov-
ers the entire unit simplex, but the
subsequent layers use a shrunk unit
simplex, as shown in the figure. For
example, instead of using p = 12 for
a three-objective (M = 3) problem
totalling 91 points, the use of three
layers, as shown in the figure, with
layer-wise p = (3, 2, 1) requires (10, 6,
3) or 19 points in total of which only
9 points are on the boundary. Points
from Layer 2 and above are guaran-
teed to lie in the interior in such a
construction, but the uniformity of
the points gets lost in the process. In
addition, the layered approach can end up with different layouts for the same
number of points. For example, with 5 objectives, generating 50 reference points
can be done either using p = (3, 2) or p = (2, 2, 2, 1). Moreover, although using
layers allows more flexibility in number of points than the original method, but
still any arbitrary number of points is not possible to be created.

2.4 Probabilistic Filling Methods

A structured probability distribution for each objective can be chosen such that
the sum of the objective values is exactly one. One such method was pro-
posed in [11], in which the first objective z1 is chosen in [0, 1] with a proba-
bility distribution proportional to (1 − z1)M−2. This can be achieved by first
choosing a random number u1 ∈ [0, 1] and then computing z1 = 1 − M−1

√
u1.

Thereafter, zk is computed with another random number uk ∈ [0, 1], as zk =(
1 − ∑k−1

j=1 zj

) (
1 − M−k

√
uk

)
. The process is continued until zM−1 and the final

objective value is computed as zM = 1 − ∑M−1
j=1 zj . We call this method JAS in

this paper.

Other Structured Methods. There exists a number of conformal mapping
methods [15] in which uniformly distributed points on a hyperbox can be mapped
into a unit simplex. Since we are interested in a near uniform distribution of
points in the unit simplex, it may not be easy to use such methods efficiently.
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3 Construction Methods

Construction methods uses a bottom-up approach in which the procedure starts
with a single point z(0) on the unit simplex. Thereafter, points are added one by
one in stages until a set of n points are obtained with a near uniform distribu-
tion. The addition of points can be achieved by using a pre-defined procedure
or by a sophisticated optimization procedure of maximizing the uniformity of
points at every stage. At a stage, when k points are already found, the following
optimization procedure can be applied to obtain the (k + 1)-th point z(k+1):

Maximize mink
i=1 Dist(z(k+1), z(i)),

Subject to
∑M

j=1 z
(k+1)
j = 1,

0 ≤ z
(k+1)
j ≤ 1, for j = 1, . . . , M .

(1)

In this problem, there are only M variables z
(k+1)
i and one constraint. Other

diversity metrics can also be used instead of the minimum Euclidean distance
to all existing k points. The only drawback of this approach is that the above
optimization needs to be applied (n− 1) times and the computation gets expen-
sive with increasing k. The final outcome of n points will depend on the initial
point chosen, which can be a random point on the unit simplex, or its centroid.

3.1 Maximally Sparse Creation Method (MSC)

Instead of starting with a single initial point, the above procedure can be seeded
with more than one well-distributed points on the unit simplex. For example,
the process can be started with M vertices as initial points or with m points
from Layer 1 specification (with a small p (< M)), as described in Sect. 2.3. The
remaining (n−M) or (n−m) points, as the case may be, can be created by using
the above optimization procedure in stages. In this study, we use the vertices
as initial points and call this method as MSC. The optimization problem in (1)
is solved using MATLAB’s fmincon() function. The constraint is relaxed to an
inequality

∑M−1
j=1 z

(k+1)
j ≤ 1 by solving the problem for first M − 1 variables.

The last variable is set to z
(k+1)
M = 1−∑M−1

j=1 z
(k+1)
j once fmincon() terminates.

4 Elimination-based Methods

Contrary to construction methods, a completely opposite process can be devised.
Starting with a large set (S) of structured or random points on the unit simplex,
a procedure can be devised to eliminate neighboring points. This can be done
either by eliminating one point at a time similar to a pruning method or by
eliminating multiple points at a time.
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4.1 Maximally Sparse Selection Methods (MSS)

This approach starts by filling S with a large number of uniformly randomly gen-
erated points. Then W is initialized as the set of all extreme points (1, 0, . . . , 0)T ,
(0, 1, . . . , 0)T , . . ., (0, 0, . . . , 1)T . Finally, the procedure selects the rest (n − M)
points one at a time. The point which is maximally away from the already
selected set of points points W is picked, added to W and removed from S. The
procedure continues until a total of n reference points is reached. Thus, at a
stage in which k points are already obtained, we choose the next point z(k+1),
as follows:

(k + 1) = argmaxj∈S,i∈W
k∑

i=1

Dist(z(i), z(j)). (2)

If the original large set S is a random set of points on the unit simplex [19],
we call this method MSS-R and when the original set S is a large set of points
created by Das and Dennis’s method with a large p, we call it MSS-D.

Instead of starting with an extreme point, the point closest to the centroid
of the entire set S can be used to start the procedure, as an alternative method.

4.2 Reductive Methods (RED)

In this method, we cluster the large set of points S into n separate clusters
based on Euclidean distance. Then, we choose one representative point from
each cluster to select exactly n points. If S is a random set of points on the unit
simplex, we call it RED-R and if S is chosen using Das and Dennis’s method
with a large p, we call it RED-D.

These methods may lose boundary points. One way to overcome this issue,
is to ensure that for boundary clusters, we choose a boundary point in order to
have maximum coverage over the entire unit simplex. Alternatively, the point
closest to the centroid of each cluster can be chosen first and then the set of
n points can be stretched to extend to the unit simplex boundary. In RED-R
and RED-D, once the un-stretched-yet points are generated, W ′, the smallest
value for each objective i is subtracted from all i components of all the points
in W ′. This step keeps pushing the points – that used to be on the unit simplex
– towards the origin, until for each objective i at least one point exists whose
i-th component is Zero. Then all the points are normalized again to fall back
on the unit simplex, and these form the targeted W. Since stretching does not
guarantee keeping extreme points, we added an additional step to insert them
(RED-DS) in place of their closest neighbors.

5 Results

In this section, we present results obtained from 13 different methods described
in previous sections on M = {3, 5, 8, 10, 15}-objective problems for finding n
= {50, 100, 150, 200, 250, 300} points. The methods used in our study are (i)
D-optimal designs (DOD), (ii) Latin hypercube sampling (LHS), (iii) Halton
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(HAL), (iv) Hammersley (HAM), (v) Sobol (SOB), (vi) Jaszkiewicz (JAS), (vii)
Das and Dennis (DAS), (viii) Maximally Sparse Creation (MSC), and (ix) Max-
imally Sparse Selection with random initial set (MSS-R), (x) Maximally Sparse
Selection with Das and Dennis’s initial set (MSS-D), (xi) Reduction method
with random initial set (RED-R), (xii) Reduction method with Das and Den-
nis’s initial set (RED-D), and (xiii) Reduction method with Das and Dennis’s
initial set and guaranteed extreme points (RED-DS).

To compare the performance of the methods, we have used the hypervolume
measure using the vector (1.01, . . . , 1.01)T as the reference vector, as we know
that the unit simplex has a nadir point (1, . . . , 1)T . In all plots, we show a
normalized hypervolume metric obtained by dividing the obtained hypervolume
value for a method with the maximum hypervolume, computed as follows: N-HV
= HV/HVmax, where HVmax = 1.01M − 1/M !.

Figure 3 compares all 13 methods in terms of box-plots for M = 3 objectives
and n = 20 points. When n = 50 points are required, a different distribution will
occur and resulting hypervolume values are plotted in Fig. 4 for all 13 methods.
It is clear that the hypervolume is the best for RED methods.

Fig. 3. Normalized hypervolume for
M = 3 and n = 20.

Fig. 4. Normalized hypervolume for
M = 3 and n = 50.

In order to show the sensitivity of the obtained distribution on the desired
number of points (n), we use two elimination methods – RED-DS and MSS-D –
n = 50 and 51 points for a three-objective problem, and obtain two distributions
of points. Figures 5 and 6 show the difference in their distributions using RED-
DS and MSS-D, respectively. The first plot indicates that an addition of an extra
point in the set changes the arrangement in the intermediate part. Since MSS-
D uses a sequential and deterministic selection method, the first 50 points for
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the n = 51 case will exactly be identical to the n = 50 case. Although both
produce a well-distributed set of points, the clustering approach (in RED) has
the dependence on n, and may be a better approach.

Fig. 5. Distribution of 50 and 51 points
using RED-DS method for M = 3.

Fig. 6. Distribution of 50 and 51 points
using MSS-D method for M = 3.

Figures 7, 8, 9 and 10 show box plots of normalized hypervolume for 5 to 15-
objective problems with different n values. All plots show how MSS and MSC
has the most robust results across all dimensions. At higher dimensions, the
performance of RED methods degrades due to the tendency of clustering to
avoid boundary points.

Fig. 7. Normalized hypervolume for
M = 5 and n = 100.

Fig. 8. Normalized hypervolume for
M = 8 and n = 200.
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Fig. 9. Normalized hypervolume for
M = 10 and n = 300.

Fig. 10. Normalized hypervolume for
M = 15 and n = 500.

6 Conclusions

In this paper, we have attempted to address an important issue related to evo-
lutionary many-objective optimization (EMO) algorithms. While most EMO
methods use a structured approach for allocating a set of reference points for
leading the search, EMO researchers have always felt the need to make the
process more flexible in specifying an arbitrary number of points on the unit
simplex. In this paper, we have discussed a number of filling, construction and
elimination methods for this purpose. Through extensive experiments in 3 to
15-dimensional objective spaces, we have compared the performance of a few of
the proposed methods. Results based on the hypervolume metric have indicated
the following:

1. Elimination methods (MSS-R, MSS-D, RED-R, and RED-D) are, in general,
better than other methods considered in this paper at lower dimensions.

2. MSS-D procedure performs the best overall.
3. Construction method MSC and structured method DAS also perform well,

particularly for higher dimensions.

In the future, we plan to make a comparison based on the computational
complexity. Other methods, such as a simultaneous optimization of all n points,
can also be included as global methods. The study can be extended to find a
biased distribution of reference points, particularly if preference information is
available. In some EMO applications, users may be interested in focusing on
a particular part of the Pareto-optimal front. Methods that are able to create
reference points on a specific region of the unit simplex will be another useful
extension of this study.
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Abstract. There is considerable evidence that the Multi- and Many-
objective Evolutionary Algorithms (jointly referred as MâOEAs, here)
are mostly run for arbitrarily fixed number of generations. The absence
of any justification for the same raises more questions than answers,
and it is plausible to infer that the choices made for different prob-
lems coincide with the best-observed results. Reference-based MâOEAs
(RMâOEAs) are a prominently emerging class of MâOEAs, where the
diversity maintenance is assisted by externally provided reference vec-
tors or points. However, the performance of most existing RMâOEAs is
impacted by the efficacy with which the population is normalized along
the search. This paper presents a novel and computationally efficient Ter-
mination Algorithm which under different parameter settings (strong and
mild) not only determines the appropriate timing for RMâOEAs’ termi-
nation but also the intermittent timings at which the population ought
to be normalized. The proposed Algorithm can be tuned to integrate
with different RMâOEAs. An instance of it is demonstrated here, with
respect to NSGA-III. Experimental Results on the call for final termina-
tion of NSGA-III have been validated through Hypervolume measures.
The results also establish that the performance of NSGA-III could be
improved just by changing the frequency of Nadir-point estimates (used
for population normalization). While several efforts have been made on
how to estimate the Nadir-point, this to the best of the authors’ knowl-
edge is one of the rarest studies that explores when to estimate the
Nadir-point.

Keywords: Many-objective Optimization · Termination criterion ·
Nadir-point

1 Introduction

The goal of a Multi-objective Evolutionary Algorithms (MOEAs) is to evolve
a finite set of random solutions over several generations, to a set of solutions
that approximates well the true Pareto-Front (PF ) for a given problem in terms
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of convergence and diversity [6]. During the last two to three decades, several
MOEAs were developed and their efficacy was demonstrated on test and real-
world problems, dominantly with two or three objectives (M = 2 or 3). Though
problems with M ≥ 4 were reported earlier also, it was largely around the
Year-2000 and onward, that the specific challenges posed by such problem to
most existing MOEAs, were and are being recognized [4,9,11,14]. This perhaps
explains why problems with M ≥ 4 began to be referred as Many-objective
Optimization problems (MaOPs), and Many-objective Evolutionary Algorithms
(MaOEAs) gained importance. Since most MaOEAs also report their perfor-
mance for M ≤ 3, the Multi- and Many-objective Evolutionary Algorithms are
collectively referred to as MâOEAs, here.

Reference-based RMâOEAs are a promising class of MâOEAs, where the
diversity maintenance is assisted by externally provided reference vectors or
points. As articulated in [2], these reference vectors/points can serve as the
search targets, corresponding to each of which optimal solutions can be found.
Prominent examples of RMâOEAs include NSGA-III [2] and its variants in [10,
19]; and MOEA/D [20] and its variants [1,12,18]. One major challenge associated
with RMâOEAs relates to the efficacy of its normalization procedure which in
turn impacts both the convergence and diversity in the PF -approximation.

In this context, this paper presents a novel and computationally efficient
Termination Algorithm which under different parameter settings, not only deter-
mines the appropriate timing for RMâOEAs’ termination but also the intermit-
tent timings at which the population ought to be normalized. The remaining
paper is structured as follows. Section 2 summarizes the existing Termination
Algorithms for MâOEA. The proposed Termination Algorithm is presented in
Sect. 3 and its integration with NSGA-III is discussed in Sect. 4. This is fol-
lowed by experimental results on the timing of Nadir-point estimation and final
termination of NSGA-III in Sect. 5. The paper concludes with Sect. 6.

2 Related Work on MâOEA Termination Algorithms

Considering that the question as to when to terminate an MâOEA, is a fun-
damental question faced by researchers and practitioners, it is ironical that the
associated literature is rather sparse, and that too has failed to permeate into
practice. Evidently, the number of generations for an MâOEA run are arbitrarily
fixed apriori, given which an imbalance between quality of PF -approximation
and computational cost is inevitable. While this imbalance could be ignored
in test problems (known PF ), it may have punitive implications in real-world
problems where the quality of PF -approximation can not be gauged on-the-fly.

The available termination Criteria/Algorithms operate in two phases,
namely, evidence-gathering phase (where information on some performance indi-
cators is gathered) and decision-making phase (relying on statistical thresholds
on gathered evidence) [16,17]. Notably, their applications in literature are dom-
inantly restricted to M ≤ 3; and their potential limitations in the context of
MaOPs are highlighted in [15]. The rare studies considering their applications
for MaOPs, include: (i) use of a global criterion based on hypervolume, ε, and
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Mutual domination rate; Kalman filter based termination; and performance eval-
uation with M = 3 and 10, against DTLZ3, DTLZ6–7, and WFG1–9 [13], and (ii)
an entropy based on-the-fly termination algorithm, demonstrated on 23 instances
of two-objective problems, 12 instances of non-redundant MaOPs, 13 instances
of redundant MaOPs [15], and real-world MaOPs in [7].

3 Proposed Termination Algorithm

The proposed Termination Algorithm, in principle, relies on capturing the stabil-
ity of RMâOEA populations over successive generations. The stability is quan-
titatively assessed through a distance measure proposed in this paper. When
the variation in the mean and standard deviation of this distance measure (to
be computed over generations along an RMâOEA run, starting with the ini-
tial generation) falls below a threshold controlled by prescribed parameters, the
RMâOEA’s termination is called for.

With reference to Fig. 1, consider population sets P and Q from two succes-
sive generations of an RMâOEA operating with five reference vectors (set V ).
Let each solution s ∈ P and Q associate itself to the closest vector v ∈ V ,
implying that d⊥(s,v) = s−vTs/||v|| is minimum. This association would lead
to the following scenarios, where there are vectors associated with:

1. exactly one member from each population (e.g., V5): here, referring to mem-
bers of P and Q associated with vector v, as p and q, respectively, compute
the normalized distance between p and q along v, as given by Eq. 1. In that,
D(v) = 0 implies that members from two successive generations coincide
(indicating stability) w.r.t. v.

2. one or more member(s) from each population (e.g., V1): here, Eq. 1 holds
again with the qualifier that p and/or q are to be treated as a representative
solution of associated members from P and/or Q, respectively. In that, the
objective vector for p is the average of the objective vectors of all members
of P associated with v. The same holds for q.

3. one or more members from one population, but none from the other (e.g.,
V3, V 4): here, D(v) is set to 1 (maximum possible value), since absence of
any member from either P or Q implies that the RMâOEA has not stabilized.

4. no member from any population (e.g., V2): such a vector does not contribute
to the current D(v) computation (v is not permanently dropped).

Following the D(v) computations, μD of the population P relative to Q is given
by Eq. 2, where V A is the set of those vectors which had at least one solution
associated with them. This concludes the evidence-gathering phase of the pro-
posed Termination Algorithm (Algorithm1).

Notably, an RMâOEA starts from a randomly initialized population and
evolves it over generations in pursuit of a good PF -approximation. In that, the
disparity among successive populations is quite significant during early genera-
tions, and that subsides gradually. Considering this, towards the decision-making
phase of Algorithm 1, it is proposed that: (i) the mean and standard deviation of
μD be computed from the first to the tth (current) generation, as per Eqs. 3 and
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4, respectively, and (ii) if the μt and σt measures in a pre-specified number of
successive generations (ns) of the RMâOEA may coincide up to a pre-specified
number of decimal places (np), then the underlying RMâOEA be terminated, and
the last generation be reported as Ngt. The above propositions are summarized
in Algorithm 1, where vector association (L3–4) is followed by computation of
μD (L5–13), leading to final termination criterion check (L15–19). Notably, the
user-input parameters ns and np would be collectively denoted by Tpar ≡ (np, ns)
in Sects. 4 and 5.
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Fig. 1. Symbolic Vector association
with successive Populations P and Q

D(v) =
|v̂Tp − v̂T q|

max(v̂Tp, v̂T q)
(1)

μD =
1

|V A|
∑

v∈V A

D(v) (2)

μt =
1

t

t∑

i=1

μDi, t ≥ 1 (3)

σt =
1

t

t∑

i=1

(μDi − μi)
2; t ≥ 1 (4)

Algorithm 1. Proposed Termination Algorithm
1 Procedure CalculateTerminationCriteria(P,Q, V, t, np, ns)
2 begin
3 c1 = false, c2 = false
4 PV ← Associate(P, V ), QV ← Associate(Q,V )
5 μDt ← 0.0
6 foreach v ∈ V do
7 if PV [v] �= φ and QV [v] �= φ then
8 p = mean(PV [v]), q = mean(QV [v])
9 μDt ← μDt + D(v) (Equation 1)

10 else if PV [v] �= φ or QV [v] �= φ then μDt ← μDt + 1.0 ;
11 μDt ← μDt/|V A| (Equation 2)
12 Compute μt and σt using Equation 3
13 Dt = round(μt, np), St = round(σt, np)
14 if [Dt = Dt−1 = · · · = Dt−ns

] then c1 = true;
15 if [St = St−1 = · · · = St−ns

] then c2 = true;
16 if c1 == true and c2 == true then return true;
17 else return false;

4 Integration with NSGA-III

The proposed Termination Algorithm (Algorithm1) integrated within NSGA-III
is presented in Algorithm 2. For brevity, the discussion below focuses mainly on
the interfacing of the Algorithm 1 with NSGA-III, in view of the dual goals of
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determining the appropriate timing for (a) Nadir-point estimation (Flag Tnad

in Algorithm 2), and (b) final termination (Flag Tstop in Algorithm 2). Notably,
NSGA-III uses the Extreme-point-to-Nadir approach [3], and the Nadir-point
estimates are used to normalize the population in conjunction with translation
(origin on to the ideal point). However, the authors’ submissions here, include:

– normalization impacts the distribution of reference vectors, the association of
solutions with those vectors, and eventually the diversity among solutions

– the rapidly evolving population specially in the early generations of NSGA-III
may enforce too unstable Nadir-point estimates. On the contrary, the ideal
point would remain relatively stable given that it is considered to be the best
point found so far (not just in the current generation)

– that instead of estimating the Nadir-point at every generation of NSGA-III,
its estimate be limited only to those generations where Algorithm 1 points
to termination under mild stabilization within the current search hypercube
(hypercube - post normalization, after the first Nadir-point estimation)

– mild stabilization: this is recommended, as the aim is just to negate the desta-
bilizing effect of extreme-point fluctuations. If Nadir-point estimation were to
be under strict stabilization, it may lead to poor diversity, owing to the search
with non-uniformly distributed reference vectors for far too long

– hence, it is prudent to evaluate Flag Tnad under mild Tpar settings, and the
Flag Tstop ought to be evaluated under stricter Tpar settings.

In the wake of the above, it may be noted that the Algorithm2 retains
the overall architecture of NSGA-III, except the changes around Flag Tnad.
If the Flag Tnad is enabled through isTNenabled (L23), then the Nadir-point
estimation will be timed by Algorithm 1, and NSGA-III shall be distinguished
through a different abbreviation, as NSGA-IIITN . In that, the normalization
(L19) is accomplished through translation of population (L11, 12) and updating
of the Nadir-point (L13–15). The Flag Tstop is evaluated at the end of each
NSGA-III generation (L25), regardless of whether the Flag Tnad is enabled or
not. This illustrates the modular architecture of Algorithm2. In that, if Flag
Tnad is not enabled, then Algorithm2 becomes identical to NSGA-III.

Overall Complexity: Given the number of vectors, H and number of objec-
tives, M , the computation of μD takes the complexity of O(MH). But the bot-
tleneck lies in the association of solutions to vectors, which requires O(MNH)
complexity as the perpendicular distance of each solution in the population of
size N from every vector, v needs to be computed. Thus, the overall complex-
ity is O(MNH + MH) = O(MH(N + 1)). Since, H ≈ N , therefore the final
complexity is O(MN2). The information of associations can be re-utilized from
the vector based MâOEA, of which it is a necessity. Thus, upon integration with
MâOEA (NSGA-III here), the overall complexity can be reduced to O(MN).

5 Experimental Settings and Results

In this paper, the non-redundant versions of the DTLZ [5] and WFG [8] prob-
lems are used. Experiments are done for M = 5, 10 and 15, with corresponding
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population size of 212, 276 and 136, respectively, guided by the reference vector
generation scheme used in [2].

Algorithm 2. Proposed Termination Algorithm integrated with NSGA-III
Input: H supplied reference Points, V ; randomly generated population,

P1 with size, N ; termination evaluation parameters, n1
p, n1

s, n
2
p,

n2
s; and timed Nadir-point estimation enabler, isTNenabled()

1 begin
2 Tnad = false, Tstop = false, t1 = 1, t2 = 1, zmin = φ, a = φ
3 do
4 St = φ, i = 1
5 Qt = Recombination+Mutation(Pt), Rt = Pt

⋃
Qt

6 (F1, F2, . . . ) = Non-dominated-sort(Rt)
7 repeat
8 St = St

⋃
Fi and i ← i + 1

9 until |St| ≥ N ;
10 Last front to be included: Fl = Fi

11 Update zmin : zmin
i = Minx∈Rt

fi(x), i ∈ M
12 Translate Pop: si = si − zmin

i , where i ∈ M , s ∈ St

13 if Tnad == true or isTNenabled() == false then
14 a = UpdateIntercepts(St, z

min)
15 Tnad = false and reinitialize Tnad with t1 = 1
16 if |St| = N then Pt+1 = St, break;
17 else
18 Pt+1 =

⋃l−1
j=1 Fj

⋃ {Fl : K = N − |Pt + 1|}
19 if a �= φ then Normalize Population: s = s/a , s ∈ St;
20 Associate each member s of St with a reference point
21 Compute niche count of reference point
22 Choose K members one at a time from Fl to construct Pt+1

23 if isTNenabled() == true then
24 Tnad = CalculateTerminationCriteria(Pt, Pt+1, V, t1, n

1
p, n

1
s)

25 Tstop = CalculateTerminationCriteria(Pt, Pt+1, V, t2, n
2
p, n

2
s)

26 t1 ← t1 + 1, t2 ← t2 + 1
27 while Tstop �= true;
28 Ngt = t2
1 Procedure UpdateIntercepts(P, zmin)
2 begin
3 Translate Population: si = si − zmin

i , where i ∈ M , s ∈ P
4 Find extreme points: zmax

j = s : argmins∈PASF (s, wj), where
ASF (x,w) = maxM

i=1 f ′
i(x)/wi, wj = (ε, . . . , ε)T ; ε = 10−6; wj

j = 1
5 Compute intercepts aj for j = 1, . . . ,M
6 return a

For DTLZ problems: the number of variables n = M +k−1, where k = 5 for
DTLZ1; and k = 10 for DTLZ2–4. For WFG problems: the number of variables
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are fixed at n = 24, of which the position variables ρ = M − 1 and distance
variables, k = 24−ρ. The performance indicators used include: (i) IGD (Inverted
Generational Distance) [2], for DTLZs, and (ii) Hypervolume1 for the normalized
population with reference point as (1.1, . . . , 1.1)T , for WFGs.

Furthermore, the parameter settings used for NSGA-III include: (a) crossover
probability and distribution index of 1.0 and 30, respectively, and (b) mutation
probability and distribution index of 1/n and 20, respectively. Tpar ≡ (1, 20) is
used to point to the need for Nadir-point estimation, while experiments for final
termination of the NSGA-III are done with Tpar ≡ (2, 20) and (3, 20).

5.1 Results on Final Termination of NSGA-III

The results presented in the Table 1 (Tnad: disabled) for DTLZ problems are self
explanatory, in that, the IGD values near-zero suggest that when called for final
termination, NSGA-III had offered a good PF -approximation. The results also
reveal that for a fixed Tpar setting and a particular problem, the Ngt (number
of generations till termination) may not necessarily increase with an increase in
the number of objectives. While this argument may seem flawed in the case of
dominance-based MâOEAs, it is plausible in the case of RMâOEAs given that
Ngt would also depend on (i) the population size, (ii) the number of reference
vectors used, and (ii) the chance-success of vector-solution association.

For WFG problems, while the sample results are presented in Table 1, some of
these (randomly chosen) have been validated through Hypervolume measures,
as depicted in Fig. 2. It can be seen that for both the settings of Tpar used,
the proposed Algorithm 1 happened to call for the final termination only after
the Hypervolume measures have reasonably stabilized. It is only fair that the
termination results with Tpar ≡ (3, 20) are more reliable than those with Tpar ≡
(2, 20), given that the former seeks higher degree of stability than the latter,
before termination can be called for.
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Fig. 2. Recommended terminations (given by left- and right-vertical lines for Tpar ≡
(2, 20) and (3, 20), respectively) w.r.t. Hypervolume profile over NSGA-III generations

1 The source code used can be found at: https://esa.github.io/pagmo2/.

https://esa.github.io/pagmo2/
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Table 1. DTLZ and WFG problems: NSGA-III’s termination as prescribed by the
Algorithm 1 (at Ngt generations), and corresponding performance indicators

DTLZ Tpar M

5 10 15

1 (2, 20) Ngt 881.2± 63.6 951.2± 68.0 997.9± 83.8

IGD 9.03e−04± 6.42e−04 1.45e−02± 3.80e−04 7.44e−03± 4.62e−03

(3, 20) Ngt 4073.5± 58.0 4396.4± 299.3 4580.0± 254.5

IGD 8.28e−05± 1.02e−04 1.29e−02± 1.87e−03 1.10e−03± 1.19e−04

2 (2, 20) Ngt 569.1± 14.4 578.8± 18.4 571.8± 39.7

IGD 4.38e−03± 1.34e−03 4.14e−02± 1.44e−03 2.98e−02± 2.87e−03

(3, 20) Ngt 2640.6± 36.3 2703.7± 77.4 2653.8± 107.2

IGD 5.49e−04± 2.93e−04 2.89e−02± 1.85e−04 5.23e−03± 4.39e−04

3 (2, 20) Ngt 1033.9± 61.1 1050.6± 70.3 1094.1± 228.7

IGD 3.65e−03± 4.58e−03 5.97e−02± 1.84e−02 3.06e−01± 5.65e−01

(3, 20) Ngt 4146.5± 98.0 4285.7± 423.0 4491.5± 713.6

IGD 1.08e−03± 8.13e−04 5.64e−02± 2.78e−02 2.62e−02± 3.28e−02

4 (2, 20) Ngt 583.6± 21.5 558.1± 14.9 533.7± 16.1

IGD 2.68e−03± 1.06e−03 3.78e−02± 8.80e−04 1.99e−02± 9.62e−04

(3, 20) Ngt 2726.9± 83.7 2580.3± 38.7 2445.4± 42.3

IGD 3.75e−04± 3.24e−04 2.94e−02± 3.77e−04 8.33e−03± 1.15e−03

WFG Tpar M

5 10 15

1 (2, 20) Ngt 618.6± 60.6 481.4± 63.3 630.5± 45.8

HV 0.7391± 0.0622 1.3514± 0.1744 3.8516± 0.1697

(3, 20) Ngt 3699.3± 342.5 3183.0± 425.6 3194.4± 551.1

HV 1.4720± 0.0467 2.3940± 0.0803 3.9783± 0.0382

2 (2, 20) Ngt 688.3± 58.9 711.6± 273.8 497.8± 88.0

HV 1.5962± 0.0019 2.5756± 0.0077 4.1210± 0.0189

(3, 20) Ngt 3071.1± 88.2 4977.8± 2773.9 3657.0± 1145.9

HV 1.6065± 0.0006 2.5901± 0.0026 4.1701± 0.0071

4 (2, 20) Ngt 539.5± 14.4 573.1± 27.7 675.8± 88.6

HV 1.2730± 0.0048 2.4269± 0.0097 4.0522± 0.0568

(3, 20) Ngt 2532.5± 32.2 2712.8± 86.4 2836.1± 150.6

HV 1.3071± 0.0004 2.5133± 0.0008 4.1367± 0.0003

5 (2, 20) Ngt 539.3± 10.5 619.1± 78.0 557.0± 62.2

HV 1.2168± 0.0022 2.3235± 0.0044 3.7990± 0.0121

(3, 20) Ngt 2539.0± 23.0 2718.9± 96.9 2552.1± 45.4

HV 1.2269± 0.0002 2.3506± 0.0002 3.8324± 0.0002

6 (2, 20) Ngt 538.5± 16.4 537.7± 27.4 522.2± 35.3

HV 1.2087± 0.0055 2.2778± 0.0162 3.6940± 0.0897

(3, 20) Ngt 2513.3± 34.1 2546.4± 45.5 2356.9± 87.5

HV 1.2358± 0.0042 2.3276± 0.0178 3.7315± 0.0929

7 (2, 20) Ngt 534.3± 16.0 604.6± 67.1 493.5± 71.0

HV 1.2845± 0.0022 2.4677± 0.0106 4.0178± 0.0398

(3, 20) Ngt 2507.9± 39.0 2612.8± 60.8 2403.7± 383.2

HV 1.3060± 0.0006 2.5145± 0.0004 4.1279± 0.0083

8 (2, 20) Ngt 531.0± 19.4 520.7± 59.4 483.0± 14.2

HV 1.1711± 0.0038 2.1933± 0.0152 3.6841± 0.0331

(3, 20) Ngt 2488.2± 39.8 2387.9± 196.7 2162.2± 188.3

HV 1.2074± 0.0016 2.3212± 0.0317 3.8180± 0.1013

9 (2, 20) Ngt 589.0± 44.4 753.8± 44.4 497.8± 88.0

HV 1.2050± 0.0066 2.2866± 0.0343 4.1210± 0.0189

(3, 20) Ngt 2707.4± 53.3 3122.4± 159.9 3657.0± 1145.9

HV 1.2502± 0.0036 2.3788± 0.0183 4.1701± 0.0071
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5.2 Results on Timed Nadir-Point Determination by NSGA-III

The results presented in Table 2 (Tnad: enabled) reveal that the intermittently
timed Nadir-point estimation in NSGA-IIITN , in general facilitates better IGD
and Hypervolume measures in the case of DTLZ and WFG problems, respec-
tively. This assumes higher significance, given that intermittently timed Nadir-
point estimation consuming O(MN) computations, helps to do away with com-
putational complexity of O(M2N) required for determination of extreme points
through minimization of Achievement Scalarization Function (ASF, as in NSGA-
III) in every generation. Some interesting observations can be made by compar-
ing the respective results in Tables 2 and 1. For instance:

– in the case of DTLZ1(M=5): the NTN
gt ≡ 3517 ± 65.5 and Ngt ≡ 4073.5 ± 58.

Even through NTN
gt < Ngt, the IGD obtained from NSGA-IIITN at NTN

gt is
better than that obtained with NSGA-III at Ngt.

– the same trend holds for most problems experimented with and reported in
Tables 2 and 1.
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Fig. 3. DTLZ4 (M = 5): Effect of different Nadir-point update schemes

In terms of further improvement in quality of PF -approximation, the
authors’ envisage the following plausible interventions in the proposed Algo-
rithm1:

– evidence-gathering : Figure 3(a), corresponding to a particular seed, shows the
departure (in Euclidean distance) of the estimated Nadir-point from the true
Nadir-point (corresponding to the true PF ), across generations. Evidently,
this departure at a subsequent generation could be worse than that at a previ-
ous generation (negative fluctuation). This occurs in the current scheme, since
the Nadir-point is updated by considering the extreme points corresponding
to only that generation where Tnad (mild termination) is suggested. As an
alternative, while the nadir point may still be updated after Tnad is sug-
gested, but for the determination of extreme points, all the populations from
previous to the current Tnad generations may be considered (to be referred
as NSGA-IIIMTN ). This shall in principle help avoid the negative fluctua-
tions. As a proof-of-concept, this scheme when implemented for the same
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Table 2. DTLZ and WFG problems: performance of NSGA-IIITN versus Original
NSGA-III (abbreviated below as NSTN and NS, respectively) at NTN

gt generations
where NSGA-IIITN is prompted for termination by the proposed Algorithm, with
Tpar = (3, 20). Results are averaged over 10 independent runs of the underlying
RMâOEA. IGD and HV denote Inverted Generational Distance and Hypervolume.

DTLZ RMâOEA/ M

Measures 5 10 15

1 NTN
gt 3517.0± 65.5 3163.7± 86.9 3722.4± 427.6

NSTN IGD 4.22e−05 ± 2.52e−05 1.20e−02 ± 2.34e−05 1.36e−03 ± 1.99e−04

NS IGD 6.42e−03± 1.91e−02 1.40e−02± 5.68e−03 5.78e−03± 7.46e−03

2 NTN
gt 2485.2± 39.0 2383.0± 30.8 2324.5± 24.7

NSTN IGD 4.11e−04 ± 1.74e−04 2.93e−02 ± 4.31e−04 6.02e−03 ± 5.03e−04

NS IGD 7.23e−04± 3.37e−04 3.23e−02± 1.43e−03 8.90e−03± 1.35e−03

3 NTN
gt 3740.2± 101.1 3282.6± 113.5 2819.3± 91.3

NSTN IGD 1.28e−02 ± 3.41e−02 2.86e−02 ± 2.28e−04 1.75e−02 ± 2.21e−02

NS IGD 3.86e−02± 6.07e−02 4.29e−02± 3.56e−02 4.68e−02± 4.94e−02

4 NTN
gt 2739.9± 203.7 2428.7± 10.1 2363.8± 24.3

NSTN IGD 4.42e−04 ± 4.84e−04 2.96e−02 ± 3.65e−04 8.67e−03 ± 1.18e−03

NS IGD 4.97e−04± 3.62e−04 2.98e−02± 6.40e−04 1.25e−02± 2.28e−03

WFG RMâOEA/ M

Measures 5 10 15

1 NTN
gt 4037.0± 544.9 3807.9± 439.9 3722.4± 427.6

NSTN HV 1.5547 ± 0.0005 2.4496 ± 0.0070 4.0817 ± 0.0481

NS HV 1.4871± 0.0520 2.3922± 0.0774 3.9977± 0.0529

2 NTN
gt 2813.9± 48.7 2787.1± 47.2 3183.5± 570.9

NSTN HV 1.6063± 0.0007 2.5902± 0.0011 4.1743 ± 0.0015

NS HV 1.6063± 0.0006 2.5909 ± 0.0010 4.1718± 0.0029

4 NTN
gt 2400.1± 18.5 2418.0± 27.5 2351.6± 45.6

NSTN HV 1.3068 ± 0.0005 2.5122 ± 0.0006 4.1351 ± 0.0008

NS HV 1.3067± 0.0003 2.5116± 0.0010 4.1342± 0.0008

5 NTN
gt 2445.1± 26.7 2435.5± 25.3 2347.3± 25.7

NSTN HV 1.2270± 0.0002 2.3507± 0.0001 3.8330 ± 0.0001

NS HV 1.2270± 0.0002 2.3507± 0.0003 3.8325± 0.0002

6 NTN
gt 2451.4± 28.2 2423.7± 38.7 2223.6± 118.3

NSTN HV 1.2351 ± 0.0028 2.3342 ± 0.0204 3.7385 ± 0.1285

NS HV 1.2336± 0.0039 2.3271± 0.0176 3.7313± 0.0931

7 NTN
gt 2458.2± 27.0 2396.1± 39.6 2309.8± 20.0

NSTN HV 1.3062 ± 0.0005 2.5138 ± 0.0007 4.1344 ± 0.0004

NS HV 1.3059± 0.0006 2.5137± 0.0006 4.1253± 0.0075

8 NTN
gt 2389.8± 21.7 2276.7± 38.7 2253.2± 159.3

NSTN HV 1.2078 ± 0.0018 2.3520 ± 0.0400 3.8831 ± 0.0535

NS HV 1.2069± 0.0017 2.3191± 0.0346 3.8133± 0.0953

9 NTN
gt 2417.0± 32.0 2409.8± 33.7 2345.7± 130.0

NSTN HV 1.2474 ± 0.0054 2.3675 ± 0.0084 3.7494 ± 0.2583

NS HV 1.2467± 0.0038 2.3604± 0.0243 3.7420± 0.1036
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seed, results in Fig. 3(b). The new IGD value for this run, comes out to
be 2.00e−04, marking an improvement in the PF -approximation, though at
O(M2N) computational cost as in NSGA-III.

– decision-making : instead of the simplistic measures of mean and standard
deviation, better statistical indicators may be used.

6 Conclusion

In this paper, a generic, computationally efficient, and implementable on-the-
fly Termination Algorithm has been proposed dedicatedly for Reference-based
MâOEAs. Post integration with NSGA-III, it is established that under differ-
ent parameter settings, the same Algorithm successfully accomplishes its dual
goals of determining the appropriate timing for Nadir-point estimation and final
termination. While the former is critically important for effective convergence
and diversity of the PF -approximation, the latter helps balance the trade-off
between the quality of PF -approximation and computational cost. Experimen-
tal results have revealed that NSGA-III implemented with intermittently timed
Nadir-point estimation as prescribed by the proposed Algorithm not only ter-
minated faster than the original NSGA-III but simultaneously offered better
convergence and diversity characteristics. The authors hope, the revelation in
this paper that NSGA-III’s performance could be improved merely by chang-
ing the frequency of Nadir-point estimation, will open new doors for research
towards more effective normalization of population in other RMâOEAs.

References

1. Asafuddoula, M., Ray, T., Sarker, R.: A decomposition-based evolutionary algo-
rithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460
(2015)

2. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://
doi.org/10.1109/TEVC.2013.2281535

3. Deb, K., Miettinen, K.: A review of nadir point estimation procedures using evo-
lutionary approaches: a tale of dimensionality reduction. In: Multiple Criterion
Decision Making (MCDM) Conference, pp. 1–14. Springer, Berlin (2008)

4. Deb, K., Saxena, D.K.: Searching for Pareto-optimal solutions through dimension-
ality reduction for certain large-dimensional multi-objective optimization prob-
lems. In: IEEE Congress on Evolutionary Computation, pp. 3353–3360 (2006)

5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evo-
lutionary multi-objective optimization. In: Abraham, A., Jain, R., Goldberg, R.
(eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Appli-
cations. AI&KP, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/
1-84628-137-7 6

6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
New York (2001)

https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6


202 D. K. Saxena and S. Kapoor

7. Duro, J.A., Saxena, D.K.: Timing the decision support for real-world many-
objective optimization problems. In: Trautmann, H., et al. (eds.) EMO 2017.
LNCS, vol. 10173, pp. 191–205. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54157-0 14

8. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

9. Hughes, E.J.: Evolutionary many-objective optimisation: many once or one many?
In: IEEE Congress on Evolutionary Computation, pp. 222–227 (2005)

10. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, part II: handling constraints
and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–
622 (2014). https://doi.org/10.1109/TEVC.2013.2281534

11. Khare, V., Yao, X., Deb, K.: Performance scaling of multi-objective evolutionary
algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36970-8 27

12. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto
sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009).
https://doi.org/10.1109/TEVC.2008.925798

13. Marti, L., Garcia, J., Berlanga, A., Molina, J.M.: A stopping criterion for multi-
objective optimization evolutionary algorithms. Inf. Sci. 367–368, 700–718 (2016)

14. Saxena, D., Duro, J., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-
objective optimization: linear and nonlinear algorithms. IEEE Trans. Evol. Com-
put. 17(1), 77–99 (2013)

15. Saxena, D.K., Sinha, A., Duro, J.A., Zhang, Q.: Entropy-based termination crite-
rion for multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 20(4),
485–498 (2016)

16. Trautmann, H., Wagner, T., Naujoks, B., Preuss, M., Mehnen, J.: Statistical
methods for convergence detection of multi-objective evolutionary algorithms.
Evol. Comput. 17(4), 493–509 (2009). https://doi.org/10.1162/evco.2009.17.4.
17403. pMID: 19916777

17. Wagner, T., Trautmann, H., Mart́ı, L.: A taxonomy of online stopping criteria for
multi-objective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner,
E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 16–30. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19893-9 2

18. Wang, R., Zhang, Q., Zhang, T.: Decomposition-based algorithms using Pareto
adaptive scalarizing methods. IEEE Trans. Evol. Comput. 20(6), 821–837 (2016)

19. Yuan, Y., Xu, H., Wang, B.: An improved NSGA-III procedure for evolutionary
many-objective optimization. In: Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, GECCO 2014, pp. 661–668. ACM, New
York (2014)

20. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

https://doi.org/10.1007/978-3-319-54157-0_14
https://doi.org/10.1007/978-3-319-54157-0_14
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.1007/3-540-36970-8_27
https://doi.org/10.1007/3-540-36970-8_27
https://doi.org/10.1109/TEVC.2008.925798
https://doi.org/10.1162/evco.2009.17.4.17403
https://doi.org/10.1162/evco.2009.17.4.17403
https://doi.org/10.1007/978-3-642-19893-9_2


Variation Rate: An Alternative
to Maintain Diversity in Decision Space

for Multi-objective Evolutionary
Algorithms

Oliver Cuate1(B) and Oliver Schütze2

1 Computer Science Department, Cinvestav-IPN, Av. Instituto Politécnico Nacional
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Abstract. In almost all cases the performance of a multi-objective evo-
lutionary algorithm (MOEA) is measured in terms of its approximation
quality in objective space. As a consequence, most MOEAs focus on
such approximations while neglecting the distribution of the individuals
in decision space. This, however, represents a potential shortcoming in
certain applications as in many cases one can obtain the same or a very
similar qualities (measured in objective space) in several ways (measured
in decision space) which may be very valuable information for the deci-
sion maker for the realization of a project.

In this work, we propose the variable-NSGA-III (vNSGA-III) an algo-
rithm that performs an exploration both in objective and decision space.
The idea behind this algorithm is the so-called variation rate, a heuristic
that can easily be integrated into other MOEAs as it is free of additional
design parameters. We demonstrate the effectiveness of our approach on
several benchmark problems, where we show that, compared to other
methods, we significantly improve the approximation quality in decision
space without any loss in the quality in objective space.

Keywords: Evolutionary computation ·
Multi-objective optimization · Decision space diversity

1 Introduction

In many areas such as Economy, Finance, or Industry the problem arises natu-
rally that several conflicting objectives have to be optimized concurrently. This
leads to multi-objective optimization problems (MOPs). The solution of this
kind of problems is a set of vectors that are incomparable to each other in terms
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of their objective values. For some of these problems obtaining the greatest ben-
efit from limited resources is essential. Such resources are typically represented
as the variables of the problem, as the objective functions depends on them.
Although by using constraints it is possible to control the value of decision vari-
ables, this would entail the loss of optimal solutions and that is not desirable
for the decision-making process. For instance, in real-world problems where the
value of some variables is crucial, the decision maker may prefer, among the set
of optimal solutions, those that are easiest to implement as this can mean a
saving in resources.

However, in almost all cases the performance of a MOEA is only measured
in terms of its approximation quality in objective space. As a consequence, most
MOEAs focus on such approximations while neglecting the distribution of the
individuals in decision space. This represents a potential shortcoming in certain
applications as in many cases one can obtain the same or a very similar quality
(measured in objective space) in several ways (measured in decision space) which
may be very valuable information for the decision maker for the realization of a
project. In this context, there exists an additional challenge in solving a MOP,
since we must find an approximation to the optimal set both in objective and
decision space, in order to provide all these possible regions to the decision maker.

In this work, we propose the variable-NSGA-III (vNSGA-III) an algorithm
that performs an exploration both in objective and decision space. The idea
behind this algorithm is the so-called variation rate, a heuristic that can easily
be integrated into other MOEAs as it is free of additional design parameters.
We demonstrate the effectiveness of our approach on several benchmark prob-
lems, where we show that, compared to other methods, we significantly improve
the approximation quality in decision space without any loss in the quality in
objective space.

The rest of the paper is organized as follows, in Sect. 2, we present the back-
ground and the related work. In Sect. 3, a detailed description of the proposed
algorithm (along with pseudo-codes) is presented. In Sect. 4, numerical results
are provided. Finally, in Sect. 5, we discuss the advantages of the proposed algo-
rithm and we discuss the possible future improvements to the algorithm.

2 Background and Related Work

Optimization refers to finding the best possible solution to a problem given a
set of constraints [2]. MOP refers to the simultaneous optimization of multiple
and usually conflicting objectives; as a result, a set of optimal solutions are
obtained instead of having a single optimal solution. The MOP with k objectives
is mathematical defined as:

min
x∈D

F (x), (1)

where D ⊂ R
n is the domain and F : D ⊂ R

n → R
k is the objective function.

The optimality of a MOP is defined by the concept of dominance. Let v, w ∈
R

k, the vector v is less than w (v <p w), if vi < wi for all i ∈ {1, . . . , k}; the
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relation ≤p is defined analogously. A vector y ∈ D is dominated by a vector
x ∈ D (x ≺ y) with respect to (1) if F (x) ≤p F (y) and F (x) �= F (y), else y is
called non-dominated by x. A point x∗ ∈ R

n is Pareto optimal to (1) if there is
no y ∈ D which dominates x. The set of all the Pareto optimal points is called
the Pareto set and its image is the Pareto front.

Unlike evolutionary algorithms for single objective optimization problems
(SOP), maintaining diversity in decision space is not a priority for most MOEAs;
even the performance indicators are developed in order to measure the accu-
racy based only on the objective function (e.g., the hypervolume [15] and the
DOA [7]). As an exception, we have the Δp indicator [12], which is the averaged
Hausdorff distance, and it actually measures the distance between two general
sets. For this reason, we can use it both in objective space as well as in decision
space.

Although works that explicitly consider at the same time variables and objec-
tives are scarce, one can find some related work on this topic. For instance, the
NSGA (the algorithm that precedes the well-known NSGA-II [3]) uses fitness
sharing in decision space. In [9], some possible techniques are proposed to spread
out solutions both in objective and decision space: pointwise expansion, threshold
sharing, sequential sharing, simultaneous sharing multiplicative, and simultane-
ous sharing additive. It is important to point out that the above approaches
are only part of the discussion of the paper and they were not implemented;
the implemented algorithm was the Niched Pareto GA, a method with pheno-
typic sharing. Besides, all of the described techniques depend on the normal
fitness sharing method, that is, two additional parameters must be provided or
approximated (the niche radius σshare in each space).

The omni-optimizer algorithm [6] is proposed as a procedure that aims at
solving a wide variety of optimization problems (single or multi-objective and
uni- or multi-modal problems). The authors argue that to solve different kinds
of problems it is necessary to know different specialized algorithms. Thus, it is
desirable to have an algorithm which adapts itself for handling any number of
conflicting objectives, constraints, and variables. The omni-optimizer is impor-
tant in the context of this work as it uses a two-tier fitness assignment scheme
based on the crowding distance of the NSGA-II. The primary fitness is computed
using the phenotypes (objectives and constraint values) and the secondary fit-
ness is computed using both phenotypes and genotypes (decision variables). The
modified crowding distance computes the average crowding distance of the popu-
lation both in objectives and variables. If the crowding value for some individual
above average (at any space), it is assigned the larger of the two distances; else
the smaller of the two distances is assigned. However, omni-optimizer has a more
general purpose.

Recently, the MOEA/D with Enhanced Variable-Space Diversity (MOEA/D-
EVSD) has been proposed in [1]. This method is an extension of the
MOEA/D [14] that explicitly promotes the diversity of the decision space via
an enhanced variable-space diversity control. First generations of MOEA/D-
EVSD try to induce a larger diversity via promoting the mating of dissimilar
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individuals. Similarly to MOEA/D, a new individual is created for each subprob-
lem. Then, instead of randomly selecting two individuals of the neighborhood,
a pool of α candidate parents is randomly filled from the neighborhood with
probability δ, whereas it is randomly selected from the whole population with
probability 1−δ. Thus, the two selected parents are the ones that had the largest
distance. As the δ parameter is dynamically set a gradual change between explo-
ration and exploitation can be induced. Additionally, a final phase to further
promote intensification is included, which is just a traditional MOEA/D with
DE operators. For last generations of MOEA/D-EVSD the traditional mating
selection of MOEA/D is conserved together with the Rand/1/bin scheme for the
DE operators. Authors show that by inducing a gradual loss of diversity in the
decision space, the state-of-the-art of MOEAs can be improved.

Finally, in [10], authors identify four different Pareto set and Pareto front
type combinations: Type I, one Pareto set and one Pareto front; Type II, one
Pareto set and multiple Pareto front parts; Type III, multiple Pareto subsets
and one Pareto front; and Type IV, multiple Pareto subsets and Pareto front
parts. In this work, a multi-start approach is proposed to solve problems of
Type III, as authors argue that this kind of problems are rarely investigated
and that standard MOEAs are not effective to preserve all Pareto subsets of
equivalent quality. On the other hand, in [11], as a result of the study of multi-
modal problems, the authors conclude that a search in decision space is necessary
to correctly solve them. In [13], a recovery technique in decision space is used to
solve a problem of Type IV.

3 Proposed Algorithm

From the analysis of the combinations of Pareto set and front previously stated,
it follows that, although most of MOEAs operate only in objective space, this is
not a problem in cases like Types I, II, and IV. However, we must not lose sight
of the fact that the value of the objectives depends on the variables. Thus, it is
vital to maintaining the diversity of solutions in such space. In this way, when
some method evaluates distribution considering only the objectives, potential
search regions could be ruled out (Type III). On the other hand, if a method
only takes into account the values of the variables without the objectives, then
it could easily lose solutions along the Pareto front, what is highly penalized by
the performance indicators. Our proposal seeks to perform an adequate group-
ing via a density estimator that allows obtaining a good distribution both in
objective and decision space. The idea is to improve a classical density estima-
tor, which groups the population in neighborhoods based only in the objectives.
Such neighborhood structure is used to define a variation rate for each element
in the neighborhood, according to some reference value in objective space, and
certain measurement in decision space. In this way, the first grouping phase iden-
tifies promising solutions in objective space, meanwhile, the second phase favors
solutions with the most different values in decision space. Thus, this variation
rate represents the trade-off between these two aspects.
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We consider the variation rate as the relation between the objective and the
decision spaces. In order to properly define this rate, we need to group elements
based on the value of their objectives (e.g., with the association method of the
NSGA-III, the neighborhood structure of MOEA/D, the distance to a reference
point, etc.). That is, we numerically assigned a reference value to the elements
of each group for their ordering in objective space. Subsequently, the average
distance in decision space of each element is computed against the rest elements
in the group. Thus, the variation rate of each element is the quotient between
its reference value in objective space and its average distance in decision space.

Let I denote a neighborhood (grouped in objective space) with vi as the
reference value for each i ∈ I, then the variation rate ri is stated as follows:

ri =
vi

distP(i, I)
(2)

where distP(i, I) represents the average distance between each element i ∈ I
and the rest of elements in I, that is,

distP(i, I) =
1

|I| − 1

∑

j∈I\{i}
d(i, j). (3)

Equation (3) depends of a function d(i, j), which is the used method to mea-
sure the distance between i, j ∈ I in the decision space. Thus, distP can vary
according to the codification or the used norm.

As an example of how variation rate preserves the diversity, consider the
following case. In Fig. 1, we can see a Type III Pareto Set/Front, that is, two
lines in decision space –the Pareto set– map to the same Pareto front. Here, we
have a neighborhood with three points (�, �, and �) as their respective images
are associated to the reference point (Z). Suppose that distance of F (x�), F (x�)
and F (x�) to the reference Z is equal to one. On the other hand, d(x�, x�) = 1,
d(x�, x�) = 2, and d(x�, x�) = 2, then,

– Variation rate of � = 1
3/2 = 2

3

– Variation rate of � = 1
3/2 = 2

3

– Variation rate of � = 1
4/2 = 1

2

In this way, if we select the point with the less variation rate, then we will
conserve the most different individual in decision space with a good quality in
objective space. In other words, elements with the minimum variation rate have
the desired behavior.

Notice that, for problems of type I, II, and IV, it is expected that solutions
in the same neighborhood have similar reference values in objective space and
average distance in decision space, then the solution with the best reference value
in objective space will be preferred. On the other hand, in type III problems the
elements of the neighborhood will have a similar reference value in objectives
but the average distance will be bigger for the most different solution in decision
space, then its quotient (variation rate) will tend to be smaller than the rest of
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Z

Fig. 1. Example of the computation of variation rate.

quotients. Thus, through the variation rate, we have a way to relate the objective
and the decision spaces in order to choose the best element of each group.

The proposed method, called variable-NSGA-III (vNSGA-III), is a modifica-
tion of the NSGA-III algorithm [4] that seeks to solve the problem of diversity in
the variables previously raised. Although this method is based on the NSGA-III,
the variation rate can easily be adapted to other methods. The idea is to take
advantage of the association method of the NSGA-III, which defines a “neigh-
borhood”. The association method assigns each element of Fj (the last front by
classifying after the non-dominated sorting) to the nearest induced line by some
weight wi ∈ Z, where Z is a set of reference points. A weight can have more
than one associated element, forming a neighborhood.

In the original NSGA-III, the niching is made by sort in ascending order the
obtained groups in the association stage according to its cardinality. The element
with less distance to the induced line in each group is selected, and it continues
with the next group until filling the population. The proposed niching method
does not prefer the element with the less distance value, instead it prefers the
one with the smallest variation rate. The complete pseudocode of the vNSGA-III
algorithm is shown in Algorithm1.

4 Numerical Results

For the numerical results, we employ the following methodology. First, we com-
pare vNSGA-III against two of the most widely used methods in the literature,
NSGA-II and MOEA/D, in order to demonstrate that vNSGA-III improves the
distribution in decision space without losing quality in objective space. Later, we
compare our method with the MOEA/D-EVSD, that is a method with a similar
purpose; (available code of MOEA/D-EVSD1 is only for bi-objective problems,
then this comparison is restricted to that kind of problems). Finally, we make a
brief scalability test with the vNSGA-III and the original NSGA-III, to show how
the variation rate can also improve the performance of this algorithm for many
objective optimization problems (MaOPs), that is, problems with more than

1 https://github.com/joelchaconcastillo/GECCO17 MOEA D MATING.

https://github.com/joelchaconcastillo/GECCO17_MOEA_D_MATING
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Algorithm 1. Iteration of the vNSGA-III
Require: Reference points Z, current population Pt

Ensure: Next population Pt+1

1: St = ∅, i = 1
2: Qt = apply variation operators to Pt

3: Mt = Pt ∪ Qt

4: (F1, F2 . . . , ) = non-dominated-sort(Mt)
5: while |St| ≤ N do
6: t = St ∪ Fi

7: i = i + 1
8: end while
9: Add first fronts to Pt+1

10: Fi := last added front
11: Normalize Fi

12: Associate elements of Fi with each Z
13: Niching of Fi (according with the variation rate)
14: Vt := best niching elements
15: Pt+1 : St ∪ Vt

three objectives. As we test stochastic algorithms, each execution was repeated
30 times with different seeds to obtain statistical significance. The parameter
settings of all the used algorithms are in Table 1.

Table 1. Parameter configuration for each algorithm. Mutation probability mp,
crossover probability cp, neighborhood size α, first phase percent Pf , additional param-
eters for MOEA/D-EVSD Tr1 and Tr2, and number of reference points #Z.

Parameter vNSGA-III MOEA/D-EVSD NSGA-II MOEA/D

mp 1/n 0.3 1/n 0.1

cp 1.0 0.9 0.8 1.0

α - 20 - 10

Pf - 80% - -

Tr1 - 2 - -

Tr2 - 25 - -

#Z 50 - - -

For the first comparison, we consider the problems DTLZ 1–3. We use the
hypervolume indicator and Δp [12] to know how different is the approximation
in variable and objective space. Results are shown in Table 2.

Next, we compare vNSGA-III against MOEA/D-EVSD and omni-optimizer.
Test considered problems are the first four WFG tests proposed in [8] and the
following bi-objective problem [6]
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Table 2. Hypervolume (HV) and Δp (objective and decision space); best, average with
standard deviation, and worst values are showed. The best value is put in bold.

Problem Indicator vNSGA-III NSGA-II MOEA/D

DTLZ1 HV 0.040700 0.076781 0.079128

0.073839 (0.011847) 0.078690 (0.000675) 0.079425 (0.000170)

0.080123 0.079552 0.079654

O-Δp 0.015422 0.017439 0.025133

0.026077 (0.0683503) 0.041077 (0.016282) 0.025495 (0.000304)

0.056208 0.070908 0.026016

D-Δp 0.038723 0.042297 0.048348

0.075532 (0.038904) 0.080363 (0.025395) 0.054312 (0.002910)

0.147971 0.126349 0.058551

DTLZ2 HV 0.379642 0.413363 0.416942

0.414960 (0.008706) 0.417088 (0.001976) 0.417757 (0.000559)

0.420359 0.419725 0.418694

O-Δp 0.044592 0.041514 0.044972

0.045075 (0.012895) 0.045373 (0.001998) 0.045086 (0.000094)

0.505410 0.049205 0.045257

D-Δp 0.029387 0.074172 0.034619

0.036727 (0.006681) 0.078942 (0.002572) 0.037074 (0.001521)

0.051319 0.082206 0.040618

DTLZ3 HV 0.287586 0.365446 0.410906

0.399156 (0.034941) 0.404309 (0.013330) 0.418067 (0.002929)

0.418205 0.422514 0.422293

O-Δp 0.043525 0.040273 0.040057

0.047231 (0.0867439) 0.071554 (0.098862) 0.041026 (0.000499)

0.485502 0.488509 0.041650

D-Δp 0.041069 0.046354 0.035459

0.053028 (0.023238) 0.051261 (0.004364) 0.037630 (0.001252)

0.083221 0.062031 0.039935

f1(x) =
n∑

i=1

sin(πxi), f2(x) =
n∑

i=1

cos(πxi), (4)

where 0 ≤ xi ≤ 6, and i = 1, 2, . . . , n. This problem, denoted as OMNI1 in
this work, is a type III combination of Pareto set/front. The used configuration
for the WFG problems was the following: the stopping criterion was set to 250
generations, the population size was fixed to 200, and they were configured
with two objectives and 24 parameters (20 distance parameters and 4 position
parameters). On the other hand, for the OMNI1 problem the stopping criterion
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was set to 200 generations, the population size was fixed to 100, and n = 5
(number of decision variables). Numerical results are shown in Table 3.

Table 3. Hypervolume values, best, average with standard deviation, and worst values
are showed. The best value is put in bold and the statistical significance is indicated,
according to the Wilcoxon test with p = 0.05, when appropriate.

Problem vNSGA-III MOEA/D-EVSD Omni-Optimizer

OMNI1↓ 22.485004 22.458890 22.530915

22.525381 (0.019402) 22.531425 (0.029448) 22.567425 (0.017941)

22.564005 22.564666 22.592098

WFG1↑ 4.050763 2.816998 3.665387

4.252966 (0.215981) 3.723304 (0.410585) 4.039288 (0.203742)

5.042717 4.175823 4.211367

WFG2↑ 5.293999 4.274958 4.681840

5.428045 (0.092903) 4.810172 (0.230530) 4.763940 (0.043061)

5.511280 5.043839 4.876360

WFG3↑ 4.877052 3.915621 4.214724

4.891410 (0.009166) 4.412886 (0.151054) 4.276409 (0.028887)

4.906714 4.567030 4.331920

WFG4↑ 2.403976 2.129897 1.959788

2.411151 (0.003606) 2.181784 (0.029585) 1.974326 (0.011972)

2.417486 2.228117 2.003731

It is clear that our approach requires less additional parameters than the
MOEA/D-EVSD and omni-optimizer. Actually, no additional parameters than
the original NSGA-III are needed.

According with the values of Table 3, it is clear that our approach converges
faster on the WFG problems. Although, the hypervolume value is worse for the
for the OMNI1 problem, for such problem there are not significance according the
Wilcoxon test. Moreover, in Fig. 2, we can see that the distribution in decision
space, the main goal of this work, is better distributed with our method.

Finally, a brief scalability test is performed. We decide to compare our app-
roach against the original NSGA-III, as this method is made to deal with MaOPs.
We test on the DTLZ2 [5] problem with different number of objectives. The used
parameters was the same that the used on the original paper of NSGA-III [4].
Numerical results are shown in Table 4.

From Table 4 we can see that the large the number of objectives, the better is
our approach, at least for the DTLZ2 problem. With this results, we expect that
this approach could be successfully applied for MaOPs. However, an extensive
analysis must be performed in order to conclude something about scalability.
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Fig. 2. Graphical results of the run with the median a values for the OMNI1 function.
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Table 4. Δp values in objective space for the DTLZ2 problem with different number
of objectives. The best, average with standard deviation, and worst values are showed;
the best value for each case is put in bold.

k vNSGA-III NSGA-III

3 0.088196 0.081690

0.107123 (0.013942) 0.095862 (0.012272)

0.148009 0.133477

5 0.229096 0.210055

0.253322 (0.023562) 0.233658 (0.018896)

0.308298 0.284361

8 0.293232 0.366762

0.379999 (0.046295) 0.469987 (0.036129)

0.456742 0.538956

10 0.305149 0.534823

0.463134 (0.069997) 0.600828 (0.035696)

0.578061 0.686215

5 Conclusions and Future Work

In this work, the variation rate, a heuristic to explicitly handle the diversity in
decision space, is proposed. This is an original proposal, in general, there are
a few related work and the algorithms in the state of the art preserve diver-
sity in decision space in distinct ways. Although two proposed techniques in [9]
are kind of similar, the simultaneous sharing multiplicative and additive, they
use a sum and a multiplication, respectively, instead of a quotient. Moreover,
such methods depend on the σ-shared, while the variation rate if more flexible
about the grouping method. We test this method via vNSGA-III, an extension
of NSGA-III which uses the variation rate. The results are very promising in this
field and our approach presents some advantages over others proposals.

In contrast with omi-optimizer and MOEA/D-EVSD, the implementation of
the variation rate is free of additional parameters. This fact allows that this
proposal can be easy include more algorithms, for instance, MOEA/D. It is only
necessary to conserve certain neighborhood structure and explore the elements
in each group in decision space. Moreover, the presented numerical results in
the original paper, both in omi-optimizer and MOEA/D-EVSD, report a huge
number of function evaluations; 500 generations for 1,000 individuals and 50,000
generations for 250 individuals, respectively.

Numerical results also show that variation rate improves the performance of
the NSGA-III when the number of objectives becomes to increase. In principle,
the MOEA/D-EVSD can also solve problems with any number of objectives, but
it is restricted by the capabilities of the MOEA/D algorithm. On the other hand,
the omni-optimizer depends on the crowding distance, and such a method is not
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scalable for high dimensions. Of course, variation rate by itself is not enough for
the treatment of MaOPs, this depends on the operators of the NSGA-III. That
is, variation rate can enhance the overall performance of a certain algorithm,
but if such algorithm is not conceived to deal with MaOPs, then the addition of
variation rate would be not enough to solved MaOPs.

As future work, it is necessary to develop an indicator for problems of Type
III. In general, performance indicators evaluate an approximation based on the
value of the objectives, but for problems as OMNI1 this is not provided enough
information. Once we have such indicator, we can validate the better perfor-
mance of our methods in decision space. However, it is not clear what property
has to be satisfied with this approximation. We also need to test this approach
in problems with different properties in decision space, in particular problems
with disconnected Pareto set. Finally, the adaptation of the variation rate into
a different MaOPs will allow studying the effect of this heuristic.
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Abstract. Weight adaptation methods can enhance the diversity of
solutions obtained by decomposition-based approaches when address-
ing irregular Pareto front shapes. Generally, these methods adapt the
location of each weight vector during the search process. However, early
adaptation could be unnecessary and ineffective because the population
does not provide a good Pareto front approximation at early genera-
tions. In order to improve its performance, a better approach would be
to trigger such adaptation only when the population has reached the
Pareto front. In this paper, we introduce a performance indicator to
assist weight adaptation methods, called the median of dispersion of the
population (MDP). The proposed indicator provides a general snapshot
of the progress of the population toward the Pareto front by analyzing
the local progress of each subproblem. When the population becomes
steady according to the proposed indicator, the adaptation of weight
vectors starts. We evaluate the performance of the proposed approach in
both regular and irregular test problems. Our experimental results show
that the proposed approach triggers the weight adaptation when it is
needed.

Keywords: Weight adaptation · Many-objective optimization ·
Decomposition

1 Introduction

Multiobjective optimization problems (MOPs) involve several objective func-
tions to be optimized simultaneously. An MOP can be defined as follows [18]:

Minimize f(x) = [f1(x), . . . , fm(x)]T

subject to x ∈ X
(1)

where f comprises m objective functions, fi : Rn → R, for i = 1, . . . , m. The
decision variable vector x = [x1, . . . , xn]T belongs to the feasible set X, which
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is a subset of the decision variable space R
n. For each x ∈ X, there is an objec-

tive vector z = f(x), which belongs to the objective space Z ⊆ R
m. Problems

with more than three objectives are called many-objective optimization problems
(MaOPs) [11,15]. Often, the objectives are in conflict. That is, any improvement
in a given objective fi must lead to a deterioration of at least one other objec-
tive fj [16]. Hence, this class of problems does not have a unique solution that
optimizes the m objectives simultaneously. Instead, an optimizer is aimed to
find a set of solutions with the best trade-offs among objectives. Such a set is
called Pareto set in the decision space and Pareto front in the objective space [2].
MOPs with degenerated, disconnected, or inverted Pareto front shapes are con-
sidered irregular. Some optimizers could face difficulties when addressing these
problems.

Evolutionary algorithms (EAs) are search methods based on natural evolu-
tion to address optimization problems [8]. Given the population-based nature,
EAs are suitable to address MOPs, because they can produce a Pareto
front approximation in a single run [3,22]. Several multiobjective evolution-
ary algorithms (MOEAs) for solving MaOPs have been proposed in recent
years [5,16,23,24]. Among them, decomposition-based approaches have gained
attention in the evolutionary multiobjective optimization (EMO) community. A
decomposition-based approach transforms an MOP into a set of subproblems by
means of a scalarizing function and a set of weight vectors. The Multiobjective
Evolutionary Algorithm based on Decomposition (MOEA/D) [25] is considered
a representative approach of this class of methods. Recent studies have been
focused on determining which properties of MOPs are difficult to address by
MOEAs [2,10,17,20]. Among such properties, the shape of the Pareto front
can influence on the performance of decomposition [10]. When the shape of the
Pareto front is regular (e.g., linear), decomposition-based methods have been
found to be effective to find a well-distributed set of solutions on the Pareto
front. Nevertheless, when such a shape is irregular, it is difficult to obtain a
good Pareto front approximation via decomposition. This issue is related to the
weight vectors. When the locations of the weight vectors do not reflect the shape
of the Pareto front, the diversity of solutions obtained by decomposition-based
approaches is deteriorated [10].

To alleviate such a diversity issue, a few weight adaptation methods have
been proposed in the literature [2,13,17,20]. An early approach was introduced
by Deb and Jain in the NSGA-III, which allows NSGA-III to handle irregular
problems [12,13]. Their approach is based on two main operations: addition and
deletion of weight vectors. It first identifies overcrowded weight vectors. In this
context, a weight vector is considered overcrowded if there are multiple solutions
associated with it. On the other hand, a weight vector is marked as unhelpful if
it is not associated with any solution after the approach has converged. Ideally,
every weight vector should be associated with a single solution to achieve good
diversity. Additional vectors are created uniformly around overcrowded vectors
to reallocate solutions. In order to keep a pre-specified number of weight vectors,
unhelpful vectors are removed. Both operations, addition and deletion, are per-
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formed continuously during the search process. This way, the weight vectors are
adapted according to the shape of the Pareto front. Recent weight adaptation
methods consider additional procedures, including the use of an archive of non-
dominated solutions to reflect the Pareto front shape [17,20], and the analysis of
the range of the objective values for weight adaptation [2]. Most of those weight
adaptation methods share two aspects in common:

– The population is employed for weight adaptation.
– The adaptation of weight vectors is performed continuously during the search

process.

The population is employed as reference of the Pareto front shape before
weight adaptation. However, it is unlikely that the population provides a good
approximation of such a shape at early generations. Thus, early weight adap-
tation could be ineffective. A better approach would be to perform the weight
adaptation only when the population has reached the Pareto front, in order to
start the redistribution of weight vectors and, therefore, provide a better approx-
imation to the Pareto front. Such an approach would reduce the computational
overhead associated to weight adaptation as it is not required before finding the
Pareto front.

In this paper, we propose an indicator to assist weight adaptation methods,
called the median of dispersion of the population (MDP). This indicator relies on
the local progress made for each subproblem after a given interval, also known as
relative improvement [26]. By analyzing the local progress of every subproblem,
the proposed indicator provides a general snapshot of the global progress of the
population toward the Pareto front. When the subproblems cannot be improved
significantly according to the proposed indicator, we assume that the population
is steady, and can provide a good Pareto front approximation for weight adapta-
tion. This way, early weight adaptation is avoided, reducing the computational
burden. The main contributions of this paper are listed below:

– We introduce an indicator to assist weight adaptation methods. This indicator
triggers the weight adaptation when the population becomes steady.

– As a proof of concept, we combine the proposed indicator into a weight adap-
tation strategy similar to the approach proposed by Deb and Jain [12,13]. Of
course, other weight adaptation methods can be employed.

– We demonstrate the effectiveness of our idea by using MOEA/D. The pro-
posed indicator along with the weight adaptation strategy has been inte-
grated into MOEA/D. The resulting approach, called AMOEA/D, is evalu-
ated through computational experiments on regular and irregular problems.
We show that the proposed approach is able to improve the performance of
MOEA/D on irregular problems, without deteriorating its performance on
regular problems.

The remainder of this paper is organized as follows. Section 2 introduces
background knowledge. The details of the proposed approach are given in Sect. 3.
The experimental design and results are detailed in Sects. 4 and 5, respectively.
Section 6 concludes this paper.
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2 Background

In this section, we introduce preliminary concepts related to decomposition, as
well as a description of the weight adaptation method proposed by Deb and
Jain [12,13].

2.1 Decomposition

Definition 1 (Scalarizing function). A scalarizing function is a parameter-
ized function g : R

m → R. Thus, an MOP is transformed into the following
scalar problem:

Optimize g(f(x);w)
subject to x ∈ X

(2)

where w = [w1, . . . , wm]T is a weight vector. Given a scalarizing function g and a
set of N weight vectors, denoted as W = {w1, . . . ,wN}, an MOP is decomposed
into N scalar subproblems. The subproblem j is denoted by gj(f(x);wj), or gj

for simplicity. Each vector w ∈ W is defined as follows [10]:

m∑

i=1

wi = 1, and wi ≥ 0, for i = 1, . . . ,m (3)

wi ∈
{

0,
1
H

,
2
H

, . . . ,
H

H

}
, for i = 1, . . . , m (4)

Several scalarizing functions have been proposed in the literature [18]. In this
paper, we employ the Penalty-based Boundary Intersection [25] for decomposing
a problem. A common approach to generate an evenly distributed set of vectors
was proposed by Das and Dennis [4], where the total number of vectors is given
by (

H + m − 1
m − 1

)
(5)

where H is a positive integer. This parameter controls the number of divisions
along each objective [5]. In [10], the authors suggested to use a small weight
value, such as 10−6, when wi = 0. We follow the suggestion in this paper.

2.2 Addition of Weight Vectors

Deb and Jain [5,12] proposed a method to increase uniformly the number of
weight vectors to enhance the coverage of NSGA-III over irregular Pareto front
shapes. This procedure involves translating an m-dimensional simplex. Addi-
tional vectors are created by moving the simplex around a central vector. Notice
that the locations of the new vectors depend on the central vector, as shown in
Fig. 1(a)–(c). This procedure can be employed to increase the number of weight
vectors uniformly, as shown in Fig. 1(d).



220 A. Camacho et al.

Fig. 1. Addition of weight vectors. (a)–(c) The locations of the additional vectors
depend on the central vector. (d) This procedure can be employed to create a new set
of uniformly distributed vectors.

2.3 Density Estimation

Deb and Jain [5] proposed a procedure to associate each individual of the pop-
ulation with its nearest weight vector for density estimation. The individual xi

is associated with the weight vector wj , denoted as π(i) = j, as follows:

π(i) = arg min
j

(
d⊥(f(xi),wj)

)
(6)

where d⊥(u,v) denotes the perpendicular distance between u and v. Thus, xi

is associated with wj if the distance between its image f(xi) and wj is the
smallest among the set of weight vectors. We employ this method to estimate
the density of each weight vector. A counter ρj is defined, where ρj is the number
of individuals associated with wj :

ρj = |{i : π(i) = j, i = 1, 2, . . . , N}|, for j = 1, 2, . . . , N (7)

This way, we can estimate the density of the niche (defined by wj) by counting
the individuals in their vicinity. We can also determine whether wj is needed
to cover the Pareto front. Figure 2(a) shows the approximation achieved by
MOEA/D on an irregular problem called inv-DTLZ1 [12,13]. After density esti-
mation, we can identify the weight vectors that better approximate the Pareto
front, as illustrated in Fig. 2(b). Every vector wj highlighted as an associated
vector in this figure is associated with at least one individual, that is, ρj > 0.

3 Proposed Indicator

The weight adaptation method proposed by Deb and Jain improves the diversity
of solutions in NSGA-III [12,13]. Although this scheme could be embedded into
MOEA/D as well, the additional overhead should be considered. In this paper, we
follow a different approach by performing such a weight adaptation method only
once in the search process in order to reduce the computational overhead. We
propose a performance indicator, called MDP, to trigger the addition of weight
vectors. This indicator provides a snapshot of the progress of the population
toward the Pareto front by analyzing the local progress of each subproblem. The
pseudocode of the proposed indicator is shown in Algorithm1.



Indicator-Based Weight Adaptation for Many-Objective Optimization 221

Fig. 2. Density estimation. (a) Approximation obtained by MOEA/D in inv-DTLZ1.
(b) The association procedure identifies the weight vectors associated with at least one
solution.

Relative Improvement: Let xj,t and xj,t−ΔT denote the solutions of subproblem
gj in the current generation t and the (t − ΔT )-th generation, respectively. The
relative improvement of subproblem gj in the last ΔT generations is defined as
follows [26]:

uj =
gj(xj,t−ΔT ;wj) − gj(xj,t;wj)

gj(xj,t−ΔT ;wj)
(8)

This indicator is employed to infer the local progress made for each subproblem in
the last ΔT generations. If uj is close to zero, then the solution xj of subproblem
gj may be stagnant. The relative improvement uj of subproblem gj is computed
every ΔT = 10 generations in this paper.

Time Frame of Relative Improvement: In order to gain a better insight into the
progress of the population, we collect the last l relative improvements for each
subproblem to create a time frame uj = [uj,1, . . . , uj,l]T . In this paper, the size
of the time frame is defined as l = 5.

Description of Time Frames of Relative Improvement: The time frame uj acts
as a buffer to track the progress of subproblem gj . This frame is reduced to a
single scalar value by using a measure of spread. If the spread of uj is low, then
the progress of subproblem gj could be stagnant. We propose a spread measure
called the coefficient of dispersion (CD), based on the coefficient of variation
(CV). This measure is defined as follows [9]:

CV =
s

x̄
(9)

where s and x̄ denote the standard deviation and mean of the sample (uj),
respectively. The CV expresses the variability of a sample in the units of its
mean. This is a useful descriptive statistic to compare the dispersion among
data sets (when the means are different across the data sets) [9,14]. Given the
definition of the CV, we propose the following spread measure:

CD =
v

x̄
(10)
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where v represents the variance of the sample (uj). In our preliminary experi-
mentation, we noticed better results by using CD instead of CV. After computing
the CD of uj , a vector of dispersion v is obtained. This vector represents the
dispersion of the relative improvements on the N subproblems:

v = [CD1, . . . , CDN ]T (11)

Median of Dispersion of the Population (MDP): The median of the dispersion
vector v is employed to estimate the overall improvement of the population.
A value close to zero means that most of the subproblems have no significant
progress toward the ideal vector, which suggests stagnation.

Algorithm 1. Median of Dispersion of the Population
Require:

Population P .
Set of weight vectors W .

Ensure:
MDP value of P .

1: for each subproblem j = 1, . . . , N do
2: Create the time frame u with the last l relative

improvements using Eq. (8):
uj = [uj,1, . . . , uj,l]

T

3: Compute the CD of uj to obtain its dispersion:

CDj =
V ar(uj)

Mean(uj)

4: end for
5: Create the vector of dispersion v:

v = [CD1, . . . , CDN ]T

6: Compute the median of dispersion of the population:
MDP = Median(v)

Figure 3 illustrates the proposed indicator. This figure shows the mean and
standard deviation of MDP for MOEA/D. The shaded area in this figure refers
to the standard deviation. MOEA/D was evaluated 30 independent times using
DTLZ1 [7] as a test problem. This figure shows that the MDP is able to capture
the dynamics of the population during the search process. After 250 generations,
the population becomes steady, as suggested by the low value of the indicator.
This implies that the subproblems cannot be improved considerably in subse-
quent generations.

4 Experimental Design

This section describes the experimental design employed to evaluate the per-
formance of the proposed approach. We have embedded the proposed indicator
along with the addition operation of weight vectors into MOEA/D. The addition



Indicator-Based Weight Adaptation for Many-Objective Optimization 223

Fig. 3. Indicator MDP. (a) Mean and standard deviation of the proposed indicator. As
the indicator approaches zero, the population becomes steady. Population (b) Before
and (c) After reaching the threshold k = 0.01.

of weight vectors is performed if (a) the MDP value is below a given threshold
k, and (b) there are overcrowded weight vectors. The first condition is needed to
get a better approximation of the Pareto front shape. If it is achieved, the second
condition is evaluated. This condition is needed to determine whether the addi-
tion of vectors is required: If every weight vector is associated with one solution,
then the addition is not required; otherwise, there are overcrowded vectors and
the addition of weight vectors can be performed. The resulting approach is called
AMOEA/D. To evaluate its performance, we have adopted regular (DTLZ1 [7])
and irregular (inv-DTLZ1 [12,13]) problems from the literature. Our goal is to
determine whether the proposed approach improves the diversity of solutions
obtained by MOEA/D for inv-DTLZ1, without deteriorating its performance on
DTLZ1. In our preliminary experiments, we examined five settings of k: 0.02,
0.01, 0.005, 0.0025, 0.00125. In this paper, we report the results from the best
setting: k = 0.01 for 3–8 objectives, and k = 0.005 for 10 objectives. Each algo-
rithm was evaluated 30 independent times on every test instance. Table 1 shows
the parameters used for each problem. Simulated binary crossover (SBX) and
polynomial mutation [6] were employed as variation operators with the following
configuration: ηc = 20, and pc = 1.0, for SBX, and ηm = 15, and pm = 1/n for
polynomial mutation. To assess the performance of each algorithm, the hypervol-
ume [27] and Solow-Polasky (SP) [19,21] indicators were adopted in this paper.
A recent method for computing the hypervolume indicator was employed [1]. All
hypervolume values presented in this paper were normalized to the range [0, 1]
as recommended by Cheng et al. [2].

Table 1. Population size and maximum number of generations for each test instance.

Objectives Divisions Population size Generations

(m) (H) (N) DTLZ1 inv-DTLZ1

3 12 91 300 600

5 6 210 600 1200

8 3 120 800 1600

10 3 220 1000 2000
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5 Experimental Results

Table 2 summarizes the mean, median, and standard deviation of the hypervol-
ume and SP indicators for both MOEA/D and AMOEA/D. This table clearly
shows the performance of both algorithms is the same on DTLZ1 in every test
instance, as AMOEA/D is able to determine whether the addition of weight
vectors is needed (or not). In this case, the addition of weights is not required
because in this test problem, every weight vector is associated with a single solu-
tion, as shown in Fig. 4. This figure graphically confirms that both algorithms
perform the same on DTLZ1 for m = 3. On the other hand, AMOEA/D achieved
better results than MOEA/D according to the hypervolume and Solow-Polasky
performance measures on the irregular problem as Table 2 clearly states for 5, 8,
and 10 objectives. Figure 5 depicts the approximations obtained by both algo-
rithms for m = 3. As it can be seen, a better coverage of the Pareto front was
obtained by AMOEA/D than that achieved by MOEA/D (which can be con-
firmed by the Solow-Polasky performance measure). In this case, the proposed
approach was able to determine that the addition of weight vectors was required.
Thus, poorly-crowded niches were populated successfully.

Fig. 4. Approximations obtained by (a) MOEA/D and (b) AMOEA/D on DTLZ1.

Fig. 5. Approximations obtained by (a) MOEA/D and (b) AMOEA/D on inv-DTLZ1.
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Table 2. Mean, median, and standard deviation for hypervolume and Solow-Polasky
indicators in test instances. Best performance for each indicator is shown in bold.

Problem m Hypervolume Solow-Polasky

MOEA/D AMOEA/D MOEA/D AMOEA/D

DTLZ1 3 0.9794 0.9794 1.5337 1.5337

0.9795 0.9795 1.5330 1.5330

±0.0005 ±0.0005 ±0.0043 ±0.0043

5 0.9994 0.9994 1.7333 1.7333

0.9994 0.9994 1.7334 1.7334

±0.0000 ±0.0000 ±0.0009 ±0.0009

8 1.0000 1.0000 1.8806 1.8806

1.0000 1.0000 1.8830 1.8830

±0.0000 ±0.0000 ±0.0067 ±0.0067

10 1.0000 1.0000 1.9596 1.9596

1.0000 1.0000 1.9631 1.9631

±0.0000 ±0.0000 ±0.0078 ±0.0078

inv-DTLZ1 3 0.7345 0.7339 1.5252 1.5300

0.7346 0.7341 1.5252 1.5298

±0.0002 ±0.0007 ±0.0003 ±0.0008

5 0.3150 0.3614 1.5607 1.6355

0.3147 0.3611 1.5607 1.6355

±0.0009 ±0.0015 ±0.0002 ±0.0011

8 0.0338 0.0412 1.3950 1.4143

0.0336 0.0416 1.3918 1.4291

±0.0011 ±0.0025 ±0.0158 ±0.0519

10 0.0101 0.0130 1.3945 1.4760

0.0100 0.0126 1.3918 1.4625

±0.0003 ±0.0009 ±0.0162 ±0.0272

6 Conclusion

In this paper, we proposed an indicator, called MDP, to assist the adaptation
of weight vectors in MOEA/D to handle irregular Pareto fronts. This indicator
analyzes the relative improvement of each subproblem to estimate the overall
improvement of the population. When the subproblems cannot be improved sig-
nificantly, the population becomes steady and can provide a better Pareto front
approximation for weight adaptation. This way, early adaptation is avoided and
its effectiveness can be improved. We have evaluated the performance of the pro-
posed approach by using MOEA/D in both regular and irregular test problems.
From our experimental results, we have found that the proposed approach was
able to trigger weight adaptation when it was required for addressing irregular
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problems. Hence, the diversity of MOEA/D was improved. Although our eval-
uation was limited to a few test problems, the proposed approach seems to be
a promising alternative to enhance weight adaptation methods. As future work,
we consider the incorporation of the proposed approach into other weight adap-
tation methods [2,13,17,20]. Also, further experimentation is needed to assess
the performance of the proposed approach in a variety of test problems with
respect to both its search ability and its efficiency.
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Abstract. Most practical optimization problems are multi-objective in
nature. Moreover, the objective values are, in general, differently scaled.
In order to obtain uniformly distributed set of Pareto-optimal points, the
objectives must be normalized so that any distance metric computation
in the objective space is meaningful. Thus, normalization becomes a cru-
cial component of an evolutionary multi-objective optimization (EMO)
algorithm. In this paper, we investigate and discuss the normalization
procedure for NSGA-III, a state-of-the-art multi- and many-objective
evolutionary algorithm. First, we show the importance of normalization
in higher-dimensional objective spaces. Second, we provide pseudo-codes
which presents a clear description of normalization methods proposed in
this study. Third, we compare the proposed normalization methods on
a variety of test problems up to ten objectives. The results indicate the
importance of normalization for the overall algorithm performance and
show the effectiveness of the originally proposed NSGA-III’s hyperplane
concept in higher-dimensional objective spaces.

Keywords: Many-objective optimization · NSGA-III · Normalization

1 Introduction

The need to optimize several objectives at a time has been investigated for years,
and various algorithms have been proposed [21]. The desired result is a non-
dominated set of solutions close to the true Pareto-optimal front [13], instead of a
single optimal solution. The non-dominated set of solutions gives us the possibil-
ity to make a suitable decision for choosing a single preferred solution following
the algorithm’s execution and provides useful information about optimal solutions
with respect to different preferences. Also, the decision maker can compare the
trade-offs between different solutions and therefore justify his/her choice.

However, the fact that the target space has more than one dimension brings
new challenges which must be addressed in designing the optimization algorithm.
To deal with multiple dimensions in the objective space, reference directions
express the trade-off between solutions with respect to each objective. Usually,
either the user provides them directly or they are sampled uniformly in the unit
space. If a uniformly distributed set of reference directions can be supplied and
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an EMO algorithm can find one or more Pareto-optimal solutions close to each
reference direction, a widely distributed set will be achieved at the end.

Clearly, such a process will involve distance computations in the objective
space, thereby necessitating a normalization procedure within the algorithm,
which will consider the range of each objective on a same scale. In contrast to test
problems where variables and objectives are already nicely scaled, in practical
problems, the objective space range for each objective may differ by several
magnitudes. Therefore, for any distance or trade-off calculation, normalization
of objectives becomes an inevitable task.

In this paper, we investigate and discuss the normalization procedure of
NSGA-III, a state-of-the-art evolutionary multi- and many-objective algorithm.
In addition to the originally proposed normalization procedure of NSGA-III,
we suggest a few other normalization methods. Our purpose in this paper is
to: (i) show the importance of normalization in the objective space for high-
dimensional multi-objective problems, (ii) compare different normalization pro-
cedures, and (iii) provide pseudo-codes for different normalization procedure.

In the remainder of this paper, we will first present a review of some past
studies expanding upon or applying NSGA-III. Thereafter, in Sect. 3 we provide
a brief description of the algorithm including the role of normalization. Then,
different methodologies for normalization are discussed in depth, and a hands-on
example is provided in Sect. 4. Afterwards, in Sect. 5, we present our results eval-
uated on a variety of test problems with up to ten objectives. Finally, conclusions
of the study are presented in Sect. 6.

2 Related Studies

The need of optimizing more than one objective at a time brought attention
of the multi-objective optimization research area. Also, normalization is often
assumed implicitly and not discussed in detail, the importance to solve practical
problems is indisputable.

The normalization procedure for MOEA/D [20] was investigated in [11]. The
normalization was based on the PBI (penalty-based boundary intersection) mea-
sure by considering lower and upper bound estimations. The study showed that
the normalization has both positive and negative effects on the performance on
test problems. Interestingly, the normalization showed positive effects for test
problems that do not need any normalization. Furthermore, three representa-
tive strategies for estimating the ideal point in MOEA/D were studied [17].
The ε value, which is subtracted from the minimum of each objective in the
current population, is varied: small (pessimistic), large (optimistic), or decreas-
ing over time (dynamic). The authors found out that the strategy has an effect
on the exploration and exploitation of the algorithm and suggest to use the
dynamic strategy for unknown problems. Also, the effect of local optimization
to improve solutions contributing to the ideal point has been investigated [15].
The study showed that the local search helps to improve the diversity of the
final non-dominated population for certain problems by converging close to the
true ideal point in an early phase.
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Moreover, NSGA-III [5,12], designed to solve problems with more than three
objectives, was investigated since its publication in 2014, and some extensions
and improved versions were proposed. For instance, a unified approach for mono-,
multi- and many-objective problems, U-NSGA-III [14], introduces more selection
pressure during the mating selection. Moreover, NSGA-III-OSD [3] decomposes
the objective space into several subspaces by clustering the reference directions
uniformly. Each subspace has its own population and PBI as decomposition
method. Additionally, EliteNSGA-III [10] improves the diversity and accuracy of
the resulting Pareto-front. An elite population archive is maintained to preserve
previously generated elite solutions that would probably be eliminated by the
reference survival selection procedure.

Moreover, NSGA-III has been applied to industry problems, for instance
environmental dispatch problem [2], hydro thermal wind scheduling problem [19],
and car engine design problem [9]. Also, NSGA-III has been implemented in
different programming languages and popular optimization frameworks, such as
jMetal [8], moeaframework [1], and PlatEMO [16].

3 NSGA-III

In the following, NSGA-III is explained and the role of normalization during
the survival selection is illustrated. The basic framework remains similar to
NSGA-II [6] with significant modifications to the mating and survival selection. In
NSGA-III, parents to be used for recombination are selected randomly. The sur-
vival selection considers the M -dimensional objective space by using the reference
direction concept. Reference directions Z represent trade-offs between solutions
regarding their objective values. They are either provided a priori by the user or
created uniformly, commonly executed using the Das and Dennis’s technique [4].

An outline of the survival selection is shown in Algorithm1. Considering an
optimization problem with M objectives and an evolutionary algorithm with
a population size of N , generation t begins with the current population P (t)

known as the parent population, creates an offspring population Q(t) through
recombination and mutation, and merges two populations together to create
R(t) = P (t) ∪ Q(t). The survival selection has to return P (t+1) – the next gen-
eration population of size N . The creation of P (t+1) is as follows. First, the
individuals of the merged population R(t) are sorted by non-dominated rank
which results in a list of fronts (F1, F2, . . .). To do this, the set of surviving solu-
tions S is initialized as an empty set. Thereafter, it is iterated through the list
of fronts and the current front Fi is appended to S, if the resulting number of
individuals does not exceed N . The front where |S ∪ Fi| ≥ N is the potential
splitting front FL. In case, |S|+|FL| = N no splitting is necessary and all surviv-
ing individuals are already determined. Otherwise, a niching method is employed
to choose those FL members that are associated with the least represented ref-
erence directions already associated by individuals in S. To assign individuals
to the reference directions Z, S is normalized by using ẑ∗ as a lower and the
nadir point estimation ẑnad as an upper bound. Therefore, each already selected
individual k in S is assigned to the closest reference direction πk having a per-
pendicular distance of dk. The niche count ρ is kept track of and incremented



232 J. Blank et al.

Algorithm 1. NSGA-III Survival Selection
Input: Merged Population R(t), Number of surviving individuals N , Reference

Directions Z, Ideal Point Estimation ẑ∗, Nadir Point Estimation ẑnad

Output: Surviving Individuals P (t+1)

1 (F1, F2, . . .) ← non dominated sort(R(t))

2 S = ∅, i = 1
3 while |S| + |Fi| < N do S ← S ∪ Fi; i = i + 1
4 FL ← Fi

5 if |S| + |FL| = N then S ← S ∪ FL

6 else
/* Normalize objectives space and update boundary estimation */

7 S̄, F̄L, ẑ∗, ẑnad ← normalize(S, FL, ẑ∗, ẑnad)

/* niche count, assigned Zi, perpendicular dist to Zi */

8 ρ, π, d ← 0
9 for k ← 1 to |S| do

10 πk, dk ← associate(S̄k, Z); ρπk ← ρπk + 1
11 end

// Remaining individuals from FL to fill up S
12 S ← S ∪ niching(F̄L, n − |S|, ρ, π, d)

13 end

14 P (t+1) ← S

15 return P (t+1)

by one for each assignment. Finally, the niching method selects from F̄L the
remaining N − |S| individuals using ρ, π, d. A population member associated
with an under-represented or un-represented reference direction is immediately
preferred. With a continuous stress for emphasizing non-dominated individuals,
the whole process is then expected to find one population member corresponding
to each supplied reference direction close to the Pareto-optimal front.

4 Normalization Procedure

In this section, we investigate different normalization procedures for NSGA-III.
The normalization relies on lower and upper boundaries in the objective space
that correspond to the estimated ideal point ẑ∗ and the estimated nadir point
ẑnad. Therefore, it is sufficient to provide the estimation for both points in order
to normalize. The normalized value āi in the i-th objective is then calculated by

āi =
ai − ẑ∗

i

ẑnadi − ẑ∗
i

. (1)

The open question is how to find estimation the boundary points ẑ∗ and
ẑnad, so that non-dominated solutions are properly emphasized. The ideal point
estimation ẑ∗ is rather simple and the calculation is based on the smallest value
in each objective we have observed since the start of the optimization run:
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ẑ∗
j = min (ẑ∗

j ∪ Rj), (2)

where Rj denotes the j-th objective of the merged population. Please note that
the ideal point should not be calculated from R at each generation, but being
updated. The survival selection of NSGA-III does not guarantee each individual
contributing to an ideal point to survive in higher dimensions. For this reason,
an update is necessary for a correct estimation of the ideal point.

The nadir point estimation is more tricky and is one of the main cruxes of
this study. Let us first discuss the requirements and goals for estimating the
nadir point in the context of many-objective evolutionary algorithms.

(i) Estimated ideal point must dominate estimated nadir point: Since
it is normalized between the ideal and nadir point estimation, we need to
make sure that ∀ i ∈ [1, ..,M ] : ẑnadi > ẑ∗

i . In practice, the formulation
should be more strict where ∀ i ∈ [1, ..,M ] : ẑnadi − ẑ∗

i > εnad with εnad
being our assumption about the minimum range of the Pareto-front for all
objectives. A minimum difference εnad prevents having floating point issues
and loosing the diversity during the survival selection.

(ii) Estimated nadir point must converge to the true nadir point with
generations: Finally, when the population converges to the true optimum,
the estimated nadir point should converge to the true nadir point. When
both ideal and nadir points are estimated close to their true values, the EMO
algorithm gets stabilized and works efficiently to find a well-distributed set
of near Pareto-optimal points.

(iii) Estimated nadir point must gradually change from one generation
to the next: This requirement is especially important in an evolutionary
context, because the normalization is applied before assigning to reference
directions and directly influences the survival method. An abrupt change of
the normalization process will make previous generation’s non-dominated
solutions meaningless, thereby creating a restart situation.

In the following, we will suggest a number of possible normalization pro-
cedures. Towards this goal, we shall revise the hyperplane concept in Sect. 4.3
which was proposed in the original publication and present corner cases that
must be handled on an implementation level.

4.1 Maximum of Non-dominated Front (MNDF)

Straightforwardly, we can concatenate the maximum of each objective of the non-
dominated front of each generation and construct the nadir point. Assuming the
algorithm converges eventually to the entire Pareto-optimal front, the estimated
nadir point will be equal to the true nadir point. Since the method is based
on the current non-dominated front in each generation, some special degenerate
cases must be addressed. If the population has only one non-dominated solution,
this solution might also be equal to the ideal point. This will cause a division
by zero problem to Eq. 1. In this case, we propose to consider the next non-
dominated front for the estimation of the nadir point. This process can continue
until the difference between estimated nadir and ideal points becomes larger
than a pre-specified threshold εnad.
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4.2 Maximum of Extreme Points (ME)

We can use the achievement scalarization function (ASF) [18] along the axes to
find M extreme points. The ASF function is defined by:

ASF (f(x), w, ẑ∗) =
M

max
i=1

fi(x) − ẑ∗
i

wi
, (3)

where the weight vector w of the k-th objective is wk = 1 and wi = εasf , if
i �= k. For our experiments we set εasf = 10−6. The procedure to update the
extreme points each generation is presented in Algorithm 2. We find the extreme
points by combining the merged population with the current extreme points.
This ensures that the extreme points get an update, instead of a straightforward
replacement all the time. Then, the ASF function scalarizes multiple objectives
into a single value. We simply choose the solution with the minimum ASF value
having at least εnad different in the i-th objective. Finally, we set the extreme
point e(i) to the objective vector of the index found.

Algorithm 2. Maximum of Extreme Points
Input: R, ẑ∗, Current Extreme Points e
Output: Updated Extreme Points e

1 A ← R ∪ e
2 for i ← 1 to M do
3 w ← (ε1asf , . . . , εMasf )
4 wi ← 1
5 k ← argmin(ASF(A,w, ẑ∗), εnad),
6 e(i) ← A(k)

7 end

4.3 Revised Hyperplane Through Extreme Points (HYP)

In the following, we revise the idea implemented in the original NSGA-III. We
analyze the hyperplane concept on implementation level, where a number of
exceptions must be handled to ensure the algorithm will not fail – a number of
which we describe below.

Negative Intercepts. The hyperplane is found in the translated space e′ ←
e − ẑ∗ and the intercepts I are the intersections with the coordinate axes. The
intercepts with the axes in the translated space represent the estimation of the
range of the Pareto-front. For this reason, the intercepts are required to be
positive. However, the hyperplane through the extreme points might intersect the
axis not in the positive orthant. Let us consider the following scenario, illustrated
in Fig. 1a, with solutions in the objective space f (1) = (1.0, 0.2, 0.0), f (2) =
(0.4, 0.1, 0.4), and f (3) = (0.1, 0.0, 1.0). Each point is an extreme point with
respect to the achievement scalarization function along an axis: f (1) along f1,
f (2) along f2, and f (3) along f3. The intercepts of the hyperplane will result in
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I = (−1.4, 0.1167, 0.933). Obviously, the intercept with the first axis is negative
and cannot be used for normalization.

No Unique Hyperplane Exists. A unique M -dimensional hyperplane
through the extreme points can only be found if all points are linearly inde-
pendent from each other. On implementational level, a matrix with the extreme
points as row vectors has to be inverted to obtain the axis intercepts. Linearly
dependent rows form a singular matrix, where an exception will be thrown
during the inversion. Moreover, the extreme point selection does not guaran-
tee to select different points for different axes. For instance, let us consider
three non-dominated points f (1) = (0.8, 0.5, 0.5), f (2) = (0.1, 0.3, 0.9), and
f (3) = (0.4, 0.1, 0.9), as shown in Fig. 1b. The extreme points are selected using
the achievement scalarization function for each axis. Here, f (1) will be chosen
for both f1 and f2 axes, and f (2) for f3. Because f (1) is chosen for two axes,
the matrix to be inverted is singular and a unique hyperplane does not exist.
Additionally, numerical instability through floating point calculations depending
on the library used for the inversion must be addressed as well.
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Fig. 1. Two degenerate cases of HYP normalization method. (Color figure online)

Pseudo-code of HYP. For any implementation using the hyperplane idea,
the above presented scenarios must be addressed. In these cases, we propose the
algorithm to fall back to the worst point of the current non-dominated front or
of the population. Algorithm3 illustrates the procedure using the hyperplane
idea and handling the degenerate cases. Note, that our procedure requires the
worst point estimation ẑw. In contrast to the ideal point estimation ẑ∗, we define
ẑw having the largest value observed so far, for each objective. We use ẑw as an
upper bound of ẑnad. With the check, if any intercept is smaller than εnad, we
ensure that the hyperplane has no negative intercepts and the resulting nadir
point estimation is significantly larger than ẑ∗. Also, we make sure that the
resulting nadir point estimation Ik + ẑ∗

k is not larger than our upper bound ẑwk .
If one of these requirements is not met, we declare the hyperplane as not useful
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for the normalization purpose and, therefore, the nadir point estimation is set as
the maximum of each objective of current non-dominated population members.

Finally, we make sure the nadir point estimation satisfies the first require-
ment, being dominated by the estimated ideal point. If it is not, then we use the
maximum of corresponding violating objective in the population.

Algorithm 3. Hyperplane through extreme points.
Input: Merged Population R, Non-dominated Fronts (F1, .., FK), ẑ∗, Worst

Point Estimation ẑw, Extreme Points e
Output: Nadir Point Estimation ẑnad

1 e ← update extreme points(R, ẑ∗, e)
2 b ← FALSE

3 try:
4 A′ ← find hyperplane(e, ẑ∗)
5 I ← find intercepts(A′)
6 for k ← 1 to M do

7 ẑnad
k ← Ik + ẑ∗

k

8 if Ik < εnad or ẑnad
k > ẑw

k then
9 b ← TRUE

10 break

11 end

12 end

13 catch Error : b ← TRUE

/* Fall back to the maximum in each objective of current front */

14 if b = TRUE then

15 for i ← 1 to M do ẑnad
i ← max in objective(F1, i)

16 end

/* Nadir point must be significantly larger in each objective */

17 for i ← 1 to M do

18 if ẑnad
i − ẑ∗

i < εnad then ẑnad
i ← max in objective((F1 ∪ ... ∪ Fk), i)

19 end

5 Results

In this section, we present the simulation results of NSGA-III using the pro-
posed normalization procedures1. First, we analyze the ideal and nadir point
estimation error over generations. Second, we present the performance of the
proposed normalization procedures on test problems. We use the scalable multi-
objective optimization test problems suite, DTLZ [7], for our evaluation. Also,
we investigate scaled versions of these problems, where objectives are multiplied
with increasing factors. We conducted the experiment analogous to the original

1 The source code is freely available at https://github.com/msu-coinlab/pymoo.

https://github.com/msu-coinlab/pymoo
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publication of NSGA-III. Therefore, we refer to [5] for details about the experi-
mental setup and algorithm parameters, such as references lines, population size,
number of generation and recombination operators. We run each algorithm 50
times on each test problem.

We compute the following squared ideal point and nadir point estimation
errors to track the progress of them through generations:

ê∗ =
m∑

i=1

(
ẑ∗
i − z∗

i

znadi − z∗
i

)2

ênad =
m∑

i=1

(
ẑnadi − znadi

znadi − z∗
i

)2

(4)

The squared ideal point estimation error ê∗ is calculated by summing up the
normalized squared difference in each objective. The squared nadir point esti-
mation error ênad is also defined accordingly. Figure 2a shows the median ê∗

during the first 50 generations. Note that the error decreases below one per-
cent after at most 20 generations for all considered test problems. This confirms
the hypothesis, that the ideal point estimation is quick, less problematic and
the assumption to use the smallest values for each objective reduces the esti-
mation error effectively. Analogous, we illustrate ênad in Fig. 2b. Clearly, the
overall estimation error is higher than the ideal point estimation error and the
convergence is slower. Furthermore, we can cluster the error into two groups,
where DTLZ1 and DTLZ3 start with a smaller estimation error compared to
DTLZ2 and DTLZ4. This is caused by the multimodality introduced through
the convergence function for DTLZ1 and DTLZ3.

Next, let us discuss the performance of the different normalization proce-
dures. We use the inverse generational distance (IGD) as a performance metric
for our study. For scaled problems (SDTLZ), we used the weighted Euclidean
distance for the IGD computation, where the distance in objective k is divided
by znadk − z∗

k. Figure 3 shows the box plots of the IGD values on the DTLZ
test problem suite for three, five, and ten objectives. In addition to the proposed
methods, we evaluate a normalization procedure (TRUE) where the true bound-
ary points ẑ∗ = z∗ and ẑnad = znad are used all along. The following observations
are made:
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Fig. 3. Box plots showing IGD values for DTLZ (normalized IGD for SDTLZ) problems.
The median values are presented for each algorithm annotated by ** if best and * if not
significantly worse than best (according to Wilcoxon signed-rank test with p = 0.05)
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• It can be concluded from the experiments, that MNDF is too naive and
performed mostly worse than the other approaches. Due to the fact that the
current non-dominated front may not be close to the true Pareto-optimal
front, the search is easily biased to specific regions of the objective space.

• For scaled DTLZ problems, HYP has more outliers compared to the other
problems. For SDTLZ2, MNDF shows surprisingly good results. Because the
convergence function is rather simple, the non-dominated front seems to be
a good representative of the true Pareto-optimal front.

• By comparing the median IGD values, we can observe that TRUE performs
17 out of 18 times the best. However, in practice the boundary points of the
Pareto-front are unknown and this information can not be utilized.

• ME and MNDF showed more outliers and significantly higher median per-
formances compared to HYP. Moreover, seven times HYP did not perform
significantly worse than TRUE. We recommend using HYP whenever the true
boundary points of the Pareto front are unknown.

6 Conclusions

In this paper, different normalization procedures for NSGA-III for solving many-
objective optimization problems have been investigated. It has been shown that
normalization is a crucial component for multi-objective algorithms and necessary
to solve problems where objectives are scaled differently. The original proposed
normalization method has been analyzed and degenerate cases, such as negative
intercepts and no unique hyperplanes, have been discussed. The proposed meth-
ods have been applied to test problems up to ten objectives, where the ideal as
well as the nadir point estimation errors over generations has been analyzed. The
results confirm that the ideal point estimation is less problematic and gets settled
quickly, whereas the nadir point estimation is tricky and requires a large num-
ber of generations to get settled. Moreover, the overall performance of NSGA-III
with different normalization procedures has been evaluated. Although the origi-
nal proposed hyperplane concept HYP must handle degenerate cases carefully (see
Algorithm 3), it shows the best performance besides TRUE. The hyperplane con-
cept is not only applicable for NSGA-III and can now be tested with other multi-
and many-objective algorithms where normalization is not addressed properly or
naively implemented. Moreover, the effect of normalization on different shapes of
the Pareto-optimal front must be studied next.
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Abstract. State-of-the-art optimization algorithms often expose many
parameters that should be configured to improve empirical performance.
Manually tuning of such parameters is synonymous with tedious exper-
iments which tend to lead to unsatisfactory outcomes. Accordingly,
researchers developed several frameworks to tune the parameters of a
given algorithm over a class of problems. Until very recently, however,
these approaches are not testified and applied to many-objective algo-
rithms. This study formulates a many-objective algorithm configuration
(MAC) method which is available for the Matlab and Python. In MAC,
we take into account the importance of a given configuration by build-
ing a conditional probability graph. In this light, the introduced algo-
rithm aims to explore more important variables using an undirected fully-
connected graph. Experimental results reveal that MAC performs better
in comparison with state-of-the-art F-Race and SMAC frameworks.

Keywords: Algorithm configuration · Many-objective optimization ·
Machine learning

1 Introduction

There is no doubt that optimization algorithms have gained immense popularity
in recent years. The adoption of these algorithms to unseen NP-hard problems,
however, is severely hampered by choosing a set of optimal parameters associated
with them. The learning rate in stochastic gradient descent or the mutation rate
in the genetic algorithm are examples of these parameters. In particular, we can
point out parameters of meta-heuristics whose configurations have a high impact
on their overall performance on a given class of instances. These configurations
are correlated in non-intuitive ways which makes it difficult and tedious to tune
them manually.

Automatic algorithm configuration deals with optimizing parameters of an
algorithm so as to perform well across a broad range of instance types. In this
regard, standard optimization algorithms like meta-heuristics may need hun-
dreds of evaluations to locate a near-optimal solution which is a major challenge
c© Springer Nature Switzerland AG 2019
K. Deb et al. (Eds.): EMO 2019, LNCS 11411, pp. 241–253, 2019.
https://doi.org/10.1007/978-3-030-12598-1_20
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to their successful application. This is primarily due to the expensive compu-
tational cost associated with them which often consume many minutes to even
days of CPU time. In this context, the advantages of so-called model-based algo-
rithms become clear [12]. They construct computationally cheap-to-evaluate sur-
rogate models in order to provide a fast approximation of the expensive fitness
evaluations during the search process. By leveraging surrogate models, the com-
putational cost can be greatly reduced since the time overhead of training and
building surrogate models is insignificant compared to evaluating the exact fit-
ness function. To this fact, state-of-the-art frameworks such as SMAC [12] and
F-RACE [2] have focused on model-based optimization.

To the best of our knowledge, automatic configuration methods have not been
applied to many-objective optimization and researchers were more interested
on single-objective and multi-objective cases. In contrast to conventional multi-
objective approaches, many-objective optimization poses a great challenge due to
the ineffectiveness of Pareto dominance, inefficiency of recombination operation,
rapid increase of computational time and parameter sensitivity. In this study,
we apply a new algorithm based on optimal contraction theorem [4] for adjust-
ing parameters of many-objective optimization algorithms. A series of experi-
ments using CEC2018 benchmark problems [6] are conducted to demonstrate
the effectiveness of the MAC. The proposed algorithm is validated against state-
of-the-art algorithm configuration approaches from the literature. The statistical
comparisons of experimental results show that MAC has a superior performance
in terms of solution accuracy over the considered problems and algorithms.

The rest of the paper is organized as follows. Section 2 provides us with
a brief review on the related works. Section 3 gives a brief description of the
algorithm configuration problem. Section 4 elaborates technical details of our
proposed approach. In Sect. 5, the performance of the introduced MAC is inves-
tigated by conducting a set of experiments. The last section summarizes the
paper and draws conclusions.

2 Related Works

Sequential Model-based Algorithm Configuration (SMAC) [12], Spearmint [21],
F-RACE [2] and Tree-structure Parzen Estimator (TPE) [1] are examples of well
known methods for automatic configuration task. A large class of such methods
is characterized by modeling a conditional probability p(y|ϕ) of a m-dimensional
configuration ϕ, given n observations s with the corresponding evaluation met-
rics y. SMAC adopted a random forests model and Expected Improvement (EI)
to compute p(y|ϕ). It applies a multi-start local search and selects resulting
configurations with locally maximal EI. The exploration property of SMAC is
enhanced by the fact that EI conditioned on points with large uncertainty and
low values of predictive mean. Similarly, TPE et al. [1] defined a configura-
tion algorithm based on tree-structure Parzen estimator and EI. To tackle the
curse of dimensionality, TPE assigns particular values of other elements to the
configurations which are known to be irrelevant. Ilievski et al. [13] proposed a
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deterministic method which employs dynamic coordinate search and radial basis
functions (RBFs) to find most promising configurations. By using the RBFs [16]
as surrogate model, they mitigated some of the requirements for inner acquisi-
tion function optimization. In another work [22], the authors put forward neu-
ral networks as an alternative to Gaussian process for modeling distributions
over functions. They show that their introduced method is competitive with
state-of-the-art GP-based approaches while it scales linearly with the data size
rather than cubically. Blot et al. [3] introduced a multi-objective extension of
the well-known ParamILS configuration framework and they demonstrate that
it gives promising results on several challenging bi-objective scenarios. Interest-
ingly, Google introduced Google Vizier [11], an internal service which incorpo-
rates Batched Gaussian Process Bandits along with the EI acquisition function.

3 Automatic Algorithm Configuration

A general definition of the algorithm configuration problem can be presented by
a tuple <I,Θ,Λ, ζ> as follows:

θ∗ = arg max
θ∈Θ

u(θ),where u(θ) = f(θ|I, PI , Pζ , t) (1)

where I is a set of problem instances which is given by a distribution PI over
admissible instances; Λ is an algorithm which should solve the problem class I,
with input configurations θ = (p1, · · · , pk) ∈ Θ. Here, Λ(θ) is the instance of
algorithm Λ configured with θ; ζ(θ, i, t) = ζ(Λ(θ), i, t) assigns a cost value to
each configuration θ when running Λ(θ) on instance i ∈ I for time t. It could be
modeled as ζ ∼ Pζ(ζ|θ, i, t); and finally Θ is a set of all possible combinations of
values of pi. A hyperparameter approach then should try to find configuration
θ∗ ∈ Θ such that Λ(θ) yields the best utility u.

4 The Proposed Method

This section discusses in detail the main components of the proposed MAC
method. In brief, MAC consist of two main phases:

– Exploration: The algorithm tries to learn probabilistically about the rele-
vance of configurations and the model’s performance during the optimization
process. In another word, it expects to find reasons why a collection of past
solutions is superior to others. To do so, MAC is equipped by a linkage learn-
ing component which periodically acquires information about the problem
at hand to find most informative configurations. The aforementioned schema
encodes the underlying dependencies between variables using an undirected
graph, where nodes denote configurations and edges show the probability that
two nodes are relevant. We adopted the idea of Eigenvector centrality feature
selection [19] to learn the factor graph.
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– Exploitation: The collected information from the previous step are then
processed and used to generate new solutions. The introduced informed com-
ponent guides the algorithm toward the search space that are likely to con-
tain the promising solutions. This orthogonal technique prevents MAC to
uniformly consider all configurations and bias the search process toward the
good configurations.

We extend the idea of stochastic RBF [17] to be suitable for the algorithm con-
figuration task. It is a model-based algorithm that cycles from emphasis on the
objective to emphasis on the distance using a weighting strategy. Compared
to the evolutionary algorithms like genetic algorithm, stochastic RBF need less
computational time by virtue of surrogate modeling techniques. On the other
hand, it mitigated some of the requirements for inner acquisition function opti-
mization in comparison with well-know efficient global optimization (EGO) algo-
rithm [14]. Hence, we focused on proposing a new algorithm configuration app-
roach based on stochastic RBF. A generic framework for MAC includes some
basic steps which can be stated follows: (1) generating a set of initial configu-
rations θi (i = 1, 2, ..., n) using design of experiments (DoE) and compute the
cost value for each configuration; (2) Building an initial surrogate model based
on the sampled configurations θi in the first step; (3) Finding the current best
configuration confbest; (4) Generating a set of random perturbations ρ based
on exploration/exploitation modes; (5) Generating a set of new configurations
confsnew around confbest using ρ; (6) Use the surrogate model to select the
best configuration confnew; (7) Evaluating confnew using exact cost function;
(8) Updating the surrogate model based on confnew; (9) Checking the stopping
criteria: if some stopping criteria are satisfied go to Step 10; otherwise go to Step
3; (10) Post-processing the results

4.1 Initial Design

In MAC, the first step involves generating a set of random configurations θi

(i = 1, 2, ..., n) (i.e., initial population). Here, the algorithm might possibly miss
a considerable portion of the promising area due to the high dimensionality
of the configuration space (it should be noticed that we have a small and a fix
computational budget and increasing size of the initial population cannot remedy
the issue). Furthermore, it is crucial for a model-based algorithm to efficiently
explore the search space so as to approximate the nonlinear behavior of the
objective function. For these reasons, as with many model-based algorithms,
MAC adopts DoCE methods to partially mitigate high dimensionality of the
search space. Among them, MAC uses the Latin Hypercube Sampling (LHS)
[15] to provide a uniform cover in the search space using a minimum number of
population. The main advantage of LHS is that it does not require an increased
initial population size for more dimensions.
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4.2 Approximation Model

As the next step, we evaluate all the generated configurations θi (i = 1, 2, ..., n)
to build an approximate model of the cost function. This computationally cheap-
to-evaluate model can provide a fast approximation of the expensive fitness eval-
uations during the search process. MAC tries to model conditional probability
p(y|ϕ) of a d-dimensional configuration ϕ given n observations S with the cor-
responding cost metrics y:

S =
[
θ(1), ..., θ(n)

]T
∈ R

n×d, θ = {θ1, ..., θd} ∈ R
d (2)

To do so, it offers surrogate models which are a set of mathematical tools
for predicting the output of an expensive objective function. Particularly, they
are designed to predict the fitness function value for any unseen configuration θ̂
according to computed data points (θi, yi). Given a set of distinct configurations
θ1, ..., θn ∈ R

d with known values yi, the RBF interpolant form then is computed
as belows [17]:

f̃(θ̂) =
n∑

i=1

λiφ(
∥∥θ̂ − θi

∥∥) + p(θ̂), θ̂ ∈ R
d (3)

In (3),
∥∥.

∥∥ is the Euclidean norm, λi ∈ R for i = 1, ..., n, p ∈ ∏d
m denotes the

linear space of polynomials in d variables of degree which is less than or equal
to m, and φ is a RBF with one of the surface splines (φ(r) = rk where k ∈ N is
an odd number, or φ(r) = rklog(r) where k is an even number), multiquadrics
(φ(r) = (r2 + γ2)k where k > 0 and k /∈ N), inverse multiquadrics(φ(r) =
(r2 + γ2)k where k < 0 and k /∈ N) and Gaussians (φ(r) = e−γr2

) forms. Here,
r ≥ 0 and γ > 0.

Following [17], MAC selected the surface splines form with k = 3 as the RBF.
Having this in mind, we can compute a matrix � ∈ R

n×n by �i,j = φ(
∥∥θi − θj

∥∥);
i, j = 1...n. Assume that m̂ be the dimension of the linear space

∏d
m such that

m ≥= �k/2�. Accordingly, we have another matrix P ∈ R
n×m̂ such that: Pij =

p(i)(θ(i)), i = 1..n; j = 1..m̂. The approximated model then can be obtained by
solving the system as presented in (4), where c = (c1, ..., cm̂)T ∈ R

m̂.
( � P
P� 0

)(
γ
c

)
=

(
y
0m̂

)
(4)

4.3 Exploration

The original stochastic RBF method generates a set of candidate points by
adding random perturbations ρ to the best obtained solution (i.e., configuration)
to guide the search process. This trial-and-error procedure does not take into
account the interactions between the generated configurations and the obtained
objective values. We note that the performance of stochastic RBF depends on
this random points and a more informed scheme can be beneficial to enhance the
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robustness of the algorithm. Indeed, this is the same desired property in optimal
contraction theorem [4] which states an optimal optimizer should dynamically
considers useful information about the problem at hand. Motivated by this find-
ing, MAC incorporates an adaptive control strategy which keeps a historical
memory of the ρ perturbations to guide the generation of future configurations.
In the exploration phase, MAC generates a diverse set of random perturbations
ρ and tends to increase global search to prevent algorithm from being trapped
in a local minimum. We adopted Student’s t-distribution to do so, which is
symmetric and bell-shaped family of distributions like the normal distribution.
In contrast, however, it has heavier tails which let MAC to explore the points
that fall far from the distribution’s mean. At each iteration t, MAC archives the
generated perturbations for the exploitation phase.

4.4 Exploitation

After half of the iterations, MAC employs a feature selection algorithm method
to acquire information about the performance of each of those randomly gen-
erated perturbations in the previous phase. It uses this information to dynam-
ically make a balance between exploration and exploitation. In other words,
MAC transforms the task of learning the optimal feature in feature selection
algorithms into the search for an efficient and adaptive optimization behavior.
This enables MAC to take into account the underlying correlations between the
generated perturbations and domain-specific search knowledge of the problem.

Following the [18], MAC creates an undirected graph G = <V,E> according
to which nodes represent the generated random perturbation ρ(t) and edges
denote relationships among pairs of nodes. All the archived perturbation ρ(t)

are ranked in descending order according to their associated cost values: the
first best 50% solutions are labeled as promising and the other solutions are
labeled as non-promising. This consideration address the imbalanced training
set and prevent of biasing against the minority class.

Given the above-mentioned training set, an adjacency matrix A is associated
with G in order to define relationships between the nodes. The G is represented
through an adjacent matrix A, where each element ai,j shows pairwise relations
among feature distributions. The ai,j elements are defined as follows:

ai,j = ασi,j + (1 − α)ci,j ; 1 � i, j � t (5)

In (5), α is a scaling factor ∈ [0, 1], σi,j = max(σi, σj) where σi denotes the
standard deviation over the ρ and ci,j is a kernel. To compute the ci,j , first the
Fisher criterion should be applied [18]:

fi =
|μi,1 − μi,2|2
σ2

i,1 + σ2
i,2

(6)

In (6), discriminate classes promising and non-promising are labeled as 1
and 2, respectively. Also, σ2

i,c and μi,c are the mean and standard deviation of
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the i -th feature for class c. The k is then can be obtained as k = (f.m�) where
the mutual information m is [18]:

mi =
∑
y∈Y

∑
z∈ρ(i)

p(z, y)log(
p(z, y)

p(z)p(y)
) (7)

In (7), Y shows class labels and p denotes the joint probability distribution.
Now, MAC computes the eigenvalues υ and eigenvectors v of A. The obtained
weigh for generating the new configurations is equal to the eigenvector associated
to η0 = maxη∈υ abs(η)).

5 Experimental Results

In this section, we investigate the performance of the introduced MAC method
using two different many-objective algorithm configuration scenarios. The first
scenario is designed to optimize the configuration space of NSGA-II [9] defined
by three control parameters, while the second one adopts MOPSO [7] which
is defined by six control parameters. The adopted algorithms are introduced to
measure search performance of the MAC under different dimensions. The NSGA-
II is a low dimensional configuration problem, while MOPSO is a medium dimen-
sion problem. The considered configurations are presented in Tables 1 and 2.

Table 1. The considered configurations of NSGA-II for a D-dimensional problem

Name Type Range Default values [10]

Population size Integer [100, 500] 100

Crossover rate Continuous [0.1, 1] 1

Mutation rate Continuous [0.1, 1] 1/D

Table 2. The considered configurations of MOPSO for a D-dimensional problem

Name Type Range Default values [20]

Population size Integer [100, 500] 100

Inertia weight Continuous [0.1, 1] 0.9

C1 Continuous [0.1, 2] 1.8

C2 Continuous [0.1, 2] 1.8

V Continuous [0.1, 1] 0.6

Mutation rate Continuous [0.1, 1] 1/D

It is curious that the authors choose NSGA-II as one of the algorithms, since it
is typically thought not to perform well on problems with more than 4 objectives
- at least when given its default parameterisation from the literature. Indeed,
the main goal is to show how manual parameter configuration of many-objective
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methods may lead to inferior results. We will show that a well-tuned NSGA-
II can perform better than a standard NSGA-III many-objective optimization
method. Meanwhile, hyperparameter optimization results of the NSGA-III and
RVEA [5] as two many-objective methods will be made available at https://
github.com/ML-MHs/MAC.

MAC is implemented in Python and Maltab and can be easily installed.
Although it supports to directly configure the algorithms in PlatEMO [23], Platy-
pus and PyGMO packages, but like the SMAC and F-RACE it can be linked
with other frameworks such as jMetal by means of a Wrapper function. MAC
supports automatic generation of LaTeX tables, applying statistical pairwise
comparison, and graphical visualization. The MAC can be executed in parallel
on multiple cores. The MAC will be made available on request to the academic
community.

We considered CEC’2018 benchmark suite to compare the competitive con-
figuration algorithms. It should be mentioned that the number of objectives is set
to M = 5. Our experimental procedure follows two steps, namely training and
test. In the training step, each evaluation involves running the NSGA-II/MOPSO
on the training problem instances MaF1, MaF2, MaF5 and MaF6-10 (the size of
training and test instances is small due to small number of CEC’2018 benchmark
problems.) for 10 runs. After finishing the automatic configuration step, the con-
figurations obtained from the training step are applied to rest of the problems in
order to validate the performance of the optimized configurations on the unseen
test instances. In the case of NSGA-II and MOPSO, number of fitness evalua-
tions is set to be max(1e5,D × 1e4), where D is the default dimensionality of
the problem.

Experiments are conducted based on random search, SMAC and F-RACE
methods. Empirical evidence reveals that random search can outperform Grid
search within a small fraction of the computation time. Furthermore, SMAC
and F-RACE are two state-of-the-art automatic configuration frameworks and
to our best knowledge this is the first study which reports their performance
for many-objective problems. For each algorithm, stopping criteria is when algo-
rithm exceeds 5×200 evaluations, or when computational time reaches to 5×24 h.
We used Hyper Volume (HV) in order to compare the proximity and diversity
of the obtained results. The HV indicator should be maximized during the con-
figuration process.

The obtained results of 5 independent runs are summarized in Tables 3 and
4. In these tables, NSGA-II, NSGA-III [8] and MOPSO denotes the obtained
results by using the default configurations. The best results are indicated in
boldface.

Arguably, NSGA-II is one of the well-known methods which mimics the same
developmental process in the standard GA: Selection, reproduction and evalua-
tion. It is worth tuning the population size, mutation and crossover probabilities
of the NSGA-II to find reasonable settings for the problem at hand. A small pop-
ulation size will lead to the early convergence problem, while using a large pop-
ulation increases the computational cost. The configurations tuning of NSGA-II

https://github.com/ML-MHs/MAC
https://github.com/ML-MHs/MAC
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Table 3. Average Hypervolume values for final test fronts of NSGA-II algorithm and
NSGA-III

Problem Random search SMAC F-RACE NSGA-II MAC NSGA-III

MaF1 0.0132 0.0141 0.0109 0.0072 0.0135 0.00320

MaF2 0.0440 0.0448 0.0407 0.0342 0.0449 0.03990

MaF5 32400.0000 32759.7820 29971.3091 20900.0000 27200.0 37963.0

MaF6 0.0093 0.0093 0.0093 0.0092 0.0093 0.008

MaF7 1.8471 1.8914 1.7851 1.7035 1.9127 1.835

MaF8 4.7763 4.7708 1.5404 3.9464 4.7749 2.6919

MaF9 7.5106 7.9908 7.4298 3.7968 8.0242 5.5338

MaF10 2500.0000 2810.4974 2470.0709 2464.2300 2470.0 6029.70

MaF11 6080.0000 6102.3614 6070.2643 5970.0000 6100.0 6129.60

MaF12 3710.0000 3869.2988 3657.2979 2825.0000 3880.0 4557.0

MaF13 0.4376 0.4446 0.4470 0.2080 0.4547 0.26600

MaF14 0.1464 0.1464 0.0732 0.1464 0.1513 0.09770

Table 4. Average Hypervolume values for final test fronts of MOPSO algorithm

Problem Random search SMAC F-RACE MOPSO MAC

MaF1 0.0106 0.0116 0.0154 0.0030 0.0107

MaF2 0.0417 0.0396 0.0389 0.0315 0.0407

MaF5 29100.0000 33163.6115 32753.9500 16600.0000 32900.0000

MaF6 0.0093 0.0093 0.0093 0.0089 0.0093

MaF7 1.5039 1.7304 0.6107 1.0984 1.6691

MaF8 4.3301 4.5889 4.6987 4.3521 4.7207

MaF9 7.9267 8.7605 8.7001 2.5895 9.1728

MaF10 1440.0000 1513.8214 1485.7750 1465.0000 1570.0000

MaF11 5540.0000 5471.3664 5570.2050 4915.0000 5600.0000

MaF12 3190.0000 3143.7161 3181.9100 1440.0000 3450.0000

MaF13 0.0475 0.3558 0.3705 0.0219 0.3710

MaF14 0.1464 0.1464 0.1464 0.1369 0.1464

becomes even more challenging due to the fact that there is a correlation between
its control parameters. For example, mutation is more effective on smaller pop-
ulation sizes while crossover is likely to benefit from large populations. All the
mentioned reasons make the NSGA-II a challenging algorithm for benchmarking
the performance of the MAC. However, Table 3 shows the automatic algorithm
configuration methods enhanced the performance of the NSGA-II over the prob-
lems. Meanwhile, it is worth mentioning that MAC exhibits more promising
performance other competitive methods. It is quite interesting to note that how
the tuned NSGA-II algorithm by MAC can outperform the NSGA-III on this
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Fig. 1. HV values v.s. number of function evaluations (FEs) of different methods for
optimizing 6 configurations of MOPSO (first row) and 3 configurations of NSGA-
II (second row). One dot represents HV value of an algorithm at the corresponding
evaluation number

set of benchmarks (the configurations of NSGA-III are taken from [23]). The
same situation could happen for the considered MOPSO algorithm. As can also
be seen from Table 4, MAC finds considerably better configurations in terms
of HV indicator. Figure 1 provides additional details by showing the behavior
of the considered methods over 4 different problems. This figure shows how the
introduced methods adopt their tuning behavior for NSGA-II and MOPSO algo-
rithms. Altogether, with respect to the performed experiments, we can say that
MAC and other frameworks has achieved promising results. From the illustrated
correlation matrix (results are recorded by MAC) in Fig. 2, it can also be con-
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Fig. 2. The obtained correlations between the configurations of different problems for
the NSGA-II (left) and MOPSO (right) algorithms

cluded that well-tuning the algorithms even with very small training instances
can enhance the search performance of the many-objective approaches.

6 Conclusion

In this study, we present a framework for automatic algorithm configuration of
many-objective optimization methods. The introduced MAC incorporated the
idea of feature selection into the stochastic RBF method using an undirected
graph. The MAC is proposed in the interest of integrating the optimization
methods and machine learning techniques. The application of MAC to very
recent CEC 2018 benchmarks against 3 state-of-the-art competitors, at most
contributes to top performances. The results show how manual parameter con-
figuration of NSGA-III many-objective algorithms can decrease its performance.
Interestingly, the tuned NSGA-II algorithm by MAC, outperforms the state-of-
the-art NSGA-III method. We believe that MAC could be very useful in real-
world applications due to the fact that there is no tedious way to tune the
parameter of many-objective algorithms by considering multiple performance
criteria. As the future work, we are intended in using many-objective versions
of model-based algorithms for parameter tuning tasks. It would be interesting
to investigate how many-objective methods can cover a range of trade-offs in
comparison with single-objective ones.
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Abstract. Recent Multi-objective Optimization (MO) algorithms such
as MOEA/D or NSGA-III make use of an uniformly scattered set of refer-
ence points indicating search directions in the objective space in order to
achieve diversity. Apart from the mixture-design based techniques such
as the simplex lattice, the mixture-design based techniques, there exists
the Uniform Design (DU) approach, which is based on based on the
minimization of a discrepancy metric, which measures how well equidis-
tributed the points are in a sample space. In this work, this minimization
problem is tackled through the L2 discrepancy function and solved with
a parallel heuristic based on several Tabu Searches, distributed over mul-
tiple processors. The computational burden does not allow us to perform
many executions but the solution technique is able to produce nearly Uni-
form Designs. These point sets were used to solve some classical MO test
problems with two different algorithms, MOEA/D and NSGA-III. The
computational experiments proves that, when the dimension increases,
the algorithms working with a set generated by Uniform Design signifi-
cantly outperform their counterpart working with other state-of-the-art
strategies, such as the simplex lattice or two layer designs.

Keywords: NSGA-III · MOEA/D · Uniform design · Weight vector ·
Multi-objective evolutionary algorithm (MOEA)

1 Introduction

The solution of Multi-objective Optimization Problems (MOPs) has generated
a great interest and many classes of strategies have been developed to solve it.
First, dominance-based algorithms, such as NSGA-III [3], use Pareto ranking
mechanisms to compute the fitness of a solution. In turn, other techniques eval-
uate the current approximation of the real front through indicators and try to
c© Springer Nature Switzerland AG 2019
K. Deb et al. (Eds.): EMO 2019, LNCS 11411, pp. 254–265, 2019.
https://doi.org/10.1007/978-3-030-12598-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12598-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-12598-1_21


A Parallel Tabu Search Heuristic 255

maximize their quality [17]. A third class is constituted by decomposition-based
techniques, which perform a number of single-objective searches along different
search directions evenly distributed over the objective space [19].

The use of a set of search directions, or weight vectors, or reference set,
attracted much attention after the publication of MOEA/D [18], and this
methodology was integrated within other algorithms, for instance NSGA-III [3],
which is still based on dominance but employs a set of reference vectors to achieve
diversity during the search process.

However, as some studies have shown, the distribution of the solutions highly
depends on several factors such as: the scalarization function, the geometry of
the Pareto front, and, particularly, on the generation of the reference points. This
latter might be the most important factor that determines the distribution of
the solutions found. Das and Dennis [2] proposed the simplex lattice technique,
which was used in many of the first decomposition MOEAs proposed.

One method that has shown promising results is the uniform design (UD).
Therefore, in this paper we present an algorithm to generate reference points
for this technique. In order to generate the points, the algorithm includes, as an
embedded mechanism, the good lattice point technique (GLP), that provides a
good distribution, although showing a high computing time and memory com-
plexity. For solving this problem in reasonable CPU time, a parallel tabu search
(TS) heuristic was adopted. To validate the performance of our proposal, the
results are compared with those obtained by the simplex lattice design and two
layer design. The results show that, independently of the MOEA employed, UD
provides a better distribution, specially when the number of objectives is high.

The rest of the paper is structured as follows. Section 2 presents a short
overview regarding weight vector construction for MOEAs and the statement
of the corresponding optimization problem is introduced in Sect. 3. The solution
technique, a parallel algorithm based on Tabu Search, is described in Sect. 4 while
Sect. 5 discusses the computational results obtained. Finally, some conclusions
are drawn in Sect. 6.

2 Weight Vector Designs for Reference-Based MOEAs

The interest on sets of uniformly distributed reference points within MOEAs is
quite recent. Nonetheless, this topic has been previously studied in the framework
of mixture designs, for which a set of m ingredients should be combined to meet
specific criteria and, therefore, the sum of their respective composition must
equal 1. Among the many generation techiques proposed, two classes emerge, first
those methods based on geometric concepts and, on the other hand, techniques
based on the minimization of discrepancy functions.

2.1 Mixture Design

Experiments with mixtures are experiments in which the variables are the ingre-
dient proportions in a mixture. An example is an experiment for determining
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the proportion of ingredients in a polymer mixture that will produce plastics
products with the highest tensile strength. Similar experiments are commonly
encountered in the industry. The problem of deciding how to mix ingredients to
optimize some criterion is called experimental design with mixtures. A design of
n runs for mixtures of m ingredients is a set of n points in the domain:

Tm = {(λ1, . . . , λm) : ∀j ∈ {1, . . . , m}, λj ≥ 0, λ1 + · · · + λm = 1}. (1)

A great variety of works from the statistics literature have proposed many kinds
of designs. Scheffé introduced simplex lattice designs and the corresponding poly-
nomial models [11]. Subsequently, he developed an alternative design to the gen-
eral simplex lattice, the simplex centroid design. Later, Cornell [1] suggested the
axial design and proposed a comprehensive review of nearly all the statistics
works dealing with experimental designs with mixtures and data analysis. The
two following strategies are of particular relevance for this work.

Simplex Lattice Design. The simplex lattice design is a space filling design
that creates a triangular grid of runs, which does not necessarily include the
centroid. Let the mixture involve m components, H be a positive integer and
furtherly suppose that each component can take (H+1) equally spaced positions
between 0 to 1 (included). Then:

∀i ∈ {1, . . . , m}, λi ∈ {0,
1
H

,
2
H

, . . . ,
H − 1

H
, 1}. (2)

This design can be efficiently computed using Das and Dennis systematic app-
roach [2], and it is widely used within a majority of MOEAs based on reference
points.

Two Layer Simplex Lattice Design. A recognized drawback of the simplex
lattice design is that it generates many points on the boundary of the simplex,
when the number of points H or the number of dimensions m increases. To avoid
this problem, Deb et al. proposed in [3] the union of two simplex lattices: the
first one maintains the original shape and size of the classical simplex lattice
(external layer) while the other is scaled according to a factor f ∈ [0, 1], in order
to further cover the central region of the simplex. This new design was originally
introduced within the NSGA-III framework to generate the reference points used
to deal with many-objective problems.

2.2 Weight Vector Designs Based on Discrepancy Functions

The discrepancy theory (also called theory of distribution irregularities) is a
branch of mathematics addressing the problem of distributing points uniformly
over some geometric object and evaluating the inevitably arising errors. This
theory was ignited by theoretical contributions such as Weyl’s equidistribution
theorem and Roth’s theorem [10]. The discrepancy of a point set measures the
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non-uniformity of such points placed (without loss of generality) in a unit cube
[0, 1]m, where m > 0 denotes the dimension of the unit cube.

The low-discrepancy sequences are also called quasi-random or sub-random
sequences, due to their common use as a replacement of uniformly distributed
random numbers. In [15], the use of low-discrepancy sequences as weight vectors
is introduced in the MOEA/D framework.

From this point of view, other generation techniques such as Good Lattice
Point and Uniform Design are able to produce sets with generally low discrep-
ancies. This is demonstrated in [8], particularly in the case of the Good Lattice
Point method. Although both are space filling methods, the uniform design can
be formulated as an optimization problem. Tan et al. [12] introduce the use
of uniform design as weight vectors in MOEA/D with promising results, but
restricting the number of objectives to 2 ≤ m ≤ 4, mostly due to the complexity
associated with the computation of uniform designs for higher numbers of points
and dimensions.

3 Uniform Design: Problem Statement

Fang et al. [4] proposed the Uniform Design (UD) as a kind of statistical exper-
imental design. UD builds the experimental points in such a way that they are
uniformly scattered over an experimental domain in the sense of low discrep-
ancy [4]. UD does not generate points in the border of the simplex. In [14] it was
demonstrated that UD is robust to changes in the model.

Let be m the number of factors (or objectives in the context of MOP) over the
standard domain Tm. The aim is to choose a set of n points Pn = {λ1, . . . ,λn} ⊂
Tm such that those points are uniformly scattered on Tm. Let D(Pn) be a mea-
sure of the non-uniformity (discrepancy) of Pn. The objective is to determine
a set P ∗

n minimizing D or, equivalently, maximizing the uniformity of n points
over Tm. The associated optimization problem can be described as follows:

min D(Pn) (3)
s.t. Pn ∈ Tm

The base element of UD is the U-type design. A U-type design U is a n×m matrix
U = (uij) in which each column has q entries 1, . . . , q appearing equally often.
The induced matrix of U , denoted by X = (xij), is defined by xij = (uij −0.5)/q.
A U-type design U becomes a UD when its induced matrix X has the smallest
discrepancy in the set of all the possible induced matrices in domain Tm.

It was demonstrated that the problem of finding a uniform design under a
given discrepancy metric D is NP − hard [5] when the number of runs n → ∞
and the number of factors m > 1. Many construction methods for uniform
designs or nearly uniform designs, such as the Good Lattice Point (GLP) method,
optimization methods have been proposed. The GLP approach is adopted in this
paper.
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3.1 Good Lattice Point

The Good Lattice Point (GLP) is a method to generate a set of uniformly dis-
tributed reference points. It was proposed by Korobov for the numerical evalu-
ation of multivariate integrals [13]. The point sets generated using this method
are widely used in quasi-Monte Carlo methods, uniform designs and computer
experiments. To generate a U-type matrix using GLP, the first step consists in
computing a set Hn ⊂ N such that:

Hn = {h : h < n|gcd(h, n) = 1}. (4)

The greatest common divisor (gcd) equals to one ensures that coprime condition.
If k = |Hn|, for any m distinct elements of Hn = {h1, h2, . . . , hk}, an n×m matrix
U = (uij) is generated where uij = i · ((hj mod n) + 1). Finally, the last row of
the GLP generated matrix should be deleted to obtain the U-type matrix.

3.2 CD2 Discrepancy Function and Optimization Problem for UD

Several discrepancy measures, which determine the non-uniformity of a point
set, are proposed in the specialized literature. There is more than one definition
of discrepancy for D to measure the non-uniformity of Pn, for instance: the star
discrepancy, the L2-discrepancy (CD, the most commonly used) or the wrap
around L2-discrepancy (WD). The centered L2-discrepancy, denoted by CD2,
is used in the implementation presented here, because its computing process
is not complex and because this technique is invariant under relabeling of the
coordinate axes [6].

As a consequence of the above explanations, the problem of determining
uniform designs can be defined using the induced matrix X of U as follows:

argmin CD2(X)=
(

13
12

)m

−
(

2
n

) n∑
k=1

m∏
i=1

(
1 +

1
2
|Xki − 1

2
| − 1

2
|Xki − 1

2
|2

)
(5)

+
(

1
n2
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| − 1

2
|Xki − Xji|

)

The U-type design U∗ whose induced matrix X∗ has a minimum discrepancy
under measure CD2 is called a uniform design. Also, a U-type design with a low
discrepancy measure can be denoted as a nearly uniform design [9].

4 Parallel Tabu Search Based Heuristic for UD
Generation

Since solution evaluation in the optimization problem described above is time-
consuming, a trajectory-based method was selected to solve the problem and to
provide nearly Uniform Designs. However, the exploration of a solution space
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whose size dramatically increases with both the number of dimensions and gen-
erated points (number of m-combinations of set Hn) is an issue. As a simple solu-
tion, a parallel implementation allowed to distribute several search processes over
different processors, in order to enhance exploration with reasonable CPU time.
Another populational methods like GA requires more computing time becoming
non-viable for our purposes.

Tabu Search is a metaheuristic technique introduced in the 1980s by Fred
Glover [7]. It is an extension of a simple hill-climber, with additional features to
avoid getting trapped in local optima:

– An exhaustive evaluation of the neighborhood of the current solution is car-
ried out in order to identify the best neighbor, which is always accepted as
the new solution.

– Since the above mentioned operating mode can lead to cycles in the search
path, a tabu list registers either the last solutions visited or the last moves
performed. Hence, the next candidate is chosen among those neighbors of
the current solution that are not tabu. When the tabu list reports forbidden
moves, an aspiration criterion is generally included to break the tabu status
of certain moves that could lead to unvisited solutions.

4.1 Specific Features

The implementation developed in this work includes the Good Lattice Point as
an embedded mechanism for generating the U-type design with a specified input.
As mentioned in Sect. 3.1, this input is a set of m elements selected from Hn

(see Eq. 4), which is subsequently used to compute a U-type matrix, its induced
matrix X and the corresponding discrepancy function CD2(X) (see Eq. 5). It is
worth mentioning that this process is expensive because of its quadratic growth
in terms of the number of points generated (800 for 8 dimensions).

Thus, the solution encoding is simply the input of the GLP technique, i.e.
a set of m indexes indicating which elements of Hn are selected to compute
the U-type design. A solution S can be formulated as S = {s1, . . . , sm} with
∀i, j ∈ {1, . . . , m} , si ∈ Hn and si 	= sj . For initialization, solutions are randomly
generated. When a move is to be performed, a random index j ∈ {1, . . . , m} is
chosen and sj is replaced by an element randomly drawn from Hn, different from
all the elements si in the current solution.

First, in order to promote the exploration of the search space, the process is
distributed over W workers, or agents. All the agents work independently from
each other and are assigned to their own processor to perform asynchronous
parallel searches. The only information they share is through the tabu list, which
is common for all of them in order to avoid multiple evaluations of the same
solution. Therefore, some procedures, such as the production of new solutions
(which makes use of the tabu list) or the tabu list truncation, cannot be carried
out simultaneously for several agents (these processes are identified with the
comment “Critical section” in the following pseudocode).
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Besides, the reason for sharing the tabu list among all the agents is that
each item reports the complete solution S = {s1, . . . , sm}, instead of recording
those elements involved in a move as commonly done in many TS implementa-
tions.This is possible because of the reasonable memory use to store this vector
(m equals at most 8 in this study). Thus, agents share the same tabu list in order
to prevent evaluating again a solution already visited by another agent. Finally,
no aspiration criterion is needed since the information contained in the tabu list
(solutions instead of moves) does not prevent considering unvisited solutions.

The last specific feature of the present implementation is that, due to the
above-mentioned size of the search space, the thousands of neighbors of a solu-
tion cannot be generated since their evaluation would involve an unreasonable
computational time. In order to reduce as much as possible this computational
burden, only two neighbors are generated (and the best one replaces the current
solution, even though this deteriorates the objective function).

Algorithm 4.1. Parallel Tabu Search
Data: IterMax: Stop Condition, W : workers, Tmax: Tabu List size, n:

Number of points wanted, dim: number of dimensions
Result: NUD:Nearly Uniform Design

1 Hn ← SearchCoprime(N);
2 Solutions ← RandomDisjoint(Hn,dim,W );
3 bestdis ← ∞, bestsol ← ∅, TabuList ← ∅ ;
4 while ¬Stopping(IterMax) do

/* Parallel For */
5 for i := 1 to W do
6 Ui ← GLP(Solutionsi) ;
7 Xi ← InducedMatrix(Ui) ;
8 discrepancyi ← CD2(Xi) ;
9 if discrepancyi < bestdisi and Solutionsi 	∈ TabuList then

10 bestsoli ← Solutionsi;
11 bestdisi ← discrepancyi;

12 TabuList ← TabuList ∪ Solutionsi;
/* Critical section */

13 Solutionsi ← UpdateSol(Solutionsi,Hn);
14 if |TabuList| > Tmax then
15 TabuList ← MaintainTabuList(TabuList) ;

16 NUD ← min(Solutions, bestdis) ;

17 return (NUD)

4.2 General Algorithm

The global process is described in Algorithm 4.1. First, set Hn is generated only
once, at the beginning of the procedure (line 1). Then, the solution of each agent
is built selecting m different elements from Hn, either randomly at the beginning
of the search (line 2: W different solutions are produced) or when a neighbor
of the current solution is produced (line 13). Subsequently, for each agent, the
resulting U-type design is generated with the GLP strategy using as an input
the m elements selected from Hn (line 6). The corresponding induced matrix Xi

and the CD2(Xi) value are computed in lines 7–8 to evaluate the discrepancy
of the generated design. The best solution found by each worker and the tabu
list are updated in lines 9–12.

Then, within the “critical section”, the following operations cannot be per-
formed simultaneously since they involve access to the shared tabu list. Each
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worker produces two new candidates in the neighorhood of its current solution
(line 13) and moves towards the best one (in terms of CD2). This might cause
a deterioration of the current objective function. Finally, the tabu list can be
truncated to respect the allowed size, removing the oldest element.

5 Computational Experiments and Results

This Sections presents two sets of computational experiments. The first one
describes the nearly Uniform Designs obtained when solving the optimiza-
tion problem with the parallel TS based algorithm. Then, two state-of-the-art
MOEAs, MOEA/D [18] (based on decomposition) and NSGA-III [3] (based on
dominance), are applied to some classical MOPs, in order to evaluate their effi-
cacy using UDs as a reference sets. For both experiments, the results obtained
with Uniform Design are compared with those of two designs commonly used
within MOEAs: simplex lattice (SLD) and two layer simplex lattice (2LD)
designs.

5.1 Uniform Designs with the Tabu Search Based Heuristic

The Tabu Search based algorithm was executed for 3, 5 and 8 dimensions (objec-
tives), generating respectively 300, 500 and 792 points. This number of points is
the same as that used for the SLD and 2LD configurations (tuning the H factor
in Eq. 2).

First, 10 executions were carried out for the 3-objective case, using W = 4
workers, IterMax = 5, 000 iterations (implying 40,000 function evaluations)
and the tabu list size is set to 1,000 solutions. Note that the minimum discrep-
ancy can be known through an exhaustive evaluation of the search space of this
small case: CD∗

2 = 2.835514900301206e−05. Within 10 executions, the parallel
heuristic identifies 6 times the optimal solution, the mean value of CD2 equals
2.8355149004366532e−05 and the standard deviation is 6.53−16, which proves
that the proposed algorithm can robustly find nearly UDs. The mean time is
20 min, when performed on HP ProLiant BL465c G7 with 24 AMD Opteron(tm)
6174 Processors and 128 GB in RAM.

For 5 and 8 dimensions, the parameters are: W = 25, IterMax = 50, 000
(meaning 2.5 × 106 function evaluations) and a tabu list size equal to 10,000.
This involves very long runs: approximately 7 h and 6 days for 5 and 8 objectives,
respectively. Thus, it was only possible, due to time limitations, to perform one
run and no statistical results are presented here. However, the final designs
obtained can be compared with those computed by SLD and 2LD. Figure 1
shows the distribution of the resulting point sets in parallel-coordinate plots, as
well as the corresponding hypervolume HV (using 1.18m as a reference point).

The parallel-coordinate plots illustrate an expected trend: the SLD produces
many points in the simplex boundary. On the other hand, 2LD has also many
points on the simplex boundary (external layer), although the number of points
inside the simplex is higher than in the SLD case (due to the internal layer).
Finally, the UD misses some boundary points, but has a much more dense
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(a) SLD 3 dim.
HV=1.4539

(b) 2LD 3 dim.
HV=1.4525

(c) UD 3 dim.
HV=1.4431

(d) SLD 5 dim.
HV=2.26358

(e) 2LD 5 dim.
HV=2.2623

(f) UD 5 dim.
HV=2.1603

(g) SLD 8 dim.
HV=3.7791

(h) 2LD 8 dim.
HV=3.7775

(i) UD 8 dim.
HV=3.6829

Fig. 1. Parallel-coordinate plots and HV for different dimensions and design generation
techniques

distribution than the simplex lattice design. As a consequence, it might be
expected that the nearly uniform designs computed here with the parallel heuris-
tic should provide better estimations for many objectives. Note that the same
trend is captured by the HV indicator, which is always better for the SLD.

5.2 Experiments on Classical MOPs

In this second set of experiments, the nearly Uniform Designs obtained in the
previous step were used as reference sets within two state-of-the-art MOEAs,
namely MOEA/D and NSGA-III. The numerical results are compared with those
obtained with reference sets built with SLD and 2LD. The test functions used
present different Pareto front features: DTLZ2 has a concave front, DTLZ7 has
several disconnected components, while the DTLZ1−1 and Kite functions (more
recently proposed in [16]) are characterized by entire regions of the objective
space without Pareto solutions.

For both MOEAs, the population size and generation number are set to 300
and 500, 500 and 1,000, 792 and 1,500 for 3, 5 and 8 dimensions respectively.
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Table 1. Results with two MOEAs and SLD, 2LD and UD

MOEA/D (Tchebycheff) NSGA-III

Ind. Dim. SLD 2LD UD SLD 2LD UD

DTLZ2 HV 3 1
(0.00068)

0.9930
(0.00038)

0.9996
(0.00087)

1
(0.00045)

0.9979
(0.00033)

0.9876
(0.00132)

5 0.9104
(0.00013)

1
(0.00020)

0.8817
(0.00167)

0.8499
(0.1329)

1
(0.19154)

0.7098
(0.05080)

8 0.9658
(0.0786)

1
(0.0451)

0.6935
(0.2964)

0.9567
(0.0653)

1
(0.0619)

0.6943
(0.3445)

Δ 3 0.68341
(0.00412)

0.61814
(0.00757)

0.42857
(0.00324)

0.21691
(0.00257)

0.36447
(0.00455)

0.23627
(0.00856)

5 1.83576
(0.00242)

0.94103
(0.43419)

0.59685
(0.00261)

1.26537
(0.45764)

0.94103
(0.43419)

0.86577
(0.11821)

8 1.69124
(0.08990)

1.13190
(0.01297)

0.43609
(0.00232)

0.65595
(0.47230)

0.60710
(0.48134)

1.24396
(0.43613)

DTLZ7 HV 3 1
(0.0431)

0.9999
(0.0467)

0.9969
(0.0279)

0.9997
(0.0005)

1
(0.0005)

0.9955
(0.0022)

5 1
(0.0929)

0.9898
(0.0004)

0.9741
(0.0007)

1
(0.2511)

0.9812
(0.2939)

0.8944
(0.2680)

8 0.9648
(0.2206)

0.961
(0.1082)

1
(0.0454)

0.9974
(0.4161)

1
(0.1226)

0.9815
(0.0124)

Δ 3 1.30312
(0.00653)

1.31041
(0.01789)

1.16453
(0.01207)

1.67591
(0.24637)

1.34075
(0.24603)

1.64339
(0.23005)

5 1.52916
(0.01645)

1.54194
(0.13767)

1.00264
(0.00731)

1.57990
(0.15099)

1.54194
(0.13767)

1.43518
(0.14890)

8 1.50361
(0.04593)

1.13237
(0.08790)

0.92790
(0.00337)

1.12132
(0.02374)

1.078746
(0.02818)

1.07546
(0.02407)

Kite HV 3 1
(0.00002)

0.9899
(0.01447)

0.9968
(0.01302)

0.9990
(0.00561)

1
(0.00540)

0.9963
(0.00670)

5 0.9866
(0.00017)

1
(0.00001)

0.9484
(0.00002)

1
(0.00577)

0.9964
(0.00614)

0.9251
(0.03326)

8 0.9999
(0.0001)

1
(0.00011)

0.9997
(0.00026)

0.9998
(0.00013)

1
(0.00001)

0.9975
(0.11235)

Δ 3 0.95595
(0.00017)

0.45136
(0.02933)

0.45036
(0.01963)

1.42502
(0.19702)

1.39200
(0.18580)

1.39040
(0.20709)

5 1.51380
(0.11604)

1.52806
(0.13389)

1.25863
(0.07760)

1.98942
(0.04557)

2.00077
(0.06196)

1.92650
(0.19005)

8 1.16733
(0.00004)

0.77055
(0.00083)

1.07569
(0.24373)

1.07546
(0.02407)

1.07546
(0.02818)

1.0758
(0.02374)

DTLZ1−1 HV 3 1
(0.0075)

0.9905
(0.0069)

0.9801
(0.0089)

0.9883
(0.0195)

1
(0.0222)

0.9870
(0.0316)

5 0.8384
(0.0015)

1
(0.2099)

0.8831
(0.0267)

0.9912
(0.0109)

0.8347
(0.3843)

1
(0.4464)

8 1
(0.4502)

0.9852
(0.4366)

0.9999
(0.4493)

1
(0.3035)

0.9386
(0.3109)

0.9858
(0.4125)

Δ 3 1.05003
(0.00114)

0.99743
(0.00210)

0.42752
(0.02296)

1.42844
(0.18526)

1.09888
(0.19316)

1.30346
(0.22475)

5 1.98942
(0.04557)

2.00077
(0.06196)

1.92650
(0.19005)

1.51380
(0.11604)

1.52806
(0.13389)

1.25863
(0.07760)

8 0.44218
(0.00005)

0.49086
(0.00031)

0.37120
(0.00062)

1.99657
(0.04208)

1.99691
(0.06690)

1.98622
(0.05259)

Furthermore SBX and polynomial mutation (with ηc = ηm = 20) are employed,
with a mutation rate 1/NV ars. Finally, the number of neighbors for MOEA/D
is 20% of the population size. The obtained results are compared in terms of
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HV (with reference point 1.18m for functions DTLZ2 and Kite, 0m DTLZ1−1

and 9m for DTLZ7) and of the Δ-metric for diversity assessment of the final
population. Each configuration {algorithm–reference set} is executed 50 times
for each MOP.

The results are provided in Table 1. For each function and each algorithm,
the HV values are normalized with respect to the best HV found by a reference
set generation technique (i.e., the technique having the best HV obtains 1). On
the other hand, the number in parenthesis represent the variation coefficient
for HV (standard deviation divided by the corresponding mean value) and the
standard deviation for the Δ-diversity indicator. This table first highlights that
the SLD and, in a marginally, the 2LD, obtain the best HV results. Even for
the highest dimensions, UD is not able to provide such a good HV. However,
when considering the diversity indicator, it is clear that UD outperforms SLD
and 2LD in many cases. This observation is particularly true when the objective
number increases. Finally, it is worth mentioning that the above observations are
independent from the MOEA used: no matter the search strategy (dominance or
decomposition), the benefits of UD for diversity, particularly for high m values,
is demonstrated with this experimental study.

6 Conclusions

This work explores an alternative technique for generating a precalculated set of
reference-points used by many recent MOEAs to guide the search and promote
diversity within the approximated Pareto front. In particular, the generation of
Uniform Designs can be formulated as an optimization problem that minimizes
the corresponding point set discrepancy, measured through the classical CD2

function. Due to the size of the associated search space, a parallel heuristic
based on Tabu Search is developed in this framework in order to produce nearly
UDs.

The obtained uniform sets show a dense distribution of the vectors inside the
simplex, while somehow disregarding the points on the simplex boundary. This
feature allows to obtain a better diversity, when the UD is used within classical
MOEAs, than that obtained by the Simplex Lattice or Two Layer designs. This
observation is true for both dominance-based and decomposition-based MOEAs
and is strengthened when the dimension increases. As future work, the efficiency
of the TS based heuristic should be improved to tackle higher objective num-
bers. Besides, the benefits of UD as a reference set for solving MOPS should be
evaluated on more test functions, involving for example degenerated fronts.
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Abstract. Hypervolume-based algorithms are not widely used for solv-
ing many-objective optimization problems due to the bottleneck of
hypervolume computation. Approximation methods can alleviate the
problem and are discussed and tested in this work. Several MOEAs are
considered, but after pre-experimental tests, only two variants of SMS-
EMOA are considered further. These algorithms are compared to NSGA-
III, a reference-based algorithm. The results show that SMS-EMOA with
hypervolume approximation is viable for many-objective optimization
problems and is faster in convergence towards the Pareto-front.

Keywords: Hypervolume approximation · MOEA · Reference vector ·
Many-objective optimization

1 Introduction

Many-objective Optimization Problems (MaOPs) bring challenges to evolution-
ary algorithms. The first challenge is the loss of pressure to find the Pareto front.
With increasing dimensionality, non-dominatedness is easier to achieve, leading
to smaller selection pressure to converge to the Pareto front [16]. Another big
challenge in the field is how to handle the “curse of dimensionality”: as the
problem dimension increases, the computational effort required also increases.

Recent research in the field tried to reduce the computational cost by devel-
oping algorithms which reduce the effect of dimensionality. One such example is
the NSGA-III [7] algorithm which attempts to reduce the curse of dimensional-
ity effect by using reference points. NSGA-III is an improvement to a method
which is regularly used to solve multi-objective optimization problems (MOPs):
NSGA-II [8]. Compared to NSGA-II, the number of reference points and the
population size in NSGA-III have a relatively more significant influence on the
computation time rather than the dimensionality. The computational cost would
still grow as the dimension increases, but the growth will be slower.

Other research attempts to reduce computation time by using approxima-
tions. Algorithms relying on hypervolume (HV) computations have this bottle-
neck where it is expected that no algorithm can compute the HV in polynomial
c© Springer Nature Switzerland AG 2019
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time [5]. The HV approximation methods can decrease the computation time by
one or two orders of magnitudes [5,6].

This work is intended to compare the performance of the above two
approaches to handle the curse of dimensionality in terms of number of evalua-
tions required. This is important especially when expensive objective functions
are considered. Li, et al. has done similar work [20]. However, they focused on
the algorithms’ performance on a limited budget (100 000 evaluations) while here
the budget was not limited, instead, a performance-target is set. The algorithms
are tested on box-constrained test problems from the DTLZ [9] and the WFG
[12] test suites.

Hypervolume-Based Algorithms. The HV indicator is the most commonly used
performance indicator in multi-objective optimization. HV-based algorithms are
quite straightforward: to approach the real Pareto front, maximize the HV indi-
cator because it is Pareto compliant [2,24]. Several HV-based algorithms were
proposed in the past, such as SMS-EMOA [3,10], HypE [2], and MO-CMA-
ES [15].

HV-based algorithms, however, are not as widely used for many-objective
optimization problem because the computation cost grows exponentially with
dimension. It is expected that no algorithm can compute the HV in polynomial
time [5]. To circumvent the problem, approximation methods were proposed to
speed-up the computation. Algorithms already using approximations are HypE
and an SMS-EMOA implementation by Ishibuchi [17].

Approximation methods are usually limited to only approximate the least
contributor to the total HV, not the total HV itself. Examples of these methods
are the methods by Ishibuchi [17] and Bringmann-Friedrich [6]. However, there
are indeed some methods to approximate the total HV such as FPRAS [5] and
the method proposed by Tang, et al. [22].

Reference-Based Algorithms. Recent algorithms use reference or target vectors
to guide solutions to the Pareto front. Examples of algorithms using reference-
vectors are NSGA-III [7], MOEA/D [25], MSOPS [13], and MSOPS-II [14].
This approach is favored because it is inherently diversity-preserving. This app-
roach can even be done by decomposing the many-objective problem into single-
objective problems such as the one done in MOEA/D.

2 Pre-experimental Phase

Before the experiments were executed, the algorithms to be used are tested to
see whether to continue testing them is viable or not. For this pre-experimental
phase, the algorithms were tested on the DTLZ2 test problem because it can be
considered as the easiest among the test problems. From Table 1, it can be seen
that the DTLZ2 problem is unimodal which makes it easier than the multimodal
DTLZ1 and DTLZ3. It is very similar to DTLZ4 except that it is unbiased. It
also has the same magnitude in both objective and search space so scaling should
not be an issue for any algorithm.
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For the tests, reference lines are spread over the objective space following
Das and Dennis systematic distribution as explained in [7]. The intersections of
the lines with the Pareto front are used as reference points to create a target
HV. The termination criterion for the tests is to achieve 99.9% HV formed by
a reference point at (2,. . . ,2) and the intersection of the reference lines with the
Pareto front. The algorithms must achieve the target HV within 24 h.

The following algorithms were considered in the pre-experimental phase.

2.1 MOEA/D

MOEA/D is an algorithm designed to solve multi-objective optimization prob-
lems (MOPs). MOEA/D works by decomposing the MOP into several single
objective problems (SOPs) using scalarizing methods. Each SOP then has its
own search direction in objective space depending on its corresponding weight
vector. The Chebyshev decomposition were used and no external population is
maintained to make MOEA/D comparable to other algorithms used in the study.

To create variations, MOEA/D limits the interaction between individuals
by setting neighborhoods. A neighborhood is a set of subproblems with similar
weight vectors. Each individual has its own neighbors which are determined a
priori. In this work, the algorithm makes use of the SBX recombination operator
and polynomial mutation (see [1]).

The pre-experimental tests showed that the algorithm can easily achieve 95%
of the target HV in minutes. However, it fails to achieve the target HV before the
time limit. Further check reveals that the solutions are actually located near the
Pareto set, but in the objective space, their mapping were not well distributed
hence the HV is small. It is concluded that MOEA/D should not be used further
in the experiment because the behavior is expected to emerge in all experiments
as discussed in [21] and it will always struggle to achieve the target HV.

2.2 NSGA-III

NSGA-III has gained popularity in the recent period. NSGA-III uses non-domi-
nated sorting and reference lines as guidance. The reference lines are formed by
connecting the ideal point with some reference points defined by the user.

In this work, the original, standard algorithm is implemented. SBX recom-
bination operator and polynomial mutation are used to create offspring. The
pre-experimental test shows that a single optimization process can finish in less
than five minutes on our machine. We consider this very fast; therefore, the
algorithm will be tested further in the experiment.

2.3 SMS-EMOA and GSMS-EMOA

SMS-EMOA is one of the earliest methods employing HV as a selection criteria
instead of just a performance metric. The goal of the algorithm is to maximize
the HV value of the population. The procedure involved is non-dominated sorting
and eliminating individuals with the smallest HV contribution.
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Two implementations of SMS-EMOA are tested. The first variant is the basic
SMS-EMOA. The second variant is the “start-small grow-big” SMS-EMOA [11]
with an adaptive population size scheme which further will be addressed as
growing SMS-EMOA (GSMS-EMOA). For both implementations, the SBX and
polynomial mutation are used.

In adaptive GSMS-EMOA, the population will grow when the R-indicator is
below a threshold Rreset. This means that the population has not been able to
find better solutions for a while. The parameters involved in determining the R-
indicator is the initial value Rinit, the threshold Rreset in which the population
will grow and R will reset to its initial value, and the learning rate α. The values
used are shown in Table 2.

The pre-experimental tests concluded that both algorithms can finish within
approximately 5 h on our machine using exact HV computation. It is expected
to take considerably more time than NSGA-III due to HV computations.

2.4 MO-CMA-ES

The Covariance Matrix Adaptation Evolution Strategies (CMA-ES) is one of the
most successful evolutionary algorithms. In CMA-ES the offspring are sampled
from a multivariate normal distribution based on the parents and an adapting
covariance matrix. This procedure can be considered as a mutation operation.
The covariance matrix is updated in every generation based on an evolution path
which represents a sequence of selected mutations.

Multi-objective implementation of CMA-ES is known as MO-CMA-ES, using
several (1+λ)-CMA-ES to create a set of solutions [15]. The solutions are then
ranked using multi-objective optimization performance metrics (such as HV,
IGD, crowding distance, etc.) and the best ones are kept. In the pre-experimental
phase, MO-CMA-ES variant introduced in [23] is used. This variant allows us to
use approximation of the least HV contributor and reference-line based selection
enabling the comparison of both approaches.

MO-CMA-ES parents have more information to convey: not only the solu-
tion/design point, but also the covariance matrix, step size, average success
rate, and evolution path. For recombination, the SBX is used with all objects
(aside from the design point) taken as the element-wise average from the two
parents. This ensures all objects remain valid (e.g. the covariance matrices are
non-negative definite, step sizes are above their minimum).

One last important aspect to consider in using MO-CMA-ES is the constraint
handling. Unlike the constrained polynomial mutation operator, offspring from
CMA mutation may be infeasible. The death-penalty method is used. In death-
penalty method, non-feasible solutions are not evaluated and count as failing
offspring, reducing the step size and a feasible solution is more likely to emerge
at the next generation. Kramer [19] mentioned death-penalty is inefficient, but
CMA-ES could cope quite well with it. Kramer noted that a minimum step-size
is required to prevent premature step-size reduction.

The pre-experimental tests show that using CMA, most suggested-solutions
are found infeasible thus the step sizes drop very quickly to the minimum value.
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Furthermore, if the step sizes are too low, then the mutations will be negligible,
undermining the main feature of MO-CMA-ES. If the step sizes are too large the
offspring success rates are small. Tuning of the step sizes is then required, includ-
ing tuning the initial values. It is concluded that more research on determining
the proper operators and their parameters are required and MO-CMA-ES would
not be used in the experiment.

3 Numerical Experiments

To compare the algorithms performances, the DTLZ [9] and WFG [12] test suites
are used. The characteristics of each test function used are shown in Table 1.
DTLZ and WFG are chosen because both are easily scalable. Both are also
popular test functions widely used in benchmarking many-objective optimization
algorithms. Additionally, the convex DTLZ2 is also used and abbreviated as the
cDTLZ2 test problem.

Table 1. Characteristics of the test functions [12].

Test problem Shape Separability Modality Contain bias

DTLZ1 Linear Separable Multimodal ×
DTLZ2 Concave Separable Unimodal ×
cDTLZ2 Convex Separable Unimodal ×
DTLZ3 Concave Separable Multimodal ×
DTLZ4 Concave Separable Unimodal

WFG4 Concave Separable Multimodal ×
WFG5 Concave Separable Deceptive ×
WFG6 Concave Non-separable Unimodal ×
WFG7 Concave Separable Unimodal

WFG8 Concave Non-separable Unimodal

WFG9 Concave Non-separable Multimodal, deceptive

The target HV for the tests are created in the same way as in Sect. 2. How-
ever, due to limited computing resources, the tests are also time limited. If an
experiment fails to achieve the target HV before a set time limit expires, no result
is recorded for the experiment and it is marked as “fail”. The time limit is 24 h
for 5-objective problems and 240 h for 8-objective problems. Other parameters
for the algorithms are shown in Table 2.

Usage of Approximation Methods

As mentioned in Sect. 1, there are two kinds of approximations that can be
conducted: approximation of the least HV-contributor and approximation of the
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Table 2. Values of parameters used, n is the number of objectives.

Parameter Value

Distribution Index, SBX ηc 30

Distribution Index, Poly-mutation ηm 20

Crossover Probability pc 1.0

Mutation Probability pm
1
n

GSMS-EMOA Initial adaptation factor Rinit 0.5

GSMS-EMOA adaptation factor threshold Rreset 0.2

GSMS-EMOA learning rate α 0.025

total HV. In this work, approximation of the least HV-contributor is used for
selection purpose and conducted using the method proposed by Bringmann and
Friedrich [6]. Approximation of the total HV is used for the stopping criterion
and conducted using the FPRAS method. The PyGMO package [4] contains
implementations of both methods and they are used in this work.

NSGA-III does not use HV for its selection; therefore, approximations are
used only for checking whether or not it has achieved the target HV. In SMS-
EMOA, the selection procedure removes the least HV-contributor from the pop-
ulation; therefore, SMS-EMOA uses both approximation methods.

By using HV approximation on SMS-EMOA, the algorithm became similar
to a steady-state implementation of SIBEA [26], albeit in this work different
approximation methods are used.

4 Results

4.1 Success Rate

5-Objective Problems. Some experiments indeed cannot achieve the target
HV before the time limit expires and hence no data is available. This is most
prominent for the DTLZ4, WFG5, WFG6 and WFG9 test functions. Table 3
lists the percentage of optimization runs that achieved the target HV within the
allocated time. Due to the poor performance of all algorithms in DTLZ4, WFG5,
WFG6, and WFG9, the 4 test functions are not considered for benchmarking.

The DTLZ4 problem is biased and a dense set of solution exist in one of the
hyperplane [9]. All algorithms experience difficulty to spread the solutions and
experience premature convergence.

The WFG5 and WFG9 test functions are deceptive problems [12] and all
methods seems to always fall to the deceptive front instead of the Pareto front.
Hence, all experiments never reached the target HV.

In the case of WFG6, its distinct difference with other problems is that it
is highly nonseparable and this feature causes the optimizers to struggle. The
same should happen on WFG8 as the bias should increase the difficulty, but the
opposite is observed.
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Table 3. Percentage of successful runs out of 25 samples in 5-objective problems. Cells
with ‘NT’ indicates it was not tested.

Test problem NSGA-III SMS-EMOA GSMS-EMOA

Exact HV
(I)

Approx HV
(II)

Exact HV
(III)

Approx HV
(IV)

Exact HV
(V)

Approx HV
(VI)

DTLZ1 100% 100% 100% 100% 100% 100%

DTLZ2 100% 100% 100% 100% 100% 100%

cDTLZ2 100% 100% 100% 100% 100% 100%

DTLZ3 100% 100% 100% 100% 100% 100%

DTLZ4 0% NT% 0% NT% 0% NT%

WFG4 0% 0% 100% 100% 12% 8%

WFG5 0% NT 0% NT 0% NT

WFG6 0% NT 0% NT 0% NT

WFG7 100% 100% 100% 100% 96% 96%

WFG8 100% 100% 100% 100% 100% 92%

WFG9 0% NT 0% NT 0% NT

8-Objective Problems. Table 4 shows the success rate on 8-objective prob-
lems. Again, it can be seen that not all optimization runs are able to achieve the
target HV within the allocated time.

In Table 4 NSGA-III is able to find the Pareto front of 8-objective WFG4
where it completely fails in the 5-objective WFG4. No further investigation was
conducted on why this occurs. SMS-EMOA is successful in all test problems.
GSMS-EMOA, on the other hand, performs poorly in 3 out of 7 test problems
indicating a problem in a growing scheme.

Table 4. Percentage of successful runs out of 25 samples in 8-objective problems. For
all algorithms, only the implementations with approximated HV are tested.

Test problem NSGA-III
(II)

SMS-EMOA
(IV)

GSMS-EMOA
(VI)

DTLZ1 100% 100% 100%

cDTLZ2 100% 100% 100%

DTLZ2 100% 100% 100%

DTLZ3 100% 100% 100%

WFG4 96% 100% 8%

WFG7 100% 100% 8%

WFG8 100% 100% 4%
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4.2 Evaluation to Convergence

Figures 1 and 2 show the boxplots of the number of evaluations required to
achieve the target HV for 5- and 8-objective problems respectively. Failed tests
are omitted, hence the boxplots are produced from different data sizes. Some
boxes are missing because data are not available or completely omitted. Figure 1
shows that using approximations to compute HV always yield faster convergence.
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Fig. 1. Boxplot of the evaluations required for each optimizers on different 5-objective
test problems (normalized). The methods are NSGA-III exact and with approxima-
tion, SMS-EMOA exact and with approximation, and GSMS-EMOA exact and with
approximation respectively from I to VI.

5 Analysis

5.1 Success Rate

We start by looking at the success rates in 5-objective problems in Table 3.
Overall, all algorithms have similar success rate. The only noteworthy perfor-
mance is SMS-EMOA being able to solve WFG4 while the other two cannot.
GSMS-EMOA started with smaller population, it is lacking diversity and is eas-
ily trapped in local optima.

Table 4 provides the result for 8-objective problems. First it can be seen that
HV-based algorithms can solve the test problems within the allocated time so
they are quite viable for solving many-objective problems. However, it can be
seen that GSMS-EMOA fails in WFG4, WFG7, and WFG8 while SMS-EMOA
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Fig. 2. Boxplot of the function evaluations required for each optimizers on different
8-objective test problems (normalized). The data of GSMS-EMOA on WFG test prob-
lems are omitted.

succeeds. As the main difference between the two algorithms is the population
size, it can be inferred that the smaller diversity of GSMS-EMOA takes its toll on
higher dimensions. GSMS-EMOA has smaller initial population which leads to
less information obtained from the search space. This, in turn, limits the search
in further generations. A larger mutation rate and/or smaller distribution index
should be used for growing population-size schemes to strengthen exploration.

5.2 Convergence Speed

The first interesting result from Fig. 1 is in comparing NSGA-III (I & II) and
SMS-EMOA (III & IV). In all tests, SMS-EMOA is able to achieve similar or
better performance constantly. To check whether the performance difference is
significant, one-tailed pairwise-Wilcoxon tests are performed. The results are
first grouped into 3 categories: 5-objective problems solved with exact method, 5-
objective problems solved with approximations, and 8-objective problems solved
with approximations.

Table 5 summarize the statistical tests results. The first column in each cat-
egory (Ref < HV) indicate whether NSGA-III is outperformed by the other two
algorithms (checkmark) or only by SMS-EMOA (‘1’) in statistically significant
way. The second column indicates whether SMS-EMOA is outperformed by
GSMS-EMOA in statistically significant way.

SMS-EMOA is rarely outperformed by GSMS-EMOA which agrees to the
results from [11] that using GSMS-EMOA algorithm has little effect on the num-
ber of function evaluations. The benefit of using GSMS-EMOA is due to fewer
points being considered in the early phase, reducing the total time consumed.
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Table 5. One-tailed pairwise-Wilcoxon test results.

Test Problem 5-obj. exact 5-obj. appr. 8-obj. appr.

Ref<HV SMS<GSMS Ref<HV SMS<GSMS Ref<HV SMS<GSMS

DTLZ1 × × ×
DTLZ2 ×
cDTLZ2

DTLZ3 × × ×
WFG4 1 × × 1 ×
WFG7 × × 1 ×
WFG8 × × 1 ×

SMS-EMOA always outperform NSGA-III in all problems. GSMS-EMOA
performs poorly in WFG4, WFG7 and WFG8, but in other test problems it also
outperforms NSGA-III. The results imply that in terms of number of evalua-
tions to achieve large HV, HV-based algorithms can outperform reference-based
algorithms. One could argue that NSGA-III is not designed to optimize the HV
measure, but we try to analize what deters NSGA-III from achieving large HV.
This could be attributed to the reference point distribution.

Das and Dennis’s systematic method may have created sub-optimally dis-
tributed reference points such that it is easy to achieve higher HV by using dif-
ferent point-distribution. While NSGA-III and reference-based algorithms will
always follow their references, HV-algorithms are free to distribute their solu-
tions mapping in the objective space. Looking back to the pre-experimental
test, MOEA/D also struggles in terms of distribution and the proposed remedy
in [21] is by adjusting the reference distribution. These findings signify that while
reference-based algorithms can utilize specific preference information easily, they
are also restricted by these preferences, limiting their search power.

Although HV-based algorithms are still having the bottleneck on HV compu-
tations, the advances in HV approximation methods are making the algorithms
viable for many-objective optimization. They are faster in converging and dis-
tributing the solutions thus if the costs for evaluating the objectives are very
high compared to HV approximations, the algorithms will gain the upper hand.

6 Conclusion and Future Works

From the pre-experimental tests, two main results are found. First, MOEA/D
cannot be expected to achieve high HV-value. Second, extending MO-CMA-ES
to solve many-objective problems is non-trivial. MO-CMA-ES requires careful
selection of operators and their parameters.

We also found that using an growing population size has a disadvantage in
problems with higher dimensions. The scheme performs not as good as expected
due to lack of diversity in early population. We suggest that growing schemes
should be given stronger exploration power from the genetic operators.

We have also shown that HV-based algorithms are viable options to solve
MaOPs with the aid of approximation methods. The current state of the work



276 D. Irawan and B. Naujoks

only compare NSGA-III with SMS-EMOA as representatives of reference-based
algorithms and HV-based algorithms respectively, but in this paper, we have
shown that HV-based algorithms can solve MaOPs in mere hours. Normally it
would take hours for a single HV computation, but here, we were able to perform
thousands of HV computations. HV-based algorithms have the advantage of
requiring fewer function evaluations to achieve large HV.

As a future work, it would be interesting to see how adaptive-NSGA-III [18]
scheme would behave if a target HV is set as in this experiment. The scheme
will adaptively relocate reference points and enables NSGA-III to explore areas
not covered by initial references. It is interesting to also see the effect of these
adaptively changing reference points on convergence speed. It is worth to test
the algorithms’ performances if lower target HV are subscribed which will give
insight on the strength of each algorithms and possibilities for hybrid methods.
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Abstract. Evolutionary multi-objective optimization (EMO) algo-
rithms are designed to achieve a balance between convergence and diver-
sity. However, these algorithms confront major challenges when all of
their individuals become non-dominated while solving many-objective
optimization problems. Although the appreciable efforts have been made
by using the reference-points-based framework coupled with the Pareto-
dominance ranking in the literature, selection of a diverse set of individ-
uals, sometimes preferring isolated and dominated individuals over non-
dominated individuals, needs to be addressed. In this paper, we propose
the diversity over dominance (DoD) approach in which the diversity is
preserved first by making clusters of individuals that are made by asso-
ciating individuals to their nearest line using the reference-points-based
framework. The Pareto-dominance ranking is then used to rank the indi-
viduals separately for each cluster. The environmental selection is then
developed that selects individuals from each cluster. The DoD approach
is tested on DTLZ and WFG problem instances and the results demon-
strate its competitive performance over the existing EMO algorithms.

Keywords: Diversity · Dominance · Many objective optimization ·
Evolutionary algorithm · Evolutionary multiobjective optimization

1 Introduction

Many real-world problems often have multiple objectives that are conflicting in
nature such as in crashworthiness of vehicle [11], bulldozer blade-design [1] to
name a few. For such problems, a set of solutions is optimal, which are referred
as Pareto-optimal (PO) solutions. Evolutionary multi-objective optimization
(EMO) algorithms are the ideal choice for solving these problems because a
set of PO solutions can be generated in one run.

From last few years, EMO algorithms for solving many-objective optimization
problems (generally more than three-objective problems) are getting attention
worldwide. The most successful ones like NSGA-III [3], θ−DEA [15], MOEA/DD
[10] to name a few, are developed using the reference-points-based framework in
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which the convergence is achieved by performing the Pareto-dominance ranking
and the diversity is preserved by selecting individuals based on the reference
points generated on a unit hyperplane [2]. Since for many-objective optimiza-
tion problems, almost all individuals of a population become non-dominated,
the Pareto-dominance ranking fails to provide enough selection pressure for con-
vergence [12]. At this stage, the environmental selection based on the reference-
points framework plays a major role in selecting individuals. Therefore, NSGA-
III introduced the niching procedure for selecting individuals representing the
lines that are drawn using the reference points. To give preference to isolated
individuals, MOEA/DD [10] introduced a uniform paradigm of dominance and
decomposition approaches in which only one offspring individual at a time gets
a chance for its survival. On the similar line, SPEA/R [8] proposed a composite
fitness function so that individuals from each subregion (defined using the refer-
ence points) can be selected. In [7], an external archive was maintained for those
individuals which may get eliminated using NSGA-III’s environmental selection.
An individual with minimum distance between the ideal point and the line drawn
from the reference point was selected to update the archive. In all these studies,
the environmental selection gave first emphasis on dominance-based selection
followed by diversity for each subregion constructed from the directions through
the reference points and the origin.

On the contrary to the above EMO algorithms, Jiang and Yang [9] sug-
gested performing diversity-first sorting approach. The environmental selection
for diversity was performed first and then Pareto-ranking was used to select
individuals. The diversity-first sorting based evolutionary algorithm (DBEA)
outperformed NSGA-III on many-objective optimization instances of WFG [6]
problems. On the similar line, θ−DEA [15] performs θ−dominance sorting on
the clusters of individuals which are made using the reference-points framework
for diversity. θ−DEA showed better results than NSGA-III over DTLZ [4] and
WFG problem instances. Motivated by these approaches, we propose a domi-
nance over decomposition approach, refer as DoD, in which individuals in a pop-
ulation are first clustered based on the directions from the reference points and
the origin. Thereafter, the non-dominated sorting is performed to each clustered
independently. The main contribution of DoD approach is the environmental
selection that selects a diverse set of individuals by preferring isolated individ-
uals from each cluster and sometimes selecting dominated individuals over the
crowded non-dominated individuals. In the remaining paper, the challenges with
dominance-based EMO algorithms are discussed in Sect. 2. The DoD approach is
described followed by its implementation in Sect. 3. The results are discussed and
compared with the existing EMO algorithms in Sect. 4. The paper is concluded
in Sect. 5 with the future work.

2 Challenges with Dominance-Based Environmental
Selection

The challenges with the environmental selection of dominance-based EMO algo-
rithms are shown using three cases in Fig. 1. In all cases, the objective space
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Fig. 1. Case-1: when the number of non-dominated individuals is less than N . Case-2:
when the number of non-dominated individuals is equal to N . Case-3: when the number
of non-dominated individuals is more than N .

has N = 7 reference lines (L1, . . . , L7), which are drawn using the structured
reference points [2]. Among 2N individuals, N individuals need to be selected.
In Case-1, the number of non-dominated individuals (currently five) is less than
N . The dominance-based approach, which prefers dominance followed by diver-
sity, selects all non-dominated individuals from the front-1 and the rest of two
individuals will be selected from the front-2. In this case, no individual repre-
senting lines L3 and L4 is selected. In case-2, the number of non-dominated
individuals is equal to N . The dominance-based approach selects all individuals
from the front-1. Again, there is no individual representing lines L3 and L4.
In Case-3, the number of non-dominated individuals are more than N . In this
case, the dominance-based approach will select individuals based on the diversity
preserving mechanism since the ranking through non-dominated sorting cannot
differentiate individuals. For example, the dominance approach can select indi-
viduals nearest to their respective lines. For example, individuals marked as 1, 4,
6, 9, and 11 are selected. The remaining two individuals are selected only from
the front-1. In this case also, there is no individual representing lines L3 and L4.

The challenges described above leads to the motivation of the present work in
which the DoD approach is proposed to select a diverse set of individuals, espe-
cially when a large number of individuals is non-dominated. Moreover, an addi-
tional emphasis is given to select isolated and sometimes dominated individuals
over crowded non-dominated individuals for better convergence and diversity.

3 DoD Approach and Its Implementation

The DoD approach is described using Fig. 2 in which the DoD approach selects
diverse individuals for the same three cases as presented in Fig. 1. For Case-
1, the clusters are made for every line as shown in Fig. 2. Then, the Pareto-
dominance ranking is applied to rank the individuals for every cluster separately.
The non-dominated individual within each cluster is then chosen. For example,
all non-dominated individuals from the front-1 are selected along with individ-
uals (isolated, and dominated as per the dominance-based approach) marked



Diversity over Dominance Approach for EMO 281

Front 1

1

14

L1

L2

L3

L4

L5

L6L7

Front 3

2

3

4

5

Front 2

6

7

8

9

10
11

12

13

2 Case − 1
f

f1

Front 1

Front 2

1

2

3

4

5

6
7

8

9
10

11

12

13

14

L1

L2

L3

L4

L5

L6L7

Front 3

2 Case − 2
f

f1

Front 1

1

L1

L2

L3

L4

L5

L6L7

2

3

4
5

6
7

8

9
10

11

12

13

14

Front 2

2 Case − 3
f

f1

Fig. 2. DoD approach for selecting individuals for three cases presented in Fig. 1.

as 13 and 14 in the figure. For Case-2, the DoD approach selects individuals
marked as 1, 3, 4, 6, 7 from the front-1. It is noted that individual marked as 1
is preferred over 2 in the same cluster. Basically, when a cluster has more than
one non-dominated individual, the individual nearest to the line gets selected.
The other individuals marked as 10 and 11 are selected from different clusters.
For Case-3, the DoD approach selects individuals marked as 1, 4, 6, 9 and 11
from the front-1 and 13 from the front-2 from their respective clusters. In this
case, there is no associated individual with line L3. The DoD approach first
associates the nearest individual to line L3, that is, individual marked as 14 and
then selects the same individual. From the above discussion, it can be observed
that the DoD approach can select a diverse set of individuals representing every
line. This environmental selection can keep enough selection pressure for better
convergence and diversity of EMO algorithms. The major limitation of this app-
roach is preferring dominated individuals over non-dominated individuals, which
may cause convergence issue.

The DoD approach is implemented using the reference-points-based frame-
work, which is shown in Algorithm 11. At any generation t, the individuals are
randomly selected from the parent population (Pt) on which simulated binary
crossover and polynomial mutation operators are applied to create a new popu-
lation, which is referred as offspring population (Qt). Both Pt and Qt are merged
into Rt. The next generation parent population (Pt+1) is then chosen using the
DoD environmental selection. Algorithm 2 shows steps of the DoD environmen-
tal selection in which Rt is normalized and then the individuals are associated
with the reference lines. In this paper, an external vector e is maintained for
storing the extreme objective function values for normalizing the population. As
it can be seen in step 2 of Algorithm 1 that e is initialized by maximum objective
function values. In normalization, e is updated or kept same based on the inter-
cept and extreme points found. Algorithm 3 shows steps required for normalizing
Rt, which include computing ideal point, extreme points and intercepts on each
objective axis. Since some degenerate cases like unavailability of distinct extreme
points from Rt or negative intercept can occur, the Nadir point is found from

1 Source code at http://www.iitg.ac.in/dsharma/pub.html.

http://www.iitg.ac.in/dsharma/pub.html
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Algorithm 1. Framework for DoD approach
Input: Parameters, t = 1, T : Number of generations, M : Number of objectives,

N : population size, H : Number of reference points
Output: Pt+1

1: Initialize random population (Pt)
2: Compute external vector: e = (e1, e2, . . . , eM )T such that ej = max

x∈Pt

fj(x)

3: while t ≤ T do
4: P

′
t = Random selection (Pt)

5: Qt = Recombination + Mutation (P
′
t )

6: Rt = Pt ∪ Qt

7: Pt+1 = DoD Environmental selection (Rt)
8: t = t + 1
9: end while

Rt. The external vector e is updated when any component of the Nadir point is
better than the corresponding component of e as shown in step 8 of Algorithm 3.
Otherwise, the external vector e is updated completely by the intercepts found
in step 11. Finally, each objective of all individuals of Rt is normalized using e
at step 13.

Once Rt is normalized, the individuals are then associated with their nearest
reference lines. The association procedure is shown in Algorithm 4 for which the
normalized R̄t and H are required. The structured reference points are created
on a unit hyperplane using Das and Dennis approach [2]. These reference points
are then used to compute reference lines (step 2) which pass from the origin
and the reference point. These reference lines are stored in Zr for associating
individuals of Rt in the normalized objective space. As can be seen from step
4, a set Cj ∈ C is initialized empty, which will store the individuals associated
with a reference line j. Also, the niche count ρj for all reference lines is set zero
that signifies a number of individuals associated with a reference line j. Inside
the loop at step 5, each individual r is associated with its nearest reference line
(π(r)) based in its distance as shown in step 9. Thereafter, an individual r is
stored in the cluster of π(r) reference line. Also, the niche count of reference line
π(r) is incremented by one.

After normalization and association, the non-dominated sorting is performed
for the individuals stored in a cluster Cj for a reference line j, which has at least
one associated individual (refer step 3 of Algorithm2). If a number of non-
dominated individuals in Cj is more than one, then an individual x is selected,
which is nearest to a reference line j. Otherwise, the only non-dominated individ-
ual is selected. The selected individual is then copied to Pt+1 and it is removed
from Rt. These steps are followed for all the lines, which has a niche count ρj > 0.

In addition to the above steps, if any reference line has no individual associ-
ated (meaning ρj = 0 and Cj = φ, refer step 12 of Algorithm 2), the individual
x nearest to a reference line j is chosen from the remaining individuals of Rt.
This individual x is then stored in Cj and the niche count is increased by one.
The same individual x is then copied to Pt+1 and it is removed from Rt. These
steps are then followed for those reference lines which have their ρj ’s zero.
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Algorithm 2. DoD Environmental Selection (Rt)
Input: Rt, H, e
Output: Pt+1

1: R̄t := Normalize (Rt, e)
2: (C, ρ, Zr) := Associate (R̄t, H) %C = {C1, . . . , CH}, ρ = (ρ1, . . . , ρH)T , Zr : set of

reference lines.

3: for each j ∈ Zr and ρj > 0 do
4: Non-dominated sorting of individuals ∈ Cj

5: if Number of the best ranked individuals > 1 then

6: Select the individual x ∈ Cj which is nearest to the reference line j
7: else
8: Select the best ranked individual x ∈ Cj

9: end if
10: Include Pt+1 = Pt+1 ∪ x and update Rt = Rt \ x

11: end for
12: for each j ∈ Zr and ρj == 0 do

13: Associate the closest individual x from the remaining Rt to the reference line j and
update Ij = Ij ∪ x, and ρj = 1

14: Include Pt+1 = Pt+1 ∪ x and update Rt = Rt \ x

15: end for
16: while |Pt+1| < N do
17: Select a random reference line j ∈ Zr : ρj > 1
18: Select the best individual x associated to the reference line j such that x /∈ Pt+1

19: Include Pt+1 = Pt+1 ∪ x and update Rt = Rt \ x
20: end while

Algorithm 3. Normalize (Rt)
Input: Rt, e
Output: R̄t : Normalized population

1: Determine ideal point, zI = (zI
1 , zI

2 , . . . , zI
M )T such that zI

j = min
r∈Rt

fj(r)

2: Translate objectives, f
′
(r) = (f

′
1(r), f

′
2(r), . . . , f

′
M (r))T such that f

′
j (r) = fj(r) −

zI
j , ∀r ∈ Rt

3: Compute extreme solutions, Z = (ze1, ze2, . . . , zeM) such that ze
j = f

′
(r), r :

min
r∈Rt

(
M

max
i=1

f
′
i (r)/wi

)

4: Compute intercept aj for j = 1, . . . , M .
5: if Degenerate case or negative intercept found then
6: Compute Nadir point, zN = (zN

1 , zN
2 , . . . , zN

M )T such that zN
j = max

r∈R∗
t

fj(r) and

R∗
t ∈ Rt is the set of the non-dominated individuals.

7: if zN
j < ej , where j ∈ {i, . . . , M} then

8: ej = zN
j

9: end if
10: else
11: Update ej = aj , ∀j ∈ {i, . . . , M}
12: end if
13: Normalize objective f̄j(r) = f

′
j (r)/ej , ∀r ∈ Rt, ∀j ∈ {i, . . . , M} and return R̄t
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Algorithm 4. Associate (Rt) with the reference lines
Input: R̄t, H
Output: C, ρ, Zr

1: for all r ∈ H do
2: Compute reference line w and Zr = Zr ∪ w
3: end for
4: Initialize Cj = ∅ ∀j ∈ H and ρ = (0, 0, . . . , 0)T

5: for all r ∈ Rt do
6: for all w ∈ Zr do
7: Compute dist(r,w) = ||(r − wT rw/||w||2)||
8: end for
9: π(r) = w : argmin dist(r,w)

10: d(r) = dist(r, π(r))
11: Cπ(r) = Cπ(r) ∪ r
12: ρπ(r) = ρπ(r) + 1
13: end for

Since the structure reference points are generated for reference lines, some-
times H (number of reference points) is less than N (population size). In this
scenario, a few of individuals are selected from those lines which has ρj > 1.
It is because the best individual from each cluster is already selected earlier,
which cannot be copied again to Pt+1. Satisfying the conditions given in step
17 of Algorithm 2, a random reference line j is chosen and then select the best
individual x associated to the reference line j such that x /∈ Pt+1. The selected
individual is then copied to Pt+1 and it is removed from Rt. The loop at step 16
of Algorithm 2 is active till |Pt+1| become N .

It can be observed that the condition at step 3 of Algorithm2 is imposed
to select the nearest non-dominated individual from each cluster of all refer-
ence lines. It means that the diversity driven by the reference-points approach
is maintained. Since every reference line is important for maintaining diversity
among the individuals of a given population, the condition at step 12 of Algo-
rithm2 is imposed to select individuals for empty reference lines, which can be
isolated and sometimes, dominated individual.

The computational complexity of the DoD approach remains same as NSGA-
III that is max(O(N2 logM−2 N), O(N2M)) when almost all individuals are asso-
ciated with a single line. First association requires O(N2M) operations and then,
the non-dominated sorting for this cluster requires O(N2 logM−2 N) operations.
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4 Results and Discussion

The proposed DoD approach is compared with the existing EMO algorithms,
such as NSGA-III [3] and MOEA/D [16] on DTLZ problems [4] with M ∈
{3, 5, 8, 10, 15} objective test instances and WFG problems [6] with M ∈
{3, 5, 8, 10} objective instances. For DTLZ problems, the number of decision
variables is given as n = M + k − 1, where k = 5 for DTLZ1, and k = 10 for
DTLZ2-4 problems. For WFG6-7 problems, the number of decision variables is
set to n = k + l in which the position-related variable is k = 2 × (M − 1), and
the distance-related variable is l = 20. The inverse generalized distance (IGD)
indicator [16] and hypervolume (HV) indicator [13] are used for the performance
evaluation of EMO algorithms. All EMO algorithms are run for 20 times with
different initial population. Moreover, a difference for statistical significance is
tested using the Wilcoxon signed-rank test [14] at 5% significance level for the
assessment of obtained results from competing EMO algorithms.

Table 1 presents the population sizes, divisions and a number of reference
points for EMO algorithms. For more than 5-objective instances, the two-layered
reference points are generated similar to [3]. The table also summarizes termi-
nation conditions for all problems, which is kept similar to [3].

Table 1. Input parameters for EMO algorithms.

Population Termination

M Divisions H N DTLZ1 DTLZ2 DTLZ3 DTLZ4 WFG6-7

3 12 91 92 400 250 1000 600 1000

5 6 210 210 600 350 1000 1000 1250

8 (3, 2) 156 156 750 500 1000 1250 1500

10 (3, 2) 275 276 1000 750 1500 2000 2000

15 (2, 1) 135 136 1500 1000 2000 3000 3000

Table 2 presents the IGD values obtained from three EMO algorithms. A
smaller IGD value refers better performance. It can be seen that the DOD
approach is superior to both EMO algorithms in DTLZ2, DTLZ4, and WFG7
instances. For DTLZ3, the DoD approach is found to be better in lower objective
instances. NSGA-III is better than both EMO algorithms in WFG6 instances.
Table 3 presents HV values in which it can be seen that the DoD approach is
better than both EMO algorithms in almost all instances of DTLZ and WFG
problems. Since HV values are close to one, the DoD approach showed its efficacy
in selecting a diverse set of solutions.
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Table 2. Best, median and worst IGD values obtained by DoD approach and other
algorithms on DTLZ and WFG instances with different number of objectives. Best
performances are highlighted in bold face with gray background. NSGA-III results are
obtained from [3], and MOEA/D results are obtained using [5].

M NSGA-III MOEA/D DoD

D
T
L
Z
1

3
4.880E-04 2.607E-02 3.333E-04
1.308E-03 4.713E-02+ 1.106E-03

3.954E-01 5.770E-03

5
1.582E-02 5.567E-04
3.071E-02+ 1.354E-03
6.377E-02 1.167E-02

8
1.798E-02 2.176E-03

3.979E-03 2.721E-02+ 3.546E-03
8.721E-03 5.509E-02 9.393E-03

10
2.215E-03 2.168E-02 2.219E-03
3.462E-03 3.007E-02+ 3.034E-03
6.869E-03 4.202E-02 6.482E-03

15
2.649E-03 4.782E-02 3.740E-03
5.063E-03 5.338E-02− 2.778E-01
1.123E-02 6.177E-02 3.878E-01

D
T
L
Z
2

3
1.262E-03 1.056E-02 1.162E-03
1.357E-03 1.469E-02+ 1.509E-03
2.114E-03 2.243E-02 5.328E-03

5
4.254E-03 1.321E-02 3.797E-03

4.982E-03 1.675E-02+ 4.630E-03
5.862E-03 2.295E-02 5.562E-03

8
1.371E-02 3.001E-02 1.141E-02

1.571E-02 3.453E-02+ 1.410E-02
1.811E-02 4.046E-02 1.848E-02

10
1.350E-02 2.509E-02 1.116E-02

1.528E-02 3.974E-02+ 1.265E-02
1.697E-02 4.348E-02 1.532E-02

15
1.360E-02 2.248E-02 1.063E-02

1.726E-02 6.526E-02+ 1.304E-02
2.114E-02 1.917E-01 1.686E-02

M NSGA-III MOEA/D DoD

D
T
L
Z
3

3
9.751E-04 2.491E-02 6.966E-04
4.007E-03 4.477E-01 + 2.144E-03
6.665E-03 1.691E+01 5.898E-03

5
3.086E-03 2.311E-02 1.698E-03

5.960E-03 2.303E-01 + 5.181E-03
1.196E-02 4.304E-01 7.762E-02

8
1.244E-02 7.445E-02 1.828E-02
2.375E-02 6.251E-01 + 3.478E-02
9.649E-02 1.151E+00 2.033E+00

10
8.849E-03 4.514E-02 9.529E-03
1.188E-02 2.744E-01 + 1.579E-02
2.083E-02 1.161E+00 2.598E-02

15
1.401E-02 1.864E-01 1.004E-02
2.145E-02 1.281E+00+ 1.672E-02
4.195E-02 1.300E+00 6.676E-01

D
T
L
Z
4

3
2.915E-04 7.446E-03 3.535E-04
5.970E-04 5.307E-01 + 4.469E-04
4.286E-01 9.503E-01 6.577E-04

5
9.849E-04 1.475E-02 3.741E-04

1.255E-03 3.095E-02 + 4.632E-04
1.721E-03 6.050E-01 5.623E-04

8
5.079E-03 3.161E-02 3.123E-03

7.054E-03 2.936E-01 + 3.546E-03
6.051E-01 6.410E-01 4.695E-03

10
5.694E-03 4.741E-02 3.448E-03

6.337E-03 1.856E-01 + 4.252E-03
1.076E-01 3.959E-01 5.031E-03

15
7.110E-03 5.447E-02 5.404E-03

3.431E-01 2.656E-01 + 7.290E-03
1.073E+00 6.714E-01 9.265E-03

M NSGA-III MOEA/D DoD

W
F
G
6

3
4.828E-03 7.550E-02 1.962E-02
1.224E-02 8.163E-02 2.847E-02
5.486E-02 1.242E-01 3.633E-02

5
5.065E-03 3.159E-01 2.604E-02
1.965E-02 4.418E-01 3.381E-02
4.475E-02 5.407E-01 4.237E-02

8
1.009E-02 9.031E-01 3.465E-02
2.922E-02 9.362E-01 4.114E-02
7.098E-02 9.716E-01 5.024E-02

10
1.060E-02 9.487E-01 2.781E-02
2.491E-02 1.008E+00 3.562E-02
6.129E-02 1.031E+00 4.480E-02

15
1.368E-02 1.120E+00 2.486E-02
2.877E-02 1.240E+00 3.522E-02
6.970E-02 1.250E+00 2.028E-01

M NSGA-III MOEA/D DoD

W
F
G
7

3
2.789E-03 9.344E-02 2.309E-03
3.692E-03 1.049E-01 2.891E-03
4.787E-03 1.182E-01 3.696E-03

5
8.249E-03 3.613E-01 6.549E-03
9.111E-03 3.950E-01 8.103E-03
1.050E-02 4.315E-01 2.224E-02

8
2.452E-02 8.977E-01 1.665E-02
2.911E-02 9.303E-01 2.089E-02
6.198E-02 9.595E-01 2.399E-02

10
3.228E-02 9.368E-01 2.091E-02
4.292E-02 9.533E-01 2.309E-02
9.071E-02 1.006E+00 2.533E-02

15
3.457E-02 1.212E+00 8.945E-02
5.450E-02 1.216E+00 5.559E-01
8.826E-02 1.222E+00 6.990E-01

+,− and = indicate that DoD approach performs significantly better, significantly bad, and
equivalent to the corresponding EMO algorithm.

4.880E-03
5.116E-04

9.799E-04
1.979E-03
2.044E-03
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Table 3. Best, median and worst HV values obtained by DoD approach and other
algorithms on DTLZ and WFG instances with different number of objectives. Best
performances are highlighted in bold face with gray background. NSGA-III results are
obtained from [10], and MOEA/D results are obtained using [5].

.
M NSGA-III MOEA/D DoD

D
T
L
Z
1

3
9.73519E-01 9.66870E-01 9.73627E-01
9.73217E-01 9.57697E-01= 9.73509E-01
9.71931E-01 6.14190E-01 9.73198E-01

5
9.98971E-01 9.98629E-01 9.98981E-01
9.98963E-01 9.98330E-01= 9.98971E-01
9.98673E-01 9.97441E-01 9.98942E-01

8
9.99975E-01 9.99645E-01 9.99974E-01
9.93549E-01 9.99370E-01= 9.99970E-01
9.66432E-01 9.98375E-01 9.99962E-01

10
9.99991E-01 9.99934E-01 9.99998E-01
9.99985E-01 9.99875E-01= 9.99997E-01
9.99969E-01 9.99672E-01 9.99994E-01

D
T
L
Z
2

3
9.26626E-01 9.25292E-01 9.26666E-01
9.26536E-01 9.24412E-01= 9.26632E-01
9.26395E-01 9.22765E-01 9.26497E-01

5
9.90459E-01 9.90426E-01 9.90493E-01
9.90400E-01 9.90271E-01= 9.90460E-01
9.90328E-01 9.90013E-01 9.90431E-01

8
9.99320E-01 9.99323E-01 9.99335E-01
9.78936E-01 9.99315E-01= 9.99327E-01
9.19680E-01 9.99298E-01 9.99319E-01

10
9.99918E-01 9.99919E-01 9.99919E-01
9.99916E-01 9.99876E-01= 9.99918E-01
9.99915E-01 9.99868E-01 9.99916E-01

M NSGA-III MOEA/D DoD

D
T
L
Z
3

3
9.26480E-01 3.41019E-03 9.26669E-01
9.25805E-01 6.94952E-03= 9.26328E-01
9.24234E-01 1.89791E-01 9.25428E-01

5
9.90453E-01 9.90009E-01 9.90565E-01
9.90344E-01 9.76349E-01= 9.90446E-01
9.89510E-01 9.43850E-01 9.90256E-01

8
9.99300E-01 9.99122E-01 9.99308E-01
9.24059E-01 7.76470E-01= 9.99253E-01
9.04182E-01 5.03871E-01 6.43785E-02

10
9.99921E-01 9.99865E-01 9.99920E-01
9.99918E-01 9.99144E-01= 9.99916E-01
9.99910E-01 5.10243E-01 9.99908E-01

D
T
L
Z
4

3
9.26659E-01 9.26587E-01 9.26774E-01
9.26705E-01 8.00983E-01= 9.26728E-01
7.99572E-01 5.00000E-01 9.26716E-01

5
9.91102E-01 9.90611E-01 9.90586E-01
9.90413E-01 9.90564E-01= 9.90575E-01
9.90156E-01 9.12068E-01 9.90570E-01

8
9.99363E-01 9.99383E-01 9.99364E-01
9.99361E-01 9.99131E-01= 9.99364E-01
9.94784E-01 9.86416E-01 9.99363E-01

10
9.99915E-01 9.99926E-01 9.99924E-01
9.99910E-01 9.99917E-01= 9.99923E-01
9.99827E-01 9.99430E-01 9.99923E-01

M MOEA/D DoD

W
F
G
6

3
8.90380E-01 9.11580E-01
8.83410E-01= 9.04850E-01
8.10510E-01 8.98480E-01

5
9.13140E-01 9.68380E-01
8.16580E-01= 9.61910E-01
7.14410E-01 9.54090E-01

8
7.08280E-01 9.72600E-01
6.55160E-01= 9.63970E-01
6.08160E-01 9.52200E-01

10
7.69000E-01 9.75300E-01
6.71860E-01= 9.66450E-01
6.18670E-01 9.58170E-01

M MOEA/D DoD

W
F
G
7

3
9.08050E-01 9.25330E-01
8.96660E-01= 9.24910E-01
8.67760E-01 9.24030E-01

5
9.33350E-01 9.87230E-01
9.03530E-01= 9.86740E-01
8.60340E-01 9.85380E-01

8
7.38580E-01 9.95360E-01
6.73050E-01= 9.93610E-01
6.22420E-01 9.91490E-01

10
8.03100E-01 9.96890E-01
7.81430E-01= 9.96310E-01
6.85380E-01 9.95490E-01

+,− and = indicate that DoD approach performs significantly better, significantly bad, and
equivalent to the corresponding EMO algorithm.

The non-dominated solutions obtained corresponding to the median IGD
value run are shown in Fig. 3 for DTLZ problems. A well-distributed front can
be seen from the DoD approach, whereas MOEA/D is unable to generate similar
fonts for DTLZ1 and DTLZ4 problems. Figure 4 presents parallel coordinates
for 10-objective DTLZ problems. It can be seen that a well-distributed set of
solutions is generated by the DoD approach against MOEA/D.
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Fig. 3. Non-dominated solutions obtained using the DoD approach and MOEA/D for
DTLZ1 and DTLZ4 problems.
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Fig. 4. Parallel coordinates of non-dominated front obtained from the DoD approach
and MOEA/D for DTLZ1 and DTLZ4 problems.
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5 Conclusions

The purpose of DoD approach was to select a diverse set of individuals in
the environmental selection using the reference-points-based framework. Since
almost all individuals became non-dominated for many-objective optimization,
the DoD approach showed its superiority over the environmental selection of
NSGA-III by solving many test instances of DTLZ and WFG problems. The IGD
values obtained using the DoD approach were found to be better than NSGA-III
in many instances and better in all instances against MOEA/D. The HV values
indicated that the DoD approach served its purpose of selecting diverse indi-
viduals and showed its efficacy against NSGA-III and MOEA/D in almost all
test instances. In future, the DoD approach can be improved further to design
selection rules that can emphasis non-dominated individuals over dominated
individuals without losing its core idea.
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(eds.) PPSN 2016. LNCS, vol. 9921, pp. 984–993. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45823-6 92

https://doi.org/10.1080/17509653.2018.1500953
https://doi.org/10.1137/S1052623496307510
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1007/1-84628-137-7_6
http://www.sciencedirect.com/science/article/pii/S0965997811001219
http://www.sciencedirect.com/science/article/pii/S0965997811001219
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1109/TEVC.2005.861417
https://doi.org/10.1109/CEC.2016.7743895
https://doi.org/10.1109/CEC.2016.7743895
https://doi.org/10.1109/TEVC.2016.2592479
https://doi.org/10.1007/978-3-319-45823-6_92
https://doi.org/10.1007/978-3-319-45823-6_92


290 D. Sharma et al.

10. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimiza-
tion algorithm based on dominance and decomposition. IEEE Trans. Evol. Com-
put. 19(5), 694–716 (2015). https://doi.org/10.1109/TEVC.2014.2373386

11. Liao, X., Li, Q., Zhang, W., Yang, X.: Multiobjective optimization for crash safety
design of vehicle using stepwise regression model. Struct. Multi. Optim. 35(6),
261–569 (2008)

12. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many con-
flicting objectives. IEEE Tran. Evol. Comput. 11(6), 770–784 (2007). https://doi.
org/10.1109/TEVC.2007.910138

13. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes.
IEEE Trans. Evol. Comput. 16(1), 86–95 (2012). https://doi.org/10.1109/TEVC.
2010.2077298

14. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83
(1945)

15. Yuan, Y., Xu, H., Wang, B., Yao, X.: A new dominance relation-based evolutionary
algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(1), 16–
37 (2016). https://doi.org/10.1109/TEVC.2015.2420112

16. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007). https://doi.
org/10.1109/TEVC.2007.892759

https://doi.org/10.1109/TEVC.2014.2373386
https://doi.org/10.1109/TEVC.2007.910138
https://doi.org/10.1109/TEVC.2007.910138
https://doi.org/10.1109/TEVC.2010.2077298
https://doi.org/10.1109/TEVC.2010.2077298
https://doi.org/10.1109/TEVC.2015.2420112
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2007.892759


A Two-Stage Evolutionary Algorithm
for Many-Objective Optimization

Yi Wu1, Bin Li1(B), Sanchao Ding2, and Yinda Zhou1

1 School of Information Science and Technology,
University of Science and Technology of China, Hefei, Anhui, China
986879902@qq.com, binli@ustc.edu.cn, zhouyd@mail.ustc.edu.cn

2 School of Computer Science and Technology,
University of Science and Technology of China, Hefei, Anhui, China

dingsc@mail.ustc.edu.cn

Abstract. Many-objective optimization is of top challenge in multi-
objective optimization research community. Various many-objective opti-
mization problems exhibit difference characteristics and require the algo-
rithm to be effective and robust to deal with as many as possible of them.
In this paper, a two-stage evolutionary algorithm for many-objective
optimization is presented with the purpose to be effective and robust
to various problems. In the first stage of the algorithm, NSGA-III is
adopted to explore the shape of the Pareto Front, a variant of NSGA-
III is designed to select solutions for better diversity by maximizing the
angle to their own neighbor solution set. When the improvement of solu-
tions with good diversity slows down to a certain degree, the first stage is
terminated and the weight vectors are adapted for the use in the second
stage. In the second stage, MOEA/DD is adopted to converge solutions
to the Pareto Front. The proposed algorithm is tested on DTLZ test
suite and WFG test suite with up to 15 objectives, and compared with
two related state-of-art algorithms, NSGA-III and MOEA/DD. Exper-
iment results show that while NSGA-III and MOEA/DD work well on
different types of problems, the proposed algorithm has competitive or
better performance on all problems considered in this paper.

Keywords: Many-objective optimization · Two-stage algorithm ·
Convergence · Diversity · Weight vector adaptation

1 Introduction

In real applications, the optimization problems often have more than one objec-
tive. Multi-objective optimization problems (MOPs) can be formulated as

min F(x) = (f1(x), . . . , fm(x))
s.t. x ∈ Ω

(1)
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where Ω =
∏n

i=1 [ai, bi] ⊆ R
n is the decision (variable) space, x =

(x1, . . . , xn)T ∈ Ω is a candidate solution. F : Ω → R
m constitutes m con-

flicting objectives, and R
m denotes the objective space.

Over the last two decades, evolutionary algorithms (EAs) have shown excel-
lent performance on MOPs [8]. These traditional evolutionary multi-objective
algorithms (MOEAs), like NSGA-II [5] and MOEA/D [18], are effective and effi-
cient for solving MOPs with two or three objectives, while when the number
of objectives increases up to more than 5, their performance would deteriorate
dramatically. Many-objective optimization problems (MaOPs) have been one of
the popular topics in MOEAs research community in recent years. A variety of
approaches can be roughly divided into three categories [3].

The first category covers various convergence-driven approaches. With the
number of objectives increasing, most traditional MOEAs do not have enough
ability to distinguish solutions for convergence. Dominance relationship is mod-
ified to steer solutions toward the Pareto Front (PF), like ε-dominance [6]. In
GrEA [16], grid dominance is adopted to enhance the convergence while main-
taining diversity by three grid criteria. Some add other convergence criteria in
addition to the original Pareto dominance comparison. A knee point-driven evo-
lutionary algorithm (KnEA) [19] is proposed in which preference over knee points
can bring larger performance indicator value. A shift-based density estimation
strategy (SDE) [10] is proposed to put solutions with poor convergence into
crowded regions.

The second category covers various decomposition-based approaches. One
idea is to divide a MOP into a number of single-objective problems and solve
them in a collaborative manner. A number of collaboration strategies and
aggregate functions have been introduced. A scalarization approach named
angle-penalized distance is adopted to balance convergence and diversity in [3].
Another idea is to divide a MOP into a series of small-scale sub-MOPs. In
MOEA/D-M2M [12], a sub-MOP, defined by a weight vector, has its own solu-
tions. Some algorithms, such as NSGA-III [4], MOEA/DD [9] and RVEA [3], use
both dominance comparison and decomposition.

The third category covers performance indicator-based approaches by using
the value of the indicator to guide the search process. The S-metric selection-
based evolutionary multi-objective algorithm (SMS-EMOA) [2] and an algorithm
for fast hypervolume-based many-objective optimization (HypE) [1] are classic
in this category. These approaches can balance both convergence and diversity
for MaOPs since these indicators are originally designed to measure convergence
and diversity. However, when the number of objectives is large, the expensive
cost is unavoidable for calculating the value of the performance indicator.

There are still a few other categories of approaches showing competitive
performance. Some algorithms have been proposed for generating solutions
toward users’ preferred regions like [15]. An improved two-archive algorithm
(Two Arch2) [7] has been proposed to obtain good convergence, good diver-
sity and acceptable computational cost. Objective reduction in many-objective
optimization [17] is to avoid great difficulties [4] of MaOPs.
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Weight vectors are adopted in most algorithms for MaOPs. The uniform dis-
tribution of weight vectors does not guarantee that the final approximate PFs are
uniformly distributed. To obtain the solutions with uniform distribution, weight
vector adaptation strategies have been designed and adopted in algorithms, such
as RVEA [3] and MOEA/D-AM2M [11].

In this paper, a two-stage evolutionary algorithm for many-objective opti-
mization (TSMOEA) is proposed. In the first stage of TSMOEA, NSGA-III and
one of its variants are adopted to explore the shape of the PF. In the second
stage, MOEA/DD with adapted weight vectors is adopted to steer population
convergence to PF while maintaining diversity.

The rest of this paper is organized as follows. In Sect. 2, related works are
introduced. A two-stage evolutionary algorithm for many-objective optimization
is proposed in Sect. 3. Experimental results are presented in Sect. 4 to compare
the performance of the proposed algorithm with two related algorithms for solv-
ing different classes of MaOPs. The conclusion is given in Sect. 5.

2 Related Works

2.1 NSGA-III

In each generation of NSGA-III [4], N individuals are produced once then N
individuals are selected from the whole population. With the Pareto dominance
relationship as the first selection criteria, the non-dominated solutions are more
likely to be selected as the parents of the next generation. When the first criterion
fails to provide sufficient selection pressure, the diversity criterion as second
selection criteria is activated to distinguish solutions, which is called the Active
Diversity Promotion (ADP) phenomenon [13].

The approximate PF obtained by NSGA-III is well distributed since objec-
tive normalization can be carried out dynamically in each generation. However,
some experimental observations [13] have shown that the APD phenomenon can
maintain good diversity, but it may lead to poor convergence of the final solu-
tions.

2.2 MOEA/DD

In each generation of MOEA/DD [9], an offspring is produced and used to update
the population one by one, which is different from NSGA-III. Pareto dominance
relationship and penalty-based boundary intersection (PBI) approach are used
successively. To maintain diversity, the solution, associated with an isolated sub-
region, should be selected and kept even if it is in the last non-domination level.

The performance of MOEA/DD is excellent in terms of convergence and
diversity when all the weight vectors are evenly distributed in PF, instead of
the whole objective space. MOEA/DD is not suitable for solving degenerated,
scalable MaOPs with disconnected PFs, like WFG3, since some solutions, away
from the PF, are kept for diversity preservation, but they have no need.
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3 Proposed Algorithm: TSMOEA

Previous experimental investigations have shown that different approaches have
different search fortes, and none of them outperforms the others on all types of
problems. For an unknown problem, a MOEA should be effective and robust, and
the algorithm should be adaptable to keep efficiency at different stages. Based on
the merits and demerits of NSGA-III and MOEA/DD shown on various types of
problems, we can combine them into one framework to balance both convergence
and diversity. In this paper, The two-stage evolutionary algorithm for MaOPS
(TSMOEA) is presented following this idea.

In the first stage of TSMOEA, NSGA-III and one of its variants are adopted
to explore the shape of the PF. A variant of NSGA-III is presented to maximize
the angle between solutions during diversity promotion, which is good for weight
vector adaptation. At the end of the first stage, weight vector adaptation is
activated and weight vectors are updated for the second stage. In the second
stage, MOEA/DD is adopted to converge solutions to PF while maintaining
diversity. To obtain more accurate shape of PF, the first stage should be carried
out as many generations as possible. However, since the computational resources
are limited and the convergence must be considered, the condition to trigger the
second stage is of great importance.

Algorithm 1. The framework of TSMOEA
Input: the maximal number of generations Gen max; Gen = 1; a population size N

(Gen max × N = the maximal number of fitness evaluations); first stage = true;
the generation Gen J to trigger the judgement operation.

Output: Population P
1: [P,W,B] = Initiallization(N)//W: weight vector set, B: neighborhood index set
2: while Gen ≤ Gen max do
3: if first stage then
4: if Gen < Gen J then
5: Reproduction+Selection by NSGA-III
6: else
7: Reproduction+Selection by a variant of NSGA-III
8: first stage = Judgement(P) //if the judgement is activated
9: if !first stage then

10: [W,B]= Weight vector adaptation(W,P)
11: end if
12: end if
13: else
14: Reproduction+Selection by MOEA/DD
15: end if
16: Gen = Gen + 1
17: end while
18: return P
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3.1 Framework of Proposed Algorithm

The framework of TSMOEA is presented in Algorithm 1. In initialization, N
solutions are initialized at random and N weight vectors are generated based on
the two-layer weight vector generation method [9]. Two outstanding algorithms,
NSGA-III and MOEA/DD, are adopted to implement the search in the two
stages respectively. For better diversity, a variant of NSGA-III runs later in the
first stage. The judgement of whether to end the first stage is activated per
several generations when Gen > Gen J in the first stage. Once the condition
parameter first stage = false, weight vector adaptation is activated.

3.2 A Variant of NSGA-III

In the diversity promotion procedure of NSGA-III [4], the values of all objectives
are normalized to [0, 1] and solutions in last acceptable non-domination level (Fl)
are selected only by the niche count (ρ) of weight vectors. One weight vector with
minimum niche count is chosen at random, then one of solutions associated with
it is also chosen at random if niche count is non-zero. The selection operation may
cause poor diversity in a subregion in objective space if a few very close solutions,
associated with the same weight vector, are chosen when solving degenerated
MaOPs especially. The procedure of the variant of NSGA-III remains same as
the original NSGA-III, but the diversity promotion of Fl is different which is
detailed in Algorithm 2.

Algorithm 2. A Variant of Diversity Promotion of Fl

1: [S,Fl]=dominance selection(P) // S: selected set
2: while |S| < N do
3: Compute niche count ρ for S
4: if min(ρ) == 0 then
5: Choose a weight vector with minimum niche count at random
6: Add the solution s with minimum d2 to S
7: else
8: for i = 1 to j (No. of weight vectors with min(ρ)) do
9: Find the chosen solution subset in its neighborhood subregions

10: for k = 1 to h (No. of solutions in i-th subregion and Fl) do
11: Calculate the smallest angle between a solution and the corresponding

solution subset
12: end for
13: Find i-th solution with the largest angle from h solutions
14: end for
15: Add the solution s with the largest angle from j solutions to S
16: end if
17: ρj̄ = ρj̄ + 1 //the chosen weight vector index is j̄
18: Fl = Fl \ s
19: end while
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If the minimum niche count is zero, a solution with minimum vertical dis-
tance d2 to its weight vector is chosen (lines 5–6). Otherwise, we choose the
solution with the largest angle to the chosen solution subset in its neighbor-
hood subregions with min(ρ). Considering the scalable MaOPs, the acute angle
between two solutions is calculated in original objective space, not in normal-
ized objective space. For i-th weight vector with min(ρ), we calculate the acute
angle between a solution in it and each member of the corresponding chosen
solution subset, and keep the smallest acute angle as the solution’s angle. The
solution with the largest angle is regarded as the best solution of the subregion
to choose, called i-th solution (line 17). Then a solution with largest angle from
the j subregions is added to the selected set S. The above steps are repeated
until N solutions are selected. The variant of NSGA-III runs later in the first
stage. In this paper, it is activated when Gen ≥ Gen J .

3.3 Switching from 1st Stage to 2nd Stage

In terms of convergence, it has been observed [19] that NSGA-III improves slowly
in the later generations due to ADP phenomenon [13]. From the related research
results, we found that the shape of PF can be approximately determined by
NSGA-III generally after 70% of maximum generations, so the judgement oper-
ation can be triggered at this time, that is Gen J = 70% × Gen max. However,
the performance of the same algorithm is usually different on different prob-
lems. To adaptively make judgment that if the first stage should be ended, the
hypervolume (HV) performance metric is adopted to measure the performance,
mainly convergence.

We adopt znad of the Gen J generation as the reference point for HV metric
of the judgement, in which znad is defined as a nadir point with maximum
objective values. To reduce the computational cost of HV metric, the number of
interval generations to trigger the judgement is set to 2 × m. If the slope of HV
value is less than slope HV , we end the first stage. The parameter slope HV is
of great importance and related to the problems. If it is too small, the proposed
algorithm is similar to NSGA-III. In contrast, it may end the first stage early.
In this paper, slope HV = 0.005 × m.

3.4 Weight Vector Adaptation Strategy

At the end of the first stage, niche count of every weight vector is calculated in
original objective space. To deal with the general problems including scalable
MaOPs, weight vectors need to be scaled by (2) like the inverse operation of
objective normalization in NSGA-III.

wi
scaled = wi ◦ (znad − z∗) (2)

where z∗ is an ideal point with minimum objective values, the ◦ operator
denotes the Hadamard product. Assume that there are K legal weight vec-
tors whose niche count is non-zero. If K and N are approximately equal, there
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is no need to update weight vectors and weight vector set W = Wscaled,
Wscaled = {w1

scaled, . . . ,w
N
scaled}T . Otherwise, weight vector adaptation strat-

egy is to add and delete vectors. The procedure is detailed in Algorithm 3.

(a) (b)

Fig. 1. Illustration of addition. (a) by reference points. (b) by a initial reference point
and the solution.

Add new vectors evenly around the every legal vector. For instance, for m = 3
objectives, there are some new vectors evenly around a vector as shown in the
Fig. 1(a). If the niche count of a weight vector is non-zero, we place m new vectors
evenly around it in the hyper-plane, where the distance of the two new points
equals the distance of the two original adjacent points generated in initialization
procedure. We only need the unique vectors with all non-zero values. Assume
that there are K1 vectors after deleting the new vectors whose niche counts are
zero. We need to ensure that there are exactly N weight vectors for MOEA/DD.
If K1 > N , some new vectors are randomly selected to delete. When K1 < N ,
we should add other vectors until the number of weight vectors is N .

Algorithm 3. Weight Vector Adaptation Strategy
1: Calculate K weight vectors whose niche counts are non-zero
2: Add new vectors evenly around the legal vectors
3: Delete the new vectors whose niche counts are 0 // K1 vectors after deletion
4: Delete max(0, K1 − N) new vectors at random.
5: for i = 1 to N − K1 do
6: F

′
= arg maxF∈P̄

〈
F,wF

〉

7: for j = 1 to m do

8: new wi
j = β

F
′
j

‖F
′‖ +

wF
′

j
∥
∥
∥wF′ ∥

∥
∥

9: end for
10: end for
11: for i = 1 to N do
12: Bi = {i1, . . . , iT },where wi1 , · · · ,wiT are the T closest weight vectors to wi

13: end for

The approximate PF represents partly the real PF, the crowded subregions
need more attention. The solution in most crowded subregion, with maximum
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acute angle between it and its weight vector, is selected to combine with the
weight vector to produce a new vector, which is shown in the Fig. 1(b). Combi-
nation method is define as

F
′
= arg maxF∈P̄

〈
F,wF

〉
(3)

new wj = β
F

′
j

‖F′‖ +
wF

′

j∥
∥wF′ ∥∥

, j = {1, 2, . . . , m} (4)

where
〈
F

′
,wF

′ 〉
is the maximum acute angle compared with other pairs. P̄

represents the set of individuals in most crowded subregions. new w is the new
weight vector obtained by combining a solution F

′
and its weight vector through

(4). The weight coefficients of (4) are great different because the solutions rep-
resent the PF approximately, the weight vectors should be consistent with them
greatly, but not equal to them. Based on PBI function in MOEA/DD, the solu-
tions are hard to evolve if weight vectors are solutions. Finally, we need to update
the neighborhood index set B through weight vectors for MOEA/DD. In this
paper, β = m − 1.

4 Experimental Results

We compare the performance of the proposed algorithm1 with those of NSGA-III
and MOEA/DD. The hypervolume (HV) metric [20] is chosen as a performance
metric. Let zr = (zr1, . . . , z

r
m) be a reference point for HV metric that is domi-

nated by all Pareto optimal (objective) vectors. HV metric measures the hyper-
volume dominated by the obtained solutions in objective space and bounded by
zr. The experiments are conducted on the recently developed software platform
PlatEMO [14].

4.1 Setting

Several parameters are summarized as follows. Unspecified parameters use the
default values of PlatEMO.

– The number of objectives m ∈ {3, 5, 8, 10, 15} and the corresponding popula-
tion size N = {91, 210, 156, 275, 135}. DTLZ1 to DTLZ4 from the DTLZ test
suite are chosen for our experiment. The number of generations for different
DTLZ test problems are shown in Table 1. In addition, WFG1 to WFG9 from
WFG test suite are also chosen. The number of objective m ∈ {3, 5, 8, 10},
and the number of generations for different WFG test problems are all 1000.

– The simulated binary crossover (SBX) operator is used for crossover, and
polynomial mutation is applied for mutation, with distribution indexes both
set to 20.

1 https://github.com/wuyiaishenghuo/TSMOEA.

https://github.com/wuyiaishenghuo/TSMOEA
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Table 1. Number of generations for different DTLZ test problems

Problem m=3 m=5 m=8 m=10 m=15 Problem m=3 m=5 m=8 m=10 m=15

DTLZ1 400 600 750 1,000 1,500 DTLZ2 250 350 500 750 1,000

DTLZ3 1,000 1,000 1,000 1,500 2,000 DTLZ4 600 1,000 1,250 2,000 3,000

– In MOEA/DD, the penalty parameter θ of the PBI function is initially set
to 5. If the maximum value of two conflicting objectives varies greatly, it
may cause the objective with larger maximum value to lose larger value and
poor diversity. In this case, we need to increase the value of θ (θ ≤ 8) for
diversity. However, in real problems, we tend to prefer internal solutions,
and we should not be overly interested in diversity or extreme solutions. The
penalty parameter should be determined by the problem.

– The neighborhood size T is set to N/10, same in a variant of NSGA-III; the
neighborhood selection probability δ is set to 0.9.

– The final results are obtained by executing 20 independent runs of each algo-
rithm.

4.2 Performance Comparisons on DTLZ Test Suite

The statistical results of the HV values of DTLZ test suite obtained by the three
algorithms over 20 independent runs are summarized in Table 2, where the best
results are highlighted with gray background. It can be seen that TSMOEA,
together with MOEA/DD, shows best performance on the DTLZ1, DTLZ2 and
DTLZ4 test problems in general. The performance of MOEA/DD is so excel-
lent since the features of the four test problems are non-scalable MaOPs with
connected PFs. Compared with MOEA/DD, the number of the instances that
the proposed algorithm shows significantly better/worse performance using the
Wilcoxon rank sum test (0.05 significance level) are 1 and 4 among 20 instances
respectively. NSGA-III is poor in convergence compared to the above two algo-
rithms. In terms of standard variance, it is the fact that the performance of
NSGA-III is not very stable on DTLZ2 to DTLZ4, especially on high dimen-
sional instances. Compared with NSGA-III, the number of the instances that
the proposed algorithm shows significantly better/worse performance are 13 and
0 among 20 instances respectively.

For DTLZ1 and DTLZ3, which are multi-modal problems, the three algo-
rithms perform closely on three- to ten-objective DTLZ1 instances and three-
to five-objective DTLZ3 instances. NSGA-III performs worst when the number
of objective is large, especially on DTLZ3 instances. DTLZ2 and DTLZ4 prob-
lems are concave and uni-modal. NSGA-III performs worst and unsteadily on
almost all instances because of poor convergence. TSMOEA performs worse than
MOEA/DD on three-objective DTLZ4 instance due to NSGA-III.



300 Y. Wu et al.

Table 2. HV Values (Mean and Sd) Obtained by TSMOEA, NSGA-III and MOEA/DD
on DTLZ1-DTLZ4 Instances with Different Number of Objectives. Best Performance
is Highlighted in Bold Face with Gray Background.

m TSMOEA NSGA-III MOEA/DD TSMOEA NSGA-III MOEA/DD

D
T
L
Z
1

3
1.3977e-1
((2.88e-4)

1.3970e-1
(3.16e-4)≈

1.3980e-1
(2.78e-4)≈

D
T
L
Z
2

7.4433e-1
(1.93e-4)

7.4382e-1
(2.82e-4)−

7.4429e-1
(1.49e-4)≈

5
4.9311e-2
(6.97e-6)

4.9309e-2
(9.24e-6)≈

4.9314e-2
(8.35e-6)≈

1.3082e+0
(7.41e-4)

1.3075e+0
(5.39e-4)−

1.3079e+0
(5.55e-4)≈

8
8.3503e-3
(7.51e-6)

8.3511e-3
(6.16e-6)≈

8.3525e-3
(5.51e-7)≈

1.9795e+0
(5.50e-4)

1.9659e+0
(4.12e-3)−

1.9800e+0
(6.71e-4)≈

10
2.5321e-3
(1.54e-7)

2.5320e-3
(5.45e-7)≈

2.5321e-3
(3.71e-8)≈

2.5153e+0
(4.72e-4)

2.5042e+0
(5.20e-4)−

2.5152e+0
(3.58e-4)≈

15
1.2747e-4
(1.36e-9)

1.2648e-4
(1.56e-6)−

1.2743e-4
(5.49e-9)−

4.1381e+0
(3.88e-4)

4.1371e+0
(1.76e-3)−

4.1382e+0
(4.10e-4)≈

D
T
L
Z
3

3
7.3912e-1
(4.67e-3)

7.3833e-1
(2.83e-3)≈

7.4017e-1
(2.31e-3)≈

D
T
L
Z
4

7.3033e-1
(6.48e-2)

6.8654e-1
(1.30e-1)−

7.4483e-1
(1.57e-5)+

5
1.3061e+0
(2.83e-3)

1.3058e+0
(2.10e-3)≈

1.3072e+0
(2.58e-3)≈

1.3088e+0
(6.43e-4)

1.3082e+0
(7.95e-4)≈

1.3087e+0
(3.39e-4)≈

8
1.9697e+0
(5.04e-2)

1.9003e+0
(4.73e-1)−

1.9756e+0
(5.91e-3)+

1.9808e+0
(5.99e-4)

1.9701e+0
(6.26e-4)−

1.9804e+0
(5.89e-4)≈

10
2.5123e+0
(6.20e-3)

2.5003e+0
(1.83e-3)−

2.5153e+0
(4.93e-4)+

2.5156e+0
(5.34e-4)

2.5087e+0
(9.78e-4)−

2.5155e+0
(5.17e-4)≈

15
4.1306e+0
(3.62e-2)

4.0581e+0
(3.17e-2)−

4.1382e+0
(5.34e-4)+

4.1378e+0
(8.22e-4)

4.1277e+0
(7.28e-3)−

4.1380e+0
(5.81e-4)≈

+/− : TSMOEA shows significantly worse/better performance in the comparison.
≈: There is no significant difference between the compared results.

4.3 Performance Comparisons on WFG Test Suite

The HV values of the three algorithms on WFG test suite are shown in Table 3.
WFG problems are scalable to any objective. It shows that TSMOEA and
NSGA-III perform best on WFG test suite. TSMOEA has shown the most com-
petitive performance on WFG8 and low dimensional objective space instances
(m ≤ 5). NSGA-III has an overwhelming advantage over both of WFG1 and
WFG2 problems. Compared with NSGA-III, the number of the instances that
the proposed algorithm shows significantly better/worse performance are 5 and
7 among 36 instances respectively. However, the performance of MOEA/DD is
poor on all WFG problems. Due to the inappropriate predefined weight vectors,
MOEA/DD does not show its advantages.

WFG1 is a problem with flat bias and a mixed structure of the PF. WFG2 is
a test problem with a disconnected PF. NSGA-III outperforms on all instances
except one instance, and has best diversity. The proposed algorithm outperforms
on three-objective WFG2 instances because of good convergence compared with
NSGA-III. WFG3 is a difficult problem with a degenerated PF and the deci-
sion variables are non-separable. Hence, predefined weight vectors, with uniform
distribution in R

m, can greatly waste computational resources for diversity in
MOEA/DD.

WFG4 to WFG9 share the same PF shape in the objective space, but have
different difficulties in the decision space. TSMOEA and NSGA-III show gen-
erally competitive performance on WFG4 to WFG9. WFG8 and WFG9 are
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Table 3. HV Values (Mean and Sd) Obtained by TSMOEA, NSGA-III and MOEA/DD
on WFG1-WFG9 Instances with Different Number of Objectives.

m TSMOEA NSGA-III MOEA/DD TSMOEA NSGA-III MOEA/DD

W
F
G

1

3
5.9732e+1
(2.20e-1)

5.9975e+1
(4.45e-2)+

5.6854e+1
(3.78e+0)−

W
F
G

2

5.9675e+1
(4.07e-2)

5.9484e+1
(4.66e-2)−

5.9111e+1
(1.49e-1)−

5
6.0104e+3
(6.77e+0)

6.0405e+3
(9.63e-1)+

5.9357e+3
(7.33e+1)−

6.1371e+3
(4.26e+0)

6.1656e+3
(2.87e+0)+

6.0635e+3
(2.52e+1)−

8
2.0667e+7
(2.82e+4)

2.0712e+7
(6.60e+3)+

2.0248e+7
(6.13e+5)−

2.2034e+7
(3.24e+4)

2.2058e+7
(4.81e+4)+

2.1253e+7
(1.27e+5)−

10
8.6313e+9
(9.36e+6)

8.6612e+9
(2.02e+6)+

8.6199e+9
(8.91e+6)−

9.5988e+9
(1.29e+7)

9.6136e+9
(1.27e+7)+

9.2355e+9
(4.74e+7)−

W
F
G

3

3
6.2348e+0
(5.91e-2)

6.2228e+0
(6.04e-2)≈

5.7582e+0
(2.62e-2)−

W
F
G

4

3.5653e+1
(1.74e-1)

3.5697e+1
(2.06e-2)≈

3.4960e+1
(1.14e-1)−

5
2.1288e+0
(1.42e-1)

2.0807e+0
(1.51e-1)≈

1.6996e+0
(2.58e-1)−

5.0002e+3
(4.77e+0)

5.0016e+3
(5.02e+0)≈

4.8421e+3
(1.56e+1)−

8
5.3631e-3
(4.01e-3)

7.2410e-3
(3.80e-3)≈

2.2878e-3
(3.15e-3)−

2.0257e+7
(4.52e+4)

2.0149e+7
(4.56e+5)−

1.7283e+7
(3.89e+5)−

10
3.9866e-6
(6.86e-6)

5.9016e-6
(8.11e-6)≈

0.0000e+0
(0.00e+0)−

9.2487e+9
(1.88e+7)

9.2509e+9
(1.53e+7)≈

7.7873e+9
(1.19e+8)−

W
F
G

5

3
3.3120e+1
(2.11e-3)

3.3121e+1
(1.95e-3)≈

3.2514e+1
(1.11e-1)−

W
F
G

6
3.1866e+1
(7.07e-1)

3.2352e+1
(9.18e-1)≈

3.2164e+1
(1.02e+0)≈

5
4.7097e+3
(2.03e+0)

4.7091e+3
(2.22e+0)≈

4.5611e+3
(1.81e+1)−

4.6061e+3
(6.86e+1)

4.5914e+3
(9.88e+1)≈

4.4389e+3
(1.36e+2)−

8
1.9087e+7
(1.21e+4)

1.9092e+7
(7.52e+3)≈

1.6968e+7
(3.39e+5)−

1.8444e+7
(3.92e+5)

1.8700e+7
(3.66e+5)≈

1.5409e+7
(6.86e+5) −

10
8.7086e+9
(2.98e+6)

8.7073e+9
(2.68e+6)≈

7.3704e+9
(1.21e+8)−

8.4569e+9
(1.73e+8)

8.4492e+9
(1.12e+8)≈

6.9705e+9
(2.71e+8)−

W
F
G

7

3
3.5637e+1
(1.84e-1)

3.5674e+1
(1.39e-2)≈

3.4808e+1
(1.29e-1)−

W
F
G

8

3.0454e+1
(1.40e-1)

3.0146e+1
(1.05e-1)−

3.0073e+1
(1.21e-1)−

5
5.0119e+3
(3.15e+0)

5.0074e+3
(2.66e+0)−

4.8405e+3
(1.51e+1)−

4.3358e+3
(1.96e+1)

4.3141e+3
(2.02e+1)−

4.2171e+3
(5.97e+1)−

8
2.0320e+7
(4.36e+4)

2.0337e+7
(2.05e+4)≈

1.8472e+7
(3.15e+5)−

1.7090e+7
(3.72e+5)

1.7207e+7
(8.51e+5)≈

1.6179e+7
(1.06e+6) −

10
9.2984e+9
(1.19e+7)

9.2620e+9
(1.31e+8)≈

8.2022e+9
(1.48e+8)−

8.1960e+9
(2.12e+8)

8.2207e+9
(2.00e+8)≈

7.0545e+9
(6.63e+8)−

W
F
G

9 3
3.4038e+1
(3.43e-1)

3.4256e+1
(2.77e-1)≈

3.2841e+1
(2.07e+0)− 8

1.8293e+7
(1.20e+6)

1.8055e+7
(1.42e+6)≈

1.6117e+7
(7.67e+5)−

5
4.7412e+3
(2.15e+1)

4.7434e+3
(2.58e+1)≈

4.5485e+3
(6.00e+1)− 10

8.4675e+9
(4.64e+8)

8.3423e+9
(5.49e+8)≈

6.6760e+9
(4.42e+8)−

+/− : TSMOEA shows significantly worse/better performance in the comparison.
≈: There is no significant difference between the compared results.
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Fig. 2. Performance with median metric value obtained by three algorithms on the
10-objective WFG8 instances. (a)TSMOEA. (b)NSGA-III. (3)MOEA/DD.

designed with multi-modal and significant bias. The distance related parame-
ters in WFG8 are dependent on position related parameters, while the position
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related parameters in WFG9 are dependent on distance related parameters. This
type of dependency in WFG9 is not as difficult as WFG8. TSMOEA has best
performance on three- and five-objective WFG8 instances. Performance with
median metric value on 10-objective WFG8 instance obtained by TSMOEA,
NSGA-III and MOEA/DD can be seen in Fig. 2. It shows that TSMOEA can
better balance both diversity and convergence.

4.4 The Impact of the Length of the Two Stages

As discussed in Subsect. 3.3, it is the fact that when to trigger the second stage
is of importance. Hence, we further study the impact of the length of the two
stages. To study how TSMOEA is sensitive to the parameter, we have tried to
cover a wide range of values to control the percentage of maximum generations
for the run-time of the first stage, called Percentage Stage1. Five values are
considered: 50%, 60%, 70%, 80%, and 90%. We have taken DTLZ1 to DTLZ4
and WFG1 to WFG9 instances with five and ten objectives. The HV values of the
proposed algorithm with different length on some instances with ten objectives
are shown in Table 4.

Table 4. HV Values (Mean and Sd) Obtained by TSMOEA with different length on
some instances with m = 10.

DTLZ1 DTLZ2 DTLZ3 DTLZ4 WFG6 WFG7 WFG8 WFG9

50%
2.5314e-3
(1.64e-6)

2.5153e+0
(2.89e-4)

2.5071e+0
(1.92e-2)

2.5154e+0
(5.16e-4)

8.4334e+9
(1.16e+8)

9.0870e+9
(4.19e+7)

7.7224e+9
(3.45e+8)

8.1611e+9
(3.90e+8)

60%
2.5321e-3
(1.19e-7)

2.5153e+0
(4.09e-4)

2.5095e+0
(1.14e-2)

2.5155e+0
(3.66e-4)

8.4482e+9
(1.96e+8)

9.1244e+9
(4.59e+7)

7.8526e+9
(3.14e+8)

8.2207e+9
(4.38e+8)

70%
2.5322e-3
(5.12e-8)

2.5153e+0
(4.21e-4)

2.5107e+0
(2.25e-2)

2.5157e+0
(4.26e-4)

8.4598e+9
(1.88e+8)

9.1653e+9
(4.17e+7)

7.9029e+9
(1.76e+8)

8.3432e+9
(6.26e+8)

80%
2.5321e-3
(3.72e-8)

2.5150e+0
(4.34e-4)

2.5118e+0
(1.59e-2)

2.5156e+0
(4.06e-4)

8.4636e+9
(1.44e+8)

9.2436e+9
(2.82e+7)

8.1741e+9
(1.75e+8)

8.4185e+9
(3.89e+8)

90%
2.5321e-3
(5.28e-8)

2.5149e+0
(4.31e-4)

2.5094e+0
(1.12e-2)

2.5153e+0
(4.29e-4)

8.4919e+9
(1.19e+8)

9.2853e+9
(1.26e+7)

8.2297e+9
(1.69e+8)

8.5979e+9
(7.43e+7)

For DTLZ1 and DTLZ4, the performance of the same instance with
different length is comparable, but the performance is the best when
Percentage Stage1 = 70%. For DTLZ2, which kind of instance can soon be
able to fully explore all PF, the performance is the best and robust when
Percentage Stage1 = 50%, then becomes worse and worse. The performance of
DTLZ3 is so sensitive to the parameter. As the length of the first stage increases,
the more PF is explored by the first stage, the final performance becomes better
and then worsens.

For WFG1 and WFG2, on condition that m = 10 and Gen max = 1000,
NSGA-III needs to run all the time to explore the whole PF. We either increase
the number of generations or adopt the first stage all the time for this kind of
problems. For WFG4 to WFG9, as the length of the first stage increases, the
final performance becomes better. Moreover, the results of TSMOEA on WFG6
and WFG9 are significantly better than NSGA-III when Percentage Stage1 =
90%. The HV values(Mean and Sd) of WFG8 with five objectives and different
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length are 4.3558e + 3(1.18e + 1), 4.3463e + 3(1.63e + 1), 4.3384e + 3(1.84e + 1),
4.3291e+3(1.61e+1) and 4.3208e+3(1.53e+1), respectively. It shows that the
optimal length of the same instance with different numbers of objectives is still
different.

In summary, the second stage does not trigger until the PF is fully explored,
as a consequence, the proposed algorithm can obtain comparable and even the
best performance. Once the whole PF is explored, the earlier the second stage is
triggered, the better the performance of the proposed algorithm has. The optimal
length of the two stages is different for each problem. Based on the characteristics
of the problem, a more efficient algorithm can be selected to perform well.

5 Conclusion

In this paper, we have proposed a two-stage evolutionary algorithm for many-
objective optimization, named TSMOEA. The motivation is to design a MOEA
that is effective and robust for MaOPs of various characteristics by combining
the merits of two state-of-art algorithms, NSGA-III and MOEA/DD. NSGA-III
has objective normalization and the great ability of diversity promotion, while
MOEA/DD can obtain the solutions with good convergence and diversity based
on the appropriate weight vectors. In the first stage, NSGA-III and one of its
variants are adopted to explore the shape of PF. At the end of the first stage,
weight vectors are updated with not only the information of the original weight
vectors, but also the final obtained solutions. In the second stage, MOEA/DD is
adopt to enhance convergence while maintaining the diversity. The condition to
trigger the second stage is of great importance and need to be more adaptively
determined by the problem in the future work. Experimental results on DTLZ
and WFG test suites show that TSMOEA has competitive performance and is
suitable and robust for solving different types of MaOPs considered in this paper.

Acknowledgement. This work was supported in part by National Natural Science
Foundation of China under Grant No. 61473271.

References

1. Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume-based many-
objective optimization. Evol. Comput. 19(1), 45–76 (2011)

2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

3. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5),
773–791 (2016)

4. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)



304 Y. Wu et al.

6. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diver-
sity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282
(2002)

7. Li, B., Li, J., Tang, K., Yao, X.: An improved two archive algorithm for many-
objective optimization. In: 2014 IEEE Congress on Evolutionary Computation
(CEC), pp. 2869–2876. IEEE (2014)

8. Li, K., Wang, R., Zhang, T., Ishibuchi, H.: Evolutionary many-objective optimiza-
tion: a comparative study of the state-of-the-art. IEEE Access 6, 26194–26214
(2018). https://doi.org/10.1109/ACCESS.2018.2832181

9. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimiza-
tion algorithm based on dominance and decomposition. IEEE Trans. Evol. Com-
put. 19(5), 694–716 (2015)

10. Li, M., Yang, S., Liu, X.: Shift-based density estimation for Pareto-based algo-
rithms in many-objective optimization. IEEE Trans. Evol. Comput. 18(3), 348–365
(2014)

11. Liu, H.L., Chen, L., Zhang, Q., Deb, K.: Adaptively allocating search effort in
challenging many-objective optimization problems. IEEE Trans. Evol. Comput.
22(3), 433–448 (2018)

12. Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization prob-
lem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Com-
put. 18(3), 450–455 (2014)

13. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many con-
flicting objectives. IEEE Trans. Evol. Comput. 11(6), 770–784 (2007)

14. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a matlab platform for evo-
lutionary multi-objective optimization [educational forum]. IEEE Comput. Intell.
Mag. 12(4), 73–87 (2017)

15. Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired coevolutionary algo-
rithms for many-objective optimization. IEEE Trans. Evol. Comput. 17(4), 474–
494 (2013)

16. Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-
objective optimization. IEEE Trans. Evol. Comput. 17(5), 721–736 (2013)

17. Yuan, Y., Ong, Y.S., Gupta, A., Xu, H.: Objective reduction in many-objective
optimization: evolutionary multiobjective approaches and comprehensive analysis.
IEEE Trans. Evol. Comput. 22(2), 189–210 (2018)

18. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

19. Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-
objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)

20. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

https://doi.org/10.1109/ACCESS.2018.2832181


Performance Metrics and Indicators



CRI-EMOA: A Pareto-Front Shape
Invariant Evolutionary Multi-objective

Algorithm
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Abstract. The use of multi-objective evolutionary algorithms (MOEAs)
that employ a set of convex weight vectors as search directions, as a ref-
erence set or as part of a quality indicator has been widely extended.
However, a recent study indicates that these MOEAs do not perform
very well when tackling multi-objective optimization problem (MOPs),
having different Pareto front geometries. Hence, it is necessary to pro-
pose MOEAs whose good performance is not strongly depending on cer-
tain Pareto front shapes. In this paper, we propose a Pareto-front shape
invariant MOEA that combines the individual effect of two indicator-
based density estimators. We selected the weakly Pareto-compliant IGD+

indicator to promote convergence and the Riesz s-energy indicator that
leads to uniformly distributed point sets for the large class of rectifiable
d-dimensional manifolds. Our proposed approach, called CRI-EMOA,
is compared with respect to MOEAs that adopt convex weight vectors
(NSGA-III, MOEA/D and MOMBI2) as well as to MOEAs not using this
set of vectors (Δp-MOEA and GDE-MOEA) on MOPs belonging to the
test suites DTLZ, DTLZ−1, WFG and WFG−1. Our experimental results
show that CRI-EMOA outperforms the considered MOEAs, regarding the
hypervolume indicator and the Solow-Polasky indicator, on most of the
test problems and that its performance does not depend on the Pareto
front shape of the problems.
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1 Introduction

In the last 30 years, Multi-Objective Evolutionary Algorithms (MOEAs), which
are population-based and gradient-free metaheuristics, have arisen as a popular
approach to solve problems that involve the simultaneous optimization of several,
often conflicting, objective functions [1]. These are the so-called multi-objective
optimization problems (MOPs). MOEAs employ the principles of natural evo-
lution to drive a set of objective vectors towards the Pareto optimal front that
represents the solution to a MOP. In this regard, solving a MOP involves finding
the best possible trade-offs among its objectives. The particular set that yields
the best possible trade-offs among the objectives is known as the Pareto Optimal
Set (P∗) and its image is known as the Pareto Optimal Front (PF∗).

Currently, there are different strategies for designing MOEAs, such as the
decomposition of a MOP into several single-objective optimization problems [2],
the use of reference sets to guide the population towards the Pareto front [3],
and the generation of selection mechanisms based on (unary) quality indicators1

[4]. A wide variety of state-of-the-art MOEAs based on the previously indicated
strategies employ a set of convex weight vectors as search directions for the
decomposition, in a method to construct reference sets, or as part of the definition
of a quality indicator. A vector w ∈ R

m is a convex weight vector if
∑m

i=1 wi =
1 and wi ≥ 0 for all i = 1, . . . , m. These weight vectors lie on an (m − 1)-
simplex. However, Ishibuchi et al. [5] empirically showed that the use of convex
weight vectors overspecializes MOEAs on MOPs whose Pareto fronts are strongly
correlated to the simplex formed by such weight vectors. In other words, such
MOEAs are unable to produce good results when tackling MOPs whose Pareto
fronts are not highly coupled with the (m − 1)-simplex. In consequence, more
general MOEAs need to be designed to avoid this overspecialization on specific
benchmark problems such as the DTLZ and the WFG test suites.

There are MOEAs that do not use in any of their mechanisms a set of con-
vex weight vectors. An example is the Nondominated Sorting Genetic Algorithm
II (NSGA-II) [6] which uses Pareto dominance2 in its main selection mecha-
nism and crowding distance as its second selection mechanism. However, the
selection pressure of NSGA-II dilutes when tackling MOPs having four or more
objective functions. Additionally, the crowding distance density estimator cannot
produce evenly distributed Pareto fronts in high dimensionality. Another exam-
ple is the S Metric Selection Evolutionary Multi-Objective Algorithm (SMS-
EMOA) [7] which is a steady-state MOEA that replaces the crowding distance
of NSGA-II by the contribution of points to the hypervolume (HV) indicator.
The HV is a performance indicator that measures convergence and maximum
spread simultaneously. HV is the only unary indicator which is known to be

1 A unary indicator I is a function that assigns a real value to set of points A =
{a1, . . . ,aN}, where ai ∈ R

m.
2 Given u, v ∈ R

m, u Pareto dominates v (denoted as u ≺ v) if and only if ∀i =
1, . . . , m, ui ≤ vi and there exists at least an index j ∈ {1, . . . , m} : uj < vj .
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Pareto-compliant3, but its use in MOEAs with many objectives is limited due to
its high computational cost. In 2015, Menchaca-Méndez and Coello proposed an
environmental selection mechanism based on the Generational Distance (GD)
indicator [8] coupled with a diversity mechanism that adopts ε dominance to
divide the objective space into hypercubes where the solutions are distributed.
A clear disadvantage of GDE-MOEA is the determination of the ε value which
is required to divide high-dimensional objective spaces and which has an impact
on the generation of evenly distributed solutions. Finally, Δp-MOEA, proposed
by Menchaca-Mendez et al. [9], is an improvement of GDE-MOEA in which
instead of using GD in its selection mechanism, adopts the Δp indicator. Δp-
MOEA improves the diversity of the solutions produced, but it still depends on
the calculation of the ε value to construct a reference set.

In order to overcome the difficulties of MOEAs that do not use weight vectors,
we propose here an MOEA that takes advantage of the combination/synergy of
the individual effect of two density estimators: one based on the IGD+ indicator
[10] and another one based on the Riesz s-energy indicator [11]. The main idea of
our Evolutionary Multi-Objective Algorithm based on the Combination of the
Riesz s-energy and IGD+ (CRI-EMOA) is to analyze the convergence behav-
ior during the search process in a statistical manner. If convergence stagnates,
the generation of evenly distributed solutions is promoted using Riesz s-energy;
otherwise, the IGD+-based density estimator will drive the population to PF∗.

The remainder of this paper is organized as follows. Section 2 provides some
basic definitions. Our proposed approach is described in Sect. 3. Our experimen-
tal results are discussed in Sect. 4. Finally, Sect. 5 outlines our main conclusions
and some possible paths for future work.

2 Background

In this work, we focus, without loss of generality, on unconstrained MOPs that
minimize all the objective functions. A MOP is formally defined as follows:

min
x∈Ω

F (x) = (f1(x), f2(x), . . . , fm(x))T , (1)

where x ∈ Ω ⊆ R
n is the vector of decision variables and Ω is the decision

variable space. fi : Rn → R, i = 1, 2, . . . ,m are the objective functions, where
m ≥ 2. MOPs having four or more objective functions are called many-objective
optimization problems (MaOPs).

In the following, two unary quality indicators are described. For this purpose,
let A represent an approximation to PF∗ and Z ⊂ R

m be a reference set. On
the one hand, Ishibuchi et al. proposed the Inverted Generational Distance plus
(IGD+) indicator in 2015 [10]. This indicator measures the average distance
between Z and A, using a modified Euclidean distance that takes into account

3 Let A and B be two non-empty sets of m-dimensional vectors and let I be a unary
indicator. I is Pareto-compliant if and only if A dominates B implies I(A) > I(B)
(assuming maximization of I).
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Pareto dominance. Due to this modified distance, IGD+ is a weakly Pareto
compliant indicator. It is mathematically defined as follows:

IGD+(A,Z) =
1

|Z|
∑

z∈Z
min
a∈A

d+(a,z), (2)

where d+(a,z) =
√∑m

k=1 max(ai − zi, 0)2 is the proposed modified Euclidean
distance. On the other hand, Hardin and Saff proposed the Riesz s-energy indi-
cator [11] in order to measure the even distribution of a set of points in d-
dimensional manifolds. Its mathematical definition is given by:

Es(A) =
∑

i�=j

‖ai − aj‖−s (3)

where s > 0 is a fixed parameter that controls the degree of uniformity of the
solutions in A. Riesz s-energy has been found to lead to uniformly distributed
point sets for the large class of rectifiable d-dimensional manifolds. Moreover, s
is not a shape-dependent parameter [12].

3 Our Proposed Approach

Quality indicators can be integrated into MOEAs in three different ways: (1) in
the environmental selection mechanism, (2) as an update rule for archives, and

Algorithm 1. CRI-EMOA general framework
Require: Tw, β̄, θ̄
Ensure: Pareto front Approximation
1: Randomly initialize population P
2: t ← 0
3: while stopping criterion is not fulfilled do
4: q ← V ariation(P )
5: Q ← P

⋃{q}
6: Normalize Q
7: {L1, L2, . . . , Lk} ← nondominated-sorting(Q)

8: zmax
i =

{
f∗
i = maxx∈L1 fi(x), f∗

i > zmax
i

zmax
i , otherwise

9: SHV[t mod Tw] ← HVappr(t)
10: Statistically analyze the last Tw samples in SHV and generate β and θ
11: if k = 1 and β ≤ β̄ and θ ∈ [−θ̄, θ̄] then
12: aworst = argmaxa∈L1 CEs(a, L1)
13: else
14: if |Lk| > 1 then
15: aworst = argmina∈Lk CIGD+(a, Lk, L1)|
16: else
17: aworst is equal to the sole individual in Lk

18: P ← Q \ {aworst}
19: t ← t + 1
20: return P
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(3) as density estimators (DEs). From these approaches, indicator-based DEs
(IB-DEs) have been widely used. An IB-DE is the secondary selection mech-
anism of an MOEA. IB-DEs impose a total order among the solutions of an
approximation set by calculating the individual contribution of each solution to
the indicator value. Then, the worst-contributing solution is deleted from the
population. In this work, we employed IGD+ and Riesz s-energy as IB-DEs.
Regarding IGD+, the individual contribution C of a solution a ∈ A is defined as
follows: CIGD+(a,A,Z) = |IGD+(A,Z)−IGD+(A\{a},Z)|. On the other hand,
for Riesz s-energy, the individual contribution of a ∈ A is given by: CEs

(a,A) =
1
2 [Es(A)−Es(A\{a})]. On the basis of the above equations, IGD+-DEs and Es-
DE are respectively defined as follows: (1) aworst = arg mina∈A CIGD+(a,A,Z),
and (2) aworst = arg maxa∈A CEs

(a,A), where aworst denotes the solution having
the wost-contributing value.

(a) (b)

Fig. 1. (a) The hypervolume approximation adds up all the distances between the
reference point and each nondominated solution, (b) linear model of the convergence
behavior created using the last Tw measures of HVappr.

Algorithm 1 describes our proposed approach, called CRI-EMOA. It is a
steady-state MOEA that adopts Pareto dominance in its environmental selec-
tion mechanism (using the nondominated sorting algorithm [6] in line 7) and an
IB-DE as its secondary selection criterion. The main idea of CRI-EMOA is to
exploit the properties of IGD+ and Riesz s-energy by combining the individual
effect of the corresponding IB-DEs. In other words, we want to drive the popu-
lation towards the Pareto front using IGD+-DE and, simultaneously, generating
an evenly distributed approximation to the Pareto front through Es-DE. To this
end, CRI-EMOA switches between the two IB-DEs depending on a statistical
analysis of the convergence behavior of the population, using an approximation
to the hypervolume indicator (denoted as HVappr). HVappr is a simplification of
the proposal of Ishibuchi et al. [13] and it adds up all the distances between an
anti-optimal reference point zmax and the set of current nondominated solutions
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in L1 (see Fig. 1a). In line 8, each zmax
i , i = 1, . . . ,m is updated if and only a

worse objective value in L1 is found and, then, HVappr(t) is computed such that
the obtained value is stored in a circular array SHV of size Tw. After the first Tw

generations, SHV will be full, and we can statistically analyze at each iteration
the last Tw samples of HVappr as shown in Fig. 1b. In line 10, the mean μ and
the standard deviation σ of the samples are computed such that the coefficient4

of variation β = σ/μ is calculated. Additionally, the angle θ of a linear regression
model of the samples is computed. Based on β and θ, we can exploit the proper-
ties of a certain IB-DE. If the number k of ranks produced by the nondominated
sorting algorithm is equal to one and it holds that β ≤ β̄ and θ ∈ [−θ̄, θ̄] (where
β̄ and θ̄ are user-supplied parameters), it means that the convergence behavior is
stagnated since there is not too much variation of HVappr and the linear model
cannot be considered as ascending or descending. In consequence, we have to
promote diversity using Es-DE in line 12. Otherwise, if |Lk| > 1, IGD+-DE is
selected in line 15 in furtherance of improving the convergence of the population.
In case |Lk| = 1, the sole individual in Lk is selected for elimination. Finally, the
selected solution aworst is deleted from the population, and a new generation is
created.

4 Experimental Results

In this section, we analyze the performance of CRI-EMOA5 when compared to
several state-of-the-art MOEAs: NSGA-III [3], MOEA/D [2], MOMBI2 [4], Δp-
MOEA [9] and GDE-MOEA [8]. The adopted MOEAs are classified into two
main groups: MOEAs based on convex weight vectors and MOEAs not using
convex weight vectors. NSGA-III6, MOEA/D7 and MOMBI28 belong to the first
group while the remaining MOEAs9 belong to the second group. We adopted
MOPs from the DTLZ and WFG test suites, as well as from the minus versions
of them, denoted as DTLZ−1 and WFG−1 that were proposed by Ishibuchi et
al. [5]. The use of the minus versions of the benchmarks is to determine the
performance of the considered MOEAs on MOPs whose Pareto fronts are not
correlated to the simplex formed by a set of convex weight vectors. Additionally,
the Pareto fronts of these MOPs cover a wide range of geometries such as linear,

4 β is a standardized measure of dispersion that shows the extent of variability to the
mean of the population.

5 The source code of CRI-EMOA is available at http://computacion.cs.cinvestav.mx/
∼jfalcon/CRI-EMOA.html.

6 We used the implementation available at: http://web.ntnu.edu.tw/∼tcchiang/
publications/nsga3cpp/nsga3cpp.htm.

7 We used the implementation available at: http://dces.essex.ac.uk/staff/zhang/
webofmoead.htm.

8 We used the implementation available at http://computacion.cs.cinvestav.mx/
∼rhernandez/.

9 The source code of Δp-MOEA and GDE-MOEA was provided by its author, Adriana
Menchaca Méndez.

http://computacion.cs.cinvestav.mx/~jfalcon/CRI-EMOA.html
http://computacion.cs.cinvestav.mx/~jfalcon/CRI-EMOA.html
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://computacion.cs.cinvestav.mx/~rhernandez/
http://computacion.cs.cinvestav.mx/~rhernandez/
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concave, degenerated, disconnected and mixed. In each case, we employed 3, 5
and 10 objective functions. In order to assess the performance of our proposed
CRI-EMOA and the other MOEAs adopted in our comparative study, we applied
HV and the Solow-Polasky indicator [14] for assessing convergence and diversity,
respectively. For each MOEA in each test instance, we performed 30 independent
executions.

4.1 Parameters Settings

For a fair comparison, we set the population size N of all MOEAs, equals
to the number of convex weight vectors that some of them employed, i.e.,
N = CH+m−1

m−1 , where m is the number of objective functions and H is a user-
supplied parameter. Hence, in each case, the tuple (m,H,N) was set as fol-
lows: (3, 14, 120), (5, 5, 126), and (10, 3, 220). For the considered number of
objective functions, we set 50 × 103, 70 × 103, and 120 × 103 function evaluations
as our stopping criterion, respectively. Since our approach and all the consid-
ered MOEAs are genetic algorithms that use Simulated Binary Crossover and
Polynomial-based Mutation as variation operators, we set the crossover proba-
bility (Pc), the crossover distribution index (Nc), the mutation probability (Pm),
and the mutation distribution index (Nm) as follows. For MOPs having three
objective functions Pc = 0.9 and Nc = 20, while for MaOPs Pc = 1.0 and
Nc = 30. In all cases, Pm = 1/n, where n is the number of decision variables,
and Nm = 20. Regarding both the WFG and the WFG−1 test problems with
3, 5 and 10 objectives, we set the number of variables as n = 26, 30 and 40,
in each case using the following position-related parameters: 2, 4, and 9. Con-
sidering the DTLZ and DTLZ−1 instances, the number of variables is equal to
n = m + K − 1, where K = 5 for DTLZ1 and DTLZ1−1, K = 10 for DTLZ2,
DTLZ5 and their minus versions, and K = 20 for DTLZ7 and DTLZ7−1. For
MOEA/D, the neighborhood size was set to 20 in all cases. Regarding CRI-
EMOA, we employed Tw = N , β̄ = 0.1 and θ̄ = 0.25◦ for all instances.

4.2 Discussion of Results

Tables 1 and 2 show the mean and standard deviation (in parentheses) obtained
by all the compared algorithms for the hypervolume and the Solow-Polasky10

indicators, respectively. The two best values among the MOEAs are highlighted
using gray scale, where the darker tone corresponds to the best value. Aiming
to obtain the statistical confidence of our results, we performed a one-tailed
Wilcoxon test using a significance level of 0.05. Based on the Wilcoxon test, the
symbol # is placed when CRI-EMOA performs better than another MOEA in
a statistically significant way.

10 The Solow-Polasky indicator requires a parameter θ that was set to 10.
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Regarding the hypervolume indicator, CRI-EMOA is the best algorithm since
it obtained the first place in 50% of the test problems. The second place cor-
responds to NSGA-III because it was the best MOEA in 8 out of 42 problems.
However, it is worth emphasizing that for the minus benchmarks, NSGA-III
only obtained one first place, specifically for DTLZ7−1 with 3 objective func-
tions. In this regard, MOEA/D and MOMBI2 have just one first place in these
minus benchmarks, and the remaining of their first places belong to the original
DTLZ and WFG test suites. In consequence, it is clear the overspecialization
of MOEAs using convex weight vectors on these benchmarks. Considering Δp-
MOEA and GDE-MOEA, their performance is not so high. In fact, GDE-MOEA
never obtains the first place and Δp-MOEA is the best algorithm in four test
instances.

The Solow-Polasky indicator supports the good results of CRI-EMOA. This
indicator measures the number of species present in the population. Thus, a
larger value of the indicator is better because it means a good diversity of solu-
tions. Our proposed approach produces well-distributed Pareto fronts in 26 out
of 42 test instances (see Fig. 2). As a matter of fact, in most cases, when CRI-
EMOA obtains the best HV value, it also obtains the best Solow-Polasky value.
Hence, this a first insight that the synergy between IGD+ and Riesz s-energy is
actually responsible of its good performance in both convergence and diversity.
Regarding the other MOEAs, NSGA-III and Δp-MOEA tie in second place since
they obtained the best indicator value in 5 problems. Once again, NSGA-III can
only produce good results for the original DTLZ and WFG problems. The worst
algorithm regarding this indicator is MOMBI2.

For DTLZ1 and DTLZ1−1, which have a linear Pareto front, CRI-EMOA does
not obtain the best HV value. However, the Solow-Polasky indicator reflects that
our approach has a better diversity. The top part of Fig. 2 shows the DTLZ1−1

fronts produced by all the MOEAs, and it is evident that CRI-EMOA produces
an evenly distributed front in comparison with the adopted MOEAs. MOEA/D
and MOMBI2 generate numerous solutions in the boundary of the front, while
Δp-MOEA, GDE-MOEA and NSGA-III do not produce well-distributed solu-
tions. For convex problems, i.e., DTLZ2−1 and DTLZ5−1, it is evident that
CRI-EMOA has a good performance. This is because it entirely covers the Pareto
front, unlike the other MOEAs which are unable to do the same. This effect is
illustrated in the second row of Fig. 2. For more complicated problems such as
DTLZ7 and WFG2−1 that assess the ability of a MOEA to manage subpopula-
tions, it is evident that CRI-MOEA produces better results. In the light of these
results, we can claim that CRI-EMOA is a more general optimizer because its
performance is not strongly linked to certain types of benchmark problems.



CRI-EMOA 315

Table 1. Mean and standard deviation (in parentheses) of the hypervolume indicator.
A symbol # is placed when CRI-EMOA performed significantly better than the other
approaches based on a one-tailed Wilcoxon test using a significance level of α = 0.05.
The two best values are shown in gray scale, where the darker tone corresponds to the
best value.

MOP Dim. CRI-EMOA NSGA-III MOEA/D MOMBI2 Δp-MOEA GDE-MOEA

DTLZ1
3

9.739039e-01
(3.858675e-04)

9.741141e-01
(3.120293e-04)

9.740945e-01
(2.619649e-04)

9.663444e-01#
(1.080932e-03)

9.413310e-01#
(1.964370e-02)

9.676446e-01#
(2.362618e-03)

5
9.877798e-01

(3.117917e-03)
9.986867e-01

(3.379577e-05)
9.986355e-01

(3.735697e-05)
9.904662e-01

(1.120127e-03)
3.320501e-02#
(8.565974e-02)

4.840903e-01#
(4.857106e-01)

10
9.963635e-01

(1.065991e-03)
9.999939e-01

(2.139857e-06)
9.996746e-01

(1.025281e-04)
9.961538e-01

(9.574496e-04)
3.040882e-02#
(5.310077e-02)

0.000000e+00#
(0.000000e+00)

DTLZ2
3

7.419537e+00
(3.056980e-03)

7.421572e+00
(6.064709e-04)

7.421715e+00
(1.372809e-04)

7.380040e+00#
(7.076656e-03)

7.371981e+00#
(3.875638e-02)

7.350569e+00#
(2.220661e-02)

5
3.157090e+01
(2.415933e-02)

3.166721e+01
(6.548007e-04)

3.166781e+01
(5.129480e-04)

3.149886e+01#
(2.619865e-02)

3.145814e+01#
(6.277721e-02)

3.139858e+01#
(7.085084e-02)

10
1.021699e+03
(4.906893e-01)

1.023905e+03
(1.423610e-03)

1.023902e+03
(4.192719e-03)

1.022163e+03
(4.299615e-01)

1.022172e+03
(3.206973e-01)

8.223136e+02#
(4.847301e+01)

DTLZ5
3

6.103498e+00
(2.913259e-04)

6.086240e+00#
(3.462620e-03)

6.046024e+00#
(2.227008e-04)

6.018466e+00#
(3.166178e-03)

6.083103e+00#
(4.024434e-02)

6.070736e+00#
(4.307412e-02)

5
2.306362e+01
(2.295313e-01)

2.162912e+01#
(9.476133e-01)

2.328373e+01
(1.640165e-02)

2.175597e+01#
(2.378197e-01)

2.152316e+01#
(1.422545e+00)

1.943602e+01#
(1.234198e+00)

10
6.453781e+02

(4.080592e+01)
6.172582e+02#
(4.132326e+01)

7.043390e+02
(1.714256e+00)

6.054385e+02#
(4.091687e+01)

5.909772e+02#
(7.644220e+01)

9.641241e+01#
(1.554238e+01)

DTLZ7
3

1.634605e+01
(5.285233e-02)

1.631926e+01#
(1.253568e-02)

1.620770e+01#
(1.240925e-01)

1.613885e+01#
(3.101462e-02)

1.612577e+01#
(1.553168e-01)

1.615480e+01#
(1.492618e-01)

5
1.281085e+01
(1.974810e-01)

1.284401e+01
(3.182259e-02)

6.515913e+00#
(1.170945e+00)

1.269646e+01#
(4.907749e-02)

1.255217e+01#
(1.341411e-01)

1.234590e+01#
(2.234605e-01)

10
3.479852e+00
(2.403388e-01)

1.806637e+00#
(4.781492e-01)

2.756082e-03#
(7.839814e-03)

3.033892e+00#
(5.070947e-02)

3.027342e+00#
(9.110566e-02)

2.080502e+00#
(4.312007e-01)

WFG1
3

5.056544e+01
(1.657420e+00)

4.917540e+01#
(1.742752e+00)

4.994533e+01
(2.615320e+00)

5.250059e+01
(1.702362e+00)

3.624458e+01#
(9.571499e-01)

3.857628e+01#
(9.613983e-01)

5
4.509188e+03

(1.444159e+02)
4.049661e+03#
(1.445036e+02)

4.522924e+03
(1.145447e+02)

4.682300e+03
(7.687667e+01)

3.198417e+03#
(8.802857e+01)

3.499936e+03#
(7.077142e+01)

10
5.037589e+09

(8.535179e+07)
4.333786e+09#
(4.767509e+07)

4.626119e+09#
(9.082857e+07)

5.028893e+09
(6.062765e+07)

3.422833e+09#
(2.182108e+07)

3.554077e+09#
(4.491835e+07)

WFG2
3

1.000262e+02
(2.196919e-01)

1.000303e+02
(2.020421e-01)

9.425491e+01#
(1.887090e+00)

9.995196e+01#
(2.218338e-01)

2.860787e+01#
(1.562061e-01)

2.878405e+01#
(3.147546e-02)

5
1.008420e+04

(5.737764e+01)
1.022660e+04

(2.444328e+01)
9.147103e+03#
(2.989196e+02)

1.021265e+04
(2.425440e+01)

2.356563e+03#
(1.302041e+01)

2.352252e+03#
(2.298487e+01)

10
1.348499e+10

(4.708062e+07)
1.343510e+10#
(5.838755e+07)

1.153362e+10#
(4.307707e+08)

1.346239e+10
(6.456777e+07)

2.433110e+09#
(1.405830e+07)

2.417620e+09#
(3.423298e+07)

WFG3
3

7.306197e+01
(3.258533e-01)

7.359113e+01
(3.698540e-01)

6.949014e+01
(2.043137e+00)

7.476737e+01
(2.010304e-01)

2.974536e+01
(2.198130e-01)

3.026476e+01
(9.539859e-02)

5
6.735962e+03

(9.568603e+01)
6.705622e+03

(6.623165e+01)
5.831355e+03#
(1.740491e+02)

6.720322e+03
(8.790247e+01)

2.425136e+03#
(2.737458e+01)

2.467475e+03#
(5.330311e+00)

10
8.262095e+09

(2.467236e+08)
7.851751e+09#
(1.420734e+08)

3.407782e+09#
(4.406816e+08)

7.150575e+09#
(8.942471e+08)

2.435088e+09#
(7.572200e+07)

2.460728e+09#
(2.651078e+07)

DTLZ1−1
3

2.237019e+07
(1.096230e+05)

2.044422e+07#
(2.230718e+05)

1.708422e+07#
(2.776295e+05)

1.754720e+07#
(1.024912e+04)

2.249206e+07
(9.308520e+04)

2.178413e+07#
(1.919526e+05)

5
5.990400e+10

(5.969126e+09)
1.653440e+10#
(7.395153e+09)

1.275157e+10#
(5.929635e+09)

1.829497e+10#
(1.178680e+08)

8.421535e+10
(5.019922e+09)

7.834908e+10
(5.592427e+09)

10
2.331601e+15

(1.332180e+15)
1.690928e+16

(1.594681e+16)
2.068669e+10#
(2.776909e+10)

3.254959e+17
(7.964585e+16)

4.163772e+17
(1.784438e+17)

1.959914e+17
(7.692566e+16)

DTLZ2−1
3

1.255756e+02
(1.372903e-01)

1.226427e+02#
(4.332124e-01)

1.241646e+02#
(1.767939e-01)

1.246298e+02#
(1.975120e-02)

1.202429e+02#
(1.235826e+00)

1.232392e+02#
(4.384877e-01)

5
1.823404e+03

(5.652832e+00)
1.529187e+03#
(3.829295e+01)

1.570781e+03#
(5.466206e+00)

1.377041e+03#
(2.801096e+00)

1.615070e+03#
(3.622796e+01)

1.684100e+03#
(2.422012e+01)

10
3.952305e+05

(6.000728e+03)
2.480210e+05#
(3.215706e+04)

1.837497e+05#
(3.540744e+03)

1.941735e+05#
(4.318334e+03)

4.467775e+05
(1.153133e+04)

4.295481e+05
(1.104582e+04)

DTLZ5−1
3

1.240446e+02
(1.543643e-01)

1.212729e+02#
(4.506920e-01)

1.230132e+02#
(1.173182e-01)

1.233805e+02#
(2.897257e-02)

1.191790e+02#
(1.218659e+00)

1.217996e+02#
(3.913095e-01)

5
1.830136e+03

(8.376583e+00)
1.526551e+03#
(4.186892e+01)

1.532378e+03#
(6.612506e+00)

1.490703e+03#
(3.599646e+00)

1.550531e+03#
(3.545733e+01)

1.663295e+03#
(2.143198e+01)

10
5.043244e+05

(5.933536e+03)
2.353908e+05#
(2.658733e+04)

1.618586e+05#
(2.870596e+03)

1.786897e+05#
(4.650613e+03)

3.841427e+05#
(1.267929e+04)

3.788162e+05#
(1.409232e+04)

DTLZ7−1
3

2.139263e+02
(1.705184e+00)

2.144482e+02
(1.844494e-02)

2.144785e+02
(3.401603e-03)

2.144350e+02
(1.484695e-02)

2.141398e+02
(6.446048e-01)

2.117720e+02#
(5.620357e+00)

5
1.193104e+03

(7.463449e+00)
1.190442e+03#
(4.159670e+00)

6.388549e+02#
(5.254422e+01)

1.197724e+03
(5.760920e+00)

1.195714e+03
(1.560565e+00)

1.167397e+03#
(3.067229e+01)

10
6.493424e+04

(1.799575e+02)
6.282093e+04#
(1.236603e+02)

7.555843e+03#
(6.397426e+02)

6.278498e+04#
(5.606912e+02)

6.374490e+04#
(1.597907e+02)

6.336153e+04#
(1.579373e+02)

WFG1−1
3

4.721465e+02
(5.118363e+01)

5.214593e+02
(2.613138e+01)

3.653092e+02#
(2.305800e+00)

4.717969e+02#
(4.848793e+01)

4.289752e+02#
(4.089696e+01)

4.226979e+02#
(4.328855e+01)

5
8.957760e+04

(1.295509e+04)
6.766707e+04#
(3.634016e+03)

4.312409e+04#
(1.486578e+03)

8.604789e+04
(1.028243e+04)

6.687040e+04#
(8.125469e+03)

5.398842e+04#
(6.022448e+03)

10
1.920711e+11

(1.254828e+10)
1.167307e+11#
(9.811376e+09)

7.403214e+10#
(3.748511e+09)

5.753336e+10#
(1.586430e+09)

1.037099e+11#
(5.197695e+09)

8.712812e+10#
(9.507560e+09)

WFG2−1
3

7.318853e+02
(4.584376e-01)

7.256549e+02#
(2.471515e+00)

7.318071e+02#
(5.137348e-01)

7.277336e+02#
(7.218694e-01)

3.548073e+02#
(4.631427e-01)

3.549143e+02#
(1.951948e-01)

5
1.638383e+05

(1.165835e+03)
1.470928e+05#
(8.586496e+03)

1.122933e+05#
(1.197256e+04)

1.499384e+05#
(4.291788e+02)

4.315723e+04#
(1.487567e+02)

4.156049e+04#
(6.526206e+02)

10
7.365072e+11

(6.254171e+09)
3.658776e+11#
(1.973606e+10)

2.462168e+11#
(2.934157e+10)

8.919695e+10#
(1.091716e+10)

7.359311e+10#
(2.277690e+08)

7.165991e+10#
(8.580112e+08)

WFG3−1
3

6.701244e+02
(9.728569e-01)

6.581207e+02#
(2.461272e+00)

6.559404e+02#
(1.399701e-01)

6.678986e+02#
(4.368737e-01)

3.901185e+02#
(2.837691e+00)

3.929122e+02#
(1.663457e+00)

5
1.460039e+05

(2.618698e+03)
1.271888e+05#
(5.065268e+03)

9.818104e+04#
(4.519958e+03)

1.345863e+05#
(2.667741e+02)

4.822825e+04#
(1.017141e+03)

4.912237e+04#
(6.555485e+02)

10
6.613123e+11

(2.015972e+10)
3.003925e+11#
(2.070638e+10)

1.932277e+11#
(2.123809e+10)

1.572410e+11#
(3.994016e+09)

8.120430e+10#
(2.177319e+09)

8.405921e+10#
(1.518237e+09)
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Table 2. Mean and standard deviation (in parentheses) of the Solow-Polasky indicator.
A symbol # is placed when CRI-EMOA performed significantly better than the other
approaches based on a one-tailed Wilcoxon test using a significance level of α = 0.05.
The two best values are shown in gray scale, where the darker tone corresponds to the
best value.

MOP Dim. CRI-EMOA NSGA-III MOEA/D MOMBI2 Δp-MOEA GDE-MOEA

DTLZ1
3

9.944608e+00
(7.332450e-01)

9.394548e+00#
(2.930251e-01)

9.314418e+00#
(3.914884e-02)

9.000566e+00#
(2.446366e-02)

7.811889e+00#
(9.608413e-01)

9.208526e+00#
(7.142910e-01)

5
1.338590e+01
(5.394744e-01)

1.927839e+01
(2.200570e-01)

1.910784e+01
(2.012103e-01)

1.784107e+01
(5.535436e-02)

1.258001e+02
(3.614573e-01)

7.251588e+01
(4.806114e+01)

10
1.785253e+01
(8.881198e-01)

4.215677e+01
(2.267717e+00)

3.557264e+01
(6.064497e-01)

3.493408e+01
(2.073537e+00)

2.196627e+02
(4.229255e-01)

1.937667e+02
(5.463117e+00)

DTLZ2
3

3.395527e+01
(9.380927e-02)

3.394704e+01#
(1.377030e-02)

3.393654e+01#
(1.057577e-03)

3.320388e+01#
(3.200128e-02)

3.071966e+01#
(5.648283e-01)

3.130480e+01#
(3.907121e-01)

5
9.880242e+01

(3.075202e+00)
1.023559e+02
(2.316020e-01)

1.017397e+02
(4.330518e-03)

1.000214e+02
(9.376416e-02)

9.047203e+01#
(1.071667e+00)

8.885177e+01#
(1.407456e+00)

10
2.144437e+02
(8.333968e-01)

2.144143e+02#
(4.461039e-02)

2.140218e+02#
(1.052798e-02)

2.134074e+02#
(2.440550e-01)

2.073661e+02#
(1.076644e+00)

2.149790e+02
(1.820800e+00)

DTLZ5
3

8.835302e+00
(8.683488e-03)

8.689954e+00#
(4.814112e-02)

4.565503e+01
(6.372947e-01)

8.446415e+00#
(1.275105e-02)

8.725615e+00#
(1.118233e-01)

9.131640e+00
(8.893988e-01)

5
5.453458e+01

(3.836635e+00)
7.846618e+01

(3.806546e+00)
2.193721e+01#
(7.192604e-01)

1.733111e+01#
(1.215347e+00)

6.458870e+01
(4.414063e+00)

9.229364e+01
(3.153601e+00)

10
1.426916e+02

(1.105651e+01)
1.855864e+02

(4.441145e+00)
7.636613e+00#
(7.127440e-02)

2.097795e+01#
(1.446842e+01)

1.636387e+02
(1.190412e+01)

2.009986e+02
(2.726407e+00)

DTLZ7
3

4.693189e+01
(4.563587e+00)

4.248938e+01#
(8.838503e-01)

3.411613e+01#
(6.885687e+00)

3.750968e+01#
(4.295088e-01)

3.356066e+01#
(8.918332e+00)

3.791999e+01#
(1.074318e+01)

5
7.703740e+01

(2.640331e+01)
9.605921e+01

(4.006295e+00)
2.595428e+01#
(3.104755e-01)

7.335971e+01#
(1.892378e+00)

1.014229e+02
(7.384253e+00)

8.467007e+01
(2.946531e+01)

10
2.083721e+02

(1.401193e+01)
3.401405e+01#
(4.627073e+01)

6.635493e+00#
(8.377910e-01)

1.539631e+02#
(1.794040e+01)

2.161036e+02
(1.887145e+00)

1.635677e+02#
(5.659825e+01)

WFG1
3

6.266729e+01
(4.306665e+00)

5.624993e+01#
(4.311929e+00)

5.053063e+01#
(2.764405e+00)

5.406056e+01#
(2.296813e+00)

3.936107e+01#
(2.712236e+00)

4.901870e+01#
(2.752851e+00)

5
7.766310e+01

(9.797998e+00)
9.244372e+01

(7.266040e+00)
7.480740e+01

(3.832994e+00)
7.292172e+01#
(5.425443e+00)

5.404634e+01#
(4.708150e+00)

9.197836e+01
(4.116442e+00)

10
1.153389e+02

(1.285140e+01)
8.917693e+01#
(8.545945e+00)

1.552376e+01#
(3.169355e+00)

6.819405e+01#
(8.992674e+00)

9.420152e+01#
(6.434297e+00)

1.681839e+02
(7.642626e+00)

WFG2
3

1.031961e+02
(6.913412e-01)

9.475339e+01#
(5.942618e-01)

7.243218e+01#
(1.099197e+00)

8.113447e+01#
(1.694539e+00)

1.566893e+01#
(4.695226e-01)

1.597100e+01#
(5.210876e-01)

5
9.923778e+01

(3.753788e+00)
1.259866e+02
(5.442239e-01)

9.750359e+01#
(2.449040e+00)

1.226234e+02
(1.081329e+00)

2.491924e+01#
(1.910851e+00)

2.346945e+01#
(2.689896e+00)

10
1.981494e+02

(4.297874e+00)
2.034942e+02

(6.167357e+00)
2.746068e+01#
(9.314055e+00)

1.826284e+02#
(2.286544e+01)

5.897645e+01#
(4.305811e+00)

5.040485e+01#
(7.890364e+00)

WFG3
3

7.979549e+01
(8.271398e-01)

5.447458e+01#
(3.954759e+00)

6.745390e+01#
(1.429561e+00)

4.359786e+01#
(9.246690e-01)

2.088260e+01#
(5.548807e-01)

2.237972e+01#
(2.670741e-01)

5
1.207901e+02

(1.514908e+00)
9.114798e+01#
(4.803291e+00)

1.203892e+02#
(1.120195e+00)

3.884532e+01#
(5.191645e+00)

3.640185e+01#
(1.590306e+00)

3.986356e+01#
(1.669298e+00)

10
2.198151e+02
(1.511883e-01)

1.842494e+02#
(6.381996e+00)

1.685512e+02#
(8.180955e-01)

1.223302e+02#
(2.606946e+01)

7.655449e+01#
(7.601122e+00)

9.569073e+01#
(5.324356e+00)

DTLZ1−1
3

1.238722e+02
(6.478345e-01)

1.192301e+02#
(9.769981e-01)

1.110656e+02#
(2.067972e-01)

1.076858e+02#
(1.612270e+00)

1.194494e+02#
(7.076038e-01)

1.026058e+02#
(2.385964e+00)

5
1.261138e+02
(3.746123e-01)

1.276049e+02
(7.483806e-01)

1.160278e+02#
(3.018754e+00)

6.760143e+01#
(4.891955e+00)

1.256546e+02#
(4.961652e-01)

1.091644e+02#
(2.978643e+00)

10
2.200000e+02
(6.478398e-01)

2.194982e+02#
(5.550208e-01)

1.845834e+01#
(3.362045e+01)

2.177230e+02#
(1.598879e+00)

2.199297e+02#
(1.852502e-01)

1.956693e+02#
(3.843626e+00)

DTLZ2−1
3

1.129425e+02
(2.079720e-01)

9.168006e+01#
(2.394444e+00)

9.466441e+01#
(8.426911e-02)

9.433643e+01#
(1.896075e-01)

8.857439e+01#
(2.604729e+00)

8.818635e+01#
(2.087133e+00)

5
1.259981e+02
(4.099458e-04)

1.134723e+02#
(2.970256e+00)

1.247875e+02#
(1.631879e-01)

4.888021e+01#
(1.111632e+00)

1.185054e+02#
(1.679308e+00)

1.078721e+02#
(2.347639e+00)

10
2.249876e+02

(1.368722e+00)
2.075064e+02#
(3.824826e+00)

2.079851e+02#
(1.899257e+00)

1.810577e+02#
(3.309000e+00)

2.118042e+02#
(2.291510e+00)

1.931317e+02#
(4.552358e+00)

DTLZ5−1
3

1.069995e+02
(2.945855e-01)

8.469885e+01#
(1.989703e+00)

7.942908e+01#
(2.711812e-01)

8.622124e+01#
(1.733700e-01)

8.484735e+01#
(2.558670e+00)

8.305258e+01#
(1.583665e+00)

5
1.259747e+02
(3.780629e-03)

1.041424e+02#
(3.722763e+00)

1.229014e+02#
(1.837627e-01)

4.957223e+01#
(1.976910e+00)

1.180479e+02#
(1.846989e+00)

1.076183e+02#
(2.710724e+00)

10
2.199997e+02
(6.289321e-05)

1.579241e+02#
(1.854156e+01)

1.997485e+02#
(1.822188e+00)

1.636386e+02#
(7.545337e+00)

2.094613e+02#
(2.217251e+00)

1.946215e+02#
(3.565477e+00)

DTLZ7−1
3

2.345500e+01
(6.661044e+00)

2.375280e+01
(1.117994e+00)

2.588876e+01
(3.461387e+00)

1.994117e+01#
(4.519640e-01)

2.178525e+01#
(8.341601e-01)

1.805087e+01#
(8.596927e+00)

5
5.660901e+01

(1.568211e+01)
7.238636e+01

(1.269825e+01)
1.211841e+01#
(1.172186e+00)

4.067053e+01#
(9.192226e+00)

8.003609e+01
(3.156330e+00)

3.632242e+01#
(3.834467e+01)

10
2.043557e+02

(1.375176e+01)
1.347251e+01#
(4.083423e+00)

4.293619e+00#
(1.198274e-01)

8.812385e+00#
(2.123041e+01)

2.008713e+02#
(2.214667e+00)

2.028099e+02#
(5.987172e+00)

WFG1−1
3

6.415681e+01
(4.459890e+00)

5.511082e+01#
(2.648385e+00)

1.663876e+01#
(1.535080e+00)

4.730483e+01#
(1.092483e+00)

4.842279e+01#
(5.020350e+00)

4.279700e+01#
(1.538301e+01)

5
1.210334e+02

(2.192520e+00)
5.596308e+01#
(5.654765e+00)

7.815456e+00#
(1.225035e+00)

3.289189e+01#
(2.858823e+00)

1.098994e+02#
(4.122587e+00)

5.939438e+01#
(3.673750e+01)

10
2.186105e+02
(3.132639e-01)

6.927501e+01#
(2.258115e+01)

2.480353e+00#
(2.063527e+00)

3.476224e+01#
(4.296041e+00)

1.950445e+02#
(6.121614e+00)

1.138247e+02#
(5.884228e+01)

WFG2−1
3

1.140860e+02
(4.325357e-01)

9.532850e+01#
(1.992380e+00)

8.890140e+01#
(1.794800e-01)

9.018353e+01#
(4.679018e-01)

3.230763e+00#
(4.485117e-02)

2.757698e+00#
(2.020626e-01)

5
1.234346e+02
(7.027142e-01)

9.827363e+01#
(2.826007e+00)

4.956629e+01#
(8.529213e+00)

3.689443e+01#
(1.559225e+00)

5.922537e+00#
(7.879377e-01)

2.841850e+00#
(6.498607e-01)

10
2.196197e+02
(9.739353e-02)

2.001692e+02#
(4.030917e+00)

2.500717e+01#
(2.754994e+00)

1.075588e+02#
(1.284360e+01)

1.138578e+01#
(8.309404e-01)

7.783812e+00#
(1.059255e+00)

WFG3−1
3

1.075596e+02
(2.777510e-01)

7.484580e+01#
(2.494935e+00)

6.164392e+01#
(7.387154e-02)

7.097018e+01#
(1.699291e-01)

2.303097e+01#
(7.406376e-01)

2.381595e+01#
(2.661523e-01)

5
1.259055e+02
(2.786019e-02)

8.633630e+01#
(4.246132e+00)

6.654930e+01#
(3.739241e+00)

3.937358e+01#
(1.177063e+00)

3.626087e+01#
(2.423541e+00)

4.063424e+01#
(2.006301e+00)

10
2.199995e+02
(8.710466e-04)

1.929382e+02#
(8.857025e+00)

5.251797e+01#
(3.065445e+00)

1.414077e+02#
(1.791224e+01)

7.135125e+01#
(7.053632e+00)

9.336338e+01
(4.573319e+00)
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Fig. 2. Pareto fronts generated by CRI-EMOA and the adopted MOEAs. Each front
corresponds to the median of the hypervolume value.

5 Conclusions and Future Work

In this paper, we propose an Evolutionary Multi-Objective Algorithm based
on the combination of the Riesz s-energy and IGD+ indicators. Our proposed
approach, called CRI-EMOA, overcomes the overspecialization on certain bench-
mark problems of state-of-the-art MOEAs that employ a set of convex weight
vectors as search directions, as a reference set or as part of a quality indicator.
CRI-EMOA exploits the convergence property of IGD+ and promotes evenly
distributed solutions using Riesz s-energy. Our proposal was compared with
MOEAs with and without the use of convex weight vectors. Our experimen-
tal results showed that our approach has a competitive performance on the
DTLZ and WFG instances, while it outperforms the adopted MOEAs on the
DTLZ−1 and WFG−1 problems. These empirical results provide some evidence
about CRI-EMOA being a more general multi-objective optimizer. As part of
our future work, we are interested in improving the performance of CRI-EMOA
on the original benchmark problems while preserving its good performance on
the minus versions of the considered test suites.
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Abstract. In many real world problems the quality of solutions needs
to be evaluated at least according to a bi-objective non-dominated front,
where the goal is to optimize solution quality using as little computa-
tional resources as possible. This is even more important in the context
of dynamic optimization, where quickly addressing problem changes is
critical. In this work, we relate approaches for the performance assess-
ment of dynamic optimization algorithms to the existing literature on
bi-objective optimization. In particular, we introduce and investigate
the use of the hypervolume indicator to compare the performance of
algorithms applied to dynamic optimization problems. As a case study,
we compare variants of a state-of-the-art dynamic ant colony algorithm
on the traveling salesman problem with dynamic demands (DDTSP).
Results demonstrate that our proposed approach accurately measures
the desirable characteristics one expects from a dynamic optimizer and
provides more insights than existing alternatives.

Keywords: Dynamic optimization · Multi-objective optimization ·
Performance assessment

1 Introduction

Real world optimization problems are often modeled as combinatorial optimiza-
tion problems (COPs), which involve finding values for a set of discrete vari-
ables related to a given objective function. When the optimal solution cannot be
efficiently obtained in practice, approximate algorithms such as heuristics and
metaheuristics have been successfully applied to obtain near-optimal solutions.
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Dynamic environments, where instances are allowed to undergo some modifica-
tions over time, impose some additional challenges to COPs since such problems
need to be re-optimized over time to ensure not only feasibility but also quality
of the solutions.

Some well-established evolutionary computation and swarm intelligence tech-
niques have been tailored to solve dynamic COPs (DCOPs) [6,8,11,15,21]. How-
ever, to guarantee the effectivenesses of the solution quality generated by an
approximate algorithm, one has to execute it several times and solution quality of
all executions should be compared in a way to prove whether their values are con-
sistent. The literature is rich in examples of measures to assess the performance
of algorithms applied to this context, but many measures (i) evaluate algorithms
based solely on the quality of the final solution they produce [9,20], completely
disregarding the performance of the algorithm during different re-optimization
cycles (environments); (ii) require several measures to be combined in order to
obtain knowledge about the behavior over dynamic changes and solution quality
development [8,11], and/or; (iii) require the adaptation of measures that need
a priori knowledge of the optimal solution for each problem change [10], since
they were proposed in the context of artificially designed test problems where
optimal solutions are known beforehand.

Aiming to overcome the issues discussed above, we propose a bi-objective
formulation of DCOPs, where runtime and solution quality are considered objec-
tives to be simultaneously optimized. This idea is largely inspired by [17],
who adopt the hypervolume measure to assess the anytime behavior of heuris-
tic algorithms. In this work, we extend that concept to comprehend problem
changes, enabling the comparison of different algorithms between consecutive
changes (environment-wise analysis) or during their entire execution (scenario-
wise analysis). In addition, our approach is based on an unary version of the
hypervolume indicator, which makes it scalable as to the number of algorithms
considered in the analysis. Our formulation is also scalable as to the number
of objectives considered, meaning one can use it to assess the performance of
dynamic multi- objective optimizers; yet, in this work we focus on the assess-
ment of traditional DCOP optimizers.

As a case study, we consider the traveling salesman problem with dynamic
demands (TSPDD, [8,11]). Specifically, we assess the performance of different
versions of the population-based ant colony algorithm (P-ACO, [5,8]), an effec-
tive approximate algorithm originally devised for DCOPs. Our proposed app-
roach leads to interesting observations. In general, an algorithm that is tailored
for DCOPs tends to be robust to problem changes, with similar performance
patterns across different environments. Yet, the adoption of simple mechanisms
such as parameter configuration and local search considerably affects its overall
performance. More importantly, local search helps to very quickly re-optimize
solutions when faced with problem changes, a counterintuitive result when one
considers the computational overhead usually associated with local search com-
ponents.
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The remainder of the paper is outlined as follows. In Sect. 2, we briefly discuss
the most important background concepts related to dynamic optimization, and
present an overview of the measures most commonly adopted in this context.
Next, we discuss the original anytime behavior formulation and its assessment
through the hypervolume in Sect. 3, and extend it for the assessment of dynamic
optimizers. We evaluate our proposal through a case study in Sect. 4, where we
discuss both experimental setup and results. Finally, we conclude our work in
Sect. 5, discussing future work possibilities.

2 Dynamic Optimization: Background and Measures

Without loss of generality, a dynamic optimization problem (DOP) can be
defined as a problem in which the changes to its specifications are time-
dependent. Different ways to address these changes can be found in literature.
As an example, a DOP can be seen as a sequence of static optimization problems
(SOP) over time. The goal for each SOP is to find a solution maximizing the
fitness function of that SOP. Alternatively, a DOP can be also considered as the
problem of adapting a solution to a changing fitness landscape. Whatever the
interpretation, a dynamic combinatorial optimization problem (DCOP) can be
defined as a straightforward variation of DOPs, where the problem has a discrete
search space which consists of a finite set of solutions.

In this work, we refer to changes in problem specifications as environment
changes, and to a time span between problem changes as an environment. At
the beginning of each environment, the best solution from the previous environ-
ment most likely needs to be re-optimized, since it may be unfeasible and/or
far from optimal. This likelihood is expected to increase as a function of the
degree of dynamism of the problem, i.e., how strong environment changes are.
The whole execution of an algorithm is dubbed a scenario, which may comprise
different numbers of environments as a factor of the frequency of change the
problem presents. Ideally, effective dynamic optimizers are those able to react
to environment changes as fast as possible, despite how fast and/or strong these
changes are. Many performance assessment measures have been proposed in the
dynamic optimization literature and can be classified as either final quality-based
or behavior-based. Below, we present a high-level overview of each category:

Final quality measures [2,3,7,9,15,19,20] are based on quality of the best
solution found in each environment. For a scenario-wise analysis, perfor-
mances across all environments are traditionally averaged. The major draw-
back with these approaches is the indifference to the search dynamics within
environments. Specifically, a given algorithm may re-optimize solutions very
quickly and still be considered equivalent to another that takes much longer
to reach the same solution quality.

Behavioral measures [3,11,14,15,19] compare algorithms based on their
search dynamics, providing more insights than final quality ones. Nonetheless,
many of these measures may require the knowledge of the optimal solution
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to do so, or use an auxiliary measure that requires it. The only measure we
identify without such restrictions is the area between curves (ABC, [1]), which
considers that the performance of algorithms are time-quality fronts and mea-
sure the area between these fronts for each environment. Aggregation for a
scenario-wise analysis is traditionally done through an algebraic sum of the
areas identified in each environment.

Notice that the ABC measure is loosely related to the multi-objective opti-
mization performance assessment literature. Specifically, when assessing a single
environment this measure becomes close in spirit to the binary hypervolume
measure [22]. Yet, differently from the hypervolume one cannot draw Pareto-
compliant conclusions about the fronts being compared by the ABC, as we will
later detail. In addition, this measure can only be applied to pairwise algorithm
comparisons given its binary nature – the literature on binary measures for
multi-objective optimization is clear that this is a non-scalable approach [22].

In the next section, we review another existing approach to a multi-objective
formulation of algorithm performance, extend it to the context of dynamic opti-
mization, and highlight the benefits of our approach over ABC.

3 Assessing the Anytime Behavior of a Dynamic
Optimizer: The Hypervolume Approach

The anytime behavior of an algorithm is defined by [17] as the robustness of
an algorithm to different stopping criteria. To compare different algorithms as
to their anytime behavior, authors propose that the original optimization prob-
lem under investigation be reformulated as a bi-objective problem, through the
addition of a resource-minimizing objective. In the most traditional scenario, one
wants to optimize the solution quality of a target problem, and runtime is the
resource whose consumption is to be minimized. Under this formulation, the per-
formance of an algorithm Ai is a nondominated front comprising points 〈ti, qi〉,
i.e., the solution quality qi obtained at time ti. Different algorithms can then be
compared through the hypervolume they dominate, using a common reference
point strictly dominated by all other points. Albeit simple, this approach is pow-
erful in that (i) multiple algorithms can be simultaneously compared, and (ii) an
algorithm that dominates a larger hypervolume cannot present a worse anytime
behavior than one which dominates a smaller hypervolume (and vice-versa).

The application of the approach above to the context of dynamic optimization
is straightforward when a single environment is considered. Yet, when problem
changes are introduced, a few adjustments need to be made. To help illustrate
these adjustments, Fig. 1 depicts the performance fronts of two dynamic opti-
mizers (left-most plots) and the comparison of their hypervolumes (right-most
plot). In all plots, runtime is given on the x-axis, while solution quality is given
on the y-axis (w.l.o.g. we consider a solution quality minimization problem). The
first issue for computing a scenario-wise hypervolume illustrated in this figure is
that, if the whole run of an algorithm is considered as a single front, most of the
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front depicting a given environment will be considered dominated by the best
solution of the previous environment.

An alternative is to consider environments separately and aggregate over
environment-wise hypervolumes to draw scenario-wise conclusions. This app-
roach requires a second adjustment in the methodology, namely that reference
points for each environment be computed as x-axis translations of the scenario-
wise reference point. In more detail, to ensure all environment- wise hypervol-
umes are comparable (and hence can be aggregated), all reference points con-
sidered must present the same solution-quality coordinate. In addition, the time
coordinate of each reference point is computed such that it be strictly domi-
nated by its environment front.1 As we will later discuss, our case study presents
fixed-duration environments and solution-quality ranges do not vary consider-
ably across environments. Hence, we only apply a scenario-wise normalization to
ensure both axes contribute equally to the hypervolumes. However, depending
on the application considered axes normalization for each environment may also
be necessary.

Concerning environment-wise analysis, our approach preserves the benefits of
the original anytime behavior formulation, which greatly improve over the ABC
metric. Specifically, the ABC metric is a particular case of the binary hyper-
volume metric where the reference point is only weakly dominated by the front
assessed, and hence conclusions drawn from it cannot be guaranteed Pareto-
compliant. More importantly, this poor choice of reference point (albeit implicit
in the metric definition) means environment-final solutions are not properly val-
ued. By contrast, as long as standard guidelines about the hypervolume are
followed, these solutions are guaranteed to be properly valued.2

Regarding a scenario-wise analysis, the benefits of our approach vary as a
function of the aggregation method considered. If one uses a rank sum analysis,
one can understand how often one algorithm reacts more efficiently to problem
changes than others. More importantly, if an algorithm A1 presents larger hyper-
volumes than another algorithm A2 on all environments, one can be sure that
A1 cannot present worse anytime behavior than A2. Conversely, if one is more
interested in average performance, it is straightforward to compare algorithms
based on the average of the hypervolumes computed for each environment. This
flexibility of aggregation approaches is another improvement over the ABC mea-
sure, specially given that an algebraic sum implicitly embedded in the ABC
measure provides less information than the alternatives discussed here.

In the next section, we present a case study where we empirically evaluate
our proposed approach.

1 In practice, this requires isolating fronts from each environment before computing
hypervolumes, since the reference point of a given environment may intersect with
the next environment.

2 One could argue that an application may require a custom importance distribu-
tion for the different stages of the run. This can be achieved through the weighted
hypervolume measure, as proposed in [17].



324 S. Oliveira et al.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

SQ

t

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

SQ

t

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

SQ

t

Fig. 1. The hypervolumes dominated by the performance curves of two different algo-
rithms (left and center), computed as a function of reference points selected for each
environment. The right-most plot shows a direct comparison between these algorithms
of the hypervolume.

4 Experimental Study

The formulation and measure we propose to employ in this paper are gen-
eral enough to assess the performance of any dynamic optimization algorithm
on any given DOP. In this paper, we conduct an experimental evaluation
using the traveling salesman problem with dynamic demands (TSPDD, [8,11])
as test benchmark and the population-based ant colony optimization algo-
rithm (P-ACO, [5,8]) as target algorithm. We start our discussion by respec-
tively reviewing the definitions of the TSPDD and P-ACO. Next, we detail the
experimental setup we adopt, and later proceed to a discussion of the results
observed.

4.1 Problem and Algorithm Definitions

The dynamic traveling salesman problem (TSP) is a variation of the static TSP
in which the problem data changes over time [6,8,11,13]. In this paper, we con-
sider the TSP with dynamic demands (TSPDD), which can be modeled by a
sequence of graphs Gs = (Vs, Es), s = 0, . . . , S, and two sequences of vertex
sets As and Ds, s = 1, . . . , S − 1, where As represents the set of new cus-
tomers to be served and Ds the set of deleted customers. Each Vs is obtained by
(Vs−1

⋃
As)/Ds and Es = Vs × Vs. We follow [12] to produce problem changes,

evenly splitting the set of customers into two sets called currentpool and spare-

pool; only currentpool customers must be visited in a given environment. An
environment change consists of switching ξ · n vertices between currentpool and
sparepool; parameter ξ ∈ {20%, 40%, 80%} is called degree of dynamism. A given
run presents f environments, which we set in this paper to f ∈ {2, 10}. The
maximum runtime allowed for a single run is evenly split between these envi-
ronments, respectively meaning that changes occur after half and a tenth of the
maximum allowed runtime.

P-ACO is a population-based ant colony optimization algorithm (P-ACO)
that was originally developed for tackling the TSPDD [8] and has been used or
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solving DCOPs in general. Pheromone updates in P-ACO are only done based
on solutions that enter or leave the solution archive. This scheme considerably
reduces the computation time needed for the pheromone update when compared
to classical ACO algorithms. In this work, we consider three P-ACO variants,
and their parameter configurations are depicted in Table 1, where m is the num-
ber of ants, α and β respectively regulate the importance of pheromone and
heuristic information, τmax is the maximum pheromone deposit for a given edge,
and K is the solution archive size. The first two variants, dubbed static- and
dynamic-default, differ only as to their parameter configuration, using the values
traditionally employed for solving static [16] and dynamic problems [11], respec-
tively. The third variant, dubbed static-default + ls, differs from the previous two
since it is the only variant that adopts a local search (LS) procedure. We remark
that this configuration had previously been only applied to static problems, due
to the expected computational overhead posed by local search procedures. Yet,
we include this variant in our study given the important role that local search
plays for ACO effectiveness on static COPs, providing algorithms a means to
locally explore a neighborhood in the search space. Specifically, we adopt the
2-opt neighborhood operator with a first-improvement pivoting rule.

Table 1. Default parameters used in the literature for P-ACO. Dynamic-default + ls
settings are not given because no study has yet investigated this setup.

Settings m α β τmax K

static-default n/4 1 2 3 25

dynamic-default 50 1 5 3 3

static-default + ls 25 1 2 3 1

4.2 Experimental Setup

We adopt two sets of TSPDD instances, namely TSPLIB instances rl1323,
u1817, rl1889, u2152, and pr2392 [18], and 3 subsets of 5 random uniform
Euclidean (RUE) instances each, with sizes ranging from 3000 to 4000, cre-
ated though the portgen generator from the 8th DIMACS implementation chal-
lenge [4]. Each instance is further parameterized by the degree of dynamism (ξ ∈
{20%, 40%, 80%}) and frequency of change (f ∈ {2, 10}). Algorithms are allowed
a maximum runtime of 1 000 s, which means environments last 500 s when f = 2
and 100 s when f = 10. To account for variance, each algorithm is run 20 times
on each instance configuration, and results reported are averages of those runs.

The hypervolume computation requires a few pre-processing steps, as fol-
lows. First, a solution quality range is computed for each instance, and the
runs of all algorithms are normalized so that the worst solution quality value
ever found by an algorithm for a given instance corresponds to 0, and the best
to 1. Time coordinates are normalized in the [0, 1 000] range, and hence both
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objectives contribute equally to the hypervolume. As previously discussed, the
reference points for each environment are computed as x-axis translations of the
global reference point (1.1, 1.1). We ensure environment-specific reference points
equally value extreme solutions by using the 1.1 ratio for both objectives. We
assess scenario-wise conclusions for a given instance configuration using the most
adequate aggregation approach, depending on the environment-wise results. For
more general conclusions across all instance configurations, we conduct a rank
sum analysis of the aggregation.

4.3 Results

We start our analysis with the help of solution quality over time (SQT) plots,
given in Figs. 2 and 3, which respectively depict instances configured with
ξ = 20% and ξ = 80%. In both figures, a RUE instance is given on the top
row, whereas a TSPLIB instance is given on the bottom row. On the left col-
umn, instances are configured with f = 2, whereas the right column depicts
instances configured with f = 10. Note that the number of environments has a
stronger influence on the final performance of the algorithm, since more environ-
ments mean less time for re-optimization. Conversely, the degree of dynamism
influences the solution quality recovery after an environment, since the problem
changes more or less drastically depending on this parameter.

We focus the remainder of the analysis on the most relevant insights from
the direct comparison between (i) the two variants that do not use local search,
and (ii) between the variants that do not use local search and the one that does.

Experiments without local search. The first, contrasting difference between
the P-ACO variants that do not use local search, is that the one configured for
dynamic optimization is much faster in (re-)optimizing solutions, yet reaches
a much worse solution quality when compared to the variant configured for
static optimization. This is a very interesting result, as it corroborates that
dynamic algorithms need to be engineered with anytime behavior in mind,
rather than just being fast or achieving a good final solution. Another interest-
ing observation is that both variants react to the randomly produced changes
is a very uniform pattern, and indeed the hypervolumes for all environments
are very similar. In terms of anytime behavior, the variant configured for
static optimization dominates a larger hypervolume, a fact confirmed by the
environment-wise hypervolume computation, whatever instance configuration
considered.

Experiments with local search. The overall improvement provided by local
search is remarkable for most of the instance configurations considered.
Indeed, the variant with local search is at least as fast as the variant config-
ured for dynamic optimization, and reaches a final solution with at least the
same quality as the variant configured for static optimization. A few factors
affect this pattern to some extent. For instance, a larger number of environ-
ments further enhance the benefits of local search, a counterintuitive result
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Fig. 2. SQT plot depicting the anytime performance of P-ACO, on RUE instance size
3500 (top row) and on TSPLIB instance pr2392 (bottom row). Left: scenario ξ20f2.
Right: scenario ξ20f10.

given that less runtime is available and local search is known to be compu-
tationally costly. Conversely, the benefits for TSPLIB instances are less than
for RUE instances, an understandable pattern given that the neighborhood
operator we adopt is not particularly effective for TSPLIB. Indeed, when run
on TSPLIB instances configured with f = 2, P-ACO retrieves better final
solutions for each environment when not using local search. Yet, for all but
two instance configurations considered, the environment-wise hypervolumes
favor the variant that uses local search, indicating that it presents a better
anytime behavior than the remaining variants.

The fact that the hypervolume indicates an algorithm as having better any-
time behavior when it does not reach the best solution quality at the end of an
environment (or the run) is a likely possibility. However, as already investigated
elsewhere [17], it is possible to adopt the weighted variant of the hypervolume
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Fig. 3. SQT plot depicting the anytime performance of P-ACO, on RUE instance size
3500 (top row) and on TSPLIB instance pr2392 (bottom row). Left: scenario ξ80f2.
Right: scenario ξ80f10.

indicator when one wants to change the importance distribution of the differ-
ent regions of the SQT plot. A second important observation is that the clear
performance patterns from each algorithm across environments mean that the
algorithms that dominate larger hypervolumes can be guaranteed to not have
worse anytime performance than algorithms with smaller hypervolumes. In this
context, averaging hypervolumes from the different environments is only helpful
for the rank sum analysis we conduct next.

Table 2 shows results that aggregate from all instance configurations con-
sidered. Each column depicts the rank sum achieved by each P-ACO variant
assessed, and the last column (ΔR) gives the difference in ranks above which
the lowest-ranked algorithm can be considered statistically significant better
than the remaining algorithms, according to Friedman’s non-parametrical test
with 95% confidence. Results show a clear separation between variants, and as
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expected the one that uses local search achieves a lower average hypervolume
much more often than the remaining ones.

Table 2. Statistical analysis of the different P-ACO variants on RUE and TSPLIB
instances aggregate over all instance configurations considered. Each run of an algo-
rithm is ranked according to the average of the environment-wise hypervolumes they
dominated. ΔR gives the difference of the sum of ranks that is statistically significant
according to Friedman’s non-parametrical test with a confidence level of 95%. The best
variant, that is significantly different from the others, is indicated in bold face.

Instances dynamicDefault staticDefault staticDefaultLs ΔR

RUE+ TSPLIB 51 32 19 3.94

5 Conclusions

Dynamic optimization problems demand algorithms engineered to quickly pro-
duce high-quality solutions, particularly after problem data changes. This
dichotomy can be more accurately addressed when formulated as a bi-objective
optimization problem, where solution quality and runtime are the most proto-
typical objective examples. In this paper, we have extended this formulation and
applied the concept of anytime behavior to dynamic optimizers. Through this
formulation, one is able to use the hypervolume to compare any number of algo-
rithms and, under certain circumstances, benefit from the Pareto-compliance
property of this indicator. Together, these characteristics greatly improve over
previous measures adopted in the dynamic optimization literature.

To empirically evaluate our proposed approach, we conducted an experi-
mental study on the performance of different variants of the population-based
ant colony optimization algorithm run on the traveling salesman problem with
dynamic demands. Surprisingly, the variant configured for static optimization
performed better than the one configured for dynamic optimization. More impor-
tantly, we have seen that local search is a critical component even in the context
of dynamic optimization, leading to the best anytime behavior on most of the
experiments conducted.

The formulation adopted in this work opens a number of possibilities for
dynamic optimization performance assessment. One is to consider more objec-
tives, which can be other resource consumption objectives, such as number of
function evaluations, or even dynamic multi-objective optimization problems.
Another important research direction is to adapt existing techniques employed
in the assessment of static multi-objective optimizers to deal with dynamic prob-
lems, such as empirical attainment functions.
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Abstract. Hypervolume (HV) and inverted generational distance (IGD) have
been frequently used as performance indicators to evaluate the quality of
solution sets obtained by evolutionary multiobjective optimization (EMO) al-
gorithms. They have also been used in indicator-based EMO algorithms. In
some studies on many-objective problems, only the IGD indicator was used due
to a large computation load of HV calculation. However, the IGD indicator is
not Pareto compliant. This means that a better solution set in terms of the Pareto
dominance relation can be evaluated as being worse. Recently the IGD plus
(IGD+) indicator has been proposed as a weakly Pareto compliant version of
IGD. In this paper, we compare these three indicators from the viewpoint of
optimal distributions of solutions. More specifically, we visually demonstrate
similarities and differences among the three indicators by numerically calcu-
lating near-optimal distributions of solutions to optimize each indicator for some
test problems. Our numerical analysis shows that IGD+ is more similar to HV
than IGD whereas the formulations of IGD and IGD+ are almost the same.

Keywords: Indicator-based multiobjective algorithms � Hypervolume (HV) �
Inverted generational distance (IGD) �
Inverted generational distance plus (IGD+)

1 Introduction

The hypervolume (HV) indicator [28] has been frequently used to evaluate the quality
of solution sets obtained by evolutionary multiobjective optimization (EMO) algo-
rithms (i.e., to compare EMO algorithms). Whereas a number of performance indica-
tors have been proposed in the literature [29], there is no other Pareto compliant unary
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indicator known so far [27]. This is the main reason why the HV indicator has been
almost always used for performance comparison of EMO algorithms. The HV indicator
has also been frequently used in indicator-based algorithms such as SMS-EMOA [3, 9],
HypE [2] and FV-MOEA [19]. As reported in the literature [25], HV-based algorithms
often have higher search ability for many-objective problems than Pareto dominance-
based algorithms (e.g., NSGA-II [6]).

However, HV calculation needs a huge computation load for a large solution set of
a many-objective problem (e.g., 500 non-dominated solutions of a 15-objective
problem). As a result, usually the HV indicator is not used in performance comparison
of EMO algorithms for many-objective problems with more than ten objectives. For
such a many-objective problem, the inverted generational distance (IGD [5, 22])
indicator is usually used. The IGD indicator has also been used in indicator-based EMO
algorithms [23, 24]. The main advantage of IGD over HV is its computational effi-
ciency. However, the IGD indicator is not Pareto compliant. This means that a better
solution set in terms of the Pareto dominance relation can be evaluated as being worse
by the IGD indicator (see [29] for the Pareto dominance-based “better” relation
between solution sets).

Recently the IGD plus (IGD+) indicator was proposed in [15] as a weakly Pareto
compliant version of IGD. Performance comparison results by the IGD+ indicator are
never inconsistent with the Pareto dominance relation. That is, when a solution set A is
better than another solution set B in terms of the Pareto dominance relation, B is never
evaluated as being better than A by the IGD+ indicator. In this case, B can be evaluated
as being better than A by the IGD indicator (as explained later in this paper). The weak
Pareto compliance is the main advantage of IGD+ over IGD. The IGD+ indicator has
also been used in indicator-based algorithms (e.g., [20]). A similar idea to IGD+ was
utilized to modify IGD in the indicator-based algorithm of Sun et al. [23].

Comparison of different indicators has been performed by examining the consis-
tency among performance comparison results through computational experiments (e.g.,
[18, 21]). In such a computational experiment, multiple solution sets were compared
and ranked by each indicator. Then the consistency in the ranking by each indicator
was analyzed. Whereas we can observe similarities (and dissimilarities) among per-
formance indicators from the consistency analysis of ranking results, characteristic
features of each indicator are still unclear. In this paper, we visually compare the HV,
IGD and IGD+ indicators by showing near-optimal distributions of solutions for each
indicator. This is to clearly explain what type of solution sets will be highly evaluated
(i.e., favored) by each indicator. This is also to clearly explain what type of solution
sets will be obtained by using each indicator in EMO algorithms.

This paper is organized as follows. In Sect. 2, the difference between the IGD and
IGD+ indicators is briefly explained. In Sect. 3, we discuss optimal distributions of
solutions for two-objective problems with linear, convex and concave Pareto fronts.
We show numerically obtained near-optimal distributions of solutions for each indi-
cator. Our experimental results demonstrate a clear similarity in the obtained solution
sets for optimizing the HV and IGD+ indicators. In Sect. 4, we discuss optimal dis-
tributions of solutions for three-objective problems with six types of Pareto fronts,
which are generated by combining three curvature properties (i.e., linear, convex and
concave) and two shape properties (i.e., triangular and inverted triangular). As in the
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case of two objectives in Sect. 3, a clear similarity between the HV and IGD+ indi-
cators is observed in Sect. 4 for the case of three objectives. Our experimental results
also demonstrate a strong dependency of the optimal distribution of solutions for HV
maximization on the choice of a reference point for HV calculation when test problems
have inverted triangular Pareto fronts. In Sect. 5, we conclude this paper. We also
discuss future research directions in Sect. 5.

2 IGD and IGD+ Indicators

Both the IGD and IGD+ indicators need a set of reference points on the Pareto front.
Let Z ¼ z1; z2; . . .; z Zj j

� �
be a set of reference points where zj ¼ zj1; zj2; . . .; zjm

� �
is a

point on the Pareto front in an m-dimensional objective space. The IGD value of a non-
dominated solution set A ¼ a1; a2; . . .; a Aj j

� �
is calculated as follows (where ai ¼

ai1; ai2; . . .; aimð Þ is a solution in the m-dimensional objective space):

IGDðAÞ ¼ 1
jZj

XjZj

j¼1

min
ai2A

dðai; zjÞ; ð1Þ

where d ai; zj
� �

is the Euclidean distance between ai and zj in the objective space. This
definition shows that the IGD value is the average distance from each reference point to
the nearest solution. The Euclidean distance between a solution a = a1; a2; . . .; amð Þ
and a reference point z ¼ z1; z2; . . .; zmð Þ is calculated in the IGD indicator as

dða; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

k¼1

ðak � zkÞ2
s

: ð2Þ

In the IGD+ indicator, the distance calculation is slightly modified. For mini-
mization problems, the distance between a and z is calculated as follows [15]:

dIGDþ ða; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

k¼1

ðmaxfak � zk; 0gÞ2
s

: Minimization Problemsð Þ ð3Þ

When the solution a is dominated by the reference point z, this is exactly the same
as the Euclidean distance since ak � zk for all k. In (3), when the solution a is not
inferior to the reference point z with respect to the kth objective (i.e., when ak � zk for
minimization problems), the kth objective has no effect on the distance calculation.

For maximization problems, the distance between the solution a and the reference
point z is calculated in the IGD+ indicator as follows [15]:

dIGDþ ða; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

k¼1

ðmaxfzk � ak; 0gÞ2
s

: Maximization Problemsð Þ ð4Þ
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As in (3), when the solution a is dominated by the reference point z, this distance is
exactly the same as the Euclidean distance since ak � zk for all k. When the solution a is
not inferior to the reference point z with respect to the kth objective (i.e., when ak � zk
for maximization problems), the kth objective has no effect in (4).

The distance calculation in the IGD and IGD+ indicators is illustrated in Fig. 1 for a
minimization problem where six reference points and four solutions are given.
The IGD indicator is the average distance from each reference point to the nearest
solution (i.e., the average length of the six arrows in Fig. 1(a)). The IGD+ indicator is
the average length of the six arrows in Fig. 1(b), i.e., the average distance from each
reference point to the nearest point in the dominated region by the solution set. Let us
assume that we have two solution sets A and B where A is better than B with respect to
the Pareto dominance relation (i.e., B is dominated by A). In this case, B can be
evaluated as being better than A by the IGD indicator as shown in Fig. 2(a). However,
B cannot be evaluated as being better than A by the IGD+ indicator. This is because the
dominated region by B is included in the dominated region by A as shown in Fig. 2(b).
Such an inclusion relation between the dominated regions by the two solution sets is
directly related to the weak Pareto compliant property of the IGD+ indicator.

0 f1

f2
Solution
Pareto Front

Reference Point

0 f1

f2

(a) IGD calculation. (b) IGD+ calculation.

Fig. 1. Illustration of the IGD and IGD+ indicators for a minimization problem.

B

0 f1

f2

A

0 f1

f2

(a) IGD calculation for B. (b) IGD+ calculation for A.

Fig. 2. Comparison of two solution sets A and B by the IGD and IGD+ indicators. The solution
set A is correctly evaluated as being better than B in (b) by the IGD+ indicator whereas B is
evaluated as being better than A in (a) by the IGD indicator.
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3 Optimal Distributions for Two-Objective Problems

The optimal distribution of solutions for HV maximization was theoretically derived
for two-objective problems in [1, 4, 10]. It was shown that the HV indicator is max-
imized by evenly distributed solutions when the Pareto front is linear. When the Pareto
front is nonlinear, it was shown that the optimal distribution of solutions depends on
the slope of the Pareto front. For multi-objective problems with three or more objec-
tives, the optimal distribution was empirically discussed in [12, 13]. The optimal
distribution of solutions for IGD minimization was discussed only for the case of linear
Pareto fronts in [14]. The IGD+ indicator has not been analyzed from the viewpoint of
the optimal distribution of solutions.

In this section, we show numerically obtained near-optimal distributions of solu-
tions for optimizing each indicator for two-objective problems. We used the framework
of SMS-EMOA [3, 9] to optimize each indicator for three types of Pareto fronts: linear,
concave and convex. We used two-objective versions of DTLZ1 (linear Pareto front
[8]), DTLZ2 (concave [8]), and Minus-DTLZ2 (convex [16]). We normalized the
objective space of each test problem so that the nadir point and the ideal point are (1, 1)
and (0, 0) in the normalized objective space, respectively. This is for easy comparison
of obtained distributions of solutions for each test problem.

The HV indicator needs a reference point. Let r = (r, r) be a reference point for HV
calculation in the normalized two-dimensional objective space. Four settings of the
reference point were examined: r = 1.0 (nadir point), r = 1.1 (suggested value in [13]
for fair performance comparison for the case of two objectives and the population size
11), r = 2 (100% larger than the nadir point), and r = 10 (far away from the Pareto
front). For the IGD and IGD+ indicators, we generated 1,001 reference points on the
Pareto front of each test problem using the 1,001 weight vectors (1.000, 0.000), (0.999,
0.001),…, (0.000, 1.000) of MOEA/D [26] as illustrated in Fig. 3 where the number of
weight vectors is five for illustration purposes.

1

10 f1

f2 Reference Point
1

10 f1

f2 Reference Point
1

10 f1

f2 Reference Point

(a) Linear Pareto front. (b) Concave Pareto front. (c) Convex Pareto front.

Fig. 3. Illustration of the reference point specification for IGD and IGD+ in this paper. Whereas
five points are generated in Fig. 3 for illustration purposes, the number of reference points in our
computational experiments is 1,001 for two-objective problems.
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An indicator-based algorithm with the SMS-EMOA framework was applied to each
test problem for optimizing each indicator under the following setting:

Number of distance variables: 0,
Number of position variables: m − 1 (m: Number of objectives),
Population size: 11,
Crossover: SBX with the index 20 (probability: 1.0),
Mutation: Polynomial mutation with the index 20

(probability: 1/L where L is the string length),
Termination condition: 100,000 generations.

The number of distance variables (i.e., k in the DTLZ test suite) was specified as 0.
This means that all feasible solutions are Pareto optimal. In this manner, we can focus
on the optimization of the distribution of solutions on the Pareto front. That is, the role
of the optimization algorithm under this setting is to adjust the location of each solution
on the Pareto front for optimizing each indicator. The execution of the optimization
algorithm was iterated 11 times for each test problem. The best result among those 11
runs with respect to the corresponding indicator is reported in this paper as a near-
optimal distribution of solutions. Experimental results are shown in Figs. 4, 5 and 6.
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(a) HV (r = 1.0). (b) HV (r = 1.1). (c) HV (r = 2.0).
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(d) HV (r = 10).     (e) IGD.  (f) IGD+.

Fig. 4. Results on the normalized DTLZ1 problem with the linear Pareto front.
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In Fig. 4 with the linear Pareto front, the HV indicator is maximized by evenly
distributed solutions (see [1, 4, 10, 13]). The two extreme points of the Pareto front are
included in the optimal distribution when r� 1=ðl� 1Þþ 1 where l is the population
size (i.e., r� 1:1 in Fig. 4). The IGD indicator is minimized by evenly distributed
solutions when the Pareto front is linear [14]. It seems that the IGD+ indicator is also
minimized by evenly distributed solutions when the Pareto front is linear. As a result,
all the obtained six solution sets in Fig. 4 are similar to each other.
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Fig. 5. Results on the normalized DTLZ2 problem with the concave Pareto front.

0.0

1.0

1.00.0
0.0

1.0

1.00.0
0.0

1.0

1.00.0

(a) HV (r = 1.0).     (b) HV (r = 1.1).  (c) HV (r = 2.0).

0.0

1.0

1.00.0
0.0

1.0

1.00.0
0.0

1.0

1.00.0

(d) HV (r = 10).     (e) IGD.  (f) IGD+.

Fig. 6. Results on the normalized Minus-DTLZ2 problem with the convex Pareto front.
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When the Pareto front is nonlinear in Figs. 5 and 6, the optimal distribution of
solutions for HV maximization depends on the slope of the Pareto front. The highest
density of solutions is at the region with the 45° slope. The density decreases as the
slope decreases or increases from the 45° slope. Thus more solutions are obtained
around the center of the Pareto front in Figs. 5(a)–(d) and 6(a)–(d). When the Pareto
front is convex in Fig. 6, solutions around the two extreme points of the Pareto front
cannot have large HV contributions. As a result, no solutions around the two extreme
points were obtained even in Fig. 6(c) with r = 2.0. On the contrary, the two extreme
points have large HV contributions in the case of the concave Pareto front in Fig. 5.
Thus, they were obtained in Fig. 5(b)–(d). Independent of the shape of the Pareto front,
the two extreme points cannot be obtained when the nadir point (i.e., r = 1.0) is used as
the reference point for HV calculation. This is because their HV contributions are
always zero when r = 1.0.

From Figs. 4, 5 and 6(e), we can see that similar distributions were obtained for
IGD minimization independent of the shape of the Pareto front. IGD minimization is to
minimize the average distance from each reference point on the Pareto front to the
nearest solution. This problem can be viewed as a clustering problem of the given
reference points. In Figs. 4, 5 and 6(e), the given 1,001 reference points are divided
into 11 clusters. That is, the Pareto front in each figure is divided into 11 lines or
curves. The nonlinearity of each segment (whose length is about 1/11 of the Pareto
front) is weak. That is, each segment is similar to a line even when the Pareto front is
nonlinear. As a result, similar distributions were obtained for IGD minimization in
Figs. 4, 5 and 6(e).

An interesting observation in Figs. 5 and 6 is that the results in (f) for IGD+

minimization are more similar to those in (b) for HV maximization with r = 1.1 than
those in (e) for IGD minimization. This can be explained by the IGD+ calculation
mechanism illustrated in Fig. 2(b). From Fig. 2(b), we can see that the calculation of
IGD+ is to approximately evaluate the difference between the true Pareto front and the
dominated region by a solution set. The minimization of this difference is the maxi-
mization of the HV of a solution set. That is, IGD+ minimization is closely related to
HV maximization. Thus, similar distributions of solutions were obtained in Figs. 5 and
6 from IGD+ minimization in (f) and HV maximization in (b). This similarity can be
also explained by the slope of the Pareto front. As shown in Figs. 5(f) and 6(f), the
Pareto front is very close to the dominated region by the obtained solutions in the
regions where the slope is close to 0 or 90°. Thus, many solutions are not needed for
IGD+ minimization in those regions. More solutions are needed around the center of
the Pareto front with the 45° slope. The importance of the two extreme points for IGD+

minimization depends on the shape of the Pareto front (i.e., concave or convex). These
characteristics of the optimal distribution for IGD+ minimization are the same as those
for HV maximization.
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4 Optimal Distributions for Three-Objective Problems

In this section, we show numerically obtained near-optimal distributions of solutions
for optimizing each indicator for three-objective problems in the same manner as in the
previous section. We used six test problems, which correspond to the six combinations
of three curvature properties (linear, concave and convex) and two shape properties
(triangular and inverted triangular) of the Pareto front as summarized in Table 1. All
test problems were normalized so that the ideal point and the nadir point are (0, 0, 0)
and (1, 1, 1) in the normalized objective space, respectively.

As in the previous section, we used the framework of SMS-EMOA to optimize
each indicator for the six three-objective problems. The population size was specified
as 66. Four settings of the reference point r = (r, r, r) were examined: r = 1.0 (nadir
point), r = 1.1 (suggested value in [13] for fair performance comparison for the case of
three objectives and the population size 66), r = 2 (100% larger than the nadir point),
and r = 10 (far away from the Pareto front). For the IGD and IGD+ indicators, we
generated 5,151 reference points on the Pareto front of each test problem using the
5,151 weight vectors (1.00, 0.00, 0.00), (0.99, 0.01, 0.00), …, (0.00, 0.00, 1.00) of
MOEA/D [26]. For each test problem with a triangular Pareto front, the weight vectors
were used from the ideal point as in Fig. 3(a) and (b) to generate 5,151 reference
points. The generated reference points were rotated to use them for the corresponding
rotated test problem with an inverted triangular Pareto front.

Experimental results are shown in Figs. 7, 8, 9, 10, 11 and 12. In Fig. 7 with the
linear triangular Pareto front, the effect of the location of the reference point for HV
calculation is small. The effect of the location of the reference point is also small in
Fig. 9 with the concave triangular Pareto front. Frequently-used test problems such as
DTLZ1-4 [8] and WFG4-9 [11] have linear or concave triangular Pareto fronts. Thus,
the importance of the location of the reference point for HV calculation has not been
stressed in the EMO community. However, when the Pareto front is inverted triangular
(Figs. 8, 10 and 12), the location of the reference point has a large effect on the optimal
distribution of solutions for HV maximization. This means that HV-based comparison
results strongly depend on the location of the reference point.

Among Figs. 7, 8, 9, 10, 11 and 12, only when the Pareto front is linear triangular
in Fig. 7, similar results are obtained from the six settings of the indicators (i.e., HV
with the four settings of the reference point, IGD and IGD+). In Fig. 8 with the linear
inverted triangular Pareto front, similar results are obtained from HV with r = 1.1, IGD

Table 1. Six three-objective test problems.

Problem DTLZ1 [8] Minus-
DTLZ1 [16]

DTLZ2 [8] Inverted
DTLZ2 [17]

Convex
DTLZ2 [7]

Minus-
DTLZ2 [16]

Curvature Linear Linear Concave Concave Convex Convex
Shape Triangular Inverted

triangular
Triangular Inverted

triangular
Triangular Inverted

triangular
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and IGD+. These observations suggest that similar comparison results are obtained
from the three indicators when the Pareto front is linear (and the reference point for HV
calculation is appropriately specified in the case of the inverted triangular Pareto front).

(a) r = 1.0.         (b) r = 1.1.         (c) r = 2.0.         (d) r = 10.           (e) IGD.            (f) IGD+.

Fig. 8. Results on Minus-DTLZ1 with the linear inverted triangular Pareto front.

(a) r = 1.0.         (b) r = 1.1.         (c) r = 2.0.         (d) r = 10.           (e) IGD.            (f) IGD+.

Fig. 9. Results on DTLZ2 with the concave triangular Pareto front.

(a) r = 1.0.         (b) r = 1.1.         (c) r = 2.0.         (d) r = 10.           (e) IGD.            (f) IGD+.

Fig. 10. Results on Inverted DTLZ2 with the concave inverted triangular Pareto front.

(a) r = 1.0.         (b) r = 1.1.         (c) r = 2.0.         (d) r = 10.           (e) IGD.            (f) IGD+.

Fig. 7. Results on DTLZ1 with the linear triangular Pareto front.
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As in the previous section, the obtained distributions of solutions for IGD mini-
mization in Figs. 7, 8, 9, 10, 11 and 12(e) are similar to each other (i.e., uniform over
the entire Pareto front). On the contrary, the obtained distributions of solutions for HV
maximization and IGD+ distributions strongly depend on the shape of the Pareto front.
When r = 1.1 (i.e., not too small and not too large), the obtained distributions for HV
maximization and IGD+ minimization are similar to each other. That is, the results in
(b) and (f) in Figs. 7, 8, 9, 10, 11 and 12 are similar to each other.

5 Conclusions

In this paper, we compared the three performance indicators (HV, IGD and IGD+)
through computational experiments where near-optimal distributions of solutions were
found for each indicator. We obtained the following observations:

(1) When the Pareto front was triangular (e.g., DTLZ1-4, WFG4-9), the location of
the reference point had almost no or very small effects on the obtained near-
optimal distributions of solutions for HV maximization.

(2) When the Pareto front was inverted triangular (e.g., Inverted DTLZ, Minus-
DTLZ, Minus-WFG), the location of the reference point had dominant effects on
the obtained near-optimal distributions of solutions for HV maximization.

(3) When the Pareto front was linear triangular (e.g., DTLZ1), similar distributions of
solutions were obtained for the three indicators.

(4) Evenly distributed solutions were always obtained for IGD minimization inde-
pendent of the shape of the Pareto front.

(a) r = 1.0.         (b) r = 1.1.         (c) r = 2.0.         (d) r = 10.           (e) IGD.            (f) IGD+.

Fig. 11. Results on Convex DTLZ2 with the convex triangular Pareto front.

(a) r = 1.0.        (b) r = 1.1.         (c) r = 2.0.         (d) r = 10.           (e) IGD.            (f) IGD+.

Fig. 12. Results on Minus-DTLZ2 with the convex inverted triangular Pareto front.
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(5) When the reference point was not too small and not too large (i.e., when it was
specified by the method in [13]), similar distributions of solutions were obtained
for HV maximization and IGD+ minimization independent of the shape of the
Pareto front.

These observations suggest that IGD+ can be used as a substitute for HV (i.e., as an
overall performance indicator) when the use of HV is not easy due to the large com-
putation load. It is also suggested that IGD+ and HV are not always good indicators for
evaluating the uniformity of solutions. Whereas IGD is not always a good overall
performance indicator due to its Pareto incompliant property, IGD is a good indicator
for evaluating the uniformity of solutions as shown in our computational experiments.

A future research topic is to examine the optimal distributions of solutions for
many-objective problems, which are often counter-intuitive as shown in [14] for the
IGD indicator on the 10-objective DTLZ1 problem. Another interesting research topic
is to examine the optimal distribution of solutions for other performance indicators
which were not examined in this paper. Theoretical discussions on the optimal dis-
tribution of solutions for the IGD+ indicator are also an important future research topic.
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Abstract. In this paper we propose a Diversity-Indicator based Multi-
Objective Evolutionary Algorithm (DI-MOEA) for fast computation of
evenly spread Pareto front approximations. Indicator-based optimiza-
tion has been a successful principle for multi-objective evolutionary opti-
mization algorithm (MOEA) design. The idea is to guide the search for
approximating the Pareto front by a performance indicator. Ideally, the
indicator captures both convergence to the Pareto front and a high diver-
sity, and it does not require a priori knowledge of the Pareto front shape
and location. It is, however, so far difficult to define indicators that scale
well in computation time for high dimensional objective spaces, and that
distribute points evenly on the Pareto front. Moreover, the behavior of
commonly applied indicators depends on additional information, such
as reference points or sets. The proposed DI-MOEA adopts a hybrid
search scheme for combining the advantages of Pareto dominance-based
approaches to ensure fast convergence to the Pareto front, with indicator
based approaches to ensure convergence to an evenly distributed, diverse
set. In addition, it avoids the use of complex structure and parameters in
decomposition-based approaches. The Euclidean distance-based geomet-
ric mean gap is used as diversity indicator. Experimental results show
that the new algorithm can find uniformly spaced Pareto fronts without
the involvement of any reference points or sets. Most importantly, our
algorithm performs well on both the hypervolume indicator and IGD
when comparing with state-of-the-art MOEAs (NSGA-II, SMS-EMOA,
MOEA/D and NSGA-III).
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1 Introduction

Many real-world problems require multiple objectives to be optimized, leading
us to the so-called “Multi-objective Optimization Problems (MOPs)” [7]. It is
usually difficult to find the optimal solutions for MOPs because their objectives
are often conflicting with each other, and we are searching for a representative
set of Pareto optimal solutions rather than for a single globally optimal solution
because no single solution exists that can simultaneously optimize all objectives.

Classical Pareto dominance-based MOEAs, such as NSGA-II [2], use Pareto
dominance as a first ranking criterion and use a second ranking criterion to
maintain and increase diversity. Pareto dominance-based MOEAs have been a
mainstream class for a long time in the field of evolutionary multi-objective opti-
mization (EMO). They are very efficient on MOPs with two or three objectives.
However, their performance degrades significantly on many-objective optimiza-
tion problems (MaOPs), in which the number of objectives is greater than three,
due to their ineffectiveness in distinguishing the quality of solutions when the
number of objectives becomes large.

As the performance assessment of MOEAs reached a mature stage, perfor-
mance measures (indicators) on the quality of Pareto front approximations were
adopted to search for solutions. These indicators capture both convergence and
diversity in a single value. Additionally for Pareto-compliant indicators, it can
be shown that they obtain their maximum in a diversified set of solutions on the
Pareto front. In general, Indicator-based Evolutionary Algorithms (IBEAs) [14]
have strong theoretical support. However, the commonly used performance indi-
cators lead to a convergence in distribution with a high density on the boundary
of the Pareto front, as well as on knee regions [1]. If the aim is to obtain uni-
formly distributed and evenly spread solution sets, so far only indicators that
employ an estimate of the true Pareto front as a reference set could be used.

Decomposition [6,13] is a search paradigm that was originally applied by
EMO two decades ago [7] and recently regained prominence from the MOEA/D
framework [13] and NSGA-III [3]. Decomposition-based MOEAs transform the
original multi-objective problem into simpler, single-objective subproblems by
means of scalarizations with different weights, therefore they can converge to
a well defined, diverse set. However, the central issue in decomposition-based
methods is how to select a set of weighting vectors that can provide a well
distributed set of Pareto optimal points, given that the location and shape of
the Pareto front are unknown a priori. Moreover, the number of weights required
to sample a Pareto front with a sufficient resolution suffers a exponential growth
from the objective space dimension [6].

Our paper suggests algorithms that combine principles from Pareto
dominance-based approach and from indicator-based algorithms. Instead of
requiring the indicator to take into account diversity and Pareto dominance,
we propose to

– use dominance rank as a primary selection indicator, in order to ensure con-
vergence to the Pareto front;
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– use performance indicators that measure the diversity of a set of mutually
non-dominated solutions.

However, as opposed to Pareto dominance-based approaches such as SPEA2
and NSGA-II that also maintain diversity, we decide the diversity of a set is
measured by a scalar value, such that convergence to a maximum diverse set
can be achieved and theoretically assessed.

The proposed diversity-indicator based MOEA (DI-MOEA) therefore takes
advantage of Pareto dominance-based approaches, and excludes the complex
structure and parameters in decomposition-based and contemporary indicator-
based approaches. Most importantly, experimental results show that our algo-
rithm can find well converged and evenly spaced Pareto front approximations
without the involvement of any reference points and assumptions about the loca-
tion and shape of the Pareto front.

The rest of this paper is organized as follows: First, in Sect. 2, we introduce
the diversity indicator. Then, we describe the proposed algorithm in Sect. 3.
Section 4 shows experimental results on benchmark problems. Section 5 con-
cludes the work and outlines some possible future work.

2 Diversity Indicators and Gap Contribution

There exist many indicators that assess the diversity of a distribution of points in
R

m. Among these, the Weitzman indicator and discrepancy measures have excel-
lent theoretical properties, but their computation is expensive. The Hausdorff
distance and related measures are indicators that would require the knowledge
of the set on which points should be distributed, which is typically not avail-
able in Pareto optimization. The Solow-Polasky indicator has been suggested
in the context of diversity assessment due to its moderate computational effort
and good theoretical properties [10]. However, it is sensitive to the choice of the
correlation strength parameter of an exponential kernel function and it requires
matrix inversion which might cause numerical instability. The gap indicators (or
the averages of distances to nearest neighbours) have been suggested in [4]. They
are very fast to compute and easy to implement diversity indicators. In addi-
tion, they have certain favorable theoretical properties and empirical results show
that their maximization results in diversified, evenly spread approximation sets.
These results were obtained for multimodal optimization [12] and evolutionary
level set approximation [9] for a wide range of test problems.

Let A define a set of points in R
m, D(x,A \ {x}) = mina∈A\{x}{d(x, a)} and

d denote the Euclidean distance, then the gap indicators (GI) are defined as
follows:

GImin(A) = min
x∈A

{D(x,A \ {x})} Minimal gap

GIΣ(A) =
1

|A|
∑

x∈A D(x,A \ {x}) Arithmetic mean gap

GIΠ(A) = (
∏

x∈A D(x,A \ {x}))
1

|A| Geometric mean gap
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Note, that GImin is the well known diversity indicator used in the max-min
diversity problem [5]. One can leave out the exponent in GIΠ and this yields
the product distance to the nearest neighbour (PDNN) indicator, considered by
Wessing [12] in the context of multimodal optimization. Wessing [12] pointed out
that GIΠ obtains the value of zero in case of duplicates in the set, a property
that also holds for GImin. Besides, it can only be used for comparing sets of
equal size. Since we are using the indicator contribution as a relative measure of
performance of points, these two properties do not cause problems.

In indicator-based steady state selection [1], the aim is to optimize a quality
indicator QI for a solution set. W.l.o.g. we assume the quality indicator is to
be maximized. The selection strategy is to add a non-dominated solution x to
an approximation set A of size μ and then retain the best subset S ⊂ P with
|S| = μ of the new set P = A∪{x}. This can be achieved by removing the point
that contributes the least to the quality indicator. The indicator contribution of
a point p ∈ P is defined as:

ΔQI(p, P ) ← QI(P ) − QI(P \ {p})

In our algorithm, the set-indicator contribution of the individual p ∈ P is defined
as the difference of the geometric mean gap indicator value of the set with the
individual p minus the indicator-value of the set without it. The computation of
the minimal contributor in case of the gap indicators can be solved by computing
the solution to the all point nearest neighbour problem (APNN). The straight-
forward implementation, i. e. measuring distance between all pairs, requires a
running time of O(n2). The APNN problem can be solved by Vaidya’s algo-
rithm [11] in optimal time O(n log n) for a fixed dimensional space and any
Minkowski metric, including the Euclidean metric. We propose to choose the
Euclidean distance due to its rotational invariance.

3 Proposed Algorithm

In the algorithm, we utilize a hybrid selection scheme: the (μ + μ) generational
selection operator and the (μ + 1) steady state selection operator. The algorithm
consists of two components:

– The (μ + μ) generational selection operator: When the population is layered
to multiple (more than one) dominance ranks, it indicates that the popula-
tion has not yet converged to the true Pareto front. In this case, the (μ + μ)
generational selection operator is used to explore the decision space for domi-
nating solutions. In this stage, a strict consideration of the diversity indicator
is not yet the key determinant factor. Rather the first priority should be to
push the population quickly to the Pareto front. Still, diversity is considered
as a secondary ranking criterion in order to bring the points in a good start-
ing position for searching for a uniformly distributed population. Overall, the
selection operator is using non-dominated sorting as a primary ranking crite-
rion, then if more than μ solutions are obtained by adding a layer, we propose
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two alternative strategies to truncate: the crowding distance (variant 1 ) as in
NSGA-II, and the diversity indicator contribution (variant 2 ), where points
are successively removed in a greedy manner and the contributions are recom-
puted after each removal. Under the condition that the μ selected solutions
are mutually non-dominated after an iteration, the algorithm switches to the
(μ + 1) steady state selection operator.

– The (μ + 1) steady state selection operator: When the parent population
consists of only one non-dominated set, it is likely that the population has
already reached a region near the Pareto front. In this case, the indicator-
based (μ+1) steady state selection operator is applied, as described in Sect. 2.
It discards the least contributor to the quality indicator, here, the diversity
indicator. The intent is to achieve a uniformly distributed set on the Pareto
front, that is to converge to a maximum of the diversity indicator. If there are
more than one dominance ranks in the resulting population, the algorithm
switches back to a (μ + μ) generational selection operator.

Besides the hybrid selection scheme, another important design choice is the qual-
ity indicator, to be specific, the Euclidean distance based geometric mean gap
indicator is used to guide the search towards the uniformly distributed Pareto
front approximations regardless of the shape of the Pareto front.

The proposed algorithm is presented as pseudo-code in Algorithm1 and a
MOEA-Framework implementation is made available on http://moda.liacs.nl.

4 Experimental Results and Discussion

4.1 Experimental Setup

In this section, simulations are conducted to demonstrate the performance of the
proposed algorithm. Because two different diversity measures are employed in the
(μ + μ) generational selection operator, two variants of DI-MOEA are involved
in the experiments: the crowding distance and the set-indicator contribution are
chosen as the second measure in the generational (μ + μ) selection operator in
algorithm DI-1 and algorithm DI-2 respectively.

All experiments are implemented based on the MOEA Framework 2.1
(http://www.moeaframework.org/), which is a Java-based framework for multi-
objective optimization. In the simulations, we use the SBX operator with an
index of 15 (30 in NSGA-III and a differential evolution operator is used in
MOEA/D.) and polynomial mutation with an index 20. The crossover and muta-
tion probabilities are set to 1 and 1/N respectively and N is the number of vari-
ables. In NSGA-III, the number of subdivisions is 99 for bi-objective problems,
and 12 for three objective problems. The number of evaluation (NE) is chosen
to be dependent on the complexity of the test problem. 20000 NE is used for
ZDT problems and 100000 NE for DTLZ problems. The population size is 100
for all problems.

http://moda.liacs.nl
http://www.moeaframework.org/
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Algorithm 1. DI-MOEA
1: P0 ← init(); //Initialize random population
2: popsize ← |P0|;
3: (R1, ..., R�0) ← Partition P0 into subsets of increasing dominance rank; //Non-

dominated sorting
4: for each i ∈ {1, . . . , �0} do
5: calculate diversity indicator for all solutions based on the current front;
6: t ← 0;
7: while Stop criterion not satisfied() do
8: if �t > 1 || t == 0 then
9: // (μ + μ) selection operator

10: Qt ← Gen(Pt); // Generate offspring with the size of popsize by variation
11: Evaluate Qt;
12: Pt = Pt ∪ Qt // Combine offspring and parents
13: (R1, ..., R�t) ← Partition P0 into subsets of increasing dominance rank; //Non-

dominated sorting
14: i ← 0; Pt+1 ← ∅;
15: while |Pt+1| < popsize do
16: Pt+1 ← all solutions on i-th front Ri;
17: i ← i + 1;
18: if |Pt+1| > popsize then
19: n ← |Pt+1| − popsize
20: while n > 0 do
21: calculate diversity indicator for all solutions on the last front;
22: remove the least contributor solution based on rank and diversity;
23: n ← n − 1;
24: else
25: // (μ + 1) selection operator
26: q ← Gen(Pt); // Generate only an offspring by variation
27: Pt ← Pt ∪ {q};
28: Rank Pt based on Pareto dominance rule; //Non-dominated sorting
29: for each front do
30: calculate set-indicator contribution for all solutions on the least ranked

front |R�t |, if |R�t | > 1;
31: remove the least contributor to diversity-indicator on the least ranked front;

4.2 Experiments on Bi-objective Problems

For bi-objective problems, algorithms are tested on ZDT1, ZDT2 and ZDT3 with
30 variables. Two new algorithms, DI-1 and DI-2, are compared with NSGA-
II, SMS-EMOA, NSGA-III and MOEA/D. Tables 1 and 2 show the aggregate
hypervolume and aggregate inverted generational distance (IGD) across 30 runs.
The aggregate value is the value obtained when the Pareto solutions from all runs
are combined into one. For each problem in the two tables, the upper row denotes
the aggregate hypervolume/IGD. (The best value is highlighted in bold.) The
lower row is the standard deviation (Std) of results from 30 runs. The Mann-
Whitney U test is used to determine if the medians of different algorithms for
the same problem are significantly indifferent. In the tables, we also highlight
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algorithms whose median performance is indifferent to the algorithm with the
best aggregate performance. It can be observed that SMS-EMOA or NSGA-III
can achieve the best hypervolume and the best IGD on all three problems, and
the proposed DI-MOEA can obtain better hypervolume and IGD than NSGA-II
and MOEA/D. In some instances, DI-MOEA can even get better hypervolume
and IGD than NSGA-III or SMS-EMOA.

Table 1. The aggregate hypervolume on bi-objective problems

Hypervolume NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std ↘
ZDT1 0.66399 0.66602 0.66428 0.66029 0.66473 0.66491

4.8379e−04 7.2331e−05 3.9507e−04 0.0028 3.5973e−04 2.8447e−04

ZDT2 0.33002 0.33265 0.33266 0.32849 0.33073 0.33141

4.7756e−04 8.7207e−05 0.0086 0.0030 4.9232e−04 5.8483e−04

ZDT3 0.51600 0.51718 0.51720 0.51582 0.51623 0.51634

3.9954e−04 0.0013 0.0010 0.0011 4.1969e−04 2.7955e−04

Table 2. The aggregate IGD on bi-objective problems

IGD NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std ↘
ZDT1 0.00163 0.00039 0.00168 0.00385 0.00116 0.00106

2.6517e−04 1.9915e−05 8.2835e−04 0.0018 1.4110e−04 9.7026e−05

ZDT2 0.00202 0.00084 0.00051 0.00247 0.00159 0.00120

2.1844e−04 1.0340e−04 0.0088 0.0014 2.1557e−04 2.4062e−04

ZDT3 0.00092 0.00037 0.00054 0.00190 0.00087 0.00092

1.5809e−04 0.0100 0.0080 8.6720e−04 1.6713e−04 1.3157e−04

4.3 Experiments on Three Objective Problems

For three objective problems, DTLZ1 with 7 variables, DTLZ2 with 12 variables
and DTLZ7 with 22 variables are tested. Both DI-1 and DI-2 behave very well,
and they are indifferent on the statistical significance of median hypervolume and
IGD. Statistical data averaging 10 runs per problem and algorithm are shown on
Tables 3 and 4. DI-1 beats all the algorithms on the aggregate hypervolume on all
problems, and DI-2 also behaves better than other algorithms except for SMS-
EMOA on DTLZ1. For IGD, the new algorithms perform the best on DTLZ1
and DTLZ2 problems. NSGA-II obtains the best IGD on DTLZ7, while IGD
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Table 3. The aggregate hypervolume on three objective problems

Hypervolume NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std ↘
DTLZ1 0.80605 0.80732 0.78400 0.80198 0.80806 0.80645

0.0062 1.8738e−04 0.0179 0.0015 0.0013 6.1716e−04

DTLZ2 0.44263 0.45269 0.41915 0.42907 0.45511 0.45489

0.0070 5.8698e−05 5.1471e−04 0.0031 0.0033 0.0014

DTLZ7 0.31064 0.24694 0.30624 0.30164 0.31227 0.31339

0.0034 0.0038 0.0328 0.0055 0.0051 0.0137

Table 4. The aggregate IGD on three objective problems

IGD NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std ↘
DTLZ1 0.02149 0.02074 0.04266 0.02779 0.01966 0.02381

0.0063 8.1450e−04 0.0159 0.0018 0.0017 0.0016

DTLZ2 0.02414 0.03415 0.05181 0.03902 0.01799 0.01909

0.0047 0.0014 2.1056e−04 0.0026 0.0019 0.0030

DTLZ7 0.01820 0.09182 0.02381 0.041367 0.01826 0.02191

0.0027 0.0020 0.2151 0.0867 0.0017 0.0944

values of DI-1 and DI-2 are only slightly lower than NSGA-II on DTLZ7, but
better than all other algorithms.

To easily observe the results of algorithms, we visualized the results on the
three objective problems. Figure 1 shows the Pareto front approximations of a
typical run on DTLZ1. It can be observed that the solutions of NSGA-II and
MOEA/D are not uniformly distributed, and there are several overlaps in the
result of NSGA-III. While, SMS-EMOA and our algorithms can obtain evenly
spaced solutions on the linear Pareto front.

Figure 2 shows the Pareto front approximations of a typical run on DTLZ2.
For NSGA-III, we observed the same phenomenon: some solutions are overlap-
ping or very close. The result of SMS-EMOA is distributed across the Pareto
front with emphasis on the boundary and knee regions of the Pareto front.
The results of the two DI-MOEA variants are uniformly distributed and evenly
spaced on the Pareto front.

DI-MOEA also behaves well on the multimodal DTLZ7 problem, which has
non-linear disconnected Pareto front regions. Figure 3 shows the results under
200 population size and 500000 NE.

When running the DI-MOEA, it can be observed that the population evolves
towards the Pareto front at the initial stage (the first phase) using the genera-
tional selection operator. After a short period where the two selection operators
alternate (the second phase), the steady state selection operator takes over and



354 Y. Wang et al.

Fig. 1. Representative PF approximations on DTLZ1.

the population converges to a set with maximum diversity (the third phase).
When the number of objectives becomes large, the third phase is more promi-
nent than the previous two phases because it is more likely for solutions to be
mutually non-dominated for a large objective number. In the runs conducted on
three objective problems in this paper, the generational selection operator was
applied around 100–200 iterations before it switched to the steady state selection
operator for the first time. The intermittent alternating phase took about 20–50
iterations, and in most of the running time, the algorithm used the steady state
selection operator and throughout this phase, only occasionally the algorithm
switched back to generational selection operator for at most a single iteration.
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Fig. 2. Representative PF approximations on DTLZ2.

Overall, the first and the second phase took only a minor amount of the total
running time.

It is worth noting that we observed Dominance Resistant Solutions (DRSs)
[8] occasionally on the linear Pareto front of DI-2 on DTLZ1 three objective prob-
lem; these are points that have a large contribution to diversity, but dominate
only a very narrow region exclusively. It might be necessary to keep these “special
solutions”, but on the other side, they make the Pareto front approximation less
evenly distributed. We already tested a strategy to eliminate DRSs. Before the
calculation of the set-indicator contribution for a front, each solution is checked
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Fig. 3. Representative PF approximations on DTLZ7.

by comparing with all other solutions: the distances between two solutions in
all dimensions are calculated, if the result of the minimal distance divided by
the maximal distance is too small, the current solution will be removed from
the front. Therefore, a shrinked front is created and diversity indicator can be
calculated only in the new front. The underlying idea of this strategy is that
for two solutions, if their distance is too close in one dimension and too large in
another dimension, keeping both of them will result in an uneven distribution.
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5 Conclusions and Further Work

The proposed DI-MOEA combines the advantage of Pareto dominance-based
and indicator-based methods. Moreover, the achieved Pareto front approxima-
tions are excellent in both hypervolume indicator and IGD. Especially, the rel-
ative performance of our algorithms even gets better with increasing number of
objectives. The set-indicator used in our algorithms is computationally simpler
than the hypervolume indicator and only depend linearly on the number of objec-
tives, making it possesses a potential advantage on MaOPs. Most importantly,
the uniformly distributed, evenly spaced solution set can be achieved without
the use of decomposition sets and the estimation of the location and shape of
the true Pareto front.

In the current implementation of DI-MOEA, only a naive way of calculating
the Euclidean distance based geometric mean gap is implemented. Although
the computational time of the implemented algorithm is shorter than SMS-
EMOA, it should be further improved, e.g., by using Vaidya’s algorithm [11]
and incremental updates of contributions. Besides, the new DI-MOEA holds the
promise of performing well in many-objective optimization. To study this, its
performance should be tested on MaOP benchmarks, paying special attention
to effects that might occur in high dimensional objective spaces, such as distance
concentration and the increasing number of non-dominated solutions. Also, more
MOEAs can be involved in comparison, such as MACE-gD [6] and IBEA [14].
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Abstract. In multi-objective Bayesian optimization, an infill criterion
is an important part, as it is the indicator to evaluate how much good
a new set of solutions is, compared to a Pareto-front approximation
set. This paper presents a deterministic algorithm for computing the
Expected R2 Indicator for bi-objective problems and studies its use as
an infill criterion in Bayesian Global Optimization. The R2-Indicator
was introduced in 1998 by M. Hansen and A. Jaszkiewicz for performance
assessment in multi-objective optimization and is more recently also used
in indicator-based multi-criterion evolutionary algorithms (IBEAs). In
Bayesian Global Optimization, we propose the Expected R2-indicator
Improvement (ER2I) as an infill criterion. It is defined as the expected
decrease of the R2 indicator by a point that is sampled from a predic-
tive Gaussian distribution. The ER2I can also be used as a pre-selection
criterion in surrogate-assisted IBEAs. It provides an alternative to the
Expected Hypervolume-Indicator Improvement (EHVI) that requires a
reference point, bounding the Pareto front from above. In contrast, the
ER2I works with a utopian reference point that bounds the Pareto
front from below. In addition, the ER2I supports preference modelling
with utility functions and its computation time grows only linearly with
the number of considered weight combinations. It is straightforward to
approximate the ER2I by Monte Carlo Integration, but so far a determin-
istic algorithm to solve the non-linear integral remained unknown. We
outline a deterministic algorithm for the computation of the bi-objective
ER2I with Chebychev utility functions. Moreover, we study monotonic-
ity properties of the ER2I w.r.t. parameters of the predictive distribution
and numerical simulations demonstrate fast convergence to Pareto fronts
of different shapes and the ability of the ER2I Bayesian optimization to
fill gaps in the Pareto front approximation.

Keywords: R2 indicator · Expected improvement ·
Surrogate models · Multiobjective Bayesian optimization ·
Chebychev utility function

1 Introduction

A central object of interest for multi-objective optimization is the Pareto Front
(PF) for the minimization of a vector-valued function f : R

d → R
n, where
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f = (f1, . . . , fn) denotes the objective functions1. Many algorithms have been
developed in order to approximate PFs by finite sets. An approximation set to
the PF is a finite, non-dominated set consisting of image points of the feasible
set – a set is non-dominated with respect to the Pareto order if for each element
of the set one cannot find an element of the set that Pareto dominates it.

The indicator based algorithms for multi-objective optimization problems are
guided by performance indicators for the quality of approximation sets. So-called
unary indicators are of particular interest, as they do not require the knowledge
of the Pareto front. Among the unary indicators, besides the hypervolume indi-
cator, the R2 indicator [5] attracted wide spread interest, also in many-objective
optimization. It is relatively frugal in using computational resources as compared
to other indicators such as the hypervolume indicator and requires a user-defined
utopian (or ideal) point, instead of a reference point that bounds the Pareto front
from above – as it is required by the hypervolume indicator. In many practical
applications, such as resource or error minimization, a utopian point is easier
to provide or more natural to the problem. The R2 indicator was introduced by
Hansen and Jaszkiewicz [5] and it was proposed and studied for indicator-based
evolutionary algorithm design by Brockhoff, Wagner and Trautmann [2]. Strictly
speaking, the R2 indicator is a family of indicators that average a utility func-
tion over different choices of its weighting parameters. A common choice is the
R2 indicator with the Chebychev utility function, which, as opposed to a linear
weighting utility function, is also suitable for concave Pareto fronts.

Fig. 1. Pareto front approximation and 2-D predictive distribution.

In the optimization with expensive black box objective functions, it is com-
mon to use statistical models fitted by data from past evaluations of the expen-
sive objective functions (surrogate models) to guide the search. Surrogate-model
assisted Evolutionary Algorithms (SEA) and Bayesian (global) optimization
are two examples where this strategy is used. Bayesian (Global) Optimization

1 Here we restrict ourselves to continuous optimization.
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(BGO) originated by Žilinskas and Mockus [7,9] selects a single point to be eval-
uated in each iteration based on an expected improvement infill criterion that
is defined on a Gaussian process model (GP) learned by all past evaluations.
Recently, different generalization of infill criteria for multi-objective optimiza-
tion were proposed. They use Gaussian process based predictions with uncer-
tainty quantification (mean value μ(x), stddev. σ(x) for x ∈ R

d) of vector val-
ued function as illustrated in Fig. 1. Examples of such algorithms are ParEGO
[6], S-Metric Selection EGO [8], or the Expected Hypervolume Improvement
Algorithm [4]. In parallel, statistical models learned from past evaluations were
used in surrogate-model assisted multi-criterion optimization. Besides, BGO,
also surrogate-model assisted evolutionary algorithms use expected improvement
criteria for selecting promising points [1].

In this paper, in Sect. 2 we propose the expected improvement indicator based
on the R2 indicator improvement of an approximation set that can be computed
by Monte Carlo methods, and for the biobjective case we provide an accurate
deterministic procedure for its computation (Sect. 3). Moreover, we study its
sensitivity with respect to changes of the mean and variance of the Gaussian
process prediction, as well as its ability to guide BGO towards the Pareto front
and to fill in the gaps in a Pareto front approximation (Sect. 4).

2 The R2 Indicator and Its Expected Improvement

From now on, we will consider solely Chebychev utility functions derived from
weighted Chebyshev distance functions, i.e., functions of the form dwc(a, b) :=
maxi∈{1,··· ,n} λi|ai−bi| for some λ ∈ R

n
≥0, i = 1, · · · , n, i.e., λi is non-negative. A

point in R
n is called utopian if and only if it is not dominated by an element of

f(X ). Technically the R2 indicator for finite approximation sets P ⊆ R
n to the

Pareto front with respect to some utopian point z∗ ∈ R
n and U = {u1, · · · , us}

– s ∈ N – a finite set of utility functions each provided with a probability
pi, p1 + · · · ps = 1 is defined as follows:

R2(P,U, z∗) :=
s∑

i=1

pi(ui(z∗) − max
a∈P

{ui(a)}).

For a uniform distribution - the one we will use exclusively – this boils down to:

R2(P,U, z∗) :=
1
s

s∑

i=1

(ui(z∗) − max
a∈A

{ui(a)}).

By keeping the utopian point fixed this reduces to:

R2(P,U) =
1
s

s∑

i=1

min
a∈P

{ui(a)}, as
1
s

s∑

i=1

ui(z∗) is a constant.

We can specialize U to a set of utility functions derived from a set of distance
functions as follows: for each u ∈ U there is a distance function d on R

m such
that u(a) = d(z∗, a), a ∈ R

n. Note also if d is a distance function, then λd, where
λ is a positive, real number, is a distance function as well.
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Example 1. An example is given in Fig. 2. The set U exists of a singleton with
U = {(λ1, λ2)} = (λ1 = 3/8, λ2 = 5/8). The utopian point is given by (z1, z2) =
(1, 2). The approximation set is given by P = (p(1), . . . ,p(4)) and p(3) determines
the minimal utility function value of all points in P , which is dwc = 9/6. In the
case of a singleton U this value (9/6) is also the resulting R2-indicator value.
Note that the R2 indicator is defined as the average over all weight vectors in U
and therefore it can be computed by means of a summation, when U contains
more than one element.

Fig. 2. Example R2 indicator for an approximation set P to the PF, U is a singleton,
with U = {(λ1, λ2)}, λ1 = 3/8, λ2 = 5/8. (Color figure online)

2.1 Expected R2-Indicator Improvement

The improvement of the R2 indicator is defined as follows: the R2 indicator
is evaluated on the given approximation set of the PF to which a point in the
image of the feasible set is added. The resulting difference is the R2-improvement
of the chosen point with respect to the given approximation set. The expected
improvement is the mean of the improvement over dominated set by the utopian
point in R

n with respect to the given pdfx.

ER2I(x) =
∫

y∈[z,∞)

(R2(P ∪ {y}) − R2(P )) pdfx(z;μ, σ,y)dy (1)

It is important to consider the truncated Gaussian probability density func-
tion, that is the predictive distribution conditioned by the knowledge that the
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utopian point dominates all potential solutions. Assuming conditional indepen-
dence of outputs w.r.t. to a given input the function pdfx is defined as:

pdfx(z;μ, σ,y) :=
n∏

i=1

1
σi

· φ(
yi − μi

σi
)/

n∏

i=1

(
1 − Φ(

zi − μi

σi
)
)

3 Computation of the Expected R2-Indicator
Improvement

In order to derive the formulas for the expected improvement for the 2-D R2-
indicator (R2-indicator for biobjective optimization), we use the following vari-
ables.

1. z = (z1, z2)� is the utopian point.
2. m is the current value of the R2-indicator for some set, say some approxima-

tion set to the PF.
3. The Chebyshev weights are λ = (λ1, λ2)�

4. a := m
λ1

+ z1 and b := m
λ2

+ z2

5. The line y2 = λ1
λ2

y1 + z2 − z1
λ1
λ2

through the utopian point: above this line
the weighted Chebyshev distance to the utopian point is equal to λ2|y2 − z2|
for a point (y1, y2)� ∈ R

2; similarly for a point below this line the weighted
Chebyshev distance to the utopian point is equal to λ1|y1 − z1| – we assume
non-negative Chebyshev weights.

6. With the above notation: the m-Chebyshev ball with center the utopian
point intersected with the dominated space of the utopian point is equal
to [z, (a, b)�].

7. d := z2 − λ1
λ2

· z1

In the upper triangle (the blue triangle in Fig. 2), the R2-indicator improvement
for a point (y1, y2)� is equal to λ2(b − y2) and in the lower triangle it is equal
to λ1(a − y1). Therefore, we split the integration for the expected improvement
with respect to a predictive distribution in two parts (i.e., we integrate over the
lower triangle and subsequently over the upper triangle). Since we assume that
for the minimization problems we are thinking of, we know a priori that solution
vectors in the decision space will map to points of the dominated space of the
utopian point, we need to truncate the predictive distributions to this quadrant.
Therefore we need to normalize. The normalization magnitude (the integral of
the predictive distribution over the dominated space of the utopian point) is
denoted by N .

The lower triangle:

1
N

1√
2πσ2

1

1√
2πσ2

2

a∫

z1

λ1
λ2

y1+d∫

z2

λ1(a − y1)e
− 1

2 (
y2−μ2

σ2
)2e− 1

2 (
y1−μ1

σ1
)2dy2dy1 (2)
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The upper triangle:

1
N

1
2πσ1σ2

a∫

z1

b∫

λ1
λ2

y1+d

λ2(b − y2)e
− 1

2 (
y2−μ2

σ2
)2e− 1

2 (
y1−μ1

σ1
)2dy2dy1 (3)

The sum of these two integrals is the expected improvement of the R2-indicator
at the weight vector λ. For the R2-indicator, the expected improvement at each of
the s weight vectors λ(i) : i = 1, · · · , s is computed, then the expected improve-
ment is the average of these numbers.

In future we will omit the factor 1
N

1
2πσ1σ2

, and we will assume that the
following integrals we compute need to be pre-multiplied by this factor. We
continue with Expression (2):

a∫

z1

λ1(a − y1)e
− 1

2 (
y1−μ1

σ1
)2

λ1
λ2

y1+d∫

z2

e− 1
2 (

y2−μ2
σ2

)2dy2dy1 = (4)

a∫

z1

λ1(a − y1)e
− 1

2 (
y1−μ1

σ1
)2

[√
π

2
· σ2 erf(

y2 − μ2√
2σ2

)
]λ1

λ2
y1+d

z2

dy1 = (5)

a∫

z1

λ1ae− 1
2 (

y1−μ1
σ1

)2
[√

π

2
· σ2 erf(

y2 − μ2√
2σ2

)
]λ1

λ2
y1+d

z2

dy1− (6)

a∫

z1

λ1y1e
− 1

2 (
y1−μ1

σ1
)2

[√
π

2
· σ2 erf(

y2 − μ2√
2σ2

)
]λ1

λ2
y1+d

z2

dy1 = (7)

λ1

√
π

2
· σ2

a∫

z1

ae− 1
2 (

y1−μ1
σ1

)2

[
erf(

λ1
λ2

y1 + d − μ2√
2σ2

) − erf(
z2 − μ2√

2σ2

)

]
dy1− (8)

λ1

√
π

2
· σ2

a∫

z1

y1e
− 1

2 (
y1−μ1

σ1
)2

[
erf(

λ1
λ2

y1 + d − μ2√
2σ2

) − erf(
z2 − μ2√

2σ2

)

]
dy1. (9)

Unraveling Expression (8) and (9) we get the following 4 integrals:

Integral I

λ1

√
π

2
· σ2a

a∫

z1

e− 1
2 (

y1−μ1
σ1

)2 erf

(
λ1
λ2

y1 + d − μ2√
2σ2

)
dy1+ (10)
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Integral II

− λ1

√
π

2
· σ2a erf

(
z2 − μ2√

2σ2

) a∫

z1

e− 1
2 (

y1−μ1
σ1

)2dy1+ (11)

Integral III

λ1

√
π

2
· σ2

a∫

z1

y1e
− 1

2 (
y1−μ1

σ1
)2 erf

(
λ1
λ2

y1 + d − μ2√
2σ2

)
dy1+ (12)

Integral IV

− λ1

√
π

2
· σ2 erf

(
z2 − μ2√

2σ2

) a∫

z1

y1e
− 1

2 (
y1−μ1

σ1
)2dy1. (13)

In turn we shall evaluate the Integrals I, II, III, and IV. For Integral I (Expres-
sion (10)) we apply the following substitution: t := 1√

2

y1−μ1
σ1

. Applying this
substitution, Integral I is transformed into:

λ1

√
π

2
· σ2

1√
2

a−μ1
σ1∫

1√
2

z1−μ1
σ1

e−t2 erf
(

λ1

λ2

σ1

σ2
t +

λ1μ1 + λ2d − λ2μ2√
2σ2λ2

)√
2σ1dt = (14)

λ1

√
π · σ2σ1

1√
2

a−μ1
σ1∫

1√
2

z1−μ1
σ1

e−t2 erf (At + B) dt, (15)

where A := λ1
λ2

σ1
σ2

and B := λ1μ1+λ2d−λ2μ2√
2σ2λ2

As erf(x) = 2√
π

∑∞
i=0

(−1)ix2i+1

i!·(2i+1)

with a radius of convergence equal to ∞, we can approximate the error function
to any degree of accuracy. Integral I is approximately equal to:

λ1

√
π · σ2σ1

1√
2

a−μ1
σ1∫

1√
2

z1−μ1
σ1

e−t2 2√
π

(
(At + B)1

0! · 1
− (At + B)3

1! · 3
+

(At + B)5

2! · 5

)
dt. (16)

The function 2√
π
e−t2

(
(At+B)1

0!·1 − (At+B)3

1!·1 + (At+B)5

2!·5
)

has a primitive, and it is
computed in terms of A and B as follows.

∫
exp(−t2) · 2√

π

2∑

i=0

(−1)i

i! · (2i + 1)
(At + B)2i+1dt = (17)
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2√
π

(
−1

2
A exp(−t2) +

1
2
B

√
π erf(t)

)
− 1

6
erf(t)B(3A2 + 2B2)+ (18)

− 1
6
√

π
exp(−t2)(−2A) [ 3B2 + 3ABt + A2(1 + t2) ]+ (19)

1
40

√
π

exp(−t2) (−2A) [10B4 + 2AB3t + 20A2B2(1 + t2)]+ (20)

1
40

√
π

exp(−t2) (−2A)[5A3Bt(3 + 2t2) + 2A4(2 + 2t2 + t4)]+ (21)

1
40

B erf(t)
[
15A4 + 20A2B2 + 4B4

]
. (22)

This shows the first part of our task. Next we compute Integral II (Expression
(11)):

−λ1

√
π

2
· σ2a erf

(
z2 − μ2√

2σ2

) a∫

z1

e− 1
2 (

y1−μ1
σ1

)2dy1 =

− λ1

√
π

2
· σ2a erf

(
z2 − μ2√

2σ2

)√
π

2
σ1

[
erf

(
a − μ1√

2σ1

)
− erf

(
z1 − μ1√

2σ1

)]
, (23)

as
∫

e− 1
2 (

y1−μ1
σ1

)2dy1 =
√

π
2σ1 erf

(
y1−μ1√

2σ1

)
.

Next we proceed to compute Integral III (Expression (12)). For this integral
we apply the same substitution as for Integral I, obtaining:

λ1
1√
2

√
πσ2

1√
2

a−μ1
σ1∫

1√
2

z1−μ1
σ1

(
√

2σ1t + μ1)e
−t2 erf

(
λ1σ1

λ2σ2
t +

λ1μ1 + λ2d − λ2μ2√
2λ2σ2

) √
2σ1dt =

(24)
As before we rewrite this in terms of A and B:

λ1

√
πσ1σ2

1√
2

a−μ1
σ1∫

1√
2

z1−μ1
σ1

(
√

2σ1t + μ1)e−t2 erf (At + B) dt = (25)

√
πσ2

1σ2

√
2

1√
2

a−μ1
σ1∫

1√
2

z1−μ1
σ1

te−t2 erf (At + B) dt+ (26)

λ1

√
πσ1σ2μ1

1√
2

a−μ1
σ1∫

1√
2

z1−μ1
σ1

e−t2 erf (At + B) dt. (27)
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The primitive of the first summand of Eq. 26 is equal to
∫

te−t2 erf (At + B) dt =
− 1

2e−t2 erf (At + B)+
∫

1
2e−t2 2A√

π
e−(At+B)2dt. Now we can apply the completing

of the square to find the primitive of e−t2e−(At+B)2 = e−((A2+1)t+2ABt+B2) =

e
−(A2+1)(t+ AB

A2+1
)2

e
(AB)2

A2+1
−B2

= e
(AB)2

A2+1
−B2 √

π

2
√

A2+1
erf

(√
A2 + 1(t + AB

A2+1 )
)

.

Thus:

λ1

√
πσ2

1σ2

√
2

1√
2

a−μ1
σ1∫

1√
2

z1−μ1
σ1

te−t2 erf (At + B) dt = (28)

[(
−1

2
e−t2erf (At + B) + e

(AB)2

A2+1
−B2

√
π

2D
erf

(
Dt +

AB

D

))] 1√
2

a−μ1
σ1

1√
2

z1−μ1
σ1

. (29)

which needs to be multiplied by λ1
√

πσ2
1σ2

√
2, and D =

√
A2 + 1. Remains

Expression (27). With this integral we proceed as before, this integral is approx-
imately equal to:

λ1

√
πσ2σ1μ1

1√
2

a−μ1
σ1∫

1√
2

z1−μ1
σ1

e−t2
2∑

i=0

(−1)i(At + B)2i+1

i! · (2i + 1)
dt (30)

for which we have the antiderivative which is the sum of the Expressions (18),
(19), (20), (21) and (22). Lastly we compute Integral IV:

− λ1

√
π

2
· σ2 erf

(
z2 − μ2√

2σ2

) a∫

z1

y1e
− 1

2 (
y1−μ1

σ1
)2dy1 = (31)

− λ1

√
π

2
· σ2 erf

(
z2 − μ2√

2σ2

)[
−σ2

1 · e− 1
2 (

y1−μ1
σ1

)2 + μ1σ1

√
π

2
erf

(
y1 − μ1√

2σ1

)]a

z1

.

(32)
The integration over the upper triangle is done in a similar way. Sum over the
lower triangle and the upper triangle pre-multiplied with 1

N
1

2πσ1σ2
is the expected

improvement of the R2-indicator at a single weight vector. As said before, the
computation needs to be carried out for each of the s weight vectors and the
average of these numbers is the R2-indicator.

4 Numerical Results

In the numerical results we show the behavior for varying values of σ and μ. The
results are displayed in Fig. 3a (the monotonicity of the ER2I w.r.t. the σ) and
in Fig. 3b (the landscapes of the ER2I). Here the utopian point z is set to zero.
P = [4.5 1; 3 3; 2 4; 1 6]; μ = [3.5 0.5; 3.5 3.5]; σ = [1 1; 1 1] ∗ α; Niter =
10000; α = [0.1, 10] with a stepsize of 0.1.
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Fig. 3. Behavior of the ER2I.

Clearly, the truncation has a big influence on the result. Without it an
increasing variance will first lead to a slight improvement of the ER2I but then
the improvement will get worse, since points fall beyond the region of interest. If
we integrate over the truncated expected improvement, increasing the variance
will be rewarded. Moreover, in this case, a distribution that is centered around
the utopian point yields the maximum ER2I value (see Fig. 3b (right)), as it
should be. If truncation is not used, another region is more advantageous in
terms of ER2I, see Fig. 3b (left).

The ER2I-MOBGO, which takes ER2I as the infill criterion in multi-objective
Bayesian global optimization, are performed on three test problems, including
the EYDWF problem [4], two generalized Schaffer problems (GSPs) [3] with
parameter γ = 0.4, 1.8. All the parameters for all the experiments are the
same. The size of the initial sampling set is 10, the initial sampling method is
Latin Hypercube Sampling (LHS), the number of total function evaluations is
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25, the optimizer is the grid search with spaced 30 points for each coordinate
within the search range, and Niter = 200, z = (0, 0). The search space is x =
(x1, x2) ∈ [−2, 2] × [−2, 2] ⊂ R

2 and x = (x1, x2) ∈ [0, 1] × [0, 1] ⊂ R
2 for the

EYDWF problem and the GSPs, respectively.
Figure 4 shows the experimental results, where blue stars and red diamond

symbols represent the initial set generated by the LHS and the 15 “optimal”
solutions are found during the sequential interactions of BGO by grid search to
find the ER2I maximizer. Figure 4a shows the landscapes of the GSPs predictions
for y1, y2 (first row), the landscapes of the standard deviations of the predictions
σ1, σ2 (second row), the landscape of ER2I (left figure in the third row) and
objective values of 25 evaluations in the objective space. Figure 4b shows the
objective values of the GSPs over 25 evaluations. The experimental results show
that the ER2I can find a good Pareto-front approximation set for liner, concave
and convex problems.

Fig. 4. Experimental results on GSPs. (Color figure online)
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5 Conclusions and Outlook

We discussed the numerical computation of the bi-objective Expected R2-
Indicator improvement. To solve certain integrals of the erf(.)-functions Taylor
expansions were used. The ER2I was proposed as an indicator in Bayesian Global
optimization. In the 2-D case, and it was shown empirically, that it rewards a
high variance and a better mean value of the distribution. For Pareto fronts of
different geometry, it is able to guide the search towards the Pareto front and to
fill in the gaps of a Pareto front approximation. Future work will have to com-
pare it to other infill criteria and on challenging real-world problems and extend
the deterministic computation scheme to more than two objective functions.

MATLAB and Mathematica implementations and data used in this study will
be made available by the authors on http://moda.liacs.nl.
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Abstract. In many practical multi-objective optimization problems,
evaluation of objectives and constraints are computationally time-
consuming, because they require expensive simulation of complicated
models. Researchers often use a comparatively less time-consuming sur-
rogate or metamodel (model of models) to drive the optimization task.
Effectiveness of the metamodeling method relies not only on how it man-
ages the search process (to find infill sampling) but also how it deals with
associated error uncertainty between metamodels and the true models
during an optimization run. In this paper, we propose a metamodel-
based multi-objective evolutionary algorithm that adaptively maintains
regions of trust in variable space to make a balance between error uncer-
tainty and progress. In contrast to other trust-region methods for single-
objective optimization, our method aims to solve multi-objective expen-
sive problems where we incorporate multiple trust regions, corresponding
to multiple non-dominated solutions. These regions can grow or shrink in
size according to the deviation between metamodel prediction and high-
fidelity computed values. We introduce two performance indicators based
on hypervolume and achievement scalarization function (ASF) to control
the size of the trust regions. The results suggest that our proposed trust-
region based methods can effectively solve test and real-world problems
using a limited budget of solution evaluations with increased accuracy.

Keywords: Surrogate modeling · Metamodel · Trust-region method ·
Multi-objective optimization

1 Introduction

Most real-world problems involve time-consuming experiments and simulations
that cause optimization to be increasingly expensive. To face this challenge and
to reduce the computational cost, metamodels as approximations of exact or
high-fidelity based computational models are used for the optimization task.
There are a few challenges and decision factors in metamodel-based multi-
objective optimization. First, given a multi-objective optimization problem with
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M number of objectives and J number of constraints, one can model each objec-
tive and constraint separately thus having a total of (M +J) metamodels. Also,
one can combine all objectives using a scalarization method, e.g., weighted-sum,
ε-constraint, Tchebychev, or achievement scalarization function (ASF) [16,26]
and metamodel them separately, thereby reducing the total number of metamod-
els to (1+J). The choice of metamodeling methodologies are discussed in recent
papers [2,3,5,9,13,19,21,22] by the authors. Second, a great deal of research has
been done to formulate the criteria for finding infill or subsequent points for high-
fidelity evaluation during optimization. For example, Emmerich et al. [11] has
generalized the concept of probability of improvement and the expected improve-
ment to find infill solutions. Next, computational cost of constructing surrogates
is a practical issue that prohibits us to build a large number of metamodels.
Finding the best metamodel or approximation method is another concern for
metamodel-based optimization. There is a wide variety of metamodels, such as
Kriging, neural network, support vector regression, polynomial approximation
and others, used in past studies [14]. Interestingly, the choice of metamodeling
method may vary according to early, intermediate or late stage of the optimiza-
tion process and is certainly not known a priori. Therefore, researchers have
attempted to use multiple surrogate models in few efforts [25].

Although most existing methods are directed towards proposing more accu-
rate metamodels or introducing efficient search schemes, there is a need for
managing error uncertainty of one particular under-performing metamodel dur-
ing optimization. A better management of a metamodel can, not only restrain
the model from becoming worse, but also boost the performance by recognizing
the inherent complexity of search regions. In this paper, we introduce a trust
region concept for multi-objective optimization to reduce model uncertainty dur-
ing metamodel-based optimization. This may allow a continuous convergence
to the Pareto-front in some cases. Therefore, we don’t completely rely on the
assumptions made by the metamodel from the first iteration on.

The rest of this paper is organized as follows. Section 2 presents the previ-
ous works that are relevant to the trust region, uncertainty of metamodeling
and overall metamodel-based algorithms. Section 3 discusses the new concepts
introduced in this paper. Based on those concepts, the algorithm is presented
in Sect. 4. Experimental settings and results are presented in Sect. 5. Section 6
concludes our study and suggests future work.

2 Related Studies

There have been several studies in metamodel-based multi-objective evolu-
tionary algorithms for constrained and unconstrained problems. ParEGO [15],
MOEA/D-EGO [27], SMS-EGO [18] and KRVEA [4] use scalarization methods
(e.g., Tchebycheff) to combine multiple objectives into one and solve multi-
ple scalarized versions of them to find a trade-off set of solutions. While these
methods are mostly useful for unconstrained problems, they need to be mod-
ified for constrained scenarios. Hypervolume-based expected improvement [10]
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and maximum hypervolume contribution [18] are used as a performance criteria
for infill points. Few recent studies [4,19] outperformed standard evolutionary
multi-objective optimization methods for unconstrained test problems.

Trust region methods are an effective mechanism to identify new infill points
with a specific certainty. A few researchers have suggested using metamodel-
based optimization with a trust region concept [1,17]. They proposed a trust
region framework for using approximation models with varying fidelity. Their
approach is based on the trust region concept from nonlinear programming lit-
erature and was shown to be provably convergent for some of the original high-
fidelity problems. A sequential quadratic approximation model was used in their
study. In [17], a global version of the trust region method—Global Stochastic
Trust Augmented Region (G-STAR) was proposed. The trust region was used
to focus on simulation effort and balance between exploration and exploita-
tion. They used Kriging as a metamodel for unconstrained single-objective opti-
mization problems only. Few recent studies have considered for bi-objective [24]
and multi-objective [12] problems with a convergence guarantee under mild
conditions.

3 Trust Region Method for Single-Objective
Optimization

The classical trust region method for single-objective optimization proceeds by
building a metamodel f̂(.) for the original objective function f(.). The prediction
of the metamodel f̂(.) is minimized to obtain new infill points [1]:

Minimizeq f̂(q), Subject to ‖q − p‖ ≤ δk. (1)

Here p is the current iterate (solution) and q is the new predicted point that
can replace p in the next iteration. Typically, a quadratic model is used as f̂(.).
The search is restricted within a radius δk from the current point p so that the
metamodel approximates f well. The distance ‖q − p‖ can be calculated using
any norm. Without loss of generality, we use the Euclidean norm here. The trust
region is updated by comparing the exact and the predicted value of the new
point (f(q) and f̂(q)) with respect to the old point p by the following eq. [1]:

r =
f(p) − f(q)

f(p) − f̂(q)
. (2)

Depending on the performance indicator r, the trust region might increase,
decrease or remain the same. To decide what operation should be performed,
two constants r1 and r2 are defined and the trust region is adapted as follows:

– If the model fails to improve objective value (that is, r < r1), we reduce the
trust region by multiplying existing δk with c1 (<1) and do not replace p with
the new point q.
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– If the model performs good in predicting function improvement from previous
solution (that is, r > r2), we increase δk for the next iteration by multiplying
existing δk with c2 (>1) and we replace the old point p by new point q.

– Otherwise, we leave the trust region size δk as it was before.

We replace the old point p with the new point q, whenever q is a better point.
The current point (p or q) is always associated with the updated trust radius.
Suitable values of c1 and c2 are used.

3.1 Challenges and Motivation for Multi-objective Optimization

The main challenges for applying the trust region concept in multi-objective evo-
lutionary algorithms (MOEA) are handling multiple objectives and constraints.
In addition, since MOEAs are population based methods, we also need to deal
with multiple solutions and their individual trust regions. Moreover, there is
a need for a meaningful performance metric to adapt trust radii of multiple
high-fidelity solutions.

4 Proposed Trust Region in Metamodel-Based
Multi-objective Evolutionary Algorithm

A multi-objective optimization problem can be formulated as follows. Here, we
omit the vector notation of {x, p, q} and F to denote a multi-dimensional point
or objective vector.

Minimize F (x) = (f1(x), f2(x), . . . , fM (x))
Subject to gj(x) ≥ 0, ∀j ∈ {1, . . . , J}

x ∈ Ω ⊆ R
n and, F ∈ Λ ⊆ R

M

(3)

Here, feasible variable space and respective feasible objective space are defined by
Ω and Λ, respectively. The goal of this optimization is to find the best trade-off
hyper-surface.

4.1 Proposed Trust Region Concept

We propose several modifications on the classical trust region method in order to
make it applicable to metamodel-based multi-objective evolutionary algorithms:

1. We store all high fidelity solutions in an archive A, instead of replacing them
with better solutions.

2. We maintain an independent trust region in the variable space for each solu-
tion. The regions may overlap with each other. They can either grow or shrink
in size independently during optimization according to the quality of predic-
tion. The algorithm restricts its search within the combined trust regions of
A.
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3. To compare a newly predicted point q with the neighbor point p (q is within
trust region of p), we define two performance indicators PI that calculate r
(analogous to Eq. 2) for a multi-objective problem. Moreover, we propose a
novel scheme to compare between feasible and infeasible solutions.

4. If the new point q is within the trust regions of multiple points P ⊆ A, then
we update the trust radius δk for each of them using pair-wise performance
metric (PI). The trust radius of point q will be the minimum of trust radii
of P .

Thus, we optimize the following metamodel-based optimization to obtain a set
of new infill points:

Minimizeq∈Ω f̂1(q), . . . , f̂M (q)
ĝj(x) ≥ 0, ∀j ∈ {1, . . . , J}

Subject to ‖q − p‖ ≤ δp
k, ∃p ∈ A

(4)

Here p ∈ A are the exactly evaluated solutions from the current archive. Figure 1
illustrates the population based extension of the trust region method. Five
exactly evaluated points {P1, P2, P3, P4, P5} with their trust regions (regions
within the circles) are shown. Say, a new point Pnew is predicted by the algorithm
after optimizing on the model space. Note that Pnew is inside the trust regions
of P1 and P2. Assuming that the performance indicator reports an improvement
of Pnew over P2, but no improvement over P1. Then we reduce the size of the
trust region of P2 and increase that of P1. The trust radius of the new point will
be the smaller of the trust radii of P1 and P2.

4.2 Performance Indicators for Updating Trust Radius

Fig. 1. Adaptive trust region concept for
multiple solutions.

To update the trust radius of solutions,
we propose two performance indicators
(PI).

Scalarization based Performance
Indicator(PIASF ): Scalarization
method is used to convert a multi-
objective problem into a number of
parameterized single-objective opti-
mization problems. We use the achieve-
ment scalarization function (ASF) [26]
as a performance indicator. The scalar-
ization is based on a weight vector w
and a reference point z. The ASF for-
mulation is given below:

ASF(x) =
M

max
i=1

fi(x) − zi

wi
. (5)
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The proposed performance criteria using ASF function for trust radius update
is presented as follows:

PIASF (q) =
ASF (p) − ASF (q)

ASF (p) − ÂSF (q)
. (6)

Here ÂSF is obtained from predicted objectives. The estimated improvement
may differ for different reference directions.

Hypervolume based Performance Indicator (PIHV ): Hypervolume [10] is
a widely used indicator in multi-objective optimization. It takes a set of solutions
and a reference point, and computes the dominated region (in objective space)
enclosed by the set and the reference point. In order to find the improvement of
a new point over old point, we calculate the difference of their absolute hyper-
volume measures. We include archive points (A) as a common ground for com-
putation. We then compute the ratio between actual improvement and predicted
improvement and adjust the trust radii of old points. The predicted hypervolume
is calculated by the objective values evaluated in model space using F̂ (.). Since
larger values indicate better hypervolume, we use negative of the hypervolume:

PIHV (q) =
HV (F (A) ∪ F (q)) − HV (F (A))
HV (F (A) ∪ F̂ (q)) − HV (F (A))

. (7)

Performance Indicator for Constrained Problems: We use constrained
violation CV function [7], by accumulating violation of each constraint function
(gj(x) ≥ 0), given as: CV(x) =

∑J
j=1〈ḡj(x)〉, where the bracket operator 〈α〉

for g is −α if α < 0 and zero, otherwise. The functions ḡj are the normalized
version of constraint functions gj [7].

PICV (q) =
CV (G(p)) − CV (G(q))
CV (G(p)) − CV (Ĝ(q))

(8)

Here, G and Ĝ are the vector representations of constraint functions G =
(g1, . . . , gJ ) and Ĝ = (ĝ1, . . . , ĝJ ), respectively.

4.3 Overall Trust Region Adaptation

We now describe the procedure of updating the trust regions using the perfor-
mance indicators described above. Assume that solution p is one of the high-
fidelity points and q is the predicted new point which is within the trust region
of p. We measure the performance improvement by the following equation.

r =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PIHV (q) or PIASF (q), if both p and q feasible,
r2 + ε, if p infeasible, q feasible,
r1 − ε, if p feasible, q infeasible,
P ICV (q), otherwise.

(9)
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Here ε > 0 ∈ R is a small positive number. The pre-defined positive constants
0 < r1 < r2 < 1 are the hyper-parameters that regulate expansion and contrac-
tion of the trust regions. After estimating performance indicator PI of a new
point q with respect to old point p we update trust radius of p by the following
rule.

δp
k+1 =

⎧
⎪⎨

⎪⎩

c1δ
p
k if r < r1

min{c2δ
p
k,Δmax} if r > r2

δp
k otherwise

(10)

The positive constants 0 < c1 < 1 and c2 > 1 controls the size of subsequent
trust radius. As mentioned earlier, we assign the trust radius of q to be the
smaller of the trust radii of all neighboring solutions of which q is inside their
trust regions. The parameter Δmax is the largest allowed trust radius for the
solutions.

5 Proposed Overall Algorithm

We now present trust region based algorithm for multi-objective optimization
for low-budget problems. We refer our algorithm to TR-NSGA-II.

The overall procedure is described in Algorithm 1, the metamodeling algo-
rithm starts with an archive of ρ initial population members created using
the Latin hypercube sampling (LHS) method on the entire search space. The
trust radii of initial solutions are then set to a predefined initial value δinit.
Thereafter, these solutions are evaluated exactly (high-fidelity) and metamod-
els are constructed for all M objectives (f̂i(x); i = 1, . . . ,M) and J constraints
(ĝj(x); j = 1, . . . , J). Then, a multi-objective evolutionary algorithm NSGA-
II [6] with faster non-dominated sorting algorithm [20,23] is run for τ generations
starting with μ initial random solutions in model space. The NSGA-II algorithm
returns min(μ,E − e) solutions where e is the current number of high-fidelity
solution evaluations. The solutions are then evaluated using high-fidelity sim-
ulation and included in the archive (line 13). Then, new metamodels are then
build from scratch and the process is repeated until termination. The trust radii
are updated after each NSGA-II run, for new and old points according to the
update rules discussed before. We have used both Hypervolume based and ASF
based performance indicator alternatively for updating trust radius. ASF values
are computed using reference point set W . PIASF is calculated using the best
ASF values for the new solutions.
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Algorithm 1. Trust Region Based Algorithm or TR-NSGA-II
Input : Obj: [f1, . . . , fm]T , Constr: [g1, . . . , gJ ]T , n (vars), ρ (sample

size), E (max. high-fidelity SEs), NSGA-II (multi-obj EA)
with pop-size μ, number of generation for model optimization
τ , other parameters of NSGA-II Γ , Constraint violation
function CV, Trust region parameters δinit,Δmax, c1, c2, r1
and r2

Output: Solution set PT

1 t, e ← 0;
2 Pt,Ft,Gt ← ∅;
3 Pnew ← LHS(ρ, n)// Initial solutions

4 δ� ← δinit,∀� ∈ {1, . . . , ρ};
5 while True do
6 Fi

new ← fi(Pnew),∀i ∈ {1, . . . , M}// eval obj.

7 Gj
new ← gj(Pnew),∀j ∈ {1, . . . , J}// eval constr.

8 if t > 0 then

9 F̂
i

new ← f̂ i
t (Pnew),∀i ∈ {1, . . . , M}// predicted

10 Ĝ
j

new ← ĝj
t (Pnew),∀j ∈ {1, . . . , J}// predicted

11 δ ← Update TrustRegion(Ft, F̂new,Gt, Ĝnew, δ)
12 end
13 Pt+1,Ft+1,Gt+1 ← (Pt ∪ Pnew), (Ft ∪ Fnew) and (Gt ∪ Gnew);
14 e ← e + |Pnew|;
15 break if e ≥ E;
16 f̂ i

t+1 ← Metamodel(Fi
t+1),∀i ∈ {1, . . . , M}// metamodel obj.

17 ĝj
t+1 ← Metamodel(Gj

t+1),∀j ∈ {1, . . . , J}// metamodel constrt.

18 Pnew ← NSGA-II(f̂t+1, ĝt+1, μ, τ, Γ,E − e,CV, δ); // Optimize model
space

19 t ← t + 1;
20 end
21 return PT ← filter the best solutions from Pt+1

In one epoch |W | solutions are returned directly by running NSGA-II while in
another epoch we choose |W | solutions (after running NSGA-II) such that they
minimizes ASF according to w ∈ W reference directions. In the end, trust regions
are updated according to Hypervolume and ASF respectively. The major steps
of this method are outlined in Algorithm1.

6 Results

We present experimental results obtained by running four different optimization
algorithms. We refer our algorithm as TR-NSGA-II. We compare the proposed
algorithm with three other baseline algorithms: (a) M1-2 [9] which works sim-
ilar to our TR-NSGA-II (Algorithm 1) but without the trust region, and (b)
state-of-the-art multi-objective evolutionary method NSGA-II [8] and recently
proposed K-RVEA [4]. We got source code of K-RVEA from the authors. The
code currently doesn’t handle constraints, thus we don’t apply it to constrained
problems. In NSGA-II, we use the binary tournament selection operator, sim-
ulated binary crossover (SBX), and polynomial mutation with parameters as
follows: population size = 10n, where n is a number of variables, number of
generations = 100, crossover probability = 0.95, mutation probability = 1/n,
distribution index for SBX operator = 15, and distribution index for polyno-
mial mutation operator = 20. The NSGA-II procedure, wherever used, uses the
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same parameter values. Initial trust radius is δinit = 0.75Δmax for all problems,
where Δmax =

√
n is the largest diagonal of an n-dimensional unit hypercube.

We take c1 = 0.75, c2 = 1.10, r1 = 0.9, r2 = 1.05 for all the problems. All the
distances calculated here are in the normalized space. We perform 11 runs for
each algorithm on all test and engineering design problems.

For NSGA-II, we have used population size 20 to maximize the evolution
effect and that provided the best results for these low-budget problems. Other
parameters are kept identical across all algorithms to provide a representative
performance of each algorithm. Median IGD values and p-values of Wilcoxon
rank sum test are provided in Table 1.

Table 1. IGD values for 11 test problems are computed. Best algorithm and other
statistically similar methods are marked in bold.

Problem/Method
NSGA-II M1-2 TR-NSGA-II K-RVEA

IGD GD IGD GD IGD GD IGD GD

ZDT1
0.27131 0.34582 0.01161 0.01091 0.00121 0.00122 0.07964 0.03715

p=1.852e-05 p=1.852e-05 p=7.7801e-04 p=7.4613e-04 - - p=1.852e-05 p=1.852e-05

ZDT2
0.98265 0.61637 0.00975 0.00755 0.00057 0.00081 0.03395 0.00080

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=1.852e-05 - p=0.2851 p=1.852e-05 -

ZDT3
0.32080 0.38940 0.01251 0.00761 0.00870 0.00230 0.02481 0.00650

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=1.852e-05 - - p=1.852e-05 p=1.802e-04

ZDT4
25.24040 34.43350 7.11881 10.10851 6.97620 12.92170 4.33221 4.50901

p=1.852e-05 p=1.852e-05 p=0.7928 p=0.1007 p=0.8955 p=0.2934 - -

ZDT6
5.00571 4.80922 1.55861 2.27535 0.31070 2.84941 0.65462 1.50551

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=0.001 - p=0.0151 p=1.852e-05 -

BNH
0.78981 0.19842 0.45272 0.13696 0.09651 0.09092 - -

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=1.852e-05 - -

SRN
1.66162 2.11235 0.67285 0.75337 1.44045 1.74951 - -

p=1.852e-05 p=1.852e-05 - - p=1.852e-05 p=1.852e-05

TNK
0.04182 0.01341 0.01543 0.01008 0.00141 0.00201 - -

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=1.852e-05 - -

OSY
35.80211 27.43991 4.78063 0.59202 0.16731 0.25063 - -

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=1.852e-05 - -

Welded Beam
1.10272 0.21092 0.92692 1.68806 0.07681 1.72811 - -

p=1.852e-05 - p=1.8267e-04 p= 0.0042 - p=0.0012

C2DTLZ2
0.13733 0.04792 0.03355 0.02373 0.06411 0.02991 - -

p=1.852e-05 p=1.852e-05 - - p=1.8267e-04 p=1.8267e-04

6.1 Two-Objective Unconstrained Problems

First, we apply our proposed method to two-objective unconstrained problems
ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 with ten (n = 10) variables, |W | = 21
reference directions, and with a maximum of only E = 500 high-fidelity solution
evaluations. The obtained non-dominated solutions are shown in Fig. 2(a)–(e).
It is evident from the figure that trust region method with hypervolume perform
better than method M1-2 without trust region. Because of the lack of enough
solution evaluations, NSGA-II could not converge enough to these problems.
On the contrary, trust region based methods provide increased accuracy (for
example TR-NSGA-II has IGD 0.00121 compared to 0.01161 of M1-2 for ZDT1)
for these test problems. K-RVEA performed the third best in ZDT1 with IGD =
0.07964. TR-NSGA-II performs the best for all ZDT problems both in terms of
GD and IGD. For ZDT4, all the methods find it hard to converge and perform
equivalently (with p-value 0.05) except NSGA-II. For ZDT6, K-RVEA has better
GD value but TR-NSGA-II has a better distribution (IGD = 0.31070).
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Fig. 2. Obtained non-dominated solutions of median run for 11 test problems using
four different algorithms are shown.

6.2 Two-Objective Constrained Problems

Next, we apply our algorithms to two-objective constrained problems: BNH,
SRN, TNK, and OSY [8], For each problem, we use |W | = 21 reference direc-
tions and a total of 500 solution evaluations. The obtained non-dominated solu-
tions are shown in Fig. 2(f)–(i). With the trust region method, we find better
convergence as well as diversity for OSY and TNK, although no extra effort has
been made to maintain diversity. BNH, SRN and TNK have only two variables
and two constraints. NSGA-II, along with all other methods, performs well in
BNH and SRN. We have achieved increased accuracy (IGD 0.00141 compared to
0.01543 of M1-2) for TNK problem. OSY is a difficult problem with six variables
and six constraints. But our proposed method is able to find a good distribution
on the true Pareto-front with only 500 solution evaluations with better IGD and
GD. In SRN, method M1-2 performs the best in terms of both GD and IGD.

6.3 Three-Objective and Real-World Problems

We have applied three methods (except K-RVEA) to three-objective constrained
problem C2DTLZ2 (Fig. 2(k)). For C2DTLZ2, M1-2 without trust region per-
forms the best. Trust region based method TR-NSGA-II performs the second
best. Due to restricted search region in 3-dimensional space, our method suffers
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from premature convergence. We also apply our algorithm to a real-world welded
beam design problem. Surprisingly, with the optimum population size, NSGA-II
performs better in terms of GD, whereas our method has the best IGD.

Median IGD values of 11 runs of 11 test problems are presented in Table 1 for
all the algorithms. The table demonstrates that trust region methods perform
usually better than non-trust region based methods whenever solutions reach
to near Pareto-optimal front. It would be interesting to incorporate our method
to other recently proposed multi-objective evolutionary algorithms including K-
RVEA.

6.4 Dynamics of Trust Region Adaptation

In Fig. 3, we investigate the dynamics of trust region adaptation for the evolving
population in different test problems. The value of δ starts from the

√
n where

n is number of variables. The maximum value remains the same for most ZDT
problems because the obtained non-dominated solutions go beyond these regions
after some epochs. In contrast, minimum, median and mean values are always
decreasing throughout the optimization process. As discussed before, based on
the improvement of the neighboring solutions, the regions are either expanded
or contracted. In order to increase the trust region, the evolving population has
to maintain r2 = 1.05 or 5% Hypervolume improvement over previous genera-
tions. In general, this condition is hard to meet when solutions are converged in
the end. Therefore, our method focus more on exploitation in the last stage of
optimization.

100 200 300 400 500
Function Evaluation

0

1

2

3 Mean
Median
Min
Max

ZDT1

100 200 300 400 500
Function Evaluation

0

1

2

3

Mean
Median
Min
Max

ZDT3

100 200 300 400 500
Function Evaluation

0

1

2

3 Mean
Median
Min
Max

ZDT4

100 200 300 400 500
Function Evaluation

0

0.5

1

1.5

2

2.5

Mean
Median
Min
Max

ZDT6

Fig. 3. Trust region adaptation for evolving population is presented. Minimum, median,
average and maximum δ values during the optimization are shown.

7 Conclusions

In this paper, we have presented an adaptive trust region concept for multi-
objective optimization with a low budget of solution evaluations. Trust regions
are used as a constraint in the variable space during optimization to deal with
uncertainties of metamodels. This study makes three main contributions: First,
we have proposed two performance indicators based on scalarization and hyper-
volume to adapt appropriate trust regions. Second, a constraint handling scheme
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is presented in order to handle the trust region adaptation in the presence of con-
straints. Third, since multi-objective optimization aims to find a set of Pareto-
optimal solutions, we need to manage multiple trust regions with multiple trade-
off solutions compare to single best solution, as proposed in the classical litera-
ture. Our results on several test and one engineering design problems have shown
that we can achieve better convergence using the proposed method than that
without a trust region. While other MOEAs spend thousands of function eval-
uations, our trust region based method can solve test and real-world problems
with limited budget yet with increased accuracy.

The current study has introduced some new parameters, such as the initial
trust radius and their updating factors. Although our experiments are based
on reasonable parameter settings, a detailed parameter study is a good starting
point for future research. Moreover, other distance metrics besides the Euclidean
norm can be used to define a trust region. Also, it needs to be ensured that
the trust region concept scales up for problems with high-dimensional variable,
objective, and constraint spaces. Nevertheless, this pilot first study has made one
aspect of metamodeling task for multi-objective optimization clear – a balance
between a trust of metamodels around high-fidelity points and progress of the
overall search is essential for an efficient application.
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4 Univ. Littoral Côte d’Opale, LISIC, 62100 Calais, France

verel@univ-littoral.fr
5 International Associated Laboratory LIA-MODO, Nagano, Japan

Abstract. Difficult Pareto set topology refers to multi-objective prob-
lems with geometries of the Pareto set such that neighboring optimal
solutions in objective space differ in several or all variables in decision
space. These problems can present a tough challenge for evolutionary
multi-objective algorithms to find a good approximation of the optimal
Pareto set well-distributed in decision and objective space. One impor-
tant challenge optimizing these problems is to keep or restore diversity in
decision space. In this work, we propose a method that learns a model of
the topology of the solutions in the population by performing parametric
spline interpolations for all variables in decision space. We use Catmull-
Rom parametric curves as they allow us to deal with any dimension in
decision space. The proposed method is appropriated for bi-objective
problems since their optimal set is a one-dimensional curve according to
the Karush-Kuhn-Tucker condition. Here, the proposed method is used
to promote restarts from solutions generated by the model. We study
the effectiveness of the proposed method coupled to NSGA-II and two
variations of MOEA/D on problems with difficult Pareto set topology.
These algorithms approach very differently the Pareto set. We argue and
discuss their behavior and its implications for model building.

Keywords: Evolutionary algorithm · Multi-objective optimization ·
Interpolation · Difficult Pareto set topology

1 Introduction

Multi-objective Evolutionary Algorithms (MOEA) are metaheuristic methods
based on natural evolution principles that have attracted a lot of attention due
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to their good performance to deal with multi-objective optimization problems
(MOP) [3]. Indeed, with the development of different MOEAs, many method-
ologies to improve their performance have been proposed [1,3–5,7,17,18].

Despite successful results obtained by MOEAs, studies have shown that their
performance can deteriorate significantly when facing problems with difficult
Pareto set (PS) topology [8]. Okabe et al. [11] observed that the PS topology of
most artificial test problems, such as DTLZ [6], have an oversimplified geometry,
arguing that we should not expect such simplification on real world problems.
Since then, new test problems have been developed with some challenging PS
topologies [7,11], along with new approaches to solve these problems. Special
sessions and competitions dedicated to solve problems with difficult PS topol-
ogy [16] have served to promote research in this area and to improve some multi-
objective algorithms. Nonetheless, efficiency and scalability remain an open ques-
tion for improved algorithms, such as enhanced versions of decomposition-based
algorithms. For other classes of algorithms, such as those based on Pareto dom-
inance, performance in terms of convergence and diversity in both decision and
objective space is still poor. Overall, besides final results, there is still not a
clear understanding of how various classes of algorithms work on these classes
of difficult PS topology problems.

On the other hand, learning and model assisted optimization is gaining atten-
tion to enhance evolutionary search, where models are built to capture proper-
ties of the landscape, learn dependencies between variables, identify variables for
recombination, and so on. The models are in turn used to guide the evolution-
ary algorithm aiming to improve the overall efficiency and effectiveness of the
search. Some recent works have tried to incorporate learning models for better
solutions [9,10,12] when optimizing problems with difficult PS topology. These
models try to learn certain regions in decision space where good solutions are
more likely to be found, restricting and guiding the evolutionary search.

From this standpoint, in this paper we present a method that learns a model
of the topology of the solutions in the population by performing parametric spline
interpolations for all variables in decision space, aiming to assist multi-objective
evolutionary algorithms on bi-objective problems with difficult PS topology. To
build the model, we use Catmull-Rom parametric curves as they allow us to
deal with any dimension in decision space. The proposed method is appropri-
ated for bi-objective problems since their optimal set is a one-dimensional curve
according to the Karush-Kuhn-Tucker condition. The model allows to identify
and query regions in decision space that are under represented in the population
of the evolutionary algorithm. That is, based on these polynomial interpolations,
the model can be used to generate new candidate solutions well distributed in
decision space aiming to guide the search towards approximations of the Pareto
set with better distribution in decision and objective space.

In this work, the proposed method is used to promote restarts from solutions
generated by the model. We study the effectiveness of the proposed method
embedded in three algorithms: NSGA-II [5], MOEA/D [7], and MOEA/D-
DRA [15]. These algorithms are good representatives of Pareto-dominance and
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decomposition based approaches to multi-objective optimization. These algo-
rithms also show quite different behavior approaching the Pareto optimal solu-
tions. While MOEA/D have a fast approach to the optimal for some of its
weights, NSGA-II slowly moves a better distributed set of solutions towards the
optimal front. Since models to guide the evolutionary search are mostly built
from the solution in the population, it is important to understand how the behav-
ior of the algorithms affect the quality of the model. We test the performance
of the modified algorithms using problems with difficult PS topology proposed
in [16]. Simulation results presented in this work clarifies the correlation between
the way an algorithm approaches the Pareto optimal set and the quality of the
model, showing that the proposed method can help evolutionary algorithms to
find better distributed solutions depending on algorithm’s evolutionary behavior.

The rest of the paper is organized as follows. Firstly, Sect. 2 elucidates the
meaning of a MOP with difficult PS topology. Section 3 describes the learning
model to enhance result of evolutionary algorithms on such problems. In Sect. 4,
we present the experimental design of our comparative study, and Sect. 5 presents
a discussion on the results obtained. Finally, Sect. 6 presents our conclusion and
future work.

2 Difficult PS Topology

Solving a MOP consists in maximizing or minimizing simultaneously m objective
functions subject to constrains and bounds of a set of n decision variables. Often,
there is no single solution to these problems, instead a set of optimal solutions
that captures the trade-offs between solutions are demanded. This set is called
Pareto set (PS) in decision space, and Pareto front (PF) in objective space.

Pareto set topology refers to the geometry created by optimal solutions of a
multi-objective problem in the decision space. According to the Karush-Kuhn-
Tucker condition, it can be induced under certain assumptions that the PS of
a continuous MOP defines a piecewise continuous (m − 1)-dimensional mani-
fold in the decision space [7]. In such case, the PS would be a piecewise con-
tinuous one-dimensional curve in �n for bi-objective optimization problems, a
two-dimensional curve for three-objective problems, and so on. Considering this
property of continuous MOPs, Okabe et al. [11] observed that PS topologies were
oversimplified for most artificial problems, arguing that we should not expect
such simplification on real-world problems. For example, in DTLZ2 [6] the opti-
mal solutions lies on the interval between 0 and 1 for the variables related to
diversity, and 0.5 for all other variables related to convergence. Therefore, it
might be simple to find a well-spread set of solutions in objective space on this
problem since after finding one optimal point, changing only one variable would
create another optimal solution. On the other hand, a more difficult case would
demand a change in multiple decision variables. Such curves have received dis-
tinct denominations on different studies such as complicated PS shapes [7] and
difficult PS topology [14]. In this paper, we refer to it as difficult PS topology
(Fig. 1).
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Fig. 1. DTLZ2 PS topology (left) compared to difficult PS topology (right).

Evolutionary algorithms are a powerful tool to find good solutions in multi-
objective problems, but they lack proper distribution of solutions sometimes,
particularly in problems with difficult topology [7,8]. Figure 2 illustrates how
MOEAs can guide solutions towards optimum values by mixing them with evo-
lutionary operators, but evolution gets stuck at some point before finding a
good representation of the PS. In this case, the decision maker would have fewer
options to choose from in decision space, and most likely some trade-offs in
objective space will be missing.

Fig. 2. Example of solutions found by NSGA-II (in red) and the PS (in black). (Color
figure online)

3 Interpolation of PS Topology

In this work, we propose a model that builds polynomial interpolations of the
decision variables from the data contained in the population and use these poly-
nomials to generate new candidate solutions to update the population. If the
interpolation is close to the true PS topology, we can distribute solutions across
decision space hoping to produce non-dominated solutions in objective space
and give more options to the decision maker in both spaces. In the following, we
describe the proposed method in detail.

For bi-objective optimization problems, decision space topology is a one-
dimensional curve presented in hyper-dimensional space as illustrated in Fig. 2.
Thus, we use parametric Catmull-Rom curves [2] to perform the interpolation
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of decision space. Catmull-Rom is a family of cubic interpolating splines formu-
lated such that the tangent at each point is calculated using the previous and
next point on the spline. Usually, these curves assume a uniform parameter spac-
ing, but Euclidean distance can also be used as the parametrization space [2].
These curves are smooth polynomial representations passing through all control
points with local support, so that each point only affects a small neighbor-
hood on the curve. Let Pi ∈ �n be the control points of a Catmull-Rom curve,
i = 1, 2, . . . , ncp, and ti its associated parametric value. A Catmull-Rom curve
is composed of ncp − 1 polynomial segments between consecutive control points.
Let Qi,i+1 be the polynomial interpolation between control points Pi and Pi+1,
associated to parameters ti and ti+1. The polynomial segment Qi,i+1 is influ-
enced by both adjacent control points Pi−1 and Pi+2. Note that for extreme
segments Q1,2 and Qncp−1,ncp

, there is no P0 and Pncp+1, so we define them as
P1 − 0.5(P2 − P1) and Pncp

− 0.5(Pncp
− Pncp−1), respectively.

The Qi,i+1 segment is defined by:

Qi,i+1 =
ti+1 − t

ti+1 − ti
L012 +

t − ti
ti+1 − ti

L123 (1)

where:

L012 =
ti+1 − t

ti+1 − ti−1
L01+

t − ti−1

ti+1 − ti−1
L12, L123 =

ti+2 − t

ti+2 − ti
L12+

t − ti
ti+2 − ti

L23,

L01 =
ti − t

ti − ti−1
Pi−1+

t − ti−1

ti − ti−1
Pi, L12 =

ti+1 − t

ti+1 − ti
Pi+

t − ti
ti+1 − ti

Pi+1,

L23 =
ti+2 − t

ti+2 − ti+1
Pi+1 +

t − ti+1

ti+2 − ti+1
Pi+2

For Catmull-Rom curves, it is common to define the parametrization from
its geometric embedding in Euclidean space. Therefore, we can define ti+1 as the
Euclidean distance between consecutive control points by:

ti+1 = |Pi+1 − Pi|α + ti (2)

Here, centripetal parametrization (α = 0.5) has been chosen since it guaran-
tees no intersections within curve segments [13].

Figure 3 illustrates the parametrization of decision space, where red dots
are examples of control points. In this case, control points are in fact solutions
found during the evolutionary process. Therefore, it is possible to describe the
PS topology with Catmull-Rom method if solutions are good control points, i.e.
well converged in some regions. However, this method requires a proper ordering
of solutions in decision space.

The clustering method k-means is used to sample control points from the
population of the evolutionary algorithm. Rather than using all solutions, it is
reasonable to select few of them since it can be redundant to do interpolation
between too close points. By applying k-means in objective space, solutions can



Approximating PS Topology by Cubic Interpolation on 2-objective Problems 391

Fig. 3. Illustration of a hypothetical PS and its Catmull-Rom parametric curves. (Color
figure online)

be clustered in groups, from which we can get their centroids as control points
for the interpolation. Figure 4 presents an illustration of solutions being divided
in objective space, and their respective values in decision space.

Fig. 4. k-means can distinguish solutions in different groups.

There are several ways in which the proposed method can be used within
the evolutionary algorithm. One is to use it as a restart mechanism, where the
solutions generated from the interpolation polynomials replace all solutions in
the population. Another way is to allow competition between solutions in the
population with those generated using the polynomials. To test our proposed
method, in this work we use it to perform restarts during the evolutionary search.

The pseudocode of the proposed method is as follows:

Step 1. Sample and ordering

1.1. Apply k-means to distribute solutions in ncp different clusters in objective
space.
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1.2. Order clusters according to one of the objective values. Step 2 will follow
this order to perform interpolation.
1.3. Compute the centroids of the clusters, i.e. the average value of each
variable among all solutions in the clusters. These ncp centroids are used as
control points in decision space P1,P2, ...,Pncp

.

Step 2. Interpolation and generation of new solutions

2.1. Create Catmull-Rom spline using the control points and order defined
in step 1. We obtain one polynomial per variable per segment, i.e xk =
Qk

i,i+1(t), k = 1 · · · , n.
2.2. Repeat steps 2.3 to 2.5 for all interpolation segments i = 1,. . . , (ncp − 1)
2.3. Calculate the fraction di of the Euclidean distance between two consec-
utive control points (Pi,Pi+1) and the sum of distances of all consecutive
control points.

di =
dist(Pi,Pi+1)

∑ncp−1
k=1 dist(Pk,Pk+1)

(3)

2.4. Define the number of solutions N̄i to be generated in the ith interval as
N̄i = round(di × N), where N is the population size.
2.5. Generate new solutions based on Catmull-Rom spline. Here, calculate
N̄i values of the parameter t ∈ [ti, ti+1] by

t(j) = ti +
ti+1 − ti

N̄i
j, j = 0, 1, ..., N̄i (4)

and use the corresponding polynomials for all variables to generate N̄i solu-
tions, one for each value t(j). Thus, solution xj = (x1, · · · , xk, · · · , xn) is
generated from parameter value t(j) estimating the value of variables by
xk = Qk

i,i+1(t
(j)), k = 1 · · · , n.

Step 3. Verification

3.1. Discard solutions off boundaries.
3.2. Check if the number of new solutions is equal to population size. If there
are fewer solutions, we randomly include individuals from the current popu-
lation. In case we have more solutions, we randomly throw away individuals
so we can have same population size in the restart.

4 Experimental Setup

In total, five bi-objective unimodal CEC09 competition problems [16] were used,
namely UF1, UF2, UF3, UF4, and UF7, setting number of variables n = 30.

To test the proposed method with different evolutionary methodologies fol-
lowing the CEC09 competition parameters setting, we implement our model
in three algorithms: NSGA-II [5], MOEA/D [7], and an improved version of
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MOEA/D to solve CEC 2009 competition problems denominated MOEA/D-
DRA [15]. Differential Evolution (DE) crossover operator and polynomial muta-
tion were used, since it produces better results than SBX operator [7]. Crossover
rate is pc = 1.0, and mutation rate per variable is pm = 1/n. DE opera-
tor parameter is set to F = 0.5, and the distribution exponent of polynomial
mutation is set to ηm = 20. All algorithms perform a total number of function
evaluations equals to 300000 with population size N = 600. For MOEA/D,
Tchebycheff approach and neighborhood size of T = 60 were used in both ver-
sions. Here, we tested different numbers of control points ncp = 150, 300, 500,
and restarts = 2, 5, 10, 20. Restarts are equally spaced in generations. We
run each algorithm 30 times using the same set of seeds. Finally, IGD [3] metric
was used to compare results.

5 Experimental Results and Discussion

To compare the original evolutionary algorithm against the version coupled with
the model, Table 1 presents IGD results for all tested problems. To illustrate, we
present results for the model with 10 restarts and 300 samples of control points
to build the interpolations which overall produce good results. For each problem,
we present the average and standard deviation values of IGD among all 30 runs,
together with the p-value of t-tests on the IGD sets obtained with the origi-
nal algorithm and its improved version. A p-value smaller than 0.05 indicates

Table 1. Results of IGD for 300 control points and 10 restarts.

NSGA-II MOEA/D MOEA/D-DRA

Original Model Original Model Original Model

UF1 Average 0.018806 0.012445 0.001479 0.001171 0.001427 0.001117

SD 0.001136 0.003395 0.025630 0.020608 0.000324 0.000078

p-value 3.561984e−13 0.958135 0.000141

UF2 Average 0.015440 0.009106 0.005799 0.007126 0.003703 0.003718

SD 0.001315 0.001615 0.020539 0.003534 0.001798 0.001606

p-value 4.992806e−25 0.120524 0.601648

UF3 Average 0.145545 0.082388 0.009209 0.007392 0.006490 0.005320

SD 0.011775 0.007450 0.011240 0.006558 0.008079 0.005899

p-value 1.340732e−33 0.215363 0.342249

UF4 Average 0.039056 0.038930 0.064486 0.064192 0.059472 0.060421

SD 0.001765 0.001742 0.000028 0.000015 0.004593 0.004190

p-value 0.548976 7.984198e−36 0.730446

UF7 Average 0.008453 0.007527 0.003074 0.003415 0.001409 0.001250

SD 0.001826 0.002527 0.159385 0.139367 0.000314 0.000165

p-value 0.001213 0.600833 0.019249
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Fig. 5. Behavior of solutions found by NSGA-II (without model) on UF1. (Color figure
online)

Fig. 6. Behavior of solutions found by MOEA/D (without model) on UF1. (Color
figure online)

with 95% confidence that the averages are statistically different. Statistically
better IGD averages are shown in bold, i.e. smaller average IGD value and p-
value smaller than 0.05. According to these results, the proposed method could
find approximations with better IGD for some problems. Besides UF4, IGD
values improved for all problems when using NSGA-II. In case of the decompo-
sition algorithm, the model could improve IGD results for problem UF4 when
using MOEA/D, and problems UF1 and UF7 when using its improved version
MOEA/D-DRA. Note that the model did not deteriorate results in any case.

Since the proposed model is built based on solutions found by the algorithms,
whether or not the model can improve results by performing interpolation would
depend on the distribution of algorithm’s population. In other words, if the
population is a good representation of the PS topology, the model can be effective
by creating solutions from the interpolation. In this case, a good representation
would include solutions in the inflection points of the curve in decision space,
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where the topology changes concavity. Thus, by looking at where solutions are
placed through generations, we can understand whether the interpolation would
properly approximate the PS topology.

Figures 5 and 6 present solutions found by NSGA-II and MOEA/D in distinct
generations, presented in different colors. While NSGA-II’s population steadily
approaches the optimal front with large coverage as the evolution proceeds,
MOEA/D converges solutions very fast in some regions of objective space at
first, and distribute solutions on those regions’ neighborhood. These different
approaches have an effect on decision space, where the Pareto-dominance based
algorithm seems to produce solutions better suitable to the proposed model.
As NSGA-II’s solutions are placed on the inflection points of the PS topology
since early generations, it offers to the learning model a better representation of
the topology. In contrast, the decomposition algorithm finds at first solutions in
fewer regions far from the inflection points, misleading the learning model. For
example, the interpolation on solutions from generation 50 by MOEA/D would
produce something close to a strait line in decision space.

Figure 7 presents IGD values by NSGA-II and MOEA/D-DRA on problem
UF1 with different sampling size and number of restarts. Note that IGD steadily
improves as the number of restarts increases. Also, note that a sample of control
points half of the population size (300) gives overall good results.
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Fig. 7. Average of IGD for 30 runs including all non-dominated solutions found during
the search.

Results for NSGA-II have improved significantly according to IGD met-
ric. Figures 8 and 9 illustrates for UF1 and UF3 problems all non-dominated
solutions found by the original algorithm and the one coupled with the model
in their best IGD run. Both figures show that distribution of solutions have
improved in both spaces when using the proposed method. Note that for UF3



396 Y. Marca et al.

Fig. 8. Solutions found by NSGA-II from the best IGD run on problem UF1.

Fig. 9. Solutions found by NSGA-II from the best IGD run on problem UF3.

Fig. 10. Solutions found by MOEA/D-DRA (blue) and NSGA-II (red) on UF4. (Color
figure online)

the improvement in convergence is more significant. These figures illustrate well
the main idea behind our learning method, where interpolation takes advantage
that NSGA-II can provide a set of control points to build a good interpolation
to generate new candidate solutions and improve quality of results.

In contrast to previous problems, Fig. 10 shows that restarts could not
improve results for problem UF4. In this case, both NSGA-II and MOEA/D
fail to converge solutions close to the optimal Pareto set, so when our method
tries to perform interpolation based on EA’s population, it fails to represent PS
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topology. Therefore, this problem shows that the proposed method with restarts
may not improve algorithm’s performance when the population is far from the
Pareto set.

6 Conclusion

In this paper, we presented a method that learns a model of the solutions’
topology in the population by performing parametric spline interpolation for all
variables in decision space. Here, Catmull-Rom parametric curves were used to
perform interpolation, which allow us to deal with any dimension in decision
space, but limited to bi-objective problems. We coupled the model with NSGA-
II and two version of MOEA/D to perform restarts from solutions generated by
the model. We showed that the proposed model could improve distribution and
convergence of solutions for most problems in the case of NSGA-II, and for some
problems in the case of MOEA/D-DRA. Also, we showed that the effectiveness
of the interpolation depends on the behavior of the algorithm.

In the future, we would like to study other methods to perform interpolation
to solve problems with more objectives. Also, we want to study other ways to
couple this model with evolutionary algorithms. For instance, allowing compe-
tition of solutions created by the model with the current population, instead of
totally replacing the population. Another aspect that we would like to investigate
is the scalability of the model in decision space.
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Abstract. This article proposes a search mechanism based on linear
combinations of population members to increase the solution quality of
multi-objective and many-objective optimisation algorithms. Our app-
roach makes use of the inherent knowledge in the solution population at
a given time step, and forms new solutions through linear combinations
of the existing ones. A population of coefficient vectors is formed and
optimised by a metaheuristic to explore and exploit promising areas of
the search space. In addition, our proposed method provides a reduction
of dimensionality for large search spaces. The concept is formally intro-
duced and implemented into a generic algorithm structure to be used in
arbitrary metaheuristics. The experimental evaluation uses four multi-
and many-objective algorithms (NSGA-II, GDE3, NSGA-III and RVEA)
and is performed on a total of 60 test instances from three benchmark
families with 2 to 5 objective functions and 30 to 514 decision vari-
ables. The results indicate that the performance of existing methods can
be significantly improved by the proposed search strategy, especially in
high-dimensional search spaces and for many-objective problems.

Keywords: Multi-objective optimisation ·
Many-objective optimisation · Large-scale optimisation ·
Evolutionary algorithm · Exploration · Linear combination ·
Dimensionality reduction

1 Introduction

The search for a well-spread non-dominated front in multi- and many-objective
optimisation is still an ongoing challenge. This is especially true in large-scale
optimisation which contains a very large number of decision variables or many
objective functions. Previous methods try to balance the trade-off between con-
vergence and diversity in different ways. The research in the last years has led to a
variety of many-objective optimisation methods (e.g. [2,6,10]), as well as a num-
ber of methods that can deal with hundreds or thousands of decision variables
(e.g. [11,17,18,20]). Concepts that can be found in this area are dimensionality
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reduction (e.g. [14]), variable interaction analyses or the division of design vari-
ables into convergence-related and diversity-related parameters (e.g. [11,17]),
some of which involve increased computational costs.

In this work, we propose a method to increase exploration in multi- and
many-objective optimisation by searching in subspaces defined by the current
populations’ design variables. The approach is based on the assumption that
the evolutionary process finds promising areas of the search space (i.e. areas
where good solutions are located) and adjusts the variables in the population
accordingly to cover and explore these areas. Once certain promising results have
been found, a recombination of these solutions through linear combinations is
subject to optimisation in order to create new solutions which benefit from the
inherent information in the population. Our newly proposed exploration method
can easily be included into any metaheuristic optimisation algorithm and can
also lead to a dimensionality reduction without the need for dividing variables
into subcomponents. In this work, the mathematical concept is introduced and
analysed, and an experimental evaluation shows its benefits when embedded into
multi- and many-objective algorithms. The equipped algorithms are tested on a
total of 60 different benchmark function instances from the literature with 2 to
5 objective functions and 30 to 514 decision variables.

The remainder of this article is structured as follows. In Sect. 2 the basic prin-
ciples of multi-objective optimisation are outlined briefly and a short overview
about related work on multi-objective and large-scale approaches is given. In
Sect. 3 the proposed linear-combination approach is introduced. The mathemat-
ical concept is explained first before describing the inclusion of the concept into
existing algorithms. The experimental evaluation in Sect. 4 equips a number of
well-known metaheuristics with the proposed exploration method and compares
their performance on a variety of benchmark functions. Finally, a summary and
outlook on future work directions is given in Sect. 5.

2 Multi-objective Optimisation and Related Work

Problems in nature and science often contain multiple conflicting goals which
need to be optimised simultaneously. These problems are called multi-objective
problems (MOPs) and can be formulated as:

Z : min f(x) = (f1(x), f2(x), ..., fm(x))T

s.t. x ∈ Ω ⊆ R
n

(1)

where m ≥ 2. This kind of MOP maps the decision space Ω = {x ∈ R
n| g(x) ≤

0} of dimension n to the objective space of dimension m. In most problems,
some of the constraints define a domain for each variable with lower and upper
bounds, i.e. xi ∈ [xi,min, xi,max], i = 1, .., n. For such problems, a single optimal
solution can often not be determined, since there is usually a trade-off between
the objective functions. Modern problem solving methods instead concentrate
on finding an approximation of a Pareto-optimal solution set [4,6,9].
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Two key challenges in finding such a set of solutions are convergence and
diversity of the solution set. Convergence refers to the search for better, non-
dominated solutions, which improve all objective functions from the current
solution set, and therefore bring the whole set closer to the true Pareto-optimal
solutions. Diversity on the other hand is necessary to obtain a widely spread set
of solutions. The output of a metaheuristic algorithm should provide a diverse
set of different solutions which represent different trade-offs among the objective
functions and cover the whole Pareto-optimal front as good as possible. Finding
a non-dominated set of solutions that is as close to the true Pareto-set and as
diverse as possible is an ongoing challenge, especially when many-objective and
large-scale problems are involved [11,17,18,20].

In the area of large-scale (i.e. many-variable) optimisation, the topic of reduc-
ing the dimensionality of a problem is often of importance. Concepts like Coop-
erative Coevolution [1] aim to optimise smaller subspaces of the n-dimensional
search space by dividing the variables into groups or subcomponents based on
different criteria. Approaches to achieve a better balance between convergence
and diversity have been used e.g. in [11,17]. These works carry out an analy-
sis to identify variables which influence the diversity of the solution set before
starting the optimisation process. In addition, both methods utilize an inter-
action detection to from groups of variables. A major drawback of these and
similar approaches is that the analysis of variables and formation of variable
groups requires an additional and very large computational budget for this pre-
processing step, while the actual benefit compared to a random assignment of
variables to the groups or less expensive methods is not always guaranteed [13].
Another method called WOF [19,20] shows a superior convergence behaviour in
large-scale problems with up to thousands of variables [21]. WOF aims to bal-
ance diversity and convergence through the selection of certain solutions from the
population, which are used in a fast-converging transformation and optimisation
step of the algorithm.

In the area of many-objective optimisation, a variety of algorithms has been
developed in recent years, among them many who adapt the concept of refer-
ence vectors like NSGA-III [6], MOEA/DD [10] or RVEA [2]. Reference vec-
tors or directions are a common concept that is used to solve the problem
of decreasing selection pressure when Pareto-dominance-based approaches are
used for many-objective problems. Such methods have increased the capabilities
of metaheuristics to solve many-objective problems. Due to that, an area that
might draw increased focus in the future is solving problems with many objec-
tives and a large number of decision variables at the same time, while keeping
computational budget as low as possible. This work therefore aims to propose a
mechanism that can be used to reduce the dimensionality of such problems and
by that improve the solution quality of existing many-objective methods.

3 Proposed Approach

In this section, we propose a search strategy that can be used to enhance explo-
ration of the search space and at the same time reduce the dimensionality of
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a problem without using variable groups. In metaheuristic evolutionary opti-
misation, one general assumption is that the encoding of the problem ensures
that promising solutions can be generated from a combinations of other good
solutions. By extension, Pareto-optimal solutions might share certain character-
istics, i.e. decision variable values, which might be similar throughout the whole
Pareto-optimal set (as for instance the convergence-related variables of common
benchmark families [3,8]), and which might be approximated by an optimiser.
The main goal of this approach is to exploit this information that is inherent in
the population of an evolutionary algorithm at a given time, i.e. the information
which (sub-)vector-space of the n-dimensional search space contains the (at that
point) best or most promising solutions. Based on this, a search inside this sub-
space in conducted. This concept is also related to that of “innovization” from
the literature ([5,7]), which aims to extract information or design principles from
the outcome or during the process of optimisation. In the following, the concept
of the proposed search strategy is explained.

3.1 Concept

Suppose we have an optimisation problem with n real-valued decision variables
and m objectives as given in Eq. 1. Let the population of an algorithm be P and
its size be s := |P |. At each given time of the optimisation process the population
consists of s solution vectors each of dimensionality n: P = {x(1),x(2), ...,x(s)}.
Each solution is a vector ∈ R

n:

x(i) = (x(i)
1 x

(i)
2 ... x(i)

n ) (2)

and the set of solutions P defines a vector (sub)space. The dimensionality of this
subspace is given by the rank of the matrix of the spanning vectors. We therefore
compose the matrix X̂ ∈ R

s×n which contains in each row one solution of the
population.

X̂ =

⎛
⎜⎜⎜⎜⎝

x
(1)
1 x

(1)
2 · · · x

(1)
n

x
(2)
1 x

(2)
2 · · · x

(2)
n

...
...

. . .
...

x
(s)
1 x

(s)
2 · · · x

(s)
n

⎞
⎟⎟⎟⎟⎠

(3)

An evolutionary algorithm (EA) combines the solutions in the current popu-
lation by using crossover operators. However, instead of classical crossover meth-
ods, it is also possible to combine the existing solutions linearly. This can be
done through convex, conical or arbitrary linear combinations. In the following
we focus on general linear combinations as they include the convex and conical
combinations as subsets. A linear combination of the solutions in the population
is defined as follows:

x′ = yX̂ = y1x
(1) + y2x

(2) + ... + ysx
(s) (4)

where y is the vector of coefficients of the combination:

y = (y1 y2 ... ys) (5)
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With this concept it is possible to search the subspace spanned by the s
vectors in the population, and thereby find improved solutions from combinations
of the existing ones. The actual dimension of this subspace is defined by the rank
of the matrix X̂ which is bounded between 1 ≤ rank(X̂) ≤ min{n, s}.

In a way, this method can be seen as a s-parent crossover method. In contrast
to a crossover, in our proposed method the parameters of the vector y are subject
to an optimisation process. While a multi-parent crossover would produce a
random combination and let the evolutionary process judge whether this was a
good one, the proposed procedure uses an evolutionary process to find “optimal”
combinations.

In order to find a good linear combination, the values of the vector y are
optimised instead of the original variables. As a consequence, this newly formed
optimisation problem has only s decision variables compared to the original one
with n variables. This means, in case a problem with n = 30 variables is opti-
mised with a population size of s = 100, there might be redundancy in the
newly formed linear-combination-problem, and the algorithm now searches in
100 dimensions, even though the actual space in which the solutions are created
is still 30-dimensional, and some of the vectors of the linear combinations are not
independent in this case. However, the situation differs when applied to a high-
dimensional problem with for instance n = 500 variables. The s solutions can at
most define a s-dimensional subspace. If all solutions are randomly created in
the beginning, it is not guaranteed that good solutions actually lie in the defined
subspace. However, when the algorithm is allowed a certain progress to find a
preliminary approximation of the optimal areas, we can assume that promis-
ing parameter combinations might have been found already, and the spanned
subspace might contain additional good solutions. In that case, optimising the
linear-combination-solutions can also be regarded as a dimensionality reduction
technique, as it enables the algorithm to search in a 100-dimensional subspace
instead of the 500-dimensional original search space. This makes the method not
only promising for multi- and many-objective problems, but also for the area of
large-scale optimisation.

3.2 Inclusion into Other Algorithms

The proposed concept can be used inside arbitrary metaheuristic optimisation
algorithms. To do so, we define a population Q of y-vectors, where each vector in
the population defines one linear combination of the members of P as described
above. By this, we can use any metaheuristic optimiser on this newly formed
population to find suitable linear combinations of the underlying original solu-
tions in the population P . Since the optimisation of the population Q relies on
the assumption, see above, that the population P defines a promising subspace
of Ω, the proposed method is included into other metaheuristics as an addi-
tional search step. In particular, we apply the original (arbitrary) metaheuristic
in turns with the proposed linear-combination-search. As a further step to con-
centrate on promising solutions, the linear combinations are only performed on
the non-dominated solutions in the population.
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Let X̂ be the matrix of the decision variable values of all non-dominated
solutions in P as seen above, where each row in X̂ corresponds to one non-
dominated solution in P . As a result, X̂ is an s′×n matrix, where s′ is the number
of non-dominated solutions. In the same way, let Ŷ be the matrix of the decision
variable values (i.e. coefficients of linear combinations) of the solutions in Q. The
population size of Q is t, therefore Ŷ ∈ R

t×s′
. The original objective function

evaluation can be applied to the new population by simply multiplying X̂ with Ŷ
and computing f(Ŷ X̂), i.e. applying f to each row in Ŷ X̂. For practical reasons
and to limit the search space of the newly found problem, the variables yi are
also equipped with lower and upper bounds, i.e. yi ∈ [yi,min, yi,max], i = 1, .., s′.

The outline of the resulting algorithm looks as follows:

1. Optimise the population P with any multi-objective method for a specified
time.

2. Use the first non-dominated front of the current population P to build the
matrix X̂ out of its decision variables’ values.

3. Create a random population Q of linear-combination-vectors.
4. Optimise Q for a certain time using an arbitrary optimisation method. Store

all evaluated solutions in an Archive A.
5. Merge the population P with A and proceed with the normal optimisation

process (Step 1).

4 Evaluation

To evaluate the proposed method, we have included it into several well-known
optimisation algorithms from the areas of multi- and many-objective optimisa-
tion. These algorithms are NSGA-II [4], GDE3 [9] as representatives of tra-
ditional evolutionary methods, both classical and differential evolution, and
NSGA-III [6] and RVEA [2] to represent many-objective methods. The aim of
the experiments is not to show the superiority of one of these methods over
one another, but rather to show that the proposed exploration method has a
positive influence when applied to existing algorithms. Due to space limitations,
an inclusion into dedicated large-methods like LMEA [17], MOEA/DVA [11]
or WOF [20], and the analysis of this methods’ capabilities as a dimensionality
reduction mechanism, is subject to future work. Each of the four used algorithms
has been equipped with the proposed method by applying in terms 100 genera-
tions of the original algorithm and after that 100 generations of the search in the
formed subspace as described above. The created solutions are then merged back
into the original population using the usual selection method of the respective
algorithm. For the optimisation of the population Q, the NSGA-II algorithm is
used in all cases. This is done so that all algorithms use the same exploration
mechanism for searching the formed subspace. Future research might deal with
different mechanisms in this regard, as the NSGA-II mechanism might not be
the optimal choice for many-objective problems. This procedure is repeated until
the maximum amount of function evaluations is reached. The modified versions
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of the algorithms are denoted with an “x” in front of their names, i.e. xNSGA-
II, xGDE3, xNSGA-III and xRVEA. To test the performance, we use a total of
60 test problem instances from three common benchmark families with 2 to 5
objectives and 30 to 514 decision variables. The used problems are as follows:

– Six problems from the LSMOP (large-scale multi- and many-objective test
problems) family [3]: LSMOP1-6. Each of them is tested with 2, 3, 4 and 5
objective functions, resulting in 206, 307, 413 and 514 decision variables.

– Six problems from the popular WFG family [8]: WFG2-5, WFG7 and WFG8.
All of them are tested with 2 and 3 objectives, in combination with both 40
and 400 decision variables. The WFG problems were chosen by an analysis
done in [11], where WFG2 and 3 represent problems with a sparse number
of interacting variables, WFG4 and 5 have no interactions and WFG7 and 8
have a high number of interacting variables.

– Six problems from the CEC 2009 unconstrained benchmarks: UF1-3 are 2-
objective problems, UF8-10 are 3-objective problems. All of them are tested
with 30 and 300 variables.

For implementation, the PlatEMO framework [15] version 1.5 is used. For
each experiment we perform 31 independent runs and report the median and
interquartile range (IQR) values of the relative hypervolume (HV) indicator
[16]. The relative HV is the hypervolume obtained by a solution set in relation
to the hypervolume obtained by a sample of the Pareto-front of the problem,
consisting of 10, 000 solutions as provided by the PlatEMO framework. The
used reference point for the indicator is obtained by using the nadir point of our
Pareto-front sample (i.e. the point in the objective space containing the worst
value in each dimension throughout the sample) and multiply it by 2.0 in each
dimension. Statistical significance is tested using a two-sided Mann-Whitney-
U Test with the null hypothesis that the tested samples have equal medians.
Statistical significance is assumed for a value of p < 0.01.

4.1 Parameter Settings

The maximum number of function evaluations for all algorithms and problem
instances is set to 100,000. The number of position-related variables for the WFG
problems has been set to n/4 and the parameter nk in the LSMOP benchmarks
was set to 5. The population size is set to 40 in all instances of NSGA-II and
GDE3. The population sizes of NSGA-III and RVEA are set to 40, 36, 35 and
40 for m = 2, 3, 4 and 5 objectives respectively, due to the uniform generation
of reference vectors. All algorithms use polynomial mutation with a distribution
index of 20.0 and a probability of 1/n. All algorithms, except GDE3, use the
simulated binary crossover with a distribution index of 20.0 and a probability of
1.0. In GDE3 are CR = 1 and F = 0.5. In RVEA, α = 2 and fr = 0.1 as in the
original work. The bounds of the coefficients for the linear combination are set
to yi,min = −10.0, and yi,max = 10.0.
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4.2 Results

The results of the experiments are shown in Tables 1 and 2, where each algo-
rithm is compared with its respective linear-combination-enhanced counterpart.
Overall, the proposed method is beneficial for the performance of all algorithms
in most problem instances.

First, we take a look at the two traditional evolutionary algorithms. The
xNSGA-II performs significantly better (based on the used Mann-Whitney-U
Test) compared to the original NSGA-II in 44 out of 60 problem instances, and
achieves an equal result in 9 cases. xGDE3 is significantly better or equal to its
counterpart in 52 out of 60 cases. Notable is that both original algorithms can
perform better just in a few 2-objective and 3-objective instances, while in all
higher dimensional problems with 4 and 5 objectives, they lack the ability to even
achieve any solution beyond the reference point for the HV calculation, result-
ing in a HV of zero (denoted as dashes in the tables). The linear combination
technique enables these algorithms to achieve significantly better results in even
high-dimensional problems with 5 objectives and over 500 decision variables.

Next, we examine the two many-objective algorithms NSGA-III and RVEA.
Also in these methods the proposed approach is able to improve the performance
of both algorithms significantly. In NSGA-III, the modified version with linear
combination performs significantly better in 49 problem instances and performed
equally well in another 6. xRVEA outperforms its original version in 49 instances
as well, with 5 more draws. An interesting observation is that even though both
algorithms are originally designed to work with many-objective problems, their
enhanced versions increase their performances even in these instances to a great
extent. It is worth to note that the performance on the many-objective instances
is significantly increased, even though the subspace of linear combinations is
searched with the NSGA-II mechanism, which is usually not designed for many-
objective problems. A possible explanation for this fact might be that NSGA-III
and RVEA do not posses a mechanism for dealing with high-dimensional search
spaces. Since the LSMOP problems do not only contain many objective function
but also high-dimensional search spaces, this might turn out a challenge for
these algorithms. The positive influence of the linear-combination-search might
be, at least partly, due to the inherent reduction of dimensionality. This is also
supported by the fact that for all the four algorithms, the original version did
only perform better than the x-versions in low-dimensional problems, almost
exclusively in UF and WFG problems with only 30 or 40 variables.

Another interesting observation concerns the type of problem where the
linear-combination-search seems to work less effectively. Among the few instances
where the modified algorithms do not perform best are the (low-dimensional)
WFG4 and WFG5 problems, both with 2 and with 3 objectives. WFG4 and
WFG5 are both fully separable. Furthermore, NSGA-II and NSGA-III outper-
form their modified counterparts on the 2-objective LSMOP5 problem, which
is also fully separable. The separability of variables suggests that an algorithm
can reach optimal solutions by altering variables completely independent of each
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Table 1. Obtained median and IQR values of the relative Hypervolume for NSGA-II
and xNSGA-II as well as GDE3 and xGDE3. An asterisk in the column of an x-
Algorithm indicates statistical significance to the respective original version of that
algorithm. Best performances are marked in bold and shaded where significant.

m n NSGA-II xNSGA-II GDE3 xGDE3

LSMOP1

2

206 0.75134 (1.13E-1) 0.85510 * (9.07E-2) 0.56263 (4.52E-2) 0.86759 * (2.47E-2)
LSMOP2 206 0.94481 (4.97E-3) 0.96903 * (6.71E-3) 0.94321 (2.31E-3) 0.98270 * (1.41E-3)
LSMOP3 206 — ( — ) 0.23474 * (1.38E-1) — ( — ) 0.03916 * (3.23E-3)
LSMOP4 206 0.90440 (8.53E-3) 0.94727 * (4.55E-3) 0.94008 (9.01E-3) 0.96784 * (6.26E-3)
LSMOP5 206 0.79282 (6.00E-2) 0.62224 * ( — ) 0.30990 (9.27E-2) 0.81408 * (3.48E-2)
LSMOP6 206 0.46222 (1.79E-2) 0.57904 * (5.69E-3) 0.50444 (3.28E-2) 0.58816 * (1.95E-2)
LSMOP1

3

307 — ( — ) 0.80958 * (2.78E-2) — ( — ) 0.71837 * (2.01E-2)
LSMOP2 307 0.97074 (2.47E-3) 0.97026 (2.91E-3) 0.97153 (1.59E-3) 0.97553 * (1.70E-3)
LSMOP3 307 — ( — ) 0.51111 * ( — ) — ( — ) 0.51111 * ( — )
LSMOP4 307 0.90478 (7.82E-3) 0.92602 * (4.70E-3) 0.89693 (6.83E-3) 0.93835 * (3.50E-3)
LSMOP5 307 — ( — ) 0.85655 * (9.56E-4) — ( — ) 0.87305 * (1.33E-2)
LSMOP6 307 — ( — ) 0.29197 * (6.70E-3) — ( — ) 0.26725 * (6.36E-3)
LSMOP1

4

413 — ( — ) 0.76046 * (1.25E-2) — ( — ) 0.66323 * (1.91E-2)
LSMOP2 413 0.98192 (1.77E-3) 0.98272 * (1.29E-3) 0.98080 (1.59E-3) 0.98570 * (1.03E-3)
LSMOP3 413 — ( — ) 0.02216 * (9.49E-4) — ( — ) 0.02356 * (3.31E-4)
LSMOP4 413 0.96053 (2.76E-3) 0.96187 (2.80E-3) 0.95663 (3.94E-3) 0.96756 * (2.80E-3)
LSMOP5 413 — ( — ) 0.91945 * (4.68E-2) — ( — ) 0.93033 * (5.17E-3)
LSMOP6 413 0.33750 (3.50E-3) 0.66594 * (2.55E-2) 0.33652 (5.55E-3) 0.67133 * (5.52E-2)
LSMOP1

5

514 — ( — ) 0.63753 * (1.49E-2) 0.50034 ( — ) 0.63655 * (2.09E-2)
LSMOP2 514 0.99283 (7.79E-4) 0.99313 (5.96E-4) 0.99323 (4.98E-4) 0.99416 * (5.24E-4)
LSMOP3 514 — ( — ) 0.50034 * ( — ) — (5.00E-1) 0.50034 * ( — )
LSMOP4 514 0.96323 (2.79E-3) 0.97878 * (1.84E-3) 0.96271 (3.12E-3) 0.98035 * (2.37E-3)
LSMOP5 514 — ( — ) 0.90318 * (5.62E-2) — ( — ) 0.69514 * (3.07E-1)
LSMOP6 514 — ( — ) 0.21220 * (1.02E-1) — ( — ) 0.26520 * (1.19E-1)

UF1

2

30 0.91887 (4.11E-2) 0.96229 * (2.89E-2) 0.97379 (1.39E-2) 0.96932 (1.53E-2)
UF2 30 0.95267 (3.99E-2) 0.98183 * (8.40E-3) 0.97989 (9.59E-3) 0.97173 * (8.26E-3)
UF3 30 0.71558 (5.38E-2) 0.95430 * (6.00E-3) 0.96908 (1.45E-2) 0.95301 * (1.46E-2)
UF1 300 0.90110 (2.48E-2) 0.90481 (6.03E-2) 0.44383 (9.57E-2) 0.29760 * (4.25E-2)
UF2 300 0.89138 (2.24E-2) 0.88332 (1.39E-2) 0.86877 (5.74E-3) 0.88162 * (4.62E-3)
UF3 300 0.73023 (8.34E-3) 0.95459 * (5.81E-3) 0.73585 (1.42E-2) 0.94991 * (1.92E-3)
UF8

3

30 0.80694 (3.35E-2) 0.84659 * (9.42E-2) 0.24162 (2.42E-1) 0.64186 * (6.77E-2)
UF9 30 0.72903 (9.67E-2) 0.82914 * (8.45E-2) 0.31863 (1.46E-1) 0.59303 * (5.85E-2)
UF10 30 0.38003 (1.29E-1) 0.82597 * (1.22E-2) — ( — ) 0.54190 * (3.09E-2)
UF8 300 0.79119 (2.05E-2) 0.85501 * (9.36E-4) 0.65592 (4.89E-2) 0.82907 * (8.35E-3)
UF9 300 0.63539 (2.04E-2) 0.62206 (2.44E-2) 0.50443 (2.73E-2) 0.62197 * (1.26E-2)
UF10 300 0.03827 (5.22E-2) 0.84973 * (2.89E-3) — ( — ) 0.73813 * (8.86E-2)

WFG2

2

41 0.85891 (7.60E-3) 0.97933 * (1.27E-2) 0.97452 (5.03E-2) 0.97187 (2.02E-2)
WFG3 41 0.84987 (2.91E-3) 0.84869 (6.62E-3) 0.84444 (1.00E-2) 0.83283 * (7.49E-3)
WFG4 40 0.99235 (1.06E-3) 0.99019 * (2.60E-3) 0.94351 (6.56E-3) 0.94394 (9.17E-3)
WFG5 40 0.97948 (2.92E-3) 0.97841 * (2.40E-3) 0.95348 (1.31E-2) 0.93875 * (2.60E-2)
WFG7 40 0.99345 (1.02E-3) 0.99262 * (8.23E-4) 0.96279 (3.02E-2) 0.95901 (1.44E-2)
WFG8 40 0.89218 (5.87E-3) 0.89593 * (6.48E-3) 0.85652 (1.44E-2) 0.83074 * (1.64E-2)
WFG2 401 0.72887 (3.64E-2) 0.86591 * (2.49E-3) 0.76243 (6.42E-3) 0.87080 * (2.68E-3)
WFG3 401 0.63592 (7.54E-3) 0.78669 * (7.04E-2) 0.66454 (1.52E-2) 0.73419 * (6.82E-3)
WFG4 400 0.66487 (1.36E-2) 0.83624 * (1.42E-2) 0.79988 (2.20E-2) 0.82247 * (1.51E-2)
WFG5 400 0.64103 (1.90E-2) 0.85848 * (1.42E-2) 0.82362 (6.03E-3) 0.85548 * (8.87E-3)
WFG7 400 0.67641 (1.19E-2) 0.86891 * (2.39E-2) 0.74902 (8.54E-3) 0.78553 * (9.29E-3)
WFG8 400 0.57725 (1.06E-2) 0.78999 * (1.48E-2) 0.57692 (2.33E-2) 0.78252 * (1.79E-2)
WFG2

3

40 0.90095 (9.05E-3) 0.97075 * (8.38E-3) 0.94492 (1.92E-2) 0.93262 * (3.45E-2)
WFG3 40 0.93396 (2.31E-2) 0.93407 (2.58E-2) 0.84310 (3.27E-2) 0.86879 * (4.69E-2)
WFG4 40 0.96941 (3.62E-3) 0.95785 * (6.89E-3) 0.88129 (2.56E-2) 0.85787 * (2.53E-2)
WFG5 40 0.94920 (4.28E-3) 0.94571 * (2.34E-3) 0.88469 (2.12E-2) 0.88316 (2.18E-2)
WFG7 40 0.96833 (2.17E-2) 0.97117 (3.13E-2) 0.86183 (3.23E-2) 0.86343 (2.79E-2)
WFG8 40 0.92742 (6.25E-3) 0.91145 * (8.30E-3) 0.80365 (1.82E-2) 0.80627 (1.82E-2)
WFG2 400 0.68917 (9.54E-3) 0.85622 * (5.57E-3) 0.69053 (5.17E-3) 0.84083 * (5.10E-3)
WFG3 400 0.57700 (2.56E-2) 0.79436 * (4.23E-2) 0.57939 (1.48E-2) 0.67991 * (4.62E-3)
WFG4 400 0.59041 (1.47E-2) 0.71919 * (6.97E-2) 0.70378 (1.63E-2) 0.71675 * (2.00E-2)
WFG5 400 0.55374 (1.23E-2) 0.75534 * (4.74E-2) 0.69452 (1.47E-2) 0.72009 * (1.29E-2)
WFG7 400 0.59516 (1.35E-2) 0.71240 * (8.34E-3) 0.68170 (9.85E-3) 0.69439 * (9.10E-3)
WFG8 400 0.52326 (1.77E-2) 0.72452 * (1.80E-2) 0.59209 (1.95E-2) 0.72812 * (1.85E-2)

other. These results imply that for such problems, at least in low-dimensional
search spaces, a combination of solutions, which actually alters all variables at
the same time through the linear coefficients, might not be suitable.



408 H. Zille and S. Mostaghim

Table 2. Obtained median and IQR values of the relative Hypervolume for NSGA-
III and xNSGA-III as well as RVEA and xRVEA. An asterisk in the column of an
x-Algorithm indicates statistical significance to the respective original version of that
algorithm. Best performances are marked in bold and shaded where significant.

m n NSGA-III xNSGA-III RVEA xRVEA

LSMOP1

2

206 0.64220 (1.53E-1) 0.79579 * (1.15E-1) 0.06873 (5.66E-1) 0.83933 * (1.61E-2)
LSMOP2 206 0.95088 (2.79E-3) 0.98200 * (4.04E-3) 0.94387 (4.98E-3) 0.97949 * (2.83E-3)
LSMOP3 206 — ( — ) 0.08521 * (9.18E-2) 0.56963 (9.96E-3) 0.01974 * (3.53E-4)
LSMOP4 206 0.92227 (5.51E-3) 0.95692 * (3.62E-3) 0.89610 (5.73E-3) 0.95196 * (6.33E-3)
LSMOP5 206 0.80093 (5.06E-2) 0.62224 * ( — ) — ( — ) 0.62224 * (7.05E-4)
LSMOP6 206 0.45949 (8.70E-3) 0.57262 * (7.48E-3) 0.49474 (5.00E-2) 0.53730 * (2.34E-1)
LSMOP1

3

307 0.07558 (1.15E-1) 0.82378 * (2.30E-2) 0.53715 (5.74E-2) 0.76242 * (1.24E-2)
LSMOP2 307 0.97954 (4.31E-4) 0.98317 * (5.45E-4) 0.97803 (5.73E-4) 0.98107 * (7.71E-4)
LSMOP3 307 — ( — ) 0.51112 * (1.37E-2) — ( — ) 0.51081 * (5.01E-4)
LSMOP4 307 0.93995 (2.68E-3) 0.96222 * (1.53E-3) 0.93470 (3.10E-3) 0.96314 * (2.83E-3)
LSMOP5 307 — ( — ) 0.85486 * (9.61E-4) 0.53581 (6.39E-6) 0.91034 * (2.29E-2)
LSMOP6 307 — ( — ) 0.28687 * (4.61E-3) — ( — ) 0.16058 * (1.06E-1)
LSMOP1

4

413 — ( — ) 0.79609 * (2.13E-2) 0.56234 (1.34E-1) 0.76333 * (1.34E-2)
LSMOP2 413 0.98752 (2.75E-4) 0.99087 * (3.96E-4) 0.98672 (4.39E-4) 0.99004 * (7.35E-4)
LSMOP3 413 — ( — ) 0.02076 * (1.47E-3) 0.02149 (3.03E-1) 0.02041 (2.93E-3)
LSMOP4 413 0.97775 (1.31E-3) 0.98127 * (1.63E-3) 0.97015 (3.45E-3) 0.98206 * (1.20E-3)
LSMOP5 413 — ( — ) 0.93971 * (8.78E-4) 0.51144 (3.22E-4) 0.92817 * (5.73E-3)
LSMOP6 413 0.36714 (7.75E-3) 0.70352 * (8.04E-3) 0.40710 (2.81E-2) 0.74121 * (8.87E-2)
LSMOP1

5

514 — ( — ) 0.69758 * (4.51E-2) 0.67646 (1.28E-1) 0.74755 * (1.11E-2)
LSMOP2 514 0.99601 (8.07E-5) 0.99644 * (6.37E-5) 0.99566 (2.15E-3) 0.99625 * (1.14E-4)
LSMOP3 514 — ( — ) 0.50033 * (2.10E-5) — (7.30E-3) 0.50033 * (3.31E-2)
LSMOP4 514 0.98389 (1.12E-3) 0.98972 * (6.96E-4) 0.98235 (2.83E-3) 0.98890 * (1.14E-3)
LSMOP5 514 — ( — ) 0.98680 * (1.82E-3) 0.50400 (5.49E-6) 0.98609 * (2.35E-3)
LSMOP6 514 — ( — ) 0.53851 * (1.35E-2) 0.19527 (2.39E-1) 0.31759 * (1.33E-1)

UF1

2

30 0.90857 (5.92E-2) 0.97172 * (2.62E-2) 0.86021 (7.86E-2) 0.94097 * (1.38E-2)
UF2 30 0.95574 (3.03E-2) 0.98049 * (1.00E-2) 0.95095 (3.30E-2) 0.95587 (1.82E-2)
UF3 30 0.70910 (4.33E-2) 0.94851 * (1.07E-2) 0.69021 (1.81E-2) 0.90003 * (2.32E-2)
UF1 300 0.88442 (6.09E-2) 0.88944 (4.52E-2) 0.70355 (5.68E-2) 0.65673 * (4.88E-2)
UF2 300 0.88425 (1.64E-2) 0.88747 (6.78E-3) 0.85611 (9.08E-3) 0.87460 * (4.22E-3)
UF3 300 0.70306 (1.05E-2) 0.96051 * (1.68E-3) 0.69537 (8.73E-3) 0.95204 * (4.75E-3)
UF8

3

30 0.84654 (6.85E-3) 0.85433 * (1.79E-3) 0.84549 (1.19E-3) 0.84531 (1.13E-1)
UF9 30 0.72999 (3.78E-2) 0.86360 * (7.90E-2) 0.68531 (2.59E-2) 0.86237 * (1.95E-1)
UF10 30 0.46645 (2.00E-1) 0.85371 * (1.78E-3) 0.44133 (8.21E-2) 0.84551 * (2.97E-4)
UF8 300 0.82401 (6.90E-3) 0.85408 * (1.07E-3) 0.75309 (2.85E-2) 0.84802 * (7.03E-4)
UF9 300 0.56338 (1.33E-2) 0.56357 (1.11E-2) 0.57018 (1.40E-2) 0.56862 (9.94E-3)
UF10 300 0.49573 (1.36E-1) 0.85499 * (9.58E-4) 0.41166 (3.40E-1) 0.84215 * (3.51E-3)

WFG2

2

41 0.85728 (1.06E-2) 0.97518 * (1.18E-2) 0.84715 (1.23E-2) 0.95977 * (1.02E-2)
WFG3 41 0.84681 (6.36E-3) 0.84961 (6.54E-3) 0.83505 (1.19E-2) 0.84317 * (8.32E-3)
WFG4 40 0.99153 (9.83E-3) 0.98916 (8.35E-3) 0.98032 (1.09E-2) 0.97351 * (9.98E-3)
WFG5 40 0.97941 (3.86E-3) 0.97447 * (4.24E-3) 0.98076 (4.17E-3) 0.97430 * (3.69E-3)
WFG7 40 0.93748 (1.22E-2) 0.99385 * (5.10E-4) 0.92685 (1.41E-2) 0.98565 * (4.19E-3)
WFG8 40 0.86666 (2.03E-2) 0.89541 * (1.08E-2) 0.83284 (1.65E-2) 0.84491 * (1.49E-2)
WFG2 401 0.73729 (4.17E-2) 0.86429 * (1.96E-3) 0.71967 (1.06E-2) 0.85805 * (4.48E-3)
WFG3 401 0.63240 (1.17E-2) 0.74807 * (3.22E-2) 0.60861 (8.36E-3) 0.75809 * (8.93E-3)
WFG4 400 0.66360 (2.09E-2) 0.84435 * (1.72E-2) 0.62383 (1.44E-2) 0.79269 * (2.27E-2)
WFG5 400 0.64081 (9.68E-3) 0.85923 * (1.75E-2) 0.58413 (1.36E-2) 0.84903 * (1.56E-2)
WFG7 400 0.67987 (1.46E-2) 0.87752 * (1.64E-2) 0.63490 (1.33E-2) 0.80371 * (2.21E-2)
WFG8 400 0.56587 (1.33E-2) 0.79794 * (3.07E-2) 0.52654 (1.04E-2) 0.75307 * (2.12E-2)
WFG2

3

40 0.89508 (9.06E-3) 0.97233 * (1.06E-2) 0.88068 (1.72E-2) 0.95820 * (1.28E-2)
WFG3 40 0.89644 (3.21E-2) 0.91990 * (1.88E-2) 0.92193 (3.11E-2) 0.90139 * (1.91E-2)
WFG4 40 0.97227 (3.95E-3) 0.96489 * (5.08E-3) 0.96010 (9.14E-3) 0.96054 (1.07E-2)
WFG5 40 0.95600 (3.73E-3) 0.95345 * (1.85E-3) 0.96749 (2.00E-3) 0.95277 * (1.38E-3)
WFG7 40 0.98000 (5.03E-2) 0.98470 * (3.55E-3) 0.96277 (3.84E-2) 0.98642 * (1.04E-3)
WFG8 40 0.94130 (4.94E-3) 0.92604 * (7.27E-3) 0.84503 (9.21E-2) 0.91875 * (8.59E-3)
WFG2 400 0.68287 (9.66E-3) 0.82952 * (7.41E-3) 0.65750 (5.27E-3) 0.83219 * (1.32E-2)
WFG3 400 0.54703 (2.47E-2) 0.65643 * (7.34E-2) 0.33447 (4.64E-2) 0.67913 * (3.18E-2)
WFG4 400 0.46450 (1.38E-2) 0.61422 (2.85E-1) 0.46569 (2.93E-2) 0.50973 * (3.65E-2)
WFG5 400 0.53172 (4.44E-2) 0.64958 * (1.86E-1) 0.49506 (2.40E-2) 0.60250 * (2.47E-2)
WFG7 400 0.48076 (1.48E-2) 0.68523 * (4.92E-2) 0.49942 (6.12E-2) 0.71808 * (4.20E-2)
WFG8 400 0.39701 (5.85E-2) 0.66022 * (2.87E-2) 0.36715 (1.04E-2) 0.72648 * (1.53E-2)

In summary, we conclude that the proposed approach of optimising linear
combination of the population members is able to increase the performance of
multi- and many-objective algorithms in most cases. This is especially true for
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higher numbers of decision variables and higher numbers of objective functions.
The authors further tested the method on the remaining problems from the
WFG, UF and LSMOP families, which were not reported here due to page
limitations, and obtained similar superior performance of the proposed method.

5 Conclusion and Future Work

This article proposed a new mechanism for exploration and solution creation in
multi- and many-objective optimisation. The mathematical concept is able to
focus the search on relevant areas and at the same time reduce the dimension-
ality of the original problem without using (possibly expensive) variable group-
ing methods. After we introduced the mathematical concept, we described how
this approach can be incorporated into existing metaheuristic algorithms and
explored its capabilities on a variety of benchmark functions with different char-
acteristics and dimensionality. The results indicate that this linear-combination
approach can improve the performance of existing methods in both large-scale
and many-objective optimisation.

Future work in this area involves exploring the possibilities of this approach
further. It can be included into specific large-scale metaheuristics like the WOF
as a dimensionality reduction technique. Another possible application might
be in constrained problems. Linear combinations have been applied to parti-
cle swarm optimisation in [12] to preserve the feasibility of individuals. The
approach described in this article can easily be adapted to only allow certain
linear combinations, for instance convex ones. If the search is restrained in this
way to convex combinations, the algorithm can by definition only create feasi-
ble solutions out of existing feasible ones, provided that constraints are linear.
Therefore, this can be a promising direction for constraint handling in (large-
scale) many-objective optimisation.
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Abstract. Dominance, extensions of dominance, decomposition, and
indicator functions are well-known approaches used to design MOEAs.
Algorithms based on these approaches have mostly sought to enhance
parent selection and survival selection. In addition, several variation
operators have been developed for MOEAs. We focus on the classification
and selection of variables to improve the effectiveness of solution search.
In this work, we propose a method to classify variables that influence
convergence and increase their recombination rate, aiming to improve
convergence of the approximation found by the algorithm. We incor-
porate the proposed method into NSGA-II and study its effectiveness
using three-objective DTLZ and WFG functions, including unimodal,
multimodal, separable, non-separable, unbiased, and biased functions.
We also test the effectiveness of the proposed method on a real-world bi-
objective problem. Simulation results verify that the proposed method
can contribute to achieving faster and better convergence in several kinds
of problems, including the real-world problem.

Keywords: Evolutionary multi-objective optimization ·
Variables classification · Variables selection · Recombination operators

1 Introduction

Multi-objective evolutionary algorithms [2,4] (MOEAs) have been used to solve
multi-objective optimization problems on all kinds of application domains. Due
to their success, MOEAs are being applied to real-world problems of increased
complexity. Scalability in decision and objective spaces, epistasis, effectiveness
on problems with difficult topologies of the Pareto optimal set, and a limited
budget of evaluations due to computationally expensive fitness functions are
some of the challenges the new generation of MOEAs have to face.
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The enhancement of MOEAs performance is an active research subject. Dom-
inance, extensions of dominance, decomposition, and indicator functions are well-
known approaches used to design MOEAs [1,5,9–11]. Algorithms based on these
approaches have mostly sought to enhance parent selection and survival selec-
tion. In addition, several variation operators have been developed and incorpo-
rated within MOEAs.

Evolutionary multi-objective algorithms commonly select individuals for vari-
ation based on their fitness. However, the operators of variation are commonly
applied to variables randomly chosen. Typically, an operator rate per variable
controls the expected number of variables that will be subject to variation, but
the decision of what variables will be modified is left to chance. Modifying a
variable of a solution in a multi-objective problem can have one of the following
effects. The modification improves one or several objectives without worsening
others. This would be the case if the solution subject to the modification is sub-
optimal, which is commonly observed in random initial populations and during
early stages of the optimization. The modification improves one or more objec-
tives but worsens others. This will typically be observed if the solution being
modified is Pareto optimal or if it belongs to a local front. Multi-objective evo-
lutionary algorithms aim to find an approximation of the Pareto optimal set,
commonly with good qualities in terms of convergence and diversity in objective
space. If the effects a variable has on convergence and diversity can be learned
or estimated during the optimization [8], the effectiveness of the search could be
enhanced by targeting particular variables for variation to find better approxi-
mations of the Pareto optimal set.

We focus on the classification and selection of variables for variation aiming to
improve the ability of solution search. In this work, we propose a method to iden-
tify variables that influence convergence and increase their selection probabilities,
so that recombination can select them more frequently to improve convergence
of the approximation found by the algorithm. The proposed method selects ran-
domly a solution from the instantaneous Pareto set and creates variations of it
mutating one variable at the time. Variables are classified into influential and
uninfluential based on whether there is a dominance relation or not between
the original solution and the corresponding one-variable mutants. The method
estimates that influential variables affect convergence of solutions in objective
space and increase their recombination rate.

In this paper, we incorporate the proposed method into NSGA-II [5] and
study its effectiveness using three-objective DTLZ [3] and WFG [6] functions,
including unimodal, multimodal, separable, non-separable, unbiased, and biased
functions. We also verify the effectiveness of the proposed method on a real-world
bi-objective problem [7]. Three ways to determine the trial values of variables to
create the mutants are investigated. Simulation results verify that the proposed
method can contribute to achieving faster and better convergence in several
kinds of problems.
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2 Method

In this section, we describe the proposed variable selection method, applied every
generation after front sorting before truncation selection. The method first clas-
sifies variables that can influence convergence and then update their probabilities
so that recombination can select them more frequently.

The procedure to classify variables is illustrated in the pseudocode of Fig. 1.
First, we assign a label 0 to each variable, Li = 0, i = 1, · · · , n. Next, we obtain
trial values for each variable xtrial = (xtrial

1 , · · · , xtrial
n ) from the non-dominated

solution set F1 in the population Pt at generation t. We randomly select one
solution x = (x1, · · · , xn) from F1. Then, for each variable i, we generate a
solution y duplicate of x and modify the i-th variable with its corresponding
trial value, yi = xtrial

i . Evaluate y and calculate the dominance relation between
solutions y and x. If either y dominates x or x dominates y, we update the
corresponding label to 1, Li = 1. This procedure returns the vector of labels
L assigned to the variables, where Li = 1 if the change in the i-th variable
induced a dominance relation (�) between the randomly sampled solution and
its one-variable mutant. Li = 0 otherwise.

1: procedure VariableClassification(F1)
2: L = (L1, L2, · · · , Ln) = (0, 0, · · · , 0)
3: xtrial = (xtrial

1 , xtrial
2 , · · · , xtrial

n ) = ReferenceValues(F1)
4: x = xj ∈ F1, j = rand(1, |F1|)
5: for i = 1 to n do
6: y = (y1, y2, · · · , yn) = x = (x1, x2, · · · , xn)
7: yi = xtrial

i

8: Evaluate(y)
9: if x � y OR y � x then
10: Li = 1
11: end if
12: end for
13: return L
14: end procedure

Fig. 1. Classification of variables

We explore three procedures called random, far, and near to set trial values
for variables.

random sets xtrial
i to the value of the i-th variable of a solution randomly

selected from F1. A different solution j is randomly chosen for each variable i,

xtrial
i = zji | zj ∈ F1 ∧ j = rand(1, |F1|). (1)
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far sets xtrial
i to the farthest value of xi in F1. That is,

k = arg max
j=1...|F1|

(|xi − zji |), zj ∈ F1, xi �= zji

xtrial
i = zki .

(2)

On the other hand, near sets xtrial
i to the nearest value of xi in F1. That is,

k = arg min
j=1...|F1|

(|xi − zji |), zj ∈ F1, xi �= zji

xtrial
i = zki .

(3)

In near and far, if all solutions in F1 have the same value in xi, then xtrial
i =

xi (no change).
After variables have been classified, a recombination rate p′

cv,i for each vari-
able i is computed as follows

p′
cv,i = pcv, if NL = 0. (4)

p′
cv,i =

{
1, if Li = 1

E−NL

n−NL
, otherwise,

, if 0 < NL ≤ E. (5)

p′
cv,i =

{
E
NL

, if Li = 1
0, otherwise.

, if NL > E. (6)

where Li ∈ {0, 1} is the label assigned to variables, NL =
∑n

i=1 Li is the number
of variables classified with label Li = 1, E = n × pcv is the expected number of
crossed variables using the default rate. If after exploring n one-variable mutants
no changes in dominance are observed, NL = 0, the recombination rate p′

cv,i is
set to the default rate pcv for each variable. If there are changes in dominance and
these are less than the expected number of crossed variables when the default
crossover rate is used, 0 < NL ≤ E, then the recombination rate p′

cv,i is set to
1 for variables labeled Li = 1 and to E−NL

n−NL
< pcv for variables labeled Li = 0.

Otherwise, if NL > E, p′
cv,i is set to E

NL
≥ pcv for variables labeled Li = 1 and

to 0 for variables labeled Li = 0. Note that the expected number of recombined
variables with pcv and p′

cv is the same.
In this work, we use the variable classification procedure to update recombi-

nation probabilities of variables. However, this method can be easily extended
to influence probabilities for mutation or other variation operators.

3 Test Problems

DTLZ [3] and WFG [6] benchmark multi-objective optimization problems are
used to evaluate the proposed method. These problems are scalable in the num-
ber of variables and the number of objective functions. From the DTLZ family
of problems we use DTLZ2 and DTLZ3, whereas from the WFG family we use
WFG1-WFG9. Some properties of these problems are summarized in Table 1.
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Table 1. Features of test problems. Separability: separable S, non-separable NS.
Modality: unimodal U, multimodal M.

Problem Sep. Modality Bias Other Features

DTLZ2 S U -

DTLZ3 S M -

WFG1 S U Yes Polynomial bias α = 0.02. Bias
variables towards 1

WFG2 NS U,M - U: f1, · · · , fM−1, M: fM , fM .
Discontinuous front

WFG3 NS U - Degenerancy constants
A1 = 1, A2:M−1 = 0, front
reduces to two dimensions

WFG4 S M -

WFG5 S M -

WFG6 NS U -

WFG7 S U Yes Parameter dependent bias:
zi=1:k ← zi+1, . . . , zn

WFG8 NS U Yes Parameter dependent bias:
zi=k+1:n ← z1, . . . , zi−1

WFG9 NS M Yes Parameter dependent bias:
zi=1:n−1 ← zi+1, . . . , zn

We include separability, modality and bias. Separable problems are marked with
S and non-separable with NS. Unimodal problems are marked U and multimodal
problems with M.

We also test the effectiveness of the proposed method on a bi-objective real-
world problem [7]. The problem is to design a platform with a motor mounted
on it. The machine setup is simplified as a pin-pin supported beam carrying
a weight (motor). A vibratory disturbance is imparted from the motor onto
the beam, which is of length L, width b, and symmetrical about its mid-plane.
The beam is made of three layers of material. Variables d1 and d2, respectively,
locate the contact of materials 1 and 2, and 2 and 3. Variable d3 locates the
top of the beam. The values of d1, d2, and d3 are measured from the mid-plane
of the beam. Mi refers to the material type for layer i (i = 1, 2, 3). The mass
density (ρ), Young’s modulus of elasticity (E), and cost per unit volume (c)
for each material type is given [7]. The objective functions are the fundamental
frequency, f1, to be maximized and the cost of the set up, f2, to be minimized.
The complete formulation is as follows,

f1(d1, d2, d3, b, L) = (π/2L2)(EI/μ)1/2,

EI = (2b/3)[EM1d
3
1 + EM2(d

3
2 − d31) + EM3(d

3
3 − d32)],

μ = 2b[ρM1d1 + ρM2(d2 − d1) + ρM3(d3 − d2)],

(7)
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f2(d1, d2, d3, b) = 2b[cM1d1 + cM2(d2 − d1) + cM3(d3 − d2)], (8)

subject to μL − 2800 < 0, d2 − d1 ≤ 0.01, d3 − d2 ≤ 0.01, 0.35 ≤ b ≤ 0.5,
3 ≤ L ≤ 6, and d1, d2, d3 ∈ [0.01, 0.6].

4 Experimental Setup and Performance Measures

In this paper, we use DTLZ2, DTLZ3, WFG1-WFG9 as benchmark problems,
setting the number of objectives M = 3 and the number of variables n = 12 for
all problems. The number of position variables is M − 1 in DTLZ. Similarly, we
set the number of position variables to k = M −1 in WFG. Thus, the number of
position variables is 2 and the number of distance variables is 10 in all benchmark
problems dealt with in this paper.

We use five algorithms to study and verify the performance of the variable
selection method proposed in this work. The base algorithm is conventional
NSGA-II [5]. NSGA-II randomly selects variables for recombination with the
same probability pcv per variable. In the following, NSGA-II is named org.
We also use three variations of NSGA-II using the proposed variable selection
method with one of the procedures to set trial variables, as explained in Sect. 2.
These variations are named random, far, and near. The fifth algorithm, named
ideal, knows in advance the correct classification of distance and position vari-
ables to compute the recombination rate per variable. Thus, org provides a
baseline for performance comparison, whereas ideal provides the performance
reference of an algorithm with a perfect classification of variables.

The algorithms are run for 2000 generations setting the number of individuals
to 100, the recombination rate per individual to 1.0, and the mutation rate to
1/n. The recombination rate per variable is set to pcv = 0.5 in org and to p′

cv in
random, far, near, and ideal, computed with Eqs. (4–6) as explained in Sect. 2.
The number of runs is 30 in all experiments.

To verify improvements on convergence we use generational distance GD in
the case of DTLZ problems and the value of variable xM in WFG problems. GD
is computed analitycally. The smaller the value of GD, the better the convergence
of the set of obtained nondominated solutions. In WFG distance variables are
finally aggregated into variable xM ∈ [0.0, 1.0]. The smaller the value of xM is,
the closer to the true optimum the solution is. When xM = 0, the obtained
solution is the true optimal solution. We also use the hypervolume metric to
evaluate performance in the real world problem.

5 Simulation Results and Discussion

5.1 Three-Objective Benchmark Problems

First, we apply each algorithm to DTLZ2 and DTLZ3 functions. Figure 2(a)
shows the transition of the average GD value in 30 runs over the number of
fitness evaluations for DTLZ2. Similarly, Fig. 2(b) shows results for DTLZ3. In
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this experiment, population size is set to 100 and the number of generations to
2,000. Therefore, the total number of evaluations in org and ideal is 200,000 per
run. In the case of random, far, and near the algorithms evaluate an additional
trial solution per variable. Since the number of variables is 12, random, far, and
near evaluate 112 solutions in each generation and 224,000 evaluations per run.

Comparing GD by the algorithms in Fig. 2(a) and (b), it can be seen that
random, far, and near approach ideal and obtain significantly smaller GD than
org in both separable problems, the unimodal DTLZ2 and in the multimodal
DTLZ3. In DTLZ2, no significant difference is observed among random, far,
and near. In the multimodal DTLZ3, during the latest stages of the search, far
seems to perform better than random and near, in that order. Note that there
is one order of magnitude difference between far and org in DTLZ2 and two
orders of magnitude difference in DTLZ3.

0.001

0.010

0.100

0 5 10 15 20
Number of Evaluations(e+04)

G
D

far
ideal
near

org
random

(a) DTLZ2

1e−03

1e+00

1e+03

0 5 10 15 20
Number of Evaluations(e+04)

G
D
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ideal
near

org
random

(b) DTLZ3

Fig. 2. Transition of the median value of GD over the number of fitness evaluations in
DTLZ2 and DTLZ3 problems

Next, we apply each algorithm to WFG1-WFG9 problems. Figure 3 shows
the transition of the median value of the distance variable xM in the set of non-
dominated solutions over the number of evaluations. Comparing the algorithms,
it can be seen that random, far, and near approach ideal and achieve smaller
xM values than org in WFG1, WFG2, WFG4, WFG5, WFG6, and WFG8,
improving significantly convergence. In WFG3, WFG7, and WFG9 xM value is
similar for all algorithms.

Table 2. Rate of absolute classification of all variables.

DTLZ2 DTLZ3 WFG1 WFG2 WFG3 WFG4 WFG5 WFG6 WFG7 WFG8 WFG9

far 99.6 76.6 38.0 99.9 34.6 99.7 99.9 100 4.06 98.1 0.805

near 71.6 43.1 14.9 92.3 34.6 98.3 69.5 99.2 6.41 91.3 0.485

random 86.9 53.6 13.3 86.7 30.8 89.6 83.5 89.6 2.78 86.7 0.240

Table 2 shows the average rate of absolute classification of variables. A clas-
sification is counted as absolute when all position and distance variables are
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Fig. 3. Transition of the median value of the distance variable xM over the number of
fitness evaluations in WFG problems

correctly classified. From Table 2, it can be seen that the rates of absolute clas-
sification are high in problems DTLZ2, WFG2, WFG4-6, and WFG8, where
convergence improves in the algorithms with the proposed method as shown in
Figs. 2 and 3. Absolute classification rate is low in problems WFG3, WFG7, and
WFG9, were convergence did not improve. Note that absolute classification is
low in DTLZ3 and WFG1, although the proposed method significantly improves
convergence.

To analyze with more detail the classification of variables and its impact on
performance, Fig. 4 shows the classification rate per variables over the genera-
tions for some problems. For each variable, we compute the percentage it was
assigned label 1 in every 100 generations.
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Fig. 4. Classification rate per variables over the generations

In all DTLZ and WFG problems, the classification rates of position variables
x1, x2 and z1, z2 are 0 in nearly all generations. In WFG8, the classification rate
of distance variables x3, . . . , x12 and z3, . . . , z12 are 1 in almost all generations.
A similar situation occurs in problems DTLZ2, WFG2, and WFG4-6 (not shown
here). As shown in Figs. 2 and 3, the convergence performance improved in the
proposed methods compared with the conventional NSGA-II in problems where
classification rates of the distance variable are high. In these problems, it is
considered that the convergence performance has improved since the distance
variables are estimated correctly and they are searched intensively.

Looking at DTLZ3 and WFG1 in Fig. 4, distance variables were correctly
classified in the early generations, but their classification rate decreases in later
generations. This is because, in these problems, the value of distance variable
tends to converge to the same value, i.e. solutions are trapped in local optima.
When this happens, the trial value of the variable in the mutant is the same as the
value of the variable in the original solution and therefore a dominance relation
does to occur between them. From Figs. 2 and 3, DTLZ3 and WFG1, in which
distance variables were estimated correctly in the early generations, distance
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variable converged to values close to optimal in all three proposed methods,
so the convergence performance of the solution improved compared with the
conventional method. Note that in WFG1, with the passing of generations, the
rate of correct classification of distance variables is gradually higher from z3
to z12. This is because the influence of the distance variables of WFG1 on the
convergence of the solution increases from z3 to z12.

Note from Fig. 4 that the classification rate of the distance variables in WFG3
was low throughout the generations. Something similar happens in problems
WFG7 and WFG9. In these problems, distance variables affect position variables
as indicated in the Other Features column of Table 1. In WFG3, when the value of
a distance variable changes, the value of the position variable changes as well due
to degeneracy after the transition. In the case of WFG7 (zi=1:k ← zi+1, . . . , zn)
and WFG9 (zi=1:n−1 ← zi+1, . . . , zn), a transformation is applied whereby the
value of the distance variable is used to bias the value of position variables.
As shown in Fig. 3, the convergence performance of the proposed method on
these problems did not differ from the conventional method and ideal. In these
problems, finally note that the classification rate of distance variable was higher
in near than random and far. This is probably because the change of the value
of the distance variable was small and the values of position variables did not
change greatly.

When distance variables also affect position variables, a dominance relation
between a solution and its one-variable mutant is less likely to occur and therefore
becomes more difficult to classify distance variables in these problems. Note that
linkage can be very large in these problems, where some variables are affected
by almost all other variables, or some variables affect most other variables. It is
worth studying with more detail the effects of linkage on variables identification.

On the other hand, note that variables are correctly classified when position
variables affect distance variables (zi=k+1:n ← z1, . . . , zi−1), and convergence
can be improved as shown by the results on WFG8.

Modality and non-separability of a function seem not to affect the correct
classification of variables. Note that there is a high classification rate for uni-
modal and multi-modal problems, separable and non-separable, when distance
variables do not affect the position of solutions. Also, linkage between distance
variables and linkage from position to distance variables are not an issue for
correct classification.

In this work, the proposed method favors recombination of variables that
can improve convergence. However, in addition to convergence, the aim of a
multi-objective optimizer is to also achieve a set of well-distributed solutions.
To verify whether the proposed method has a negative impact on diversity we
also compute the hypervolume of the solutions found by the algorithms, which
measures both convergence and diversity. Figure 5 shows the hypervolume for
WFG3, WFG5, and WFG8. In general, where there is a clear improvement
in convergence we also observe an improvement in hypervolume, as illustrated
in Fig. 3(h) and Fig. 5(c) for WFG8. In cases where there is no difference in
convergence or is very small, hypervolume is also similar, as shown in Fig. 3(c)
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and Fig. 5(a) for WFG3 and Fig. 3(e) and Fig. 5(b) for WFG5. These results
suggest that there is not a serious detriment to diversity of solutions. However,
emphasizing variation of variables that improve diversity would enhance further
the performance of the multi-objective algorithm. In the future, we would like
to extend the method to focus on diversity as well.

Summarizing, the convergence performance of the proposed method on
benchmark problems with random, far, or near procedures to set the trial
variables improves compared to org, because distance variables are correctly
estimated and the frequency of recombining them is increased.
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Fig. 6. Results on the vibrating beam problem

5.2 Vibrating Beam Problem

This bi-objective problem consists of 5 variables and 3 constraints. A random
initialization of the population in this problem leads to all solutions being unfea-
sible. Approximately, 3 in every 10.000 randomly created solutions is feasible.
However, a simple constraint handling method allows the algorithm fo find fea-
sible solutions after 5 or 6 generations (500–600 function evaluations) and accu-
mulate them thereafter. Around generation 20 all solutions in the population are
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feasible. Figure 6 shows results by NSGA-II with the constraint handling tech-
nique, denoted org, and by the proposed method far applied after 1 solution
is feasible, 25% and 50% of the population is feasible. Note from Fig. 6(a) that
the hypervolume by the proposed method is significantly higher. Also, note from
Fig. 6(b) that variables d1, b and L are consistently classified as influential for
convergence and their probability pcv for recombination is higher. From Fig. 6(c)
note that the proposed method improves convergence towards the Pareto front.

6 Conclusions

In this work we have proposed a method to classify variables that influence
convergence and increased their selection probabilities to recombine them more
often. The classification procedure is based on whether there is a Pareto domi-
nance relation between one-variable mutants. The proposed method was tested
on DTLZ and WFG functions, including unimodal, multimodal, separable, non-
separable, unbiased and biased functions. Our experimental results show that the
proposed method can improve significantly the performance of the well known
NSGA-II algorithm in most instances for 3 objective functions. Modality and
non-separability of a function seem not to affect the correct classification of
variables. Also, linkage between distance variables and linkage from position
to distance variables are not an issue for correct classification. However, perfor-
mance could not be improved in problems where linkage from distance to position
variables is very large. We also verified that the proposed method can improve
convergence without affecting diversity on a real world bi-objective problem. In
the future we would like to study with more detail the effect of linkage. Also, we
would like to study the scalability in objective space, particularly since we use
a dominance relation to classify variables. In addition, we would like to study
ways to extend the proposed method for large scale problems.
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Abstract. Evaluations of candidate solutions to real-world problems are
often expensive to compute, are characterised by uncertainties arising
from multiple sources, and involve simultaneous consideration of multi-
ple conflicting objectives. Here, the task of an optimizer is to find a set
of solutions that offer alternative robust trade-offs between objectives,
where robustness comprises some user-defined measure of the ability of
a solution to retain high performance in the presence of uncertainties.
Typically, understanding the robustness of a solution requires multiple
evaluations of performance under different uncertain conditions – but
such an approach is infeasible for expensive problems with a limited
evaluation budget. To overcome this issue, a new hybrid optimization
algorithm for expensive uncertain multi-objective optimization problems
is proposed. The algorithm – sParEGO – uses a novel uncertainty quan-
tification approach to assess the robustness of a candidate design without
having to rely on expensive sampling techniques. Hypotheses on the rel-
ative performance of the algorithm compared to an existing method for
deterministic problems are tested using two benchmark problems, and
provide preliminary indication that sParEGO is an effective technique
for identifying robust trade-off surfaces.

Keywords: Expensive optimization · Surrogate-based optimization ·
Robust optimization · Multi-objective optimization

1 Introduction

The ability of simulations to predict the performance of a candidate design is
constantly increasing. While some simulations can produce high-fidelity outputs
relatively quickly, a typical mesh-based simulation can run for several hours,
and even days. Even if a design team has access to supercomputing resources,
the extensive run-time still implies that perhaps only a few hundred candidate
designs can be explored using high-fidelity modelling resources. Unfortunately,
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conventional multi-objective optimization algorithms implemented in commer-
cial packages typically require tens of thousands of function evaluations to con-
verge on a high quality solution [1]. Therefore, the search for a promising design
using expensive evaluation functions on a limited computational budget poses a
great challenge.

To exacerbate this problem, optimizing for a robust solution is itself a com-
putationally demanding task. In order to gain confidence over the robustness of
a solution to uncertainties, the statistical properties of the expected solution’s
performance must be quantified. In a world where the complexity of the high-
fidelity models essentially produces a black-box mapping of inputs to outputs,
such statistical properties would typically be found through repeated evalua-
tion of the same solution using those high-fidelity models. However, repeatedly
sampling a single candidate design is computationally expensive.

To address the above, we propose a framework for expensive uncertain multi-
objective optimization problems (MOPs). The key aims are to: (i) exploit expen-
sive, black-box evaluation function for a candidate design; (ii) account for multi-
ple sources of uncertainty, such as fidelity of evaluation functions and manufac-
turing tolerances; and (iii) provide an understanding of the risk and opportunity
trade-offs between candidate designs with respect to a given robustness metric.
To achieve this the framework leverages ParEGO [2], an algorithm for multi-
objective optimization, which has been demonstrated to provide good results for
optimization runs limited to a small number of function evaluations. ParEGO
itself is a multi-objective extension to Jones et al.’s [3] seminal efficient global
optimization (EGO) algorithm for single-objective problems. The main limita-
tion of ParEGO is that it has not been designed to handle problems featuring
uncertainty (although there is some evidence that it can perform favourably in
noisy environments [4]). Therefore a fundamental part of the framework is how
ParEGO can be extended to consider evaluation functions as samples of random
variates. We refer to this new algorithm as stochastic ParEGO or sParEGO.

In the remainder of this paper, first the robustness metric used is described
in Sect. 2, and the proposed framework is presented in Sect. 3. The hypotheses on
the relative performance of the algorithm are introduced in Sect. 4. The experi-
mental settings and findings are in Sect. 5. The paper concludes with Sect. 6.

2 Threshold-Based Robustness Metric

A general single-objective robust optimisation problem can be formulated as:

min
x∈Ω

S = f(x,U). (1)

Here, x = [x1, . . . , xnx
] is a vector of nx decision variables in a feasible domain

Ω, U is a vector of random variables that includes all the uncertainties associ-
ated with the optimisation problem. These uncertainties may be an outcome of
manufacturing tolerances, a noisy environment, evaluation inaccuracies etc. A
single scenario of the variate U is denoted as u. Since uncertainties are involved,
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the scalar objective S is also a random variate, where every scenario of the
uncertainties, u, is associated with an objective value s.

In a robust optimisation scheme, the random objective value is replaced with
a robustness criterion, denoted by the indicator I[S]. Several criteria are com-
monly used in the literature, which can be broadly categorised into three main
approaches:

1. Worst-Case Scenario. The worst objective vector, considering a bounded
domain in the neighbourhood of the nominal values of the uncertain variables.

2. Aggregated Value. An integral measure of robustness that amalgamates
the possible values of the uncertain variables (e.g. mean value or variance).

3. Threshold Probability. The probability for the objective function to be
better than a defined threshold.

In our framework the third approach, suggested by Beyer and Sendhof [5], is
used. A threshold q is considered as a satisficing performance for the objective
value s. When s is uncertain, denoted by the random variable S, the probability
for S to satisfy the threshold level can be seen as a confidence level c. For a
minimization problem this can be written as:

c(S, q) = Pr(S < q). (2)

A robustness indicator used in this paper is based on minimization of the thresh-
old q for a pre-defined confidence level c, meaning that the confidence in the
resulting performance can be specified (e.g. by a decision-maker).

A stochastic unconstrained multi-objective optimization problem (MOP),
which is the focus of this study, can be formulated as:

min
x∈Ω

Z = f(x,U). (3)

where Z is a multivariate random vector of nz performance criteria, and f is a
set of functions mapping from decision-space to objective-space. Due to uncer-
tainties over the problem parameters or the mapping functions themselves, every
evaluation of the same decision vector may result in a different realisation of the
objective vector z = [z1, . . . , znz

].

3 The Framework of the sParEGO Algorithm

sParEGO is a surrogate-based multi-objective optimization algorithm for deal-
ing with stochastic MOPs. The algorithm shares many similarities with ParEGO
including the ability to approximate expensive MOPs over a realistically small
number of function evaluations. The main idea is that the uncertain distribu-
tion in objective space of every candidate solution is not quantified through
uncertainty quantification methods (e.g. Monte Carlo sampling). Instead, every
solution is evaluated once, and the distribution is approximated based on the
performance of nearby solutions. A pseudo-code of sParEGO is presented in
Algorithm 1 and a general description of its working principles is as follows.
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The decision variables and objectives are normalised to non-dimensional units
in the following manner:

x̃i = (xi − xl
i)/(xu

i − xl
i), i = 1, . . . , nx, (4)

z̃j = (zj − z∗
j )/(zn

j − z∗
j ), j = 1, . . . , nz, (5)

where xu
i and xl

i are the upper and lower boundaries of the ith decision variable,
zn
j and z∗

j are the jth components of the estimated nadir and ideal vectors, and
the tilde accent represents a normalised, dimensionaless variable. The normalised
values are used for all operations within the algorithm. Before a candidate design
is evaluated, it is re-scaled to the natural dimensions.

sParEGO decomposes the overall MOP into a number of single-objective
problems by using a set of (reference) direction vectors to guide the search
towards different regions of the Pareto front1. The set of all direction vectors
is denoted by D (Line 1). The direction vectors are picked (one at the time)
based on their sequence in the set D. Once all direction vectors have been tra-
versed by the optimizer the vectors in the set D are shuffled (Line 5). This
prevents any bias that might arise due to repeatedly using the same sequence of
direction vectors during the entire optimization process.

The procedure used to generate the initial set of solutions (X ) is described
in Sect. 3.2 (Line 2). Following this, all solutions in the set X are evaluated and
their performance is stored in the set Z (Line 3). The ideal and nadir vectors
are then updated (Line 7). A scalar fitness value is obtained for each solution by
using a scalarising function as mentioned in Sect. 3.1 (Line 8). The robustness
indicator values of the solutions are estimated and stored in the set I (Line 9),
and these are used to construct a surrogate model (Line 10). A search procedure
is then conducted over the model to find a solution xnew that optimizes the given
robustness indicator based on the concept of expected improvement (Line 11).
A new solution xpert is generated by applying a perturbation to xnew (Line 12).
This ensures that all generated solutions have at least one nearby solution. The
new solutions are added to X (Line 13) and, once evaluated, their performance
is stored in Z (Line 14). The algorithm goes back to Line 4 and the procedure
repeats itself until a stopping criteria is satisfied.

The robustness indicator values of the solutions are estimated based on the
procedure in Line 17. The first step is to identify, for each solution, all the nearby
solutions. For this, we define the concept of neighbourhood and consider that two
solutions are neighbours if their distance in normalised decision-space is within
a user-defined neighbourhood distance δ (Line 19). The statistical properties
of the performance of a solution is approximated from the other neighbouring
solutions (Line 23). Finally, the robustness indicator values of the solutions are
estimated for a given robustness criterion I (Line 24).

1 More details about the decomposition strategy are provided in Sect. 3.1.
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Algorithm 1. sParEGO Pseudo-code
Parameters: initial set size ninit, surrogate model maximum set size nmax, maximum distance
between newly generated solutions δpert, robustness criterion I, neighbourhood distance δ

1: D ← set of all reference direction vectors � Eq. 6 (Sect. 3.1)
2: X ← generate initial set of solutions using ninit and δpert � Sect. 3.2
3: Z ← f(X ) � evaluate the initial set
4: while stopping criteria not satisfied do
5: Shuffle the set D
6: for all d ∈ D do
7: update ideal and nadir vectors
8: S ← calculate scalar fitness value of all solutions � Eq. 7 (Sect. 3.1)
9: I ← RobustnessApproximation(X , S, δ) � Sects. 3.3 and 3.4
10: model ← fit a Surrogate model to the indicator values I using nmax � Sect. 3.5
11: xnew ← maximize the expected improvement based on model
12: xpert ← add a neighbour to xnew using δpert � Sect. 3.5

13: X ← X ∪ {
xnew,xpert}

14: Z ← Z ∪ {
f(xnew), f

(
xpert)}

� evaluate the new solutions

15: end for
16: end while

17: procedure RobustnessApproximation(X , S, δ)
18: for all xi ∈ X do
19: update the neighbourhood N (xi) for a given δ � Eq. 10 (Sect. 3.3)
20: end for
21: I ← ∅
22: for all xi ∈ X do
23: approximate the distribution of Si � Sect. 3.3
24: calculate robustness indicator I[Si] � Sect. 3.4
25: I ← I ∪ I[Si]
26: end for
27: return I
28: end procedure

3.1 Decomposition

A decomposition-based algorithm decomposes the MOP into a number of single-
objective problems, each approaching the global trade-off surface from a different
direction. The ith sub-problem is associated with a reference direction vector di

which is taken from the set D. The set is constructed by using a Simplex Lattice
design:

D =

⎧
⎨

⎩
d = [d1, . . . , dnz

] |
nz∑

j=1

dj = 1 ∧ dj ∈
{

0
h

,
1
h

, . . . ,
h

h

}

for all j

⎫
⎬

⎭
, (6)

where h is a parameter that defines the number of divisions for each objective.
Each sub-problem assigns a scalar fitness value to each solution. This is

achieved by using a scalarising function f(z,w) that maps an objective vector
z into a scalar value according to a vector of weights w = [w1, . . . , wnz

]. The
scalarising function used is the weighted Tchebycheff, which is given by:

s = max
1≤i≤nz

{wizi} . (7)

For a given direction vector d there is a corresponding weighting vector that
minimizes the scalarising function [6]. The optimal weighting vector w for the
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scalarising function in (7) is defined as:

wi = ti

/ nz∑

i=1

ti, where ti = (di + ε)−1, i = 1, . . . , nz, (8)

where ε is a small number to prevent division by zero, and the normalisation
enforces the weighting vector’s elements to sum up to one.

3.2 Initialisation

In sParEGO, the robustness assessment of a candidate design relies on the deter-
mination of its statistical properties, which in turn depends on the information
of the neighbouring solutions. Hence, in order to support the robustness assess-
ment from the beginning of the optimization process, for any solution in the
initial set there is at least one nearby solution in desision-space. Let ninit denote
the size of the initial set, then the procedure is as follows:

1. To provide a good coverage, a space-filling design technique (Latin Hypercube
sampling) is used to generate a fraction of the total ninit. We suggest this
fraction to be a quarter.

2. For every existing solution in X , another solution is generated by applying a
random perturbation where the upper bound is within a hypersphere with a
radius of δpert which is smaller than δ.

3. The rest of the solutions are generated by randomly selecting an existing
solution from X and applying a perturbation as in the previous step. This
step is repeated until the number of solutions in X is equal to ninit.

The second step enforces that every solution has at least one neighbour. The
third step seeds the initial population with neighbourhoods of different sizes.

3.3 Uncertainty Quantification

The most important difference between sParEGO and ParEGO is that the for-
mer assumes that the outcome of an evaluation function is a realization of a
random variate. Therefore, the scalarised function value cannot be used directly
to construct the surrogate model, and a utility indicator value is used instead.
For every direction vector, the surrogate model is constructed to search for a
design that will optimize a given robustness indicator (described in Sect. 3.4).
The guiding principle is to avoid having to repeatedly sample every candidate
design to assess its statistical properties in objective-space. Instead, these proper-
ties (specifically, measures of central tendency and dispersion) are approximated
from the available information of other candidate design evaluations.

Approximation of the Central Tendency. The stochasticity of the problem
might originate from a variety of sources, including variations in decision-space.
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For this type of uncertainty, two designs with similar nominal values can be iden-
tical when realised. Therefore, the performance of a candidate design should be
calculated from the performance of neighbouring designs as well. Two solutions
xi and xj are considered as neighbours if their Euclidean distance in normalised
decision-space is smaller than or equal to δ, that is:

‖xi − xj‖2 ≤ δ. (9)

For a solution xi with a scalar fitness given by si, the statistical properties of
the scalar fitness are approximated from the neighbouring solutions as follows:
First, the neighbourhood N (xi) of the solution is defined2:

N (xi) =
{
xj ∈ X | ‖xi − xj‖2 ≤ δ

}
. (10)

Next, the approximated mean function value, μs, is derived from the neighbour-
hood. Members that are closer to xi are given a larger weight, denoted as v
in Eq. (11), in approximating its properties. Since the weight of most solutions
in the neighbourhood is smaller than 1, the overall “neighbourhood size” ςi is
smaller than |N (xi)|:

vj =
δ − ‖xi − xj‖2

δ
, ∀xj ∈ N (xi), (11)

ςi =
∑

xj∈N (xi)

vj , (12)

μs,i =
1
ςi

∑

xj∈N (xi)

vjsj , (13)

where μs,i is the approximated mean of the scalar fitness function for xi.

Approximation of the Dispersion. Once the expected mean is known, the
expected value for the variance is calculated:

σ2
s,i =

1
ςi

∑

xj∈N (xi)

vj(sj − μs,i)
2
. (14)

An example is shown in Fig. 1(a) for an optimization problem with a single
decision variable where 5 solutions are divided into two neighbourhoods. The
mean and variance of the scalar fitness function is estimated based on their
scalar fitness values and their decision-space distance within the neighbourhood.

3.4 Estimating the Robustness Indicator Value

Once the statistical properties of the scalar fitness function have been estimated,
the random variable S(x) is assumed to follow a normal distribution with the

2 Note that according to (10), xi is included in the neighbourhood N (xi).
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Fig. 1. Approximation of the statistical properties, and estimation of robustness indi-
cator Ic[•].

estimated mean and variance. The robustness indicator is calculated for this
distribution with respect to a desired confidence level c (assuming c ∈ [0, 100]).
The indicator, denoted Ic[S], is then equal to the cth percentile of the normal
distribution with mean μs (Eq. 13) and variance σ2

s (Eq. 14).
An example for Ic[S] is given in Fig. 1(b) where Ic[S] value corresponds to

the 80th percentile of the normal distribution. Following this, the indicator value
Ic[S] is considered as the solution’s fitness at the current iteration.

3.5 Fitting a Surrogate Model to the Fitness

Now that every solution is associated with a scalar fitness value based on
the robust indicator, the algorithm proceeds in a similar fashion to EGO and
ParEGO [3,7]. A surrogate model is fitted to the fitness values, and the expected
improvement function is constructed from the model. Above a certain size
(approximately 50 solutions), the surrogate model becomes prohibitively expen-
sive to construct. When the number of evaluated solutions exceed this size, a
subset of size nmax is chosen according to Algorithm 2.

The first step in Algorithm 2 is to select nmax/2 solutions from the population
set X with the best robustness indicator value, and to add these to the set X ′

(Line 1). The next step is to select from the remaining solutions those that are
closer to the current direction vector d. For this, the normalised objective vectors
are projected to the nz − 1 simplex (Line 4). The Euclidean norm between the
vectors ẑ(x) and d is given by the operator Δ (Line 5). Finally, the nmax/2
solutions from X ′′ with the smallest Δ distance are added to X ′ (Line 7).

To use the expected improvement function we need to estimate its variance
(σ̂2). For this, we use the density of the solutions in decision-space by knowing
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Algorithm 2. Choosing a Subset to Construct the Surrogate Model
Require: population set X , subset size nmax, current direction vector d
Ensure: a subset X ′ of size nmax

1: X ′ ← nmax/2 solutions from X with the best robustness indicator value
2: X ′′ ← X \ X ′

3: for all x ∈ X ′′ do
4: ẑ(x) ← project z(x) to the nz − 1 simplex, implying that ẑ(x) = z(x) ‖z(x)‖−1

1

5: Δ(x,d) ← ‖ẑ(x) − d‖2

6: end for
7: X ′ ← X ′ ∪ nmax/2 solutions from X ′′ with the smallest Δ distance

that the variance has an inverse correlation to the density of the solutions. A
suitable way to estimate the density at a given point x is to use a non-parametric
statistical approach, and in this case we use a kernel density model given by:

p(x) =
1

nmax

∑

xi∈X ′

1
(2πh2

b)nx/2
exp

{

−‖x − xi‖2

2h2
b

}

, (15)

where hb is the bandwidth. We suggest setting the bandwidth to be equal to one
hundredth of the mean span of all solutions, that is:

hb =
1

100 × nmax

∑

xi∈X ′
(max(xi) − min(xi)). (16)

Based on experimental results we have observed that the kernel density model
can be very sensitive to any changes in the density, thus we have used a smoothing
function (in this case the arctan function), and the estimated variance at x is:

σ̂2(x) =
(

1
π/2

arctan
(

1
p(x)

))2

. (17)

After fitting a surrogate model to the solutions from X ′, the next task is to
find the solution that maximizes the expected improvement function. For this,
any suitable off-the-shelf single-objective optimizer can be used, and we have
chosen ACROMUSE [8]. The identified solution, denoted by xnew, is added to
the population together with a neighbouring solution xpert, generated using the
same perturbation as that described in Sect. 3.2.

4 Hypothesis Testing

We employ a hypothesis testing approach to study the performance of sParEGO
compared with ParEGO in dealing with MOPs on a limited computational
budget. We postulate two hypotheses, each relating to anticipated pathologi-
cal behaviour of one of the algorithms:
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1. If the problem is deterministic, and the region close to the Pareto front is
highly multi-modal, sParEGO will incorrectly interpret the multimodality as
stochasticity, and converge on seemingly ‘robust’ solutions that are actually
non-optimal. However ParEGO’s convergence will be unaffected.

2. If the problem is highly stochastic, and the region close to the Pareto front
is smooth, ParEGO will identify seemingly high-performance solutions that
are actually non-robust. However sParEGO’s convergence will be unaffected.

To test these hypotheses, we use two variants of the WFG4 problem [9]. Both
variants have two objectives and five decision variables. The first two decision
variables are position parameters and the last three are distance parameters. For
the first problem, namely P1, we have modified WFG4 to increase the density
and the number of local optima in the periphery of the global optimum. This
simulates the effect that stochasticity can have when approaching the Pareto-
optimal Front (PF). The second problem, namely P2, is characterised by having
a more smooth landscape with no local minima surrounding the global optimum,
and stochasticity is added by the toolkit from [10].

The modification applied to WFG4 is as follows. The original formulation of
WFG4 applies a transformation to each input parameter (y) given by:

s multi(y, a, b, c) =
(
1 + cos(r2) + b(r1)2

)
/(b + 2),

r1 = |y − c|/(�c − y� + c),
r2 = (4a + 2)π(0.5 − 0.5r1),

(18)

where a controls the number of minima, b controls the magnitude of the “hill
sizes” of the multi-modality, and c is the value for which y is mapped to zero.
The number of minima increases up-to 2a+1 which includes the global optimum
at c. We propose a modification to Eq. 18 as follows:

s multi∗(y, a, b, c, d, e) = (1 + cos(r2r3) + b|r1|e) /(b + 2),

r3 = (1 − |r1|)2d,
(19)

where d controls the density of the hills around the optimum, and e specifies the
polynomial order of the base curve. The effect of these parameters is shown in
Fig. 2, in that: the density of hills around the optimum increases with an increase
in d as shown in Fig. 2(a), and; the proximity of local minima from the value
zero decreases with an increase in e as shown in Fig. 2(b).

The toolkit from [10] is used here to transform the objective vectors of WFG4
into random vectors. The parameters have been chosen to ensure that uncer-
tainty increases towards more optimal regions. The uncertainty also decreases
up to a point when moving away from the Pareto region, and then starts increas-
ing again for regions that are further away from the PF. The perturbation is
applied to the objective vector by using only its radial component, implying
that the perturbation radius is set to zero. This means that an objective vector
z is perturbed only along one direction, defined by the nz − 1 simplex and given
by ẑ = z/

∑
zi, for i = 1, . . . , nz. In practice, instead of using the determin-

istic value of the distance term in WFG4, we consider it as a random variate
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Fig. 2. Transformation function in WFG4 as a function of the input parameter (y).
For (a) and (b) the parameters are a = 5, b = 10, and c = 0.35. The difference between
P1 and P2 is shown in (c). Moreover, e = 1 for (a) and d = 3 for (b).

with a uniform distribution. The lower bound of the distribution is situated at
the deterministic value from the test problem, and the upper bound increases as
solutions approach the Pareto region. As a result, for a given robustness criterion
(say, the worst-case scenario as mentioned in Sect. 2), the worst performance of
the Pareto-optimal solutions can be worse than that of some of the non-Pareto-
optimal solutions. This gives rise to the term Robust Pareto-optimal Set (RPS),
which is defined as the set of solutions with the best performance with respect
to the given robustness indicator.

Following the above, we have chosen c = 0.35 for all test instances. The
remaining parameters are: a = 5, b = 10, d = 3, and e = 1 for P1; and a =
0, b = 8, d = 0, and e = 2 for P2. The transformation function values for
these settings are shown in Fig. 2(c). The PF for P1 corresponds to a quadrant
with extremes of 2 and 4 for objectives f1 and f2, respectively, and it is shown
in Fig. 3(a). The PF has been obtained by uniformly generating points along
the quadrant. Figure 3(b) shows the performance of the RPS with respect to
Ic[S] for difference confidence levels c. The RPS has been obtained by using an
enumeration where the uniform distribution over the distance term of WFG4
has been replaced by the cth percentile of the same distribution.

5 Experimental Results

5.1 Experimental Settings

For both ParEGO and sParEGO the number of direction vectors is set to 10.
Other common parameters are: ninit = 10, nmax = 50 and the optimization bud-
get is set to 5000 function evaluations. For sParEGO: δ = 0.1

√
nx, δpert = δ/2,

and the confidence level c of the robustness indicator Ic[S] is set to 90%. Inverted
Generational Distance (IGD) [6] is used to measure the quality of the obtained
sets by the optimizers. The 10 solutions that are marked with a filled circle in
Fig. 3 are used as the reference sets for IGD, and these solutions correspond to
the best optimal solutions for the chosen direction vectors.
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Fig. 3. Pareto-optimal front is shown for P1 in (a), and in (b) it is shown for P2 the
performance of the RPS with respect to the robustness indicator Ic[S] for difference
confidence levels c.

The optimizers report only one solution per direction vector, implying that
only 10 solutions are identified at the end of the optimization process. For each
direction vector the solution with the minimum scalarised fitness value is chosen.
For this, ParEGO uses the scalarised fitness values determined directly by Eq. 7,
while sParEGO uses the fitness attributed by the robustness indicator.

5.2 Findings

This section presents the experimental results for problems P1 and P2. The
results shown in Fig. 4 provide both a visual and a analytical assessment of the
quality of the solutions obtained by the optimizers in terms of their convergence
to and diversity across the PF. The objective vectors for P2 have been deter-
mined by evaluating 100 times each decision vector, and the performance of each
objective is equal to the 90th percentile of its marginal distribution.

For P1, ParEGO’s approximation to the PF is slightly better than for
sParEGO as shown in Fig. 4(a) and (c). This indicates that the multi-modality
in P1, close to the vinicity of the PF, is interpreted by sParEGO as a region of
high uncertainty. The performance of the solutions with respect to the robust-
ness indicator in this region is captured as being poor according to the statistical
inferences made by sParEGO. Hence, most sParEGO solutions are just outside
the region where the magnitude of the hill sizes of the multi-modality become
relatively large. Nevertheless, it is expected for sParEGO to improve its conver-
gence to the PF with more function evaluations, since the statistical assessment
made about the true performance of the solutions that are on the PF is also
expected to improve.

For P2, sParEGO approximation to the PF obtained with respect to the
robustness indicator is better than ParEGO as shown in Fig. 4(b) and (d).
The convergence of ParEGO deteriorates along the optimization run as shown
in Fig. 4(d), while the convergence of sParEGO improves. This indicates that
the selection criterion used by ParEGO that promotes solutions with a better
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nominal performance, leads to a deterioration in the convergence towards the
solutions that satisfy the robustness criterion. On the other hand, the uncer-
tainty quantification approach used by sParEGO that is used to estimate the
true robustness of the solutions is found to be a better approach in dealing with
the task of finding the robust solutions.
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Fig. 4. Comparison of ParEGO and sParEGO for P1 and P2.

6 Conclusion

This paper has proposed a new multi-objective optimization algorithm for deal-
ing with expensive uncertain MOPs, namely sParEGO. The comparative anal-
ysis with the existing algorithm ParEGO has demonstrated that the statistical
inferences made by sParEGO are better equipped to assess the robustness of
the candidate solutions for a given robustness criterion. However, we have also
shown that the existence of a not-so-well-behaved problem landscape can mis-
lead the uncertainty quantification approach when (as is necessary) working on
a limited budget of evaluations. Given this, the assumptions made within the
framework described in this paper, and their associated risks, are as follows:

1. The landscape is well-behaved (i.e. smooth, continuous). The uncertainty dis-
tributions are approximated according to available information for other can-
didate solutions. The underlying assumption for approximating in this way
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is that similar solutions have similar performance. If the functions are highly
ragged and discontinuous, the surrogate models cannot accurately predict
their behaviour.

2. The problem dimensionality is small to medium. The search is conducted on
a surrogate model fitted to the existing evaluated solutions. The surrogate
model used in this framework typically produces good estimates for problems
with up to 20 design variables.

3. The maximum distance between solutions to be considered as neighbours, spec-
ified by δ, affects the variance of solutions and the convergence rate. For
smooth and continuous functions, a tight neighbourhood is likely to result in
smaller variance, but also uses less information from other solutions, which
reduces the convergence rate.

Further benchmarking of sParEGO3 is now needed to confirm its capabilities
across a wider set of problem instances. This includes conducting a comparative
analysis with other multi-objective robust optimization algorithms, such as those
described in the survey in [11]. Other future research directions include: how to
approximate the statistical inferences of isolated solutions; how to incorporate
constraints; and incorporation of alternative robustness criteria.
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Abstract. Scheduling systems are subject to a variety of influencing factors,
some of which (e.g. number of vehicles or employees) can be determined by the
company itself. Since these framework conditions can have a major impact on
the scheduling system’s performance, their determination is an important
management task. The difficulty of this task increases when conflicting objec-
tives have to be considered, such as costs and performance. Even though evo-
lutionary bilevel optimization can be used to solve this kind of strategic multi-
objective problems, it remains hard to gain deeper insights into the scheduling
system’s behavior by only analyzing the obtained set of Pareto optimal solu-
tions. In this paper, we propose an approach for knowledge discovery in
scheduling systems by applying visual analytics on the whole set of evaluated
individuals during the evolutionary algorithm. The proposed concept of bilevel
innovization is demonstrated by using a nested NSGA-II to solve a strategic
personnel planning problem and subsequently applying visual analytics to
support decision making regarding the number of employees and implemented
shifts. The results show that bilevel innovization can be used to get a better
understanding of a scheduling system’s behavior and to support the decision
making process in a strategic planning context.

Keywords: Innovization � Evolutionary bilevel optimization �
Visual analytics � Scheduling � Staffing

1 Introduction

Scheduling problems in general deal with complex resource allocation tasks and arise
in a variety of domains, such as manufacturing (e.g. shop scheduling), transportation
(e.g. vehicle routing), management (e.g. personnel scheduling) or computer science
(e.g. task scheduling). As these problems are challenging itself, the difficulty increases
when the framework conditions of the considered scheduling system have to be
determined. This becomes relevant when looking at a scheduling problem from a
strategic rather than an operative perspective, for example by finding an adequate
number of vehicles for a public transportation company in order to simultaneously
minimize fleet size and passenger travel time [13]. Other examples could be deciding
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on appropriate data placement policies in a data center considering energy savings on
the one side and server performance on the other side [23] or determining size and
structure of a company’s workforce while minimizing labor costs and maintaining high
quality personnel schedules [15].

To deal with this kind of strategic problems, evolutionary bilevel optimization can
be used (see [18] for a comprehensive review). Bilevel optimization in general can be
considered as a form of hierarchical optimization problem, whose hierarchical rela-
tionship is closely related to the problem of Stackelberg [19]. Here, a follower (lower-
level optimization problem) optimizes his objective based on the parameters deter-
mined by the leader (upper-level optimization problem). The leader, in turn, optimizes
his own objective under consideration of the follower’s possible reactions [4]. In the
context of bilevel innovization, the upper-level problem determines the framework
conditions (e.g. policies, number of vehicles or set of available employees) of the
lower-level scheduling problem. A popular approach to solve bilevel problems is using
an evolutionary algorithm at the upper-level and any kind of optimization algorithm at
the lower-level, resulting in a nested evolutionary algorithm [18]. As the upper-level
algorithm faces at least two conflicting objectives, a multi-objective optimization
problem has to be solved.

Evolutionary multi-objective optimization supports the decision making process by
providing a set of Pareto optimal solutions. The final solution to be selected by the
decision maker will therefore be a trade-off among the considered objectives [2]. To
support this trade-off decision and to gain a deeper understanding of the considered
problem, Deb and Srinivasan [6] introduced the concept of innovization. Here, a post-
optimality analysis is conducted by applying data mining methods on the approximated
Pareto front to identify relationships among input variables and objective values and
consequently finding new design principles. Having its origin in the domain of engi-
neering, innovization was successfully applied in other areas, such as manufacturing
[1]. However, analyzing only Pareto optimal solutions still reveals limited insights into
the overall problem structure. Hence, the concept of innovization was extended in the
context of simulation-based optimization of manufacturing respectively production
systems, so called simulation-based innovization [7, 14]. Here, data mining and
visualization techniques are applied not only on the set of Pareto optimal solutions, but
on all evaluated solutions during the optimization procedure in order to discover
unknown relationships and patterns for the optimal design of production systems.
A similar approach, also in the domain of manufacturing simulation, was proposed by
Feldkamp et al. [9, 10]. Instead of using optimization, the authors fully enumerate a
predefined parameter space of input variables. Subsequently, visual analytics is applied
on the obtained data sets to uncover relationships in the considered model.

In this paper, we transfer the idea of simulation-based innovization and knowledge
discovery in manufacturing simulations to the domain of scheduling. For demonstra-
tion, the proposed concept of bilevel innovization is applied to a strategic workforce
planning problem with the conflicting objectives to minimize labor costs and to
maximize scheduling quality (measured by penalty functions). At the upper-level, a
nested NSGA-II is used to determine the number of employees in different categories
as well as the shift patterns to be implemented by the company. At the lower-level, an
elitist Genetic Algorithm (GA) is used to solve the resulting personnel scheduling
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problem, due to the widespread usage and successful application of GA to this type of
problem [22].

The remainder of this paper is structured as follows: In Sect. 2 the concept of
bilevel innovization is presented. Section 3 describes the considered workforce plan-
ning problem. The applied algorithms are described in Sect. 4. In Sect. 5 the bilevel
innovization process is applied to the investigated problem. Finally, conclusions and
suggestions for further research are presented in Sect. 6.

2 Bilevel Innovization

2.1 Visual Analytics and Knowledge Discovery

In general, visualization is a useful and important tool for the interpretation of data
[21]. Therefore, in the context of simulation, simulation based optimization and related
applications, the analysis of generated output and its relation to the corresponding input
data sets often relies on visual inspection. Frequently applied visualizations are for
example confidence intervals on certain output metrics, histograms for distribution
analysis, scatter plots for finding causation in correlated structures, as well as animated
visualization of dynamic processes [24]. Visual analytics (VA) goes beyond those
commonly applied visualization techniques by defining a research discipline of its own.
VA is defined as “an iterative process that involves information gathering, data pre-
processing, knowledge representation, interaction and decision making” [12]. By
combining automated data analysis and interactive visualizations, it also combines the
strengths of both machine and human capabilities. On the one hand, patterns from large
amounts of data can be extracted and processed through data mining with statistical and
mathematical models. This is commonly referred to as knowledge discovery in data-
bases [8]. On the other hand, visualizations of the processed data can be explored by
making use of the human capabilities to perceive, relate, and recognize visual patterns
and draw conclusions, encouraged by a high degree of user interaction. Figure 1 shows
the visual analytics process. The user is in a constant loop of refining data mining
hyperparameters and interacting with the visualization of the data, for example
zooming, filtering or applying different visualization schemes. Through the combina-
tion of both model building and visualization, conclusions can be drawn that lead to a
better understanding of the underlying data and ultimately to a creation of knowledge.
Implementing the findings through a feedback loop may restart the process entirely if
needed.

2.2 Bilevel Innovization Process

The here proposed concept of bilevel innovization for knowledge discovery in
scheduling systems is based on the ideas of simulation-based innovization and
knowledge discovery in manufacturing simulations. In general, the bilevel innovization
process (see Fig. 2) can be divided into two parts: data generation and data analysis.
For data generation, evolutionary bilevel optimization is used. The part of data analysis
is based on the visual analytics process.
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Data Generation. The first part of the bilevel innovization process serves the purpose
of generating the data set for the subsequent analysis by solving the investigated bilevel
optimization problem.

Starting point is the actual scheduling system to be analyzed and lower-level
optimization model, respectively. The system behavior will be represented by the
lower-level objective value. The optimization algorithm here is freely selectable
depending on the considered scheduling problem.

The next step is to determine the framework conditions that want to be investigated
(e.g. policies or set of available employees). These will serve as decision variables for
the upper-level problem.

Subsequently, the resulting upper-level problem has to be modeled. For solving the
upper-level problem an evolutionary multi-objective algorithm is used. In the context
of strategic decision making, at least two conflicting objectives are assumed to be
optimized within the bilevel optimization problem.

Fig. 1. Visual analytics process [11].
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Thereafter, a large number of independent runs of the upper-level algorithm should
be conducted in order to obtain as many different solutions as possible for the sub-
sequent analysis. The number of runs depends, among others, on the problem structure,
the number and characteristics of the decision variables at the upper-level and the
required computation time.

The last step of this stage is to prepare the obtained data sets, i.e. evaluated
individuals, from the optimization runs in a suitable manner for the following visual
analytics task. Furthermore, duplicates, i.e. individuals with identical decision vectors,
should be removed to avoid bias.

Data Analysis. In the context of bilevel innovization, each data record is composed by
the objective values of an evaluated individual at the upper-level problem (output data)
and the corresponding decision variables (input data).

As common in visual analytics, the whole data analysis can be seen as an iterative
process. The first step is to visualize the output data and to identify an area of interest
for deeper analysis by zooming into the data (e.g. selected range around the Pareto
optimal front). Subsequently, the filtered data can be visualized again to explore shape
and distribution of the objective values and possible linkages. This may lead to first
insights regarding the system’s behavior.

Now, data mining methods (e.g. clustering, classification or decision trees) can be
applied on the filtered data set both on the output and the input data. Thereafter, the
data mining results should be visualized to uncover interesting patterns and to get a
better understanding of the analyzed system’s behavior. Suitable diagrams are, among
others, scatter plots, parallel coordinate plots, radar charts, pie charts or box plots.

Each of the previously mentioned steps may lead to knowledge, which in turn could
be used to start the data generation process at an arbitrary step (e.g. adjust the lower-
level model, add or remove decision variables, pick a new algorithm at the upper level
or conduct more optimization runs).

Although it is assumed that the optimization models on both levels are verified and
perform correctly, the bilevel innovization process allows the decision maker to further
verify the optimization models if unexpected behavior is identified that may arise from
modeling issues.

3 Problem Description

In this section, a strategic workforce planning problem of a midsized inbound call
center of a utility is described, which is an extended version of the problem presented in
[15]. Due to internal restrictions of the utility, the presented problem as well as the
specific setting in Sect. 5.1 are derived and abstracted from a real world problem
commonly found in strategic workforce planning.

In a strategic context, the purpose of staffing is to determine the adequate future
number of employees needed in different categories. Scheduling, as an operative task,
is concerned with getting the right people to the right place at the right time. In the here
presented problem, the decision making task not only concerns staffing but also
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determining the shift patterns to be implemented by the company. Hence, scheduling
quality not only depends on the staffing decision, but also on the available shifts.

3.1 Planning Problem

The considered workforce planning problem is modeled as bilevel problem [20], with x
representing the planning decision regarding staffing and shift design. For each x, the
scheduling problem f x; yð Þ will be optimized yielding personnel schedules for the
considered planning horizon (represented by y).

The call center of the investigated problem has a need of k different skill types
s 2 S, with S ¼ s1; s2; . . .; skf g. The skills are meant to be categorical, i.e. they
determine the tasks each employee can perform. However, it is possible to cross-train
employees so they can perform more than one type of task [3]. The qualification of an
employee can therefore be seen as set of different skill combinations q � S. The
contract type t 2 T of an employee determines his average weekly working time.

Within its staffing decision, the company has to predefine feasible employee types
�E. Each employee type �eqt 2 �E is defined by its qualification q and contract type t.
Moreover, each employee type �eqt is linked to costs c�eqt that arise for employing one
employee of this type over the considered planning horizon. The number of employees
of each type is represented by the decision variable x�eqt. Regarding the shift design
decision, the company furthermore has to predefine a set of feasible shifts. Each shift
pattern �m 2 �M is constrained by the operating times of the call center and the min-
imum and maximum shift length. The number of shift patterns # to be implemented is
defined by (1c). Whether a shift pattern is implemented or not is represented by the
decision variable x�m. The specific planning problem setting will be described in
Sect. 5.1.

The objective of the upper-level problem is to minimize the overall staffing costs
(1a) subject to constraints (1b)–(1c) and the optimized scheduling decision y at the
lower-level problem (1d). The decision vector passed to the lower-level is defined as
x ¼ ðx�eqt; x�mÞ. Since x�m has no direct impact on the upper-level objective value, it is left
out of the objective function.

min
x2X;y2Y

F
X

�eqt2�E
x�eqt c�eqt; y

0
@

1
A ð1aÞ

s:t: x�eqt � 0 and integer 8�eqt 2 �E ð1bÞ
P
�m2 �M

x�m ¼ #

x�m 2 0; 1f g 8�m 2 �M
ð1cÞ

y 2 argminy2Y result scheduling problemf g ð1dÞ
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3.2 Scheduling Problem

The lower-level scheduling problem considers the daily staff scheduling of a call center
over a planning horizon W ¼ 1; 2; . . .;wmaxf g. Each week of the planning horizon
w 2 W is partitioned into periods p 2 P ¼ 1; 2; . . .; pmaxf g, representing the oper-
ating days of the call center. Moreover, each operating day again is segmented into
time intervals i 2 I ¼ i1; i2; . . .; imaxf g. The set of shift patterns M and set employees
E are determined by the staffing decision at the upper-level, with a concrete employee
for each x�eqt. An employee can be assigned to one shift each day and only if he has the
required skill.

For each time interval i on day p in week w and each skill s a certain staffing level
has to be satisfied. If a deviation arises from the staffing target, penalty points are
generated. To provide an equal workload distribution and to ensure that employees are
staffed according to their contract types, further penalty is calculated based on how far
employees exceeded or fell below their average weekly working time. The objective is
to minimize the overall penalty points over the considered planning horizon.

For a more detailed description of the scheduling problem as well as the mathe-
matical formulation, we refer to [15]. The specific scheduling problem setting will be
described in Sect. 5.1.

4 Algorithmic Approach

Following the taxonomy given by Talbi [20], the algorithm used to solve the con-
sidered strategic planning problem can be defined as a nested constructing approach
with metaheuristics on both levels. In this type of bilevel model, an upper-level
metaheuristic calls a lower-level metaheuristic during its fitness assessment. In doing
so, the upper-level heuristic determines the decision vector x (here the number of
employees of each type and the set of implemented shift patterns) as input for the
lower-level algorithm, which in turn determines the decision vector y (optimized
schedules). Both decision vectors are subsequently used to solve the bilevel problem at
the upper-level.

At the upper-level, the NSGA-II [5] is used to solve the multi-objective problem of
minimizing staffing costs and scheduling penalty. The chromosomes of the upper-level
individuals are composed of two one-dimensional integer vectors, each corresponding
to one subproblem. The staffing vector contains integer
values corresponding to the number of employee types. Each value represents the
number of employees to be employed for this type. However, should be limited
in a reasonable manner to reduce the search space. The shift vector is denoted by

representing one integer encoded
shift pattern �m 2 �M and (see constraint 2c) corresponding to the total number of
shifts to be implemented.

As have different search spaces (metric and categorical) as well as dif-
ferent value ranges, they are handled independently during reproduction. However, for
both vectors one-point, uniform and n-point crossover are applied, randomly selected
for each reproduction process. Furthermore, intermediate crossover and random walk
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mutation (both as described in [17]) are used for the reproduction of . For mutation of
random integer mutation is applied. Because the values of have to be unique, a

repair procedure is implemented replacing duplicates with the nearest feasible value.
At the lower-level, an elitist GA with the same elitism principle as NSGA-II is

used. For a more detailed description of the lower-level algorithm we refer to [15].

5 Experimental Study

5.1 Problem Setting

Within the investigated scenario, the call center is planning its workforce for a 12 week
planning horizon W ¼ 1; 2; . . .; 12f g. Furthermore, the operating days are Monday till
Friday P ¼ 1; 2; . . .; 5f g from 8 a.m. to 6 p.m. I ¼ 1; 2; . . .; 10f g (due to the strategic
context, hourly scheduling intervals were chosen). Shifts are allowed in the range
between 4 and 8 h, resulting in 25 possible shift patterns. Moreover, due to organiza-
tional regulations the company plans to implement different shifts. Regarding its
staffing decision, the company has a need of two different skills S ¼ agent; supportf g.
The forecasted demand of agents is highly volatile both during the day and across the
planning horizon. The demand of support employees is calculated based on a staffing
ratio of one support for each four agents. Table 1 shows the predetermined employee
types with related costs. The costs of each employee type are represented by a relative
factor summing up annual wages, payroll taxes, overhead and training costs.

5.2 Data Generation

The first three steps of the bilevel innovization data generation part were described in
Sects. 3 and 4. The next step deals with the execution of the optimization runs. The
parameters of both GA were set based upon preliminary studies. For the upper-level
GA, a population size of 30, a generation number of 100 and n = 30 restarts were
chosen, with each restart having a random initial population. For the lower-level GA a
trade-off regarding computation time, solution quality and solution noise had to be
made. Therefore, the GA was configured with a population size of 40 and a generation
number of 60. On both levels, the mutation rate was set to 1/v, with v being the number
of bits of the encoded individual, and the application of the available crossover
operators was uniformly distributed. The fitness at the upper-level was evaluated by
Eq. (1a), for the fitness evaluation at the lower-level Eq. (1d) was used.

Table 1. Employee types and related costs.

Contract type Qualification Costs

20 h/40 h Agent 0.6/1
20 h/40 h Support 0.65/1.1
20 h/40 h Agent - support 0.75/1.3
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After removing individuals with identical upper-level decision vectors, the opti-
mization runs yielded 88,762 unique data records.

5.3 Data Analysis

In the first step of the bilevel innovization data analysis part, the output data was
visualized with respect to the two upper-level objectives scheduling penalty (i.e.
scheduling quality) and staffing costs. Subsequently, an area of interest was selected for
more detailed investigations (see Fig. 3). The selected subset still contains more than
60% (57,531) of the explored solutions and shows a high density around to the Pareto
optimal front. We see that the scheduling quality increases with higher staffing costs.

Prior to a more detailed examination of the input data, further target areas within the
selected area of interest were identified by clustering the output data regarding overall
penalty and costs. In doing so, we calculated an optimal clustering structure for this
data set according to the silhouette coefficient. The best structuring was found with five
clusters, the k-means clustering algorithm and a cosine-based distance measure (see
Fig. 4). In the further process, we focus on the three clusters along the Pareto front:
blue (16,563 solutions/2,451 avg. penalty), green (10,521/2,966) and violet
(13,378/3,985).

First, the clusters were investigated regarding the six discrete input variables
affecting workforce size and structure by using radar charts (see Fig. 5). The dashed
lines show the upper and lower quartiles, the solid line the median of the employee
distribution in one solution. The gap between lower quartile and median in the blue
cluster reflects its noisiness. It becomes apparent that solutions in the blue cluster have
significantly more staff involved, especially flexible and part-time workers. The green
and violet clusters form a similar shape, differing mainly in the number of employees.
However, for going from violet to green, investing in agent40 and agentsupport40
seems to be the most efficient way to increase scheduling quality.

In the next step, the 25 binary input variables regarding shift design were analyzed.
The pie charts (see Fig. 6) show the proportional amount of shift patterns (24-h clock)

Fig. 3. Objective space and selected area of interest.
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in each cluster. Variables with a high proportion have a positive effect on solutions to
appear in the corresponding cluster, variables with low proportion may inhibit solutions
from appearing in this cluster. It has to be considered that, because of seven unique
shifts per solution, about 14% is the maximal proportion to be reached. This means, for
example, that in the green cluster about 91% of all solutions contain shift 10 to 18.
Interestingly, the shift structure in the three clusters is very similar.

Fig. 4. Clustered area of interest [16]. (Color figure online)
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Fig. 5. Employee distribution within the target clusters [16]. (Color figure online)
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6 Conclusions and Future Research

A new approach to support the decision making process for determining framework
conditions of a scheduling system in a strategic planning context was presented in this
paper. The proposed concept of bilevel innovization was demonstrated by solving a
multi-objective problem commonly found in strategic workforce planning. In doing so,
a nested NSGA-II was used to determine size and structure of a call center’s workforce
as well as shifts to be implemented, considering the conflicting objectives staffing costs
and scheduling quality. In a next step, not only Pareto optimal but all explored solu-
tions during multiple restarts of this bilevel model were analyzed by iteratively
applying suitable visualization techniques and data mining methods.

The results of the conducted study show, that the application of bilevel innovization
enables the decision maker to get a better understanding of the investigated scheduling
problem and system, respectively, and its behavior under different framework condi-
tions. Those insights comprise both the behavior regarding output parameters (i.e.
objective values) as well as input parameters (i.e. decision variables).

However, especially due to the combinatorial nature of both the staffing and the
shift design problem, interaction effects and dependencies of the decision variables
have to be investigated. Therefore, data mining methods should be applied not only to
the output parameters (as done in this study) but also to the input parameters. Further
research should also be conducted by evaluating the concept of bilevel innovization in
the context of other scheduling problems as well as bilevel optimization problems in
general.
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Abstract. The optimum of a multiobjective optimization problem
(MOP) usually consists of a set of tradeoff solutions, called Pareto opti-
mal set, that balances different objectives. In the community of evolu-
tionary computation, an internal or external population with a limited
size is usually used to approximate the Pareto optimal set. Since the
Pareto optimal set forms a manifold in both the decision and objective
spaces under mild conditions, it is possible to use a model as well as a
population of solutions to approximate the Pareto optimal set. Following
this idea, the paper proposes to use a set of linear models to approxi-
mate the Pareto optimal set in the decision space. The basic idea is to
partition the manifold into different segments and use a linear model to
approximate each segment in a local area. To implement the algorithm,
the models are incorporated in the multiobjective evolutionary algorithm
based on decomposition (MOEA/D) framework. The proposed algorithm
is applied to a test suite, and the comparison study demonstrates that
models can help to improve the performance of algorithms that only use
solutions to approximate the Pareto optimal set.

Keywords: Evolutionary multiobjective optimization ·
Regularity model · MOEA/D

1 Introduction

This paper considers the following continuous multiobjective optimization prob-
lems (MOPs):

minimize F (x) = (f1(x), . . . , fm(x)) (1)
subject to x ∈ Ω
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where Ω ⊆ Rn defines the feasible region of the decision space, x is an n-D
decision vector, F : Ω → Rm consists of m real-valued continuous objective
functions f1, . . . , fm, and Rm is the objective space.

Due to the conflicting nature of the objectives, there usually does not exist a
single solution that can optimize all the objectives simultaneously. Instead, the
best tradeoff solutions among the objectives, called Pareto optimal solutions,
are of interest to decision makers. The set of all the Pareto optimal solutions is
called Pareto set (PS) in the decision space, and its image in the objective space
is called Pareto front (PF) [1,2]. The PS and PF can provide decision makers
with a good understanding of tradeoff relationships among different objectives
and help them to make a final choice.

Multiobjective evolutionary algorithms (MOEAs) have been accepted as a
major methodology for approximating the PS and PF [3]. Most, if not all,
MOEAs approximate the PS and PF by using a finite number of solutions.
In other words, these algorithms conduct a 0-order approximation to the PS and
PF. It is a very natural and convenient choice since MOEAs work with a pop-
ulation of candidate solutions. However, model-based approximations of the PS
and PF may be interesting and even necessary since they can provide a deeper
understanding of the problem to decision makers [4], and help to improve the
search efficiency [5].

Some efforts have been made to approximate the PF to guide the selection [6–
8] or to model the mapping between the PS and the PF to reduce the function
evaluations [9–11]. Some more efforts have been applied to approximate the
PS to sample new trial solutions. These algorithms fall into the category of
estimation of distribution algorithm (EDA) in which a probabilistic model is
built to model the population distribution and to sample new trial solutions [12].
Some models, such as mixture Gaussian [13–16], Boltzmann machine [17], B-
spline basis function [18], Bayesian network [19], Gaussian neural network [20],
Gaussian process [21], have been considered in multiobjective optimization.

It is reasonable that to improve algorithm performance, EAs should utilize
more problem-specific knowledge. Under mild conditions, it can be induced from
the Karush-Kuhn-Tucker condition that the PS (PF) of a continuous MOP forms
a piecewise continuous (m − 1)-D manifold [22]. By considering this regularity
property, we have proposed a regularity model-based multiobjective estimation of
distribution algorithm (RM-MEDA) [23], in which a manifold learning method
was applied to detect the PS manifold. A variety of work has been done to
improve the algorithm performance from different aspects [24–31].

This paper considers approximating the PS by a set of linear models as well
as a population of candidate solutions. The Multiobjective optimization evolu-
tionary algorithm based on decomposition (MOEA/D) [32,33] is used as a basic
framework. The basic idea is as follows: since each subproblem (each solution)
in MOEA/D is linked with a weight vector, a Pareto optimal solution x in the
PS can be regarded as a function of weight vector λ as done in [34]. Therefore,
the solutions in the current population with their associated weight vectors can
be treated as a set of noisy (λ, x) pairs, and these pairs can be used for building
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an approximation model for the PS at each generation. The model thus built
can be helpful for generating new solutions as in EDAs.

The rest of the paper is organized as follows. Section 2 introduces the local
linear model used in the paper. Section 3 presents the algorithm framework.
Section 4 gives the experimental studies. Finally, the paper is concluded in Sect. 5
with some suggestions for future work.

2 Local Linear Model

We assume that the PS of (1) is a piecewise continuous (m − 1)-D manifold.
It is reasonable to approximate the PS locally by an (m − 1)-D plane. Let
xi1 , . . . , xiK ∈ Rn be K solutions to the neighboring subproblems of subprob-
lem i in MOEA/D. Solution xij is for subproblem ij and is associated with the
weight vector λij . These K solutions will hopefully converge to a small part of
the PS. Therefore, these solutions are scattered around an (m − 1)-D plane and
can be modeled as follows:

x = Bw + ε (2)

where x ∈ Rn, B is an n×m constant matrix, w ∈ Rm is a latent variable vector
with a 1 in its first position, and ε is an n-D Gaussian noise vector. For the sake
of simplicity, we assume that ε ∼ N(0, σ2I) where I is an n × n unity matrix.

Let wij be the value of w corresponding to xij in (2), X = (xi1 , . . . , xiK ) and
W = (wi1 , . . . , wiK ). To estimate B, we consider:

min
B,W

||X − BW ||2, (3)

where || · || is the 2-norm, and both B and W are unknown. We adopt the
widely-used alternating optimization technique for solving (3), which is given in
Algorithm 1.

Algorithm 1. Procedure to optimize B and W

1 Initialize W 0 by the corresponding weight vectors, and set B0 = 0;
2 Set t = 0;
3 repeat
4 Set Bt+1 = arg min

B
||X − BW t||2;

5 Set W t+1 = arg min
W

||X − Bt+1W ||2;
6 Set t = t + 1;

7 until ||BtW t − Bt−1W t−1||2 < ε;

In Algorithm 1, W 0 is initialized by the weight vectors that are associated

with the corresponding neighboring solutions, i.e., wij0 =
(

1
λij

)
, in MOEA/D

since the weight vectors are predefined in a simplex. ε is a predefined threshold
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that determines the termination condition of the procedure. According to our
experiments, W 0 is well initialized by this way and Algorithm 1 usually stops
in less than 5 iterations. In Lines 4 & 5, the least squares method is applied to
solve the optimization problems.

Given the optimal estimations of the basis and coefficients, B and W , we can
estimate the variance of the noise as

σ2 = ||X − BW ||2.
With B and σ2, it is possible to generate a new trial solution x from (2). How-

ever, the corresponding coefficient w of the trial solution is unknown. Therefore,
we firstly generate a coefficient and then sample a new solution. The detailed
procedure is given in Algorithm 2, where rand() is a function that returns a
random number in [0, 1].

Algorithm 2. Procedure to sample a trial solution
1 Randomly select three different indices a, b, and c from {1, 2, · · · , K};
2 Generate a new coefficient vector

w = wa + (wb − wc)rand();

3 Sample a noise vector

ε ∼ N(0, σ2I);

4 Generate a new solution
y = Bw + ε;

3 Algorithm Framework

In this paper, we use the following Tchebycheff technique to define subproblem:

min g(x|λi, z∗) = max
1≤j≤m

λi
j |fj(x) − z∗

j | (4)

where λi = (λi
1, · · · , λi

m)T is a weight vector, z∗ = (z∗
1 , · · · , z∗

m)T is a reference
point, i.e., z∗

j is the minimal value of fj in the objective space. For simplicity, we
use gi(x) to denote g(x|λi, z∗). In most cases, subproblems with close weight vec-
tors will have similar optimal solutions. Based on the distances among the weight
vectors, MOEA/D defines neighborhood relations among the subproblems.

In MOEA/D, the ith (i = 1, · · · , N) subproblem maintains:

– its objective function gi(x), which is defined in (4),
– its current solution xi and the objective vector of xi, i.e. F i = F (xi), and
– the index set of its neighboring subproblems, Bi.
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MOEA/D also maintains a reference point z∗ = (z∗
1 , · · · , z∗

m)T . The main frame-
work of MOEA/D with linear models, called MOEA/D-LM, is given in Algo-
rithm 3.

MOEA/D-LM is generally a variant of MOEA/D-DE [33], and some com-
ments on MOEA/D-LM are given as follows.

Algorithm 3. Main Framework of MOEA/D-LM
1 Initialize a set of subproblems, i.e., xi, F i, Bi, gi for i = 1, · · · , N ;

2 Initialize the reference point z∗ as z∗
j = min

i=1,··· ,N
fj(x

i) for j = 1, · · · , m;

3 while not terminate do
4 foreach i ∈ perm({1, · · · , N}) do
5 Build a linear model by using solutions with indices in Bi through

Algorithm 1;
6 Sample a new solution y through Algorithm 2;
7 foreach j ∈ {1, · · · , m} do
8 if fj(y) < z∗

j then
9 Set z∗

j = fj(y);
10 end

11 end
12 Update the population by the new trial solution y;

13 end

14 end

– N is the number of subproblems (the population size), K is the neighborhood
size for local linear model building, perm(·) randomly permutes the input
values, and rand() generates a random real number in [0, 1].

– Line 1: The initial solutions for the subproblems are uniformly randomly
sampled from Ω. The weight vectors with the subproblems are uniformly
distributed, and the details are referred to [33].

– Line 3: A maximum number of generations is used as the termination condi-
tion.

– Line 4: In each iteration, a subproblem is randomly selected.
– Lines 7–11: The reference point z∗ is updated by the newly generated solu-

tion. Since z∗ is not fixed, the subproblem objectives gi, i = 1, · · · , N , are
changing during the run.

– Line 12: The population is updated by the new trial solution, which is the
same as in [33].

More details about the MOEA/D framework and its variants could be found
in [33,35].
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4 Experimental Study

This section is devoted to empirically study the performance of MOEA/D-LM.
RM-MEDA [23] and MOEA/D-DE [33] are used as baseline algorithms for com-
parison, and the 10 problems from [23] are used as benchmark problems.

In this paper, we use the inverted general distance (IGD) [36] and hypervol-
ume difference (I−

H) [37] metrics to measure the algorithm performance. In the

Table 1. The mean (std.) metric values obtained by three algorithms over 60 runs

Instance Algorithm IGD I−
H

F1 MOEA/D-DE 0.00410.0001(−) 0.00640.0002(−)

RM-MEDA 0.00430.0001(−) 0.00640.0003(−)

MOEA/D-LM 0.00390.0000 0.00570.0001

F2 MOEA/D-DE 0.00400.0000(∼) 0.00610.0002(−)

RM-MEDA 0.00420.0001(−) 0.00640.0005(−)

MOEA/D-LM 0.00390.0000 0.00550.0001

F3 MOEA/D-DE 0.23050.0245(−) 0.23330.0227(−)

RM-MEDA 0.00730.0044(∼) 0.01620.0107(∼)

MOEA/D-LM 0.00410.0011 0.00960.0031

F4 MOEA/D-DE 0.03560.0005(∼) −0.05020.0006(∼)

RM-MEDA 0.04240.0008(−) −0.03370.0018(−)

MOEA/D-LM 0.03520.0005 −0.05260.0011

F5 MOEA/D-DE 0.00520.0004(−) 0.00860.0006(−)

RM-MEDA 0.00520.0008(−) 0.00930.0023(−)

MOEA/D-LM 0.00410.0001 0.00610.0002

F6 MOEA/D-DE 0.04950.1677(+) 0.04350.1173(+)

RM-MEDA 0.01390.0169(+) 0.02790.0256(+)

MOEA/D-LM 0.78750.1966 0.50250.1196

F7 MOEA/D-DE 0.27320.3374(−) 0.29140.0989(−)

RM-MEDA 0.19810.2791(−) 0.10610.1177(−)

MOEA/D-LM 0.02120.0008 0.04790.0028

F8 MOEA/D-DE 0.10540.1097(−) 0.01050.0683(−)

RM-MEDA 0.05680.0028(−) 0.00370.0062(−)

MOEA/D-LM 0.04170.0019 −0.03850.0039

F9 MOEA/D-DE 0.01380.0098(∼) 0.02570.0166(∼)

RM-MEDA 0.00810.0047(∼) 0.01500.0079(+)

MOEA/D-LM 0.00920.0047 0.02110.0094

F10 MOEA/D-DE 3.38432.2331(−) 1.09610.0382(−)

RM-MEDA 128.524019.5941(−) 1.10660.0000(−)

MOEA/D-LM 0.53040.0159 0.49170.0160
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Table 2. The t-test results of MOEA/D-LM vs MOEA/D-DE and RM-MEDA

IGD I−
H

MOEA/D-LM vs MOEA/D-DE ∼ 3 2

+ 1 1

− 6 7

MOEA/D-LM vs RM-MEDA ∼ 2 1

+ 1 2

− 7 7

experiments, 100,000 evenly distributed points are selected from the PF to be
the reference PF P ∗, and (1.2, 1.2)T and (1.2, 1.2, 1.2)T are the nadir points for
bi-objective and tri-objective problems respectively.

The parameters are as follows:

– The number of decision variables: It is set to be 30 for all instances.
– The population size: It is 101 for bi-objective problems, and 253 for tri-

objective problems.
– The maximum generation: It is 200 for F1, F2, F4, F5, F6, and F8, and 1000

for F3, F7, F9, and F10.
– The number of runs: It is 60 for all algorithms on all test instances.
– Parameters in RM-MEDA: The number of clusters is 5 for all instances.
– Parameters in MOEA/D-DE: The update size is nr = 2, the neighborhood

size T = 30, and the neighborhood search probability δ = 0.9. The parameters
are the same as in [33].

– Parameters in MOEA/D-LM: The neighborhood size is K = 30, the threshold
ε = 10−5, and the other parameters are the same as in MOEA/D-DE.

4.1 Comparison Study

In this section, the proposed MOEA/D-LM is compared with RM-MEDA and
MOEA/D-DE on the given test suite. The IGD and I−

H metric values obtained by
the three algorithms over 60 runs are presented in Table 1. The Student’s t-test
is applied to compare MOEA/D-DE and RM-MEDA with MOEA/D-LM with
a significance level of 95%. In the tables, ∼, +, and − denote that the results
obtained by MOEA/D-LM are similar, worse, and better than those obtained
by MOEA/D-DE or RM-MEDA according to the Student’s test.

The results in Table 1 clearly show that MOEA/D-LM obtained the best
results on 8 out of 10 test problems according to both IGD and I−

H metrics.
The Student’s test results in Table 2 indicate that MOEA/D-LM performs sig-
nificantly better than MOEA/D-DE on 6 problems according to the IGD metric
and on 7 problems according to the I−

H metric. A similar result can be obtained
by comparing MOEA/D-LM and RM-MEDA.
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The comparison study suggests that MOEA/D-LM outperforms MOEA/D-
DE and RM-MEDA on most of the given test problems. The reasons might be
explained as follows.

– The major difference between MOEA/D-LM and MOEA/D-DE is on the
procedure to generate offspring solutions. The reason might be as discussed
in Sect. 1 that the linear models can successfully capture the PS manifold and
thus help to improve the approximation quality of the population.

– The major differences between MOEA/D-LM and RM-MEDA are on two
folds: firstly, MOEA/D-LM is a decomposition based MOEA and RM-MEDA
is a Pareto domination based MOEA; secondly, they use different methods
to build local linear models. In MOEA/D-LM, the model building process
uses more information from the algorithm framework than that in RM-
MEDA. Therefore, the model quality in MOEA/D-LM is higher than that
in RM-MEDA. This might be the reason why MOEA/D-LM outperforms
RM-MEDA.

4.2 Sensitivity to Control Parameters

In MOEA/D-LM, there are two control parameters that may influence the per-
formance, the threshold ε that determines the stop condition in Algorithm 1,
and the neighborhood size K that determines the size of points to build the
model in Algorithm 1.

According to the preliminary study, MOEA/D-LM is not sensitive to the
threshold ε. Actually, Algorithm 1 will return good approximations to B and
W even if the main loop is only repeated for several iterations. Therefore, this
section mainly focuses on the neighborhood size K. MOEA/D-LM with K =
5, 10, · · · , 40 is applied to the test suite. The other control parameters are the
same as in the previous section.

The mean IGD metric values versus different K values obtained by
MOEA/D-LM after 20%, 60%, and 100% function evaluations on F1-F5 are
drawn in Fig. 1. The mean I−

H metric values versus different K values obtained
by MOEA/D-LM after 20%, 60%, and 100% function evaluations on F6-F10 are
drawn in Fig. 2. The figures show that except on F6, the performance increases
as K increases in MOEA/D-LM. This suggests that a big neighborhood is use-
ful. It is reasonable because a big neighborhood means a big training dataset to
build a linear model, and a relatively big training dataset is generally helpful to
build an accurate model. Balancing the cost of model building and the accuracy
of the built model, K = 30 might be a tradeoff choice.
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Fig. 1. The average IGD values obtained by MOEA/D-LM with different neighborhood
sizes and percentages of function evaluations over 60 runs on F1-F5.
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Fig. 2. The average I−
H values obtained by MOEA/D-LM with different neighborhood

sizes and percentages of function evaluations over 60 runs on F6-F10.
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5 Conclusion

This paper proposes to use a set of linear models to approximate the Pareto
optimal set in the decision space and to help to improve the algorithm perfor-
mance. An MOEA/D with linear models, called MOEA/D-LM, is designed for
this purpose. In MOEA/D-LM, a linear model is built for each subproblem and
a new trial solution is generated from the linear model as an offspring solution.
In the model building, a set of neighboring solutions are used as the training
dataset, and an alternating optimization technique is applied to optimize the
parameters of the linear model. MOEA/D-LM is applied to a test suite and
compared with RM-MEDA and MOEA/D-DE. The experimental results indi-
cate that MOEA/D-LM outperforms RM-MEDA and MOEA/D-DE in most
instances. Furthermore, the influence of the neighborhood size, i.e., the training
set size in model building, is empirically studied and the results show that a big
size is helpful.

This paper presents the preliminary results on using both models and candi-
date solutions to approximate the Pareto optimal set in evolutionary multiobjec-
tive optimization. Some further research issues along this direction may include:
(a) applying the linear model to other MOEA frameworks, i.e., the Pareto dom-
ination based framework, and the indicator based framework, and (b) trying
some global models, instead of local linear models, to approximate the Pareto
optimal set.
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Abstract. Many works on surrogate-assisted evolutionary multiobjec-
tive optimization have been devoted to problems where function eval-
uations are time-consuming (e.g., based on simulations). In many real-
life optimization problems, mathematical or simulation models are not
always available and, instead, we only have data from experiments, mea-
surements or sensors. In such cases, optimization is to be performed on
surrogate models built on the data available. The main challenge there
is to fit an accurate surrogate model and to obtain meaningful solutions.
We apply Kriging as a surrogate model and utilize corresponding uncer-
tainty information in different ways during the optimization process. We
discuss experimental results obtained on benchmark multiobjective opti-
mization problems with different sampling techniques and numbers of
objectives. The results show the effect of different ways of utilizing uncer-
tainty information on the quality of solutions.

Keywords: Machine learning · Gaussian process · Pareto optimality ·
Metamodelling · Surrogate

1 Introduction

Sometimes in real applications, multiple conflicting objectives should be opti-
mized, but there is no mathematical or simulation model of the objectives
involved. Instead, there is data, e.g., obtained via physical experiments. In such
cases, surrogate models can be built using the given data and optimization is
then performed with the surrogate models. In the literature, surrogate models
such as Kriging [8], neural networks [18] and support vector regression [16] have
been typically used for solving computationally expensive optimization problems
[6,10]. If we may conduct new (expensive) function evaluations when needed,
this process is called online data-driven optimization [20]. When we do not have

c© Springer Nature Switzerland AG 2019
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access to additional data during the optimization, we call it offline data-driven
optimization [11].

In using surrogate models, the main challenge is to manage the models for
improving convergence and diversity without too much sacrifice in the accuracy
of models. In online data-driven optimization problems, an infill criterion [6] is
maximized or minimized for updating the models iteratively during the optimiza-
tion process. However, this is not applicable for offline data-driven optimization
when no further data is available during the optimization process. So far, little
research has been conducted on solving optimization problems, where no new
data is available for managing the surrogates [4,11,20]. In such case, the quality
of the solutions obtained after using the surrogate models is entirely dependent
on the accuracy of the models and optimizer used.

When solving an offline data-driven problem with multiple conflicting objec-
tives, one can fit models using all the data available for each objective function.
Then an evolutionary multiobjective optimization (EMO) algorithm can be used
on these models to find a set of approximated nondominated solutions. Essen-
tially, in that case, an offline data-driven multiobjective optimization problem
(MOP) can be divided into two major parts: model building and using an EMO
algorithm.

Some surrogate models, like Kriging, provide uncertainty information (or
standard deviation) about the predicted values. A low standard deviation implies
that the actual objective function value has a higher chance of being close to
the predicted value (though the actual function may remain unknown and the
only information is the data available). Therefore, one possible way to improve
the accuracy of the model is to utilize uncertainty in the fitted model as an
additional objective to be optimized.

In this article, we study different ways to deal with the uncertainty infor-
mation provided by the Kriging models in offline data-driven multiobjective
optimization. Moreover, we consider the effect of using different initial sampling
techniques on some benchmark test problems. In this study, we simulate offline
problems by generating data for problems with known optimal solutions to be
able to analyze the results. The results show the effect of utilizing uncertainty
information in the quality of solutions.

The rest of this article is organized as follows. We summarize the basic con-
cepts of data-driven optimization and Kriging model in Sect. 2. In Sect. 3, we
present different approaches of incorporating uncertainty information in the opti-
mization problem and present and analyze the results in Sect. 4. Finally, we draw
conclusions in Sect. 5.

2 Background

2.1 Generic Offline Data-Driven EMO

We consider MOPs of the following form:

minimize {f1(x), . . . , fk(x)},

subject to x ∈ S,
(1)
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with k (≥ 2) objective functions and the feasible set S is a subset of the decision
space R

n. For any feasible decision vector x we have a corresponding objective
vector f(x) = (f1(x), . . . , fk(x)).

MOPs that are offline in nature can generally be solved by the approach given
in Fig. 1. In what follows, we refer to it as a generic approach. As described in
[11,21], the solution process can be split into three major components: (1) data
collection, (2) model building and management, and (3) EMO method utilized.
The collection of data may also incorporate data pre-processing, if it is required.
Once the data has been obtained, the objectives and constraints of the MOP are
formulated. The next stage is to build surrogate models (also known as meta-
models) e.g. for each objective function using the available data. Finally, an
EMO method is used to find nondominated solutions utilizing the surrogates as
objective functions. As objectives to be optimized in (1) we have for i = 1, . . . , k

the predicted means f̂i of the surrogate of objective fi and our objective vector
is denoted by:

f̂ = (f̂1(x), . . . , f̂k(x)). (2)

Offline Data

Build Surrogate
Models

Evaluation

Initialization

Variation 

Selection

Stopping 
Criteria 

reached?

Model Management
Non-Dominated

Solutions

Yes

No

EMOModelingData

Fig. 1. Flowchart of a generic offline data-driven evolutionary multiobjective optimiza-
tion approach.

Selecting proper surrogate models is a challenging task in model management.
In online data-driven EMO, the quality of the surrogate models can be accessed
and updated as new data becomes available during the optimization process.
However, for offline data-driven EMO this is not possible. It becomes even more
challenging with the data being noisy [22], skewed [23], time-varying [2] or het-
erogeneous [3]. Thus, it is crucial to build, before optimization, surrogates that
are as good approximations as possible of the “true” objective functions. One
way to improve the accuracy of the surrogates is to enhance the quality of the
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data. In this research, our consideration is on a general level and we do not go
into the characteristics of the data.

In offline data-driven EMO, the possible ways to improve the accuracy of
the surrogate models are to have an effective data pre-processing for noise
removal [4], creating synthetic data [23], transferring knowledge [15] or applying
advanced machine leaning techniques [19,20]. However, it is quite possible that
the surrogate models are not good representations of the true objectives. It may
even happen that the solutions obtained are actually worse than the data used
for fitting the models.

2.2 Kriging

Kriging or Gaussian process regression has been widely used as a surrogate model
for solving expensive optimization problems [6]. The main advantage of using
Kriging is its ability to provide uncertainty information of the predicted values.
Given a Kriging model, the approximated mean value y∗ and its variance s2 for
a sample (or decision variable value) x∗ are as follows:

y∗ = k(x∗,X)K(X,X)−1y, (3)

s2 = k(x∗,x∗) − K(x∗,X)K(X,X)−1K(X,x∗), (4)

where X ∈ R
NI×n is the matrix of the given data with NI items with n decision

variables, y ∈ R
NI is the vector of given objective values corresponding to some

decision vector, K(X,X) is the covariance matrix of X and k(x∗,X) is a vector
of covariances between x∗ and X. For more details about Kriging, see [17].

3 Approaches to Incorporate Uncertainty

As new data cannot be obtained in offline data-driven optimization, it is difficult
to update the surrogates and enhance their accuracy. One approach is to build a
very accurate surrogate model before the optimization process. Another possible
approach is to provide a suitable metric in addition to final solutions after the
optimization process, which can be used to measure the accuracy of solutions
obtained. This approach can be beneficial when the surrogate models cannot
provide a very exact representation of the true objective functions. One such
instance can be when the data consists of optimal solutions. In such a case, the
surrogate might not be a good representation of the actual objectives, which
might lead to degraded final solutions. Providing a set of solutions together with
the uncertainty information of predicted final solutions can be helpful in the
decision making process.

As previously discussed, the two major components in offline data-driven
optimization are building a surrogate model and using an EMO algorithm. In
this research we have limited ourselves by focusing on a few variations of the
optimization problem which try to minimize the uncertainty in the final solu-
tions. As shown in Fig. 2, the uncertainties in the predicted value of the Kriging
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models are utilized as additional objective functions. By considering uncertain-
ties in this way, the EMO method tries to minimize the predicted mean values
from the fitted Kriging models by subsequently minimizing the standard devia-
tions in the prediction. Thus, the final set of nondominated solutions will consist
of solutions with different levels of uncertainty.

Offline
data

Build Kriging
models for each

objective functions

Approach 1: Predicted
mean and standard

deviations
mean and average of
standard deviations

improvement 
(Maximize) 

Evaluation

Initialization

Variation 

Selection

Stopping 
criteria 

reached?

Non-dominated
solutions

Yes

No

EMO Approaches
Tested

Fig. 2. Flowchart of offline data-driven optimization with uncertainty.

We have tested three different approaches for utilizing uncertainties in the
optimization. Approach 1 uses all the standard deviations given by each surro-
gate model as additional objectives. The resulting objective vector in Approach
1 is:

f̂ = (f̂1(x), . . . , f̂k(x), s1(x), . . . , sk(x)), (5)

where f̂i(x) and si(x) and are the predicted mean and the standard deviation
values for the ith objective. Final solutions are obtained by performing a non-
dominated sort on the archive of predicted solutions (predicted mean values
and standard deviations) stored while optimization. It might be possible that
the solutions have different uncertainties for different objectives. We double the
number of objectives which may increase the complexity of solving the resulting
optimization problem.

Approach 2 utilizes the average of the standard deviations given by each
of the surrogate models as an additional objective and the resulting objective
vector is:

f̂ = (f̂1(x), . . . , f̂k(x), s̄(x)), (6)

where s̄(x) is the average of the standard deviations from Kriging models built
for each objective function. This method has fewer objectives when compared to
Approach 1, however, either of the approaches provide solutions with a range of
uncertainty values. Both Approaches 1 and 2 can provide an option for filtering
solutions based on the uncertainty information.
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Algorithm 1. Uncertainties as additional objective functions
Input: k Kriging models, one for each objective function and an empty archive
Output: Final nondominated approximated solutions from the archive

1: Generate parent population
2: while Stopping criteria are not reached do
3: Generate offspring with crossover and mutation
4: Evaluate offspring using Kriging models and get the objective function values

of either Eqs. (4), (5) or (6)
5: Combine offspring population with parent population
6: Select parents for the next generation
7: Store parents in the archive

8: Perform nondominated sorting of solutions in the archive

Approach 3 utilizes the expected improvement (EI) [12] for every sur-
rogate model as objectives to be optimized by the EMO algorithm, see,
e.g. [9]. Expected improvement can be expressed as EI(x) = (fmin −
f̂(x))Φ

(
fmin−f̂(x)

s(x)

)
+ s(x)φ

(
fmin−f̂(x)

s(x)

)
, where φ(·) and Φ(·) are the stan-

dard normal density and distribution function respectively, and fmin is a k-
dimensional vector, where the ith component represents the best values of the
ith objective function in the given data. The objective vector in this case is:

f̂ = (EI1(x), . . . ,EIk(x)) , (7)

where EIi(x) is the expected improvement value for the ith objective. The EI
criterion takes the predicted mean value and the standard deviation into account.

Now we have introduced three approaches for incorporating uncertainty infor-
mation. Algorithm 1 shows the process of applying any of them in the offline
optimization process, where k is the number of objectives and we can use the
maximum number of evaluations using surrogate models as a stopping criterion.

4 Experimental Results

We compare the three different approaches to each other and also to a generic
approach (as (2) in Subsect. 2.1), using test problems DTLZ2, DTLZ4–DTLZ7
with 2, 3 and 5 objectives. As said, we generate data for these problems and fit
Kriging models there. The dimension of the decision variable space n is fixed to
10.

The size of the data set used is 109 (corresponds to the 11n − 1 [5,13,24]).
The sampling techniques for creating the data sets were Latin hypercube sam-
pling (LHS), uniform random sampling and a special case of sampling which we
call optimal-random sampling. In the latter, 50% of the data are nondominated
solutions and the remaining 50% are uniform random samples. This kind of hypo-
thetical sampling might resemble a special case where most of the samples in
the given data set are close to optimal, and thus the optimization process could
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no longer improve the solutions further. However, in such a scenario the offline
optimization technique should not compute final solutions which are worse than
the provided samples. A total of 31 independent runs from each sampling were
performed for each case.

We used indicator based evolutionary algorithm (IBEA) [25] as the EMO
method as it has been demonstrated to perform well in [1] even for problems
with a higher number of objectives. The selection criterion was Iε+ (Step 6 in
Algorithm 1) with κ parameter values 0.51, 0.87 and 0.48 for k = 2, 3 and 5,
respectively, and κ value of 0.5 for any other number of objectives. The popula-
tion size was 100 and the maximum number of function evaluations was 40 000
according to [1]. We used Matlab implementation of Kriging models with first
order polynomial functions and a Gaussian kernel function.

For measuring the performance of different approaches, we first performed
a nondominated sort on the archive (also including the additional objective(s)).
These nondominated solutions were then evaluated with the real objective func-
tion. After obtaining their true objective function values, dominated solutions
were removed producing the final nondominated set. For comparing the quality
of solutions for all the approaches, inverted generational distance (IGD) metric
was utilized with 5000 points in the reference set for all problems.

Table 1 shows the comparison between the mean and standard deviation val-
ues of the IGD for all the three approaches and the generic approach. It was
observed that Approaches 1 and 2 performed better than the generic approach
for LHS and uniform random sampling for all the problems with various num-
bers of objectives with the exception of DTLZ6 and DTLZ7. However, while
using optimal-random sampling, Approaches 1 and 2 performed better than the
generic approach for DTLZ2, DTLZ4-5 and better for DTLZ6 and DTLZ7 for
few of the objectives. Approach 3 did not produce good results for any of the
problems, objectives or sampling technique.

Adding uncertainties as additional objectives pose a major problem in
explaining the effect of optimization as the fitness landscape of the uncertain-
ties is mostly unknown. A possible explanation that no noticeable performance
improvement is observed in DTLZ6 when using Approaches 1 and 2 is because
the problem consists has a non-uniform (or biased) [7] degenerated Pareto front.
Adding additional uncertainty objectives makes the problem even harder to solve
and fewer nondominated solutions are obtained. For DTLZ7, a possible expla-
nation for the worse performance of Approaches 1 and 2 is that the objective
functions are completely separable [14]. Thus, the additional objectives added
by Approaches 1 and 2 only make the problem more difficult than the generic
approach.

For optimal-random sampling the advantage of Approaches 1 and 2 was
clearly visible. Despite the initial sampling including also nondominated solu-
tions, the generic approach failed to provide good solutions. This is because the
surrogate models do not provide a perfect representation of the true objectives.
While utilizing EIs as objectives in Approach 3, the solutions were actually worse
(comparing mean IGD values) for most of the cases. This is because EI tries to



470 A. Mazumdar et al.

balance between convergence and diversity. Therefore, it can select a solution
with a high uncertainty for achieving its goal.

Figure 3 shows the root mean square error (RMSE) of the final solutions
obtained by different approaches with LHS sampling on problems with two
objectives. It can be observed that the solutions obtained by Approaches 1 and
2 are more accurate in most of the cases. This means that using uncertainty as
additional objective(s) helps to find solutions with a low approximation error.
Therefore, using uncertainty in the optimization process can be considered as an
advantage in solving an offline data-driven EMO problem where there is no pos-
sibility for updating the surrogate models. An illustration of solutions obtained
after evaluating them with real objectives for the DTLZ2 problem with LHS and
optimal-random sampling is shown in Fig. 4. Due to space limitations, further
analysis is available at http://www.mit.jyu.fi/optgroup/extramaterial.html as
additional material. The performance of the proposed approaches on other test
problems (i.e., DTLZ1, DTLZ3, WFG1-WFG3, WFG5 and WFG9) can also be
found at the above-mentioned website.

Fig. 3. RMSE of the final solutions for bi-objective problems. Here f1 and f2 are the
objectives and “Gen”, “Appr1”, “Appr2” and “Appr3” are the generic and Approaches
1, 2 and 3, respectively. Opt.Rand is optimal-random sampling.

http://www.mit.jyu.fi/optgroup/extramaterial.html
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Table 1. Means and standard deviations of IGD values of the final archive, evaluated
on the true objective functions, obtained by each approach, for various problems and
sampling techniques. (Best values are in bold)

Sampling Problems k

Generic Approach 1 Approach 2 Approach 3

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

LHS

DTLZ2

2 0.0989 0.1260 0.0722 0.0431 0.0770 0.0651 0.3377 0.0477

3 0.2027 0.0910 0.1787 0.0530 0.1665 0.0539 0.3471 0.0365

5 0.2708 0.0873 0.2689 0.0343 0.2574 0.0396 0.3993 0.0395

DTLZ4

2 0.6311 0.1619 0.3951 0.1935 0.4919 0.1852 0.6467 0.2098

3 0.7306 0.2021 0.5309 0.1413 0.5867 0.1467 0.7166 0.1162

5 0.6929 0.0766 0.5640 0.0653 0.6062 0.0545 0.7173 0.0514

DTLZ5

2 0.1030 0.1326 0.1032 0.0905 0.0814 0.0570 0.3716 0.0580

3 0.1191 0.0982 0.0684 0.0315 0.0701 0.0452 0.2676 0.0388

5 0.0934 0.0606 0.0655 0.0277 0.0805 0.0453 0.1486 0.0387

DTLZ6

2 0.1570 0.1078 1.6188 0.7635 2.4518 0.5797 3.5210 1.1369

3 0.9871 0.2737 1.7564 0.7308 1.5561 0.7159 3.2847 1.1907

5 0.8207 0.2158 2.3859 0.4822 1.3725 0.3734 2.8157 1.0211

DTLZ7

2 0.0023 0.0049 0.0292 0.0095 0.0095 0.0086 0.6157 0.1767

3 0.0549 0.0120 0.1791 0.1721 0.0956 0.1449 0.6529 0.1016

5 0.2800 0.0541 0.5254 0.2175 0.3675 0.1234 0.7169 0.0888

Random

DTLZ2

2 0.0947 0.0893 0.0879 0.0468 0.0828 0.0493 0.3673 0.0395

3 0.2315 0.0712 0.1907 0.0534 0.1692 0.0316 0.3591 0.0433

5 0.2843 0.0790 0.2593 0.0268 0.2514 0.0335 0.4188 0.0289

DTLZ4

2 0.5986 0.1857 0.4461 0.1850 0.4665 0.1735 0.4935 0.2243

3 0.7885 0.1465 0.5354 0.1474 0.5682 0.1320 0.7680 0.1544

5 0.7064 0.1731 0.5487 0.1021 0.6034 0.1127 0.7391 0.0697

DTLZ5

2 0.1144 0.1211 0.0949 0.0495 0.0889 0.0506 0.3590 0.0481

3 0.1114 0.0367 0.0610 0.0291 0.0615 0.0283 0.2823 0.0350

5 0.0644 0.0447 0.0498 0.0169 0.0542 0.0254 0.1521 0.0319

DTLZ6

2 0.2826 0.3739 1.8949 1.0420 2.6166 0.7696 4.6779 1.2463

3 1.2833 0.2710 2.9273 0.4893 1.2966 0.4552 3.0290 0.9259

5 0.7897 0.2869 2.5206 0.6990 1.6732 0.6577 2.9527 1.1470

DTLZ7

2 0.0081 0.0113 0.0444 0.0254 0.0260 0.0382 0.5942 0.1295

3 0.0500 0.0261 0.1635 0.1030 0.0853 0.0443 0.6159 0.0980

5 0.2821 0.0235 0.5763 0.2356 0.4916 0.3096 0.7254 0.0781

Optimal-

Random

DTLZ2

2 0.4220 0.2079 0.0053 0.0020 0.0090 0.0029 0.1244 0.1827

3 0.3152 0.2285 0.0517 0.0101 0.0554 0.0120 0.2088 0.1247

5 0.1619 0.0604 0.1582 0.0143 0.1404 0.0253 0.2758 0.0078

DTLZ4

2 0.8335 0.8480 0.0194 0.0160 0.0526 0.0351 0.5851 0.4683

3 0.7853 0.1831 0.2662 0.0738 0.2966 0.0857 0.5575 0.1704

5 0.5789 0.1020 0.4319 0.1062 0.4730 0.0904 0.6047 0.0801

DTLZ5

2 0.7489 0.4255 0.0086 0.0024 0.0094 0.0032 0.2086 0.2516

3 0.3323 0.3085 0.0064 0.0018 0.0076 0.0017 0.1010 0.0845

5 0.1890 0.2090 0.0049 0.0019 0.0055 0.0021 0.0251 0.0232

DTLZ6

2 0.0064 0.0031 0.0077 0.0013 0.0081 0.0019 0.0147 0.0019

3 0.0556 0.0868 0.0075 0.0021 0.0085 0.0029 0.0198 0.0104

5 0.0396 0.0986 0.0069 0.0014 0.0085 0.0012 0.0171 0.0078

DTLZ7

2 0.0005 0.0004 0.0013 0.0003 0.0020 0.0007 0.0177 0.0033

3 0.0397 0.0093 0.0365 0.0043 0.0388 0.0058 0.1012 0.0124

5 0.1910 0.0179 0.1855 0.0141 0.1825 0.0220 0.3404 0.0367
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Fig. 4. Final solutions obtained of the run with the median IGD value using different
approaches for LHS sampling (top three rows) and optimal-random sampling (bottom
three rows) for the DTLZ2 problem.
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5 Conclusions

We have considered offline data-driven optimization with evolutionary multiob-
jective optimization. We used Kriging to fit surrogate models to data and pro-
posed and tested three approaches to utilize uncertainty information from Krig-
ing models in the optimization. A comparison was done with several benchmark
problems, sampling techniques and varying the number of objectives in solving
offline data-driven multiobjective optimization problems. Adding uncertainty as
one or more objectives showed improvements in the final solutions for certain
problems in our benchmark testing. However, utilizing expected improvements
as objectives (in Approach 3) did not seem to be effective in solving this kind of
problems. The analysis also revealed that the solutions obtained in Approaches 1
and 2 are more accurate compared to the ones obtained using a generic approach
(without uncertainty information).

Future work will include comparing the performance of the proposed
approaches with bigger initial sample sizes, higher number of decision variables
and higher number of objectives. Aiding the decision making process by giv-
ing a decision maker an option to select a final solution using the uncertainty
information is another direction to work on. Moreover, filtering techniques can
be applied to remove solutions with higher uncertainties. Testing on real-world
data sets and exploring different ways to deal with uncertainties using other
surrogate models will also be future research topics.
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Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 399–409. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 37

15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

16. Pilat, M., Neruda, R.: Aggregate meta-models for evolutionary multiobjective and
many-objective optimization. Neurocomputing 116, 392–402 (2013)

17. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, Cambridge (2005)

18. Regis, R.G.: Evolutionary programming for high-dimensional constrained expen-
sive black-box optimization using radial basis functions. IEEE Trans. Evol. Com-
put. 18(3), 326–347 (2014)

19. Sun, X., Gong, D., Jin, Y., Chen, S.: A new surrogate-assisted interactive genetic
algorithm with weighted semisupervised learning. IEEE Trans. Cybern. 43(2), 685–
698 (2013)

20. Wang, H., Jin, Y., Jansen, J.O.: Data-driven surrogate-assisted multiobjective evo-
lutionary optimization of a trauma system. IEEE Trans. Evol. Comput. 20(6),
939–952 (2016)

21. Wang, H., Jin, Y., Sun, C., Doherty, J.: Offline data-driven evolutionary optimiza-
tion using selective surrogate ensembles. IEEE Trans. Evol. Comput. (to appear).
https://doi.org/10.1109/TEVC.2018.2834881

22. Wang, H., Zhang, Q., Jiao, L., Yao, X.: Regularity model for noisy multiobjective
optimization. IEEE Trans. Cybern. 46(9), 1997–2009 (2016)

23. Wang, S., Minku, L.L., Yao, X.: Resampling-based ensemble methods for online
class imbalance learning. IEEE Trans. Knowl. Data Eng. 27(5), 1356–1368 (2015)

24. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization
by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14(3),
456–474 (2010)

25. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30217-9 84

https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1109/TEVC.2018.2869001
https://doi.org/10.1007/978-3-319-45823-6_37
https://doi.org/10.1109/TEVC.2018.2834881
https://doi.org/10.1007/978-3-540-30217-9_84


Convergence Acceleration for
Multiobjective Sparse Reconstruction via

Knowledge Transfer

Bai Yan1(B), Qi Zhao2, J. Andrew Zhang3, Yonghui Li4, and Zhihai Wang5

1 Institute of Laser Engineering, Beijing University of Technology, Beijing, China
yanbai@emails.bjut.edu.cn

2 College of Economics and Management, Beijing University of Technology,
Beijing, China

qzhao@emails.bjut.edu.cn
3 Global Big Data Technologies Centre, University of Technology Sydney,

Sydney, Australia
Andrew.Zhang@uts.edu.au

4 School of Electrical and Information Engineering, University of Sydney,
Sydney, Australia

yonghui.li@sydney.edu.au
5 Key Laboratory of Optoelectronics Technology, Ministry of Education,

Beijing University of Technology, Beijing, China
wangzhihai@bjut.edu.cn

Abstract. Multiobjective sparse reconstruction (MOSR) methods can
potentially obtain superior reconstruction performance. However, they
suffer from high computational cost, especially in high-dimensional
reconstruction. Furthermore, they are generally implemented indepen-
dently without reusing prior knowledge from past experiences, leading
to unnecessary computational consumption due to the re-exploration of
similar search spaces. To address these problems, we propose a sparse-
constraint knowledge transfer operator to accelerate the convergence of
MOSR solvers by reusing the knowledge from past problem-solving expe-
riences. Firstly, we introduce the deep nonlinear feature coding method
to extract the feature mapping between the search of the current problem
and a previously solved MOSR problem. Through this mapping, we learn
a set of knowledge-induced solutions which contain the search experience
of the past problem. Thereafter, we develop and apply a sparse-constraint
strategy to refine these learned solutions to guarantee their sparse char-
acteristics. Finally, we inject the refined solutions into the iteration of the
current problem to facilitate the convergence. To validate the efficiency
of the proposed operator, comprehensive studies on extensive simulated
signal reconstruction are conducted.
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1 Introduction

In the compressed sensing (CS) theory [2,7], a sparse reconstruction problem is
often considered:

min
x

‖x‖0, s.t. b = Ax + e, (1)

where x ∈ �n is a k-sparse signal (i.e., there are k nonzero values (k < n) in
the signal), A ∈ �m×n(m ≤ n) is the measurement matrix, b ∈ �m×1 is the
measurement vector, and e ∈ �m×1 denotes the noise vector.

The problem (1) can be rewritten as an unconstrained optimization problem:

arg min
x

λ‖x‖p +
1
2
‖b − Ax‖22, p ∈ [0, 1] (2)

where λ is a pre-chosen positive regularization parameter being introduced to
balance the two conflicting objective terms (the regularization term and mea-
surement error). Unfortunately, there is no optimal rule for determining λ. Some
heuristics methods are used, e.g., the Homotopy continuation methods [6,12],
and the cross validation method [17].

The regularization methods can be naturally solved by the multiobjective
evolutionary algorithms (MOEAs) [5,15,22]. MOEAs can simultaneously opti-
mize all the objectives and obtain a number of nondominated solutions (termed
as Pareto front, PF). In this regards, (2) is transformed into a MOSR problem:

f(x) = min
x

(‖x‖0, ‖Ax − b‖22). (3)

The first solver to the MOSR problem is the soft-thresholding evolutionary mul-
tiobjective (StEMO) algorithm [14]. StEMO is based on the NSGA-II framework
[5] and it uses the IST method [4] for local search. It was observed that the knee
region can provide the best trade-off solution. To enhance the reconstruction
precision, the LBEA is proposed in [21], which employed the improved linear
Bregman-based local search operator in the differential evolution paradigm to
accelerate the convergence. A two-phase evolutionary approach for sparse recon-
struction is proposed in [23]. In phase 1, the statistical features of the nondom-
inated solutions from MOEA/D [22] were extracted to generate new solutions.
In phase 2, a forward-based selection method was designed for better locating
the nonzero entries. An improved MOEA/D equipped with sparse preference-
based local search, denoted as SPLS, was proposed in [13]. The knee region
was exploited with preference. In [20], an adaptive decomposition-based evolu-
tionary approach (ADEA) is proposed. With the guidance of reference vectors,
more search effort on the approximating knee region was executed by adaptively
adding the reference vectors.

Although these MOSR solvers can achieve better reconstruction performance
than conventional algorithms, they suffer from high computational cost, espe-
cially in high-dimensional reconstruction scenarios. When the signal is less sparse
or there are fewer measurements, more iterations are needed and the computa-
tional cost is further increased.
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In addition, many optimization solvers, including MOSR, are implemented
independently without reusing the previous problem-solving knowledge. This
causes unnecessary computational complexity due to the re-exploration of simi-
lar search spaces [10]. In fact, for practical artificial systems, the problems to be
solved are rarely isolated, but may be repetitive or share domain-specific similar-
ities. Some studies on evolutionary optimizers [8,11,16] have demonstrated the
accelerated effect of reusing the prior information. This finding motivates us to
exploit the solution search knowledge from past solved problems for the MOSR
problem, where similarities to the evolutionary optimizers exist in the problem
form and the solution search process.

In this paper, we propose a sparse-constraint knowledge transfer operator to
accelerate the convergence of MOSR solvers by exploiting the knowledge from a
previous problem-solving process. Firstly, we introduce the deep nonlinear fea-
ture coding (DNFC) [19] to extract the feature mapping for the searching process
between the current and a previously solved MOSR problem. Through the map-
ping, we learn a set of knowledge-induced solutions which contain the search
experience of the past solved problem. We then propose a sparse constraint
strategy to refine these learned solutions to guarantee their sparsity characteris-
tics. Finally, we inject the refined solutions into the iteration process for solving
the current problem to facilitate the convergence.

The rest of this paper is organized as follows. Section 2 gives a brief intro-
duction to the background techniques. Section 3 details the proposed sparse-
constraint knowledge transfer operator. In Sect. 4, the performance of the pro-
posed operator is examined using two baseline MOSR algorithms StEMO and
ADEA. Finally, conclusions are described in Sect. 5.

2 Preliminaries

2.1 Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) [9] is a distance estimation method,
which measures the discrepancy between two distributions by comparing the
difference of the mean values. Specifically, let Xs = [x1,x2, . . . ,xns

] and Yt =
[y1,y2, . . . ,ynt

] denote the samples of two distributions on a domain χ, and Ω
is a function: χ → �, then the MMD can be formulated as

‖ 1
ns

ns∑

i=1

Ω(xi) − 1
nt

nt∑

i=1

Ω(yi)‖χ. (4)

Further, the study [18] performed the MMD method in a Reproducing Kernel
Hilbert Space (RKHS) to capture the nonlinear divergence between Xs and Yt.
The function Ω is replaced by a kernel-induced feature map Φ : χ → H with
K(xi,xj) = Φ(xi)T Φ(xj) as the kernel of H, (4) can be written as

‖ 1
ns

ns∑

i=1

Φ(xi) − 1
nt

nt∑

i=1

Φ(yi)‖H. (5)
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2.2 Marginalized Denoising Autoencoder

The marginalized denoising autoencoder (mDA) [3] aims at learning a linear
mapping W to reconstruct the original data from its corrupted versions. Assume
X = [X,X, . . .X] is the union of r-times repeated X = [x1,x2, . . . ,xnX

]; and
X̃ = [X̃1, X̃2, . . . , X̃r] is the combination of different r-times corrupted versions
of X by random feature removal (i.e., each feature of X is corrupted to 0 with
probability p), then the objective function of mDA can be modeled as

min L(W) =
1

2rnX
tr[(X − WX̃)T (X − WX̃)] (6)

where tr(·) is a function to compute the trace of a matrix.

3 MOSR via Transfer Operator

In this section, we propose a novel sparse-constraint knowledge transfer operator
to speed up the convergence of MOSR solvers. The motivation is that, although
sparse reconstruction problems vary from each other, they are not isolated and
may be repetitive or have some domain-specific similarities. Therefore, we design
this operator to reuse the structural knowledge from previous search experiences,
accelerating the convergence.

3.1 Framework

The workflow of proposed operator in MOSR solvers is provided in Fig. 1, with
the corresponding pseudo-code provided in Algorithm1. For convenience, we
denote the current MOSR problem as the target problem and name the previ-
ously solved problem which we want to transfer knowledge from as the source
problem. Pt and PSt are the solution sets to the target and source problems at
generation t, respectively, and PStmax is the set of the optimized solutions to the
source problem. As shown in Fig. 1, in each iteration of the target problem, the
recombination (i.e., crossover and mutation), local search, and selection steps of
MOSR solvers are firstly executed. Subsequently, the proposed sparse-constraint
knowledge transfer operator, depicted in the dotted box, is implemented. This
operator will be detailed in the next subsection. Finally, Pt and the new obtained
population Tt by knowledge transfer will undergo the selection process, and a
final solution would be identified.

3.2 Sparse-Constraint Knowledge Transfer Operator

The pseudo-code of sparse-constraint knowledge transfer operator is given in
Algorithm 2, which includes four steps: (a) feature mapping extraction: it aims
to learn a mapping W that provides the connection between the source and
target problem; (b) knowledge-induced solutions acquisition: with this mapping,
the most valuable search experience from the source problem PStmax is injected
for improving the target problem-solving ability; (c) solution sparsification: it
can ensure the sparse characteristics of solutions; (d) selection: a number of N
better solutions are selected. Next, we will introduce these steps in detail.
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Fig. 1. Workflow of MOSR via knowledge transfer

Algorithm 1. Pseudo-code of MOSR via knowledge transfer
Require: A, b, PSt, N
1: P0 ← Initialization;
2: while the stopping criterion is not met do
3: Qt =Recombination(Pt);
4: Lt =Local Search(Pt ∪ Qt);
5: Pt =Selection(Pt ∪ Qt ∪ Lt);
6: if knowledge transfer then
7: Pt+1=Knowledge Transfer(Pt,PSt,PStmax);
8: end if
9: t = t + 1;

10: end while
11: x ←Final Solution Identification(Pt)

Feature Mapping Extraction. It aims at finding a “connective bridge” W
for the searching process between the source and target problems. DNFC [19] is
an effective method for domain adaptation and provides a closed-form solution.
Therefore, we employ the single-layer form of DNFC (named NFC) to predict the
feature mapping matrix W. NFC incorporates the MMD (refer to Sect. 2.1) and
kernelization into the mDA (refer to Sect. 2.2), in which the MMD enables the
extracted features from the source and target problem to have a small distribu-
tion discrepancy, the kernelization ensures the nonlinearity relationship between
domains to be well exploited, and mDA is for extracting deep features.

Now let us consider how to obtain W by the NFC method. Firstly, we define
X = PSt ∪ Pt, X = [X,X, . . .X] as the union of the r-times copies of X,
X̃ = [X̃1, X̃2, . . . X̃r] as the union of the r-times corrupted versions of X, ns and
nt denote the population size of PSt and Pt respectively. Then, the objective
function to obtain the feature mapping matrix W can be formulated as
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Algorithm 2. Sparse-constraint knowledge transfer operator
Require: Pt, PSt, PStmax , θ
1: /*Feature mapping extraction*/
2: W = E[R1](E[R2] + θE[R3])−1; // (9)
3: /*Knowledge-induced solutions acquisition*/
4: Zt = WkK(PSt ∪ Pt,PStmax);
5: /*Solution sparsification*/
6: for i = 1 : N do
7: supp = {z|[Pt]i,z = 0};

8: [Tt]i,z =

{
[Zt]i,z, z /∈ supp
0, z ∈ supp

;

9: end for
10: /*Selection*/
11: Pt+1 =Selection(Pt ∪ Tt)

Γ (W) = tr[(X − W ˜Φ(X))T (X − W ˜Φ(X))]+

‖ 1
ns

ns∑

i=1

Φ(X̃r
i ) − 1

nt

nt∑

i=ns+1

Φ(X̃r
i )‖2

= tr[(X − WkK̃)T (X − WkK̃)]︸ ︷︷ ︸
mDA

+ θ tr(WkK̃G̃K̃TWT
k )︸ ︷︷ ︸

MMD

(7)

where W = WkΦ(X)T , Φ(X) is the mapped X in the RKHS; K = Φ(X)T Φ(X)
is the corresponding kernel matrix; K̃ is the corrupted kernel matrix with a cor-
ruption probability p; G = [Gi,j ](ns+nt)×(ns+nt) with Gi,j = 1/n2

s if Xi,j ∈ PSt,
Gi,j = 1/n2

t if Xi,j ∈ Pt, Gi,j = −1/(nsnt) otherwise; θ is the balancing param-
eter. Applying the weak law of large numbers and computing the expectations
when r → ∞, a closed-form solution for Wk that minimizes (7) can be obtained
as

Wk = E[R1](E[R2] + θE[R3])−1 (8)

with
E[R1] = (1 − p)XKT

E[R2]i,j =

{
(1 − p)2KKT , i 	= j

(1 − p)KKT , i = j

E[R3]i,j =

{
(1 − p)2KGKT , i 	= j

(1 − p)2KGKT + p(1 − p)KFKT , i = j,

(9)

where F is a diagonal matrix having the same diagonal elements with G. For
detailed derivation process of Eqs. (7)–(9), please refer to [19].

Acquirement of Knowledge-Induced Solutions. With Wk, the search
experience from the optimized solutions to the source problem PStmax can be
transferred into the current iterations for resolving the target problem to improve



Multiobjective Sparse Reconstruction via Knowledge Transfer 481

the solution quality. As Wk is a connective mapping between PSt and Pt, we
can obtain the knowledge-induced solution set Zt as

Zt = WΦ(PStmax)

= WkΦ(X)T Φ(PStmax)

= WkK(X,PStmax). (10)

Sparse Constraint. To guarantee the sparsity characteristics of the acquired
knowledge-induced solutions, we propose a sparse constraint strategy by an
example in Fig. 2, where Tt is the new obtained solution set based on Pt and Zt,
the white and uncolored lattices denote zero and nonzero entries, respectively.
Specifically, we firstly find the locations of all zero elements in the i-th solution
of Pt: supp = {z|[Pt]i,z = 0}, where [·]i,z represents the element in the i-th row,
z-th column. Then, the updated solution set Tt can be obtained as

[Tt]i,z =
{

[Zt]i,z, z /∈ supp,
0, z ∈ supp.

}
, i = {1, 2, . . . N}. (11)

Therefore, Tt can not only possess the valuable knowledge extracted from the
search experience for the past problem, but also inherit the sparse structure.

Fig. 2. Illustration of sparse constraint.

Selection. The selection operator of the MOSR solver is implemented in Pt∪Tt

to select N elitism solutions for the next generation. If the knowledge transfer is
beneficial, some of the sparsified learning-induced solutions survive in the selec-
tion procedure; otherwise, solutions in Tt will not be sent to the next generation,
which avoids negative transfer.

4 Experiments and Discussions

4.1 Experimental Settings

Test Problems. We artificially generate a series of simulated signals as test
problems. Firstly, a k-sparse signal x is produced, in which the nonzero elements
are sampled from a Gaussian distribution N (0, 1). Then, a Gaussian matrix A
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is yielded and the measurement vector b is obtained by b = Ax. Lastly, the
measurement b is corrupted by additive white Gaussian noise with elements
from the normal distribution N(0, 0.01). Each test problem involves three key
parameters: (n,m, k). To better explore the effects of knowledge transfer, six
complex test problems are randomly generated, as shown in Table 1.

Table 1. A list of test problems

Problem (n, m, k) Problem (n, m, k)

P1 (1000, 200, 60) P4 (1200, 250, 60)

P2 (1000, 300, 60) P5 (1200, 350, 60)

P3 (1000, 300, 100) P6 (1200, 350, 120)

Settings of the Sparse-Constraint Transfer Learning Operator. The
corruption probability p is set between 0.5 and 0.9 with an interval of 0.1 by doing
the cross-validation on the population of a past problem in the first generation.
The balancing parameter θ and the kernel function are suggested to be 103

and ‘RBF’ respectively according to [19]. This operator is executed every five
generations.

MOSR Solvers. Here, StEMO and a variant of ADEA (i.e., the ADEA with-
out the reference vector adaptation, denoted as DEA) are employed as baseline
solvers. We denote Δ as a MOSR solver, then its three versions are compared
in this paper: the first version is the original solver Δ; the second and third ver-
sions are both equipped with the sparse-constraint knowledge transfer operator
but receive the past experience from the source problems “P1–P3” and “P4–P6”
respectively. We use different settings in the source problems because “P1–P3”
and “P4–P6” have different dimensions and are heterogeneous. For convenience,
we denote the second and third version as Δ-tr1 and Δ-tr2, respectively. For
these solvers, their basic parameters are set as suggested in their original ver-
sions [14,20]. The population size of StEMO and ADEA is set to 50.

Terminate Criterion. For a fair comparison, all methods stop running when
the maximum function evaluations reach 5000 times. Each algorithm runs 15
times in each test case.

Evaluation Criterion. All the versions of MOSR solvers are evaluated by
hypervolume (HV) [1], which is the only parameter to measure the quality of a
solution set. The larger HV values, the better the reconstruction quality achieved.
For all scenarios, the reference sets for HV computation are all set to (1000, 1.2),
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and the obtained HV results are normalized. In addition, the average reconstruc-
tion error (RE) and the RE variance under each test case are also compared,
where RE = ‖x − xG‖2/‖xG‖2, x and xG are the estimated and ground-truth
signals. Smaller RE represents better reconstruction quality.

4.2 Experimental Results and Discussions

To evaluate the convergence performance of the proposed knowledge transfer
operator, the HV values obtained by different versions of DEA and StEMO,
across 15 independent runs with 5000 function evaluations are depicted in Figs. 3
and 4. In these two figures, the sub-figures (a)–(f) correspond to the six target
problems P1–P6 respectively; the red, blue and black curve in each sub-figure
indicates the original MOSR solver, the solvers with knowledge transfer from
“P1–P3” and “P4–P6” respectively.

As seen from Fig. 3, DEA-tr1, and DEA-tr2 achieve higher accuracy or faster
convergence than its original version in most problems. For P1, P3 and P4,
DEA-tr1 and DEA-tr2 obtain much larger HV values than DEA when the func-
tion evaluations arrive at 5000. For P5 and P6, compared with DEA, the con-
vergence of DEA-tr1 and DEA-tr2 is significantly faster, more than 500 function
evaluations ahead. Except that DEA-tr1 converges slightly slower than DEA
when solving P2, DEA-tr2 spends only 1500 function evaluations to generate
the same HV values with those by DEA which takes about 2500 function eval-
uations.

Figure 4 shows similar observations when StEMO is employed as a baseline
solver. StEMO-tr1 and StEMO-tr2 have larger HV values than StEMO when
solving P1 and P5. For P3, P4 and P6 they converge much faster than StEMO,
with a save of at least 500 function evaluations. When solving P2, three versions
of StEMO have almost the same convergence performance.

The corresponding average REs and the variances of all solver versions for
P1–P6 within 5000 function evaluations are given in Tables 2 and 3 respectively.
In these tables, the symbols “≈”, “+” and “−” represent that the average RE of
the corresponding solver is similar, smaller and larger than that of its baseline
solver respectively. As can be observed from Table 2, DEA-tr1 and DEA-tr2 have
better or comparable reconstruction quality with respect to DEA in 10 out of 12
scenarios. Furthermore, the mean RE values of DEA-tr1 and DEA-tr2 are much
smaller than that of DEA.

Similar results can be seen in Table 3 which presents the comparison results
for the StEMO algorithms. The reconstruction quality of StEMO-tr1 and
StEMO-tr2 is higher or similar to that of StEMO in 11 out of 12 test cases,
thanks to the knowledge transfer. Besides, in terms of mean RE results for all
problems, StEMO-tr1 and StEMO-tr2 achieve more satisfying reconstruction
performance compared with StEMO.
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Fig. 3. Mean HV values obtained by three versions of DEA. (a)–(f) are the target
problems to be solved: (a) P1. (b) P2. (c) P3. (d) P4. (e) P5. (f) P6. (Color figure
online)
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Fig. 4. Mean HV values obtained by three versions of StEMO. (a)–(f) are the target
problems to be solved: (a) P1. (b) P2. (c) P3. (d) P4. (e) P5. (f) P6. (Color figure
online)
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Table 2. Comparisons of average REs and variance obtained by three versions of DEA

Problems DEA DEA-tr1 DEA-tr2

P1 0.3421 (±1.76E−2) 0.2249 (±3.46E−3) + 0.2359 (±2.00E−3) +

P2 0.1307 (±1.43E−5) 0.1302 (±1.56E−5) ≈ 0.1418 (±1.63E−5) −
P3 0.5261 (±7.67E−4) 0.4248 (±7.83E−4) + 0.4319 (±9.03E−4) +

P4 0.2725 (±7.77E−2) 0.2287 (±3.82E−3) + 0.2265 (±2.97E−3) +

P5 0.2027 (±1.87E−4) 0.2016 (±2.00E−4) ≈ 0.2124 (±1.85E−4) −
P6 0.3031 (±5.07E−3) 0.2889 (±8.98E−4) + 0.2968 (±8.23E−4) +

Mean 0.2962(±1.67E−2) 0.2498 (±1.53E−2) + 0.2575 (±1.15E−2) +

Table 3. Comparisons of average REs and variance obtained by three versions of
StEMO

Problems StEMO StEMO-tr1 StEMO-tr2

P1 0.7201 (±1.73E−2) 0.5665 (±1.01E−2) + 0.5923 (±9.76E−3) +

P2 0.4754 (±9.07E−3) 0.4304 (±3.90E−4) + 0.4699 (±3.01E−4) ≈
P3 0.6632 (±9.82E−3) 0.6201 (±1.30E−2) + 0.6329 (±9.93E−3) +

P4 0.6995 (±6.10E−2) 0.5794 (±9.82E−3) + 0.6280 (±8.82E−3) +

P5 0.5791 (±2.85E−4) 0.5227 (±1.19E−4) + 0.5921 (±1.97E−3) −
P6 0.5997 (±6.11E−3) 0.5706 (±5.23E−3) + 0.5992 (±7.84E−3) ≈
Mean 0.6228 (±1.72E−2) 0.5483 (±6.36E−3) + 0.5586 (±6.44E−2) +

5 Conclusion

We presented a scheme for accelerating the convergence of MOSR solvers by
introducing a sparse-constraint knowledge transfer operator that reuses the
search experience from a previously solved problem. We employ the NFC tech-
nique to extract the feature mapping between the source and target problems,
and then apply it to generate a set of knowledge-induced solutions for the tar-
get problem. A sparse constraint strategy is then proposed for sparsifying the
obtained knowledge-induced solutions to reserve the sparse characteristics. Using
StEMO and ADEA as the baseline MOSR solvers for several experimental prob-
lems, we demonstrate that the proposed operator can improve the convergence
speed of MOSR solvers with high probability by transferring knowledge across
either homogeneous or heterogeneous problems, without causing degradation in
reconstruction accuracy.
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Abstract. This paper proposes the multi-objective evolutionary algo-
rithm (MOEA) that can evolve the generalized individuals, which include
many solutions that can be applied into different situations with the
minimal change. The intensive simulations on the waterbus route opti-
mization problem as the real world problem have revealed the following
implications: (1) the proposed MOEA cannot only optimize the solutions
like general MOEAs but also can evolve the generalized individuals; and
(2) the proposed MOEA can analyze the feature of the river transporta-
tion in the waterbus route optimization.

Keywords: Generalization ·
Evolutionary multi-objective optimization · Don’t care symbol ·
Route optimization

1 Introduction

When disaster occurs in a center of city, a large number of persons are difficult
to go home due to suspension of transportation service. In such a situation,
bus (including waterbus) transportation attracts attention as the solution of
this problem because the bus route can be changed flexibly according to road
conditions (e.g., traffic jam, road repair). However, many changed routes make
passengers be confused. For this problem, it is necessary to develop a robust
routes which can cope with many situations with a minimal route modification.

To tackle this issue, we focus on the multi-objective evolutionary algorithm
(MOEA) [3] and propose a new MOEA that can evolve the generalized individ-
uals, which include many solutions that can be applied into different situations
with the minimal change, by employing the concept of the generalization in the
context of Learning Classifier Systems (LCSs) [5,7]. In detail, a generalized indi-
vidual is represented by the chromosome including don’t care symbol # which can
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be changed into any other symbol. Considering the binary chromosome repre-
sented by 0011##, for example, this chromosome means one of {001100, 001101,
001110, 001111}. From the viewpoint of MOEA, the proposed MOEA does not
only evolve Pareto optimal solutions (POS) of the specific chromosomes (such as
001100) but also evolves POS of the generalized chromosomes (such as 0011##).
More importantly, the solutions (even POS) evolved by general MOEAs cannot
be applied in the route optimization in disaster while the generalized solutions
evolved by the proposed MOEA can be applied, because the former solutions are
fixed and mostly different each other while the latter solutions are flexible and
similar as a set of individuals, which corresponds to many/small route change in
the route optimization. For the implementation of the proposed MOEA, most
MOEAs can be employed, but this paper employs NSGA-II (Non-dominated
Sorting Genetic Algorithm II) [4] as one of major MOEAs and extends it to
evolve the generalized individuals. Here, the proposed MOEA is called as the
generalization-based MOEA (G-MOEA in short).

This paper is organized as follows. Section 2 introduce the generalization
in the context of LCSs and proposes G-MOEA. Section 3 explains the water-
bus route optimization problem as the real world problem. Section 4 shows the
experimental result and discusses it. Finally, our conclusion is given in Sect. 5.

2 Generalization-Based MOEA

2.1 Learning Classifier System and Its Generalization

Learning classifier system (LCS) [5] is a machine learning system that learns a
set of if-then rules, called classifiers. LCS aims at generalizing the classifiers by
employing the don’t care symbol “#” which represents any symbol such as 0 or
1 in the binary problem. By employing the “#” symbol, LCS can generate the
classifiers which can be applied into many situations.

2.2 Swap-Based Generalization

The generalized individual represented by the “#” symbols can keep the system
performance (i.e., fitness) even if the value in the “#” locus changes. In this
paper, we call such a generalized individual as s robust individual. To understand
it in detail, let’s focus on the multi-objective knapsack problem of 10 items, which
determines whether the item is selected or not in the knapsack to maximize the
total value of the selected items but not to exceed the prefixed maximum weight
of the selected items. For example, the individual “#001#00111” in Fig. 1 means
that the 4th, 8th, 9th, and 10th items are selected, the 2nd, 3rd, 6th, and 7th
items are not selected, and the 1st and 5th items are either selected or not
selected. If the rank of this individual can be kept in spite of a selection or not-
selection of the 1st and 5th items, the individual is regarded as the generalized
individual.

However, it is generally difficult to find such a generalized individual. Con-
sidering that the individual “#001#00111” in Fig. 1 covers four solutions, a, b, i
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Fig. 1. Generalization in multi-objective problem

and j, in which the solution i exceeds the maximum weight of the knapsack while
the fitness of the solution j is lower than that of a and b. This indicates that
the fitness of four solutions differ, meaning that the individual “#001#00111”
does not have the solutions located in the same rank. In contrast, if we assume
that the individual “#001#00111” covers only two solutions, a and b, then the
fitness of two solutions are similar because they are located in the same Pareto
front. In this case, we can call it as the robust individual.

To obtain such robust individuals, this paper proposes the swap-based gen-
eralization where its individual is represented by (i) the base solution and (ii)
the swapped solutions derived from the base solution by swapping the values
in the “s#” (swap #) locus as shown in Fig. 2. As a function of “s#”, “s#”
should be “1” when the locus of the base solution is “0” and vice versa to cre-
ate the swapped solution. In Fig. 2(a), the swap-based generalized individual is
composed of three solutions, a, b, and c, where a is the base solution while b and
c are the solutions created from a by changing to the opposite values of a in the
1st and 5th locus of b and in the 3rd and 4th locus of c. As shown in Fig. 2(b),
any number of the swapped solutions can be created according to the number of
a set of “s#” (e.g., the four sets of “s#” in this figure), and any number of “s#”
can be inserted in one set (e.g., three “s#” are inserted in the 4th set of “s#”
in this figure). Note that “1-0” (meaning that “1” and “0” in the “s#” locus),
“0-0”, “1-1”, and “1-0-0” in the base solution respectively change to “0-1”,“1-1”,
“0-0”, and “0-1-1” in the swapped solutions in Fig. 2(b).

2.3 Swap-Based Generalization Mechanism

Figure 3 shows how the individual is generalized. At the first cycle, (1) one of
individuals (A in this figure) is selected from the population; (2) the base solution
(“1001111000”) in A searches the other individuals (from B to X) which are
exactly matched with the base solution; (3) the base solution in A searches the
other individuals (from B to X) which are approximately matched with the
base solution under the condition that the hamming distance between the base
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(a) Two swapped solutions

(b) Four swapped solutions

Fig. 2. Representation of swap-based generalization

solution in A and the base solution in one of the individuals from B to X is
less than (maxS#). In this figure, the base solution in A is matched with the
solution (“1101101000”) in one of the individuals from B to X, which values
at the 2nd and 6th locus differ; (4) two “s#” are created at the 2nd and 6th
locus in A. If the base and/or exactly matched solutions (“1001111000”) have
the “s#”, the set of “s#” is added to A (no “s#” is added in this case); and
(5) return to (1) to generalize the remaining individuals. Through this cycle,
most of all individuals are generalized by adding the sets of “s#”. At the X-th
cycle, the steps from (1) to (3) are the same, but most of all solutions have the
sets of “s#”. In this figure, the base solution in A is matched with the solution
(“1100110000”) in one of the individuals from B to X, which values at the 2nd,
4th, and 7th locus differ; (4) three “s#” are created at the 2nd, 4th, and 7th
locus in A. Furthermore, the set of “s#” (located at the 2nd and 6th locus) in
the base solution and the set of “s#” (located at the 3rd and 6th locus) in the
exactly matched solutions are also added to A; and (5) return to (1).
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Fig. 3. Swap-based generalization

2.4 Fitness Distance

The swap-based generalization mechanism contributes to generalizing the indi-
viduals by adding “s#” but does not guarantee to have similar fitness. To address
this issue, the fitness distance is proposed to calculate the distance between the
base solution and each swapped solution in the solution space. Concretely, the
fitness distance between them is calculated (normalized) by Eq. (1), where the
#object, basefiti, swapfiti, maxfiti, and minfiti indicate the number of objec-
tives, the fitness of the base, swapped, maximum, and minimum solutions in the
i-th objective, respectively. Figure 4 shows an example of the fitness distance
between the base solution b and the swapped solution h, both of which are
covered by the generalized individual A in the 2 objectives solution space.

FitnessDistance =

√
√
√
√

#object
∑

i=1

(
basefiti − swapfiti
maxfiti − minfiti

)2

(1)

To evolve the generalized individual composed of the solutions with the sim-
ilar fitness, the swapped solution is eliminated from the generalized individual
when the fitness distance of the swapped solution is larger than the threshold
θSD. Note that (1) θSD depends on tasks (i.e., how much similar fitness should
be accepted in tasks), meaning that decision makers are required to determine
θSD; and (2) the fitness distance ignores the rank of solutions, but it is not
problem because the fitness distance is employed to remove the swapped solu-
tion which is far from the base solution (but not the swapped solution which is
lower than the base solution).

2.5 Evaluation of Generalized Individual

Since the generalized individual is composed of many solutions (i.e., the base
and swapped solutions), its rank and its crowding distance should be designed to
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Fig. 4. Fitness distance Fig. 5. Evaluation of generalized individual

consider them. In detail, the rank of the generalized individual is calculated by
the averaged rank of all composed solutions, while the crowding distance of the
generalized individual is calculated by the summation of all composed solutions.
Figure 5 gives an example, which shows that the generalized individual A is
composed of two solutions b and c while the generalized individual B is composed
of two solutions d and h. As shown in this figure, the rank of A is calculated by
(1 + 1)/2 = 1 as the averaged rank because the rank of b and c is 1, while the
rank of B is calculated by (1+2)/2 = 1.5 as the averaged rank because the rank
of d and h is 1 and 2, respectively. The crowding distance of A (i.e., CDA) is
calculated by (CDb + CDc) as the summation of the crowding distance, where
CDb and CDc are the crowding distances of b and c, respectively. Note that the
rank and crowding distance of B is calculated as the same manner of A.

2.6 Algorithm of Generalization-Based MOEA (G-MOEA)

The algorithm of G-MOEA shown in Fig. 6 is described as follows. Note that two
red colored mechanisms (i.e., duplicated individual deletion and generalization)
and red colored rank and crowding distance in the generalized individuals are
newly employed in NSGA-II.

Step 1: The population Rt(= Pt + Qt) at the t-th generation is formed after
generating the offspring Qt from Pt as the same as NSGA-II.

Step 2: The population R′
t is created from Rt by eliminating the duplicated

individuals. This mechanism is needed to avoid filling a lot of generalized
individuals.

Step 3: The non-dominated sorting and crowding distance are executed accord-
ing to new rank and new crowding distance, and the half of the top individuals
are selected.

Step 4: All individuals are generalized as described in Sect. 2.3. Note that the
swapped solution is eliminated from the generalized individual when the fit-
ness distance of the swapped solution is larger than the threshold θSD.

Step 5: Return to step 1 with increasing t and continue this cycle until reaching
the maximum generation.
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Fig. 6. Overview of generalization-based MOEA (Color figure online)

3 Waterbus Route Optimization Problem

3.1 Problem Description

As the real world problem, Sumida River in Tokyo is modeled to consist of the
11th stations, where the station distance and the number of passengers (i.e., OD
(origin-destination) matrix that represents the number of passengers from the
origin to the destination) are based on the actual data [6]. Figure 7 shows the
OD matrix, where the origin is represented in the row, while the destinations
is represented in the column. For example, E → D in OD represents that 500
passengers move from the station E to D.

Fig. 7. Origin-destination matrix Fig. 8. Representation of the route network

As the route model, Fig. 8 shows the two routes, each of which represents the
anchored (stopped) stations in the river and the number of the waterbuses. The
route 1 indicates that (1) the waterbus anchors (stops) in A, B, C, D, and G
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stations, and (2) the 10 waterbuses starting from the different stations transport
the passengers in the same route. Note that the number of routes is not fixed
but changes through an evolution.

3.2 Evaluation Criteria

The evaluation of a route is calculated by Eqs. (2) and (3) employed in [1,2,8],
where BLk

represents the number of waterbuses in the route Lk, TSi,Sj
represents

the transportation time of the passenger from origin station Si to the destination
station Sj , and DSi,Sj

represents the demand of the passengers which occur per
unit time from Si to Sj . The route with the smaller f1 and f2 is evaluated as the
better route, where f1 and f2 roughly correspond to the ship (waterbus) cost
and the total time of all passengers, respectively.

f1 =
∑

Lk

BLk
(2)

f2 =
∑

Si �=Sj

TSi,Sj
· DSi,Sj

(3)

4 Experiment

4.1 Waterbus Route Optimization Problem

To investigate the effectiveness of G-MOEA for environmental changes, this
paper applies it into Sumida river waterbus route optimization problem as the
real world problem. The parameters related to the waterbus are set as follows:
(1) the speed of the waterbus is set to 10 knot; (2) the capacity of the waterbus
is set to 50 passengers; (3) the total time of arriving and leaving alongside pier
of the waterbus including the time of getting on and off of the passengers is set
to 3 min. The number of passengers in OD is employed as shown in Table 1. Note
that these parameters and OD are based on the actual data [6].

To evolve the routes in G-MOEA, new (children) routes are created by the
2-point crossover of two (parent) routes which have the base solution and the
swapped solutions (represented by “s#”). The route is mutated by changing stop
or pass in each station and by adding/removing one ship. For the parameters
of G-MOEA, the population size (N) is set to 300, the crossover rate (Pc) is
set to 1.0, the mutation rate for each station (μr) is set to 1.0/(routeLength ·
routeNum), where routeLength and routeNum respectively indicate the length
of the route and the number of the routes, and the mutation rate for the number
of ship (μs) is set to 1.0/routeLength. When mutating the number of ship, one
ship is added or removed with the 0.5 probability. For an evaluation criteria, the
hypervolume (HV ) and the number of the solutions (i.e., the base and swapped
solutions) are employed.

In this experiment, the following methods are compared. In particular, θSD <
0.05 in G-MOEA allows the only swapped solutions which have very similar
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Table 1. OD matrix of Sumida river

Hinode Shin-

kawa

Hama-

machi

Ryo-

goku

Azuma-

bashi

Sumidaku-

tyosyamae

Sakur-

bashi

Senju Higa-

shiogu

Araka-

wayuen

Kamiya

Hinode 0 464.4 610.2 200 62 9.1 7.3 10.2 0 0.8 0.6

Shinkawa 412.8 0 0 40.6 0 5.7 1.7 0 0 0 0

Hamamachi 1116.6 0 0 0 46.4 64.8 43.5 39.3 0 0.4 0.2

Ryogoku 252.4 94.4 0 0 198.8 539.7 17.7 21.7 0.2 3.3 2.8

Azumabashi 34.4 13.5 219.7 500 0 0 0 10 0 0.2 0.2

Sumidaku-

tyosyamae

51.5 15.3 173.3 337.3 0 0 0 30.4 0 0.2 0.2

Sakurbashi 100.8 59.3 334.2 102.6 0 0 0 3.7 0 6.6 1.5

Senju 95.3 36.6 359.7 300.4 162.4 20.6 8 0 1.7 54.8 5.5

Higasiogu 3.7 2.2 14.4 14.4 14.4 3.1 0.4 7.1 0 0 2.8

Arakawayuen 8.4 3.3 36.2 28.8 6.2 2.2 3.3 16.8 0 0 54.4

Kamiya 8.4 4.8 23.5 8.4 6.6 3.7 1.1 13.7 1.1 71.1 0

fitness (i.e., the other routes which have the mostly same number of ships and
transportation time) to keep the mostly same service even in disaster situations.
Note that the different results can be obtained by setting the different θSD, but
the appropriate θSD depends on how much number of ships can be provided and
how much transportation time can be extended in given situations.

– NSGA-II
– G-MOEA (θSD < 0.05, maxS# = 2, 3, 4, 5).

4.2 Experimental Results

Figure 9 shows the hypervolume of NSGA-II and G-MOEA, where the horizon-
tal axis indicates NSGA-II and G-MOEA with the different maxS# while the
vertical axis indicates the hypervolume (averaged from 10 runs) in the last gen-
eration. From this figure, the hypervolume of G-MOEA except for maxS# = 4
is better than that of NSGA-II, even though G-MOEA evolves not only the
base solutions but also their swapped solutions (while NSGA-II only evolves the
solutions corresponding to the base solutions). Note that the hypervolume of
G-MOEA with maxS# = 4 is discussed later.

Figure 10 shows the number of the solutions (i.e., the base and swapped
solutions) in the population, where the horizontal and vertical axes indicate
maxS# and the number of the solutions (averaged from 100 runs), respec-
tively. Figure 10 indicates that the number of the solutions increases as maxS#
increases, meaning that the generalized individual has the many alternative solu-
tions as maxS# increases. Such generalized individuals are robust to environ-
mental changes because of many alternative solutions.

4.3 Discussion

To analyze the effect of the generalized individual acquired by G-MOEA for
environmental changes, Table 2 shows one of the generalized individual with



500 K. Takadama et al.

Fig. 9. Hypervolume of NSGA-II and G-MOEA

Fig. 10. Number of individuals (base and swapped solutions)

maxS# = 5. The column in this table indicates the solution number (No), f1
(the total number of the waterbuses), f2 (the total time), the gene (Station No.),
and the number of the waterbuses in each route.

From this table, the generalized individual is composed of one base set of the
routes (i.e., the base solution) and the 17 alternative set of the routes (i.e., the
swapped solutions), where these sets are evolved with the different number of
waterbuses. For example, the base solution can transport all passengers by 32
waterbuses in 2304 min, which is divided into two routes, “00110111111” with
11 waterbuses and “11111110000” with 21 waterbuses. Note that “1” means to
stop at the station while “0” means to pass the station. The colored cells of the
stations in the alternative set of the routes have the opposite values from the
base set of the routes by s#. For example, the waterbus of the first route in the
base set passes the 5th station but stops at the 6th station, while the waterbus
of the first route in the No. 1 alternative set stops at the 5th station but passes
the 6th station. This indicates that the first route in the No. 1 alternative set
can be employed instead of the base set by stopping at the 5th station instead of
the 6th station when the 6th station cannot be stopped due to disaster. In this
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Table 2. Acquired generalized individual

case, the number of waterbuses and the transportation time do not change by
the route change. Among all alternative solutions, the number of waterbuses and
the transportation time do not change drastically, which suggests that the set
of routes can be changed without affecting the results. As mentioned in Sect. 1,
general MOEAs cannot evolve such solutions because solutions (even POS) in
general MOEAs are mostly different each other.

From the total viewpoint, the stations 1, 2, 5, 6, and 7 in the black solid box
shown in Table 2 can change by environmental changes as the same reason above.
On the other hand, the station 3 and 4 are all “1 (stopped)” in the generalized
individual (i.e., all waterbuses should stop at both stations), meaning that both
are core stations in Sumida river transportation, which should be protected
for future disaster. From the above generalized individual analysis, G-MOEA
cannot only evolve the robust individuals, but also can analyze the feature of
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the Sumida river transportation by clarifying which stations (e.g., the stations
1, 2, 5, 6, and 7 in this case) can change to be passed from to be stopped or
vice versa and which stations (e.g., the stations 3 and 4 in this case) should be
protected because of no alternative set of routes which pass both stations.

Finally, the black solid box shown in Table 2 provides the reason why the
hypervolume of G-MOEA with maxS# = 4 is lower than NSGA-II. Both of the
number of the waterbuses and the transportation time in the solutions from No.
1 to 8 can keep the best (i.e., 32 and 2304) with one to five stations change
(mostly two or three stations change), while the solution No. 12 (i.e., 32 and
2345) calculated by four stations change is worse than (can be dominated by) the
solutions from No. 1 to 8. This means that there are not so many good solutions
with four stations change in the Sumida river transportation, which decreases
the hypervolume of G-MOEA with maxS# = 4.

5 Conclusions

This paper proposed the generation-based MOEA (G-MOEA) that can evolve
the generalized individuals, which include many solutions that can be applied
into different situations with the minimal change. In particular, the generalized
individual is robust to environmental changes because it is composed of not only
(i) the base solution but also (ii) the similar solutions derived from the base
one by introducing the don’t care symbol # (representing any situation). By this
extension, the generalized solutions evolved by G-MOEA can be applied in the
route optimization in disaster while the solutions (even POS) evolved by general
MOEAs cannot be applied, because the former solutions are flexible and similar
as a set of individuals while the latter solutions are fixed and mostly different each
other. The intensive simulations on the waterbus route optimization problem as
the real world problem have revealed the following implications: (1) G-MOEA
cannot only optimize the solutions like general MOEAs but also can evolve the
generalized individuals; and (2) G-MOEA can analyze the feature of the river
transportation in the waterbus route optimization.

What should be noted here is that the above implications have only been
obtained from one problem, which suggests that further careful qualifications
and justifications (such as an application of G-MOEA into other domains) are
needed to generalize our results. As described in Sect. 4.1, the different analysis
can be done by setting the different parameter θSD, which should be investigated.
Such important directions must be pursued in the near future in addition to an
application of the concept of generalization to other MOEAs such as MOEA/D.
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Abstract. Motivated by the telecommunication network design, we
study the problem of finding diverse set of minimum spanning trees of
a certain complete graph based on the two features which are maximum
degree and diameter. In this study, we examine a simple multi-objective
EA, GSEMO, in solving the two problems where we maximise or min-
imise the two features at the same time. With a rigorous runtime analysis,
we provide understanding of how GSEMO optimize the set of minimum
spanning trees in these two different feature spaces.
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1 Introduction

Evolutionary algorithms (EAs) have wide application in solving complex prob-
lems in various areas such as combinatorial optimization, bioinformatics and
engineering. In EA research, the algorithm works with a set of solutions which is
called the population and is evolved during the optimization process to cover a
so-called Pareto front. Most evolutionary algorithms incorporate certain diver-
sity mechanisms which ensure that the population consists of a diverse set of indi-
viduals [3,16]. By presenting a set of different solutions with acceptable quality
to the decision maker, EAs with diversity maximisation provide a better explo-
ration and understanding of the search space. In recent years, EAs with diversity
optimisation mechanism have been proposed and examined in both theoretical
and practical aspects [8,9,14].

There have been many EAs that are applied in solving multi-objective
optimisation problems and have gained significant success. Evolutionary multi-
objective optimization (EMO) aims at achieving a set of solutions which is used
to approximate the so-called Pareto front. The solutions are evaluated based
on two or more conflicting objective functions and EAs are suitable in comput-
ing several trade-off during a single process. There have been many well-known
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multi-objective evolutionary algorithms (MOEAs) which include MOEA/D [17],
IBEA [18] and NSGA-II/III [5,6].

In this paper, we consider a simple MOEA which finds a diverse set of Mini-
mum spanning trees (MSTs) with different features for an undirected unweighted
complete graph and analyse the algorithm theoretically. Minimum spanning tree
problem is a fundamental problem with diverse applications including network
design and approximation algorithms design of NP-hard problems [1,4,12]. A
spanning tree of a graph refers to a subgraph that contains all the vertices in
the graph and is a tree. A graph may have many spanning trees. When all edges
are assigned weights or lengths, the minimum spanning tree of a graph is the
one with the minimum sum of weights. For an unweighted complete graph, all
spanning trees are MSTs which have different structures. Although they have the
same total weights, they have various features which make them different to the
decision makers. There exist many different features other than the total weight
that researchers use to evaluate a MST including the maximum degree, diameter
and depth. The features examined in this paper are the maximum degree and
diameter, which evaluate different structural characteristics.

Finding MSTs with different maximum degree and diameter is important for
real-world applications such as telecommunication network design with certain
connection requirement. When designing a telecommunication network, there
are a lot of factors that affect the choice of the decision makers. The degree
of each node indicates the number of descendants which is proportional to the
workload of that certain node. It is essential to control the maximum degree of
all nodes in the tree which ensures the amount of work that each node has to
do is under control [15]. In order to guarantee the communication speed, a MST
with low diameter is preferred [11]. The diameter is also important in forcing the
reliability constraints which should be taken into consideration of the designer.

Although finding a minimum spanning tree in a given graph is solvable in
polynomial time, achieving a MST with certain maximum degree requirement
is NP-hard [2]. There have been studies into the problem of approximating the
search space of diversifying MSTs based on feature values [7,13].

In this research, we focus on optimizing these two features in MSTs which
are the maximum degree and diameter at the same time. Since maximising
or minimising maximum degree leads to a MST with minimum or maximum
diameter, it is suitable to consider the problem in a multi-objective space.

The paper is organized as follows. First, we introduce the background of
the problem in Sect. 2. Then in Sects. 3 and 4, we examine the MOEA on two
multi-objective problems about MSTs. Finally, we finish the paper with some
conclusions in Sect. 5.

2 Preliminaries

In our research, we focus on the multi-objective optimization problem of finding
a population containing MSTs of a complete graph with various feature values.
Let G = (V,E) be an undirected graph, where V and E denote the set of nodes
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and set of edges respectively. Define |V | = n and |E| = m. A spanning tree of G
is defined as a connected subgraph containing all vertices in V without cycles.
In this study, we represent a spanning tree as a set of edges and use a bitstring
of size m where each bit shows the existence of a certain edge in the subgraph
to denote the spanning tree.

We characterize MSTs by two feature values which are the maximum degree
and the diameter of an MST. The maximum degree d(s) of an MST s is defined
as the maximum value of the degrees of all nodes in V . The diameter l(s) of
an MST s is defined as the length of the longest path in s. We also define the
number of longest paths in an MST s as p(s).

Considering these two features as objectives, we examine the Global Simple
Evolutionary Multi-objective Optimiser (GSEMO) [10] which is presented in
Algorithm 1 in optimizing the problem. For the concept of dominance, we use
the following definition.

Definition 1 (Dominance). In multi-objective optimization, there exists a
fitness function that maps each solution in the search space X to a vector of
real values, i.e. f : X → R

k. Assume all k objectives should be minimised. For
two solutions s, s′ ∈ X, s is said to weakly dominate s′ iff fi(s) � fi(s′), where
1 � i � k. S is said to (strictly) dominate s′ iff s weakly dominates s′ and
f(s) �= f(s′).

The definition of dominance can be adapted to problems where one or more
objectives should be maximised.

Definition 2 (Pareto optimality). A solution s is Pareto optimal if it is not
dominated by any other solution in the search space. The set of all Pareto-optimal
solutions is called the Pareto set. The set of all Pareto optimal objective vectors
is called the Pareto Front.

Algorithm 1. GSEMO
1: Choose an initial MST x ∈ {0, 1}m uniformly at random for a certain complete

graph G with n vertices and m edges.
2: Let P := x
3: while stopping criteria not met do
4: Pick s from P uniformly at random.
5: Create an offspring s′ by flipping each bit in s with probability 1/m.
6: if s′ is a tree and is not dominated by any individual in P then
7: Add s′ to P , and remove all individuals weakly dominated by s′ from P .
8: end if
9: end while

We focus our analysis on the simple multi-objective EA which is GSEMO
proposed by Giel [10] because of its simplicity and suitability for the theoreti-
cal analysis. The algorithm starts with an MST which is selected uniformly at
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random for the complete graph G. Before the stopping criteria is reached, the
algorithm selects a solution s uniformly at random from population P and an
offspring s′ is generated by flipping each bit of s with probability 1/m. In the
case where s′ is not dominated by any solution in P , it is added to P . The new
population contains only non-dominated solutions.

The algorithm is examined in terms of the number of generations until it has
achieved a population that covers the whole Pareto front which is equivalent to
the number of evaluations. The expected optimisation time refers to the expected
number of iterations to reach this goal.

3 The Max-Max Problem

We look into two multi-objective problems considering these two features. In the
first problem we aim at maximising both the diameter and the maximum degree
at the same time, which is referred to as the Max-Max problem in this paper.
The dominance definition for the Max-Max problem is defined as follows.

Fig. 1. The Pareto front for the multi-objective problem of maximising the diameter
and maximising the max degree of a MST.

Definition 3 (Domination for Max-Max Problem). For two MSTs s and
s′ of an unweighted complete graph G, in the Max-Max problem, s dominates
s′ iff d(s) ≥ d(s′) and l(s) ≥ l(s′).

Lemma 1. Let s be a Pareto optimal solution of the Max-Max problem, then
d(s) + l(s) = n + 1, where n denotes the number of nodes in the graph.
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Proof. Assume the minimum spanning tree with the maximum degree is s and
its diameter and maximum degree are represented as l(s) and d(s). In MST s,
the longest path has length l(s) which has l(s) + 1 nodes on it. Then there are
another n − (l(s) + 1) nodes which are not on the path. In order to maximise
d(s), these nodes should be connected to one of the nodes on the path except
the tailing ones. Hence,

d(s) = 2 + n − (l(s) + 1) = n − l(s) + 1.

The sum of the diameter and the maximum degree equals to l(s)+n− l(s)+1 =
n + 1. ��

According to Lemma 1, the Pareto front of the Max-Max problem is as
shown in Fig. 1. It is easy to see that each Pareto solution consists of a star node
with degree d and a longest path of length l as shown in Fig. 2. Note that for
a specific degree and diameter, the Pareto solution is not unique. However, a
solution is Pareto optimal if and only if

1. It has at most one node with degree more than 2.
2. All the nodes with degree 2 and more lie on the longest path.

Moreover, for each diameter value, Algorithm 1 keeps only one solution
because of the dominance definition. Hence, the size of the population produced
by the algorithm is at most n−2. The next theorem considers the expected time
to find the Pareto front using Algorithm1.

Fig. 2. A Pareto solution with degree 8 and diameter 5

Theorem 1. Algorithm1 finds all the Pareto optimal solutions of the Max-
Max problem in expected time O(n2m2).

Proof. Let sP ∈ P denote a Pareto optimal solution in the population with
diameter l(sP ). We consider the proof in the following two phases. The first
phase is to maintain P such that it contains at least one Pareto optimal solution.
The second phase is to find other Pareto optimal solutions starting from sP . We
prove that each phase needs expected time O(n2m2) to be completed.
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Now let s′ ∈ P be a solution with the highest diameter l(s′) < n − 1. The
mutation step on s′ that detaches a leaf from a node with degree more than
2 and attaches it to one side of the longest path increases l(s′) by one. Since
the probability of any single bit flip is 1

m , the probability of such a mutation is
at least 1

em2 . On the other hand, the size of P is upper bounded by n and the
probability of selecting s′ for mutation is at least 1

n . Hence, after expected time
O(nm2), the diameter of s′ is increased by one. Furthermore, the diameter of
s′ is at least 2. Therefore, we need at most n − 2 such mutations to obtain the
Pareto optimal solution with maximum degree 2 and diameter n − 1. It implies
that Algorithm 1 needs expected time O(n2m2) to complete the first phase.

Now we analyse the second phase and assume that there is at least one Pareto
optimal solution sP in the population. Assume that the Pareto optimal solution
with diameter l(sP ) − 1 is not included in P yet. In this case, the mutation step
on sP that removes a leaf from one side of the longest path and connects it to the
node with the highest degree will produce a new Pareto optimal solution with
diameter l(sP ) − 1 and maximum degree d(sP ) + 1. Similar to the argument in
the first part of the proof, the algorithm needs expected time O(nm2) to perform
this mutation. Furthermore, from the first phase, it is known that the solution
sP with diameter n − 1 exists in P . Hence, the algorithm is able to produce all
the Pareto optimal solutions gradually, starting from sP . Since the size of the
Pareto set is n−2, Algorithm 1 finds all the Pareto optimal solution in expected
time O(n2m2). ��

4 The Min-Min Problems

In this section, we investigate the second problem, in which both feature values
are minimised at the same time. The minimum diameter happens when the
MST has a star structure where the diameter is 2 and the node in the centre has
the maximum degree n − 1. The minimum maximum degree happens when the
graph is a single path. In this case, the maximum degree is 2 and the diameter
is n − 1. The general dominance definition is adapted for the Min-Min problem
as follows.

Definition 4 (Dominance for the Min-Min Problem). For two MSTs s
and s′ of an unweighted complete graph G, in the Min-Min problem, a solution
s is said to dominate solution s′ iff d(s) ≤ d(s′) and l(s) ≤ l(s′).

Based on the fact that the diameter is either even or odd, the Pareto optimal
MSTs with diameter l have different structures. Figure 3 shows the structure
of an optimal MST with odd diameter. The Pareto optimal MST with even
diameter only contains multiple subtrees with the same depth l/2.

The Pareto front for this problem is not as simple as the Pareto front for
the Max-Max problem. Having a solution s in the Pareto front, the adjacent
solution with a smaller diameter, named s′, can have d(s′) = d(s)+ i and l(s′) =
l(s) − j for some i ≥ 1 and j ≥ 1. Therefore, it is not always possible to find the
solution s′ by means of a 2-bit flip on s.
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In order to overcome this problem we use a different definition of dominance
in analysing the Min-Min problem, which still leads to a population of linear
size. The new definition of dominance is presented in Definition 5, where p(s) is
the number of longest paths. Furthermore, it should be noted that we consider
Algorithm 1 with the new definition of dominance (instead of weak dominance
in lines 6 and 7).

Definition 5 (Extended dominance for the Min-Min Problem). In the
Min-Min problem, for two MSTs s and s′ of a complete graph, s dominates s′

iff l(s′) = l(s) ∧ d(s′) = d(s) ∧ p(s′) ≤ p(s) or l(s′) < l(s) ∧ d(s′) < d(s).

We define the Extended Pareto optimal solution and the Extended Pareto
front to be the Pareto optimal solution and the Pareto front with the new defi-
nition of dominance in Definition 5. Then in Lemma 2 we prove that the Extended
Pareto front set is a superset of the original Pareto front, which is defined by
the original definition of dominance.

Lemma 2. The Extended Pareto front is a super set of the Pareto front for the
Min-Min problem.

Proof. According to Definition 4, a Pareto optimal solution s of the Min-Min
problem should fulfil the requirement that �s′ dominates s where s′ is any other
MST of the same graph. This indicates that �s′, where d(s′) ≤ d(s) and l(s′) ≤
l(s).

Assume there exists a MST s′′ that dominates s according to Definition 5.
Then either l(s) = l(s′′)∧d(s) = d(s′′)∧p(s) ≤ (s′′) or l(s) < l(s′′)∧d(s) < d(s′′)
is true. For maximum degree and diameter, it should fulfil that l(s) ≤ l(s′′) ∧
d(s) ≤ d(s′′), which is contradict to the fact that �s′ in the search space, where
d(s′) ≤ d(s) and l(s′) ≤ l(s).

Therefore, the MST s is not dominated by any other solutions in the extended
Pareto front which means it should be included in the Extended Pareto set.

��
In the following, we analyse the performance of the algorithm in finding

the whole Extended Pareto front. Since this set is a super set for the original
Pareto front, we are also analysing the performance of the algorithm in finding
the original Pareto front. Lemma3 proves an upper bound on the size of the
population during the optimisation process.

Lemma 3. The population size is upper bounded by 2n.

Proof. Here we prove that the maximum size of the population is 2n − 5 < 2n.
According to Definition 5, solution s does not dominate solution s′ if d(s) = d(s′)
and l(s) ≤ l(s′). Similarly, s′ is not dominated by s when d(s) ≤ d(s′) and
l(s) = l(s′). Moreover, for each specific combination of diameter and maximum
degree, the algorithm keeps only one solution.

Let P be the population of an arbitrary iteration during the process. We
partition P to at most n−2 subsets P i = {si1, · · · , siki

}, 2 ≤ i ≤ n−1, such that
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Fig. 3. The MST with odd diameter and maximum degree minimised, where l denotes
the diameter and k denotes the maximum degree in the MST. The nodes coloured in
orange are from a single subtree of the root. (Color figure online)

for any s ∈ P i, d(s) = i. Moreover, for any j1 < j2 ≤ ki we have l(sij1) > l(sij2).
For each subset, we have |P i| = ki ≤ l(si1)− l(siki

)+1. Without loss of generality,
let all the subsets have at least one solution. Since P is the set of non-dominated
solutions, for any 2 ≤ i ≤ n − 2 we have l(siki

) ≥ l(si+1
1 ). Otherwise, siki

dominates si+1
1 . Hence, for any subsets P i and P i+1, we have

|P i ∪ P i+1| ≤ l(si1) − l(siki
) + 1 + l(si+1

1 ) − l(si+1
ki+1

) + 1 ≤ l(si1) − l(si+1
ki+1

) + 2.

With the same argument we have

|P | = |
n−1⋃

j=2

P j | ≤ l(s21) − l(sn−1
kn−1

) + (n − 2)

≤ (n − 1) − 2 + (n − 2)
≤ 2n − 5

��
In any tree with n nodes, there is only one path between any two nodes.

Hence the total number of paths in a tree, which is an upper bound for the
number of paths with length d, is

(
n

2

)
≤ n2.

Therefore, in a solution with diameter d, the number of paths with length d is
upper bounded by n2.

In Lemmas 4 and 5 we give some properties about Extended Pareto optimal
solutions and show how they are produced in O(n3m2) for each diameter size. In
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order to simplify the presentation, we first define Important-Objective-Positions
(Definition 6), which refers to the positions with diameter l and maximum degree
d, at which an extended Pareto optimal solution can be formed.

Definition 6 (Important-Objective-Positions (IOP)). We define a point
(l, d) in the diameter-degree space to be an Important-Objective-Position (IOP)
if the extended Pareto set includes a solution with diameter l and degree d.

Lemma 4. If a point (l, d) in the diameter-degree space is an IOP and the point
(l, d + 1) is not an IOP, then the point (l(s) − 1, d) is an IOP.

Proof. Since the point (l, d) is an IOP, by definition, an extended Pareto optimal
solution s exists such that l(s) = l and d(s) = d. A solution with diameter
l(s)−1 and maximum degree d(s) exists because reducing the number of longest
paths in solution s either results in a solution with a larger maximum degree
(which we have assumed that does not belong to the extended Pareto set), or
a solution with smaller diameter. Moreover, a solution with diameter l(s) − 1
and maximum degree d(s) can only be dominated by a solution with the same
maximum degree and diameter, or a solution s′ with maximum degree d(s′) <
d(s) and diameter l(s′) < l(s)−1 (Definition 5). If solution s′ exists, then it would
have dominated solution s as well, which contradicts with the assumption that
s is an extended Pareto optimal solution. Therefore, a solution with diameter
l(s)−1 and maximum degree d(s) can only be dominated with a solution with the
same maximum degree and diameter, which implies that the point (l(s) − 1, d)
is an IOP. ��
Lemma 5. Assume that points (l, d + i), for 0 ≤ i < k and k > 1, are IOPs
and, a solution s with l(s) = l and d(s) = d, is in the population. In expected
time O(n3m2), all Pareto optimal solutions with diameter l and also a solution
s′ with l(s′) = l − 1 and d(s′) = d + k − 1 are added to the population.

Proof. Since the position (l(s), d(s)) is an IOP, the solution s can only be
removed from the population if a solution with the same diameter and max-
imum degree and a smaller number of longest paths is found (Definition 5).

In a solution s, there always exists at least one pair of 2-bit flips that reduces
the number of longest paths, p(s). This can be done by disconnecting a leaf of one
of these paths and connecting it to an inner node. At each step, with probability
1

|P | the assumed solution is selected for mutation, where |P | is the size of the
population. Moreover, while there exist inner nodes with degree less than d(s),
with probability 1

e·m2 a proper 2-bit flip happens, which reduces p(s) without
increasing the maximum degree of the solution. Due to Definition 5, solution s
is dominated and replaced by the new solution. The same process with reducing
p(s) continues until the algorithm reaches a solution s0 that belongs to the
extended Pareto front and stays in the population. Denoting the total reduction
on the number of longest paths by Δs0 = p(s) − p(s0), we can observe that the
expected time until reaching the solution s0 is O(|P |m2Δs0).

We define solutions si, i < k, to be extended Pareto optimal solutions
of diameter l(s) and degree d(s) + i. We also define Δsi = p(si−1) − p(si),
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1 ≤ i < k − 1 as the total difference on the number of longest paths between
solutions si−1 and si. With similar analysis we can show that after reaching the
solution si, i < k − 1, at each step with probability 1

|P |m2 a solution with degree
d(si) + 1, diameter l(si) and number of longest paths p(si) − 1 is produced,
which is, due to Definition 5, either accepted by the algorithm, or dominated by
a solution with the same degree and diameter, but a smaller number of longest
paths. This process continues until reaching a solution with minimum number
of longest paths, which implies that a solution si+1 is reached by the algorithm
in expected time O(|P |m2Δs1). This means that all extended Pareto optimal
solutions with diameter l(s) can be found in expected time

k−1∑

i=0

O(|P |m2Δsi).

Moreover, since the solution sk−1 is the extended Pareto optimal solution
with diameter l(s) that maximises d(s), it only contains one longest path.
Therefore, moving an edge from it results in obtaining the solution s′ with
l(s′) = l(s) − 1 and d(s′) = d(sk−1). This would also happen in expected time
O(|P |m2p(sk−1)). Together with the expected time of finding extended Pareto
optimal solutions with diameter l(s), the total expected time of finding all k
extended Pareto optimal solutions with diameter l(s) and also a solution s′ with
diameter l(s′) = l(s) − 1 and maximum degree d(s) + k − 1 would be

k−1∑

i=0

O(|P |m2Δsi) + O(|P |m2p(sk−1)) = O(|P |m2p(s)).

The equality holds because the total number of longest paths that have been
reduced in the process is

∑k−1
i=0 Δsi +p(sk−1) = p(s). Since the number of longest

paths in solution s is upper bounded by n2 and the population size is upper
bounded by 2n (Lemma 3), the obtained expected time is upper bounded by
O(n3m2). ��

Now we present the main theorem of this section, in which, starting from a
solution with maximum degree of 2 (a path), the expected time until finding all
Pareto front set is analysed.

Theorem 2. Starting with a population that contains a solution s with d(s) =
2, Algorithm1 finds the Pareto set of the Min-Min problem in expected time
O(n4m2).

Proof. Firstly, we prove that Algorithm1 finds the extended Pareto set in
expected time O(n4m2).

Since the maximum degree of a minimum spanning tree on a graph of at least
three nodes cannot be less than 2, solution s belongs to the extended Pareto
front. This solution is a path of length n − 1, which implies that l(s) = n − 1
and the corresponding IOP is (n − 1, 2).

Having a solution s at IOP position (l(s), d(s)), from Lemma 5, we know
that in expected time O(n3m2), all k extended Pareto optimal solutions with
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diameter l(s) are added to the population in addition to a solution s′ with
diameter l(s) − 1 and degree d(s) + k − 1. The largest maximum degree among
solutions with diameter l(s) would be d(s)+k−1, which implies that a diameter-
degree position (l(s), d(s) + k) is not an IOP. Therefore, by Lemma 4 we know
that the position (l(s) − 1, d(s) + k − 1) is an IOP. Since solution s′ is placed at
this position, it can be used for Lemma5 and diameter size l(s) − 1. We can use
similar argument for smaller diameter sizes. Since we start with a diameter size
of n − 1, all extended Pareto optimal solutions for all diameter sizes are found
in expected time O(n4m2).

Since the extended Pareto front is a superset of the Pareto front, the domi-
nated solutions according to Definition 4 should be eliminated before the Pareto
set of the Min-Min problem is achieved. As the population size is upper bounded
by 2n, getting rid of all dominated solutions takes expected O(n2) time. Hence,
the statement of the theorem is proved.

��

5 Conclusions

The MOEAs, which are used to optimise several objective functions, always
involve a set of solutions which approximates the so-called Pareto front. These
algorithms are suitable in dealing with conflicting objective functions. In this
paper, we examine a simple multi-objective optimisor on two bi-objective opti-
misation problems about MSTs of a complete graph. Inspired by the real-world
application in telecommunication, we focus on the Max-Max and Min-Min
problems which provide insights in dealing with the trade-off between optimising
the features of maximum degree and diameter. With a rigorous runtime analysis,
we provide a better understanding of the search space and the computational
complexity of such problems.
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Abstract. We tackle a bi-objective dynamic orienteering problem where
customer requests arise as time passes by. The goal is to minimize the
tour length traveled by a single delivery vehicle while simultaneously
keeping the number of dismissed dynamic customers to a minimum.
We propose a dynamic Evolutionary Multi-Objective Algorithm which
is grounded on insights gained from a previous series of work on an
a-posteriori version of the problem, where all request times are known
in advance. In our experiments, we simulate different decision maker
strategies and evaluate the development of the Pareto-front approxima-
tions on exemplary problem instances. It turns out, that despite severely
reduced computational budget and no oracle-knowledge of request times
the dynamic EMOA is capable of producing approximations which par-
tially dominate the results of the a-posteriori EMOA and dynamic integer
linear programming strategies.

Keywords: Multi-objective optimization · Metaheuristics ·
Vehicle routing · Combinatorial optimization · Dynamic optimization

1 Introduction

Bi-objective orienteering belongs to the class of vehicle routing problems. It dif-
fers from classical Traveling Salesperson Problems (TSP) in that the number
of cities resp. customers is not fixed but rather a certain number of dynamic
customer requests have to be handled on the way from the start to the end
depot. Naturally, both the overall tour length as well as the number of unvisited
customers are desired to be minimized and we would like to dynamically react
to new customer requests so that previously optimized tours can be adjusted in
an efficient and optimal way. The design of an appropriate optimization algo-
rithm given this scenario is not trivial, especially as, additionally, decision mak-
ers’ preferences regarding the importance of both objectives have to be taken
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into account which might vary in the course of the operation time of the whole
tour. This paper introduces such a real-time expert system in terms of a spe-
cific dynamic evolutionary multi-objective algorithm (EMOA) integrating local
search strategies via inexact TSP solvers. The algorithm was designed by relating
to the detailed problem insights gained by previous studies which approached the
problem in a retrospective, offline way leading to a Pareto-front approximation
exploiting the full information about the dynamic problem characteristics.

Experimental studies provide a proof-of-concept analysis of the proposed app-
roach. It will be shown that it has the potential of outperforming competitive
integer linear programming (ILP) strategies in terms of solution quality. More-
over, the algorithm is capable of generating Pareto-front approximations which
come very close to and even partially dominate the solutions which resulted from
the offline approach. First results show that clustered instances are more chal-
lenging compared to random ones. As purely numerical performance assessment
is not trivial due to a lack of an appropriate performance indicator capturing
all requirements stated above, sophisticated visualizations illustrate algorithm
characteristics.

The paper is organized as follows: Sect. 2 gives an overview on related work,
followed by a detailed description of our proposed dynamic multi-objective evo-
lutionary algorithm in Sect. 3. Experimental results are provided in Sect. 4 and
summarized in Sect. 5, supplemented by an outlook on promising further research
building on the consolidated findings.

2 Background and Related Work

2.1 Static Multi-objective Optimization Problems

Let X and Θ be nonempty sets and f(x; θ) = (f1(x; θ), . . . , fd(x; θ))T a vector-
valued mapping with d ≥ 2 functions fi : X × Θ → R for i = 1, . . . , d, where
x is variable and θ ∈ Θ a tuple of fixed parameters. If these functions are to
be minimized simultaneously, they are called objective functions of the multi-
objective optimization problem min{f(x; θ) : x ∈ X} with decision set X ⊆ X.
The optimality of a multi-objective optimization problem (MOP) is defined by
the concept of dominance.

Let u, v ∈ F ⊆ R
d where F is equipped with the partial order � defined by

u � v ⇔ ∀i = 1, . . . d : ui ≤ vi. If u ≺ v ⇔ u � v ∧ u �= v then v is said to be
dominated by u. An element u is termed non-dominated relative to V ⊆ F if there
is no v ∈ V that dominates u. The set ND(V,�) = {u ∈ V | � v ∈ V : v ≺ u} is
called the non-dominated set relative to V .

If F = f(X; θ) is the objective set of some MOP with decision set X ⊆ R
n and

objective function f(·) then the set F ∗ = ND(f(X; θ),�) is called the Pareto-
front (PF). Elements x ∈ X with f(x) ∈ F ∗ are termed Pareto-optimal and the
set X∗ of all Pareto-optimal points is called the Pareto set (PS).
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2.2 The Dynamic Multi-objective Vehicle Routing Problem

The dynamic vehicle routing problem we consider in this work consists of one
vehicle that visits customer locations over time. The set of customers C\{1, N} =
Cm ∪ Co resolves into Cm, the subset of initially known customers and the set
Co of additional locations, which become known randomly while the vehicle is
en route. The vehicle starts its tour at a given location 1 (start depot) and ends
at a different location N (end depot). Locations that are known initially must be
visited by the vehicle (including depots), whereas locations that become known
in the course of time are optional. We refer to the set of optional customers that
have arrived until time t as Co

≤t.
Clearly, a static MOP (as defined above) has to be adapted as the Pareto-

front and Pareto-set now depend on dynamic parameters θ, i.e., in general we
have F ∗

θ and X∗
θ . In a dynamic MOP the parameters are no longer constant but

variable over time. As a consequence, a dynamic MOP (DMOP) at time step
t ≥ 0 is given by min{f(x; θt) : x ∈ X} where (θt)t≥0 is a sequence of parameter
tuples with time index t ≥ 0. For each point in time t ≥ 0 we could solve a static
MOP with solution F ∗

θt
and X∗

θt
and might regard the sequences of both sets as

the final solution. For a general survey on dynamic MOO, see [1].
However, this solution concept has little practical relevance. Instead, we spec-

ify a closed time interval Δt and monitor (the quality of) the best solutions that
can be achieved within the time interval. A similar solution concept can be found
in [15]. This is repeated multiple times, where at the end of each so-called era, a
decision maker (DM) is provided with the best solutions of that era. The quanti-
tative assessment of the sequence of best solutions found within the time interval
heavily depends on the application scenario.

Specifically, our VRP is dynamic in the sense that decisions about the vehi-
cle’s route (which of the customer locations known so far to visit, and how to
sequence these locations) are made repeatedly over time by a decision maker.
Although dynamic decision making has been an important research topic in
the field of vehicle routing (see, e.g., [9,14]), and although static variants of bi-
objective orienteering problems have been considered by a number of authors
(e.g., [2,5,8,10]), the research on dynamic bi-objective orienteering problems
still is in a very early stage. So far, only few authors work on dynamic multi-
objective vehicle routing problems, most of them proposing solution approaches
in terms of methodological frameworks that rely on evolutionary computation
(e.g., [6,13]).

Over the past decade a number of authors have solved (single-objective)
dynamic orienteering problems by combining integer linear programming with
waiting strategies (see [11] for an overview). The idea is to maximize the number
of visited customers over a given fixed time horizon by using linear programming
for calculation of a routing plan at each decision time. Therefore, simple waiting
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strategies1 are used, i.e., the vehicle remains idle at locations in these plans,
hoping for a close-by customer request to occur in the near future.

This approach can be transformed into an a-posteriori benchmark solution
for dynamic bi-objective optimization algorithms by selecting the best waiting
strategy and by then solving the problem several times, each time with a different
bound of the maximum tour length in the linear program. In Sect. 4 we use the
waiting strategies and the linear program described in [11] as benchmark for
the dynamic multi-objective evolutionary algorithm introduced in the following
Sect. 3.

3 The Dynamic Multi-objective Evolutionary Algorithm

Our dynamic EMOA for the considered orienteering problem is based on the
a-posteriori EMOA introduced in [10] with refined adjustments—in particular
in initialization and mutation—to meet the requirements of the dynamic setting.

Algorithm 1. Dynamic EMOA
Require: Instance I = (Cm, Co),

time resolution Δt, nr. of time slots nt

1: t := 0
2: tour := localSearch(Cm) � No dynamic

customers, i.e., solve single-obj. problem
3: t := t + Δt

4: P = NIL
5: driven.tour := findDrivenTour(tour, t)
6: for i in 1 to nt do
7: (P, F (P )) := EMOA(I, driven.tour, t, P )
8: tour := decide(P, F (P ))
9: t := t + Δt

10: driven.tour := findDrivenTour(tour, t)

Algorithm 2. EMOA
Require: Instance I = (Cm, Co), driven.tour,

time t, population of previous era Q, popu-
lation size μ

1: for i in 1 to μ do
2: Pi := initIndividual(I, driven.tour, t,

Qi) � Qi is NIL on start

3: F (P ) := evaluateFitness(P )
4: while stopping condition not met do
5: O := mutate(P )
6: O := localSearch(O)
7: (P, F (P )) := Select(P ∪ O)

8: return (P, F (P ))

Algorithm 3. initIndividual
Require: instance I = (Cm, Co), driven.tour,

current time t, template individual y
1: if not y is NIL ∧ y is feasible then
2: return y

3: Co
≤t := Dyn. customers arrived so far

4: D := Co
≤t \ driven.tour

5: x.b, x.p, x.t are vectors of length N − 2
6: x.bi := 1, x.pi := 0 ∀ i ∈ Cm ∨

i ∈ driven.tour
7: x.t := concat(driven.tour,

randPerm(C \ driven.tour))
8: x.pi := 1/|D| ∀i ∈ D
9: u := R(1, . . . , |D|) � Rnd. number
10: Set x.bi := 1 for u rnd. customers from D
11: if not y is NIL then
12: x := transfer(x, y)

13: return x

Algorithm 4. mutate
Require: Population P , swap prob. pswap,

nr. of swaps σswap
1: for x ∈ P do
2: flip x.bi with probability x.pi

3: tactive := seq. of active customers in x.t
4: if r ∼ R(0, 1) ≤ pswap then
5: for 1 to σswap do
6: swap two random pos. in tactive
7: return P

1 Two prominent strategies used also in this work for comparison reasons are Drive
First (DF) and Distributed Waiting (DW). While in DF the vehicle only waits at
its current customer location if both waiting time is available and the planned route
only contains the end depot, the latter strategy distributes the amount of available
waiting time equally among all customer locations of the current planned route.
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We start with a high-level description of the dynamic EMOA framework
accompanied by a example first and discuss the more complex solution encoding
scheme and mutation later on. The dynamic EMOA (see Algorithm 1) is basically
a wrapper around the static version introduced in [7] which uses NSGA-II [4] as
the encapsulating meta-heuristic (see Algorithm 2). It is started at time t = 0.
Note, that at this point in time only mandatory customers Cm are available.
Since no subset selection is necessary in this special case the problem is of single-
objective nature and we simply apply local search2 to approximate the optimal
tour serving all mandatory customers (see Fig. 1 left) and the first era ends. Here,
the DM is given only a single choice and there is nothing left to do. In subsequent
eras j = 1, . . . , nt however, already time j · Δt, Δt being the adjustable time
resolution, has passed and hence more and more dynamic customers request
for service. To be precise, in era j dynamic customers with request times ri ∈
((j − 1) · Δt, j · Δt] arrive. In each such era the static EMOA is started feeding
in the partial tour already driven by the vehicle (as time goes by, the vehicle
already may have served some of the mandatory and/or dynamic customers).
After termination, the resulting approximations are handed over to the DM who
needs to choose exactly one solution (see line 8 in Algorithm 1 and Fig. 1 middle
and right for example).

Time tt0 t1 = t0 + Δt t2 = t1 + Δt

Tour length
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Fig. 1. Exemplary progress of the dynamic EMOA. The scatter plots show the Pareto-
front approximations with selected solutions highlighted ( ). Below the decision maker
choices are depicted (depots , mandatory customers and dynamic customers ).
A dashed path indicates the tour chosen by the decision maker while the thick solid
prefix path highlights the partial tour already driven.

2 We adopt EAX [12] as the local search procedure with focus on tour length min-
imization. Note, that we need to solve a shortest Hamiltonian path problem, but
EAX is a TSP solver. Thus, before application of the local search procedure, the
problem is transformed into a TSP by a sequence of modifications to the distance
matrix (see [10] for details).
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The encoding of candidate solutions needs to account for both the subset
selection of customers and the minimization of the Hamiltonian path serving all
selected customers. Thus, three essential vectors of length N −2 are maintained:
(1) a permutation vector holds the sequence of customers, i.e., the actual tour,
(2) vector b = (b2, . . . , bN−1) ∈ {0, 1}N−2 indicates whether a customer i ∈
{2, . . . , N − 1} is active (bi = 1) or inactive (bi = 0) and (3) vector p ∈ [0, 1]N−2

holds the flip probabilities for the mutation operator (see below). Building the
initial population (see Algorithm3) is a complex process since several dynamic
aspects need to be considered: (1) we need to ensure, that both mandatory
and already visited (potentially dynamic) customers are active and cannot be
removed by mutation (line 6). Hence, bi = 1 and pi = 0 for those customers. (2)
the partial tour already driven must not be changed and hence the first positions
of the permutation vector correspond to this sequence (line 7). (3) We transfer
knowledge from the final population of the previous era in order to not start from
scratch. This is achieved by simply copying the individual if it is still feasible
(line 2). Otherwise, we transfer as much information by keeping active customers
active and maintaining the tour as far as possible (line 12). The initialization
procedure guarantees feasibility of initial solutions.

Mutation is twofold to account for both objectives (see Algorithm 4). First,
available customers are added or removed by flipping each bit bi independently
with probability pi. Next, with probability pswap ∈ (0, 1] some random posi-
tion exchanges in the permutation vector are performed limited to active cus-
tomers not yet visited, i.e., which are not part of the already driven part of the
tour. Note, that mutation is non-destructive and hence feasibility is maintained.
Finally, mutated solutions are subject to local search at certain generations.
Here, we apply EAX [12] with the last customer of the already driven tour as
the start node and the end depot as the destination node omitting already vis-
ited customers. It is important to stress, that the local search operator is focused
on tour length minimization only, since we consider this objective to be more
difficult. Furthermore, take notice that EAX does not take request times into
consideration. Hence, the length of the resulting tour is a lower bound on the
true tour length. We take the solid foundations and results laid down in [3,10]
as a justification for this approach.

4 Computational Experiments

Experimental Setup: In order to evaluate the dynamic EMOA introduced in
Sect. 3, we perform proof-of-concept experiments. We select 5 instances with N =
100 customers (including depots) each: one instance with locations distributed
uniformly at random in the Euclidean plane and 4 instances with 2, 3, 5 and 10
clusters respectively form the instances introduced in [10]. The proportion of
dynamic customers is chosen to be 75% for all instances, in order to specifically
analyze the working principles of our approach.

We fix the time resolution Δt = 100 and determine the number of eras as
�maxi∈C(ri)/Δt� + 1, where ri ≥ 0 is the request time of customer i ∈ C. The
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final parametrization of the dynamic EMOA is gathered in Table 1. These set-
tings deserve further explanation: Preliminary experiments were performed test-
ing different parameter settings. More precisely, we varied local search (on/off),
transfer of knowledge of previous eras (on/off), the swap-mutation probability
pswap ∈ {0.2, 0.4, . . . , 1} and the way available dynamic customers are being dis-
tributed in the initial solutions of each era (uniform/binomial). Unsurprisingly,
local search (see our a-posteriori study in [3]) and knowledge transfer are bene-
ficial settings to not discard progress already being made. The latter two varied
parameters, pswap and the distribution of dynamic customers in initial solutions,
however, show strong interaction with local search. It turns out, that a high swap
probability with binomial distribution leads to poor front coverage in areas with
a high number of unvisited customers. This can be explained as follows: Local
search pushes solutions to the left (focus on tour length minimization). Now
assume, we are given a very good solution with respect to tour length and apply
mutation with high swap probability. Assume further, that mutation deactivates
some customers. Clearly, since the tour can only become even shorter, this step
pushes the solution to the top left area of the Pareto-front approximation. Since
the tour is already close to optimal, the subsequent swaps introduce edge cross-
ings and have a destructive effect with overwhelming probability. Consequently,
the mutated individual shifts to the right (larger tour length) and is likely to
be dismissed by the following survival selection. In case of binomial distribution
each available dynamic customer is activated with probability 1/2. Hence, the
number of activated dynamic customers is binomially distributed with expected
value Nd

t/2 where Nd
t is the number of dynamic available customers at time t > 0.

The probability that the actual number deviates from the expectation is rather
low and hence is concentrated heavily around it. Thus, this type of initialization
in combination with activated local search and high swap probability tends to
produce the above mentioned poor coverage. We bypass this problem by adopt-
ing a uniform distribution of dynamic customers, i.e., each number of active
available customers is active with equal probability.

Table 1. Dynamic EMOA parameterization.

Parameter Setting

Generations per era 65.000

μ, λ 100

pswap 0.6

σswap
N/10 = 10

LS application in generations initial, half-time, last

Cutoff time for LS 1s

Transfer knowledge from last era on

Distribution of dynamic customers Uniform
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In this study, we simulate different decision maker strategies which are based
on order ranking of the first objective (tour length). In a nutshell, the n solutions
of the EMOA are ordered in ascending order of tour length3 and the DM decides
for the �rank·n�-ranked solution with rank ∈ {0.25, 0.5, 0.75} in each era. Clearly,
in real world scenarios, the DM can make different decisions in each era to adapt
to different situations and we are aware of the limitations of our DM policies.
However, for a first study and for an automated evaluation of the approach, we
consider these fixed three strategies a good starting point.

We performed 10 independent runs on each instance. The implementation of
our dynamic EMOA is available at a public repository4.

Results: On the one hand, the following results contribute to the understanding
of the working principle of the dynamic evolutionary approach. On the other
hand, they show the applicability and provide a feeling for the potential of such
an approach.

Figure 2 comprises two representative series of depictions of the intermedi-
ate Pareto-front approximations generated in each era of the algorithm run, for
uniform (top) and clustered (bottom) topologies of customers. Each era bases
on decisions made during previous process. For the decision making process
three ranks were fixed. In each plot, the Pareto-fronts of the dynamic app-
roach are colored per era from dark blue (first era) to light green (last era).
For visual comparison, Pareto-front approximations of the a-posteriori EMOA
recently proposed in [3] and of an ε-constrained-based ILP approach using the
dynamic single-objective strategies [10] described in Sect. 2 are shown. Note, that
– for comparison reasons – the results of all eras have been transformed to the
a-posteriori solution space. Additionally, the sub-figures contain horizontal lines
colored according to the eras. Those lines define a true upper bound of available
unvisited customers for that era. It is clear that depending on the current era
and previous actions of the DM, the upper bound decreases.

The first interesting finding is, that our approach is capable of outperforming
the ILP-based a-posteriori strategy directly and the MOEA-based a-posteriori
approach on the long run. Although the a-posteriori approaches possess com-
plete information on the (virtually) dynamic service requests, the dynamic app-
roach is able to generate comparable or even better solutions without foresight
- especially for uniform topologies. For clustered topologies, the approach often
outperforms the ILP-based strategy in its final era and sometimes even becomes
comparable to the a-posteriori EMOA solutions. This is especially true, when the
(higher) decision maker rank favors the second objective (number of unvisited
customers).

The at a first glance surprising superiority over the a-posteriori approach is
rooted in the fact, that the search space for the a-posteriori problem is much
larger than the restricted dynamic scenario, in which previous decisions and a

3 Note that in the bi-objective case this leads to a sorting in descendant order of the
number of unvisited customers.

4 Repository: https://github.com/jakobbossek/dynvrp/.

https://github.com/jakobbossek/dynvrp/
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Fig. 2. Scatter plots of representative Pareto-front approximations for three different
decision maker strategies on uniform (top) and clustered (bottom) topologies. Points
are colored by era. Colored horizontal lines indicate a true upper bound for the number
of unvisited available dynamic customers w.r.t. the era. For comparison front approxi-
mations based on complete a-posteriori knowledge obtained in [3] and [10] are shown.
(Color figure online)

fixed partial tour reduce the search space dramatically. While in the a-posteriori
case for selecting an optimal subset of visited customers, all customers are eli-
gible, the dynamic approach can narrow the subset selection to still available
customers w.r.t. the already fixed partial tour.

The analysis of the representative results in Fig. 2 for uniform and clustered
topologies5 shows that era results for uniform topologies are closer to the a-
posteriori results than era results for clustered topologies. To provide a more
detailed insight into this aspect, we show respective embeddings of found (inter-
mediate) solution tours for both topologies in Fig. 3. For both settings, the DM
selected solutions of era 1, era 4 and era 9 are plotted including the path to
already visited customers (bold) and the plan for the remaining tour considering
currently available customers. In the top row of Fig. 3, the tour starts with the
mandatory customers and successively integrates new appearing customers into
the tour. As customers are uniformly distributed in search space, later appearing
customers can easily be integrated in the not yet fixed part of the tour.

In contrast to this, for clustered instances like in Fig. 3 (bottom), new cus-
tomers appear over time in different clusters. Here, the mutation operator

5 We find similar behavior for all investigated (but not shown) topologies for multiple
repetitions.
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Fig. 3. Embedding of the actual tours the decision maker (rank 0.75) decides for at the
end of eras 1, 4 and 9 respectively. The bold part of the tour is already fixed/visited
and is hence not subject to change in subsequent eras.

(i.e. random activation of customers) and preferences of the DM potentially
have major impact on the quality of the solution. On the one hand, mutation
may include customers from a distant cluster. On the other hand, strong DM
preference on maximizing the number of visited customers (set to 0.75 for exam-
ple shown in Fig. 3) may force the algorithm to select newly available customers
from a distant cluster. Both will lead to long traveled distances in the result-
ing tour and as such deteriorate the overall trade-off solution compared to the
a-posteriori results. This suggests, that future work should deal with elaborated
mutation mechanisms that try to avoid (or alternatively repair) multiple long
distance travels between clusters.

In order to evaluate the process of decision making and to test our approach
for stability w.r.t. multiple runs, we plot the intermediate decision results lead-
ing to the final realized tour in Fig. 4. According to our standard color scheme,
we show picked solutions of the parametrized DM for all eras and over all runs.
Additionally, the centroid of the final realizations is shown as black-framed dot.
The solid black line connects the centroids of the intermediate decisions and
shows the decision path. For the representative results in Fig. 4 we can conclude
two aspects: (1) The dynamic approach is stable over multiple runs, i.e. the
variance in produced solutions is low. (2) Compared to the a-posteriori approx-
imated Pareto-front, the final decisions made under the dynamic evolutionary
scheme quite perfectly reflect the parametrized ranking set up for the DM.

Note, that all qualitative results presented here also hold for the investigated
topologies (different number of clusters) in the same way.
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Fig. 4. Paths of decisions taken by different decision maker policies. Colored points
represent the decisions made in the corresponding eras for all 5 independent runs.
Paths run through the centroids of per era decisions. The centroid of final decisions is
highlighted as black-framed dot at the end of the decision path. (Color figure online)

5 Conclusions and Outlook

Our previous studies on bi-objective orienteering from an offline perspective
resulted in detailed insights into problem characteristics and challenges for
respective multi-objective (evolutionary) algorithm design. This paper proposes
an online-approach for multi-objective dynamic optimization, which is required
in practice for adjusting a currently active vehicle tour to new customer requests.
A crucial feature of the new real-time optimization system is the possibility of
incorporating user preferences regarding both objectives, which can either be
given as a fixed a-priori rule or interactively adjusted along the algorithm run
whenever an adjustment decision of the current tour has to be made.

Initial proof-of-concept experiments indicate that ILP strategies are outper-
formed by our approach in terms of solution quality and efficiency. The latter
point is especially important regarding scalability w.r.t. the instance size. With
increasing instance size ILP strategies will become infeasible in terms of the
real-time system requirement. Moreover, ILP methods are based on a-priori fixed
waiting strategies in contrast to flexible preference incorporation. Additionally, in
our settings, the dynamic approach comes close or even dominates certain parts
of the Pareto-front approximation gained by the retrospective offline EMOA. We
find, however, that dynamic optimization becomes more challenging on clustered
instances due to higher probability of long distances travels between customers.
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Next steps will include a comprehensive benchmark study on a large set of
representative instances in terms of proportion of dynamic customers (differ-
ent from here considered 75% optional customers), degree of clustering as well
as instance sizes. Realistically, the current instance size is already quite large
in terms of one vehicle serving 100 customers a day. From the hybridization
point of view, the influence of local search has to be investigated for the online
case. A straightforward extension will be allowing for more than one vehicle,
which increases practical relevance but poses additional challenges onto dynamic
EMOA design. For a systematic validation, a suitable performance indicator
simultaneously incorporating the quality of the final Pareto-front approxima-
tion, the any-time performance along the EMOA run, robustness across multiple
runs, and the degree of user preference fulfillment, has to be derived.

Acknowledgments. J. Bossek, C. Grimme, S. Meisel and H. Trautmann acknowledge
support by the European Research Center for Information Systems (ERCIS).
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Abstract. Ranging from web caches to firewalls, network functions
play a critical role in modern networks. Network function virtualisation
(NFV) has gained significant interests from both industry and academia,
thus making the study of their placement an active research topic. Due to
multiple criteria that must be considered by stake holders, e.g. the min-
imisation of the end-to-end latency and overall energy consumption, the
NFV placement problem is in principle a multi-objective optimisation
problem. This paper develops a formal model for the NFV placement
problem based on queuing theory. By using the popular NSGA-II as the
optimiser, the effectiveness of the proposed model is validated through a
series of proof-of-concept experiments. In particular, some genetic oper-
ators have been developed to match the characteristics of the problem.

Keywords: Network function virtualisation ·
Multi-objective optimisation · Telecommunications · Queueing theory

1 Introduction

Virtualisation has transformed data centres in recent years. Despite the installed
server base in data centres increasing by an estimated 6 million since 2007, the
energy consumption of data centres has remained relatively flat [12]. A key step
towards this improved energy consumption was the introduction of elastic scaling
through virtualisation. Whilst observations of server workload show the peak
workload can exceed the average by factors of 2 to 10 [1], elastic scaling allows
the data centre to use only the resources requested at any time.

The next step of this transformation is network function virtualisation (NFV)
which targets a key part of data centre infrastructure. Traditional data centres
are composed of purpose-built computers called ‘middleboxes’ that perform a
single network function such as deep packet inspection, encryption or analytics.
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Traditional middleboxes have several drawbacks, the most notable of which is
their high specialisation. This leads to high cost and inflexibility in the data
centre, making the deployment/redeployment of services challenging and time
consuming. Without redeployment of services, any placement will becomes inef-
ficient or unsustainable as demand inevitably changes over time.

NFV is an application of virtualisation technologies to middleboxes. Virtual
network functions (VNFs) can be run on off-the-shelf hardware and, as in cloud
computing, the resources allocated to the VNFs can easily be scaled in accor-
dance with demand. Furthermore, as no physical components are required, VNFs
can easily be moved around in the data centre and virtual network structures
can be formed to connect them allowing for services to be optimised over time to
meet changing demand. NFV is a powerful technology and has been identified as
a key component of 5G [10], the Internet of Things [3] and future data centres [7]
all of which have the potential to be multi-billion dollars industries [11,12].

A major challenge of NFV is the optimal placement of VNFs in data centres
which meet various criteria from stake holders, such as the demand on services
and the energy consumption of placements. Note that it is not uncommon that
data centres have tens of thousands of servers, each of which may run many vir-
tual machines (VMs), leading to a problem of a tremendous scale. Dependencies
(also know as interactions) among components make it yet more challenging and
it is important to find solutions robust enough to handle fluctuations in demand.
The need to construct virtual networks reflects the virtual network embedding
problem [6] so that the NFV placement problem is NP-hard in principle.

Although many efforts have been devoted to the NFV placement problem,
there has been no consensus on the problem formulation, especially the corre-
sponding objective functions. Some researchers have opted to test their solu-
tion using actual hardware [13] or to simulate the network/hardware by using
a discrete event simulator [9]. Note that both hardware- and simulation-based
approaches require time to achieve a stable status. Hence whilst these approaches
are useful for validating the effectiveness of some algorithms or heuristics, it
is difficult to consider them within the actual placement optimisation process.
Another alternative is to use some particular heuristics to evaluate solutions [2].
Although simple heuristics are responsive enough to be used in optimisation,
designing appropriate heuristics is no-free-lunch. Furthermore, the final solutions
may not be reliable if the heuristic is made with improper assumptions. Besides,
it is difficult to compare the effectiveness of two algorithms which separately use
different heuristics.

In this work we propose a general purpose model based on queuing the-
ory that balances the speed of a heuristic approach against the accuracy of
more expensive simulation or hardware approaches, allowing it to be used in the
optimisation process. One of the merits of using queueing theory is its ability
to handle complex dependencies among components. Further, it provides addi-
tional considerations to the number of network functions needed for a service
and the arrival and service rates of VNFs, all of which have been ignored by
the existing approaches. To validate the effectiveness of the proposed model, it
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is incorporated into a classic evolutionary multi-objective optimisation (EMO)
algorithm, i.e. NSGA-II [5], in proof-of-concept experiments.

The remainder of the paper is organised as follows. Section 2 provides a for-
mal definition of the NFV placement problem and develops a formal model
to evaluate the end-to-end latency and energy consumption. Section 3 applies
the model to a particular network topology and derives genetic operators using
information from the model. Section 4 examines the effectiveness of the model
through proof-of-concept experiments. Finally, Sect. 5 concludes this paper and
outlines some potential future directions.

2 Problem Formulation and Model Building

A service is composed of several network functions that must be visited in a
particular order. In traditional data centres, network functions are provided by
middleboxes whereas with NFV these are provided by VNFs. In the NFV place-
ment problem, the network can be considered as a graph consisting of servers
running VMs connected by an arrangement of switches, as in Fig. 1. We assume
that the resources of each server are evenly divided into several slices where each
VM is allocated to a slice. A VNF can then be placed on to one of these VMs.

Fig. 1. An example graph with three servers, supporting three VMs (denoted as filled
circles) connected by switches (denoted as filled squares).

Each service has a typical arrival rate, which is the amount of traffic it receives
over some unit of time on average; while each VNF has a service rate which is the
number of packets it can process over the same unit of time when it is placed on
a VM slice. If the arrival rate at a switch or VNF is equal to or greater than its
service rate, the length of queues at VNFs or switches will tend towards infinity
and any dependant services will be inoperable. Similarily if a service requires a
particular VNF but no instances of it exist, the service will be inoperable. These
characteristics naturally form two constraints on the solution space.

The quality of a particular VNF placement solution can be evaluated by var-
ious metrics. In this initial implementation of the model we consider two essen-
tial but conflicting objectives, i.e. end-to-end latency and energy consumption.
Specifically, the latency for a service is defined as the expected time taken for a
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request to visit each VNF in the service whilst the energy consumption can be
measured by the number of switches/servers used and the traffic they received.
These two objectives should be minimised but they are conflicting with each
other. If we consider each objective in isolation, the best solution for latency
will use as many servers as possible so as to widely distribute the load, whereas
the best solution for energy consumption will lead to the usage of only as many
servers as is necessary to obtain a feasible solution.

Before deriving the analytical objective functions, we must consider how
packets will be routed through the data centre network since this determines
the arrival rate at each switch. To this end, we first need to choose one or more
VNFs to forward traffic towards and decide the portion of traffic that each one
will receive on average. We also need to determine the path of switches the
packets will take to their destination. Generally speaking, the NFV placement
problem consists of three inter-connected problems: (1) VNF placement; (2) VNF
selection; and (3) packet routing. Depending on the network, the packet routing
component may be handled by an existing network protocol and hence not be a
part of the optimisation problem. Here we propose a formal model that allows
for heuristics or some optimisation techniques to be used to solve for any part of
the problem. The model takes two user defined functions, named selection and
step. Specifically, the selection function takes several candidate VNFs as inputs
and returns the one or more VNFs that will be selected. The step function takes
the current VNF and a target VNF as inputs and returns an object that contains
the next possible steps towards the target and the portion of traffic that should
be sent down each step.

It is reasonable to assume that requests for a service, which may come from
different users or different sources, are independently distributed. Similarly, the
time taken to serve a request should not depend on earlier requests. Moreover, the
distance between components in a network will likely be very small so that the
time spent in flight will be negligible. As a consequence, the end-to-end latency
is given by the summation of waiting or processing time at VNFs, servers and
switches. Each component in the network contains a packet buffer with a certain
capacity, while packet loss occurs when the buffer exceeds this capacity. Bearing
these considerations in mind, it is natural to consider using queueing theory as
the baseline model. Although finite queues have been well studied in queueing
theory, they introduced several additional complexities. If we assume queues have
an effectively infinite length, instead of packet loss, the time a packet spends in
a queue will increase with the length of the queue. Hence considering infinite
queues and optimising for latency should in turn favour solutions that would
minimise packet loss. A more thorough analysis of the impact of finite queues
and packet loss is planned for future work.

Following the above reasoning, the following assumptions are made with
regards to the construction of the network:

1. Every switch and server processes traffic according to a Poisson process with
a mean rate of μsw, while each VNF has a particular service rate with respect
to that VNF.
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2. For each service there are a set of VMs that contain the first VNF in the
service. Each of these VNFs produces traffic according to a Poisson process
with a mean rate calculated as the arrival rate of the service divided by the
number of VMs in the set.

3. Queues at each network component have an infinite capacity.

Based on these assumptions, we can represent each switch and VNF as an
M/M/1 queue. The average time a packet will take to be served is given by [8]:

fw(μ, λ) =
1

μ − λ
(1)

where packets arrive at an average rate λ and are served at an average rate μ.
Subsequently, to determine the latency, we need to first calculate the arrival

rate at each component and then calculate the expected latency considering the
probability of taking each path. The set of paths can be deduced by using a
simple recursive process of selection and step functions as illustrated in Fig. 2.
Once the set of paths is determined, the total arrival rate at each node can
also be calculated. Once all services have been considered we can calculate the
expected latency at each node. This is simply the summation of the waiting time
at each node in each path, where the waiting time is given by Eq. (1), then the
summation is multiplied by the portion of traffic that is sent down that path. We
must also consider that the arrival rate at a node may exceed the service rate
and hence make the solution infeasible. In this situation we return the overall
constraint violations, allowing a means to evaluate the usefulness of infeasible
solutions.

(a) Select initial VNFs (b) Get candidate VNFs (c) Select targets

(d) Step to target (e) Get candidate VNFs (f) Repeat

Fig. 2. The paths used by a service can be identified with a simple recursive process.

The energy consumption of the network only depends on the arrival rate at
each component. Here we propose a three-level energy model that is suitable for
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a range of problems. Each component can either be one of three states, i.e. off,
idle or active. A component is off only if it has an average arrival rate of zero. In
this case, it is never used. A component is idle when it is not serving a request,
otherwise the component is active. In particular, the time a physical switch is
active is calculated as the length of its busy period:

sw busy(i) = λsw[i]/μsw; (2)

where λsw[i] is the arrival rate at the switch i and μsw is its service rate. A server
is busy if it is serving a request, or if any of the VMs running on the server is
serving a request:

srv busy(i) = 1 − P (server idle ∩ vms idle)

= 1 − (1 − (λsrv[i]/μsw)) ·
kvm∏

j=0

(1 − (λvm[i][j]/μvm[i][j]))
(3)

where λsrv[i] and λvm[i][j] is the arrival rate at the server i and the arrival rate
of its jth VM, and μsw and μvm[i][j] are the corresponding service rates.

As services may share components in a data centre, the arrival rate at a
component depends on the production rate of each service. Hence we propose
to calculate the arrival rate and the expected latency in two steps. Finally the
expected energy cost only depends on the arrival rate at each node:

num sw∑

i=0

{
sw busy(i) · swen b + (1 − sw busy) · swen i, if λsw[i] > 0
0, otherwise

+
num srv∑

i=0

{
srv busy(i) · srven b + (1 − srv busy) · srven i, if λsrv[i] > 0
0, otherwise

(4)

where swen b, swen i denote energy consumption in the busy and idle states for
switches and likewise srven b, srven i for servers.

The resulting model derives one objective function for latency for each ser-
vice and another objective function for overall energy consumption. In the next
section we will consider a method to find optimal placement solutions to the
NFV Placement problem by using this model.

3 Instantiation of NFV Placement Problem

3.1 Fat Tree Networks

Although the model proposed in Sect. 2 is flexible, it is still difficult to define
useful step and selection functions for an arbitrary graph. In this paper, for
proof-of-concept purposes, we implement these functions for the case of a fat tree
network. Fat tree networks are widely used in industry [4] and the underlying
principles presented here can be extended to other network structures.
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Fat tree networks are described by the number of ports at each switch. We
define k as the number of ports for each physical switch and kvm as the number
of slices in each VM. In a fat tree topology, there are (k/2)2 core switches. Each
core switch connects to one switch in each of k pods. Each pod contains two
layers (aggregation and edge) of k/2 switches. Each edge switch is connected
to each of the k/2 aggregation switches of the pod. Each edge switch is also
connected to k/2 servers. Each server contains a virtual switch connected to
kvm VMs. This topology results in n = (k3/4) · kvm VMs (Fig. 3).

Servers

VNFs ... ...

Edge

Aggregation

Core

Fig. 3. An example NFV enabled fat tree network with four ports for each hardware
switch and space for three VNFs per server.

Based on this definition, a NFV placement solution can be represented as a
string of VNFs of length n. As some slices may not be used we also introduce the
None character to represent an unused slice. To determine the arrival rates we
will need to define the selection and routing functions. In this implementation we
will use simple heuristics for both. A fat tree network can be efficiently traversed
by stepping upwards to the parent node until a common ancestor between the
initial and target nodes is reached. Due to the arrangement of aggregate and core
switches, there can be several closest common ancestors which lead to equally
efficient paths to the target node. In this implementation, the step function
is constructed to distribute traffic evenly over each efficient path. As for the
selection criteria, we will simply select all candidate VNFs from the closest server.

3.2 Optimisation Algorithm

Having decided on the representation and objective function implementations,
we now have enough information to be able to find optimal NFV placement solu-
tions for a fat tree network. Due to its multi-objective nature, we use the most
popular EMO algorithm, NSGA-II [5], as the baseline optimiser. However, con-
sidering the characteristics of the NFV placement problem and its constraints,
some modifications on NSGA-II are developed as follows.
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NSGA-II. From the problem formulation introduced in Sect. 2, a solution that
violates any constraint will not have meaningful objective values in the NFV
placement problem. In this case, we propose to assign all infeasible solutions
the lowest possible crowding distance of zero. When comparing two infeasible
solutions, the one having the lower constraint violation is preferred.

In principle, when considering the end-to-end latency, each service has its
own latency to optimise. In this case, it may end up with a multi-objective opti-
misation problem with as many objectives as services in the network. However,
curse-of-dimensionality is always the Achilles’ heel of an optimisation algorithm.
To simplify the problem, we propose to combine all services’ latencies into a new
objective function, i.e. a weighted mean latency over all services as:

latency agg =

Ns∑

i=0

latencies[i]
Ns

· wi (5)

where Ns is the number of services and wi gives the relative importance of each
service and

∑Ns

i=1 wi = 1. By setting different wi, it is easy to prioritise the
latency of one service over another. For proof-of-concept purposes, this paper
assumes that all services are equally important, i.e. wi = 1/Ns, i ∈ {1, · · · , N}.

Initialisation. In the original NSGA-II, the initial population is generated by
a random sampling over the solution space. Given the existence of constraints,
it is highly likely to generate infeasible placement solutions.

To remedy this issue, we need to make sure that at least one instance of
each VNF in every service is placed. However, this does not guarantee a feasible
solution is made. It is possible that we may need more than one VNF to fulfil
a service if the arrival rate exceeds the service rate of a single VNF. In fact,
it may be necessary to have multiple instances of earlier VNFs as well, e.g. if
the selection function only ever selects one VNF. Whilst these problems mean
that we cannot guarantee that all initialised solutions will be feasible, we can
determine a lower bound for the required number of instances of a VNF by using
the following equation:

min num(vnf) = �μvnf/λvnf� (6)

This information can be used to increase the chance of generating feasible solu-
tions. In order to generate a range of solutions, some multiple of the minimum
number of each VNF can be placed in the solution. In our proposed initialisa-
tion procedure, we opt to randomise the order of these VNFs in the solution
but condense the VNFs towards one end of the data centre. This is motivated
by the fact that the energy efficiency of a solution is not greatly affected by the
placement of VNFs while latency can be significantly harmed if the next VNF
in a service is further away. The pseudo code of the initialisation procedure is
given in Algorithm 1.
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Algorithm 1. Initialisation
vnfs ← []
for all (i, service) in services do � Find the minimum number of each VNF

for all vnf in service.vnfs do
min vnfs ← ceil(λservice/μvnf )
append(vnfs, [vnf | min vnfs])

end for
end for
max copies ← floor(n/len(vnfs)) � Find the maximum copies that could fit
copies ← rand(0..max copies)
vnfs ← append(vnfs, [vnfs | copies]) � Copy the VNFs
solution ← shuffle(vnfs) � Shuffle the VNFs
return append(solution, [None | n − len(vnfs)]) � Pad the output with None

Reproduction Operators. In order to generate new candidate placement solu-
tions, we use crossover and mutation, which are the normal practice in genetic
algorithm, to serve as reproduction operators. As for the crossover operation,
this paper uses the vanilla uniform crossover without any modification. Due to
the consideration of constraint violation, the mutation operator needs some fur-
ther development to guarantee the feasibility of the mutated solutions. When a
mutation occurs, the new value is chosen from the set of VNFs and the empty
character, weighted by Eq. (6) – the minimum number of instances of the VNF
that is required for a feasible solution.

4 Proof-of-Concept Experiments

In this section, we present some proof-of-principle results to demonstrate the
effectiveness of the proposed model to serve as objective functions. We also aim
to identify some interesting properties of the NFV placement problem that could
not have been found with existing models. Due to the page limit, the proof-of-
principle experiments here focus on the key results that differentiate the model
from previous approaches.

Except where otherwise stated the following parameters are used: k = 4, the
number of slices on each server kvm = 3, 4 services with length 3 are deployed,
the service arrival rate for each service is servicei.arr = 5, the service rate at
each switch μsrv = 20, the service rate at each VNF μvnf = 3, finally the idle
and busy energy consumptions for the servers are srven b = 2.0, swen i = 0.2,
with each switch using swen b = 1.0 and swen i = 0.1.

To ensure that the model is accurate we compared the results from the model
against those from a discrete event simulation. First the NSGA-II algorithm
with a population size of 100 is run for 500 generations to produce a set of non-
dominated solutions. Then three representative solutions were selected: one from
each objective, and a third solution close to the mean. The objectives calculated
by the model where compared against those from a discrete event simulator for
the same solutions over a range of arrival rates and are plotted in Figs. 4a and b.
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From these two subfigures, we can see that the model and simulation agree to
a high level of accuracy up to the point that the queues become saturated. At
this point, where the arrival rate exceeds the service rate, the waiting time at a
queue will approach infinity and the assumptions the model is constructed with
are no longer valid.
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Fig. 4. Model versus simulation results for different arrival rate λ settings.
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Fig. 5. Non-dominated solutions from 30 runs of 500 generations for different
production rate λ settings.

To gain some insight into the properties of the problem under different param-
eters, the non-dominated solutions from 30 runs of NSGA-II were gathered and
plotted in Figs. 5a to c for different production rates. As expected, we can easily
see a trade-off between latency and energy. Less obvious however is the rela-
tionship between the two objectives. In Fig. 5a the relationship appears to be
linear. However as the production rate increases, improvements in latency require
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increasingly more resources. This may be due to the choice of selection algorithm
which only uses VNFs from the nearest server. If a whole server is required for
each VNF to provide enough resources for a feasible solution, groups of VNFs
must be deployed to distribute the load. It is unclear at this stage whether
this relationship remains under permutations of other parameters but further
research could lead to more informed heuristics.

Finally for the sake of future comparison, the hypervolume for different
parameter settings was calculated over the course of 30 runs. The nadir point
for each setting of α was estimated using the worst objective values for the non-
dominated points considering all runs and is used as the reference point. All
relevant data including reference points is presented in Table 1 and Fig. 6.
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Fig. 6. Average hypervolume for different production rate λ settings.

Table 1. Mean and standard deviation of the hypervolume for different production
rates λ and different generations

λ Ref. point

(latency, energy)

Generation

100 200 300 400 500

1 (1.111, 6.750) 0.072 ± 0.048 0.114 ± 0.048 0.119 ± 0.048 0.126 ± 0.049 0.129 ± 0.047

3 (1.451, 15.770) 0.004 ± 0.013 0.074 ± 0.085 0.151 ± 0.141 0.206 ± 0.168 0.239 ± 0.164

5 (4.279, 24.280) 0.892 ± 1.436 5.908 ± 2.713 8.613 ± 2.534 10.232 ± 2.705 11.292 ± 2.688

7 (3.421, 32.110) 0 ± 0 0.481 ± 0.797 1.115 ± 1.096 1.560 ± 1.211 2.043 ± 1.286

9 (5.954, 39.520) 0 ± 0 0.250 ± 0.756 1.522 ± 1.858 2.563 ± 2.627 3.415 ± 3.193
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5 Conclusion

This paper developed a formal model for the multi-objective telecommunications
problem of NFV placement. Whilst this model has been studied previously the
proposed model is more thorough than existing approaches and is able to con-
sider important aspects such as the production and arrival rates that existing
models cannot. Additionally through the development of new genetic operators
we propose an initial algorithm that demonstrates the utility of the model.

There are many practical extensions to the model that could be considered
for future work, including the derivation of other objectives using queuing theory.
Objectives such as packet loss and service bandwidth have been well studied in
queueing theory [8]. Additionally variants of the problem could be considered
such as the situation where each service is constrained in each objective e.g. the
service is only feasible below some maximum latency. The large scope of the
problem and its important real world applications ensure this will be a rich field
to explore.
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Abstract. Network flow optimisation has many real-world applications.
The minimum cost flow problem (MCFP) is the most common network
flow problem, which can also be formulated as a multiobjective optimi-
sation problem, with multiple criteria such as time, cost, and distance
being considered simultaneously. Although there exist several multiobjec-
tive mathematical programming techniques, they often assume linearity
or convexity of the cost functions, which are unrealistic in many real-
world situations. In this paper, we propose to use the non-dominated
sorting genetic algorithm, NSGA-II, to solve this sort of Multiobjective
MCFPs (MOMCFPs), because of its robustness in dealing with optimi-
sation problems of linear as well as nonlinear properties. We adopt a
probabilistic tree-based representation scheme, and apply NSGA-II to
solve the multiobjective integer minimum cost flow problem (MOIM-
CFP). Our experimental results demonstrate that the proposed method
has superior performance compared to those of the mathematical pro-
gramming methods in terms of the quality as well as the diversity of
solutions approximating the Pareto front. In particular, the proposed
method is robust in handling linear as well as nonlinear cost functions.

Keywords: Multiobjective optimisation ·
Minimum cost flow problem · Genetic algorithm

1 Introduction

Minimum cost flow problem (MCFP) is the most general case of a network
optimisation problem where a commodity is transferred through the network to
satisfy a demand and minimise/maximise objective function(s). There are differ-
ent applications of the MCFP such as distribution and manufacturing problems,
optimal loading of a Hopping aeroplane, or human resource management [1].

For MCFP, sometimes it is necessary to consider multiple criteria such as
time, cost, and distance. In this case, we can formulate the MCFP as a multiob-
jective MCFP (MOMCFP) [14]. This will allow the decision maker to consider
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various conflicting objective criteria and select the most appropriate solution
from a set of Pareto-optimal solutions.

There are various types of MOMCFP: linear MOMCFP, integer multiob-
jective MCFP (MOIMCFP), and nonlinear integer multiobjective MCFP [14].
The linear MOMCFP has continuous decision variables with linear cost functions
and constraints, where the solution set consists of only supported non-dominated
points [14]. In contrast, the MOIMCFP has integer decision variables with lin-
ear cost functions and constraints, and the solution set consists of the sup-
ported and a large number of unsupported non-dominated points [5]. Supported
non-dominated solutions can be found by applying weighted sum methods, but
finding an unsupported non-dominated solution is a challenging task for math-
ematical programming methods [3,17]. The supported non-dominated solutions
are located on the convex hull of the feasible region, while the unsupported
non-dominated solutions are found inside the feasible region [4]. The supported
and unsupported non-dominated solutions for a bi-objective MCFP are shown
in Fig. 1 (See Sect. 2 for the definition of supported and unsupported points).
Finally, the nonlinear integer multiobjective MCFP has integer decision vari-
ables and employs nonlinear cost functions. The solution set for nonlinear inte-
ger multiobjective MCFP generally consists of both supported and unsupported
points.

Fig. 1. Supported and unsupported non-dominated solutions in the objective space,
for a bi-objective MCFP.

The approaches for solving MOMCFP and MOIMCFP can be categorised
into exact and approximation methods [9]. A pseudo polynomial approximation
algorithm was proposed in [15] to solve MOMCFP by approximating the opti-
mal value function. In [6], a piecewise linear convex curve of a MOMCFP was
approximated by following the trade-off curve. Other approximation methods
make use of upper and lower bounds which “sandwich” the Pareto-front [9].

To solve MOMCFP using exact methods, a generalisation of the out-of-kilter
method can be used [12]. However, this algorithm dealt with only small-sized
networks, and the extreme non-dominated solution in the objective space could
not be found. A modified out-of-kilter algorithm was developed in [10] to over-
come the drawbacks of the generalised out-of-kilter method. In [16], a method
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was used to identify all the efficient extreme points in the objective space [16].
On the other hand, a branch-and-bound method [18] can be used to produce
a representative set of Pareto-optimal solutions for MOIMCFP. All the above
mentioned methods considered only small to medium-sized linear MOMCFPs or
MOIMCFPs.

The main challenge in mathematical programming for solving MOIMCFPs
is to find the unsupported non-dominated points and ultimately the entire set of
non-dominated solutions efficiently, without violating the MCFP’s constraints
[5]. Although algorithms exist to generate the entire set of non-dominated solu-
tions, e.g., using the ε-constraint and branch-and-bound method to generate a
set of non-dominated solutions for bi-objective integer MCFP [3], or using a
two-phase parametric simplex algorithm [13], these algorithms can only solve
small and medium-sized bi-objective MCFPs with reasonable efficiency. How-
ever, when dealing with a much larger MCFP, e.g., a network consisting of 50
nodes and 870 arcs, the computational time can be as high as 14,000 s.

Mathematical programming methods make a strong assumption that the cost
function is linear or convex. However, most real-world problems are nonlinear
and non-convex in their more realistic settings. It would be desirable to have a
method that does not make these assumptions and can handle both linear and
nonlinear cost functions effectively.

The above identified limitations motivated us to employ NSGA-II to solve
MOIMCFP with a probabilistic tree-based representation scheme. NSGA-II is
able to handle MOIMCFP using either linear or nonlinear cost functions. The
algorithm can also control the number of non-dominated solutions to be gener-
ated. We compare the NSGA-II method with the state-of-the-art mathematical
programming method Bensolve [11] on a set of small to medium-sized MOIM-
CFP instances. Our results suggest the superiority of NSGA-II over Bensolve
in at least two aspects: (1) NSGA-II can find a set of non-dominated solutions
(both supported and unsupported) with control on its size, but Bensolve can
only generate one solution depending on its previous solution in a sequential
manner, with no control over the total number of solutions. Furthermore, it
produces only supported non-dominated points; (2) NSGA-II can handle both
linear and nonlinear cost functions, but Bensolve is confined to handling just
linear cost functions.

The rest of the paper is structured as follows: Sect. 2 provides the prelimi-
naries and the definition of MOIMCFP. The NSGA-II method using the prob-
abilistic tree-based representation is presented in Sect. 3. Section 4 presents the
computational results, and finally Sect. 5 concludes the paper.

2 Problem Formulation

Let G = (N , A) be a set N which consists of n nodes and a set A of m arcs. Each
arc (i, j) has a capacity of uij and lower bound of lij which denote the maximum
and minimum amount that can be sent on the arc (i, j), respectively. Each node
i ∈ N is associated with an integer value b(i). If b(i) is positive, it shows that
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node i is a supply node, if b(i) is negative, node i is a demand node with demand
of | b(i) | and finally b(i) = 0 shows the transshipment node i. A decision variable
in MOIMCFP is an integer flow and denoted by xij . F (x) = (f1(x), . . . , fN (x))
defines N objective functions for the MOIMCFP. Figure 2 shows an example of
the bi-objective MCFP (with n = 5 nodes and m = 7 arcs), which has a supplier
node (b(1) = 10) and a demand node (b(5) = −10). There are two different costs
associated to each arc: f1(xij) denotes the time that takes to send a flow from
node i to node j ; f2(xij) denotes the cost of sending a flow on the arc (i, j).

Fig. 2. An example of a bi-objective MCFP (time and cost) (n = 5, m = 7).

Generally in MOIMCFP, we aim to send flows through the network to sat-
isfy all demands by minimising the objective functions. The formulation of the
MOIMCFP is as follows [1]:

Minimise : F (x) =
(
f1(x), . . . , fN (x)

)
(1)

s.t.
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i) ∀ i ∈ N , (2)

0 ≤ xij ≤ uij ∀ (i, j) ∈ A, (3)

xij ∈ Z ∀ (i, j) ∈ A, (4)

where Eq. 1 minimises multiple (N ) objective functions through the network.
Equation 2 is a flow balance constraint which states the difference between the
total outflow (first term) and the total inflow (second term). The flow on each
arc should be between an upper bound and zero (Eq. 3), and finally all the
flow values are integer numbers (Eq. 4). In this paper we consider the following
assumptions for the MCFP: (1) the network is directed; (2) there are no two or
more arcs with the same tail and head in the network; (3) the total demands
and supplies in the network are equal, i.e.,

∑n
i=1 b(i) = 0.

Since we are dealing with the multiobjective optimisation problem (MOIM-
CFP), it is necessary to declare the following definitions. The feasible region
in the variable space is defined by XI = {x = (xi1j1 , . . . , xinjn) ∈ Z

n : x
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satisfies Eqs. 2–4}. The feasible region in the objective space is defined by
Y I = F (XI) = {y = (y1, . . . , yN ) : y1 = f1(x), . . . , yN = fN (x),x ∈ XI}.
Let X = conv(XI) and Y = conv(Y I) be the convex hull of the sets XI and
Y I , respectively. Let y′, y′′ ∈ R

N , the following notation y′ � y′′ denotes that
y′
q ≤ y′′

q ,∀q = 1, . . . , N .

Definition 2.1. Consider two feasible vectors y′ and y′′ in Y I(Y ), y′ dominates
y′′ if y′ � y′′ and y′ �= y′′ (y′

q ≤ y′′
q ) with at least one strict inequality. The vector

y′ is said to be a non-dominated solution if there does not exist another y in Y I

which satisfies y � y′ and y �= y′. The set of all non-dominated points in Y I is
denoted by ND(Y I).

Definition 2.2. There are two categories of non-dominated solutions in MOIM-
CFP called supported and unsupported non-dominated solutions. Let Y � =
conv(ND(Y I) + R

N
� ) where R

N
� = {y ∈ R

N |y � 0} and ND(Y I) + R
N
� = {y ∈

R
N : y = y′ + y′′, y′ ∈ ND(Y I) and y′′ ∈ R

N
�}. If y is on the boundary of the

Y �, y is referred to as a supported non-dominated solution, otherwise y is an
unsupported non-dominated solution. Note that y is always denoted here as a
non-dominated solution in the objective space.

Definition 2.3. A solution x′ ∈ XI (in the variable space) is called efficient
if it is not possible to find another solution (x ∈ XI) with a better objective
function value without deteriorating the value of at least another objective value.

3 NSGA-II and the Probabilistic Tree-Based
Representation for MCFP

As aforementioned, when dealing with MOIMCFP, there are supported and
unsupported non-dominated solutions in the objective space. Supported non-
dominated solutions can be found by applying weighted sum methods [3,17],
while finding an unsupported non-dominated solution is a challenging task by
exact methods. Several such exact methods rely on a mechanism that must find
a large number of non-dominated solutions one by one across the entire Pareto-
front. However, there is no control of the number of non-dominated solutions
to be produced. The excessive number of solutions is unnecessary to the deci-
sion maker (DM) and may also require a very high computational cost [5]. In
this paper, we propose to use NSGA-II to solve the MCFP with a probabilistic
tree-based representation, in order to find a controllable set of non-dominated
solutions including both supported and unsupported points.

3.1 Representation

The most popular representation method for solving MCFP using genetic algo-
rithm (GA) is priority-based representation (PbR) [7]. However, the PbR method
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has serious drawbacks. To counteract the limitations of PbR, the PTbR (Proba-
bilistic Tree based Representation) is introduced in [8]. The PTbR chromosome
has n − 1 sub-chromosomes (Sub.Ch) and the value of each gene is a random
number between 0 and 1 which is then accumulated to 1 in each sub-chromosome.
In order to obtain a feasible solution from PTbR, in phase I, a path is first con-
structed, and then a feasible flow is sent through the constructed path in phase
II. An example of PTbR and its feasible solution (for the network in Fig. 2) are
shown in Fig. 3.

(a) The PTbR chromosome. (b) A feasible path and flows.

Fig. 3. PTbR and its corresponding feasible solution for the network in Fig. 2.

3.2 NSGA-II for Solving MOIMCFP

After describing the PTbR, we now present how to adopt PTbR and apply
NSGA-II to solve MOIMCFP.

Initialisation: First a population with pop size individuals (chromosomes) is
generated (P0). To initialise the population, we can either generate the whole
population randomly or use a heuristic technique to seed the initial population.
As aforementioned, the mathematical programming techniques can efficiently
generate the supported non-dominated points for MOIMCFP with linear objec-
tive function. One state-of-the-art mathematical solver that can create the sup-
ported non-dominated points is Bensolve [11].

To initialise the population, we apply two different approaches. The first app-
roach is to generate individuals (chromosomes) randomly, namely NSGA-II(R).
The second approach is to initialise α% of the individuals using the supported
point obtained from a mathematical programming method (e.g., Bensolve) and
the remaining individuals are generated randomly (namely NSGA-II(H)). After
initialising the population the binary tournament and genetic operators are
applied to create the population Q0.

NSGA-II Procedure: In each iteration It, we combine the PIt with QIt to
form the RIt population, which is then sorted based on the non-dominance defi-
nition. We then calculate the crowding distance, and by sorting the population in
each front we select the best-fit pop size individuals in the population as PIt+1

[2].
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Crossover and Mutation: The new population PIt+1 is now used for binary
tournament selection, crossover, and mutation to form a new population QIt+1.
A two-point crossover operation is applied, where two blocks (sub-chromosomes)
of the selected chromosome (parents) are first randomly selected. Then, two par-
ents swap the selected sub-chromosomes to generate new offspring. To perform
mutation, a random parent is selected and the randomly chosen sub-chromosome
is regenerated to create a new offspring [8].

Termination Criteria: After genetic operators are applied, we first check the
stopping criteria: (1) if the maximum number of function evaluations (NFEs) is
reached; or (2) no improvement in the average of the objective function values
on the Pareto-front for β successive iterations. If any of the criteria is satisfied
the algorithm is terminated; otherwise we go back to the NSGA-II step.

4 Computational Results

In the following subsection, we first describe the cost functions, followed by the
network instances which we have adopted for MOIMCFP. We tackle the test
instances using two variants of NSGA-II, i.e., NSGA-II(R) and NSGA-II(H), as
well as the state-of-the-art mathematical solver Bensolve. Since Bensolve is not
able to solve the MOIMCFP using nonlinear cost functions, we only present
results in comparing NSGA-II(H) and NSGA-II(R) for MOIMCFP using non-
linear cost functions. Note that for NSGA-II(H) using nonlinear cost functions,
the fmincons() in MATLAB is employed to generate the initial solutions.

4.1 Test Instances

This paper considers MOIMCFP using linear and nonlinear cost functions. Note
that, two objectives considered here are time (f1) and cost (f2). Our aim is
to compare the performance of NSGA-II and Bensolve on bi-objective MCFPs.
Equation 1 can be rewritten as follows by employing the linear cost functions [9]:

Minimise : F (x) =
{
f1(x) =

∑

(i,j)∈A

c1ijxij , f2(x) =
∑

(i,j)∈A

c2ijxij

}
, (5)

where c1ij and c2ij are non-negative integer time and cost associated with one unit
of flow on arc (i, j) respectively. To consider nonlinearity, the following concave
nonlinear cost functions are adopted [20]:

Minimise : F (x) =
{
f1(x) =

∑

(i,j)∈A

c1ij
√

xij , f2(x) =
∑

(i,j)∈A

c2ij
√

xij

}
. (6)

For our experiments, a set of 30 MOIMCFP instances with different number
of nodes (n = {5, 10, 20, 40, 60, 80}) is randomly generated and presented in
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Table 1 (No. denotes the instance number, and each instance has n nodes and
m arcs). Note that, for each node size (n), five different networks are randomly
generated. The number of supply/demand for nodes 1/n are set to q = 20/−20 in
the test instances up to 20 nodes and for all other test problems supply/demand
are set to q = 30/−30 [8].

Table 1. A set of 30 randomly generated MOIMCFP instances.

No. n m No. n m No. n m No. n m No. n m No. n m
1

5

6 6

10

25 11

20

86 16

40

287 21

60

697 26

80

1322
2 7 7 28 12 81 17 336 22 721 27 1298
3 8 8 25 13 87 18 370 23 635 28 1356
4 8 9 28 14 74 19 334 24 693 29 1250
5 6 10 27 15 92 20 358 25 695 30 1140

4.2 Results and Analysis

NSGA-II and PTbR are implemented in MATLAB on a PC with Intel(R)
Core(TM) i7-6500U 2.50 GHz processor with 8 GB RAM, and we run 30 times
for each problem instance. To solve MOIMCFP instances using a mathematical
solver, we use the MATLAB version of Bensolve1.

The parameter settings for NSGA-II are as follows: maximum number of iter-
ations (Itmax = 200), population size (pop size = min{n × 10, 300}), crossover
rate (Pc = 0.95), mutation rate (Pm = 0.3), maximum number of function evalu-
ations (NFEs = 100,000) and the termination criterion β = 30 [8]. For NSGA-
II(H) only α = 10% of the initial individuals are generated using the heuristic
method explained in Sect. 3.2 and the rest are generated randomly.

To evaluate the performance of a multiobjective optimisation algorithm,
two aspects need to be measured: convergence and distribution of the solutions
approaching the Pareto front [2]. We adopt Hypervolume (HV) (or S metric), a
widely-used metric for evaluating the performance of a multiobjective optimisa-
tion algorithm [21]. Hypervolume computes how close the solutions are to the
Pareto-front as well as the spread of the solutions across the Pareto-front [19].

We compare the performance of NSGA-II(R), NSGA-II(H) with Bensolve on
all network instances using linear cost functions (Eq. 5). The results are presented
in Table 2 (where t, nPF and HV denote the average running time in second,
average number of solutions on the Pareto-front and average of the hypervolume
metric, respectively over 30 runs). Since Bensolve cannot solve the nonlinear
MOIMCFP, we only present the results of the NSGA-II(R) and NSGA-II(H) for
solving the network instances using concave nonlinear cost functions (Eq. 6) in
Table 3, including the average time (t) and average hypervolume value (HV).
Note that for NSGA-II(H) using nonlinear cost functions (Table 3), we employ

1 Bensolve MATLAB version is available on: http://bensolve.org/.

http://bensolve.org/
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Table 2. Results for solving MOIMCFP using linear objective functions.

No. n m
Bensolve NSGA-II(R) NSGA-II(H)

t nPF HV t nPF HV t nPF HV
1

5

6 1 2 4248 16 3.0 4274.4 17 3.0 4274.4
2 7 1 3 2326 14 11.0 2385.7 14 11.0 2385.7
3 8 1 2 2910 13 6.0 3030.0 14 6.0 3030.0
4 8 1 2 1570 16 3.0 1605.0 16 3.0 1605.0
5 6 1 2 2114 13 6.0 2153.6 14 6.0 2153.6
6

10

25 1 3 7373 59 17.9 7624.9 66 18.0 7643.4
7 28 1 3 10155 59 2.9 9058.7 66 6.3 11047.8
8 25 1 2 4368 66 4.0 4394.6 83 4.0 4394.6
9 28 1 2 4347 53 5.0 4509.3 58 5.0 4509.3
10 27 1 3 5872 55 5.8 5629.6 63 8.7 5994.7
11

20

86 1 2 3866 105 9.8 4712.1 102 10.1 4760.3
12 81 1 2 2722 113 12.3 3003.3 105 12.8 3010.0
13 88 1 3 2894 96 4.0 2850.8 106 4.4 2913.6
14 74 1 2 2700 103 3.3 2821.0 94 5.7 2999.5
15 92 1 3 9872 98 7.3 10345.8 109 7.9 10408.7
16

40

287 1 1 1093 108 1.0 1093.0 106 1.0 1093.0
17 336 1 2 3168 107 2.1 2669.9 108 2.2 3189.1
18 370 1 3 8269 111 2.2 7915.6 111 3.1 8280.4
19 334 1 3 4423 105 2.1 3685.8 105 3.0 4426.8
20 358 1 1 1215 103 1.0 1215.0 105 1.0 1215.0
21

60

697 1 5 5898 192 2.0 5057.3 223 5.7 5898.0
22 721 1 6 18194 217 10.5 14139.5 213 27.4 19755.7
23 635 1 5 16731 216 4.0 14576.1 214 10.5 16920.3
24 693 1 2 7203 231 5.5 7730.7 224 5.9 7795.5
25 695 1 3 7643 228 3.6 6807.9 226 5.5 7889.3
26

80

1322 1 3 6484 269 19.0 6723.6 277 19.0 6723.6
27 1298 1 4 8692 227 13.0 8714.5 217 14.0 8961.7
28 1356 1 5 25518 317 22.2 25141.1 293 28.0 26632.6
29 1250 1 4 11130 271 6.0 10838.6 262 8.0 11178.7
30 1140 1 3 9494 243 6.0 8674.7 258 12.0 9548.9

fmincons() in MATLAB to seed the initial population by converting the bi-
objective problem to the single objective problem using a weighted sum method
(i.e., considering equal weights for all objective functions). fmincons() uses an
interior point method by default to solve constrained nonlinear single objective
problems.

As shown in Table 2, NSGA-II(H) has greater or equal HV value than those
of the Bensolve and NSGA-II(R). Note that, in Tables 2 and 3 the algorithm with
the best HV value for each instance is highlighted in boldface. It is noticeable
that Bensolve terminates after 1 s on all instances since they cannot find any
other solutions. Although our NSGA-II variants took longer to generate the non-
dominated solutions, it can converge to a better set of non-dominated solutions
with a better diversity as indicated by the HV metric. As can be seen in Fig. 4,
Bensolve is only capable of finding supported non-dominated points, and NSGA-
II(R) is able to find just one part of the Pareto-front, however NSGA-II(H) is able
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Table 3. Results for solving MOIMCFP using nonlinear objective functions.

Algorithms No. 1 2 3 4 5 6 7 8 9 10

NSGA-II(R)
t 20 17 16 18 15 71 63 75 64 72
HV 21970.0 7975.4 14794.0 10521.8 12478.0 28017.9 38407.0 28573.1 28265.2 37078.8

NSGA-II(H)
t 20 18 14 17 15 69 62 69 57 64
HV 21970.0 7975.4 14794.0 10521.8 12478.0 28017.9 38653.6 28573.1 28616.9 38624.5

Algorithms No. 11 12 13 14 15 16 17 18 19 20

NSGA-II(R)
t 129 113 128 129 131 139 147 145 139 141
HV 9801.6 8184.8 8947.6 7944.3 14962.6 5096.2 10519.8 12607.4 10436.2 4791.2

NSGA-II(H)
t 111 111 99 101 103 104 104 107 109 112
HV 9801.6 8184.8 8973.3 7944.3 14962.6 5130.8 10804.1 13023.9 10982.4 4791.2

Algorithms No. 21 22 23 24 25 26 27 28 29 30

NSGA-II(R)
t 254 275 264 264 264 304 264 289 337 324
HV 4471.0 8195.8 19618.1 25460.3 30509.0 283.3 6072.9 13885.3 3122.5 10808.9

NSGA-II(H)
t 238 235 222 244 248 333 232 309 312 322
HV 13799.6 27278.5 30252.9 31030.9 34056.3 24882.2 17830.5 35182.3 21993.3 31489.4

to find a set of non-dominated solutions with better diversity and convergence.
This shows the superiority of NSGA-II(H) over NSGA-II(R) and Bensolve.

As shown in Fig. 4a, for network instance No. 22, Bensolve can find only 6
points on the Pareto-front, which are all supported non-dominated points with
HV = 18,194, while NSGA-II(R) can find on average 10.5 non-dominated points
with HV = 14, 139.5 and NSGA-II(H) can obtain on average 27.4 non-dominated
points with HV = 19, 755. It shows that NSGA-II(H) provided not only a better
quality of non-dominated solutions, but also better solution diversity (Fig. 4b).
This pattern is observed on all instances in Table 2, indicating that NSGA-II(H)
has better performance than Bensolve and NSGA-II(R).

(a) Instance No.22. (b) Instance No.30.

Fig. 4. Results for solving MOIMCFP using linear objective functions.

Table 3 shows the results on the MOIMCFP instances in Table 1 using con-
cave nonlinear cost functions (Eq. 6) using NSGA-II(H) and NSGA-II(R). On
all instances NSGA-II(H) has equal or better performance than the NSGA-
II(R). For example, Fig. 5 shows that NSGA-II(H) can converge to a better
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non-dominated solution set as compared to NSGA-II(R) on instances No.26 and
27. It is consistent with the results of MOIMCFP using linear cost functions
and it suggests that using heuristic initialisation (or seeding) can dramatically
improve the performance of NSGA-II in dealing with MOIMCFPs.

(a) Instance No.26. (b) Instance No.27.

Fig. 5. Results for solving MOIMCFP using nonlinear objective functions (Bensolve is
not included since it cannot handle nonlinear objective functions).

5 Conclusion

In this paper we have adopted the probabilistic tree-based representation for
handling the MCFPs, and apply NSGA-II to solve the MOIMCFP using linear
and nonlinear cost functions. Unlike the mathematical solvers which are unable
to handle nonlinear cost functions, NSGA-II is more robust in dealing with var-
ious types of cost functions. The performance of the two variants of NSGA-II
(i.e., NSGA-II(H) and NSGA-II(R)) algorithms are evaluated on a set of 30
MOIMCFP instances and compared with that of the state-of-the-art mathemat-
ical solver Bensolve. The experimental results demonstrate that NSGA-II(H) has
superior performance than that of the Bensolve and NSGA-II(R) in terms of the
quality of solutions as well as the diversity of solutions in the objective space.
As can be seen in Fig. 4, Bensolve only managed to generate a limited number
of solutions (i.e., supported non-dominated solutions) and it cannot find the
unsupported non-dominated solutions. However, NSGA-II does not have such a
limitation and is able to generate a controllable set of non-dominated solutions.
Furthermore, Bensolve cannot handle nonlinearity. It is also worth noting that
using a heuristic initialisation procedure (i.e., seeding with solutions found by an
exact method) can improve the performance of NSGA-II for solving MOIMCFP.
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Abstract. Multi-label learning problem is a data analytic task in which
every sample is associated with more than single label. The complexity
of such problems declares the importance of feature selection task as a
preprocessing step prior for multi-label learning. Feature selection can
make a better learning performance both in terms of reducing compu-
tational complexity and increasing classification accuracy. Selecting the
best subset of features with two objectives, the smaller number of fea-
tures and higher accuracy of classification can be treated as a binary
multi-objective optimization problem. Since feature selection is inher-
ently a binary optimization problem, applying continuous metaheuris-
tic algorithms to solve this problem decreases the diversity of solutions
in the optimal Pareto-front, because of many-to-one mapping and low
exploration power, accordingly. This paper proposed a binary version of
Generalized Differential Evolution (BGDE3) for multi-label feature selec-
tion based on majority voting of solutions and opposition-based learning
(OBL). Experimental results show that the proposed algorithm outper-
forms the continuous GDE3 for multi-label feature selection.

Keywords: Multi-objective optimization ·
Generalized Differential Evolution · Opposition-based learning ·
Binary differential evolution · Feature selection ·
Multi-label classification

1 Introduction

Classification is one of the main tasks in machine learning which is defined as con-
structing a model on some training data to predict the label of unseen samples.
In traditional machine learning, each sample has only one label while in many
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real-world datasets, there is more than one label for each sample which is known
as multi-label data [1]. Applications such as text categorization, gene functional
classification, and object recognition are examples of multi-label learning prob-
lems. For instance in text categorization, every text sample can belong to differ-
ent categories such as sport, politics, and economy. So learning a model able to
classify such samples is more sophisticated than single label data. The algorithms
which classify multi-label data are divided into two main categories [2]. Some of
the algorithms transform the multi-label problem into the single label. For exam-
ple Binary Relevance algorithm [3] is one of the transformation methods which
constructs a model for every label. The trained model classifies the samples that
belong to every class from those doesn’t. Another category of multi-label learn-
ing algorithms adapts existing single label classifiers to classify multi-label data.
One of the most known adaptive algorithms is Multi-label K-Nearest Neighbors
(ML-KNN) [4] that is based on single label KNN.

The quality of features influences the performance of multi-label learning.
The importance of feature selection as a preprocessing step of learning task has
been clarified in many related studies [5–8]. Feature selection is the process of
reducing irrelevant and redundant features which aim to improve classification
performance. However removing such features can increase learning accuracy,
elimination of useful and relevant features reverse the classification efficiency.
So feature selection is a challenging crucial task mainly due to a massive search
space, where the total number of possible solutions is 2n for a dataset with n fea-
tures [9]. Since feature selection algorithms try to choose the best combination
of features, the task could be considered as an optimization problem. Evolution-
ary computation (EC) techniques as one of the most efficient groups of search
techniques are applied for feature selection because of their popularity for global
search ability.

Generally, feature selection is a multi-objective problem. Two conflicting
objective functions are the number of features which is desirable to be decreased
and the accuracy of classification which should be maximized. Although fea-
ture selection can increase the accuracy of the classification task, the excessive
reduction of relevant features will reduce accuracy. Therefore, the main goal of
feature selection is to minimize the number of features while maintaining an
acceptable classification accuracy. Most recently, some feature selection meth-
ods based on multi-objective optimization algorithms have also been proposed
[10–12]. Since feature selection is basically a binary optimization problem, apply-
ing metaheuristic algorithm with binary representation and operators is well-
suited to solve it.

This paper proposes a novel binary mutation for Differential Evolution
(DE) [13,14] for multi-label feature selection. This operator works based on
majority voting of selected solutions in population and opposition-based learn-
ing (OBL) [15,16]. The operator is utilized in Generalized Differential Evolution
(GDE3) [17] to generate new solutions. Results show that applying metaheuristic
algorithms with continuous scheme degrades the diversity of obtained candidate
solutions for a binary optimization problem such as feature selection. So, the
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proposed binary method supports the well-distribution of resulted Pareto front
solutions. The remaining parts of this paper are organized as follows. Section 2
presents a background on GDE3 and definition of objective functions. Section 3
details a description of the proposed method. The performance of the proposed
method is investigated for various multi-label datasets in Sect. 4. This paper is
concluded in Sect. 5.

2 Background Review

2.1 Generalized Differential Evolution (GDE3)

The DE is an evolutionary algorithm originally for solving continuous optimiza-
tion problems which improves initial population using the crossover and muta-
tion operations. Creation of new generation is done by a mutation and a crossover
operator. The mutation operator for a gene, j, is defined as follows.

vj,i = xj,i1 + F.(xj,i2 − xj,i3) (1)

Applying this operator generates a new D dimensional vector, vi, using three
randomly selected individuals, xj,i1 , xj,i2 , and xj,i2 from the current popula-
tion. Parameter F , mutation factor, scales difference between two vectors. The
crossover operator changes some or all of genes of parent solution based on
Crossover Rate (CR) parameter as follows.

jrand = floor(randi[0, 1).D) + 1
for(j = 1; j ≤ D; j = j + 1)
{

if(randj [0, 1) < CR)
uj,i = vj,i

else

uj,i = xj,i

}

(2)

Similar to other population-based algorithms, the single objective version
of DE starts with a uniform randomly generated population. Next generation is
created using mentioned mutation and crossover operations; then best individual
(between parent and new individual) is selected based on objective value; which
is called a greedy selection. It continues to meet a stopping criterion such as a
predefined number of generations.

There are also several variants of DE based algorithms for multi-objective
optimization. The first version of Generalized Differential Evolution (GDE) [18]
changed the selection mechanism for producing the next generation. The idea in
the selection was based on constraint-domination. The new vector is selected if it
dominates the old vector. Other sections of the algorithm including mutation and
cross-over operations remain as the single objective version of DE. GDE2 [19],
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the next version of multi-objective DE algorithm, added the crowding distance
measure to decide selection between old and newly generated vectors. If both
vectors are non-dominating each other, the vector with a higher crowding dis-
tance will be selected.

The third version of GDE (GDE3) extends DE algorithm for multi-objective
optimization problems with M objectives and K constraints. DE operators are
applied using three randomly selected vectors to produce an offspring per parent
in each generation. The selection strategy is similar to the GDE2 except in two
parts: 1. Applying constraints during selection process. 2. The non-dominating
case of two candidate solutions. Selection rules in GDE3 are as follows: when
old and new vectors are infeasible solutions, each solution that dominates other
in constraint violation space is selected. In the case that one of them is feasible
vector, feasible vector is selected. If both vectors are feasible, then one is selected
for the next generation that dominates other. In non-dominating case, both
vectors are selected. Therefore, the size of the population generated may be
larger than the population of the previous generation. If this is the case, it
is then decreased back to the original size. Selection strategy for this step is
similar to NSGA-II algorithm [20]. It sorts individuals in the population, based
on the non-dominated sorting algorithm and crowding distance measure. The
population is sorted into a hierarchy of sub-populations based on the ordering
of Pareto dominance. Then the selection of solutions starts from first ranks until
the number of the selected solutions exceeds the size of the initial population.
The remaining members of the population are chosen from subsequent non-
dominated fronts in the decreasing order of crowding distance. Similar to other
population-based multi-objective algorithms, the selected individuals go to the
next generation to continue optimization processing.

2.2 Objective Functions for Multi-label Feature Selection

The goal of feature selection as a preprocessing method in machine learning is
the selection of best features to enhance of classification error and computational
cost. However, without enough relevant features, the learning algorithm will fail
to classify samples. So the rate of selected features and classification accuracy
are two conflicting objectives for multi-objective optimization feature selection
problems. So the number of selected features divided by the total number of
features, a real value in the interval (0, 1], should be minimized as the first
objective. The second objective function should be a measure to evaluate the
quality of selected features in the classification task. Hamming loss is the most
well-known measures for this purpose. It is defined as follow:

hloss(h) =
1
p

∑ 1
q
|h(xi)ΔYi| (3)

where p and q are the number of labels and the number of samples, respectively.
h(xi) represents the result of classification for ith sample (xi) in the dataset
and Yi shows the actual labels of that sample. Hamming loss computes for every
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sample the differences (Δ) between predicted labels and actual labels and then
averages over the obtained differences for total samples of the dataset. The goal
of the optimization algorithm of feature selection is the minimization of hamming
loss as the second objective function. Since two mentioned objective functions
conflict with each other, similar to other multi-objective optimization problems,
the proposed algorithm results a set of non-dominated solutions (feature sub-
sets).

3 Binary GDE3 for Multi-label Feature Selection

The main version of GDE3 was designed for continuous multi-objective optimiza-
tion. Feature selection is inherently a binary optimization problem. The problem
dimension is equal to the number of features. So every gene of representation
indicates the selection (1) or non-selection (0) of each feature. A straightforward
method to use continuous operators to solve feature selection problem can be
explained as follows. The initial population is produced uniform randomly in
continuous search space so that every gene is a real value in the interval [0, 1].
To calculate objective functions, the scheme should be converted to a binary
number with a simple mapping. The value of variable smaller (greater) than
0.5 is changed to 0 (1) to indicate non-selection (selection) of the corresponding
feature. So a temporary binary vector is produced just before the evaluation
step. Although this method is simple, it causes many-to-one mapping problem
for the search process. All values of variables in interval [0, 0.5) are mapped to 0
and values in [0.5, 1] are mapped to 1. So there are not any differences between
the two solutions even with the non-equal value of one variable which are in the
same interval (for example 0.25 and 0.45). This case maybe occurs especially
when new variable produced by continues mutation operator of DE remained in
the same interval of parent solution. Therefore this issue decreases exploration
power of an evolutionary algorithm for the binary optimization problem.

In this paper, a binary version of GDE3 (BGDE3) for multi-label feature
selection is proposed. Binarization can be performed during the initialization
and crossover without any changes. Similar to the main GDE3, the algorithm
starts with a uniform randomly initialized population but using binary vectors
in the length of the number of total features. Since in the crossover process-
ing, the values of genes are exchanged, this operator also cannot disturb the
binary structure of vectors. The only problem is with mutation operation which
is addressed in this paper. In each generation for every target vector, a candidate
solution is produced using the proposed binary mutation operator. The operator
is based on the majority voting between the target vector and two randomly
selected vectors from the population. The addition and subtraction arithmetic
operators in DE mutation are replaced with majority voting discrete operator.
Every variable of new candidate solution is obtained using the voting of values
(0, 1) of voters variables. In feature selection problem, it is expected to gather
best features of voters using majority voting. The proposed mutation operator
is defined as follows:
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uj,i = vote(xi, xi, xr1 , x̆r2)
if(randj [0, 1] < OPR)

uj,i = ŭj,i

else

uj,i = uj,i

(4)

where OPR (opposition rate) is a random number between 0 and 1 which deter-
mines the rate of applying voting or opposite of voting for producing new vectors.
uj,i and xi are new produced individual and parent individual respectively. xr1

and xr2 are also two randomly selected vectors from population. The parent is
duplicated to emphasize the role of the current solution. Since the number of vot-
ers is even (4 votes), in the event of a tie, the value of parent gene is considered.
˘ indicates the opposite of a point which is defined based on opposition based
learning (OBL). The idea of opposition based operators confirms that searching
both a random direction and its opposite simultaneously gives a higher chance
to find the promising regions [15,21]. The mathematical definition of opposition
of D dimensional binary point is defined as [22]:

Let X(x1, x2, . . . , xD) be a binary vector in D-dimensional space where xi ∈
{0, 1}, i = 1, 2, . . . ,D. The opposite point of X is defined by X̆(x̆1, x̆2, . . . , x̆3)
where x̆i = 1 − xi, i = 1, 2, . . . ,D.

It works similar to Not logical operator for a binary vector. Switching between
voting and opposite voting, with defined OPR rate, leads to a better diversity in
producing candidate solutions because especially in large-scale datasets, apply-
ing majority voting alone creates sparse vectors (candidate solutions with a lot
of zero). The reason for this issue can be explained as follows: as it is mentioned
before, one of the objective functions for feature selection is the number of fea-
tures. This objective is a stronger objective (i.e., high impact objective) in com-
parison with classification error because decreasing in classification error obtained
harder than changes the number of features. Therefore candidate solutions with
few numbers of features can dominate other individuals in the population. As the
algorithm progress, vectors with the fewer number of features (more genes with
zero value) are produced, and majority voting also accelerates creating such vec-
tors. To promote search regions of solutions with more features (more genes with
value 1) and less classification error, applying opposition based voting operator
is necessary. Figure 1 shows an example for mutating parent and two randomly
selected solutions using the proposed operator. As it is presented, the parent solu-
tion is duplicated and the opposition of one of the two randomly selected solutions
is computed. Then voting or opposite voting of four vectors (parent, duplicated
parent, first selected solution, opposition of second selected solution) are consid-
ered as the new solution according to OPR.

The remaining of the algorithm including selection strategy is similar to
GDE3. Of course, feature selection is an optimization problem with any con-
straint, so selection between new and old individuals is made based on non-
dominating sorting method and crowding distance measure as mentioned in the
previous section.
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Fig. 1. An example of BGDE3 mutation operator.

4 Experiments

4.1 Datasets and Settings

To evaluate the performance of the proposed method, standard multi-label
datasets are considered. Table 1 presents the description of datasets in terms of
the domain, number of features, number of training and test sets and the num-
ber of labels. These datasets are benchmark datasets from various application
domains including image, biology, audio, and text. The datasets are originally
split into training and test set based on MULAN library [23] which datasets are
taken from. The optimization process is done on the training set, and then its
performance is reported on the test set.

Table 1. Multi-label datasets used in the experiments.

Datasets Domain #Training instances #Test instances #Labels #Features

Emotions Music 391 202 6 72

Scene Image 1211 1196 6 294

Yeast Biology 1500 917 14 103

Birds Audio 322 323 19 260

Genbase Biology 463 199 27 1186

Medical Text 645 333 45 1449

Enron Text 1123 579 53 1001

The BGDE3 algorithm is compared with GDE3 to show that binary version
can achieve competitive performance compare to the continues version. For eval-
uating every combination of selected features, a classifier algorithm is required.
ML-KNN is the most well-known multi-label classifier which is adopted from
the single label KNN classifier. It determines the label of unseen data based on
the majority of K neighboring samples. K is set to 10 in experiments accord-
ing to reference [4]. The population size and maximum iteration number are
set to 100 and 300, respectively. BGDE3 is implemented with the parameter of
OPR = 0.8 and GDE3 with parameters of CR = 1 and F = 0.5. For each dataset,
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two algorithms have been run ten times, independently. So at the end of every
run, a Pareto front has resulted. The non-dominated solutions in the union of
ten Pareto fronts for each dataset are determined as the best Pareto front [24].

4.2 Results and Discussion

Resulted best Pareto fronts as explained in previous section are presented in
Fig. 2. In each chart, the horizontal axis indicates the number of selected features
and the vertical axis represents the classification error rate, the Hamming Loss.
On the top of each chart, the number in the bracket shows the classification error
rate using all features. As it is presented, BGDE3 achieved more diversity of non-
dominated solutions than GDE3 in most cases. Applying continuous operator
on binary optimization problem limits search space, while the proposed binary
operator empowers exploration of the multi-objective algorithm. Although the
deep search (fine-tuning) of GDE3 in a limited PF region leads to decreasing
classification error rate, the results generally suggest that BGDE3 obtain more
feature subsets with a fewer number of selected features and better classification
performance than GDE3.

In order to test the performance of BGDE3, it is compared with GDE3
in terms of three important evaluation metrics of multi-objective optimization
algorithms: Set coverage (SC) [25], Hypervolume (HV) indicator [26], and Pure
diversity (PD) [27]. Set coverage of two algorithms indicates the rate of solutions
on Pareto front of one algorithm which are dominated using solutions of another
algorithm. For example SC(A, B) = 0.25 means that the obtained final solutions
of algorithms A dominate 25% of the solutions resulted from algorithm B. The
comparison of two algorithm on set coverage measure is presented in Table 2.
The results are computed based on best Pareto fronts of the algorithms. As seen
in the table BGDE3 has achieved higher set coverage than GDE3 in five out of
seven datasets.

Table 2. Comparison of BGDE3 and GDE3 on set coverage metric.

Datasets Genbase Emotions Birds Enron Yeast Medical Scene

SC(BGDE3, GDE3) 0.650 0.250 0.615 0.529 0.250 0.231 0.438

SC(GDE3, BGDE3) 0.167 0.400 0.231 0.148 0.348 0.105 0.179

HV indicator is desired to measure the closeness of the estimated solutions
to the true Pareto front. It gives the volume of the dominated portion of the
objective space bounded from below by a reference point. In a minimization
problem, the maximum value for each objective function could be considered as
a reference point. Table 3 shows the results of worst, best, mean and standard
deviation of HV indicator for BGDE3 and GDE3 for 30 independent runs. Since
the binary operator gives a more distributed solutions than continuous GDE3’s



Opposition-Based Multi-objective DE for ML Feature Selection 561

0 100 200 300 400 500 600 700 800 900 1000

Number of Features

0

0.005

0.01

0.015

0.02

0.025

0.03

H
am

m
in

g 
Lo

ss

Best Pareto of Genbase dataset (0.0043%)

BGDE3
GDE3

0 10 20 30 40 50 60 70

Number of Features

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

H
am

m
in

g 
Lo

ss

Best Pareto of Emotions dataset (0.2137%)

BGDE3
GDE3

0 20 40 60 80 100 120 140 160 180 200

Number of Features

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

H
am

m
in

g 
Lo

ss

Best Pareto of Birds databet (0.048%)

BestBGDE3
BestGDE3

0 100 200 300 400 500 600 700 800 900

Number of Features

0.04

0.045

0.05

0.055

H
am

m
in

g 
Lo

ss

Best Pareto of Enron dataset (0.052%)

BGDE3
GDE3

0 10 20 30 40 50 60 70

Number of features

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

H
am

m
in

g 
lo

ss

Best Pareto of Yeast dataset (0.2005%)

BGDE3
GDE3

0 200 400 600 800 1000 1200

Number of Features

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

H
am

m
in

g 
Lo

ss

Best Pareto of Medical dataset (0.0153%)

BGDE3
GDE3

0 20 40 60 80 100 120 140 160 180 200

Number of features

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

H
am

m
in

g 
lo

ss

Best Pareto of Scene dataset (0.0962%)

BGDE3
GDE3

Fig. 2. Best Pareto front for every dataset.
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Table 3. Comparison of BGDE3 and GDE3 on hyper volume indicator.

Datasets Genbase Emotions Birds Enron Yeast Medical Scene

BGDE3 Worst 0.990 0.835 0.941 0.951 0.822 0.985 0.915

Best 0.992 0.842 0.942 0.952 0.824 0.986 0.917

Mean 0.991 0.839 0.941 0.952 0.823 0.985 0.916

Std 0.001 0.002 0.000 0.000 0.001 0.000 0.000

GDE3 Worst 0.593 0.731 0.677 0.586 0.653 0.578 0.621

Best 0.630 0.776 0.743 0.689 0.732 0.663 0.709

Mean 0.605 0.744 0.702 0.619 0.701 0.608 0.662

Std 0.013 0.015 0.022 0.036 0.026 0.031 0.028

operator, results in the table reports that the proposed algorithm has the better
performance according to the HV indicator.

PD is a novel metric which indicates the sum of the dissimilarity of obtained
solutions to the rest of the population in a greedy order, and the solution with
the maximal dissimilarity has the highest priority to accumulate its dissimilar-
ities [28]. Table 4 shows the worst, best, average and standard deviation of PD
for 30 runs of both algorithms. As seen in the table, BGDE3 significantly yields
high value of PD and is desired for achieving a better distribution of solutions
especially in high dimensional search space. In all datasets, binary operator of
BGDE3 produces more distributed solutions while GDE3 with changes in con-
tinuous value of genes leads to many to one mapping in binary space. This
difference is more remarkable in datasets where with a relatively large number
of features. To determine whether the difference among measures ratios of algo-
rithms is significant, the Student’s t-test was performed on the means of HV
and PD values where the significance level was set as 0.05 (or confidence interval
is 95%). It is found that BGDE3 approach is significantly better regarding pre-
dictive accuracies and feature subset size as compared to the GDE3 approach.

5 Conclusion and Future Work

This paper has proposed a binary version of GDE3 for multi-label multi-objective
feature selection. Two objective functions, the number of features and classifi-
cation error rate, are considered in the algorithm. The binary operator has been
proposed based on majority voting and opposition based voting to produce new
well-distributed candidate solutions (features subsets). The proposed method
was examined and compared with GDE3 on seven standard datasets. Experi-
mental results show that BGDE3 can achieve more and better feature subsets
than GDE3. This paper finds that utilizing binary operator to search the fea-
ture selection problem space can result in more diverse non-dominated solutions
instead of the continuous operator. Since deep searching of GDE3 decreases
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Table 4. Comparison of BGDE3 and GDE3 on pure diversity.

Datasets Genbase Emotions Birds Enron Yeast Medical Scene

BGDE3 Worst 104.99 174.05 80.76 92.63 175.41 81.70 160.08

Best 248.63 291.73 160.59 167.16 241.26 126.28 283.52

Mean 168.09 215.59 119.09 137.42 208.63 103.12 220.94

Std 45.13 35.65 28.81 22.83 20.08 14.34 38.99

GDE3 Worst 12.63 98.67 39.48 15.49 87.55 24.20 50.65

Best 51.10 183.64 75.15 41.41 157.59 40.31 92.30

Mean 32.48 124.32 55.82 32.08 127.47 31.73 63.25

Std 10.80 27.12 11.34 8.48 23.84 5.05 14.45

error classification in some limited space (in other words, it converts many-to-
one mapping to a one-to-one mapping), in the future, we intend to investigate
the use of local search for improving exploitation power of the proposed method.
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Abstract. In this work, we propose a dynamic multi-objective local
search (MOLS) algorithm whose parameters are modified while it is
running and a protocol for automatically configuring this algorithm.
Our approach applies automated configuration to a static pipeline that
sequentially runs multiple configurations of the MOLS algorithm. In
a series of experiments for well-known benchmark instances of the
bi-objective permutation flowshop scheduling problem, we show that
our dynamic approach produces substantially better results than static
MOLS, and that longer pipeline (with a higher number of parameters)
outperform shorter ones.

Keywords: Algorithm configuration ·
Multi-objective combinatorial optimisation · Local search

1 Introduction

Many metaheuristic algorithms for solving multi-objective optimisation prob-
lems have parameters that highly affect their performance, and that should be
set to different values to achieve good performance for various types of problem
instances. The problem of configuring such parameters for optimised perfor-
mance can be approached in an off-line or on-line manner. Static algorithm con-
figuration approaches can handle many parameters but provide configurations
that can be highly specific to a given set or distribution of problem instances (see,
e.g., [10,14]). Dynamic configuration approaches adapt parameters during the
run of a given algorithm but generally consider only one or two parameters
(see, e.g., [11]); they can, in principle, achieve robust performance over a broad
range of problem instances. In this work, we leverage the advantages of both
types of approaches by considering a framework in which we switch between
different configurations of a multi-objective optimisation algorithm while it is
running on a given problem instances. We determine these configurations, and
c© Springer Nature Switzerland AG 2019
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the static schedule we use for switching between them, using a general-purpose,
static algorithm configurator. Our approach thus represents a simple mechanism
for dynamically changing many algorithm parameters in a way that optimises
overall performance on a given type of problem instances.

The bi-objective permutation flowshop scheduling problem (bPFSP), in
which makespan and total flowtime are to be minimised, is a prominent
and widely studied combinatorial multi-objective optimisation problem. The
bPFSP can be solved effectively by multi-objective local search (MOLS) algo-
rithms [6,12]; in the design of these algorithms, multiple design choices are
encountered, and when using them, several parameters have to be set. Therefore,
MOLS algorithms for the bPFSP provide an excellent test bed for our dynamic
configuration approach.

The remainder of this article is organised as follows. First, in Sect. 2, we intro-
duce our dynamic algorithm framework and a protocol to automatically configure
it. Then, in Sect. 3, we describe the multi-objective local search algorithm. Sec-
tions 4 and 5 detail the setup of our experimental study and the results obtained
from it, respectively. Finally, Sect. 6 provides some conclusions and perspectives
on future work.

2 Automatic Design of a Dynamic Algorithm

2.1 Static vs Dynamic Design Approaches

Over the last decade, automatic algorithm configuration (AAC) techniques have
been increasingly exploited in the off-line design of high-performance heuris-
tic algorithms, such as metaheuristics. These algorithms present design choices,
such as strategy components, and tunable parameters that heavily affect their
performance. In the following, we will assume that all design choices have been
exposed as parameters.

Given a parametrised target algorithm A, a configuration θ is a specific set-
ting of all the parameters of A. The configuration space Θ of A is the set of
all valid configurations. Automated algorithm configuration (AAC) can be seen
as an optimisation problem, where the objective is to determine one or more
configurations that lead to the best performance for a given set or distribution
of problem instances. AAC can be seen as a supervised, off-line learning process,
in which training instances are used to learn and determine the best configura-
tions of the given target algorithm. This configuration is then fixed and used,
in a completely static manner, whenever A is run on new problem instances.
Prominent AAC procedures include irace [14] and ParamILS [10], which opti-
mise a single configuration objective, and MO-ParamILS, a recent extension of
ParamILS that handles multiple configuration objectives [1].

In parallel with AAC procedures, dynamic algorithm design techniques have
been proposed [11] to permit the modification of strategy components or numer-
ical parameters of a given target algorithm A while it is running. These so-
called parameter control approaches use techniques such as multi-armed ban-
dits [8] or adaptive pursuit [19] to dynamically determine good parameter
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settings in response to observations made while trying to solve a given prob-
lem instance. However, the number of configurations of A that can be handled
by such approaches is very limited.

In this work, we are interested in algorithms that expose several design
choices, in the form of categorical parameters. This scenario falls outside of most
dynamic design scenarios, as they usually deal with a single numerical parameter
or very few categorical choices. Nevertheless, we want to be able to dynamically
modify parameters while running our target algorithm, and to this end, we intro-
duce a framework that successively runs several configurations, in the form of
a static pipeline, which we configure using a standard, general-purpose AAC
procedure.

2.2 A Dynamic Algorithm Framework

Given a configurable algorithm A and its configuration space Θ, we use Aθ,T

to denote A under configuration θ ∈ Θ with cut-off time T . Then, we define
the dynamic algorithm FA

(θi,Ti)k
as a pipeline with k stages, which sequentially

runs Aθ1,T1 ,Aθ2,T2 , . . . ,Aθk,Tk
. Specifically, when applied to a multi-objective

optimisation problem, we first run A under configuration θ1, starting from a
initial set of solutions, up to time T1. At that point, we switch to configuration
θ2 and continue our computation from the current set of solutions, with a cut-off
time of T2. We note that A is not restarted when switching between configu-
rations. Overall, the maximum running time of the dynamic algorithm is then
T =

∑k
i=1 Ti.

Figure 1 depicts two examples of dynamic algorithms FA and F ′A. While F
uses k = 3 configurations to divide the total time budget into three intervals of
equal duration, F ′ uses k = 4 configurations, of which two are run quickly in
the beginning, after which more time is allocated to last two configurations.

The configuration space of our framework comprises the Cartesian product
Θk, the time budgets T1, . . . , Tk and the integer k ≥ 1. For k = 1, our framework
degenerates to the original, static target algorithm A.

2.3 Automatic Configuration of Our Framework

The purpose of this work is to assess the performance gains that can be obtained
by switching between different configurations of an algorithm A while it is run-
ning. Towards this end, we use a general-purpose, static algorithm configurator
to configure the framework introduced in the previous section. Since the size of
the configuration space exponentially increases with the maximum number of
pipeline stages, K, we only consider a fixed number sk of different cut-off times
for each stage, where k is the number of actual pipeline stages used in a spe-
cific instantiation of our framework. This leads to a configuration space of size∑K

k=1 sk · |Θ|k. Using this approach, we can also assess the influence of K and
sk (for k = 1, . . . , K) on the performance achieved by automatically configuring
our dynamic algorithm framework.
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Fig. 1. Two examples of dynamic algorithms, FA and F ′A

2.4 Related Work

In addition to being conceptually related to adaptive algorithms or hyper-
heuristics, since it enables modifications of the configuration of an algorithm
while it is running, our approach also bears resemblance to per-instance algo-
rithm scheduling [13]. There are, however, several major differences. Firstly,
per-instance algorithm scheduling uses instance features to determine which of
a given set of distinct algorithms to run, one after the other, on a given prob-
lem instance; in contrast, our approach uses different configurations of a single
algorithm and does not require instance features. Secondly, in per-instance algo-
rithm scheduling, results are not passed from one stage of the schedule to the
next, while in our pipeline approach, each stage continues from the result of the
previous stage – as explained previously, it can thus be seen as a single algo-
rithm whose parameter configuration changes while running on a given problem
instance. Finally, the primary goal of per-instance algorithm scheduling is robust-
ness resulting from performance complementarity between the algorithms in the
schedule; the goal of our approach is to achieve improvements over the perfor-
mance of the static version of the given target algorithm, which uses a single
configuration for the entire run, based on the idea that different configurations
are best suited for different phases of solving a given problem instance.

3 Multi-objective Local Search

In the following, we consider a Pareto optimisation approach to solve the bi-
objective permutation flowshop scheduling problem. More precisely, we focus on
multi-objective local search algorithms, since they are known to provide good
solutions to classical multi-objective permutation problems [2,7,12].

3.1 The MOLS Framework

Stochastic local search (SLS) algorithms are widely used for solving a broad range
of NP-hard problems, including many single-objective optimisation problems [9].
The key idea is to iteratively improve a candidate solutions, by choosing, in each
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step, a neighbouring solution to move to, making use of randomisation to bal-
ance intensification and diversification. SLS algorithms have also been developed
for multi-objective optimisation problems, where they operate on a set of non-
dominated candidate solutions dubbed an archive. Among the most widely used
SLS methods for multi-objective optimisation problems we find Pareto Local
Search (PLS) [17] and its numerous variants, such as the stochastic PLS [5], the
iterated PLS [16] and the anytime PLS [7], and the Dominance-based Multi-
Objective local search [12].

Recently, Blot et al. have proposed a generic local search framework that
encompasses most of the multi-objective local search (MOLS) algorithms of the
literature as well as many new variants [3]. A MOLS algorithm iterates over
several phases: selection of solutions within the current archive, exploration of
these solutions, and archiving of the neighbouring solutions that have been vis-
ited. Similarly to single-objective local search algorithms, iterated local search
(ILS) approaches have been developed, which add a perturbation phase designed
to more effectively explore of the underlying search space [15]. Within the generic
MOLS framework, different strategies can be selected for each of these phases
in order to optimise performance for a given set or distribution of benchmark
instances.

3.2 MOLS Component Strategies

In the following, we explain the different components of the MOLS algorithms
and describe the strategies available for instantiating them in our experiments
(see Sect. 5). Since our investigation is focussed on these strategies, all numerical
parameters have been set to values determined in previous work [2].

Initialisation. First step of MOLS, in which one or more solutions are gener-
ated from which the search process is started. Here, 10 solutions are generated
uniformly at random; these form the initial archive.

Selection. Solutions are chosen within the current archive according to strategy
select strat. One option is to select all solutions in the archive; alternatively,
a subset of s solutions can be selected uniformly at random, or according to their
age (i.e., the time they have been in the archive), among the newest or the
oldest. In our experiments (see Sect. 5), s has been set to 1.

Exploration. The neighbourhood of each solution that has been selected in the
previous step is explored, and an archive of candidate solutions is created, con-
taining some of the visited neighbours. The strategy for exploring the neigh-
bourhood (explor strat) can either involve exploring it entirely or partially,
using different techniques for comparing new candidate solutions with those in
the current archive. In the first case, the all and all imp strategies evaluate
all the neighbours of the selected solution and consider as candidates either all
non-dominated or all dominating neighbours, respectively. On the other hand,
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Table 1. Configuration space of MOLS considered in our experiments.

Parameter Values

select strat {rand, all, new, old}
explor strat {imp, ndom, imp ndom, all, all imp}
perturb strat {restart, kick, kick all}

the exploration may end before all the neighbours have been visited, when r non-
dominated neighbours have been evaluated (ndom), or when r dominating neigh-
bours have been found. In this last case, either only the dominating neighbours
are kept (imp), or dominating neighbours as well as all visited non-dominated
neighbours (imp ndom) are considered as candidate solutions. In the following
experiments (see Sect. 5), r has been set to 5.

Archiving. All candidate solutions identified in the exploration phase are added
to the current archive; then, dominated solutions are removed from the archive.

Perturbation. In order to facilitate exploration of the search space, the pertur-
bation strategy (perturb strat) can either restart the search process, or merely
kick (i.e., remove) solutions from the current archive. A restart is performed by
forming a new archive, as in the initialisation phase. The kick strategy replaces
one or more solutions by neighbours selected uniformly at random. It can be
applied to either r solutions in the current archive (kick), or to all the solutions
in the archive (kick all). In the following experiments (see Sect. 5), r has been
set to 1.

Table 1 shows all strategies we considered when configuring our MOLS frame-
work; these jointly give rise to 60 (4 × 5 × 3) different configurations of MOLS.

4 Experimental Setup

Benchmark Sets for the bPFSP. As previously mentioned, we are considering a
bi-objective version of the classical Permutation Flowshop Scheduling Problem
(PFSP), which involves scheduling a set of n jobs {J1, . . . , Jn} on a set of m
machines {M1, . . . ,Mm}. In the PFSP, each machine can only process one job
at a time, and each job Ji is sequentially processed on each of the m machines,
with fixed processing times {pi,1, . . . , pi,M }. Furthermore, the jobs are processed
in the same order on every machine. Therefore, each solution of a PFSP instance
(called the schedule) can be represented by a permutation of jobs of size n. In
the bi-objective PFSP (bPFSP), two objectives are considered: the makespan
and the flowtime of the schedule, where makespan is the total completion time,
and flowtime is the sum of the individual completion times of the n jobs. We
use a widely studied set of benchmark instances proposed by Taillard [18]. It is
known that the difficulty of these instances increases with the number of jobs. We
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evaluated our approach on 6 sets of 10 Taillard instances each, with 20 jobs and
20 machines, 50 jobs and 5 machines, 50 jobs and 10 machines, 50 jobs and 20
machines, 100 jobs and 10 machines and 100 jobs and 20 machines, respectively.

Dynamic MOLS for the bPFSP. We used the implementation of MOLS for
the bPFSP provided by Blot et al. [2] and considered two instantiations of our
dynamic algorithm framework described in Sect. 2.2, with up to K = 2 and K =
3 pipeline stages, respectively, and three ways of dividing the overall running
times between the pipeline stages: For K = 2, we used (T1, T2) = (1/4, 3/4) · T ,
(1/2, 1/2) · T and (3/4, 1/4) · T , where T is the overall cut-off time, while for
K = 3, we considered (T1, T2, T3) = (1/3, 1/3, 1/3) · T , (1/4, 1/4, 1/2) · T and
(1/2, 1/4, 1/4) · T . Therefore, whilst the basic MOLS algorithm has 60 distinct
configurations, the dynamic MOLS algorithm, dubbed D-MOLS, has 60 + 3 ·
602 ≈ 1.1 · 104 configurations for K = 2, and 60 + 3 · 602 + 3 × 603 = 6.6 · 105

configurations for K = 3 stages. We note that this configuration space is very
large compared to on-line algorithms from the literature, which typically involve
only very few configurations. In our experiments, we chose an overall cut-off time
of T = n2ṁ/1000 for D-MOLS.

Automatic Configuration of D-MOLS. Blot et al. [2] showed that a multi-
objective AAC is the best approach to automatically configure multi-objective
algorithms such as MOLS. Therefore, in order to configure D-MOLS, we used
the state-of-the-art multi-objective algorithm configurator MO-ParamILS [1],
with two performance indicators: unary hypervolume [20], a volume-based con-
vergence performance indicator, and Δ spread [4], a distance-based distribu-
tion metric. In order to simplify the use of MO-ParamILS and interpretation
of results, we used a variant of hypervolume, denoted 1 − HV , in which after
normalisation to the interval [0, 1], the hypervolume values are subtracted from
1, so that both indicators (1 − HV and Δ) need to be minimised.

To obtain training sets to be used as the basis for automatic configuration, we
generated uniformly at random a set 100 instances for each the six instance size
we considered, following the same protocol as Taillard [18]. Since MO-ParamILS
is a stochastic algorithm, we performed 20 independent runs for each config-
uration scenario, each with 1000 and 10 000 runs of D-MOLS for K = 2 and
K = 3, respectively. Then, the best of the 20 resulting D-MOLS configurations
(according to performance on the respective training set) was evaluated on the
10 Taillard instances in each of our testing sets, based on 15 independent runs.
The performance indicators – hypervolume and spread – reported for a single
D-MOLS configuration were obtained by averaging the respective values over
the 15 independent runs and the 10 instances per set.
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5 Experimental Results

First, we present results for D-MOLS, our dynamic version of MOLS, for the
bPFSP for K = 2 and 3 pipeline stages, i.e., one or two changes in configuration
during each run. Next, we compare the results for D-MOLS with those for static
MOLS.

5.1 Evaluation of Dynamic MOLS

Table 2 shows the number of D-MOLS configurations in the Pareto-optimal
sets obtained from automatic configuration using MO-ParamILS; specifically,
for K = 2 and K = 3, we report the number of non-dominated configurations
with k = 1, 2 and 3 pipeline stages. For example, for the 20x20 scenario and
K = 3, we obtained 1 configuration for static MOLS, 7 for dynamic MOLS with
K = 2 and 9 for dynamic MOLS with K = 3 pipeline stages. For 8 of the 11
benchmark sets considered, all non-dominated D-MOLS configurations obtained
from MO-ParamILS had at least 2 pipeline stages k ≥ 2, which clearly indicates
the performance advantage gained by switching between configurations during
a single run of MOLS.

Figure 2 shows the Pareto fronts of D-MOLS configurations obtained in our
experiments with K = 2 (left) and 3 (right), respectively, for the benchmark
instances with 20 jobs and 20 machines. For K = 2, static MOLS (k = 1) achieves
better hypervolume, while D-MOLS(2) obtains better spread; for K = 3, on
the other hand, D-MOLS(2) and D-MOLS(3) yield better results w.r.t. both
indicators. Figure 3 shows the our results for benchmark instances with 50 jobs
and 20 machines. As also seen in Table 2, no configurations from static MOLS
are found in the final Pareto sets; furthermore, the sets of configurations from
both D-MOLS scenarios are well distributed over the Pareto front.

5.2 Performance of the Dynamic vs Static MOLS

In this section, we further assess the performance of our dynamic MOLS algo-
rithm against static MOLS. Since there are only 60 configurations of static

Table 2. Number of non-dominated D-MOLS configurations determined through auto-
matic configuration (see text for details).

Instances K = 1 K = 2 K = 3

k = 1 k = 2 k = 1 k = 2 k = 3

20 × 20 20 5 4 1 7 9

50 × 5 9 - 7 - 5 9

50 × 10 9 - 7 - 10 8

50 × 20 11 - 12 - 3 8

100 × 10 8 1 9 - 5 5

100 × 20 8 - 13 N/A N/A N/A
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Fig. 2. Performance of Pareto-optimal D-MOLS configurations for the 20x20 bench-
marks.
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Fig. 3. Performance of Pareto-optimal D-MOLS configurations for the 50x20 bench-
marks.

MOLS, we were able to evaluate all of them. Figure 4 shows the Pareto fronts
of configurations for static MOLS (K = 1) vs dynamic MOLS for K = 2 and
K = 3. Only few of the 60 configurations of MOLS ended up in the Pareto-
optimal sets for each of our benchmarks. We further note that for each instance
size, the Pareto fronts obtained for K = 2 and K = 3 are of roughly similar size.
For 50x10, 50x20, 100x10 and 100x20, the configurations obtained for D-MOLS
are better distributed along the respective fronts. For 100x10 and 100x20, the
fronts obtained by static MOLS (K = 1) are very poorly distributed. Most
of the configurations are tightly clustered; this is particularly pronounced for
100x20, where there are two types of configurations that obtain either good
hypervolume or good spread, but never both. The configurations for dynamic
MOLS (K ≥ 2), on the other hand, are well distributed and cover a broad range
of tradeoffs between the objectives. Furthermore, the configurations for K = 1
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for details see text.
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are all dominated by those for K ≥ 2. For the smallest instance size, 50x5, we
observed a large improvement in hypervolume, while spread remains compara-
ble; this effect is less obvious for the 20x20 and 50x20 instances. For 50x20,
static MOLS dominates parts of the fronts for dynamic MOLS, likely as a result
of the large configuration spaces for K ≥ 2; nevertheless, for K ≥ 2, more homo-
geneous Pareto fronts of configurations are obtained. For 20x20, all three fronts
are quite close to each other and reasonably well distributed, with the configu-
rations of dynamic MOLS (K ≥ 2) filling some of the gaps in the front obtained
for static MOLS. We note that, even though the fronts for K = 2 and K = 3
are roughly similar in size, the one for K = 3 contains more configurations and
is overall preferable.

6 Conclusions and Future Work

In this work, we have investigated the use of automatic algorithm configura-
tion techniques for generating dynamic algorithms that modify their parameters
while solving a given problem instance. Specifically, we proposed a dynamic
algorithm framework that can be automatically configured with a standard,
general-purpose algorithm configurator. Given a parameterised static algorithm,
using our approach, it is easy to automatically construct a dynamic version of the
algorithm whose parameter configuration is adjusted, according to an optimised,
static schedule, while it is running.

We evaluated this approach by applying it to a multi-objective local search
(MOLS) algorithm for the bi-objective permutation flowshop scheduling prob-
lem. Our experiments show that the dynamic MOLS algorithm obtained using
our approach shows better performance than the underlying static MOLS pro-
cedure on the widely studied Taillard instances.

In future work, we plan to analyse the behaviour of our dynamic MOLS
algorithm to further understand how the optimised configurations used by it
contribute to its overall performance. We also intend to apply our approach to
single- and multi-objective metaheuristic algorithms for other challenging com-
binatorial problems.
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Abstract. For many real world optimization problems, the objective
function is stochastic. When optimizing a stochastic function f , one has
to deal with the problem of varying outputs f(x,C) for the same input x
due to the effects of a random variable C. One possibility for optimizing
f is considering the expectation and standard deviation of f(x,C) and
choosing x such that the expected value of f(x,C) is optimal, e.g. min-
imal and the standard deviation of f(x,C) is minimal. This turns the
optimization of f into a biobjective optimization problem. We investi-
gate the optimization of expensive stochastic black box functions f(x,C)
with x ∈ R and C being a one dimensional random variable. Because f is
an expensive function, we want to evaluate it seldom. Therefore, we use a
surrogate model f̂ of f and numerical integration to estimate the expec-
tation E(f(x,C)) and the standard deviation S(f(x,C)). We perform a
simulation study to analyze how well our approach works and compare
it to a classic method. Our approach enables us to estimate E(f(x,C))
and S(f(x,C)) for each feasible x-value with a comparably high quality
and yields a good approximation of the true Pareto set at the cost of
requiring that C is observable.

Keywords: Biobjective optimization · Stochastic black box function ·
Metamodel

1 Introduction

Many optimization problems are influenced by random effects. Therefore, the
respective objective functions are stochastic. Such a stochastic function can be
denoted as f(x,C) where x is a decision vector and C is a random variable. In
this paper, we consider the case of f with real-valued output, x ∈ R and C being
a one dimensional random variable.

The evaluation of f in any point x does not yield a deterministic out-
put. Instead, f(x,C) is a random variable whose distribution depends on x.
The expectation E(f(x,C)) provides information about the central location of
the distribution when f is evaluated in x. It describes the expected output of
f(x,C). If f is evaluated in x many times, the mean output value will be close
to E(f(x,C)) (law of large numbers). A single evaluation of f in x does not
c© Springer Nature Switzerland AG 2019
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necessarily yield a value close to E(f(x,C)). The variance V(f(x,C)) gives the
expected quadratic deviation of an evaluation of f(x,C) from E(f(x,C)). It is
a measure of the spread of the distribution and can be used to assess the uncer-
tainty about how far f(x,C) will likely deviate from E(f(x,C)). As the variance
uses a quadratic scale, the standard deviation S(f(x,C)) =

√
V(f(x,C)) is often

used instead.
Our aim is the optimization of f by simultaneously optimizing the expecta-

tion E(f(x,C)) and the standard deviation S(f(x,C)). Depending on the con-
text, E(f(x,C)) is minimized or maximized. S(f(x,C)) is always minimized to
achieve small uncertainty. So, instead of the single-objective stochastic function
f , we optimize the biobjective deterministic function (E(f(x,C)),S(f(x,C))).

For many optimization tasks, the analytic form of the objective function is
not known and the budget for the optimization is small. Therefore, we assume
that f is an expensive stochastic black box function.

In the field of portfolio optimization the approach of optimizing a stochastic
black box function by the maximization of the expected value and the mini-
mization of a risk measure is very common. The risk is often assessed by the
variance or the standard deviation of f or domain specific quantities like the
value at risk. A very popular approach is the mean-variance model introduced
by Markowitz [8]. In this model, expectation and variance are scalarized to a
single objective function and then optimized. The portfolio optimization has
also been investigated as a multi-objective problem, see for example [10]. The
expectation and risk measure are estimated using empirical quantities.

Several methods for optimizing stochastic functions like the two-stage
stochastic multi-objective optimization are explained in [6]. The set of possi-
ble approaches for the optimization of stochastic functions presented in [6] also
includes the simultaneous optimization of E(f(x,C)) and a risk measure like
S(f(x,C)). The authors do not suggest a method for estimating E(f(x,C)) and
S(f(x,C)).

Paenke et al. [9] search for robust solutions of optimization problems. They
look at functions f where the design variables are disturbed by some random
effects. They estimate expectation E(f(x,C)) and variance V(f(x,C)) using
local approximation models and Monte Carlo integration.

In our approach, we estimate E(f(x,C)) and S(f(x,C)) which are defined as
integrals over terms that only consist of f and the probability density function
pC . We estimate E(f(x,C)) and S(f(x,C)) by building a metamodel for f ,
estimating pC and using numerical integration. Our approach requires C to be
observable. Our approach is similar to [9] but we use Kriging instead of a local
model and we estimate the probability density function pC . To the best of our
knowledge, nobody else has tried this specific approach before.

The remainder of this article is organized as follows: In the next section, the
fundamental concepts and methods Kriging, Pareto optimality and attainment
functions are explained. In Sect. 3, our and the classic approach for estimat-
ing expectation and standard deviation of f are described. The design of our
experiments for comparing the two approaches is explained in Sect. 4. In Sect. 5,
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we evaluate our experiments. Plots of the empirical attainment functions and
the Pareto sets are compared to assess the quality of the approximations of
the Pareto frontier and Pareto set. Concluding remarks and future work are
presented in Sect. 6.

2 Concepts and Methods

2.1 Kriging

Let x1, . . . , xd denote d points which are evaluated with a deterministic func-
tion f . Kriging is an interpolating method to build a metamodel f̂ of f using
the d given points. For that purpose, it is assumed that f(x1), . . . , f(xd) are
realizations of a gaussian random field. A numerical optimization is performed
to fit the model to the data. For more information on Kriging see [12].

2.2 Pareto Frontier and Pareto Set

Let f : X → R
m, f(x) = (f1(x), . . . , fm(x)) denote an objective function where

all components should be minimized. x ∈ X weakly dominates y ∈ X (notation:
x � y or f(x) � f(y)) if

∀i ∈ {1, . . . , m} : fi(x) ≤ fi(y).

The point x dominates the point y if it weakly dominates it and

∃i ∈ {1, . . . , m} : fi(x) < fi(y).

x� ∈ X is Pareto optimal if there is no x ∈ X which dominates it. The set of
all Pareto optimal points is called Pareto set and the corresponding image is the
Pareto frontier. For more information on Pareto frontiers and Pareto sets see [3].

2.3 Attainment Function

Let X1, . . . ,Xk denote k approximations of the same Pareto frontier resulting
from k optimization runs. Each approximation can be seen as a realization of
a random non dominated point set X �. X � = {X�

1 , . . . , X�
N} is a random set of

vectors in R
m. The attainment function allows analyzing the distribution of this

random set with respect to its location. A point z ∈ R
m is attained by the set

X � if
X�

1 � z ∨ . . . ∨ X�
N � z =: X � � z.

The symbol � denotes weak Pareto dominance. So, a point is attained by a set
if at least one element of the set weakly dominates the point. For each z ∈ R

m

the attainment function is defined as the probability that z is attained by X �:

a(z) = P (X � � z).
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The empirical attainment function estimates the attainment function. It is
defined as

e(X1, . . . ,Xk; z) =
1
k

k∑

i=1

I(Xi � z)

with I(·) : Rm 	→ {0, 1} denoting the indicator function and X1, . . . ,Xk the k
approximations of the true Pareto frontier.

For visualizing the empirical attainment function in the two dimensional
case, contour lines are plotted. These lines display the tightest set of points
which are attained for a given percentage of the k approximations of the true
Pareto frontier. These and further information on the attainment function can
be found in [4,5].

3 Approaches for Estimating Expectation and Standard
Deviation of f

3.1 General Idea

Let f(x,C) be a stochastic function where x ∈ R is a controllable parameter
and C is a one dimensional random variable. Our aim is optimizing f(x,C) by
minimizing the expectation

E(f(x,C)) :=

∞∫

−∞
f(x, c) · pC(c)dc

and the standard deviation S(f(x,C)) =
√

V(f(x,C)) where

V(f(x,C)) :=

∞∫

−∞
(f(x, c) − E(f(x,C)))2 · pC(c)dc

is the variance of the function f in x. pC(c) denotes the probability density
function of C at the point c. It is assumed that the distribution of C is continuous.
For a discrete distribution a summation over the support of C is needed instead of
the integration. If the expectation should be maximized, this can be transformed
into a minimization problem by multiplying the expectation with −1.

For optimizing expectation and standard deviation, it is necessary to calcu-
late or at least approximate E(f(x,C)) and V(f(x,C)) for different values of x.
The parameter x should be bounded by an interval [xl, xu] ⊂ R.

If the function f is given in an analytic form and the probability density func-
tion pC is known, it is possible to calculate E(f(x,C)) and V(f(x,C)) exactly.
We assume that f is an expensive black box function. This means that the ana-
lytic form is not known and the evaluation of f requires many resources. Because
we look at a black box function, it is not possible to calculate E(f(x,C)) and
V(f(x,C)) exactly so they have to be estimated. Because each function evalua-
tion is expensive, we want to evaluate f seldom.
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3.2 Description of Our Approach

Our approach is to build a metamodel f̂ for the function f . This metamodel
can be used to estimate the expectation E(f(x,C)) and the standard deviation
S(f(x,C)) by numerical integration. To estimate E(f(x,C)) and S(f(x,C)) =√

V(f(x,C)) the following integrals are calculated:

Ê(f(x,C)) =

cu∫

cl

f̂(x, c) · p̂C(c)dc

and

V̂(f(x,C)) =

cu∫

cl

(f̂(x, c) − Ê(f(x,C)))2 · p̂C(c)dc.

cl and cu denote the lower and upper integration limits and p̂C(c) the esti-
mated probability density function of C. For good estimations of E(f(x,C)) and
S(f(x,C)), a good model f̂(x, c), a good choice of cl and cu and a good estima-
tion p̂C(c) are required. It is assumed that C is observable so that the probability
density function pC can be estimated. It is possible to use cl = −∞ and cu = ∞
like for the true expectation and variance but preliminary experiments have
shown that other choices can lead to better results.

To build the metamodel f̂(x, c), a data set with values for x, c and f(x, c) is
needed. This data set should contain different values of x in the interval [xl, xu]
and different values of c in the interval [cl, cu]. For the model it is best to have a
space-filling design on [xl, xu] × [cl, cu] like a latin hypercube design. The values
of x can be chosen in a controlled and smart way whereas the values c are given
as realizations of the random variable C and hence cannot be chosen as desired.
The values for x could for example be placed equidistantly and with repetitions.
We choose all values for x at the beginning. Since C is a random variable, the
realizations of C could be good or bad with regard to a space-filling design. The
distribution class of C has a big influence on the quality of the data set which
is used to build a metamodel.

The metamodel enables us to use the information of the evaluations of f
very well. It is not only possible to estimate E(f(x,C)) and S(f(x,C)) for the
x-values in which f is evaluated but for every x ∈ [xl, xu]. This is a big advantage
in comparison to the following classic approach where this is not possible.

3.3 Description of the Classic Method

In this section, we explain a classic method which could be applied in our setting,
too. Our approach is compared to this method in Sect. 5.

For estimating E(f(x,C)) and S(f(x,C)), we take the same observations
as in the data set which is used to build the metamodel in Subsect. 3.2. For
each value of x, we estimate the expectation with the arithmetic mean and the
standard deviation with the empirical standard deviation of the corresponding
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observations f(x,C). For calculating the empirical standard deviation, at least
two values are needed. Because of this, it is not possible to estimate the standard
deviation using this approach if f is evaluated in x only once whereas this is
possible with our approach. Also, it is only possible to estimate E(f(x,C)) and
S(f(x,C)) for x-values where f(x,C) is evaluated.

4 Experiments

In this section, we describe the design of our experiments for comparing the two
approaches and some computational aspects.

4.1 Design of Experiments

Analyzing the optimization of expensive stochastic black box functions entails
two problems for performing experiments. Firstly, for such a function the true
expectation E(f(x,C)) and standard deviation S(f(x,C)) are not known. But
it is necessary to know them for comparing the two approaches explained in
Sect. 3. Therefore, we use functions where the analytic form is known. Secondly,
it is desired to perform a large number of experiments. To reach this goal, we
use a function which can be evaluated fast instead of an expensive black box
function. But we limit the budget of function evaluations like it is common for
expensive black box optimization.

We consider a simple version of the newsvendor model [1] as objective func-
tion f . This model is motivated by selling some product like newspapers which
loses value very fast. It is not possible to sell the newspapers after a short period
of time because they are outdated then. Given a stock of x newspapers and a
random demand C, the minimum of x and C is sold for a price p. The cost for
purchase or production for x products is lx. So the profit is given as

f(x,C) = p min(x,C) − lx

with p > l. If p is not larger than l it does not make sense to sell any prod-
ucts. The profit should be maximized and the uncertainty minimized. There-
fore −E(f(x,C)) and S(f(x,C)) can be minimized. We use p = 5, l = 3 and
x ∈ [0, 100].

For C we draw realizations c from a normal distribution. It is possible to
calculate the expectation E(f(x,C)) and the standard deviation S(f(x,C)) for
this example. For C ∼ N (μ, σ2) with x, μ ∈ R and σ2 > 0 the expectation of
min(x,C) is

E(min(x,C)) = x + (μ − x)Φ
(

x − μ

σ

)
− σφ

(
x − μ

σ

)

where Φ and φ denote the cumulative distribution function and the probability
density function of the standard normal distribution. This leads to

E(f(x,C)) = pE(min(x,C)) − lx.
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The variance V(f(x,C)) is

p2
(

x2 + (μ2 + σ2 − x2)Φ
(

x − μ

σ

)
− (xσ + μσ)φ

(
x − μ

σ

)
− E(min(x,C))2

)
.

We generate the values for C by drawing from random variables. Because of
this, C is observable, the probability density function is independent of x and
the distribution class is known. We use C normally distributed with expectation
E(C) = 50 and V (C) = 49. If the variance of C is small, it is very easy to achieve
good estimations of E(f(x,C)) and S(f(x,C)). But the greater the variance of C
is, the more difficult it is to estimate expectation and standard deviation because
the variance of the estimators increases for a higher variance of C.

In our experiments we analyze different numbers of evaluations of f . Let n
denote the number of different x-values and r the number of repetitions of each
x-value. We look at each combination of n ∈ {11, 21, 51, 101} and r ∈ {1, 2, 5, 10}.

We use the maximum likelihood method to estimate the parameters for the
probability density function pC . We choose the integration limits cl and cu as
the 10−8- and (1 − 10−8)-quantile of the estimated distributions. This choice of
parameters has been good in preliminary experiments. Because the results are
influenced by random effects, we repeat every configuration 100 times.

Beyond the scope of this paper, we performed a large number of experiments
with several objective functions, several distributions of C and several levels of
variance of C to compare the two approaches. Due to the page limit we decided
to report only the results of one representative example in detail here. The results
for our other experiments do not differ a lot and the conclusions are identical.

4.2 Computational Aspects

For our experiments we use the software R [11]. As metamodel we apply Kriging
which is implemented in the package DiceKriging [12]. The maximum likeli-
hood estimation of the parameters for the Kriging model is not deterministic.
Because of this, we build five models per experiment and choose the one which
approximates the true function f best regarding the set of evaluated points. It
is possible to exchange Kriging with another type of metamodel but prelimi-
nary studies have shown that Kriging leads to the best results for our situation.
For calculating the integrals Ê(f(x,C)) and V̂(f(x,C)), the standard method
integrate is used for numerical integration. To determine the Pareto sets and
Pareto frontiers, the package ecr [2] is employed. For generating the empirical
attainment functions, the package eaf [7] is used.

5 Evaluation of the Experiments

In this section, we compare our approach and the classic approach regarding the
approximation quality of the Pareto frontiers and Pareto sets.
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5.1 Pareto Frontiers

First, we analyze the quality of the approximations of the true Pareto frontier
generated with our and the classic approach. Figures 1 and 2 show the empiri-
cal attainment functions for our and the classic approach. With our approach,
Ê(f(x,C)) and Ŝ(f(x,C)) are available for every x ∈ [0, 100]. For the classic
approach, E(f(x,C)) and S(f(x,C)) can only be estimated for the x-values in
which f has been evaluated. In order to conduct a fair comparison between
the two approaches, we decided to consider Ê(f(x,C)) and Ŝ(f(x,C)) only for
the x-values in which f has been evaluated. If (Ê(f(x,C)), Ŝ(f(x,C))) are only
available for a small number of x-values, the approximation of the true Pareto
frontier is rough. With our approach a smoother approximation of the true
Pareto frontier than the one presented in Fig. 1 is possible when considering
(Ê(f(x,C)), Ŝ(f(x,C))) for more x-values.
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Fig. 1. Empirical attainment functions for the approximations of the true Pareto fron-
tiers with our approach. In the rows are the plots with r ∈ {1, 2, 5, 10} and in the
columns n ∈ {11, 21, 51, 101}. The colors display the used percentiles of the empirical
attainment function as well as the true Pareto frontier. (Color figure online)

For the empirical attainment functions, it is desired that the lines for the 2.5-,
50- and 97.5-percentile are very close to the line for the true Pareto frontier. If
the line for the 50-percentile is close to the true Pareto frontier, this means
that the median approximation is quite accurate. If the lines of the 2.5- and
97.5-percentile are close to each other, this means that the variation of the
approximated Pareto frontiers and hence the uncertainty in the estimation of
the true Pareto frontier is quite low.
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Fig. 2. Empirical attainment functions for the approximations of the true Pareto fron-
tiers with the classic approach. In the rows are the plots with r ∈ {1, 2, 5, 10} and in the
columns n ∈ {11, 21, 51, 101}. The colors display the used percentiles of the empirical
attainment function as well as the true Pareto frontier. (Color figure online)

Looking at the results of our approach, it can be seen that quite good approx-
imations of the true Pareto frontier can already be achieved by building a meta-
model based on 101 different x-values each repeated once or 51 different x-values
and two repetitions. If more evaluations of f are allowed like for example with 51
different x-values and 5 repetitions, it is possible to improve the approximation
of the true Pareto frontier a bit but this costs much more resources.

Figure 2, which displays the results for the classic approach, contains no plots
for the configuration where each x-value is only evaluated once. In this situation,
it is not possible to estimate the standard deviation S(f(x,C)) with the classic
approach. In many of the plots, the expectation E(f(x,C)) is overestimated. In
these cases, all three lines of the empirical attainment function are left of the
true Pareto frontier. A design with a larger number of different x-values leads
to a worse result for the classic approach if the number of repetitions is the
same. The reason for this seems to be that there is a higher probability that
there is at least one point which falsely dominates all other points because the
expectation E(f(x,C)) is overestimated. Furthermore, the estimation of a single
point (E(f(x,C)),S(f(x,C))) is not improved by evaluating a larger number of
different x-values here, because only function evaluations with the same x-value
are used for the estimation. A higher number of repetitions is the only possibility
to improve the estimations using the classic approach. The reason for this is that
the variance of the estimations decreases for a larger number of observations. For
the classic method it could be better to distribute the n · r evaluations of f in
another way than in our experiments and use more repetitions instead of more
different x-values. But for a fair comparison of the two approaches it is necessary
to use the same values of x and c for evaluating f .
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5.2 Pareto Sets

Now we analyze the Pareto sets, i.e. the sets of x-values which lead to Pareto
optimal estimations of (E(f(x,C)),S(f(x,C))). The plots for the Pareto sets can
be found in Figs. 3 and 4. For index 0, the true Pareto set is plotted and for the
indices 1 to 100, the approximated Pareto sets for the respective repetitions are
shown. The colors indicate whether a point is truly dominated or non dominated
and whether it is dominated in the respective approximation of the Pareto set.
Ê(f(x,C)) and Ŝ(f(x,C)) are considered for the same x-values for both our and
the classic approach to make them comparable. If we exploited the advantage
of our method and considered (Ê(f(x,C)), Ŝ(f(x,C))) for x-values in which f
has not been evaluated, we would find Pareto optimal x-values which cannot be
found with the classic approach.

For our approach, most of the truly dominated points are dominated in the
approximations as well. It seems to be a much more difficult task to find all non
dominated points. It can be seen that especially small x-values are often truly non
dominated but dominated in the approximations. This can be explained by the
fact that there is only a small slope for small x-values in the true Pareto frontier.
Because of this, a small underestimation of the standard deviation can result in
a lot of truly non dominated points being dominated in the approximation. For
a larger number of repetitions, the quality of the approximations of the true
Pareto set improves a bit but not very much.

Looking at the classic approach, only a small percentage of the truly non
dominated points is non dominated as well in the approximations. The approxi-

11 21 51 101

1
2

5
10

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

x

In
di

ce
s

truly non dominated but approximation dominated
truly non dominated and approximation non dominated

truly dominated but approximation non dominated
truly dominated and approximation dominated

Fig. 3. Approximated Pareto sets with our approach. In the rows are the plots with
r ∈ {1, 2, 5, 10} and in the columns n ∈ {11, 21, 51, 101}. The colors display if the
assignments are correct. Index 0 is used to display the true memberships of the x-
values and indices 1 to 100 for the approximations. (Color figure online)
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Fig. 4. Approximated Pareto sets with the classic approach. In the rows are the plots
with r ∈ {1, 2, 5, 10} and in the columns n ∈ {11, 21, 51, 101}. The colors display if
the assignments are correct. Index 0 is used to display the true memberships of the
x-values and indices 1 to 100 for the approximations. (Color figure online)

mations seem to be worse with a larger number of different x-values like for the
Pareto frontiers. Furthermore, it can be seen that more truly dominated points
are classified as non dominated in the approximations than with our approach.
A higher number of repetitions does not improve the approximation quality very
much.

6 Conclusion

In this paper, we analyzed the optimization of expensive stochastic black box
functions f(x,C) with a parameter x ∈ R and a one dimensional random vari-
able C. We transformed the problem of optimizing the stochastic function f
into the biobjective optimization of the deterministic expectation E(f(x,C))
and standard deviation S(f(x,C)).

E(f(x,C)) and S(f(x,C)) are defined as integrals over terms which only
consist of f and the probability density function pC . Our approach is estimating
E(f(x,C)) and S(f(x,C)) by building a metamodel for f , estimating pC and
using numerical integration. Our approach requires C to be observable.

We performed a simulation study to compare our approach to the classic app-
roach where E(f(x,C)) and S(f(x,C)) are estimated using the arithmetic mean
and the empirical standard deviation. The results of our experiments show that
the approximation quality of the Pareto frontiers of our approach is much better
than for the classic approach. We also compared the approximation qualities of
the Pareto sets. The Pareto sets resulting from our approach are often very close
to the true Pareto set. With the classic approach, only a small percentage of the
truly non dominated points is found.

In conclusion, our approach performs much better than the classic approach.
Moreover, for our approach it is possible to estimate E(f(x,C)) and S(f(x,C))
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for each feasible x-value, regardless of the choice of x-values in which f has
been evaluated. For the classic approach, E(f(x,C)) and S(f(x,C)) can only be
estimated if f has been evaluated in x at least twice. The much better results of
our approach come at the cost of the additional assumption that C is observable
which is not required for the classic approach.

In our approach we use all evaluations of f in the beginning. In the future,
we will employ model based optimization to sequentially evaluate promising x-
values. In addition to this, we will generalize our method to higher dimensions.
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Abstract. This paper deals with vector-payoff games, which are also known as
Multi-Objective Games (MOGs), multi-payoff games and multi-criteria games.
Such game models assume that each of the players does not necessarily consider
only a scalar payoff, but rather takes into account the possibility of self-
conflicting objectives. In particular, this paper focusses on static non-
cooperative zero-sum MOGs in which each of the players is undecided about
the objective preferences, but wishes to reveal tradeoff information to support
strategy selection. The main contribution of this paper is the introduction of a
novel solution concept to MOGs, which is termed here as Multi-Payoff Mutual-
Rationalizability (MPMR). In addition, this paper provides a discussion on the
development of co-evolutionary algorithms for solving real-life MOGs using the
proposed solution concept.

Keywords: Game theory � Non-cooperative games � Set-based optimization �
Set domination � Multi-criteria decision-analysis

1 Introduction

Game theoretic studies have proven to be significant to making strategic decisions in
both cooperative and non-cooperative situations of relevance to many application areas
including economy, engineering, biology and sociology. Most such studies concern
games in which each player has a scalar payoff to maximize, such as a monetary payoff.
However, in many real-life game situations decision-makers are interested in more than
one objective which are often incomparable and conflicting. Blackwell [1], was the first
to study such vector-payoff games. Since his early work, vector-payoff games, which
have also been termed as Multi-Objective Games (MOGs), multi-payoff games and
multi-criteria games, have been studied by many others. As evident from reviews such
as in [2, 3], the majority of studies on MOGs employed either an interpretation of
Nash-equilibrium or interpretations of the MiniMax solution concept to such games.
While providing possible solutions to MOGs, the focus of most of the traditional
studies has neither been on finding tradeoff information nor on how to utilize such
information for making a strategic decision.

In contrast to most previous studies on MOGs, several recent publications,
including [4–6], suggested a method that is based on a novel solution concept to
MOGs, which accounts for the performance tradeoffs. Focusing on pure strategies,
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zero-sum, static, non-cooperative MOGs, the method of [4–6] is based on the notion of
rationalizable strategies, which was suggested for solving scalar games by Bernheim
[7] and independently by Pearce [8]. To account for tradeoff information when solving
MOGs, the suggested method of [4–6] involves two stages. In the first stage, a Set of
Rationalizable Strategies (SRS) is found for each player using set domination relations
and worst-case considerations. In addition, the first stage provides, for each rational-
izable strategy, an associated set of payoff vectors, which results from the most harmful
responses by the opponent. In the second stage, the associated sets of payoff vectors are
used to analyze the performance tradeoffs in support of strategy selection out of the
SRS. For the latter stage, the study in [4] provides two novel multi-criteria decision-
analysis procedures for strategy selection that are based on set parameters.

The current paper suggests a revision to the first stage of the procedure in [4–6],
which amounts to the introduction of a new solution concept to MOGs. In addition, this
paper provides a discussion on the consequences of this suggestion to the development
of co-evolutionary algorithms for finding good representations of rationalizable
strategies.

In contrast to the rationalizability approach of [4–6], which assumes the possibility
of an irrational opponent, the proposed revision aims to account for a rational opponent.
In non-cooperative situations players are faced with the problem of uncertainties about
the opponent. Traditionally, game theoretic studies have assumed that the players are
rational. Yet, multi-payoff rationalizability, as suggested in [4–6], is based on the worst-
case approach in which the opponent is assumed to play in the most harmful way.
Namely, irrationalizable strategies of the opponent are considered by the player when
taking the multi-payoff rationalizability approach that has been suggested in [4–6].
However, a player may have beliefs or even intelligence about the opponent, which may
lead her to the assumption that the opponent is rational. In such a case, the approach of
[4–6] should be considered as inconsistent with the aforementioned assumption.

The current study assumes that the opponent is rational. In the context of the
considered game, it means that the opponent plays according to her best replies, rather
than her most harmful replies, without a-priori decision on her objective preferences.
Moreover, it is assumed that both players view their opponent as rational. In addition, it
is assumed that each player knows it, and knows that the opponent knows it, and so on
in the sense of Aumann’s common knowledge of rationality [9], and in accordance with
the original rationalizability approach of Bernheim and Pearce to scalar games [7, 8].
To distinguish between the rationalizability of [4–6] and the current approach, the latter
is hereby termed Multi-Payoff Mutual-Rationalizability (MPMR), whereas the former
is hereby termed as one-sided rationalizability.

The rest of this paper is organized as follows. First, in Sect. 2, the considered game
is described and the MPMR solution concept is presented. Next, in Sect. 3, the pro-
posed approach is demonstrated. In Sect. 4, a discussion is provided on the past and
future development of evolutionary algorithms based on the suggested MPMR
approach and the one-sided rationalizability approach of [4–6]. Finally, Sect. 5 sum-
marizes this paper and provides suggestions for future research.
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2 The Game and the Proposed MPMR Solution Concept

In this study, the considered MOG involves two players, each with self-conflicting
objectives. The game is zero-sum with respect to each of the components of the payoff
vector. The game is pure strategy, single-act (static), non-cooperative and with
imperfect information. It is also a game of incomplete information since it concerns no
a-priori declaration or determination of objective preferences by the players. The MOG
and the proposed solution concept are described in the following.

2.1 Problem Formulation

The two players are Pmin (minimizer) and Pmax (maximizer). The maximizer aims at
maximizing all the components of the payoff vector while the minimizer aims at
minimizing these same components. Let Smin and Smax be the sets of all possible
strategies for Pmin and Pmax respectively, such that simin 2 Smin and s jmax 2 Smax. Note
that simin 2 R

Nmin and s jmax 2 R
Nmax and the mth component of such a strategy is denoted

as si mð Þ
min and sj mð Þ

max .
The interaction between the ith strategy and the jth strategy played by Pmin and Pmax,

respectively, results in the following payoff vector:

f i;j ¼ f 1ð Þ
i;j ; . . .; f kð Þ

i;j ; . . .; f
Kð Þ

i;j

h i
2 R

K ð1Þ

where K is the number of objectives that the players consider. The set of all the
interactions between strategy simin of Pmin and all the J strategies of Pmax is the set of
payoff vectors that represents the performances of strategy simin:

Fsimin
:¼ f i;j 2 R

K j 8j 2 1; . . .; Jf g
^

simin 2 Smin
n o

: ð2Þ

Similarly, for strategy s jmax of player Pmax:

Fs jmax
:¼ f i;j 2 R

K j 8i 2 1; . . .; If g
^

s jmax 2 Smax
n o

: ð3Þ

The multi-objective game is defined as:

G ¼ Pmin;Pmaxf g; Smin; Smax; f i;j
� �

i 2 1; . . .; If g
j 2 1; . . .; Jf g

0
B@

1
CA: ð4Þ

2.2 The Proposed Solution Concept

According to the solution concept of rationalizability there is no single optimal strategy
[7, 8]. Instead, a set of rationalizable strategies is sought for each of the players. In the
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context of the considered MOGs, a strategy is considered irrational if it is Never a Best
Response (NBR) (never best reply) under any possible objective preferences. On the
other hand, a strategy is considered rationalizable if it is a Best Response (BR) in some
preference circumstances. Solving the game means finding, for each player, all the
rationalizable strategies and their associated sets of payoff vectors.

In scalar games, obtaining the set of rationalizable strategies, under the assumption
of common knowledge of rationality, involves an iterative elimination process, in
which the players eliminate their strictly dominated strategies [7, 8]. To extend the
concept of rationalizable strategies from scalar games to MOGs, in which the players
are undecided about their objective preferences, there is a need to clarify what con-
stitutes a strictly dominated strategy under such a condition. In studies such as [4–6], it
has been suggested to employ worst-case set domination to obtain the sought sets of
strategies. Yet, as explained in the introduction, such studies do not consider the
assumption of common knowledge of rationality.

To account for the common knowledge of rationality, obtaining the set of
rationalizable strategies involves an iterative elimination process, in which the players
eliminate their strictly dominated strategies, which are inferior strategies under any
objective preferences. During the iterative process, following elimination during a
previous iteration, the players re-evaluate their strategies according to the updated sets
of players’ strategies and look for “new” irrational strategies, and so on. The following
describes in details the proposed iterative process for the MPMR solution concept.

Smin sð Þ and Smax sð Þ are the sets of all possible I sð Þ and J sð Þ strategies, in the sth

iteration, for the minimizer Pmin and the maximizer Pmax, respectively. Here, s ¼ 0 for
the initial iteration before eliminating any of the strategies. When evaluating the ith

strategy simin of Pmin in the sth iteration, there is a need to consider all possible strategies
of Pmax in this iteration.

Let Fsimin
sð Þ be the set of all payoff vectors from all the interactions of the ith strategy

of Pmin with the remaining strategies of Pmax in the sth iteration. Given that the objective
preferences of Pmax are undecided, then there is a set of non-dominated payoff vectors
(in a maximization problem), which corresponds to all possible BRs of Pmax (at the
current iteration) to the ith strategy of Pmin. This set is termed as the anti-optimal front
of the ith strategy of Pmin in the sth iteration. It is defined as:

F��
simin

sð Þ :¼ f i;j 2 Fsimin
sð Þ j 6 9f i;j0 2 Fsimin

sð Þ : f i;j0 �max f i;j
n o

ð5Þ

where a �max b stands for a dominates b in the maximization problem.
In the same way, the anti-optimal front of a strategy of the maximizer Pmax, in the

sth iteration, is:

F��
s jmax

sð Þ :¼ f i;j 2 Fs jmax
sð Þ j 6 9f i0;j 2 Fs jmax

sð Þ : f i0;j �min f i;j
n o

ð6Þ

where a �min b stands for a dominates b in the minimization problem. Note that in this
paper the superscript (��) specifies the fact that the front is a result of the inverse
optimization problem of the player.
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The set of the BRs of Pmax, to the ith strategy of Pmin in the sth iteration, is:

SBRsimin sð Þ :¼ s jmax 2 Smax sð Þ j 6 9sj0max 2 Smax sð Þ : f i;j0 �max f i;j
n o

: ð7Þ

Any strategy of Pmax that belongs to the BR set, s jmax 2 SBRsimin
sð Þ, is related to one of

the payoff vectors that form the anti-optimal front of strategy simin, that is f i;j 2 F��
simin

.

Similarly, the set of the BRs of Pmin, to the jth strategy of Pmax in the sth iteration, is:

SBR
s jmax

sð Þ :¼ simin 2 Smin sð Þ j 6 9si0min 2 Smin sð Þ : f i0;j �min f i;j
n o

: ð8Þ

Any strategy of Pmin that belongs to the set of best response, simin 2 SBR
s jmax

sð Þ, is related
to one of the payoff vectors that form the anti-optimal front of strategy s jmax, that is
f i;j 2 F��

s jmax
.

The set of all the anti-optimal fronts of Pmin and the set of all the anti-optimal fronts
of Pmax, at the sth iteration, are the following sets of sets:

F��
min sð Þ :¼ F��

simin
sð Þ j 8simin 2 Smin sð Þ

n o
ð9Þ

F��
max sð Þ :¼ F��

s jmax
sð Þ j 8s jmax 2 Smax sð Þ

n o
: ð10Þ

To obtain the irrationalizable strategies, the following definitions of set domination
relations are used. Set F dominates set H in a maximization problem, F �max H, if
8h 2 H 9f 2 F such that f �max h. Also, Set F dominates set H in a minimization
problem, F �min H, if 8h 2 H 9f 2 F such that f �min h. Using these definitions, the
set of irrational strategies of the minimizer, at the sth iteration, are the strategies with
the anti-optimal front that dominates in the maximization problem (in the inverse
problem) at least one other anti-optimal front. Namely:

Sirrmin sð Þ :¼ simin 2 Smin sð Þ j 6 9si0min 2 Smin sð Þ : F��
simin

sð Þ �max F��
si0min

sð Þ
n o

ð11Þ

and the maximizer’s set of irrational strategies at the sth iteration is:

Sirrmax sð Þ :¼ s jmax 2 Smax j 6 9sj0max 2 Smax : F
��
s jmax

sð Þ �min F��
sj
0
max

sð Þ
n o

: ð12Þ

The irrational strategies of the considered iteration are the worst-case dominated
strategies using the available strategies at the iteration. These strategies are strictly
inferior when comparing to the rest of the strategies of the iteration since there is at
least one other strategy that yields preferred outcome in any objective preference. This
means that an irrational strategy is NBR for any possible objective preference. This is
equivalent to a strictly dominated strategy in scalar games.
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The sth iteration is completed by the elimination of the irrational strategies of both
players, as found in that iteration. The set of the remaining strategies of Pmin is the
relative complement of Smin sð Þ and Sirrmin sð Þ:

Smin sþ 1ð Þ ¼ Smin sð ÞnSirrmin sð Þ for 0� s ð13Þ

and the set of the remaining strategies of Pmax is the relative complement of Smax sð Þ and
Sirrmax sð Þ:

Smax sþ 1ð Þ ¼ Smax sð ÞnSirrmax sð Þ for 0� s: ð14Þ

The iterative deletion, of irrationalizable strategies, is terminated when there are no
more irrational strategies to delete. Namely, at the last iteration, sfinal:

Sirrmin sfinal
� � ¼ ; and Sirrmax sfinal

� � ¼ ;: ð15Þ

Therefore, the set of rationalizable strategies of the minimizer and the maximizer
are the sets of strategies in sfinal:

SRmin :¼ Smin sfinal
� � ð16Þ

SRmax :¼ Smax sfinal
� �

: ð17Þ

Each of these strategies is represented in the objective space by its related anti-
optimal front as resulting from the interactions with the rationalizable strategies of the
opponent. The union of all the anti-optimal fronts, of the rationalizable strategies, forms
the rationalizable layer of Pmin and Pmax respectively:

FR
min :¼ F��

simin
2 F��

min sfinal
� � j simin 2 Smin sfinal

� �n o
ð18Þ

FR
max :¼ F��

s jmax
2 F��

max sfinal
� � j s jmax 2 Smax sfinal

� �n o
: ð19Þ

The obtained sets of rationalizable strategies, which are based on mutual
rationalizability, and their associated anti-optimal fronts, allow strategy selection. This
can be done by the same procedures that have been suggested in [4] with respect to the
onesided rationalizability approach.

2.3 Irrational Strategies and Set Domination

The proposed mutual rationalizability approach and also the one-sided rationalizability
approach assume that irrational strategies can be found by set domination. While not
providing any proof for such an assertion, the following aims to clarify the justification
for using set domination as done here and in [4–6].

To illustrate the idea of finding irrational strategies by way of set domination,
consider a bi-objective game in which the minimizer has strategies A, B, and C. Each
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of the three panels of Fig. 1 shows the three anti-optimal fronts of these strategies. The
dashed-black, solid-black and gray lines mark the anti-optimal front of strategies A, B
and C, respectively. In this case, the anti-optimal front of strategy C dominates the anti-
optimal front of strategy B in a maximization problem. In view of the procedure above,
C is an irrational strategy. The three panels depict three different objective preferences,
as follows. The solid line, marked I, II and II in panel (a), (b) and (c), respectively,
represents a preference of objectives of the minimizer. In the case of panel (a), the
minimizer assigns higher weight to f 2ð Þ. Each of the dashed thin lines depicts the
maximal projection of a front on the preference line. Each of the projections is the
maximal weighted-sum value, according to the minimizer preference, which can be
achieved by the maximizer. Namely, this is the worst value that can be expected by the
minimizer if she chooses the strategy associated with this front.

Clearly, the best strategy for the minimizer in the case of panel (a) is strategy B
which yields the minimal value of the maximal projections. By similar considerations,
in the case of panel (b) the minimizer will also choose strategy B and in the case of
panel (c) she will choose strategy A. Note that C is not chosen in any of these cases.
The proposition is that strategy C will never be chosen under any objective preferences,
which corresponds to the fact that C is declared irrational by the set domination
procedure.

3 TSP-MOG Example

The following example is based on the competing traveling salespersons MOG, which
has been introduced in [6] and used in [4]. As noted in [4], the classical TSP is NP-
hard, let alone the considered TSP-MOG. The game arena is presented as a graph. The
considered graph contains N vertices (cities), where each vertex represents a city from
the set of cities C ¼ c 1ð Þ; c 2ð Þ; . . .; c nð Þ; . . .c Nð Þf g. Each city c nð Þ has a value v c nð Þð Þ.
This value represents the profit of the first salesperson that arrives to that city. The arcs
of the graph represent the roads between the cities. The arc value is the road length. The
game is between two competing salespersons (players), which are denoted by Pmin and
Pmax. A strategy of a player, which is a chosen route, is defined as a partial permutation

(a)   Case 1 (b)   Case 2 (c)   Case 3

Fig. 1. Anti-optimal fronts of irrational and rationalizable strategies
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of the cities’ set C. Each player may visit a city no more than once and returns to her
first city at the end of the path. The routes of the players are described as the ordered

sets Pathmin ¼ c 1ð Þ
min; c

2ð Þ
min; . . .; c

Nminð Þ
min ; c 1ð Þ

min

n o
and Pathmax ¼ c 1ð Þ

max; c
2ð Þ
max; . . .; c

Nmaxð Þ
max ;

�

c 1ð Þ
maxg, where 1�Nmin;Nmax �N for the first and second player, respectively. Each

element c qð Þ
min or c pð Þ

min is associated with a member city in the set C. Namely,

c qð Þ
min; c

pð Þ
min 2 C 8 q; p. Also c qð Þ

min 6¼ c q0ð Þ
min 8 q; q0; q 6¼ q0 and c pð Þ

max 6¼ c p0ð Þ
max 8 p; p0; p 6¼ p0. It is

noted that the subscripts min and max indicate which player visited that city. On the
other hand, the superscripts indicate the order by which the player visited it. Each
selected path has a length that is calculated as the sum of the distances between all
successive cities of the path. When considering a path, each player takes into account
not only the path length but also the value of the chosen route, which is in general a
sum of the values of the cities of the chosen path, which meets the following criterion.
If a city is included in the paths of the minimizer and the maximizer, then the sales-
person with the shortest route to that city (the first to arrive) earns the city’s value. If
both salespersons arrive together to a city, then each one earns half of the city value.

In the considered MOG, each player is interested not only in shortening her path,
while collecting the highest value, but also in causing the opponent the maximal
damage. Namely, each player aims at minimizing her own path length while maxi-
mizing the opponent path length as well as collecting the maximal value while causing
the opponent to collect the minimal value. The rationale is that each player wants not
only to increase her profit but also to cause some damage to the opponent with the hope
to eventually cause the rival to avoid the considered markets. Therefore, the payoff
vector components are defined as:

f 1ð Þ ¼ Lmin � Lmax and f 2ð Þ ¼ Vmax � Vmin ð20Þ

where Lmin and Vmin denote the length and the value of the path (strategy) of the
minimizer, and Lmax and Vmax are those of the maximizer.

In the considered problem with N cities, the number of possible paths of one
salesperson is:

X ¼
XN

n¼1

N � 1ð Þ!
N � nð Þ!: ð21Þ

As the problem presented here is a game, then the number of all possible inter-
actions is X2. Considering a small problem with N ¼ 10 the number of all possible
interactions is X2 ¼ 9:73 � 1011.

For illustration purposes, the following example is planned such that full sorting,
according to the proposed procedure of Sect. 2, is achievable. The left side of Fig. 2
represents the arena of the considered example. In the arena there are six cities that are
marked by black dots. The bold numbers above the cities indicate the values of the
cities, whereas a numbers in brackets, below the cities indicates the number of the city.
In the considered games, the maximizer starts from City no. 4 (marked by a diamond)
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and the minimizer from city no. 5 (marked by a triangle). In Fig. 2, the links between
cities are not shown. The lengths of the roads between the cities are taken according to
the scale of the straight lines between the cities in the figure.

The right side of Fig. 2 presents the resulting lists of strategies for each player, as
obtained at the first iteration. The strategies are presented as ordered sets of the visited
cities. The four strategies of the minimizer, which are marked by rectangles, are found
to be irrational under the assumption of common knowledge of rationality. Namely,
these strategies did not survive the second iteration, while all the rest survived the
iterative process.

Clearly, as seen from the top items of the resulting lists, staying at the starting city
is rationalizable. This happens when a player prefers just minimizing the path length
(the travelling effort). It can also be seen that path 5; 3; 5f g of the minimizer was found
to be irrational in the second iteration. When comparing the irrational path 5; 3; 5f g to
the rationalizable path 5; 1; 5f g, it might not be clear at first sight why path 5; 3; 5f g
was suspected to be rationalizable at the first iteration. In fact, path 5; 1; 5f g, yields
both a higher value and shorter path for the minimizer, as compared with 5; 3; 5f g (the
distance between City no. 5 and City no. 1 is slightly smaller than the distance between
City no. 5 and City no. 3). Yet, one should remember that the elements of the payoff
vectors are f 1ð Þ ¼ Lmin � Lmax and f 2ð Þ ¼ Vmax � Vmin. Hence, the minimizer is aiming
at maximizing her collected value Vmin while minimizing the collected value of the
maximizer Vmax. In light of these objectives, and with the understanding that at the first
iteration irrational strategies of the opponent are involved, then path 5; 3; 5f g could be
suspected to be rationalizable at first. Similar argumentation can explain why other
paths are rational in the first iteration and becomes irrational in the second.

Figure 3 depicts the objective space. The light gray dots mark all the 326� 326
payoff vectors of all possible interactions between the strategies of the minimizer and the
maximizer. The two black lines mark the two anti-optimal fronts of the rationalizable
strategies of the maximizer and the two dark gray lines mark two typical anti-optimal

Fig. 2. The example arena (left) and the resulting strategies (right)
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fronts of the irrational strategies of the maximizer. In this figure it can be observed, as
expected, that the two anti-optimal fronts of the rationalizable strategies of the maxi-
mizer are non-dominated by each other and that each of them is dominated by the two
typical anti-optimal fronts of the irrational strategies, in a minimization problem.

4 Aspects of Algorithm Development

It is beyond the scope of this paper to present details of an algorithm for solving
MOGs, nor its evaluation. Rather, the goal here is to highlight a few issues that are
worth mentioning in view of the discussion in Sect. V.A of [5]. In particular, the
discussions here and in [5] refer to both the co-evolutionary algorithm of [10] and the
one-sided evolutionary algorithm of [6]. These algorithms follow the lexicographic
selection idea of NSGA-II [11]. Namely, strategy selection is based on a primary rank
and a secondary grade. The primary rank aims to produce a selection pressure towards
the rationalizable strategies. When two strategies are of the same rank, they are further
evaluated according to the secondary grade within that rank. The aim of the secondary
grade is to produce tangential pressure, namely to obtain well spread anti-optimal fronts
within the rationalizable layers (see Eqs. 18 and 19). In [5], a revision has been
suggested to the procedure of the secondary grade of [6] and [10].

As a result of the work towards the current solution concept, it has been clarified
that it was wrongly suggested in [10] and in [5] that a co-evolutionary algorithm, as in
[10], will generally solve MOGs according to the one-sided rationalizability approach
of [4–6]. It appears that a similar wrong suggestion has been made in [12]. A possible
reason for not spotting earlier this apparent mistake is that in both references [10] and
[12] the algorithms have been tested on a simple demonstration case for which there is

Fig. 3. Anti-optimal fronts of the maximizer
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no need for an iterative process. This is due to the fact that, in the tug-of-war MOG of
[10] and [12], the most harmful responses of the opponent are also her best replies.

In fact, as our unreported recent numerical studies show, inherent to co-evolution is
the tendency to converge to the strategies that follow the proposed solution concept of
mutual rationalizability and not to those of the one-sided rationalizability approach,
which does not assume common knowledge of rationality. In fact, this phenomenon is
quite intuitive, since that normally the competing populations have no memory of
irrational strategies.

On the other hand, the one-sided evolutionary approach of [6] has the tendency to
converge to the strategies that are based on the one-sided rationalizability approach,
rather than to the strategies that result from mutual rationalizability.

5 Summary and Conclusions

Similar to the studies in [4–6], this paper deals with a rationalizability approach to
MOGs. In [4–6] a worst-case consideration is taken, assuming that the opponent
applies the most harmful responses, which are not necessarily her best responses. In
contrast, here multi-payoff mutual rationalizability is considered. Namely, common
knowledge of rationality is assumed, which leads to an iterative procedure for finding
the rationalizable strategies of the player. Comparing the two solution concepts and the
possibilities of using evolutionary algorithms to solve multi-objective games according
to these approaches, two suggestions are made. First, a one-sided evolutionary algo-
rithm, as in [6], appears suitable for finding the strategies according to the one-sided
rationalizability approach of [4–6]. Yet, for solving MOGs according to mutual
rationalizability, as presented here, a co-evolutionary algorithm is needed.

Studies as in [4–6] and in this paper deviate from two traditional approaches to
solving MOGs including Shapley’s equilibrium [13] and the Pareto Optimal Security
Strategy (POSS) approach [14, 15]. Future studies may include elaborate comparisons
between such approaches, and the approach that is proposed here. Finally, it should be
noted that the proposed approach and also the approach of [4–6] assume that irrational
strategies can be found by set domination. Future publications should aim at providing
proofs concerning such assertions.
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Abstract. Practical multi-objective optimization problems often
involve several decision variables that influence the objective space in
different ways. All variables may not be equally important in determin-
ing the trade-offs of the problem. Decision makers, who are usually only
concerned with the objective space, have a hard time identifying such
important variables and understanding how the variables impact their
decisions and vice versa. Several graphical methods exist in the MCDM
literature that can aid decision makers in visualizing and navigating
high-dimensional objective spaces. However, visualization methods that
can specifically reveal the relationship between decision and objective
space have not been developed so far. We address this issue through a
novel visualization technique called trend mining that enables a decision
maker to quickly comprehend the effect of variables on the structure of
the objective space and easily discover interesting variable trends. The
method uses moving averages with different windows to calculate an
interestingness score for each variable along predefined reference direc-
tions. These scores are presented to the user in the form of an interactive
heatmap. We demonstrate the working of the method and its usefulness
through a benchmark and two engineering problems.

Keywords: Visualization · Data mining ·
Multi-criteria decision making · Decision space · Trend analysis ·
Objective space

1 Introduction

Multi-objective optimization problems (MOOPs) are generally formulated as,

Minimize f(x) = [f1(x), f2(x), . . . , fM (x)]T

Subject to gj(x) ≥ 0 ∀ j = 1, 2, . . . , J
hk(x) = 0 ∀ k = 1, 2, . . . ,K
x(L) ≤ x ≤ x(U),

(1)
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where f(x) is the vector of M conflicting objectives, gj(x) and hk(x) represent
J inequality and K equality constraints respectively, and x is a vector of n vari-
ables to be optimized within the bounds

[
x(L),x(U)

]
. Thus, f(x) is a mapping

from the decision space R
n to the objective space R

M . The presence of conflicting
objectives means that there exist multiple optimal solutions that provide a trade-
off among the objectives. Together, these solutions form the Pareto-optimal set.
However, in practice usually only a single optimal solution is desired for imple-
mentation and it can only be identified through a higher-level process, known as
multi-criteria decision making (MCDM). The decision maker (DM) is a person
(or group of persons) that provides the information required in this process.

1.1 A Brief Summary of MCDM Methods

There are four broad classes of MCDM methods [11]: (i) no preference methods
do not involve a DM and therefore the optimal solution is obtained by making
assumptions about a “reasonable” compromise between the objectives, (ii) a
priori methods in which the DM’s preferences are already known and the search
involves finding a Pareto-solution that best satisfies those preferences, (iii) a
posteriori methods where a representative Pareto-optimal set is generated first,
which is then analyzed by the DM to choose a solution that best fits his/her
preferences, (iv) interactive methods use the DM’s preferences iteratively to guide
candidate solutions towards a desirable region of the Pareto-optimal front.

This paper concerns a posteriori approaches that use multi-objective evo-
lutionary algorithms (MOEAs) to obtain Pareto-optimal solutions. Because of
their ability to generate multiple trade-off solutions simultaneously and ease of
handling black-box objective functions, nonlinearities and mixed variable types,
MOEAs are often the popular choice for solving practical MOOPs. However, as
they typically evaluate a lot more candidate solutions than classical a posteriori
MCDM techniques, the number of alternatives to be analyzed by the DM can be
huge. This is especially true when we consider the fact that DMs may sometimes
also be interested in non-Pareto-optimal (dominated) solutions due to hidden or
qualitative objectives based on subjective knowledge that are not reflected in
the MOOP formulation.

1.2 Decision Making and Decision Space

Traditionally, decision making is seen as an activity involving comparison of
objective function values among different solutions. Therefore, DMs have always
been associated with the objective space and most MCDM methods are built
around this concept. However, in their search for the preferred solutions, DMs
may also be interested in knowing various aspects of the decision space that
affect the objective space. For example, (i) which variables are important in the
preferred regions, (ii) how will a specific variable change when the preferences are
changed, (iii) what implicit preferences does the DM impose on the variables with
his/her decisions, or more generally, (iv) what makes a solution Pareto-optimal,
and (v) which variables define the overall structure of the objective space. Such
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questions cannot be addressed with a sole view of the objective space. Standard
graphical tools like bar charts, scatter plots and box plots can help to some
extent, but are cumbersome to use for a large number of variables. On the other
hand, it is worth noting that DMs are generally upper-level managers or business
heads who may not be inclined to delve into statistical analysis to find answers
to such questions.

Based on the discussion above, we argue that when several alternatives are
to be analyzed for a MOOP with many objectives and variables, higher quality
decisions can be facilitated by providing an intuitive decision support to the
DM that can reveal the relationship between decision and objective spaces. To
this end, we propose a novel visualization technique, called trend mining, that
enables a DM to quickly understand the effect of variables on the structure of
the objective space and to easily discover interesting variable trends.

The paper is organized as follows. In Sect. 2 we review existing visualization
methods from the MCDM literature. The proposed trend mining procedure is
laid out in Sect. 3. The working of trend mining is demonstrated in Sect. 4. The
paper concludes with a few directions for future development of the technique.

2 Visualization in MCDM

Visualization methods in MCDM can be broadly classified as generic and spe-
cific. A generic method is any multivariate visualization tool that originated
outside the area of MCDM or EMO. They include basic graphical methods like
scatter plots, pie charts and bar plots, histograms, box-whisker plots, violin and
bean plots, spider/radar/star/polar plots and parallel coordinate plots. They
also include more advanced techniques like biplots, coplots, glyph plots (Cher-
noff faces, Andrew’s curves, etc.), mosaic and spine plots, treemaps, dimensional
stacking and radial coordinate visualization. Descriptions of generic methods
and their variants can be found in review articles related to visual data mining
[4,9].

Dimensionality reduction and clustering techniques can also be categorized
under generic methods of visualization when the corresponding reduced dimen-
sions or clusters are visualized in 2D or 3D. Among dimensionality reduction
techniques, principal component analysis, multidimensional scaling, Sammon
mapping, neuroscale, isomaps, locally linear embedding, self-organizing maps
and generative topographic maps have been applied for visualization in MCDM.
Among clustering techniques, k-means, hierarchical and density based techniques
have been used. A detailed discussion on these works can be found in [2,7].

Generic methods do not differentiate between the “variates”, meaning that
plots can involve only objectives, or only variables, or a combination of them.
On the other hand, specific methods recognize this difference as they have been
developed within the MCDM/EMO field. They are mainly aimed at visualizing
the Pareto-optimal front. Examples include, (i) distance and distribution charts
(ii) value paths (iii) star coordinate system (iv) petal diagrams (v) Pareto race
(vi) interactive decision maps (vii) Pareto shells (viii) level diagrams (ix) two-
stage mapping (x) hyperspace diagonal counting (xi) heatmaps (xii) prosection
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method (xiii) aggregation trees. These methods are described with schematics
and references to original works in [2,7].

Ironically, most methods developed specifically to aid the decision maker do
not take the decision space into account! The reasoning often given is the fact
that a DM’s preferences are mainly related to objective values, and not decision
variables [10]. We argue, especially in practical decision making processes, that
the better informed a DM is about the impact of variables on decisions and
vice versa, the higher are the confidence and quality of decisions. After all, it
is the decision variables in terms of which the decisions of the DM shall be
implemented.

3 Trend Mining Procedure

The main goal of trend mining is to give the DM a quick intuition about the
effect of variables on the structure of the objective space and to help easily
discover interesting variable trends, irrespective of the number of solutions (N),
the number of objectives (M) and the number of variables (n). Given N solutions
generated by an MOEA, the proposed procedure involves the following five steps:
(i) creation of reference points and reference vectors, (ii) projection of solutions
onto reference vectors, (iii) generation of variable trend lines, (iv) calculation of
interestingness scores, and (v) heatmap visualization of interestingness scores.
These are described in detail in the following subsections.

3.1 Creation of Reference Points and Reference Vectors

Different regions of the objective space are most likely affected in different ways
by the variables. Hence, the first step is to define a region of interest. However,
asking the DM to provide this information defeats the whole purpose of trend
mining, which is decision support. Instead, trend mining uses a set of reference
points to represent multiple initial regions of interest. The reference points are
created uniformly on a standard (M − 1)-simplex1 using the simplex-lattice
design proposed in [5]. This method, described next, is commonly employed in
many decomposition-based MOEAs to generate uniformly distributed weight
vectors [12].

Simplex-lattice design (SLD) generates reference points λ = [λ1, λ2, . . . ,
λM ]T in M dimensions using H equal divisions in [0, 1] along each dimension.
Thus, there are H + 1 possible values for each λi. However, for λ to lie on the
(M − 1)-simplex, we also require that

∑
λi = 1 and λi ≥ 0 ∀i. Therefore, there

are (M −1) free λi values to choose from (H+1) coordinates with repetition. The
total number of possible reference points is given by

((
H+1
M−1

))
, read as “(H +1)

multichoose (M −1)”, which can be simplified as
(
H+M−1
M−1

)
. The reference points

are generated sequentially in the following steps:
1 A standard (M − 1)-simplex has M vertices in R

M , each of which is one unit from
the origin along each axis.
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1. Set j ← 1.
2. Select λ

(j)
1 from

{
0, 1

H , 2
H , . . . , 1

}
.

3. Select λ
(j)
i from

{
0, 1

H , 2
H , . . . , (1 − ∑i−1

t=1 λ
(j)
t )

}
for i = 2, . . . ,M − 1.

4. Set λ
(j)
M = 1 − ∑M−1

t=1 λ
(j)
t .

5. If j <
(
H+M−1
M−1

)
, then set j ← j + 1 and go to Step 2.

The main limitation of this approach is that the number of points needed
to satisfactorily cover the (M − 1)-simplex grows rapidly with M . Since
decomposition-based MOEAs use population sizes that are in proportion to this
number, it becomes impractical to use SLD for M > 20. In practice, it is conve-
nient to specify the maximum number of desired reference points, say P , from
which H can be calculated such that

(
H+M−1
M−1

) ≤ P . In this work, a large value
of P does not drastically affect trend mining because the runtime is linear in P .

In order to mimic change of preferences of a DM or simulate navigation
through the objective space, we also define P different reference vectors from
the origin to each of the reference points created above. These reference vectors
will serve as representative decision paths along which the variable trends will
be identified. Since they emanate from the origin, the set of reference vectors
can be denoted as {λ(1),λ(2), . . . ,λ(P )}.

3.2 Projection of Solutions onto Reference Vectors

Given a set of N solutions evaluated by an MOEA, the next step is to normalize
each objective in [0, 1] to account for differences in their magnitudes. This is
easily accomplished with, fnr

i = (fi − fmin
i )/(fmax

i − fmin
i ) ∀i, where fmin

i and
fmax
i are, respectively, the minimum and maximum values of fi among the N

solutions. The ideal point of the solutions now lies at [0, 0, . . . , 0]T . Therefore,
the reference vectors created above can be used for navigating the normalized
objective space, fnr.

For identifying variable trends along each reference vector, the solutions also
need to be totally ordered in the objective space. This can be done by projecting
all solutions onto the reference vector and ordering them by their distance from
the ideal point. In other words, the solutions are ordered by their distance from
the ideal point, measured along the reference vector under consideration. For
a given solution x(t) and reference vector λ(j), this distance is given by dtj =
λ(j)T fnr(x(t))

‖λ(j)‖ . The solutions can be ordered either in ascending or descending
order of this distance. We choose to sort them in ascending order of dtj .

3.3 Generation of Variable Trend Lines

Let Dj be the ordered set of distances dtj along reference vector λ(j), and Ij
be the corresponding ordered set of original indices of the solutions. Then Ijk
represents the original index of the k-th closest solution to the ideal point along
λ(j). The trend of a variable xi along a reference vector λ(j) can be interpreted
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as the variation in xi values of solutions as one moves from the ideal point
along the vector. This trend can be shown graphically as a line plot of xi

(Ijk)

versus k for k = 1, 2, . . . , N . We refer to this line plot as the trend line xi
(Ij).

Trend mining involves analyzing these trend lines for interesting features. The
definition of interestingness used in this work is presented in the next section.
Note that, the sequence of values xi

(Ijk) ∀k can be treated as a time series, and
methods developed within the field of time series analysis can be used to extract
interesting patterns. We choose a much simpler approach in Sect. 3.4.

Illustration. Figure 1 illustrates the procedure for generating a variable trend
line on a MOOP with M = 2 objectives and n = 2 variables. Given N solutions
to the MOOP that need to be analyzed by a DM, the first step is to choose the
number of reference points. Here, we choose P = 7 points and create the corre-
sponding reference vectors. Next, the objective values are normalized to [0, 1] for
all objectives, so that the ideal point is at (0, 0). Let’s say we want to generate
the variable trend for x2 along λ(3). All N solutions are first projected onto
λ(3). For clarity, Fig. 1 shows this process for five solutions. Next, the distances
dt3, measured along λ(3) from the ideal point to each projected solution, are
calculated. For example, the figure shows that d43 is this distance for solution
x(4). The calculated distances are then sorted in ascending order, which gives
D3 = {d23, d43, d13, d33, d53}, and the corresponding order of original solution
indices, I3 = {2, 4, 1, 3, 5}. The trend of variable x2 along λ(3) is denoted by
x
(I3)
2 , where I3 defines the order in which solutions should appear on the trend

line. Thus, the k-th solution on the trend line should be I3k (k-th element of I3).
The corresponding values of variable x2, denoted as x

(I3k)
2 , are plotted on the

Y-axis.

Decision Space

x(5)

x(1)

x(4)

x(2)

x(3)

fnr
2

Normalized Objective Space

fnr(x(4))

x1

x2

Trend line x
(I3)
2

k54321

fnr(x(1))

fnr(x(5))

d43

Ideal point fnr
1

fnr(x(2))

fnr(x(3))

λ(3)

I3 = {2, 4, 1, 3, 5}
D3 = {d23, d43, d13, d33, d53}x

(I3k)
2Reference points

Fig. 1. Illustration of procedure for generating a variable trend line on a MOOP with
M = 2 objectives and n = 2 variables.
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Algorithm 1. Calculation of Interestingness Score, Sij

Input: Variable trend line xi
(Ijk) for k = 1, 2, . . . , N

Output: Sij

1: Sij ← 0
2: for s ← 1 to �log2 N� do
3: WindowSize ← �N/2s�
4: yk ∀k ← SimpleMovingAverage

(
xi

(Ijk) ∀k,WindowSize
)

5: UpTicks ← 0, DownTicks ← 0
6: for k ← 1 to N − 1 do
7: if yk+1 > yk then UpTicks ← UpTicks + 1

8: if yk+1 < yk then DownTicks ← DownTicks + 1

9: Sij ← Sij + |UpTicks − DownTicks| × 100/(N − 1)

10: Sij ← Sij/�log2 N� %% Average over �log2 N� window sizes

3.4 Calculation of Interestingness Scores

The total number of trend lines is n×P , n being the number of variables and P
being the number of reference vectors. In real-world MOOPs with high n and M
(hence P ), it can be difficult for a DM to visually analyze the trends. Moreover,
without a way to quantify the strength of a variable trend, any interpretation
about the effect of that variable is prone to subjectivity. We therefore define a
simple metric called the interestingness score that can be calculated for each
pair of variable and reference vector.

In this paper, we consider monotonically increasing or decreasing values of
variables (along the reference vectors) as characteristic features that can aid in
decision making. The interestingness score, Sij , measures how close the variable
trend xi

(Ij) is to being monotonic. It is defined as a function of the number of
UpTicks and DownTicks in the trend line. An uptick occurs every time con-
secutive points on the trend line show an increase in the variable value, and a
downtick occurs when they show a decrease. For example, the trend line gener-
ated in Fig. 1 has UpTicks = 3 and DownTicks = 1. A higher value of the ratio
|UpTicks − DownTicks|/(N − 1) means that the trend is closer to being mono-
tonic. In order to account for possible non-uniformity of solutions in the objective
space and the corresponding fluctuations in the trend line, Sij is obtained by
aggregating |UpTicks − DownTicks|/(N − 1) over several copies of the trend
line at different levels of smoothing. Any appropriate smoothing method may be
used. In this paper, we use simple moving average with a range of window sizes
chosen such that the number of non-overlapping windows increases in powers of
two. Thus, the largest window size will have 21 non-overlapping windows and
the smallest window size will have 2�log2 N� non-overlapping windows, which cor-
responds to no smoothing. The complete pseudocode is shown in Algorithm1.
Note that Sij is expressed as a percentage of monotonicity.
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3.5 Heatmap Visualization of Interestingness Scores

The interestingness scores are presented to the DM in the form of an interactive
heatmap grid of size n × P . The use of colors makes it easy to identify pairs
of variables and reference vectors with high interestingness scores when n or P
are high. The DM can choose to investigate a specific {xi,λ

(j)} pair by clicking
the color cell (i, j), which shows the corresponding trend line xi

(Ij). A smoothed
version of xi

(Ij), with WindowSize that maximizes |UpTicks − DownTicks|,
is overlaid on the original trend line to highlight the monotonicity of xi. For
MOOPs with M = 2 or 3, a scatter plot of the objective space is also displayed
with the solutions color-mapped to values of xi. The corresponding reference
vector, λ(j), can also be shown, if desired. For M > 3, any of the visualization
techniques discussed in Sect. 2 may be used.

4 Results and Discussion

We now demonstrate the working of trend mining on three MOOPs, namely (i)
WFG2, (ii) Clutch-brake design problem (CLUTCH), and (iii) Flexible machin-
ing cell design problem (FMC). WFG2 is one of the nine scalable test problems
proposed in [8]. CLUTCH is a mechanical design problem that has analytical
formulation and FMC is a real-world stochastic simulation based MOOP. These
problems have been specifically chosen because they have interesting structural
features in the objective space that are not directly apparent from their problem
formulations. We use P = 10 reference vectors for all problems.

WFG2. The WFG2 problem with M = 3 and n = 12 is solved using NSGA-III
[6] with a population of 100 and maximum number of evaluations set to 10,000.
All other parameters take recommended values.
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Fig. 2. Heatmap of interestingness
scores for WFG2.

Fig. 3. Trend line x
(I1)
1 for WFG2 along

with smoothed version (black line). (Color
figure online)
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Trend mining is applied to the evaluated solutions. Figure 2 shows the
obtained heatmap. For each variable, the black dots indicate the reference vector
along which interestingness is maximum. The figure shows that variables x1 and
x2 have relatively high interestingness scores along λ(1) and λ(3), respectively,
while all other variables have similar low scores in all directions. Selecting cell
(1,1) generates the trend line x

(I1)
1 , shown in Fig. 3, and the scatter plot of the

objective space in Fig. 4 where the solutions are color-mapped to x1. The figures
together show how x1 influences the structure of the objective space.

Clutch-Break Design Problem (CLUTCH). The problem involves two
objectives for minimizing the system mass (f1) and the stopping time (f2) and
five discrete variables namely, (i) x1: inner disk radius, (ii) x2: outer disk radius,
(iii) x3: disk thickness, (iv) x4: actuating force, and (v) x5: number of disks. The
complete problem formulation can be found in [1]. The problem is solved using
NSGA-II with recommended parameter settings.

Trend mining generates the heatmap shown in Fig. 5 which indicates that,
due to its high interestingness score, the most important variable with respect
to the structure of the objective space is x5. Selecting cell (5, 2) generates the
trend line x

(I2)
5 and the scatter plot of the objective space. The latter, shown in

Fig. 6, reveals that indeed x5 defines various regions of the objectives space.
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Fig. 4. Objective space for WFG2.
Solutions are color-mapped to x1

values. (Color figure online)
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Fig. 5. Heatmap of interestingness
scores for CLUTCH.

Flexible Machining Cell Design Problem (FMC). This problem from
production engineering domain concerns multi-objective optimization of a flex-
ible machining cell using a stochastic discrete event simulation model. The
cell involves two workstations, the first of which performs operation Op1 and
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the second performs one of three operations Op2A, Op2B and Op2C depend-
ing on the product variant being machined. There are a total of nine vari-
ables, (i) x1 and x2 are buffer levels available for the two workstations that
take integer values in [5, 10], (ii) x3 is a categorical variable which decides
whether to use two slow machines (x3 = 1) or one fast machine (x3 = 2)
for Op1, (iii) x9 is also a categorical variable which decides whether to use
dedicated machines (x9 = 1) or flexible machines (x9 = 2) for Op2A, Op2B
and Op2C, (iv) x4, x5, x6, x7 and x8 are the availabilities (in percent) of the
two slow and the three dedicated machines. They can each take one of the
values in {90, 91, 92, 93, 94, 95}. The objectives are, (i) minimize the total invest-
ment cost (f1), (ii) maximize the throughput of the cell (f2), and (iii) mini-
mize the total number of buffers used (f3). The investment cost is calculated as:
f1(x) =

∑2
i=1 10000(xi−5)+100000(x3−1)+

∑8
i=4 10000(xi−5)+90000(x9−1).

The throughput is obtained using discrete event simulation. The total number
of buffers is simply f3(x) = x1 + x2. The complete description of the problem
and the simulation model can be found in [3].
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Fig. 6. Objective space for
CLUTCH. Solutions are color-
mapped to x5 values. (Color figure
online)
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Fig. 7. Heatmap of interestingness
scores for FMC.

Trend mining generates the heatmap shown in Fig. 7. According to the figure,
trend line x

(I1)
2 has the highest interestingness. Selecting cell (2,1), generates the

trend line and scatter plot of the objective space as shown in Figs. 8 and 9,
respectively. The objective space has different “layers” for different values of f3.
Even though, it is known that f3 = x1 + x2, trend mining shows us that these
layers in the objective space are primarily caused by the variation of x2.

According to the heatmap, variables x6, x7 and x8 have similar interestingness
scores along λ(4). This indicates that the three variables have similar effect on
the objective space. Selecting cell (8, 4) generates Fig. 10 which shows that the
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Fig. 8. Trend line x
(I1)
2 for FMC

along with smoothed version
(black line). (Color figure online)
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Fig. 9. Objective space for FMC. Solu-
tions are color-mapped to x2 values.
(Color figure online)
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Fig. 10. Objective space for FMC.
Solutions are color-mapped to x8

values. (Color figure online)
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Fig. 11. Objective space for FMC.
Solutions are color-mapped to x9 val-
ues. (Color figure online)

throughput (f2) is highly dependent on x8. The same is true for x6 and x7 whose
color-mapped values in the objective space look very similar to Fig. 10. Though
f2 is a function of all variables, trend mining reveals that x6, x7 and x8 are more
important than others for decision making. Note that these variables are of the
same nature as x4 and x5, yet somehow x4 and x5 don’t influence the objective
space as much as x6, x7 and x8.

According to the heatmap, variable x9 has the next highest interestingness
score. Selecting cell (9, 7) gives Fig. 11. Here, we see that the two layered regions
in the objective space separated roughly by f2 ≈ 0.85, are caused by variable
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x9. Again, even though x3 is also a categorical variable like x9, it is the latter
that defines the macro-structure of the objective space.

5 Conclusions

In this paper, we have proposed trend mining, a procedure that can reveal inter-
esting relationships between the decision and objective spaces to support the
decision making process. Specifically, the technique analyzes how different vari-
ables change along different directions in the objective space and assigns an
interestingness score to each variable-direction pair. Trend mining is easy to use
as it involves no non-intuitive parameters and conveys information through visu-
alization in the form of heatmaps, trend lines and scatter plots. Through a few
problems, we demonstrated how trend mining can help find which variables influ-
ence the structure of the objective space and in what way. Trend mining can be
extended in many ways. For example, in this paper we only looked at increasing
or decreasing trends. The technique can be enhanced to recognize other interest-
ing trends, such as cyclic, step, constant or mixed trends, by incorporating time
series analysis methods. Trends pertaining to various variable interactions, such
as additive, multiplicative etc., can also be analyzed. The overall idea can itself
be used for improving MOEAs by learning the evolutionary trends of variables
during optimization and creating new solutions that extrapolate those trends.
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Abstract. We propose a new interactive evolutionary multiobjective
optimization method, IRA-EMO. At each iteration, the decision maker
(DM) expresses her/his preferences as an interesting interval for objec-
tive function values. The DM also specifies the number of representative
Pareto optimal solutions in these intervals referred to as regions of inter-
est one wants to study. Finally, a real-life engineering three-objective
optimization problem is used to demonstrate how IRA-EMO works in
practice for finding the most preferred solution.

Keywords: Evolutionary multi-objective optimization ·
Reference point · Region of interest · Interactive methods ·
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1 Introduction

Many real-world problems involve dealing with several conflicting criteria, which
must be optimized simultaneously. These problems, called multiobjective opti-
mization problems, are defined by objective functions which model the criteria,
and by constraints and bounds for variables which define the feasible set. In
order to solve multiobjective optimization problems and to decide which solu-
tion is the final one, a person, called decision maker (DM), is usually involved
in the solution process in order to choose the solution which best suits her/his
preferences (the most preferred solution).

Recently, Evolutionary Multiobjective Optimization (EMO) methods that
include preferences and interactive EMO algorithms have received attention due
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to the reduction of the computational load and applicability [1]. Within inter-
active algorithms, the elicitation of preferences can be done in different ways
[12]. Many methods use a so-called reference point, which is formed by desirable
aspiration levels for the objective functions that the DM would like to reach. A
key feature in interactive methods is that only one or few solutions are shown
at each iteration in order not to overwhelm the DM with too much information.

We have earlier proposed an interactive version of the preference-based EMO
algorithm WASF-GA [15], called Interactive WASF-GA [13], where the DM
expresses preferences as aspiration levels (i.e. a reference point) and the number
of solutions one wants to see. Then, the algorithm generates exactly the num-
ber of nondominated solutions the DM desires, reflecting the preferences in the
reference point given.

In this paper, we propose a new interactive EMO algorithm called Interactive
Reservation and Aspiration points-based EMO (IRA-EMO) method, which uses
two kinds of reference points to generate nondominated solutions. In addition
to aspiration levels, also reservation levels given by the DM are used. For a
minimization problem, reservation levels are values above which the objective
function values are not admissible. Thus, we consider preferences expressed as
lower and upper bounds for the objective functions defining a region of interest
in the Pareto optimal front and generate solutions within it. It is important to
properly represent all the possible trade-offs among the objectives in the region
of interest to let the DM have an idea of which nondominated solutions can
be achieved based on preferences. To this aim, a variant of WASF-GA called
Modified WASF-GA is proposed to be used within IRA-EMO to approximate
the region of interest.

The rest of the paper is organized as follows. In Sect. 2, we introduce the main
concepts and notations used, including a brief overview of interactive EMO algo-
rithms. In Sect. 3, the IRA-EMO method and Modified WASF-GA are described.
The usefulness of IRA-EMO in practice is demonstrated in Sect. 4, with a real-
world problem. Finally, conclusions are drawn in Sect. 5.

2 Background

We consider multiobjective optimization problems of the form:

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S, (1)

where fi : S → R, for i = 1, . . . , k (k ≥ 2), are objective functions to be
minimized simultaneously over the feasible set S in the decision space Rn, which
is formed by solutions or decision vectors x = (x1, . . . , xn)T . In the objective
space Rk, the solutions are objective vectors f(x) = (f1(x), . . . , fk(x))T , for
x ∈ S, belonging to the feasible objective region Z = f(S).

Because of the degree of conflict among the objective functions, it is very
unlikely to find a single solution where all of them can reach their individual
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optima. Therefore, we consider so-called Pareto optimal solutions, at which no
objective function can be improved without deteriorating, at least, one of the
others. A solution x ∈ S (and its objective vector f(x)) is said to be Pareto
optimal if there is no other x′ ∈ S such that fi(x′) ≤ fi(x) for all i = 1, . . . , k
and fj(x′) < fj(x) for, at least, one index j. The set of all Pareto optimal
solutions is called the Pareto optimal set E, and its image in the objective
space is referred to as the Pareto optimal front f(E). The nadir objective vector
znad = (znad1 , . . . , znadk )T and the ideal objective vector z� = (z�

1 , . . . , z�
k)T provide

upper and lower bounds for the objective functions in E, respectively. Their com-
ponents are znadi = maxx∈E fi(x) and z�

i = minx∈E fi(x) (i = 1, . . . , k). While
z� can be easily obtained, znad can usually only be approximated [3].

Many preference-based EMO algorithms and interactive methods are based
on the use of reference points [18]. A reference point is a vector q = (q1, . . . , qk)T

consisting of desirable objective function values qi for the DM (aspiration levels).
We say that q is achievable if q ∈ Z+Rk

+ (where Rk
+ = {y ∈ Rk | yi ≥ 0 for i =

1, . . . , k}), that is, if either q ∈ Z or if q is dominated by a Pareto optimal
objective vector; otherwise, q is said to be unachievable. Using a reference point,
an achievement scalarizing function (ASF) can be built and minimized over
the feasible set to find the Pareto optimal solution that best satisfies the DM’s
expectations. For a reference point q and a vector of weights μμμ = (μ1, . . . , μk)T ,
with μi > 0 (i = 1, . . . , k), we consider the following ASF proposed in [18]:

s(q, f(x),μμμ) = max
i=1,...,k

{ μi(fi(x) − qi) } + ρ

k∑

i=1

μi(fi(x) − qi). (2)

The parameter ρ has a real positive value which ensures that the solution which
minimizes (2) over S is a Pareto optimal solution to the original problem (1).
Actually, any Pareto optimal solution of (1) can be obtained by minimizing (2)
over S and varying the reference point and/or the weight vector [12].

We use two types of reference points: in addition to those consisting of aspi-
ration levels, we also use reference points formed by reservation levels acceptable
for the DM, i.e. values above which the objective functions are not admissible.

As explained later, our proposal borrows some ideas from (a) the preference-
based EMO algorithm WASF-GA [15], which approximates a region of interest
of the Pareto optimal front defined by a reference point q as defined in [15], and
from (b) the EMO algorithm Global WASF-GA [16], which approximates the
whole Pareto optimal front by using both a utopian (a vector slightly better
than the ideal objective vector) and a nadir objective vector as reference points.

In the literature, many preference-based and interactive EMO methods have
been proposed. In R-NSGA-II [5], the DM gives one or several reference points
and the crowding distance used in NSGA-II [4] is replaced by a preference dis-
tance. PBEA [17] considers a reference point to modify the binary quality indi-
cator of IBEA [20]. In [8], an interactive version of MOEA/D [19] is suggested,
where a DM selects one among a set of solutions shown at intermediate genera-
tions. The algorithm with a controllable accuracy proposed in [10] is also based
on reference points. Regarding the use of both aspiration and reservation levels
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in the EMO field, to the best of our knowledge, few references can be found.
In [7], a preference-based EMO method is proposed for the selection of direct
load control actions in electrical distribution networks, in which preferences are
elicited in a similar way. The nondominated solutions violating some reserva-
tion level are penalized and those closer to the aspiration levels according to
the Euclidean distance are rewarded. Furthermore, [9] suggests an interactive
EMO method based on RVEA [2], where the DM can specify, if desired, pre-
ferred ranges for the objectives (i.e. aspiration and reservation levels), which are
used to adjust the set of reference vectors in RVEA. These two methods follow
a solution process which is different from our proposal, as described next.

3 IRA-EMO for Decision Making

In this section, we describe the Interactive Reservation and Aspiration points-
based EMO (IRA-EMO) method. At each iteration it of IRA-EMO, the DM indi-
cates her/his preferences by specifying desirable bounds for the objective func-
tions in the form of aspiration and reservation levels, denoted by qa,it

i and qr,it
i ,

respectively, with z�
i ≤ qa,it

i < qr,it
i ≤ znadi , for i = 1, . . . , k. Thus, an aspiration

point qa,it = (qa,it
1 , . . . , qa,it

k )T and a reservation point qr,it = (qr,it
1 , . . . , qr,it

k )T

can be formed. The DM also sets the number of solutions (s)he wants to analyze
at each iteration, denoted by N it

S . Then, N it
S nondominated solutions are shown

to the DM, whose objective values are between the levels.
For an aspiration and a reservation points, qa and qr, respectively, with z�

i ≤
qa
i < qr

i ≤ znadi for i = 1, . . . , k, we denote by Ra and Rr the regions of interest
they define, respectively. For this preference information, the DM is interested in
Pareto optimal solutions which are in R = Ra ∩Rr. Figure 1 represents examples
of different situations for a biobjective minimization problem, where the subset
R is highlighted in bold. We have assumed that qa is unachievable and qr is
achievable, which is the most logical situation when the DM gives both points.
In case qa and qr are both unachievable, R = Ra ∩ Rr = Rr, and if both are
achievable, R = Ra ∩ Rr = Ra.

qr

Z=f (S)

qa

z*

znad

qr

Z=f (S)

qa

z*

znad

qr

Z=f (S)

qa

znad

z*

Fig. 1. Region of interest R when qa is unachievable and qr is achievable.
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The ideal and the nadir objective vectors can be estimated if needed, and the
aspiration and the reservation levels are supposed to satisfy z�

i ≤ qa
i < qr

i ≤ znadi

for i = 1, . . . , k. It may occur that z� does not dominate qa and/or znad is not
dominated by qr. If qa dominates z� and qr dominates znad, we have R = Rr.
In case znad dominates qr and z� dominates qa, then R = Ra. If qa dominates
z� and znad dominates qr, then R is the whole Pareto optimal front. When qa

and z� do not dominate each other, and also qr and znad do not dominate each
other, R is constituted by a part of the Pareto optimal front.

We want to emphasize that IRA-EMO does not depend on the availability
of estimations for z� and znad. If no estimations are known, in practice, the DM
may need to take a few iterations of IRA-EMO at the beginning of the solution
process just to gain an idea of the possible objective function ranges and to
fine-tune her/his preferences. Also, z� and znad may be used for normalizing the
objective function values in (2) if they are in different scales. In case they are
not available, any other normalization approach can be used.

To generate nondominated solutions in the subset R defined by the aspiration
and the reservation points at each iteration it, we propose Modified WASF-GA
as an internal part of IRA-EMO. It is based on the working procedure of Global
WASF-GA for using two reference points, instead of only one as in WASF-GA.

3.1 Modified WASF-GA

Let us consider an aspiration and a reservation points, qa and qr, and Nμ vectors
of weights representing the weight vector space (0, 1)k. Let us denote by N
the population size, P final the final set of nondominated solutions generated
by Modified WASF-GA and h the generation counter. At each generation h,
Ph is the population of individuals, Qh is the offspring population, Zh is the
population of parents and offspring, and Fh

n is the n-th front. The number of
elements in a set A is denoted by #(A).

At each generation h, Modified WASF-GA selects solutions which best match
with qa and qr. The population of parents and offspring Zh is divided into several
fronts according to the values they take on the ASF (2) for both qa and qr at
the same time. The lower the values of (2) reached by a solution for one of these
two reference points, the more this solution is highlighted. To be more precise,
once Zh is formed (of size 2N), the division of the individuals into different
fronts is performed as follows. The first front is formed by the solutions in Zh

with the lowest values of (2) for qa taking into account a half of the Nμ weight
vectors (the odd order ones), and by the solutions in Zh with the lowest values
of (2) for qr using the other half of the Nμ weight vectors (the even order ones).
These solutions are removed from Zh. Similarly, the second front is formed by
the solutions in Zh with the next lowest values of (2) for qa and a half of the
Nμ weight vectors, and by the solutions in Zh with the next lowest values of (2)
for qr and the other half of the Nμ weight vectors. This process continues until
every individual in Zh has been classified. The set of nondominated solutions
generated by Modified WASF-GA, Pfinal, consists of the Nμ solutions in the
first front of the last generation. So far, these solutions are the best ones with
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respect to the weight vectors and the aspiration and the reservation points used.
Note that Pfinal approximates the regions of interest defined by qa and qr, that
is, Ra ∪Rr. Since the DM wants to see solutions in R = Ra ∩Rr at each iteration
of IRA-EMO, Pfinal is later filtered to select the solutions belonging to this set.

Modified WASF-GA minimizes, at each generation, the ASF (2) for both the
aspiration and the reservation points. Therefore, in practice, Modified WASF-
GA projects the aspiration and the reservation points onto the Pareto optimal
front simultaneously, using the set of projection directions defined by the weight
vectors. Thus, it is important that the Nμ weight vectors used define a well-
spread set of projection directions in order to preserve diversity.

3.2 Algorithm of IRA-EMO

At each iteration it with the DM, we denote by μμμit,j the weight vectors used in
Modified WASF-GA (j = 1, . . . , Nμ), P̄ it the outcome of Modified WASF-GA,
and P it the subset of solutions of P̄ it whose objective function values are within
the given aspiration and reservation levels. The main steps of IRA-EMO are:

Step 1. Initialization. Set it = 1. Show znad and z� to the DM (if available).
Ask the DM how many solutions (s)he would like to see, denoted by N it

S .
Step 2. Preference information I. If it = 1, ask the DM to specify aspira-

tion and reservation levels for the objective functions, which define qa,it and
qr,it, respectively. If it > 1, qa,it and qr,it are set according to the preference
information the DM wants to give as follows:

– The DM is asked if the current reservation point is to be updated. If so, the
DM specifies a new reservation point, qr,it. If not, let qr,it = qr,it−1.

– The DM is asked if the current aspiration point is to be updated. If so, the
DM specifies a new aspiration point, qa,it. If not, let qa,it = qa,it−1.

Step 3. Preference information II. Ask if the DM wants to change the
number of solutions to be obtained, update N it

S accordingly. Next, define
Nμ = 2N it

S . If it > 1 and N it
S = N it−1

S , set μμμit,j = μμμit−1,j for all j = 1, . . . , Nμ

and go to Step 5. Otherwise, continue.
Step 4. Generation of the weight vectors. Following the procedure

described in [15], generate Nμ weight vectors μμμit,j , with j = 1, . . . , Nμ.
Step 5. Generation of solutions. Generate Nμ nondominated solutions by

applying Modified WASF-GA using qa,it, qr,it, and the set of weight vectors
μμμit,j , with j = 1, . . . , Nμ. Let P̄ it be the set formed by these Nμ solutions.

Step 6. Set P it = {x ∈ P̄ it|qa,it
i ≤ fi(x) ≤ qr,it

i for all i = 1, . . . , k}. If
#(P it) > N it

S , show N it
S representative solutions in P it to the DM. If

#(P it) = N it
S , then show all the solutions in P it to the DM. Otherwise,

if #(P it) < N it
S , complete P it with individuals x ∈ P̄ it\P it which satisfy

fi(x) ≤ qr,it
i for every i = 1, . . . , k and whose objective vectors are closer to

qa,it regarding the Euclidean distance, until #(P it) = N it
S . Then, show all

the solutions in P it to the DM. Let {x̄it
1 , . . . , x̄it

Nit
S

} be the set of solutions
shown to the DM.
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Step 7. Solutions closer to the aspiration point (or to the reservation
point). Ask the DM if (s)he desires to see solutions with objective function
values closer to their aspiration levels (respectively, to their reservation levels).
If no, go to Step 8. If yes, ask which of the N it

S solutions (s)he would like to
replace. Let {x̄it

1 , . . . , x̄it
t } (with t < N it

S ) be the set of solutions to replace and
{x̄it

t+1, . . . , x̄
it
Nit

S
} the set of solutions to maintain. Remove from P̄ it the solu-

tions {x̄it
1 , . . . , x̄it

Nit
S

}. Set P it = {x ∈ P̄ it|qa,it
i ≤ fi(x) for all i = 1, . . . , k}

(respectively, P it = {x ∈ P̄ it|fi(x) ≤ qr,it
i for all i = 1, . . . , k}) and find t

solutions in P it whose objective vectors are the closest ones to qa,it (respec-
tively, the furthest ones to qr,it) regarding the Euclidean distance. Let us
denote these solutions by {x̄it

1 , . . . , x̄it
t }. Show {x̄it

1 , . . . , x̄it
t }∪{x̄it

t+1, . . . , x̄
it
Nit

S
}

to the DM.
Step 8. Optional ordering. Ask if the DM wants to order the solutions:

– According to some of the objective functions fr, with r ∈ {1, . . . , k}: in this
case, show the solutions {x̄it

1 , . . . , x̄it
Nit

S
} in a descending order with respect to

their values for fr.
– According to their ASF values for the aspiration point qa,it: in this case, show

the solutions {x̄it
1 , . . . , x̄it

Nit
S

} in an ascending order based on their values for

s(qa,it, f(x),wit), where wit =
(

1
fmax
1 −fmin

1
, . . . , 1

fmax
k −fmin

k

)
, with fmin

j =

min
l=1,...,Nit

S

fj(x̄it
l ) and fmax

j = max
l=1,...,Nit

S

fj(x̄it
l ).

Step 9. Termination rule. Ask the DM to select the most preferred solution
from the set {x̄it

1 , . . . , x̄it
Nit

S
} and denote it by xit. If the DM is satisfied enough

with this solution and (s)he wishes to Stop, the solution process concludes
with xit as the final solution and f(xit) as the final objective vector. Other-
wise, set it = it + 1 and go to Step 2.

In Step 1, estimations of z� and znad are shown to the DM to give her/him
an idea of the objective function ranges for giving the reservation and aspiration
levels. If they are not available, (s)he sets the levels based on her/his intuition.

In Steps 2 and 3, the DM expresses her/his initial preferences. Then, a set
of solutions is generated and filtered in Steps 4–6. In Step 5, new Nμ = 2N it

S

solutions are generated using Modified WASF-GA and, in Step 6, N it
S solutions

are selected from its outcome and shown to the DM. Once the first solutions
have been generated, the interaction with the DM starts from Step 7 onwards.
Step 7 allows the DM to fine-tune the solutions shown by replacing some of them
by others with objective function values closer to either aspiration or reservation
levels. The idea is to let her/him freely explore different trade-offs among the
objectives given the current preferences. With Step 8, the main aim is to support
the DM in analyzing the solutions, but note that it can be skipped if desired.

In Step 6, if needed, we complete P it with solutions not worsening the reserva-
tion levels and violating the aspiration ones as little as possible. It is very unlikely,
but there may be no solutions that meet the reservation levels. In this case, the
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DM must be informed, so that (s)he can decide whether to give new reserva-
tion levels, analyze just the available solutions satisfying qa,it

i ≤ fi(x) ≤ qr,it
i

(i = 1, . . . , k), or even just solutions with qa,it
i ≤ fi(x) (i = 1, . . . , k).

Internally, to accelerate the speed of the solution process, the final population
P it generated by Modified WASF-GA at an iteration it can be used as its initial
population at the next iteration it+1. Also, if desired, the local Pareto optimality
of the final solution can be assured by minimizing (2) using its objective function
values as a reference point with some local optimization method.

4 Numerical Example

Next, we illustrate the performance of IRA-EMO with the three-objective opti-
mization problem proposed in [14]. The aim is to identify the most convenient
combination of improvements in the auxiliary services of a 1100 MW thermal
power plant, to maximize the energy saving (denoted by f1, in MWh), to min-
imize the economic investment required (denoted by f2, in e million) and to
maximize the Internal Rate of Return (IRR) of the investment (denoted by f3,
in %). The problem has 13 continuous and 20 binary decision variables and is
modelled using a black-box simulator. We present objective values in their orig-
inal form (and not using a minimization formulation) to make the interaction
with the DM more understandable. The Pareto optimal front of this problem is
discontinuous and formed by several disconnected subsets of solutions [14]. We
have approximated z� = (47526.37, 0.0, 100.0) and znad = (0.0, 9.28, 0.0).

IRA-EMO and Modified WASF-GA have been implemented using jMetal [6],
a Java-based framework for multiobjective optimization.1 The parameter setting
used in Modified WASF-GA is the same used in [14]. We use the simulated binary
crossover (SBX) operator and a polynomial distribution mutation operator for
continuous variables and the binary crossover and the binary mutation for integer
variables. The crossover and mutation distribution indices used are 2 and 25,
respectively. For all variables, the crossover and the mutation probabilities are 0.9
and 1/n, respectively, where n is the number of binary or continuous variables.
We have used a population size of 50 individuals and 100 generations.

Next, we describe the interactive solution process, i.e. how the DM used
IRA-EMO to identify his most preferred solution. At the first iteration, the DM
decided to generate five solutions (N1

S = 5) using qa,1 = (47526.37, 0.0, 60.0) and
qr,1 = (0.0, 5.0, 0.0). Initially, he wished to study which type of trade-offs were
possible by setting the aspiration and the reservation levels as their ideal and
nadir objective values, except the aspiration level for f3 (having a 60% IRR was
profitable enough for him) and the reservation level for f2 (the nadir value for
f2 was too much money for him and, although his budget limit was e2 million,
initially he wanted to see solutions needing more expensive investments, such
as e5 million, at most, to study the “price” to pay for a lower investment). In
Fig. 2 (a), the solutions generated by IRA-EMO are plotted using a value path

1 The source code is freely available at https://github.com/rsain/IRA-EMO.

https://github.com/rsain/IRA-EMO
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and a table shows the objective vectors. This representation enables the DM to
analyze the objective values reached within the aspiration and the reservation
levels, and to see how wide the given ranges are in comparison to their maximum
ranges (i.e., from the ideal to the nadir values), helping him to broaden or to
shrink them if he wants to relax or to further limit the objective values.

Sol. Ener.Sav.(f1) Invest.(f2) IRR(f3)
MWh million %

S1 32376.55 3.38 46.81
S2 3876.01 0.35 54.63
S3 22830.01 1.91 59.05
S4 15786.72 1.7 45.2
S5 14832.78 1.23 59.54
Range 28500.54 3.03 14.34

(a) Iteration 1.

Sol. Ener.Sav.(f1) Invest.(f2) IRR(f3)
MWh million %

S1 4194.06 0.42 49.54
S2 15223.33 1.35 55.73
S3 5223.41 0.93 25.22
S4 11965.11 0.99 59.99
S5 4211.79 0.42 48.96
Range 11029.27 0.93 34.77

(b) Iteration 2.

Fig. 2. Solution process of IRA-EMO.

All the solutions generated at the first iteration reached objective values
within the specified ranges. Overall, limiting the investment to e5 million
enabled very high energy savings to be obtained, but still far from the desired
aspiration level. However, all the solutions achieved IRR values near to 60%
(the aspiration level), reflecting their high profitability. Next, the DM wanted
to know if it was possible to get the same profitability but limiting the invest-
ment to e2 million. At a new iteration, five solutions (N2

S = 5) were obtained
with qa,2 = (33000.0, 0.0, 60.0) and qr,2 = (0.0, 2.0, 0.0), shown in Fig. 2 (b).
Here he also relaxed the aspiration level for f1 until a value near the highest
energy saving obtained at the first iteration. The solutions found required an
investment bellow e2 million, but the energy savings were not as high as at the
first iteration. This highlights the conflict among the two objectives. Solution S2
needed the highest investment (still far from the budget limit), but reached the
best energy saving value, and the second best IRR value. Observe that nearly
all the solutions attained IRR values close to the aspiration level. Furthermore,
solution S4 reached a 59.99% IRR, having the second best value for the energy
saving. Based on this, the DM mainly liked solutions S2 and S4.
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Although his budget was limited by e2 million, he wished to check what
happened when relaxing the reservation level for f2 a bit, with the condition of
having a 20–70% IRR and energy savings up to 10000 MWh. A new iteration
was carried out, with qa,3 = (40000.0, 0.0, 70.0), qr,3 = (10000.0, 3.0, 20.0), and
N3

S = 5. Figure 3 depicts the five new solutions. Most of them improved the
energy saving and the IRR values achieved in the second iteration, requiring to
invest less than e2 million. Finally, the DM selected S2 as his most preferred
solution. Although it needed the highest investment, it was bellow his budget
limit and it reached the highest energy saving, with a satisfactory IRR.

Sol. Ener.Sav.(f1) Invest.(f2) IRR(f3)
MWh million %

S1 11883.99 0.97 60.48
S2 22358.39 1.89 58.69
S3 14712.55 1.14 64.30
S4 16020.19 1.83 42.54
S5 13066.12 1.03 62.73
Range 10474.40 0.92 21.76

Fig. 3. Solution process of IRA-EMO (iteration 3).

To evaluate the performance of IRA-EMO, we compare it with R-NSGA-II
[5], which can also use more than one reference point. In R-NSGA-II, a parameter
ε controls the extent of the distribution of solutions. We set ε = 0.001 (the
same value used in [5] for two engineering design problems). To perform a fair
comparison, we executed R-NSGA-II with the parameter setting used for IRA-
EMO and performed three iterations with the same aspiration and reservation
points. Thus, for t = 1, 2, 3, we generated nondominated solutions with qa,t and
qr,t. From the final population generated at each iteration, we first selected the
solutions in the region of interest. Then, we applied the k-means clustering [11]
to select the five most representative solutions. They are shown in Table 1.

Let us then analyze the dominance relations among the five solutions pro-
vided to the DM by each algorithm at each iteration. In other words, we com-
pare objective vectors in the tables of Figs. 2 and 3 (solutions of IRA-EMO)
with the ones in Table 1 (solutions of R-NSGA-II). We can see that, at any iter-
ation, no solution of R-NSGA-II dominates any solution IRA-EMO. However, at
the first iteration, solution S1 of IRA-EMO dominates solutions S3 and S5 of
R-NSGA-II, and S3 of IRA-EMO dominates S4 of R-NSGA-II. Furthermore, at
the second iteration, both S1 and S5 of IRA-EMO dominate S3 of R-NSGA-
II, S2 of IRA-EMO dominates S5 of R-NSGA-II, and S4 of IRA-EMO domi-
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Table 1. Solutions generated by R-NSGA-II.

Sol. f1 MWh f2 emillion f3 % f1 MWh f2emillion f3% f1 MWh f2 emillion f3%

Iteration 1 Iteration 2 Iteration 3

S1 5601.56 1.07 22.85 5407.63 0.99 24.15 16330.36 1.99 39.62

S2 25101.18 2.11 58.87 15439.39 1.54 49.11 24979.27 2.04 60.71

S3 29555.99 3.41 42.08 4167.04 0.59 33.49 24670.84 2.01 60.74

S4 16123.46 1.93 40.47 4828.34 0.76 29.15 16136.67 1.89 41.37

S5 28021.10 3.40 39.70 15136.85 1.44 51.85 24844.48 2.03 60.76

Range 23954.44 2.34 36.02 11272.34 0.96 27.70 8842.60 0.15 21.14

nates S1 of R-NSGA-II. Finally, at the third iteration, S2 of IRA-EMO dom-
inates both S1 and S4 of R-NSGA-II. This demonstrates that IRA-EMO was
able to produce higher quality solutions (regarding the Pareto dominance) than
R-NSGA-II. Thus, IRA-EMO generated sets of solutions which better represent
the trade-offs existing among the objectives in the region of interest.

Comparing interactive EMO algorithms from a decision-making point of view
is a research topic of its own and deserves further research. Because we have
a real-world problem, we reported results for a single run, since this is what
usually happens when interacting with real DMs. Actually, this constitutes the
main difference between using EMO methods to solve real-world applications
instead of testing with benchmark problems designed to study performance in
general.

5 Conclusions

In this paper, we have proposed the IRA-EMO method for solving multiobjective
optimization problems. At each iteration of IRA-EMO, very easy to understand
preference information is asked from the DM: (a) aspiration and reservation
levels for the objective functions and (b) the number of solutions (s)he wishes
to analyze. According to this, the desired number of solutions is generated to
represent the part of the Pareto optimal front bounded by the aspiration and the
reservation levels given. Such solutions are internally generated at each iteration
with the DM by means of Modified WASF-GA. The applicability of IRA-EMO
has been described with a real three-objective optimization problem. The DM
could analyze the solutions obtained with objective values within the aspiration
and the reservation levels given at each iteration until finding a suitable final
solution.

The region of interest could be approximated by methods such as R-NSGA-
II using appropriate preference information. However, the interactive solution
process of our method is different, including specific steps for decision making
purposes. In addition, IRA-EMO assures that the region of interest bounded by
the aspiration and the reservation points is approximated in just one run, gen-
erating the number of solutions the DM desires to see. These two features are
not so easily controllable by other methods. We found that IRO-EMO was able
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to produce better solutions than R-NSGA-II for a real three-objective optimiza-
tion problem. Actually, IRA-EMO generated solutions that better represent the
trade-off existing among the objectives in the region of interest.

In the future, we plan to investigate how to configure IRA-EMO to explore,
in the same iteration, solutions with objective function values within several
regions of interest. We would also like to define and develop a way to compare the
performance of interactive EMO methods from a decision-making perspective.
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Abstract. Most existing studies on evolutionary multi-objective opti-
misation (EMO) focus on approximating the whole Pareto-optimal front.
Nevertheless, rather than the whole front, which demands for too many
points (especially when having many objectives), a decision maker (DM)
might only be interested in a partial region, called the region of interest
(ROI). Solutions outside this ROI can be noisy to the decision mak-
ing procedure. Even worse, there is no guarantee that we can find DM
preferred solutions when tackling problems with complicated properties
or a large number of objectives. In this paper, we use the state-of-the-
art MOEA/D as the baseline and develop its interactive version that
is able to find solutions preferred by the DM in a progressive manner.
Specifically, after every several generations, the DM is asked to score a
limited number of candidates. Then, an approximated value function,
which models the DM’s preference information, is learned from the scor-
ing results. Thereafter, the learned preference information is used to
obtain a set of weight vectors biased towards the ROI. Note that these
weight vectors are thus used in the baseline MOEA/D to search for DM
preferred solutions. Proof-of-principle results on 3- to 10-objective test
problems demonstrate the effectiveness of our proposed method.

Keywords: Interactive multi-objective optimisation ·
Preference learning · MOEA/D

1 Introduction

The multi-objective optimisation problem (MOP) considered in this paper is
formulated as:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to x ∈ Ω , (1)

where x = (x1, · · · , xn)T is a n-dimensional decision vector and F(x) is an
m-dimensional objective vector. Ω is the feasible set in the decision space R

n

and F : Ω → R
m is the corresponding attainable set in the objective space
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R
m. Without considering the DM’s preference information, given two solutions

x1,x2 ∈ Ω, x1 is said to dominate x2 if and only if fi(x1) ≤ fi(x2) for all
i ∈ {1, · · · ,m} and F(x1) �= F(x2). A solution x ∈ Ω is said to be Pareto-optimal
if and only if there is no solution x′ ∈ Ω that dominates it. The set of all Pareto-
optimal solutions is called the Pareto-optimal set (PS) and their corresponding
objective vectors form the Pareto-optimal front (PF). Accordingly, the ideal
point is defined as z∗ = (z∗

1 , · · · , z∗
m)T , where z∗

i = min
x∈PS

fi(x).

Evolutionary algorithms, which work with a population of solutions and
can approximate a set of trade-off solutions simultaneously, have been widely
accepted as a major tool for solving MOPs. Over the past two decades and
beyond, many efforts have been devoted to developing EMO algorithms, e.g.
NSGA-II [7], IBEA [23] and MOEA/D [22]. The ultimate goal of multi-objective
optimisation is to help the DM find solutions that meet at most her/his prefer-
ence. Supplying a DM with a large amount of trade-off points not only increases
her/his workload, but also provides many irrelevant or even noisy information
to the decision making process. Moreover, due to the curse of dimensionality,
approximating the whole high-dimensional PF not only becomes computation-
ally inefficient (or even infeasible), but also causes a severe cognitive obstacle
for the DM to comprehend the high-dimensional data. To facilitate the decision
making process, it is more practical to incorporate the DM’s preference informa-
tion into the search process. By doing so, it allows the computational efforts to
be concentrated on the ROI and thus has a better approximation therein. Gener-
ally speaking, preference information can be incorporated a priori, posteriori or
interactively. Note that the traditional EMO just goes along the posteriori way
whose disadvantages have been described before. When the preference infor-
mation is elicited a priori, it is used to guide the solutions towards the ROI.
However, it is non-trivial to faithfully model the preference information before
solving the MOP at hand. In practice, articulating the preference information
in an interactive manner, which has been studied in the multi-criterion deci-
sion making (MCDM) field for over four decades, seems to be interesting. This
enables DMs to progressively learn and understand the characteristics of the
MOP at hand and adjust their preference information. As a consequence, the
solutions are effectively driven towards the ROI.

In the past decade, the development for hybrid EMO-MCDM schemes, where
the DM’s preference information is integrated into EMO either a priori or inter-
actively, have become increasingly popular. Generally speaking, their ideas can
be briefly summarised as the following five categories.

1. The first one employs weight information, e.g. relative importance order [12],
to model DM’s preference information. However, it is difficult to control the
guidance of the search towards the ROI and there is no obvious motivation
to utilise weights in an interactive manner.

2. The second sort modifies the trade-off information by either classifying objec-
tives into different levels and priorities or expressing DM’s preference informa-
tion via fuzzy linguistic terms according to different aspiration levels, e.g. [19].
This is method is interesting yet complicated, especially when the number of
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objectives becomes large [20]. In addition, using such approach interactively
increases the DM’s burden.

3. The third category tries to bias the density of solutions towards the ROI by
considering DM’s preference information, e.g. [4]. However, density/diversity
management itself in EMO is difficult, especially in a high-dimensional space.

4. The fourth class, as a recent trend, combines DM’s preference information
with performance indicators in algorithm design, e.g. [21]. Nevertheless, the
computational cost of certain popular performance indicator, e.g. hypervol-
ume [1] increases exponentially with the number of objectives.

5. The last one uses aspiration level vector, which represents the DM’s desired
values of each objective, to assist the search process, e.g. [10,13]. As reported
in [3], aspiration level vector have been recognised as one of the most popu-
lar ways to elicit DM’s preference information. Without a demanding effort
from the DM, she/he is able to guide the search towards the ROI even when
encountering a large number of objectives.

Take MOEA/D, a state-of-the-art EMO algorithm, as the baseline, this
paper develops a simple yet effective progressive preference learning paradigm.
It progressively learns an approximated value function (AVF) from the DM’s
behaviour in an interactive manner. The learned preference information is thus
used to guide the population towards the ROI. Generally speaking, the progres-
sive preference learning paradigm consists of the following three modules.

– Optimisation module: it uses the preference information elicited from the
preference elicitation module to find the preferred solutions. In principle, any
EMO algorithm can be used as the search engine while this paper takes
MOEA/D for proof-of-principle purpose.

– Consultation module: it is the interface by which the DM interacts with the
optimisation module. It supplies the DM with a few incumbent candidates
to score. Thereafter, the scored candidates found so far are used to form the
training data, based on which a machine learning algorithm is applied to find
an AVF that models the DM’s preference information.

– Preference elicitation module: it aims at translating the preference informa-
tion learned from the consultation module in the form that can be used in
MOEA/D. In particular, the learned preference information is used to obtain
a set of weight vectors biased towards the ROI.

In the remaining paragraphs, the technical detail of the progressive prefer-
ence learning for MOEA/D will be described step by step in Sect. 2. Proof-of-
principle experiments, shown in Sects. 3 and 4, demonstrate the effectiveness of
our proposed algorithm for finding DM preferred Pareto-optimal solutions on
benchmark problems with 3 to 10 objectives. At the end, Sect. 5 concludes this
paper and provides some future directions.

2 Proposed Method

Generally speaking, the method proposed in this paper is a generic framework
for progressive preference learning. It consists of three interdependent modules,
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i.e. consultation, preference elicitation and optimisation. For proof-of-principle
purpose, this paper uses the state-of-the-art MOEA/D as the search engine in
the optimisation module. It uses the preference information provided by the pref-
erence elicitation module to approximate DM’s preferred solutions. In addition,
it periodically supplies the consultation module with a few incumbent candidates
to score. Since no modification has been done upon MOEA/D, we do not intend
to delineate its working mechanism here while interested readers are suggested
to refer to [22] for details. The following paragraphs will focus on describing the
consultation and preference elicitation modules.

2.1 Consultation Module

The consultation module is the interface where the DM interacts with, and
expresses her/his preference information to the optimisation module. In prin-
ciple, there are various ways to represent the DM’s preference information. In
this paper, we assume that the DM’s preference information is represented as
a value function. It assigns a solution a score that represents its desirability to
the DM. The consultation module mainly aims to progressively learn an AVF
that approximates the DM’s ‘golden’ value function, which is unknown a priori,
by asking the DM to score a few incumbent candidates. We argue that it is
labor-intensive to consult the DM every generation. Furthermore, as discussed
in [2], consulting the DM at the early stage of the evolution might be detrimental
to the decision-making procedure, since the DM can hardly make a reasonable
judgement on poorly converged solutions. In this paper, we fix the number of
consultations. Before the first consultation session, the EMO algorithm runs
as usual without considering any DM’s preference information. Afterwards, the
consultation session happens every τ > 1 generations.

There are two major questions to address when we want to approximate the
DM’s preference information: (1) which solutions can be used for scoring? and
(2) how to learn an appropriate AVF?

Scoring. To relieve the DM’s cognitive load and her/his fatigue, we only ask
the DM to score a limited number (say 1 ≤ μ � N) of incumbent candidates
chosen from the current population. Specifically, we use the AVF learned from
the most recent consultation session to score the current population. The μ
solutions having the best AVF values are used as the incumbent candidates, i.e.
deemed as the ones that are satisfied by the DM most. However, if it is at the
first consultation session, no AVF is available for scoring. In this case, we first
initialise another μ ‘seed’ weight vectors, which can either be generated by the
Das and Dennis’ method [6] or chosen from the weight vectors initialised in the
optimisation module. Afterwards, for each of these ‘seed’ weight vectors, we find
the nearest neighbour from the weight vectors initialised in the optimisation
module. Then, the solutions associated with these selected weight vectors are
used as the initial incumbent candidates.
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Learning. In principle, many off-the-shelf machine learning algorithms can be
used to learn the AVF. In this paper, we treat it as a regression problem and
use the Radius Basis Function network (RBFN) [5] to serve this purpose. In
particular, RBFN, a single-layer feedforward neural network, is easy to train and
its performance is relatively insensitive to the increase of the dimensionality.

Let D = {(F(xi), ψ(xi))}Mi=1 denote the dataset for training the RBFN. The
objective values of a solution xi are the inputs and its corresponding value
function ψ(xi) scored by the DM is the output. In particular, we accumulate
every μ solutions scored by the DM to form D. An RBFN is a real-valued function
Φ : R

m → R. Various RBFs can be used as the activation function of the
RBFN, such as Gaussian, splines and multiquadrics. In this paper, we consider
the following Gaussian function:

ϕ = exp(−‖F(x) − c‖
σ2

), (2)

where σ > 0 is the width of the Gaussian function. Accordingly, the AVF can
be calculated as:

Φ(x) = ω0 +
NR∑

i=1

ωi exp(−‖F(x) − ci‖
σ2

), (3)

where NR is the number of RBFs, each of which is associated with a different
centre ci, i ∈ {1, · · · ,NR}. ωi is the network coefficient, and ω0 is a bias term,
which can be set to the mean of the training data or 0 for simplicity. In our
experiment, we use the RBFN program newrb provided by the Neural Network
Toolbox from the MATLAB1.

2.2 Preference Elicitation Module

The basic idea of MOEA/D is to decompose the original MOP into several sub-
problems and it uses a population-based technique to solve these subproblems
in a collaborative manner. In particular, this paper uses the Tchebycheff func-
tion [16–18] to form a subproblem as follows:

minimize g(x|w, z∗) = max
1≤i≤m

|fi(x) − z∗
i |/wi

subject to x ∈ Ω
(4)

where z∗ is the ideal point and w is the weight vector associated with this
subproblem. Since the optimal solution of each subproblem is a Pareto-optimal
solution of the original MOP, MOEA/D can in principle approximate the whole
PF with a necessary diversity by using a set of evenly distributed weight vectors
W = {wi}Ni=1, where N is the population size. When considering the DM’s
preference information, the ROI becomes a partial region of the PF. A natural

1 https://uk.mathworks.com/help/nnet/ug/radial-basis-neural-networks.html.

https://uk.mathworks.com/help/nnet/ug/radial-basis-neural-networks.html
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idea, which translates the DM’s preference information into the form that can
be used in MOEA/D, is to adjust the distribution of weight vectors. Specifically,
the preference elicitation module uses the following four-step process to achieve
this purpose.

Step 1: Use Φ(x) learned in the consultation module to score each member of
the current population P .

Step 2: Rank the population according to the scores assigned in Step 1, and find
the top μ solutions. weight vectors associated with these solutions are
deemed as the promising ones, and store them in a temporary archive
WU := {wUi}µi=1.

Step 3: For i = 1 to μ do
Step 3.1: Find the �N−µ

µ 	 closest weight vectors to wUi according to their
Euclidean distances.

Step 3.2: Move each of these weight vectors towards wUi according to

wj = wj + η × (wUi
j − wj), (5)

where j ∈ {1, · · · ,m}.
Step 3.3: Temporarily remove these weight vectors from W and go to Step 3.

Step 4: Output the adjusted weight vectors as the new W .

In the following paragraphs, we would like to make some remarks on some
important ingredients of the above process.

– In MOEA/D, each solution should be associated with a weight vector. There-
fore, in Step 2, the rank of a solution also indicates the importance of its asso-
ciated weight vector with respect to the DM’s preference information. The
weight vectors stored in WU are indexed according to the ranks of their asso-
ciated solutions. In other words, wU1 represents the most important weight
vector, and so on.

– Step 3 implements the adjustment of the distribution of weight vectors accord-
ing to their satisfaction to the DM’s preference information. Specifically, each
of those μ promising weight vectors is used as a pivot, towards which its
closest �N−µ

µ 	 neighbours are moved according to Eq. 5.
– η in Eq. 5 controls the convergence rate towards the promising weight vector.

For proof-of-principle purpose, we set η = 0.5 in this paper.
– Step 3 is similar to a clustering process, while we give the weight vector,

which has a higher rank, a higher priority to attract its companions.

To better understand this preference elicitation process, Fig. 1 gives an intu-
itive example in a two-objective case. In particular, three promising weight vec-
tors are highlighted by red circles. wU1 has the highest priority to attract its com-
panions, and so on. We can observe that the weight vectors are biased towards
those promising ones after the preference elicitation process.
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Fig. 1. Illustration of the preference elicitation process.

3 Experimental Settings

To validate the effectiveness of our proposed algorithm, dubbed as I-MOEA/D-
PLVF, for approximating the DM preferred solutions, the widely used DTLZ [11]
test problems are chosen to form the benchmark suite. Note that the DTLZ
problems are scalable to any number of objectives. The parameter settings of our
proposed progressive preference learning paradigm are summarised as follows:

– number of incumbent candidates presented to the DM for scoring: μ = 2m+1
at the first consultation session and μ = 10 afterwards;

– number of generations between two consecutive consultation sessions: τ = 25;
– number of weight vectors, population size settings and number function eval-

uations (FEs) are set as suggested in [15]. Due to the page limit, they can be
found in the supplementary document2 of this paper.

– the simulated binary crossover [8] is used as the crossover operator while its
probability and distribution index are set as: pc = 1.0 and ηc = 30;

– the polynomial mutation [9] is used as the mutation operator while its prob-
ability and distribution index are set as: pm = 1

n and ηm = 20;

As discussed in [14], the empirical comparison of interactive EMO methods is
tricky since a model of the DM’s behavior is required yet unfortunately sophisti-
cated to represent. In this paper, we use a pre-specified ‘golden’ value function,
which is unknown to an interactive EMO algorithm, to play as an artificial DM.
Specifically, the DM is assumed to minimise the following nonlinear function:

ψ(x) = max
1≤i≤m

|fi(x) − z∗
i |/w∗

i , (6)

where z∗ is set to be the origin in our experiments, and w∗ is the utopia weights
that represents the DM’s emphasis on different objectives. We consider two types
of w∗: one targets the preferred solution on the middle region of the PF while the
other targets the preferred solution on one side of the PF, i.e. biased towards
a particular extreme. Since a m-objective problem has m extremes, there are

2 https://coda-group.github.io/emo19-supp.pdf.

https://coda-group.github.io/emo19-supp.pdf
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m different choices for setting the biased w∗. In our experiments, we randomly
choose one for the proof-of-principle study. Since the Tchebycheff function is used
as the value function and the analytical forms of the test problems are known, we
can use the method suggested in [15] to find the corresponding Pareto-optimal
solution (also known as the DM’s ‘golden’ point) with respect to the given w∗.
Detailed settings of w∗ and the corresponding DM’s ‘golden’ point can be found
in the supplementary document of this paper.

To evaluate the performance of I-MOEA/D-PLVF for approximating the
ROI, we consider using the approximation error of the obtained population P
with respect to the DM’s ‘golden’ point zr as the performance metric. Specifi-
cally, it is calculated as:

E(P ) = min
x∈P

dist(x, zr) (7)

where dist(x, zr) is the Euclidean distance between zr and a solution x ∈ P in
the objective space.

To demonstrate the importance of using the DM’s preference information,
we also compare I-MOEA/D-PLVF with its corresponding baseline algorithms
without considering the DM’s preference information. In our experiments, we run
each algorithm independently 21 times with different random seeds. In the corre-
sponding table, we show the results in terms of the median and the interquartile
range (IQR) of the approximation errors obtained by different algorithms. To
have a statistical sound comparison, we use the Wilcoxon signed-rank test with
a 95% confidence level to validate the significance of the better results.

4 Empirical Results

From the results shown in Table 1, as we expected, I-MOEA/D-PLVF shows over-
whelming superiority over the baseline MOEA/D for approximating the DM’s

Table 1. Performance comparisons of the approximation errors (median and the corre-
sponding IQR) obtained by I-MOEA/D-PLVF versus the baseline MOEA/D on DTLZ1
to DTLZ4 test problems.

DTLZ1 DTLZ2
m ROI I-MOEA/D-PLVF MOEA/D I-MOEA/D-PLVF MOEA/D

3
c 4.213E-4(2.87E-3) 3.104E-2(3.18E-3) 1.026E-2(1.78E-2) 1.030E-1(6.35E-3)
b 1.471E-3(2.87E-3) 3.103E-2(3.30E-3) 8.832E-3(1.09E-2) 9.103E-2(2.56E-3)

5
c 4.173E-3(1.73E-2) 5.262E-2(1.90E-2) 1.721E-2(2.86E-2) 2.417E-1(1.90E-2)
b 1.082E-2(2.09E-2) 7.648E-2(1.65E-2) 5.082E-2(4.73E-2) 2.049E-1(1.45E-2)

8
c 2.130E-3(1.71E-2) 1.484E-2(2.21E-3) 1.625E-2(1.79E-1) 2.615E-1(1.52E-2)
b 1.012E-2(1.03E-1) 5.534E-2(1.12E-2) 4.185E-2(1.10E-1) 1.250E-1(1.05E-2)

10
c 1.269E-1(2.71E-1) 1.789E-1(1.10E-3) 1.087E-1(1.62E-1) 7.386E-1(8.54E-2)
b 1.543E-1(1.77E-1) 2.634E-1(5.05E-3) 1.183E-1(2.08E-1) 2.596E-1(2.88E-2)

DTLZ3 DTLZ4
m ROI I-MOEA/D-PLVF MOEA/D I-MOEA/D-PLVF MOEA/D

3
c 7.214E-4(7.26E-3) 1.055E-1(1.59E-3) 1.303E-2(2.78E-2) 1.042E-1(1.89E-3)
b 2.811E-3(1.09E-2) 8.678E-2(7.75E-3) 7.634E-3(8.76E-3) 9.469E-2(8.07E-3)

5
c 1.128E-2(8.77E-2) 2.442E-1(4.62E-2) 2.762E-2(5.74E-2) 2.569E-1(2.37E-3)
b 1.792E-2(1.53E-1) 2.162E-1(2.35E-2) 3.717E-2(6.28E-2) 2.121E-1(6.66E-3)

8
c 6.821E-2(2.78E-1) 4.277E-1(9.56E-3) 6.538E-2(8.62E-2) 7.236E-1(1.07E-2)
b 8.697E-2(1.63E-1) 1.574E-1(1.32E-2) 1.271E-1(1.86E-1) 2.164E-1(1.69E-2)

10
c 2.168E-1(5.71E-1) 7.365E-1(2.81E-2) 1.927E-1(2.63E-1) 8.676E-1(1.07E-1)
b 1.629E-1(2.55E-1) 3.344E-1(6.99E-2) 1.018E-1(3.28E-1) 2.055E-1(4.21E-2)

The ROI column gives the type of the DM supplied utopia weights. c indicates the preference on the middle
region of the PF while b indicates the preference on an extreme. All better results are with statistical significance
according to Wilcoxon signed-rank test with a 95% confidence level, and are highlighted in bold face with a grey
background.
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‘golden’ solution. In particular, they obtain statistically significantly better met-
ric values (i.e. smaller approximation error) on all test problems. In the following
paragraphs, we discuss the results from the following aspects.

– Due to the page limit, we only plot some results on 3- and 10-objective sce-
narios in Figs. 2, 3, 4 and 5, while more comprehensive results can be found
in the supplementary document. From these plots, we can observe that I-
MOEA/D-PLVF is always able to find solutions that well approximate the
unknown DM’s ‘golden’ point with a decent accuracy as shown in Table 1. In
contrast, since the baseline MOEA/D is designed to approximate the whole
PF, it is not surprised to see that most of their solutions are away from the
DM’s ‘golden’ point. Although some of the solutions obtained by the baseline
MOEA/D can by chance pass the ROI, i.e. the vicinity of the DM’s ‘golden’
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Fig. 2. Solutions obtained on 3-objective DTLZ1 to DTLZ4 problems where zr, which
prefers the middle region of the PF, is represented as the red dotted line. (Color figure
online)
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Fig. 4. Solutions obtained on 10-objective DTLZ1 to DTLZ4 problems where zr, which
prefers the middle of the PF, is represented as the red dotted line. (Color figure online)
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Fig. 5. Solutions obtained on 10-objective DTLZ1 to DTLZ4 problems where zr, which
prefers one side of the PF, is represented as the red dotted line. (Color figure online)

point, they still have an observable distance from the DM’s ‘golden’ point.
Moreover, the other solutions away from the ROI will unarguably result in
the cognitive noise to posteriori decision-making procedure, especially for
problems that have many objectives, e.g. as shown in Figs. 4 and 5.

– From the results shown in Table 1, we find that it seems to be more difficult
for the baseline MOEA/D to find the DM’s preferred solution on the middle
region of the PF than those biased toward a particular extreme of the PF.
This is because if the ROI is on one side of the PF, it is more or less close to the
boundary. The baseline MOEA/D, which were originally designed to approx-
imate the whole PF, can always find solutions on the boundary, whereas it
becomes increasingly difficult to find solutions on the middle region of the
PF with the increase of the number of objectives. Therefore, the approxima-
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tion error to a DM’s ‘golden’ point on one side of the PF seems to be better
than those on the middle region of the PF. In contrast, since our proposed
I-MOEA/D-PLVF can progressively learn the DM’s preference information
and adjust the search direction, it well approximates the ROI in any part of
the PF.

5 Conclusions

This paper has proposed a simple yet effective paradigm for progressively learn-
ing the DM’s preference information in an interactive manner. It consists of three
modules, i.e. optimisation, consultation and preference elicitation. For proof-of-
principle purpose, this paper uses the state-of-the-art MOEA/D as the baseline
algorithm in the optimisation module. The consultation module aims to progres-
sively learn an AVF that models the DM’s preference information. In particular,
during the consultation session, the DM is presented with a few incumbent can-
didates for scoring according her/his preference. Once the AVF is learned, the
preference elicitation module translates it into the form that can be used in the
optimisation module, i.e. a set of weight vectors that are biased towards the
ROI. Proof-of-principle results on 3- to 10-objective test problems demonstrate
the effectiveness of our proposed I-MOEA/D-PLVF for approximating the DM’s
preferred solution(s).

In principle, the progressive preference learning paradigm proposed in this
paper is a generic framework which can be used to help any EMO algorithm
to approximate DM preferred solution(s) in an interactive manner. For proof-
of-principle purpose, we use MOEA/D as the search engine in the optimisation
module. Therefore, the learned preference information is translated as a set of
biased weight vectors in the preference elicitation module. One of the future
directions is to adapt this to other formats according to the characteristics of
the baseline algorithm. In addition, this paper assumes that the DM’s preference
information is represented as a monotonic value function. However, in practice,
it is not uncommon that the DM judges some of the alternatives to be incom-
parable. How to discriminate the order information from incomparable compar-
isons? Moreover, instead of assigning a scalar score to a solution, it is interesting
to study how to derive the preference information through holistic comparisons
among incumbent candidates. Although this paper has restricted the value func-
tion to be the form as Eq. 6, other more value function formulations can also be
considered. Furthermore, it is interesting to further investigate the robustness
consideration in deriving the AVF. More studies are required to investigate the
side effects brought by the inconsistencies in decision-making and the ways to
mitigate that. Last but not the least, there are a couple of parameters associated
with the proposed progressive preference learning paradigm, i.e. those listed in
Sect. 3. It is important to investigate the effects of these parameters as a part of
future work.
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Abstract. Multicriteria methods based on pairwise comparisons suffer
from rank reversal occurrences when the set of alternatives is modified.
In this paper, we consider an alternative PROMETHEE-based method
to compute pre-orders. This should lead to face less rank reversal (RR)
occurrences than in the traditional Promethee II ranking. It is based
on hierarchical clustering using a dichotomous process. The property on
which is based the dichotomous separation is explained. The two methods
are compared. At first, we show that the rankings obtained are similar.
Then, a comparison between the frequency of rank reversal occurrences
in both methods is conducted.

Keywords: Multicriteria decision aid · Promethee II method ·
Rank reversal

1 Introduction

Promethee II is a Multiple Criteria ranking method based on pairwise compar-
isons. It provides a complete ranking of different alternatives based on net flow
scores. It has been proved that methods based on pairwise comparisons suffer
from rank reversal problems [5,7,8]. For instance, the deletion of an alternative
can alter the relative rank of two other alternatives. De Keyzer and Peeters
[4] were the first to underline this issue in the context of the PROMETHEE I
method. Rank reversal is at the origin of long debates about its legitimacy. Here
we will not address this question. We will rather consider that it is intrinsic to
pairwise comparison methods. On the contrary, we will rather investigate if it is
possible to manage rank reversal. Therefore, we consider a new ranking method
based on a property of the Promethee’s net flow scores [6] with the aim to
reduce rank reversal occurrences.

The paper is organized as follows; the first section is dedicated to a reminder
of Promethee II. The new ranking procedure - a dichotomous method based
on a hierarchical clustering procedure - is introduced in the next section. Then,
a comparison between the two methods is conducted on several points. Firstly,
c© Springer Nature Switzerland AG 2019
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we compare the rankings obtained, based on the Kendall’s tau. Secondly, we
investigate the indifference relation in the second method. Then we tackle the
topic of rank reversal. We show that the threshold obtained by Mareschal et al.
[5] for Promethee II is not valid anymore for the dichotomous method.

2 Promethee II

This section is a short overview of Promethee II. We refer the interested
reader to [1,2] for a detailed description. Let A = {a1, a2, . . . , an} be a set
of n alternatives and F = {f1, f2, . . . , fm} be a set of m criteria. We assume
that each alternative ai is characterized by an evaluation for every criterion,
denoted fk(ai). For each couple of alternatives (ai, aj) and each criterion fk,
the difference dk(ai, aj) = fk(ai) − fk(aj) is computed. This difference is then
transformed into an uni-criterion preference degree denoted Pk(dk(ai, aj)) (also
referred as Pk(ai, aj) in the rest of the paper). The preference function used is
normalized (Pk ∈ [0, 1]) and is a non-decreasing function.

Pk

dk(ai, aj)qk pk0

1

Fig. 1. Linear preference function with an indifference qk and a preference pk thresh-
olds.

The most common preference function is a linear function with an indifference
and a preference threshold, mathematically expressed in Eq. 1 and represented
on Fig. 1. The indifference (qk) and preference (pk) thresholds for each criterion
fk are assumed to be given by the Decision Maker (DM).

Pk(ai, aj) =

⎧
⎨

⎩

0 dk(ai, aj) < qk
dk(ai,aj)−qk

pk−qk
qk ≤ dk(ai, aj) < pk

1 dk(ai, aj) ≥ pk

(1)

Now we are able to compute a pairwise comparison matrix π in which each
element π(ai, aj) is the weighted sum of the preference functions on each crite-
rion:

π(ai, aj) =
m∑

k=1

wk.Pk(ai, aj) (2)

The weights wk associated to each criterion fk are positive parameters given
by the DM and are assumed to be normalized. The π matrix shows the global
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preference of an element over another element of the set. Obviously, we have:
π(ai, aj) ≥ 0 and π(ai, aj) + π(aj , ai) ≤ 1.

Once the pairwise comparison matrix has been obtained, the next step is to
compute outranking flow scores. The positive flow score φ+ of an alternative
ai expresses its average preference over the other alternatives. Similarly, the
negative flow score φ− expresses how the other alternatives are being preferred
on average.

φ+
A(ai) =

1
n − 1

n∑

j=1

π(ai, aj) (3)

φ−
A(ai) =

1
n − 1

n∑

j=1

π(aj , ai) (4)

The net flow score of an alternative is the balance between the positive and
negative flow scores.

φA(ai) = φ+
A(ai) − φ−

A(ai) (5)

It varies from −1 to 1. If it is positive, the alternative outranks more on average
than it is outranked and vice versa. The final ranking is then obtained following
the relations of preference (P ) and indifference (I):

φA(ai) > φA(aj) ⇒ aiPaj

φA(ai) = φA(aj) ⇒ aiIaj

This gives us a complete pre-order of the set of alternatives. At this stage,
one can already notice that indifference relations will be rather uncommon (due
to the associated strict constraint).

3 Dichotomous Method

In this section, we present an alternative method to obtain a pre-order on the
basis of a preference matrix. This is based on a hierarchical clustering procedure
using a dichotomous process that has been proposed recently by De Smet [6]. The
idea is to separate the n alternatives into two subgroups that are ordered. Then,
one of the obtained group is divided once again. The procedure is repeated until
the desired number of clusters is obtained. In this paper, we will consider the
degenerate case of a number of clusters being equal to the number of alternatives.
To do so, we have to find a way to separate a group of alternatives into two
subsets. Let us try to separate A in two complementary subsets B and B while
respecting two conditions:
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1. The global preference of B over B is as high as possible;
2. The global preference of B over B is as low as possible.

To respect the first condition, we have to maximize the global preference
of all the elements of B over all the elements of B. As explained before, the
global preference of an element ai over another element aj is expressed by πij =
π(ai, aj). Thus we have to find groups such that Eq. (6) is maximized.

∑

i∈B

∑

j∈B

πij (6)

Similarly, to meet the second condition, we have to minimize the global pref-
erence of all the elements of B over all the elements of B. Thus we have to find
groups such that Eq. (7) is minimized.

∑

i∈B

∑

j∈B

πji (7)

To meet both conditions, we need to find groups such that Eq. (6) is maxi-
mized and Eq. (7) is minimized. A compromise solution can be found by detecting
groups which maximize Eq. (8).

∑

i∈B

∑

j∈B

(πij − πji) (8)

We must therefore find B∗ such that:

B∗ = argmax
∑

i∈B

∑

j∈B

(πij − πji) (9)

The proposition made by De Smet [6] states that B∗ is determined by the
set of alternatives which have positive net flow scores. Indeed, by symmetry, we
have

∑
i,j∈B(πij − πji) = 0. As a consequence:

∑

i∈B

∑

j∈B

(πij − πji) =
∑

i∈B

∑

j∈A

(πij − πji) = (n − 1)
∑

i∈B

φA(ai).

By construction, each element of B is better ranked than elements of B.
The resulting subgroups are thus ordered. We process in the same way for each
subset until either the cardinality of the subset equals one or the net flow scores
of all the elements of a given subset equal zero. In the last case, we have, for a
given subset C ⊆ A,∀ai ∈ C : φC(ai) = 0. Therefore elements belonging to C
cannot be differentiated on the basis on the net flow scores. In this case, we face
an indifference relation between the elements of the considered subset and all
the alternatives have the same rank.



648 E. Berghman et al.

4 Comparison of the Two Methods

In order to compare the methods, we will use three data sets from 2012; the
Human Development Index (HDI), the Environmental Performance Index (EPI)
and the Academic Ranking of World Universities (Shanghai).

Firstly, we computed the rankings obtained with the two methods based on
50 randomly chosen alternatives of HDI. Tests have been repeated 10,000 times.
For each criterion, the indifference and preference thresholds are respectively
the first and the third quartiles of all the evaluations differences between the
countries present in the HDI. The criteria are life expectancy at birth (w1 = 1/3),
mean years of schooling (w2 = 1/3), expected years of schooling (w3 = 1/6) and
GNI per capita (w4 = 1/6). We calculated Kendall’s τB coefficient to investigate
the correlation of the two rankings. We used the τB to be able to manage ties.
Clearly, these correlations show a high degree of compatibility (see Fig. 2).

Fig. 2. Kendall’s τB coefficient (50 randomly chosen alternatives of the HDI).

The next step is to check that when two alternatives ai and aj are indifferent
in the dichotomous method (aiIaj), the net flow scores in Promethee II of
these two alternatives are close. Therefore, we computed the difference Δφij =
φ(ai) − φ(aj) when two alternatives have the same ranking in the dichotomous
method. Among all tests, the maximal value observed is Δφ = 0.23. However,
most of the values are less than 0.05 as shown in Fig. 3. Finally, Fig. 4 shows an
histogram of the ranks differences between the two methods.

5 Rank Reversal

The notion of rank reversal (RR) covers different definitions. In this paper, we
used the same as in Mareschal et al. [5]: “Rank reversal occurs whenever the
relative ranking of two alternatives in the global ranking is reversed when a third
alternative is removed from A”.

For all tests, we consider n alternatives and order them to get a first ranking
C0. We then remove one alternative and compute a new ranking. Ci denotes the



Dichotomous Approach to Reduce Rank Reversal Occurrences 649

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

1.5

2

2.5

x 10
4 Histogram of the Δφ of 2 indifferent alternatives

Δφ
ij

N
um

be
r 

of
 o

cc
ur

en
ce

s

Fig. 3. Differences of net flow scores when two alternatives are indifferent according to
the dichotomous method (50 randomly chosen alternatives of the HDI).
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Fig. 4. Differences of ranks between the rankings of each alternative in the two methods
(50 randomly chosen alternatives of the HDI).
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ranking obtained without alternative ai (this is done for the two approaches).
Thus, we have n + 1 rankings for each method. To count the number of RR
for each method, we compare the relations of indifference and preference of all
the pairs of alternatives between the general ranking C0 and each one of the Ci

rankings. Each time the preference relation is reversed, it is counted as a RR.
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Fig. 5. Frequency of RR depending on the number of alternatives (50 randomly chosen
alternatives of the HDI).

We present the results obtained with the HDI data set for various numbers
of alternatives - ranging from 5 to 50 (see Fig. 5). We repeated the test 50 times
for each step. Experiments were also conducted on a simplified version of EPI
and the Academic Ranking of World Universities (also called Shanghai ranking).
Similar conclusions can be drawn (see appendix). As predicted by Mareschal [5],
the frequency of RR in Promethee II decreases with the number of alternatives.
Indeed, RR between two alternative ai and aj is impossible if the difference of
net flow scores between the two alternatives is greater than 2

(n−1) . Unfortunately,
this threshold is not applicable for the dichotomous method. However, we can
observe that the frequency of RR is approximately constant, regardless of the
number of alternatives and is less that 0.5%.

One might wonder if there is a similarity between the RR within the 2 meth-
ods. To investigate this issue, we compared if they occur between the same pair
of alternatives in Table 1, where Column 4 is the mean of the number of RR
observed for each test. Table 1 may suggest that the RR are not similar between
the methods.

Finally, we investigated how intra-preference parameters influence the num-
ber of rank reversal occurrences in both methods. Indeed, having small values for
q and p leads to further discriminate the alternatives. Tests have been conducted
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Table 1. Table of concordance and discordance pairs of RR between the 2 approaches.

Number of alternatives n Concordant pairs (%) Discordant pairs (%) Number of RR (mean)

5 2.07 97.93 0.34

10 1.93 98.07 2.34

15 1.81 98.19 6.95

20 1.75 98.25 15.42

25 1.48 98.52 28.39

30 1.35 98.65 48.02

35 1.15 98.85 66.81

40 1.10 98.90 103.34

45 0.97 99.03 132.60

50 0.98 99.02 174.81

on the HDI data set for values q (respectively p) representing successively the
10% (90%), 30%(70%) and 45% (55%) decile of all the differences (see Figs. 6,
7 and 8). Clearly, we observe that these parameters have an influence on the
number of rank reversal occurrences (especially in PROMETHEE II rankings).
This observation was expected but deserves more attention.
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Fig. 6. Sensibility of RR with respect to intra-criterion preferences.
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Fig. 7. Sensibility of RR with respect to intra-criterion preferences.
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Fig. 8. Sensibility of RR with respect to intra-criterion preferences.

6 Conclusion

In this paper, we presented a new way to rank alternatives using a net flow score
property. The new method, based on a dichotomous procedure, was compared
to the traditional Promethee II ranking. We showed that for small set of
alternatives, rank reversal is less frequent than in Promethee II. Then the
frequency of rank reversal becomes negligible for both approaches.

Of course a number of open questions remains. At first it is interesting to
study the performances of the new method. Indeed, it is more demanding than
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the traditional PROMETHEE methods. Regarding the experiments that were
conducted, execution time was never an issue. In addition, let us mention the
recent work of Calders and Van Assche [3] that allows to improve the computa-
tion performances of PROMETHEE-like rankings. The difference between the
type of rank reversal in both approaches has to be further investigated. Finally,
experiments seem to show that a bound exist regarding the frequency of RR on
the new approach. If this observation is true, the determination of this analytical
bound remains a challenge.

Appendix: Results Related to EPI and Shanghai

Results related to EPI and the Academic Ranking of World Universities are
shown on Figs. 9 and 10.

0 5 10 15 20 25 30 35 40 45 50

Sample size

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

F
re

qu
en

cy
 o

f R
R

Tests on EPI

PROMETHEE
Dichotomous method

Fig. 9. Frequency of RR depending on the number of alternatives (50 randomly chosen
alternatives of the EPI (simplified)).
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Fig. 10. Frequency of RR depending on the number of alternatives (50 randomly chosen
alternatives of the Shanghai).
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Abstract. Renewable energy technologies use natural sources, such as
wind and solar, to produce electricity. Nowadays, there is a global sus-
tainable electric power generation pressure to alleviate environmental
impacts caused by the usage of fossil fuels. Energy market is focused on
improving those technologies by meeting customer needs, but it proves
to be challenging. Renewable power production integrated with a Hybrid
Micro-Grid System (HMGS), a power distribution system composed of
one or more distributed sources, may provide a reliable and cost-effective
solution. This paper proposes a grid-connected HMGS model able of
planning energy production and operating in parallel autonomously or
connected on a public grid. The optimization of such HMGS is done
using a swarm evolutionary approach and the results are obtained using
different battery technologies. A life cycle assessment model and a multi-
criteria decision making approach are carried out to perform a viability
study of the battery technologies. Wind and solar meteorological data
from four regions in the Minas Gerais state, Brazil, were used as input
for the model. Results show that lithium ion batteries are the most rec-
ommendable ones, ensuring not only the minimal cost and losses in the
system but also minimizing the environmental impact.

Keywords: Optimization · Evolutionary swarm ·
Multicriteria decision making · Life Cycle Assessment ·
Renewable energy · Smart grids

1 Introduction

A secure energy supply is a basic service that a community needs to guarantee
comfort, to improve life quality, economy, and crucial aspects of life. However,
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specially in a rural area, energy supply on a continuous and reliable way is not
an easy task. The lack of energy services has hampered economic progress since
power access can be seen as the engine towards development of any society. Not
only connection to distant grids is expensive to be cost-effective for rural areas
in large countries, but also to electrify those areas usually inhabited by poor
people may not be a priority.

Renewable energy sources based on Hybrid Micro Grid Systems (HMGS)
represent a cost-effective way for solving the energy supply issue in rural areas
which are located near from the grids. The installation of HMGS – several paral-
lel connected distributed resources with electronic controlled strategies – can be
seen as a possibility to integrate such distributed electricity sources into the pub-
lic grid or to enable safe standalone power systems. HMGS can offer an optimal
and reliable service using, as example, clusters of small generators, loads and
battery energy storage systems connected through a local electricity network,
controlled by a power management system to optimize power flows [1].

A challenge for those systems is to provide a good balance between genera-
tion and load while maintaining frequency and voltage levels. Batteries systems
(BESS) represent an important component for HMGS, balancing load and gen-
eration from the energy sources within seconds. There are distinct BESS tech-
nologies available, each one showing advantages and disadvantages. This work
presents a viability study to compare different BESS architectures with focus on
finding the best option to a HMGS installation from an environmental perspec-
tive. Typical goals related to HGMS energy planning can be posed as:

1. the minimization of the electricity cost;
2. the minimization of the power losses probability or breakdowns;
3. the maximization of the sustainable source usage in the HMGS;
4. the minimization of the environmental impacts.

When choosing the components to design renewable systems and the avail-
able storage technologies, those questions must be taken into account. Several
attempts have been done to design and operate such small electrical systems
in an efficient and sustainable way. In [2], a particle swarm optimization (PSO)
algorithm was used to optimize the network topology of a HMGS and to max-
imize its total net present worth. This is achieved by optimizing the amount of
BESS, photovoltaic (PV) units and wind generators over the considered project
planning horizon. Similar approaches can be found in [1–6].

This work proposes an optimization model that contains a fitness function
combining the goals 1, 2 and 3. The fourth goal is obtained from the optimization
results in a separate environmental model. The contribution of this work is
threefold: (i) to optimize the operation planning and (ii) to provide decision aid
for the optimal choice of different BESS technologies in a HMGS through a Life
Cycle Assessment (LCA) approach, and (iii) a Multicriteria Decision Making
(MCDM) procedure. The wind and solar meteorological data of four regions
in the Minas Gerais state, located at the southeast part of Brazil, are used as
input for the model. An evolutionary swarm approach, the Canonical Differential
Evolutionary Particle Swarm Optimization (C-DEEPSO) algorithm [7], is used
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to solve the optimization problem. Optimized goals serve as a baseline for an
exploratory LCA and all results are used to determine the most suitable BESS
for the smart grid in a multicriteria decision approach.

This paper is organized as follows. Section 2 presents the proposed HMGS
model and the pre-processing of the meteorological data. Section 3 describes the
decision making methods used in the approach. The LCA is described in Sect. 4.
Section 5 discusses a case study, experiments and the results. Finally, Sect. 6
concludes the paper and gives an outlook for future work.

2 The HMGS Model

This work improves a power dispatch model presented in [3] aiming to provide
electrical energy in a HMGS. The model has two main goals: the minimization
of total production cost and the minimization of power losses in the grid. A
simplified scheme of a hybrid system is given in Fig. 1 (left). The diagram shows
typical equipments of a HMGS: photovoltaic panels, BESS, wind turbines and
a control system. A HMGS can also be connected to a public grid. In this work,
we carry out a viability study of a HMGS for four regions in Minas Gerais state,
Brazil. This area is chosen due to the good seasonal conditions existing on the
aforemention region. It is important to say that our approach can be applied to
any other locality with similar weather characteristics.

Minas Gerais, showed in Fig. 1 (right), is one of out 26 Brazilian states, and
it ranks as the fourth largest state by area and the second most populous one.
This state has an area of 586.528 km2 and the landscape is mainly marked by
plateaus, hills and mountains. The rugged landscape gives the state a privileged
amount of water resources. The hydroelectric potential estimated by Eletrobras
(the Brazilian energy company), in the state of Minas Gerais, is 24.710 MW,
making it the third largest in the country.

Fig. 1. Left: Simple diagram of HMGS – Right: Promising regions to implement HMGS
in Minas Gerais [8].

The predominant vegetation and roughness of the terrain contribute to sea-
sonal influence of aerodynamics in the displacement of winds. Energy planning
in Brazil depends on the mapping of areas according to the legislation for use
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and occupation of the Brazilian soil. The deployment of wind farms is not only
commonly affected by many environmental issues but also by the requirement
of large areas for installation. The state of Minas Gerais has four wind potential
areas and those areas can also be seen in Fig. 1(right). The cities of Janauba,
Montes Claros, Sete Lagoas, and Uberaba are not only situated in areas of wind
potential but also present high annual solar irradiation.

In this work, new boundaries, side conditions and techno-economic values are
taken into account to improve the model presented in [3]. Additionally, the model
is tested with four available BESS technologies, two Li-Ion batteries: Lithium
Iron phosphate (LFP) and Lithium Nickel Cobalt Aluminum Oxide (NCA); one
Valve Regulated Lead Acid battery (VRLA), and one high temperature battery:
Sodium Nickel Chloride (NaNiCl) also referred as Zebra battery.

Yearly time series for a typical standard load profile, solar radiation [9],
hourly wind speed and ambient temperatures of each city shown in Fig. 1, serve
as inputs for the model. A test scenario, with a maximum number of 100 house-
holds, is used in the simulation. HMGS model includes the following economic
parameters representing the general characteristics of the components:

– Inverter: efficiency = 92%, life time = 24 years and initial cost = 643 $/kW;
– PV: regulator efficiency = 95%; life time = 24 years; initial cost = 3400 $/kW,

rated power = 7.3 kW, and PV regulator cost = $1500;
– Wind: rated speed = 9.5 m/s, rated power = 5 kW, price = 6985 $/kW, life

time = 24 years, swept area = 128.6 m, wind regulator cost = $1000, blades
diameter = 6.4 m, efficiency = 95%, cut out and cut in [25, 2.5] m/s;

– Economic parameters: public grid energy cost = $0.31, discount rate = 8%,
real interest = 13%, inflation rate = 5%, O&M+running cost = 20%.

Techno-economic values and performance curves for wind turbines are taken
from [10]. Power control system costs (inverter) are scale dependent and are taken
from [11]. The cost for public grid energy is averaged from the energy company
in Minas Gerais. Table 1 gives a brief overview of the main techno-economic
characteristics of the considered BESS, based on a battery database with over
5.000 data points for 14 different BESS technologies [11,12]. The investment
costs of BESS include the cells ($/kWh) and the balance of Plant (BoP) ($/kW)
includes auxiliary devices, communications, control equipment. Other costs are
related to installation, permitting and commissioning of the BESS.

This work proposes an improved model that includes the cycle life time of
each BESS. We present a summary of the mathematical model that describes
the energy production in a HMGS, which has been deeply discussed in [3,10].
The goals of this model is to minimize the total cost of electricity (COE) and the
loss of power supply probability (LPSP), and to maximize the use of renewable
sources in HMGS. The COE ($/kWh) can be obtained by,

COE =
Totalcosts

∑h=8640
h=1 Pload(h)(kWh)

× CRF, (1)

in which Totalcosts represents the sum of the initial cost (IC) given by personnel
costs, installation and connections, periodic costs PWp given by maintenance of
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Table 1. Input data for BESS based on median values [11].

Factor Unit VRLA LFP NCA NaNiCl

Cost $/kWh 230.36 308.87 212.5 220.3

Cycles - 1400 5000 3000 3000

Efficiency % 77 92 92 86

Life time years 18 10 10 14

BoP $/kW 374 374

Other cost $/kW 328 328

photovoltaic panels, maintenance of wind generator, among others, and non-
recurrent cost PWnp characterized as the cost of BESS replacement.

Power consumption over time is given by Pload and CRF represents the
present value of all components equally distributed over the project life time.
There are some new improvements in the model presented in [3]. The previous
model considers a standalone system meaning that the majority of the energy
resources comes from renewable sources and, in case of intermittent nature of
wind and solar energy, the diesel generators are used to overcome it.

The proposed model considers a grid-connected systems allowing the wind
turbines and photovoltaic cells to be used in synchronised connection with a
public grid supply. Another novelty in the proposed model is the inclusion of a
new factor called degradation cost related to the BESS. The degradation cost
cd [13] is introduced to provide a more realistic scenario to calculate COE. It
considers battery degradation in terms of available cycle lifetime Lc at a certain
depth of discharge (DoD) related to total battery cell costs cbat as indicated,

cd =
cbat

LcEsDoD
. (2)

Using the degradation cost, in our proposed model, Totalcost is calculated,

Totalcost = IC + PWp + PWnp +
8640∑

h=1

cd, (3)

and the total cost of electricity, COE, can be obtained in terms of $/kWh as,

COE =
IC + PWp + PWnp +

∑8640
h=1 cd

∑8640
h=1 Pload

× CRF, (4)

Statistical techniques and chronological simulation approaches are used to
calculate the LPSP. Another novelty in the proposed model is given by the
inclusion of two factors in the calculation of LPSP: (i) the power generated by the
public grid which, in some situations, may generate exceeding energy. The excess
power may be used to charge the BESS. It provides a more environmentally
friendly approach; and (ii) the state of charge of the battery. The state of charge
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of the BESS is a measure of the short term capacity of the battery and it changes
over time since the battery capacity gradually reduces as it ages. This inclusion
provides a more realistic model. For calculating the LPSP, time series data in a
given period are based on the energy accumulative effect of BESS as expressed,

LPSP (%) =
∑

Pload − Ppv − Pwind + Psocmin
+ Pgrid∑

Pload
, (5)

in which Pload is the hourly power consumption, Ppv and Pwind are the power
generated by PV and by the wind generator respectively, Psocmin

is the minimum
state of charge of the battery, and Pgrid is the power generated from public grid.

The amount of energy generated in the renewable source (RWF) system is
used as a boundary to determine the amount of energy coming from a public grid
as compared to the renewable generation. An ideal system based on renewable
resources only would have a RWF of 100%. The higher renewable factor, the
lower the environmental impact. The RWF is calculated as,

RWF (%) =
(
1 −

∑
Pgrid∑

Ppv+
∑

Pwind
.
)

× 100. (6)

The resultant optimization problem is a bi-objective one aiming to minimize
the total cost of electricity (Eq. (4)) and to minimize the loss of power supply
probability (Eq. (5)). The boundary constraints (lower and upper bounds) of
the decision variables are given by: nominal power of PV ([10, 150] in kW);
autonomy grade for the BESS ([1, 3] in hours); number of wind turbines ([1, 10]),
and nominal power of the public grid ([10, 200] in kW).

In HGMS, the COE and the LPSP are equally important since the obtained
system must guarantee reliable and uninterrupted energy supply at a compet-
itive cost. Furthermore, the system must be as closest as possible to an ideal
system based on renewable sources only. Therefore, the normalized fitness func-
tion adopted in this work is,

min F = 0.5 × COE + 0.5 × LPSP + ρ

n∑

i=1

max [0, RWF ]2, (7)

in which ρ is a penalty factor associated to the RWF constraint.
The mono-objective optimization problem given by Eq. (7) is solved using

the C-DEEPSO [7], a hybrid single-objective metaheusristic which incorporates
distinct features of Evolutionary Programming, Particle Swarm Optimization,
and Differential Evolution. Swarm evolutionary approaches have been widely
applied for solving power systems optimization problems [3,7,14] to name a few.
It is worthwhile to mention that the focus of this paper lies on the proposed
multicriteria decision making based approach to conduct the viability study of
the available BESS. Any other swarm algorithm, or other evolutionary approach,
could have been applied to solve the problem.

The optimization problem (Eq. (7)) must be solved for each available BESS
technology: Lithium Iron phosphate (LFP), Lithium Nickel Cobalt Aluminum
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Oxide (NCA), Valve Regulated Lead Acid battery (VRLA), and Sodium Nickel
Chloride (NaNiCl). The viability study using the Life Cycle Assessment is then
carried out using the optimal values for each battery.

3 Decision Making Methods: AHP+TOPSIS

Multicriteria Decision Making (MCDM) methods can be roughly schematized
by a construction phase (input data and the modeling phase including the inter-
face with stakeholders) and an exploitation phase (the aggregation and calcula-
tion leading to recommendations). There are three sets of methods available: (i)
elementary methods (e.g., weighted sum method); (ii) single synthesizing meth-
ods, (Analytic Hierarchy Process – AHP [15], Technique for Order Preference
by Similarity to Ideal Solution – TOPSIS [16]); and (iii) hybrid approaches as
AHP+TOPSIS [17,18]. Each of these methods has its strengths and weaknesses
and should be selected with care for each assessment. In this work, AHP is
used for the construction phase to elicit weights and TOPSIS is considered as a
suitable approach for the exploitation phase (to rank considered alternatives).

The AHP is based on judgments on comparative elements. It measures the
relative importance through pairwise comparison matrices. These can then be
recombined to achieve a overall rating of alternatives. Inconsistency is a conse-
quence of the attempt to derive a priority through the comparison of two objects
at the same time. Inside AHP, aiming to avoid inconsistency, the geometric con-
sistency index (ϕ) is applied [19]. TOPSIS lacks a procedure to determine the
importance of considered criteria. The AHP represents such procedure, but is
less efficient in dealing with tangible attributes and number of alternatives to be
addressed [18]. Therefore, TOPSIS represents an efficient and easy way for cri-
teria aggregation. It is based on the idea of [16] that a chosen alternative should
have a minimum distance to the positive ideal solution A∗, and a maximum
distance to the negative ideal solution A−. Finally, it is necessary to compute
the distance to ideal solution (ς) for ranking the alternatives. The terms ϕ and
ς can be seen in Eq. (8),

ϕ =
2

(n − 1)(n − 2)

∑

i<j

log2 eij , ςi =
D−

i

D∗
i + D−

i

i = 1, 2, ..., n, (8)

in which, given a pairwise comparison matrix M = (aij) with i, j = 1, ..., n
and the vector of priorities, w, the eij = aijwj/wi is considered as the error
obtained when the ratio wi/wj is approximated by aij (see [15,19]). The ϕ
values corresponds to a Consistence Ratio (CR)≤0.1 are: ϕ = 0.31 for n = 3
and ϕ = 0.35 for n = 4 according to [19]. The best solution is presented by
ς∗
j = 1 if (Aj = A∗) and the worst by ς∗

j = 0 if (Aj = A−). Ranking is
carried out by the descending order of ςj , where the highest value represents
the better performance [17]. TOPSIS inhibits the danger of rank reversal [20].
In our approach, the AHP results are used as weights for TOPSIS, merging
the construction and exploitation phases as described in [17]. The process is
summarized in Fig. 2.
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Fig. 2. Scheme of the adopted MCDM-model for evaluating sustainability of BESS.

4 Life Cycle Assessment

The production phase of the batteries is very energy consuming. Moreover, at
the end of their useful life, the batteries must be disposed of and the residues
must be dealt with. The life cycle assessment (LCA) allows to assess the envi-
ronmental impacts and resources used throughout a product life cycle, from raw
material acquisition, via production and use phases, to waste management [21].
There are several impact categories available including global warming potential
(GWP, in kgCO2-eq), Human Toxicity - cancer effects (CTUh) and Particulate
matter (kgPM 2.5-eq).

In this work, the optimization results for each battery technology (VRLA,
LFP, NCA, and NaNiCl) provide the input for LCA in the form of renewable
generation ratios, yearly operation hours and storage cycles. In this way, it is
possible to analyze environmental impacts (EI) over the entire life cycle of the
system equipment, such as BESS, PV, and wind turbines related to the four
considered locations. Every LCA requires the definition of system boundaries
and a functional unit [12]. In this case, EIs are based on the functional unit per
converted kWh. All EIs related to a kWh are summed up and divided by the
sum of generated power energy (Pn) in the system as indicated by Eq. (9),

EIkWh =
∑n=8640

n=1 EIn
∑n=8640

n=1 Pn

. (9)

The global warming potential (GWP) is used as an example for the potential
environmental impacts of considered system components. The end-of-life stage is
excluded in the present study due to the lack of data for recycling processes and
the corresponding environmental impacts or benefits for certain battery types
and small wind turbines. The GWP of producing 1 kg of battery or 1 kWh of
storage capacity, respectively, are given in Table 2.
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Table 2. GWP CO2−eq values for each BESS technology [11,12]

VRLA LFP NCA NaNiCl

Kg 2.7 15.0 18.6 15.2

kWh 51.6 158.0 115.7 115.7

Additionally, the system boundaries are used to analyze potential implica-
tions resulting in a single technology perspective scenario as follows. EI of the
BESS itself only considers internal losses due to energy conversion losses in the
storage unit and the inverter.

5 Experiments and Results

C-DEEPSO algorithm was used to optimize the HMGS model using an empir-
ical parameter initialization based on previous works: population size (50 indi-
viduals), communication rate (0.9), mutation rate (0.5), number of generations
(50). The hybrid evolutionary swarm method was executed 30 times for each
city/BESS to obtain averaged results (shown in Table 4) that were used as input
to LCA.

Figure 3 provides an exemplary insight of HMGS operation as a result of
C-DEEPSO optimization using Sete Lagoas data. It can be observed how the
BESS was charged and discharged, at least once a day, over the period of one
week. The public grid was used when there was not enough available energy
coming from PV, Wind and BESS.

Fig. 3. Typical results of the HMGS optimization obtained by C-DEEPSO. (a) power
production by PV - kW. (b) power production by wind turbines - kW. (c) week pro-
duction in HMGS ongrid at summer. (d) week production in HMGS on grid at winter.

The HMGS economic viability can be shown in a COE analysis presented in
Table 3. The power provided by the public grid costs $0.31 kWh and the com-
munity of 100 houses needs a load of 200 kWh. In one year, the cost of electrical
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energy supply using only public grid is $535.680. Analyzing only cost results
from COE, using LFP and NCA technologies, it is possible to note that the
aggregated costs of Uberaba, Montes Claros, Sete Lagoas and Janauba using
LFP for annual period are: $345.600, $328.320, $293.760 and $241.920, respec-
tively. In contrast, the cost values using NCA for those cities are: $328.320,
$311.040, $276.480 and $241.920, respectively. However, our study contemplates
other criteria, such as minimization of losses and environmental impacts as the
renewable sources maximization described in Sects. 5.1 and 5.2.

Table 3. Optimization results for each city/BESS. Mean (m)/ Standard deviation (s).

Goal UBERABA MONTES CLAROS
VRLA LFP NCA NaNiCl VRLA LFP NCA NaNiCl

LPSP (%) m 0.02 0.04 0.04 0.03 0.02 0.04 0.04 0.03
s 0.05 0.03 0.03 0.04 0.05 0.03 0.03 0.04

COE ($/kWh) m 0.29 0.20 0.19 0.21 0.26 0.19 0.18 0.21
s 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00

RWF (%) m 0.69 0.77 0.77 0.74 0.70 0.79 0.79 0.76
s 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00

Goal SETE LAGOAS JANAUBA
VRLA LFP NCA NaNiCl VRLA LFP NCA NaNiCl

LPSP (%) m 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.03
s 0.04 0.03 0.03 0.04 0.04 0.03 0.03 0.04

COE ($/kWh) m 0.23 0.17 0.16 0.17 0.20 0.14 0.14 0.15
s 0.03 0.02 0.03 0.02 0.05 0.04 0.04 0.03

RWF (%) m 0.75 0.83 0.83 0.80 0.79 0.86 0.86 0.84
s 0.03 0.05 0.05 0.03 0.01 0.01 0.01 0.01

5.1 LCA Results for Global Warming Potential

The LCA results taking into account the battery system perspective are given
in Fig. 4. It provides an idea of the potential environmental impacts regarding
GWP related to the use of different storage systems in the distinct locations. In
general, rankings for all regions are comparable on battery electric production
impacts dominate and only losses which play a minor role are attributed to life
cycle of BESS. Naturally, the share of use phase is considerable low as all battery
types have relatively high efficiency grades of over 70% and due to the use of
renewable energies which have a low environmental burden.

LFP and NaNiCl seem to be the most recommendable technologies in this
type of perspective. On the other hand, NCA and VRLA seem to lead to high
impacts due low life time and related high rate of battery exchange. Additionally,
one can observe that there are differences when the four locations are compared
to each other. Montes Claros and Uberaba show a change in the performance of
LFP and NCA as a result of a slightly lower cell exchange demand for NCA due
to a smaller number of operation cycles, leading to a lower GWP.
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Fig. 4. GWP for single technology perspective on BESS in the 4 locations.

5.2 MCDM Results and Discussions

Six experts from academia with a focus on electrical engineering and mathemat-
ical modeling were involved to carry out the AHP. For this purpose, an auto-
mated VBA sheet with a consistency check was provided and was distributed
among the experts. All experts provided consistent preferences. An overview
of all preferences is given in Table 4. It has been mentioned that aggregating
single preferences to a group preference deso not automatically indicate group
consensus (one can,e.g., observe one conflict of goals between expert 1 and two
regarding the importance of GWP.

Table 4. Overview of single and group preferences.

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 ϕ

COE 0.03 0.10 0.16 0.09 0.06 0.17 0.09

RS-factor 0.20 0.26 0.16 0.43 0.28 0.42 0.27

LPSP 0.08 0.45 0.39 0.03 0.10 0.05 0.12

GWP 0.56 0.14 0.03 0.43 0.51 0.27 0.23

Thus, an additional sensitivity analysis was conducted to depict the impact
of different group weights. Three weight scenarios were used for this purpose
as follows: (i) a strong cost perspective where COE was weighted the highest
score (nine) and the other criteria were equally weighted (score of one), (ii) the
same perspective for global warming potential and renewable shares, and (iii) all
criteria were set to equal importance. The criterion of LPSP was not analyzed
in the sensitivity analysis as all battery types provide very similar results here.
The ranking of technologies was the same for the considered cities. Figure 5
shows the averaged results in which LFP can be considered as the best choice
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for the locations. This fact can be explained by the low cost and good technical
properties of this battery type. Rankings switch only between NCA and LFP in
the case of strong environmental preference (only considering GWP) which is a
result of the higher production efforts for the latter. The NaNiCl is the third-best
option for the cities. VRLA batteries received the lowest score in this analysis.
Results do not include the recycling of these technologies which might lead to a
completely different picture regarding environmental impacts of these systems.

Fig. 5. TOPSIS results based on C-DEEPSO, AHP and LCA results.

6 Conclusion

The proposed Hybrid Micro Grid Systems model, that served as a starting point
to make a viability analysis of regions to provide sustainable power energy,
was improved in several ways including lifetime cycle to battery systems, being
grid connected, using real seasonal time series and others. New techno-economic
assumptions, four battery types (LFP - Lithium Iron Phosphate, NCA - Lithium
Nickel Cobalt Aluminium, VRLA - Valve Regulated Lead Acid and NaNiCl -
Sodium Nickel Chloride), new side conditions and calculations as well as new
time series have been introduced to test the seasonal data of four distinct cities
in Minas Gerais/Brazil. The optimization problem was solved using C-DEEPSO
for all BESSs and cities, and the results were used to provide the viability study
applying Life Cycle Assessment, AHP, and TOPIS were used as a multicriteria
decision-making approach. The best choice after the LCA approach, focusing
only on global warming potential, ranked LFP in first, NCA in second place,
in most cases NaNiCl in third and VRLA on the fourth. The MCDM approach
showed the viability HMGS implementation in Janauba is potentially more effi-
cient with the use of LFP batteries. In an annual projection, the HMGS instal-
lation in this region using the LFP technology would save $290.000 in compar-
ison with the usage of electricity via the public grid only. Further work should
include the LCA using selected impact categories directly into a multiobjective
optimization. Also, the AHP-TOPSIS approach should be directly integrated
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into C-DEEPSO to replace the weighted sum approach. Other MCDA methods
as ELECTRE or MAVT should also be considered as alternative to the proposed
compensatory approach. It would allow a deep understanding concerning which
technology represents the most suitable one, not only using a techno-economic
viewpoint but also environmental and systemic perspectives.
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Abstract. Domain experts can benefit from optimisation simply by get-
ting better solutions, or by obtaining knowledge about possible trade-offs
from a Pareto front. However, just providing a better solution based on
objective function values is often not sufficient. It is desirable for domain
experts to understand design principles that lead to a better solution con-
cerning different objectives. Such insights will help the domain expert to
gain confidence in a solution provided by the optimiser. In this paper,
the aim is to learn heuristic rules on building spatial design by data-
mining multi-objective optimisation results. From the optimisation data
a domain expert can gain new insights that can help engineers in the
future; this is termed innovization. Originally used for applications in
mechanical engineering, innovization is here applied for the first time
for optimisation of building spatial designs with respect to thermal and
structural performance.

Keywords: Data analysis · Building spatial design ·
Multicriteria optimisation · Mixed integer optimisation ·
Evolutionary algorithms

1 Introduction

During early phases of building design, decisions are made that significantly
influence the quality of the final design. As such, optimising during the early
stages can have substantial benefits. One of the first design steps entails captur-
ing the building spatial design (BSD). Since numerous disciplines are involved
in building design, multiple objectives have to be considered in the optimisation
process as well. Here the focus lies on the structural and thermal performance.

Up till now, a mixed-integer representation was defined for the BSD problem
in [6,8]. Based on this representation, multi-objective evolutionary algorithms
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have been devised, along with specialised operators in [4,5]. Further, the appli-
cation of the hypervolume indicator gradient [11], to improve local search, was
studied in [3], which resulted in a considerable amount of optimisation data.

Despite all this progress, the transfer of an optimisation result to a design
expert is not merely a matter of stating “this solution is better than the previous
one”. The design expert needs to be convinced that the optimisation result is
based on sensible design rules. Therefore, the optimisation result needs to be
made explainable. In addition to being able to provide an optimised design, and
being able to explain why it works well, it may also be possible to learn new
design rules from an optimised design. Once the designer has obtained a set of
proven design rules, they may apply these to similar problems, without having
to endure another lengthy optimisation process. Additionally, such rules can also
be integrated in co-evolutionary design algorithms like those considered in [7].

The process of learning innovative design rules from optimisation data was
introduced in [10], and termed innovization. This concept has since been applied
to a variety of problems such as clutch brake design in [10], and truss design in
[1]. Later, the learning process was interleaved with the optimisation process in
[13], and further automated in [1,9]. Furthermore, in [2] it was studied how an
optimiser learns new concepts over time. Here it is investigated if simple tech-
niques used to verify optimisation results may also lead to innovative insights.

This work is a first step in applying innovization in BSD. The following
contributions are made: Optimisation results are verified through data analysis
of a subset of the 800,000 solutions found by multi-objective optimisation in [3].
Handling a dataset of this size also results in new challenges. With this in mind,
here simple and computationally inexpensive analysis techniques are applied.

From here on, this paper first introduces the problem of finding heuristic
rules for building spatial design in Sect. 2. Following that, in Sect. 3 features are
defined to enable the discovery of such rules. The preparation of the considered
dataset is then described in Sect. 4. Section 5 evaluates the results from analysis
of the data, and the implications that follow. Finally, Sect. 6 briefly summarises
the study, draws conclusions, and proposes possible directions for future work.

2 Problem

Building spatial design (BSD) constitutes the arrangement of the internal and
external divisions of a building. These divisions together form a number of
spaces. A space is similar to a room. However, it also encapsulates concepts
such as open kitchen-living room combinations that are not structurally sep-
arated, or hallways. This work considers the multi-objective optimisation of a
BSD for structural and thermal performance. Structural performance is mea-
sured by means of compliance. This measure aggregates the total strain energy
in the structural elements that constitute the structural model related to the
BSD. Whereas thermal performance is taken as the total heating and cooling
energy required to maintain a comfortable temperature in a given BSD.

For an optimised BSD to be used, the solution must be trusted by the design
expert. To inspire such confidence in the optimised design, the optimised results
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should be made explainable. This can be achieved by learning heuristic design
rules from the optimisation data. Given such rules, it becomes clear why the
design is effective. Ideally, not only known rules that experts trust and under-
stand are obtained, but also new insights. By combining known and new design
rules it is possible for experts, and automated (e.g. co-evolutionary [7]) design
systems, to improve their design process. These improved design processes can
then be applied to similar problems, without another lengthy optimisation pro-
cedure.

3 Features

The supercube representation introduced in [6,8] is a mixed-integer represen-
tation of the building spatial design (BSD) problem, consisting of binary and
positive real numbers. Raw data in this format is difficult to interpret in terms
of building properties, making it difficult to learn directly from this data. To
ease this process, this section introduces elementary features that allow building
engineers to characterise a BSD. Such features are necessarily domain specific.
However, the same process may be applied in other domains.

Since the supercube representation is key to understanding the dataset and
features it is briefly introduced in the following. Since it is used for BSD, the
supercube representation considers a number of spaces that together form the
BSD. Each space is defined as a cuboid (3D rectangle), such that the whole
building consists of rectangular surfaces, like in Fig. 1. Additional constraints
ensure that the floors of all spaces are connected with the soil via other spaces,
that is, in the given representation no floating or overhanging spaces may exist.

Soil surface area

Inside surface area

h
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h
2

h
3

h

0 x

y

z
minx3

maxx3

Space 1

Space 2

Space 3

Fig. 1. Example building spatial design, annotated with a selection of features

All considered features are listed in Table 1 with their definitions and expla-
nations. Except for the last three, all other features are computed both for the
building and for individual spaces. Since the ordering of spaces is arbitrary,
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Table 1. Features, definitions, and explanations

Feature Definition Explanation

vol w × d × h Volume of the space, or sum of spaces for the full BSD

short min(w, d) Shortest horizontal edge, indicator of span

long max(w, d) Longest horizontal edge, indicator of span

height maxz − minz Height of the space or the full BSD

out sum(out area) Outside surface area, indicator of energy flow

in sum(in area) Inside surface area, indicator of energy flow

soil sum(soil area) Soil (ground floor) surface area, indicator of spread

horz sum(horz area) Horizontal surface area, indicator of total wall area

vert sum(vert area) Vertical surface area, indicator of floor and roof area

in out in/(in + out) Ratio between inside- and outside surface area

out vol out/vol Ratio between outside surface area and volume

long short long/(long + short) Ratio between longest- and shortest horizontal edge

meanh sum(h × roof area)/soil Mean height of the building

meanh h meanh/height Ratio between the mean height and the height

height soil height/soil Ratio between the height and the soil area

including values for each of them in the feature set would be of little use. There-
fore, statistics are taken over all spaces in a building for each feature. In par-
ticular, the min, max, mean, median, range, standard deviation and Gini index
(average deviation from the mean) are considered. Since the last three features
in Table 1 do not make sense for individual spaces (e.g. mean height of a space
is equal to its height), they are only computed for the building as a whole.

Values for w, d, h are found by taking max∗ − min∗, where ∗ corresponds
to x, y, z respectively. In other words, they are simply the distance between the
minimal and maximal coordinates of a given dimension. For example, the minx

and maxx of space 3 are marked in Fig. 1. Note that these values are computed
for the full design, as well as for individual spaces, as indicated for height in
Fig. 1 with h for the complete BSD, and h1, h2, h3 for each space.

To differentiate between various surfaces, the following surface area defini-
tions are used. First, to distinguish between different locations of the surfaces, a
non-overlapping division is made between inside (in area), outside (out area),
and soil (soil area) surface area. Exterior surfaces are considered as outside,
while interior surfaces are considered as inside. The ground floor which connects
with the soil is excluded from the outside surface area, and taken as soil surface
area. In Fig. 1, examples of inside and soil surface area are highlighted (the rest
is outside surface area). Second, to distinguish between walls and floors/ceilings,
a division between horizontal (horz area) and vertical (vert area) surface area
is made. The horizontal surface area includes all floors and ceilings, so also the
ground floor, while the vertical surface area consists of all walls, regardless of
them being interior or exterior. Finally, the roof area considered for meanh is
a part of the roof area in the BSD positioned at equal height.

Note that when considering a building as a whole, each surface is counted
only once per considered distinction (e.g. horizontal/vertical). However, on the
space level, surfaces are sometimes counted twice. That is, for two neighbouring
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spaces, both count their connecting surface as being part of, for instance, their
horizontal surface area. As a result, the sum of the surface areas of all spaces is
not (necessarily) equal to the total surface area of the building.

A few different features measure the same thing. For instance, the outside
surface area of a building has an equal distribution (but not value) to the mean
outside surface area of the spaces. Despite this, such features are kept to simplify
data processing. In the analysis, only one representative should be used for these
equivalent features, unless the differing values provide additional insights.

Additionally, some features may result in distributions similar to each other.
This is particularly common for the range, standard deviation, and Gini index.
However, even small differences may make one of them more valuable in distin-
guishing between solution classes than the other. Since, a priori, it is not known
which is more useful in which situation, all of them are included.

Finally, it is noted that NAN values may appear in a few cases. Some spaces
may be disconnected (meaning they do not share a wall with another space).
As a result, it can occur in a building design that none of the spaces has a
neighbour, from which it follows that their inside surface area is zero. In these
cases, the Gini indices of the interior surface area, and of the ratio between inside
and outside surface areas will be undefined and marked as NAN (the Gini index
divides by the sum of the set of spaces, which is zero in this case). However,
since these are very low quality solutions, they are not considered in the analysis
in the rest of the paper. This will become clear in the next section.

4 Data Preparation

In order to learn heuristic rules for building spatial design, the dataset from the
optimisation experiments in [3] is used. The dataset is a Pareto front and an
archive from a building design optimisation that aimed for a BSD consisting of
three spaces, with a total volume of 300 m3. Note that while these may seem
like simple BSDs, they already require 9 continuous and 81 binary variables to
encode with the supercube representation [6,8], leading to a large search space.
The optimisation runs resulted in a dataset of around 800,000 solutions. Here the
data is prepared for analysis in the following five steps. First, classes are defined
to enable the discovery of different qualities in different groups of solutions.
Second, the non-dominated (ND) set is identified. Third, the knee point solution
is identified. Fourth, solutions are assigned labels to link them to a class, based on
the previously identified ND set and knee point. Fifth, a procedure is described
to equalise the number of solutions in each class for those analysis techniques
that demand this. Note that all steps are defined such that they should at least
be generalisable for two-dimensional convex Pareto fronts.

To be able to learn from the features defined in the previous section, the
data is split into different classes. This is accomplished based on objective val-
ues, rather than features. Classification based on objective values allows for
the verification of the optimisation procedure: Do design experts agree that the
designs with good objective values are indeed good? In addition, it is often a
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combination of features that indicate a certain quality in the BSD, making fea-
ture based classification more complex. Further, by classifying on known good
qualities of a BSD, finding innovative design rules would become very unlikely.
Here, four categories of solutions are considered: the knee point area (KP), good
in the compliance objective (F1), good in the heating/cooling energy objective
(F2), and relatively bad solutions (BD). The aim is to data-mine for heuristic
design rules that make it possible to differentiate between all of these distinct
classes. For more objectives additional classes F* can be added as needed.

The classification considers two primary aspects: (1) It should clearly dis-
tinguish between the classes in the objective space, and (2) It should be com-
putationally efficient to enable processing of the large dataset of ca. 800,000
points. The computational efficiency should also allow the proposed methods to
generalise to larger BSDs than those considered here.
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Fig. 2. Division of data into different classes: All points (ALL), knee point area
(KP), objective one (F1), objective two (F2), bad solutions (BD); relative to the non-
dominated set (ND), and the knee point (kp). A subset of the full dataset is shown

Since the considered classes are defined based on the non-dominated (ND) set
and the knee point, these have to be identified first. For ND set computation the
well-known log-linear time algorithm based on sorting is employed [12]. Based
on the ND set, the knee point is derived as follows. First the objective values
of the ND set are normalised to a [0, 1] range, where outliers beyond 1.5 times
the interquartile range are set to the appropriate boundary value. Next, the
Euclidean distance to the origin (0, 0) is computed for each normalised ND point.
The point with the smallest distance is then taken as the knee point (indicated
with ‘kp’ in Fig. 2), which is a reasonable approximation for the given dataset.
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The data is then classified based on the knee point p = (p1, p2), and the
ND set. For this, the ND set is first reduced to the ND points that were not
considered an outlier after normalisation, but the non-normalised values are
used. In order to classify in a computationally efficient manner, each class is
defined by a bounding box. These bounding boxes are found based on the range
of the ND set in objective one r1, and objective two r2. For the knee point area
class (KP) the lower bound of the box is set to (0, 0), while the upper bound is
set to (p1+r1×0.2, p2+r2×0.2). For class F1 a lower bound of (p1+r1×0.35, 0),
and an upper bound of (p1 + r1 × 0.75, p2) are taken. Similarly, F2 is found with
the bounds (0, p2+r2×0.35), and (p1, p2+r2×0.75). Lastly, BD uses the bounds
(p1 + r1 × 0.35, p2 + r2 × 0.35), and (p1 + r1 × 0.75, p2 + r2 × 0.75). Following
this, points are assigned a label based on the box they fall in. Any remaining
unlabelled points are excluded from the analysis.

The result of the classification process is visualised in Fig. 2. Note that gaps
are left between the different classes to improve the chances of being able to
distinguish between them. If the classes would directly neighbour each other,
points on the border are likely to have very similar features. This would impede
learning what makes a solution perform well (or not) in one objective or the
other. Future work could study how these points can be included in the analysis.

In Fig. 3 a randomly selected example of a BSD is shown for each class.
Although the examples for KP and F1 look similar, the design for F1 is far more
elongated. This result can be expected, as the short spans (here coupled with
elongated spaces) allow F1 designs to reduce the strain energy, at the cost of a
larger surface area, reducing thermal efficiency. The F2 design shows the reverse,
with a much more compact design. Finally, the BD design is not as well arranged
in the spatial sense, and shows relatively poor performance in both objectives.

Fig. 3. Typical examples of the different classes, from left to right: KP, F1, F2, BD

After processing the dataset1 70,088 of the 806,430 solutions are labelled.
With 5978 KP, 3400 F1, 48,482 F2, and 12,228 BD solutions respectively. Given
the mixed-integer nature of the representation, multiple discrete subspaces can
be seen in Fig. 2, indicated by the different curves. Since the dataset is not
homogeneous, the resulting classes do not have an equal number of points. For
1 The dataset is available under http://moda.liacs.nl/index.php?page=code.

http://moda.liacs.nl/index.php?page=code


678 K. van der Blom et al.

some types of analysis, however, it is critical to have equally distributed classes.
In such situations excess solutions are removed from the larger classes uniformly
at random. In all other situations, all labelled data is used.

5 Results

Two techniques are used for data analysis, box plots and decision trees. Box plots
give insight into the distribution of feature data for different solution classes. As
such, it may be possible to identify features that allow for a clear distinction
between two or more classes. Further, the decision tree can provide information
about distinguishing features as well, since it generates clear rules based on such
features. Moreover, it gives confidence measures for the classification of solutions
to different classes. Finally, by using the learned decision tree on new data, it is
possible to validate whether those rules can indeed be used reliably.

5.1 Box Plots

To generate box plots all labelled data is used, with each feature normalised to a
[0, 1] range, without removing outliers. In the plots, each class is then visualised
by an individual box, such that any differences become clearly visible.

In Fig. 4 a subset of the features is shown that appears to allow for a signif-
icant amount of distinction between the different classes. Notice, for example,
how the mean of the most extended horizontal edge (long.mean) enables differ-
entiation between objective one (F1), and objective two (F2).

Surprisingly the soil surface area (soil.mean), and the horizontal surface area
(not in the figure) showed exactly the same distribution in all of their features.
This occurs because all buildings considered in the labelled dataset are single-
story buildings. For such single-story buildings, the horizontal surface area is
equal to the soil surface area plus the roof area. Since these two areas are equal,
the horizontal surface area is exactly twice the soil surface area, which results in
their equal distributions. It appears then that in general single-story buildings
have a good performance for the given objectives, even if they are not necessarily
optimal. After all, the labelled solutions are all relatively close the Pareto front
approximation. Naturally, this result may not generalise to designs with a larger
number of spaces. This also indicates it may be interesting to include an even
worse class of solutions in future analysis to see how things differ with even
worse solutions. Additionally, a feature indicating the number of stories a BSD
has could be useful as well in this case. Even if just to identify this type of
situation more easily.

5.2 Decision Trees

In order to use decision trees to their full potential, the data should be equally
distributed among the classes. As such, this is carried out as described previously.
Since the smallest class contains 3400 solutions, the other classes are reduced to
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the same number of data points, resulting in a total of 13,600 solutions. This total
is split into a training set of 10,200 solutions and a test set of 3400 solutions by
sampling uniformly at random. Note that as a result, the representation of each
class is not necessarily exactly equal in either of the training and test sets, but
still sufficiently close. The training and test sets then consist of approximately
2550, respectively 850 solutions per class. Only labelled solutions are used, no
normalisation is applied, and no outliers of individual features are removed. In
the future it may be of interest to do the same study with unlabelled solutions
to see if the generated rules generalise.

Given the prepared dataset, the decision tree in Fig. 5 was generated with the
R package rpart [14]. From this figure, it can be found that the longest horizontal
edge, the outer surface area, the ratio between the longest and shortest horizontal
edge, and the ratio between the inner and outer surface area provide important
information to distinguish between different classes of solutions.

These rules indicate properties of a building that contribute to qualities
present in different solution classes. The first split shows that relatively long
buildings (long.build) are likely to be efficient in objective one (compliance).
This split intuitively makes sense, since buildings that are more stretched out
are likely to have short spans. Note that this is under the assumption that not
just the building is stretched out, but the spaces as well (e.g. F1 in Fig. 3).

In the other branch buildings are a bit more compact. Additionally, it can be
seen that buildings where the minimal ratio of the spaces between the longest
and shortest horizontal edge (long short.min) is relatively high, are very likely
to be solutions in the knee point area. This indicates that although the building
as a whole is more compact, the individual spaces remain somewhat elongated
to balance between the two objectives. The primary split between low quality
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Fig. 5. Decision tree based on data

solutions and the second objective (energy) is made based on the outer surface
area of the entire building (out.build). Since a larger outer surface area is an
indicator of a more significant loss of energy to the outside, this appears to be
a sensible rule. Further, these rules provide clear pointers on how to navigate
towards the PF. It may be possible to incorporate this in specialised operators
to speed up the optimisation process.

From the decision tree in Fig. 5 it appears classification of solutions is possible
with high precision. To validate this, the tree was used to classify the 3400
solutions in the test set. Table 2 shows the resulting predictions. All assignments
were made with a confidence of at least 90%, showing that it is possible to
classify designs quite reliably. A particularly notable result is the classification
of the majority of the solutions in the F2 and KP classes, which, for this dataset,
is done with near perfect confidence. Not only does this provide confidence in the
optimisation process, but these rules could even be useful during optimisation.
By classifying new solutions based on these rules it may be possible to identify
which solutions are more likely to perform well, such that expensive simulations
might only be needed for those.

Table 2. Decision tree results on the test set. Columns relate to the predicted probabil-
ity of belonging to a specific class, whereas rows refer to classes. Each cell then contains
the number of solutions that belong to a solution class, with a particular probability.

Predictions

BD

F2

0.0000 0.0008 0.0046 0.0048 0.0051 0.0162 0.0276 0.0345 0.0483 0.0926 0.9074 0.9241 0.9655 0.9784 0.9949 0.9952

1758 0 0 0 728 0 54 0 0 0 0 860 0 0

F1 1649 860 0 0 0 891 0

891 0 0 74

0 0 0 0 0 0 0

8 0 860 0 0 54 0 119

0 0

0 0

0 0 0 728 0

KP 72 860 0 0 898 0 0 0 1 0 119 0 54 0 0 0 748
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6 Conclusion

In summary, the results show that by using predefined features and decision
trees, it is possible to apply innovization to large datasets from Pareto optimisa-
tion in building spatial design (BSD), and to obtain meaningful results from an
engineering perspective. Furthermore, the obtained rules allow for high precision
(≥96%) classification of solutions.

Besides in generating insight, the design rules could also be useful in steering
the multi-objective optimisation process. For future work, it would be interesting
to investigate which moves in the optimisation process result in improvements.
In other words, given an existing design, what changes to its features will, with
high probability, result in an improved design. Furthermore, it may be possible to
apply learned rules in co-evolutionary design processes [7]. Or, as mechanism to
determine for which solutions to use expensive simulations during optimisation.

The current work analyses data for a specific type of building. To generalise
the conclusions, the same methods should be evaluated on a larger variety of
building types. Given the computationally efficient nature of the used approach,
it is probable that larger BSDs can be handled. This must, however, still be veri-
fied. Additionally, currently only a subset of the optimisation data is labelled. As
a result, it is unclear whether the learned rules generally allow the identification
of, for instance, solutions that perform well in objective one. It may be the case
that some areas of the objective space, that have not been considered here, have
similar characteristics in some features. This should be studied in the future. A
challenge here is how to do proper analysis with both sparse and dense areas in
the objective space.

Based on first discussions with a design expert good heuristics are learned
that accurately describe high quality BSDs. However, it remains difficult to
foresee the consequences of changes in feature values with respect to the objective
values. In order to improve this visual aids would be helpful. For instance, a slider
controlling the weights of the structural and thermal objectives could be used
to change the spatial design in real-time.
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In: Koch, C., Tizani, W., Ninić, J. (eds.) Digital Proceedings of the 24th EG-
ICE International Workshop on Intelligent Computing in Engineering, pp. 23–34.
Curran Associates Inc., Red Hook (2017)

8. Boonstra, S., van der Blom, K., Hofmeyer, H., Emmerich, M.T.M., van Schijn-
del, J., de Wilde, P.: Toolbox for super-structured and super-structure free multi-
disciplinary building spatial design optimisation. Adv. Eng. Inform. 36, 86–100
(2018). https://doi.org/10.1016/j.aei.2018.01.003

9. Deb, K., Bandaru, S., Greiner, D., Gaspar-Cunha, A., Tutum, C.C.: An integrated
approach to automated innovization for discovering useful design principles: case
studies from engineering. Appl. Soft Comput. 15, 42–56 (2014). https://doi.org/
10.1016/j.asoc.2013.10.011

10. Deb, K., Srinivasan, A.: Innovization: innovating design principles through opti-
mization. In: Proceedings of the 8th Annual Conference on Genetic and Evolution-
ary Computation, GECCO 2006, pp. 1629–1636. ACM, New York (2006). https://
doi.org/10.1145/1143997.1144266

11. Emmerich, M., Deutz, A.: Time complexity and zeros of the hypervolume indi-
cator gradient field. In: Schuetze, O., et al. (eds.) EVOLVE - A Bridge between
Probability, Set Oriented Numerics, and Evolutionary Computation III. Studies in
Computational Intelligence, pp. 169–193. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-319-01460-9 8

12. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975). https://doi.org/10.1145/321906.321910

13. Ng, A.H.C., Dudas, C., Boström, H., Deb, K.: Interleaving innovization with evo-
lutionary multi-objective optimization in production system simulation for faster
convergence. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44973-4 1

14. Therneau, T., Atkinson, B.: rpart: Recursive Partitioning and Regression Trees
(2018). https://CRAN.R-project.org/package=rpart. r package version 4.1-13

https://doi.org/10.1007/978-3-319-96104-0_3
https://doi.org/10.1007/978-3-319-96104-0_3
https://doi.org/10.1109/CEC.2017.7969520
https://doi.org/10.1007/978-3-319-45823-6_42
https://doi.org/10.1007/978-3-319-45823-6_42
https://doi.org/10.7712/100016.2044.10063
https://doi.org/10.1016/j.aei.2018.01.003
https://doi.org/10.1016/j.asoc.2013.10.011
https://doi.org/10.1016/j.asoc.2013.10.011
https://doi.org/10.1145/1143997.1144266
https://doi.org/10.1145/1143997.1144266
https://doi.org/10.1007/978-3-319-01460-9_8
https://doi.org/10.1007/978-3-319-01460-9_8
https://doi.org/10.1145/321906.321910
https://doi.org/10.1007/978-3-642-44973-4_1
https://CRAN.R-project.org/package=rpart


Constrained Multi-objective Optimization
Method for Practical Scientific Workflow

Resource Selection

Courtney Powell1(&), Katsunori Miura2, and Masaharu Munetomo1

1 Hokkaido University, Sapporo 060–0811, Japan
kotoni@ist.hokudai.ac.jp

2 Otaru University of Commerce, Otaru 047–8501, Japan

Abstract. This paper presents and evaluates a constrained multi-objective
optimization method for scientific workflow resource selection that uses
equivalent transformation for constraint handling. Two different approaches are
compared using a case study of optimal cloud resource configuration selection
for a practical genomic analytics workflow. In the first approach, called the
nondominated sorting equivalent transformation (NSET) method, feasible con-
figurations are generated via equivalent transformation and the Pareto-optimal
configurations are selected from among them via a process of nondominated
sorting, reference points association, and niching/elitism. In the second
approach, Pareto-optimal configurations are generated via the nondominated
sorting genetic algorithms II/III (NSGA-II/III) and feasible configurations are
generated via equivalent transformation. Then, the configurations that are
common to both processes are considered to be both feasible and optimal.
Preliminary results based on the Pareto-optimal configuration sets generated by
NSGA-II/III indicate that NSET is feasible for constrained multi-objective
optimization of practical scientific workflow resource selection problems.

Keywords: Constrained multi-objective optimization �
Equivalent transformation � Genomic analytics �
Nondominated sorting genetic algorithm � Pareto-optimal set �
Scientific workflow

1 Introduction

Scientific workflows are increasingly being executed in the cloud as the computing
requirements of their various constituent tools can be dynamically satisfied by com-
bining components from the virtually limitless array of resources that are available to
cloud users. Superficially, this is highly beneficial for users; however, the more choices
there are, the more difficult it is for users to choose the resource configurations that are
most appropriate for their applications. In addition, users typically have constraints,
such as number of CPU/GPU cores, amount of memory and storage, minimum relia-
bility, and maximum cost. These constraints may also be linked to multiple conflicting
objectives—such as minimization of operating cost and application response
time/makespan while maximizing system reliability and system availability—for which
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optimal compromise solutions are difficult to find. For example, choosing high-
performance virtual machines (VMs) can reduce the response time or makespan of an
application but usually increases its financial running cost.

Multiobjective evolutionary algorithms (MOEAs) are used extensively to solve
complex problems involving conflicting objectives because they can simultaneously
optimize the conflicting objectives and find and maintain multiple solutions in one
single simulation run [1]. However, because MOEAs are inherently unconstrained
population-based heuristics, they require retrofitting with one or more constraint
compliance techniques to deal with real-world constrained multi-objective problems
[2–4].

In cloud resource scenarios, various methods have been proposed for satisfying
constraints [5], and dealing with multiple objectives [6–8]. However, whereas the
proposed methods can easily deal with soft (quantifiable) constraints such as deadlines
and limits on quality of service (QoS) parameters, they have difficulty dealing effi-
ciently with hard (non-quantifiable) constraints such as allocation restrictions and
precedence constraints [9]. Further, MOEAs still have difficulty dealing with problems
in which optimal solutions lie close to or on the boundaries of the feasible region, and
general constraints that result in non-contiguous solution spaces. In the case of con-
strained optimization, in which not all solutions in the search space are feasible,
knowledge of the feasible region could help to reduce the computation time required to
generate an optimal set of feasible solutions [10].

This paper presents a constrained multi-objective optimization method for scientific
workflow resource selection that uses equivalent transformation for constraint han-
dling; i.e., to find the feasible solutions in the search space. The proposed method,
called the nondominated sorting equivalent transformation (NSET) method, is based on
the nondominated sorting genetic algorithm III (NSGA-III) [11], but is not an evolu-
tionary algorithm as it replaces the evolutionary operators in NSGA-III (mutation and
crossover) with an equivalent transformation (ET) operator that facilitates exploration
of the solution space via ET state transitions. Further, whereas MOEAs semi-randomly
generate solutions via evolution, then apply constraint-compliance techniques
retroactively to the generated solutions, NSET applies micro-constraints to partial
solutions, resulting in only feasible solutions being generated in the optimizer. In
addition, whereas MOEAs require a relatively large population to avoid inbreeding
[12], in NSET, the only “restriction” on the lower limit of the number of final solutions
is that it should be sufficient to generate well-distributed reference points.

In this paper, the feasibility of the NSET method is evaluated by comparing the
feasible Pareto-optimal solutions it generates to those generated using NSGA-II/III for
a case study of optimal cloud resource configuration selection for a genomic analytics
workflow.

2 The Feasible Configurations Generation Process

In the proposed NSET constrained optimization method, the equivalent transformation
(ET) computation model [13] is employed as a constraint satisfaction solver to generate
the universe of feasible configurations based on requirements prepared in a predicate
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logic-defined specification (PLS) [14] document. In the ET computation model,
computation is carried out by sets of prioritized rewriting rules that successively reduce
a problem using meaning-preserving transformations with respect to given background
knowledge [13]. In this paradigm, the problem is given as a definite clause set [15] that
is then transformed to unit answer clauses using generated rewriting rules. For
example, in the append problem-solving trace depicted in Fig. 1, the problem given in
the form of the initial (topmost) clause set involves finding all pairs of lists, *x and *y,
that can combine to give a resulting list containing the integers “1” and “2.” In the
rewriting rule, *a = [*d|*e] denotes a non-empty list *a with head element *d and tail
list *e. Further, *b = *c signifies unification of *b and *c. Variable *c contains the
original list and the resulting lists are first stored in *a and *b and subsequently output
to *x and *y, respectively. This ET rule has two bodies, which cause multiple clauses to
be generated when it is applied. The rule states that given three variables, *a, *b, and
*c, if *a is an empty list, then *b = *c. Otherwise, the solution is a combination of the
first element of the list and some other list, which is then found by branching. Using
this rewriting rule, the three solutions shown comprising the solution set are obtained.

In logic programming, a search tree is “a formalism for considering all possible
computation paths” [16], i.e., generating all feasible solutions to a given problem.
The ET computation model incorporates the logic programming paradigm. Thus, the
trace in Fig. 1 can also be viewed as a search tree, in which the computation to find the
solution set to the append problem based on the rewriting rule proceeds as follows. The
problem clause is the root of the tree and each branch therefrom is a successive
transformation of the original problem by the given rewriting rule. The leaves of the
tree are success nodes, where unit (ans) clauses have been produced. These nodes
correspond to solutions to the root of the tree (i.e., the problem clause). As in the logic
programming paradigm, ET search trees contain multiple success nodes if the query
has multiple solutions [16].

Fig. 1. Finding all pairs of lists that can concatenate to produce the list [1, 2] using the ET-
based constraint satisfaction method.
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As demonstrated in [15, 17], each ET rule can also be supplied with “micro-
constraints” to check a section of a solution. Thus, instead of waiting for the solution to
be completely generated, then checking its feasibility, a check is performed on the
partially formed solution. If the partially formed solution does not satisfy the micro-
constraint, then the partial solution is discarded and the corresponding solution is not
generated as it would be infeasible. In this manner, the ET operator rapidly prunes the
search tree. Thus, the search space is rapidly traversed.

The simple procedure outlined above enables this ET-based process to generate all
feasible solutions based on constraints simply by branching the state of the clause. For
example, a constrained resource allocation problem in which the objective is to find all
combinations of resources satisfying a given set of constraints can be represented by
the topmost definite clause shown in Fig. 2, where the head of the clause (ans portion)
represents the set of resources found and the body represents the constraints on those
resources (e.g., deadline, maximum cost, minimum availability). By successive
application of the rewriting rule to branch this clause, the universe of feasible resource
configurations is generated. This is analogous to finding all combinations of lists for the
given list “[1, 2]” in the append scenario presented in Fig. 1.

3 Two Alternative Feasible Pareto-Optimal Solutions
Selection Techniques

In this paper, we consider two techniques for Pareto-optimal solutions set
selection/generation and compare the overall results obtained. In the first technique,
NSET, the feasible Pareto-optimal solutions are obtained via elite nondominated
sorting and reference points association of the universe of feasible solutions generated
by the ET constraint solver. In the second technique, NSGA-II/III [11, 18] are
respectively used to generate Pareto-optimal solutions that are compared to the universe
of feasible solutions to determine the solutions that are both feasible and optimal.

Fig. 2. Generation of feasible resource configurations by the ET-based constraint satisfaction
method.
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3.1 Technique 1: Nondominated Sorting Equivalent Transformation
(NSET)

The process of finding the Pareto-optimal solutions to a multi-objective problem can be
divided into two phases that both occur in each generation/iteration: (1) search/
exploration and (2) selection. In MOEAs, phase (1) is accomplished via the evolu-
tionary operators crossover and mutation [1]. However, in NSET, these genetic oper-
ators are removed and exploration is instead carried out by equivalent transformation.
Figure 3 presents a flowchart for NSET. For simple problems, the constraint satis-
faction process is able to generate all the feasible solutions fairly quickly and then
terminate. This, in essence, results in sequential operation, with the lowest decision box
in the flowchart not being traversed. Conversely, problems that require significant
amounts of computation and problems with large solution spaces result in concurrent
operation by the constraint satisfaction process and the optimization process, with the
feasible solutions being generated over an extended period and the entire flowchart
being traversed.

3.2 Technique 2: Feasible Solutions Common to NSGA-II/III Results

Figure 4 illustrates the process employed in Technique 2. In this process, NSGA-II/III
and the ET constraint solver employ common datasets to generate unconstrained
Pareto-optimal solutions and feasible configurations, respectively. Subsequently, the
solutions that are common to both sets of results are selected as being feasible Pareto-
optimal solutions.

Fig. 3. Flowchart for feasible Pareto-optimal resource solutions selection via NSET.
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This technique can be considered a simpler form of the push and pull strategy
presented by Fan et al. [19]. In this case, NSGA-II/III is the MOEA used in the “push”
phase to explore the search space without constraints to quickly traverse both feasible
and infeasible regions and approach the unconstrained Pareto surface. However,
instead of using a constrained MOEA in the “pull” phase, the set of Pareto-optimal
solutions found by NSGA-II/III in the “push” phase is simply compared with the set of
feasible solutions generated by the ET constraint solver. The solutions common to both
sets are then regarded as feasible Pareto-optimal solutions.

For problems for which numerous Pareto-optimal solutions exist in the search
space, multiple runs with the same MOEA or using an ensemble approach [20, 21] can
be carried out in the push phase and the Pareto-optimal solutions found combined to
obtain the overall unconstrained Pareto-optimal solutions set.

4 Experimental Evaluation

4.1 Workflow and Parameters

The genomic analytics RNA sequencing workflow utilized in this evaluation is
depicted in Fig. 5. It comprises three tools: TopHat2, Cufflinks, and StringTie. The
rectangles represent the analysis tools, unshaded ellipses represent input-output data,
and the shaded ellipse represents input data from users. The optimizers were imple-
mented in Jupyter notebook [22] using the Python-based Optima library [23].

Requirements and Constraints. The primary requirements and constraints were as
follows (where USD signifies United States dollars): Running cost � 10 USD/h; AWS
Regions: Tokyo, Virginia; Policy: Single cloud service provider.

Fig. 4. Feasible Pareto-optimal resource configurations selection via Technique 2.
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Parameters and Objectives. Table 1 lists the general parameters and objectives
employed in the evaluation, whereas Table 2 presents the parameters used with the
optimizers.

4.2 Evaluation Results

Figure 6 shows the distribution of the feasible solutions universe obtained from the ET
constraint solver for the requirements and constraints presented in Sect. 4.1. It can be
clearly seen that the feasible solutions are liberally distributed over the search space.

Fig. 5. Genomic analytics RNA sequencing workflow employed in the evaluation.

Table 1. General parameters and objectives.

Parameter Value

Feasible resource configurations (solutions)
from ET constraint solver

6116

User objectives Availability (maximize),
Cost, Makespan (minimize)

AWS regions Tokyo, Virginia
AWS instances families C4, M4, R4

Table 2. Parameter values used in NSET, NSGA-II, and NSGA-III.

Parameter NSET NSGA-II NSGA-III

No. of reference points 21 – 91
Population size 21 100 100
No. of generations – 100 100
SBX probability – – 1
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For the parameters and objectives presented in Tables 1 and 2, NSGA-II and III
obtained the same set of 25 unconstrained Pareto-optimal (i.e., nondominated sorting
rank = 1) solutions. These Pareto-optimal solutions are presented in Table 3 and
depicted graphically in Fig. 7. The Pareto-optimal surface is clearly visible in the
distribution.

Fig. 6. Distribution of the universe of feasible solutions obtained from the ET constraint solver.

Table 3. Unconstrained Pareto-optimal solutions obtained via NSGA-II/III.

Solution
No.

Objective values
[Cost, Makespan, Availability]

Solution
No.

Objective values
[Cost, Makespan, Availability]

1 [1.01599e−05, 0.00055, 0.99912] 14 [2.33127e−05, 0.00053, 0.99922]
2 [2.87957e−05, 0.00054, 0.99944] 15 [6.04085e−05, 0.00353, 0.99976]
3 [2.25656e−05, 0.00055, 0.99922] 16 [6.34191e−05, 0.00072, 0.99976]
4 [1.00850e−05, 0.00072, 0.99912] 17 [1.07787e−05, 0.00195, 0.99922]
5 [6.37040e−05, 0.00033, 0.99944] 18 [4.12014e−05, 0.00054, 0.99954]
6 [9.09370e−06, 0.00353, 0.99944] 19 [6.22217e−05, 0.00053, 0.99944]
7 [1.21044e−05, 0.00072, 0.99944] 20 [8.14040e−06, 0.00055, 0.99880]
8 [2.14995e−05, 0.00353, 0.99954] 21 [8.01104e−05, 0.00054, 0.99976]
9 [1.09070e−05, 0.00053, 0.99912] 22 [6.20934e−05, 0.00195, 0.99954]
10 [8.75930e−06, 0.00195, 0.99890] 23 [1.03699e−05, 0.00033, 0.99880]
11 [2.45101e−05, 0.00072, 0.99954] 24 [8.88750e−06, 0.00053, 0.99880]
12 [7.07430e−06, 0.00353, 0.99912] 25 [2.47951e−05, 0.00033, 0.99922]
13 [1.23893e−05, 0.00033, 0.99912]
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The distribution of feasible (i.e., constrained) Pareto-optimal solutions obtained
using NSET and Technique 2 are illustrated in Figs. 8 and 9, respectively. The actual
objective values for the feasible Pareto-optimal solutions obtained are compared in
Table 4.

Figures 8 and 9 and Table 4 show that all the feasible optimal solutions obtained
from Technique 2 are present in the feasible optimal solutions set generated by NSET.
However, whereas Technique 2 generated only nine feasible optimal solutions, NSET

Fig. 7. Distribution of unconstrained Pareto-optimal solutions obtained from NSGA-II/III.

Fig. 8. Distribution of feasible Pareto-optimal solutions obtained from NSET.
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generated 13. Further, the four feasible optimal solutions missing from the results of
Technique 2 are not present in the Pareto-optimal set generated by NSGA-II/III
(Table 3).

The difference in the number of feasible optimal solutions may be due to the way in
which the search space is explored in the first phase. The two most important goals in
Pareto-based multi-objective optimization is to find a set of solutions that is (1) as close
as possible to the Pareto-optimal front and (2) as diverse as possible. This ensures a
good set of optimal tradeoff solutions among objectives. To achieve these goals,
MOEAs utilize an evolution phase in which three operators, crossover, mutation, and

Fig. 9. Distribution of feasible Pareto-optimal solutions obtained from Technique 2.

Table 4. Comparison of solutions obtained by NSET and Technique 2 (O = present,
X = absent).

NSET
Solution No.

Objective values
[Cost, Makespan, Availability]

Technique 2

1 [6.62948e−05, 0.00054, 0.99954] X
2 [4.84060e−05, 0.00053, 0.99922] X
3 [2.45101e−05, 0.00072, 0.99954] O
4 [6.22217e−05, 0.00053, 0.99944] O
5 [6.34191e−05, 0.00072, 0.99976] O
6 [8.01104e−05, 0.00054, 0.99976] O
7 [6.20934e−05, 0.00194, 0.99954] O
8 [1.04113e−05, 0.00053, 0.99880] X
9 [1.02830e−05, 0.00195, 0.99890] X
10 [1.09070e−05, 0.00053, 0.99912] O
11 [1.21044e−05, 0.00072, 0.99944] O
12 [2.87957e−05, 0.00054, 0.99944] O
13 [1.07787e−05, 0.00195, 0.99922] O
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reproduction/selection, play a central role [1]. However, evolution is a stochastic
process, in which the solutions found are highly dependent on the settings of the
evolutionary operators [24].

In contrast, in NSET, exploration of the search space is achieved via transformation
of the original problem by correct semantics-preserving rewriting rules [13]. This is, in
essence, a correct state transition system, the like of which has previously produced
promising results when compared with NSGA-II [25]. Thus, instead of evolving fea-
sible solutions based on information from infeasible solutions (as done in CMOEAs),
NSET applies ET to find all feasible solutions (states) based on information about the
problem. This results in the complete set of feasible Pareto-optimal solutions being
systematically generated. The disparity can also be considered from a “no free lunch”
[26] viewpoint, where it has been established that for any algorithm, high performance
on one class of problems is offset by its performance on another class of problems.

5 Conclusion

The results obtained in this study indicate that the proposed method (NSET) can
actually generate solutions that are both feasible and optimal for a practical scientific
workflow resource selection problem. This is verified by the fact that more than 69% of
the solutions presented as being feasible Pareto-optimal solutions exist in the Pareto-
optimal sets generated by NSGA-II/III. However, further investigation is required to
determine whether the additional four solutions presented by NSET as feasible Pareto-
optimal solutions are indeed optimal but were missed by both NSGA-II and NSGA-III.
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Abstract. Sustainable agriculture maximizes crop production with
minimal use of resources, such as water and energy. Subsurface water
retention technology (SWRT) uses an impermeable membrane in the
soil to hold more water for plants. Optimal production of crops requires
not only the optimal irrigation rate but also optimal shapes and place-
ments of SWRT. Furthermore, some uncertain factors, e.g. incoming solar
energy, plant transpiration rate temperature, climatic conditions, and
genetics of crops are also important in crop production, thereby making
the optimization process complicated. In this paper, we propose a com-
putationally fast approach that utilizes HYDRUS-2D software for water
flow simulation and DSSAT crop simulation software with an evolu-
tionary multi-objective optimization (EMO) procedure in a coordinated
manner to minimize water utilization and maximize crop production.
Our method simulates SWRT in HYDRUS-2D software and calibrates
and validates DSSAT model parameters according to the HYDRUS-2D
simulation. Then it finds the best irrigation schedules to produce max-
imum crop production and water use efficiency by DSSAT. Our results
show that HYDRUS-DSSAT calibration produces less than 5% validation
error and the optimization procedure introduces 99% water use efficiency
with the help of rainfall water and as much as 6 times increase of corn
production compared to a non-optimized, random irrigation schedule
without any SWRT membrane.

Keywords: Precision irrigation · HYDRUS-2D · DSSAT ·
Optimization · Crop · Water use efficiency ·
Subsurface water retention technology

1 Introduction

Sustainable technologies for crop production by using minimal water and energy
have become very essential in today’s world. Water is vital for irrigation of crops
but water is also scarce and today’s food and biomass producers are obligated to
use judicial consumption of water for irrigation. In order to have a sustainable
crop production system, we need to use minimal water yet holding most of them
c© Springer Nature Switzerland AG 2019
K. Deb et al. (Eds.): EMO 2019, LNCS 11411, pp. 695–706, 2019.
https://doi.org/10.1007/978-3-030-12598-1_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12598-1_55&domain=pdf
http://orcid.org/0000-0002-1646-9239
http://orcid.org/0000-0001-7402-9939
https://doi.org/10.1007/978-3-030-12598-1_55


696 P. C. Roy et al.

in the soil for plant growth. Sandy soil has much less holding capacity and large
water permeability. Traditional approach using asphalt barrier has proved to
be efficient and is widely accepted for sandy soil [4,15]. Being costly and labor
intensive, new polyethylene membranes are also used. The proper membrane
design and installation depth in specific soil and weather condition has been
studied in [4] using two-dimensional modeling of water flow using HYDRUS-2D
software [14] in partially sandy soils. They have investigated a profile distribution
of water in an irrigated sand lysimeter with installed SWRT membranes at
different depths. Based on their experiments, it is evident that HYDRUS-2D
model with membrane geometry can produce the same water content (after
calibration) as in practice with a considerable accuracy.

Water content simulation, nutrient flow modeling or crop yield prediction
often need well-developed software [5,7,8]. In a previous study [15], an integrated
model of water-flow and nutrient transport simulation using HYDRUS-2D was
combined with an evolutionary multi-objective optimization (EMO) algorithm
to obtain optimal membrane geometry and placement in soil profile along with
prescriptive irrigation scheduling under two conflicting objectives.

Although HYDRUS-2D can predict the water and nutrient accumulation at
the root zone of a plant, it cannot simulate the crop growth, which is a direct mea-
surable outcome of the irrigation process. Besides a continuous supply of water
at the root level either through an optimal irrigation pattern or through rain-
fall, the growth of crop and eventual crop yield depend on many other factors,
such as incoming solar energy, plant transpiration rate, temperature, climatic
conditions, type of crop, etc. Thus it is necessary to take help of another compu-
tational simulator that can explicitly provide an estimate of crop yield for given
soil-water mix, nutrient content, and other parameters in a time-series manner.
For this study, we use DSSAT (Decision Support System for Agrotechnology
Transfer), a widely accepted tool for agronomists [6].

The main contribution of this paper is as follows. We propose an integrated
methodology to find daily irrigation schedules that optimize crop production
while using minimum water using an evolutionary multi-objective optimization
methodology. Our results show that, we can achieve best corn production with
99% water use efficiency in sandy soil with the help of SWRT technology.

2 Two Simulation Software: HYDRUS-2D and DSSAT

Here we briefly introduce two software systems used in this study: HYDRUS
and DSSAT. HYDRUS-2D/3D software was developed to simulate two and
three-dimensional movement of water, heat, and multiple solutes by solving
Richards Equation for saturated-unsaturated water flow, and the Fickian-based
convection-dispersion equation for heat and solute transport [14]. HYDRUS-
2D/3D uses van Genuchten (1980)’s model [16] (along with other recent models)
to produce soil-water content, which is a unit-less volumetric ratio of amount of
water, and other contents in the soil.
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Hydrus-2D
mesh

Water contents after ir-
rigation

Fig. 1. (a) A 2D mesh created in
HYDRUS-2D software where two imper-
meable membrane (AR ratio 2:1) are
placed in 30 and 45 cm depth. (b) Water
content is shown on the membrane after
irrigation.

Figure 1 shows a 2D mesh design of
SWRT membrane with water content
values (after irrigation) on the right.
We observe that much of the water
is contained inside the membrane just
after irrigation. Since HYDRUS-2D
cannot model crop growth involving
plant genetics, root growth, transpira-
tion and other complicated processes
we use a crop simulation software
called DSSAT (Decision Support Sys-
tem for Agrotechnology Transfer) that
simulates growth and development of
plants over time in an one-dimensional
arrangement with its own soil-water,
carbon, and nutrient processes. The
software is capable of simulating inte-
grated crop models, namely, maize,
wheat, barley, etc. and calculate yield at the end of crop growing period. A tip-
ping bucket model [6] is used to produce soil-water content in a one dimensional
space (only depth). The model used by DSSAT, namely, tipping bucket model,
is computationally more efficient compare to van Genuchten’s model used in
HYDRUS-2D. The key parameters for DSSAT is the wilting point (SLLL) (lower
limit), saturation (SSAT ), and field capacity (drained upper limit SDUL). In
the simplified equation of HYDRUS’s model, soil water retention (θ(h), where h
is pressure head) depends on residual and saturated water content (θr and θs)
and saturated hydraulic conductivity (Ks).

3 Calibration of Simulation Models

Calibration of two models has one single purpose, namely, the adjusted param-
eters of DSSAT should produce the same water content as HYDRUS-2D simu-
lating water flow under SWRT membranes. Water holding capacity is different
for different types of soils and this can be controlled by changing the param-
eter values of DSSAT. Our assumption is that we can simulate the effect of
SWRT membrane by only changing the soil parameters of DSSAT. Because
of the installation of SWRT, the water content would be different at different
depths. Therefore, we divide the soil domain (overall 120 cm depth) into ten
asymmetric layers. Layers are L = {0–8, 8–13, 13–18, 18–23, 23–28, 28–33, 33–
38, 38–43, 43–48, 48–120} cm depth and label them as layer 1 to layer 10. In
HYDRUS-2D, we create a 2D mesh with 30 cm width and 120 cm depth. Our
calibration objective becomes minimizing mean squared error of between water
contents (θ) of HYDRUS-2D and DSSAT over crop growing season d for different
irrigation pattern S.
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Min
∀l∈L,

F (l) =
∑

s∈S

d∑

j=1

|θjHY DRUS(l, s) − θjDSSAT (l, s)|

subject to, fixed soil evaporation rate.

(1)

Here, θjDSSAT (l, s) and θjHY DRUS(l, s) are the average water contents of
DSSAT and HYDRUS-2D simulators, respectively, for the corresponding layer l
and irrigation pattern s ∈ S and we optimize for d = 110 simulation days. Note
that, criteria other than absolute error, namely, MSE and Nash-Sutcliffe effi-
ciency index (NSE [9]) can also be used in this regard. We have used exhaustive
search for finding the best parameters for this calibration.

4 Optimization of Water Use Efficiency and Crop Yield

As mentioned before, our goal of this study to maximize crop yield using the
minimum amount of water. For this study, we have collected five years (2011–
2015) of weather data from nearby weather station in East Lansing (MSUHort),
Michigan. We optimize average crop yield in these five years, some of which
are hugely dry and others are wet. In this study, we have selected a particular
type of corn DECALB XL71, a popular crop produced in north America. Inside
DSSAT, we turn off the effect of nutrients and study the effect of water on crop
growth alone. Irrigation schedule starts just after plantation and crop is assumed
to be harvested at maturity. Before we discuss our optimization procedure, we
highlight a previous study by the authors of [15], which considered the effect of
water retention through SWRT membranes simulated by HYDRUS-2D software
(Fig. 2).

Optimization Procedure

Hydrus-2D DSSAT

Initialize schedule, 
and evaluate

Run DSSAT in parallel

Survival selection using 
Crop Yield & WUE

Create New Schedules
using genetic operators

Terminate

YIELD

EU
W

NO YES

Output

Generate Training and Test Cases 
of Irrigation Pattern and Weather

Generate Water content Optimize parameters on training set

Provide optimized DSSAT params

Calibration Procedure

Fig. 2. Overall procedure for finding best crop production and water use efficiency is
provided in a schematic diagram.
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4.1 A Computationally Fast Approach

A previous study [15] considered two objectives related to water retention and
utilization at the root system: (1) water use efficiency (WEF) and (2) root uptake
efficiency (REF) by using HYDRUS-2D software for different aspect ratios of
SWRT membranes. Each evaluation of a solution by HYDRUS-2D took about
1.5 to 2 min of computational time on a high-performance desktop computer
requiring 1.5 days for on complete optimization run. To speed up the process,
we procure a high performance server machine having an Intel Xeon E5-2697 v3
processor with 28 node and 56 available threads for this study. NSGA-II opti-
mization procedure [2] with faster non-dominated sorting method [11,13] is used
to handle two water retention related objectives – WUE and RUE, as discussed
in the previous work. For our initial simulations here, we have used a population
size of 32, maximum number of high-fidelity evaluations of 4, 000 (a four-time
increase from the prior study) with other parameters similar to previous study.
Figure 3(a) shows the computational speed-up obtained by increasing the num-
ber of threads in our multi-core computer. Beyond 30 threads, the overhead
of inter-thread communications increase and the marginal rate of time saving
diminishes. Figure 3(b) and (c) shows the trade-off solutions obtained for four
aspect ratios by executing the entire optimization run from the prior study [15]
with (a) a single thread (b) 32 threads. For each aspect ratio set-up of the SWRT
membrane, we perform an independent run and the final trade-off objective vec-
tors (WUE and RUE) are shown in the same figure.

Fig. 3. (a) Speed up using 28 cores, (b) A single processor result and (c) 28-processor
result of root uptake efficiency and water use efficiency with different aspect ratios.

4.2 Optimization of Crop Production and Water Use

In this paper, we redefine water use efficiency (WUE) to be the ratio between
plant transpiration and total input. Total input consists of irrigation and pre-
cipitation. Our second objective (crop production) is readily obtained from the
DSSAT software after running a simulation on a particular irrigation schedule.
The unit of this objective is kg per hectare. We take an average over 5 years of
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production to compute the objective function. Irrigation schedule contains start-
ing date of irrigation, day and amount of irrigation in the crop growing season.
We declare the daily irrigation amount as a variable and this makes the number
of variables same as the number of days (110 used in this study). To constraint
the irrigation pattern to be practical, we limit each irrigation amount to be less
than or equal to 50 mm and the gap between two consecutive irrigation should
not be more than 10 days. In our formulation, for each 10 day interval, we have
a variable that tells us the amount of daily irrigation for those days. Thus, there
will be a total of 11 variables for the entire 110-day simulation period. This
formulation allows uncertainties of precipitation to be included in the study by
averaging the rain-fall in every 10 consecutive days. Apart from this formula-
tion, we have also performed experiments by defining 110 variables (one for each
day) and two variables (irrigation rate and interval between two irrigation). We
use a derivative-free global optimization method: NSGA-II [3], since it was used
in previous studies [15]. Population size is kept 128 and the number of genera-
tions is fixed at 2,000. We have used similar parameters as before (Sect. 4.1) for
SBX recombination and polynomial mutation operators. We ran our algorithm
in server machine with 32 threads in parallel. This optimization is run on the
soil parameters optimized for each design aspect ratio of SWRT.

5 Experimental Results

In this section, we summarize our results. First, we present calibration-validation
results of the HYDRUS-2D and DSSAT coordination, and then present the
results from the overall optimization procedure.

5.1 Calibration and Validation Results

We divide the irrigation schedule data into training and test sets. In each
case, DSSAT and HYDRUS is run for 110 days and a sum of absolute error is
measured.

– Training Data: Irrigation rate of 5, 5, 20, 1, 50, 5 and 10 mm for every 5,
5, 20, 1, 50, 5 and 10 days, respectively.

– Test or Validation Data: Irrigation rate of 2, 5, 7, 2, 10 and 1 mm for every
5, 30, 40, 10, 30 and 40 days, respectively.

In Fig. 4, we show the comparison of volumetric water content between HYDRUS
and DSSAT softwares under the same irrigation and soil evaporation rate after
the training is completed. The results show that the water content dynamics of
DSSAT closely match to that obtained with HYDRUS. This suggests that we
can use the obtained parameter settings of DSSAT with confidence. For six of our
test cases, we get an average RMSE (Root mean squared error) of water content
per layer of 10 layers to be {0.14, 0.14, 0.15, 0.14, 0.11, 0.07, 0.06, 0.11, 0.11, 0.12}
and standard deviation of average RMSE is {0.05, 0.04, 0.07, 0.06, 0.03, 0.02, 0.01,
0.03, 0.03, 0.04}, respectively for total 110 days. The average RMSE is only about
5% per day of the volumetric water content values.
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Fig. 4. Comparison of VWC (Volumetric water content) between DSSAT and
HYDRUS-2D (with 2:1 AR design) for validation case.

In Fig. 5, we show cumulative water fluxes from HYDRUS and DSSAT. We
show fluxes for infiltration (total input), run-off, drainage, and soil evaporation.
In each test case, we observe that water fluxes of DSSAT effectively match with
that obtained by HYDRUS-2D, wherever SWRT membrane is present.
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Fig. 5. Cumulative fluxes from DSSAT and HYDRUS for three different validation
irrigation schedules.

The above validation procedure between HYDRUS-2D and DSSAT has also
provided us with optimized parameter values for DSSAT parameters for each
aspect ratio of the SWRT membrane. These optimized DSSAT parameters have
matched volumetric and cumulative water flux values obtained by the HYDRUS-
2D software with SWRT membrane embedded in the soil. Now, we are ready
to use the DSSAT software with the obtained optimized parameter to simulate
the crop growth (which HYDRUS-2D can not do!) and perform our overall bi-
objective optimization study.
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5.2 Bi-objective Optimization Results

After we find the parameters of DSSAT model that simulate SWRT, we now run
NSGA-II algorithm using the optimized parameters to find the best irrigation
schedule for two objectives: (i) maximize WUE, and (ii) Maximize crop yield.
We summarize the results of different case studies below.

Case Study I: In this study, we have defined two variables- amount of irrigation
and irrigation interval. In optimized irrigation schedule, we observe that we
need almost 1 to 4 mm water everyday that optimizes both WUE and crop
yield. But the amount of crop yield that we get is not more than 9 MT/hectare
(MT = Metric Ton).

Table 1. Comparison between potential yield from DSSAT and optimized yield from
our bi-objective methodology.

Year 2011 2012 2013 2014 2015

Potential yield (kg/ha) 11,324 13,059 11,929 10,837 10,300

Actual yield (kg/ha) 11,315 12,976 11,041 10,767 10,292

Case Study II: We formulate our problem with 110 variables i.e. amount of
irrigation each of 110 days. But with the limited number of allowed function
evaluations, we fail to get any specific pattern of irrigation by the optimization
algorithm. Produced crop yield is also less than 7 MT/hectare, which is not ade-
quate. Thus, we conclude that this case study is not effective for our optimization
algorithm with a limited computational budget.

Case Study III: As mentioned before, here, the irrigation rate is kept identical
for 10 consecutive days of simulation thus having 11 variables. Since the number
of variables are reasonably low, the optimization algorithm is able to produce a
well-distributed set of Pareto-optimal solutions trading-off WUE and crop yield
objectives. We investigate the nature of trade-off solutions below. Potential and
actual yield (MT/hectare) is given in Table 1.

Optimization Without SWRT: To compare, we create a similar project in
HYDRUS-2D with same domain size (30 cm × 120 cm) and same coarse sand soil
but without any impermeable SWRT membrane. We then optimize soil param-
eters of DSSAT so that it matches water contents of HYDRUS-2D simulation
to imitate properties of that soil. After that, we optimize WUE and crop pro-
duction using NSGA-II with the optimized parameters. In Fig. 6(a) and (e), we
present the obtained non-dominated front without SWRT. It can be observed
that at most 2MT/ha corn is possible to be grown on average, while gaining as
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Fig. 6. Obtained non-dominated solutions are shown after completion of whole opti-
mization process. (a) is performed without SWRT and (b), (c) and (d) are for AR design
2:1, 3:1 and 4:1, respectively. Comparison among non-dominated fronts are shown in
(e). Daily irrigation pattern for a solution (2:1 AR design) that optimizes the crop yield
is shown in (f).

much as 25% in WUE. Since water conductivity is very high in sandy soil, it is
expected that we obtain much less corn production in dry years.

Optimization with SWRT: In Fig. 6(b)–(e), the non-dominated fronts are
shown. From the figures it is clear that, even the dominated solutions of this
case are much better than the non-dominated solutions obtained without SWRT.
This is because SWRT retains more water, thereby helping plant growth at their
crucial stages. We repeat this experiment with 2:1, 3:1 and 4:1 AR design. There
is a slight variation of non-dominated fronts obtained from these three different
SWRT configurations. It is observed that 2:1 AR design is able to retain much
water in the soil compared to other designs.

We also observe that one of the obtained non-dominated solutions produces
99% water use efficiency on average over the years 2011–2015. The crop yield is
also as high as 12,630 kg/ha. Irrespective of AR in the membrane design, a small
amount of daily water is needed initially. Amount of water varies significantly
when crop becomes more mature. We can divide the entire non-dominated front
into three parts. The first part produces 99% WUE in which the amount of daily
irrigation is limited by 7 to 8 mm. In the second part (middle), we obtain better
crop yield by increasing the irrigation rate to 15 to 25 mm over the vegetation
period. In the last part (after around 40–50 days), we need to increase the water
supply to around 40 to 50 mm per day. When the crop reaches maturity, the
harvest time begins and we need less amount of water, as depicted in Fig. 6(f).
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Interestingly, in Figs. 7(a) and(b), we show (from DSSAT software) the leaf
weight difference between SWRT and SWRT-less irrigation results for particular
weather conditions (year 2011–2015). It is evident that plants without SWRT do
not grow much due to lack of water containment at their root system. In Fig. 8(a)
and (b), we also see the root density information of plants with or without SWRT
for a particular weather condition (year 2011). Plants have more roots in the soil
and transpiration also becomes high when they get much water. The irrigation
pattern for best crop yield from the previous figure also matches that with the
leaf weight, root density, and transpiration pattern of healthy plants. These
patterns confirm the validity of our simulation set-up and procedure adopted in
linking both HYDRUS-2D and DSSAT softwares.

0 50 100 150
Days of Simulation

0

1000

2000

3000

le
af

 w
ei

gh
t(k

g/
ha

)

With SWRT
Without SWRT

2011

0 50 100 150
Days of Simulation

0

1000

2000

3000

4000

le
af

 w
ei

gh
t(k

g/
ha

)

With SWRT
Without SWRT

2012

0 50 100 150
Days of Simulation

0

1000

2000

3000

le
af

 w
ei

gh
t(

kg
/h

a)

With SWRT
Without SWRT

2013

0 50 100 150
Days of Simulation

0

500

1000

1500

2000

2500

le
af

 w
ei

gh
t(

kg
/h

a)

With SWRT
Without SWRT

2014

0 50 100 150
Days of Simulation

0

1000

2000

3000

le
af

 w
ei

gh
t(

kg
/h

a)

With SWRT
Without SWRT

2015

Fig. 7. Comparison of leaf weight of simulated plants with or without SWRT for year
2011 and 2012.
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Fig. 8. Comparison of simulated growth of root density and transpiration with or
without SWRT for a single weather condition (year 2011) for the 2:1 Aspect ratio
membrane.

Analysis of Bi-objective Optimization Results. Table 1, discussed before,
shows the potential and actual yields produced by DSSAT software. The poten-
tial yield is the maximum possible yield under standardized parameter settings
(with SWRT 2:1 AR design) which is taken care by DSSAT internally. On the
other hand, the actual yield is obtained by finding the best irrigation schedules
using our proposed optimization procedure (same SWRT). The results show
that, we can achieve maximum possible yield just by providing perfect irrigation
schedule. We observe that in two years (2011 and 2012), the crop yield produced
by our optimization procedure is 99% to that of the potential yield. In other
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three years, we have achieved a better yield than that of the potential yields
provided by DSSAT itself. We present the total time savings by our proposed
methodology in Table 2.

Table 2. Time Savings in HYDRUS-2D and DSSAT due to parallel evaluation of
solutions.

Method/Time Initial study
(HYDRUS)

Calibration process
(HYDRUS-DSSAT)

EMO-HYDRUS-
DSSAT

1 Processor
(Estimated)

6,000 min (100 hr) 416.67 min (6.94 hr) 177.78 hr

32 Threads 125 min (2.08 hr) 13 min 5.56 hr

6 Conclusions and Future Work

In this paper, we have proposed a computational approach to find an optimum
irrigation schedule that not only minimizes water usage but also maximizes crop
production. In order to simulate soil water movement under embedded SWRT
membranes, we have used HYDRUS-2D simulation software in a two-dimensional
setting and DSSAT software for predicting the crop yield. Between the two
softwares, HYDRUS-2D simulation is exceedingly more time consuming, hence
we have developed a computationally fast parallel procedure to interlink the
two softwares so that both conflicting criteria can be optimized in a reasonable
computational time.

We have proposed a new calibration-validation methodology to run our opti-
mization method using computationally quick DSSAT software yet taking the
advantage of HYDRUS-2D software’s SWRT analysis capability. The optimiza-
tion is carried out over different weather conditions to predict the amount of
crop production. Our method not only reduces computational effort by multi-
threaded implementation of solution evaluations, but also greatly cuts down the
human effort of optimizing parameters by introducing an EMO algorithm in the
precision irrigation field. The results presented here clearly indicates the promise
of our proposed approach and it should facilitate further research in predicting
yield of different crops at different soils with a suitable effect of a SWRT.

The study also spurs a number of future research directions. In addition to
crop yield and water usage, fertilizer usage can also be considered for minimizing
ground water contamination due to deep perlocation of fertilizers and pesticides
by simulating nutrient flow and accumulation under SWRT using the two soft-
ware in a similar linking procedure. To make the overall procedure more prag-
matic, a three-dimensional water and nutrient flows may be considered. Given
the expensive nature of HYDRUS-2D/3D based optimization, use of metamodel
based optimization [1,10,12] can also be considered in future.
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Abstract. A steady increase in the prices of non-renewable energy
sources, their environmental impact, and the ever-increasing energy
demands have made it imperative to explore alternative, renewable
energy options. Wind energy is one of the prominent alternatives, and
for onshore installations, optimal placement of wind turbines is necessary
to harness maximum power. This optimal placement problem, referred
to as wind-farm layout optimization, has received significant research
attention with regards to output power maximization. However, in prac-
tice, apart from maximization of power, a number of other key factors
need to be considered, such as cabling cost, maintenance cost and noise
levels. Furthermore, the wind farm itself may have irregular boundaries
and within the area there may be several protected areas due to exist-
ing archaeological deposits, water bodies, bird feeding areas, etc. In this
paper, we present a framework to support practical layout optimization
of wind farms. In the proposed approach, a variable discretization scheme
is employed to deal with irregular land boundaries and a many-objective
formulation is used to identify the set of trade-off solutions. The utility
of the approach is highlighted using a case study resembling the Capital
wind farm located in New South Wales, Australia. We hope that this
study will motivate use of such tools to solve practical wind farm layout
optimization problems.

1 Introduction

Wind power is one of the prominent sources of large scale renewable energy. In
2015, Australia’s wind farms produced 33.7 per cent of the country’s clean energy
and supplied 4.9 per cent of Australia’s overall electricity [3]. A typical onshore
wind farm contains several turbines installed over a large land area. Each turbine
has an individual capacity of producing a certain amount of energy. However, if
installed too close to each other, the turbulence and wake effects cause a reduc-
tion in wind speed and consequently in the power generated at the downstream
turbines. Consequently, a wind farm tends to span expansive land area, which in
turn increases its interference with natural habitats [15,23]. Additionally, noise
c© Springer Nature Switzerland AG 2019
K. Deb et al. (Eds.): EMO 2019, LNCS 11411, pp. 707–718, 2019.
https://doi.org/10.1007/978-3-030-12598-1_56
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generated by the turbines also need appropriate consideration. The noise levels
at nearby residential areas should be below prescribed levels to limit potential
health hazards [8,28,30]. Wind farm layout design is thus a challenging opti-
mization problem with a number of practical considerations.

Optimum design of wind farm layouts has been attempted in the past with
various levels of simplification in the model. For example, in [18] the wind farm
was assumed to be of a square shape and represented using a 10 × 10 grid (100
cells in total), where turbines could only be located at the center of the cells.
This discrete location model relied on the size of the cells to inherently enforce
proximity constraints (of a minimum distance between any two turbines). Con-
tinuous location models have also been used, for example in [13], where turbines
could be located anywhere within the area. In reality, a wind farm often spans
across areas belonging to multiple land owners and there may be a limit on the
number of turbines installed within each block depending on agreements with
the respective owners. The model in [32,33] considered straight-line boundaries
between these blocks. More realistic models that consider regulatory land use [27]
or variation in elevation also appear in recent literature. Irregular boundaries
have rarely been considered, although this would be the most likely scenario in
a practical wind farm design.

In terms of estimation of power, simplifications range from considering uni-
directional wind at constant speed through to models that consider wind speed/
direction variation with turbine interactions [22]. Turbine interaction models
also vary in complexity ranging from Jensen wake model [12] through to three
dimensional wake models [25]. There are also a variety of optimization formu-
lations reported in the literature which range from energy maximization as the
sole objective [10,18], energy maximization subject to proximity and noise level
constraints [2,9,13] or even bi-objective formulations that consider noise levels
and energy maximization simultaneously [14]. Further extensions that consider
energy maximization, cable length minimization and enclosed land area min-
imization have also been reported in [31]. Since the underlying optimization
problem is NP-hard, a range of stochastic algorithms (NSGA-II [14], CMA-ES
[11], SPEA [13,25], IBEA [17]) have been used for solving it.

Given that the adoption of wind farms clearly depends on a number of factors
apart from the power maximization, it is useful to seek and present a rich trade-
off set of solutions to the stakeholders. In view of the existing research on this
problem discussed above and the associated limitations, the key highlights of
this study are listed below.

• Firstly, we offer an optimization framework to deal with wind farm layout
optimization involving realistic objectives such as (a) maximization of wind
power, (b) minimization of cable length connecting the turbines, (c) minimiza-
tion of enclosed land area of the layout to reduce maintenance and inspec-
tion costs and (d) minimization of noise level. While some of these objec-
tives have been considered individually in the works before, in its essence the
problem is a multi-objective optimization problem; also referred to colloqui-
ally as a many-objective optimization problem (MaOP) when the number of
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objectives are more than three. MaOP has been a highly active research area
in the past decade [16]; but most studies predominantly use mathematical
benchmark functions that may not capture some of the real-life modeling
challenges. The formulation of the windfarm layout optimization problem as
a MaOP, with its unique set of challenges, not only offers opportunity to
obtain realistic trade-off solutions, but the case-study can also serve as an
application benchmark from an algorithm development perspective.

• Secondly, the proposed approach can deal with realistic constraints such as (a)
multiple infeasible regions where turbines cannot be placed due to environ-
mental regulations (archaeological deposits, bird feeding areas, natural flora,
etc.) and/or landowners’ restrictions and (b) proximity constraints on the tur-
bine placements. Notably, (a) is handled using a novel solution representation
through triangulation of the given irregular land area, while (b) is handled
through assistance of infeasibility driven constraint handling approach.

• Thirdly, the proposed approach incorporates a mechanism capable of gener-
ating a feasible cable layout, i.e., rerouting of cables to avoid all infeasible
areas.

• Lastly, the above contributions are demonstrated through a case-study con-
ducted on a problem resembling the Capital wind farm located near Lake
George, New South Wales, Australia.

The remainder of the paper is organized as follows. The details of the wind
farm layout problem are discussed in Sect. 2. The algorithm is briefly outlined in
Sect. 3, followed by the results obtained on the case study in Sect. 4. Concluding
remarks and future directions are given in Sect. 5.

2 Wind Farm Layout Optimization Problem

2.1 Generic Problem Formulation

A typical onshore wind farm contains several turbines located over a significant
stretch of land. It is well known that the total generated power of a wind farm
is significantly less than the summation of the rated power of the individual
turbines [26]. This is due to the wake effect, where flow past a turbine affects
other turbines located downstream from it [13]. The magnitude of wake and in
turn the efficiency of energy production depends primarily on the layout of the
wind turbines. While maximization of energy production is a key consideration,
there are several other factors which affect the design of the layout such as min-
imization of noise, minimization of cable length, minimization of enclosed area
of the layout, etc. Furthermore, there might be several prohibited zones inside
the layout where no turbines can be placed due to environmental regulations or
landowners’ requirements. There are also a number of practical constraints e.g.
(a) distance between any two turbines should be more than a prescribed dis-
tance (generally 8 times the turbine rotor radius) to minimize wake losses and
hazardous loads on the turbines (b) cables between two turbines cannot pass
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through restricted areas, etc. Thus the layout problem is best represented as a
constrained many-objective optimization problem presented in Eq. 1.

Minimize: F(X) = fi(X), i = 1, 2, . . . M

Subject to
cj(X) ≤ 0, j = 1, 2, . . . p

hj(X) = 0, j = 1, 2, . . . q

X(L) ≤ X ≤ X(U)

(1)

Here, f1(X), f2(X), f3(X), ......fM (X) are the M objective functions to be opti-
mized; considered here in a minimization sense. The number of inequality and
equality constraints are denoted by p and q, respectively. The upper and lower
bounds of the variables are denoted as X(U) and X(L), respectively. For every
solution, the sum of constraint violations is denoted by CV , where CV = 0 indi-
cates a feasible solution. For every pair of turbine locations, a violation value
is computed if the distance between them is less than 8 times the turbine rotor
radius. Sum of these violations correspond to CV . As for the constraints on cable
routing, it is managed through a repair (re-routing), as will be discussed shortly.
The constraints of being in feasible irregular boundaries is handled implicitly
through the solution representation itself.

2.2 Solution Representation

Contrary to some of the regular geometries considered in the literature, e.g. [18],
wind farms could typically have geometries with very irregular boundaries. Fur-
ther, the areas prohibited for turbine installation may be irregular too. In this
study, we propose a simple representation that can place the turbines within
these irregular boundaries and avoid the prohibited zones. In order to do this,
we discretize the boundaries of the allowable areas using the technique proposed
in [20] and construct a triangular mesh within the feasible zones. Figure 1(a)
illustrates an example of a discretized feasible area with irregular geometry and
several infeasible areas with irregular geometries within it such as bird feed-
ing area, private property and a water body. Once the Nt triangles have been
obtained through this step, the location of an ith turbine can be represented
using the set of variables (Ai,wi), where Ai is one of the triangles, and wi is
a set of weights such that

∑3
j=1 wj

i = 1. The weights corresponding to a set
of uniformly distributed Nw points on a given triangle generated using normal
boundary intersection (NBI) [4]. All these points on any given triangle are con-
sidered candidate locations for the turbine. The representation is given in Eq. 2.
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Fig. 1. Discretization of area and cable re-routing (Color figure online)

X = {Ai, wi}
where (2)

i ∈ [1, N ],
Ai ∈ {A1, A2, . . . , ANt}, wi ∈ {w1, w2, . . . , wNw}

Let’s say, the vertices of Ai are (A1
i,A2

i,A3
i), the x-coordinate of the vertices

of Ai are denoted by {xAj
i | j = 1, . . . , 3} and the y-coordinates are denoted by

{yAj
i | j = 1, . . . , 3}. The Cartesian coordinates of the ith turbine location can

thus be simply computed as:

xi =
3∑

j=1

wj
ixAj

i ; yi =
3∑

j=1

wj
iyAj

i (3)

2.3 Objectives and Computation Models

In this study, the performance of a candidate layout is assessed using four objec-
tives: (a) energy production(maximize), (b) total cable length (minimize), (c)
enclosed area of the layout (minimize) and (d) the maximum noise level (min-
imize). The energy production model is based on [13] which considers wind
speed and directional variations. Turbines are connected via cables and the total
length of the cable configuration contributes to the levelised annual cost of a
farm. Given the location of the turbines, the cable routes are derived using
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minimum spanning tree algorithm (MST). However, cable connections passing
through any of the infeasible regions are re-routed in order to achieve a deploy-
able design. The re-routing of a cable connection between two turbines (t1 and
t2) is achieved through the following stages. At first, the triangles from the dis-
cretized feasible land containing the turbines are identified. Let’s say t1 belongs
to the triangle A and t2 belongs to the triangle B. The vertices of these two
triangles (A and B) are (A1,A2,A3) and (B1,B2,B3), respectively. In the next
stage, between every ith vertex of A and jth vertex of B, the shortest paths
(with path length d̃(Ai, Bj)) through the edges of the discretized feasible area
are identified using [7]. In addition to d̃(Ai, Bj), the distances from every vertex
to the corresponding turbines i.e. d(Ai, t1) and d(Bj , t2) are added to compute
the total distances between two turbines through various vertex combinations.
Finally, the re-routed cable length (D) between two turbines is considered as
the path having minimum total distance. The total distance computation fol-
lows Eq. 4. Figure 1(b) illustrates the infeasible region, the turbines, the triangles
containing the turbines, the old cable configuration (in blue) and the re-routed
cable configuration (in red).

D = min
1≤i≤3,1≤j≤3

(
d̃(Ai, Bj) + d(Ai, t1) + d(Bj , t2)

)
(4)

The maintenance cost of a wind farm is proportional to the enclosed area
of the wind farm layout. The enclosed area is computed based on the convex
hull bounded by the turbine locations. Generation of noise by the wind farm is
one of the most important environmental concerns. In general, the sound level
is measured at the receptors at the nearby residences [29]. In this study, the
ISO-9613-2 standard has been followed to compute the noise generation at the
receptor locations and the maximum noise level generated among all receptors
is considered as an objective.

2.4 Case Study Description

The application is based on Capital wind farm located in New South Wales,
Australia. The wind farm has three different regions: Groses hill, Ellenden and
Hammonds hill. It has a total of 67 turbines out of which 17 are placed in
Groses hill, 21 are within Ellenden and 29 turbines are located in Hammonds
hill region. There are several infeasible regions, such as woodland vegetation,
secondary grassland, wattle woodland, yellowbox woodland, she-oak region and
nearby residences as shown in Fig. 2. Due to environmental regulations, turbines
cannot be placed in these infeasible regions. The turbines are of same make and
model, i.e., Suzlon S88 and the parameters related to the turbines are listed in
Table 1. The wind scenario used in this study is constructed from the wind rose
provided for the Capital wind farm project in [19].

This problem is solved as a constrained many-objective optimization prob-
lem. The need to place 67 turbines translates to 134 variables and results in
67(67 − 1), i.e., 4422 proximity constraints. The discretization of the allowable
land generates a total of Nt = 10476 triangles among which 2167 triangles belong
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Table 1. Turbine related parameters

Turbine parameters Value Turbine parameters Value

Make and model Suzlon S88 Rated power (Prated) 2100 kW

Rotor radius (R) 44 m Hub height 80 m

Cut-in wind speed (vcut−in) 4 m/s Rated wind speed (vrated) 14 m/s

Cut-out wind speed (vcut−out) 25 m/s Slope of the power curve (λ) 262.5

Intercept of the power curve (η) −1050 Thrust coefficient (CT ) 0.9

to Groses hill, 4639 triangles to Ellenden and 3670 to Hammonds hill. The num-
ber of combinations of weights (Nw) for each triangle is set to be 8001. Take
note that the discretization does lead to triangles with different sizes and the
choice of (Nw) is just to ensure appropriate discretization for the largest trian-
gle. Among the objectives, the noise level at the residences shown in Fig. 2 are
computed using the parameters listed in Table 2.

Table 2. Turbine related parameters

Noise parameters Value

Noise generation (Lw) 105.9 dBA

Residence height 1.5 m

Directivity correction (Ds) 0

Average temperature 10◦C

Average humidity 80%

Ground factor (G = 0: hard, G = 1: porous) 0

Nominal midband frequency (f) {63, 125, 250, 500, 1000, 2000, 4000, 8000} Hz

Atmospheric attenuation coefficient (α) {0, 0, 1, 2, 4, 9, 29, 104}
A-weighted factors (Af ) {−26.2, −16.1, −8.6, −3.2, 0, 1.2, 1, −1.1}

3 Algorithm

The optimization algorithm is based on a (μ + λ) evolutionary model, where
μ parents are recombined to generate λ offspring and the best μ solutions are
selected as parents for the next generation. The pseudo-code of the proposed
method is presented in Algorithm 1 and uses decomposition of objective space,
a strategy commonly used in the contemporary algorithms for solving MaOPs.

The algorithm has a framework similar to reference vector based evolution-
ary algorithm (RVEA) [1], but there are two key modifications. The first relates
to parent selection scheme. While random parents are selected from a neighbor-
hood in RVEA for recombination, we opt to use ranking that prefers marginally
infeasible solutions over feasible solutions. Such a ranking scheme was intro-
duced in [21,24] and demonstrated to perform better than strictly feasibility
first schemes for constrained optimization problems. Secondly, in order to uti-
lize the advantages of both differential evolution crossover [5] and simulated
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Algorithm 1. Proposed algorithm used for windfarm layout optimization
Input: Genmax (Maximum number of generations), W (Number of Reference points/population
size), Crossover and mutation parameters

1: i=1. {Generation counter}
2: Generate W reference points using Systematic Sampling.
3: Construct W reference directions; Straight lines joining origin and W reference points.
4: θth: Compute the minimum angle between a reference direction and all others.
5: Initialize the population using LHS sampling P i;

∣
∣P i

∣
∣ = W .

6: Assign individuals of P i to the reference directions.
7: while (i ≤ Genmax) do

8: Create C offspring from P i via recombination.
9: Assign P i+1 individuals from P i + C to W reference directions
10: i=i+1.
11: end while

binary crossover [6], at each generation both types of crossover are employed for
alternate base parents. Similarly during the evolution, reverse order of crossover
types are used in alternate generations. Thus, if at generation 1, first reference
direction uses differential evolution crossover and second reference direction uses
simulated binary crossover, at generation 2 the first reference direction will use
simulated binary crossover and differential evolution crossover will be used for
the second. The intent is to improve convergence by adopting the high quality
solutions generated using the two types of crossovers, while also reducing bias
towards either of them. Due to space constraints, we omit the detailed descrip-
tion of the algorithm, but the interested readers are referred to [1].

4 Results

A single optimization run has been performed to solve this problem due to the
computationally expensive nature of the underlying simulations. A population
size of 220 solutions was evolved over 600 generations to obtain the final layout
of the turbines. The run-time was approximately 75 h on a 2.30 GHz, 32 cores
with 128 GB of memory. A total of 27 feasible solutions were obtained at the end
of evaluation budget, which highlights that the problem is highly constrained.
Out of the feasible solutions, 9 solutions were nondominated and there were
3 unique extreme solutions. The extreme solutions in the context of minimum
cable length and minimum enclosed area were the same. The obtained values
of the maximum energy production, the minimum cable length, the minimum
enclosed area and the minimum noise level were 49.16 MW, 53.38 km, 71.07 km2

and 55.54 dBA, respectively.
The complete set of trade-off solutions are presented in Fig. 3. Since there are

only 9 solutions under consideration, the stakeholders can collectively work to
select the most preferred option. The layouts corresponding to each extreme solu-
tions including the noise level on each residence is plotted in Fig. 3. In the current
state since such modeling/optimization tools are either not readily accessible or
well understood by communities at large, there is very limited understanding of
the benefits and the impacts of wind farms. The considerations of multiple cri-
teria and resulting visualization can help in an informed decision-making about
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trade-offs between various designs. For example, it can be observed from Fig. 4
that the location of the turbines corresponding to minimum noise level are away
from the residential areas. Among the feasible solutions, there were variations
of 1.56%, 14.66%, 8.55% and 26.73% in terms of power generation, cable length,
land area and noise level, respectively (calculated as max(|f |)−min(|f |

max(|f |) ). This obser-
vation raises an interesting and practically relevant design consideration - if one
opted to solve the above problem as a single objective power maximization prob-
lem, the best solution would correspond to a total power of 49.16 MW with a
noise level of 75.81 dBA. On the other hand, using a multi-objective approach
one can identify alternatives and opt for a layout with marginally lower power



716 K. S. Bhattacharjee et al.

0 5000 10000
X

0

2000

4000

6000

8000

10000

12000

14000

16000

Y

Maximum Power

0 5000 10000
X

0

2000

4000

6000

8000

10000

12000

14000

16000

Y

Minimum Cable Length and Area

0 5000 10000
X

0

2000

4000

6000

8000

10000

12000

14000

16000

Y

Minimum Noise

Land-1 Land-2 Land-3 Woodland Vegetation Secondary Grassland Wattle Woodland Yellow box Woodland She-oak Turbine Locations Cable

28.4434 33.7066 38.9698 44.233 49.4962 54.7594 60.0226 65.2858 70.549 75.8122

Power = 48.84 MW
Cable = 59.86 km
Area = 76.39 km2

Noise = 55.54 dBA

Power = 49.16 MW
Cable = 56.29 km
Area = 73.52 km2

Noise = 75.81 dBA

Power = 48.46 MW
Cable = 53.38 km
Area = 71.07 km2

Noise = 66.32 dBA

Fig. 4. Layouts corresponding to the best value in each objective

of 48.84 MW but with a significantly lower noise level of 55.54 dBA. That is,
by maintaining almost the same level of power output (i.e. only 1.56% lower
than the best), one can reduce the noise level significantly (by 26.73%). Since
the noise level is often a major community concern that has a major bearing
on adoption of the plan, it is important to identify the complete set of trade-off
solutions for an informed decision-making.

5 Conclusions and Future Work

In this paper, we presented an approach that can be used to develop wind farm
layouts with a range of practical design considerations. Currently, there is limited
understanding within the community with respect to the trade-offs involved in a
wind farm layout design, as typically the existing studies have solved the prob-
lem as a single-objective formulation involving power maximization. In absence
of the consideration of multiple objectives and constraints relevant to the envi-
ronment, the obtained designs may not reflect realistic layouts, which in turn
affects the uptake and exploitation of wind energy. In this paper, we presented an
approach that can be used to analyze or design potential wind farm layouts with
appropriate level of details such as irregular land boundaries, multiple land own-
ers, consideration of protected areas, noise levels at nearby residential dwellings,
etc. It also offers an opportunity to view alternative layouts while considering
maintenance costs, cable layouts, noise levels and power generation simultane-
ously. The utility of the approach is highlighted using a case study resembling
the Capital wind farm located in New South Wales, Australia. We hope that
this study will motivate use of such formulations and tools to identify optimal
wind farm layouts.

While in our current analysis we did not impose an upper limit on maximum
noise level constraints, it could be a straightforward extension in the future to
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the existing proximity constraints. Furthermore, variation in elevation of the
wind farm was ignored in the model which can be easily incorporated in power
estimation models. Apart from its utility as a tool, the underlying problem is also
interesting as an application problem for research in evolutionary many-objective
optimization as it represents a highly constrained optimization problem with
modest number of variables.
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Abstract. Electric machine design optimization is a growing topic of
interest. Using a genetic algorithm for optimization, an efficient search
of the design possibilities can be performed. Finite element analysis soft-
ware includes optimization tools for machine designs. The exact opera-
tion of these genetic algorithms is unknown to the user, and the operating
parameters of the built-in genetic algorithm are not completely config-
urable. Finite element analysis software in most cases allow for machine
designers to link user-defined optimization algorithms. Given this option,
the designer has the ability to select and tune an optimization algorithm
to achieve diverse solutions that converge close to the true Pareto-optimal
front. In this work, the benefit of user-defined optimization algorithms is
demonstrated through optimizing design of a linear permanent magnet
synchronous machine and evaluating the obtained Pareto-optimal fronts.

Keywords: Linear permanent magnet machine · Optimization ·
Finite Element Analysis · Genetic Algorithm · NSGA-II

1 Introduction

The use of electric machines is expanding across industries. In 2011, it was esti-
mated that electric motor driven systems account for at least 43% of the global
electricity consumption [1]. Several manufacturers offer a wide range of “off-of-
the-shelf” electric machine solutions; however, many electric machines selected
by end-users for their intended application are oversized, although motors are
designed to operate most efficiently at a certain torque and speed. Some applica-
tions require customized electric machines to meet strict operating requirements.
Performance, cost and reliability are only a few of the considerations that elec-
tric motor designers have to meet through optimization. Solving such complex
multi-variable, multi-objective and robust optimization problems requires care-
ful selection of the model and search algorithm, as well as strategic formulation
of the optimization problem.

Modeling the performance of an electric machine involves a trade-off between
accuracy and computation time. Electric machines can be modeled analytically
c© Springer Nature Switzerland AG 2019
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or numerically. Finite elements models of electric machines provide accuracy to
optimization techniques; however, its evaluation may negatively impact compu-
tation time. Some machine topologies require 3D finite elements analysis (FEA)
for accuracy, which lengthens computation time. Hybrid modeling techniques, as
well as simplified finite element (FE) models that exploit symmetry of the mag-
netic and electric circuit, are considered computationally efficient [2,3]. Surrogate
models, in lieu of finite element models, were used in [4] to reduce computation
time; however, development of accurate meta-models require significant training
data and knowledge. Analytical machine models have been used with optimiza-
tion algorithms to reduce total time to reach Pareto-optimal solutions [5,6].
While the machine performance is calculated quickly, accurate calculation of
the losses and torque/force harmonics are difficult to include in analytical mod-
els. Several recently published techniques use very detailed analytical models
for optimization [7–10]. This procedure allows evaluation of many cases without
significantly increasing total simulation time. Only the final optimal design is
evaluated with FEA to provide confidence; however, it is not certain that the
accuracy translates to all designs. Any discrepancies may lead to the omission
of non-dominated designs from the Pareto-optimal front.

Machines with complex geometries can have a large number of constraints.
Many constraints can lead to discontinuities in the Pareto-optimal front. The
selected algorithm must properly penalize constraint violations to avoid infeasi-
ble solutions but also reach the Pareto-optimal front. Deterministic and gradient-
based optimization algorithms have been used for electric machine design; how-
ever, due to the nonlinearities in electric machines, these algorithms have diffi-
culty finding the global optimum [2]. Unlike gradient-based algorithms, evolu-
tionary multi-objective optimization algorithms are able to randomly search a
large decision space and arrive at Pareto-optimal solutions quicker. The selec-
tion, crossover and mutation involved in evolutionary multi-objective optimiza-
tion algorithms significantly affects the diversity of the solutions. Therefore, an
evolutionary multi-objective optimization algorithm is best suited for optimizing
an electric machine.

Over the last decade, optimization tools have been included with many FEA
software packages. This allows machine designers to optimize the geometry com-
pletely within a single software package. Similarly, some FEA software packages
link to other software packages that offer optimization tools. Built-in optimiza-
tion algorithms are quite convenient but lack documentation detailing the algo-
rithm as well as user control of the algorithmic operating parameters. Although a
user-defined optimization algorithm may be more challenging to setup, it is bene-
ficial for electric machine designers to have an understanding of the optimization
algorithms. As stated best by the “No Free Lunch” theorem [2], there is no single
optimization algorithm that is most efficient at solving every problem. A user-
defined algorithm can provide more flexibility to select an efficient optimization
algorithm that provides diversity in its solutions, better handle constraints to
avoid infeasible solution and define stopping criteria to avoid unnecessary FEA
simulations.
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In this paper, it is demonstrated that a built-in optimization algorithm can
lead to infeasible solutions, low diversity of solutions and solutions that are dom-
inated by a user-defined algorithm. Here, a genetic algorithm (GA) included with
a FEA software is compared to a user-defined GA for multi-objective optimiza-
tion of a linear permanent magnet synchronous machine (LPMSM).

2 Problem Definition

A linear PMSM is similar to a rotating PMSM in its design and operation.
PMSMs are advantageous because of their high torque density, and in the case
of a linear PMSM, a high force density.

Typically, maximizing the produced force is an objective for electric machine
design. One approach to increase average force is to shape the geometry of the
stator and rotor [11]. However, modifying certain geometric parameters that
increase average force lead to a significant increase in the harmonic content.
Higher harmonics create a ripple which increases the noise and vibrations pro-
duced and decreases the operating lifetime of the machine.

Obtaining an optimal trade-off between average force and force ripple is
a common challenge in machine design. Even small geometric changes produce
significant changes in electromagnetic performance, which makes geometric opti-
mization difficult.

The machine selected as the target for optimization is the LPMSM model
presented in [12]. This machine was designed to achieve high acceleration by
light-weighting the moving mass without significant reduction of the force pro-
duced. Although it’s not an optimal design, it has been experimentally charac-
terized and compared to its FEA model.

Force ripple reduction can be accomplished by shaping the stator teeth [13].
Instead of open slots, a trapezoidal wedge is added in the slot opening of the
stator teeth. The distance from the center of the tooth to the end of the wedge
is one geometric variable (d1 in Fig. 1b) and the other variable is half of the
thickness of the tooth (d2 in Fig. 1b). The positive and negative allowable change
from initial values of the variables is provided in Table 1.

Table 1. Allowable percent change from initial values for geometric variables

Variable Allowable decrease Allowable increase

d1 −30% +90%

d2 −30% +30%

In the initial design, a thermal analysis of the motor, including a water-
cooled aluminum flange, showed that the current level of 12A produced a steady-
state temperature lower than the permanent magnets and winding insulation
temperature limits. A size 18 AWG wire, which has a maximum current limit of
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16A, was used in the original design. Higher current will lead to higher force;
however, higher current may also lead to temperatures that are too high for the
selected cooling method. Therefore, the peak current is selected to vary between
12A and 16A.

The multi-objective optimization problem is represented by:

maximize F (1)
minimize Fpp (2)

Subject to

d1 ≥ d2 (3)
NÎ

Aslot
= J ≤ 9.5 (4)

Here F is the average force, Fpp is the peak-to-peak force ripple, J is the
current density, N is the number of turns, Aslot is the stator slot area and Î is
the peak current.

3 LPMSM Model

Evaluating the small geometric changes for optimization requires high-resolution
FEA. Tubular LPMSM typically requires 3D FEA simulation; however, a 2D
axisymmetric model of the LPMSM was shown to accurately calculate the aver-
age force and force ripple of interest for this optimization problem. Using a
2D model reduces the required computation time for the optimization process.
A full and cross-sectional view of the LPMSM are shown in Fig. 2. Geometric
parameters and performance metrics are provided in Tables 2 and 3 respectively.

Table 2. Geometric parameters of initial design

Parameter Symbol Value (mm) Parameter Symbol Value (mm)

Stator length Lstator 354 Stator height hstator 18.7

Stator outer diameter Rout 35 Insulation length LINS 0.5

Aluminum height hAl 6.3 Slot pitch τs 18.88

PM height hPM 8 Fillet radius Rf 0

Length of axial PM LAX 10.625 Back iron height hBI 4

Pole pitch τp 21.25 Half wedge height d1 4.72

Air gap length g 2 Half tooth width d2 4.72
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(a) Full view of LPMSM (b) 2D cross-sectional view of
LPMSM

Fig. 1. LPMSM geometry with labeled geometric parameters

Table 3. Operating characteristics of initial machine design

Performance measure Value Performance measure Value

Average force 266 N Rated speed 26.2 m/s

Force ripple 47.88 N Rated voltage 480Vll

Number of turns per coil 80 Rated power 5 kW

Figure 2a shows the mesh used in the axisymmetric FEA model of the
LPMSM. The mesh in the air gap region is important because that is where
the energy transfer takes place. Five layers of elements with a 0.4mm length are
used in the air gap mesh to obtain an accurate calculation of the force ripple.
Further away from the air gap region, the mesh size becomes less critical for force
and force ripple calculation. To avoid forces due to the end effects that occur in
short secondary tubular LPMSM [14], the initial position is two pole-pitches (τp)
away from the end of the stator and the total travel distance is limited to one
electrical cycle. The force waveform from one design solution is shown in Fig. 2b.
The maximum and minimum of the force waveform are used to calculate the
force ripple Fpp.
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(a) FEA mesh used in simula-
tion

(b) Example force waveform with F and
Fpp calculation shown

Fig. 2. Mesh in FEA setup and example force waveform used to evaluate objectives

4 Optimization Algorithm

A GA built into the FEA software and a user-defined GA are used to optimize the
LPMSM. The parameters, constraints and objectives used for both algorithms
are listed in Table 4.

Table 4. Variable limits and GA parameters used in optimization

Variable Value

d1 range 3.3 mm to 8.5 mm

d2 range 3.3 mm to 6.1 mm

Î range 12 to 16

Number of generations 10

Population size 200

One of the optimization algorithms used is built into the FEA software pack-
age. Details regarding the optimization processes used in the built-in GA are
masked from the user. There are few parameters that the user can modify to
improve the results of the built-in algorithm, such as population size, number of
generations and the weights on each objective. Unfortunately, documentation for
the built-in algorithms is limited and does not detail how the algorithm handles
diversity, elite preservation, and constraints. Knowing such details is a primary
advantage of a user-defined algorithm.

Most FEA software packages allows for the user to custom optimization algo-
rithms. In this work, NSGA-II is selected as the user-defined algorithm. NSGA-II
is a well-documented GA in literature [15] and has shown to perform well for two-
objective optimization problems. It is well-known that with NSGA-II, the elite
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solutions are kept and diversity in the objective space is maintained throughout
the generations.

4.1 Procedure

Genetic algorithms are stochastic processes, so multiple executions of the same
algorithm for the same problem produces different solutions. Although more
runs improve the statistical significance of the results of each GA, due to the
use of a high-fidelity model, both algorithms are executed four times. For each
GA, the Pareto-optimal front is created from the non-dominated solutions of
the last generation of all four runs. In three of the four optimization runs, the
population of the initial generation is randomly selected. In the remaining run
the population of the initial generation in each algorithm are identical.

The Pareto-optimal front is generated in the process shown in Fig. 3. For
electric machine design, strict adherence to the constraints is required. Solutions
that violate the constraints are not considered to be on the Pareto-optimal front
and are removed.

Fig. 3. Flow chart showing how Pareto front solutions were obtained

4.2 Evaluation Metrics

The true Pareto-optimal front is not known for this problem. To compare built-in
GA to the user-defined GA, four quantifiable metrics are used; normalized hyper-
volume, Set Convergence Metric, Spacing, and total number of Pareto-optimal
points. The normalized hypervolume and Set Convergence Metric quantify the
convergence to the Pareto-optimal front. Spacing is used to quantify the diver-
sity of solutions. The number of Pareto-optimal solutions quantifies the number
of design options available for machine designers.

To calculate hypervolume, a reference point and ideal point are used to nor-
malize the area of the Pareto front. The reference point is selected as a combina-
tion of the worst objective function values and the ideal point is selected as the
combination of best objective function values. The objective value of each solu-
tion on the Pareto front is normalized and the hypervolume is calculated as the
total area covered by the solutions [15]. A larger hypervolume is a good indica-
tor of convergence to the true Pareto-optimal front. The Set Convergence Metric
[15] compares the non-dominated solutions on two Pareto-fronts. A percentage
of the non-dominated solutions that are dominated by at least one solution from
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the other Pareto-front is calculated. A lower percentage indicates that fewer
solutions found by that algorithm were dominated by a solution found from the
other algorithm.

Diversity of solutions on the Pareto-optimal front is compared by calculating
the Spacing [15], as given in Eq. (5). Q is the total number of non-dominated
solutions, di represents the minimum distance between point “i” and all of the
other points, and d̄ represents the average distance between all points. A smaller
number for S is desired, which means there is small variation in the space between
the non-dominated solutions.

S =

√
√
√
√ 1

|Q|
|Q|
∑

i=1

(di − d̄)2 (5)

5 Optimization Results

The complete solution space from the built-in GA is provided in Fig. 4a, and that
of the user-defined GA is shown in Fig. 4b. As indicated by the different markers,
more infeasible solutions were found from the built-in optimization algorithm.
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(a) Entire solution space of every gener-
ation using the built-in GA
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ation using the user-defined GA

Fig. 4. All 200 members of 10 generations in the four combined runs of each GA where
the infeasible points that violate constraints are indicated

The final Pareto-optimal front from each algorithm is created from the non-
dominated, feasible solutions from the solution spaces and is provided in Fig. 5.

The tenth generation of each GA were used to create the Pareto-front. Some
of the solutions in the tenth generation of the results from the built-in GA
violated the constraint on current density, as shown in Eq. (4). These results
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Fig. 5. Pareto-optimal front generated from four total runs of each optimization algo-
rithm
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Fig. 6. Pareto-optimal front generated from each algorithm starting with same initial
population
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were excluded from the dominance check since they are infeasible. The user-
defined algorithm did not produce any infeasible solutions from the second to
the tenth generation.

The reference points are created from the solutions of the resulting Pareto
fronts with the worst values of each objective and the ideal points are created
from the solutions with the best values of each objective. The reference and
ideal points used for hypervolume calculation of the four combined runs and the
runs that began with the same initial population are provided in Table 5 and are
displayed in Figs. 5 and 6.

Table 5. Hypervolume reference point and ideal point used to normalize the area
covered by the two Pareto-fronts in Figs. 5 and 6

Pareto front Reference point Ideal point

Four combined runs (305.1637 N, 23.88N) (410.7616 N, 17.1483 N)

Same initial population (307.6479 N, 23.8705N) (409.5655 N, 17.2399 N)

Table 6 presents the convergence and diversity metrics. The Pareto-optimal
front obtained from the user-defined algorithm resulted in 22.1% higher hyper-
volume and only 1.61% of its solutions are dominated by any solution from the
built-in GA, indicating that the convergence is significantly better than that of
the built-in GA.

When comparing the diversity of results on the Pareto-optimal front, the
user-defined algorithm shows a significant advantage over the built-in GA. Spac-
ing is 71.3% lower, indicating that the solutions are more evenly distributed
across the Pareto-optimal front. The number of total points on the Pareto-
optimal front is 1.68 times higher in the results of the user-defined algorithm.
This means that there is a larger variety of optimal solutions available for deci-
sion making.

Table 6. Pareto front analysis from four runs combined for each GA

Result Built-in FEA GA User-defined GA linked to FEA

Normalized hypervolume 0.5751 0.7024

Spacing 3.0602 0.8774

Set Convergence Metric 86.49% 1.61%

Solutions on Pareto front 37 62

Infeasible solutions removed 78 0

The Pareto fronts from each algorithm with the same initial population is
presented in Fig. 6 and the analysis of the Pareto front is provided in Table 7.
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Convergence is significantly better in the Pareto front found with the user-defined
GA where the hypervolume is 28.9% higher. Also, the Set Convergence Metric
shows all of the Pareto-optimal points of the built-in GA are completely domi-
nated by the Pareto front of the user-defined GA. Diversity is also significantly
better where the spacing is 82% lower in the Pareto front from the user-defined
GA and there are 2.88 times more optimal points for decision making. Using
the same population members in the initial generation did not return a differ-
ent result in the convergence or diversity of points on the Pareto-optimal front
between the user-defined and built-in GAs.

The final row in Tables 6 and 7 show the number of infeasible results that
were removed from the final generation from each GA. With the built-in GA the
constraint handling method is not known, and as a result, there were a significant
number of solutions in the final generation that violated constraints.

Table 7. Pareto front analysis where each GA is set with the same population members
in the initial generation

Result Built-in FEA GA User-defined GA linked to FEA

Normalized hypervolume 0.5512 0.7105

Spacing 4.2935 0.7701

Set Convergence Metric 100% 0%

Solutions on Pareto front 17 49

Infeasible solutions removed 9 0

6 Conclusion

Results obtained from a built-in optimization tool in FEA software and a user-
defined optimization algorithm from a electric machine design problem show
several quantitative and qualitative advantages of a user-defined algorithm. It is
shown that:

1. The user-defined algorithm results in more Pareto-optimal solutions
2. The user-defined algorithm has more solutions that dominate those resulting

from the built-in GA optimization
3. Solutions from the user-defined algorithm are more diverse
4. Infeasible solutions were avoided using the user-defined algorithm

Considering the advantages evaluated in this work, it is important for electric
machine designers to be knowledgeable of optimization algorithms rather than
relying on undocumented, built-in algorithms. As different machine designs have
different constraints and requirements to meet, more customized optimization
tools are needed for efficient design of all possible machine topologies.
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Abstract. Generally speaking, the couples of simulator-optimizer are
very common combination in optimizing the systems in science and engi-
neering fields; but when the simulation process is an expensive one, then
each fitness evaluation of the optimizer can take several hours even days,
which makes the mentioned process impractical to run in given time
budget. In this paper, we replace the solar chimney power plant (SCPP)
simulator with a bi-objective meta-model which is created by Genetic
Programming (GP) and we compared the created model with neural
network and regression models to be sure it is accurate enough. Then,
we have utilized a genetic algorithm based multi-objective algorithm to
solve the created bi-objective optimization problem resulted from the
meta-modeling phase. After finding optimal Pareto-front (PF), we use a
GP-based innovization technique to discover engineering design knowl-
edge and rules for the designed optimal power plant. The created models
have been validated with results of the 4 corresponding simulator, a
promising error rate (<4%) has been obtained. This work can be eval-
uated as a successful energy application of GP-based meta-modeling,
evolutionary multi-objective optimization, and GP-based innovization.

Keywords: Solar chimney power plant · Optimization ·
Genetic algorithm · Genetic programming · Meta-modeling ·
Innovization

1 Introduction

Simulation techniques have an important role in engineering and science. They
facilitate design and prediction of complex systems by reducing their develop-
ment cost and time. Furthermore, they have liberated research works from a
number of limitations, such as, time and space restrictions by offering perfor-
mance assessment environments which otherwise could be difficult or impossible
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to achieve. For example, the functionality of instruments at different conditions
can be checked using a simulator software, such as, Ansysfluent1 or Comsol
Multiphysics2. These are examples of numerical simulators which engineers and
scientists widely use to simulate devices and processes in all fields of engineer-
ing, and scientific research but are time consuming. Therefore, to reduce running
time, we can use parallel processing techniques and super computers. For these
computationally expensive cases meta-modeling techniques can be utilized to
reduce the time and cost. In fact, meta-models are built based on small num-
bers of running simulator and then replacing the simulator for creating further
results for required experiments. For example, if an optimizer and a simulator
coupled to optimize the decision parameters, then meta-model can continue to
work with the optimizer to accelerate the processioning time. In this case study,
we have optimized designing of a solar chimney power plant [1]. However, our
proposed framework is not limited to the current application. The world cur-
rently relies heavily on fossil fuels, which are non-renewable and finite, as the
main energy supply source. In addition, they are not environmentally friendly.
In contrast, many types of renewable energy resources such as wind and solar
energy are constantly replenished. The most common methods for collecting
solar energy are the reflective collectors and photo-voltaic solar planes which
are both expensive and require a costly maintenance. Solar chimneys can be
used in generating electricity with the added benefit that they do not waste
land because the land under the green house component can also be used for
agricultural proposes. The first solar chimney was designed by Schlaich in 1970s,
and its practical test on a primary model revealed the potential of this instru-
ment in generating electricity and clean energy [2,3]. After testing the prototype
model, other pilot-scale solar chimney power plants were construct by Krisst [4],
Kulunk [5], Zhou et al. [8], Pasumarthi and Sherif [6,7]. Moreover, Bernardes
et al. [9] through a new analytical method studied performance of solar chim-
neys. Additionally, they added thermal energy storage capability to the system
to improve its performance and increase its time of use during the day and
night. Zhou et al. [10] designed a new models to find the optimal chimney height
and achieve the maximum output power using an analytical method. Analyses
were also performed to examine the effect of different time intervals of atmo-
spheric temperatures and the optimum size of the Chimney parameters [10].
Moreover, Sangi et al. [12] designed a simulation model to calculate the effect of
the collector and curvature radius on the temperature, pressure and air move-
ment and velocity in the chimney and collector sections. Guo [11] carried out
another numerical simulation for the output power and other feature variations
and different solar radiation values. Patel et al. [13] proposed novel numerical
simulation model to study the effect of collector height, collector diameter, and
chimney throat diameter on air velocity, temperature and output power in a
SCPP. The performance of a solar chimney power plant also can be optimized

1 http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/
Fluid+Dynamics+Products/ANSYS+Fluent.

2 https://www.comsol.com/comsol-multiphysics.

http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent
http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent
https://www.comsol.com/comsol-multiphysics
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using electric corona wind [14]. Sciuto et al. [15] designed an optimized solar
chimney power plant by utilizing finite elements based on analysis and cascade
neural networks. Majority of previous attempts for optimizing SCPP parameters
employed numerical methods or prevalent instrument simulator software. In this
study, we utilize genetic programming (GP) for meta-modeling proposing, and
then multi-objective genetic algorithm to optimize our designed power plant;
furthermore, finally GP has been used for innovization proposed which is a suc-
cessful attempt to discover the engineering design rules after the optimization.
Section two reviews the structure of a solar chimney power plant and defines
its corresponding design variables. Section three includes procedures to develop
equations which determine the output power and efficiency dependence on the
SCPP structural variables; in fact, GP is using results of set of simulation results
to create meta-model to replace the simulator. In addition, we discuss the opti-
mization of the SCPP structural variables. In section four, analyzes the results
and applying innovization technique [16] using GP to discover engineering design
rules, and also utilizing them for finding more Pareto-front solutions and finally
section five concludes the current research work.

Fig. 1. A typical solar chimney power plant [18].

2 Structure of Solar Chimney Power Plant

A SCPP consists of three main parts: a collector, a turbine, and a chimney. A
collector is a cylinder constructed of glass or plastic that allows solar radiation to
pass through it and retains its heat. The chimney is a high cylindrical Structure
placed in the centre of a collector with the turbine located in its entrance, Fig. 1.
The greenhouse effect in the collector heats the incoming air from the bottom.
The hot air ascends due to its lower density and by passing through the collector
propels the turbine inside the chimney [1]. The output power and efficiency
depend on the size of the chimney and the collector. Karimipour et al. [17]
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calculated the correlation between solar chimney parameters, the output power
and efficiency. They simulated many SCPPs [18] by defining collector height,
chimney height, collector radius, and chimney radius as input variables of their
simulation. In addition, they investigated the correlation among these variables
and the output power and the efficiency, Fig. 2. The base for the Karimipour
simulation is the solar chimney power plant in Manzanares, Spain, which the
collector Height is 5 m, chimney height is 195 m, collector Radius is 122 m,
and chimney radius is 2 m. We have used their simulation results to make our
meta-model using the GP algorithm.

Fig. 2. Simulator output power and efficiency versus (a) Chimney height, (b) Chimney
radius, (c) Collector height and (d) Collector radius [18].

3 Proposed Framework

In conventional simulation models, (Branch A, Fig. 5) simulator creates hundreds
of sample points which are used for discovering the optimum points. In our
proposed model, (Branch B, Fig. 5), first we use simulator to create a few sample
points then we use them to create our meta-model using GP, which results
two objective functions; Power and efficiency. Then we Utilize multi objective
genetic algorithm, MOGA, to find optimum Pareto-front set for SCCP’s decision
variables. At the end, again we apply GP on the Pareto-front set to discover
engineering design knowledge using innovization. The details of our proposed
method are provided in the next subsections.



Designing Solar Chimney Power Plant 735

Fig. 3. Simulated efficiency and optimizer output versus (a) Chimney height, (b) Chim-
ney radius, (c) Collector height and (d) Collector radius.

3.1 Meta-modeling Using Genetic Programming

Genetic programming, GP, is a useful and effective technique for creating sym-
bolic equations or computer programs or models using the process similar to nat-
ural selection [19]. GP is a method of programming which employs the notion of
biological evolution and natural selection to solve complicated problems. Differ-
ent pieces of programs which include mathematical functions contest each other
and only the most proper programs can survive and compete or concatenate with
other piece of programs in the next step. As a result, trough many iterations it
continuously approaches to the best solution which has the best fitness to our
data. Therefore, GP can be used in creating a model or data-driven formula. In
this study, we extracted 1640 data points, from simulator with four variables:
collector height (h), chimney height (H), collector radius (r), and chimney radius
(R) and used them as the inputs of Eureqa3 which we used for generating the
equations. The utilized GP created the following equations for power (P) and
efficiency (E) with R-squared Goodness of Fit bigger than 99%.

P = a/h + b×H ×R + c× r2 − d− f ×H2 − g ×R2 (1)
3 https://www.nutonian.com/.

https://www.nutonian.com/
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Fig. 4. Simulated power and optimizer output versus (a) Chimney height, (b) Chimney
radius, (c) Collector height and (d) Collector radius.

where a = 36.68, b = 0.031, c = 0.002, d = 21.02, f = 0.0001, g = 0.39.

E = a + b/h + c/r2 + (d×H ×R− f ×H2)/r − g ×R2 (2)

where a = 0.086, b = 0.62, c = 442.10, d = 0.057, f = 0.0002, g = 0.006.

Table 1, shows the accuracy of these equations. Figures 3 and 4 show how good
the generated power and efficiency fit the simulated ones. In facts, If the opti-
mizer is connected directly to the simulator, the results would be more accurate.
Simulation is very expensive as it is very time consuming. By generating these
equations, actually, meta-modeling is performed to replace the expensive simu-
lation process to work with multi-objective optimization algorithm. Moreover,
we used neural network, linear and polynomial regressions to estimate efficiency
and power based on the extracted data points from the simulator. Surprisingly,
we discovered that none of them could reach the accuracy of using GP as shown
in Table 1.
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Table 1. Comparison of accuracy for different modeling for estimating power and
efficiency.

Power Efficiency

GP Goodness of Fit 0.9983 0.9913

ANN Goodness of Fit 0.9387 0.9032

Linear regression Goodness of Fit 0.7207 0.7064

Polynomial regression Goodness of Fit 0.8135 0.7826

3.2 Multi-objective Optimization: Maximization of Output Power
and Efficiency

Now, we have our meta-model for our two objectives, independent form the
simulator, we can use them as our objectives for our multi objective optimiza-
tion. Optimization problems are ubiquitous in science and engineering. The wide
usage of optimization methods and it’s potential of generalization has opened
a wide area in computer science. An optimization problem has a function that
should be maximized or minimized, considering given constraints. There are var-
ious types of algorithms available which can be used for optimization. In these
cases, Evolutionary algorithms such as Differential Evolution (DE) or Genetic
Algorithm (GA) methods [20], can be useful to tackle our multi objective opti-
mization problem. DE and GA are population based evolutionary directed search
methods. Similar to other evolutionary algorithms, First they generate an initial
population vector, then, by crossover and mutation a new generation is created
and compete with the old ones. Only the best members with a better fitness
value can survive and progress to the next generation. In this method, by creat-
ing new generations with better member’s solution variables approach the best
possible solution and after stopping criteria, the best solution is reported.

3.3 Multi Objective Optimization

In SCPP there are two important functions; power and efficiency. Both are
dependent on collector height (h), chimney height (h), collector radius (r) and
chimney radius (R) Fig. 2. In most plots they have the same pattern but Figure 2.
d shows that by increasing the collector radius the power increases, In contrast,
the efficiency decreases. It concludes that considering the collector radius as a
variable, the power and the efficiency objectives are in conflict. Therefore, we
should optimize both functions simultaneously. In this case we used MATLAB
Optimtool [21] which provides multi objective genetic algorithm (MOGA) where
our objectives are two equations created in previous step by Genetic program-
ming, the result of optimization (Pareto-front, PF) is presented in Fig. 6. A
decision maker can choose the best point that meets the specific conditions.
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Fig. 5. Comparison between the steps of A: conventional simulation method, and B:
the proposed method. Where P is power and E is efficiency. h, H, r and R are collector
height, chimney height, collector radius, and chimney radius respectively.

4 Experimental Results and Analysis

Using Multi objective Genetic algorithm, we got a Pareto-front with 18 non-
dominated solutions, listed in Table 2, Fig. 6. The final results show that the
collector height (h) has the value of approximately 1 m, and the chimney height
and radius for the optimal case, should be around 846 m and 9.9 m collector.
But we see variations in the collector radius (r) that should be selected based
on other important constrains such as the costs or available land. In addition,
r can be higher than 380 m, which is comparable with industrial greenhouses.
Solar chimneys are best suited to the environments with plenty of sun and low
price lands. Farmlands are good examples of areas where solar chimneys can be
implemented.
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Fig. 6. The Pareto-front obtained from GA optimization for two objective functions P
(Objective 1) and E (Objective 2).

Table 2. Pareto-front solutions. H, R, h and r are chimney height, chimney radius,
collector height, and collector radius, respectively.

Index Power (kW) Efficiency H (m) R (m) h (m) r (m)

1 439.669 0.9878 847.6680 9.9999 1.00000 382.2812

2 412.619 1.0345 847.0569 9.9998 1.00043 363.3272

3 397.758 1.0624 846.490 9.9897 1.00110 352.6529

4 356.229 1.1591 845.3852 9.9944 1.00350 320.4110

5 341.417 1.20350 845.5928 9.9979 1.0029 307.961

6 324.695 1.25912 845.4907 9.9982 1.00334 293.4009

7 300.394 1.3586 845.0810 9.9998 1.00181 270.7871

8 256.400 1.62486 846.2752 9.9920 1.00297 224.2411

9 239.554 1.78018 846.5982 9.9996 1.0081 203.6074

10 218.981 2.06906 847.1745 9.9996 1.00158 174.6673

11 189.792 2.8852 844.8878 9.9979 1.00149 123.9666

12 185.293 3.12000 844.7817 9.9964 1.00435 114.3901

13 181.517 3.37254 844.7613 9.9925 1.0052 105.6496

14 176.263 3.89191 844.6083 9.9984 1.0055 91.4651

15 173.603 4.31226 845.2680 9.9996 1.0007 82.6093

16 170.276 4.9689 844.5295 9.9998 1.00103 71.6368

17 168.573 5.47448 844.5259 9.9998 1.0005 65.0409

18 168.573 5.4744 844.5259 9.9998 1.0006 65.0403
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4.1 Genetic Programming Based Innovization

Using Multi objective optimization, we obtained the optimal points in Pareto-
front but usually researchers are eager to find more optimal values. Obtaining
more points also gives more options to decision makers. It is possible to discover
correlations between the Pareto-front points by applying innovization [16] meth-
ods to find more and better solutions. In addition, it discovers engineering rules.
This is based on the fact that there are properties which make a solution optimal
and trough an innoviztion process they can be unveiled. For instance, In the solar
chimney study, assume that the specific size of the collector is considered and we
need to find other parameters values, In addition, power and efficiency should be
optimal. To solve this type of problems, again we can apply GP on Pareto-front
points features to create a new equation that contains optimal values and can
be used to create other new or required points. First, as power (P) and efficiency
(E) are in conflict when the collector radius (r) increases, we found equations
for P and E (with approximate R2 fitness of 90% or higher) that shows their
correlation together and correlation with r.

P = a + b× E2 + c× cos(d + f ×E) − g × E − i× E3 (3)

Where a = 1285, b = 273, c = 379.46, d = 4.14, f = 0.71, g = 1155.4, i = 17.57.

E(P ) = a + b× c(d×P−f) exp(g × P − i) − j × P (4)

Where a = 2.6, b = 0.0004, c = 0.03, d = 0.01, f = 2.8, g = 0.06, i = 16.3,
j = 0.003.

P (r) = a + b× r2 − c× r − d× r3 − f × cos(g + i× r2 − j × r) (5)

Where a = 173.65, b = 0.002, c = 0.12, d = 6.2e − 7, f = 2.81, g = 2.35,
i = 0.0005, j = 0.2115.

E(r) = a× r + b/r + c× tan(d× r) + f × tan(g × r) − i (6)

Where a = 0.0002, b = 376.01, c = 0.0004, d = 0.21, f = 0.0002, g = 0.23,
i = 0.06.
More over, we discovered correlation between P, E and all features:

E(H,R, h, r) = a×R + b×H + c× sin(d×H) − f − g × h− i× r2−
j × arctan 2(arctan 2(sin(k ×H), h), h)

(7)

Which arctan 2 is 2-argument arctan and a = 15.79, b = 0.67, c = 7.18,
d = 23.345, f = 771.87, g = 5.6, i = 2.76e− 5, j = 13.35, k = 23.34.

P (H,R, h, r) = a×h+b×r+c×tan(d×R)−f−hg×tan(i×h)−j×sin(k×r−l×R)
(8)

where a = 24.57, b = 1.21, c = 5.23, d = 11151, f = 14.71, g = 8.38, i = 1062,
j = 118, k = 1.28, l = 11407.
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In addition, if we consider P and E as variables we can discover the relation
between all features and the other dependent objective (P or E).

P (E,H,R, h, r) = a× E + b×R + c× r + d× f (g×E−i) − j − k × h

− l × E × r −m× E ×R− n× (tan(sin(q + s× E)))
(9)

where a = 388, b = 116, c = 0.09, d = 3.68, f = 0.09, g = 0.9, i = 2.72,
j = 935, k = 41.83, l = 0.01,m = 38.74, n = 19.36, q = 4.88, s = 0.46.

As this equations are generated based on optimal values, they are applicable
to find other optimal values. The derived rules show the relation between differ-
ent features and can be used in construction of the real model. Finally, to be sure
that our model works properly and the GP output equations and MOGA out-
put points are acceptable, we checked the final results (created optimal points)
with a simulator. We set the optimal points values (H, R, h and r) which are
listed in Table 1, as the input of Ansysfluent simulator and compared the out-
put (Power and Efficiency) for each point with our generated model output in
Table 2. Then we calculated the absolute relative error of this two outputs. For-
tunately, the average error was less than 4% which reveals the high accuracy
in our proposed method. Considering Fig. 2, that the simulation approximately
matches the generated model, the low relative error was expected.

5 Conclusion Remarks

In this paper, we followed three main phases to optimal design of solar chimney
power plant, namely, (a) replacing the simulator with GP-based meta-modeling
approach, (b) utilizing equations of bi-objective (i.e., power and efficiency) from
previous phase in our GA-based optimization approach to create optimal Pareto-
front, and finally, (c) using GP-based innovization to discover engineering design
knowledge after optimization process. The obtained results are well-validated by
the simulator results. The proposed framework can be investigated on other
applications too. In addition, if we have any constraint for our model it is appli-
cable in multi objective optimization algorithms such as NSGA-II. It seems, GP
is a proper candidate for both meta-modeling and innovization, after data-driven
discovery of the multi objectives, then we save time of expensive simulations for
running our optimization algorithm. As future work, we will try to design other
renewable energy systems with the proposed framework in this paper, then we
will have strong evidences to support evolution in action.
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Abstract. Injection blow molding process is widely used in the industry to
produce plastic parts. One of the main challenges in optimizing this process is to
find the best manufacturing thickness profiles which provides the desirable
mechanical properties to the final part with minimal material usage. This paper
proposes a methodology based on a neuroevolutionary approach to optimize this
process. This approach focuses on finding the optimal thickness distribution for
a given blow molded product as a function of its geometry. Neural networks are
used to represent thickness distributions and an evolutionary multiobjective
optimization algorithm is applied to evolve neural networks in order to find the
best solutions, i.e., to obtain the best trade-off between material usage and
mechanical properties. Each solution is evaluated through finite element analysis
simulation considering the design of an industrial bottle. The results showed that
the proposed technique was able to find good solutions where the material was
distributed along the most critical regions to maintain adequate mechanical
properties. This approach is general and can also be applied to different
geometries.

Keywords: Blow molding � MOEA � Neuroevolutionary

1 Introduction

One of the most important processes to manufacture plastic parts in industry is the
injection blow molding process, which is widely used in the production of several
kinds of container products, such as bottles, jars and containers to hold different types
of liquids (laundry detergents, oil, water, among others). In general, this process
comprises the injection of molten material (to form a preform, also called parison) into
a mold which is inflated with gas (usually air). The pressure imposed by the gas pushes
the melted material towards the mold, leading the plastic material to acquire the shape
of the mold. After cooling, the plastic is pulled out, producing the final part.

The total costs of blow molded products are heavily influenced by the amount of
material used in manufacturing and therefore can be reduced by minimizing material
usage. However, several mechanical properties are also dependent on this feature.
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Thus, this requires a trade-off between production costs and quality criteria, once the
reduction of material can affect important properties of the final product [1].

A common approach to optimize blow molding process is reducing the material
empirically, but good results will rely on expert experience. In this context, numerical
models can help to reduce the number of empirical trials or even eliminate real pro-
ductions needs by using simulations during the optimization process. Several numerical
approaches, such as Finite Element Methods (FEMs), neural networks, gradient-based
and stochastic search techniques have been used in blow molding design [1–4]. The
major challenge to optimize this process is to find the best geometry and thickness
profile of injected preform in order to obtain the final part with all desirable mechanical
and weight properties satisfied.

Artificial Neural Networks (ANNs) has been used in several studies to describe
blow molding process with high accuracy. In [2] the authors use a neural network to
predict wall thickness distribution of a container from the parison (preform) thickness
distribution. In [5] the preform diameter and thickness swells were predicted by an
ANN from operation parameters. In [3] the authors use ANNs to model a parison
extrusion process based on experimental data.

Besides ANNs, genetic algorithms and other kind of optimization techniques have
been used as well. In [6] the authors use a genetic algorithm to find the optimal
thickness distribution for a preform in order to produce a blow molded bottle with
desired wall thickness distribution. In [7] ANNs and particle swarm optimization are
used to modeling nonlinear relationships between power lamp settings and output
temperature in infrared ovens used to heat PET (Polyethylene terephthalate) preforms
during injection blow molding process.

This study proposes a new methodology for injection blow molding optimization
which merges several methods into a neuroevolutionary approach. Wall thicknesses
distributions are modeled through ANNs, the injection blow molding process are
simulated using Finite Element Models (FEM) and evolutionary multiobjective opti-
mization algorithms are applied to find optimal solutions, i.e., thickness distributions
which gives the best trade-off between the total amount of used material and suitable
mechanical properties. Although this approach can be applied to all stages of injection
blow molding process, this study focuses on the final stage, aiming at finding the
thickness profile of the final part which satisfies required mechanical properties. The
methodology is applied to an industrial bottle model.

2 Injection Blow Molding Optimization

2.1 Process Overview

In general, the injection blow molding process can be summarized into five phases
which are illustrated in Fig. 1. These phases are (P1) Injection, (P2) Stretching, (P3)
Blowing, (P4) Mold opening and (P5) Blow molded part, respectively.

The process starts in P1, where the polymer should be melted at right conditions
considering injection molding parameters. This phase is performed at the injection
machine which has a heated barrel with a rotating screw that helps to mix molten

744 R. Pinto et al.



material, distribute heat and drive material forward. The molten material is injected into
a heated cavity to form the preform and then is clamped around a blowing rod.

The next phase (P2) comprises stretching the preform. This phase might be
unnecessary for certain products or even be executed simultaneously with phase P3.
Stretching the preform allow the maximization of the amount of material at the bottom
of final part. Temperature should be controlled to avoid deformation or damage to the
material during stretching. The geometry of blowing rod should be optimized to
facilitate material flow.

Phase P3 comprises the injection of air (at a certain pressure and velocity) inside the
preform resulting from the previous phase, pushing the material towards the mold and
leading it to match its internal shape. The preform thickness profile and the mold
geometry will determine the thickness profile and hence mechanical properties of the
final part. Thus, optimization process should find thickness profiles which lead to less
material utilization at the same time that required mechanical properties are
accomplished.

Fig. 1. Injection blow molding process overview.
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Phase P4 starts right after the blowing phase and comprises the wait for material
cool down at a safe temperature, where the plastic are rigid enough to not break or
deform when pulled out from mold. The thickness profile is also important for this
phase since cooling time will be different across parts with irregular geometries. After
cooling time, the mold is opened and the plastic part is pulled out.

Phase P5 is the last step of the process, when the final part keeps cooling and is
ready for storage. Controlling cooling rate is important to obtain uniform properties in
the final part.

2.2 Global Optimization

In this study, the optimization of injection blow molding process will be divided into
four major steps that can be optimized separately, as show in Fig. 2.

The optimization process can be started by taking into account a costumer speci-
fication for a blow molded product, i.e., which properties should be accomplished by
the final part. Then, the proposed optimization methods should be applied to each phase
of the blow molding process in order to find the best settings that will produce the
desirable final part at the end of the process. It should be clear in each optimization
which objectives to be accomplished and variables to be optimized.

This study proposes four major steps to compose the global optimization process of
injection blow molding (Fig. 2). In this methodology, the bests results of a given step
will be the objectives of the next (starting by the end of manufacturing process). Each
step can be summarized as follows:

Fig. 2. Global optimization steps for injection blow molding.
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• (O1) Optimize the mechanical properties and weight of the final part. This step aims
at find the optimal thickness profile of the final part which gives the best trade-off
between mechanical properties and the total weight. Decision variables are the wall
thickness profile of the final part, which is composed by the thickness values for
each point of the mesh that represents the final part.

• (O2) Optimize the final part thickness profile. This step aims at find the best preform
geometry which gives the optimal final part thickness profiles that was obtained in
the previous step. Decision variable are the blowing conditions and the preform
thickness profile (after stretching, when applicable).

• (O3) Optimize the preform thickness profile after stretching. This step should be
done when stretching is applicable. Decision variables are stretching conditions and
the preform thickness profile. The optimization process is analogous as the previous
step, but this step aims at find the best solutions which produces the optimal
preform thickness profile obtained in step (O2).

• (O4) Optimize the preform thickness profile (before stretching). Decision variables
are injection conditions and cavity geometry. This step aims at find the best solu-
tions which produces the optimal preform thickness profile (before stretching)
obtained in previous step.

It is important to point out that the optimization algorithms and procedures used in
each step are exactly the same except by decision variables and results considered in
each of them. Since the results of a given step is used by the next one, the optimization
should follow the chain during its execution, but at any time it is possible to go back to
previous steps to reformulate the results. In this case, further steps should be executed
again to update the results. The optimization workflow is indicated by white arrows in
Fig. 2.

2.3 Proposed Methodology

Injection blow molding simulations are done through finite element methods hence all
parts are modeled in 3D meshes where each mesh point is supposed to have a certain
thickness value. One of the main issues concerning the optimization is how to handle
the different sizes and geometries of each mesh. For instance, a simple bottle mesh can
be composed by thousands of points (to have good accuracy). Furthermore, considering
each point as a decision variable will lead to a huge search space for optimization
algorithms.

The proposed methodology follows the described global optimization to optimize
injection blow molding process. To reduce the search space and handle different kinds
of models (and meshes), thickness profiles are treated as a function of the container’s
geometry and neural networks are used to compute the wall thickness at any location of
the mesh based on the respective coordinates. It is important to point out that no
supervised training method are used, the parameters for the networks are determined by
the evolutionary multiobjective optimization process. As a result of optimizations, there
will be a neural network which gives the optimal thickness profile of the corresponding
optimization phase, that might be the profile of final part or the parison thickness
profile, for example.
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The proposed neuroevolutionary approach is illustrated in Fig. 3. It begins by
reading input parameters and generating the initial population randomly. Each popu-
lation is composed by a set of individuals, each of them representing a neural network
that models a wall thickness distribution. The information of ANNs (weights and
biases) is encoded in a chromosome of real numbers. Thus, the size of each chromo-
some will be directly related with the topology of the network. Figure 4 illustrates the
thickness calculation process. The coordinates of each point of a given mesh are fed
into an ANN that will output the wall thickness value for each point, respectively. The
network is composed of three layers where the number of neurons in the hidden layer
can be fixed or vary during optimization. Due to computational resources and time
constraints, in this study two fixed topologies were considered: 3-20-1 (20 neurons at
the hidden layer) and 3-5-1 (5 neurons at the hidden layer). These topologies were
previously determined by empirical experiments.

Fig. 3. Neuroevolutionary optimization workflow

Fig. 4. Thickness calculation using neural network
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When initialization is done, the algorithm performs a predefined numbers of gen-
erations of a steady-state variant of evolutionary process based on the SMS-EMOA
multiobjective optimization algorithm [8]. A single offspring is produced in each
generation. Selection is done by a uniform distribution (each member of the population
has the same chance to be selected). Variation is performed by SBX-Crossover oper-
ator, which is adequate to work with real number representations and replacement
strategy is based on Pareto front and hypervolume measure.

After being generated, each individual is evaluated by a procedure that comprises
assembly the neural network from chromosome information and fed into the network
the coordinates of each point of the finite element model. As a result of this step, the
thickness of each point of the mesh will be provided, creating the thickness profile that
will be considered in the simulation process.

At the end of optimization process there will be a set of optimal solutions, i.e., wall
thickness profiles modeled by neural networks, each one giving different trade-off
between the considered objectives.

3 Experiments and Results

3.1 Experimental Setup

The proposed methodology was applied to optimize injection blow molding of an
industrial plastic bottle model. Figure 5a shows the geometry of the model, which is
45 mm in diameter and 182 mm height, composed by a plastic material with mass
density of 1:15 g/cm3 and Poisson’s ration of 0.4. The ratio between the applied
blowing pressure and Young’s modulus is 0.0027.

Fig. 5. Bottle model with wall thickness distribution illustrated (dimensions in millimeters)
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The wall thickness distribution is composed by thickness values of each point of the
mesh considering vertical lines from bottleneck to the bottom on the model. Figure 5b
illustrates a thickness distribution plot for two vertical lines, but the points of all
vertical lines should be plotted on the same graph, being possible to visualize how the
thickness changes along the bottle. Note that for uniform distributions, lines will be
overlapped.

Numerical simulations were carried out by finite element analysis software ANSYS
Workbench version 18.1 to simulate an internal pressure applied to the final bottle. The
objective of the optimization in this phase is to find optimal thickness distributions
which provide the best relationships between the total mass and maximum strain
supported by the bottle.

Since the ANNs are not aware of the geometry of the final product, non-uniform
thickness distributions can be found by the optimization algorithm. However, for the
model considered in this study, uniform distributions are desirable. Thus, an objective
which takes into account the uniformness of thickness distributions was considered.
Three objectives were chosen for the optimization: (i) the total mass of final product
f1ð Þ, (ii) the maximum strain suffered f2ð Þ and (iii) the maximum difference between
each vertical line in the thickness distribution f3ð Þ. The difference between two vertical
lines is calculated using the root-mean-square error index (RMSE), given by Eq. (1).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

byı � yið Þ2
s

ð1Þ

In Eq. (1) byı and yi represents the thickness points of two different vertical lines and
n are the total number of points in each distribution. All vertical lines are compared to
each other and f3 is the maximum calculated RMSE, that is to be minimized. The
minimum and maximum allowable values of wall thickness were 0.1 and 3 mm,
respectively.

Due to high simulation time to compute each solution, 50 individuals were con-
sidered as the population size and a total of 5000 evaluations were performed in each
optimization, leading to a total of 100 generations. The two neural network topologies
described were considered: 3-20-1 and 3-5-1. All neurons uses sigmoid as activation
function.

3.2 Optimization Results

Figure 6 shows the evolution of hypervolume for each generation of both ANN
topologies. All objective function values were normalized with the maximum and
minimum values of the dataset, staying within the interval [0, 1]. The hypervolume was
calculated with reference point (1.0, 1.0, 1.0). Once all objective functions are being
minimized, higher hypervolume values means better optimization performance. Both
topologies converge at generation 30 (approximately) and topology 3-20-1 presented
better results than topology 3-5-1. Since the computational time for both optimizations
is almost the same, as the computation time is proportional to the modelling time, the
better topology can be used without significant loss of performance.
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Figure 7 shows the Pareto front (for 100th generation) of both topologies. Topology
3-20-1 provides more different optimal solutions than topology 3-5-1, especially for the
objectives f1 (mass) and f2 (maximum strain), where the Pareto front is much more
distributed. Thus, the final results were selected from this front.

Figure 8a shows the evolution between the initial and last populations in the
optimization process for topology 3-20-1. All objective functions were clearly mini-
mized forming the Pareto front, which is shown in Fig. 8b (for f1 and f2).

The five selected solutions in Fig. 8b were selected along the Pareto front to obtain
different trade-offs between the total mass of used material and the maximum strain
supported by the bottle for the imposed pressure. For example, solution S2 gives a

Fig. 6. Evolution of hypervolume for different ANN topologies

Fig. 7. Pareto front of each topology. In (a) all objectives are plotted whereas in (b) only
objectives f1 (mass) and f2 (maximum strain) are shown
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certain thickness distribution for the final bottle which leads to a maximum strain of
9.4 � 10−3 with 9.8 g in weight. Considering the conflicting nature of the objectives,
best relationships will be provided by solutions usually located at the knee of the curve.
In this case, these solutions might be represented by S2 and S3. Table 1 contains the
numerical values for all objectives of selected solutions.

Figure 9 shows the thickness distribution of each selected solution. All graphs
except f) have the same absolute interval in y-axis (1 mm). Figure 9f contains all
distributions on the same graph. Although each solution has a different value for
RMSE, when considering absolute 1 mm interval (which is a high precision for an
industrial blow molding process) there is no significant differences in distributions
concerning the uniformity. However, each solution presents different thickness average
levels, which can be seen in Fig. 9f. For instance, solution S5 has a mean thickness of
2.8 mm, giving lowest strain (0.3 � 10−3) but with higher weight (84.8 g).

Looking at Table 1 values, solution S3 (15.2 g in total weight with maximum strain
4.8 � 10−3) can be considered the general optimal solution, i.e., which gives the best
trade-off between material utilization (mass) and the minimum strain suffered by the

Fig. 8. (a) Initial and last population for topology 3-20-1. (b) Pareto front of last population
where only objectives f1 (mass) and f2 (maximum strain) are shown. Five selected solutions are
highlighted

Table 1. Optimal solutions selected from Pareto front

Solution Mass (g) Max. strain (x 10−3) RMSE (x 10−3)

S1 3.2 56.3 0.9
S2 9.8 9.4 10.4
S3 15.2 4.8 11.3
S4 37.1 1.2 2.5
S5 84.8 0.3 5.9
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bottle. Thus, the thickness profile provided by S3 can be used in further optimizations
of the global optimization process.

4 Conclusions

Optimization of injection blow molding is a great asset in industry since it can decrease
production cost and improve manufacturing process. This paper proposes a new
methodology based on a neuroevolutionary approach to optimize the injection blow
molding process. Neural networks are used to model wall thickness distributions and
evolutionary multiobjective optimization algorithms are applied to find optimal solu-
tions, giving the best trade-offs between material utilization and mechanical properties.
The methodology has been successfully applied to an industrial bottle model to find the
best relationship between total mass and maximum strain when pressure is applied. As
the result, a set of optimal thickness profiles has been found, providing less strain under
pressure with less material utilization.

Optimization experiments provided by this study were applied to one phase of
injection blow molding process. As a future work, the proposed methodology will be
applied to other phases as well.

Fig. 9. Thickness distributions of selected solutions (a) S1, (b) S2, (c) S3, (d) S4 and (e) S5,
respectively. (f) shows all distributions on the same graph
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